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Preface

The Symposium on Logical Foundations of Computer Science series provides a forum
for the fast-growing body of work in the logical foundations of computer science, e.g.,
those areas of fundamental theoretical logic related to computer science. The LFCS
series began with “Logic at Botik,” Pereslavl-Zalessky, 1989, which was co-organized
by Albert R. Meyer (MIT) and Michael Taitslin (Tver). After that, the organization
passed to Anil Nerode. Currently LFCS is governed by a Steering Committee consisting
of Anil Nerode (General Chair), Stephen Cook, Dirk van Dalen, Yuri Matiyasevich,
J. Alan Robinson, Gerald Sacks, and Dana Scott. The 2016 Symposium on Logical
Foundations of Computer Science (LFCS 2016) took place in the Wyndham Deerfield
Beach Resort, Deerfield Beach, Florida, USA, during January 4–7. This volume con-
tains the extended abstracts of talks selected by the Program Committee for presentation
at LFCS 2016.

The scope of the symposium is broad and includes constructive mathematics and type
theory; homotopy type theory; logic, automata, and automatic structures; computability
and randomness; logical foundations of programming; logical aspects of computational
complexity; parameterized complexity; logic programming and constraints; automated
deduction and interactive theorem proving; logical methods in protocol and program
verification; logical methods in program specification and extraction; domain theory
logics; logical foundations of database theory; equational logic and term rewriting;
lambda and combinatory calculi; categorical logic and topological semantics; linear
logic; epistemic and temporal logics; intelligent and multiple-agent system logics; logics
of proof and justification; non-monotonic reasoning; logic in game theory and social
software; logic of hybrid systems; distributed system logics; mathematical fuzzy logic;
system design logics; other logics in computer science.

We thank the authors and reviewers for their contributions. We acknowledge the
support of the US National Science Foundation, Cornell University, the Graduate
Center of the City University of New York, and Florida Atlantic University.

October 2015 Anil Nerode
Sergei Artemov
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Modal Logics with Hard Diamond-Free
Fragments

Antonis Achilleos(B)

The Graduate Center of The City University of New York, New York, USA
aachilleos@gradcenter.cuny.edu

Abstract. We investigate the complexity of modal satisfiability for cer-
tain combinations of modal logics. In particular we examine four exam-
ples of multimodal logics with dependencies and demonstrate that even
if we restrict our inputs to diamond-free formulas (in negation normal
form), these logics still have a high complexity. This result illustrates that
having D as one or more of the combined logics, as well as the interde-
pendencies among logics can be important sources of complexity even in
the absence of diamonds and even when at the same time in our formulas
we allow only one propositional variable. We then further investigate and
characterize the complexity of the diamond-free, 1-variable fragments of
multimodal logics in a general setting.

Keywords: Modal logic · Satisfiability · Computational complexity ·
Diamond-free fragments · Multi-modal · Lower bounds

1 Introduction

The complexity of the satisfiability problem for modal logic, and thus of its dual,
modal provability/validity, has been extensively studied. Whether one is inter-
ested in areas of application of Modal Logic, or in the properties of Modal Logic
itself, the complexity of modal satisfiability plays an important role. Ladner has
established most of what are now considered classical results on the matter [17],
determining that most of the usual modal logics are PSPACE-hard, while more for
the most well-known logic with negative introspection, S5, satisfiability is NP-
complete; Halpern and Moses [12] then demonstrated that KD45-satisfiability
is NP-complete and that the multi-modal versions of these logics are PSPACE-
complete. Therefore, it makes sense to try to find fragments of these logics that
have an easier satisfiability problem by restricting the modal elements of a for-
mula – or prove that satisfiability remains hard even in fragments that seem
trivial (ex. [4,11]). In this paper we present mostly hardness results for this
direction and for certain cases of multimodal logics with modalities that affect
each other. Relevant syntactic restrictions and their effects on the complexity of
various modal logics have been examined in [13,14]. For more on Modal Logic
and its complexity, see [10,12,20].

A (uni)modal formula is a formula formed by using propositional variables
and Boolean connectives, much like propositional calculus, but we also use two
c© Springer International Publishing Switzerland 2016
S. Artemov and A. Nerode (Eds.): LFCS 2016, LNCS 9537, pp. 1–13, 2016.
DOI: 10.1007/978-3-319-27683-0 1



2 A. Achilleos

additional operators, � (box) and � (diamond): if φ is a formula, then �φ and
�φ are formulas. Modal formulas are given truth values with respect to a Kripke
model (W,R, V ),1 which can be seen as a directed graph (W,R) (with possibly
an infinite number of vertices and allowing self-loops) together with a truth value
assignment for the propositional variables for each world (vertex) in W , called
V . We define �φ to be true in a world a if φ is true at every world b such that
(a, b) is an edge, while � is the dual operator: �φ is true at a if φ is true at some
b such that (a, b) is an edge.

We are interested in the complexity of the satisfiability problem for modal
formulas (in negation normal form, to be defined later) that have no diamonds –
i.e. is there a model with a world at which our formula is true? When testing
a modal formula for satisfiability (for example, trying to construct a model for
the formula through a tableau procedure), a clear source of complexity are the
diamonds in the formula. When we try to satisfy �φ, we need to assume the
existence of an extra world where φ is satisfied. When trying to satisfy �p1 ∧
�p2∧�φn, we require two new worlds where p1∧φn and p2∧φn are respectively
satisfied; for example, for φ0 = � and φn+1 = �p1 ∧ �p2 ∧ �φn, this causes
an exponential explosion to the size of the constructed model (if the model we
construct for φn has k states, then the model for φn+1 has 2k+1 states). There are
several modal logics, but it is usually the case that in the process of satisfiability
testing, as long as there are no diamonds in the formula, we are not required
to add more than one world to the constructed model. Therefore, it is natural
to identify the existence of diamonds as an important source of complexity. On
the other hand, when the modal logic is D, its models are required to have
a serial accessibility relation (no sinks in the graph). Thus, when we test �φ
for D-satisfiability, we require a world where φ is satisfied. In such a unimodal
setting and in the absence of diamonds, we avoid an exponential explosion in the
number of worlds and we can consider models with only a polynomial number
of worlds.

Several authors have examined the complexity of combinations of modal logic
(ex. [9,15,18]). Very relevant to this paper work on the complexity of com-
binations of modal logic is by Spaan in [20] and Demri in [6]. In particular,
Demri studied L1 ⊕⊆ L2, which is L1 ⊕ L2 (see [20]) with the additional axiom
�2φ → �1φ and where L1, L2 are among K, T, B, S4, and S5 – modality 1 comes
from L1 and 2 from L2. For when L1 is among K, T, B and L2 among S4, S5,
he establishes EXP-hardness for L1 ⊕⊆ L2-satisfiability. We consider L1 ⊕⊆ L2,
where L1 is a unimodal or bimodal logic (usually D, or D4). When L1 is bimodal,
L1 ⊕⊆ L2 is L1 ⊕ L2 with the extra axioms �3φ → �1φ and �3φ → �2φ.

The family of logics we consider in this paper can be considered part of the
much more general family of regular grammar logics (with converse). Demri and De
Nivelle have shown in [8] through a translation into a fragment of first-order logic
that the satisfiability problem for the whole family is in EXP (see also [7]). Then,
Nguyen and Sza�las in [19] gave a tableau procedure for the general satisfiability

1 There are numerous semantics for modal logic, but in this paper we only use Kripke
semantics.



Modal Logics with Hard Diamond-Free Fragment 3

problem (where the logic itself is given as input in the form of a finite automaton)
and determined that it is also in EXP.

In this paper, we examine the effect on the complexity of modal satisfiability
testing of restricting our input to diamond-free formulas under the requirement
of seriality and in a multimodal setting with connected modalities. In particular,
we initially examine four examples: D2⊕⊆K, D2⊕⊆K4, D⊕⊆K4, and D42⊕⊆K4.2

For these logics we look at their diamond-free fragment and establish that they
are PSPACE-hard and in the case of D2⊕⊆K4, EXP-hard. Furthermore, D2⊕⊆K,
D⊕⊆ K4, and D42 ⊕⊆ K4 are PSPACE-hard and D2 ⊕⊆ K4 is EXP-hard even for
their 1-variable fragments. Of course these results can be naturally extended to
more modal logics, but we treat what we consider simple characteristic cases.
For example, it is not hard to see that nothing changes when in the above
multimodal logics we replace K by D, or K4 by D4, as the extra axiom �3φ → �3φ
(�2φ → �2φ for D⊕⊆K4) is a derived one. It is also the case that in these logics
we can replace K4 by other logics with positive introspection (ex. S4, S5) without
changing much in our reasoning.

Then, we examine a general setting of a multimodal logic (we consider com-
binations of modal logics K, D, T, D4, S4, KD45, S5) where we include axioms
�iφ → �jφ for some pairs i, j. For this setting we determine exactly the com-
plexity of satisfiability for the diamond-free (and 1-variable) fragment of the
logic and we are able to make some interesting observations. The study of this
general setting is of interest, because determining exactly when the complex-
ity drops to tractable levels for the diamond-free fragments illuminates possibly
appropriate candidates for parameterization: if the complexity of the diamond-
free, 1-variable fragment of a logic drops to P, then we may be able to develop
algorithms for the satisfiability problem of the logic that are efficient for formulas
of few diamonds and propositional variables; if the complexity of that fragment
does not drop, then the development of such algorithms seems unlikely (we may
be able to parameterize with respect to some other parameter, though). Another
argument for the interest of these fragments results from the hardness results
of this paper. The fact that the complexity of the diamond-free, 1-variable frag-
ment of a logic remains high means that this logic is likely a very expressive one,
even when deprived of a significant part of its syntax.

A very relevant approach is presented in [13,14]. In [13], Hemaspaandra deter-
mines the complexity of Modal Logic when we restrict the syntax of the formulas
to use only a certain set of operators. In [14], Hemaspaandra et al. consider mul-
timodal logics and all Boolean functions. In fact, some of the cases we consider
have already been studied in [14]. Unlike [14], we focus on multimodal logics
where the modalities are not completely independent – they affect each other
through axioms of the form �iφ → �jφ. Furthermore in this setting we only
consider diamond-free formulas, while at the same time we examine the cases
where we allow only one propositional variable. As far as our results are con-
cerned, it is interesting to note that in [13,14] when we consider frames with

2 In general, in A ⊕⊆ B, if A a bimodal (resp. unimodal) logic, the modalities 1 and
2 (resp. modality 1) come(s) from A and 3 (resp. 2) comes from logic B.



4 A. Achilleos

serial accessibility relations, the complexity of the logics under study tends to
drop, while in this paper we see that serial accessibility relations (in contrast
to arbitrary, and sometimes reflexive, accessibility relations) contribute substan-
tially to the complexity of satisfiability.

Another motivation we have is the relation between the diamond-free frag-
ments of Modal Logic with Justification Logic. Justification Logic can be consid-
ered an explicit counterpart of Modal Logic. It introduces justifications to the
modal language, replacing boxes (�) by constructs called justification terms.
When we examine a justification formula with respect to its satisfiability, the
process is similar to examining the satisfiability of a modal formula without
any diamonds (with some extra nontrivial parts to account for the justification
terms). Therefore, as we are interested in the complexity of systems of Multi-
modal and Multijustification Logics, we are also interested in these diamond-free
fragments. For more on Justification Logic and its complexity, the reader can see
[3,16]; for more on the complexity of Multi-agent Justification Logic and how
this paper is connected to it, the reader can see [2].

It may seem strange that we restrict ourselves to formulas without diamonds
but then we implicitly reintroduce diamonds to our formulas by considering ser-
ial modal logics – still, this is not the same situation as allowing the formula to
have any number of diamonds, as seriality is only responsible for introducing at
most one accessible world (for every serial modality) from any other. This is a
nontrivial restriction, though, as we can see from this paper’s results. Further-
more it corresponds well with the way justification formulas behave when tested
for satisfiability.

For an extended version with omitted proofs the reader can see [1].

2 Modal Logics and Satisfiability

For the purposes of this paper it is convenient to consider modal formulas in
negation normal form (NNF) – negations are pushed to the atomic level (to the
propositional variables) and we have no implications. Note that for all logics
we consider, every formula can be converted easily to its NNF form, so the
NNF fragment of each logic we consider has exactly the same complexity as
the full logic. We discuss modal logics with one, two, and three modalities, so
we have three modal languages, L1 ⊆ L2 ⊆ L3. They all include propositional
variables, usually called p1, p2, . . . (but this may vary based on convenience)
and ⊥. If p is a propositional variable, then p and ¬p are called literals and
are also included in the language and so is ¬⊥, usually called �. If φ, ψ are in
one of these languages, so are φ ∨ ψ and φ ∧ ψ. Finally, if φ is in L3, then so
are �1φ,�2φ,�1φ,�2φ,�3φ,�3φ. L2 includes all formulas in L3 that have no
�3,�3 and L1 includes all formulas in L2 that have no �2,�2. In short, Ln is
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defined in the following way, where 1 ≤ i ≤ n: φ ::= p | ¬p | ⊥ | ¬⊥ | φ∧φ | φ∨
φ | �iφ | �iφ. If we consider formulas in L1, �1 may just be called �.3

A Kripke model for a trimodal logic (a logic based on language L3) is a tuple
M = (W,R1, R2, R3, V ), where R1, R2, R3 ⊆ W × W and for every proposi-
tional variable p, V (p) ⊆ W . Then, (W,R1, V ) (resp. (W,R1, R2, V )) is a Kripke
model for a unimodal (resp. bimodal) logic. Then, (W,R1), (W,R1, R2), and
(W,R1, R2, R3) are called frames and R1, R2, R3 are called accessibility rela-
tions. We define the truth relation |= between models, worlds (elements of W ,
also called states) and formulas in the following recursive way:

M, a 
|= ⊥;
M, a |= p iff a ∈ V (p) and M, a |= ¬p iff a /∈ V (p);
M, a |= φ ∧ ψ iff both M, a |= φ and M, a |= ψ;
M, a |= φ ∨ ψ iff M, a |= φ or M, a |= ψ;
M, a |= �iφ iff there is some b ∈ W such that aRib and M, b |= φ;
M, a |= �iφ iff for all b ∈ W such that aRib it is the case that M, b |= φ.

In this paper we deal with five logics: K, D2 ⊕⊆ K, D2 ⊕⊆ K4, D ⊕⊆ K4, and
D42 ⊕⊆ K4. All except for K and D⊕⊆ K4 are trimodal logics, based on language
L3, K is a unimodal logic (the simplest normal modal logic) based on L1, and
D⊕⊆ K4 is a bimodal logic based on L2. Each modal logic M is associated with
a class of frames C. A formula φ is then called M -satisfiable iff there is a frame
F ∈ C, where C the class of frames associated to M , a model M = (F , V ), and
a state a of M such that M, a |= φ. We say that M satisfies φ, or a satisfies φ
in M, or M models φ, or that φ is true at a.

K is the logic associated with the class of all frames;
D2 ⊕⊆ K is the logic associated with the class of frames (W,R1, R2, R3) for

which R1, R2 are serial (for every a there are b, c such that aR1b, aR2c) and
R1 ∪ R2 ⊆ R3;

D2 ⊕⊆ K4 is the logic associated with the class of frames F = (W,R1, R2, R3)
for which R1, R2 are serial, R1 ∪ R2 ⊆ R3, and R3 is transitive;

D ⊕⊆ K4 is the logic associated with the class of frames F = (W,R1, R2) for
which R1 is serial, R1 ⊆ R2, and R2 is transitive;

D42 ⊕⊆ K4 is the logic associated with the class of frames F = (W,R1, R2, R3)
for which R1, R2 are serial, R1 ∪ R2 ⊆ R3 and R1, R2, R3 are transitive.

Tableau. A way to test for satisfiability is by using a tableau procedure. A good
source on tableaux is [5]. We present tableau rules for K and for the diamond-free
fragments of D2 ⊕⊆ K and then for the remaining three logics. The main reason
we present these rules is because they are useful for later proofs and because
they help to give intuition regarding the way we can test for satisfiability. The
ones for K are classical and follow right away. Formulas used in the tableau are
3 It may seem strange that we introduce languages with diamonds and then only

consider their diamond-free fragments. When we discuss K, we consider the full
language, so we introduce diamonds for L1, L2, L3 for uniformity.
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Table 1. Tableau rules for K.

σ φ ∨ ψ

σ φ | σ ψ

σ φ ∧ ψ

σ φ
σ ψ

σ �φ

σ.i φ

where σ.i has al-
ready appeared in
the branch.

σ �φ

σ.i φ

where σ.i has not
yet appeared in
the branch.

given a prefix, which intuitively corresponds to a state in a model we attempt to
construct and is a string of natural numbers, with . representing concatenation.
The tableau procedure for a formula φ starts from 0 φ and applies the rules it can
to produce new formulas and add them to the set of formulas we construct, called
a branch. A rule of the form a

b | c means that the procedure nondeterministically
chooses between b and c to produce, i.e. a branch is closed under that application
of that rule as long as it includes b or c. If the branch has σ ⊥, or both σ p and
σ ¬p, then it is called propositionally closed and the procedure rejects its input.
Otherwise, if the branch contains 0 φ, is closed under the rules, and is not
propositionally closed, it is an accepting branch for φ; the procedure accepts φ
exactly when there is an accepting branch for φ. The rules for K are in Table 1.

For the remaining logics, we are only concerned with their diamond-free
fragments, so we only present rules for those to make things simpler. As we
mention in the Introduction, all the logics we consider can be seen as regular
grammar logics with converse ([8]), for which the satisfiability problem is in
EXP. This already gives an upper bound for the satisfiability of D2 ⊕⊆ K4 (and
for the general case of (N,⊂, F ) from Sect. 4). We present the tableau rules
anyway (without proof), since it helps to visually give an intuition of each logic’s
behavior, while it helps us reason about how some logics reduce to others.

To give some intuition on the tableau rules, the main differences from the
rules for K are that in a frame for these logics we have two or three different
accessibility relations (lets assume for the moment that they are R1, R3, and
possibly R2), that one of them (R3) is the (transitive closure of the) union of the
others, and that we can assume that due to the lack of diamonds and seriality, R1

and R2 are total functions on the states. To establish this, notice that the truth
of diamond-free formulas in NNF is preserved in submodels; when R1, R2 are
not transitive, we can simply keep removing pairs from R1, R2 in a model as long
as they remain serial. As for the tableau for D42 ⊕⊆ K4, notice that for i = 1, 2,
Ri can map each state a to some c such that for every �iψ, subformula of φ,
c |= �iψ → ψ. If a is such a c, we map a to a; otherwise we can find such a c in
the following way. Consider a sequence bRic1Ric2Ri · · · ; if some cj 
|= �iψ → ψ,
then cj |= �iψ, so for every j′ > j, cj′ |= �iψ → ψ. Since the subformulas of φ
are finite in number, we can find some large enough j ∈ N and set c = cj . Notice
that using this construction on c, Ri maps c to c, is transitive and serial.

The rules for D2 ⊕⊆ K are in Table 2. To come up with tableau rules for the
other three logics, we can modify the above rules. The first two rules that cover
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Table 2. The rules for D2 ⊕⊆ K

σ φ ∨ ψ

σ φ | σ ψ

σ φ ∧ ψ

σ φ
σ ψ

σ �1φ

σ.1 φ

σ �2φ

σ.2 φ

σ �3φ

σ.1 φ
σ.2 φ

the propositional cases are always the same, so we give the remaining rules for
each case. In the following, notice that the resulting branch may be infinite.
However we can simulate such an infinite branch by a finite one: we can limit
the size of the prefixes, as after a certain size (up to 2|φ|, where φ the tested
formula) it is guaranteed that there will be two prefixes that prefix the exact
same set of formulas. Thus, we can either assume the procedure terminates or
that it generates a full branch, depending on our needs. In that latter case, to
ensure a full branch is generated, we can give lowest priority to a rule when it
generates a new prefix.

The rules for the diamond-free fragment of D2 ⊕⊆ K4 are in Table 3; the
rules for the diamond-free fragment of D⊕⊆ K4 in Table 4; and the rules for the
diamond-free fragment of D42 ⊕⊆ K4 are in Table 5.

Proposition 1. The satisfiability problem for the diamond-free fragments of
D2 ⊕⊆ K, of D ⊕⊆ K4, and of D42 ⊕⊆ K4 is in PSPACE; satisfiability for the
diamond-free fragment of D2 ⊕⊆ K4 is in EXP.

The cases of D⊕⊆ K4 and D42 ⊕⊆ K4 are especially interesting. In [6], Demri
established that D ⊕⊆ K4-satisfiability (and because of the following section’s
results also D42 ⊕⊆ K4-satisfiability) is EXP-complete. In this paper, though, we
establish that the complexity of these two logics’ diamond-free (and one-variable)
fragments are PSPACE-complete (in this section we establish the PSPACE upper
bounds, while in the next one the lower bounds), which is a drop in complexity

Table 3. Tableau rules for the diamond-free fragment of D2 ⊕⊆ K4

σ �1φ

σ.1 φ

σ �2φ

σ.2 φ

σ �3φ

σ.1 φ
σ.2 φ

σ.1 �3φ
σ.2 �3φ

Table 4. Tableau rules for the diamond-free fragment of D ⊕⊆ K4

σ �1φ

σ.1 φ

σ �2φ

σ.1 φ
σ.1 �2φ
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Table 5. Tableau rules for the diamond-free fragment of D42 ⊕⊆ K4

σ �1φ

n1(σ) φ

σ �2φ

n2(σ) φ

σ �3φ

n1(σ) φ
n2(σ) φ

n1(σ) �3φ
n2(σ) �3φ

where ni(σ) = σ if σ = σ′.i for some σ′ and ni(σ) = σ.i otherwise.

(assuming PSPACE 
= EXP), but not one that makes the problem tractable
(assuming P 
= PSPACE).

3 Lower Complexity Bounds

In this section we give hardness results for the logics of the previous section –
except for K. In [4], the authors prove that the variable-free fragment of K
remains PSPACE-hard. We make use of that result here and prove the same
for the diamond-free, 1-variable fragment of D2 ⊕⊆ K. Then we prove EXP-
hardness for the diamond-free fragment of D2 ⊕⊆ K4 and PSPACE-hardness for
the diamond-free fragments of D⊕⊆K4 and of D42⊕⊆K4, which we later improve
to the same result for the diamond-free, 1-variable fragments of these logics.

Proposition 2. The diamond-free, 1-variable fragment of D2 ⊕⊆ K is PSPACE-
complete.

For the remaining logics we first present a lower complexity bound for their
diamond-free fragments and then we can use translations to their 1-variable
fragments to transfer the lower bounds to these fragments. We first treat the
case of D2 ⊕⊆ K4.

Lemma 1. The diamond-free fragment of D2 ⊕⊆ K4 is EXP-complete, while the
diamond-free fragments of D ⊕⊆ K4 and of D42 ⊕⊆ K4 are PSPACE-complete.

From Lemma 1, with some extra work, we can prove the following.

Proposition 3. The 1-variable, diamond-free fragment of D2 ⊕⊆ K4 is EXP-
complete; the 1-variable, diamond-free fragments of D ⊕⊆ K4 and of D42 ⊕⊆ K4
are PSPACE-complete.

One may wonder whether we can say the same for the variable-free fragment of
these logics. The answer however is that we cannot. The models for these logics
have accessibility relations that are all serial. This means that any two models
are bisimilar when we do not use any propositional variables, thus any satisfiable
formula is satisfied everywhere in any model, thus we only need one prefix for
our tableau and we can solve satisfiability recursively on φ in polynomial time.

Then what about D4⊕⊆ K4? Maybe we could attain similar hardness results
for this logic as for D42 ⊕⊆ K4. Again, the answer is no. As frames for D4 come
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with a serial and transitive accessibility relation, frames for D4 ⊕⊆ K4 are of
the form (W,R1, R2), where R1 ⊆ R2, R1, R2 are serial, and R1 is transitive. It
is not hard to come up with the following tableau rule(s) for the diamond-free
fragment, by adjusting the ones we gave for D42 ⊕⊆ K4 to simply produce 0.1 φ
from every σ �iφ. This drops the complexity of satisfiability for the diamond-
free fragment of D4 ⊕⊆ K4 to NP (and of the diamond-free, 1-variable fragment
to P), as we can only generate two prefixes during the tableau procedure. The
following section explores when we can produce hardness results like the ones
we gave in this section.

4 A General Characterization

In this section we examine a more general setting and we conclude by establishing
tight conditions that determine the complexity of satisfiability of the diamond-
free (and 1-variable) fragments of such multimodal logics.

A general framework would be to describe each logic with a triple (N,⊂, F ),
where N = {1, 2, . . . , |N |} 
= ∅, ⊂ a binary relation on N , and for every i ∈ N ,
F (i) is a modal logic; a frame for (N,⊂, F ) would be (W, (Ri)i∈N ), where for
every i ∈ N , (W,Ri) a frame for F (i) and for every i ⊂ j, Ri ⊂ Rj . It is
reasonable to assume that (N,⊂) has no cycles – otherwise we can collapse all
modalities in the cycle to just one – and that ⊂ is transitive. Furthermore, we also
assume that all F (i)’s have frames with serial accessibility relations – otherwise
there is either some j ⊆ i for which F (j)’s frames have serial accessibility rela-
tions and R(i) would inherit seriality from Rj , or when testing for satisfiability,
�iψ can always be assumed true by default (the lack of diamonds means that we
do not need to consider any accessible worlds for modality i), which allows us to
simply ignore all such modalities, making the situation not very interesting from
an algorithmic point of view. Thus, we assume that F (i) ∈ {D,T,D4,S5}.4,5

The cases for which ⊂= ∅ have already had the complexity of their diamond-
free (and other) fragments determined in [14]. For the general case, we already
have an EXP upper bound from [8].

The reader can verify that (N,⊂, F ) is, indeed, a (fragment of a) regular
grammar modal logic with converse. For example, D2⊕⊂D4 can easily be reduced
to K2 ⊕⊂ K4 by mapping φ to �1� ∧ �2� ∧ �3(�1� ∧ �2�) ∧ φ to impose
seriality, for which the corresponding regular languages would be �1, �2, and
(�1+�2+�3)∗ (see [8] for more on regular grammar modal logics with converse
and their complexity and the extended version of this paper, [1], for more details
on why (N,⊂, F ) belongs in that category).
4 We can consider more logics as well, but these ones are enough to make the points

we need. Besides, it is not hard to extend the reasoning of this section to other logics
(ex. B, S4, KD45 and due to the observation above, also K, K4), especially since the
absence of diamonds makes the situation simpler.

5 Frames for D have serial accessibility relations; frames for T have reflexive accessibil-
ity relations; frames for D4 have serial and transitive accessibility relations; frames
for S5 have accessibility relations that are equivalence relations (reflexive, symmetric,
transitive).
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Table 6. Tableau rules for the diamond-free fragment of (N,⊂, F )

σ �iφ

σ �jφ

where j ⊂ i

σ �iφ

ni(σ) φ

where
i ∈ min(N)

σ �iφ

σ φ

where the frames
of F (i) have re-
flexive acc. rela-
tions

σ �iφ

nj(σ) �iφ

where j ∈ min(i) and
F (i)’s frames have
transitive acc. rela-
tions

For every i ∈ N , let

min(i) = {j ∈ N | j ⊂ i or j = i, and 
 ∃j′ ⊂ j}

and min(N) =
⋃

i∈N min(i). We can now give tableau rules for (N,⊂, F ). Let

– ni(σ) = σ, if either
• the accessibility relations of the frames for F (i) are reflexive, or
• σ = σ′.i for some σ′ and the accessibility relations of the frames for F (i)

are transitive;
– ni(σ) = σ.i, otherwise.

The tableau rules appear in Table 6.
From these tableau rules we can reestablish EXP-upper bounds for all of

these cases (see the previous sections). To establish correctness, we only show
how to construct a model from an accepting branch for φ, as the opposite direc-
tion is easier. Let W be the set of all the prefixes that have appeared in the
branch. The accessibility relations are defined in the following (recursive) way:
if i ∈ min(N), then Ri = {(σ, ni(σ)) ∈ W 2} ∪ {(σ, σ) ∈ W 2 | ni(σ) /∈ W or
F (i) has reflexive frames}; if i /∈ min(N) and the frames of F (i) do not have
transitive or reflexive accessibility relations, then Ri =

⋃
j⊆i Rj ; if i /∈ min(N)

and the frames of F (i) do have transitive (resp. reflexive, resp. transitive and
reflexive) accessibility relations, then Ri is the transitive (resp. reflexive, resp.
transitive and reflexive) closure of

⋃
j⊆i Rj . Finally, (as usual) V (p) = {w ∈ W |

w p appears in the branch}. Again, to show that the constructed model satisfies
φ, we use a straightforward induction.

By taking a careful look at the tableau rules above, we can already make
some simple observations about the complexity of the diamond-free fragments
of these logics. Modalities in min(N) have an important role when determining
the complexity of a diamond-free fragment. In fact, the prefixes that can be
produced by the tableau depend directly on min(N).

Lemma 2. If for every i ∈ min(N), F (i) has frames with reflexive accessibil-
ity relations (F (i) ∈ {T,S5}), then the satisfiability problem for the diamond-
free fragment of (N,⊂, F ) is NP-complete and the satisfiability problem for the
diamond-free, 1-variable fragment of (N,⊂, F ) is in P.
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Corollary 1. If min(N) ⊆ {i} ∪ A and F (i) has frames with transitive acces-
sibility relations (F (i) ∈ {D4,S5}) and for every j ∈ A, F (j) has frames with
reflexive accessibility relations, then the satisfiability problem for the diamond-
free fragment of (N,⊂, F ) is NP-complete and the satisfiability problem for the
diamond-free, 1-variable fragment of (N,⊂, F ) is in P.

In [6], Demri shows that satisfiability for L1⊕⊆ L2⊕⊆ · · ·⊕⊆ Ln is EXP-complete,
as long as there are i < j ≤ n for which Li⊕⊆Lj is EXP-hard. On the other hand,
Corollary 1 shows that for all these logics, their diamond-free fragment is in NP,
as long as L1 has frames with transitive (or reflexive) accessibility relations.

Finally, we can establish general results about the complexity of the diamond-
free fragments of these logics. For this, we introduce some terminology. We call
a set A ⊂ N pure if for every i ∈ A, F (i)’s frames do not have the condition that
their accessibility relation is reflexive (given our assumptions, F [A] ∩ {T,S5} =
∅). We call a set A ⊂ N simple if for some i ∈ A, F (i)’s frames do not have the
condition that their accessibility relation is transitive (given our assumptions,
F [A] ∩ {D,T} 
= ∅). An agent i ∈ N is called pure (resp. simple) if {i} is pure
(resp. simple).

Theorem 1. 1. If there is some i ∈ N and some pure A ⊆ min(i) for which
F (i) has frames with transitive accessibility relations (F (i) ∈ {D4,S5}) and
either
– |A| = 2 and A is simple, or
– |A| = 3,

then the satisfiability problem for the diamond-free, 1-variable fragment of
(N,⊂, F ) is EXP-complete;

2. otherwise, if there is some i ∈ N and some pure A ⊆ min(i) for which either
– |A| = 2 and there is some pure and simple j ∈ min(N), or
– |A| = 3,
then the satisfiability problem for the diamond-free, 1-variable fragment of
(N,⊂, F ) is PSPACE-complete;

3. otherwise, if there is some i ∈ N and some pure A ⊆ min(i) for which F (i)
has frames with transitive accessibility relations (F (i) ∈ {D4,S5}) and either
– |A| = 1 and A is simple or
– |A| = 2,
then the satisfiability problem for the diamond-free (1-variable) fragment of
(N,⊂, F ) is PSPACE-complete;

4. otherwise the satisfiability problem for the diamond-free (resp. and 1-variable)
fragment of (N,⊂, F ) is NP-complete (resp. in P).

5 Final Remarks

We examined the complexity of satisfiability for the diamond-free fragments and
the diamond-free, 1-variable fragments of multimodal logics equipped with an
inclusion relation ⊂ on the modalities, such that if i ⊂ j, then in every frame
(W,R1, . . . , Rn) of the logic, Ri ⊆ Rj (equivalently, �j → �i is an axiom).
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We gave a complete characterization of these cases (Theorem 1), determining
that, depending on ⊂, every logic falls into one of the following three complexity
classes: NP (P for the 1-variable fragments), PSPACE, and EXP – Theorem 1
actually distinguishes four possibilities, depending on the way we prove each
bound. We argued that to have nontrivial complexity bounds we need to consider
logics based on frames with at least serial accessibility relations, which is a
notable difference in flavor from the results in [13,14].

One direction to take from here is to consider further syntactic restrictions
and Boolean functions in the spirit of [14]. Another would be to consider different
classes of frames. Perhaps it would also make sense to consider different types
of natural relations on the modalities and see how these results transfer in a
different setting. From a Parameterized Complexity perspective there is a lot to
be done, such as limiting the modal depth/width, which are parameters that can
remain unaffected from our ban on diamonds. For the cases where the complexity
of the diamond-free, 1-variable fragments becomes tractable, a natural next step
would be to examine whether we can indeed use the number of diamonds as a
parameter for an FPT algorithm to solve satisfiability.

Another direction which interests us is to examine what happens with more/
different kinds of relations on the modalities. An example would be to introduce
the axiom �iφ → �j�iφ, a generalization of Positive Introspection. This would
be of interest in the case of the diamond-free fragments of these systems, as
it brings us back to our motivation in studying the complexity of Justification
Logic, where such systems exist. Hardness results like the ones we proved in this
paper are not hard to transfer in this case, but it seems nontrivial to immediately
characterize the complexity of the whole family.

Acknowledgments. The author is grateful to anonymous reviewers, whose input has
greatly enhanced the quality of this paper.
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Abstract. Common Knowledge C is a standard tool in epistemic logics.
Generic Common Knowledge J is an alternative which has desirable
logical behavior such as cut-elmination and which can be used in place
of C in the analysis of many games and epistemic senarios. In order
to compare their deductive strengths directly we define the multi-agent
logic S4CJ

n built on a language with both C and J operators in addition
to agents’ Kis so that any finite prefix of modal operators is acceptable.
We prove S4CJ

n is complete, decidable, and that Jϕ → Cϕ though not
Cϕ → Jϕ. Additional epistemic scenarios may be investigated which
take advantage of this dual layer of common knowledge agents.

Keywords: Generic common knowledge · Common knowledge · Epis-
temic logic · Modal logic

1 Introduction

In systems of multiple knowers, or agents, it is natural to consider what informa-
tion is publicly known. The most investigated such concept is that of common
knowledge. Informally, if a sentence or proposition ϕ is common knowledge, Cϕ,
then everyone knows it (Eϕ), and everyone knows everyone knows it (EEϕ),
and everyone knows everyone knows everyone knows it, etc., i.e., iterated knowl-
edge of ϕ, Iϕ. Common knowledge has overwhelmingly been formalized as an
equivalence of Cϕ and Iϕ via a finite set of axioms. In each multi-agent system,
C is unique.

However, there is a more general and eventually simpler conception of com-
mon knowledge, generic common knowledge, J . While Jϕ is sufficient to yield
iterated knowledge, it is not necessarily equivalent to Iϕ. This alternative offers
a broader view of common knowledge as it allows for a choice between mul-
tiple logically non-equivalent common knowledge operators. Moreover, generic
common knowledge which is not the traditional common knowledge naturally
appears in some canonical epistemic scenarios. For example, a public announce-
ment of an atomic fact A creates not common knowledge but rather universal
knowledge (an instance of generic common knowledge) of A since A, a posteriori,
holds at all worlds, not only at all reachable worlds. In the belief revision sit-
uations, such as the well-known Stalnaker-Halpern game, the revision function
c© Springer International Publishing Switzerland 2016
S. Artemov and A. Nerode (Eds.): LFCS 2016, LNCS 9537, pp. 14–26, 2016.
DOI: 10.1007/978-3-319-27683-0 2
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overspills to another reachability cluster of worlds and hence no longer should
obey the common knowledge assumption [4].

The generic common knowledge was introduced by McCarthy in [11] as ‘any
fool knows’ and independently by Artemov in [6] as ‘justified common knowl-
edge’ who later termed it ‘generic common knowledge.’ In [6] it was the implicit
‘forgetful projection’ counterpart to the explicit constructive knowledge LP com-
ponent of S4nLP, a logic in the family of justification logics. J differs from C in
logical behavior: its addition to a system does not hinder straightforward com-
pleteness proofs and as the cut-rule can be eliminated the way is paved for its
Realization to an explicit justification logic counterpart e.g. the realization of
S4J

n in S4nLP [5,6] or in LPn(LP) [2]. These realizations impart a rich semantics:
Jϕ asserts that ϕ is common knowledge arising from a proof of ϕ. In applica-
tions, J can be used in place of C whenever common knowledge is assumed as
a premise, rather than being the desired outcome [3]. The cut-rule for tradi-
tional common knowledge has been investigated in [1] and syntactic elimination
obtained for some systems as in [9].

This paper defines a multi-agent epistemic logic S4CJ
n which expands on the

n-agent logic S4n to encompass two formulations common knowledge C and J .
Completeness for this logic is shown, providing a basis for direct comparison of
the deductive strength of J and C. We shall see that Jϕ → Cϕ though not the
converse.

2 Axiomatization of S4CJ
n

In S4CJ
n we can consider formulas which may contain both C and J as well as

Ki modalities.

Definition 1. The language LS4CJ
n

is an extension of the propositional lan-
guage:

LS4CJ
n

:= {Var ,∧,∨,→,¬,Ki, C, J}

for i ∈ {1, 2, . . . , n} where Var is the set of propositional variables. Formulas are
defined by the grammar

ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ¬ϕ | Kiϕ | Cϕ | Jϕ

where p ∈Var.
The formula K1K2ϕ has the intended semantics of ‘agent 1 knows that agent

2 knows ϕ’ while Cϕ and Jϕ have the intended semantics of ‘ϕ is common
knowledge’ and ‘ϕ is generic common knowledge’ respectively.

Definition 2. The axioms and rules of S4CJ
n , for i ∈ {1, 2, . . . , n} where � is

Ki or J or C:
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classical propositional calculus:
A. axioms of classical propositional calculus
R1. modus ponens: � ϕ, ϕ → ψ ⇒ � ψ

S4 axioms for each modality:
K. �(ϕ → ψ) → (�ϕ → �ψ)
T. �ϕ → ϕ
4. �ϕ → ��ϕ

additional knowledge axioms:
Con. Jϕ → Kiϕ
ConC. Cϕ → Kiϕ

IA. ϕ ∧ C(ϕ → Eϕ) → Cϕ, where Eϕ =
n∧

i=1

Knϕ

necessitation for each modality:
R2. � ϕ ⇒ � �ϕ .

Proposition 1. Both Cϕ and Jϕ satisfy X in the Fixed Point Axiom,

X ↔ E(ϕ ∧ X).

Proof. Jϕ ↔ E(ϕ ∧ Jϕ):

(→)

1 JJϕ → EJϕ from Con and definition of E
2 Jϕ → JJϕ 4 for J
3 Jϕ → EJϕ from 2. and 1
4 Jϕ → Eϕ from Con and definition of E
5 Jϕ → (Eϕ ∧ EJϕ) from 3. and 4
6 Jϕ → E(ϕ ∧ Jϕ) from 5. as normal modalities commute with ∧

(←)

1 E(ϕ ∧ Jϕ) → Eϕ ∧ EJϕ normal modalities commute with ∧
2 Eϕ ∧ EJϕ → EJϕ
3 EJϕ → KiJϕ definition of E
4 KiJϕ → Jϕ T for Ki

5 E(ϕ ∧ Jϕ) → Jϕ from 1. – 4
Normal modals are those with K axiom and subject to necessitation (R2).

Each J axiom or rule has a C counterpart. Thus, as J satisfies the fixed point
axiom, so does C.

Proposition 2. S4CJ
n � Jϕ → Cϕ.

Proof. Reasons from propositional calculus are not listed.
1. Jϕ → EJϕ from 4 for J , Con, and definition of E
2. C(Jϕ → EJϕ) from 1. by R2 for C
3. Jϕ → C(Jϕ → EJϕ) from 2.
4. Jϕ → Jϕ
5. Jϕ → Jϕ ∧ C(Jϕ → EJϕ) from 3. and 4.
6. Jϕ ∧ C(Jϕ → EJϕ) → CJϕ IA on Jϕ
7. Jϕ → CJϕ from 5. and 6.
8. Jϕ → ϕ T for J
9. CJϕ → Cϕ from 8. by R2, K, R1 for C
10. Jϕ → Cϕ from 7. and 9.
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That the converse does not hold must wait till Proposition 4, after S4CJ
n is

shown to be sound and complete.
We will use the following proposition in the completeness proof (Theorem2).

Proposition 3. S4CJ
n � Cϕ → ECϕ.

Proof. Just as lines 1. – 3. in the forward direction of proof of Proposition 1.

Definition 3. An S4CJ
n -model is MCJ = 〈W,R1, . . . , Rn, RC , RJ ,�〉 such that

– W �= ∅ is a set of worlds;
– Ri ⊆ W × W is reflexive and transitive for i ∈ {1, . . . , n};

– RC =
( n⋃

i=1

Ri

)TC , the transitive closure of the union of Ris;

– RJ ⊆ W × W is reflexive and transitive and RC ⊆ RJ ;
– � ⊆ W × V ar so that for w ∈ W,p ∈ V ar, w � p iff p holds at w;
– � is extended to correspond with Boolean connectives at each world and so the

asccessibility relations Ri, RC , and RJ corresponds to the modalities Ki, C,
and J respectively, so that in MCJ

u � Kiϕ iff (∀v ∈ W )(uRiv ⇒ v � ϕ),

u � Cϕ iff (∀v ∈ W )(uRCv ⇒ v � ϕ),

u � Jϕ iff (∀v ∈ W )(uRJv ⇒ v � ϕ).

Note that the accessibility relation of C corresponds to reachability in each con-
nected component of the model and is exactly prescribed by the agents’ relations.
On the other hand there is flexibility for RJ to be any reflexive transitive relation
as small as RC or a large as the total relation.

Theorem 1. S4CJ
n is sound with respect to MCJ models.

Proof (Soundness). Let M be an arbitrary S4CJ
n -model. Assume χ is provable

and show it holds in each world of M . It is enough to show that all the axioms
and rules are valid.

– χ is a propositional variable: u � χ for all worlds in the model M implies χ
is valid by definition.

– χ = ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ. If χ is formed by Boolean connectives, it is
valid by the definition of these connectives at each world.

– modus ponens: Suppose u � ϕ → ψ. Then by the definition of the connectives,
either u �� ϕ or u � ψ. If also u � ϕ, then u � ψ. So if ϕ → ψ and ϕ hold at
any world, so does ψ.
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– K axioms: Shown for Ki but analogous for C and J . χ = Ki(ϕ → ψ) →
(Kiϕ → Kiψ) = (Ki(ϕ → ψ) ∧ Kiϕ) → Kiψ. Suppose u � Ki(ϕ → ψ) ∧ Kiϕ,
then for all v such that uRiv, v � ϕ → ψ and v � ϕ. So as modus ponens is
valid v � ψ, and hence u � Kiψ. Therefore u � Ki(ϕ → ψ) → (Kiϕ → Kiψ)
is valid.

– T axioms: Shown for Ki but analogous for C and J . χ = Kiϕ → ϕ. Suppose
u � Kiϕ, then for all v such that uRiv, v � ϕ. Since Ri is reflexive, uRiu, and
so u � ϕ. Thus u � Kiϕ → ϕ is valid. RC is reflexive as it is the transitive
closure of a union of reflexive relations.

– 4 axioms: Shown for Ki but analogous for C and J . Suppose u � Kiϕ, then
for all v such that uRiv, v � ϕ. As Ri is transitive, for all w such that
vRiw, uRiw and so w � ϕ and so v � Kiϕ and hence u � KiKiϕ. Therefore
u � Kiϕ → KiKiϕ is valid.

– modal necessitation: Shown for Ki but analogous for C and J . Assume ϕ is
valid in M , then it is true at each world so u � ϕ, and for all worlds v such
that vRiu, v � ϕ. Thus u � Kiϕ. As the world u was arbitrary, Kiϕ holds at
all worlds and so is valid in the model. Therefore � ϕ ⇒ � Kiϕ is valid.

– Con axiom: χ = Jϕ → Kiϕ. Suppose u � Jϕ so that for all v such that uRJv,
v � ϕ. For all i, Ri ⊆ RJ by definition, so for all w such that uRiw, also
uRJw and so w � ϕ, thus u � Kiϕ.

– ConC: Analogous to the proof shown above for J ’s connection axiom Con.
– IA: χ = ϕ ∧ C(ϕ → Eϕ) → Cϕ. Suppose u � ϕ ∧ C(ϕ → Eϕ). Then for all

v such that uRCv, v � ϕ → Eϕ (∗∗). We want to show u � Cϕ, i.e. v � ϕ
for all v reachable from u. Proceed by induction on length of path l along Ris
from u to v. It is sufficient to show this for paths of length l along the Ris as
then the RC paths are of length ≤ l (and in fact of length 0 or 1 along RC).
– If l = 0 then u = v and by assumption, u � ϕ.
– Induction Hypothesis: Assume s � ϕ holds for worlds s reachable from u by
a path of length l.
– Suppose that v is reachable from u by a path of length l + 1. Then there is
a world t reachable from u in l steps and tRiv for some i. By the induction
hypothesis, t � ϕ but also by (∗∗) and modus ponens, t � Eϕ. But tRiv, so
v � ϕ. Thus u � Cϕ.

3 Completeness of S4CJ
n

Theorem 2. S4CJ
n is complete with respect to MCJ models.

To show completeness, the usual approach would be to construct the canonical
model. However, here the canonical structure turns out not to be a model of
S4CJ

n . So, instead of a single large model which acts as a counter-model for all
non-provable ϕ, for each non-provable ϕ we construct a finite model with a world
at which ϕ does not hold. Filtration techniques on the canonical structure yield
these counter-models. The proof of Theorem 2 is delayed until the end of Sect. 3.2
after the presentation on filtrations.
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Definition 4. The canonical structure for S4CJ
n is M ′ = 〈W,R1, . . . , Rn, RC , RJ ,

�〉 where

– W = {Γ | Γ is a maximally consistent set of S4CJ
n formulas};

– � ⊆ W × Var such that Γ � p iff p ∈ Γ for p ∈Var;
– ΓRiΔ iff Γ i ⊆ Δ, where Γ i := {ϕ | Kiϕ ∈ Γ};
– ΓRCΔ iff ΓC ⊆ Δ, where ΓC := {ϕ | Cϕ ∈ Γ};
– ΓRJΔ iff Γ J ⊆ Δ, where Γ J := {ϕ | Jϕ ∈ Γ}.

Lemma 1 (Truth Lemma). M ′ satisfies the Truth Lemma: for all Γ

M ′, Γ � ϕ ⇔ ϕ ∈ Γ. (1)

Proof. The proof by induction on ϕ is standard and mimics the S4n case but we
reproduce it here.

– base case: ϕ = p for p ∈Var. Holds by definition of �.
– Induction Hypothesis: Assume that the Truth Lemma holds for formulas of

lower complexity.
– Boolean cases: by extension of �, the induction hypothesis, and maximality

of Γ .
– modal case: Shown for Ki but analogous for C and J . ϕ = Kiϕ (⇐) Assume

Kiϕ ∈ Γ . Then for all Δ such that ΓRiΔ, ϕ ∈ Δ so by the induction hypoth-
esis, Δ � ϕ. Thus Γ � Kiϕ. (⇒) Assume Kiϕ /∈ Γ . Then Γ i ∪ {¬ϕ} must
be consistent by the maximality of Γ , for otherwise ϕ would be provable and
hence (by necessitation) so would Kiϕ, which would contradict the consis-
tency of Γ . If Δ is any maximally consistent set containing Γ i ∪ {¬ϕ}, then
ΓRiΔ by definition of Ri. So Γ �� Kiϕ.

Corollary 1. As a consequence of the Truth Lemma, any maximal consistent
set of formulas is satisfiable in M ′.

Thus S4CJ
n � ϕ ⇒ M ′, Γ � ϕ, so soundness holds for the canonical structure.

Lemma 2. The canonical structure M ′ is not a model of S4CJ
n (cf. [12] p. 50).

In M ′, all accessibility relations are reflexive and transitive and RC ⊆ RJ . How-

ever, RC �= ( n⋃

i=1

Ri

)TC as we only have
( n⋃

i=1

Ri

)TC ⊂ RC , thus M ′ is not a

model of S4CJ
n .

Proof. It suffices to show that RC �⊂ ( n⋃

i=1

Ri

)TC. Consider a set of formulas

Φ = {Ep,EEp,EEEp, . . . } ∪ {¬Cp} (2)

for some p ∈ Var and abbreviate EEEp as E3p, etc.

Claim. Φ is S4CJ
n -consistent.
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Proof (of Claim). Suppose Φ is inconsistent. Then there is a finite Δ ⊂ Φ which
is already inconsistent so say Δ = {Ek1p,Ek2p, . . . , Ekmp | ki < ki+1 for i <
m} ∪ {¬Cp}. (If Δ were already inconsistent, including {¬Cp} would keep Δ
inconsistent.) Consider the model N = 〈W,R1, R2, RC , RJ ,�〉t where

– W = N;
– R1 = {(n, n) | n ∈ N} ∪ {(n, n + 1), (n + 1, n) | n ∈ N and n even};
– R2 = {(n, n) | n ∈ N} ∪ {(n, n + 1), (n + 1, n) | n ∈ N and n odd};
– RJ = RC = (R1 ∪ R2)TC;
– x � p iff x ≤ km + 1.

1 2 3 4 5 . . .

R1

R2

= 

= 

Fig. 1. This shows the frame of N with the reflexive arrows of R1 and R2 suppressed.

For this model RC is an equivalence relation with one class, mRCn for all
m,n ∈ N. But N, 1 � Δ. To see why, consider an example where km = 3 thus
1, 2, 3, 4 � p,

1, 2, 3 � K1p ∧ K2p ∧ Ep though 4 � ¬K1p,
1, 2 � K1Ep ∧ K2Ep ∧ EEp though 3 � ¬K2K1p,

1 � K1EEp ∧ K2EEp ∧ EEEp though 2 � ¬K1K2K1p, and
1 � ¬Cϕ as 5 � ¬p and 1RC5.

Since 1 � E3p ∧ ¬Cp, this Δ is satisfied and hence is consistent. Since no finite
subset of Δ is inconsistent, Φ is consistent.Claim

We now finish the proof of Lemma2. Since Φ is consistent, it is contained in
some maximal consistent set Φ′. Let Θ = {¬p} ∪ {θ | Cθ ∈ Φ′}. Note that Θ is
consistent. As {θ | Cθ ∈ Φ′} ⊆ Φ′ which is maximal consistent, Θ could only be
inconsistent if ¬p ∧ p ∈ Θ. As ¬Cp ∈ Φ, Cp is not in Φ′, so p is not in Θ, so Θ
is consistent, and so contained in some maximal consistent set Θ′. Observe that

Φ′C ⊆ Θ′ so that in M ′, Φ′RCΘ′. However (Φ′, Θ′) �∈ ( n⋃

i=1

Ri

)TC as for each m,

Emp ∈ Φ′, but ¬p ∈ Θ′. Therefore, M ′ is not a model of S4CJ
n .

Essentially, M ′ fails to be an appropriate model because Ip �→ Cp, where I
is iterated knowledge.

3.1 Filtrations: The General Modal Case

Filtration is an established technique for producing a finite model from an infinite
one so that validity of subformulas is maintained. As in MCJ there are already
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only a finite number of Ri, a finite model must be one in which W is finite.
Each world in the finite model will be an equivalency class of worlds in the
original model. We look first at a general modal case, where our modality is
‘�.’ In the following section we apply these techniques to M ′ to produce finite
counter-models to those formulas not provable in S4CJ

n , concluding the proof of
completeness.

Definition 5. For a given finite set of formulas Φ, say two worlds in a model
M are equivalent if they agree on all formulas in Φ:

s ≡Φ t iff (∀ψ ∈ Φ)(M, s � ψ ⇔ M, t � ψ)

and define an equivalence class of worlds

[s]Φ := {t | s ≡Φ t},

or simply [s] if Φ is clear.

Note that ≡Φ is indeed an equivalence relation.

Definition 6. A model N = 〈S, T1, . . . , Tn,�N 〉 is a filtration of M through Φ
if M is a model 〈W,R1, . . . , Rn,�〉 and the following hold:

– Φ is a finite set of formulas closed under subformulas;
– S = {[w] | w ∈ W}, which is finite as Φ is finite;
– w � p ⇔ [w] �N p for p ∈ Var ∩ Φ and �N is extended to all formulas;
– Each relation Ti satisfies the following two properties for all modals �:
min(Ti/Ri) : (∀[s], [t] ∈ S)(if s′Rit

′, s′ ∈ [s], and t′ ∈ [t], then [s]Ti[t])
max(Ti/Ri) : (∀[s], [t] ∈ S)(if [s]Ti[t], then (∀�ψ ∈ Φ)[M, s � �ψ ⇒ M, t �

ψ]).

The condition min(Ti/Ri) ensures that Ti simulates Ri while max(Ti/Ri) per-
mits adding pairs to Ti independently of Ri if it respects �. Note that a filtration
will always exist as you can define the Ti by reconsidering either condition as a
bi-implication. This will give the smallest and largest (not necessarily distinct)
filtrations, respectively [8].

Theorem 3. Let N be a filtration of M through Φ, then

(∀ψ ∈ Φ)(∀s ∈ W )(M, s � ψ ⇔ N, [s] �N ψ). (3)

Proof. By induction on the complexity of ψ ∈ Φ.

– ψ = p: by definition of �N .
– I.H.: As Φ closed under subformulas, M, s � ψ ⇔ N, [s] �N ψ holds for ψ of

lower complexity.
– ψ = ¬ϕ: M, s � ¬ϕ ⇔ M, s �� ϕ ⇔ (by I.H.) N, [s] ��N ϕ ⇔ N, [s] �N ¬ϕ.
– ψ = ϕ ∧ ϕ′: M, s �M ϕ ∧ ϕ′ ⇔ M, s �M ϕ and M, s �M ϕ′ ⇔

(by I.H.) N, [s] �N ϕ and N, [s] �N ϕ′ ⇔ N, [s] �N ϕ ∧ ϕ′.
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– ψ = �ϕ: (⇒) Suppose M, s � �ϕ. Let [t] be such that [s]T [t]. By
max(T/R), M, t � ϕ. By I.H.N, [t] �N ϕ. As [t] was arbitrary, N, [s] �n �ϕ.
(⇐) Suppose N, [s] �N �ϕ, so ∀[t] such that [s]T [t], N, [t] �N ϕ. Let u ∈ W
be any state such that sRu, then by min(T/R) [s]T [u] so that N, [u] �N ϕ. By
I.H.M,u � ϕ and since u was an arbitrary world accessible from s, M, s � �ϕ.

3.2 Filtrations: The Canonical Structure M ′ Case

We now consider filtrations in the context of S4CJ
n .

Definition 7. A formula ϕ has a suitable set of subformulas Φ if Φ = Φ1 ∪ Φ2 ∪
Φ3 ∪ Φ4 where for i ∈ {1, . . . , n}:

Φ1 = {ψ,¬ψ | ψ is a subformula of ϕ};
Φ2 = {KiKiψ,¬KiKiψ | Kiψ ∈ Φ1};
Φ3 = {KiJψ,¬KiJψ,Kiψ,¬Kiψ | Jψ ∈ Φ1};
Φ4 = {KiCψ,¬KiCψ,Kiψ,¬Kiψ | Cψ ∈ Φ1}.

Crucially, a suitable set is finite and closed under subformulas.

Corollary 2. Let Φ be a suitable set for ϕ and M a model such that M, s � ϕ.
If N is a filtration of M through Φ, then N, [s] �N ϕ.

Proof. By Theorem 3 and ϕ ∈ Φ.

Definition 8. For M ′ = 〈W,R1, . . . , Rn, RC , RJ ,�〉, the canonical structure of
S4CJ

n , and a suitable set Φ for a consistent formula ϕ, define a model N =
〈S, T1, . . . , Tn, TC , TJ ,�N 〉 such that, for i ∈ {1, 2, . . . , n}:

– S = {[w] | w ∈ W}, which is finite as Φ is finite;
– w � p ⇔ [w] �N p for p ∈ Var ∩ Φ and �N is extended to all formulas;
– Ti ⊆ S × S such that [s]Ti[t] iff (s � Kiψ ⇒ t � ψ) for those Kiψ ∈ Φ;

– TC =
( n⋃

i=1

Ti

)TC;

– TJ ⊆ S × S such that [s]TJ [t] iff (s � Jψ ⇒ t � ψ) for those Jψ ∈ Φ.

We now drop the subscript on �N to simplify notation. As worlds in N are
equivalency classes, it will be clear as to which model is in question.

Lemma 3. N is a model of S4CJ
n (see Definition 3).

Proof. All accessibility relations are reflexive and transitive and Ti ⊆ TC ⊆ TJ .

– Ti is reflexive: For an arbitrary s ∈ [s], (s � Kiψ ⇒ s � ψ) always holds. If
the antecedent is true, then by the definition of � and the reflexivity of Ri,
the consequence follows. If the antecedent fails, the implication is vacuously
true. Thus for all [s] ∈ S, [s]Ti[s], so Ti is reflexive.
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– Ti is transitive: Suppose [s]Ti[t] and [t]Ti[u] and s � Kiψ for Kiψ ∈ Φ. As Φ
is suitable, also KiKiψ ∈ Φ. As Ri is transitive, the 4 axiom is sound so we
have (s � Kiψ ⇒ s � KiKiψ), so as [s]Ti[t] and KiKiψ ∈ Φ, (s � KiKiψ ⇒
t � Kiψ). Since Kiψ ∈ Φ and [t]Ti[u], (t � Kiψ ⇒ u � ψ) so u � ψ. Thus for
Kiψ ∈ Φ, (s � Kiψ ⇒ u � ψ) holds so [s]Ti[u], hence Ti is transitive.

– TC is reflexive as for every [s] ∈ S, [s]Ti[s] and Ti ⊆ TC . TC is transitive by
definition.

– TJ is reflexive and transitive by the same reasoning as for Ti. It must also be
shown that TC ⊆ TJ . Suppose [s]Ti[t], then we want to show [s]TJ [t], i.e. for
Jψ ∈ Φ, (s � Jψ ⇒ t � ψ) holds. If Jψ ∈ Φ, then as Φ is suitable, KiJψ ∈ Φ.
Suppose s � Jϕ, then as M ′ is sound and S4CJ

n � Jϕ → KiJϕ, s � KiJϕ.
Then since [s]Ti[t], (s � KiJψ ⇒ t � Jψ) holds, so t � Jϕ holds, and since
RJ is reflexive, t � ψ. Thus for Jψ ∈ Φ and [s]Ti[t], (s � Jψ ⇒ t � ψ) holds,
so [s]TJ [t]. Since Ti ⊆ TJ , TC ⊆ TJ .

Lemma 4 (Definability Lemma). Let S = {[s] | s ∈ W} for some suitable set
Φ. Then for each subset D ⊆ S there is some characteristic formula χD such
that for all [s] ∈ S, s � χD iff [s] ∈ D. Note that all D are finite as S is.

Proof. Let the set
∧{s} be the conjunction of all ψ ∈ Φ that are true at s. By

definition of [s], t �
∧{s} iff [s] = [t]. Let χD =

∨

[t]∈D

(
∧{s}).

s � χD ⇔ s �
∨

[t]∈D

(∧
{s}

)
⇔ s �

∧
{t} for some t ∈ [t] ∈ D

⇔ [s] = [t] for some t ∈ [t] ∈ D ⇔ [s] ∈ D.

Theorem 4. N of Definition 8 is a filtration of M ′ through Φ (cf. [12]).

A relation T is a filtration of R if it satisfies min(T/R) and max(T/R).

Proof. It needs only to be confirmed that the accessibility relations Ti, TC , and
TJ meet the conditions min(T/R) and max(T/R).

• Ti : Ti satisfies max(Ti/Ri) by definition so it remains to check min(Ti/Ri).
Suppose [s], [t] ∈ S with s′ ∈ [s] and t′ ∈ [t] such that s′Rit

′. For Kiψ ∈ Φ we
have

s � Kiψ ⇔ s′ � Kiψ ⇒ t′ � ψ ⇒ t � ψ.

Thus [s]Ti[t] by definition, satisfying min(Ti/Ri).
• TJ : TJ is a filtration of RJ by the same reasoning as in the Ti case, thus

min(TJ/RJ) and max(TJ/RJ) are satisfied.
• TC : To see that TC satisfies min(TC/RC), suppose that sRCt. Let D =

{[w] ∈ S | [s]TC [w]}, the set of worlds reachable from [s] by TC . It is sufficient
to show

s � CχD, (4)
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as then sRCt gives t � χD and so by definition of χD, [t] ∈ D and so [s]TC [t].
Now we show (4).
As IA is valid in the canonical structure,

s � C(χD → EχD) → (χD → CχD). (5)

To see that s � C(χD → EχD) holds, consider the following. Suppose for some
w, sRCw and w � χD. We want to show w � EχD, i.e., for all i, w � KiχD,
i.e. for all u, wRiu, u � χD. Since w � χD, [w] ∈ D so [s]TC [w]. This means
there is a path of length l from [s] to [w] along the union of Tis. As each Ti is a
filtration of Ri we also have for all those worlds u accessible from w, [w]Ti[u].
Thus there is a path of length l+1 along the Tis from [s] to [u] and so [s]TC [u].
This means that u � χD, so w � EχD. Since the antecedent of (5) holds, we
have s � χD → CχD so in order to conclude (4), we must show s � χD.
Which we have by the reflexivity of TC . Thus TC satisfies min(TC/RC).
TC must also satisfy max(TC/RC). Suppose that [s]TC [t] and for some s ∈ [s],
s � Cψ for Cψ ∈ Φ. We must show that t � ψ. Note that as Φ is suitable, for
each i, KiCψ, i.e. ECψ ∈ Φ as well. Recall from Proposition 3 that S4CJ

n �
Cψ → ECψ so by soundness, s � Cψ ⇒ s � ECψ. As [s]TC [t] and TC is
built from filtrations of the Ris, there is a path of length l along the Ris
from s to t. As s � ECψ and ECψ ∈ Φ, Cψ also holds at the next world on
this path towards t, for whichever Ri used. By induction on the length of the
path we get t � Cψ. Since TC is reflexive we have t � ψ. Thus TC satisfies
max(TC/RC).

We can now finish the proof of Theorem2 that S4CJ
n is sound and complete

with respect to S4CJ
n -models. Soundness was shown in Theorem 1.

Proof (Proof of Completeness). Suppose S4CJ
n �� ϕ. Then {¬ϕ} is contained

in some maximal consistent set Θ and for the canonical structure M ′ we have
M ′, Θ � ¬ϕ. Defining a suitable set Φ of subformulas of ¬ϕ, we can construct an
S4CJ

n -model N (Lemma 3), which, as it happens to be a filtration of M ′ through
Φ (Theorem 4), agrees with M ′ on formulas of Φ (Theorem 3) and so N, [Θ] �� ϕ.

Corollary 3. S4CJ
n exhibits the Finite Model Property and so is decidable.

Soundness yields the following two propositions.

Proposition 4. S4CJ
n �� Cϕ → Jϕ, as was promised after Proposition 1.

Proof. Consider a model of S4CJ
2 with W = {a, b} such that R1 = R2 = RC =

{(a, a), (b, b)} and RJ = {(a, a), (b, b), (a, b)}. Let only a � p and all other propo-
sitional variable fail at both worlds. While a � Cp, a �� Jp so a �� Cp → Jp so
a � ¬(Cϕ → Jϕ), so by soundness S4CJ

n �� (Cϕ → Jϕ).

Proposition 5. S4CJ
n is a conservative extension of both S4J

n and S4C
n .

The axiomatization and models of S4J
n and S4C

n can be obtained by removing C
or J , respectively, from the language and axiomatization of S4CJ

n and RC or RJ

from its models. For more on S4J
n see [2,5,6]. For more on S4C

n see [8,10,12].
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Proof. Conservativity of S4CJ
n over S4J

n: We need to show that for each S4J
n-

formula F , if S4CJ
n � F , then S4J

n � F . By contraposition, suppose S4J
n �� F .

Then, by the completeness theorem for S4J
n, there is a S4J

n-model M such that
F does not hold in M . Now we transform M into an S4CJ

n -model M∗ by adding
the reachability relation RC . This can always be done and leaves the other
components of M unaltered. Since the modal C does not occur in F , the truth
values of F in M and in M∗ remains unchanged at each world, hence F does
not hold in M∗. By soundness of S4CJ

n , S4CJ
n �� F .

Conservativity of S4CJ
n over S4C

n : Let G be an S4C
n -formula not derivable in

S4C
n . We have to show that G is not derivable in S4CJ

n either. By completeness of
S4C

n there is an S4C
n -countermodel N for G. Make N into an S4CJ

n -model N∗ by
the addition of RJ as the total relation (alternatively, we could put RJ = RC).
As G contains no J , at each world, these models agree on the valuation of G,
thus G does not hold in N∗ either. By soundness, S4CJ

n �� G.

4 Conclusions

S4CJ
n is a sound and complete system in which we can directly compare J and

C. As Jϕ → Cϕ, J can be used in place of C in situations in which common
knowledge is used, such as in the assumption of common knowledge about game
rules or public announcement statements. One advantage of using J over C is
the possibility to realize these statements in a explicit justification logic, another
is that it maybe a more accurate representation of these scenarios [4,6]. Another
opportunity this logic provides is to examine or develop an interesting class of
epistemic scenarios which exploit these nested yet distinct forms of common
knowledge. Keeping in mind the connection axioms Con and ConC, C might
represent an oracle-like agent while J might also be an infallible agent but one
whose statements can be confirmed by evidence if needed.

There is also potential for future syntactic developments. As can be noted by
the models of S4CJ

n , the logical strength of J can be chosen independently from
that the other agents. For instance, while the Ki and C remain S4 modalities, J
could be S5 or perhaps weaker such as K4 to represent belief, while maintaining
Con. The logic can also be expanded to encompass multiple distinct J operators.

S4CJ
n is a logic which provides a context in which to investigate distinct

forms of common knowledge. This, together with the conservativity results of
Proposition 5, indicate that generic common knowledge is useful generalization
of common knowledge with technical and semantic advantages.
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Abstract. Imagine a database – a set of propositions Γ = {F1, . . . , Fn}
with some kind of probability estimates, and let a proposition X logically
follow from Γ . What is the best justified lower bound of the probability
of X? The traditional approach, e.g., within Adams’ Probability Logic,
computes the numeric lower bound for X corresponding to the worst-
case scenario. We suggest a more flexible parameterized approach by
assuming probability events u1, u2, . . . , un which support Γ , and calcu-
lating aggregated evidence e(u1, u2, . . . , un) for X. The probability of
e provides a tight lower bound for any, not only a worst-case, situation.
The problem is formalized in a version of justification logic and the con-
clusions are supported by corresponding completeness theorems. This
approach can handle conflicting and inconsistent data and allows the
gathering both positive and negative evidence for the same proposition.

Keywords: Probability · Evidence · Aggregation · Justification logic

1 Introduction

Probability aggregation is a well-known problem which appears naturally in
many areas. Some classical approaches to this problem can be found, e.g., in
[1,2,5,9,11]. We offer a different logic-based method of aggregating probabilistic
evidence. Let proposition X logically follow from assumptions

Γ = {F1, F2, . . . , Fn};

symbolically,
Γ |= X. (1)

This means that X is true whenever all propositions from Γ are true. In stan-
dard set-theoretical semantics, this states that the truth set of X is the whole
space if the truth set of each proposition from Γ is the whole space. What prob-
abilistic conclusions can be drawn from (1)? A similar observation shows that
if the probability of all propositions from Γ is 1, then the probability of X is
also 1. But what happens in a general case when formulas from Γ have arbi-
trary probabilities? Does logical entailment (1) yield meaningful estimates of the
probability of X?

c© Springer International Publishing Switzerland 2016
S. Artemov and A. Nerode (Eds.): LFCS 2016, LNCS 9537, pp. 27–42, 2016.
DOI: 10.1007/978-3-319-27683-0 3
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The aforementioned logical observation “X is true whenever Γ is true” yields
an estimate: X holds on the intersection of all events Fi, i = 1, 2, . . . , n:

l = P (F1 ∩ F2 ∩ . . . ∩ Fn) (2)

hence
l ≤ P (X). (3)

This approach is reflected in inductive probability reasoning, cf. [1,13]. The well-
known Suppes’ rule

P (A) ≥ r P (B | A) ≥ p

P (B) ≥ rp

is basically (3) in the special case of a single use of the logical rule Modus Ponens

A, A→B � B.

In either case we draw a probability estimate for B given probability estimates
for A and A ∩ B1.

Approach (2), however, is not a well-principled way to aggregate probabilistic
information provided by logical entailment (1): we have to find a way of accumu-
lating evidence for X throughout the whole database. The traditional Adams’
Probability Logic (cf. [1,2]) deals with this problem by introducing weights based
on degree’s of essentialness of premises from Γ and calculating the tight lower
bound for the probability of X.

However, the very concept of drawing probability estimates for X only from
probability estimates for Γ is limited: this format forces us to consider worst-case
scenarios and in all other cases its estimates are not optimal.

Consider a simple derivation

A,B,C |= A ∧ B ∧ C. (4)

For “high end” probabilities close to 1, probability-based estimates make sense:
in this case, if

P (A), P (B), P (C) ≥ 0.99,

then it is easy to check that the tight low estimate is

P (A ∧ B ∧ C) ≥ 0.97.

In social situations, however, “medium range” probabilities are more typical and
for them, the probability-based approach fails. For the same example (4) and
probabilities

P (A), P (B), P (C) ≥ 2/3,

the corresponding tight low bound for P (A ∧ B ∧ C) is 0, which is meaningless.
Instead of using a numerical lower bound p for the probability of F

p ≤ P (F )
1 Since P (B | A) = P (A ∩ B)/P (A).
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for some known p, we suggest using the evidence format:

u ⊆ F

for some event u. Given evidence u1, u2, . . . , un for F1, F2, . . . , Fn, we build
aggregating evidence e(u1, u2, . . . , un) for X,

e(u1, u2, . . . , un) ⊆ X,

which provides a parameterized lower bound of probability of X:

P (e(u1, u2, . . . , un)) ≤ P (X).

For the same example (4), we introduce evidence variables u, v, w denoting events
(subsets of a probability space) on which A,B,C respectively hold. The logical
derivation suggests that A∧B ∧C is secured on event e(u, v, w) (we write st for
s ∩ t, for better readability):

e(u, v, w) = uvw,

which we offer as aggregated evidence for A ∧ B ∧ C:

uvw ⊆ A ∧ B ∧ C.

If P (u), P (v), P (w) = 2/3, P (uvw) ranges from 0 to 2/3.

1.1 Specified and Unspecified Events

Let (Ω,F , P ) be a probability space (cf. [7,10,12]) where Ω is a set of outcomes;
F is an algebra of measurable events; and P is a probability function from F .

As a simple example, consider a six-sided symmetric die with faces from 1
to 6. Here Ω can be identified as the set of outcomes {1, 2, 3, 4, 5, 6}, each value
being equally likely. F here is the set of all 26 = 64 subsets of Ω (events) and
for each event X, its probability, P (X), is 1/6 times the cardinality of X.

Within a given scenario, some events are constructively defined and consid-
ered specified, e.g.,

– E = {6};
– E = all even faces = {2, 4, 6};
– E = all outcomes less than 3 = {1, 2}.

In other words, we may regard as specified, events which we can reliably present
as concrete sets of outcomes (with known probabilities).

Some sets of outcomes can be described in a way that does not assign a
specific event to them. Suppose a number i ∈ {1, 2, 3} is unknown (e.g., is kept
secret by an adversary, or is some yet unknown value from tomorrow’s stock
market). A set

X = all outcomes greater than i (5)
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is an unspecified event. In social scenarios, we may regard as unspecified, events
about which we have only partial specification, which cannot be identified a
priori as concrete sets of outcomes.

Probabilities of events that are constructed from specified events can be
calculated using basic probability theory. The likelihood of an unspecified event
X can be evaluated by its evidence, a specified event t about which we can
establish that t ⊆ X, symbolically,

t:X.

For example, for unspecified event X from (5), the best evidence t is {4, 5, 6}.

One has to distinguish “specified” and “certain” events. A certain event
X is a probabilistic notion stating that X has probability 1, P (X) = 1.
“Specified” is an epistemic feature of a description of an event X for a
given agent; this has nothing to do with the probability of X.

1.2 Motivating Example

Assume (1) and suppose that X and all Fi’s are some, possibly unspecified,
events in a probability space and each Fi has evidence – a specified event ui

such that ui guarantees Fi, i.e., ui ⊆ F , symbolically

{u1:F1, u2:F2, . . . , un:Fn}. (6)

What is the best aggregated evidence e(u1, u2, . . . , un) for X,

e(u1, u2, . . . , un):X,

and the best probability estimate for X which is justified by (1) and (6)?
Suppose we are given events u, v, and w each with probability 1/3, which

are supportive evidence for F , F →X, and X respectively, i.e.,

1. u:F ;
2. v:(F →X);
3. w:X.

Here Γ = {F, F → X,X} and Γ logically yields X, i.e., (1) holds. Basic facts
from propositional logic suggest that (1) is equivalent to

Γ � X (7)

stating that X can be derived from Γ by reasoning in propositional
logic.

What is the best aggregated evidence for this X and what is its probability?
The answer depends on the set-theoretical configuration of u, v, and w.
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Fig. 1. Some configurations of u, v, and w.

In configuration 1, Fig. 1, events u and v are incompatible and hence do not
contribute to the aggregated evidence, which is therefore equal to w and has prob-
ability 1/3. In configuration 2, u = v and hence the whole event u∪w supports X:
the probability of X is at least 2/3. In configuration 3, the contributing sections
to the aggregated evidence for X are uv and w, with the probability

P (uv ∪ w)

which, with an additional assumption that P (uv) = 1/6, is equal to 1/2.
These and all other configurations are covered by a uniform “evidence term”

e(u, v, w)
e(u, v, w) = uv ∪ w (8)

which can be obtained by logical reasoning from Γ : there are two ways to
justify X, either from F and F → X, which is valid on uv, or directly from w,
hence the aggregated evidence (8).

Again, we may compare the Probability Logic answer:

“the lower bound is 1/3”

with the aggregated evidence answer

“for a given configuration of evidence parameters u, v, w, the lower bound
is P (uv ∪ w) which ranges from 1/3 to 2/3.”

We put this type of reasoning on solid logical and mathematical ground. In
particular, in Sect. 6, we prove that (8) is indeed the best logically justified
evidence for X here.

2 General Setting

We are interested in estimating a probability P (X) of an unspecified event X.
As before, suppose X logically follows from a set of probabilistic assumptions
which are not necessarily specified events:

Γ = {F1, F2, . . . , Fn}.
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Assume that for each Fi we have an evidence ui; we denote this situation

u:Γ = {u1:F1, u2:F2, . . . , un:Fn}.

Since each ui is considered specified, we have a lower bound of P (Fi), namely
P (ui).

One could wonder why we introduce different vocabularies for evidence and
events, given that both are events. The answer lies in their different epistemic and
functional roles: evidence u1, u2, . . . , un are events which are presumed speci-
fied and hence legitimate building material, or inputs, for aggregated evidence,
probability estimates, etc. General events F1, F2, . . . , Fn are not presumed spec-
ified, and they play a role of logical types of u1, u2, . . . , un but do not serve as
specified inputs of computations.

An obvious analogy here would be with polynomial inequalities, for
example, x2 + px + q ≤ 0, where x is unknown and coefficients p, q
are known real values. The solution is presented by terms of coefficients
providing known lower and upper bounds for x which itself, generally
speaking, remains unknown.

A crude (correct) evidence for X is the intersection of all ui’s

u = u1u2 . . . un.

Indeed, since X logically follows from Γ , whenever all Fi’s hold, X holds as
well. Apparently, Γ holds on u, hence u is evidence for X. This is a correct, but
not very useful argument, since intuitively, u1u2 . . . un can often be ∅, as in all
examples 1 – 3 from the previous section.

We offer a more refined way of aggregating evidence given in the form of
probabilistic events. By tracking the logical dependences of X from Γ , we can
build an aggregated witness

e = e(u1, u2, . . . , un)

for X
e:X

as tight as is warranted by the data and obtain a better probability estimate for
P (X),

P (e).

Examples from Sect. 1.2 suggest that aggregated evidence should be produced
symbolically, and only then should we proceed with calculating probabilities.

3 Logic of Probabilistic Evidence PE

The evidence terms in PE are built from variables u1, u2, . . . , un, and constants
0, 1 by operations “∩” and “∪.” As agreed, we will write st for s ∩ t.
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By Ln we understand a free distributive lattice (which we call the evidence
lattice) over u1, u2, . . . , un,0,1 with operations “∩,” “∪,” and lattice order �.
Note that for each n, Ln has only a finite number of equivalence classes w.r.t.
the lattice equality “=.” We fix a canonical representative in each class which is
either 0 or 1, or a sum of products

ui1ui2 . . . uik .

Free distributive lattices Ln for n = 0, 1, 2 are shown in Fig. 2.

Fig. 2. Free distributive lattices.

Let
L =

⋃

n≥0

Ln.

Formulas are generated from propositional letters p, q, r, . . . by the usual log-
ical connectives. We also allow formulas t:F where F is a purely propositional
formula and t an evidence term. The intended reading of evidence terms t is
measurable events from F in a given probability space (Ω,F , P ), constants 0
and 1 are interpreted as ∅ and Ω respectively, and t:F is understood as

t is an event supporting F.

The logical postulates of PE are

1. axioms and rules of classical logic in the language of PE;
2. s:(A→B)→(t:A→ [st]:B);
3. (s:A ∧ t:A)→ [s ∪ t]:A;
4. 1:A, where A is a propositional tautology,

0:F , where F is a propositional formula;
5. t:X →s:X, for any evidence terms s and t such that s � t in L.2

2 This axiom can be replaced by an explicit list of its instances corresponding to a
standard algorithm for deciding s � t (cf. [14]).
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Definition 1. Consider a specific evaluation consisting of

(a) a probability space (Ω,F , P );
(b) a mapping ∗ of propositions to Ω and evidence terms to F .

Assume
0∗ = ∅, 1∗ = Ω,

(st)∗ = s∗ ∩ t∗,

(s ∪ t)∗ = s∗ ∪ t∗.

On propositions, interpretation ∗ is Boolean, i.e.,

(X ∧ Y )∗ = X∗ ∩ Y ∗, (X ∨ Y )∗ = X∗ ∪ Y ∗, (¬X)∗ = X∗

where Y is the complement of Y in Ω. The key point is interpreting an evi-
dence assertion t :X as the set-theoretical form of “t∗ is a subset of X∗,” or,
equivalently, “X∗ holds whenever t∗ does”:

(t:X)∗ = t∗ ∪ X∗.

For a set of formulas Γ ,

Γ ∗ =
⋂

{F ∗ | F ∈ Γ}.

In particular, ∅∗ = Ω.

Proposition 1. For each axiom A of PE, and each interpretation ∗,
A∗ = Ω.

Proof. Let us check axiom 5. Since set-theoretical operations respect free dis-
tributive lattice identities, s � t yields s∗ ⊆ t∗. The rest is trivial.

Definition 2. Let Δ be a set of PE formulas and X a PE formula. We say that
X probabilistically follows from Δ, notation

Δ � X,

if, for each interpretation ∗, Δ∗ ⊆ X∗. In particular, if Δ � X, and Δ∗ = Ω,
e.g., when Δ = ∅, then X∗ = Ω as well.

We say that t is evidence for X under interpretation ∗ iff t∗ ⊆ X∗ or,
equivalently,

(t:X)∗ = Ω,

i.e., each outcome from t∗ supports X∗. In particular, under such interpretation
∗, the probability of X∗, if defined, is at least P (t∗).

The following theorem states the soundness of PE w.r.t. the aforementioned
set-theoretical/probabilistic interpretation: all theorems of PE hold at each out-
come from Ω.
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Theorem 1 (Soundness with Respect to Probabilistic Semantics).
Logical entailment yields probabilistic entailment:

Γ � F ⇒ Γ � F.

Proof. Induction on derivations in Γ . If F is an axiom of PE, then, by
Proposition 1, F ∗ = Ω and hence Γ ∗ ⊆ F ∗. The case F ∈ Γ is trivial. The
only rule of inference Modus Ponens A,A → B � B preserves the property
Γ ∗ ⊆ F ∗.

The following internalization property describes evidence tracking by PE:
whenever F logically follows from a set of assumptions in propositional logic,
there is a non-zero evidence term that witnesses this fact in PE. Let CPC stand
for classical propositional calculus.

Theorem 2. (Internalization). If

F1, F2, . . . , Fn � F

in CPC, then
u1:F1, u2:F2, . . . , un:Fn � (u1u2 . . . un):F

in PE.

Proof. (⇒). By induction on the derivation of F from F1, F2, . . . , Fn, we build
a non-zero evidence term t such that

u1:F1, u2:F2, . . . , un:Fn � t:F.

The case when F is an axiom of CPC is treated by axiom 1 :F ; it suffices to
put t = 1. The case when F is one of Fi is trivial; we just put t = ui. Finally,
if F is obtained by Modus Ponens from X → F and X, then, by the induction
hypothesis,

u1:F1, u2:F2, . . . , un:Fn � p:(X →F )

and
u1:F1, u2:F2, . . . , un:Fn � q:X

for some p and q. By axiom 2,

u1:F1, u2:F2, . . . , un:Fn � (pq):F,

and it suffices to put t = pq.
So, we have found a non-zero evidence term t ∈ Ln (actually, t is either 1 or

a product of some ui’s) such that

u1:F1, u2:F2, . . . , un:Fn � t:F.

Since u1u2 . . . un � t for each such t, we also have

u1:F1, u2:F2, . . . , un:Fn � (u1u2 . . . un):F.

If F is a theorem of CPC (i.e., a classical tautology), then

u1:F1, u2:F2, . . . , un:Fn � 1:F.
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4 Aggregated Evidence

Definition 3. Let X be a propositional formula and Γ a set of propositional
formulas:

Γ = {F1, F2, . . . , Fn}.

Evidence for a proposition X given Γ is a term t ∈ Ln such that in PE,

u1:F1, u2:F2, . . . , un:Fn � t:X.

By the adopted notation,
u:Γ � t:X.

The aggregated evidence AEΓX for a proposition X given Γ is the evi-
dence term

AEΓ (X) =
⋃

{t | t is an evidence for X given Γ}. (9)

Given X logically follows from Γ , aggregated evidence AEΓ (X) is the collection
of all evidence terms supporting X which logically follow from u:Γ . Since the
evidence lattice Ln is finite, the union in (9) is finite.

The finiteness of Γ cannot be dismissed: for the following infinite Γ

{q1, q1→p, q2, q2→p, . . . , qn, qn →p, . . .},

where p, q1, q2, . . . , qn, . . . are propositional variables, the aggregated evidence for
p, AEΓ (p) cannot be exhausted by a single evidence term.

Proposition 2. The aggregated evidence e = AEΓ (X) is evidence for X given
Γ , i.e., e ∈ Ln and

u:Γ � e:X.

Proof. By Axioms 3 and 5 of PE,

(s:A ∧ t:A) ↔ [s ∪ t]:A.

Therefore, the union of terms in Ln is evidence for X iff each of these terms is
evidence for X.

Corollary 1. A lattice term t ∈ Ln is evidence for X given Γ iff

t � AEΓ (X).

This Corollary shows that aggregated evidence term AEΓ (X) is the largest term
in the evidence lattice Ln, which is evidence for X in Γ .

Theorem 3 (Completeness for Evidence Aggregation). Let X be a propo-
sitional formula, Γ a set of propositional formulas {F1, F2, . . . , Fn} and t ∈ Ln.
Then

u:Γ � t:X ⇒ u:Γ � t:X.
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Proof. By contrapositive: assume u:Γ �� t:X. By Corollary 1, t �� AEΓ (X) in
Ln. As we have already discussed, each evidence term s ∈ Ln is equal to the
union of some products

s =
⋃

i1,i2,...,ik

(ui1ui2 . . . uik).

Since t �� AEΓ (X), t contains such a product which is not in AEΓ (X); without
loss of generality we assume that t = u1u2 . . . uk for some k less than or equal
to n. Since u:Γ �� t:X, we also have

u1:F1, u2:F2, . . . , uk:Fk �� u1u2 . . . uk:X.

By Internalization Theorem 2, in CPC,

F1, F2, . . . , Fk �� X.

By completeness of CPC, there is a Boolean assignment � of truth values 0 and
1 which makes all Fi true and X false. Take an arbitrary probability space
(Ω,F , P ) and evaluation ∗ of propositional letters such that if p� = 0, then
p∗ = ∅ and if p� = 1, then p∗ = Ω. Apparently, all F ∗

i = Ω, i = 1, 2, . . . , k, and
X∗ = ∅.

Extend ∗ to evidence variables by setting u∗
i = Ω for i = 1, 2, . . . , k and

u∗
i = ∅ for i = k+1, k+2, . . . , n , which makes (ui:Fi)∗ = Ω for all i = 1, 2, . . . , n.

Furthermore, t∗ = Ω as well, and (t:X)∗ = ∅, which means that u:Γ � t:X fails.

The following Corollary 2 shows that for each Γ and X, the approximation
provided by aggregated evidence AEΓ (X) cannot be improved uniformly for all
probability spaces.

Corollary 2. u:Γ � t:X ⇔ t � AEΓ (X).

Proof. By Corollary 1, if t � AEΓ (X), then t is evidence for X in Γ , hence,
by Theorem 1, u:Γ � t:X, i.e., t is evidence for X in any probabilistic model
of Γ . Now let u:Γ � t:X. By Theorem 3, u:Γ � t:X, hence, by Corollary 1,
t � AEΓ (X).

5 General Picture

5.1 Model-Theoretical View

To build the aggregated evidence term AEΓ (X), find all (set-theoretically min-
imal) subsets Γ ′ of Γ such that

Γ ′ |= X

and form lattice products ui1ui2 . . . uik of evidence variables corresponding
to all such Γ ′s. The aggregated evidence term AEΓ (X) is the union of these
products.
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5.2 Proof-Theoretical View

Alternatively, consider all possible connected derivations of X from Γ in tree-
like form with axioms and assumptions at the leaf nodes and instances of Modus
Ponens at all other nodes. It is easy to see that in each of these derivations, the
aggregated evidence s(v) of the root formula X is the product of all variables v
and evidence constant 1, if any, that are evidence terms for the leaf nodes. The
desired aggregated evidence term e(u) is the union of all these s(v)’s. Finiteness
of the evidence lattice Ln guarantees that AEΓ (X) is a specific term in Ln.

6 Example of Aggregated Evidence

Let us return to the example from Sect. 1.2 with

Γ = {F, F →X, X}

and the evidence variables assignment

Δ = {u:F, v:(F →X), w:X}.

We claim that uv ∪ w is the aggregated evidence term for X in Γ ,

uv ∪ w = AEΓ (X).

As we have already seen, uv ∪ w is evidence for X in Γ .
Suppose there is an evidence term t such that

t ��Γ (uv ∪ w)

but Δ � t:X. Of all possible products of generators u, v, w in the evidence lattice
L3, all but u and v are less then or equal to uv ∪ w, hence t is either 1 or a sum
containing at least one of u or v. Therefore, at least one of 1, u, or v should be
evidence for X in Γ , which is not the case.

Term u is not evidence for X in Γ since with F ∗ = u∗ = Ω and X∗ = v∗ =
w∗ = ∅, all formulas from Δ are evaluated as Ω and u:X is evaluated as ∅. This
evaluation also rules out the possibility that 1 is evidence for X in Γ .

Term v is not evidence for X in Γ since with v∗ = Ω and F ∗ = X∗ = u∗ =
w∗ = ∅, all formulas from Δ are evaluated as Ω and v:X is evaluated as ∅.

7 Computational Summary

We consider the problem of finding the best justified probability estimate p for
a proposition X in a given probability space P = (Ω,F , P ) given
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1. a set Γ = {F1, F2, . . . , Fn} of propositions not necessarily specified;
2. specified “evidence” events u∗

1, u
∗
2, . . . , u

∗
n such that u∗

i ⊆ F ∗
i for i = 1, 2, . . . , n

in P3.

Our findings suggest the following procedure for calculating this p.

1. By logical tools, find term e = AEΓ (X), cf. Sect. 5.
2. Given evaluations u∗

1, u
∗
2, . . . , u

∗
n and term e = e(u1, u2, . . . , un), calculate

set-theoretically the event e∗ in P.
3. Calculate p as the probability of e∗:

p = P (e∗).

8 Computational Example

This will be a specific instance of the “motivating example” from Sect. 1.2.

1. A probability space P = (Ω,F , P ): Ω = {1, 2, 3, 4, 5, 6}, all outcomes are
equally probable.

2. Γ = {F, F →X,X}, evidence variables u, v, w (for u:F, v:(F →X), w:X).
3. F ∗ = {1, 2, 3}, X∗ = {3, 4, 5}, hence (F → X)∗ = {3, 4, 5, 6}. These events

are not assumed known to the reasoning agent; we provide them for a com-
plete picture.

4. Specified evidence u∗ = {1, 3}, v∗ = {3, 4}, w∗ = {4, 5}. It is easy to check
consistency:

– u∗ ⊆ F ∗,
– v∗ ⊆ X∗,
– w∗ ⊆ (F →X)∗.

The first computational step is to calculate AEΓ (X), the aggregated evidence
for X in Γ , which, as we know from Sect. 6, in this case is

AEΓ (X) = uv ∪ w.

The second step is to evaluate AEΓ (X) for a given ∗:

[AEΓ (X)]∗ = (uv ∪ w)∗ = (u∗ ∩ v∗) ∪ w∗ = {3, 4, 5}.

As predicted by the theory,

[AEΓ (X)]∗ ⊆ X∗.

In this case, we were able to accidentally recover X entirely by its aggregated
evidence, e.g.,

[AEΓ (X)]∗ = {3, 4, 5} = X∗.

Finally, we calculate the justified lower bound p of probability of X:

p = P ([AEΓ (X)]∗) = P ({3, 4, 5}) = 1/2.

3 Γ is not necessarily compatible with set u∗
1, u

∗
2, . . . , u

∗
n but we ignore this question

for now by assuming that the given evidence is consistent with Γ .
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9 Further Suggestions: Handling Inconsistent Data

In a general setting, one should not expect propositional data Γ to be logically
consistent: in realistic situations, we have to deal with sets of assumptions which
may contradict each other. Furthermore, we may want to gather evidence for
X and for ¬X from the same data. The framework of Probabilistic Evidence
logic PE naturally accommodates these needs: we can track both positive and
negative evidence for X from the same Γ :

AEΓ
+(X) = AEΓ (X) =

⋃
{t | t is evidence for X in Γ},

AEΓ
−(X) = AEΓ (¬X) =

⋃
{t | t is evidence for ¬X in Γ},

with positive and negative justified ratings of X in Γ for a given interpretation
∗ being the probabilities

P ([AEΓ
+(X)]∗)

and
P ([AEΓ

−(X)]∗),

respectively.
Once ∗ makes all formulas from u:Γ true, i.e., [u:Γ ]∗ = Ω, [AEΓ

+(X)]∗ ⊆ X∗

and [AEΓ
−(X)]∗ ⊆ X∗, hence [AEΓ

+(X)]∗ and [AEΓ
−(X)]∗ are disjoint and

P ([AEΓ
+(X)]∗) + P ([AEΓ

−(X)]∗) ≤ 1.

Obviously, positive and negative ratings do not necessarily sum to 1.
As a computational example, consider the same probability space as in Sect. 8,

with extended database

Γ = {F, F →X, X, ¬X}, (10)

evidence variables {u, v, w, y} (meaning that y is evidence for ¬X), evaluation ∗
as before on F,X, u, v, w, and

y∗ = {1, 2}.

Note that Γ is logically inconsistent but still yields a meaningful evidence aggre-
gation picture.

Obviously,
y∗ ⊂ {1, 2, 3} = (¬X)∗.

The previous calculations suggest that

AEΓ
+(X) = uv ∪ w.

It is also easy to check that the aggregated negative evidence term for X in Γ is

AEΓ
−(X) = y.
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Corresponding positive evidence for X is, as before,

[AEΓ
+(X)]∗ = {3, 4, 5}

with probability 1/2 (the positive rating of X in Γ ). Negative evidence for X is

[AEΓ
−(X)]∗ = {1, 2}

with probability 1/3 (the negative rating of X in Γ ).
This possibility of measuring both positive and negative ratings is an impor-

tant feature of a language with justification assertions t :F . Logic PE, as well
as its predecessor, basic Justification Logic J (cf. [4]), naturally handles logical
inconsistency. In the usual propositional logic, the combination of data A,¬A is
inconsistent whereas in Justification Logic systems J and PE, the corresponding
combination

u:A, v:¬A

is consistent both intuitively and formally since it states that “u is evidence for
A whereas v is evidence for ¬A.”

Further issues, such as the model theory and proof theory of PE, feasible
algorithms of computing aggregated evidence and recognizing consistency, etc.,
are left for future studies.

10 On Logical Properties of PE

The logic of probabilistic evidence PE may be regarded as a modification of the
Logic of Proofs/Justification Logic JL (cf. [3,4,8]) in which we are interested
in formulas of evidence depth not more than one, and in which justification
terms, in addition to operations typical for JL, have a meaningful lattice-order
relation, capturing the idea of the relative strength of justifications. This feature
brings PE closer to the formal theory of argumentation [6]. Such a connection is
certainly worthy of further exploration.

As formulated, PE deals with formulas of evidence depth 1, but it can be eas-
ily extended to formulas of arbitrary nested depth with straightforward exten-
sion of set-theoretical semantics. Such “nested” PE might be an interesting logic
system to explore.

If Γ is formally inconsistent, then Γ � X for any X. It appears that such
Γ can justify any proposition X: term e = u1u2 . . . un is evidence for any X.
However, under any probabilistic interpretation ∗ respecting u:Γ , e∗ = ∅ and
hence yields no probabilistic evidence.
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A Dual Calculus and Its Strong Normalization
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Abstract. We investigate (co-)induction in Classical Logic under the
propositions-as-types paradigm, considering propositional, second-order,
and (co-)inductive types. Specifically, we introduce an extension of the
Dual Calculus with a Mendler-style (co-)iterator that remains strongly
normalizing under head reduction. We prove this using a non-constructive
realizability argument.

Keywords: Mendler induction · Classical logic · Curry-howard isomor-
phism · Dual Calculus · Realizability

1 Introduction

The Curry-Howard Isomorphism. The interplay between Logic and Computer
Science has a long and rich history. In particular, the Curry-Howard isomor-
phism, the correspondence between types and theorems, and between typings
and proofs, is a long established bridge through which results in one field can
fruitfully migrate to the other. One such example, motivating of the research
presented herein, is the use of typing systems based on Gentzen’s sequent cal-
culus LK [10]. At its core, LK is a calculus of the dual concepts of neces-
sary assumptions and possible conclusions—which map neatly, on the Com-
puter Science side, to required inputs (or computations) and possible outputs (or
continuations).

Classical Calculi. The unconventional form of LK belies an extreme symmetry
and regularity that make it more amenable to analysis than other systems that
can be encoded in it. Indeed, Gentzen introduced LK as an intermediate step
in his proof that Hilbert-style derivation systems and his own system of Natural
Deduction, NK , were consistent. Curry-Howard descendants of LK are Curien
and Herbelin’s λμμ̃ [6] and Wadler’s Dual Calculus [19]. As an example of the
kind of analysis that can be done using sequents, these works focused on estab-
lishing syntacticly the duality of the two most common evaluations strategies for
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the lambda-calculus: call-by-name and call-by-value. While originally Classical
calculi included only propositional types—i.e. conjunction, disjunction, negation,
implication and subtraction (the dual connective of implication)—they were later
extended with second-order types [13,17], and also with positive (co-)inductive
types [13]; the latter fundamentally depended on the map operation of the under-
lying type-schemes.

Mendler Induction. In continuing with this theme, we turn our attention here
to a more general induction scheme due to Mendler [15]. Originally, this induc-
tion scheme was merely seen as an ingenious use of polymorphism that allowed
induction to occur without direct use of mapping operations. However, it was
later shown that with Mendler’s iterator one could in fact induct on data-types
of arbitrary variance—i.e. data-types whose induction variable may also appear
negatively [14,18]. Due to its generality, Mendler Induction has been applied in
a number of different contexts, amongst which we find higher-order recursive
types [1,2] and automated theorem proving [12].

Classical Logic and Mendler Induction. Can one export Mendler Induction to
non-functional settings without introducing unexpected side-effects? Specifically,
can one extend Classical Logic with Mendler Induction without losing consis-
tency? Note that Classical Logic has been shown to be quite misbehaved if not
handled properly [11]; and certain forms of Mendler Induction have been shown
to break strong normalization at higher-ranked types [2].

This paper answers both questions affirmatively. In summary, we:

– extend the second-order Dual Calculus with functional types—viz., with arrow
and subtractive types (Sect. 2);

– prove its strong normalization (Sect. 3) via a realizability argument (a lattice-
theoretic distillation of Parigot’s proof for the Symmetric Lambda-calculus
[3,16]);

– recall the idea underlying Mendler Induction in the functional setting (Sect. 4);
– present our extension of the Dual Calculus with Mendler (co-)inductive types

and argue why functional types are indispensable to its definition (Sect. 5);
and

– extend the aforementioned realizability argument to give a non-constructive
proof that the extension is also strongly normalizing (Sect. 6).

2 Second-Order Dual Calculus

The Base Calculus Our base formalism is Wadler’s Dual Calculus [19]—often
abbreviated DC. We begin by reviewing the original propositional version
extended with second-order types [13] and subtractive types [5,6]. Tables 11, 2,
and 3 respectively summarize the syntax, the types and typing rules, and the
reduction rules of the calculus.
1 Unlike Wadler’s presentation, we keep the standard practice of avoiding suffix oper-

ators; whilst lexical duality is lost, we think it improves readability.
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Syntax. The sequent calculus LK is a calculus of multiple assumptions and
conclusions, as witnessed by the action of the right and left derivation rules.
Similarly, the two main components of DC are split into two kinds: terms (or
computations) which, intuitively, produce values; and co-terms (or continua-
tions), which consume them. However, whereas in the sequent calculus one can
mix the different kinds of rules in any order, to keep the computational connec-
tion, the term and co-term formation rules are restricted in what phrases they
expect—e.g. pairs should combine values, while projections pass the components
of a pair to some other continuation. This distinction also forces the existence
of two kinds of variables: variables for terms and co-variables for co-terms. We
assume that they belong to some disjoint and countably infinite sets V ar and
Covar, respectively.

Table 1. Syntax of the second-order Dual Calculus.

Cuts and Abstractions. The third and final kind of phrase in the Dual Calculus
are cuts. Recall the famous dictum of Computer Science:

Data-structures + Algorithms = Programs.

In DC, where terms represent the creation of information and co-terms consume
it, we find that cuts, the combination of a term with a continuation, are analogous
to programs:

Terms + Co-terms = Cuts;

they are the entities that are capable of being executed. Given a cut, one can
consider the computation that would ensue if given data for a variable or co-
variable. The calculus provides a mechanism to express such situations by means
of abstractions x. (c) and of co-abstractions α. (c) on any cut c. Abstractions are
continuations—they expect values in order to proceed with some execution—
and, dually, co-abstractions are computations.

Subtraction. One novelty of this paper is the central role given to subtractive
types, A − B [5]. Subtraction is the dual connective to implication; it is to
continuations what implication is to terms: it allows one to abstract co-variables
in co-terms—and thereby compose continuations. Given a continuation k where
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Table 2. Typing for the second-order propositional Dual Calculus (with the structural
rules omitted).
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a co-variable α might appear free, the subtractive abstraction (or catch, due to
its connection with exception handling) is defined as μα. (k), the idea being that
applying (read, cutting) a continuation k′ and value t to it, packed together as
(t#k′), yields a cut of the form t • k [k′/α].

Typing Judgments. We present the types and the typing rules in Table 2; we omit
the structural rules here but they can be found in the aforementioned paper by
Wadler [19]. We have three forms of typing judgments that go hand-in-hand
with the three different types of phrases: Γ � t : A | Δ for terms, Γ | k : A � Δ
for co-terms, and Γ � c � Δ for cuts. In all cases, the entailment symbols
point to the phrase under judgment, and they appear in the same position as
they would appear in the corresponding sequent of LK . Typing contexts Γ assign
variables to their assumed types; dually, typing co-contexts Δ assign co-variables
to their types. Tacitly, we assume that they always include the free (co-)variables
in the phrase under consideration. Type-schemes F (X) are types in which a
distinguished type variable X may appear free; the instantiation of such a type-
scheme to a particular type T is simply the substitution of the distinguished X
by T and is denoted F (T ).

Example: Witness the Lack of Witness. We can apply the rules in Table 2 to
bear proof of valid formulas in second-order Classical Logic. One such example
at the second-order level is ¬∀X.T → ∃X.¬T :

| not [a 〈α. (e 〈not 〈α〉〉 • β)〉] : ¬∀X.T � β : ∃X.¬T .

Note how the existential does not construct witnesses but simply diverts the flow
of execution (by use of a co-abstraction).

Head Reduction. The final ingredient of the calculus is the set of (head) reduc-
tion rules (Table 3). They are non-deterministic—as a cut made of abstractions
and co-abstractions can reduce by either one of the abstraction rules—and non-
confluent. Confluence can be reestablished by prioritizing the reduction of one
type of abstraction over the other; this gives rise to two confluent reduction dis-
ciplines that we term abstraction prioritizing and co-abstraction prioritizing. In
any case, reduction of well-typed cuts yields well-typed cuts.2

Table 3. Head reduction for the second-order Dual Calculus.

2 As we are not looking at call-by-name and call-by-value we do not use the same
reduction rule for implication as Wadler [19]; the rule here is due to Curien and
Herbelin [6].
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3 Strong Normalization of the Second-Order Dual
Calculus

The Proof of Strong Normalization. Having surveyed the syntax, types and
reduction rules of DC, we will now give a proof of its strong normalization—
i.e., that all reduction sequences of well-typed cuts terminate in a finite number
of steps—for the given non-deterministic reduction rules. It will follow, then,
that the deterministic sub-calculi, where one prioritizes the reduction of one
kind abstraction over the other, are also strongly normalizing.

The proof rests on a realizability interpretation for terms. Similar approaches
for the propositional fragment can be found in the literature [9,17]; however,
the biggest influence on our proof was the one by Parigot for the second-order
extension of the Symmetric Lambda-Calculus [16]. Our main innovation is the
identification of a complete lattice structure with fix-points suitable for the inter-
pretation of (co-)inductive types. We will, in fact, need to consider two lattices:
OP and ONP. In OP, we find, intuitively, all the terms/co-terms of types. In the
lattice ONP we find only terms/co-terms that are introductions/eliminations;
these correspond, again intuitively, to values/co-values of types. Between these
two classes we have type-directed actions from OP to ONP, and a completion
operator from ONP to OP that generates all terms/co-terms compatible with
the given values/co-values.

OP
∧,∨,¬,...

ONP (1)

In this setting, we give (two) mutually induced interpretations for types (one
in ONP and the other in OP, Table 4) and establish an adequacy result
(Theorem 4) from which strong normalization follows as a corollary. The devel-
opment is outlined next.

Sets of Syntax. The set of all terms formed using the rules in Table 1 will be
denoted by T ; similarly, co-terms will be K and cuts C. We will also need three
special subsets of those sets: IT for those terms whose outer syntactic form is
an introduction; EK, dually, for the co-terms whose outer syntactic form is an
eliminator; and SN for the set of strongly-normalizing cuts.3

Syntactic Actions on Sets. The syntactic constructors give rise to obvious actions
on sets of terms, co-terms, and cuts; e.g.

− • − : P(T ) × P(K) → P(C), T • K = {t • k | t ∈ T, k ∈ K} .

By abuse of notation these operators shall be denoted as their syntactic counter-
parts; they are basic to our realizability interpretation.
3 A non-terminating, non-well-typed cut: α. (not 〈α〉 • α) • not [α. (not 〈α〉 • α)].
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Restriction under Substitution. The substitution operation lifts point-wise to
the level of sets as a monotone function (−) [(=)/φ] : P(U) × P(V ) → P(U) for
V the set of terms (resp. co-terms), φ a variable (resp. co-variable), and U either
the set of terms, co-terms, or cuts. We will make extensive use of the right adjoint
(−)

∣
∣
∣
Q
φ to (−) [Q/φ] characterized by

R [Q/φ] ⊆ P iff R ⊆ P
∣
∣
∣
Q
φ ,

and that we term the restriction under substitution. With it we can, e.g., express
the set of cuts that are strongly normalizing when free occurrences of a co-
variable α are substituted by co-terms from a set K:

SN ∣
∣K
α = { c ∈ C | for all k ∈ K . c [k/α] ∈ SN } .

Orthogonal Pairs. Whenever a term t and a co-term k form a strongly normal-
izing cut t • k, we say that they are orthogonal. Similarly, for sets T of terms
and K of co-terms, we say that they are orthogonal if T • K ⊆ SN . We call
pairs of such sets orthogonal pairs, and the set of all such pairs OP. For any
orthogonal pair P ∈ OP, its set of terms is denoted (P )T and its set of co-terms
by (P )K. Note that no type restriction is in play in the definition of orthogonal
pairs; e.g. a cut of an injection with a projection is by definition orthogonal as
no reduction rule applies.

Lattices. Recall that a lattice S is a partially ordered set such that any
non-empty finite subset S′ ⊆ S has a least upper bound (or join, or lub) and a
greatest lower-bound (or meet, or glb), respectively denoted by

∨
S′ and

∧
S′.

If the bounds exist for any subset of S one says that the lattice is complete.
In particular, this entails the existence of a bottom and a top element for the
partial order. The powerset P(S) of a set S is a complete lattice under inclusion;
the dual Lop of a (complete) lattice L (where we take the opposite order and
invert the bounds) is a (complete) lattice, as is the point-wise product of any
two (complete) lattices.

Proposition 1 (Lattice Structure of OP). The set of orthogonal pairs is a
sub-lattice of P(T ) × P(K)op. Explicitly, for P,Q ∈ OP,

P ≤ Q iff (P )T ⊆ (Q)T and (P )K ⊇ (Q)K;

the join and meet of arbitrary non-empty sets S ⊆ OP are

∨
S ≡

(
⋃

P∈S

(P )T,
⋂

P∈S

(P )K
)

∧
S ≡

(
⋂

P∈S

(P )T,
⋃

P∈S

(P )K
)

.

Moreover, it is complete with empty join and meet given by ⊥ ≡ (∅,K) and
� ≡ (T , ∅).
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Orthogonal Normal Pairs. The other lattice we are interested in is the lattice
ONP of what we call orthogonal normal pairs. These are orthogonal pairs which
are made out at the outermost level by introductions and eliminators. Logically
speaking, they correspond to those proofs whose last derivation is a left or right
operational rule. Computationally, they correspond to the narrowest possible
interpretations of values and co-values. Orthogonal normal pairs inherit the lat-
tice structure of OP but for the empty lub and glb which become ⊥ ≡ (∅, EK)
and � ≡ (IT , ∅).

Type Actions. Pairing together the actions of the introductions and eliminations
of a given type allows us to construct elements of ONP whenever we apply them
to orthogonal sets—in particular, then, when these sets are the components of
elements of OP—as witnessed by the following proposition.

Proposition 2. For P,Q ∈ OP and S ⊆ OP, the following definitions deter-
mine elements of ONP:

P ∧ Q =
(〈

(P )T, (Q)T
〉
, fst
[
(P )K

]
∪ snd

[
(Q)K

])

P ∨ Q =
(
i1
〈
(P )T

〉
∪ i2
〈
(Q)T

〉
,
[
(P )K, (Q)K

])

¬P =
(
not
〈
(P )K

〉
, not

[
(P )T

])

P → Q =
∨

x∈V ar

(
λx.( (Q)T

∣∣∣(P )T

x ),
(
(P )T@(Q)K

))

P − Q =
∧

α∈Covar

((
(P )T#(Q)K

)
, μα.

(
(P )K

∣∣∣(Q)K

α

))

∀S =
∧

P∈S

(
a
〈
(P )T

〉
, a
[
(P )K

])
∃S =

∨
P∈S

(
e
〈
(P )T

〉
, e
[
(P )K

])

Orthogonal Completion. Now that we have interpretations for the actions
that construct values/co-values of a type in ONP, we need to go the other
way (cf. Diagram 1, above) to OP, so that we also include (co-)variables and
(co-)abstractions in our interpretations. So, for orthogonal sets of values T and
of co-values K, the term and co-term completions of T and K are respectively
defined as:

[T ](L) = V ar ∪ T ∪
⋃

α∈Covar

α.
(SN ∣

∣L
α

)
, [K](U) = Covar ∪ K ∪

⋃

x∈V ar

x.
(SN ∣

∣U
x

)
.

Due to the non-determinism associated with the reduction of (co-)abstractions,
we need guarantee that all added (co-)abstractions are compatible not only with
the starting set of values, but also with any (co-)abstractions that have been
added in the process—and vice-versa. In other words, we need to iterate this
process by taking the least fix-point:

( T K) =
(
lfp ([T ] ◦ [K]) , [K] (lfp ([T ] ◦ [K]))

)
.

(In fact, as has been remarked elsewhere [3,16], all one needs is a fix-point.)
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Theorem 3. Let N ∈ ONP be an orthogonal normal pair; its structural com-
pletion N is an orthogonal pair:

N = ( (N)T (N)K) ∈ OP.

Interpretations. Given a type T and a (suitable) mapping γ from its free
type variables, ftv (T ), to ONP—called the interpretation context—we define
(Table 4) two interpretations, as orthogonal pairs and as orthogonal normal pairs,
by mutual induction on the structure of T . They both satisfy the weakening and
substitution properties. The extension of an interpretation context γ where a
type-variable X is mapped to N ∈ ONP is denoted by γ [X �→ N ].

Theorem 4 (Adequacy). Let t, k and c stand for terms, co-terms and cuts of
the Dual Calculus. For any typing context Γ and co-context Δ, and type T such
that

Γ � t : T | Δ, Γ | k : T � Δ, Γ � c � Δ,

and for any suitable interpretation context γ for Γ , Δ and T , and any substitu-
tion σ satisfying

(x : A) ∈ Γ =⇒ σ(x) ∈ (�A�(γ))T and (α : A) ∈ Δ =⇒ σ(α) ∈ (�A�(γ))K,

we have that

t [σ] ∈ (�T �(γ))T, k [σ] ∈ (�T �(γ))K, c [σ] ∈ SN .

Corollary 5 (Strong Normalization). Every well-typed cut of DC is strongly
normalizing.

Table 4. Interpretations of the second-order Dual Calculus in ONP and OP.

4 Mendler Induction

Having covered the first theme of the paper, Classical Logical in its Dual Calculus
guise, let us focus in this section on the second theme we are exploring: Mendler
Induction. As the concept may be rather foreign, it is best to review it informally
in the familiar functional setting.
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Inductive Definitions. Roughly speaking, an inductive definition of a function
is one in which the function being defined can be used in its own definition
provided that it is applied only to values of strictly smaller character than the
input. The fix-point operator

fix :
(
(μX.F (X) → A) → μX.F (X) → A

) → μX.F (X) → A

fix f x = f (fix f) x

associated to the inductive type μX.F (X) arising from a type scheme F (X),
clearly violates induction, and indeed breaks strong normalization: one can feed
it the identity function to yield a looping term. One may naively attempt to
tame this behavior by considering the following modified fix-point operator

fix′ :
(
(μX.F (X) → A) → F

(
μX.F (X)

) → A
) → μX.F (X) → A

fix′ f (inx′) = f (fix′ f) x′

in which, for the introduction in : F
(
μX.F (X)

) → μX.F (X), one may regard x′

as being of strictly smaller character than in(x′). Of course, this is still unsatisfac-
tory as, for instance, we have the looping term fix′ (λf. f ◦ in). The problem here
is that the functional λf. f ◦in : (μX.F (X) → A) → F

(
μX.F (X)

) → A of which
we are taking the fix-point takes advantage of the concrete type F

(
μX.F (X)

)

of x′ used in the recursive call.

Mendler Induction. The ingenuity of Mendler Induction is to ban such perver-
sities by restricting the type of the functionals that the iterator can be applied
to: these should not rely on the inductive type but rather be abstract; in other
words, be represented by a fresh type variable X as in the typing below4:

mitr :
(
(X → A) → F (X) → A

) → μX.F (X) → A

mitr f (minx) = f (mitr f) x

for min the introduction F
(
μX.F (X)

) → μX.F (X).
Note that if the type scheme F (X) is endowed with a polymorphic mapping

operation mapF : (A → B) → F (A) → F (B), every term a : F (A) → A has as
associated catamorphism cata(a) ≡ mitr

(
λf. a ◦ (mapF f)

)
: μX.F (X) → A. In

particular, one has cata(mapF min) : μX.F (X) → F
(
μX.F (X)

)
.

5 Dual Calculus with Mendler Induction

Mendler Induction. We shall now formalize Mendler Induction in the Classical
Calculus of Sect. 2. Additionally, we shall also introduce its dual, Mendler co-
Induction. This requires: type constructors; syntactic operations corresponding
4 We note that the original presentation of this inductive operator [15] was in

System F and, accordingly, the operator considered instead functionals of type
∀X.(X → A) → F (X) → A. Cognoscenti will recognize that this type is the type-
theoretic Yoneda reformulation ∀X.(X → A) → T (X) of T (A) = F (A) → A for
T (X) = F (X) → A.
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to the introductions and eliminations, and their typing rules; and reduction
rules. These are summarized in Table 5. First, we take a type scheme F (X) and
represent its inductive type by μX.F (X)—dually, we represent the associated
co-inductive type by νX.F (X).

Syntax. As usual, the inductive introduction, min 〈−〉, witnesses that the values
of the unfolding of the inductive type F (μX.F (X)) are injected in the inductive
type μX.F (X). It is in performing induction that we consume values of inductive
type and, hence, the induction operator (or iterator, or inductor), mitrρ,α [k, l]
corresponds to an elimination. It is comprised of an iteration step k, an output
continuation l, and two distinct induction co-variables, ρ and α. We postpone

Table 5. Extension of the second-order Dual Calculus with Mendler Induction
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the explanation of their significance for the section on reduction below, but note
now that the iterator binds ρ and α in the iteration continuation but not in the
output continuation; thus, e.g.,

(
mitrρ,α [k, l]

)
[k′/ρ] [l′/α] = mitrρ,α [k, l [k′/ρ] [l′/α]].

The co-inductive operators, mcoitrr,x 〈t, u〉 and mout [k], are obtained via dual-
ization. In particular, the co-inductive eliminator, mout [k], witnesses that the
co-values k of type F (νX.F (X)) translate into co-values of νX.F (X).

Reduction. To reduce an inductive cut min 〈t〉•mitrρ,α [k, l], we start by passing
the unwrapped inductive value t to the induction step k. However, in the spirit of
Mendler Induction, the induction step must be instantiated with the induction
itself and, because we are in a Classical calculus, the output continuation—
this is where the parameter co-variables come into play. The first co-variable,
ρ, receives the induction; the induction step may call this co-variable (using a
cut) arbitrarily and it must also be able to capture the output of those calls—
in other words, it needs to compose this continuation with other continuations;
therefore one needs to pass μα. (mitrρ,α [k, α]), the induction with the output
continuation (subtractively) abstracted. The other co-variable, α, represents in k
the output of the induction—which for a call mitrρ,α [k, l] is l5. For co-induction,
we dualize—in particular, the co-inductive call expects the lambda-abstraction
of the co-inductive step.

Typing. Lastly, we have the typing rules that force induction to be well-founded.
Recall that this was achieved in the functional setting by forcing the inductive
step to take an argument of arbitrary instances of the type scheme F (X). Here
we do the same. In typing mitrρ,α [k, l] for μX.F (X) we require k to have type
F (X) where X is a variable that appears nowhere in the derivation except in
the (input) type of the co-variable ρ.

Example: Naturals. Let us look at a concrete example: natural numbers under
the abstraction prioritizing strategy. We posit a distinguished type variable B,
and from it construct the type 1 ≡ B ∨ ¬B, which is inhabited by the witness
of the law of the excluded middle, ∗ ≡ α. (i2 〈not 〈x. (i1 〈x〉 • α)〉〉 • α). The base
type scheme for the naturals is F (X) ≡ 1∨X, and the naturals are then defined
as N ≡ μX.F (X). Examples of this type are:

zero ≡ min 〈i1 〈∗〉〉, one ≡ min 〈i2 〈zero〉〉, and two ≡ min 〈i2 〈one〉〉.
For any continuation k on N , the successor “function” is defined as the following
continuation for N

succkk ≡ x. (min 〈i2 〈x〉〉 • k) (x /∈ fv (k)).
5 One may wonder if the output continuation is strictly necessary. As outputs appear

on the right of sequents, and the induction is already a left-rule, the only possible
alternative would be to add a co-variable to represent it. However, under this rule
the system would no longer be closed under substitution [13].
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Example: Addition The above primitives are all we need to define addition of
these naturals. The inductive step “add m to” is

Stepm
ρ,α ≡ [

x. (m • α) , x.
(
(x#succkα) • ρ

)]
.

Theorem 6. Let n and m stand for the encoding of two natural numbers and
the encoding of their sum be (by abuse of notation) n+m. Under the abstraction
prioritizing reduction rule,

n • mitrρ,α

[
Stepm

ρ,α, l
]

�∗ (n + m) • l.

6 Strong Normalization for Mendler Induction

We now come to the main contribution of the paper: the extension of the
Orthogonal Pairs realizability interpretation of the second-order Dual Calculus
(Sect. 3) to Mendler Induction, which establishes that the extension is strongly
normalizing.

Lattice Structure. The extension begins with the reformulation of the sets SN , T ,
K, C, IT , and EK so that they accommodate the (co-)inductive operators. Mod-
ulo these changes, the definitions of OP and ONP remain the same; so do the
actions for propositional and second order types, and the orthogonal completion,
. All that remains, then, is to give suitable definitions for the (co-)inductive

actions and the interpretations of (co-)inductive types.

Inductive Restrictions. The reduction rule for Mendler Induction is unlike any
other of the calculus. When performing an inductive step for mitrρ,α [k, l],
the bound variable ρ will be only substituted by one specific term:
μα. (mitrρ,α [k, α]). One needs a different kind of restriction to encode this invari-
ant: take K and L to be sets of co-terms (intuitively, where the inductive step
and output continuation live) and define the inductive restriction by

K/ρ
α L ≡ { k ∈ K | for all l ∈ L, k [μα. (mitrρ,α [k, α]) /ρ] [l/α] ∈ K } ;

and also for co-induction, for sets of terms T and U :

T/r
x U ≡ { t ∈ T | for all u ∈ U , t [λx.(mcoitrr,x 〈t, x〉)/r] [u/x] ∈ T } .

Mendler Pairing. Combining the inductive restriction with the inductive intro-
duction/elimination set operations, we can easily create orthogonal normal
pairs—much as we did for the propositional actions—from two given orthog-
onal pairs: one intuitively standing for the interpretation of F (μF.F (X)) and
the other for the output type. However, the interpretation of the inductive type
should not depend on a specific choice of output type but should accept all
instantiations of output, as well as all possible induction co-variables; model-wise
this corresponds to taking a meet over all possible choices for the parameters:

MuP(P ) =
∧

Q∈OP
ρ�=α∈Covar

(
min
〈
(P )T

〉
,mitrρ,α

[
(P )K

/
ρ
α (Q)K , (Q)K

])
∈ ONP;
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and similarly for its dual, NuP:

NuP(P ) =
∨

Q∈OP
r �=x∈V ar

(
mcoitrr,x

〈
(P )T

/
r
x (Q)T , (Q)T

〉
mout

[
(P )K

])
∈ ONP.

Monotonization. The typing constraints on Mendler Induction correspond—
model-wise—to a monotonization step. This turns out to be what we need to
guarantee that an inductive type can be modeled by a least fix-point; without
this step, the interpretation of a type scheme would be a function on lattices
that would not necessarily be monotone. There are two possible universal ways
to induce monotone endofunctions from a given endofunction f on a lattice: the
first one, �f�, we call the monotone extension and use it for inductive types, the
other one, the monotone restriction �f�, will be useful for co-inductive types.
Their definitions6 are:

�f� x ≡
∨

y≤x

fy and �f� x ≡
∧

x≤y

fy.

They are, respectively, the least monotone function above and the greatest
monotone function below f . Necessarily, by Tarski’s fix-point theorem, they both
have least and greatest fix-points; in particular we have lfp (�f�) and gfp (�f�).

Inductive Actions. Combining the above ingredients, one can define the actions
corresponding to inductive and to co-inductive types. They are parametrized by
functions f : ONP → OP,

μf ≡ lfp (�MuP ◦ f�) ∈ ONP and νf ≡ gfp (�NuP ◦ f�) ∈ ONP.

Interpretations For (co-)inductive types associated to a type-scheme F (X) and
mappings ρ : ftv (μX.F (X)) → ONP (the context) we set

�μX.F (X)� (γ) = μ�F (X)�(γ [X �→ −]) , �νX.F (X)� (γ) = ν�F (X)�(γ [X �→ −]) ;

while their orthogonal interpretation is as before. These interpretations also sat-
isfy the weakening and substitution properties.

Classically Reasoning about Mendler Induction. Mendler’s original proof of
strong normalization for his induction principle in a functional setting was
already classical [15]. For us, this issue centers around the co-term component
of the interpretation of inductive types (and, dually, the term component of co-
inductive types). Roughly, the induction hypothesis of the adequacy theorem
states that for any N ∈ ONP, m ∈ (�X − A�(γ [X �→ N ]))K, l ∈ (�A�(γ))K, and
realizability substitution σ we have

k [σ] [m/ρ] [l/α] ∈ (�F (X)�(γ [X �→ N ]))K, (2)
6 Cognoscenti will recognize that they are point-wise Kan extensions.
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and if we were to prove that mitrρ,α [k [σ], l [σ]] ∈ (�μX.F (X)� (γ))K just by the
fix-point property of the interpretation, we would need to have

(k [σ]) [μα. (mitrρ,α [k [σ], α]) /ρ] [l/α] ∈ (�F (X)�(γ [X �→ �μX.F (X)� (γ)]))K

for arbitrary l ∈ (�A�(γ))K. Instantiating Formula 2 to the case when N is
the interpretation of our fix-point, �μX.F (X)� (γ), we see that in order to prove
that mitrρ,α [k [σ], l [σ]] ∈ (�μX.F (X)� (γ))K we would need to prove that for any
l′ ∈ (�A�(γ))K we have that mitrρ,α [k [σ], l′] ∈ (�μX.F (X)�(γ))K—a circularity!

For ω-complete posets there is an alternative characterization of the least
fix-point of a continuous function as the least upper bound of a countable chain.
The completion operation used in the definition of the OP interpretation is
not continuous. However, classically, the least fix-point of any monotone function
f on a complete lattice lies in the transfinite chain [7]

dα+1 = f(dα) and dλ =
∨

α<λ

dα (for limit λ)

(and dually for co-induction).
A set (or property) P ⊆ ONP is said to be admissible iff (i) preserves lubs:

S ⊆ P =⇒ P(
∨

S); and (ii) is downward closed: a ≤ b and P(b) =⇒ P(a).

Theorem 7 (Scott Induction for Monotone Extensions of
Endofunctions). Let f : L → L be an endofunction (not necessarily a homo-
morphism) and P be an admissible property on a complete lattice L. If f pre-
serves property P, i.e. P(a) =⇒ P(fa), then P holds for the least fix-point of
its monotone extension, i.e. P

(
lfp (�f�) )

.

With this proof principle and its dual one shows that the interpretation of DC
with Mendler (co-)induction via realizability as orthogonal pairs satisfies the
adequacy theorem (Theorem 4), and obtains the following result as a corollary.

Theorem 8 (Strong Normalization). Every well-typed cut of the Dual Cal-
culus with Mendler Induction is strongly normalizing.

7 Concluding Remarks

We have investigated Classical Logic with Mendler Induction, presenting a Clas-
sical calculus with very general (co-)inductive types. Our work borrows from
and generalizes systems based on Gentzen’s LK under the Curry-Howard cor-
respondence. Despite its generality, and as outlined by means of a realizability
interpretation, our Dual Calculus with Mendler Induction is well-behaved in that
its well-typed cuts are guaranteed to terminate. We expect—but have yet to fully
confirm—that other models fit within our framework for interpreting Mendler
Induction; our prime example is based on inflationary fix-points like those used
in complexity theory [8] and which also apply to non-monotone functionals.
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It is known that LK -based calculi can encode various other calculi [6,19].
Our calculus supports map operations for all positive (co-)inductive types. In
an extended version of the paper, we expect to use these to encode Kimura and
Tatsuta’s extension of the Dual Calculus with positive (co-)inductive types [13].

One avenue of research that remains unexplored is how one may extract
proofs from within our system—in previous work, Berardi, et al. [4] showed how,
embracing the non-determinism of reduction inherent in the Symmetric Lambda-
calculus (and also present in DC), one could express proof witnesses that behave
like processes for a logic based on Peano arithmetic. A further direction would be
to direct these investigations into the realm of linear logic, where the connection
with processes may be more salient.

Acknowledgments. Thanks to Anuj Dawar, Tim Griffin, Ohad Kammar, Andy
Pitts, and the anonymous referees for their comments and suggestions.
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Abstract. We study the recognition problem in the metaprogramming
of finite normal predicate logic programs. That is, let L be a computable
first order predicate language with infinitely many constant symbols and
infinitely many n-ary predicate symbols and n-ary function symbols for
all n ≥ 1. Then we can effectively list all the finite normal predicate logic
programs Q0, Q1, . . . over L. Given some property P of finite normal
predicate logic programs over L, we define the index set IP to be the
set of indices e such that Qe has property P. Then we shall classify the
complexity of the index set IP within the arithmetic hierarchy for various
natural properties of finite predicate logic programs.

Keywords: Logic programming · Index sets · Recursive trees

1 Introduction

Past research has demonstrated that logic programming with the stable model
semantics and, more generally, answer-set semantics, is an expressive knowledge
representation formalism. It can be safely stated that there is a consensus in the
Knowledge Representation community that stable models are the correct gener-
alization of the least model of Horn program for the class of normal programs.
Although stable model semantics is considered the correct one, past research
has shown that the use of arbitrary normal logic programs admitting function
symbols is not a reasonable choice for real-life programming. For example, Apt
and Blair [2] proved that all arithmetic sets can be defined by using stratified
programs. The import is that in general, it is impossible to query the unique
stable model of such programs. Marek, Nerode, and Remmel [16,17] constructed
finite predicate logic programs whose stable models could code up the paths
through any infinitely branching recursive tree so that the problem of deciding
whether a finite predicate logic program has a stable model is Σ1

1 -complete.
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For such reasons, researchers have focused on finite predicate logic programs
without function symbols. There are a number of highly effective implemen-
tations of search engines to find stable models of finite normal predicate logic
programs [11,13,16,18].

Nevertheless, researchers have searched for some natural classes K of finite
normal predicate logic programs with function symbols where programming is
both useful and possible. Actually, it should be clear that finding such a class
K involves two tasks. (1) K needs to be processable. That is, given a program
P ∈ K, we need to have an algorithm that identifies one or more stable models of
P which can be effectively queried. That is, one can effectively answer questions
such as whether a given atom is in a given stable model of P or whether a given
atom is in all stable models of P . (2) K needs to be recognizable. That is, we need
to be able to answer the query whether a given program P belongs to K. For
instance, the class of stratified programs is recognizable (one of the fundamental
results of Apt, Blair and Walker [3]), but not processable. A number of classes K
of such programs which are both processable and recognizable have been found,
see [4–6,14,21]. In particular [5] provides an extensive discussion of the reasons
why researchers try to find classes of normal predicate logic programs admitting
function symbols which are both recognizable and processable.

The goal of this paper is develop a systematic approach the recognition prob-
lem for the class of finite normal predicate logic programs over a computable first
order predicate language L with infinitely many constant symbols and infinitely
many n-ary predicate symbols and n-ary function symbols for all n ≥ 1. Let
Q0, Q1, . . . be an effective list of all the finite normal predicate logic programs
over L. Given some property P of finite normal predicate logic programs over L,
we define the index set IP to be the set of indices e such that Qe has property
P. For example, suppose that P is the property that a finite normal predicate
logic program has a recursive stable model. Then the tools of this paper will
allow one to classify the complexity of IP within the arithmetic hierarchy. We
will show in [8] that IP is Σ0

3 -complete so that one can not effectively recognize
the set of finite predicate logic programs which have recursive stable models.

Our approach is to extend the work of Marek, Nerode, and Remmel in [16,17],
who showed that the problem of finding a stable of model of a recursive normal
propositional logic program is essentially equivalent to finding an infinite path
through an infinite recursive tree. That is, they showed that given any recursive
normal propositional logic program P , one could construct a recursive tree such
TP such that there is an effective one-to-one degree preserving correspondence
between the set of stable models of P and the set of infinite paths through
TP . Vice versa, given any recursive tree T , they constructed a recursive normal
propositional logic program PT such that there is an effective one-to-one degree
preserving correspondence between the set of stable models of PT and the set
of infinite paths through T . Such correspondences also helped to motivate the
definition of various natural properties of normal logic programs such as having
the finite support property or the recursive finite support property (described
below) since these properties correspond to natural properties of recursive trees
such as being finitely branching or being highly recursive. The main goal of
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this paper is to provide similar constructions when we replace recursive normal
propositional logic programs by finite normal predicate logic programs. This
requires us to significantly modify the original constructions in [17].

To define index sets for primitive recursive trees, we need some notation. Let
Σ ⊆ ω where ω = {0, 1, 2, . . . , }. Then Σ<ω denotes the set of finite strings of
letters from Σ and Σω denotes the set of infinite sequences of letters from Σ. If
σ = (σ1, . . . , σn) ∈ Σ<ω and a ∈ Σ, then we let σ�a = (σ1, . . . , σn, a). A tree T
over Σ is a set of finite strings from Σ<ω which contains the empty string ∅ and
is closed under initial segments. We say that τ ∈ T is an immediate successor
of a string σ ∈ T if τ = σ�a for some a ∈ Σ. One can easily assign Gödel
numbers to the elements of ω<ω. That is, we can effectively assign a unique code
c(σ) ∈ ω to each σ ∈ ω<ω such that we can effectively recover σ from c(σ).
We will identify T with the set of codes c(σ) for σ ∈ T . Thus we say that T is
primitive recursive, recursive, r.e., etc. if {c(σ) : σ ∈ T} is primitive recursive,
recursive, r.e., etc. If each node of T has finitely many immediate successors,
then T is said to be finitely branching. We say a tree T is highly recursive if
it is recursive and there is a recursive function f such that for any σ ∈ T ,
there are f(σ) immediate successors of σ. An infinite path through a tree T is a
sequence (x(0), x(1), . . .) such that (x(0), . . . x(n)) ∈ T for all n. Let [T ] be the
set of infinite paths through T and [T ]r denote the set of infinite recursive paths
through T . We let Ext(T ) denote the set of all σ ∈ T such that σ is an initial
segment of x for some x ∈ [T ]. We say that T is decidable if T is recursive and
Ext(T ) is recursive. We let T0, T1, . . . be an effective list of all primitive recursive
trees contained in ω<ω. It follows that [T0], [T1], . . . is an effective list of all Π0

1

classes, see [9]. Then for any property P of trees, we let TP denote the set of all
i such that Ti has property P.

Our main result is to show that we can modify the constructions of Marek,
Nerode, and Remmel [17] to construct recursive functions f and g such that
for all e, (i) there is a one-to-one degree preserving correspondence between the
set of stable models of Qe and the set of infinite paths through Tf(e) and (ii)
there is a one-to-one degree preserving correspondence between the set of infinite
paths through Te and the set of stable models Qg(e). One can often use these
two recursive functions to reduce the complexity of the index set IP for various
properties P of finite normal predicate logic programs to the complexity of the
index set TP′ for an appropriate property of P ′ of primitive recursive trees.
Actually, in practice, we take the reverse point of view. That is, we shall start
with TP′ and try to find an appropriate property P of finite normal predicate
logic programs such that TP′ and IP are one-to-one equivalent.

We shall consider the following natural properties of trees contained in ω<ω.
Suppose that g : ω<ω → ω. Then we say that

(I) T is g-bounded if for all σ and all integers i, σ�i ∈ T implies i < g(σ),
(II) T is almost always g-bounded if there is a finite set F ⊆ T of strings
such that for all strings σ ∈ T \ F and all integers i, σ�i ∈ T implies i < g(σ),
(III) T is nearly g-bounded if there is an n ≥ 0 such that for all strings σ ∈ T
with |σ| ≥ n and all integers i, σ�i ∈ T implies i < g(σ),
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(IV) T is bounded if it is g-bounded for some g : ω<ω → ω,
(V) T is almost always bounded (a.a.b.) if it is almost always g-bounded for
some g : ω<ω → ω,
(VI) T is nearly bounded if it is nearly g-bounded for some g : ω<ω → ω,
(VII) T is recursively bounded (r.b.) if T is g-bounded for some recursive
g : ω<ω → ω,
(VIII) T almost always recursively bounded (a.a.r.b.) if it is almost always
g-bounded for some recursive g : ω<ω → ω, and
(IX) T nearly recursively bounded (nearly r.b.) if it is nearly g-bounded for
some recursive g : ω<ω → ω.

For each of the properties P above, one can classify the index sets of the
set of primitive recursive trees T satisfying property P and one of the following
properties: [T ] ([T ]r) is empty, [T ] ([T ]r) is non-empty, [T ] ([T ]r) has cardinality
c (< c,≥ c) for some natural number c, [T ] ([T ]r) is finite, or [T ] ([T ]r) is infinite.

To be able to precisely state our results, we must briefly review the basic
concepts of recursion theory, normal logic programs and recursive trees.

We shall assume the reader is familiar with the basics of recursive and recur-
sively enumerable sets, Turing degrees, and the arithmetic hierarchy of Σ0

n and
Π0

n subsets of ω as well as Σ1
1 and Π1

1 sets; see Soare’s book [20]. We shall gen-
erally use the terminology recursive rather than the equivalent term computable
and likewise use recursively enumerable rather than computably enumerable. The
former terms are standard in the logic programming community, which is an
important audience for our paper. A subset A of ω is said to be Dm

n if it is the
set-difference of two Σm

n sets. A set A ⊆ ω is said to be an index set if for any a, b,
a ∈ A and φa = φb imply that b ∈ A where φ0, φ1, . . . is an effective list of all par-
tial recursive functions. For example, Fin = {a : Wa is finite} is an index set. We
are particularly interested in the complexity of such index sets. Recall that a sub-
set A of ω is said to be Σm

n -complete (respectively, Πm
n -complete, Dm

n -complete)
if A is Σm

n (respectively, Πm
n , Dm

n ) and any Σm
n (respectively, Πm

n , Dm
n ) set B

is many-one reducible to A. For example, the set Fin = {e : We is finite} is
Σ0

2 -complete.
Then, for example, Cenzer and Remmel [9] proved the following results:

(1) {e : Te is r.b. and[Te]is empty} is Σ0
2 -complete.

(2) {e : Te is r.b. and[Te]is nonempty} is Σ0
3 -complete.

(3) {e : Te is bounded and[Te]is empty} is Σ0
2 -complete.

(4) {e : Te is bounded and[Te]is nonempty} is Π0
3 -complete.

(5) {e : Te is a.a.r.b. and[Te]is nonempty} and
{e : Te is a.a.r.b. and[Te]is empty} are Σ0

3 -complete.
(6) {e : Te is a.a.b. and[Te]is nonempty} and
{e : Te is a.a.b. and[Te]is empty} are Σ0

4 -complete.
(8) {e : [Te] is nonempty} is Σ1

1 -complete and
{e : [Te] is empty} is Π1

1 -complete.

For any positive integer c,

(9) {e : Te is r.b. and Card([Te]) > c}, {e : Te is r.b. and Card([Te]) ≤ c}, and
{e : Te is r.b. and Card([Te]) = c} are all Σ0

3 -complete.
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(10) {e : Te is a.a.r.b. and Card([Te]) > c},
{e : Te is a.a.r.b. and Card([Te]) ≤ c}, and
{e : Te is a.a.r.b. and Card([Te]) = c} are all Σ0

3 -complete.
(11) {e : Te is bounded and Card([Te]) ≤ c} and
{e : Te is bounded and Card([Te]) = 1} are both Π0

3 -complete.
(12) {e : Te is bounded and Card([Te]) > c} and
{e : Te is bounded and Card([Te]) = c + 1} are both D0

3-complete.
(13) {e : Te is a.a.b. and Card([Te]) > c},
{e : Te is a.a. bounded and Card([Te]) ≤ c}, and
{e : Te is a.a. bounded and Card([Te]) = c} are all Σ0

4 -complete.
(14) {e : Te is r.b, decidable, and Card([Te]) > c},
{e : Te is r.b., dec. and Card([Te]) ≤ c}, and
{e : Te is r.b., dec. and Card([Te]) = c} are all Σ0

3 -complete.
(15) ({e : Card([Te]) > c}) is Σ1

1 -complete, {e : Card([Te]) ≤ c} is Π1
1 -complete

and {e : Card([Te]) = c} is Π1
1 -complete.

This is only a sample of the index set results that have been established
for primitive recursive trees. For example, there are similar results when one
replaces [Te] by [Te]r in each of these statements. For each of the properties Pr
in (I)-(IX) of trees, our goal is to find a corresponding property Pr′ of finite
normal predicate logic programs such that the complexity of the set of finite
normal predicate logic programs P satisfying property Pr′ refined by the cardi-
nality of the stable models (recursive stable models) of P has the corresponding
complexity of as the set of primitive recursive trees T satisfying property Pr
refined by the cardinality of the set of infinite paths (recursive infinite paths)
through T .

The outline of this paper is as follows. In Sect. 2, we shall define various
properties on finite normal predicate logic programs which correspond to the
properties (I)-(IX) described above. Many of the properties such as the finite
support property and the recursive finite support property which correspond to
bounded trees and recursively bounded trees have appeared in the literature.
However, other properties such as a program being decidable, which correspond
to decidable trees, are new. In Sect. 3, we shall state our main results. In Sect. 4,
we state a number of results which classify the complexity of IP for various
properties P of finite normal predicate logic programs.

2 Properties of Finite Normal Logic Programs

In this section, we give the necessary background on normal logic programs.
We shall fix a recursive language L which has infinitely many constant sym-

bols, infinitely many propositional letters, and infinitely many n-ary relation
symbols and n-ary function symbols for each n ≥ 1. A literal is an atomic for-
mula or its negation. A ground literal is a literal which has no free variables.
The Herbrand base of L is the set HL of all ground atoms (atomic statements)
of the language.
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A (normal) logic programming clause C is of the form

c ← a1, . . . , an,¬b1, . . . ,¬bm (1)

where c, a1, . . . , an, b1, . . . , bm are atoms of L. Here we allow either n or m to be
zero. In such a situation, we call c the conclusion of C, a1, . . . , an the premises
of C, b1, . . . , bn the constraints of C and a1, . . . , an,¬b1, . . . ,¬bm the body of C
and write concl(C) = c, prem(C) = {a1, . . . , an}, constr(C) = {b1, . . . , bm}.
A ground clause is a clause with no free variables. C is called a Horn clause if
constr(C) = ∅, i.e., if C has no negated atoms in its body.

A finite normal predicate logic program P is a finite set of clauses of the
form (1). P is said to be a Horn program if all its clauses are Horn clauses.
A ground instance of a clause C is a clause obtained by substituting ground
terms (terms without free variables) for all the free variables in C. The set of all
ground instances of the program P is called ground(P ). The Herbrand base of
P , H(P ), is the set of all ground atoms that are instances of atoms that appear
in P . For any set S, we let 2S denote the set of all subsets of S.

Given a Horn program P , we let TP : 2H(P ) → 2H(P ) be the one-step prov-
ability operator [15] associated with ground(P ). That is, for S ⊆ H(P ),

TP (S) = {c : ∃C∈ground(P )((C = c ← a1, . . . , an) ∧ (a1, . . . , an ∈ S))}.
Then P has a least model M = TP ↑ω (∅) =

⋃
n≥0 Tn

P (∅) where for any S ⊆
H(P ), T 0

P (S) = S and Tn+1
P (S) = TP (Tn

P (S)). We denote the least model of a
Horn program P by lm(P ).

Given a normal predicate logic program P and M ⊆ H(P ), we define the
Gelfond-Lifschitz reduct [12] of P , PM , via the following two step process. In
Step 1, we eliminate all clauses C = p ← q1, . . . , qn,¬r1, . . . ,¬rm of ground(P )
such that there exists an atom ri ∈ M . In Step 2, for each remaining clause
C = p ← q1, . . . , qn,¬r1, . . . ,¬rm of ground(P ), we replace C by the Horn
clause C = p ← q1, . . . , qn. The resulting program PM is a Horn propositional
program and, hence, has a least model. If that least model of PM coincides with
M , then M is called a stable model for P .

Next, we define the notion of P -proof scheme of a normal propositional logic
program P . Given a normal propositional logic program P , a P -proof scheme is
defined by induction on its length n. Specifically, the set of P -proof schemes is
defined inductively by declaring that

(I) 〈〈C1, p1〉, U〉 is a P -proof scheme of length 1 if C1 ∈ P , p1 = concl(C1),
prem(C1) = ∅, and U = constr(C1) and

(II) for n > 1, 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme of length n if
〈〈C1, p1〉, . . . , 〈Cn−1, pn−1〉, Ū〉 is a P -proof scheme of length n − 1 and Cn

is a clause in P such that concl(Cn) = pn, prem(Cn) ⊆ {p1, . . . , pn−1} and
U = Ū ∪ constr(Cn)

If S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme of length n, then we let
supp(S) = U and concl(S) = pn.
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Example 1. Let P be the normal propositional logic program consisting of the
following four clauses:
C1 = p ←, C2 = q ← p,¬r, C3 = r ← ¬q, and C4 = s ← ¬t.
Then we have the following useful examples of P -proof schemes:

(a) 〈〈C1, p〉, ∅〉 is a P -proof scheme of length 1 with conclusion p and empty
support.

(b) 〈〈C1, p〉, 〈C2, q〉, {r}〉 is a P -proof scheme of length 2 with conclusion q and
support {r}.

(c) 〈〈C1, p〉, 〈C3, r〉, {q}〉 is a P -proof scheme of length 2 with conclusion r and
support {q}.

(d) 〈〈C1, p〉, 〈C2, q〉, 〈C3, r〉, {q, r}〉 is a P -proof scheme of length 3 with conclu-
sion r and support {q, r}.

In this example we see that the proof scheme in (c) had an unnecessary item,
the first term, while in (d) the proof scheme was supported by a set containing
q, one of atoms that were proved on the way to r. �

A P -proof scheme differs from the usual Hilbert-style proofs in that it carries
within itself its own applicability condition. In effect, a P -proof scheme is a
conditional proof of its conclusion. It becomes applicable when all the constraints
collected in the support are satisfied. Formally, for a set M of atoms, we say that
a P -proof scheme S is M -applicable or that M admits S if M ∩ supp(S) = ∅. The
fundamental connection between proof schemes and stable models is given by
the following proposition which is proved in [17].

Proposition 1. For every normal propositional logic program P and every set
M of atoms, M is a stable model of P if and only if

(i) for every p ∈ M , there is a P -proof scheme S with conclusion p such that
M admits S and

(ii) for every p /∈ M , there is no P -proof scheme S with conclusion p such that
M admits S.

A P -proof scheme may not need all its clauses to prove its conclusion. It may
be possible to omit some clauses and still have a proof scheme with the same
conclusion. Thus we define a pre-order on P -proof schemes S, T by declaring
that S ≺ T if (1) S,T have the same conclusion and (2) Every clause in S is also
a clause of T. The relation ≺ is reflexive, transitive, and well-founded. Minimal
elements of ≺ are minimal proof schemes. A given atom may be the conclusion
of no, one, finitely many, or infinitely many different minimal P -proof schemes.
These differences are clearly computationally significant if one is searching for a
justification of a conclusion.

If P is a finite normal predicate logic program, then we define a P -proof
scheme to be a ground(P )-proof scheme. Since we are considering finite nor-
mal programs over our fixed recursive language L, we can use standard Gödel
numbering techniques to assign code numbers to atomic formulas, clauses, proof
schemes, and programs. It is then not difficult to verify that for any given finite
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normal predicate logic program P , the questions of whether a given n is the
code of a ground atom, a ground instance of a clause in P , or a P -proof-scheme
are primitive recursive predicates. The key observation to make is that since P
is finite and the usual unification algorithm is effective, we can explicitly test
whether a given number m is the code of a ground atom or a ground instance
of a clause in P without doing any unbounded searches.

The set of Gödel numbers of well-formed programs is well-known to be prim-
itive recursive (see Lloyd [15]). We let Qe be the program with Gödel number e
when this exists and let Qe be the empty program otherwise. For any property
P of finite normal predicate logic programs, let I(P) be the set of indices e such
that Qe has property P.

We say that a finite normal predicate logic program P over L has the finite
support (FS) property if for every atom a ∈ H(P ), there are only finitely many
inclusion-minimal supports of minimal ground(P )-proof schemes for a. We say
that P has the almost always finite support (a.a.FSP) property if for all but
finitely many atoms a ∈ H(P ), there are only finitely many inclusion-minimal
supports of minimal ground(P )-proof schemes for a. We say that P has the
recursive finite support (rec.FSP) property if it has the finite support property
and there is an effective procedure which, given any atom a ∈ H(P ), produces
the code of the set of the inclusion-minimal supports of ground(P )-proof schemes
for a. We say that P has the almost always recursive finite support (a.a.rec.FSP)
property if it has the a.a.FSP property and there is an effective procedure which,
for all but a finite set of atoms a ∈ H(P ), produces the code of the set of the
inclusion-minimal supports of ground(P )-proof schemes for a.

Next, we define two additional properties of recursive normal propositional
logic programs that have not been previously defined in the literature. Suppose
that P is a recursive normal propositional logic program consisting of ground
clauses in L and M is a stable model of P . Then for any atom p ∈ M , we say
that a minimal P -proof scheme S is the smallest minimal P -proof for p relative
to M if concl(S) = p and supp(S) ∩ M = ∅ and there is no minimal P -proof
scheme S

′ such that concl(S′) = p and supp(S′) ∩ M = ∅ and the Gödel number
of S′ is less than the Gödel number of S.

We say that P is decidable if for all N > 0 and any finite (possibly empty) set
of ground atoms {a1, . . . , an} ⊆ H(P ) such that the code of each ai is less than
or equal to N , and any finite set of minimal P -proof schemes {S1, . . . ,Sn} such
that concl(Si) = ai, we can effectively decide whether there is a stable model of
M of P such that

(a) ai ∈ M and Si is the smallest minimal P -proof scheme for ai such that
supp(Si) ∩ M = ∅ and
(b) for any ground atom b �∈ {a1, . . . , an} such that the code of b is less than or
equal to N , b �∈ M .

We say that a finite normal predicate logic program is decidable if ground(P )
is decidable.

It will turn out that under our coding of trees into finite predicate logic
programs, decidable trees induce decidable programs and under our coding of
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finite predicate logic programs into trees, decidable programs induce decidable
trees. Moreover, decidability combined with the property of having the recursive
finite support property ensures that there exists processable stable models when
there are stable models. That is, we have the following theorem.

Theorem 1. Suppose that P is a recursive normal logic program which has the
recursive finite support property and is decidable. Then if P has a stable model,
we can effectively find a recursive stable model of P .

Proof. Let a0, a1, . . . be a list of all elements of H(P ) by increasing code num-
bers. That is, if ci is the code of ai, then c0 < c1 < . . .. We will effectively
construct a list of pairs of sets (Ai, Ri) for i ≥ 0 such that for all i, Ai ∩ Ri = ∅,
{a0, . . . , ai} ⊆ Ai ∪ Ri, Ai ⊆ {a0, . . . , aI}, Ai ⊆ Ai+1, and Ri ⊆ Ri+1. Then
A =

⋃
i≥0 Ai will be our desired recursive stable model. Thus we shall think of

Ai as being the set of atoms that we have accepted to be in the stable model at
stage i and Ri as being the set of atoms that have been rejected from being in
A at stage i. Our construction will proceed in stages.

Stage 0. Consider ao. Since P has the recursive finite support property, we
can effectively find the supports of all the minimal P -proof schemes with con-
clusion a0. If U is the support of a minimal proof scheme with conclusion a0,
then the fact that the set of minimal proofs schemes of P is r.e. means that
we can search through the list of minimal proof schemes of P until we find the
minimal proof scheme SU with the smallest possible code such the conclusion of
SU is a0 and the support of SU is U . Thus if U1, . . . , Uk is the set of all supports
of minimal proof schemes with conclusion a0, then we can effectively find proof
schemes S1, . . . ,Sk such that for each i, Si is the smallest minimal proof scheme
such that the conclusion of Si is a0 and the support of Si is Ui. Then, since P
is decidable, we use our effective procedure with N = c0 to determine whether
there is a stable model M for which Si is the smallest minimal proof scheme
such that supp(Si) ∩ M = ∅. If there is no such i, then a0 is not in any stable
model so we set A0 = ∅ and R0 = {a0}. If there is such an i, then we let t0 be
the least such i and we set A0 = {a0} and R0 = supp(St0).

Stage s + 1. Assume that at stage s, we have constructed As and Rs such
that As ∩ Rs = ∅, {a0, . . . , as} ⊆ As ∪ Rs, As ⊆ {a0, . . . , as}, and for each
a ∈ As, we have constructed a proof scheme Sa such that if As = {d1, . . . , dk}
and Ns = cs+1. Then our decision procedure associated with the decidability of
P will answer yes when we give it NS , the set {d1, . . . , dk} and the corresponding
proof schemes Sd1 , . . . ,Sdk

. Moreover, we assume that

Rs = {ai : i ≤ s & ai �∈ As} ∪
k⋃

i=1

supp(Sdi
).

This means that there is at least one stable model M such that for each i, Sdi
is

the least proof scheme that witnesses that di is in M and ({a0, . . . , as} − As) ∩
M = ∅.



Index Sets for Finite Normal Predicate Logic Programs 69

Now consider as+1. By the fact that P has the recursive support property, we
can effectively find the finite set of supports V1, . . . , Vr of the minimal P -proof
schemes of as+1 and we can find P -proof schemes T1, . . . ,Tr such that for each
1 ≤ i ≤ r, Ti is the smallest possible proof scheme with conclusion as+1 and
support Vi. Then for each i < r, we can query the decision procedure associated
with the decidability of P on the set {d1, . . . , dk, as+1} and the corresponding
proof schemes Sd1 , . . . ,Sdk

,Ti. If we get an answer yes for any i, then we let
ts+1 be the least such i and we set As+1 = As ∪ {as+1} and Rs+1 = Rs ∪
supp(Tts+1). Note that since Sd1 , . . . ,Sdk

,Ti are the smallest minimal P proof
schemes that witness that d1, . . . , dk, as+1 are in some fixed stable model M such
that ({a0, . . . , as+1} − As+1) ∩ M = ∅, we must have that As+1 ∩ Rs+1 = ∅. If
there is no such i, then there is no stable model M which contains as+1 and
is such that for each i, Sdi

is the least proof scheme that witnesses that di is
in M and ({a0, . . . , as} − As) ∩ M = ∅. In that case, we let As+1 = As and
Rs+1 = Rs ∪{as+1}. It easily follows that our inductive assumption will hold at
stage s + 1.

This completes the construction. It is easy to see that if A =
⋃

s≥0 As and
R =

⋃
s≥0 Rs, then A∩R = ∅ and {a0, a1, . . .} ⊆ A∪R. Thus A and R partition

H(P ). It is also easy to see that A is recursive since our construction is effective
and at stage s, we have determined whether as ∈ A. We claim that A is stable
model. That is, if A is not a stable model, then either there exists an as such
that as ∈ A and as has no P -proof scheme admitted by A or there is an at �∈ A
such that at has an P -proof scheme which is admitted by A. Our construction
ensures that if as is in A, then as has an P -proof scheme admitted by A. Thus
suppose that at �∈ A. Then let W1, . . . , Wk be the supports of the minimal proof
schemes of at. Let ar be the largest element in W1 ∪ . . . ∪ Wk. Then consider
what happens at stage r. Suppose Ar = {e1, . . . , ek}. Then our construction also
specifies minimal P -proof schemes S1, . . . ,Sk such that there is a stable model
M such that for 1 ≤ i ≤ k, Si is the smallest proof scheme which witnesses that
ei is in M , supp(S1) ∪ . . . ∪ supp(Sk) ⊆ Rr, and {a0, . . . , ar} − Ar ∩ M = ∅.
Thus at is not in M . Let V1, . . . , Vb be the supports of the minimal P -proof
schemes of at+1. This means that M ∩ supp(Vi) �= ∅ for each i. But for each i,
supp(Vi) ⊆ {a0, . . . , ar} and M ∩ {a0, . . . , ar} = Ar. Thus it must be that case
that supp(Vi) ∩ Ar �= ∅ for all i and hence at does not have a P -proof scheme
admitted by A. Thus A is a stable model of P .

We now introduce and illustrate a technical concept that will be useful for our
later considerations. At first glance, there are some obvious differences between
stable models of normal propositional logic programs and models of sets of sen-
tences in a propositional logic. For example, if T is a set of sentences in a propo-
sitional logic and S ⊆ T , then it is certainly the case that every model of T is a
model of S. Thus a set of propositional sentences T has the property that if T has
a model, then every subset of T has a model. This is not true for normal propo-
sitional logic programs. That is, suppose that P0 is a normal propositional logic
program which has a stable model and a is atom which is not in the Herbrand
base of P0, H(P0). Let P be the normal propositional logic program consisting
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of P0 plus the clause C = a ← ¬a. Then P automatically does not have a stable
model. That is, consider a potential stable model M of P . If a ∈ M , then C
does not contribute to PM so that there will be no clause of PM with a in the
head. Hence, a is not in the least model of PM so that M is not a stable model
of P . On the other hand, if a �∈ M , then C will contribute the clause a ← to PM

so that a must be in the least model of PM . It follows that P0 ∪ {a ← ¬a, a ←}
has a stable model but P0 ∪ {a ← ¬a} does not.

One can see from the example above that there may be a finite set of clauses
in a normal propositional or predicate logic program P which prevent P from
having a stable model. Our next definition captures the key property which
ensures that the TP which corresponds to a given finite normal predicate logic
program is forced to be finite. We say that a finite normal predicate logic program
Qe over L has an explicit initial blocking set if there is an m such that

1. for every i ≤ m, either i is not the code of an atom of ground(P ) or the atom
a coded by i has the finite support property relative to P and there is at least
one atom a in H(P ) whose code is less than or equal to m and

2. for all S ⊆ {0, . . . , m}, either
(a) there exists an i ∈ S such that i is not the code of an atom in H(P ), or
(b) there is an i �∈ S such that there exists a minimal P -proof scheme p

such that concl(p) = a where a is the atom of H(P ) with code i and
supp(p) ⊆ {0, . . . , m} − S, or

(c) there is an i ∈ S such that every minimal P -proof scheme S of the atom
a of H(P ) with code i has supp(S) ∩ S �= ∅.

The definition of a finite normal predicate logic program Qe over L having an
initial blocking set is the same as Qe having an explicit initial blocking set, except
that we drop the condition that for every i ≤ m which is the code of an atom
a ∈ H(P ), a must have the finite support property relative to P .

3 Main Results

Next we state the main results, some of which were first discussed in [7], which
reduce the problem of computing index sets for finite normal predicate logic
programs to the problem of computing index sets for primitive recursive trees.
We shall only give a sketch of the proofs of our main results. The full proofs are
long and technical and can be found in [8].

Theorem 2. There is a uniform effective procedure which given any recursive
tree T ⊆ ω<ω produces a finite normal predicate logic program PT such that the
following hold.

1. There is an effective one-to-one degree preserving correspondence between the
set of stable models of PT and the set of infinite paths through T .

2. T is bounded if and only if PT has the FS property.
3. T is recursively bounded if and only if PT has the rec.FS property.
4. T is decidable and recursively bounded if and only if PT is decidable and has

the rec.FS property.
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Proof Sketch. Let T be a recursive tree contained in ω<ω. Note that the empty
sequence, whose code is 0, is in T . Below we shall only describe the program PT .
The details that PT has the desired properties can be found in [8].

A classical result, first explicit in [1,23], but known earlier in equational form,
is that every r.e. relation can be computed by a suitably chosen predicate over
the least model of a finite predicate logic Horn program. An elegant method
of proof due to Shepherdson [22] uses the representation of recursive functions
by means of finite register machines. When such machines are represented by
Horn programs in the natural way, we get programs in which every atom can be
proved in only finitely many ways; see also [19]. Thus we have the following.

Proposition 2. Let r(·, ·) be a recursive relation. Then there is a finite predicate
logic program Pr computing r(·, ·) such that every atom in the least model Mr

of Pr has only finitely many minimal proof schemes and there is a recursive
procedure such that given an atom a in Herbrand base of Pr produces the code of
the set of Pr-proof schemes for a. Moreover, the least model of Pr is recursive.

It follows that there exists the following three normal finite predicate logic
programs such that the set of ground terms in their underlying language are all
of the form 0 or sn(0) for n ≥ 1 where 0 is a constant symbol and s is a unary
function symbol. We shall use n as an abbreviation for the term sn(0) for n ≥ 1.

(I) There is a finite predicate logic Horn program P0 such that for a predicate
tree(·) of the language of P0, the atom tree(n) belongs to the least Herbrand
model of P0 if and only if n is a code for a finite sequence σ and σ ∈ T .

(II) There is a finite predicate logic Horn program P1 such that for a predicate
seq(·) of the language of P1, the atom seq(n) belongs to the least Herbrand
model of P1 if and only if n is the code of a finite sequence α ∈ ω<ω.

(III) There is a finite predicate logic Horn program P2 which correctly computes
the following recursive predicates on codes of sequences.
(a) samelength(·, ·). This succeeds if and only if both arguments are the

codes of sequences of the same length.
(b) diff (·, ·). This succeeds if and only if the arguments are codes of

sequences which are different.
(c) shorter(·, ·). This succeeds if and only both arguments are codes of

sequences and the first sequence is shorter than the second sequence.
(d) length(·, ·). This succeeds when the first argument is a code of a

sequence and the second argument is the length of that sequence.
(e) notincluded(·, ·). This succeeds if and only if both arguments are codes

of sequences and the first sequence is not an initial segment of the
second.

(f) num(·). This succeeds if and only if the argument is either 0 or sn(0)
for some n ≥ 1.

Now let P− be the finite predicate logic program P0 ∪ P1 ∪ P2. We denote its
language by L− and we let M− be the least model of P−. By Proposition 2, P−

is a Horn program, M− is recursive, and for each ground atom a in the Herbrand
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base of P−, we can explicitly construct the set of all P−-proof schemes of a. In
particular, tree(n) ∈ M− if and only if n is the code of node in T .

Our final program PT will consist of P− plus clauses (1)-(7) given below.
We assume no predicate that appears in the head of any of these clauses is in
the language L−. However, we do allow predicates from P− to appear in the
body of clauses (1) to (7). It follows that for any stable model of the extended
program, its intersection with the set of ground atoms of L− will be M−. In
particular, the meaning of the predicates listed above will always be the same.
We can now write the additional clauses which, together with P−, will form the
desired program PT . First of all, we select three new unary predicates:

(i) path(·), whose intended interpretation in any given stable model M of PT

is that it holds only on the set of codes of sequences that lie on infinite path
through T . This path will correspond to the path encoded by the stable
model of M ,

(ii) notpath(·), whose intended interpretation in any stable model M of PT is
the set of all codes of sequences which are in T but do not satisfy path(·),
and

(iii) control(·), which will be used to ensure that path(·) always encodes an
infinite path through T .

This given, the final 7 clauses of our program are the following.
(1) path(X) ←− tree(X), ¬notpath(X)
(2) notpath(X) ←− tree(X), ¬path(X)
(3) path(0) ←−
(4) notpath(X) ←− tree(X), path(Y ), tree(Y ), samelength(X,Y ), diff (X,Y )
(5) notpath(X) ←− tree(X), tree(Y ), path(Y ), shorter(Y,X),notincluded
(Y,X)
(6) control(X) ←− path(Y ), length(Y,X)
(7) control(X) ←− ¬control(X),num(X)

Clearly, PT = P− ∪ {(1), . . . , (7)} is a finite program.

Theorem 3. There is a uniform recursive procedure which given any finite nor-
mal predicate logic program P produces a primitive recursive tree TP such that
the following hold.

1. There is an effective one-to-one degree-preserving correspondence between
the set of stable models of P and the set of infinite paths through TP .

2. P has the FS property or P has an explicit initial blocking set if and only if
TP is bounded.

3. If P has a stable model, then P has the FS property if and only if TP is
bounded.

4. P has the rec.FS property or an explicit initial blocking set if and only if TP

is recursively bounded.
5. If P has a stable model, then P has the rec.FS property if and only if TP is

recursively bounded.
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6. P has the a.a.FS property or P has an explicit initial blocking set if and
only if TP is nearly bounded.

7. If P has a stable model, then P has the a.a.FS property if and only if TP is
nearly bounded.

8. P has the a.a.rec.FS property or an explicit initial blocking set if and only
if TP is nearly recursively bounded.

9. If P has a stable model, then P has the a.a.rec.FS property if and only if
TP is nearly recursively bounded.

10. If P has a stable model, then P is decidable if and only if TP is decidable.

Proof Sketch.
Our basic strategy is to encode a stable model M of ground(P ) by a path

fM = (f0, f1, . . .) through the complete ω-branching tree ω<ω as follows.

1. First, for all i ≥ 0, f2i = χM (i). That is, at the stage 2i, we encode the
information about whether or not the atom encoded by i belongs to M .
Thus, in particular, if i is not the code of ground atom in H(P ), then f2i = 0.

2. If f2i = 0, then we set f2i+1 = 0. But if f2i = 1 so that i ∈ M and i is the
code of a ground atom in H(P ), then we let f2i+1 equal qM (i) where qM (i) is
the least code for a minimal P -proof scheme S for i such that the support of
S is disjoint from M . That is, we select a minimal P -proof scheme S for i, or
to be precise for the atom encoded by i, such that S has the smallest possible
code of any P -proof scheme T such that supp(T) ∩ M = ∅. If M is a stable
model, then, by Proposition 1, at least one such P -proof scheme exists for i.

Clearly, M ≤T fM since it is enough to look at the values of fM at even places
to read off M . Now given an M -oracle, it should be clear that for each i ∈ M , we
can use an M -oracle to find qM (i) effectively. This means that fM ≤T M . Thus
the correspondence M �→ fM is an effective degree-preserving correspondence.

Then, given a program P , we construct a primitive recursive tree TP ⊆ ωω

such that [TP ] = {fM : M ∈ stab(P )}. The details of this construction and the
verification that it has the desired properties can be found in [8].

4 Corollaries, Conclusions and Further Work

Theorems 2 and 3 allow us to transfer many results about paths through recursive
trees to stable models of finite normal predicate logic programs. We give a brief
sample of some the results that we have proved in this manner.

(1) {e : Qe has the rec.FSP} is Σ0
3 -complete.

This can be proved as follows. First it is a straightforward exercise to show
that the property that Qe has the rec.FSP is a Σ0

3 predicate. Then Cenzer and
Remmel proved that {e : Te is rec. bounded} is Σ0

3 -complete. Next, it follows
from Theorem 3.1 that {e : Te is rec. bounded} is one-to-one reducible to the
set {e : Qe is rec.FSP}. Hence the set of {e : Qe is rec.FSP} is Σ0

3 -complete.
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The following results can be proved by similar type reasoning.

(2) {e : Qe has the FSP} is Π0
3 -complete.

(3) {e : Qe has the rec.FSP and is dec.} is Σ0
3 -complete.

(4) {e : Qe has the rec.FSP and Stab(Qe) �= ∅} is Σ0
3 -complete.

(5) {e : Qe has the FSP and Stab(Qe) �= ∅} is Π0
3 -complete.

(6) {e : Stab(Qe) �= ∅} is Σ1
1 -complete.

For any positive integer c,

(7) {e : Qe has the rec.FSP and Card(Stab(Qe)) > c},
{e : Qe has the rec.FSP and Card(Stab(Qe)) ≤ c},
and {e : Qe has the rec.FSP and Card(Stab(Qe)) = c} are all Σ0

3 -complete.
(8) {e : Qe has the FSP and Card(Stab(Qe)) ≤ c} and

{e : Qe has the FSP and Card(Stab(Qe)) = 1} are both Π0
3 -complete.

(9) {e : Qe has the FSP and Card(Stab(Qe)) > c} and
{e : Qe is has the FSP and Card(Stab(Qe)) = c+1} are both D0

3-complete.
(10) {e : Qe has the rec.FSP and is dec. and Card(Stab(Qe)) > c},

{e : Qe has the rec.FSP and is dec. and Card(Stab(Qe)) ≤ c},
and {e : Qe has the rec.FSP and is dec. and Card(Stab(Qe)) = c} are all
Σ0

3 -complete.
(11) {e : Card(Stab(Qe)) > c} is Σ1

1 -complete and
{e : Card(Stab(Qe)) ≤ c} and {e : Card(Stab(Qe)) = c} are Π1

1 -complete.

In [8], we proved many more results of this type. The properties that we
considered involve both whether a finite normal predicate logic program pos-
sesses a blocking set or has various properties related to finite support property
as well has properties about the types and complexity of its stable models such
the cardinality of its set of stable models or the cardinality of its set of recursive
stable models. This required that we prove some new index type results for trees
and to modify the constructions of Theorems 2 and 3.

We believe that the types of relationship established in this paper between
the sets of stable models of a finite normal predicate logic programs and the sets
of infinite paths through recursive trees is a technology which can be applied to
study the complexity of other notions that have appeared in the Answer Set Pro-
gramming literature. For example, Cenzer and Remmel [10] showed that there is
an intimate connection between the well-founded semantics of logic programs and
Cantor-Bendixson derivatives. One could also ask whether our correspondences
can be extended to handle cases where one adds additional constructs to logic
programs such as aggregates, and more generally non-monotone set-constraints.
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with the Disjunction Property

Alex Citkin(B)

Metropolitan Telecommunications, New York, NY 10041, USA
acitkin@gmail.com

Abstract. We prove that for the intermediate logics with the disjunc-
tion property any basis of admissible rules can be reduced to a basis of
admissible m-rules (multiple-conclusion rules), and every basis of admis-
sible m-rules can be reduced to a basis of admissible rules. These results
can be generalized to a broad class of logics including positive logic and
its extensions, Johansson logic, normal extensions of S4, n-transitive log-
ics and intuitionistic modal logics.

Keywords: Intermediate logic · Admissible rule · Multiple conclusion
rule · Basis of admissible rules

1 Introduction

The notion of admissible rule evolved from the notion of auxiliary rule: if in a
given calculus (deductive system) S a formula B can be derived from a set of
formulas A1, . . . , An, one can shorten derivations by using a rule A1, . . . , An/B.
The application of such a rule does not extend the set of theorems, i.e. such
a rule is admissible (permissible). In [24, p. 19] P. Lorenzen called the rules
not extending the class of the theorems “zulässing”, and the latter term was
translated as“admissible”, the term we are using nowadays. In [25] Lorenzen
also linked the admissibility of a rule to existence of an elimination procedure.

Independently, P.S. Novikov, in his lectures on mathematical logic, had intro-
duced the notion of derived rule: a rule A1, . . . ,An/B, where A1, . . . ,An,B are
variable formulas of some type, is derived in a calculus S if �S B holds every time
when �S A1, . . . ,�S An hold (see [28, p. 30]1). And he distinguished between two
types of derived rules: a derived rule is strong, if �S A1 → (A2 → . . . (An →
B) . . . ) holds, otherwise a derived rule is weak.

For classical propositional calculus (CPC), the use of admissible rules is
merely a matter of convenience, for every admissible for CPC rule A1, . . . , An/B
is derivable, that is A1, . . . , An � B (see, for instance [1]). It was observed by
R. Harrop in [14] that the rule ¬p → (q ∨ r)/(¬p → q) ∨ (¬p → r) is admis-
sible for the intuitionistic propositional calculus (IPC), but is not derivable in
1 This book was published in 1977, but it is based on the notes of a course that

P.S. Novikov taught in 1950th; A.V. Kuznetsov was recalling that P.S. Novikov had
used the notion of derivable rule much earlier, in this lectures in 1940th.
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IPC. Later, in mid 1960s, A.V. Kuznetsov observed that the rule (¬¬p → p) →
(p ∨ ¬p)/((¬¬p → p) → ¬p) ∨ ((¬¬p → p) → ¬¬p) is also admissible for IPC,
but not derivable. Another example of an admissible for IPC not derivable rule
was found in 1971 by G. Mints (see [26]).

In 1974 A.V. Kuznetsov asked whether admissible for IPC rules have a finite
basis, that is, whether there is a finite set R of admissible for IPC rules such
that every admissible for IPC rule can be derived from R. Independently, in [10,
Problem 40] H. Friedman asked whether the problem of admissibility for IPC is
decidable, that is, whether there is a decision procedure that by a given rule r
decides whether r is admissible for IPC. Also, in [30] W. Pogorzelski introduced a
notion of structural completeness: as deductive system S is structurally complete
if every admissible for S structural rule is derivable in S. Thus, CPC is structurally
complete, while IPC is not. Naturally, a question which intermediate logics are
structurally complete has been posed. Thus, for intermediate logics, and, later,
for modal and various types of propositional (and not only propositional) logics,
for a given logic L, first, we ask (a) whether L is structurally complete, that is,
whether there are admissible for L not derivable rules; if L is not structurally
complete, we ask (b) whether admissible for L rules have a finite, or at least
recursive2, basis; or, at last, (c) whether a problem of admissibility for L is
decidable3.

It was established by V. Rybakov (see [33,34]) that there is no finite basis of
admissible for Int (and S4) rules, i.e. Kuznetsov’s question has a negative answer,
but the problem of admissibility for Int (and S4) is decidable, i.e. Friedman’s
problem has a positive answer. Later, using ideas from [33,34], V. Rybakov has
constructed a basis of admissible rules for S4 (see [39]). For Int, P. Roziére (see
[32]) and R. Iemhoff (see [15]), using different techniques, have found a recursive
basis of admissible rules. Using this technique, R. Iemhoff has found the bases of
admissible rules for different intermediate logics (see [16,17]). Some very useful
information on admissibility in intermediate logics as well as in modal logics can
be found in the book [37] by V. Rybakov.

In the review [22] on aforementioned book [37], M. Kracht suggested to study
admissibility of multiple-conclusion rules: a rule A1, . . . , An/B1, . . . , Bn is admis-
sible for a logic L if every substitution that makes all the premises valid in L,
makes at least one conclusion valid in L (see also [23]). A natural example of
multiple-conclusion rule (called m-rule for short) admissible for IPC is the follow-
ing rule, representing the disjunction property (DP for short): DP := p ∨ q/p, q.
That is, if a formula A ∨ B is valid in IPC, then at least one of the formulas
A,B is valid in IPC (for more on disjunction property see [5]). It was reason-
able to ask the same questions regarding m-rules: whether a given logic has
2 Using idea from [8], it is not hard to show that if an intermediate logic has a recur-

sively enumerable explicit basis of admissible rules, it has a recursive basis.
3 In [6] A. Chagrov has constructed a decidable modal logic having undecidable admis-

sibility problem, and gave a negative answer to V.Rybakov’s question [35, Problem
(1)]. The problem whether there exists a decidable intermediate logic with undecid-
able admissibility problem remains open.
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admissible, not derived m-rules, whether m-rules have a finite or recursively enu-
merable basis, or whether the admissibility of m-rules is decidable. The bases of
m-rules for a variety of intermediate and normal modal logics were constructed
in [11–13,19,20].

For logics with the DP, there is a close relation between m-rules and rules:
with each m-rule r := Γ/Δ one can associate a rule rq :=

∧
Γ ∨ q/

∨
Δ ∨ q,

where variable q does not occur in formulas from Γ,Δ. Our goal is to prove that
if m-rules ri, i ∈ I form a basis of m-rules admissible for a given intermediate
logic L with the DP, then rules rq, i ∈ I form a basis of rules admissible for L
(comp. [19, Theorem 3.1]). To prove this, we will use the main theorem from [7].
As a consequence, we obtain that for intermediate logics with the DP, each of
the mentioned above problems for the m-rules and rules are equivalent. In the
last section, we will discuss how this result can be extended beyond intermediate
logics. In order to extend the results from intermediate logics to normal extension
of S4, we are not using Gödel-McKinsey-Tarski translation; instead, we make a
use of some common properties of the algebraic models (Heyting algebras and
S4-algebras), and this gives us an ability to extend the results even further.

2 Background

2.1 Multiple-Conclusion Rules

We consider (propositional) formulas built in a usual way from the propositional
variables from a countable set P and connectives from a finite set C. By Fm we
denote the set of all formulas, and by Σ we denote the set of all substitutions,
that is the set of all mappings σ : P → Fm. In a natural way, every substitution
σ can be extended to a mapping Fm → Fm.

A multiple-conclusion rule (m-rule for short) is an ordered pair of finite sets
of formulas Γ,Δ ⊆ Fm written as Γ/Δ; Γ is a set of premises, and Δ is a set of
conclusions. A rule is an m-rule, that has the set of conclusions consisting of a
single formula.

A structural multiple-conclusion consequence relation (m-consequence for
short) is a binary relation � between finite sets of formulas for which the following
holds: for any formula A ∈ Fm and any finite sets of formulas Γ, Γ ′,Δ,Δ′ ⊆ Fm

(R) A � A;
(M) if Γ � Δ, then Γ ∪ Γ ′ � Δ ∪ Δ′;
(T) if Γ,A � Δ and Γ ′ � A,Δ′, then Γ ∪ Γ ′ � Δ ∪ Δ′;
(S) if Γ � Δ, then σ(Γ ) � σ(Δ) for each substitution σ ∈ Σ.

The class of all m-consequences will be denoted by M.
Let � be an m-consequence and r := Γ/Δ be an m-rule. An m-rule r is

derivable w.r.t. � (in written � r), if Γ � Δ.
Every collection R of m-rules defines an m-consequence �R, namely, the least

m-consequence relative to which every rule from R is derivable:

�R:=
⋂

{� ∈ M |� r for every r ∈ R}.
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m-relation �R always exists, because arbitrary meets of m-relations preserve
derivability of m-rules.

An m-rule r is said to be derivable from a set of m-rules R (in written R � r),
if �R r.

Every m-consequence � defines a logic L(�) � {A ∈ Fm |� A}. If L is a logic,
an m-rule Γ/Δ is said to be admissible for L if for every substitution σ ∈ Σ

σ(Γ ) ⊆ L entails σ(Δ) ∩ L 	= ∅.

If L is a logic, by Adm(L) we denote the set of all m-rules admissible for L, and
by Adm(1)(L) we denote the set of all rules admissible for L.

Given a logic L, a set of m-rules R ⊆ Adm(L) forms an basis of admissible
m-rules (m-basis for short), if every rule r ∈ Adm(L) is derivable from R; and a
set of rules R ⊆ Adm(1)(L) forms a basis of admissible rules (s-basis for short),
if every rule r ∈ Adm(1)(L) is derivable from R.

2.2 Algebraic Semantics

Basic Definitions. Algebraic models for intermediate logics are Heyting alge-
bras, that is algebras 〈A;∧,∨,→,¬,1,0〉, where 〈A;∧,∨,1,0〉 is a bounded dis-
tributive lattice, and →,¬ are respectively a relative pseudo-complement and
a pseudo-complement. The class of all Heyting algebras forms a variety that is
denoted by H.

Let A be a (Heyting) algebra, A be a formula, r′ := A1, . . . , An/B be a
rule and r := A1, . . . , An/B1, . . . , Bm be an m-rule. A formula A is valid in a
(Heyting) algebra A (in written, A |= A) if for every assignment ν : P → A
the value ν(A), that is, the value obtained by interpreting the connectives by
operations of A, is 1. Accordingly, rule r′ is valid in A (in written, A |= r′), for
every assignment ν, if ν(A1) = · · · = ν(An) = 1 yields ν(B) = 1. And m-rule r
if for every assignment ν, ν(A1) = · · · = ν(An) = 1 yields that at least for some
j = 1, . . . , m, ν(Bj) = 1.

Let K be a class of algebras. If F is a family of formulas (R′ is a family of
rules, or R is a family of m-rules), then by K |= F (K |= R′ or K |= R) we
mean that every formula (rule of m-rule) is valid in each algebra A ∈ K.

Immediately from the definition of validity of rule and the fact that for each
non-degenerate Heyting algebras A,B there is a homomorphism of A to B, we
have the following:

Proposition 1. Let r be a rule and Ai, i ∈ I be a family of algebras. Then,
Ai |= r for all i ∈ I if and only if

∏
i∈I Ai |= r.

Let us observe that for m-rules the situation is quite different: if A is a two-
element Boolean algebra, then A |= DP, but A2 	|= DP.

It is not hard to see that any set of formulas F defines a variety V(F ) �
{A | A |= F}; any set R′ of rules defines a quasivariety Q(R′) = {A | A |= R′};
any set R of m-rules defines a universal class U(R) = {A | A |= R}).
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On the other hand, if K is a family of algebras, by V(K), Q(K) and U(K),
we denote respectively a variety, quasivariety and universal class generated by
algebras in K.

There is 1-1-correspondence between intermediate logics and non-trivial vari-
eties of Heyting algebras. Moreover, there is 1-1correspondence between conse-
quence relations and subquasivarieties of H, and between m-consequences and
universal subclasses of H (see, for instance, [3]). If V is a variety corresponding
to a logic L, then a formula A is valid in L (a rule r′ is admissible for L, or an
m-rule r is m-admissible for L) if and only if FV |= A (accordingly FV |= r′, or
FV |= r).

Let us note the following important property: if R is a set of m-rules (or
rules) and r is an m-rule (or a rule), then R � r if and only if

A |= R entails A |= r for every algebra A ∈ H. (1)

Well-Connected Algebras. An algebra A is said to be well-connected, if for
every a,b ∈ A, if a ∨ b = 1, then a = 1 or b = 1.

The finite well-connected algebras are exactly subdirectly irreducible alge-
bras. On the other hand, the free algebras of variety H are well-connected and
they are not subdirectly irreducible.

Proposition 2. Let A be a well-connected algebra, Γ/Δ be an m-rule and q be
a variable not occurring in Γ/Δ. Then the following are equivalent

(a) A |= Γ/Δ;
(b) A |= Γ/

∨
B∈Δ B;

(c) A |= ∧
A∈Γ A ∨ q/

∨
B∈Δ B ∨ q;

Proof. (a) ⇒ (b) is trivial.
(b) ⇒ (a) due to well-connectedness of A.
(b) ⇒ (c). Suppose A 	|= ∧

A∈Γ A ∨ q/
∨

B∈Δ B ∨ q. We need to prove that
A 	|= Γ/

∨
B∈Δ B.

Indeed, let ν be a refuting valuation, that is
∧

A∈Γ

ν(A) ∨ ν(q) = 1A while
∨

B∈Δ

ν(B) ∨ ν(q) 	= 1A. (2)

Then, clearly, ∨

B∈Δ

ν(B) 	= 1A (3)

and
ν(q) 	= 1A. (4)

Due to well-connectedness of A, from (2) and (4) we have
∧

A∈Γ

ν(A) = 1A. (5)
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And (5) together with (3) mean that ν is a refuting valuation for Γ/
∨

B∈Δ B,
that is, A 	|= Γ/

∨
B∈Δ B.

(c) ⇒ (b). Since q does not occur in the formulas from Γ,Δ, we can substitule
q with 0A and reduce (c) to (b). ��

The above Proposition can be restated in the following way:

Corollary 3. Let A be a well-connected algebra, r be an m-rule and q be a
variable not occurring in r. Then A |= r if and only if A |= rq.

3 The Case of Intermediate Logics

In this section we prove that for the intermediate logics with the disjunction
property, any basis of admissible rules can be reduced to a basis of admissible
m-rules (multiple-conclusion rules), and every basis of admissible m-rules can be
reduced to a basis of admissible rules.

3.1 Reductions

We consider formulas in the signature ∧,∨,→,¬,⊥,�. Intermediate logic is
understood as a set of formulas L such that Int ⊆ L ⊆ Cl, where Cl is classi-
cal logic, and closed under Modus Ponens and substitution. Clearly, for each
intermediate logic L there is an m-consequence defining it: one can take a conse-
quence relation that is defined by L (viewed as a set of axiom schemata) and by
Modus Ponens. By �Int we denote a consequences relation defined by intuition-
istic axiom schemata and the rule Modus Ponens. In Sect. 3 we consider only
m-consequences extending �Int and defining intermediate logics.

A (intermediate) logic L enjoy the disjunction property (DP for short) if
(A ∨ B) ∈ L yields A ∈ L or B ∈ L for any formulas A,B. It is clear that L has
the DP if and only if m-rule

DP := p ∨ q/p, q

is admissible for L.

Definition 1. Let r := Γ/Δ be an m-rule. The following rule is called a reduc-
tion of rule r:

r◦ �
∧

A∈Γ

A/
∨

B∈Δ

B, (6)

where
∧

A∈Γ A = �, if Γ = ∅, and ∨
B∈Δ B = ⊥, if Δ = ∅.

Note, that the rule r◦ is always a single-conclusion rule.
It is not hard to see that rule DP expresses the DP.
We also will use the following m-rule:

NT := ⊥/∅, (7)
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that we will call a Non-Theorem rule. Let us observe that NT is valid in every
non-degenerate (i.e. having more than one element) algebra. Hence, NT is admis-
sible for every intermediate logic. Moreover, for any set of formulas Γ , if a rule
Γ/∅ admissible for an intermediate logic L, this rule is derived from NT, for if
NT is admissible for L, then Γ �L ⊥, and, applying NT, we get Γ/∅. Let us note
that rules Γ/∅ correspond to non-negative clauses (see [3]).

Proposition 4. Let R be a set of rules from which rules DP and NT are derived,
and r := Γ/Δ be an m-rule. Then

R � r if and only if R � r◦. (8)

Proof (⇒). Suppose R � r , that is, Γ �R Δ. We need to prove R � r◦, that is,
we need to show that

∧
A∈Γ A �R

∨
B∈Δ B.

If Δ = ∅, then Γ �R ∅ yields Γ �R ⊥, because �R is closed under (M). In its
turn, Γ �R ⊥ entails

∧
A∈Γ A �R ⊥, for Γ �Int

∧
A∈Γ A, and �Int ⊆ �R.

The case Δ = {B} is trivial.
Suppose Δ = {B1, . . . , Bn, Bn+1}. Let us prove that for all Δ′

Γ �R B1, B2,Δ
′ yields Γ �R B1 ∨ B2,Δ

′ (9)

and then one can complete the proof of (⇒) by induction on cardinality of Δ.
Assume

Γ �R B1, B2,Δ
′. (10)

Let us observe that B1 �Int B1 ∨ B2. Since �Int ⊆ �R, we can conclude that

B1 �R B1 ∨ B2. (11)

From (10) and (11) by (T) we have

Γ �R B1 ∨ B2, B2,Δ
′. (12)

Now, we use B2 �Int B1 ∨ B2, and by (M) and �Int ⊆ �R we get

B2 �R B1 ∨ B2,Δ
′. (13)

And from (12) and (13) by (T) we obtain

Γ �R B1 ∨ B2,Δ
′, (14)

and this completes the proof of ⇒.

Proof of (⇐). Suppose R � r◦, i.e.
∧

A∈Γ A �R

∨
B∈Δ B. Then, due to Γ �Int∧

A∈Γ A, we get Γ �R

∨
B∈Δ B. If Δ = ∅, due to R � NT, we have R � Γ/∅, that

is R � r. If Δ 	= ∅, due to R � DP, we have
∨

B∈Δ B �R Δ. Thus, Γ �R Δ, that
is, R � r. ��

Let us note that ⇒ part of Proposition 4 holds for any sets of rules.



Multiple Conclusion Rules in Logics with the Disjunction Property 83

3.2 q-Reductions

Definition 2. With every m-rule r := Γ/Δ and a variable q we associate a rule

rq :=
∧

A∈Γ

A ∨ q/
∨

B∈Δ

B ∨ q. (15)

The rule rq we call a q-reduction of the rule r. If R is a set of m-rules and q is a
variable, we let Rq � {rq | r ∈ R}.

Proposition 5. If an m-rule Γ/Δ is admissible for a given logic L, then for
every substitution σ ∈ Σ the m-rule σ(Γ )/σ(Δ) is admissible for L.

Proof. The proof follows immediately from the definition of admissible m-rule
and from the observation that a composition of two substitutions is a substitu-
tion. ��
Proposition 6. Let a logic L enjoys DP and q be a variable not occurring in an
m-rule r. Then m-rule r is admissible for L if and only if the rule rq is admissible
for L.

Proof. Let r := Γ/Δ be admissible for L. We need to prove that for every sub-
stitution σ ∈ Σ,

if σ(
∧

A∈Γ

A ∨ q) ∈ L then σ(
∨

B∈Δ

B ∨ q) ∈ L. (16)

Indeed, if σ(
∧

A∈Γ A ∨ q) ∈ L, by DP, one of the following holds

(a) σ(
∧

A∈Γ ) ∈ L;
(b) σ(q) ∈ L.

In the case (b), σ(q) ∈ L and, clearly, σ(
∨

B∈Δ B ∨ q) = σ(
∨

B∈Δ B) ∨ σ(q) ∈ L.
In the case (a), σ(

∧
A∈Γ ) ∈ L, hence, due to r is admissible for L, we have

that σ(B) ∈ L for some B ∈ Δ and, hence, σ(
∨

B∈Δ B) =
∨

B∈Δ σ(B) ∈ L.
Therefore σ(

∨
B∈Δ B ∨ q) ∈ L.

Conversely, suppose that rq is admissible for L. Recall that the variable q is
not occurring in Γ,Δ, and let ψ be a substitution such that ψ : q �→ ⊥ and
ψ : p �→ p for all variables p 	= q. By virtue of Proposition 5, the following rule,
obtained from rq by applying ψ,

∧

A∈Γ

A ∨ ⊥/
∨

B∈Δ

B ∨ ⊥. (17)

is admissible for L.
Assume that σ is such a substitution that σ(A) ∈ L for all A ∈ Γ . Then,

σ(
∧

A∈Γ A ∨ ⊥) ∈ L, and, due to rule (17) is admissible for L, we have

σ(
∨

B∈Δ

B ∨ ⊥) ∈ L.
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Since σ(
∨

B∈Δ B∨⊥) =
∨

B∈Δ σ(B)∨⊥ and the right hand formula is equivalent
in Int to

∨
B∈Δ σ(B), we have

∨

B∈Δ

σ(B) ∈ L.

Due to logic L enjoys DP, for one of the formulas B ∈ Δ we have σ(B) ∈ L,
and this, by the definition of admissibility, means that the rule r is admissible
for L. ��
Proposition 7. For any logic L, if a rule Γ/Δ is admissible for L, so is the rule∧

A∈Γ A/
∨

B∈Δ B.

Proof. Straightforward. ��
A problem of m-admissibility (of admissibility) for a logic L is a problem of

recognizing by a given m-rule (by a given rule) r whether r is admissible for
L, i.e. whether r ∈ Adm(L) (respectively, whether r ∈ Adm(1)(L)). Thus, the
problem of m-admissibility (of admissibility) for L is decidable if and only if the
set Adm(L) (the set Adm(1)(L)) is recursive. Recall that two decision problems
are equivalent, if they are reducible to each other.

Since Adm(1)(L) ⊆ Adm(L) for every L and for every m-rule r we can effec-
tively recognize whether r has a single conclusion, or not, that is, we can effec-
tively recognize whether r ∈ Adm(1)(L), the decidability of the problem of m-
admissibility yields the decidability of the problem of admissibility. In case when
L enjoys the DP, the converse also holds.

Corollary 8. For every logic L enjoying DP, the problems of m-admissibility
and admissibility are equivalent. That is, the set Adm(L) is recursive if and only
if the set Adm(1)(L) is recursive.

For instance, it is well known that Int enjoys the DP, hence from decidability
of the admissibility of rules for Int (see [33]) it follows that the problem of m-
admissibility for Int is decidable (in algebraic terms, that the universal theory of
the free Heyting algebras is decidable [33, Theorem 10]) .

Remark 1. It is known from [31] that Medvedev’s Logic ML is structurally com-
plete and enjoys DP. From Proposition 6 it immediately follows that the rules
DP,NT form m-basis of ML. It is not hard to see that m-rule DP is not derivable
in ML. In fact, for any intermediate logic L m-rule DP is not derivable from rules
admissible for L: all rules admissible for L are valid in the four-element Boolean
algebra, while m-rule DP is not. Rule NT is not derivable in any intermediate
logic too: all s-rules are valid in the degenerate algebra, while m-rule NT is not.

3.3 Reduction of Basis

In Sect. 3.2 we saw that for the logics with the DP, the admissibility of m-rule
and its reduction are equivalent. In this section we will prove that the m-rules
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and their q-reductions are related even closer. More precisely, we will prove that
using any basis of m-rules, one can effectively construct a basis of rules, and,
using any basis of rules, one can construct a basis of m-rules.

Theorem 9. Let L be a logic enjoying DP. Then the following holds

(a) If rules R form an s-basis, then m-rules R ∪ {DP,NT} form an m-basis.
(b) If a set of m-rules R forms an m-basis and q is a variable not occurring in

any rule from R, then the rules Rq form an s-basis.

Proof of (a)

Suppose R is a basis for L. We need to prove that every rule Γ/Δ ∈ Adm(L)
is derived from R ∪ {DP,NT}. We know that every admissible for L rule Γ/∅ is
derivable from NT. Thus, we only need to prove that for every admissible m-rule
Γ/Δ, where Δ 	= ∅, we have Γ �R∪{DP} Δ.

Indeed, if r := Γ/Δ is an admissible m-rule, by Proposition 7, the rule r◦ =∧
A∈Γ A/

∨
B∈Δ B is admissible for L. By our assumption, R is a basis, hence,

R � r◦, that is, ∧

A∈Γ

A �R

∨

B∈Δ

B. (18)

Next, we apply Proposition 4 and we obtain

Γ �R∪{DP,NT} Δ, (19)

i.e. the set of m-rules R ∪ {DP,NT} forms an m-basis.

Proof of (b)

Suppose R is a basis of admissible m-rules and q is a variable not occurring in
the rules from R. We need to prove that the set Rq forms a basis of admissible
rules. For this, we will demonstrate that quasivariety Q := Q(Rq) is generated
by algebra F – a free algebra of countable rank of the variety V(L), that is, we
will show that Q = Q(F).

Let F be a free algebra of V(L). Since L enjoys DP, F is well-connected.
Due to rules R are admissible for L, the rules from R are valid in F. Hence,
by Proposition 2, all rules from Rq are valid in F, that is, F ∈ Q. Therefore,
Q(F) ⊆ Q, and we need only to prove that Q(F) ⊇ Q.

For contradiction: assume that Q(F) ⊂ Q. Then there is an algebra A ∈
Q \ Q(F) in which all rules from Rq are valid. By virtue of [7, Theorem 1], the
quasivariety Q is generated by its well-connected members. Thus, we can assume
that A is well-connected. So, A is a well-connected algebra in which all rules
from Rq are valid. Hence, by Proposition 2, all m-rules from R are valid in A,
hence, A ∈ U , where U = U(R) is a universal class defined by all rules from R.
Recall, that R forms an m-basis and, therefore, U = U(F) ⊆ Q(F). Thus,

A ∈ U ⊆ Q(F),

and this contradicts that A ∈ Q \ Q(F).
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Corollary 10. Let L be a logic with the DP. Then L has a finite (recursive,
recursively enumerable) s-basis if and only if L has a finite (recursive, recursively
enumerable) m-basis.

For example, since Int does not have a finite basis of admissible rules (see [34,
Corollary 2]), it also does not have a finite basis of admissible m-rules [34, The-
orem 9]. On the other hand, by adding m-rules DP and NT to a basis of s-rules,
we can obtain an m-basis for Int (see [3, p.4235]).

Corollary 11. If L is a logic with the DP and R is an s-basis, then Rq is an
s-basis too. In other words, every intermediate logic with the DP has an s-basis
consisting of q-extended rules.

The bases consisting of q-reductions of rules also have the following important
property.

Theorem 12. Let L be a logic with the DP. If Rq is an independent s-basis,
then Rq ∪ {DP,NT} is an independent m-basis.

Proof. Assume that Rq is an independent basis. First, we will prove that Rq ∪
NT � DP and Rq ∪ DP � NT. Indeed, since L is an intermediate logic and,
therefore, L is consistent, the corresponding variety V := V(L) is not trivial.
Hence, its free algebra FV is not degenerate. Since all rules from Rq are admissible
for L, we have FV |= Rq and, therefore, F2

V |= Rq and F2
V |= NT, for F2

V is not
degenerate. But F2

V 	|= DP. Thus Rq ∪ NT � DP.
Rq ∪ DP � NT simply because NT is invalid in degenerate algebra in which

all rules from Rq ∪ DP are valid.
Now, let us assume that rq ∈ Rq. We need to prove that Rq

0 ∪ {DP,NT} � rq,
where Rq

0 := Rq \{rq}. Let us recall that basis Rq is independent, that is, Rq
0 � rq.

Hence, there is an algebra A such that A |= Rq
0 and A 	|= rq. Since Rq

0 consists
of q-extensions of rules from R0, we can apply [7, Lemma 1] and conclude that
A is a subdirect product of well-connected algebras Ai, i ∈ I in which all rules
R0 are valid. Let A := {Ai, i ∈ I}. Due to all algebras from A being well-
connected, A |= R0 yields A |= Rq

0. Since A 	|= rq, there is an algebra Aj ∈ A
such that Aj 	|= rq. Now, let us observe that the rule DP is valid in every well-
connected algebra and the rule NT is valid in every non-degenerate algebra.
Hence Aj |= Rq

0 ∪ {DP,NT}, but Aj 	|= rq. And this completes the proof of the
theorem. ��
Example 1. The m-bases for Gabbay-de Jongh logics Dn have been constructed
in [13]: the m-rules Ji, i ≤ n + 1 (see [13, Definition 17]) form a basis of m-rules
of Dn for all n. By Theorem 9, Jq

j , j ≤ n + 1 is a basis of admissible rules of logic
Dn for all n.

4 Beyond Intermediate Logics

Let us note that all our proofs are based either on general properties of
quasivarieties and universal classes or on the results from [7]. It was observed in
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[7, Section 4] that all results from [7] can be extended to the logics for which there
is a formula R(p) such that R(A)∨R(B) ∈ L yields R(A) ∈ L or R(B) ∈ L, that
is to the logics enjoying the DP relative to some formula R(p). In this case, the
corresponding algebraic model A is called well-connected if R(a) ∨ R(b) = 1A

entails R(a = 1A) or R(a = 1A).
Thus, Theorems 9 and 12 hold for the following classes of logics

1. positive logic and its extensions (regarding admissibility for positive and
Johansson logoics see [29]);

2. minimal (Johansson) [21] logic and its extensions;
3. logic KM (see [27]) and its extensions
4. K4 and its normal extensions;
5. intuitionistic modal logic MIPC (e.g. [2]) and its normal extensions;
6. n-transitive logics (e.g. [4]).

For instance, for logics K4,S4,Grz or GL one can take the m-basis (see [18])
and convert it into a basis of rules (see [18, Theorem 6.4.] where the same
reduction as in Theorem 9 was used). Or one can take an s-basis of S4 (see [39]),
and convert it into an m-basis. Let us note that the proofs in [18,39] are based
on certain properties of Kripke models. On the other hand, an m-basis for logic
GL can be obtained simply by extending the s-basis constructed in [9] by m-rules
NT and �0p ∨ �0q/�0p,�0q, where �0α � �α ∧ α. Taking into account that
GL does not have finite s-basis (see [36, Theorem 17]), we can conclude that GL
has no finite m-basis.

For logics that have negation - but not the constant ⊥ - one can use the
following version of m-rule NT:

p ∧ ¬p/∅. (20)

Let us observe that m-rule NT is related to passive rules (see [38]). It was
observed in [38] that for any consistent normal extension of logic D4, Rybakov’s
rule

RR := ♦p ∧ ♦¬p/⊥ (21)

forms an s-basis of all admissible passive s-rules. Let us note that RR is a conse-
quence of the following m-rule:

RR′ := ♦p ∧ ♦¬p/∅, (22)

and that rules RR,NT and rule RR′ are interderivable.
Since no m-rule with an empty set of conclusions is admissible for positive

logic and its consistent extensions, in the proofs for positive logic we need to
omit all references to NT. The same applies for those versions of Johansson’s
logics in which formula (p → p) → ⊥ is valid. For the rest of the Johansson’s
logic versions, we can use the following modification of m-rule NT:

NT′ := (p → p) → ⊥/∅.
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Abstract. Full Intuitionistic Linear Logic (FILL) was first introduced
by Hyland and de Paiva, and went against current beliefs that it was not
possible to incorporate all of the linear connectives, e.g. tensor, par, and
implication, into an intuitionistic linear logic. It was shown that their
formalization of FILL did not enjoy cut-elimination by Bierman, but
Bellin proposed a change to the definition of FILL in the hope to regain
cut-elimination. In this note we adopt Bellin’s proposed change and give a
direct proof of cut-elimination. Then we show that a categorical model of
FILL in the basic dialectica category is also a LNL model of Benton and
a full tensor model of Melliès’ and Tabareau’s tensorial logic. Lastly, we
give a double-negation translation of linear logic into FILL that explicitly
uses par in addition to tensor.
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1 Introduction

A commonly held belief during the early history of linear logic was that the
linear-connective par could not be incorporated into an intuitionistic linear logic.
This belief was challenged when de Paiva gave a categorical understanding of
Gödel’s Dialectica interpretation in terms of dialectica categories [8,9].

Dialectica categories were initially believed to be models of intuitionistic
logic, but they are actually models of intuitionistic linear logic, containing the
linear connectives: tensor, implication, the additives, and the exponentials. Fur-
ther work improved de Paiva’s models to capture both intuitionistic and classical
linear logic. Armed with this semantic insight de Paiva gave the first formaliza-
tion of Full Intuitionistic Linear Logic (FILL) [8]. FILL is a sequent calculus
with multiple conclusions in addition to multiple hypotheses. Logics of this type
go back to Gentzen’s work on the sequent calculus for classical logic LK and for
intuitionistic logic LJ, and Maehara’s work on LJ’ [16,24]. The sequents in these
types of logics usually have the form Γ � Δ where Γ and Δ are multisets of
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formulas. Sequents such as these are read as “the conjunction of the formulas in
Γ imply the disjunction of the formulas in Δ”. For a brief, but more complete
history of logics with multiple conclusions see the introduction to [11].

Gentzen showed that to obtain intuitionistic logic one could start with the
logic LK and then place a cardinality restriction on the right-hand side of
sequents, however, this is not the only means of enforcing intuitionism.
Maehara showed that in the propositional case one could simply place the cardi-
nality restriction on the premise of the implication right rule, and leave all of the
other rules of LK unrestricted. This restriction is sometimes called the Dragalin
restriction, as it appeared in his AMS textbook [12]. The classical implication
right rule has the form:

Γ,A � B ,Δ

Γ � A � B ,Δ
impR

By placing the Dragalin restriction on the previous rule we obtain:

Γ,A � B
Γ � A � B

impR

de Paiva’s first formalization of FILL used the Dragalin restriction, see [8] p.
58, but Schellinx showed that this restriction has the unfortunate consequence
of breaking cut-elimination [22].

Later, Hyland and de Paiva gave an alternative formalization of FILL with
the intention of regaining cut-elimination [13]. This new formalization lifted the
Dragalin restriction by decorating sequents with a term assignment. Hypotheses
were assigned variables, and the conclusions were assigned terms. Then using
these terms one can track the use of hypotheses throughout a derivation. They
proposed a new implication right rule:

Γ, x : A � t : B ,Δ x �∈ FV(Δ)
Γ � λx .t : A � B ,Δ

impR

Intuitionism is enforced in this rule by requiring that the variable being dis-
charged, x, is not free terms annotating other conclusions. Unfortunately, this
formalization did not enjoy cut-elimination either.

Bierman was able to give a counterexample to cut-elimination [4]. As Bierman
explains the problem was with the left rule for the multiplicative disjunction par.
The original rule was as follows:

Γ, x : A � Δ Γ ′, y : B � Δ′

Γ, Γ ′, z : A

&

B � let z be (x

&−) inΔ | let z be (− &

y) inΔ′ parL

In this rule the pattern variables x and y are bound in each term of Δ and Δ′

respectively. Notice that the variable z becomes free in every term in Δ and
Δ′. Bierman showed that this rule mixed with the restriction on implication
right prevents the usual cut-elimination step that commutes cut with the left
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rule for par. The main idea behind the counterexample is that in the derivation
before commuting the cut it is possible to discharge z using implication right,
but after the cut is commuted past the left rule for par, the variable z becomes
free in more than one conclusion, and thus, can no longer be discharged.

In the conclusion of Bierman’s note he gives an alternate left rule for par
that he attributes to Bellin. This new left-rule is as follows:

Γ, x : A � Δ Γ ′, y : B � Δ′

Γ, Γ ′, z : A

&

B � let-pat z (x

&−)Δ | let-pat z (− &

y)Δ′ Parl

In this rule let-pat z (x

&−) t and let-pat z (− &

y) t ′ only let-bind z in t or t′ if
x ∈ FV (t) or y ∈ FV (t′). Otherwise the terms are left unaltered. Bellin showed
that by adopting this rule cut-elimination can be proven by reduction to the
cut-elimination procedure for proof nets for multiplicative linear logic with the
mix rule [1]. However, this is an indirect proof that requires the adoption of
proof nets.

Contributions. In this paper our main contribution is to give a direct proof of
cut-elimination for FILL with Bellin’s proposed par-left rule (Sect. 3). A direct
proof accomplishes two goals: the first is to complete the picture of FILL Hyland
and de Paiva started, and the second is to view a direct proof of cut-elimination
as a means of checking the correctness of the formulation of FILL given here. The
latter point is important for future work. Following the proof of cut-elimination
we show that the categorical model of FILL called Dial2(Sets), the basic dialec-
tica category, is also a linear/non-linear model of Benton (Sect. 4) and a full
tensor model of Melliès’ and Tabareau’s tensor logic (Sect. 5). Finally, we give a
double-negation translation of multi-conclusion classical linear logic into FILL
(Sect. 5.1). Due to the complexities of working in Dial2(Sets) we have formalized
all of the constructions and proofs used in Sects. 4 and 5 – although our formal
verification does not include the double-negation translation in Sect. 5.1 – in the
Agda proof assistant1.

Related Work. The first formalization of FILL with cut-elimination was due
to Braüner and de Paiva [5]. Their formalization can be seen as a linear version
of LK with a sophisticated meta-level dependency tracking system. A proof of a
FILL sequent in their formalization amounts to a classical derivation, π, invariant
in what they call the FILL property:

– The hypothesis discharged by an application of the implication right rule in
π is a dependency of the conclusion of the implication being introduced.

They were able to show that their formalization is sound, complete, and enjoys
cut-elimination. In favor of the term assignment formalization given here over
Braüner and de Paiva’s formalization we can say that the dependency tracking
system complicates both the definition of the logic and its use. However, one
might conjecture that their system is more fundamental and hence more gener-
alizable. It might be possible to prove cut-elimination of the term assignment
1 The Agda development can be found at https://github.com/heades/cut-fill-agda.

https://github.com/heades/cut-fill-agda
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formalization of FILL relative to Braüner and de Paiva’s dependency tracking
system by erasing the terms on conclusions and then tracking which variable
is free in which conclusion. However, as we stated above a direct proof is more
desirable than a relative one.

de Paiva and Pereira used annotations on the sequents of LK to arrive at full
intuitionistic logic (FIL) with multiple conclusion that enjoys cut-elimination
[11]. They annotate hypothesis with natural number indices, and conclusions
with finite sets of indices. The sets of indices on conclusions correspond to the
collection of the hypotheses that the conclusion depends on. Then they have
a similar property to that of Braüner and de Paiva’s formalization. In fact,
the dependency tracking system is very similar to this formalization, but the
dependency tracking has been collapsed into the object language instead of being
at the meta-level.

Clouston et al. give both a deep inference calculus and a display calculus for
FILL that admits cut-elimination [6]. Both of these systems are refinements of
a larger one called bi-intuitionistic linear logic (BiLL). This logic contains every
logical connective of FILL with the addition of the exclusion (or subtraction)
connective. This connective can be defined categorically as the left-adjoint to
par. Thus, exclusion is the dual to implication. A positive aspect to this work is
that the resulting systems are annotation free, but at a price of complexity. Deep
inference and display calculi are harder to understand, and their system requires
FILL to be defined as a refinement of a system with additional connectives.
We show in this paper that such a refinement is unnecessary. In addition, a
term assignment system is closer to traditional logic than deep inference and
display calculi, and it is closer, through the lens of the Curry-Howard-Lambek
correspondence, to a type theoretic understanding of FILL.

2 Full Intuitionistic Linear Logic (FILL)

In this section we give a brief description of FILL. We first give the syntax of
formulas, patterns, terms, and contexts. Following the syntax we define several
meta-functions that will be used when defining the inference rules of the logic.

Definition 1. The syntax for FILL is as follows:

(Formulas) A,B ,C ,D ,E :: = � |⊥| A � B | A ⊗ B | A &

B
(Patterns) p:: = ∗ | − | x | p1 ⊗ p2 | p1 &

p2
(Terms) t , e:: = x | ∗ | ◦ | t1 ⊗ t2 | t1 &

t2 | λx .t | let t be p in e | t1 t2
(Left Contexts) Γ :: = · | x : A | Γ1, Γ2

(Right Contexts) Δ:: = · | t : A | Δ1,Δ2

The formulas of FILL are standard, but we denote the unit of tensor as �
and the unit of par as ⊥. Patterns are used to distinguish between the various
let-expressions for tensor, par, and their units. There are three different let-
expressions:
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Tensor:
let t be p1 ⊗ p2 in e

Par:
let t be p1

&

p2 in e
Tensor Unit:
let t be ∗ in e

In addition, each of these will have their own equational rules, see Fig. 2. The
role each term plays in the overall logic will become clear after we introduce the
inference rules.

At this point we introduce some syntax and meta-level functions that will be
used in the definition of the inference rules for FILL. Left contexts are multisets
of formulas each labeled with a variable, and right contexts are multisets of
formulas each labeled with a term. We will often write Δ1 | Δ2 as syntactic
sugar for Δ1,Δ2. The former should be read as “Δ1 or Δ2.” We denote the
usual capture-avoiding substitution by [t/x ]t ′, and its straightforward extension
to right contexts as [t/x ]Δ. Similarly, we find it convenient to be able to do this
style of extension for the let-binding as well.

Definition 2. We extend let-binding terms to right contexts as follows:

let t be p in · = ·
let t be p in (t ′ : A) = (let t be p in t ′) : A
let t be p in (Δ1 | Δ2) = (let t be p inΔ1) | (let t be p inΔ2)

Lastly, we denote the usual function that computes the set of free variables in a
term by FV(t), and its straightforward extension to right contexts as FV(Δ).

Fig. 1. Inference rules for FILL

The inference rules for FILL are defined in Fig. 1. The Parl rule depends on
the function let-pat z p Δ which we define next.
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Definition 3. The function let-pat z p t is defined as follows:

let-pat z (x

&−) t = t
where x �∈ FV(t)

let-pat z (− &

y) t = t
where y �∈ FV(t)

let-pat z p t = let z be p in t

It is straightforward to extend the previous definition to right-contexts, and we
denote this extension by let-pat z p Δ.

The motivation behind this function is that it only binds the pattern variables
in x

&− and − &

y if and only if those pattern variables are free in the body of
the let. This overcomes the counterexample given by Bierman in [4].

The terms of FILL are equipped with an equivalence relation defined in
Fig. 2. There are a number of α, β, and η like rules as well as several rules we
call naturality rules. These rules are similar to the rules presented in [13].

Fig. 2. Equivalence on terms
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3 Cut-Elimination

FILL can be viewed from two different angles: i. as an intuitionistic linear logic
with par, or ii. as a restricted form of classical linear logic. Thus, to prove cut-
elimination of FILL one only needs to start with the cut-elimination procedure
for intuitionistic linear logic, and then dualize all of the steps in the procedure
for tensor and its unit to obtain the steps for par and its unit. Similarly, one
could just as easily start with the cut-elimination procedure for classical linear
logic, and then apply the restriction on the implication right rule producing a
cut-elimination procedure for FILL.

The major difference between proving cut-elimination of FILL from classical
or intuitionistic linear logic is that we must prove an invariant across each step
in the procedure. The invariant is that if a derivation π is transformed into a
derivation π′, then the terms in the conclusion of the final rule applied in π
must be transformable, when the equivalences defined in Fig. 2 are taken as left-
to-right rewrite rules, into the terms in the conclusion of the final rule applied
in π′.

We finally arrive at cut-elimination.

Theorem 1. If Γ � t1 : A1, ... , ti : Ai steps to Γ � t ′
1 : A1, ... , t ′

i : Ai using the
cut-elimination procedure, then tj = t ′

j for 1 ≤ j ≤ i.

Proof. The cut-elimination procedure given here is the standard cut-elimination
procedure for classical linear logic except the cases involving the implication
right rule have the FILL restriction. The structure of our procedure follows the
structure of the procedure found in [17]. Throughout this proof we treat the
equivalences defined in Fig. 2 as left-to-right rewrite rules. For the entire proof
see the companion report [14].

Corollary 1 (Cut-Elimination). Cut-elimination holds for FILL.

4 Full LNL Models

One of the difficult questions considering the categorical models of linear logic
was how to model Girard’s exponential, !, which is read “of course”. The ! modal-
ity can be used to translate intuitionistic logic into intuitionistic linear logic, and
so the correct categorical interpretation of ! should involve a relationship between
a cartesian closed category, and the model of intuitionistic linear logic.

de Paiva gave some of the first categorical models of both classical and intu-
itionistic linear logic in her thesis [8]. She showed that a particular dialectica cat-
egory called Dial2(Sets) is a model of FILL where ! is interpreted as a comonad
which produces natural comonoids, see page 76 of [8].

Definition 4. The category Dial2(Sets) consists of

– objects that are triples, A = (U,X,α), where U and X are sets, and α ⊆ U×X
is a relation, and
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– maps that are pairs (f, F ) : (U,X,α) → (V, Y, β) where f : U → V and
F : Y → X such that

• For any u ∈ U and y ∈ Y , α(u, F (y)) implies β(f(u), y).

Suppose A = (U,X,α), B = (V, Y, β), and C = (W,Z, γ). Then identities are
given by (idU , idX) : A → A. The composition of the maps (f, F ) : A → B and
(g,G) : B → C is defined as (f ; g,G;F ) : A → C.

In her thesis de Paiva defines a particular class of dialectica categories called
GC over a base category C, see page 41 of [8]. The category Dial2(Sets) defined
above can be seen as an instantiation of GC by setting C to be the category
Sets of sets and functions between them. This model is a non-trivial model (all
four units of the multiplicative and additive disjunction are different objects in
the category), and does not model classical logic; see [8] page 58.

Seely gave a different, syntactic categorical model that confirmed that the
of-course exponential should be modeled by a comonad [23]. However, Seely’s
model turned out to be unsound, as pointed out by Bierman [3]. This then
prompted Bierman, Hyland, de Paiva, and Benton to define another categorical
model called linear categories (Definition 5) that are sound, and also model !
using a monoidal comonad [3].

Definition 5. A linear category, L, consists of:

– A symmetric monoidal closed category L,
– A symmetric monoidal comonad (!, ε, δ,mA,B ,mI) such that

• For every free !-coalgebra (!A, δA) there are two distinguished monoidal
natural transformations eA :!A → I and dA :!A →!A⊗!A which form a
commutative comonoid and are coalgebra morphisms.

• If f : (!A, δA) → (!B, δB) is a coalgebra morphism between free coalgebras,
then it is also a comonoid morphism.

This definition is the one given by Bierman in his thesis, see [3] for full defini-
tions.

Intuitionistic logic can be interpreted in a linear category as a full subcategory
of the category of !-coalgebras for the comonad, see proposition 17 of [3].

Benton gave a more balanced view of linear categories called LNL models.

Definition 6. A linear/non-linear model (LNL model) consists of

– a cartesian closed category (C, 1,×,⇒),
– a SMCC (L, I,⊗,�), and
– a pair of symmetric monoidal functors (G,n) : L → C and (F,m) : C → L

between them that form a symmetric monoidal adjunction with F � G.

See Benton, [2], for the definitions of symmetric monoidal functors and adjunc-
tions.
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A non-trivial consequence of the definition of a LNL model is that the ! modality
can indeed be interpreted as a monoidal comonad. Suppose (L, C, F,G) is a LNL
model. Then the comonad is given by (!, ε : ! → Id, δ : ! → !!) where ! = FG, ε is
the counit of the adjunction and δ is the natural transformation δA = F (ηG(A)),
see page 15 of [2]. We recall the following result from Benton [2]:

Theorem 2 (LNL Models and Linear Categories)

i. (Sect. 2.2.1 of [2]) Every LNL model is a linear category.
ii. (Sect. 2.2.2 of [2]) Every linear category is a LNL model.

Proof. The proof of part i. is a matter of checking that each part of the definition
of a linear category can be constructed using the definition of a LNL model. See
lemmata 3–7 of [2].

As for the proof of part ii. Given a linear category we have a SMCC and
so the difficulty of proving this result is constructing the CCC and the adjunc-
tion between both parts of the model. Suppose L is a linear category. Benton
constructs the CCC out of the full subcategory of Eilenberg-Moore category
L! whose objects are exponentiable coalgebras denoted Exp(L!). He shows that
this subcategory is cartesian closed, and contains the (co)Kleisli category, L!,
Lemma 11 on page 23 of [2]. The required adjunction F : Exp(L!) → L : G can
be defined using the adjunct functors F (A, hA) = A and G(A) = (!A, δA), see
lemmata 13–16 of [2].

Next we show that the category Dial2(Sets) is a full version of a linear cate-
gory. First, we extend the definitions of linear categories and LNL models to be
equipped with the necessary categorical structure to model par and its unit.

Definition 7. A full linear category, L, consists of a linear category
(L,�,⊗,�, !A, eA, dA), a symmetric monoidal structure on L, (⊥,

&

), and
distribution natural transformations dist1:A ⊗ (B

&

C) → (A ⊗ B)

&

C and
dist2:(A

&

B) ⊗ C → A

&

(B ⊗ C). The distributors must satisfy several coher-
ence conditions which can all be found in [7].

Definition 8. A full linear/non-linear model (full LNL model) consists
of a LNL model (L, C, F,G), and a symmetric monoidal structure on L, (⊥,

&

),
as above.

First we show that Dial2(Sets) is a full linear category, and then using the proof
by Benton that linear categories are LNL models we obtain that Dial2(Sets) is
a full LNL model. In order for this to work we need to know that Dial2(Sets)
has a symmetric monoidal comonad (!, ε, δ,mA,B ,mI). At the time of de Paiva’s
thesis it was not known that the comonad modeling the of-course exponential
needed to be monoidal. We were able to show that the maps mA,B and mI exist
in the more general setting of dialectica categories, and thus, these maps exist
in Dial2(Sets). Intuitively, given two objects A = (X,U, α) and B = (V, Y, β) of
Dial2(Sets) the map mA,B is defined as the pair (idU×V , F ), where F = (F1, F2),
F1 : (U ×V ) ⇒ (V ⇒ X)∗ → V ⇒ (U ⇒ X∗) and F2 : (U ×V ) ⇒ (U ⇒ Y )∗ →
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U ⇒ (V ⇒ Y ∗). The maps F1 and F2 build the sequence of all the results of
applying each function in the input sequence to the input coordinate.

We can now show that the following holds.

Lemma 1. The category Dial2(Sets) is a full linear category.

Proof. We only give a sketch of the proof here, but for the full details see that
companion report [14]2. First, we must show that Dial2(Sets) is a linear category.
The majority of the linear structure of Dial2(Sets) is in de Paiva’s thesis [8]. We
had to extend her definitions to show that the comonad (!A, δ, ε) is monoidal,
however, this is straightforward.

After showing that Dial2(Sets) is a linear category one must show that
Dial2(Sets) is a model of par and its unit. This easily follows from de Paiva’s
thesis. The bifunctor which models par is given by de Paiva in Definition 10 on
page 47 of [8].

Finally, Dial2(Sets) must be distributive. The natural transformations dist1
and dist2 can be defined in terms of the maps k : (A ⊗ A′) ⊗ (B

&

C) → (A ⊗
B)

&

(A′ ⊗ C) and k′:(A

&

B) ⊗ (C ⊗ C ′) → (A ⊗ C)

&

(B ⊗ C ′) given on page 52
of [8]. Set A′ = � in k and C = � in k′ to obtain dist1 and dist2 respectively.
They can also be shown to satisfy the coherence conditions given in [7].

Corollary 2. The category Dial2(Sets) is a full LNL model.

Proof. This follows directly from the previous lemma and Theorem 2 which
shows that linear categories are LNL models.

The point of these calculations is to show that the several different axiomatiza-
tions available for models for linear logic are consistent and that a model proved
sound and complete according to Seely’s definition (using the Seely isomorphisms
!(A × B) ∼=!A⊗!B and !1 ∼= � but adding to it monoidicicty of the comonad) is
indeed sound and complete as a LNL model too.

5 Tensorial Logic

Melliès and Tabareau introduced tensorial logic as a means of generalizing lin-
ear logic to a theory of tensor and a non-involutive negation called tensorial
negation. That is, instead of an isomorphism A = ¬¬A we have only a natural
transformation A → ¬¬A [18]. Tensorial logic makes the claim that tensor and
tensorial negation are more fundamental than tensor and negation defined via
implication. This is at odds with FILL where implication is considered to be
fundamental. In this section we show that multiplicative tensorial logic can be
modeled by Dial2(Sets) (Lemma 3) by showing that tensorial negation arises as
a simple property of the implication in any SMCC (Lemma 2). While this is
expected (after all negation being defined in terms of implication into absurdity

2 This proof was formalized in the Agda proof assistant see the file https://github.
com/heades/cut-fill-agda/blob/master/FullLinCat.agda.

https://github.com/heades/cut-fill-agda/blob/master/FullLinCat.agda
https://github.com/heades/cut-fill-agda/blob/master/FullLinCat.agda
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is one of the staples of intuitionism) we think it bolsters our claim that linear
implication is a fundamental connective that should not be redefined in terms of
the multiplicative disjunction par. In any case, any model of FILL can be seen
as a model of multiplicative tensorial logic.

A categorical model of tensorial logic is a symmetric monoidal category with
a tensorial negation.

Definition 9. A tensorial negation on a symmetric monoidal category (C,⊗, I)
is defined as a functor ¬ : C → Cop together with a family of bijections φA,B,C :
HomC(A ⊗ B,¬C) ∼= HomC(A,¬(B ⊗ C)) natural in A, B, and C. Furthermore,
the following diagram must commute:

The most basic form of tensorial logic is called multiplicative tensorial logic and
only consists of tensor and a tensorial negation. The model of multiplicative
tensorial logic is called a dialogue category.

Definition 10. A dialogue category is a symmetric monoidal category
equipped with a tensorial negation.

At this point we show that tensorial negation arises as a simple property of
implication, as is traditional.

Lemma 2. In any monoidal closed category, C, there is a natural bijection
φA,B,C,D : HomC(A ⊗ B,C � D) ∼= HomC(A, (B ⊗ C) � D). Furthermore,
the following diagram commutes:

Proof. Suppose C is a monoidal closed category. Then we can define φ(f : A ⊗
B → C � D) = cur(α−1; cur−1(f)) and φ−1(g : A → (B ⊗ C) � D) =
cur(α; cur−1(g)). Clearly, these are mutual inverses, and hence, φ is a bijection.
Naturality of φ easily follows. Lastly, the diagram given above also commutes.
For the complete proof see the companion report [14].
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Any model of FILL contains the unit of par, ⊥, and thus, can be used to define
the negation function ¬A := A �⊥. Now replacing D and E in the previous
result with ⊥ yields the definition of tensorial negation.

Lemma 3. Dial2(Sets) is a model of multiplicative tensorial logic.

Proof. We have already shown Dial2(Sets) to be a model of FILL, and thus, has
a SMCC structure as well as the negation functor, and thus, by Lemma 2 has a
tensorial negation3.

Extending a model of multiplicative tensorial logic with an exponential
resource modality yields a model of full tensorial logic.

Definition 11. A resource modality on a symmetric monoidal category
(C,⊗, I) is an adjunction with a symmetric monoidal category (M,⊗′, I ′):

A resource modality is called an exponential resource modality if M is carte-
sian where ⊗′ is the product and I ′ is the terminal object.

A model of full tensorial logic is defined to be a model of multiplicative tensorial
logic with an exponential resource modality. We now know that Dial2(Sets) is a
model of multiplicative tensorial logic. By constructing the co-Kleisli category
which consists of the !-coalgebras as objects, and happens to be cartesian, we
can show that Dial2(Sets) is a model of full tensorial logic. The adjunction with
the co-Kleisli category naturally arises from the proof that Dial2(Sets) is a full
LNL model (Corollary 2).

Lemma 4. The category Dial2(Sets) is a model of full tensorial logic.

Proof. It suffices to show that there is an adjunction between Dial2(Sets) and a
cartesian category. Define the category Dial2(Sets)! as follows:

– Take as objects (U, (U ⇒ X∗), α!) where U and X are sets, and α ⊆ U ×(U ⇒
X∗).

– Take as morphisms (f, F ) : (U, (U ⇒ X∗), α!) → (V, (V ⇒ Y ∗), β!) where
f : U → V and F : (V ⇒ Y ∗) → (U ⇒ X∗) subject to the same condition on
morphisms as Dial2(Sets). Composition and identities are defined similarly to
Dial2(Sets).

Next we must show that Dial2(Sets)! is cartesian. Notice that Dial2(Sets)! is
a subcategory of Dial2(Sets), and there is a functor J : Dial2(Sets) → Dial2(Sets)!
which is defined equivalently to the endofunctor ! from the proof of Lemma 1.
3 We give a full proof in the formalization see the file https://github.com/heades/

cut-fill-agda/blob/master/Tensorial.agda.

https://github.com/heades/cut-fill-agda/blob/master/Tensorial.agda
https://github.com/heades/cut-fill-agda/blob/master/Tensorial.agda
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In fact, Dial2(Sets)! is the co-Kleisli category with objects free !-coalgebras and
is cartesian closed [9]. However, we only need the fact that it is cartesian.

To show that Dial2(Sets)! is cartesian it suffices to show that J preserves the
cartesian structure of Dial2(Sets) – the proof that Dial2(Sets) is cartesian can
be found on page 48 of [8]. This follows by straightforward reasoning. For the
complete proof see the companion report [14].

5.1 Double Negation Translation

In this section we show that we can use intuitionistic negation – which we showed
was tensorial in the previous section – to define a negative translation of multi-
conclusion linear logic (Fig. 3) into FILL where implication plays a central role.
Melliès and Tabareau give a negative translation of the multiplicative fragment
of linear logic into tensorial logic [19] using tensor as the main connective. For
example, they define (A ⊗ B)N = ¬(¬(A)N ⊗ ¬(B)N ), and thus, they simulate
par using tensor and negation. This definition would cause some syntactic issues
with FILL, because the left-rule to par requires the let-pattern term defined in
Definition 3, thus, encoding par in terms of tensor would require the let-pattern
term to be used in the left-rule for tensor. While simulating par, using tensor and
negation, can be seen as useful, in applications where only the tensor product can
be actually calculated, in other applications we do have an extra bifunctor like
par. This is true in the case of FILL, so we can modify Melliès and Tabareau’s
translation into one that better fits the source logical system.

Fig. 3. Multi-Conclusion Linear Logic

The following definition defines a translation of linear logic formulas into
FILL formulas.
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Definition 12. The following is the double-negation translation of linear logic
into FILL:

(�)N = �
(⊥)N = ⊥
(A⊥)N = ¬((A)N )
(A

&

B)N = ¬¬((A)N )

&¬¬((B)N )
(A ⊗ B)N = ¬¬((A)N ) ⊗ ¬¬((B)N )

The main point of the previous definition is that because FILL has intuition-
istic versions of all of the operators of linear logic we can give a very natural
translation that preserves these operators by double negating their arguments.

At this point we need to extend the translation of linear logic formulas to
sequents. However, we must be careful, because in FILL implication has the
FILL restriction, and thus, if we choose the wrong translation then we will run
into problems trying to satisfy the FILL condition. The method we employ here
is to first translate a linear logic sequent into a single-sided sequent, and then
translate that to FILL using the well-known translation. That is, it is easy to
see that any linear logic sequent A1, ... ,Ai � B1, ... ,Bj is logically equivalent
to the sequent · � A1

⊥, ... ,Ai
⊥,B1, ... ,Bj . Then we translate the latter into

FILL as x1 : ¬((A1
⊥)N ), ... , xi : ¬((Ai

⊥)N ), y1 : ¬((B1)N ), ... , yj : ¬((Bj )N ) � ·
for any free variables x1, . . . , xi and y1, . . . , yj , but this is equivalent to x1 :
¬¬((A1)N ), ... , xi : ¬¬((Ai)N ), y1 : ¬((B1)N ), ... , yj : ¬((Bj )N ) � ·. The reader
may realize that this is indeed the translation of single-sided classical linear logic
into single-conclusion intuitionistic linear logic. This translation also has the
benefit that we do not have to worry about mentioning terms in the statement
of the result.

Lemma 5 (Negative Translation). If A1, ... ,Ai � B1, ... ,Bj is derivable,
then for any unique fresh variables x1, . . . , xi , and y1, . . . , yj , the sequent x1 :
¬¬((A1)N ), ... , xi : ¬¬((Ai)N ), y1 : ¬((B1)N ), ... , yj : ¬((Bj )N ) � · is derivable.

Proof. This can be shown by induction on the assumed sequent. For the complete
proof see the companion report [14].

6 Conclusion and Future Work

We first recalled the definition of full intuitionistic linear logic using the left rule
for par proposed by Bellin in Sect. 2, but using only proof-theoretic methods,
no proof nets. We then directly proved cut-elimination for FILL in Sect. 3 by
adapting the well-known cut-elimination procedure for classical linear logic to
FILL.

In Sect. 4 we showed that the category Dial2(Sets), a model of FILL, is a
full LNL model by showing that it is a full linear category, and then replaying
the proof that linear categories are LNL models by Benton. Then in Sect. 5 we
showed that Dial2(Sets) is a model of full tensorial logic. The point of this exercise
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in categorical logic is to show that, despite linear logicians infatuation with linear
negation, there is value in keeping all your connectives independent of each other.
Only making them definable in terms of others, for specific applications.

Games, especially programming language games are the main motivation for
Tensorial Logic and have been one of the sources of intuitions in linear logic all
along. Since we are interested in the applications of tensorial logic to concurrency,
we would like to see if our slightly more general framework can be applied to
this task, just as well as tensorial logic.

Independently of the envisaged applications to programming, we are also
interested in developing a “man in the street” game-like explanation for the finer-
grained connectives of FILL, especially for par, the multiplicative disjunction.
The second author has talked about games for FILL in the style of Lorenzen
[10], building up on the work of Rahman [15,21]. Rahman showed that Lorenzen
games could be defined for classical linear logic [20] and was able to define
a sound and complete semantics in Lorenzen games for classical linear logic.
While Rahman does mention that one could adopt a particular structural rule
that enforces intuitionism, we have not seen a complete proof of soundness and
completeness for this semantics. We plan to show that by adopting this rule we
actually obtain a sound and complete semantics in Lorenzen games for FILL.
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Abstract. In this paper, we define the online space complexity of lan-
guages, as the size of the smallest abstract machine processing words
sequentially and able to determine at every point whether the word read
so far belongs to the language or not. The first part of this paper moti-
vates this model and provides examples and preliminary results.

One source of inspiration for introducing the online space complexity
of languages comes from a seminal paper of Rabin from 1963, introducing
probabilistic automata, which suggests studying the online space com-
plexity of probabilistic languages. This is the purpose of the second part
of the current paper.

Keywords: Online complexity · Probabilistic languages · Automata ·
Online algorithms · Complexity theory

1 The Online Space Complexity

We introduce and study a new complexity measure, called online space complex-
ity. The purpose of a complexity measure is to quantify the complexity of solving
a given problem, focusing on a particular aspect. For instance, the most classical
complexity measures are the time and space complexity, defined as the amount
of time and space used by a Turing machine, while the circuit complexity counts
the number of gates in a circuit; the communication complexity quantifies the
amount of communication required when the input is spread among different
agents.

The online complexity deals with the difficulty of observing the instance in
an online fashion, i.e. one letter at a time. We consider deterministic abstract
machines, which perform an action each time a letter is read. The task of the
machine is to maintain enough information about the word read so far to answer
boolean queries. The online space complexity focuses exclusively on space, i.e.
the amount of information maintained.

A typical example is a machine presented with a sequence of a’s and b’s,
which should at any point determine whether the sequence read so far contains
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exactly as many a’s as b’s. The canonical machine solving this problem uses as
memory one counter taking integer values, the difference between the number of
a’s and the number of b’s. This machine is of linear size, because after reading
(up to) n letters it can be in at most 2n + 1 different states; as we shall see, it
is optimal, meaning that this problem has linear online space complexity.

Although, to the best of our knowledge, the following definition of the online
space complexity is new, the concept of online computing is old and has been
investigated in various scenarions and under various names. After giving the
formal definitions, we will discuss further the relations between our framework
and the existing ones.

1.1 Definitions

We fix an alphabet A, which is a finite set of letters. An instance of a problem
is given by a word, which is a finite sequence of letters, often denoted w =
a0a1 · · · an−1, where ai’s are letters from the alphabet A, i.e. ai ∈ A. We say
that w has length n. We denote A∗ the set of all words and A≤n the set of words
of length at most n.

A computational problem is given by a set of words L, called a language;
i.e. L ⊆ A∗. The online space complexity of a language measures the size of an
abstract machine able to recognise the language in an online way: the machine
processes words letter by letter, and must at any point be able to determine
whether the word read so far belongs to the language or not.

The first definition that we give, that of a machine, is not new; it matches
the classical definition of deterministic automata, except that the set of states is
not assumed to be finite.

Definition 1 (Machine). A machine is given by a (potentially infinite) set C
of states, an initial state c0 ∈ C, a transition function δ : C × A → C and a set
of accepting states A ⊆ C.

When processing a word w = a0a1 · · · an−1, the machine assumes a sequence
of states c0c1 · · · cn, that we call the run on w, defined inductively by ci+1 =
δ(ci, ai). It is unique, since we assume the machine to be deterministic and the
transition function to be a total function. The last state of the run on w is
denoted c(w); the word w is accepted if c(w) is accepting, i.e. if c(w) ∈ A, and
rejected otherwise. The language recognised by a machine is the set of words
accepted by this machine.

Definition 2 (Size of a Machine). The size of a machine is the function
s : N → N defined by s(n) being the number of different states reached by all
words of length at most n. Formally:

s(n) = Card
{
c(w) | w ∈ A≤n

}
.

Note that in complexity theory, it is usual to count the size of an object by the
size of its description. Here, it would be natural, instead of counting of many
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different states are reached, how many bits are necessary to describe these states;
this amounts to consider the logarithm of the number of states. We do not use
this definition as it would erase the differences between, for instance, linearly
many and quadratically many states.

For two functions f, g : N → N, we say that f is smaller than g, denoted
f ≤ g, if it is true component wise: for all n, f(n) ≤ g(n).

Definition 3 (Online Space Complexity Class). For a function f : N → N,
the class of languages Online(f) consists of all languages which are recognised
by a machine of size smaller than f .

1.2 Related Works

The definitions of online space complexity that we gave belong to the research
area concerned with online computing. Unlike an offline algorithm, which has
access to the whole input, an online algorithm is presented with its input in a
restricted online way: it has to process it letter by letter. Various frameworks
emerged from this versatile concept: we discuss three of them, dynamic algo-
rithms, streaming algorithms and competitive analysis of online algorithms.

The field of dynamic algorithms, initiated by Patnaik and Immerman [6],
focuses on the complexity of maintaining solutions to problems with online
inputs. In this setting, the input can go through a series of changes, and the
challenge is to store enough information to be able to solve the problem on the
modified input. There are two differences between our approach and dynamic
algorithms. The first is that whereas in our setting, the changes are only inser-
tions, dynamic algorithms also consider deletions, and sometimes more compli-
cated operations. The second is that the focus of dynamic algorithms is on the
time complexity of the machines maintaining the information, whereas we con-
sider instead the state space complexity of these machines, i.e. the number of
different states they use.

The field of streaming algorithms, initiated by a series of papers (Munro
and Paterson [5], then Flajolet and Martin [3], followed by the foundational
paper of Alon, Matias and Szegedy [1]), focuses on algorithms having very lim-
ited available memory, much smaller than the input size. The challenge there is
to use these constrained ressources to compute relevant information about the
processed input, such as for instance statistics on frequency distributions. In this
setting the input is a word, read letter by letter, and the focus is put on mea-
suring the memory consumed by the machines processing the word, exactly is in
our setting. The only difference is that streaming algorithms also have limited
processing time per letter, whereas we abstract away this information, and only
measure the state space complexity.

The field of competitive analysis of online algorithms, initiated by Sleator
and Tarjan [8], and by Karp [4], compares the performances between offline and
online algorithms. In this setting, each solution is assigned a real value, assessing
its quality. An offline algorithm, having access to the whole input, can select the
best solution. An online algorithm, however, has to make choices ignoring part
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of the input that is still to be read. The question is then whether there exists
online algorithms that can perform nearly as good as offline algorithms, up to
a competitive ratio. In this setting, the complexity of the machines is ignored,
and the only question is what is the cost of making online choices rather than
processing the whole input.

2 Preliminary Results

2.1 Remarks and Examples

We begin with a few simple remarks. The first remark is that the size of a
machine satisfies the following inequality, for all n:

s(n) ≤ 1 + Card(A) + Card(A2) + · · · + Card(An) =
Card(A)n+1 − 1

Card(A) − 1
.

It follows that the maximal complexity of a language is exponential, and the online
space complexity classes are relevant for functions smaller than exponential.

Definition 4 (Usual Online Space Complexity Classes).

– Online(Const) is the class of languages of constant online space complexity,
defined as

⋃
K∈N

Online(n �→ K).
– Online(Lin) is the class of languages of linear online space complexity, defined

as
⋃

a∈N
Online(n �→ an).

– Online(Quad) is the class of languages of quadratic online space complexity,
defined as

⋃
a∈N

Online(n �→ an2).
– Online(Poly) is the class of languages of polynomial online space complexity,

defined as
⋃

k∈N
Online(n �→ nk).

We define completeness with respect to a online space complexity class as
follows.

Definition 5 (Completeness for Complexity Classes).
We say that L has linear online space complexity if:

– (upper bound) L ∈ Online(Lin), i.e. there exists a ∈ N such that L ∈
Online(n �→ an),

– (lower bound) if L ∈ Online(f), then there exists a ∈ N such that for all n,
f(n) ≥ an.

The definitions of L having constant, quadratic, polynomial or exponential com-
plexity are similar.

We denote Reg the class of regular languages, i.e. those recognised by
automata.
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Theorem 1.

– Online(Const) = Reg, i.e. a language has constant online space complexity if,
and only if, it is regular.

– Online
(
n �→ Card(A)n+1−1

Card(A)−1

)
contains all languages.

The first item follows from the observation that deterministic automata are
exactly machines with finitely many states. For the second item, consider a
language L, we construct a machine recognising L of exponential size. Its set
of states is A∗, the initial state is ε and the transition function is defined by
δ(w, a) = wa. The set of accepting states is simply L itself!

The languages defined in the following example will be studied later on to
illustrate the lower bound techniques we give.

Example 1.

– Define Maj2 =
{
w ∈ {a, b}∗ | |w|a > |w|b

}
, the majority language over two

letters. Here |w|a denotes the number of occurrences of the letter a in w.
We construct a machine of linear size recognising Maj2: its set of states is
Z, the integers, the letter a acts as +1 and the letter b as −1, and the set
of accepting states is N, the positive integers. After reading the word w, the
state is |w|a − |w|b, implying that the machine has linear size. So Maj2 ∈
Online(Lin), and we will show in Subsect. 2.2 that this bound is tight: Maj2
has linear online space complexity.

– Define Eq =
{
w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c

}
. We construct a machine

of quadratic size recognising Eq: its set of states is Z
2, the letter a acts as

(+1,+1), the letter b as (−1, 0), the letter c as (0,−1), and the only accepting
state is 0. After reading the word w, the state is (|w|a − |w|b, |w|a − |w|c),
implying that the machine has quadratic size. So Eq ∈ Online(Quad), and
we will show in Subsect. 2.2 that this bound is tight: L2 has quadratic online
space complexity.

– Define Squares = {ww | w ∈ A∗}. We will show in Subsect. 2.3 that
Squares has exponential online space complexity.

2.2 Lower Bounds Using Formal Language Theory

We present a first technique to give lower bounds on the online space complexity,
relying on the notion of left quotients.

Let w be a finite word, define its left quotient with respect to L by

w−1L = {u | wu ∈ L} .

A well known result from automata theory states that the existence of a
minimal deterministic automaton, called the syntactic automaton, whose states
of the left quotients.
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This construction extends mutatis mutandis when dropping the assump-
tion that the automaton has finitely many states, i.e. going from deterministic
automata to machines as we defined them. The statement, however, is more
involved, and gives precise lower bounds on the online space complexity of the
language.

Formally, consider a language L, we define the syntactic machine of L,
denoted ML, as follows. We define the set of states as the set of all left quotients:{
w−1L | w ∈ A∗}. The initial state is ε−1L, and the transition function is defined

by δ(w−1L, a) = (wa)−1L. Finally, the set of accepting states is
{
w−1L | w ∈ L

}
.

Denote sL the size of the syntactic machine of L.

Theorem 2.

– ML recognises L, so L ∈ Online(sL),
– for all f , if L ∈ Online(f), then f ≥ sL.

Note that the implies the existence of a minimal function f such that L ∈
Online(f); in other words L ∈ Online(f) if, and only if, f ≥ sL. This was not
clear a priori, because the order on functions is partial.

The first item is routinely proved, as in the case of automata. For the second
item, assume towards contradiction that there exists f such that L ∈ Online(f)
and f �≥ sL, i.e. there exists n such that f(n) < sL(n). Consider a machine M
recognising L of size f . Since f(n) < sL(n), there exists two words u and v of
length n such that u−1L �= v−1L but c(u) = c(v), i.e. in M the words u and v
lead to the same state. The left quotients u−1L �= v−1L being different, there
exists a word w such that uw ∈ L and vw /∈ L, or the other way around. But
c(uw) = c(vw) since M is deterministic, so this state must be both accepting
and rejecting, contradiction.

The view using left quotients is very powerful, as it gives the exact online
space complexity of a language. However, it is sometimes hard to deal with, as
it may involve complicated word combinatorics. We illustrate it on some of the
examples introduced in Subsect. 2.1.

To prove for instance that L has an online space complexity at least linear
using this technique, one has to exhibit, for infinitely many n, a family of linearly
many words (i.e., at least an words, for some constant a) of length at most n
that induce pairwise distinct left quotients.

Example 2.

– Fix n. The words an+kbn−k, for 0 ≤ k ≤ n, have length 2n and all induce
pairwise distinct left quotients, since an+kbn−k · bp ∈ Maj2 if, and only if, p <
2k. It follows from Theorem 2 that Maj2 has linear online space complexity.

– Fix n. The words a2n−p−qbpcq, for 0 ≤ p, q ≤ n, have length 2n and all induce
pairwise distinct left quotients, since a2n−p−qbpcq · ak+�b2n−kc2n−� ∈ Eq if,
and only if, k = p and � = q. It follows from Theorem 2 that Eq has quadratic
online space complexity.
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2.3 Lower Bounds Using Communication Complexity

We present a second technique to give lower bounds on the online space com-
plexity. This is inspired by the field of streaming algorithms, which made several
use of this idea.

Rather than giving a generic lower bound technique, we illustrate the ideas
by giving an exponential lower bound for Squares, the language of squares, i.e.
words of the form ww for some word w. Note that we are here using a very big
hammer for a very simple result; the first technique using left quotients would
very easily give an exponential lower bound.

We consider the following communication problem: Alice receives a word u of
length n, and Bob another word v of length n. The goal for Bob is to determine
whether u = v, with the least amount of communication between them. It is
well known that no protocol can solve this problem using less than n bits of
communication; the optimal protocol is simply for Alice to send her whole input
u to Bob.

The idea now is to use a machine recognising Squares to construct a problem
solving the above communication problem, thereby obtaining lower bounds on
the size of such a machine. Denote s the size of the machine, and fix n. Consideer
an input of length 2n, which we denote w = uv where u and v have length n.
We construct the following protocol: Alice runs the machine on her input u,
and communicates to Bob the state reached. Bob takes over from there, running
the machine on his input, starting from the state sent by Alice. The last state
he obtains determines whether the whole input, i.e. w, belongs to Squares, or
equivalently whether u = v.

Now, to communicate the state reached after reading u, Alice only needs
log(s(n)) (indeed, if there are s(n) different states, then they can be all described
using log(s(n)) bits). The lower bound on the communication problem implies
than log(s(n)) ≥ n, i.e. s(n) ≥ 2n. It follows that Squares has exponential
online space complexity.

2.4 Comparison to Circuit Complexity

We conclude this section by observing that the examples studied above show
that online space complexity and circuit complexity are orthogonal. Indeed:

– The language Maj has linear online space complexity (small), but does not
belong to AC0, i.e. it has a rather big circuit complexity. Another example of a
language having a small online space complexity and a big circuit complexity
is Parity: it is regular, and recognised by a machine of size 2, but does not
belong to AC0.

– The language Squares has exponential online space complexity (large), but
it has a very small circuit complexity: it is recognised by a family of circuits
of linear size of constant depth.
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3 The Online Space Complexity of Probabilistic
Automata

In his seminal paper introducing probabilistic automata [7], Rabin devotes a
section to “approximate calculation of matrix products”, which is related to,
and inspired, online space complexity. In the end of this section, Rabin states a
result, without proof; the aim of this section is to substantiate this claim, i.e.
formalising and proving the result.

We start by defining probabilistic automata, state Rabin’s claim, and prove
that it holds true.

3.1 Probabilistic Automata

Let Q be a finite set of states. A distribution over Q is a function δ : Q → [0, 1]
such that

∑
q∈Q δ(q) = 1. We denote D(Q) the set of distributions over Q.

Definition 6 (Probabilistic Automaton). A probabilistic automaton A is
given by a finite set of states Q, a transition function φ : A → (Q → D(Q)), an
initial state q0 ∈ Q, and a set of final states F ⊆ Q.

In a transition function φ, the quantity φ(a)(s, t) is the probability to go from
the state s ∈ Q to the state t ∈ Q reading the letter a. A transition function
naturally induces a morphism φ : A∗ → (Q → D(Q)). We denote PA(s w−→ t)
the probability to go from a state s to a state t reading w on the automaton A,
i.e. φ(w)(s, t).

The acceptance probability of a word w ∈ A∗ by A is
∑

t∈F φ(w)(q0, t), which
we denote PA(w).

The following threshold semantics was introduced by Rabin [7].

Definition 7 (Probabilistic Language). Let A be a probabilistic automaton,
it induces the probabilistic language

L> 1
2 (A) =

{

w ∈ A∗ | PA(w) >
1
2

}

.

3.2 Substantiating the Claim

In a section called “approximate calculation of matrix products” in the paper
introducing probabilistic automata [7], Rabin asks the following question: is
it possible, given a probabilistic automaton, to construct an algorithm which
reads words and compute the acceptance probability in an online fashion? He
then shows that this is possible under some restrictions on the probabilistic
automaton, and concludes the section by stating that “an example due to R.
E. Stearns shows that without assumptions, a computational procedure need not
exist”. The example is not given, and to the best of the author’s knowledge, has
never been published anywhere.
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In this section, we substantiate this claim, in the framework of online space
complexity as we defined it. Note that the formalisation of Rabin’s claim is
subject to discussions, as for instance Rabin asks whether the acceptance prob-
ability can be computed up to a given precision; in our setting, the acceptance
probability is not actually computed, but only compared to a fixed threshold,
following Rabin’s definition of probabilistic languages.

The following result shows that there exists a probabilistic automaton defin-
ing a language of maximal (exponential) online space complexity.

Theorem 3. There exists a probabilistic automaton A such that L> 1
2 (A) has

exponential online space complexity.

q0 q1

1, 1
2

0, 1
2

�

1, 1
2 1

0 0, 1
2

Fig. 1. The initial state is marked by an ingoing arrow and the accepting state by an
outgoing arrow. The first symbol over a transition is a letter (either 0, 1, or �). The
second symbol (if given) is the probability of this transition. If there is only one symbol,
then the probability of the transition is 1.

In the original paper introducing probabilistic automata, Rabin [7] gave an
example of a probabilistic automaton A computing the binary decomposition
function (over the alphabet {0, 1}), denoted bin, i.e. PA(u) = bin(u), defined by

bin(a1 . . . an) =
a1

2n
+ · · · +

an

21

(i.e. 0.an . . . a1 in binary). We show that adding one letter and one transition to
this probabilistic automaton gives an automaton with exponential online space
complexity. This example appeared in [2].

The automaton A is represented in Fig. 1. The alphabet is A = {0, 1, �}. The
only difference between the automaton proposed by Rabin [7] and this one is the
transition over � from q1 to q0. As observed by Rabin, a simple induction shows
that for u in {0, 1}∗, we have PA(u) = bin(u).

Let w ∈ A∗, it decomposes uniquely into w = u1�u2� · · · �uk, where ui ∈
{0, 1}∗. Observe that PA(w) = bin(u1) · bin(u2) · · · bin(uk).

Consider a machine recognising L> 1
2 (A) and fix n. The binary decomposition

function maps words of length n to rationals of the form a
2n , for 0 ≤ a < 2n.

Consider two words u and v in {0, 1}∗ of length n, we show that (u1)−1L> 1
2 (A) �=

(v1)−1L> 1
2 (A).
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Without loss of generality assume bin(u1) < bin(v1); observe that 1
2 ≤

bin(u1) < bin(v1). There exists w in {0, 1}∗ such that bin(u1) · bin(w) <
1
2 and bin(v1) · bin(w) > 1

2 : it suffices to choose w such that bin(w) is in(
1

2bin(v1) ,
1

2bin(u1)

)
, which exists by density of the dyadic numbers in (0, 1). Thus,

(u1)−1L> 1
2 (A) �= (v1)−1L> 1

2 (A), and we exhibited exponential many words hav-
ing pairwise distinct left quotients. It follows from Theorem 2 that L> 1

2 (A) has
exponential online space complexity.

4 Conclusion

We introduced a new complexity measure called the online space complexity,
quantifying how hard it is to solve a problem when the input is given in an
online fashion, focusing on the space consumption.

We considered the online space complexity of probabilistic automata, as
hinted by Rabin in [7], and showed that probabilistic automata give rise to
languages of high (maximal) online space complexity.

We mention some directions for future research about online space
complexity.

The first is to give characterisations of the natural online space complexity
classes (linear, quadratic, polynomial). Such characterisations could be in terms
of logics, as it is done in descriptive complexity, or algebraic, as it is done in the
automata theory. The canonical example is languages of constant online space
complexity, which are exactly regular languages, defined by monadic second-
order logic.

A second direction would be to extend the framework of online space com-
plexity to quantitative queries. Indeed, we defined here the online space com-
plexity of a language, i.e. of qualitative queries: a word is either inside, or outside
the language.

A third intriguing question is the existence of a dichotomy for the online
space complexity of probabilistic automata. Is the following conjecture true: for
every probabilistic language, its online space complexity is either polynomial or
exponential?
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Abstract. We show how the display-map category of finite simplicial
complexes can be seen as representing the totality of database schemas
and instances in a single mathematical structure. We give a sound inter-
pretation of a certain dependent type theory in this model, and show how
it allows for the syntactic specification of schemas and instances and the
manipulation of the same with the usual type-theoretic operations. We
indicate how it allows for the posing of queries. A novelty of the type
theory is that it has non-trivial context constants.
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1 Introduction

Databases being, essentially, collections of (possibly interrelated) tables of data,
a foundational question is how to best represent such collections of tables mathe-
matically in order to study their properties and ways of manipulating them. The
relational model, essentially treating tables as structures of first-order relational
signatures, is a simple and powerful representation. Nevertheless, areas exist in
which the relational model is less adequate than in others. One familiar example
is the question of how to represent partially filled out rows or missing informa-
tion. Another, more fundamental perhaps, is how to relate instances of different
schemas, as opposed to the relatively well understood relations between instances
of the same schema. Adding to this an increasing need to improve the ability to
relate and map data structured in different ways suggests looking for alternative
and supplemental ways of modelling tables more suitable to “dynamic” settings.
It seems natural, in that case, to try to model tables of different shapes as liv-
ing in a single mathematical structure, facilitating their manipulation across
different schemas.

We investigate, here, a novel way of representing data structured in systems of
tables which is based on simplicial sets and type theory rather than sets of relations
and first-order logic. Formally, we present a soundness theorem (Theorem 1) for a
certain dependent type theory with respect to a rather simple category of (finite,
abstract) simplicial complexes. An interesting type-theoretic feature of this is that
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the type theory has context constants, mirroring that our choice of “display maps”
does not include all maps to the terminal object. But from the database perspec-
tive the interesting aspect is that this category can in a natural way be seen as a
category of tables; collecting in a single mathematical structure—an indexed or
fibered category—the totality of schemas and instances.

This representation can be introduced as follows. Let a schema S be pre-
sented as a finite set A of attributes and a set of relation variables over those
attributes. One way of allowing for missing information or partially filled out
rows is to assume that whenever the schema has a relation variable R, say over
attributes A0, . . . , An, it also has relation variables over all non-empty subsets of
{A0, . . . , An}. So a partially filled out row over R is a full row over such a “par-
tial relation” or “part-relation” of R. To this we add the requirement that the
schema does not have two relation variables over exactly the same attributes1.
This requirement means that a relation variable can be identified with the set of
its attributes. Together with the first requirement, this means that the schema
can be seen as a downward closed sub-poset of the positive power set of the set
of attributes A. Thus a schema is an (abstract) simplicial complex—a combina-
torial and geometric object familiar from algebraic topology.

The key observation is now that an instance of the schema S can also be
regarded as a simplicial complex, by regarding the data as attributes and the
tuples as relation variables. Accordingly, an instance over S is a schema of its
own, and the fact that it is an instance of S is “displayed” by a certain projection
to S. Thus the category S of finite simplicial complexes and morphisms between
them form a category of schemas which includes, at the same time, all instances
of those schemas; where the connection between schema and instance is given
by a collection D of maps in S called display maps.

We show, essentially, that S together with this collection D of maps form a so-
called display-map category [7], a notion originally developed in connection with
categorical models of dependent type theory. First, this means that the category
S has a rich variety of ready-made operations that can be applied to schemas
and instances. For example, the so-called dependent product operation can be
used to model the natural join operation. Second, it is a model of dependent
type theory. We specify a dependent type theory with context constants and a
sound interpretation which interprets contexts as schemas and types as instances.
This interpretation is with respect to the display-map category (S,D) in its
equivalent form as an indexed category. The context constants are interpreted
as distinguished single relation variable schemas (or relation schemas in the
terminology of [1]), reflecting the special status of such schemas. The type theory
1 Coming from reasons having to do with simplicity and wanting to stay close to the
view of tables as relations, this requirement, and indeed the structure of the schemas
we are considering, does mean that a certain care has to be taken with attribute
names at the modeling level. For instance whether one should, when faced with two
tables with exactly the same attributes, collect these into one table (possibly with
an extra column), rename some attributes, or introduce new “dummy” or “relation
name” attributes to keep the two tables apart. For reasons of space, we do not discuss
these issues here.
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allows for the syntactic specification of both schemas and instances, and formally
derives the answers to queries; for instance, using the dependent product of the
type theory, the elements of the natural join of two instances can be derived in
the type theory.

We focus, in the space available here, on the basic presentation of the model
and the type theory (Sects. 2 and 3, respectively). In Sect. 4 we then give a few
brief indications of the use and further development of the model and the type
theory: we give a suggestion of how the dependent structure of the model can
be put to use to model e.g. updates; and we sketch the introduction and use of
large types such as, and in particular, a universe. The universe allows reasoning
generically about classes of instances of in the type theory itself, without having
to resort to the metalanguage, and provides the basis for e.g. a precise, formal
definition and analysis of the notion of query in this setting.

2 The Model

2.1 Complexes

We fix the following terminology and notation, adjusting the standard terminol-
ogy somewhat for our purposes. More details can be found in [4]. A background
on simplicial complexes and simplicial sets can be found in e.g. [5,6]. The ques-
tion of whether vertices or attributes should be ordered is not essential for our
presentation here, and is swept under the rug.

A simplicial complex, or just complex, X consists of the union of a finite set
X0 and a collection X≥1 of non-empty, non-singleton subsets of X0, satisfying
the condition that if x is a set in X≥1, then all non-empty, non-singleton subsets
of x are in X≥1. It is convenient to also allow singleton subsets, and identify
them with the elements of X0. The natural order on X is then given by subset
inclusion. The elements of X0 are referred to as vertices. The elements of X≥1

as faces. For n ≥ 0, we write Xn for the set of elements of X with size n+1, and
refer to them as faces of dimension n. Accordingly, vertices are seen as having
dimension 0. We use square rather than curly brackets for faces, e.g. [A,B] rather
than {A,B}.

A morphism f :X −→ Y of complexes is a function f0 :X0 −→ Y0 satisfying
the condition that for all x in X the image f0(x) is in Y (again, with a singleton
identified with its element). Thus a morphism of complexes can be seen as a
morphism of posets by setting f(x) to be the image f0(x).

A morphism f :X −→ Y of complexes is said to be a display map if x ∈ Xn

implies f(x) ∈ Yn for all n. Thus display maps are the maps that “preserve
dimension”. Display maps are also the “local isomorphisms”, in the sense that
for x ∈ X the restriction f �(↓x): (↓ x) → (↓ f(x)) is an isomorphism. Note that
a display map need not be a injection of vertices.

A poset P that is isomorphic to a complex can clearly be uniquely rewrit-
ten to a complex with the same set of vertices as P . For that reason, and as it
is occasionally notationally convenient and can yield more intuitive examples,
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we allow ourselves to extend the notion of complex to any poset that is isomor-
phic to a complex. We say that it is a strict complex if we need to emphasize
that it is of the form defined above.

2.2 Schemas and Instances

Schemas. A simplicial schema is a complex with the natural order reversed.
We consider the resulting poset as a category, in the usual way. If x ≤ y in
the natural order, we write δy

x : y −→ x for the corresponding arrow in the
simplicial schema. In the context of simplicial schemas, we use “attribute” and
“relation variable” synonomously with “vertex” and “face”, respectively. Let S

be the category of simplicial schemas and morphisms, and Sd be the category of
simplicial schemas and display maps.

With respect to the traditional notion of schema, a simplicial schema X
can be thought of as given in the usual way by a finite set of attributes X0 =
{A0, . . . , An−1} and a set of relational variables X≥1 = {R0, . . . Rm−1}, each
with a specification of column names in the form of a subset of X0, but with
the restrictions (1) that no two relation variables are over exactly the same
attributes; and (2) for any non-empty subset of the attributes of a relation
variable there exists a relation variable over (exactly) those attributes. As with
“complex”, we henceforth mostly drop the word “simplicial” and simply say
“schema”.

The category Sd contains in particular the n-simplices Δn and the face maps.
Recall that the the n-simplex Δn is the complex given by the set {0, . . . , n} as
vertices and all non-empty, non-singleton subsets as faces. For 0 ≤ i ≤ n + 1,
the face map dn

i : Δn −→ Δn+1 is the morphism of complexes defined by the
vertex function k �→ k, if k < i and k �→ k + 1 else. These satisfy the simplicial
identities dn+1

i ◦dn
j = dn+1

j−1 ◦dn
i if i < j. As a schema, Δn is the schema of a single

relation on n + 1 attributes named by numbers 0, . . . , n (and all its “generated”
part-relations). The face map dn

i : Δn −→ Δn+1 can be seen as the inclusion of
the relation variable [0, . . . , i − 1, i + 1, . . . , n + 1] in Δn+1. These schemas and
morphisms play a special role in Sect. 3 where they are used to specify general
schemas and instances syntactically.

Example 1. Let S be the schema the attributes of which are A,B,C and the
relation variables R : AB and Q : BC, with indicated column names. From a
“simplicial” point of view, S is the category

Replacing R with [A,B] and Q with [B,C] (and inverting the order) yields a
strict complex. For another example, the 2-simplex Δ2 can be seen as a schema
on attributes 0,1, and 2, with relation variables [0, 1, 2], and its part-relations.
The function f0 given by A �→ 0, B �→ 1, and C �→ 2 defines a morphism
f : S −→ Δ2 of schemas/complexes. f is a display map. f−1

0 does not define a
morphism of schemas.
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Instances. Let X be a schema, say with attributes X0 = {A0, . . . , An−1}.
A functor F : X −→ FinSet from X to the category of finite sets and functions
can be regarded as an instance of the schema X. For x = [Ai0 , . . . , Aim−1 ] ∈ X,
the set F (x) can be regarded as a set of “keys” or “row-names”. The “value”
k[Aij

] of such a key k ∈ F (x) at attribute Aij
is then the element k[Aij

] :=
F (dx

Aij
)(k). Accordingly, F (x) maps to the set of tuples F (Ai0)× . . .×F (Aim−1)

by k �→ 〈
k[Ai0 ], . . . , k[Aim−1 ]

〉
. For arbitrary F , this function is not 1–1; that is,

there can be distinct keys with the same values at all attributes. We say that F
is a relational instance if this does not happen. That is, a relational instance is a
functor F : X −→ FinSet such that for all x ∈ X the functions {δx

A | A ∈ x}
are jointly injective. Say that a relational instance is strict if the keys are actually
tuples and the δ’s are the expected projections.

Example 2. Let S be the schema of Example 1. Let an instance I be given by

R A B
1 a b
2 a’ b

Q B C
1 b c
2 d e

Then I is the functor

with I(δR
A)(1) = a, I(δR

B)(1) = b and so on.
Let J be the strict instance J : Δ2 −→ FinSet given in tabular form by

0 1 2
a b c

0 1
a b
a’ b

0 2
a c
a’ c

1 2
b c
d e

0
a
a’

1
b
d

2
c
e

Explicitly, then, J is the functor which e.g. maps [0, 1] to {〈a, b〉 , 〈a′, b〉} and
such that J(δ[0,1]

1 )(〈a, b〉) = b.

Substition, Strictification, and Induced Schemas. Let f : X −→ Y be a
morphism of schemas, and let I : Y −→ FinSet be a relational instance. Then
it is easily seen that the composite I ◦ f :X −→ FinSet is a relational instance.
We write I[f ] := I ◦ f and say it is the substitution of I along f .

It is clear that a relational instance is naturally isomorphic to exactly one
strict relational instance with the same values. We say that the latter is the
strictification of the former.

Example 3. Consider the morphism f :S −→ Δ2 of Example 1 and the instances
I and J of Example 2. Then J [f ] is the strictification of I.
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Let Rel(X) be the category of strict relational instances and natural trans-
formations between them. For convenience and brevity (as with complexes) we
often disregard the requirement that instances need to be strict in the sequel.
However, working with relational instances up to strictification, or restricting to
the strict ones, resolves the coherence issues so typical of categorical models of
type theory. To have the “strict” instances be those “on tuple form” presents
itself as a natural choice, both by the connection to the relational model and by
the following formal connection between such instances and display maps.

Lemma 1. Let f : X −→ Y be a morphism of schemas. Then f is display if
and only if for all strict instances J of Y the instance J [f ] is also strict.

The connection between display maps, relational instances and simplicial schemas
is given by the following. Let X be a schema and F : X −→ FinSet an arbitrary
functor. Recall, e.g. from [8], that the category of elements

∫
X

F has objects 〈x, a〉
with x ∈ X and a ∈ F (x). A morphism δ

〈x,a〉
〈y,b〉 : 〈x, a〉 −→ 〈y, b〉 is a morphism

δx
y : x −→ y with F (δx

y )(a) = b. The projection p :
∫

X
F −→ X is defined by

〈x, a〉 �→ x and δ
〈x,a〉
〈y,b〉 �→ δx

y . We then have

Lemma 2. Let X be a simplicial schema and F : X −→ FinSet be a functor.
Then F is a relational instance if and only if

∫
X

F is a simplicial schema and
p :

∫
X

F → X is a display morphism.

When F is a relational instance we write X.F for
∫

X
F , and refer to it as the

canonical schema corresponding to F . We refer to p as the canonical projection.

Example 4. The canonical schema of instance J of Example 2 has attribute set
{〈0, a〉 , 〈0, a′〉 , 〈1, b〉 , 〈1, d〉 , 〈2, e〉 , 〈2, c〉} and relation variables e.g.
〈[0, 1, 2], 〈a, b, c〉〉 (or, strictly, [〈0, a〉 , 〈1, b〉 , 〈2, c〉]).

Full Tuples. A schema X induces a canonical instance of itself by filling out
the relations by a single row each, consisting of the attributes of the relation.
This instance is terminal in the category of instances of X; that is, every other
instance of X has a unique morphism to it. Accordingly, we define the terminal
instance 1X : X −→ FinSet to be the functor defined by x �→ {x}.2

A full or matching tuple t of an instance I over schema X is a natural
transformation t : 1X ⇒ I. We write TrmX(I) for the set of full tuples (indicating
that we see them as terms type-theoretically).

Given a full tuple t : 1X ⇒ I, the induced section is the morphism t̂ : X −→
X.I defined by x �→ 〈x, tx(x)〉. Notice that the induced section is always a display
morphism.

Example 5. The instance I of Example 2 has precisely two full tuples. A full
tuple can be seen as a tuple over the full attribute set of the schema with the
2 Strictly speaking, we choose an isomorphic representation which is strict and stable
under substitution. For current purposes, however, the current definition is nota-
tionally convenient.
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property that for all relation variables the projection of the tuple is a row of that
relation. The two full tuples of I are, then, 〈a, b, c〉 and 〈a′, b, c〉. The instance J
of Example 2 has precisely one full tuple 〈a, b, c〉.

2.3 Simplicial Databases

We have a functor Rel(−) : Sd
op −→ Cat which maps X to Rel(X) and f :

X −→ Y to Rel(f) = (−)[f ] : Rel(Y ) −→ Rel(X). We denote this indexed
category by R, and think of it as a “category of databases” in which the totality
of databases and schemas are collected. It is a model of a certain dependent type
theory with context constants which we give in Sect. 3. We briefly outline some
of the relevant structure available in R.

Definition 1. For f : X −→ Y in Sd and J ∈ Rel(Y ) and t : 1Y ⇒ J in
TrmY (J):

1. Define t[f ] ∈ TrmX(J [f ]) by x �→ t(f(x)) ∈ J [f ](x). Note that for g :
Z −→ X we have t[f ][g] = t[f ◦ g].

2. With pJ : Y.J −→ Y the canonical projection, let vJ : 1Y.J ⇒ J [pJ ] be the
full tuple defined by 〈y, a〉 �→ a. (This term is needed for the type theory. We
elsewhere leave subscripts on v and p determined by context.)

3. Denote by f̃ : X.J [f ] −→ Y.J the schema morphism defined by 〈x, a〉 �→
〈f(x), a〉. Notice that since f is display, so is f̃ .

Lemma 3. The following equations hold:

1. For X in Sd and I ∈ Rel(X) and t ∈ TrmX(I) we have p ◦ t̂ = idX and
t = v[t̂].

2. For f : X −→ Y in Sd and J ∈ Rel(Y ) and t ∈ TrmY (J) we have
(a) p ◦ f̃ = f ◦ p :X.J [f ] −→ Y ;
(b) f̃ ◦ t̂[f ] = t̂ ◦ f :X −→ Y.J ; and
(c) vJ [f̃ ] = vJ[f ] :1X.J[f ] ⇒ J [f ][p].

3. For f : X −→ Y and g : Y −→ Z in Sd and J ∈ Rel(Z) we have g̃ ◦ f = g̃◦ f̃ .
4. For X ∈ Sd and I ∈ Rel(X) we have p̃ ◦ v̂ = IdX.I .

The following instance-forming operations exist and commute with substi-
tution.

0 and 1 instances: Given X ∈ Sd the terminal instance 1X has already been
defined. The initial instance 0X is the constant empty functor, x �→ ∅.

Dependent Sum: Let X ∈ Sd, J ∈ Rel(X), and G ∈ Rel(X.J). We define the
instance ΣJG :X −→ FinSet up to strictification by

x �→ {〈a, b〉 | a ∈ J(x), b ∈ G(x, a)}. For δx
y in X, let ΣJG(δx

y )(a, b) =
〈
δx
y (a), δx,a

y,δx
y (a)

(b)
〉
.

Identity: Given X ∈ Sd and J ∈ Rel(X) the Identity instance IdJ ∈ Rel(X.J.J [p])
is defined, up to strictification, by 〈〈x, a〉 , b〉 �→ � if a = b and 〈〈x, a〉 , b〉 �→ ∅ else.
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� being e.g. the empty tuple. The full tuple refl ∈ Trm(X.J)(IdJ [v̂]) is defined by
〈x, a〉 �→ �.

Disjoint Union: Given X ∈ Sd and I, J ∈ Rel(X), the instance I + J ∈ Rel(X)
is defined up to strictification by
x �→ {〈n, a〉 | (n = 0 ∧ a ∈ I(x)) ∨ (n = 1 ∧ a ∈ J(x))}. We have full tuples left
∈ TrmX.I((I + J)[p]) defined by 〈x, a〉 �→ 〈0, a〉 and right ∈ TrmX.J((I + J)[p])
defined by 〈x, a〉 �→ 〈1, a〉.
Dependent Product: Let X ∈ Sd, J ∈ Rel(X), and G ∈ Rel(X.J). We define
the instance ΠJG : X −→ FinSet as strictification of the right Kan-extension
(in the sense of e.g. [8]) of G along p. See [4] for an explicit construction. There
are operations Ap and λ which for any full tuple t ∈ TrmX.J(G) yields a full
tuple λt ∈ TrmX(ΠJG), and for any full tuple s ∈ TrmX(ΠJG) yields a full
tuple Aps ∈ TrmX.J(G). Moreover, Apλt = t. We further indicate the rela-
tionship between the dependent product and full tuples, and the way in which
the dependent product models the natural join operation, with the following
example.

Example 6. Consider the schema S and instance I of Examples 1 and 2. Corre-
sponding to the display map f :S −→ Δ2, we can present S an instance of Δ2

as (ignoring strictification for readability) S : Δ2 −→ FinSet by S(0) = {A},
S(1) = {B}, S(2) = {C}, S(01) = {R}, S(12) = {Q}, and S(02) = S(012) = ∅.
Notice that, modulo the isomorphism between S as presented in Example 1 and
Δ2.S, the morphism f : S −→ Δ2 is the canonical projection p : Δ2.S −→ Δ2.
Similarly we have I ∈ Δ2.S as (in tabular form, using subscript instead of pairing
for elements in Δ2.S, and omitting the three single-column tables)

R01 A0 B1

a b
a’ b

Q12 B1 C2

b c
d e

Then ΠSI is, in tabular form (again omitting single column tables),

0 1 2
a b c
a’ b c

0 1
a b
a’ b

0 2
a c
a’ c
a e
a’ e

1 2
b c
d e

Notice that the three-column “top” table of ΠSI is the natural join R01 �	 Q12.
The type theory of the next section will syntactically derive the rows of this
table from the syntactic specification of S and I and the rules for the dependent
product (see [4]).

3 The Type Theory

We introduce a Martin-Löf style type theory [9], with explicit substitutions (in
the style of [3]), extended with context and substitution constants representing



Type Theoretical Databases 125

simplices and face maps. The type theory contains familiar constructs such as
Σ- and Π-types. For this type theory we give an interpretation in the indexed
category R of the previous section. The goal is to use the type theory as a formal
language for databases. We give examples how to specify instances and schemas
formally in the theory. Further details can be found in [4].

3.1 The Type Theory T

The type systemhas the following eight judgements,with intended interpretations.

Judgement Interpretation
? : Context �?� is a schema
? : Type(Γ ) �?� is an instance of the schema Γ
? : Elem(A) �?� is an full tuple in the instance A
? : Γ −→ Λ �?� is a (display) schema morphism
Γ ≡ Λ �Γ � and �Λ� are equal schemas
A ≡ B : Type(Γ ) �A� and �B� are equal instances of �Γ �
t ≡ u : Elem(A) �t� and �u� are equal full tuples in �A�
σ ≡ τ : Γ −→ Λ the morphisms �σ� and �τ� are equal

The type theory T has the rules listed in Figs. 1 and 2. The interpretation of
these are given by the constructions in the previous section, and summarised in
Fig. 3.

Fig. 1. Rules of the type theory: contexts and substitution

Each rule introduces a context, substitution, type or element. We will apply
usual abbreviations such as A −→ B for ΠAB[↓A] and A × B for ΣAB[↓A]. In
addition to these term introducing rules there are a number of equalities which



126 H. Forssell et al.

Fig. 2. Rules of the type theory: Types

Fig. 3. Interpretation of the type theory

should hold; such as the simplicial identities dn+1
i ◦dn

j ≡ dn+1
j−1 ◦dn

i : Δn −→ Δn+2.
We list the definitional equalities in Fig. 4.
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Fig. 4. Definitional equalities in the type theory

These all hold in our model. (The equalities for substitution are verified in
Lemma 3. The remaining equations are mostly routine verifications.) We display
this for reference.

Theorem 1. The intended interpretation �−� yields a sound interpretation of
the type theory T in R.

3.2 Instance Specification as Type Introduction

The intended interpretation of A : type(Γ ) is that A is an instance of the schema
Γ . However, context extension allows us to view every instance as a schema in
its own right; for every instance A : type(Γ ), we get a schema Γ.A. It turns
out that the most convenient way to specify a schema is by introducing a new
type/instance over one of the simplex schemas Δn. To specify a schema, with a
maximum of n attributes, may be seen as introducing a type in the context Δn.
A relation variable with k attributes in the schema is introduced as an element
of the schema substituted into Δk. Names of attributes are given as elements of
the schema substituted down to Δ0.

Example 7. We construct the rules of the schema S presented as an instance
of Δ2 as in Example 6. The introduction rules tells us the names of tables and
attributes in S.

S : Type(Δ2) A ≡ R[d1] : Elem(S[d2 ◦ d1])
A : Elem(S[d2 ◦ d1]) B ≡ R[d0] : Elem(S[d2 ◦ d0])
B : Elem(S[d2 ◦ d0]) B ≡ Q[d1] : Elem(S[d0 ◦ d1])
C : Elem(S[d0 ◦ d0]) C ≡ Q[d0] : Elem(S[d2 ◦ d0])
R : Elem(S[d2])
Q : Elem(S[d0])

From these introduction rules, we can generate an elimination rule. The elim-
ination rule tells us how to construct full tuples in an instance over the schema
S. Another interpretation of the elimination rule is that it formulates that the
schema S contains only what is specified by the above introduction rules; it
specifies the schema up to isomorphism.
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An instance of a schema is a type depending in the context of the schema.
Therefore instance specification is completely analoguous to schema specifica-
tion. See [4] for an example. In [4] one can also find a derivation of the terms in
T corresponding to the full tuples of the natural join in Example 6.

4 Dependent Structure, Large Types, and Queries

Most of this paper has been devoted to explaining the basic structure of the
display map category of finite simplicial complexes seen as encoding systems
of tables, and to stating the type theory which it models. In the space that
remains, we briefly indicate some approaches of ongoing and future work, in
particular emphasizing the definitions and roles of large types and universes.
Before introducing additional types, however, we point to the use that can be
made of the dependent structure itself. It is a cornerstone of the model that an
instance over a schema can itself, by context extension, be seen as a schema over
which new instances can be constructed. Thus context extension provides, for a
given instance, the built in possibility to enter data related to the instance into
tables formed by its rows. One immediate suggestion for the potential use of this
feature is for updates; an update I ′ of an instance I over Γ is the instance over
Γ.I obtained by writing the new (or old or empty) row in the table formed by
the row to be replaced (or kept or deleted). Adding new rows can be done by
writing I ′ over Γ.I +1 instead, as I +1 has a copy of Γ over which new additions
can be entered. (Multiple copies of Γ , and indeed of I, can be added if need
be; notice that polynomial expressions over I such as 2I + 3 yield meaningful
instances over Γ ). In this way a current update occurs in a context formed by a
string of previous updates. Applying the dependent product operation gives an
instance over the original schema Γ , if desired.

Returning to large types, Example 6 gives a glimpse of a “type-theoretic”
operation and its relation to one of the standard queries of relational databases.
A formal investigation of queries (and dependencies and views) in the setting
of the type theory and model of the previous sections requires a formal under-
standing of what constitutes a query in this setting. For (partly) this purpose, we
introduce a universe. This is a large type, corresponding to an infinite instance
which encodes all finite instances over a fixed domain. Thus, given a schema X,
the universe UX of finite instances of X is an infinite instance of X where the
full tuples encode the finite instances of X (over the fixed domain). The universe
comes equipped with a decoding instance TX over X.UX such that given a full
tuple t ∈ TrmX(UX), the instance it encodes is decoded by TX [t̂],

The universe and decoding instance are stable under substitution, and are closed
under the other type constructions, such as Π- and Σ-types. We omit the details
of the constructions.
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The universe, UΓ along with TΓ : Type(Γ.UΓ ), allows reasoning generically
about classes of instances of Γ in the type theory itself, without having to resort
to the metalanguage. Since schemas can be though of as instances, they too can
be constructed using the universe. In particular, given a schema Γ , the type
ΩΓ := ΣUΓ

ΠTΓ
ΠTΓ [↓TΓ

]IdTΓ
is the large type of subschemas of Γ . Its elements

are decoded to instances by the family OΓ := T [↓Ω .U ][π0↑]. Given t : Elem(ΩΓ ),
the subschema it encodes is Γ.O[t↑].

A query can then be seen as an operation which takes an instance of a schema
to another instance of a related schema. Given codes for a source subschema t :
Elem(Ω) and a target subschema u : Elem(Ω), the type of queries from t to u
is thus (O[t↑] → U) → (O[u↑] → U). Having given a concrete type of queries
leads the way to investigations as to exactly which queries can be expressed in the
language. For illustration, we present an example query formulated in this way.

Example 8. In the spririt of Example 6, let a : Elem(Ω) be the code for a sub-
schema covering the schema Γ , in the sense that the set of attributes are the
same. The query taking the dependent product, or natural join, of an instance
of this subschema is expressed by the term

q := λλ(π[(↓Ω .U) ◦ (π0↑)][a↑.(T → U)][↓1]) : Elem((O[a↑] → U) → (1Γ → U)).

Further new types of interest and use are the type ΛΓ of “tables”, or faces, of
a schema and the (large) type NΓ of “finite” instances, or instances of the form
1 + 1 + . . . + 1. The former can be constructed so as to be both small and stable
(whereas ΩΓ seems to have to be large in order to be stable), and is sufficient for
schema and instance specification (cf. Example 7). The latter is of relevance e.g.
with respect to instances determined by their full tuples (or “with no nulls”).
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Abstract. Subsequently, a particular extension of the bi-modal logic
of subset spaces, LSS, to the case of several agents will be provided.
The basic system, which originally was designed for revealing the intrin-
sic relationship between knowledge and topology, has been developed
in several directions in recent years, not least towards a comprehensive
knowledge-theoretic formalism. However, while subset spaces have been
shown to be smoothly combinable with various epistemic concepts in the
single-agent case, adjusting them to general multi-agent scenarios has
brought about rather unsatisfactory results up to now. This is due to
reasons inherent in the system so that one is led to consider more special
cases. In the present paper, such a widening of LSS to the multi-agent
setting is proposed. The peculiarity is here given by the case that the
agents are supplied with certain knowledge-enabling functions allowing,
in particular, for comparing their respective knowledge. It turns out that
such circumstances can be modeled in corresponding logical terms to a
considerable extent.

Keywords: Reasoning about knowledge of agents · Subset space seman-
tics · Knowledge-enabling functions · Completeness · Decidability

1 Introduction

The starting point for this paper is reasoning about knowledge. This important
foundational issue has been given a solid logical basis right from the beginning of
the research into theoretical aspects of artificial intelligence, as can be seen, e.g.,
from the classic textbooks [5,14]. According to this, a binary accessibility relation
RA connecting possible worlds or conceivable states of the world, is associated
with every instance A of a given finite group G of agents. The knowledge of A is
then defined through the set of all valid formulas, where validity is understood
with regard to every state the agent considers possible at the actual one. This
widespread and well-established view of knowledge is complemented by Moss
and Parikh’s bi-modal logic of subset spaces, LSS (see [4,15], or Ch. 6 of [1]), of
which the basic idea is reported in the following.

The epistemic state of an agent in question, i.e., the set of all those states
that cannot be distinguished by what the agent topically knows, can be viewed
c© Springer International Publishing Switzerland 2016
S. Artemov and A. Nerode (Eds.): LFCS 2016, LNCS 9537, pp. 130–145, 2016.
DOI: 10.1007/978-3-319-27683-0 10
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as a neighborhood U of the actual state x of the world. Formulas are now inter-
preted with respect to the resulting pairs x,U called neighborhood situations.
Thus, both the set of all states and the set of all epistemic states constitute the
relevant semantic domains as particular subset structures. The two modalities
involved, K and �, quantify over all elements of U and ‘downward’ over all neigh-
borhoods contained in U , respectively. This means that K captures the notion
of knowledge as usual (see [5] again), and � reflects a kind of effort to acquire
knowledge since gaining knowledge goes hand in hand with a shrinkage of the
epistemic state. In fact, knowledge acquisition is this way reminiscent of a topo-
logical procedure. Thus, it was natural to ask for the appropriate logic of ‘real’
topological spaces, which could be determined by Georgatos shortly afterwards;
see [6]. The subsequent research into subset and topological spaces, respectively,
is quoted in the handbook [1], whereas more recent developments include, among
others, the papers [2,16].

We focus on the knowledge-theoretic aspect of LSS as of now. Despite the fact
that most treatises on this system deal with the single-agent case, a correspond-
ing multi-agent version was proposed in the paper [9]. The key idea behind that
approach is to implement the agents by means of additional modalities. This
clearly leads to an essential modification of the logic, while the original seman-
tics basically remains unchanged. On the contrary, if the agent structure shall be
reflected in the neighborhood situations, then the scope of the modality K has
to be restricted; see [10] for a detailed discussion on this topic. Anyway, it seems
that a trade-off must be made between modifying the semantics and altering the
logic in case of multiple agents.

For the scenarios considered in this paper, the additional semantic features
will likewise appear on top of the subset space semantics. The variations of
the basic logic, however, will be quite moderate. Such scenarios are constituted
by, say, n agents whose knowledge need not be available at the actual situation
instantaneously, but will be effective only after enabling. The process of enabling
is formally described by agent-specific functions operating on neighborhood sit-
uations. When viewed ‘from the outside’, these functions quasi act as sched-
ulers for individual reasoning. In the logic, they will be mirrored by additional
modalities.1

It should be possible to model settings like this with the aid of the com-
mon logic of knowledge with incorporated time (cf. [5], Sect. 4.3.) as well, since
we have just introduced a kind of next step operator (albeit for every agent).
But sometimes it is unnecessary or even undesirable to make time explicit. For
example, a particular ordering of the agents with regard to knowledge, or the
effort spent on closing a knowledge gap between two agents, could be rated as
more important than the factual distance of the agents in that sequence or the
amount of time that trial costs in order to meet with success. We shall, therefore,
define n-agent subset spaces in a way that such kind of qualitative weighting of
1 If those knowledge-enabling functions shall depend on knowledge states alone, which

is clearly worthy of discussion, then topological nexttime logic, see [8], would enter
the field. This would lead to a somewhat more complicated but related system.
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the agents can be reflected. For the sake of concision, however, just one sample
application will actually be handled here, leadership in knowledge. This notion
will be made precise below, with some new technical peculiarities coming along.

The rest of the paper is organized as follows. In the next section, we reca-
pitulate the language and the logic of subset spaces for single agents. In Sect. 3,
the ideas of both knowledge-enabling functions and leadership in knowledge are
formalized. In Sect. 4, the soundness and completeness of the resulting logic is
proved. In Sect. 5, the corresponding decidability problem is treated. Finally, we
summarize and comment on some naturally arising questions.

All relevant facts from modal logic not explicitly introduced here can be
found in the standard textbook [3].

2 The Language and the Logic of Subset Spaces Revisited

The purpose of this section is twofold: to clarify the starting point of our inves-
tigation on a technical level and to set up some concepts and results to be
introduced and, respectively, proved later on.

First in this section, the language for (single-agent) subset spaces, L, is
defined precisely. Then, the semantics of L is linked with the common rela-
tional semantics of modal logic. Finally, the ensuing relationship is utilized after
the most important facts on the logic of subset spaces have been recalled.

To begin with, we define the syntax of L. Let Prop = {p, q, . . . } be a denumer-
ably infinite set of symbols called proposition variables (which shall represent the
basic facts about the states of the world). Then, the set SF of all subset formulas
over Prop is defined by the rule

α ::= � | p | ¬α | α ∧ α | Kα | �α.

The missing boolean connectives are treated as abbreviations, as needed. The
operators which are dual to K and � are denoted by L and �, respectively. In
view of our remarks in the previous section, K is called the knowledge operator
and � the effort operator.

Second, we fix the semantics of L. For a start, we single out the relevant
domains. We let P(X) designate the powerset of a given set X.

Definition 1 (Semantic Domains).

1. Let X be a non-empty set (of states) and O ⊆ P(X) a set of subsets of X.
Then, the pair S = (X,O) is called a subset frame.

2. Let S = (X,O) be a subset frame. The set

NS := {(x,U) | x ∈ U and U ∈ O}

is then called the set of neighborhood situations of S.
3. Let S = (X,O) be a subset frame. Under an S-valuation we understand a

mapping V : Prop → P(X).
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4. Let S = (X,O) be a subset frame and V an S-valuation. Then, M :=
(X,O, V ) is called a subset space (based on S).

Note that neighborhood situations denominate the semantic atoms of the bi-
modal language L. The first component of such a situation indicates the actual
state of the world, while the second reflects the uncertainty of the agent in
question about it. Furthermore, Definition 1.3 shows that values of proposition
variables depend on states only. This is in accordance with the common practice
in epistemic logic; see [5] once more.

For a given subset space M, we now define the relation of satisfaction, |=M ,
between neighborhood situations of the underlying frame and formulas from SF.
Based on that, we define the notion of validity of formulas in subset spaces. In
the following, neighborhood situations are often written without parentheses.

Definition 2 (Satisfaction and Validity). Let S = (X,O) be a subset frame.

1. Let M = (X,O, V ) be a subset space based on S, and let x,U ∈ NS be a
neighborhood situation of S. Then

x,U |=M � is always true
x,U |=M p : ⇐⇒ x ∈ V (p)
x,U |=M ¬α : ⇐⇒ x,U 	|=M α
x,U |=M α ∧ β : ⇐⇒ x,U |=M α and x,U |=M β
x,U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α
x,U |=M �α : ⇐⇒ ∀U ′ ∈ O : [x ∈ U ′ ⊆ U ⇒ x,U ′ |=M α] ,

where p ∈ Prop and α, β ∈ SF. In case x,U |=M α is true we say that α holds
in M at the neighborhood situation x,U.

2. Let M = (X,O, V ) be a subset space based on S. A subset formula α is called
valid in M iff it holds in M at every neighborhood situation of S.

Note that the idea of both knowledge and effort, as described in the introduc-
tion, is made precise by the first item of this definition. In particular, knowledge
is here, too, defined as validity at all states that are indistinguishable to the
agent.

Subset frames and subset spaces can be considered from a different perspec-
tive, as is known since [4] and reviewed in the following, for the reader’s conve-
nience. Let a subset frame S = (X,O) and a subset space M = (X,O, V ) based
on it be given. Take XS := NS as a set of worlds, and define two accessibility
relations RK

S and R�
S on XS by

(x,U)RK
S (x′, U ′) : ⇐⇒ U = U ′ and

(x,U)R�
S (x′, U ′) : ⇐⇒ (x = x′ and U ′ ⊆ U),

for all (x,U), (x′, U ′) ∈ XS . Moreover, let a valuation be defined by VM(p) :=
{(x,U) ∈ XS | x ∈ V (p)}, for all p ∈ Prop. Then, bi-modal Kripke structures
SS :=

(
XS , {RK

S , R�
S })

and MM :=
(
XS , {RK

S , R�
S }, VM

)
result in such a way

that MM is equivalent to M in the following sense.
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Proposition 1. For all α ∈ SF and (x,U) ∈ XS , we have that x,U |=M α iff
MM, (x,U) |= α.

Here (and later on as well), the non-indexed symbol ‘|=’ denotes the usual sat-
isfaction relation of modal logic.

The proposition can easily be proved by structural induction on α. We call
SS and MM the Kripke structures induced by the subset structures S and M,
respectively.

We now turn to the logic of subset spaces, LSS. The subsequent axiomatiza-
tion from [4] was proved to be sound and complete in Sect. 1.2 and, respectively,
Sect. 2.2 there.

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �p) ∧ (�p → p)
6. � (α → β) → (�α → �β)
7. �α → (α ∧ ��α)
8. K�α → �Kα,

where p ∈ Prop and α, β ∈ SF. Note that LSS comprises the standard modal
proof rules (only), i.e., modus ponens and necessitation with respect to each
modality.

The last schema is by far the most interesting one, as it displays the interre-
lation between knowledge and effort. The members of this schema are called the
Cross Axioms since [15]. Note that the schema involving only proposition vari-
ables is in accordance with the remark on Definition 1.3 above. (In other words,
it is expressed by the latter schema that the language L essentially speaks about
the development of knowledge.)

As the next step, let us take a brief look at the effect of the axioms from
the above list within the framework of common modal logic. To this end, we
consider bi-modal Kripke models M = (W,R,R′, V ) satisfying the following
four properties:

– the accessibility relation R of M belonging to the knowledge operator K is an
equivalence,

– the accessibility relation R′ of M belonging to the effort operator � is reflexive
and transitive,

– the composite relation R′ ◦ R is contained in R ◦ R′ (this is usually called the
cross property), and

– the valuation V of M is constant along every R′-path, for all proposition
variables.

Such a model M is called a cross axiom model (and the frame underlying M a
cross axiom frame). Now, it can be verified without difficulty that LSS is sound
with respect to the class of all cross axiom models. And it is also easy to see
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that every induced Kripke model is a cross axiom model (and every induced
Kripke frame a cross axiom frame). Thus, the completeness of LSS for cross
axiom models follows from that of LSS for subset spaces (which is Theorem 2.4
in [4]) by means of Proposition 1. This inferred completeness result can be used
for proving the decidability of LSS; see [4], Sect. 2.3. We shall proceed in a similar
way below, in Sect. 5.

3 Subset Spaces with Knowledge-Enabling Functions

The formalisms from the previous section will now be extended to the case of
n agents, where n ≥ 2 is a natural number. We again start with the logical
language, which comprises n new operators C1, . . . ,Cn as of now. Thus, the set
nSF of all n-subset formulas over Prop is defined by the rule

α :: = � | p | ¬α | α ∧ α | Kα | �α | C1α | · · · | Cnα.

Note that SF ⊆ nSF. For i = 1, . . . , n, the modality Ci is called the knowledge-
enabling operator associated with agent i. The syntactic conventions from Sect. 2
apply correspondingly here. Note that there is no need to consider the dual to
Ci separately since Ci will turn out to be self-dual.

Concerning semantics, the crucial modifications follow right now. We directly
turn to the case that there is a leader in knowledge.

Definition 3 (Augmented n-Agent Subset Structures).

1. Let n ∈ N be as above, and let j ∈ {1, . . . , n}. Furthermore, let S = (X,O)
be a subset frame. For all agents i ∈ {1, . . . , n} and states x ∈ X, let fi,x :
O → O be a partial function satisfying the following two conditions for every
U ∈ O.
(a) The value fi,x(U) exists iff x ∈ U , and
(b) if fi,x(U) exists, then x ∈ fi,x(U) ⊆ U . (In this case, we also say that fi,x

is contracting.)
Moreover, assume that, for all i ∈ {1, . . . , n}, the set fj,x(U) is contained in
fi,x(U) whenever x ∈ U . Then, the quadruple

S = (X,O, {fi,x}1≤i≤n,x∈X , j)

is called an augmented n-agent subset frame (or an aa-subset frame for
short), the mappings fi,x, where x ∈ X, are called the knowledge-enabling
functions for agent i, and j is called a leader in knowledge.

2. The notions of neighborhood situation, S-valuation and augmented-n-agent
subset space ( aa-subset space) are completely analogous to those introduced
in Definition 1.

A detailed comment on this definition seems to be appropriate. For a start,
note that the just introduced structures obviously do not correspond to the most
general n-agent scenarios, but have already been adjusted to those indicated in
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the introduction. In fact, not only is an arbitrary agent capable of enabling its
knowledge at any situation (according to (a) of the first item of the previous
definition), but a particular one (namely j) is also doing better than all the
others in this respect (because of the final assumption there). Note that an
agent’s enabling is always a kind of improvement since it is given as a shrinkage
of a knowledge state (due to (b) above). The enabling functions obviously depend
on agents and states of the world.2 Furthermore, the ‘distance’ to the leader can
be measured by the set inclusion relation as well. This will make it possible for
us to express that distance with the aid of the ‘global’ effort operator �, quasi as
a missing effort, later on. (Thus, � may be called the operator closing knowledge
gaps.)

With regard to satisfaction and validity, we need not completely present the
analogue of Definition 2 at this place, but may confine ourselves to the clause for
the new operators.

Definition 4 (Satisfaction). Let S = (X,O, {fi,x}1≤i≤n,x∈X , j) be an aa-
subset frame, M an aa-agent subset space based on S, and x,U ∈ NS a neigh-
borhood situation of S. Then, for every i ∈ {1, . . . , n} and α ∈ nSF,

x,U |=M Ciα : ⇐⇒ x, fi,x(U) |=M α.

Since the operator K can no longer be assigned to a particular agent unam-
biguously, the knowledge of the agents involved in an aa-scenario must still be
defined. We now are in a position to do this, viz through the validity of the
K-prefixed formulas at the respective neighborhood situations. The latter are
understood as those arising from the associated enabling functions as images.
Thus we let, for i ∈ {1, . . . , n}, agent i know α at x,U by definition, iff x,U |=M
Kα and U ∈ Im(fi,x); in other words, K represents factual knowledge after
enabling. (This also concerns the knowledge about another agent’s knowledge.)

This fixing clearly requires a justification. To this end, note that the link
between the relevant knowledge formulas and the semantic structures is accom-
plished ‘externally’ here, i.e., by means of an additional condition having no
direct counterpart in the object language, namely the requirement that the sub-
set component U of the actual neighborhood situation be contained in the image
set of the enabling function for the agent in question. Relating to this, it should
be mentioned that all the knowledge of agents we talk about in this paper is
an ‘ascribed’ one (cf. [5], p. 8), in fact, by the system designer utilizing epis-
temic logic as a formal tool for specifying certain multi-agent scenarios. This
gives us a kind of freedom regarding the choice of the system properties, which
is only limited by the suitability of the approach for the intended applications.
These are clearly limited to some extent by the lesser expressiveness of formulas
here, but the knowledge development of the involved agents can just as well be
described as the leadership in knowledge of a particular agent; see below for
some examples.
2 See footnote 1 above for an alternative way of modeling.
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The final semantic issue to be mentioned is that of induced Kripke structures.
Letting S = (X,O, {fi,x}1≤i≤n,x∈X , j) be any aa-subset frame, the following
definition suggests itself.

(x,U)RCi

S (x′, U ′) : ⇐⇒ (x = x′ and U ′ = fi,x(U)) ,

where i ∈ {1, . . . , n}, x, x′ ∈ X, and U,U ′ ∈ O. With that, the corresponding
analogue of Proposition 1 is obviously valid.

The augmented logic of subset spaces, ALSS, is given by the following list of
axioms and the standard proof rules.3

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �p) ∧ (�p → p)
6. � (α → β) → (�α → �β)
7. �α → (α ∧ ��α)
8. K�α → �Kα
9. Ci(α → β) → (Ciα → Ciβ)

10. Ci¬α ↔ ¬Ciα
11. KCiα → CiKα
12. �α → Ciα
13. Ci�α → Cjα,

where j is the preassigned leader, i ∈ {1, . . . , n}, p ∈ Prop, and α, β ∈ nSF.
Obviously, the first eight schemata of this list coincide with the LSS-axioms

presented in Sect. 2. Thus we only comment on the others here, which are exactly
those involving Ci for i ∈ {1, . . . , n}. Axiom 9 is the usual distribution schema
of modal logic, this time formulated for Ci. The next axiom captures the func-
tionality of the accessibility relation associated with Ci; see, e.g., [7], Sect. 9 (for
the operator next). In the present context, it comes along with the fact that
we have assigned knowledge-enabling functions to the agents. The schema 11 is
formally similar to the eighth one, thus comprising the Cross Axioms for K and
Ci. The last but one schema mirrors the fact that the enabling functions, when
defined, are contracting. With regard to the relational semantics, it says that
the accessibility relation for Ci is contained in that for �. This schema, together
with Axiom 10, is as well responsible for the fact that the counterpart of Axiom
5 is not needed for Ci. The most interesting new schema is the last one. In case
all the involved modalities were equal, we would have the axioms capturing the
weak density of the corresponding accessibility relation; see [7], Sect. 1. However,
regarding augmented n-agent scenarios, the leadership of agent j in knowledge
is thereby expressed.

As to an example of a schema of derived ALSS-sentences, let us recall the
reliably known formulas α ∈ SF from [4], which satisfy Kα → �Kα ∈ LSS

3 That is to say, the necessitation rule for each of the Ci’s is added to the proof rules
for LSS.
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by definition. We now define accessibly known formulas α ∈ nSF by analogy
with that through the condition that Kα → CiKα be in ALSS. Then, for every
α ∈ nSF, the formula �α is of this type, as expected. In fact, K��α can be
deduced from K�α because of Axiom 7, from which we obtain �K�α with the
aid of Axiom 8. Now, Axiom 12 implies CiK�α.

Finally in this section, it is proved that the logic ALSS is sound with respect
to the class of all aa-subset spaces.

Proposition 2. Let M = (X,O, {fi,x}1≤i≤n,x∈X , j, V ) be an aa-subset space.
Then, every axiom from the above list is valid in M and every rule preserves
validity.

Proof. We confine ourselves to the last schema of the axioms. Let Ci�α → Cjα
be an instance of this, and let x,U |=M Ci�α be satisfied for any neighbourhood
situation of the frame underlying M. According to Definition 4, this means that
x, fi,x(U) |=M �α. Thus, x, fi,x(U) |=M α for all U ′ ∈ O such that x ∈ U ′ ⊆
fi,x(U). It follows that x, fj,x(U) |=M α holds in particular, because of the
leader-in-knowledge condition from Definition 3.1. Consequently, x,U |=M Cjα.
This proves (the particular case of) the proposition.

Regarding the relational semantics, it will be seen that a certain property of
lying in between corresponds to the schema treated in the preceding proof, as
it is the case with the related axioms for weak density. We, therefore, call that
schema ad hoc the lying-in-between axioms. These will crucially be utilized in
the next section.

4 Completeness

In this section, we present the peculiarities required for proving the semantic
completeness of ALSS on the class of all aa-subset spaces. As it is mostly the
case with subset space logics, the overall structure of such a proof consists of an
infinite step-by-step model construction.4 Using such a procedure seems to be
necessary, since subset spaces in a sense do not harmonize with the main modal
means supporting completeness, viz canonical models.

The canonical model of ALSS will come into play nevertheless. So let us fix
some notations concerning that model first. Let C be the set of all maximal
ALSS-consistent sets of formulas. Furthermore, let K−→ , �−→ , and Ci−→ be the
accessibility relations induced on C by the modalities K, �, and Ci, respectively,
where i ∈ {1, . . . , n}. And finally, let α ∈ nSF be a formula which is not contained
in ALSS. Then, we have to find a model for ¬α.

This model is constructed stepwise and incrementally in such a way that bet-
ter and better intermediary structures are obtained (which means that more and
4 One or another proof of that kind can be found in the literature; see, e.g., [4] for a

fully completed proof regarding LSS and [9] for a particular multi-agent variation.
Thus, it is really sufficient to confine ourselves to the case-specific issues here (which
are quite difficult enough in themselves).
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more existential formulas are realized). In order to ensure that the finally result-
ing limit structure behaves as desired, several requirements on those approxi-
mations have to be met at every stage. This makes up the technical core of the
proof, of which the specific features are described reasonably accurately in a
minute.

First, however, we need a lemma.

Lemma 1. Let n, j ∈ N be fixed as in the previous section. Suppose that s, t ∈ C
are maximal ALSS-consistent sets of formulas satisfying s

Cj−→ t. Then, for all

i ∈ {1, . . . , n}, there is some u ∈ C such that s
Ci−→u

�−→ t.

Proof. One has to apply the lying-in-between axioms and can argue in a similar
way as in the case of weak density in doing so; cf. [7], p. 26.5

We now describe the main ingredients of the above mentioned approximation
structures. Their possible worlds are successively taken from a denumerably
infinite set of points, Y , chosen in advance. Also, another denumerably infinite
set, Q, is chosen such that Y ∩ Q = ∅. The latter set shall gradually contribute
to a partially ordered set representing the subset space structure of the desired
limit model. Finally, we fix particular ‘starting elements’ x0 ∈ Y , ⊥ ∈ Q, and
Γ ∈ C containing the formula ¬α from above. Then, a sequence of quintuples
(Xm, Pm, jm, {gmi }1≤i≤n, tm) has to be defined inductively such that, for all m ∈
N and i ∈ {1, . . . , n},

– Xm is a finite subset of Y containing x0,
– Pm is a finite subset of Q containing ⊥ and carrying a partial order ≤m with

least element ⊥,
– jm : Pm → P (Xm) is a function satisfying (π ≤m ρ ⇐⇒ jm(π) ⊇ jm(ρ)), for

all π, ρ ∈ Pm,
– gmi : Xm × Pm → Pm is a partial function such that, for all x ∈ Xm and

π ∈ Pm,
• if gmi (x, π) exists, then (x ∈ jm (gmi (x, π)) and π ≤m gmi (x, π))
• if gmi (x, π) and gmj (x, π) exist, then gmi (x, π) ≤m gmj (x, π),

– tm : Xm × Pm → C is a partial function such that, for all x, y ∈ Xm and
π, ρ ∈ Pm,

• tm(x, π) is defined iff x ∈ jm(π); in this case it holds that
∗ if y ∈ jm(π), then tm(x, π) K−→ tm(y, π)

∗ if π ≤m ρ, then tm(x, π) �−→ tm(x, ρ)

∗ if gmi (x, π) = ρ, then tm(x, π) Ci−→ tm(x, ρ)
• tm(x0,⊥) = Γ .

It is now clear how to define the approximating partial functions fm
i,x : Im(jm) →

Im(jm). For all x ∈ Xm and π, ρ ∈ Pm, we let fm
i,x (jm(π)) := jm(ρ) iff gmi (x, π) =

ρ. Then, fm
i,x is contracting and satisfies, for every π ∈ Pm,

5 Note that such a proof is necessary here, since a Sahlqvist argument is insufficient
because ALSS is a non-normal logic.
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– fm
i,x (jm(π)) exists iff gmi (x, π) exists,

– fm
j,x (jm(π)) is contained in fm

i,x (jm(π)) in case both sets exist.

The next five conditions reveal to what extent the final model is approximated
by the structures (Xm, Pm, jm, {gmi }1≤i≤n, tm). Actually, it will be ensured that,
for all m ∈ N and i ∈ {1, . . . , n},

– Xm ⊆ Xm+1,
– Pm+1 is an almost end extension of Pm, i.e., a superstructure of Pm such

that, if an element π ∈ Pm+1 \ Pm is strictly smaller than some element of
Pm, then there are uniquely determined ρ, σ ∈ Pm, x ∈ Xm, and i ∈ {1, . . . , n}
satisfying ρ ≤m σ, σ = gmj (x, ρ), π ≤m+1 σ, and π = gm+1

i (x, ρ) (this means,
in particular, that gmj (x, ρ) and gm+1

i (x, ρ) are defined),
– jm+1(π) ∩ Xm = jm(π) for all π ∈ Pm,
– gm+1

i |Xm×Pm
= gmi ,

– tm+1 |Xm×Pm
= tm.

Note that end extensions are usually dealt with at this point. In the present case,
however, the new elements must suitably be edged in. This requires a different
approach.

Finally, the construction complies with the following requirements on exis-
tential formulas: for all m ∈ N, x ∈ Xm, π ∈ Pm, ∇ ∈ {�,C1, . . . ,Cn}, and
β ∈ nSF,

– if Lβ ∈ tm(x, π), then there are m < k ∈ N and y ∈ jk(π) such that β ∈
tk(y, π),

– if ∇β ∈ tm(x, π), then there are m < k ∈ N and π ≤k ρ ∈ Pk such that
β ∈ tk(x, ρ).

With that, the final model refuting α can be defined easily. Furthermore, a
relevant Truth Lemma (cf. [3], 4.21) can be proved for it, from which the com-
pleteness of ALSS with respect to the augmented n-agent semantics follows imme-
diately. Thus, it remains to specify, for all m ∈ N, the approximating structures
(Xm, Pm, jm, {gmi }1≤i≤n, tm) in a way that all the above requirements are met.

Since the case m = 0 is quite obvious, we only focus on the induction step.
Here, some existential formula γ contained in some maximal ALSS-consistent set
tm(x, π), where x ∈ Xm and π ∈ Pm, must be made true according to the last
group of the above requirements. We confine ourselves to the case of the enabling
operator associated with agent i, where i ∈ {1, . . . , n}. So let γ = Ciβ ∈ tm(x, π)
be satisfied. Then, we distinguish two cases, each one of which having two sub-
cases. First, let i = j. If gmj (x, π) is undefined, then this case is less interesting
because the same proceeding as in the �-case leads to success; cf. [4]. Note how-
ever that here is the place where the status of definiteness of the function gj
is changed, namely for the argument (x, π). On the other hand, if gmj (x, π) is
defined, then nothing has to be changed and everything goes well because of
the functionality of Cj . Now, let i 	= j. Then, we may assume that ρ = gmj (x, π)
has already been defined; see the remark right before Theorem 1 below. The case
that gmi (x, π) as well has been defined in advance is easy, too. Thus suppose that
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gmi (x, π) is undefined. In this case, we choose both a new point y ∈ Y and a fresh
σ ∈ Q, and we let Xm+1 := Xm ∪ {y} and Pm+1 := Pm ∪ {σ}. The partial order
is extended to Pm+1 by letting π ≤m+1 σ ≤m+1 ρ and σ be not comparable with
any other element not less than π. The function jm+1 is defined as follows. We let
jm+1(τ) := jm(τ) ∪ {y} for all τ ≤m π and jm+1(σ) := jm(ρ) ∪ {y}; for all other
arguments, jm remains unchanged. Furthermore, the extension of the function
gmi is defined by gm+1

i (x, π) := σ. Finally, the mapping tm has to be adjusted.
From the Existence Lemma of modal logic (see [3], 4.20) we know that there is
some point Γi of C such that tm(x, π) Ci−→ Γi and β ∈ Γi. Thus, we define the
new part of tm+1 by tm+1(x, σ) = tm+1(y, σ) := Γi, and tm+1(y, τ) := tm(x, τ)
for all τ ≤m π; moreover, the maximal consistent set which is to be assigned to
a pair (z, σ) where x 	= z ∈ jm(ρ), is obtained in the following way. We know

from the induction hypothesis that tm(z, π)
Cj−→ tm(z, ρ) is valid. From Lemma1

we therefore obtain the existence of a maximal ALSS-consistent set Δ satisfying
tm(z, π) Ci−→ Δ

�−→ tm(z, ρ). Now we let tm+1(z, σ) := Δ. This completes the
definition of tm+1 and thus that of

(
Xm+1, Pm+1, jm+1, {gm+1

i }1≤i≤n, tm+1

)
in

the case under consideration.
We must now check that the properties stated in the second group of require-

ments are satisfied and that the validity of those stated in the first group is
transferred from m to m + 1. Doing so, several items prove to be evident from
the construction. In some cases, however, the particularities of the accessibility
relations on C like the two cross properties have to be applied. Further details
regarding this must be omitted here.

As to the realization of existential formulas, it has to be ensured that all
possible cases are eventually exhausted. To this end, processing must suitably
be scheduled with regard to each of the involved modalities. This can be done
with the aid of appropriate enumerations. Concerning details relating to this, the
reader is referred to [4] again, but not before we have mentioned that one should
keep in mind to rearrange, if need be, those enumerations in such a way that
some Cj-formula is treated before any Ci-formula at all times, i.e., for any pair
(x, π) (which is clearly possible). All this finally yields the subsequent theorem.

Theorem 1 (Completeness). Let α ∈ nSF be a formula which is valid in all
aa-subset spaces. Then α belongs to the logic ALSS.

Concluding this section, we would like to stress that the functionality of the
knowledge-enabling operators is a decisive prerequisite for the success of the
above model construction.

5 Decidability

The standard method for proving the decidability of a given modal logic is
filtration. By that method, inspection of the relevant models is restricted to those
not exceeding a specified size, in this way making a decision procedure possible.
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However, just as subset spaces do not harmonize with canonical models, they
are incompatible with filtration. A detour is therefore required, which takes us
back into the relational semantics. In the following, we shall single out a class
of multi-modal Kripke structures for which ALSS is as well sound and complete,
and which is closed under filtration in a suitable manner. This will give us the
desired decidability result. Subsequently, K is supposed to correspond to R, �
to R′, and Ci to Si for i = 1, . . . , n. Furthermore, let j ∈ {1, . . . , n} be given in
advance.

Definition 5 (AA-Model). Let M := (W,R,R′, S1, . . . , Sn, V ) be a multi-
modal Kripke model, where R,R′, S1, . . . , Sn ⊆ W × W are binary relations and
V is a valuation. Then M is called an aa-model (with j the leader in knowledge),
iff the following conditions are satisfied.

1. R is an equivalence relation,
2. R′ is reflexive and transitive,
3. Si is a functional relation contained in R′, for every i ∈ {1, . . . , n},
4. each of the pairs (R,R′), (R,S1), . . . , (R,Sn) satisfies the cross property,
5. Sj ⊆ Si ◦ R′ for every i ∈ {1, . . . , n}, and
6. for all proposition variables, the valuation V of M is constant along every

R′-path.

Note that the fifth item of the previous definition represents the relational version
of the lying-in-between property.

The class of all Kripke models induced by an aa-subset space (see Sect. 2 and,
respectively, Sect. 3 for this notion) is contained in the class of all aa-models, as
can be seen easily. It follows that ALSS is (sound and) complete with respect
to the latter class; see the remark at the end of Sect. 2. It suffices therefore, in
order to prove the decidability of ALSS, to show that the class of all aa-models
is closed under filtration.

To this end, let an ALSS-consistent formula α ∈ nSF be given. Then, a filter
set of formulas, involving the set sf(α) of all subformulas of α, is defined as
follows. We start off with Σ0 := sf(α) ∪ {¬β | β ∈ sf(α)}. In the next step,
we take the closure of Σ0 under finite conjunctions of pairwise distinct elements
of Σ0. After that, we close under single applications of the operator L. And
finally, we join the sets of subformulas of all the elements of the set obtained
last. (This final step is necessary because L was introduced as an abbreviation.)
The resulting set of formulas, denoted by Σ, is quite similar to the one used for
LSS in [4] and will meet the case-specific requirements here. Note that Σ is a
finite set.

Now, the canonical model of ALSS is filtered through Σ. As a filtration of
the corresponding accessibility relations, we take the smallest one in each of the
n + 2 cases. Let M = (W,R,R′, S1, . . . , Sn, V ) be the resulting model, where
the valuation V shall be in accordance with Definition 5.6 for the proposition
variables outside of Σ. Then, the following lemma is crucial.

Lemma 2. The structure M is a finite aa-model. Furthermore, the size of M
can be computed from the length of α.
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Proof. The finiteness of W follows from that of Σ, and we must now show that
the six conditions from Definition 5 are satisfied. Due to space limitations, we
must be rather brief in doing so. Taking into account the way the filter set Σ
was formed, the verification of 1 and 4 is lengthy, but not very difficult. The
reflexivity of R′ can easily be concluded from the mere fact that M is the result
of a filtration. Moreover, establishing the transitivity of R′ is covered by the
proof of Lemma 2.10 from [4]. Both the inclusions Si ⊆ R′, where i ∈ {1, . . . , n},
and the validity of 6 for the proposition variables occurring in Σ arise from the
circumstance that we have chosen the smallest filtration in each case. The same
is true of the functionality of the relations Si, but this is not completely obvious.
In fact, the (suitably adapted) Fun-Lemma 9.9 from [7] must be applied for it,
ensuring that every Si-successor of an arbitrary point of W is of equal value
in regard to the validity of the formulas from Σ so that any of them can be
selected. (It will become clear in a minute which one will actually be the right
one.) Thus the verification of the fifth condition only still requires an argument.
Fortunately, the characteristic features of a smallest filtration again help so that
we are done after mentioning the following. For any starting point w ∈ W , the
relational lying-in-between property can be realized with the aid of an arbitrarily
chosen Sj-successor of w, with thereby determining the appropriate Si-successor
of that point through the correspondingly utilized lying-in-between relation on
the canonical model; as to the validity of the latter, see Lemma 1. In this manner,
the lemma is proved.

The desired decidability result is now an immediate consequence of Lemma 2
and the facts stated at the beginning of this section.

Theorem 2 (Decidability). The logic ALSS is a decidable set of formulas.

This is what we can say about the effectiveness properties of the logic ALSS for
the moment.

6 Conclusion

First in this section, the results obtained in this paper are summarized. Then, we
comment on some further points, including possible extensions of our approach.

A special subset space logic of n agents, denoted by ALSS, has been intro-
duced above. This system has been designed to cover leadership in knowledge,
in particular. We proposed a corresponding axiomatization, which turned out
to be sound and complete with respect to the intended class of models. This
constitutes the first of our main results. The second assures the decidability of
the new logic.

It is to be expected that the complexity of ALSS can be determined not until
solving this problem for the usual logic of subset spaces. As to that, only partial
results are known; see [2,12].

The main reason for the (relative) progress in multi-agent subset spaces
achieved in this paper is the relaxation of the underlying idea of knowledge.
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Accordingly, the agents come in rather indirectly, viz in terms of their enabling
functions. To say it somewhat exaggeratedly, the absence of agent-specific knowl-
edge operators even makes a multi-agent usage of subset spaces possible, at least
for particular epistemic scenarios. Following that idea, a promising new field of
research opens up, in which the issue of other interesting agent interrelation-
ships and their effects on knowledge (not to forget the correspondingly adapted
idea of common knowledge) could be tackled. Relating to this, both [13] (on the
knowledge-theoretic side) and [9] (on multi-subset spaces) may serve as a start-
ing point. (Contrasting the present approach which is new, the recent paper [11]
is based on the latter article to some extent.)

Acknowledgement. I would like to take this opportunity to thank the anonymous
referees very much for their detailed reviews which, among other things, contain valu-
able comments on the system presented here as well as suggestions for alternative
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Abstract. The Lambek calculus can be considered as a version of non-
commutative intuitionistic linear logic. One of the interesting features
of the Lambek calculus is the so-called “Lambek’s restriction,” that is,
the antecedent of any provable sequent should be non-empty. In this
paper we discuss ways of extending the Lambek calculus with the lin-
ear logic exponential modality while keeping Lambek’s restriction. We
present several versions of the Lambek calculus extended with exponen-
tial modalities and prove that those extensions are undecidable, even if
we take only one of the two divisions provided by the Lambek calculus.

Keywords: Lambek calculus · Linear logic · Exponential modalities ·
Lambek’s restriction · Undecidability

1 Introduction

The Lambek calculus was introduced by J. Lambek in [9] for mathematical
description of natural language syntax by means of so-called Lambek categor-
ial (type-logical) grammars (see, for example, [4,12,14]). In Lambek grammars,
syntactic categories are represented by logical formulae involving three connec-
tives: the product (corresponds to concatenation of words) and two divisions (left
and right), and syntactic correctness of natural language expressions corresponds
to derivability in the Lambek calculus.

For simplicity, in this paper we consider only the product-free fragment of
the Lambek calculus. First we consider not the Lambek calculus L [9], but its
variant L∗ [10]. The difference between L and L∗ is explained in the end of this
introductory section (see “Lambek’s Restriction”).

L∗ is a substructural logic, and here we formulate it as a Gentzen-style
sequent calculus. Formulae of L∗ are called types and are built from variables,
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or primitive types (p, q, r, p1, p2, . . . ) using two binary connectives: \ (left divi-
sion) and / (right division). Types are denoted by capital Latin letters, finite
(possibly empty) sequences of types by capital Greek ones. Λ stands for the
empty sequence. The Lambek calculus derives objects called sequents of the
form Π → A, where the antecedent Π is a linearly ordered sequence of types
and succedent A is a type.

The axioms of L∗ are all sequents A → A, where A is a type, and the rules
of inference are as follows:

A,Π → B

Π → A \ B
(→ \)

Π → A Δ1, B,Δ2 → C

Δ1,Π,A \ B,Δ2 → C
(\ →)

Π,A → B

Π → B / A
(→ /)

Π → A Δ1, B,Δ2 → C

Δ1, B /A,Π, Δ2 → C
(/ →)

For L∗ and other calculi introduced later in this paper, we do not include
cut as an official rule of the system. However, the cut rule of the following non-
commutative form

Π → A Δ1, A,Δ2 → B

Δ1,Π,Δ2 → B
(cut)

is admissible in L∗ [10].
By L∗

/ (resp., L∗
\ ) we denote the fragment of L∗ with only the right (resp.,

left) division connective. Due to the subformula property, these fragments are
obtained from the full calculus simply by restricting the set of rules.

We see that L∗ lacks structural rules (except for the implicit rule of associa-
tivity).

L∗ can be conservatively embedded [1,22] into a non-commutative, intuition-
istic or cyclic, variant of Girard’s [5] linear logic. In the spirit of linear logic
connectives, the Lambek calculus can be extended with the exponential unary
connective that enables structural rules (weakening, contraction, and commuta-
tivity) in a controlled way.

We’ll denote this extended calculus by EL∗. Types of EL∗ are built from
variables using two binary connectives (\ and /) and a unary one, !, called the
exponential, or, colloqually, “bang.” If Γ = A1, . . . , Ak, then by !Γ we denote the
sequence !A1, . . . , !Ak. EL∗ is obtained from L∗ by adding the following rules:

Δ1, A,Δ2 → B

Δ1, !A,Δ2 → B
(! →) !Γ → A

!Γ → !A
(→ !)

Δ → B
!A,Δ → B

(weak)
!A, !A,Δ → B

!A,Δ → B
(contr)

Δ1, B, !A,Δ2 → C

Δ1, !A,B,Δ2 → C
(perm1)

Δ1, !B,A,Δ2 → C

Δ1, A, !B,Δ2 → C
(perm2)

The following theorem is proved in [6,8] and summarized in [7]. A weaker result
that EL∗ with the product and two divisions is undecidable follows from [11].
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Theorem 1. The derivability problem for EL∗ is undecidable.

Lambek’s Restriction

However, the original Lambek calculus L [9] differs from the presented above in
one detail: in L, sequents with empty antecedents are not permitted. This restric-
tion applies not only to the final sequent, but to all ones in the derivation. Thus,
for example, the sequent (q \ q) \ p → p is derivable in L∗, but not in L, though
its antecedent is not empty (but the L∗-derivation involves the sequent → q \ q
with an empty antecedent). Further we shall use the term Lambek’s restriction
for this special constraint. Actually, Lambek’s restriction in L∗ could potentially
be violated only by application of the (→ \) and (→ /) rules, therefore L can be
obtained from L∗ by adding the constraint “Π is non-empty” to these two rules.

At first glance, Lambek’s restriction looks strange and formal, but it is
highly motivated by linguistic applications. In syntactic formalisms based on the
Lambek calculus, Lambek types denote syntactic categories.

Example 1. [12, 2.5] Let n stand for “noun phrase,” then n / n is going to be
a “noun modifier” (it can be combined with a noun phrase on the right pro-
ducing a new, more complex noun phrase: L � n / n, n → n), i.e. an adjective.
Adverbs, as adjective modifiers, receive the type (n / n) /(n / n). Now one can
derive the sequent (n / n) /(n / n), n / n, n → n and therefore establish that, say,
“very interesting book” is a valid noun phrase (belongs to syntactic category n).
However, in L∗ one can also derive (n / n) /(n / n), n → n, where the antecedent
describes syntactic constructions like “very book,” that in fact aren’t correct
noun phrases.

This example shows that, for linguistic purposes, L is more appropriate
than L∗.

Suprisingly, however, it is not so straightforward to add the exponential to
L or to impose Lambek’s restriction on EL∗. In Sect. 2 we discuss several ways
how to do this and define a number of the corresponding calculi.

In Sect. 3 we state and prove undecidability results for calculi defined in
Sect. 2. Finally, Sect. 4 contains general discussion of the results and possible
directions of future work.

2 Imposing Lambek’s Restriction on EL∗

2.1 The First Approach: ELwk

The first, näıve way of imposing Lambek’s restriction on EL∗ is to restrict
only rules (→ \) and (→ /). Notice that all other rules, including rules for the
exponential, preserve the non-emptiness of the antecedent. Denote the calculus
by ELwk.

However, such a restriction doesn’t change things significantly, since the fol-
lowing lemma provides the non-emptiness of the antecedent for free:
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Lemma 1. Let p be a variable not occurring in a sequent Γ → A. Then

EL∗ � Γ → A ⇐⇒ ELwk � !p, Γ → A.

This lemma shows that EL∗-derivations can be enabled in ELwk by an easy tech-
nical trick. Therefore, Theorem 1 implies immediately that ELwk is undecidable.

Lemma 2. ELwk � !B,Γ → A ⇐⇒ EL∗ � !B,Γ → A.

These two lemmas are proved by induction on the derivations (recall that (cut)
is not included in the calculi).

Thus, Lambek’s restriction in ELwk vanishes as soon as the antecedent con-
tains a formula with ! as the main connective. And, unfortunately, this acts
non-locally: once !A appears in the antecedent, one can derive unwanted things
like “very book” (see Example 1 above).

2.2 The Second Approach: EL−

To overcome that !B is able to mimic the empty antecedent, we impose more
radical restrictions by constructing the following calculus EL−.

Any formula not of the form !B is called a non-bang-formula. Now EL− is
defined by the following axioms and rules:

A → A

A,Π → B

Π → A \ B
(→ \), where Π contains a non-bang-formula

Π,A → B

Π → B / A
(→ /), where Π contains a non-bang-formula

Π → A Δ1, B,Δ2 → C

Δ1,Π,A \ B,Δ2 → C
(\ →)

Π → A Δ1, B,Δ2 → C

Δ1, B / A, Π, Δ2 → C
(/ →)

Δ1, A,Δ2 → B

Δ1, !A,Δ2 → B
(! →), where Δ1, Δ2contains a non-bang-formula

Δ → B

!A,Δ → B
(weak)

!A, !A,Δ → B

!A,Δ → B
(contr)

Δ1, B, !A,Δ2 → C

Δ1, !A,B,Δ2 → C
(perm1)

Δ1, !B,A,Δ2 → C

Δ1, A, !B,Δ2 → C
(perm2)

Note that in the (→ !) rule all the formulae in the antecedent are of the form
!B. Therefore there is no (→ !) rule in EL−. Also note that the cut rule is not
included in EL−.

Lemma 3. If Π → A is derivable in EL− and doesn’t contain non-bang-
formula, then it is of the form !Γ → !B, where B is a formula from Γ .
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Now Lambek’s restriction in EL− is stated in the following way: in a non-trivial
derivable sequent Π → A the antecedent Π should contain at least one non-bang-
formula.

2.3 The Third Approach: EL

Unfortunately, EL− doesn’t respect type substitution: e.g., EL− � p, !(p \ q) → q,
but EL− �� !r, !(!r \ q) → q. The original Lambek calculus has type substitution,
and for a decent logical system it is a desired property.

In order to restore type substitution as much as possible we consider the
third approach to imposing Lambek’s restriction on EL∗.

We present such a system in the form of marked sequent calculus. A marked
sequent is an expression of the form Π → A, where A is a type and Π is a
sequence of pairs of the form 〈B,m〉, written as B(m), where B is a type and
m ∈ {0, 1} is the marking bit. A pair B(0) is called an unmarked type, and B(1)

is called a marked type. The marking bits are utilized inside the derivation, and
in the end they are forgotten, yielding a sequent in the original sense. If Γ =
B1(m1), . . . , Bk(mk), then by !Γ we denote the sequence (!B1)(m1)

, . . . , (!Bk)(mk)
.

Lambek’s restriction is now formulated as follows: every sequent should con-
tain an unmarked type in the antecedent.

The calculus EL is defined in the following way:

p(0) → p

Π,A(m) → B

Π → B / A
(→ /), where Π contains an unmarked type

A(m),Π → B

Π → A \ B
(→ \), where Π contains an unmarked type

Π → A Δ1, B(m),Δ2 → C

Δ1, (B / A)(m),Π,Δ2 → C
(/ →)

Π → A Δ1, B(m),Δ2 → C

Δ1,Π, (A \ B)(m),Δ2 → C
(\ →)

Δ1, A(m),Δ2 → B

Δ1, (!A)(1),Δ2 → B
(! →), where Δ1, Δ2 contains an unmarked type

!Γ,Δ → A

!Γ, !Δ → !A
(→ !)

Δ1,Δ2 → A

Δ1, (!A)(1),Δ2 → A
(weak)

(!A)(m1)
, (!A)(m2)

,Δ → B

(!A)(min{m1,m2}),Δ → B
(contr)

Δ1, B(m2), (!A)(m1)
,Δ2 → C

Δ1, (!A)(m1)
, B(m2),Δ2 → C

(perm1)
Δ1, (!B)(m2)

, A(m1),Δ2 → C

Δ1, A(m1), (!B)(m2)
,Δ2 → C

(perm2)
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Recall that all proofs are cut-free. Also note that in EL we use a stronger
form of the (→ !) rule. In EL∗ this new rule could be simulated by applying the
(! →) rule for all formulae in Δ and then using the original (→ !) rule, but here
the (! →) rule will fail to satisfy the restriction.

The substitution property is now formulated as follows:

Proposition 1. Let Ã (resp., Π̃) be the result of substituting D for p in type A

(resp., marked sequence Π). Then EL � Π → A implies EL � Π̃ → Ã.

Proof. By structural induction on D we prove that EL � D(0) → D for every
type D. Then we just replace p with D everywhere in the proof.

Compare EL with EL−. These two systems are not connected with any
strong form of conservativity or equivalence: on one hand, the sequent
!r, r \ !p, !(p \ q) → q is derivable in EL−, but not in EL; on the other hand,
for !p, !(!p \ q) → q the situation is opposite. Fortunately, the following holds:

Lemma 4. If Γ , Π, and A do not contain !, then

EL � !Γ,Π → A ⇐⇒ EL− � !Γ,Π → A.

Proof. Since for a sequent of the form !Γ,Π → A the rule (→ !) can never appear
in the proof, marked types in the antecedent are exactly the types starting with
!, and the two versions of Lambek’s restriction coincide.

2.4 Conservativity over L

The three approaches are conservative over L:

Proposition 2. If Π and A do not contain !, then

L � Π → A ⇐⇒ ELwk � Π → A ⇐⇒ EL− � Π → A ⇐⇒ EL � Π → A

(for EL, all types in Π get the 0 marking bit).

Note that Π is necessarily non-empty.
Therefore, we guarantee that in all approaches the innovation affects only

the new exponential connective, and keeps the original Lambek system intact.
For EL− and EL adding fresh exponentials to the antecedent also doesn’t affect
Lambek’s restriction:

Proposition 3. If Π and A do not contain !, and p is a variable not occurring
in Π and A, then EL− � !p,Π → A ⇐⇒ EL � !p,Π → A ⇐⇒ L � Π → A
(for the EL case, !p gets marking bit 1 and types from Π get 0).

For ELwk, due to Lemma 1, the situation is different: if Π and A don’t
contain !, and p is a fresh variable, then

ELwk � Π → A ⇐⇒ EL∗ � !p,Π → A ⇐⇒ L∗ � Π → A.

Recall that, for example, (q \ q) \ p → p is derivable in L∗, but not in L.
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3 Undecidability Results

3.1 Lambek Calculus with Non-Logical Axioms and Generative
Grammars

In this subsection we introduce axiomatic extensions of the Lambek calculus L,
following [3]. These extensions are going to be useful for proving undecidability
results à la Theorem 1.

Let A be a set of sequents. Then by L + A we denote L augmented with
sequents from A as new axioms and also the cut rule (which is no longer elim-
inable). Elements of A are called non-logical axioms.

Further we consider non-logical axioms of a special form: either p, q → r, or
p / q → r, where p, q, r are variables. Buszkowski calls them special non-logical
axioms. In this case, L + A can be formulated in a cut-free way [3]: instead of
non-logical axioms of the form p, q → r or p / q → r we use rules

Π1 → p Π2 → q

Π1,Π2 → r
(red1) and

Π, q → p

Π → r
(red2), where Π �= Λ

respectively. This calculus admits the cut rule [3]. Further we’ll mean it when
talking about L + A. We’ll use the term Buszkowski’s rules for (redi).

Now we define two notions of formal grammar. The first one is the widely
known formalism of generative grammars introduced by Chomsky. If Σ is an
alphabet (i.e. a finite non-empty set), then by Σ∗ we denote the set of all words
over Σ (including the empty word). A generative grammar is a quadruple G =
〈N,Σ, s, P 〉, where N and Σ are two disjoint alphabets, s ∈ N , and P is a set
or rules. Here we consider only rules of two forms: x → y1y2 or x1x2 → y, where
x, y, xi, yi ∈ N ∪ Σ. If v = u1αu2, w = u1βu2, and (α → β) ∈ P , then this
rule can be applied to v yielding w: v ⇒ w. By ⇒∗ we denote the reflexive and
transitive closure of ⇒. Finally, the language generated by G is the set of all
words w ∈ Σ∗, such that s ⇒∗ w. Note that the empty word can’t be produced
by a generative grammar as defined above.

It is well known that the class of languages generated by generative grammars
coincides with the class of all recursively enumerable (r. e.) languages without
the empty word.

The second family of formal grammar we are going to consider is the class of
Lambek categorial grammars with non-logical axioms. A Lambek grammar is a
tuple G = 〈Σ,A,H,�〉, where Σ is an alphabet, A is a set of non-logical axioms,
H is a type, and � ⊆ Tp × Σ is a finite binary correspondence between types
and letter, called type assignment. A word w = a1 . . . an belongs to the language
generated by G iff there exist such types A1, . . . , An that Ai � ai (i = 1, . . . , n)
and L + A � A1, . . . , An → H.

If we use L/ instead of L, we get the notion of L/ -grammar with non-logical
axioms. It’s easy to see that all languages generated by Lambek grammars are
r. e., therefore, they can be generated by generative grammars. Buszkowski [3]
proves the converse:
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Theorem 2. Every language generated by a generative grammar can be gener-
ated by an L/ -grammar with special non-logical axioms.

In comparison, for A = ∅ Pentus’ theorem [17] states that all languages gener-
ated are context-free. Thus, even simple (special) non-logical axioms dramati-
cally increase the power (and complexity) of Lambek grammars.

Since there exist undecidable r. e. languages, Buszkowski obtains the follow-
ing [3]:

Theorem 3. There exists such A that the derivability problem for L/ + A is
undecidable.

3.2 Undecidability Proof for EL− and EL

Recall that EL−, defined in Sect. 2.2, involves two division operations, and no
product. The calculus EL−

/ is the fragment of EL−, where we confine ourselves
only to the right division.

Theorem 4. The derivability problem for EL− and even for EL−
/ is undecid-

able.

We take a set A of non-logical axioms of non-logical axioms of the forms
p, q → r or p / q → r and encode them in EL− using the exponential. Let
GA = {(r / q) / p | (p, q → r) ∈ A} ∪ {r /(p / q) | (p / q → r) ∈ A} and let ΓA be
a sequence of all types from GA in any order. Then the following holds:

Lemma 5. L / + A � Π → A ⇐⇒ EL−
/ � !ΓA,Π → A.

Proof. ⇒ Proceed by induction on the derivation of Π → A in L / + A. If
Π → A is an axiom of the form A → A, then we get EL−

/ � !ΓA, A → A by
application of the (weak) rule.

If A = B / C, and Π → A is obtained using the (→ /) rule, then !ΓA,Π → A
is derived using the same rule:

!ΓA,Π,C → B

!ΓA,Π → B / C

Here Π is not empty, and consists of non-bang-formulae, therefore the appli-
cation of this rule is eligible in EL−

/ ; EL−
/ � !ΓA,Π,C → B by induction

hypothesis.
If Π = Φ1, (B / C), Ψ, Φ2, and Π → A is obtained by (/ →) from Ψ → C and

Φ1, B, Φ2 → A, then for !ΓA,Π → A we have the following derivation in EL−
/ ,

where ∗ means several applications of the rules in any order.

!ΓA, Ψ → C !ΓA, Φ1, B, Φ2 → A

!ΓA, Φ1, (B / C), !ΓA, Ψ, Φ2 → A
(/ →)

!ΓA, !ΓA, Φ1, (B / C), Ψ, Φ2 → A
(perm1)∗

!ΓA, Φ1, (B / C), Ψ, Φ2 → A
(contr,perm1)∗
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Finally, Π → A can be obtained by application of Buszkowski’s rules (red1)
or (red2). In the first case, A = r, Π = Π1,Π2; L + A � Π1 → p, and L + A �
Π2 → q. Furthermore, GA � (r / q) / p, thus we get the following derivation in
EL−

/ :

!ΓA,Π1 → p

!ΓA,Π2 → q r → r

r / q, !ΓA,Π2 → r
(/ →)

(r / q) / p, !ΓA,Π1, !ΓA,Π2 → r
(/ →)

!((r / q) / p), !ΓA,Π1, !ΓA,Π2 → r
(! →)

!ΓA, !((r / q) / p),Π1,Π2 → r
(contr,perm1)∗

!ΓA,Π1,Π2 → r
(contr,perm1)∗

The application of (! →) here is legal, since Π1 and Π2 are non-empty and
consist of non-bang-formulae.

In the (red2) case, A = r, and we have !ΓA,Π, q → p in the induction
hypothesis. Again, GA � r /(p / q), and we proceed like this:

!ΓA,Π, q → p

!ΓA,Π → p / q
(→ /)

r → r

r /(p / q), !ΓA,Π → r
(/ →)

!(r /(p / q)), !ΓA,Π → r
(! →)

!ΓA,Π → r
(contr,perm1)∗

Here, again, Π is not empty and consists of non-bang-formulae, therefore we
can legally apply (! →) and (→ /).

⇐ For deriving sequents of the form !Γ,Π → A, where Γ , Π, and A do
not contain the exponential, one can use a simpler calculus than EL−

/ :

!Γ, p → p

!Γ,Π,B → A

!Γ,Π → A / B
(→ /), where Π �= Λ

!Γ,Π → B !Γ,Δ1, A,Δ2 → C

!Γ,Δ1, A / B, Π, Δ2 → C
(/ →)

!Γ,Δ1, B,Δ2 → A

!Γ,Δ1,Δ2 → A
(! →), where B is a type from Γ and Δ1,Δ2 �= Λ

Here (weak) is hidden into the axiom, (contr) comes within (→ /), and (! →)
includes both (permi) and (contr) in the needed form. One can easily see that
if EL−

/ � !Γ,Π → A, where Γ , Π, and A do not contain !, then this sequent is
derivable in the simplified calculus. Moreover, the (! →) rule is interchangeable
with the others in the following ways:

!Γ,Δ1, C,Δ2, B → A

!Γ,Δ1, C,Δ2 → A / B
(→ /)

!Γ,Δ1,Δ2 → A / B
(! →) �

!Γ,Δ1, C,Δ2, B → A

!Γ,Δ1,Δ2, B → A
(! →)

!Γ,Δ1,Δ2 → A / B
(→ /)
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!Γ,Π → B !Γ,Δ1, A,Δ′
2,D,Δ′′

2 → C

!Γ,Δ1, A / B, Π, Δ′
2,D,Δ′′

2 → C
(/ →)

!Γ,Δ1, A / B, Π, Δ′
2,Δ

′′
2 → C

(! →)

�

!Γ,Π → B

!Γ,Δ1, A,Δ′
2,D,Δ′′

2 → C

!Γ,Δ1, A,Δ′
2,Δ

′′
2 → C

(! →)

!Γ,Δ1, A / B, Π, Δ′
2,Δ

′′
2 → C

(/ →)

And the same, if D appears inside Δ1 or Π. Finally, consecutive applications
of (! →) are always interchangeable.

After applying these transformations, we achieve a derivation where (! →) is
applied immediately after applying (/ →) with the same active type (the other
case, when it is applied after the axiom to p, is impossible, since then it violates
the non-emptiness condition). In other words, applications of (! →) appear only
in the following two situations:

!Γ,Π → p !Γ,Δ1, r / q, Δ2 → A

!Γ,Δ1, (r / q) / p, Π, Δ2 → A
(/ →)

!Γ,Δ1,Π,Δ2 → A
(! →)

and
!Γ,Π → p / q !Γ,Δ1, r,Δ2 → A

!Γ,Δ1, r /(p / q),Π,Δ2 → A
(/ →)

!Γ,Δ1,Π,Δ2 → A
(! →)

Now we prove the statement EL−
/ � !ΓA,Π → A ⇒ L + A � Π → A

by induction on the above canonical derivation. If !ΓA,Π → A is an axiom or
is obtained by an application of (/ →) or (→ /), we apply the corresponding
rules in L + A, so the only interesting case is (! →). Consider the two possible
situations.

In the (r / q) / p case, by induction hypothesis we get L + A � Π → p and
L+A � Δ1, r / q, Δ2 → A, and then we develop the following derivation in L+A
(recall that (cut) is admissible there):

Π → p

p, q → r

p → r / q
(→ /)

Δ1, r / q, Δ2 → A

Δ1, p,Δ2 → A
(cut)

Δ1,Π,Δ2 → A
(cut)

In the case of r /(p / q), the derivation looks like this:

Π → p / q

p / q → r Δ1, r,Δ2 → A

Δ1, p / q, Δ2 → A
(cut)

Δ1,Π,Δ2 → A
(cut)
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Note that in this proof we don’t need any form of the cut rule for EL−.
Now Theorem 4 follows from Theorem 3.

Corollary 1. The derivability problem for EL/ (and, thus, for EL) is
undecidable.

Proof. Similary to Lemma 4 we have that if Γ , Π, and A do not contain !, then
EL/ � !Γ,Π → A ⇐⇒ EL−

/ � !Γ,Π → A.

Of course, everything discussed above can be dually performed for \ instead
of /, yielding undecidability for EL\ and EL−\.

Buszkowski’s rules can be also emulated in EL−
/ without using the (weak)

rule. Thus we get undecidability for the variant with only (perm1), (perm2), and
(contr), and only one division.

4 Conclusion

The derivability problem for the original Lambek calculus, without exponential
modalities, is decidable and belongs to the NP class. This happens because
the cut-free proof of a sequent has linear size with respect to the sequent’s
length. For the full Lambek calculus [18] and for its fragments with any two of
three connectives (two divisions [20] or one division and the product [21]) the
derivability problem is NP-complete.

On the other hand, for derivability problem in L/ there exists a polynomial
time algorithm [19]. Thus the one-division fragment of the Lambek calculus
appears to be significantly simpler. Despite this, in our undecidability results for
EL and EL− we use only one of the two divisions.

Future Work

It appears that the technique used in the ⇐ part of the proof of Lemma 5 is
an instance of focusing [2,15] in the non-commutative situation, which should
be investigated systematically and in detail.

We also plan to investigate calculi with modalities where not all of the struc-
tural rules ((weak), (permi), and (contr)) are kept. Once we remove (contr), the
derivability problem becomes decidable and falls into the NP class. The inter-
esting question is to determine precise complexity bounds (P or NP-hard) for
the fragments with only one division and bang (if we have at least two of the
three Lambek connectives, even the calculus without bang is NP-complete). The
variants where we have only permutational rules (both (perm1) and (perm2),
or only one of them) are particularly interesting for linguistic applications (see,
for example, [12,13]). The other question here is (un)decidability of the variant
without (permi) (only (weak) and (contr)).

In the case of commutative linear logic Nigam and Miller [16] consider calculi
that have several modalities interacting with each other, and different modalities
are controlled by different sets of structural rules. These modalities are called
subexponentials. We plan to study subexponentials in the non-commutative case
under the umbrella of the Lambek calculus.
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Abstract. We present an axiomatic approach that introduces algorith-
mic randomness into various classes of structures. The central concept is
the notion of a branching class. Through this technical yet simple notion
we define measure, metric, and topology in many classes of graphs, trees,
relational structures, and algebras. As a consequence we define algorith-
mically random structures. We prove the existence of algorithmically
random structures with various computability-theoretic properties. We
show that any nontrivial variety of algebras has an effective measure
0. We also prove a counter-intuitive result that there are algorithmi-
cally random yet computable structures. This establishes a connection
between algorithmic randomness and computable model theory.

Keywords: Martin-Löf randomness · Halting problem · Measure ·
Computable infinite structure

1 Introduction

1.1 Background and Motivation

Algorithmic randomness of infinite strings has a captivating history going back
to the work of Kolmogorov [7], Martin-Löf [13], Chaitin [3], Schnorr [18,19]
and Levin [20]. In the last two decades the topic has attracted the attention of
experts in complexity, computability, logic, philosophy, computational biology,
and algorithms. Many algorithmic randomness and related notions for infinite
strings have been introduced and investigated. These include Martin-Löf tests,
Schnorr tests, prefix free complexity, 1-generic sets, K-triviality, martingales,
connections to differentiability, Solovey and related reducibilities. The mono-
graphs by Downey and Hirschfeldt [4] and Nies [15] expose recent advances in
the area. Standard textbooks in the field are Calude [2], Li and Vitanyi [11].

Martin-Löf tests (ML-tests) are central in defining algorithmic randomness in
the setting of infinite strings. The ML-tests are roughly effective measure 0 sets
in the Cantor space {0, 1}ω. In spite of decades of work, research on algorithmic
randomness of infinite strings has excluded the study of randomness for infinite
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structures such as graphs, trees, and algebras. The main reason is that it was
unclear how one would define a meaningful measure in these classes. Through
such a measure it would be possible to introduce algorithmic randomness for
infinite structures.

The concept of algorithmic randomness has a strong intuitive underpinning.
So, it is natural to ask what algebraic, model-theoretic, and computability-
theoretic properties one expects from algorithmically random infinite structures.
We list three of those desirable properties. First, algorithmic randomness should
be an isomorphism invariant property; in other words, ML-randomness should
not be a property of presentations but rather of structures. We call this the
absoluteness property of randomness. Second, algorithmic randomness should be
a property of a collective (large class), the idea that goes back to von Mises [14].
In particular, we would like to have continuum random structures, just like in
the case of infinite strings. Third, there should be no effective way to describe the
isomorphism types of ML-random structures in a formal language, e.g. through
a finite (or effective) set of simple first order logic formulas. We might refer to
this as unpredictability property. For instance, one would not like algorithmically
random structures to be finitely presented (such as finitely presented group).

The three properties that we listed raise many questions. For instance, can
an algorithmically random structure be computable (that is, isomorphic to a
computable structure)? Recall that a computable structure (such as a graph) is
one whose all atomic relations (the edge relation in the case of graphs) and the
domain both are computable. For infinite strings, for instance, no computable
string is algorithmically random; but the Rado graph (also known as the ran-
dom graph) is computable. Another question is whether algorithmic randomness
should be context dependent, e.g. can algorithmic randomness in one class imply
algorithmic randomness in other class? Can a universally axiomatised struc-
ture (such as a group) be algorithmically random in the class of all structures?
More immediate and direct questions concern the differences and similarities
between algorithmic randomness of infinite strings and infinite structures such
as graphs and trees. For example, an important property of ML-random strings
is immunity; the property states that all attempts to effectively list an infinite
subsequence in an ML-random string always fail. So, it is natural to ask if algo-
rithmically random structures possess the immunity-like property. We address
these fundamental questions in this paper.

A natural yet naive way to introduce algorithmic randomness for structures
is to identify structures with binary strings coding the atomic diagrams of the
structures. With this identification, call a structure string-random if the string
coding it is ML-random. In [8] the author proves that all string-random struc-
tures are isomorphic to Fräısse limit of finite structures. In particular, in the
class of graphs, the string-random graph is thus the Rado graph. Hence, (1) all
string-random structures are unique up to isomorphism; they are isomorphic to
a computable structure; (2) string-random structures are described by extension
axioms; (3) the theory of string-random structure is decidable [6]. These defy
the intuitive notion of algorithmic randomness and the three properties discussed
above, and call for an alternative approach.
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1.2 Contributions

The novelty is that the paper develops an axiomatic approach through which
we can reason about algorithmic randomness of infinite structures. This is based
on introducing measures in many natural classes of structures. On particular
contributions, we list the following four:

(1) We introduce the notion of a branching class (or B-class) of finite struc-
tures through a list of axioms. This is a key technical yet simple concept that
establishes a machinery for studying algorithmic randomness in various classes
of structures. Section 2.2 gives many examples of branching classes including
graphs, trees, and algebras. For instance, connected graphs of bounded degree
form a branching class. Hence, one can study ML-randomness in this class; the
class is algebraically rich as it includes Cayley graphs. For a branching class K, we
construct a computable tree T (K) such that the nodes of T (K) represent struc-
tures from K and edges of T (K) represent “one-step” isomorphic embeddings.
Importantly, the class K uniquely determines the class Kω of infinite structures.
The structures from Kω are direct limits of the structures from K and can be
viewed as paths through the tree T (K); there is a bijective operator η → Aη that
associates paths η of T (K) with the structures Aη from Kω. Using the tree T (K),
we equip Kω with measure, topology, and metric. Hence, one can define ML-tests
in the class Kω, and prove that the number of ML-random structures in Kω is
continuum. So, ML-randomness is a property of a collective as we desired above.
The class Kω, by Theorem 1, contains ML-random structures computable in the
halting set. This part of the work extends [8] and our approach here is cleaner
and refined. One technical issue is that the definition of B-classes assumes that
the structures have constants in the signature, and the tree T (K) depends on
the constants. It turns out in all our examples, ML-randomness is independent
on the choice of constants [8]. Hence, randomness introduced is a robust concept
and has the absoluteness property discussed above.

(2) Once the definition of branching classes K is given and a right machin-
ery is developed, the existence of ML-random structures computable in the halt-
ing set is an expected phenomenon. Indeed, such structures correspond to the
leftmost paths of computable finitely branching trees, and these paths are com-
putable in the halting set. The mapping η → Aη mentioned above is a com-
putable operator; so, Aη is computable in any oracle that computes η. Some-
times the opposite is true. For instance, for the class Kω of finitely generated
algebras, the path η can be computed from Aη. Hence, no ML-random algebra
is computable [8]. It has been long believed that no ML-random computable
structures exist [16]. We, however, prove that the situation can be far from the
intuition. Theorem 2 constructs a B-class Sω that contains a computable yet
ML-random structure A. The reason for this phenomenon is that building an
ML-test for the structure A requires an access to the existential theory of A.
In our notation above, while building A we exploit the fact that constructing
the path in the tree T (S) that corresponds to A requires the jump of the open
diagram of the structure. Theorem 2 has two important consequences. One is
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that the theorem reveals intrinsic connections between ML-random structures
and their existential first order theory. The other is that the theorem establishes
an unexpected connection between algorithmic randomness and the theory of
computable structures.

(3) Fix a functional signature σ. Structures of σ are called algebras. Consider
the class of all finitely generated algebras. A variety is a class of algebras closed
under sub-algebras, homomorphisms, and products, e.g. the class of groups is a
variety. Any variety is axiomatised by a set of universally quantified equations.
Theorem 3 proves that the class V of finitely generated algebras that belong to
a nontrivial variety has effective measure 0. This result can be viewed as the
unpredictability property of ML-random structures that we discussed above. The
result confirms our intuition that any effective attempt to formally describe the
isomorphism type of an algorithmically random structure fails. By this theorem,
(1) the class of all finitely generated groups has effective measure 0, and (2) no
set of universally quantified non-trivial equations can describe the isomorphism
type of a ML-random algebra. In particular, no finitely presented algebra (e.g.
group) in a variety is ML-random. For instance, no finitely presented algebra is
ML-random.

(4) Existence of ML-random computable structures implies that no
immunity-like property can be expected from ML-random structures. The under-
lying reason (for the existence of computable ML-random structure) is that, for
the operator η → Aη mentioned above, the construction of η from Aη requires
the jump of the open diagram of Aη. We consider B-classes, that we call jump-
less, where the jump is not needed to compute η from Aη. There are many
examples of jumpless classes, e.g. the class of finitely generated algebras. For
jumpless classes, no ML-random structure is computable. So, the question arises
if ML-random structures in jumpless classes exhibit immunity-like property. The
immunity property, for algebras, is formalised as follows. Call a finitely generated
infinite algebra A effectively infinite if there is a computable infinite sequence t1,
t2, . . . of ground terms whose values in A are pairwise distinct. Otherwise, call
A immune. Immunity of A implies that any effective attempt to list pairwise
distinct elements of A fails. Thus, for the class of algebras the immunity property
can be expressed as follows. Does there exist an effectively infinite ML-random
algebra? Theorem 4 answers the question positively.

2 Branching Classes and Examples

2.1 Embedded Systems, Height Function, and Branching Classes

Fix a relational signature σ = (Rn0
1 , . . . , Rnm

m , c1, . . . , ck), where Rni
i is a rela-

tional symbol of arity ni and cj is a constant symbol. We fix the signature and
identify structures of the signature up to isomorphisms. Note that we have at
least one constant symbol.
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Definition 1. An embedded system of structures is a sequence {(Ai, fi)}i∈ω

such that each Ai is a finite structure of the signature and each fi is a strictly
into embedding from Ai into Ai+1. We call the sequence A0,A1, . . . the base of
the embedded system.

Structures with functional operations are turned into relational structures by
replacing operations with their graphs. We identify such structures with their
relational counterparts that we have just described.

The embedded system {(Ai, fi)}i∈ω has a limit called the direct limit and
denoted by limi(Ai, fi). The direct limit limi(Ai, fi) is infinite as follows from
Definition 1.

Definition 2. An embedded system {(Ai, fi)}i∈ω is strict if its direct limit is
isomorphic to the direct limit of any embedded system with the same base.

For instance, the sequence of finite successor structures An = ({0, . . . , n};S, 0)
with distinguished element 0 is strict.

Let K be a decidable class of finite structures. Let h : K → ω be a computable
function; call h a height function for K. When h(A) = i we say that A has
height i. We postulate that the number of structures from K of height i is finite
for all i. The function h is an isomorphism invariant. Assume that the height
function h : K → ω satisfies the following properties 1:

1. We can compute the cardinality of h−1(i) for every i.
2. For every A ∈ K of height i there is a substructure A[i − 1] of height i − 1

such that all substructures of A of height ≤ i − 1 are contained in A[i − 1].
Hence, the substructure A[i − 1] is the largest substructure of A of height
i − 1.

3. For all A ∈ K of height i and C ⊆ A \A[i− 1], the height of the substructure
C ∪ A[i − 1] is i in case the substructure belongs to K.

The postulates on h imply that for all A ∈ K of height i and j ≤ i there is a
substructure A[j] of height j such that all substructures of A of height ≤ j are
contained in A[j]. Also, A[0] ⊂ A[1] ⊂ . . . ⊂ A[i], where A[i] = A.

Lemma 1. Let K and h be as above. Then for all A,B ∈ K, the structures
A and B are isomorphic if and only if h(A) = h(B) and A[j] = B[j] for all
j ≤ h(A). �	
Let K and h be as above. An important not so trivial lemma is the following:

Lemma 2. All embedded systems of structures from K are strict. �	

1 The next subsection provides many examples of classes with height function. For
now, for the reader a good example of a class with a height function is the class of
rooted finite binary trees.
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As a consequence, every direct limit of embedded systems of structures
{Ai, fi}ı∈ω from the class K is the direct limit of a “canonical” embedded sys-
tem {Bi, gi}ı∈ω such that: (1) the direct limits limi(Ai, fi) and limi(Bi, gi) are
isomorphic, (2) the height of each Bi is i, (3) the embeddings gi are identity
embeddings, and (4) for all i ≤ j we have Bj [i] = Bi[i] = Bi.

We introduce branching classes of structures, a key concept of this paper.

Definition 3. The class K with the height function h is a branching class, or
a B-class for short, if for all A ∈ K of height i there exist distinct structures
B, C ∈ K such that h(B) = h(C) > h(A) and B[i] = C[i] = A.

Consider the class Kω of all direct limits of structures from K. Note that this
class consist of infinite structures. We often refer to Kω as a B-class as well.

2.2 Examples of Branching Classes

We provide examples of B-classes for a better exposition. Some examples are
taken from [8]. The proofs that these classes are branching are not too hard.

Lemma 3. Each of the eight classes PG(d), Tree(d), Str(d), PO(d), PAlg,
OT (2), Sparce(a, b), and H(δ, d) described below is a branching class. �	
Example 1 (Pointed Graphs). A pointed graph of degree d, where d > 2, is
a connected finite graph G with a fixed tuple c̄ such that the degree of every
vertex of G is bounded by d. The edge relation is a symmetric relation E with
no self-loops. Given a vertex v, one computes the shortest path-distance from c
to v. For each pointed graph G, set h(G) be the maximum of all path-distances
from c̄ to vertices v ∈ G. Consider the following class:

PG(d) = {G | there is a v such that distance(c̄, v) = h(G(A)) and
degree(v) < d}.

Example 2 (Rooted Trees). Fix an integer d > 1. Consider the class Tree(d)
of all rooted trees T such that every node of T has not more than d immediate
successors. The height h(T ) of T is the length of the longest path in the tree
from the root.

Example 3 (Structures of Bounded Degree). Let A be a relational struc-
ture with exactly constant symbols c̄. The Gaifman graph of A is the graph
G(A) with vertex set A and an edge between a and b, where a 
= b, if there is
an atomic relation R and a tuple x̄ ∈ R that contains a and b. Say that A is of
bounded degree d if G(A) is a connected graph of bounded degree d. Set h(A) be
the maximum of all path-distances from c to vertices v ∈ G(A). Define:

Str(d) = {A | there is a v such that distance(c̄, v) = h(G(A)) and
degree(v) < d}.
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Example 4 (Orders with the Least Element). Let (P ;≤) be a partially
ordered set. For p, q ∈ P , q covers p, written C(p, q), if p ≤ q & p 
= q & ¬∃x(p <
x < q). Call the partially ordered set P = (P ; ≤, C) of bounded degree d if
every element in it has at most d covers. The height h(P) of P is the length of
the longest chain in it. Consider the following class:

PO(d) = {P | P has the least element, has height h and is of bounded degree
d}

Example 5 (Algebras). Consider algebras A of signature f1, . . . , fn, c1, . . . , cm

consisting of function symbols and constants. The algebra A is c-generated if
every element a of A is the interpretation of some ground term t; in other words,
if every element of A is obtained from constants by a chain of atomic operations
of A. Call the term t a representation of a in A.

The height h(t) of a ground term t is defined by induction. If t = ci then
h(t) = 0. If t is of the form fi(t1, . . . , tki

), then h(t) = max{h(t1), . . . , h(tki
)}+1.

For a c-generated algebra A the height h(a) of an element a ∈ A is the minimal
height among the heights of all the ground terms representing a. The height
h(A) of A is the supremum of all the heights of its elements.

A c-generated algebra is finite if and only if there exists an n such that all ele-
ments of A have height at most n. So, infinite c-generated algebras have height ω.

Let A be a c-generated algebra and n ∈ ω. Set: A(n) = {a ∈ A | h(a) ≤ n}.
Each ki-ary atomic operation fi of A defines a partial operation fi,n on A(n) as
follows. For all a1, . . . , aki

∈ A(n) the value of fi,n(a1, . . . , aki
) is fi(a1, . . . , aki

) if
h(ai) < n for i = 1, . . . , ki; and fi,n(a1, . . . , aki

) is undefined otherwise. Thus, we
have the partial algebra A(n) on the domain A(n). Every infinite c-generated
algebra A is the direct limit of the embedded system {A(n)}n∈ω. For two c-
generated algebras we have A ∼= B if and only if A(n) ∼= B(n) for all n ∈ ω.
Define:

PAlg = {B | there is an infinite algebra A and n ∈ ω such that B = A(n)}.

Example 6 (Binary Rooted Ordered Trees). The class OT (2) consists of
binary rooted trees where each node has either left or right-child. View these
trees in the signature σ = (L,R, c), where c is the root, L(x, y) iff y is the left
child of x, R(u, v) iff v is the right child of u.

Example 7 (Sparse Graphs). A pointed graph G is (a, b)-sparse if every
subgraph of G with n vertices has ≤ an + b edges, a, b > 0. Set: Sparse(a, b) =
{G |G is (a,b) -sparse graph}.

Example 8 (Hyperbolic Graphs). A pointed graph G of bounded degree d
is δ-hyperbolic if for all x, y, z ∈ G the distance from any shortest path from x
to y to the union of the shortest paths from x to z and from z to y is at most
δ. When d = 0, 0-hyperbolic graphs are just trees. The class of all δ-hyperbolic
graphs is decidable. Set: H(δ, d) = {G | G is δ -hyperbolic graph}.
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3 Martin-Löf Randomness in Kω

3.1 Introducing Measure and Metric

Fix a B-class K with height function h. Consider the class Kω of all direct limits
of structures from K. Note that this class consist of infinite structures. We often
refer to Kω as a B-class as well.

Let rK(n) be the number of all structures from K of height n. This is a
computable function as follows from the definition of B-class. Clearly, rK(n) ≤
rK(n + 1) for all n ∈ ω. We show that the structures from the class Kω can
be viewed as paths through a finitely branching tree T (K). This allows us to
introduce measure and metric into Kω. We now define the tree T (K).

The tree T (K) is defined as follows. The root of the tree T (K) is the empty
set. This is level −1 of T (K). The nodes of the tree T (K) at level n ≥ 0 are
all structures from K of height n. There are exactly rK(n) of them. Let B be a
structure from K of height n. Its successor on T (K) is any relational structure
C of height n + 1 such that B and C[n] coincide at level n.

Lemma 4 (Computable Tree Lemma). For the tree T (K) we have the
following:

1. Given a node x of T (K), we can effectively compute the structure Bx associ-
ated with x. We identify the nodes x and the structures Bx.

2. For each node x in T (K), the structure Bx has an immediate successor. More-
over, we can compute the number of immediate successors of x.

3. For each path η = B0,B1, . . . in T (K) we have: B0 ⊂ B1 ⊂ . . .. Thus, the
union of this chain determines the structure Bη = ∪iBi ∈ Kω.

4. The map η → Bη is a bijection between all infinite paths of T (K) and Kω. �	
For structure A ∈ Kω in a B-class, set A[i] be the largest substructure of A of
height i. The substructure A[i] is correctly defined and is unique.

Definition 4. Define topology, measure and metric in Kω as follows:

(Topology): Let B be a structure of height n. The cone with base B is the set
Cone(B) = {A | A ∈ Kω, and A[n] = B} The cones Cone(B) are form the base
of the topology on Kω.

(Measure): The measure of the cone based at the root is 1. Let Bx be a structure
of height n. Assume that the measure μ(Cone(Bx)) has been defined. Let ex be
the number of structures of height n + 1 that are immediate successors of Bx

in the tree. Then for any immediate successor y of x we set μ(Cone(By)) =
μ(Cone(Bx))/ex.

(Metric): Let A and C be structures from Kω. Let n be the maximal level at
which A[n] and C[n] coincide. Let B be the node of the tree such that A[n] = B.
The distance d(A, C) between A and C is then: d(A, C) = μ(Cone(B)).

The next lemma shows that d is a metric in Kω.



A Quest for Algorithmically Random Infinite Structures, II 167

Lemma 5. The function d is a metric on Kω. �	
The space Kω is compact. Finite unions of cones form clo-open sets in the topol-
ogy. Furthermore, the set of all μ-measurable sets is a σ-algebra. We note that
the metric d defined above for the class of pointed graphs is homeomorphic to
Benjamin-Schramm metric in the class [1].

3.2 ML-randomness in Kω

The set-up above allows us to define ML-random structures in the class Kω

through definitions borrowed from algorithmic randomness. A class C ⊆ Kω

is a Σ0
1-class if there is computably enumerable (c.e.) sequence B0,B1, . . . of

structures from K such that C = ∪i≥1Cone(Bi). Computable enumerability
of B0,B1, . . . implies that given i we can compute the open diagram of Bi; in
particular, we know the cardinality of Bi.

Definition 5. Let K be a B-class. Consider the class Kω of infinite structures.

1. A Martin-Löf test is a uniformly c.e. sequence {Gn}n≥1 of Σ0
1-classes such

that
Gn+1 ⊂ Gn and μ(Gn) < 2−n for all n ≥ 1.

2. A structure A from Kω fails a Martin-Löf test {Gn}n≥1 if A belongs to ∩nGn.
Otherwise, we say that the structure A passes the test.

3. A structure A from K is ML-random if it passes every Martin-Löf test.

If a class C ⊂ Kω is contained in a ML-test, then C has effective measure 0.

It is standard to show that there exists a universal ML-test in the sense that
passing that test is equivalent to passing all ML-tests. Formally, an ML-test
{Un}n≥1 is universal if for any ML-test {Gm}m≥1 we have ∩mGm ⊆ ∩nUn.
A construction of a universal ML-test is the following. Enumerate all ML-tests
{Ge

k}k≥1, where e ≥ 1, uniformly on e and k, and set Un = ∪eG
e
n+e+1. It is

not hard to see that {Un}n≥1 is a universal ML-test. Hence, to prove that a
structure A ∈ Kω is ML-random it suffices to show that A passes the universal
ML-test {Un}n≥1. The class of not random structures has effective measure 0.
Thus, we have the following corollary:

Corollary 1. Let K be a B-class. The number of ML-random structures in the
class Kω is continuum. In particular, for all the examples of B-classes K from
Sect. 2.2, each of the classes Kω contains continuum ML-random structures. �	
We would like to make two important comments. One is that in all the examples
of B-classes K from Sect. 2.2, the tree T (K) depends on the choice of constants.
A natural question is if the constants matter. In [8] it is shown that for the
class of graphs, trees, and finitely generated algebras ML-randomness does not
depend on the constants. For instance, for any connected graph G of bounded
degree, the pointed graph (G, p̄) is ML-random iff (G, q̄) is ML-random. The
proof techniques from [8] can be applied (in a straightforward way) to prove the
following:
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Corollary 2. For all the examples of B-classes K from Sect. 2.2, ML-
randomness is independent on the choice of constants. Hence, ML-randomness
is the isomorphism property of the structures (with constants removed from the
signature). �	
The second comment concerns the measure μ. The measure depends on two
parameters: the function h, and the number of “one-step” extensions of the
structure Bx at node x. The measure μ is defined so that all “one-step” extensions
of x are equally likely to occur. From this view point μ is a simple measure. The
measure can obviously be redefined by taking into account algebraic properties of
the structure Bx (e.g. automorphisms) and its “one-step” extensions. Every such
new measure introduces its own ML-randomness, and this study is a future work.

3.3 Randomness in the Halting Set

We study computable aspects of ML-random structures. from Kω, where K is a
B-class. The following definition goes back to Malcev [12], Rabin [17].

Definition 6. An infinite structure A is computable if it is isomorphic to a
structure with domain ω such that all atomic relations of the structure are com-
putable.

Thus, computability is an isomorphism invariant. Clearly, a structure is com-
putable if and only if it is isomorphic to a structure whose atomic diagram is a
computable set. Next we provide a stronger definition that involves the height
function of the class K.

Definition 7. A computable structure A from Kω is strictly computable if the
size of the substructure A[i] can be effectively computed for all i ∈ ω.

The following proposition gives examples of strictly computable structures.

Proposition 1. The following are true: (a) Every computable c-generated alge-
bra is strictly computable. (b) A computable pointed graph G of bounded degree is
strictly computable iff there is an algorithm that given a vertex v of G computes
degree(v). (c) A computable rooted tree T of bounded degree is strictly com-
putable iff there is an algorithm that given a node v ∈ T computes the number of
immediate successors of v. (d) A computable d-bounded partial order with the
least element is strictly computable iff there exists an algorithm that for every v
element of the partial order computes all covers of v. �	
Strict computability implies non ML-randomness:

Proposition 2. If A is strictly computable then A is not ML-random. �	
Corollary 3. Let A be either an infinite pointed graph or tree or partial order
of bounded degree. If A is computable and its ∃-diagram, that is the set

{φ(ā) | ā ∈ A and A |= φ(ā) and φ(x̄) is an existential first-order formula},

is decidable then A is not ML-random.



A Quest for Algorithmically Random Infinite Structures, II 169

Proof. Decidability of the existential diagrams of computable graphs and trees
allows one to effectively compute the substructures of height i for given i.

A natural class that contains the class of all computable structures is the class of
structures computable in the Halting set. For instance, finitely presented groups
are computable in the halting set. We denote the halting set by H. Here is a
definition.

Definition 8. A structure A is H-computable if it is isomorphic to a structure
with the domain ω whose all atomic relations and operations of A are computable
in H.

Every computable structure is H-computable. The next theorem shows that the
proposition above can’t be extended to H-computable structures.

Theorem 1. Every B-class contains an H-computable ML-random structure. �	
Corollary 4. For all the examples of B-classes K from Sect. 2.2, each of the
classes Kω contains ML-random H-computable structures. �	

4 Computable ML-random structures

Let K be a B-class and A ∈ Kω. There is a path η ∈ T (K) such that the
structure Bη is isomorphic A. The path η can be constructed in the jump of
the open diagram of A. In particular, if A is computable then η is computable
in the halting set H. This observation suggests that some B-classes Kω might
contain ML-random yet computable structures. This intuition is confirmed in
the following theorem:

Theorem 2. There exists a B-class Sω that has a computable ML-random
structure.

Proof. Consider the B-class OT (2) of all finite ordered trees as in Example 6.
Given a tree B from OT (2) we order all the nodes of the tree at the same level
(from left to right) in a natural way. Refer to this order as the level order of the
nodes. We define the following subclass S of OT (2). A binary tree B ∈ OT (2)
belongs to S if the tree B has the following properties:

1. All leaves of B are of the same height,
2. If v in B has the right child then all nodes left of v on the v’s level-order

including v have the left and the right children, and
3. At every level i of B there exists at most one node such that it is the left

child of its parent, and the parent does not have a right child in B.

We provide several properties of the class S.

Lemma 6. If B belongs to S and has height n then there are exactly two non-
isomorphic extensions of B of height n + 1 both in S.
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The next lemma gives a nice algebraic property of trees in S.

Lemma 7. For n ≥ 0, the set of all trees in S of height n form a chain of
embedded structures.

These lemmas imply that there is a natural bijection x → Ax from the set of
all binary strings to the class S. Let � be the lexicographical order on binary
strings. We have:

Corollary 5. Assume that x � y. Then: (1) If |x| ≤ |y| then Ax is embedded
into Ay; and (2) If |x| > |y| then Ax is embedded into Ayz for all z such that
|x| ≤ |yz|.
Thus, we identify the tree T (S) with the full binary tree and use the mapping
x → Ax in our construction of ML-random computable tree in Sω.

Let {Un}n∈ω be the universal ML-test. We construct a computable binary
ordered tree C in Sω such that C passes the ML-test {Un}n∈ω. It suffices to
construct C so that C 
∈ U1. This follows a standard construction of a ML-random
string. Since μ(U1) < 1/2, the complement Sω \U1 is the set of all infinite paths
through a computable tree. The leftmost infinite path η of this tree determines
the structure C. One needs to note then the structure C that corresponds to η is
a computable structure even if η isn’t (in fact, η is a ML-random). The lemmas
above guarantee that C is computable.

5 Measures of Varieties

Consider the class of finitely generated algebras PAlgω (Example 5, Sect. 2.2).
A class of algebras V is a variety if its closed under sub-algebras, homomor-
phisms, and products. The class V is variety iff is axiomatised by a set E of
universally quantified equations [5]. An equation is of the form p(x̄) = q(x̄)
where p, q are terms whose variables are among x̄. Call an equation p(x̄) = q(x̄)
non-trivial if at least one of the terms contains a variable and p 
= q syntacti-
cally. If E contains a non-trivial equation then we call the variety defined by E
a non-trivial variety.

Let V be a variety defined by E and let R be a set of defining relations on
generators c̄. Defining relations are t1(c̄) = t2(c̄), where t1 and t2 are ground
terms. The set of all c-generated algebras that satisfy E and R contains the free
c-algebra A(E,R) in the variety V . This algebra is unique and any c-generated
algebra from V that satisfies R is a homomorphic image of A(E,R). In this
sense, we view the pair E and R as a description of A(E,R). Examples of such
algebras are finitely presented groups. A natural question is if there are finitely
presented yet ML-random algebras. We answer this question in a strongest form:

Theorem 3. The class of all c-generated algebras that belong to a non-trivial
variety has an effective measure 0. Hence, no finitely presented algebra of a non-
trivial variety is ML-random.
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Proof (Sketch). For the proof we use notations and definitions from Example 4
of Sect. 2.2. We also denote the tree T (PAlg) by T .

Let V be a nontrivial variety defined E. Let p(x̄) = q(x̄) be a nontrivial
equation in E. Say that p = f(t1(x̄), . . . , tk(x̄)) and q = g(r1(x̄), . . . , rl(x̄)). It
suffices to show that the variety V ′ defined by one equation p(x̄) = q(x̄) has
effective measure 0.

For each node x at level n of the tree T consider the structure Ax that
corresponds to node x. Define: Ux = {b̄ | either p(b̄) or q(b̄) is not defined}.
Call a node x potential if p(b̄) = q(b̄) in Ax for all b̄ 
∈ Ux. Potentiality indicates
that Cone(Ax) might contain an algebra from V . If x is not potential then
Cone(Ax) contains no algebra from V .

Roughly, probability that a partial algebra extends Ax, where x is potential,
and satisfies p(b̄) = q(b̄) for some b̄ ∈ Ux is small. This is the underlying intuitive
reason for V to have effective measure 0.

Corollary 6. No finitely generated ML-random algebra exists that satisfies a
nontrivial set of equations. Hence, no ML-random group, monoid, or lattice
exists. �	
We describe finitely axiomatised varieties with non-zero measure. The last part
of the corollary follows from the results in [10].

Corollary 7. A measure of a finitely axiomatised variety V is either effectively
0 or a rational number > 0. The latter case occurs iff the variety is axiomatised
by a trivial set of equations. Moreover, μ(V ) > 0 iff V is a finite union of
cones. �	

6 ML-randomness and Immunity

Let K be a B-class. The bijective operator η → Aη is such that the structure Aη

is computable in η. In contrast, the inverse mapping Aη → η requires the jump
of the open diagram of Aη to compute η. The following definition removes this
disparity:

Definition 9. Call a B-class jumpless if for every structure Aη in Kω the path
η can be constructed with an oracle for the open diagram of Aη.

For instance, the class of PAlg is jumpless. Every computable structure A in a
jumpless class Kω is strictly computable. Hence, by Proposition 2 we have:

Corollary 8. No computable structure in a jumpless class is ML-random. �	
Every Martin-Löf random string α possesses the immunity property. The prop-
erty states α contains no computable infinite substring. A natural question arises
if such phenomenon occurs for ML-random structures in jumpless B-classes. We
formalise this idea for the class of algebras:
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Definition 10. A an infinite c-generated algebra is effectively infinite if there
exists an infinite computably enumerable sequence t0, t1, . . . of ground terms such
that the values of the ground terms in the algebra are all pairwise distinct. Oth-
erwise, we call the algebra immune.

Immune algebras have undecidable word problem. It is also not too hard to
provide examples of immune c-generated algebras. For instance in [9] the author,
using Kolmogorov complexity, constructs an immune finitely generated algebra
with computably enumerable word problem.

Thus, the question above becomes if there exists a jumpless B-class that
contains an ML-random effectively infinite algebra. Here is our positive answer:

Theorem 4. There exists a jumpless B-class of algebras such that every ML-
random structure in the class is effectively infinite.

Proof. We use the class S defined in Theorem 2. Our class K will be a class of
algebras of signature (L,R, c) where L and R are unary function symbols, and
c is a constant.

Let B ∈ S. We turn B into a partial algebra B′. Assume that height of B is n.
For every node a ∈ B of height n, set L(a) and R(a) undefined. For every other
a ∈ B, if b is the left child of a, we set L(a) = b. Note that every a in B of height
< n has a left child. If a has a right child c, we set R(a) = c. Otherwise, we set
R(a) = L(a). Define the following class K: K = {B′ | B ∈ S}. The following is
easy:

Lemma 8. The class K is a jumpless B-class such that there is an effective one
to one correspondence between ML-tests in Sω and Kω.

Thus, given A ∈ Sω, we can transform A into algebra A′ just as we described
above. In other words, Kω = {A′ | A ∈ Sω}. However, the operator A → A′ is
such that constructing A′ from A requires the haltings set H.

The rest of the proof is clear. Indeed, every algebra A′ in Kω is effectively
infinite; in the algebra A′ the sequence of terms r, L(r), LL(r), LLL(r), . . .,
where r is the root, is an effective infinite sequence of ground terms whose values
in A′ are pairwise distinct. Hence, all ML-random algebras in Kω are effectively
infinite.

Many questions are waiting to be investigated. This work calls for the study
of ML-randomness for infinite structures in the setting of computational com-
plexity. This paper shows that jumpless classes contain ML-random structures
computable in the halting set. It would be interesting to sharpen this result by
constructing jumpless classes that contain computably enumerable ML-random
structures. There are other examples of B-classes where randomness can be stud-
ied, e.g. the class of planar graphs of bounded degree. Another interesting task is
the study of ML-randomness in the class of transitive graphs due to connections
to geometric group theory. For transitive graphs, the direct translation of the
techniques of this paper do not work. We also conjecture that there are com-
putable yet ML-random trees and graphs (in the classes of trees and graphs,
respectively). Another possible direction of research is the study of connections
with zero-one laws.
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Abstract. We present a probabilistic justification logic, PPJ, to study
rational belief, degrees of belief and justifications. We establish soundness
and completeness for PPJ and show that its satisfiability problem is
decidable. In the last part we use PPJ to provide a solution to the lottery
paradox.
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1 Introduction

In epistemic modal logic, we use formulas of the form �A to express that A is
believed. Justification logic unfolds the �-modality into a family of so-called jus-
tification terms to represent evidence for an agent’s belief. That is in justification
logic we use t : A to state that A is believed for reason t.

Originally, Artemov developed the first justification logic, the Logic of Proofs,
to give a classical provability semantics for intuitionistic logic [1,2,15]. Later,
Fitting [7] introduced epistemic models for justification logic. As it turned out
this interpretation provides a very successful approach to study many epistemic
puzzles and problems [3,5,14].

In this paper, we extend justification logic with probability operators in order
to accommodate the idea that

different kinds of evidence for A lead to different degrees of belief in A. (1)

In [10] we have introduced a first probabilistic justification logic PJ, which fea-
tures formulas of the form P≥s(t : A) to state that the probability of t : A is
greater than or equal to s. The language of PJ, however, does neither include
justification statements over probabilities (i.e. t : (P≥sA)) nor iterated probabil-
ities (i.e. P≥r(P≥sA)).

In the present paper, we remedy these shortcomings and present the logic
PPJ, which supports formulas of the form t : (P≥sA) as well as P≥r(P≥sA). This
explains the name PPJ: the two P s refer to iterated P -operators. We introduce
syntax and semantics for PPJ and establish soundness and completeness. We also

c© Springer International Publishing Switzerland 2016
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show that satisfiability for PPJ is decidable. In the final part we present an
application of PPJ to the lottery paradox.

Related Work. The design of PPJ follows that of LPP1, which is a probability
logic over classical propositional logic [21,22]. The proofs that we present for PPJ
are extensions of the corresponding proofs for LPP1. Note, however, that these
extensions are non-trivial due to the presence of formulas of the form t : (P≥sA).

Our probability logics are not compact. Consider the set

T := {¬P=0A} ∪ {P<1/nA | n is a positive integer}.

Although every finite subset of T is satisfiable, the set T is not. Hence in order to
obtain a strong completeness result, we use an infinitary rule, which originates
from [21,23].

Milnikel [19] proposes a logic with uncertain justifications. We thoroughly
study the relationship between Milnikel’s logic and our approach in [10] where
we show that three of his four axioms are theorems in our logic and that the
fourth axiom holds under an additional independence assumption.

In the preprint [9], Ghari presents fuzzy variants of justification logic, in
which an agent can have a justification for a statement with certainty between 0
and 1. He introduces fuzzy Fitting models and establishes a graded completeness
theorem. Ghari also shows that Milnikel’s principles are valid in his fuzzy setting.

Recently, Fan and Liau [6] introduced a possibilistic justification logic, which
is an explicit version of a graded modal logic. Their logic includes formulas t :r A
to express that according to evidence t, A is believed with certainty at least r.
However, the following principle holds in their logic:

s :r A ∧ t :q A → s :max(r,q) A.

Hence all justifications for a belief yield the same (strongest) certainty, which is
not in accordance with our guiding idea (1).

Funding. IoannisKokkinis andThomasStuder are supportedby theSNSFproject
153169, Structural Proof Theory and the Logic of Proofs. Zoran Ognjanović is sup-
ported by the Serbian Ministry of Education, Science and Technological
Development.

2 The Probabilistic Justification Logic PPJ

Justification terms are built from countably many constants and countably many
variables according to the following grammar:

t::=c | x | (t · t) | (t + t) | !t

where c is a constant and x is a variable. Tm denotes the set of all terms and
Con denotes the sets of all constants. For any term t and natural number n we
define !0t := t and !n+1t := ! (!nt).
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Let Prop be a countable set of atomic propositions. We denote the set of
rational numbers by Q. Further we set S := Q ∩ [0, 1]. The set of formulas L is
defined by the following grammar1:

A::=p | P≥sA | ¬A | A ∧ A | t : A

where t ∈ Tm, s ∈ S and p ∈ Prop. We employ the standard abbreviations for
classical connectives. Additionally, we set

P<sA ≡ ¬P≥sA P≤sA ≡ P≥1−s¬A
P>sA ≡ ¬P≤sA P=sA ≡ P≥sA ∧ P≤sA

The axiom schemes of PPJ are presented in Fig. 1.

(P) finitely many schemes in the language of L
axiomatizing classical propositional logic

(J) � u : (A → B) → (v : A → u · v : B)

(+) � u : A ∨ v : A → u+ v : A

(PI) � P≥0A

(WE) � P≤rA → P<sA, where s > r

(LE) � P<sA → P≤sA

(DIS) � P≥rA ∧ P≥sB ∧ P≥1¬(A ∧ B) → P≥min(1,r+s)(A ∨ B)

(UN) � P≤rA ∧ P<sB → P<r+s(A ∨ B), where r + s ≤ 1

Fig. 1. Axioms Schemes of PPJ

A constant specification is any set CS that satisfies

CS ⊆ {(c,A) | c is a constant and
A is an instance of some axiom of PPJ}.

A constant specification CS is called:

Axiomatically Appropriate: if for every axiom instance A of PPJ, there exists
a constant c such that (c,A) ∈ CS;

Schematic: if for every constant c, the set {A ∣
∣ (c,A) ∈ CS} consists of all

instances of several (possibly zero) axiom schemes;
Finite: if CS is a finite set;
Almost Schematic: if CS = CS1 ∪ CS2 where CS1 ∩ CS2 = ∅, CS1 is schematic

and CS2 is finite.

1 In order to have a countable language and in order to obtain decidability we restrict
our probabilistic operators to the rational numbers.
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The notion of schematiness will be crucial for establishing decidability for
PPJ.

Let CS be any constant specification. The deductive system PPJCS is the
Hilbert system obtained by adding to the axioms of PPJ the rules (MP), (CE),
(ST) and (AN!) as given in Fig. 2.

axioms of PPJ

+

(AN!) � !nc : !n−1c : · · · : !c : c : A, where (c, A) ∈ CS and n ∈
(MP) if T � A and T � A → B then T � B

(CE) if � A then � P≥1A

(ST) if T � A → P≥s− 1
k
B for every integer k ≥ 1

s
and s > 0

then T � A → P≥sB

Fig. 2. System PPJCS

Note that (ST) is an infinitary rule, which we need to obtain strong com-
pleteness. Observe also the difference in the definitions of rules (MP), (ST) and
(CE) in Fig. 2. Rule (CE) can only be applied to theorems of PPJ (i.e. formulas
that are deducible from the empty set), whereas (MP) and (ST) can always be
applied.

To introduce semantics for PPJCS, we begin with the notion of a basic
evaluation, which is the cornerstone for many interpretations of justification
logic [4,13]. In the following we use P(X) to denote the power set of a set X.

Definition 1 (Basic Evaluation). Let CS be a constant specification. A basic
evaluation for CS, or a basic CS-evaluation, is a function ∗ that maps atomic
propositions to truth values and maps justification terms to subsets of L, i.e.

∗ : Prop → {T,F} and ∗ : Tm → P(L),

such that for u, v ∈ Tm, for c ∈ Con and A,B ∈ L we have:

1.
(
A → B ∈ u∗ and A ∈ v∗) =⇒ B ∈ (u · v)∗

2. u∗ ∪ v∗ ⊆ (u + v)∗

3. if (c,A) ∈ CS then for all n ∈ N we have2:

!n−1c : !n−2c : · · · :!c : c : A ∈ (!nc)∗

We usually write t∗ and p∗ instead of ∗(t) and ∗(p), respectively.

2 We agree to the convention that the formula !n−1c : !n−2c : · · · : !c : c : A represents
the formula A for n = 0.
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Definition 2 (Algebra Over a Set). Let W be a non-empty set and let H
be a non-empty subset of P(W ). We call H an algebra over W iff the following
hold:

– W ∈ H
– U, V ∈ H =⇒ U ∪ V ∈ H
– U ∈ H =⇒ W \ U ∈ H

Definition 3 (Finitely Additive Measure). Let H be an algebra over W
and µ : H → [0, 1]. We call µ a finitely additive measure iff the following hold:

1. µ(W ) = 1
2. for all U, V ∈ H:

U ∩ V = ∅ =⇒ µ(U ∪ V ) = µ(U) + µ(V )

Definition 4 (Probability Space). A probability space is a triple Prob =
〈W,H, µ〉, where:

– W is a non-empty set
– H is an algebra over W
– µ : H → [0, 1] is a finitely additive measure

Definition 5 (Model). Let CS be a constant specification. A PPJCS-model is
a quintuple M = 〈U,W,H, µ, ∗〉 where:

1. U is a non-empty set of objects called worlds
2. W,H, µ and ∗ are functions, which have U as their domain, such that for

every w ∈ U :
– 〈W (w),H(w), µ(w)〉 is a probability space with W (w) ⊆ U
– ∗w is a basic CS-evaluation3

The ternary satisfaction relation |= is defined between models, worlds, and
formulas.

Definition 6 (Truth in a PPJCS-model). Let CS be a constant specification
and let M = 〈U,W,H, µ, ∗〉 be a PPJCS-model. We define what it means for an
L-formula to hold in M at a world w ∈ U inductively as follows:

M,w |= p :⇐⇒ p∗
w = T for p ∈ Prop

M,w |= P≥sB :⇐⇒
(
[B]M,w ∈ H(w) and µ(w)

(
[B]M,w

) ≥ s
)

where [B]M,w = {x ∈ W (w) | M,x |= B}
M,w |= ¬B :⇐⇒ M,w �|= B

M,w |= B ∧ C :⇐⇒ (
M,w |= B and M,w |= C

)

M,w |= t : B :⇐⇒ B ∈ t∗w
3 We will usually write ∗w instead of ∗(w).
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Definition 7 (Measurable Model). Let CS be a constant specification and
let M = 〈U,W,H, µ, ∗〉 be a PPJCS-model. M is called measurable iff for every
w ∈ U and for every A ∈ L:

[A]M,w ∈ H(w)

PPJCS,Meas denotes the class of PPJCS-measurable models.

For a model M = 〈U,W,H, µ, ∗〉, M |= A means that M,w |= A for all
w ∈ U . Let T ⊆ L. Then M |= T means that M |= A for all A ∈ T . Further
T |= A means that for all M ∈ PPJCS,Meas, M |= T implies M |= A.

To be precise we should write T �CS A and T |=CS A instead of T � A
and T |= A, respectively, since these two notions depend on a given constant
specification CS. However, CS will always be clear from the context and we thus
omit it.

Definition 8 (Satisfiability). We say a formula A of L is satisfiable if there
exists a PPJCS-measurable model M = 〈U,W,H, µ, ∗〉 and w ∈ U with M,w |= A.

We established the Deduction Theorem for PJ in [10]. Now we present the version
for PPJ, which can be proved in the same way.

Theorem 1 (Deduction Theorem). Let T ⊆ L and A,B ∈ L. For any
constant specification CS we have:

T,A � B ⇐⇒ T � A → B

3 Soundness and Completeness

As usual, we can establish soundness by induction on the depth of the derivation
of a formula A.

Theorem 2 (Soundness). For any constant specification CS, PPJCS is sound
with respect to the class of PPJCS,Meas-models. I.e. for any A ∈ L and T ⊆ L we
have:

T � A =⇒ T |= A.

The completeness proof for PPJCS is a combination of the completeness proof
for LPP1 [22] and the completeness proof for PJ [10]. For lack of space, however,
we cannot give a detailed completeness proof here. We will only present a series
of definitions and lemmas (without proofs) that leads to the completeness result.
First we need the notion of a PPJCS-consistent set.

Definition 9 (PPJCS-consistent Set). Let CS be a constant specification and
let T be a set of L-formulas.

– T is said to be PPJCS-consistent iff T � ⊥. Otherwise T is said to be PPJCS-
inconsistent.
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– T is said to be maximal iff for every A ∈ L either A ∈ T or ¬A ∈ T .
– T is said to be maximal PPJCS-consistent iff it is maximal and PPJCS-consistent.

The next lemma is shown for PJ in [10]. The proof for PPJCS is similar.

Lemma 1 (Lindenbaum). Let CS be a constant specification. Every PPJCS-
consistent set can be extended to a maximal PPJCS-consistent set.

Definition 10 (Canonical Model). Let CS be a constant specification. The
canonical model for PPJCS is given by the quintuple M = 〈U,W,H, µ, ∗〉, defined
as follows:

– U =
{
w

∣
∣ w is a maximal PPJCS-consistent set ofL-formulas

}

– for every w ∈ U the probability space 〈W (w),H(w), µ(w)〉 is defined as follows:
1. W (w) = U
2. H(w) =

{
(A)M

∣
∣ A ∈ L}

where (A)M =
{
x

∣
∣ x ∈ U,A ∈ x

}

3. for all A ∈ L, µ(w)
(
(A)M

)
= sups {P≥sA ∈ w}

– for every w ∈ W the basic CS-evaluation ∗w is defined as follows:
1. for all p ∈ Prop:

p∗
w =

{
T if p ∈ w

F if ¬p ∈ w

2. for all t ∈ Tm:
t∗w =

{
A

∣
∣ t : A ∈ w

}

Lemma 2. Let CS be a constant specification. The canonical model for PPJCS
is a PPJCS-model.

Lemma 3. Let M = 〈U,W,H, µ, ∗〉 be the canonical model for PPJCS. Then we
have

(∀A ∈ L)(∀w ∈ U)
[
[A]M,w = (A)M

]
.

From Lemma 3 we get the following corollary.

Corollary 1. Let CS be any constant specification. The canonical model for
PPJCS is a PPJCS,Meas-model.

Making use of the properties of maximal consistent sets, we can establish the
Truth Lemma.

Lemma 4 (Truth Lemma). Let CS be some constant specification and let
M = 〈U,W,H, µ, ∗〉 be the canonical model for PPJCS. For every A ∈ L and any
w ∈ U we have:

A ∈ w ⇐⇒ M,w |= A.

Finally, we get the completeness theorem as usual.

Theorem 3 (Strong Completeness for PPJ). Let CS be a constant specifi-
cation, let T ⊆ L and let A ∈ L. Then we have:

T |= A =⇒ T � A.
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4 Decidability for a Fragment of L

Before we can show that satisfiability is decidable for all L-formulas, we have
to show that satisfiability is decidable for a subset Lr ⊆ L that is given by the
following grammar:

A::=p | ¬A | A ∧ A | t : B

where t ∈ Tm, p ∈ Prop, and B ∈ L.
The key fact about Lr is that the truth of an Lr-formula A at a world w in a

PPJCS-model M = 〈U,W,H, µ, ∗〉 only depends on the basic CS-evaluation ∗w.
Hence we can use the notation ∗ |= A if A is a formula of Lr and ∗ is a basic

evaluation. We find that A is satisfiable (in the sense of PPJCS) if and only if
there exists a basic evaluation ∗ such that ∗ |= A.

Therefore, we can use an extension of the usual decision procedure for the
basic justification logic J, see [11,12,20], to decide satisfiability for formulas of Lr.

Theorem 4. Let CS be a decidable almost schematic constant specification.
For any formula A of the restricted language Lr, it is decidable whether A is
satisfiable.

For lack of space, we only give a proof sketch of the above theorem. As in
the decidability proof for J, we make use of schematic variables so that we
can represent a schematic constant specification in a finite way. A key step in
the decidability proof is then to compute a most general unifier for schematic
formulas. This is the step that needs some major adaptations for our probabilistic
setting.

Consider, for example, the scheme (WE) given by P≤rA → P<sA. It has
three schematic variables: A for formulas and r, s for rational numbers. Note
that there is also a side condition, s > r, of which the unification algorithm has
to take care. Hence in addition to constructing a substitution, the unification
algorithm also has to build up a system of linear inequalities for the rational
variables. For instance, in order to unify P≥rA and P≥sB the algorithm has to
unify A and B and to equate r and s, i.e. it adds r = s to the linear system. In
the end, the constructed substitution only is a most general unifier if the linear
system is satisfiable.

Of course, one has to take care of the syntactic abbreviations when represent-
ing axioms. That means, the scheme (WE) actually is P≥1−r¬A → ¬P≥sA with
the side condition s > 1−r (note that the implication again is an abbreviation).

Another complication are constraints of the form

l = min(1, r + s) (2)

that originate from the scheme (DIS). Obviously, (2) is not linear. However, for
a system C of linear inequalities, we find that

C ∪ {l = min(1, r + s)}
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has a solution if and only if

C ∪ {l = r + s, r + s ≤ 1} or C ∪ {l = 1, r + s > 1}

has a solution. Thus we can reduce solving a system involving (2) to solving
several linear systems.

5 Decidability of PPJCS

Definition 11 (Subformulas). The set of subformulas of an L-formula A,
subf(A), is recursively defined by:

subf(p) := {p}
subf(P≥sB) := {P≥sB} ∪ subf(B)

subf(¬B) := {¬B} ∪ subf(B)
subf(B ∧ C) := {B ∧ C} ∪ subf(B) ∪ subf(C)
subf(t : B) := {t : B} ∪ subf(B)

Definition 12. Let A ∈ L and assume that subf(A) = {A1, . . . , Ak}. The set
subfCon(A) contains all sets of the form {±A1, . . . ,±Ak}, where ±Ai is either
Ai or ¬Ai. Elements of subfCon(A) are interpreted conjunctively. That is for
C ∈ subfCon(A), we simply write M,w |= C instead of M,w |= ∧

C. Hence
M,w |= C means that all elements of C are true at w in M . Accordingly, we
say that C is satisfiable if the formula

∧
C is so.

We define the mapping j on sets C of L-formulas by:

j(C) := C ∩ Lr.

Before proving that PPJCS is decidable we need to establish some auxiliary lem-
mata.

Lemma 5. Let M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas and let A ∈ L. Let B ∈
subf(A), let C ∈ subfCon(A) and let w ∈ U . Assume that M,w |= C. Then we
have:

M,w |= B ⇐⇒ B ∈ C.

Proof. We prove the two directions of the lemma separately:
⇐=: From B ∈ C and M,w |= C we immediately get M,w |= B.
=⇒: Since B is a subformula of A, we have either B ∈ C or ¬B ∈ C. If

¬B ∈ C, then we would have M,w |= ¬B, i.e. M,w �|= B, which contradicts the
fact that M,w |= B. Thus, we conclude B ∈ C. ��
Lemma 6. Let CS be a constant specification and let A ∈ L. Then A is satis-
fiable if and only if there exists a set Y = {B1 , . . . , Bn} ⊆ subfCon(A) such
that all of the following conditions holds:
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1. for some i ∈ {1, . . . , n}, A ∈ Bi.
2. for every 1 ≤ i ≤ n, j(Bi) is satisfiable.
3. for every 1 ≤ i ≤ n, there are variables xij with 1 ≤ j ≤ n, such that the

following system of linear inequalities is satisfiable:

n∑

j=1

xij = 1

(∀1 ≤ j ≤ n)
[
xij ≥ 0

]

for every P≥sC ∈ Bi,
∑

{j|C∈Bj}
xij ≥ s

for every ¬P≥sC ∈ Bi,
∑

{j|C∈Bj}
xij < s

Proof. We prove the two directions of the lemma separately:
=⇒: Let M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas. Assume that A is satisfiable in

some world of M .
Let ≈ denote a binary relation over U such that for all w, x ∈ U we have:

w ≈ x if and only if
(∀B ∈ subf(A)

)[
M,w |= B ⇔ M,x |= B

]
.

It is easy to see that ≈ is an equivalence relation. Let K1, . . . ,Kn be the equiv-
alence classes of ≈. For every i ∈ {1, . . . , n} we choose some wi ∈ Ki. For every
i ∈ {1, . . . , n} some subformulas of A hold in the world wi and some do not. So
for every i ∈ {1, . . . , n} there exists a Bi ∈ subfCon(A) such that M,wi |= Bi.
For i �= j we have Bi �= Bj since wi and wj belong to different equivalence
classes. Let Y = {B1, . . . , Bn}. It remains to show that the conditions in the
statement of the lemma hold:

1. Let w ∈ U be such that M,w |= A. The world w belongs to some equivalence
class of ≈, which is represented by wi. Thus M,wi |= A. By Lemma 5 we find
A ∈ Bi, i.e. condition 1 holds.

2. For every 1 ≤ i ≤ n we have M,wi |= Bi. Because of j(Bi) ⊆ Bi we immedi-
ately get M,wi |= j(Bi). Hence condition 2 holds.

3. Let i ∈ {1, . . . , n}. We set

yij = µ(wi)(Kj ∩ W (wi)), for every 1 ≤ j ≤ n.

Some calculations show that these values yij satisfy the linear system in
condition 3.

⇐=: Assume that there exists Y = {B1, . . . , Bn} ⊆ subfCon(A) such that
conditions 1–3 hold. For every 1 ≤ i ≤ n, let ∗i be a basic evaluation such that
∗i |= j(Bi). We define the quintuple M = 〈U,W,H, µ, ∗〉 by:

– U = {w1, . . . , wn} for some w1, . . . , wn.
– For all 1 ≤ i ≤ n we set:
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1. W (wi) = U
2. H(wi) = P(W (wi))
3. µ(wi)(V ) =

∑
{j|wj∈V } xij for every V ∈ H(wi)

4. ∗wi
= ∗i.

We can show that M ∈ PPJCS,Meas. However, we have to omit the proof due to
lack of space.

It remains to show M,wi |= A for some i. We first establish

(∀D ∈ subf(A))(∀1 ≤ i ≤ n)
[
D ∈ Bi ⇐⇒ M,wi |= D

]
(3)

by induction on the structure of D (again we have to omit the proof).
It holds that A ∈ subf(A). Thus, by (3) we find:

(∀1 ≤ i ≤ n)
[
A ∈ Bi ⇐⇒ M,wi |= A

]
.

By condition 1, there exists an i such that A ∈ Bi. Thus, there exists an i such
that M,wi |= A. Hence, A is PPJCS,Meas-satisfiable. ��

In the proof of Lemma 6 we construct a model with at most 2|subf(A)| worlds
that satisfies A. Hence a corollary of Lemma 6 is that any A ∈ L is PPJCS,Meas-
satisfiable if and only if it is satisfiable in a PPJCS,Meas-model with at most
2|subf(A)| worlds. In other words, Lemma 6 implies a small model property for
PPJCS.

Moreover, Lemma 6 dictates a procedure to decide the satisfiability problem
for PPJCS.

Theorem 5. Let CS be a decidable almost schematic constant specification. The
PPJCS,Meas-satisfiability problem is decidable.

Proof. Let A ∈ L. The formula A is satisfiable if and only if there exists some
Y ⊆ subfCon(A), such that all conditions in the statement of Lemma 6 hold.
Since subfCon(A) is finite, it suffices to show that for every Y ⊆ subfCon(A) the
conditions 1–3 in the statement of Lemma 6 can be effectively checked:

– Decidability of condition 1 is trivial.
– Decidability of condition 2 follows from Theorem 4.
– In condition 3 we have to check for the satisfiability of a set of linear inequal-

ities, which is a well-known decidable problem [18].

We conclude that the satisfiability problem for PPJCS is decidable. ��

6 Application to the Lottery Paradox

Kyburg’s famous lottery paradox [16] goes as follows. Consider a fair lottery with
1000 tickets that has exactly one winning ticket. Now assume a proposition is
believed if and only if its degree of belief is greater than 0.99. In this setting it is
rational to believe that ticket 1 does not win, it is rational to believe that ticket 2
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does not win, and so on. However, this entails that it is rational to believe that
no ticket wins because rational belief is closed under conjunction. Hence it is
rational to believe that no ticket wins and that one ticket wins.

PPJCS makes the following analysis of the lottery paradox possible. First we
need a principle to move from degrees of belief to rational belief (this formalizes
what Foley [8] calls the Lockean thesis): we suppose that for each term t, there
exists a term pb(t) such that

t : (P>0.99A) → pb(t) : A. (4)

pb stands for probabilistic belief. Let wi be the proposition ticket i wins. For
each 1 ≤ i ≤ 1000, there is a term ti such that ti : (P= 999

1000
¬wi) holds. Hence by

(4) we get
pb(ti) : ¬wi for each 1 ≤ i ≤ 1000. (5)

Now if CS is axiomatically appropriate, then

s1 : A ∧ s2 : B → con(s1, s2) : (A ∧ B) (6)

is a valid principle (for a suitable term con(s1, s2)). Hence by (5) we conclude
that

there exists a term t with t : (¬w1 ∧ · · · ∧ ¬w1000), (7)

which leads to a paradoxical situation since it is also believed that one of the
tickets wins.

In PPJCS we can resolve this problem by restricting the constant specification
such that (6) is valid only if con(s1, s2) does not contain two different subterms
of the form pb(t). Then the step from (5) to (7) is no longer possible and we can
avoid the paradoxical belief.

This analysis is inspired by Leitgeb’s [17] solution to the lottery paradox and
his Stability Theory of Belief according to which it is not permissible to apply
the conjunction rule for beliefs across different contexts. Our proposed restriction
of (6) is one way to achieve this in a formal system. A related and very interesting
question is whether one can interpret the above justifications ti as stable sets in
Leitgeb’s sense. Of course, our discussion of the lottery paradox is very sketchy
but we think that probabilistic justification logic provides a promising approach
to it that is worth further investigations.

Acknowledgements. We would like to thank the anonymous referees for many valu-
able comments that helped us improve the paper substantially.
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Abstract. The formal system of intuitionistic epistemic logic IEL was
proposed by S. Artemov and T. Protopopescu. It provides the formal
foundation for the study of knowledge from an intuitionistic point of
view based on Brouwer-Hayting-Kolmogorov semantics of intuitionism.
We construct a cut-free sequent calculus for IEL and establish that poly-
nomial space is sufficient for the proof search in it. We prove that IEL is
PSPACE-complete.

Keywords: Modal logic · Intuitionistic epistemic logic · Sequent calcu-
lus · Cut-elimination · PSPACE

1 Introduction

Modal logic IEL, the basic Intuitionistic Epistemic Logic, was proposed by
S. Artemov and T. Protopopescu in [1]. It was defined by the following Hilbert
system:
Axioms

1. Axioms of propositional intuitionistic logic,
2. K(F → G) → (KF → KG) (distribution),
3. F → KF (co-reflection),
4. ¬K⊥ (consistency).

Rule F, F → G � G (Modus Ponens). Here knowledge modality K means
verified truth, as suggested by T. Williamson in [2]. According to the Brouwer-
Heyting-Kolmogorov semantics of intuitionistic logic, a proposition is true iff it
is proved. The co-reflection principle states that any such proof can be verified.

The intuitionistic meaning of implication provides an effective proof checking
procedure that produces a proof of KF given a proof of F . But the assumption
that its output always contains a proof of F is too restrictive. The procedure may
involve some trusted sources which do not necessarily produce explicit proofs of
what they verify1. So the backward implication which is the reflection principle
1 For example, it can be some trusted database that stores true facts without proofs

or some zero-knowledge proof.
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KF → F used in the classical epistemic logic (see [3]) is wrong in the intuition-
istic setting. In general, a proof of KF is less informative than a proof of F .

At the same time some instances of the reflection principle are true in IEL.
In particular, it is the consistency principle which is equivalent to K⊥ → ⊥.
The proof of K⊥ contains the same information as the proof of ⊥ because there
is no such proof at all. The more general example is the reflection principle for
negative formulas: K¬F → ¬F . It is provable in IEL (see [1]).

In this paper we develop the proof theory for IEL. Our main contributions
are the cut-free sequent formulation and the complexity bound for this logic. It
is established that polynomial space is sufficient for the proof search, so IEL is
PSPACE-complete.

Some other sequent cut-free formalization of intuitionistic reasoning about
knowledge was proposed in [4].2 It is based on a bimodal logic with reflexive
knowledge modality K that is different from the co-reflexive modality K used in
IEL.

Our cut-elimination technique is syntactic (see [5]). We formulate a special
cut-free sequent calculus IEL−

G without structural rules (see Sect. 3) that is correct
with respect to the natural translation into IEL. It has a specific K-introduction
rule (KI1) that also allows to contract a formula F in the presence of KF in
antecedents. This choice makes it possible to prove the admissibility of the stan-
dard contraction rule as well as the admissibility of all natural IEL-correct modal
rules (Sects. 4, 5). The admissibility of the cut-rule is proved by the usual induc-
tion on the cutrank (Sect. 6). As the result we obtain the equivalence between
IEL−

G and IEL0G. (The latter is the straightforwardly formulated sequent counter-
part for IEL with the cut-rule). Finally we formulate a light cut-free variant of
IEL−

G with the contraction rule and with modal rules

Γ1, Γ2 ⇒ F
(KI)

Γ1,K(Γ2) ⇒ KF
,

Γ ⇒ K⊥
(U)

Γ ⇒ F
.

It is equivalent to IEL−
G .

The proof search for IEL can be reduced to the case of so-called minimal
derivations (Sect. 7). We implement it as a game of polynomial complexity and
use the characterization AP=PSPACE (see [7]) to prove the upper complexity
bound for IEL. The matching lower bound follows from the same bound for
intuitionistic propositional logic [8].

2 Sequent Formulation of IEL

The definition of intuitionistic sequents is standard (see [5]). Formulas are build
from propositional variables and ⊥ using ∧, ∨, → and K; ¬F means F → ⊥.
2 Sequents in [4] are classical (multiconclusion) and contain special labels denoting

worlds of a Kripke structure, so this formalization can be considered as a classical
formulation of the theory of forcing relation in a Kripke structure that corresponds
to the intuitionistic bimodal epistemic logic.
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A sequent has the form Γ ⇒ F where F is a formula and Γ is a multiset of
formulas. K(Γ ) denotes KF1, . . . , KFn when Γ = F1, . . . , Fn.

Let IEL0G be the following calculus:
Axioms

Γ,A ⇒ A (A is a variable), Γ,⊥ ⇒ F, Γ,K⊥ ⇒ F.

Rules

Γ, F, F ⇒ G
(Contraction)

Γ, F ⇒ G

Γ1 ⇒ F Γ2, F ⇒ G
(Cut)

Γ1, Γ2 ⇒ G

Γ,F,G ⇒ H
(∧ ⇒)

Γ, F ∧ G ⇒ H

Γ ⇒ F Γ ⇒ G
(⇒ ∧)

Γ ⇒ F ∧ G

Γ,F ⇒ H Γ,G ⇒ H
(∨ ⇒)

Γ, F ∨ G ⇒ H

Γ ⇒ Fi
(⇒ ∨)i (i = 1, 2)

Γ ⇒ F1 ∨ F2

Γ ⇒ F Γ,G ⇒ H
(→⇒)

Γ, F → G ⇒ H

Γ,F ⇒ G
(⇒→)

Γ ⇒ F → G

Γ ⇒ F
(KI0)

K(Γ ) ⇒ KF

Γ,F,KF ⇒ G
(KC)

Γ, F ⇒ G

Comment. IEL0G is a straightforwardly formulated sequent counterpart of IEL.
Axioms and rules without the modality correspond to the standard sequent for-
mulation of the intuitionistic propositional logic (cf. system G2i from [5] with
the cut-rule). The modal axiom corresponds to the consistency principle. Modal
rules (KI0) and (KC) reflect the distribution and co-reflection principles respec-
tively. Instead of the K-contraction rule (KC) one can take the equivalent K-
elimination rule:

Γ,KF ⇒ G
(KE)

Γ, F ⇒ G
.

Theorem 1. IEL0G � Γ ⇒ F iff IEL � ∧Γ → F .

Proof. Straightforward induction on the derivations. �	
Our goal is to eliminate the cut-rule. But the cut-elimination result for IEL0G
will not have the desirable consequences, namely, the subformula property and
termination of the proof search procedure. Below we give a different formulation
without these disadvantages.

3 Cut-Free Variant IEL−
G with Rules (KI1) and (U)

Axioms

Γ,A ⇒ A, A is a variable or ⊥.
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Rules

Γ, F,G ⇒ H
(∧ ⇒)

Γ, F ∧ G ⇒ H

Γ ⇒ F Γ ⇒ G
(⇒ ∧)

Γ ⇒ F ∧ G

Γ,F ⇒ H Γ,G ⇒ H
(∨ ⇒)

Γ, F ∨ G ⇒ H

Γ ⇒ Fi
(⇒ ∨)i (i = 1, 2)

Γ ⇒ F1 ∨ F2

Γ, F → G ⇒ F Γ,G ⇒ H
(→⇒)

Γ, F → G ⇒ H

Γ,F ⇒ G
(⇒→)

Γ ⇒ F → G

Γ,K(Δ),Δ ⇒ F
(KI1)

Γ,K(Δ) ⇒ KF

Γ ⇒ K⊥
(U)

Γ ⇒ F

In the rule (KI1) we additionally require that Γ does not contain formulas of
the form KG. (This requirement is unessential, see Corollary 3).

We define the main (occurrences of) formulas for axioms and for all inference
rules except (KI1) as usual — they are the displayed formulas in the conclusions
(not members of Γ,H). For the rule (KI1) all members of K(Δ) and the formula
KF are main.
Comment. The propositional part of IEL−

G is the same as in the system G3m
from [5]. In the modal part we do not add (KE) or (KC), but modify (KI0). In
the presence of weakening (it is admissible, see Lemma 2) (KI0) is derivable:

Γ ⇒ F
(W )

K(Γ ), Γ ⇒ F
(KI1)

K(Γ ) ⇒ KF

.

So one can derive all sequents of the forms F ⇒ F for complex F and F ⇒ KF .
It can be shown by induction on the complexity of the formula F . The latter
also requires weakening in the case of F = KG:

F ⇒ F
(KI1), F 
= KG,

F ⇒ KF

KG ⇒ KG
(W )

KG,G ⇒ KG
(KI1)

KG ⇒ KKG

.

Comment. (U) is necessary. There is no way to prove the sequent K⊥ ⇒ ⊥ in
IEL−

G without the rule (U).

4 Structural Rules Are Admissible

We prove the depth-preserving admissibility of weakening and contraction. Our
proof follows [5] except the case of the rule (KI1). The corresponding inductive
step in the proof of Lemma 6 does not require the inversion of the rule. Instead
of it, some kind of contraction is build-in in the rule itself.3

We write �n Γ ⇒ F for “Γ ⇒ F has a IEL−
G -proof of depth at most n”.

3 This method was introduced by Kleene in the construction of his G3 systems, see [6].
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Lemma 2 (Weakening). If �n Γ ⇒ F then �n Γ,G ⇒ F .

Proof. Induction on n, similar to the proof of Depth-preserving Weakening
lemma from [5]. For example, consider the additional modal rule (KI1). Consider
a derivation

D
Γ,K(Δ),Δ ⇒ F ′

(KI1)
Γ,K(Δ) ⇒ KF ′

with �n Γ,K(Δ),Δ ⇒ F ′. If G = KG′ for some G′ then, by the induction
hypothesis, �n Γ,K(Δ),Δ,KG′, G′ ⇒ F ′ , so the rule (KI1) can be applied to
this premise and we have �n+1 Γ,K(Δ),KG′ ⇒ KF ′ by (KI1). In the remaining
case the rule (KI1) can be applied to �n Γ,K(Δ),Δ,G ⇒ F ′, so we have
�n+1 Γ,K(Δ), G ⇒ KF ′ too. �	
Corollary 3. The extended K-introduction rule

Γ1,K(Δ),Δ, Γ2 ⇒ F
(KIext)

Γ1,K(Δ,Γ2) ⇒ KF

is admissible in IEL−
G and �n Γ1,K(Δ),Δ, Γ2 ⇒ F implies �n+1 Γ1,

K(Δ,Γ2) ⇒ KF .

Proof. Suppose �n Γ1,K(Δ),Δ, Γ2 ⇒ F and Γ1 = Γ ′
1,K(Γ ′′

1 ) where Γ ′
1 does not

contain formulas of the form KG. By Lemma 2,

�n Γ ′
1,K(Γ ′′

1 ),K(Δ),K(Γ2), Γ ′′
1 ,Δ, Γ2 ⇒ F .

So,

�n+1 Γ ′
1,K(Γ ′′

1 ,Δ, Γ2) ⇒ KF

by (KI1). But Γ ′
1,K(Γ ′′

1 ,Δ, Γ2) = Γ1,K(Δ,Γ2), so �n+1 Γ1,K(Δ,Γ2) ⇒ KF . �	
Corollary 4. All axioms of IEL0G are provable in IEL−

G .

Proof. It is sufficient to prove sequents Γ,⊥ ⇒ F and Γ,K⊥ ⇒ F :

Γ,⊥ ⇒ ⊥
(KIext)

Γ,⊥ ⇒ K⊥
(U)

Γ,⊥ ⇒ F

,

Γ,⊥ ⇒ ⊥
(KIext)

Γ,K⊥ ⇒ K⊥
(U)

Γ,K⊥ ⇒ F

.

�	
Lemma 5 (Inversion lemma, cf. [5]). Left rules are invertible in the follow-
ing sense:

If �n Γ,A ∧ B ⇒ C then �n Γ,A,B ⇒ C.
If �n Γ,A1 ∨ A2 ⇒ C then �n Γ,Ai ⇒ C, i = 1, 2.
If �n Γ,A → B ⇒ C then �n Γ,B ⇒ C.
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Proof. The proof is essentially the same as the proof of Inversion lemma from [5].
The additional cases of modal rules are straightforward. �	
Lemma 6 (Contraction). If �n Γ, F, F ⇒ G then �n Γ, F ⇒ G.

Proof. Induction on n. Case n = 1. When the first sequent is an axiom, the
second one is an axiom too.

Case n+1. When the displayed two occurrences of F in Γ, F, F ⇒ G are not
main for the last rule of the derivation, apply the induction hypothesis to the
premises of the rule and contract F there.

Suppose one of the occurrences is main. Only axioms may have atomic main
formulas, so we treat atomic F as in case n = 1.

When F has one of the forms A∧B, A∨B or A → B, we use the same proof
as in [5]. It is based on the items of Inversion lemma formulated in Lemma 5.

Case F = KA is new. The derivation of Γ, F, F ⇒ G of depth n + 1 has the
form

D
Γ ′,K(Δ),Δ ⇒ B

(KI1)
Γ ′,K(Δ) ⇒ KB

where Γ, F, F = Γ ′,K(Δ) and G = KB; the multiset Δ contains two copies of
A. We have

�n Γ ′,K(Δ),Δ ⇒ B. (1)

Let ( )− means to remove one copy of A from a multiset. We apply the
induction hypothesis to (1) and obtain �n Γ,K(Δ−),Δ− ⇒ B. Then, by (KI1),

�n+1 Γ,K(Δ−) ⇒ KB .

But Γ, F = Γ ′,K(Δ−), so �n+1 Γ, F ⇒ G. �	

5 Admissible Modal Rules

We have already seen that (KI0) is admissible in IEL−
G .

Lemma 7 (Depth-preserving K-elimination). If �n Γ,KF ⇒ G then �n

Γ, F ⇒ G.

Proof. Induction on n. Case n = 1. When the first sequent is an axiom, the
second one is an axiom too.

Case n + 1. Consider a proof of depth n + 1 of a sequent Γ,KF ⇒ G. Let
(R) be its last rule. When the displayed occurrence of KF is not main for (R),
apply the induction hypothesis to its premises and then apply (R) to reduced
premises. It will give �n Γ, F ⇒ G.
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Suppose the occurrence of KF is main. The derivation has the form

�n Γ ′,K(Δ),KF,Δ, F ⇒ G′
(KI1)�n+1 Γ ′,K(Δ,F ) ⇒ KG′ .

Apply the induction hypothesis to the premise and remove one copy of F . By
Lemma 6 , �n Γ ′,K(Δ),Δ, F ⇒ G′. Then apply an instance of (KIext) with
Γ1 = Γ ′, F and empty Γ2. By Corollary 3 , �n+1 Γ ′,K(Δ), F ⇒ KG′. �	
Corollary 8 (Depth-preserving K-contraction). If �n Γ,KF, F ⇒ G then
�n Γ, F ⇒ G.

Proof. Apply (KE) and contraction. Both rules are admissible and preserve the
depth (Lemmas 7, 6). �	

6 Cut Is Admissible

Consider an IEL−
G -derivation with additional cut-rule

Γ1 ⇒ F Γ2, F ⇒ G
(Cut)

Γ1, Γ2 ⇒ G
. (2)

and some instance of (Cut) in it. The level of the cut is the sum of the depths
of its premises. The rank of the cut is the length of F .

Lemma 9. Suppose the premises of (Cut) are provable in IEL−
G without (Cut).

Then the conclusion is also provable in IEL−
G without (Cut).

Proof. We define the following well-ordering on pairs of natural numbers:
(k1, l1) > (k2, l2) iff k1 > k2 or k1 = k2 and l1 > l2 simultaneously. By induction
on this order we prove that a single cut of rank k and level l can be eliminated.

As in [5], we consider three possibilities:
I. One of the premises is an axiom. In this case the cut-rule can be eliminated.

If the left premise of (2) is an axiom,

Γ ′
1, A ⇒ A Γ2, A ⇒ G

(Cut)
Γ ′
1, A, Γ2 ⇒ G

,

then (Cut) is unnecessary. The conclusion can be derived from the right premise
by weakening (Lemma 2).

Now suppose that the right premise is an axiom. If the cutformula F is not
main for the axiom Γ2, F ⇒ G then the conclusion Γ1, Γ2 ⇒ G is also an axiom,
so (Cut) can be eliminated. If F is main for the right premise then F = G = A
where A is atomic, so (2) has the form

Γ1 ⇒ A Γ2, A ⇒ A
(Cut)

Γ1, Γ2 ⇒ A
.
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The conclusion can be derived without (Cut) from the left premise by weakening
(Lemma 2).

II. Both premises are not axioms and the cutformula is not main for the last
rule in the derivation of at least one of the premises. In this case one can permute
the cut upward and reduce the level of the cut. For example,

Γ1 ⇒ F

Φ,F,K(Ψ), Ψ ⇒ B

Φ,F,K(Ψ) ⇒ KB
(Cut)

Γ1, Φ,K(Ψ) ⇒ KB

�
Γ1 ⇒ F Φ,F,K(Ψ), Ψ ⇒ B

(Cut)
Γ1, Φ,K(Ψ), Ψ ⇒ B

(KIext)
Γ1, Φ,K(Ψ) ⇒ KB

.

The cutformula remains the same, so the cut rule can be eliminated by induction
hypothesis (see [5]).

III. The cutformula F is main for the last rules in the derivations of both
premises. In this case we reduce the rank of cut and apply the induction
hypothesis.

Note that F is not atomic. (The atomic case is considered in I.) If the last
rule in the derivation of the left premise is (U) then (Cut) can be eliminated:

Γ1 ⇒ K⊥
(U)

Γ1 ⇒ F Γ2, F ⇒ G
(Cut)

Γ1, Γ2 ⇒ G

�
Γ1 ⇒ K⊥

Γ1, Γ2 ⇒ K⊥
(U)

Γ1, Γ2 ⇒ G

.

Case F = KA, the last rule in the derivation of the left premise is (KI1).
Then the right premise is also derived by (KI1):

D
Γ,K(Δ),Δ ⇒ A

(KI1)
Γ,K(Δ) ⇒ KA

D′

Γ ′,K(Δ′, A),Δ′, A ⇒ B
(KI1)

Γ ′,K(Δ′),KA ⇒ KB
(Cut)

Γ,K(Δ), Γ ′,K(Δ′) ⇒ KB

�

From Γ ′,K(Δ′, A),Δ′, A ⇒ B by K-contraction (Corollary 8) we obtain
Γ ′,K(Δ′),Δ′, A ⇒ B and then reduce the rank:

�

D
Γ,K(Δ),Δ ⇒ A

D′′

Γ ′,K(Δ′),Δ′, A ⇒ B
(Cut)

Γ,K(Δ),Δ, Γ ′,K(Δ′),Δ′ ⇒ B
(KI1)

Γ,K(Δ), Γ ′,K(Δ′) ⇒ KB

.

In remaining cases (when F has one of the forms A ∧ B, A ∨ B or A → B)
we follow [5]. �	
Comment. Our formulation of the rule (KI1) combines K-introduction with
contraction. It is done in order to eliminate the contraction rule and to avoid
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the case of contraction in the proof of Lemma9. But the contraction rule remains
admissible and can be added as a ground rule too, so we can simplify the formu-
lation of the K-introduction rule. It results in a “light” cut-free version IELG:

Axioms

Γ,A ⇒ A, A is a variable or ⊥.

Rules
Γ,Δ,Δ ⇒ G

(C)
Γ,Δ ⇒ G

Γ,F,G ⇒ H
(∧ ⇒)

Γ, F ∧ G ⇒ H

Γ ⇒ F Γ ⇒ G
(⇒ ∧)

Γ ⇒ F ∧ G

Γ,F ⇒ H Γ,G ⇒ H
(∨ ⇒)

Γ, F ∨ G ⇒ H

Γ ⇒ Fi
(⇒ ∨)i (i = 1, 2)

Γ ⇒ F1 ∨ F2

Γ ⇒ F Γ,G ⇒ H
(→⇒)

Γ, F → G ⇒ H

Γ,F ⇒ G
(⇒→)

Γ ⇒ F → G

Γ1, Γ2 ⇒ F
(KI)

Γ1,K(Γ2) ⇒ KF

Γ ⇒ K⊥
(U)

Γ ⇒ F

Lemma 10. IELG � Γ ⇒ F iff IEL−
G � Γ ⇒ F .

Proof. Part “only if”. The rule (KI) is a particular case of (KIext), so all rules
of IELG are admissible in IEL−

G (Lemmas 6, 2 and Corollary 3).
Part “if”. All missing rules are derivable in IELG:

Γ, F → G ⇒ F Γ,G ⇒ H
(→⇒)

Γ, F → G,F → G ⇒ H
(C)

Γ, F → G ⇒ H

,

Γ,K(Δ),Δ ⇒ F
(KI)

Γ,K(Δ),K(Δ) ⇒ KF
(C)

Γ,K(Δ) ⇒ KF

.

�	
Theorem 11. (Cut) is admissible in IELG.

Proof. Lemma 9 implies the similar statement for the calculus IELG. Indeed,
one can convert IELG-derivations into IEL−

G -derivations, eliminate a single cut in
IEL−

G , and then convert the cut-free IEL−
G -derivation backward (Lemma 10). The

statement implies the theorem. �	
Theorem 12. The following are equivalent:
1. IEL0G � Γ ⇒ F.
2. IEL−

G � Γ ⇒ F.
3. IELG � Γ ⇒ F.
4. IEL � ∧Γ → F.
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Proof. 1. ⇔ 2. All rules of IEL0G are admissible in IEL−
G (Lemmas 2, 6, 7, 9) and

vice versa.
The equivalence of 2. and 3. is proved in Lemma10, the equivalence of 1. and

4. – see Theorem 1. �	

7 Complexity of IEL

We prove that IEL is PSPACE-complete. The lower bound follows from the
same lower bound for the intuitionistic propositional logic. To prove the upper
bound we show that polynomial space is sufficient for the proof search. Our proof
search technique is based on monotone derivations and is similar to one used by
S.C. Kleene in his G3 systems (see [6]).

Definition 13. For a multiset Γ let set(Γ ) be the set of all its members. An
instance of a rule

Γ1 ⇒ F1 . . . Γn ⇒ Fn

Γ ⇒ F

is monotone if set(Γ ) ⊆
⋂

i

set(Γi). A derivation is called monotone if it uses

monotone instances of inference rules only.

Consider the extension IEL′
G of the calculus IEL−

G by the following rules: the
contraction rule (C) and

Γ, F ∧ G,F,G ⇒ H
(∧C

1 ⇒)
Γ, F ∧ G,F ⇒ H

,
Γ, F ∧ G,F,G ⇒ H

(∧C
2 ⇒)

Γ, F ∧ G,G ⇒ H
,

Γ, F ∧ G,F,G ⇒ H
(∧C ⇒)

Γ, F ∧ G ⇒ H
,

Γ, F ∨ G,F ⇒ H Γ,F ∨ G,G ⇒ H
(∨C ⇒)

Γ, F ∨ G ⇒ H
,

Γ, F ⇒ G
(⇒→W )

Γ, F ⇒ F → G
,

Γ, F → G ⇒ F Γ, F → G,G ⇒ H
(→C⇒)

Γ, F → G ⇒ H
,

Γ,K(Δ1,Δ2),Δ1,Δ2 ⇒ F
(KIW1 )

Γ,Δ1,K(Δ1,Δ2) ⇒ KF
.

In (KIW1 ) we require that the multiset Γ,Δ1 does not contain formulas of the
form KG.

Lemma 14. IEL′
G � Γ ⇒ F iff IEL−

G � Γ ⇒ F .

Proof. All new rules are some combinations of corresponding ground rules with
structural rules. The latter are admissible in IEL−

G (Lemmas 6, 2). �	
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Lemma 15. Any derivation in IEL′
G can be converted into a monotone deriva-

tion of the same sequent.

Proof. Consider a derivation which is not monotone. Choose the first (top-down)
non-monotone instance (R) of a rule in it. (R) introduces a new formula A in the
antecedent of its conclusion which is not present in antecedents of some of its
premises. Add a copy of A to the antecedent of the conclusion and to antecedents
of all sequents above it. When A has the form KB and is added to the antecedent
of the conclusion of some instance of rules (KI1) or (KIW1 ) above (R), add a
copy of B to the antecedent of the premise of this rule and to antecedents of
all sequents above it. When B has the form KC, do the same further up the
derivation with C, etc. Finally, insert the contraction rule after (R):

D
(R)

A, Γ ⇒ F
�

D′
(R)

A, A, Γ ⇒ F
(C)

A, Γ ⇒ F

.

The result is also a correct derivation with one non-monotone instance elim-
inated. Repeat the transformation until the derivation becomes monotone. �	
Lemma 16. A monotone derivation of a sequent Γ ⇒ F in IEL′

G can be con-
verted into a monotone derivation of the sequent set(Γ ) ⇒ F that contains only
sequents of the form set(Γ ′) ⇒ F ′. The transformation does not increase the
depth of the proof.

Proof. Given a monotone derivation replace all sequents Γ ′ ⇒ F ′ in it with
set(Γ ′) ⇒ F ′. This transformation converts axioms into axioms. We claim that
an instance of an inference rule will be converted either into some other instance
of a rule of IEL′

G or some premise of the converted instance will coincide with its
conclusion, so the rule can be removed from the resulting proof. The depth of
the proof does not increase.

Indeed, instances of (⇒ ∧), (⇒ ∨) and (U) will be converted into some other
instances of the same rule. An instance of (C) will be converted into the trivial
rule that can be removed:

Γ,Δ,Δ ⇒ G
(C)

Γ,Δ ⇒ G
�

set(Γ,Δ) ⇒ G

set(Γ,Δ) ⇒ G
� remove.

The remaining cases. Let k, l,m, n, k′, l′,m′, n′ ≥ 0 and F k = F, . . . , F
︸ ︷︷ ︸

k

.

All monotone instances of (∧ ⇒), (∧C
1 ⇒), (∧C

2 ⇒), (∧C ⇒) have the form

Γ, (F ∧ G)k+1, F l+1, Gm+1 ⇒ H

Γ, (F ∧ G)k
′+1, F l′ , Gm′ ⇒ H

.
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Contractions in antecedents will give

Γ ′, F ∧ G,F,G ⇒ H
(∧C ⇒)

Γ ′, F ∧ G ⇒ H
, l′ = m′ = 0,

Γ ′, F ∧ G,F,G ⇒ H
(∧C

1 ⇒)
Γ ′, F ∧ G,F ⇒ H

, l′ > 0,m′ = 0,

Γ ′, F ∧ G,F,G ⇒ H
(∧C

2 ⇒)
Γ ′, F ∧ G,G ⇒ H

, l′ = 0,m′ > 0,

trivial rule (removed), l′,m′ > 0.

All monotone instances of (∨ ⇒), (∨C ⇒) have the form

Γ, (F ∨ G)k+1, F l+1, Gm ⇒ H Γ, (F ∨ G)k+1, F l, Gm+1 ⇒ H

Γ, (F ∨ G)k
′+1, F l, Gm ⇒ H

.

Contractions in antecedents will give

Γ ′, F ∨ G,F ⇒ H Γ,F ∨ G,G ⇒ H
(∨C ⇒)

Γ ′, F ∨ G ⇒ H
, l = m = 0,

trivial rule (removed), l > 0 or m > 0.

All monotone instances of (⇒→), (⇒→W ) have the form

Γ, F k+1 ⇒ G

Γ,F k′ ⇒ F → G
.

Contractions in antecedents will give

Γ ′, F ⇒ G
(⇒→W )

Γ ′, F ⇒ F → G
, k′ > 0,

Γ ′, F ⇒ G
(⇒→)

Γ ′ ⇒ F → G
, k′ = 0.

All monotone instances of (→⇒), (→C⇒) have the form

Γ, (F → G)k+1, Gl ⇒ F Γ, (F → G)k
′+1, Gl+1 ⇒ H

Γ, (F → G)k+1, Gl ⇒ H
.

Contractions in antecedents will give

Γ ′, (F → G) ⇒ F Γ ′, (F → G), G ⇒ H
(→C⇒)

Γ ′, (F → G) ⇒ H
, l = 0,

trivial rule (removed), l > 0.
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All monotone instances of (KI1), (KIW1 ) have the form

Γ,Gk1+1
1 , (KG1)l1+1, . . . , Gkn+1

n , (KGn)ln+1 ⇒ F

Γ,G
k′
1

1 , (KG1)l
′
1+1, . . . , G

k′
n

n , (KGn)l
′
n+1 ⇒ KF

Contractions in antecedents will give

Γ ′, G1,KG1, . . . , Gn,KGn ⇒ F
(KI1)

Γ ′,KG1, . . . , KGn ⇒ KF
, when k′

1 = . . . = k′
n = 0,

an instance of (KIW1 ), when k′
i = 0, k′

j > 0 for some i, j ,

trivial rule (removed), when k′
1, . . . , k

′
n > 0.

�	
Lemma 17. (Subformula Property). Consider a derivation of a sequent
Γ ⇒ F in IEL−

G , IELG or IEL′
G. Any sequent in it is composed of subformulas

of some formulas from the multiset Γ, F,K⊥.

Proof. For any rule of these calculi, its premises are composed of subformulas of
formulas occurring in its conclusion and, possibly, of K⊥. �	
Definition 18. A monotone IEL′

G-derivation of a sequent set(Γ ) ⇒ F is called
minimal if it contains only sequents of the form set(Γ ′) ⇒ F ′ and has the
minimal depth.

The size of a sequent F1, . . . , Fk ⇒ F is the sum of the lengths of all formulas
Fi and F .

Lemma 19. Let Mn be the set of all minimal IEL′
G-derivations of sequents of

size n. There exist polynomials p and q such that for any derivation D ∈ Mn,
its depth is bounded by p(n) and the sizes of all sequents in D do not exceed q(n).

Proof. Consider a derivation D ∈ Mn and a path from the root to some leaf in
it:

Γ0 ⇒ F0, . . . , ΓN ⇒ FN .

All sequents in it are distinct from each other, all of them composed of sub-
formulas of the first sequent, ⊥ and K⊥ (Lemma 17), and Γi ⊆ Γi+1 holds for
i < N .

Divide the path into maximal intervals with the same Γi inside. The length
of such interval is bounded by the number of possible formulas Fi, which is O(n).
The number of intervals is O(n) too, because it does not exceed the maximal
length of a strictly monotone sequence Δ0 ⊂ Δ1 ⊂ . . . ⊂ Δk of subsets of S
where S is the set of all subformulas of the first sequent extended by ⊥ and K⊥.
So, |S| = O(n) and N = O(n2).

Any sequent Γi ⇒ Fi consists of at most |S| + 1 formulas of length O(n), so
its size is O(n2). �	
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Corollary 20. The set of all IEL′
G-derivable sequents belongs to PSPACE.

Proof. The result follows from the known game characterization AP = PSPACE
([7], see also [9] or [10]). We reproduce here the argument from [11] where
Kleene’s technique is used in a similar way.

Let p, q be the polynomials from Lemma 19. Consider the following two-
person game with players (P ) and (V ). The initial configuration b0 is a sequent
of the form set(Γ ) ⇒ F of size n. Player (P ) moves the first. He writes down
one or two sequents of sizes less than q(n) and his opponent (V ) chooses one of
them, and so on. The game is over after p(n) moves of (V ) or when (V ) chooses
a sequent that is an axiom of IEL′

G.
Let wi and bi for i > 0 denote the moves of players (P ) and (V ) respectively,

so b0, w1, b1, w2, b2, ... is a run of the game. The winning conditions for (P ) are:

1. For every move of (P ) the figure
wi

bi−1
is a monotone instance of some

inference rule of IEL′
G.

2. All sequents written by (P ) have the form set(Δ) ⇒ G.
3. At his last move (V ) is forced to choose an axiom of IEL′

G.

The number and the sizes of moves are bounded by polynomials and the
winning conditions are polynomial-time decidable, so the set M of initial con-
figurations that admit a winning strategy for (P ) belongs to PSPACE (see [7]).

By Lemma 19, a sequent belongs to M iff it has a minimal derivation. But
it follows from Lemmas 15, 16, 2, that a sequent Γ ⇒ F is IEL′

G-derivable iff
set(Γ ) ⇒ F has a minimal derivation. Thus, the general derivability problem
for IEL′

G belongs to PSPACE too. �	
Theorem 21. The derivability problems for IEL0G, IEL−

G , IELG, IEL′
G and IEL are

PSPACE-complete.

Proof. The lower bound PSPACE follows from the same lower bound for intu-
itionistic propositional logic [8]. The upper bound PSPACE for IEL′

G is estab-
lished in Corollary 20. It can be extended to other calculi by Theorem 12 and
Lemma 14. �	
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Interpolation Method for Multicomponent
Sequent Calculi
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Abstract. The proof-theoretic method of proving the Craig interpola-
tion property was recently extended from sequents to nested sequents
and hypersequents. There the notations were formalism-specific, obscur-
ing the underlying common idea, which is presented here in a general
form applicable also to other similar formalisms, e.g., prefixed tableaus.
It describes requirements sufficient for using the method on a proof sys-
tem for a logic, as well as additional requirements for certain types of
rules. The applicability of the method, however, does not imply its suc-
cess. We also provide examples from common proof systems to highlight
various types of interpolant manipulations that can be employed by the
method. The new results are the application of the method to a recent
formalism of grafted hypersequents (in their tableau version), the general
treatment of external structural rules, including the analytic cut, and the
method’s extension to the Lyndon interpolation property.

Keywords: Craig interpolation · Lyndon interpolation · Sequent cal-
culi · Hypersequent calculi · Nested sequent calculi

1 Introduction

Along with decidability and compactness, the Craig interpolation property (CIP)
is one of the principal properties desired of any logic. One way of demonstrating it
by constructing the interpolant is the so-called proof-theoretic method, which
relies on an analytic proof system for the logic. Until recently, the scope of the
method has been limited to logics that can be captured by analytic sequent
(equivalently, tableau) proof formalisms, as well as by display and resolution
calculi, the discussion of which is outside the scope of this paper.

In [6], it was shown how to prove the CIP using nested sequents. In [9], writ-
ten and accepted before this paper but likely to be published after it, the same
principles were successfully applied to hypersequents. An anonymous reviewer
of [9] noted that the nested and hypersequent cases are essentially the same.
The purpose of this paper, which is based on a talk given at the Logic Collo-
quium 2015, is to present a general formal method in uniform notation, of which
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both prior applications are instances. Note that the applicability of the method
does not imply that the CIP can be proved using this method or, indeed, at all.
For instance, the method is applicable to the hypersequent calculi for S4.3 from
[7,8,11], but S4.3 does not have the CIP [13].

Let us first outline how general our method is intended to be. We concen-
trate on internal calculi, which excludes display and labelled sequent calculi. We
consider only calculi whose basic unit is what we call a multisequent, i.e., an
object that can be viewed as a hierarchy of components with each component
containing a(n ordinary) sequent, called a sequent component. Since a sequent is
essentially a single-component multisequent, the method for multisequents (par-
tially) subsumes the well-known method for sequents. Following [4], we restrict
the type of sequents used to the so-called symmetric sequents, which are best
suited for interpolation proofs.

Definition 1 (Symmetric Sequents). Rules of a symmetric sequent system
operate on 2-sided sequents with formulas in negation normal form1 in such a
way that formulas never move between the antecedent and the consequent.

The use of symmetric sequent systems is not required by the method (nei-
ther of [6,9] used them). Rather, they are a contrivance used to avoid splitting
sequents, first introduced by Maehara in [12] written in Japanese. Splitting a 2-
sided sequent results in a rather counter-intuitive 4-sided contraption, whereas
splitting a 1-sided sequent is more or less isomorphic to working with a 2-sided
symmetric sequent. However, the restriction to symmetric sequents has an unfor-
tunate side-effect: it rules out the application of our method to subclassical logics,
which lack De Morgan laws. For such logics, so far we have not been able to use
split 2-sided sequents either.

In this paper, by the common language invoked by the more general for-
mulations of the CIP, we understand common propositional variables, with all
examples taken from propositional modal logics.

Thus, the proof-theoretic part of our recipe requires a description of a propo-
sitional modal logic by a symmetric multisequent proof system. There
is one more necessary (for now) ingredient: the modal logic in question needs to
have a Kripke semantics (with the standard local interpretation of ∧ and ∨).
Although the algorithm is designed using semantic reasoning (in cases of a suc-
cessful application of the method), the final algorithm for computing interpolants
makes no mention of semantics, remaining fully internal.

2 Sufficient Criteria of Applicability

As discussed in the previous section, we assume that we are given a propositional
modal logic L described by a symmetric multisequent proof system SL and
complete with respect to a class CL of Kripke models. The logic L is formulated
1 In negation normal form, formulas are built from ∧, ∨, �, ⊥, propositional vari-

ables p, and their negations p; ¬ is defined via De Morgan laws; → is defined via ¬.



204 R. Kuznets

in a language L in negation normal form. Each multisequent is (can be viewed
as) a hierarchy of components, each containing some sequent component Γ ⇒ Δ,
where the antecedent Γ and consequent Δ are multisets (sets, sequences) of L-
formulas that are called antecedent and consequent formulas respectively.

Definition 2 (Craig Interpolation Property). A logic L has the CIP iff
whenever L � A→B, there is an interpolant C ∈ L such that each propositional
variable of C occurs in both A and B and such that L � A→C and L � C →B.2

Our method requires relationships among L, SL, and CL stronger than com-
pleteness. The first requirement is the completeness of SL w.r.t. implications.

Definition 3 (Singleton Multisequent). A singleton multisequent is a mul-
tisequent with exactly one component.

Requirement I. If L � A→B, then SL � G for some singleton multisequent G
with sequent component A ⇒ B.

The second requirement is semantical completeness w.r.t. implications:

Definition 4 (Logical Consequence). For sets (multisets, sequences) Γ and
Δ of L-formulas, Γ �CL

Δ if, for each model M ∈ CL and each world w of M,

M, w � A for each A ∈ Γ =⇒ M, w � B for some B ∈ Δ .

Requirement II. If A �CL
B, then L � A → B.

Formulating the next requirement requires preparation. The idea of our method
is to consider maps f from the components of a given multisequent G to the
worlds of a given model M ∈ CL and to evaluate formulas from a component α
of G (i.e., formulas from the sequent component Γ ⇒ Δ contained at α) at
the world f(α) ∈ M. To faithfully represent the component hierarchy peculiar
to the multisequent system SL, however, we need to restrict these maps. For
each multisequent type and each class of models considered, we require that the
notion of good map be defined for each pair of a multisequent and a model. After
we formulate what is needed from such maps, we give examples of good maps
for nested sequents and hypersequents.

Remark 5. By a slight abuse of notation, we write f : G → M for a mapping
from the components of G to the worlds of M. In the same vein, we write α ∈ G
to state that α is a component of G and w ∈ M to state that w is a world in M.

Requirement III. If SL � G, then for each model M ∈ CL and for each good
map f : G → M, there exists a component α ∈ G containing Γ ⇒ Δ such that

M, f(α) � A for some A ∈ Γ or M, f(α) � B for some B ∈ Δ .

2 Here D → E means D ∨ E, where D is the defined negation of D.
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In other words, we understand a multisequent as a multiworld disjunction of its
sequent components and require this disjunction to be valid with respect to all
good maps, which direct where each sequent component is to be evaluated.

Example 6 (Nested sequents). Nested sequents are often described as trees of
sequents (and are sometimes called tree hypersequents). To transfer this tree
hierarchy of components into models, we define good maps from a given nested
sequent G to a given model M = (W,R, V ) to be those that satisfy the following
condition: if β is a child of α in G, then f(α)Rf(β). It has been shown in [6]
that Req. III is satisfied for all such maps.

Example 7 (Hypersequents). The standard formula interpretation of a hyperse-

quent Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn as
n∨

i=1

� (
∧

Γi → ∨
Δi) suggests that good maps

send all components to worlds accessible from a single root: good maps from a
given hypersequent G to a given model M = (W,R, V ) are all maps satisfying
the following condition: there exists w ∈ W such that wRf(α) for all α ∈ G.
For some classes of models, this formulation can be simplified, e.g., if R is an
equivalence relation for all models from CL (as in the case of S5), it is sufficient3

to require that f(α)Rf(β) for all α, β ∈ G.

Remark 8. Note that good maps are defined on components rather than on
sequent components. This means that we must notationally distinguish occur-
rences of the same sequent component. The linear notation for hypersequents
masks the problems when hypersequents are sets or multisets of sequents. We
assume that in any multisequent system there is a way of distinguishing sequent
components and rely on this, but we do not specify the details, which could
involve converting sets/multisets to sequences as the underlying data structure
for multisequent components and adding appropriate exchange rules or using
explicit labels for sequent components.

Requirement IV. For each singleton multisequent with component α, each mo-
del M ∈ CL, and each world w ∈ M, the map {(α,w)} must be a good map.

3 Reducing the CIP to the Componentwise Interpolation

Our aim is to generalize the CIP to multiple components. In particular, inter-
polants are to be evaluated via good maps and, hence, cannot be mere formulas.

Definition 9 (Uniformula). A uniformula is obtained from a multisequent G
by replacing all sequent components in G with such multisets of formulas that
the union of these multisets contains exactly one formula.
3 Despite the homogeneity of the components of hypersequents, maps can only be used

unrestrictedly if the worlds of the model are completely homogeneous too, as in the
case of the class of all models with R = W ×W , another class of models used for S5.
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In other words, a uniformula is a single formula C placed at a particular com-
ponent α of a given multisequent G. We call C the formula contained in the
uniformula and the component α the active component of the uniformula. Let
G(Γ1 ⇒ Δ1︸ ︷︷ ︸

α1

; . . . ;Γn ⇒ Δn︸ ︷︷ ︸
αn

) for n ≥ 0 denote a multisequent with displayed com-

ponents αi containing sequents Γi ⇒ Δi. By G◦(α1; . . . ;αn) we denote the result
of removing all sequent components from G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn) but keep-
ing its components with the hierarchy intact. Further, we allow to insert new
objects, such as formulas, into a displayed component αi. Thus, each uniformula
has the form G◦(C) for some multisequent G(Γ ⇒ Δ) and some formula C.

Definition 10 (Multiformula). A multiformula � with structure �
◦ is defined

as follows. Each uniformula G◦(A) is a multiformula with structure G◦(α). If
�1 and �2 are multiformulas with �

◦
1 = �

◦
2, then �1 ��2 and �1 ��2 are also

multiformulas with the same structure.

To be able to formulate a generalized interpolation statement, we need to define
a satisfaction relation between good maps and multiformulas, which are used as
interpolants. For any two multisequents/multiformulas with the same structure,
there is a unique way of transferring a good map from one onto the other.

Definition 11 (� on Multiformulas). Let f : G◦(α) → M. For a unifor-
mula G◦(C), we say that f � G◦(C) iff M, f(α) � C.

If �1 � �2 (�1 � �2) is defined, then �
◦
1 = �

◦
2. Let f be a map from this

structure to a model M. f � �1 � �2 (f � �1 � �2) iff f � �i for some (each)
i = 1, 2.

In other words, a uniformula is forced by a map if the formula contained in it
is forced at the world to which the active component is mapped. The external
conjunction � and disjunction � on multiformulas behave classically.

To define the Componentwise Interpolation Property, we use abbreviations:

Definition 12. For a good map f from a multisequent G to a model M, we
write f � Ant(G) if M, f(α) � A for each component α ∈ G and each antecedent
formula A contained in α. We write f � Cons(G) if M, f(β) � B for some
component β ∈ G and some consequent formula B contained in β.

Definition 13 (Componentwise Interpolation Property, or CWIP).
A multiformula � is a (componentwise) interpolant of a multisequent G, written
G ←− �, if �

◦ = G◦ and the following two conditions hold:

1. if a propositional variable occurs in �, it must occur both in some antecedent
formula of G and in some consequent formula of G ;

2. for each model M ∈ CL and each good map f : G → M,

f � Ant(G) =⇒ f � � and f � � =⇒ f � Cons(G) . (1)

A multisequent proof system SL has the CWIP iff every derivable multisequent
has an interpolant.



Interpolation Method for Multicomponent Sequent Calculi 207

The CIP can be reduced to the CWIP if Reqs. I–IV are satisfied. The proof of
the reduction requires another small piece of notation.

Definition 14 (Componentwise Equivalence). Multiformulas �1 and �2

are called componentwise equivalent, written �1 ≡ �2, provided �
◦
1 = �

◦
2 and

f � �1 ⇐⇒ f � �2 for any good map f on the common structure of �1 and �2.

Remark 15. The classical reading of � and � implies that each multiformula can
be transformed to a componentwise equivalent multiformula both in the DNF
and in the CNF. This will be used for some of the rules in the following section.

Lemma 16. For singleton sequents, multiformulas and uniformulas are equi-
expressive, i.e., for each multiformula � with a structure G◦(α) where α is the
only component, there exists a uniformula G◦(C) such that G◦(C) ≡ � and it
has the same propositional variables as �.

Proof. By induction on the construction of �. The case when � is a uniformula
is trivial. Let �1 ≡ G◦(C1) and �2 ≡ G◦(C2) for some structure G◦(α). Then it
is easy to see that �1 � �2 ≡ G◦(C1 ∨ C2) and �1 � �2 ≡ G◦(C1 ∧ C2) and that
the condition on propositional variables is also satisfied. �
Theorem 17 (Reduction of CIP to CWIP). Let a logic L, a multisequent
proof system SL, and a class of Kripke models CL satisfy all Reqs. I–IV. If
SL enjoys the CWIP, then L enjoys the CIP.

Proof. Assume that SL satisfies the CWIP and that L � A → B. Then, by
Req. I, SL � G(A ⇒ B) for some singleton multisequent G(A ⇒ B), which has a
componentwise interpolant � by the CWIP. By Lemma 16, G(A ⇒ B) ←− G◦(C)
for some uniformula G◦(C). Since A is the only antecedent and B is the only
consequent formula of G(A ⇒ B), each propositional variable of C must occur
in both A and B. For any model M ∈ CL and any world w ∈ M, by Req. IV,
f := {(α,w)} is a good map on G(A ⇒ B). In particular, f � Ant(G(A ⇒ B))
implies f � G◦(C), i.e., M, w � A implies M, w � C. Given the arbitrariness
of M and w, we conclude that A �CL

C. It now follows from Req. II that L �
A → C. The proof of L � C → B is analogous. �
Remark 18. An attentive reader would notice the absence of Req. III, the most
complex one, from the proof of Theorem 17. While the reduction does not rely
on Req. III, its violation renders the reduction vacuous by denying the possibility
of the CWIP for SL. Indeed, if Req. III is violated, i.e., SL � G and f � Ant(G)
but f � Cons(G) for some M ∈ CL and some good map f : G → M, then no
multiformula � could satisfy (1) for this f .

4 Demonstrating the CWIP

In this section, strategies for proving the CWIP for various types of multise-
quent rules are described. For many common types of rules, a general (but not
universal) recipe for handling them is presented. Thus, every statement in this
section is implicitly prefaced by the qualifier “normally”.
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Initial Sequents are interpolated by uniformulas. It is easy to see that the
following are interpolants for the most popular initial sequents:

G(Γ,A ⇒ A,Δ) ←− G◦(A) G(Γ ⇒ A,A,Δ) ←− G◦(�)

G(Γ,A ⇒ A,Δ) ←− G◦(A) G(Γ,⊥ ⇒ Δ) ←− G◦(⊥)

G(Γ,A,A ⇒ Δ) ←− G◦(⊥) G(Γ ⇒ �,Δ) ←− G◦(�)

Single-Premise Local Rules. By a local rule we mean a rule that does not
affect the components and affects the sequent components mildly enough to
use the same map for the conclusion and the premise(s) (cf. component-shifting
rules on p. 13). (Normally,) single-premise local rules require no change to the
interpolant. We formulate sufficient criteria for reusing the interpolant and then
list common rules satisfying them.

Lemma 19. Consider a single-premise rule
G
H such that G◦ = H◦ and such

that no antecedent and no consequent propositional variable from G disappears
in H. If for any good map f on the common structure of G and H,

f � Ant(H) =⇒ f � Ant(G) and f � Cons(G) =⇒ f � Cons(H) ,

then H ←− � whenever G ←− � .

Proof. Follows directly from the definition of componentwise interpolation. �
This almost trivial observation captures most of the common single-premise
propositional rules, both logical and internal structural. We only provide a non-
exhaustive list, leaving the proof to the reader: internal weakening IW, internal
contraction IC, internal exchange IEx, and both internal-context sharing and
splitting versions of the left conjunction and right disjunction rules; some modal
rules can also be treated this way: e.g., the multisequent T rules for reflexive
models or the multisequent (local) D rules for serial models; an example of such
a rule with multiple active components is the hypersequent rule �Ls from [14]
and its symmetric version ♦Ls for equivalence models with good maps from
Example 7 (see Fig. 1). The variants of these logical rules with embedded internal
contraction are also local.

Multi-premise Local Rules are those for which any good map on the conclu-
sion can be applied to any of the premises. It follows directly from the definition
of CWIP:

Lemma 20 (Conjunctive Rules). Consider a rule
G1 . . . Gn

H such that

G◦
1 = · · · = G◦

n = H◦ and such that no antecedent and no consequent propositional
variable from any Gi disappears in H. If for any good map f on the common
structure of Gi’s and H,

f � Ant(H) =⇒ (∀i)
(
f � Ant(Gi)

)
and (∀i)

(
f � Cons(Gi)

)
=⇒ f � Cons(H),

then H ←− �1 � . . . � �n whenever Gi ←− �i for each i = 1, . . . , n .
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G(Γ ⇒ Δ)
IWG(Γ, Π ⇒ Σ, Δ)

G(Γ, Π, Π ⇒ Σ, Σ, Δ)
ICG(Γ, Π ⇒ Σ, Δ)

G(Γ, Ai ⇒ Δ) ∧ ⇒G(Γ, A1 ∧ A2 ⇒ Δ)

G(Γ, A1, A2 ⇒ Δ) ∧ ⇒G(Γ, A1 ∧ A2 ⇒ Δ)

G(Γ ⇒ Ai, Δ) ⇒ ∨G(Γ ⇒ A1 ∨ A2, Δ)

G(Γ ⇒ A1, A2, Δ) ⇒ ∨G(Γ ⇒ A1 ∨ A2, Δ)

G(Γ, A ⇒ Δ)
T ⇒G(Γ, �A ⇒ Δ)

G(Γ ⇒ A, Δ) ⇒ TG(Γ ⇒ ♦A, Δ)

G(

α
︷ ︸︸ ︷

Γ, �A ⇒ Δ;

β
︷ ︸︸ ︷

Π, A ⇒ Σ)
�Ls

G(Γ, �A ⇒ Δ
︸ ︷︷ ︸

α

; Π ⇒ Σ
︸ ︷︷ ︸

β

)

G(Γ, ♦A ⇒ Δ)
D ⇒ locG(Γ, �A ⇒ Δ)

G(Γ ⇒ �A, Δ) ⇒ D locG(Γ ⇒ ♦A, Δ)

G(

α
︷ ︸︸ ︷

Γ ⇒ ♦A, Δ;

β
︷ ︸︸ ︷

Π ⇒ A, Σ)
♦Ls

G(Γ ⇒ ♦A, Δ

α

; Π ⇒ Σ

β

)

Fig. 1. Rules not requiring changes to the interpolant by Lemma 19

Lemma 21 (Disjunctive Rules). Consider a rule
G1 . . . Gn

H such that

H◦ = G◦
1 = · · · = G◦

n and such that no antecedent and no consequent propo-
sitional variable from any Gi disappears in H. If for any good map f on the
common structure of Gi’s and H,

f � Ant(H) =⇒ (∃i)
(
f � Ant(Gi)

)
and (∃i)

(
f � Cons(Gi)

)
=⇒ f � Cons(H) ,

then H ←− �1 � . . . � �n whenever Gi ←− �i for each i = 1, . . . , n .

The remaining propositional rules fall under the scope of these two lemmas: it is
easy to see that both the internal-context splitting and sharing versions of the
right conjunction rule ⇒ ∧ (see Fig. 2) are conjunctive and both versions of the
left disjunction rule ∨ ⇒ (see Fig. 3) are disjunctive rules in this sense.

G(Γ ⇒ A, Δ) G(Γ ⇒ B, Δ) ⇒ ∧
(Γ A B, Δ)

G(Γ1 ⇒ A, Δ1) G(Γ2 ⇒ B, Δ2) ⇒ ∧
(Γ1, Γ2 A B, Δ1, Δ2)

Fig. 2. Propositional conjunctive rules in the sense of Lemma 20

Analytic Cut. Another common local rule is cut. While the general cut rule
is problematic even in the sequent case, it is well known that analytic cuts can
be handled (see [4]). To extend this handling to the external-context sharing
and internal-context splitting cuts on multisequents (see Fig. 4), we impose a
condition that is both stronger and weaker than analyticity. While A need not
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G(Γ, A ⇒ Δ) G(Γ, B ⇒ Δ) ∨ ⇒
(Γ, A B Δ)

G(Γ1, A ⇒ Δ1) G(Γ2, B ⇒ Δ2) ∨ ⇒
(Γ1, Γ2, A B Δ1, Δ2)

Fig. 3. Propositional disjunctive rules in the sense of Lemma 21

appear as a subformula in the conclusion as long as all its propositional variables
occur there, these propositional variables must be on the same side of ⇒ as
in A or A displayed in the premises. This condition is necessary to use the
interpolants of both premises and the formula A in constructing the interpolant
for the conclusion.

Lemma 22 (Analytic Cut). For the cut rules from Fig. 4, if no antecedent
and no consequent propositional variable from any premise disappears in the
conclusion, then (Cut ⇒) and (⇒ Cut) are a disjunctive and conjunctive rule
respectively and can be treated according to Lemmas 21 or 20 respectively. For
the (C u⇒ t) rule, we have G(Γ1, Γ2 ⇒ Δ1,Δ2) ←− �1 �

(
G◦(A)��2

)
whenever

G(Γ1 ⇒ A,Δ1) ←− �1 and G(Γ2, A ⇒ Δ2) ←− �2.

Proof. The common language requirement is clearly satisfied. Consider an arbi-
trary good map f from the common structure of the premises and the conclusion
of (C u⇒ t) to some M ∈ CL. Assume first that f � Ant

(G(Γ1, Γ2 ⇒ Δ1,Δ2)
)
. It

is immediate that f � Ant
(G(Γ1 ⇒ A,Δ1)

)
and, hence, f � �1. Further, either

M, f(α) � A or M, f(α) � A for the active component α. In the latter case,
f � G◦(A).4 In the former case, f � Ant

(G(Γ2, A ⇒ Δ2)
)

implying f � �2. In
either case, f � G◦(A)��2 for the second conjunct of the proposed interpolant.

Assume now that f � �1 �
(
G◦(A) � �2

)
. It follows from f � �1 that

f � Cons
(G(Γ1 ⇒ A,Δ1)

)
. If one of the forced formulas is not the displayed A,

then f � Cons
(G(Γ1, Γ2 ⇒ Δ1,Δ2)

)
, which is the desired result. Otherwise, we

have M, f(α) � A. In this case, f � G◦(A) implying f � �2. This, in turn,
implies f � Cons

(G(Γ2, A ⇒ Δ2)
)

and f � Cons
(G(Γ1, Γ2 ⇒ Δ1,Δ2)

)
again. �

Remark 23. Lemma 22 also applies to one-to-one multicut rules allowing multi-
ple copies of the cut formula in both premises in Fig. 4.

External Structural Rules. From now on, interpolants for most rules rely on
the specifics of goodness conditions. The guiding principle is that any good map
on the conclusion of the rule needs to be transformed in some natural
and general way into a good map on the premise(s). We start with rule
types that are reasonably common across various sequent types: external weak-
ening EW, external contraction EC, external mix, and external exchange EEx.
4 We assume the standard semantics, i.e., that exactly one of A or A holds at a world.
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G(Γ1, A ⇒ Δ1) G(Γ2, A ⇒ Δ2)
Cut ⇒G(Γ1, Γ2 ⇒ Δ1, Δ2)

G(Γ1 ⇒ A, Δ1) G(Γ2 ⇒ A, Δ2) ⇒ CutG(Γ1, Γ2 ⇒ Δ1, Δ2)

G(Γ1 ⇒ A, Δ1) G(Γ2, A ⇒ Δ2)
C

u⇒ t
(Γ1, Γ2 Δ1, Δ2)

Fig. 4. Cut rules

G()
EWG(Γ1 ⇒ Δ1

α1

; . . . ; Γn ⇒ Δn

αn

)
G(

α1
︷ ︸︸ ︷

Γ1 ⇒ Δ1;

β1
︷ ︸︸ ︷

Π1 ⇒ Σ1; . . . ;

αn
︷ ︸︸ ︷

Γn ⇒ Δn;

βn
︷ ︸︸ ︷

Πn ⇒ Σn)
mixG(Γ1, Π1 ⇒ Δ1, Σ1

α1

; . . . ; Γn, Πn ⇒ Δn, Σn

αn

)

Fig. 5. External structural rules EW and mix

External weakening. By external weakening rules we understand rules EW from
Fig. 5 where the conclusion is obtained by adding new components in such a way
that all the sequent components already present in the premise, along with the
hierarchical relationships among their components, remain intact.

Requirement V (For EW). For each instance of EW from Fig. 5 and each
good map f on its conclusion, the restriction f � G() of f onto the components
of G() must be a good map on the premise.

Lemma 24 (External Weakening). Let G() ←− � for an instance of EW
from Fig. 5 and �

′ be the result of adding empty components α1, . . . , αn to each
uniformula in � in the same way they are added in the rule. Then Req.V implies
G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn) ←− �

′.

Proof. For a good map f : G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn) → M, the map f �G() is
good by Req.V. If f � Ant

(G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn)
)
, then f �G() � Ant

(G()
)
.

Thus, f �G() � �. It is easy to show by induction on the construction of � that
f � �

′ iff f �G() � �. Thus, f � �
′. The argument for the consequents is similar.

The common language condition is also clearly fulfilled. �
The external weakening rules of both hypersequents and nested sequents are
covered by this lemma w.r.t. good maps from Examples 7 and 6 respectively.

Example 25. Consider symmetric nested sequents written in a hybrid Brünnler–
Poggiolesi notation (a similar notation has been used in [5]). By Lemma 24,

B ⇒ B,
[
A ⇒ A

] ←− [
A

]
�

(
B,

[ ])

EW
B ⇒ B,

[
A ⇒ A, [C ⇒ D]

]
, [E ⇒ F ] ←− ([

A, [ ]
]
, [ ]

)
�

(
B,

[
[ ]

]
, [ ]

) .

Mix and external contraction rules. By mix rules we understand rules mix from
Fig. 5 where the conclusion is obtained by transferring all antecedent and con-
sequent formulas contained in each βi, i = 1, . . . , n, to the antecedent and con-
sequent respectively of αi and removing the emptied components βi.
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Requirement VI (For mix and EC). For each instance of mix from Fig. 5 and
each good map f on its conclusion, f [α � β] :=f∪{(β1, f(α1)), . . . , (βn, f(αn))}
must be a good map on the premise.

Lemma 26 (Mix). Let G(Γ1 ⇒ Δ1;Π1 ⇒ Σ1; . . . ;Γn ⇒ Δn;Πn ⇒ Σn) ←− �

for an instance of mix from Fig. 5. Let �
′ be the result of moving each for-

mula within each βi to αi, leaving formulas contained in components other
than βi intact, and removing the emptied βi’s from each uniformula in �. Then
G(Γ1,Π1 ⇒ Δ1, Σ1; . . . ;Γn,Πn ⇒ Δn, Σn) ←− �

′ whenever Req. VI is fulfilled.

Proof. If f : G(Γ1,Π1 ⇒ Δ1, Σ1; . . . ;Γn,Πn ⇒ Δn, Σn) → M is good, so is
f [α � β] by Req.VI. f � Ant

(G(Γ1,Π1 ⇒ Δ1, Σ1; . . . ;Γn,Πn ⇒ Δn, Σn)
)

implies f [α � β] � Ant
(G(Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn; Π1 ⇒ Σ1; . . . ;Πn ⇒ Σn)

)

because formulas from each Πi are evaluated at f [α � β](βi) = f(αi), same as
in f . Thus, f [α � β] � �. It is easy to show by induction on the construction
of � that f � �

′ iff f [α � β] � �. Thus, f � �
′. The argument for the

consequents is similar. The common language condition is also fulfilled. �
For set-based sequent components, the external contraction EC is simply an
instance of mix with Γi = Πi and Δi = Σi for each i = 1, . . . , n. For multiset- and
sequence-based ones, EC can be obtained from mix by internal contraction IC and
internal exchange IEx. Since the definition of CWIP is not sensitive to multiplici-
ties of formulas or their positions within the antecedent (consequent), Lemma 26
is equally applicable to EC (cf. also the application of Lemma 19 to IC and IEx).

Remark 27. Requirement VI does not yet guarantee that mix from Fig. 5 is a
proper mix rule or that its variant with Γi = Πi and Δi = Σi is a proper
contraction rule: that requires the α-components to have the same hierarchical
relations as the β-components, both among themselves and as related to the rest
of the multisequent. But this is not a problem of interpolation.

The external contraction rules of both hypersequents and nested sequents are
covered by Lemma 26 w.r.t. good maps from Examples 7 and 6 respectively.

Example 28. An example of a nontrivial mix rule is medial from [2], represented

here in the original nested-sequent notation:
Γ{[Δ1], [Δ2]}

med
Γ{[Δ1,Δ2]}

, with brackets

used to represent the tree structure on the components. Thus, the root compo-
nent of Δ1 is mixed with that of Δ2 and each child component of either root
becomes a child of the mixed component. Below we present an example of the
use of Lemma 26, where C ⇒ D is mixed with A ⇒ A :
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⇒ ,
[
C ⇒ D, [B ⇒ B]

]
,
[
A ⇒ A, [ ⇒ F ]

] ←− ([
[ ]

]
,
[
A, [ ]

])
�

([
[B]

]
,
[
[ ]

])

med⇒ ,
[
C,A ⇒ D,A, [B ⇒ B], [ ⇒ F ]

] ←− ([
A, [ ], [ ]

])
�

([
[B], [ ]

]) .

Clearly, Req. VI is satisfied for med w.r.t. the good maps from Example 6.

G(

α
︷ ︸︸ ︷

Γ ⇒ Δ;

β
︷ ︸︸ ︷

A ⇒ )
K ⇒G(Γ, ♦A ⇒ Δ

α

)

G(

α
︷ ︸︸ ︷

Γ ⇒ Δ;

β
︷ ︸︸ ︷

⇒ A) ⇒ KG(Γ ⇒ �A, Δ

α

)

Fig. 6. Modal K rules

External Exchange. These are the rules that change the structure of the multise-
quent without changing a single sequent component. For them, it is sufficient to
change the structures of each uniformula in the interpolant in the same way. It is
required that good maps on the conclusion could be transferred to the premise
without changing where each formula is evaluated.

Component-Removing Rules are modal rules that remove a component from
the premise multisequent. Such rules can be highly logic-specific. We consider
two most common ones that rely on the connection between the modality and
the Kripke semantics and are likely to be present in one form or another in
virtually every multisequent system. For these rules, the argument is almost the
same as the one given in [6] for nested sequents. Hence, we only provide the proof
for one. It should be noted that, to the best of our knowledge, these rules require
the interpolant of the premise to be in the DNF or CNF, depending on the rule.
We have not been able to extend the construction to arbitrary interpolants. For
both rules in Fig. 6, the conclusion is obtained by removing the component β
with a single formula and transferring this formula, prefaced with an appropriate
modality, to the component α (as usual, copying the modalized formula to the
premise makes no difference).

Requirement VII (For K Rules). For each instance of each rule from Fig. 6
and each good map f from its conclusion to a model M = (W,R, V ), it is required
that f ∪ {(β,w)} be a good map on the premise of the rule whenever f(α)Rw.

Lemma 29 (K Rules). Consider an instance of (K ⇒) from Fig. 6 and let

G(Γ ⇒ Δ;A ⇒ ) ←−
n

�
i=1

⎛

⎝
mi

�
j=1

�ij(Xij ; ∅) �

li

�
k=1

G◦(∅;Cik)

⎞

⎠ (2)

where β is not the active component of any uniformula �ij(Xij ; ∅). Then

G(Γ,♦A ⇒ Δ) ←−
n

�
i=1

( mi

�
j=1

�ij(Xij) � G◦
(

♦
li∧

k=1

Cik

))

(3)
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wherever Req. VII is fulfilled. Similarly, for the (⇒ K) rule, if

G(Γ ⇒ Δ; ⇒ A) ←−
n

�
i=1

⎛

⎝
mi

�
j=1

�ij(Xij ; ∅) �

li

�
k=1

G◦(∅;Cik)

⎞

⎠,

then, in the presence of Req. VII,

G(Γ ⇒ �A,Δ) ←−
n

�
i=1

( mi

�
j=1

�ij(Xij) � G◦
(

�
li∨

k=1

Cik

))

.

Proof. We prove the statement for the (K ⇒) rule. Let f � Ant
(G(Γ,♦A ⇒ Δ)

)

for some good map f : G(Γ,♦A ⇒ Δ) → M, where M = (W,R, V ). Then
M, f(α) � ♦A, so that there exists a world w ∈ W such that f(α)Rw and
M, w � A. By Req. VII, the good map f ∪ {(β,w)} � Ant

(G(Γ ⇒ Δ;A ⇒ )
)
.

Assuming (2), the interpolant given there in the DNF is forced by f ∪ {(β,w)},
i.e., for some i, the map f ∪ {(β,w)} forces one of the disjuncts of the DNF:
in particular, M, w � Cik for all k = 1, . . . , li for this i. Given that f(α)Rw,
we see that M, f(α) � ♦

∧li
k=1 Cik.5 The removal of the empty β component

from the remaining �ij(Xij ; ∅) works the same way as for mix in Lemma 26.
Thus, after the removal, all these uniformulas remain forced by f for this i. It
follows that f forces the interpolant from (3). The argument for the consequents
is analogous.

It is crucial that only one diamond formula has to be satisfied. This is used
to find one world to extend the good map with. To single out such diamond
formulas, the interpolant of the premise needs to be in the DNF. �
Composite Rules can be viewed as combinations of other rule types.

Component-shifting rules. Some rules seem local because the structure of the
multisequent is unchanged, whereas in reality a new component is added to
replace an old one. An example is the hypersequent �R rule from [14], which can
be obtained from EW and (⇒ K) (see Fig. 7), necessitating both Reqs. V and VII.

Seriality rules. It was shown in [6] that of the modal nested rules from [2], only
the basic K rules (Fig. 6) and the seriality D rules require changing interpolants,
with changes for the D rules obtained from those for the K rules by swapping
the antecedent and consequent versions. An explanation is depicted in Fig. 8.
The ¬ rules do not fit into our paradigm: they are from split sequents. But in
this example the second ¬ cancels the problem created by the first one. Thus, a
transformation can be guessed and then proved to be correct independently.
5 This is true also for li = 0: the empty conjunction is � and M, f(α) � ♦�. However,

G◦
(
♦
∧li

k=1 Cik

)
cannot be dropped: the diamond formula in the disjunct that is

forced ensures the existence of an accessible world and the possibility to use (2).
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G( ⇒ A)
�RG( ⇒ �A)

�
G( ⇒ A)

EWG( ⇒ ; ⇒ A) ⇒ K
( �A )

Fig. 7. A rule that looks local but should be treated as composite

G(Γ ⇒ Δ; ⇒ A) ⇒ DG(Γ ⇒ ♦A, Δ)
�

G(Γ ⇒ Δ; ⇒ A) ¬G(Γ ⇒ Δ; A ⇒ )
K ⇒G(Γ, ♦A ⇒ Δ)
D ⇒ locG(Γ, �A ⇒ Δ) ¬

(Γ A, Δ)

Fig. 8. A composite component-removing rule with illegal transitions.

Multicut rule. Unlike in Rem. 23, the multi-to-one multicut rule is external-
context splitting and, hence, not local. In addition, one component is juxtaposed
against many in the other premise. Fortunately, it can always be represented as
a combination of local one-to-one multicuts and rules EW, making our method
directly applicable. For the lack of space, we leave the details to the reader.

5 Grafted Hypersequents

To show the versatility of our general method, we apply it to the prefixed-tableau
version of a new type of multisequents called grafted hypersequents, introduced
in [10]. A grafted hypersequent itself is a (possibly empty) hypersequent with
an additional trunk component, separated from the others by ‖. The formula
interpretation for a hypersequent Γ ⇒ Δ ‖ Π1 ⇒ Σ1 | · · · | Πn ⇒ Σn is∧

Γ → ∨
Δ ∨ ∨n

i=1 �(
∧

Πi → ∨
Σi). In [10], a prefixed tableau version equiva-

lent to grafted hypersequents is developed for K5 and KD5. This system oper-
ates with signed prefixed formulas � : SA, where the sign S ∈ {T,F} and the
prefixes can be of three types: the trunk prefix •, countably many limb pre-
fixes 1,2, . . . and countably many twig prefixes 1, 2, . . . . Twig prefixes do not
appear in initial tableaus: they can only be introduced by tableau rules. Each
branch of a tableau is considered to be a multisequent with each prefix � on
the branch determining the component � that contains Γ� ⇒ Δ� where Γ� :=
{A | � : TA occurs on the branch} and Δ� := {A | � : FA occurs on the branch}.
Since the prefix • is always present, the singleton multisequents contain no limb
or twig prefixes. The interpolant is constructed beginning from a closed tableau
and working backwards through the stages of the tableau derivation until the
starting tableau whose only branch contains • : TA and • : FB is reached.

Example 30 (Grafted tableaus). A map from the prefixes occurring on a branch
to worlds in a model M = (W,R, V ) is called good if f(•)Rf(n) for any limb
prefix n and f(•)Rkf(m) for some k > 0 for any twig prefix m.



216 R. Kuznets

Requirements I and II easily follow from the results of [10].6 Given the formula
interpretation of grafted hypersequents, Req. III follows from the equivalence of
grafted tableaus and grafted hypersequents ([10]), from Def. 30, and from the
fact that twig components do not occur in initial tableaus. Req. IV is also trivial.

Fig. 9. Grafted tableau rules for K5, where c and c′ are either limb or twig prefixes

The propositional logical and all structural rules fall into the categories dis-
cussed above. The cut rule is eliminable. Thus, to demonstrate the CIP for K5, it
is sufficient to consider the modal rules from [10] and their symmetric variants, as
presented in Fig. 9. Written in our general notation, R2 and R6 coincide with �Ls

while R4 and R8 coincide with ♦Ls from Fig. 1. The locality of the rules R2 and R4
directly follows from Def. 30 as f(•)Rf(n) for any good map. The locality of the
rules R6 and R8 relies on the fact that f(•)Rkf(c) and f(•)Rlf(c′) for k, l > 0
implies f(c)Rf(c′) in Euclidean models. The rules R1 and R5 are variants of the
(⇒ K) rule with the principal modal formula preserved in the premise, whereas
R3 and R7 are such variants of the (K ⇒) rule. Req.VII directly follows from
Def. 30 for all four rules.

For the logic KT� of shift reflexivity, the grafted hypersequents from [10]
can be translated into grafted tableaus by replacing the modal rules R5–R8
from Fig. 9 with the modal rules S5–S8 from Fig. 10. Instead of Euclideanity,
the semantic condition of shift reflexivity is imposed: wRw whenever vRw for
some v. To prove the CIP for KT�, it is sufficient to note that S7 and S8 are local
rules because f(•)Rkf(c) for some k > 0. Further, S5 and S6 can be represented
as (⇒ K) and (K ⇒) respectively, followed by a series of �Ls and ♦Ls rules.
Req. VII is clearly fulfilled by Def. 30. Moreover, since the �Ls and ♦Ls rules are
performed in one block with a K rule, we can assume f(c)Rf(m) ensuring their
locality. Note that Euclideanity was not used for the rules R1–R4 in K5.

Since the additional tableau rule for KD5 from [10] can be extended to SDL+

and since both the rule and its symmetric version are variants of (D ⇒) and (⇒
D) with embedded contraction, they can be dealt with in the manner described
in Sect. 7.

Theorem 31. The Craig interpolation property for K5, KD5, the logic of shift
reflexivity KT�, and the extended standard deontic logic SDL+ can be proved
constructively using grafted tableau systems, based on [10].

6 While the tableaus presented in [10] are not symmetric, the necessary modifications
are standard, and thus the completeness results from [10] can be applied here.
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Fig. 10. Grafted tableau rules for KT� , where c is either a limb or twig prefix

6 Lyndon Interpolation

The CIP is often strengthened to the Lyndon interpolation property (LIP). Up
to now, p and p have represented the same propositional variable. By contrast,
for the LIP they are distinct: p (p) can occur in the interpolant iff p (p) occurs in
both antecedent and consequent formulas. Thanks to the use of symmetric-type
sequents, the interpolants constructed for the CIP can also be used to demon-
strate the LIP for all the rules considered, with the exception of the analytic cut,
which requires a strengthening of the condition on preservation of p and p. The
main condition for using our method to prove the LIP for custom-made rules
is that no propositional letter, positive or negative, antecedent or consequent,
disappears on the way from initial sequents to the endsequent.

Corollary 32. The LIP for all 15 logics of the modal cube can be proved con-
structively using nested sequents from [2]. The LIP for S5 can be proved con-
structively using the hypersequent system from [1]. The LIP for K5, KD5, KT�,
and SDL+ can be proved constructively using grafted tableaus based on [10].

7 Conclusion and Future Work

We have presented a general description of the constructive proof of Craig and
Lyndon interpolation for hypersequents, nested sequents, and other multicom-
ponent sequent formalisms such as grafted tableaus. This general description
explains already existing results and facilitates the extension of the method to
new rules, e.g., the analytic cut rule and the generalizations of the mix rule. We
also provide a general formalism-independent treatment of external weakening
and contraction rules. The natural next step is to apply this framework to new
multisequent formalisms and to semantics other than Kripke models.
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Abstract. We generalize the adjoint logics of Benton and Wadler [1994,
1996] and Reed [2009] to allow multiple different adjunctions between
the same categories. This provides insight into the structural proof the-
ory of cohesive homotopy type theory, which integrates the synthetic
homotopy theory of homotopy type theory with the synthetic topology
of Lawvere’s axiomatic cohesion. Reed’s calculus is parametrized by a
preorder of modes, where each mode determines a category, and there is
an adjunction between categories that are related by the preorder. Here,
we consider a logic parametrized by a 2-category of modes, where each
mode represents a category, each mode morphism represents an adjunc-
tion, and each mode 2-morphism represents a pair of conjugate natural
transformations. Using this, we give mode theories that describe adjoint
triples of the sort used in cohesive homotopy type theory. We give a
sequent calculus for this logic, show that identity and cut are admissible,
show that this syntax is sound and complete for pseudofunctors from the
mode 2-category to the 2-category of adjunctions, and investigate some
constructions in the example mode theories.

Keywords: Proof theory · Category theory · Homotopy type theory ·
Adjoint logic

1 Introduction

An adjunction F � U between categories C and D consists of a pair of functors
F : C → D and U : D → C such that maps FC −→D D correspond naturally
to maps C −→C UD. A prototypical adjunction, which provides a mnemonic
for the notation, is where U takes the underlying set of some algebraic structure
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such as a group, and F is the free structure on a set—the adjunction property
says that a structure-preserving map from FC to D corresponds to a map of
sets from C to UD (because the action on the structure is determined by being a
homomorphism). Adjunctions are important to the proof theories and λ-calculi of
modal logics, because the composite FU is a comonad on D , while UF is a monad
on C . Benton and Wadler [2,3] describe an adjoint λ-calculus for mixing linear
logic and structural/cartesian logic, with functors U from linear to cartesian and
F from cartesian to linear; the !A modality of linear logic arises as the comonad
FU , while the monad of Moggi’s metalanguage [16] arises as UF . Reed [19]
describes a generalization of this idea to situations involving more than one
category: the logic is parametrized by a preorder of modes, where every mode p
determines a category, and there is an adjunction F � U between categories p
and q (with F : q → p) exactly when q ≥ p. For example, the intuitionistic modal
logics of Pfenning and Davies [18] can be encoded as follows: the necessitation
modality � is the comonad FU for an adjunction between “truth” and “validity”
categories, the lax modality © is the monad UF of an adjunction between
“truth” and “lax truth” categories, while the possibility modality � requires a
more complicated encoding involving four adjunctions between four categories.
While specific adjunctions such as (− × A) � (A → −) arise in many logics,
adjoint logic provides a formalism for abstract/uninterpreted adjunctions.

In Reed’s logic, modes are specified by a preorder, which allows at most
one adjunction between any two categories (more precisely, there can be two
isomorphic adjunctions if both p ≥ q and q ≥ p). However, it is sometimes
useful to consider multiple different adjunctions between the same two categories.
A motivating example is Lawvere’s axiomatic cohesion [8], a general categorical
interface that describes cohesive spaces, such as topological spaces, or manifolds
with differentiable or smooth structures. The interface consists of two categories
C and S , and a quadruple of adjoint functors Π0, Γ : C → S and Δ,∇ :
S → C where Π0 � Δ � Γ � ∇. The idea is that S is some category of “sets”
that provides a notion of “point”, and C is some category of cohesive spaces
built out of these sets, where points may be stuck together in some way (e.g. via
topology). Γ takes the underlying set of points of a cohesive space, forgetting
the cohesive structure. This forgetful functor’s right adjoint Γ � ∇ equips a set
with codiscrete cohesion, where all points are stuck together; the adjunction says
that a map into a codiscrete space is the same as a map of sets. The forgetful
functor’s left adjoint Δ � Γ equips a set with discrete cohesion, where no points
are stuck together; the adjunction says that a map from a discrete space is the
same as a map of sets. The further left adjoint Π0 � Δ, gives the set of connected
components—i.e. each element of Π0C is an equivalence class of points of C that
are stuck together. Π0 is important because it translates some of the cohesive
information about a space into a setting where we no longer need to care about
the cohesion. These functors must satisfy some additional laws, such as Δ and ∇
being fully faithful (maps between discrete or codiscrete cohesive spaces should
be the same as maps of sets).
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A variation on axiomatic cohesion called cohesive homotopy type the-
ory [20,21,23] is currently being explored in the setting of homotopy type the-
ory and univalent foundations [25,26]. Homotopy type theory uses Martin-Löf’s
intensional type theory as a logic of homotopy spaces: the identity type pro-
vides an ∞-groupoid structure on each type, and spaces such as the spheres can
be defined by their universal properties using higher inductive types [13,14,22].
Theorems from homotopy theory can be proved synthetically in this logic [5,6,9–
12], and these proofs can be interpreted in a variety of models [4,7,24]. How-
ever, an important but subtle distinction is that there is no topology in synthetic
homotopy theory: the “homotopical circle” is defined as a higher inductive type,
essentially “the free ∞-groupoid on a point and a loop,” which a priori has noth-
ing to do with the “topological circle,” {(x, y) ∈ R

2 | x2 + y2 = 1}, where R
2

has the usual topology. This is both a blessing and a curse: on the one hand,
proofs are not encumbered by topological details; but on the other, internally to
homotopy type theory, we cannot use synthetic theorems to prove facts about
topological spaces.

Cohesive homotopy type theory combines the synthetic homotopy theory of
homotopy type theory with the synthetic topology of axiomatic cohesion, using
an adjoint quadruple of (∞, 1)-functors S � Δ � Γ � ∇. In this higher categorical
generalization, S is an (∞, 1)-category of homotopy spaces (e.g. ∞-groupoids),
and C is an (∞, 1)-category of cohesive homotopy spaces, which are additionally
equipped with a topological or other cohesive structure at each level. The rules
of type theory are now interpreted in C , so that each type has an ∞-groupoid
structure (given by the identity type) as well as a separate cohesive structure on
its objects, morphisms, morphisms between morphisms, etc. For example, types
have both morphisms, given by the identity type, and topological paths, given
by maps that are continuous in the sense of the cohesion. In the ∞-categorical
case, Δ’s left adjoint SA (pronounced “shape of A”) generalizes from the con-
nected components to the fundamental homotopy space functor, which makes a
homotopy space from the topological/cohesive paths, paths between paths, etc.
of A. This captures the process by which homotopy spaces arise from cohesive
spaces; for example, one can prove (using additional axioms) that the shape of
the topological circle is the homotopy circle [23]. This allows synthetic homotopy
theory to be used in proofs about topological spaces, and opens up possibilities
for applications to other areas of mathematics and theoretical physics.

This paper begins an investigation into the structural proof theory of cohesive
homotopy type theory, as a special case of generalizing Reed’s adjoint logic to
allow multiple adjunctions between the same categories. As one might expect,
the first step is to generalize the mode preorder to a mode category, so that
we can have multiple different morphisms α, β : p ≥ q. This allows the logic to
talk about different but unrelated adjunctions between two categories. However,
in order to describe an adjoint triple such as Δ � Γ � ∇, we need to know
that the same functor Γ is both a left and right adjoint. To describe such a
situation, we generalize to a 2-category of modes, and arrange the syntax of the
logic to capture the following semantics. Each mode p determines a category
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(also denoted by p). Each morphism α : p ≥ q determines adjoint functors
Fα : p → q and Uα : q → p where Fα � Uα. Each 2-cell α ⇒ β determines
a morphism of adjunctions between Fα � Uα and Fβ � Uβ , which consists of
natural transformations Fβ → Fα and Uα → Uβ that are conjugate under the
adjunction structure [15, Sect. IV.7]. For example, an adjoint triple is specified
by the mode 2-category with

– objects c and s
– 1-cells d : s ≥ c and n : c ≥ s
– 2-cells 1c ⇒ n ◦ d and d ◦ n ⇒ 1s satisfying some equations

The 1-cells generate Fd � Ud and Fn � Un, while the 2-cells are sufficient to prove
that Ud is naturally isomorphic to Fn, so we can define Δ := Fn, ∇ := Un, and
Γ := Ud

∼= Fn and have the desired adjoint triple. Indeed, you may recognize this
2-category as the “walking adjunction” with d � n—that is, we give an adjoint
triple by saying that the mode morphism generating the adjunction Δ � Γ is
itself left adjoint to the mode morphism generating the adjunction Γ � ∇.

The main judgement of the logic is a “mixed-category” entailment judgement
A [α]  C where A has mode q and C has mode p and α : q ≥ p. Semantically,
this judgement means a morphism from A to C “along” the adjunction deter-
mined by α—i.e. a map Fα A −→ C or A −→ Uα C. However, taking the
mixed-mode judgement as primitive makes for a nicer sequent calculus: U and
F can be specified independently from each other, by left and right rules, in such
a way that identity and cut (composition) are admissible, and the subformula
property holds. While we do not consider focusing [1], we conjecture that the
connectives can be given the same focusing behavior as in [19]: F is positive
and U is negative (which, because limits are negative and colimits are positive,
matches what left and right adjoints should preserve).

The resulting logic has a good definition-to-theorem ratio: from simple
sequent calculus rules for F and U , we can prove a variety of general facts that
are true for any mode 2-category (Fα and Uα are functors; FαUα is a comonad
and UαFα is a monad; Fα preserves colimits and Uα preserves limits), as well as
facts specific to a particular theory (e.g. for the adjoint triple above, Γ preserves
both colimits and limits, because it can be written either has UΔ or F∇; and
the comonad � := ΔΓ and monad 	 := ∇Γ are themselves adjoint). Moreover,
we can use different mode 2-categories to add additional structure; for example,
moving from the walking adjunction to the walking reflection (taking Δ∇ = 1)
additionally gives that Δ and ∇ are full and faithful and that � and 	 are idem-
potent, which are some of the additional conditions for axiomatic cohesion.

We make a few simplifying restrictions for this paper. First, we consider
only single-hypothesis, single-conclusion sequents, deferring an investigation of
products and exponentials to future work. Second, on the semantic side, we
consider only 1-categorical semantics of the derivations of the logic, rather than
the ∞-groupoid semantics that we are ultimately interested in. More precisely,
for any 2-category M of modes, we can interpret the logic using a pseudofunctor
S : M → Adj, where Adj is the 2-category of categories, adjunctions, and
conjugate pairs of natural transformations [15, Sect. IV.7]. We show that the
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syntax forms such a pseudofunctor, and conjecture that the syntax is initial
in some category or 2-category of pseudofunctors, but have not yet tried to
make this precise. Third, we consider only a logic of simple-types, rather than a
dependent type theory. Because many of the statements we would like to make
require proving some equations between derivations (e.g. the monad laws), we
give an equality judgement on sequent calculus derivations. This judgement is
interpreted by actual equality of morphisms in the semantics above, but we
intend some of these rules to be propositional equalities in an eventual adjoint
type theory.

In Sect. 2, we define the rules of the logic, prove admissibility of identity and
cut, and define an equational theory on derivations. In Sect. 3, we discuss the
semantics of the logic in pseudofunctors M → Adj. Finally, in Sect. 4, we exam-
ine some specific mode specifications for adjoint triples, which are related to the
rules for spatial type theory used in [23]. All of the syntactic metatheory of the
logic and the examples have been formalized in Agda [17].1 An extended version
of this paper, available from the authors’ web sites, contains more discussion of
the examples, definitions, and proofs.

2 Sequent Calculus and Equational Theory

2.1 Sequent Calculus

The logic is parametrized by a strict 2-category M of modes. We write p, q for
the 0-cells (modes), α, β, γ, δ : p ≥ q for the 1-cells from q to p, and e : α ⇒ β for
the 2-cells. The notation p ≥ q for the 1-cells follows [19], but in our case M is
a general category, so there can be more than one morphism p ≥ q. We use the
notation p ≥ q for an arrow from q to p (an arrow points “lesser to greater”) to
match the sequent calculus, where the p-mode is on the left and the q-mode on
the right (“validity is greater than truth”). We write β ◦α for 1-cell composition
in function composition order (i.e. if β : r ≥ q and α : q ≥ p then β ◦ α : r ≥ p),
e1 · e2 for vertical composition of 2-cells in diagrammatic order, and e1 ◦2 e2 for
horizontal composition of 2-cells in “congruence of ◦” order (if e1 : α ⇒ α′ and
e2 : β ⇒ β′ then e1 ◦2 e2 : α ◦ β ⇒ α′ ◦ β′). The equations for 2-cells say that · is
associative with unit 1α for any α, that ◦2 is associative with unit 11, and that
the interchange law (e1 · e2) ◦2 (e3 · e4) = (e1 ◦2 e3) · (e2 ◦2 e4) holds. We think of
the mode category as being fixed at the outset, and the syntax and judgements
of the logic as being indexed by the 0/1/2-cells of this category.

In the pseudofunctor semantics, each object p of the mode category M will
determine a category (also denoted by p). Syntactically, the judgement A typep

will mean that A determines an object of the category p. A morphism α : q ≥ p
in M determines an adjunction Fα � Uα , with Fα : q → p and Uα : p → q;
note that the right adjoints are covariant and the left adjoints contravariant.
Syntactically, the action on objects is given by Fα A typep when A typeq and
Uα A typeq when A typep. The “pseudo” of the pseudofunctor means that, for

1 See http://github.com/dlicata335/hott-agda/tree/master/metatheory/adjointlogic.

http://github.com/dlicata335/hott-agda/tree/master/metatheory/adjointlogic
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example, the types Fβ (Fα A) and Fα◦β A will be isomorphic but not definition-
ally equal. Finally, a 2-cell e : α ⇒ β in M determines natural transformations
Uα → Uβ and Fβ → Fα which are “conjugate” [15, Sect. IV.7]; again, the
right adjoints are covariant and the left adjoints are contravariant. Syntacti-
cally, these natural transformations will be definable using the sequent calculus
rules.

In addition to the connectives Fα A and Uα A, we allow an arbitrary collec-
tion of atomic propositions (denoted P ), each of which has a designated mode;
these represent arbitrary objects of the corresponding categories. To add addi-
tional structure to a category or to all categories, we can add rules for additional
connectives; for example, a rule A+B typep if A typep and B typep (parametric
in p) says that any category p has a coproduct type constructor.

The sequent calculus judgement has the form A [α]  C where A typeq and
C typep and α : q ≥ p. The judgement represents a map from an object of some
category q to an object of another category p along the adjunction Fα � Uα .
Semantically, this mixed-category map can be interpreted equivalently as an
arrow Fα A −→p C or A −→q Uα C. In the rules, we write Ap to indicate an
elided premise A typep. The rules for atomic propositions and for U and F are
as follows:

1 ⇒ α

P [α] � P
hyp

Ar [α ◦ β] � Cp

Fα:r≥q Ar [β : q ≥ p] � Cp
FL

γ : r ≥ q γ ◦ α ⇒ β Cr [γ] � Aq

Cr [β : r ≥ p] � Fα:q≥p Aq
FR

γ : q ≥ p α ◦ γ ⇒ β Aq [γ] � Cp

Uα:r≥q Aq [β : r ≥ p] � Cp
UL

Cr [β ◦ α] � Ap

Cr [β : r ≥ q] � Uα:q≥p Ap
UR

The rules for other types do not change α—e.g., see the rules for coproducts in
Fig. 1.

Fig. 1. Rules for coproducts; see the extended version for the definition of the admis-
sible identity and cut principles, and for the equational theory extending the rules in
Sect. 2.3

These rules are guided by the usual design goals for sequent calculi: the only
rules are the left and right rules for each connective, the rules have the subformula
property (the premises only involve subformulas of the conclusion), and the
identity and cut rules are admissible. To achieve these goals, it is necessary to
treat the natural transformations Fβ → Fα and Uα → Uβ induced by a mode
2-cell α ⇒ β as an additional admissible structural rule: composing with such a
natural transformation transforms a derivation of A [α]  C into a derivation of
A [β]  C. The admissible rules are discussed further in Sect. 2.2 below.
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Consider the rules FL and UR. When β is 1, these rules pass from Fα A [1] 
C and A [1]  Uα C to A [α]  C, which makes sense because the judgement
A [α]  C is intended to mean either/both of these. When β is not 1, these
rules compose the mode morphism in the connective with the mode morphism
in the sequent. Semantically, this corresponds to one direction of the compo-
sition isomorphism between Fα◦β A and Fβ Fα A and similarly for U ; see the
derivation in Example 2 in Fig. 2. Though we do not consider focusing formally,
we conjecture that these two rules are invertible.

Next, consider FR. The rule is a bit complex because it involves three dif-
ferent aspects of the pseudofunctor structure. First, in the case where γ is the
identity 1-cell and β = α and the 2-cell is the identity, the rule gives functori-
ality of F (see Example 1 in Fig. 2). In the case where γ = β and the 2-cell is
the identity, the rule gives the other direction of the composition isomorphism
between Fα◦β A and Fβ Fα A (see Example 2). In the case where γ is 1 and
the rightmost premise is the identity sequent A [1]  A, the rule gives a natural
transformation Fβ → Fα induced by e : α ⇒ β (see Example 3). This is nec-
essary because composition with such a natural transformation cannot always
be pushed inside an application of functoriality, because a morphism from γ ◦ α
might not be constructed from a morphism from γ. In the general form of the
rule, we combine these three ingredients: given α : q ≥ p and β : r ≥ p, to prove
Fα A from C, choose a natural transformation that splits β as γ ◦ α for some
γ : r ≥ q, and apply functoriality of α, which leaves proving C [γ]  A. The UL
rule is dual.

We give some additional examples in Fig. 2; these examples and many more
like them are in the companion Agda code. The composites FU and UF should
be a comonad and a monad respectively; define �α A := Fα (Uα A) and ©α A :=
Uα (Fα A) for any α : q ≥ p. As an example of the (co)monad structure, the
comonad comultiplication is defined in the figure. An advantage of using a cut-
free sequent calculus is that we can observe some non-provabilities. For example,
there is not in general a map P [1p]  �α P (unit for the comonad): by inversion,
a derivation must begin with FR, but to apply this rule, we need a γ : p ≥ q and a
2-cell γ ◦α ⇒ 1, which may not exist. Next, we give one half of the isomorphism
showing that F preserves coproducts; this is a consequence of the left rule for
P + Q allowing an arbitrary α.

Because we are interested not only in provability, but also in the equational
theory of proofs in this logic, one might think the next step would be to anno-
tate the sequent judgement with a proof term, writing e.g. x : A[α]  M : B.
However, the proof terms M would have exactly the same structure as the deriva-
tions of this typing judgement, so we instead use the derivations themselves as
the proof terms. We sometimes write D : A [α]  B to indicate “typing” in the
metalanguage; i.e. this should be read “D is a derivation tree of the judgement
A [α]  B.”
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Fig. 2. Some examples
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2.2 Admissible Rules

Adjunction morphisms As discussed above, composition with the natural trans-
formations Fβ → Fα and Uα → Uβ induced by a 2-cell e : α ⇒ β is an
admissible rule, which we write as e∗(D) : A [β]  B:

α ⇒ β A [α]  C

A [β]  C
−∗(−)

The definition of this operation pushes the natural transformation into the
premises of a derivation until it reaches a rule that builds in a transformation
(FR,UL,hyp):

e∗(hyp e′) := hyp (e′ · e)
e∗(FR

γ
e′(D)) := FRγ

e′·e(D)
e∗(FL(D)) := FL((1 ◦2 e)∗(D))

e∗(UL
γ
e′(D)) := ULγ

e′·e(D)
e∗(UR(D)) := UR((e ◦2 1)∗(D))

Identity The identity rule is admissible:

Ap [1]  Ap
ident

As a function from types to derivations, we have

identP := hyp 1
identUα A := UR(UL11(identA))
identFα A := FL(FR1

1(identA))

Cut The following cut rule is admissible:

Ar [β]  Bq Bq [α]  Cp

Ar [β ◦ α]  Cp
cut

For example, consider the principal cut for F :

e : γ ◦ α1 ⇒ β D : A [γ]  B

A [β]  Fα1 B
FR

E : B [α1 ◦ α]  C

Fα1 B [α]  C
FL

A [β ◦ α]  C
cut

In this case the cut reduces to

e ◦2 1 : (γ ◦ α1) ◦ α ⇒ β ◦ α

D : A [γ]  B E : B [α1 ◦ α]  C

A [γ ◦ α1 ◦ α]  C
cut

A [β ◦ α]  C
−∗(−)
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As a transformation on derivations, we have

cut (hyp e) (hyp e′) := hyp (e ◦2 e′)
cut (FRγ

e (D)) (FL(E)) := (e ◦2 1)∗(cut D E)
cut (UR(D)) (ULγ

e (E)) := (1 ◦2 e)∗(cut D E)
cut D (FRγ

e (E)) := FRβ◦γ
1◦2e(cut D E)

cut D (UR(E)) := UR(cut D E)
cut (FL(D)) E := FL(cut D E) if E is not a right rule

cut (ULγ
e (D)) E := ULγ◦α

e◦21
(cut D E) if E is not a right rule

The first case is for atomic propositions. The next two cases are the principal
cuts, when a right rule meets a left rule; these correspond to β-reduction in
natural deduction. The next two cases are right-commutative cuts, which push
any D inside a right rule for E. The final two cases are left-commutative cuts,
which push any E inside a left rule for D. The left-commutative and right-
commutative cuts overlap when D is a left rule and E is a right rule; we give
precedence to right-commutative cuts definitionally, but using the equational
theory below, we will be able to prove the general left-commutative rules.

As an example using identity and cut, we give one of the maps from the
bijection-on-hom-sets adjunction for F and U : given α : q ≥ p we can transform
D : Fα A [1]  B into A [1]  Uα B:

1 : q ≥ q 1 : α ⇒ α A [1]  A
ident

A [α]  Fα A
FR

D : Fα A [1]  B

A [α]  B
cut

A [1]  Uα B
UR

2.3 Equations

When we construct proofs using the admissible rules e∗(D) and identA and
cut D E, there is a natural notion of definitional equality induced by the above
definitions of these operations—the cut- and identity-free proofs are normal
forms, and a proof using cut or identity is equal to its normal form. How-
ever, to prove the desired equations in the examples below, we will need some
additional “propositional” equations, which, because we are using derivations
as proof terms, we represent by a judgement D ≈ D′ on two derivations
D,D′ : A [α]  C. This judgement is the least congruence closed under the
following rules. First, we have uniqueness/η rules. The rule for F says that any
map from Fα A is equal to a derivation that begins with an application of the
left rule and then cuts the original derivation with the right rule; the rule for U
is dual.

D : Fα A [β]  C

D ≈ FL (cut(FR1
1(identA))D)

Fη
D : C [β]  Uα A

D ≈ UR(cutD(UL11(identA)))
Uη
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Second, we have rules arising from the 2-cell structure. For example, suppose
we construct a derivation by FRγ

e (D) for some γ : r ≥ q and e : γ ◦ α ⇒ β, but
there is another morphism γ′ : r ≥ q such that there is a 2-cell between γ and
γ′. The following says that we can equally well pick γ′ and suitably transformed
e and D, using composition and e2∗(−) to make the types match up.

e : γ ◦ α ⇒ β D : C [γ′] � A e2 : γ′ ⇒ γ

FRγ
e (e2∗(D′)) ≈ FRγ′

((e2◦21)·e)(D
′)

e : γ ◦ α ⇒ β D : C [γ′] � A e2 : γ′ ⇒ γ

ULγ
e (e2∗(D′)) ≈ ULγ′

((1◦2e2)·e)(D
′)

Semantically, these rules will be justified by some of the pseudofunctor laws.
The final rules say that left rules of negatives and right rules of positives

commute. These are needed to prove the left-commutative cut equations in the
case where E is a right rule, which seem necessary for showing that cut is unital
and associative. For U and F , we have

(1 ◦2 e1) · e2 = (e3 ◦2 1) · e4

ULe2
(FRe1

(D)) ≈ FRe4
(ULe3

(D))

The following additional equality rules are admissible for logic containing the
U/F rules described above and the coproduct rules in Fig. 1. The rules in each
line (except the first) are proved by mutual induction, and use the preceding
lines:

1∗(D) = D (e1 · e2)∗(D) = e2∗(e1∗(D))

D ≈ D′

e∗(D) ≈ e∗(D′)
e : α ⇒ α′ e′ : β ⇒ β′ D : A [α] � B D′ : B [β] � C

(e ◦2 e′)∗(cut D D′) ≈ cut (e∗(D)) (e′∗(D′))

cut D1 (cut D2 D3) ≈ cut (cut D1 D2) D3

cut D ident ≈ D cut ident D ≈ D

D ≈ D′

cut D E ≈ cut D′ E

E ≈ E′

cut D E ≈ cut D E′

cut (FL(D)) E ≈ FL(cut D E) cut (ULγ
e (D)) E ≈ ULγ◦α

e◦21
(cut D E)

3 Semantics

In the extended version of this paper, we give a detailed account of soundness and
completeness results. Let Adj be the 2-category whose objects are categories,
whose morphisms C → D are adjunctions L � R with L : D → C and R :
C → D , and whose 2-cells (L1 � R1) → (L2 � R2) are conjugate pairs of
transformations tL : L2 → L1 and tR : R1 → R2. A pseudofunctor is a map
between 2-categories that preserves identity and composition of 1-cells up to
coherent isomorphism, rather than on the nose.

Theorem 1 (Soundness). For any mode theory M , the rules of adjoint logic
can be interpreted in any pseudofunctor M → Adj.
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The rules describe a pseudofunctor because F1 A ∼= A ∼= U1 A and Fβ◦α A ∼=
Fα Fβ A and Uβ◦α A ∼= Uβ Uα A, but these are not equalities of types.

Theorem 2 (Completeness). The syntax of adjoint logic determines a
pseudofunctor M → Adj:

1. An object p of M is sent to the category whose objects are A typep and mor-
phisms are derivations of A [1p]  B quotiented by ≈, with identities given
by ident and composition given by cut.

2. For each q, p, there is a functor from the category of morphisms q ≥ p to the
category of adjoint functors between q and p.
– Each α : q ≥ p is sent to Fα � Uα in Adj—Fα and Uα are functors and

they are adjoint.
– Each 2-cell e : α ⇒ β is sent to a conjugate pair of transformations

(F (e), U(e)) : (Fα � Uα) → (Fβ � Uβ), and this preserves 1 and e1 · e2.
3. F1 A ∼= A and U1 A ∼= A naturally in A, and these are conjugate, so there is

an adjunction isomorphism P 1 between F1 � U1 and the identity adjunction.
4. Fβ◦α A ∼= Fα (Fβ A) and Uβ◦α A ∼= Uβ (Uα A) naturally in A, and these are

conjugate, so there is an adjunction isomorphism P ◦(α, β) between Fβ◦α �
Uβ◦α and the composition of the adjunctions Fα � Uα and Fβ � Uβ .
Moreover, this family of adjunction isomorphisms is natural in α and β.

5. Three coherence conditions between these identity and composition isomor-
phisms are satisfied.

Proof. We have given a flavor for some of the maps in the examples above; the
complete construction is about 500 lines of Agda. There are many equations to
verify—inverses, naturality, conjugation, and coherence—but they are all true
for ≈.

Next, we summarize some constructions on Fα � Uα that can be made in the
logic. We write D •E as an infix notation for cut D E (composition in diagram-
matic order).

Lemma 1 (Some Constructions on Adjunctions). Let α : q ≥ p. Then:

1. The composite functor �α A := Fα Uα A is a comonad:
counit : �α A [1]  A naturally in A
comult : �α A [1]  �α �α A naturally in A
comult • (� comult) ≈ comult • comult and comult • counit ≈ ident
and comult • (� counit) ≈ ident.

2. The composite functor ©α A := Uα Fα A is a monad:
unit : A [1]  ©α A naturally in A
mult : ©α ©α A [1]  ©α A naturally in A
(© mult) • mult ≈ mult • mult and unit • mult ≈ ident
and (© unit) • mult ≈ ident.

3. F preserves coproducts: Fα (A + B) ∼= Fα A + Fα B naturally in A and B.

Proof. We showed some of the maps above; the (co)monad laws, naturality con-
ditions, and inverse laws are all true for ≈; the construction is about 150 lines
of Agda.
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4 Example Mode Theories

4.1 Adjoint Triple

Consider the walking adjunction d � n, which has

– objects c and s
– 1-cells d : s ≥ c and n : c ≥ s
– 2-cells unit : 1c ⇒ n ◦ d and counit : d ◦ n ⇒ 1s satisfying

(1d ◦2 unit) · (counit ◦2 1d) = 1 and (unit ◦2 1n) · (1n ◦2 counit) = 1.

The 1-cells specify two adjunctions Fd � Ud and Fn � Un . However, the
natural transformations specified by the 2-cells also give adjunctions Fd � Fn

and Ud � Un (using the unit/counit definition of adjunction). Since a right
or left adjoint of a given functor is unique up to isomorphism, it follows that
the two functors Ud , Fn : c → s are isomorphic, resulting in an adjoint triple
Fd � (Ud

∼= Fn ) � Un . However, rather than proving Fd � Fn or Ud � Un

and then concluding Ud
∼= Fn from uniqueness of adjoints, we can construct

the isomorphism directly:

Lemma 2. Ud A ∼= Fn A naturally in A.

Proof. We can write the maps as follows:

d : s ≥ c counit : d ◦ n ⇒ 1
1 : c ≥ c 1 : d ⇒ d A [1]  A

ident

Ud A [d]  A
UL

Ud A [1]  Fn A
FR

unit : 1 ⇒ n ◦ d A [1]  A
ident

A [n ◦ d]  A
−∗(−)

A [n]  Ud A
UR

Fn A [1]  Ud A
FL

In the Agda code, we verify that these are inverse and natural.

We can develop some of the expected properties of an adjoint triple L � M � R,
such as the fact that the “left” comonad LM is itself left adjoint to the “right”
monad RM , and consequently, LM preserves colimits. In this case, we have
L = Fd , M = Ud

∼= Fn , and R = Un , and we write �d A := Fd Ud A and
©n A := Un Fn A.

Theorem 3 (Properties of an Adjoint Triple)

1. �d � ©n

2. �d (A + B) ∼= �d A + �d A
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Proof. We can prove that �d A and ©n A are isomorphic to a single F and U ,
respectively:

�d A = Fd Ud A ∼= Fd Fn A ∼= Fn◦d A
©n A = Un Fn A ∼= Un Ud A ∼= Un◦d A

This implies the above properties because Fn◦d � Un◦d and Fn◦d preserves
coproducts and these facts respect natural isomorphism.

From a polarity point of view, it is unusual for a comonad F U A to preserve
positives, because the negative connective U interrupts focus/inversion phases.
Here, this behavior is explained by the fact that Fd Ud A is isomorphic to a single
positive connective Fn◦d A. The ambipolar middle connective in an adjoint triple
thus emerges from the presence of two isomorphic connectives, one positive and
one negative.

4.2 Reflection

In our motivating example of axiomatic cohesion, the adjoint triple Δ � Γ � ∇
has some additional properties. We now write � for the comonad ΔΓ and 	 for
the monad ∇Γ . � takes a cohesive space and “retopologizes” it with the discrete
cohesion, while 	 takes a cohesive space and retopoligizes it with the codiscrete
cohesion. Intuitively, retopologizing twice should be the same as retopologizing
once, because each retopologization forgets the existing cohesive structure; that
is, we want � �A ∼= �A and 	 	A ∼= 	A and � 	A ∼= �A and 	 �A ∼= 	A. Moreover,
Δ and ∇ should be full and faithful, because a map between discrete or codiscrete
spaces is exactly a map of sets.

Recalling that a right (resp. left) adjoint is full and faithful exactly when the
counit (resp. unit) of the adjunction is an isomorphism, we can capture these
properties by considering a different mode 2-category, the “walking reflection”.
This has the same objects and morphisms as above, but we now take d ◦ n = 1,
with the counit being just the identity 2-cell, and the equations simplify to
unit ◦2 1n = 1 and 1d ◦2 unit = 1. Note that the only non-identity morphisms of
this mode category are d, n, and n ◦ d.

We write Δ := Fd , Γ := (Ud
∼= Fn ), and ∇ := Un , so � = �d and

	 = ©n . Since in particular we still have an adjunction, this mode theory inherits
all the theorems from the previous section; it also has the following additional
properties:

Theorem 4 (Properties of the Walking Reflection)

1. � �A ∼= �A and 	 	A ∼= 	A naturally in A.
2. 	 �A ∼= 	A and � 	A ∼= �A naturally in A.
3. Fd and Un are full and faithful.

Proof. We discuss the first two parts. Using Theorem 2, the equality of mor-
phisms d ◦ n = 1 implies that

Fn Fd A ∼= Fd◦n A = F1 A ∼= A
Ud Un A ∼= Ud◦n A = U1 A ∼= A
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Consequently, by Lemma 2, the other (co)monads besides � and 	 are trivial:

©d A = Ud Fd A ∼= Fn Fd A ∼= A
�n A = Fn Un A ∼= Ud Un A ∼= A

This gives idempotence and absorption:

� �A = Fd (Ud Fd (Ud A)) ∼= Fd Ud A = �A
	 	A = Un (Fn Un (Fn A)) ∼= Un Fn A = 	A
� 	A = Fd (Ud Un (Fn A)) ∼= Fd Fn A ∼= Fn◦d A ∼= �A
	 �A = Un (Fn Fd (Ud A)) ∼= Un Ud A ∼= Un◦d A ∼= 	A

4.3 Spatial Type Theory

The above mode theory allows us to work with cohesive types (which have
mode c) and non-cohesive types (which have mode s). However, because Δ and
∇ are full and faithful, it is not strictly necessary to ever work in s itself—we
could equivalently work in the image of Δ or ∇ in c. If we wish to restrict our-
selves to constructions in c, we can simplify the mode theory to the (strictly)
idempotent monad, which has one object c, one generating 1-cell r : c ≥ c such
that r ◦ r = 1, and one generating 2-cell unit : 1 ⇒ r satisfying t ◦2 unit = 1 and
unit◦2 r = 1. Observe that the only 1-cells are 1 and r and the only 2-cells are 11,
1r, and unit. This mode theory embeds in the walking reflection, with r := n ◦ d,
so we could equivalently work in the c-types above.

For this mode theory, we define � := Fr and 	 := Ur . In the walking
reflection, we defined � := �d and 	 := ©n and then proved (in the proof
of Theorem 3) that � ∼= Fn◦d and 	 ∼= Un◦d . Here, we take the other side of this
isomorphism as the definition, so we immediately have � � 	 and � preserves
coproducts, but we must prove that they are (co)monads. A simple route to this
is to prove absorption, because � 	A = Fr Ur A is a comonad, and dually for
	 �A.

Theorem 5 (Idempotence and Absorption). � �A ∼= �A and 	 	A ∼= 	A
and 	 �A ∼= 	A and � 	A ∼= �A naturally in A.

Proof. Because r ◦ r = r, idempotence is just the composition isomorphisms F ◦

and U◦ from Theorem 2. The absorption isomorphisms are constructed directly.

In the extended version of this paper, we connect adjoint logic for this mode
theory to the rules for spatial type theory used in Shulman [23].

5 Conclusion

In this paper, we have defined an adjoint logic that allows multiple different
adjunctions between the same categories, shown soundness and completeness of
the logic in pseudofunctors M → Adj, and used some specific mode theories
to model adjoint triples and the � and 	 modalities of axiomatic cohesion. One
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direction for future work is to extend this adjoint logic with multiple assumptions
and dependent types (we discuss some special cases in the extended version).
This would provide a context for investigating the shape modality S � � . We could
certainly give a mode theory with one mode and S � � � 	 , or with two modes and
S � Δ � Γ � ∇, but it remains to be investigated whether this can provide the
right properties for S beyond adjointness. On the one hand, too much might be
true: S does not preserve identity types, and the general dependently typed rules
for F might force it to. On the other, too little might be true: for applications
such as relating the shape of the topological circle to the homotopical circle, extra
properties are needed, such as SR ∼= 1. Both of these issues can be addressed as in
[23] by treating S not as an abstract adjoint, of the kind we can represent using
the mode 2-category, but as a defined type (specifically, a higher inductive),
which among other things has the property that it is adjoint to � (adjoint logic
is still essential for representing � and 	 themselves). Another is to consider
∞-category semantics, rather than the 1-categorical semantics of derivations
that we have considered here. A final direction for future work is to look for
applications of other mode theories in our generalized adjoint logic beyond the
motivating example of triple adjunctions and cohesive homotopy type theory.

Acknowledgments. We thank Jason Reed for helpful discussions about this paper
and work, and we thank the anonymous reviewers for helpful feedback on a previous
draft.
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Abstract. In contrast to most kinds of computability studied in mathe-
matical logic, feedback computability has a non-degenerate notion of par-
allelism. Here we study parallelism for the most basic kind of feedback,
namely that of Turing computability. We investigate several different pos-
sible definitions of parallelism in this context, with an eye toward speci-
fying what is so computable. For the deterministic notions of parallelism
identified we are successful in this analysis; for the non-deterministic
notion, not completely.

Keywords: Parallel computation · Feedback · Determinism · Non-
determinism · Reflection · Gap-reflection · Admissibility
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1 Introduction

Parallelism, as far as the author is aware, has not been studied much in the
kind of computability theory done by mathematical logicians (Turing degrees,
arithmetic sets, admissibility). This is for a good reason: it can be mimicked, via
dovetailing. Using a universal machine, a parallel computation can be simulated
by a sequential computation. This is in stark contrast with complexity theory.
For instance, an NP problem can be understood as a polynomial problem with
parallelism, so the addition of parallelism to polynomial computation results in a
new and quite important notion. Quantum computability can also be understood
as a kind of parallelism, as can distributed computing.

This paper studies parallelism in an extension of Turing computability where
it does make a difference, namely feedback. Feedback was first identified in [6],
p. 406–407, even if not under that name, where some of the results of [1] were
anticipated. Oddly enough, even though that was a very prominent text for
decades, likely the best-known in (using the terminology of the day) recursion
theory, no one ever picked up on those ideas. It was re-discovered independently
for infinite time Turing machines in [2], where even parallelism was discussed,
albeit briefly. Something was actually done with parallelism in [1], where it was
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shown that its addition to feedback Turing computability is non-trivial, in the
sense that it gets you strictly more than you had before. (It was also shown
there that parallelism added to feedback primitive recursion is essentially trivial
in the same sense.) It was left open there just what parallel feedback Turing
computable (pfc in what follows) does compute.

In this paper, the issues around parallelism are clarified somewhat. Most
fundamentally, as already discussed in [1], there are several different ways that
parallelism can be included in this framework. It is not yet clear which are
fruitful. By analyzing some of them, we hope to bring this issue along.

In the end, we discuss three. In the next section, we show one to provide
no new computational power, and hence (presumably) to be uninteresting. In
Sect. 3 we turn to the one from [1]; we expand upon its semantics, but despite
that are still unable to characterize just what is so computable, although an
upper bound is provided later. Finally, in the last section we define a semantics
which is in a sense intermediate between these other two, and are successful in
its characterization; we also provide here the upper bound for earlier.

We assume some familiarity with both feedback and parallelism, as presented
in [1,2]. To summarize briefly, the oracle in a feedback computation contains the
convergence and divergence facts about computations that call that very same
oracle. So the oracle is a fixed point: whatever convergence and divergence facts
which follow from using the oracle are already contained in the oracle. The
particular fixed point we use here is a least fixed point. If a computation queries
an oracle about a computation for which the oracle does not have an answer,
that computation freezes dead in its tracks. For instance, if a computation ever
asks the oracle about itself, it will freeze. This allows for parallelism, since a
computation could ask the oracle for a program from a parameterized list of
programs which does not freeze.

In the following, the notation 〈e〉(n) will be used ambiguously to refer to
any notion of feedback Turing computation (taking off of the standard notation
{e}(n) for regular Turing computation), the choice of which we hope is clear
from the context.

2 Absolutely Deterministic Parallelism

If a parallel oracle call about 〈e〉(·) is to return an n such that 〈e〉(n) does not
freeze (if any), there is a clear invitation to non-determinism: which n? Indeed,
in [1], a semantics for deterministic parallelism was offered and then quickly
passed over, as it turns out for a good reason: it gets you nothing new. Here we
show this, if for no other reason than to demonstrate that this definition should
no longer be considered.

The idea is that the oracle is supposed to return the “least” n leading to
non-freezing, by some measure. The measure to be used is primarily that of
ordinal height of a computation. That is, n minimizes the height of the tree
of sub-computations. To help keep this paper self-contained, this tree will be
presented, albeit in a way different from in [2] or [1], tailored to the purpose at
hand.



238 R.S. Lubarsky

The tree D
(e,n)
α (D for determinism) is defined inductively on α, simulta-

neously for all e, n, as is whether rank(e, n) = α. Assume this is known for
all β < α. Start the run of 〈e〉(n), which is considered as taking place at the
root of D

(e,n)
α . Suppose at some stage of that computation, an oracle call e′

is made. Then a child of the root is established, to the right of any previous
children, for the outcome of this oracle call. Suppose there is an n′ such that
rank(e′, n′) < α. Then let n′ be chosen to minimize this rank; if there is more
than one such, then among those pick the least in the natural ordering of ω.
The tree D(e′,n′) = D

(e′,n′)
rank(e′,n′) is placed at the child, and the value 〈e′〉(n′) is

returned to the main computation, which then continues. If there is no such n′,
then the computation pauses, and the construction of D

(e,n)
α is finished.

If no oracle calls pause, then by this stage α the computation 〈e〉(n) is seen
to be non-freezing; D(e,n) can be taken to be D

(e,n)
α and is the tree of sub-

computations; rank(e, n) ≤ α; and the value of 〈e〉(n) is the content on the
output tape if the main computation ever entered into a halting state, else ↑ if
it did not.

It is not hard to show that the rank of a computation is the ordinal height of
its tree of sub-computations. For a freezing computation, i.e. one that remains
paused however big α is taken to be, I do not (yet) have a good notion of a tree
of sub-computations. For the eternally paused node, which is trying to run, say,
e′ in parallel, it’s paused because for each n′ the trees D

(e′,n′)
β remain paused, say

at e′′
n′ . This could be viewed as countable branching from e′, but of course this

branching is different from that in D(e,n): in the latter tree, the branching shows
the sequential computation, and the unsuccessful parallel runs are suppressed;
from e′, the branching represents all the parallel attempts. Of course, from e′′

n′ ,
the same story continues.

The problem with this notion is that it doesn’t get us anything new.

Theorem 1. If 〈e〉(n) does not freeze, then D(e,n) ∈ LωCK
1

.

Proof. By induction on the ordinal height of D(e,n). Consider the subtrees D(e′,n′)

that occur on the top level (i.e. children of the root) of D(e,n). Inductively, they
are all in LωCK

1
. If there are only finitely many of them, then the ordinal α by

which they all appear is easily less that ωCK
1 , since the latter is a limit ordinal.

D(e,n) is then easily definable over Lα. If there are infinitely many, then the
admissibility of ωCK

1 must be used to get α to be strictly less than ωCK
1 . The

set of such D(e′,n′)’s is the range of a Σ1 definable function f with domain ω,
since the run of 〈e〉(n) is simply defined, and (mod the oracle calls) continues
for ω-many steps; f(k) is then the sub-tree D(e′,n′) for the kth oracle call.

3 Non-deterministic Parallelism

Since choosing one canonical output to a parallel call didn’t work out so well, let’s
go to other extreme and allow all possible answers. So when a computation makes
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an oracle call 〈e〉(·), an acceptable answer is any choice of n such that 〈e〉(n)
does not freeze. But wait a minute – since computations are non-deterministic,
it could be that some runs of 〈e〉(n) freeze and others do not, depending on how
the oracle calls made while running 〈e〉(n) turn out. So what does it mean to say
“〈e〉(n) does not freeze?” We take that to be that some run of that computation
does not freeze, if for no other reason than that is the choice made in [1]. Since
in the end we are not able to analyze this as we would like, perhaps it would
have been better to say all runs do not freeze. Still, the question based on some
run not freezing remains, and so we keep to that former notion, leaving the other
for future work.

All of this can naturally be summarized in the tree of runs, defined below.
This is not to be confused with the tree of sub-computations, so central in
developing feedback. The tree of sub-computations summarized the sequential
running of an algorithm, which can be viewed as traversing that tree, depth-first,
from left to right. In contrast, the tree of runs captures the non-determinism.
The splitting at a node is the many parallel runs of an oracle call. A single run
of the algorithm is a path through the tree. There is no room in this tree for
the sub-computations: if a node in the tree of runs represents 〈e〉(n) = k, the
witness to that last computation is not contained in the tree, but rather must
be found in the tree of runs for 〈e〉(n).

3.1 The Tree of Runs

Definition 1. The tree of runs is built from the root (thought of as being
on the top) downwards, or, equivalently, as the computation proceeds, starting
from the beginning, step 0. Each node has a start, meant to be the state of the
computation when that node becomes active, and an end, meant as the state of
the computation when the node becomes inactive. The start of the root is the
program (e, n) being run. What the end of the root, or any other node for that
matter, is, depends. If continuing the computation from the start of the node
leads to an oracle call, say ê, then the end of the node is this ê; as need be, we
may assume that the state of the computation at that point is also recorded in the
node. If no such oracle call exists, then there are two possibilities. One is that
after finitely many steps from the start of the node the computation has entered
into a halting state. Then the end of the node is this halting state, and the content
of the output tape is an output of the main computation. The other possibility is
that the computation from the node’s start never enters into a halting state, and
so it diverges. Then the end of the node is this divergence, symbolically ↑, which
is an output of the main computation.

Nodes that end in a halting state or with divergence have no children. A node
that ends with ê may have children. For any natural number n̂, and any output k
of the computation 〈ê〉(n̂), there is a child with start (ê, n̂, k), and which continues
the computation of its parent with that start as the answer to the oracle call.
Implicitly, and now explicitly, if there are no such n̂ and k, then that node has
no children, and the computation freezes there.
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So a run of a computation is exactly a (maximal) path through its tree
of runs. A finite output is given by a finite path, ending in a childless node in a
halting state. A freezing computation is also given by a finite path, ending in a
freezing node. A divergent computation can be given by a finite path, ending in
↑, and also by an infinite path.

The tree of sub-computations is absent from the tree of runs. It is hidden in
the step from a node with end ê to its children, or to its lack of children, which
can be determined only by building ê’s own tree of runs. Of course, this latter
tree might sub-contract out its own side-trees, and so on.

Because the semantics is given by a least fixed point, ordinal heights can
be associated with these computations (when non-freezing). Ultimately, we will
define the height of an output. But we must be careful here: because of the non-
determinism, there could be wildly different ways to arrive at the same output.
The simple solution to that would be to define the height of an output as the
least ordinal among all the ordinals given by the different ways to get to that
output. To do this right, one must define the height of a run of a computation,
or, actually, the height of a hereditary run.

A hereditary run of a non-freezing computation is a run of that computa-
tion, along with an assignment, to each oracle call in the run (i.e. node in the run
with end ê), with answer (ê, n̂, k) (i.e. the child in this run of that aforementioned
node has start (ê, n̂, k)), a hereditary run of (ê, n̂) with output k.

The height of a hereditary run is defined inductively as the least ordinal
greater than the heights of all of the sub-runs, meaning the hereditary runs
assigned to oracle calls along the way.

The height of a computation 〈e〉(n) = k is the smallest height of any
hereditary run of such a computation. We will want to show that this is absolute
among all transitive models.

Define T
(e,n)
α , the sub-tree of the tree of runs of (e, n) which contains only

those children of rank less than α, inductively on α.
For α = 0, this tree contains only the root; if 〈e〉(n) makes an oracle call then

T
(e,n)
0 does not witness any output, else it witnesses either some finite k or ↑ as

an output.
More generally, if β < α, then T

(e,n)
β ⊆ T

(e,n)
α . Furthermore, if a node in

T
(e,n)
α ends with an oracle call ê, and there are β < α, n̂, and k (including ↑)

such that T
(ê,n̂)
β witnesses that k is an output, then the child with start (ê, n̂, k)

is in T
(e,n)
α .

The outputs witnessed by T
(e,n)
α are the outputs of any terminal node (i.e. k

if a node ends in a halting state with output k, or ↑ if a node ends with ↑), and
also ↑ if T

(e,n)
α is ill-founded.

Notice that the height of 〈e〉(n) = k is at most α iff T
(e,n)
α witnesses k as an

output.
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Proposition 1. The height of 〈e〉(n) = k is absolute among all transitive
models.

Proof. Inductively on α, the trees T
(e,n)
α and the outputs they witness are

absolute. The outputs witnessed by terminal nodes are clearly absolute, indi-
vidual nodes being finite, and for divergence, well-foundedness is absolute for
well-founded models.

3.2 Functions and Ordinal Notations

Ultimately we would like to characterize just what is parallel feedback com-
putable. In the context of multi-valued functions, what this means should be
clarified.

Definition 2. A function f is parallel feedback computable (pfc) if there
is an index e such that 〈e〉(·) is single valued and 〈e〉(n) = f(n). A set is pfc if
its characteristic function is.

We would like to know what functions are pfc, and what relations are pfc.
While it should be no surprise that functions offer some benefits over rela-

tions, let’s bring out a particular way that happens. Consider the index e which
on any n returns both 0 and 1. (In more detail, let p be the parity function:
{p}(n) is 0 when n is even, 1 when odd. Let 〈e〉(n) make a parallel call to p
and return its output). Notice that the characteristic function of any set at all
is given by some run of e. So if you’re non-deterministically searching for, say,
the truth set of some Lα, there may well be a pfc function that gives you what
you want, but you can’t distinguish that from this e. And it does you no good
to pick one non-deterministically, because if you pick e, when you go to use it
again later, you might get different answers.

Since we expect that the analysis of this will involve computing initial seg-
ments of L, we might have need of notation for ordinals, which can be defined
à la Kleene’s O. In honor of this history, and since the current subject is par-
allelism, we will call it P. Because of the non-determinism present, there are
several options for how this can be defined (in the limit case).

Definition 3. Functional P (fP) is defined inductively:

– 0 ∈ fP and ord(0) = 0.
– If a ∈ fP then 2a ∈ fP and ord(2a) = ord(a) + 1.
– If 〈a〉(·) is a function, and for all n we have 〈a〉(n) ∈ fP, then 3 · 5a ∈ fP

and ord(3 · 5a) = supn{ord〈a〉(n)}.
Definition 4. Strict P (sP) is defined inductively:

– 0 ∈ sP and ord(0) = 0.
– If a ∈ sP then 2a ∈ sP and ord(2a) = ord(a) + 1.
– If 〈a〉(·) is a total relation, and for all n and any possible output kn of 〈a〉(n)

we have kn ∈ sP, and moreover ord(kn) is independent of the choice of kn

(for a fixed n), then 3 · 5a ∈ sP and ord(3 · 5a) = supn{ord(kn)}, where kn is
any output for 〈a〉(n).
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Definition 5. Loose P (lP) is defined inductively:

– 0 ∈ lP and ord(0) = 0.
– If a ∈ lP then 2a ∈ lP and ord(2a) = ord(a) + 1.
– If 〈a〉(·) is a total relation, and for all n and any possible output kn of 〈a〉(n)

we have kn ∈ lP, and supn{ord(kn)} is independent of the choice of kn’s,
then 3 · 5a ∈ lP and ord(3 · 5a) = supn{ord(kn)}, where kn is any output for
〈a〉(n).

Clearly, fP ⊆ sP ⊆ lP.

Proposition 2. Every pfc well-ordering is isomorphic to one given by a func-
tional ordinal notation.

Proposition 3. If X is pfc then OX is pfc and ωX
1 has a functional ordinal

notation.

That OX is pfc was proven in [1]. This is a slight extension of that argument.

Proposition 4. If α has a loose ordinal notation then the Σ1 truth set Trα of
LωCK

α
is pfc (where, as a function of α, ωCK

α enumerates the closure of the set
of admissible ordinals).

Proof. Let e ∈ P be a fixed representation of α. By the recursion theorem, we
can do this inductively on the ordinal height of f <P e.

If f = 0, then Trf = ∅.
If f = 2g, then Trf = OTrg from the previous proposition. (It is standard

hyperarithmetic theory that OX is Turing equivalent to the Σ1 truth predicate
of LωCK

1
).

If f = 3 · 5g, then the truth or falsity of any Σ1 assertion φ in the limit
structure can be determined as follows. Let n run through ω, and see whether
φ is true according to each Trg(n) in turn. If you ever find such an n making φ
true, halt, else continue. Using feedback, ask whether that computation halts. If
so, then φ is true in the limit structure; else φ is false there.

Because of that last proposition, I bet the loose notations are ultimately the
best, since they seem to capture the flavor of this kind of computation.

Proposition 5. The characteristic function of T
(e,n)
α (along with the start and

end of each node) is computable from a loose ordinal notation for α, as are the
outputs witnessed by T

(e,n)
α .

With a bit of work, this could be presented as a corollary of the previous propo-
sition, since T

(e,n)
α and its outputs are definable over LωCK

α
.

Proof. By a simultaneous induction on ordinal notations.
The only notation for the ordinal 0 is 0. To compute T

(e,n)
0 , one first asks the

oracle whether computing 〈e〉(n) will ever lead to an oracle call. If so, one runs
〈e〉(n) until that call, which becomes the end of the root, and then stops. If not,
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one asks the oracle whether computing 〈e〉(n) will ever halt. If so, one runs it
until it halts; if not, then the output is ↑.

Consider the ordinal notation a = 2b for α = β + 1. Of course, the root of
T

(e,n)
α is computable, as above. For any node in T

(e,n)
α , to see whether a child is

in T
(e,n)
α , we may assume the node ends with ê. A child starting with (ê, n̂, k) is

in T
(e,n)
α iff T

(ê,n̂)
β witnesses that k is an output, which inductively is computable

from b. The end of such a node is deterministic in the start. To compute whether
k is witnessed to be an output, one can use the oracle to see whether the search
through T

(e,n)
α for a terminal node with output k will halt. In addition, when

k =↑, check whether T
(e,n)
α is well-founded, which is computable in its hyperjump

(cf. the penultimate proposition).
Now consider the ordinal notation a = 3 · 5b. We must decide membership in

T
(e,n)
α of children of nodes ending in ê. For the child starting with (ê, n̂, k), use

the oracle to see whether the search for an i such that, with βi = ord(b(i)), the
tree T

(ê,n̂)
βi

witnesses that k is an output, halts. The determination of b(i) is, of
course, non-deterministic, as is the value βi, but as βi is guaranteed to be cofinal
in α, this makes no difference. The computation of the outputs witnessed is as
above.

The hope is that the structure just identified will help in determining the pfc
functions and relations, which we have not been able to do. Although the next
section is dedicated to the study of a different kind of computation for its own
sake, it also provides at least a coarse upper bound for those studied here.

4 Context-Dependent Determinism

4.1 Semantics

The problem of the first alternative offered is that it’s too restrictive, and so
gives you nothing new. The problem with the second is that it’s too liberal,
allowing for multi-valuedness, and so we couldn’t analyze it. This time we’re
going for something in the middle. Any oracle call will return at most one value,
but possibly a different value every time it’s called.

The semantics begins just as in the non-deterministic case. Trees C
(e,n)
α (C

for context) are defined inductively on α. The new intuition here is that these
trees are built until an output is seen, and that first output is taken as the
value of 〈e〉(n). More precisely, C

(e,n)
α yields an output if it contains a halting

node (with some integer output k) or a diverging node (with output ↑), or is
ill-founded (with output ↑). Let α be the least ordinal such that C

(e,n)
α yields

an output. If it yields more than one output, pick the left-most one. That is,
starting at the root, traverse the tree downwards. Every non-terminal node ends
with an oracle call ê. The child to be followed has start (ê, n̂, k), where n̂ is the
least natural number such that the tree beneath that node yields an outcome
(and k is the value of 〈ê〉(n̂)).
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As an example of this semantics in practice, the earlier proof that OX is pfc
from X [1] still works. The way that construction goes, given a non-well-founded
order, and an n in the non-standard part, if k is in the standard part, it won’t be
chosen as a successor step after n, because that will definitely lead to a freezing
state. Only a non-standard k (less than n in this ordering) will be chosen, and
in fact that least such k in the natural ordering of ω will be.

4.2 Lemmas

Lemma 1. There is a program which, on input e, diverges if e computes (the
characteristic function of) the truth set of a model of some computable theory
T , and freezes otherwise.

We assume here some standard coding of syntax into arithmetic. The model can
be taken to be a structure on, say, the odd integers, so that the even integers can
be used for the symbols of the language, and formulas with parameters can be
considered. Of course, this program can easily be converted into one that halts
instead of diverges: ask the oracle about this program, and if the answer comes
back “divergent,” then halt. It will be easy to see that in some instances it can
be recognized that e does not compute such a set, and our program could return
that instead of diverging; but if, say, 〈e〉(0) freezes, then any such program as
ours would have to freeze, and there seemed to be no benefit in a program that
sometimes recognizes when e is not as desired and sometimes freezes.

Proof. It is feedback Turing computable to dovetail the generation of T , the
computations of 〈e〉(n) for all n, and the check that latter theory is complete,
consistent, and contains T . If e computes such a model, this procedure will never
end; if e finds some violation, the procedure can be taken to freeze. If some 〈e〉(n)
freezes, the procedure will necessarily freeze.

We will be using this to see if e codes a model of V = Lα. We do not sharply
distinguish between the Σ1 truth set of some Lα and the full truth set, since
this computational paradigm can easily shuttle between them.

Lemma 2. There is a program such that, if e computes a partial order on a
subset of ω, on input e it will return 0 if e’s order is well-founded and 1 if
ill-founded.

Proof. This is a lot like the proof of the computability of O.
For pre-processing, check whether the domain of e is finite. If so, you have

your answer. Else, continue.
First we check for well-foundedness. Go through the natural numbers, and for

each such n, if n has no e-predecessors (determined by an oracle call), halt, else
run this same procedure, via the fixed-point or recursion theorem, on the same
order restricted to those elements e-less than n. In the tree of sub-computations,
the children of a node given by n are exactly the e-predecessors of n. So this
tree is well-founded iff <e is well-founded. So this procedure diverges iff <e is
well-founded, else it freezes.
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To check for ill-foundedness, run in parallel the following procedure on each
n ∈ ω. If n has no predecessor, freeze. Else, by the fixed point theorem, run this
same procedure on the same order restricted to those elements e-less than n. In
the tree of runs, the children of a node given by n are exactly the e-predecessors
of n. So this tree is well-founded iff <e is well-founded. Since the terminal nodes
all freeze, the only possible non-freezing semantics is an infinite descending path,
which exists exactly when <e is ill-founded.

Now run both of those checks in parallel. Whichever one does not freeze is
what tells you whether <e is well- or ill-founded.

As usual, it is easy to see that what can be computed is exactly some initial
segment of L. We will shortly see just what this initial segment is. Before that,
we will prove some lemmas which handle some simpler cases, partly to get the
reader (and author!) used to the kind of arguments employed, and partly so in
the main theorem we can ignore some of the cases of weaker, messier ordinals,
and focus on just the more strongly closed ones.

Lemma 3. The supremum α of the computable ordinals is admissible.

Proof. Suppose not. Let f : ω → α witness α’s inadmissibility. For each n, using
the previous lemmas, one can check whether 〈e〉 codes a model of “V = Lγ is
the least admissible set in which f(n) is defined,” and if so whether the model so
coded is well-founded. On many inputs this will freeze, but since by hypothesis
α is the least non-computable ordinal, there is at least one en on which this halts
(possibly more, allowing for some flexibility in the coding). By making a parallel
call of all natural numbers, one can produce such an en.

To see whether a Σ1 formulas φ is in the Σ1 truth set for Lα, consider the
procedure which runs through each n, finds a truth set for f(n) as above, and
stops whenever φ shows up as true in one of those sets. Now ask the oracle
whether that procedure halts. If so φ is true in Lα, else not.

Lemma 4. α is greater than the least recursively inaccessible.

Proof. The following procedure will generate the Σ1 truth set of the first recur-
sively inaccessible.

Start with (a code for) the truth set of LωCK
1

. We will describe a procedure
which pieces larger and larger initial segments of L together, which diverges
(continues indefinitely) as long as it’s still working on the first inaccessible, and
which freezes whenever it finds a contradiction in what it has done so far.

At any stage along the way, there will be a well-founded model of V = Lγ , as
well as a finite set of Π1 sentences the procedure is committed to making true.
As soon as the model at hand falsifies one of those sentences, then the procedure
freezes, because it sees that the jig is up.

Dovetail consideration of all countably many Σ1 formulas φ(x, y, z ) and all
countably many sets A and tuples b that show up in the models produced in
this construction. At stage n we are considering a certain φ,A, and b, and
will decide whether we think ∀a ∈ A ∃y φ(a, y, b) is true or false in the first
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recursively inaccessible. In parallel, choose either true or false. Moreover, if you
choose true, then you must provide a well-founded model of V = Lγ extending
the previously chosen model by at least one admissible, in which the chosen
formula with parameters is true, and which also models there is no recursively
inaccessible. If you choose false, then you must also choose a specific a ∈ A, and
include in the set of sentences “∀y ¬φ(a, y, b)”.

Since this construction has no halting condition, the only way it can not freeze
is if it diverges. It cannot diverge by always making the chosen formula false,
if for no other reason than there are infinitely many total Σ1 functions in the
starting model, and they cannot consistently be made partial. So infinitely often
the model under consideration will be extended by at least one admissible. Hence
the limit model will be an initial segment of L which is a limit of admissibles.
Let φ be Σ1 and A, b be in the limit model. Suppose it’s true in this model that
∀a ∈ A ∃y φ(a, y, b). When that formula came under consideration, it could
not have been deemed false, because then we would have committed ourselves
to a specific counter-example, and that counter-example would have been seen
to be invalid at some point, leading to a freezing computation. So the formula
was deemed to be true. Hence a model was picked in which the induced relation
was total, thereby providing a bound on the range. Hence the limit model is
admissible. Since it’s a limit of models of “there is no recursively inaccessible,”
it is itself the least recursively inaccessible.

We have just argued that any divergent run of this program produces the
least recursively inaccessible. Furthermore, there are divergent runs, by always
choosing whatever is in fact true of that ordinal.

4.3 Main Theorems

Definition 6. Let Γ be a collection of formulas, X a class of ordinals, and ν+X

the least member of X greater than ν. We say that α is Γ -reflecting on X if,
for all φ ∈ Γ , if Lα+X |= φ(α), then for some β < α, Lβ+X |= φ(β).

We are interested in the case Γ = Π1 and X = the collection of admissible
ordinals. For this choice of X, we abbreviate ν+X by ν+, which is standard
notation for the next admissible anyway. This is called Π1 gap-reflection on
admissibles. Let γ be the least such ordinal.

It may seem like a strange notion. But this is not the first time it has come
up. Extending work in [5], it was shown in [3] that such ordinals are exactly
the Σ1

1 reflecting ordinals. (In this context, the superscript 1 refers not to reals
but to subsets of the structure over which the formula is being evaluated). The
reason this topic came up in the latter paper is that a particular case of its
main theorem is that γ is the closure point of Σ2-definable sets of integers in the
μ-calculus. (The μ-calculus is first-order logic augmented with least and greatest
fixed-point operators. In this context, Σ2 refers to the complexity of the fixed
points in the formula, namely, in normal form, a least fixed point in front, fol-
lowed by a greatest fixed point, followed by a fixed-point-free matrix). In [5] it
was also shown that the least Σ1

1 reflecting ordinal is also the closure point of
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Σ1
1 monotone inductive definitions. (Here the superscript does refer to reals).

Furthermore, that is the same least ordinal over which winning strategies for all
Σ0

2 games are definable (Solovay, see [4] 7C.10 or [10]). As though that weren’t
enough, [9] shows the equivalence of closure under Σ1

1 monotone inductive defi-
nitions with the Σ1

1 Ramsey property. (For all Σ1
1 partitions P of ω there is an

infinite set H ⊆ ω such that the infinite subsets of H are either all in P or all
not in P ). With all of these applications, this definition counts as natural.

Theorem 2. The ordinals so computable are exactly those less than γ.

So there is an intimate connection between parallel feedback computability and
all of the other notions listed above. This was not expected. In the simpler case
of feedback Turing computability [1], it was really no surprise that it turned
out to be the same as hyperarithmeticity, as both are essentially adjoining well-
foundedness to computation. But we have no intuition, even after the fact, in
support of the current result.

Proof. For one direction, we will argue that no computation 〈e〉(n) can be wit-
nessed to converge or diverge from stage γ onwards. Notice that for any γ′ > γ,
if T

(e,n)
γ′ is different from T

(e,n)
γ , that can only be because some other computa-

tion 〈e′〉(n′) was seen to converge or diverge at some stage at least γ and less
than γ′. Tracing back the computation of 〈e′〉(n′), we are eventually led to a
computation that was seen to converge or diverge at exactly stage γ. Since γ is
a limit of admissibles, there are no new terminal nodes on any tree of runs at
stage γ. Hence there is some computation 〈e〉(n) such that T

(e,n)
γ is ill-founded,

but T
(e,n)
β is well-founded for any β < γ. How could the ill-foundedness of T

(e,n)
γ

be most economically expressed? Since γ is the γth admissible ordinal, T
(e,n)
γ

is definable over Lγ . It is a basic result of admissibility theory that a tree in
an admissible set is well-founded iff there is a rank function from the tree to
the ordinals in that very same admissible set. So the ill-foundedness of such a
tree is witnessed by the non-existence of such a function in any admissible set
containing the tree. In the case at hand, that is a Π1 statement in Lγ+ with
parameter γ. By the choice of γ, this reflects down to some smaller β. So T

(e,n)
β ,

for some smaller β, was already seen to be ill-founded. So there can be no new
computation values at stage γ, and hence not beyond either.

For the converse, let β be strictly less than γ; by lemmas 2 and 3, we can
assume that β is a limit of admissibles. Assume inductively that for each α < β
there is an e such that 〈e〉(·) is the characteristic function of the Σ1 truth set
of Lα. Let φ witness that β is not Π1 gap-reflecting on admissibles: so φ is Π1,
and Lβ+ |= φ(β), but if α < β then Lα+ �|= φ(α). We must show that (the
characteristic function of) the Σ1 truth set of Lβ is computable.

As in lemma 4, start with (a code for the Σ1 truth set of) LωCK
1

. At any
stage along the way, there will be a well-founded model of V = Lα, as well as
two finite sets (both empty at the beginning) of sentences. The intent of this
construction is that, if it continues for ω-many steps, the union of the Lα’s so
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chosen will be Lβ , all of the sentences in the first set will be true in Lβ , and the
second set will provide a term model of V = Lβ+ .

The action at any stage is much as in the previous lemma. First, check
for the consistency of a theory, to be described below. If an inconsistency is
found, freeze. Else we are going to continue building the ultimate model. This
involves interleaving steps to make sure that the union of the chosen Lα’s, Lδ,
is admissible (and δ ≤ β), with steps to insure that Lδ+ |= φ(δ) (guaranteeing
δ ≥ β). We assume a dovetailing, fixed at the beginning, of all (countably many)
formulas ψ with parameters. For the formulas in the first set, the parameters are
the sets in the Lα’s chosen along the way. For the formulas in the second set,
the parameters include, in addition to the members of the Lα’s, also constants
ci for the term model, as well as a dedicated constant we will ambiguously call
δ, since the ordinal δ is its intended interpretation.

At any even stage 2n, consider the nth formula of the form ∀a ∈ A ∃y ψ(a, y, b),
where ψ is Σ1 and the parameters are from the Lα at hand. In parallel, choose it
to be either true or false. Moreover, you must provide a well-founded model of
V = Lα, extending the previously chosen model by at least one admissible. Fur-
thermore, if you had deemed the formula to be true, then it must hold in the cho-
sen Lα; if false, then you must also choose a specific a ∈ A, and include in the
first set of sentences “∀y ¬ψ(a, y, b)”. Notice that this step includes as a degen-
erate case those instances in which ψ does not depend on a, thereby forcing us to
decide all Σ1 and Π1 formulas. Finally, it must be the case that α < β, which
can be verified computably, since it needs only a well founded model of V = Lα+

(which exists by the inductive hypothesis and the choice of β) which also satisfies
“¬φ(α) ∧ ∀ν < α Lν+ �|= φ(ν)”.

At an odd stage 2n + 1, consider similar to the above the nth formula of the
form ∀a ∈ A ∃y ψ(a, y, b), where ψ is Σ1, only this time the parameters are for
the second set (that means the parameters are from an already chosen Lα and
the ci’s and δ). Include in the second set either “∀a ∈ A ∃y ∈ τ ψ(a, y, b)”, for
some term τ , or “τ ∈ A ∧ ∀y ¬ψ(τ, y, b),” for some term τ . Of course, this step
is meant to include all possible degenerate cases, such as Σ1 assertions, even
quantifier-free sentences. Also, if “τ < δ” for some term τ is ever included in the
second set, then, extending Lα if need be, for some ε < α the sentence “τ = ε”
is included in the second set.

With regard to the theory referenced above but there left unspecified, at any
stage along the way it will be “V = Lδ+ is admissible, and δ is admissible, and
α < δ (where Lα is the model we have at this stage), and everything in the first
set is true in Lδ, and everything in the second set is true in V ”.

For this computation, the tree of runs has neither halting nor divergence
nodes (since, whenever it does not freeze, it makes another oracle call). It is
ill-founded, since there is a run of the computation which does not halt, namely
one using the truth about Lβ and Lβ+ to make decisions along the way. We
would like to show that along any infinite path in the tree of runs, the induced
δ equals β.
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Consider the term model induced by the second set. There is an isomorphism
between the term δ and the union of the α’s chosen along the way: on the one
hand, the assertion “α < δ” was included in the theory along the way, and on
the other, anything ever deemed less than δ was forced to be less than some α.
So we can consider the term model as including some (standard) ordinal δ. Also,
this δ is at most β, since each α is less than β. The next observation is that
this term model satisfies “V = Lδ+ is admissible,” by the Henkinization (choice
of explicit witnesses) performed on the second set. Of course, the term model
might well be ill-founded. But its well-founded part has ordinal height the real
δ+. By the downward persistence of Π1 sentences, since φ(δ) holds in the term
model, it holds in the actual Lδ+ . By the choice of φ, δ is at least as big as β.

We must turn this procedure into a way of getting the characteristic function
for the truth set of Lβ . For any Σ1 sentence χ, run the procedure as above, with
χ and ¬χ each separately, in parallel, included in the first set. The false option
is inconsistent and so any such computation will freeze, so the answer you will
get is the true option, along with the information that the procedure diverges.

Corollary 1. For β < γ, the order-types of the Σ1(Lβ)-definable well-orderings
of ω are the ordinals less than β+.

This is a generalization of the earlier result that the order-types of the Π1
1 well-

orderings are cofinal in ωCK
2 . Sacks [7], giving this special case as an exercise (p.

51, 7.10), attributes it to Richard Platek, who never published a proof. Although
Platek may have been the first to notice this (Sacks in personal correspondence
dates it from the ’60s), Tanaka [8] seems to have discovered it independently.

The corollary as stated is not the optimal result, since the conclusion holds
for any β which is Σ1 projectible, by arguments similar to Tanaka’s. It’s just
that this more general result is no longer a corollary to the theorem.

Proof. For simplicity, assume that β is a limit of admissibles. The construction
of the theorem is of an ill-founded tree Tβ , Σ1 definable over Lβ , such that any
infinite path yields a term model of V = L with ordinal standard part β+. If the
well-founded nodes all had rank less than some β′ < β+, then they could all be
distinguished from the non-well-founded nodes definably over Lβ′ . So an infinite
path, and hence such a term model, is also definable over Lβ′ . It is then easy
(which we can here take to mean “definable over Lβ′”) to read off all the reals in
this model. This includes reals with L-rank cofinal in β+. This is a contradiction.
Hence, for any β′ < β, there is a node in Tβ with that rank. The nodes of Tβ are
labeled with pairs (e, n). They also have associated with them two finite sets of
formulas. The formulas are just finite pieces of syntax, except for the parameters
from Lβ ’s. But Lβ is the Σ1 Skolem hull of ω, which provides an integer name
for each of its members (for instance, a Σ1 formula that it uniquely satisfies).
So each formula can be coded by a natural number. All told, each node can be
represented by a natural number. This produces an ordering of a subset of ω with
rank β′. To get this to be a well-ordering, it suffices to take the Kleene-Brouwer
ordering of that tree.
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Happily, the work done also enables us to determine at least an upper bound
for the non-deterministic computations.

Theorem 3. Any relation computable via a non-deterministic parallel feedback
Turing machine, as in the previous section, is Σ1(Lγ).

Proof. By much the same argument as before. The only possible values come
from halting nodes, divergent nodes, and the ill-foundedness of trees. A node
is seen to halt at a successor stage, and γ is not a successor ordinal. A node
is seen to diverge at a stage of the form α + ω, and γ is not of that form. As
for the last possibility, the tree T

(e,n)
γ is Δ1 definable in Lγ+ with parameter γ.

If it’s not well-founded, that fact is Π1 expressible in Lγ+ . By the choice of γ,
a smaller T

(e,n)
α was already ill-founded, so divergence was already a value for

〈e〉(n). Hence there are no new possible values for any computation at or after
stage γ.
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Abstract. We develop a topological theory of continuous-time
automata which replaces finiteness assumptions in the classical theory of
finite automata by compactness assumptions. The theory is designed to
be as mathematically simple as possible while still being relevant to the
question of physical feasibility. We include a discussion of which behav-
iors are and are not permitted by the framework, and the physical signif-
icance of these questions. To illustrate the mathematical tractability of
the theory, we give basic existence results and a Myhill-Nerode theorem.
A major attraction of the theory is that it covers finite automata and
continuous automata in the same abstract framework.

Keywords: Continuous automata · Continuous-time computation ·
Analog computation · Topological monoids · Myhill-Nerode theorem ·
Young measures

1 Introduction

Continuous-time computations present a number of novel theoretical challenges.
Our main purpose here is to suggest a simple set of effectiveness criteria which a
continuous-time process, however it is mathematically defined, ought to satisfy in
order that it may be feasibly implemented, at least approximately, by a physical
device.

The main strategy we mean to employ is to reason by analogy with the
theory of finite automata. The basic idea is to replace the finite set of states and
finite alphabet each by compact topological spaces and to insist that all maps
be continuous. In carrying out this idea, we will have to make precise what we
mean by a continuous-time process. This clarification will take some work—in
fact about half the paper, including a detour through the subject of topologies
on spaces of functions.

Much previous work has also touched on notions of effectiveness for continuous-
time computation. For example, [7] considers automata over continuous-time but
which nonetheless have finite (discrete) sets of states. Note that for us, since all
maps are continuous including state evolution, the state cannot move between
different connected components of the state space. So we are dealing more or
less strictly with a continuous-time, continuous-space model of computation.
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DOI: 10.1007/978-3-319-27683-0 18



252 S. Messick

Jeandel [5] goes the other way and considers discrete-time, continuous-space com-
putation. The concept of hybrid automata [4,6] includes a direct axiomatization of
thepossibility of bothdiscrete andcontinuous state evolution,withvariouspossible
models considered for the continuous part. Hybrid automata theory has been very
successful in practical applications to real-world hybrid systems (systems which
include interacting analog and digital components). See [3] for a survey on all these
and related ideas. Here we isolate a purely continuous notion of computation for
detailed theoretical study.

Our motivation for requiring all maps to be continuous stems from the insight
of constructive analysis that for any totally defined function to be computable
in any practical sense, it has to be continuous. Roughly, the idea is that we have
no hope of exactly specifying a point in an infinite space (at least in general),
so we are going to have to make do with approximations. A topology on a space
specifies precisely what it means to approximate a point in the space, at least in
the limit. A metric goes further and actually gives an absolute notion of quality
of approximation. Either way, for a map from an input space to an output space
to be computable, it is necessary that an approximation of the output can be
determined from a sufficiently good approximation of the input.

The above considerations about continuity and effectiveness have been given
rigorous treatment from a number of different perspectives, including construc-
tive analysis, such as in Bishop’s classic purely constructive text [2], and in
computable analysis—a good modern reference is [8]. Brouwer controversially
claimed, as part of his intuitionistic philosophy of mathematics, that all func-
tions must be continuous. Here we do not attempt to be fully constructive and
do not adopt any of these frameworks. We are content to take them as the moti-
vation for the requirement of continuity which we view as a necessary, if not
quite sufficient, condition for effectiveness.

1.1 A Sample Menu of Continuous Devices

Before proceeding further, let us establish context by giving examples of behav-
iors which we might, in our näıveté, expect from a continuous device. To be
clear, we are not saying that all of these examples are actually effectively imple-
mentable. In fact some of them will be definitively ruled out by our criteria given
later. They are examples to illustrate what is at stake.

Throughout this paper we assume a deterministic, automatic style of com-
putation.1 By “automatic”, we mean that the computation updates its state
instanteously in response to ongoing input. There is no external memory and
no waiting for the machine to halt. For the time being we treat the input as
a function of time which takes values in some alphabet Σ. To emphasize that
input is changing over time, we may use the phrase input signal.
1 While we are interested in continuous computation generally, the theory of determin-
istic automata provides a nice starting point because of its simplicity. In addition,
the necessity of constant, instantaneous updates is a feature of many real-world
continuous-time problems.
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Within these restrictions, the computation style of the examples still varies
over a couple of dimensions:

Alphabet Type. Discrete or continuous? Basic respective examples are Σ =
{0, 1} and Σ = [0, 1].

Output Style. Recognizer or transducer? Traditionally, an automaton would
fit in one of these two categories. A recognizer has a set of accept states
and there by computes some language (set of inputs). A transducer would
actively put out an output signal of a similar kind as the input, perhaps over
a different alphabet. Here we also allow another style which we call a deducer.
A deducer is like a recognizer but with more than two, usually infinitely many,
outcomes. It computes a function from all possible input signals into some
static space of possible outcomes. In the discrete world all deducers could be
reduced to a finite collection of recognizers working together; but there is no
obvious analogue in the continuous case.

Input Restrictions. What sorts of functions are we going to allow? A priori
there are many possibilities. Continuous? Lipschitz? Smooth? Piecewise ver-
sions of one of these? Piecewise constant? We have deliberately not answered
this question yet because it turns out to be very important and will get much
attention later.

Here are the examples.

Time Counter. For any alphabet Σ, a deducer which tracks the amount of
time the signal spends inside a fixed subset A ⊆ Σ.

Delay. A transducer which, for any alphabet, outputs a signal on the same
alphabet delayed in time by a fixed value τ . The output for the first τ time-
units is a fixed constant.

Integrator. Σ = [0, 1] or more generally, Σ may be a subset of a topologi-
cal vector space. An integrator would simply integrate the signal over time,
providing its value as an output signal. The value of the integral up to the
current time is the only state information needed, with some arbitrary initial
state.

Differentiator. A transducer which outputs the derivative of the input signal.
Some sort of state information is needed about the infinitesimal past.

Alternation Counter. A deducer for a discrete alphabet, say Σ = {0, 1}, which
counts the number of changes in the input value.

Switching Controller. The alphabet is discrete, say Σ = {0, 1}. We imagine an
object which can be switched between two different physical behaviors, each
represented by a vector field on the state space. At any given time, the input
value determines which behavior is in effect, the state moving along the flow
curve for the corresponding vector field. This example may be generalized
for a continuous alphabet by considering a continuously parametrized family
of vector fields.

1.2 Continuity and Compactness Principles

Now we examine in more detail how to state effectiveness criteria in terms of
continuity and compactness. To begin, what do we mean when exactly when
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we say all maps should be continuous? Consider the following particular maps
associated to a continuous process. Note that whenever we say a map should
be continuous, we are also implicitly asserting that its domain and codomain
should have a specified topology.

Dynamics of the Computation. The update rule which determines a new
state given an old state and the intervening input should be continuous in
both arguments. This map should be continuous.

Outcome Map for a Deducer. The map which associates states to outcomes.
This map should be continuous. Note that this criterion almost makes tra-
ditional recognizers impossible: the input space is likely connected, so any
continuous recognizer to two outcomes would be trivial.

Overall Input-output Map. For a deducer with a given start state, the con-
tinuity of this map follows from the above by composition. For a transducer,
the map from input to output signals (for any given time interval and start
state) should be continuous. We will define deducers and transducers pre-
cisely in Sect. 3.2.

Input as a Function of Time. We do not require this function to be contin-
uous. It is not part of the computation, but rather is given to us. Also, it
would not be an advantage for elegance, because it would mean that there is
implicit state information not attached to the state space: if the input takes
on a certain value at a certain time, future input would be required to have
a matching left one-sided limit at that time.

Similarly, let us consider exactly which spaces we are asserting should be
compact. Since points in spaces have to be specified by approximation, to say a
space is compact is to say that for any given degree of approximation, specifying
a point requires only finitely much information.

The Alphabet Σ. The alphabet should be compact.
The Fixed-Interval Input Space. By this we mean the space of all possible

input signals over a given time interval. This space should be compact. Note
that in the discrete analogue comes for free in finite automata theory: if Σ
is finite, then so is Σn for any n.

The Unrestricted Input Space. By this we mean the space of all possible
input functions over any time interval. We do not require this space to be
compact. It is analogous to Σ∗.

The State Space. The state space should be compact.

In discussing the examples, we sometimes will gloss over relatively innocuous
non-compact state spaces such as the non-negative reals. The reason is conve-
nience; in real-world problems real variables come with bounds and the example
is easily patched by restricting the variable not to leave these bounds; or to
cycle through. We are not saying that the restriction is unimportant theoreti-
cally; without it the theory would become degenerate because we could use a
copy of the unrestricted input space as the state space.
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1.3 Moving Toward Formalization

The discussion so far leads us to the following formal definition.

Definition 1. A continuous automaton is a topological space S, the state space,
together with a topological monoid M , the input monoid, and a continuous right
action of M on S, the update rule. A continuous right action of M on S is a
continuous map

S × M → S

typically written as s · m for s ∈ S, m ∈ M , satisfying the action law or law of
causality:

(s · m1) · m2 = s · m1m2. (1)

Note that a version of this definition appeared in [5] (which does not consider
continuous time), and that special cases include discrete-time continuous-space
automata, as in that paper, and the classical theory of finite automata, when all
sets are given the discrete topology and M = Σ∗.

The reason we have included the continuity principles in the definition but not
the compactness principles is one of mathematical convenience. We will some-
times have need to consider non-compact automata, but never discontinuous
automata.

The definition leaves us some flexibility in how the input signals are defined.
A prototypical input monoid may be defined as follows. An element u ∈ M is a
function u : [0, �(u)] → Σ where Σ is a fixed compact alphabet. For concreteness,
we may require the function to be Lebesgue measurable. The monoid operation
is concatenation:

uv : [0, �(u) + �(v)] → Σ

(uv)(t) =

{
u(t) 0 ≤ t < �(u)
v(t − �(u)) �(u) ≤ t ≤ �(u) + �(v).

Here we have just shifted v over and joined it with u. This monoid together with
Definition 1 formalize what we so far have called a “continuous-time process”.
This monoid is intended to be analogous to the free monoid Σ∗ under concate-
nation. However, it does not satisfy all the compactness principles.

1.4 Compactness of M�

Let M� be the set of input signals of some fixed length �. Our second compactness
principle should now say that M� is a compact subspace of M . Unfortunately,
almost no function space is even locally compact, no matter how compact the
domain and codomain might be. In particular, neither Lebesgue measurable func-
tions nor any of the other classes of functions mentioned earlier yields a locally
compact space when endowed with any standard topology, including uniform
convergence, Lp-like metrics, or convergence in measure.

We mentioned that the discrete analogue of this principle, finiteness of Σn,
came for free, and now it appears we have no obvious way to achieve it at all.
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Nonetheless, we really would like to have this compactness and will devote special
effort to finding a suitable monoid which satisfies this property. We insist for two
reasons. First, theoretically, a glance at standard automata theory shows that
almost all interesting results ultimately depend on the fact that Σn is finite, not
just that Σ is finite. Second, it makes physical sense to require compactness. We
are finitary beings–even if a physical device somehow did correctly process what
is essentially an infinite amount of information in a finite time, we would have
no way to verify that it did so correctly.

One way to get M� to be compact is to really restrict the class of functions,
say to lipschitz functions with lipschitz constant less than some fixed bound K.
This set of functions is equicontinuous and thus the Arzelà-Ascoli theorem makes
it compact. However, we earlier mentioned drawbacks to assuming continuous
input functions, and it seems to us that in real-world problems it is rarely rea-
sonable assume a uniform lipschitz bound.

In the next section we will show a method to make M� compact by using
a topology different from all those mentioned above. Accompanying the change
in topology will be a a completion, which is necessary to actually achieve com-
pactness. Points in the completion are technically not functions but equivalence
classes, similar to the situation with Lp, which is why we have so far been coy
about the exact nature of the “input signals”.

To motivate the compactification construction, consider that the reason why
function spaces are not compact boils down to oscillations of unboundedly high
frequency. For example, if fn : [0, 1] → {0, 1} is the function which alternates
2n times between the values 0 and 1 on intervals of equal width, then (fn) has
no convergent subsequence. Problems with high frequency oscillations are not
limited to the realm of pure mathematics; for example, electronic devices which
are sensitive to the frequency of their input break at some point if the frequency
is too high. Our mathematical solution will be correspond to requiring devices
to tolerate high frequency noise by somehow averaging it out.

So what happens to the examples when we consider the possibility of high-
frequency inputs? The counter is fine. It will give an approximately correct value
even if the input is shifted around or averaged out. The integrator and delay2

are also fine.
The differentiator and alternation counter do not work as described. They

are sensitive to oscillations in the input. For example, the derivative of a function
can change dramatically and become not well-defined even if the function is given
only a very small uniform bump, if that bump happens to have high-frequency
noise in it. Similarly, there is no way the alternation counter can be interpreted
as needing only a finite amount of information from any interval of input, unless
we somehow know that the input literally cannot oscillate at more than a certain
frequency.
2 The delay is interesting here because it connects the compactness principles for input
and state space. Since the delay needs to store the last τ part of the input in its
state, it has compact state space only if the space of τ -length inputs is compact.
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Later we will see (Corollary 11) that the switching controller does satisfy our
criteria.

2 Young Measures as Continuous-Time Words

The goal of this section is to give a complete, rigorous development of the com-
pactification of M� to which we referred in Sect. 1.4. This space was actually
discovered by L.C. Young [9] for the purpose of solving non-convex optimization
problems in the calculus of variations and control theory. We will give a different
definition, conceptualized in terms of words, analogous to elements of Σ∗ in the
discrete world, and defer proof of their equivalence to a future publication.

Let Σ be a compact metric space. As a simple nontrivial example, we may
imagine Σ = {0, 1}. We are going to build a notion of continuous-time words
of length 1 by starting with a small class F1 of functions [0, 1] → Σ, defining
a metric which we call the Young metric, and taking the completion of that
metric. The completion will be M1. (M� will be a scaling of M1, so the following
development applies to words of any length. We consider � = 1 for simplicity
of exposition). Recall that a complete metric space is compact if and only if it
is totally bounded, which means that for any ε > 0, there is a finite set whose
ε-neighborhood is the entire space. So, after defining the Young metric, all we
have to do is show that F1 is totally bounded. Then M1 will also be totally
bounded and therefore compact. As a bonus, we will also be able to give a
concrete description of M1 in terms of measures.

Let F1 be the set of piecewise constant functions [0, 1] → Σ. The construc-
tion is not too sensitive to this exact choice. We could also choose piecewise
continuous functions or Lebesgue measurable functions and achieve the same
outcome—all of these sets of functions will be dense subsets of M1.

To motivate the definition of the Young metric, imagine comparing two words
u and v which are constant on all the tiny intervals [k/N, (k + 1)/N) for some
fixed large N . These are just discrete words of length N , scaled down to have
“letter width” 1/N and thereby fit in the interval [0, 1] as continuous-time words.
How different are these words?

0111110010111000111010111011

0110110010111001111010111011

They differ in two places, so their Hamming distance is 2. Say we scale that
down appropriately for the continuous-time words in M1, and their distance
would be 2/N . (In this example N = 32). If we defined our metric using a scaled
Hamming distance like this, we would end up with essentially an L1 function
space, a well-known topology that does not solve our problems. In fact, we need
a weaker topology, which is to say that at least some words need to be closer
together than they were before. Consider these:

01010101010101010101010101010101

10101010101010101010101010101010
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These words have the maximum possible Hamming distance. But we want
to say they’re actually close together. The reason is this: we could easily have
some noise in our measurements of time that would make these words totally
indistinguishable. Or to put it another way, if we look at the values of these
words on any subinterval of time, we are going to get about the same number of
0 s and 1 s regardless of which word we look at. To be precise, the difference in
occurrence of any letter on any subinterval is at most 1, so let’s say these words
have distance 1/N . A less obvious example:

00100101010000101001001000101000

00101000110010000100100100100100

These words have a scaled Hamming distance of 13/N , but the new proposal
gives them distance just 2/N . Note that on any subinterval we get about two-
thirds 0 s and one-third 1 s.

We are almost ready to define the Young metric formally. We need to be
precise about the “difference in occurrence” of values on a subinterval, but
unfortunately this issue is more complicated in the case where Σ is not dis-
crete. For example, if Σ = [0, 1] and we have the constant words u(t) = 0.5 and
u(t) = 0.501, these words should also be close to each other. The solution is to
use the Kantorovich-Wasserstein metric on measures.

When comparing two words u and v on an interval [s, t], we only mean to
look at their values on that interval, not where the values occur. So naturally we
look at the pushforward measures u∗(λ[s,t]) and v∗(λ[s,t]) where λ[s,t] is Lebesgue
measure on [s, t]. If u and v are piecewise constant, these measures are a finite
sum of point-masses at the values of the functions u and v. The mass at each value
is the total width of intervals on which the word took that value. In symbols,

u∗(λ[s,t])({σ}) = λ({r ∈ [s, t] : u(r) = σ}). (2)

The Kantorovich-Wasserstein metric is the infimal cost of transforming one
measure into another by moving measure around: to move M measure over a
distance D costs M · D. If the measures are finite sums of point masses, then
only finitely many discrete moves are needed. The formal definition follows.

Definition 2. Let μ and ρ be positive Borel measures on a compact metric space
X. A coupling γ of μ and ρ is a measure on X × X such that π1,∗(γ) = μ and
π2,∗(γ = ρ). Then the Kantorovich-Wasserstein metric dKW (μ, ρ) is defined as

dKW (μ, ρ) = inf
γ

∫

X×X

dXdγ

where dX is the metric on X and the infimum is taken over all couplings γ.

For more information about this metric, see [1], Chaps. 6–7.
To keep the formalism as simple as possible, note that a simple triangle-

inequality argument shows that we can restrict our attention to initial subintervals
[0, s]: if we want to consider [s, t] we can compare on both [0, s] and [0, t].
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Definition 3. For a measurable function u : [0, 1] → Σ, the accumulant of u,
denoted u, is the measure-valued function defined by

u(s) = u∗(λ[0,s]) (3)

or equivalently
u(s)(X) = λ ({t ∈ [0, s] : u(t) ∈ X}) . (4)

So the accumulant u is a measure-valued function of time. Roughly speaking,
it tells us, up to this time, how much time the function u has spent at each value
so far.

Definition 4. Let u, v : [0, 1] → Σ be measurable functions. Then the Young
metric d(u, v) is

d(u, v) = sup
s∈[0,1]

dKW (u(s), v(s)). (5)

Note that the Young metric is technically only defined on equivalence classes
of functions up to almost-everywhere equality. We are quite happy with this,
however, because it naturally wipes away concerns about endpoint conventions
and when we take the completion, we are going to have to give up on input
signals being functions anyway.

Proposition 5. The set F1 of piecewise constant functions [0, 1] → Σ, modulo
almost-everywhere equality, is totally bounded in the Young metric.

We omit the proof of Proposition 5 due to space limitations.3

Then M1 may be defined as the completion of F1. As mentioned, this con-
struction works equally well to define any M�. However, to define M , we have
to resolve two more technical issues. First, the metric needs to be extended so
words of different length may be compared. Second, we need to check that the
concatenation operation is well-defined on the completion, for which it suffices
to show that it is uniformly continuous in the Young metric.

Definition 6. Let F be the set of piecewise constant functions [0, �] → Σ for
any � ≥ 0. The Young metric is extended to F as follows. Let u, v ∈ F and
assume without loss of generality that �(u) ≤ �(v). Then

d(u, v) = d(u, v � [0, �(u)]) + (�(v) − �(u)).

Proposition 7. Concatenation gives a uniformly continuous map F × F → F .

Briefly, the proof of Proposition 7 is to first consider the (easy) case where the
two first words have the same length, and then to handle the general case by
noting that shifting a word by ε moves its accumulant by at most ε in the Young
metric. This argument actually shows that concatenation is 1-lipschitz in each
argument.
3 A full account of all of these results will appear in my forthcoming dissertation.
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Definition 8. Let Σ be a compact metric space. The Young monoid over Σ,
here denoted M , is the metric monoid defined as the completion of F (the
piecewise constant functions) under the Young metric. Multiplication in M is
the extension by uniform continuity of concatenation in F . Elements of M are
referred to as measurable words or continuous-time words.

Note that the length �(u) is also uniformly continuous in u ∈ M , so we may
safely regard M� as a subspace of M . A few more observations, with more or
less routine proofs:

– M≤�, the space of words of length at most �, is compact.
– The new points in the completion do not necessarily correspond to functions of

any kind. To see why, note simply that for any fixed time t, the map u �→ u(t)
is not uniformly continuous.

– Though F was defined as piecewise constant functions, we could just as well
have used measurable functions. Each measurable function [0, �] → Σ defines
an element of M . Consider sequences of piecewise constant functions which
converge in the L1 sense—they will also be Cauchy in the weaker Young
metric. However, elements of this kind do not exhaust the completion.

– Anything with a natural definition in terms of accumulants, such as the inte-
gral of a word u : [0, 1] → [0, 1], is well-defined by virtue of uniform continuity.

Although not strictly necessary, it may be intuitively helpful to have a self-
contained description of the Young monoid. The following definition provides
such a description in terms of generalized accumulants, making use of the full
generality of the Kantorovich-Wasserstein metric for atomless measures.

Definition 9. Let Σ be a compact metric space. The Young monoid M of mea-
surable continuous-time words over Σ may alternately be defined as follows. M�

is the set of functions u on [0, �] whose values are positive Borel measures on Σ
with the following two properties:

– u(t) has total measure t, i.e., u(t)(Σ) = t, and
– for each A ⊆ Σ, the function t �→ u(t)(A) is increasing.

(Note that these properties are shared by all accumulants of measurable func-
tions). The metric on M� is defined by

d(u, v) = sup
s∈[0,1]

dKW (u(s), v(s)) (6)

and extended to M as above. Multiplication in M is defined as concatenation:

(uv)(t) =

{
u(t) t ≤ �(u)
u(�(u)) + v(t − �(u)) �(u) ≤ t ≤ �(u) + �(v).

(7)

Now we may view the new points in the completion as words which accumulate
values simultaneously at more than one element of Σ. For example, the limit of
piecewise constant functions which alternate ever more rapidly between 0 and
1, spending equal time at each value, is a word (generalized accumulant) which
constantly accumulates value at both 0 and 1, each at a rate of 1/2.
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3 Existence of Continuous Automata

3.1 Bottom-Up: Continuous Automata from Diffential Equations

In light of how we constructed the Young monoid M , we now have a natural
strategy for formally proving the existence of a continuous automaton M with
some desired behavior. We first define the behavior on piecewise constant inputs,
and then show that it is uniformly continuous with respect to the Young met-
ric. It then automatically extends to all of M . We can go further: by the law
of causality (1), behavior on piecewise constant inputs is already determined
by behavior on constant inputs, and, for that matter, constant inputs of arbi-
trarily small length. So we really only have to specify the behavior on constant
inputs, which amounts to specifying a topological dynamical system for each
σ ∈ Σ. Furthermore, this method should be adequate to produce any continu-
ous automaton whatsoever, because any continuous automaton can be restricted
to its behavior on constant inputs of small length, and uniform continuity follows
by compactness.

We are left with the question: what conditions on a family of dynamical
systems, parametrized by Σ, will produce a behavior that is uniformly continuous
in the Young metric? The following theorem, which we do not prove here, gives
a partial answer to this question.

Theorem 10. Let S be a metric space and let ϕ : Σ × R≥0 × S → S be a
continuously Σ-parametrized family of flows in S, denoted as (σ, t, x) �→ ϕσ,t(x).
Assume furthermore that

– There are constants A, B, and K, such that

dS(ϕσ,s(x), ϕτ,t(y)) ≤ eKtdS(x, y) + BdΣ(σ, τ)K−1(eKt − 1) + A |s − t| (8)

for any s, t ≥ 0, any σ, τ ∈ Σ, and any x, y ∈ S.
– There is a constant C such that

dS (ϕσ,t(ϕτ,t(x)), ϕτ,t(ϕσ,t(x))) ≤ Ct2 (9)

for any t ≥ 0, any x ∈ S, and any σ, τ ∈ Σ.

Then the action of the constant words defined by ϕσ for σ ∈ Σ extends uniquely
to a continuous automaton.

Informally speaking, the inequalities amount to the following:

– Each flow has uniformly bounded speed. (Third term of (8)).
– For each flow, running the flow for any fixed amount of time t results in a

lipschitz map ϕσ,t : S → S. Furthermore note that for a larger time such as 2t,
ϕσ,2t would also be forced to be lipschitz; the exponential in the inequality says
that the lipschitz constants are all compatible in this way. They are generated
infinitesimally, so to speak. (First term of (8)).
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– The second term of (8) says that flows parametrized by different letters may
differ locally according to the distance between those letters in Σ. The expo-
nential factor is present because over time the discrepancy also feeds on itself
in accordance with the previous remark.

– Equation (9) says that any two of the flows commute with one another at
second-order. It is a kind of mutual smoothness condition that is tailored to
ensure uniform continuity in the Young metric.

While (8) is true for almost any natural family of flows that one might want
to write down, (9) is more restrictive. Still, it is true provided all of the flows are
in fact smooth flows on a manifold. So we have the following corollary, which is
the main use of the theorem.

Corollary 11. Suppose Σ is a compact metric space and S ⊆ R
n is compact.

Consider a parametrized system of differential equations

d

dt
y = f(σ,y) (10)

where f : Σ × S → R
n is lipschitz and everywhere tangent to S. Then there is a

unique continuous automaton over the Young monoid for Σ such that for each
σ ∈ Σ, constant input of value σ causes the state to evolve according to (10).

The proof of Corollary 11 proceeds by first using the Picard-Lindelöf Theorem to
produce unique global solutions for each fixed σ. Then using standard estimates,
the hypotheses of Theorem 10 are satisfied, which gives us a unique automaton.

3.2 Top-Down: A Myhill-Nerode Theorem

For a Myhill-Nerode Theorem, we need to consider the full input-output seman-
tics. Recall the notions of deducer and transducer from the introduction. There
will be a version of the theorem for each of these. Let us start by formally defining
a deducer.

Definition 12. A deducer is a continuous automaton (S,M) together with a
distinguished start state s0 and a continuous map o : S → O, where O is a
topological space, the outcome space.

A deducer computes a unique map c : M → O, defined by c(m) = o(s0 · m).
The Myhill-Nerode Theorem gives a reverse statement: for any continuous map
c : M → O, there is a canonical deducer (S ,M) which computes c. S is
minimum in the following sense: there is a natural morphism from S to any
other automaton computing c. A morphism is a continuous map on states which
respects both the dynamics and the input-output semantics. It follows that S
is unique up to isomorphism (homeomorphism of state spaces which respects
input-output semantics).



Compactness in the Theory of Continuous Automata 263

The elements of S are interpreted as intrinsic states. (Notationally, S is
reserved for this purpose, whereas S may refer to the state space of an arbitrary
automaton). To motivate the definition, notice that if we already have a deducer,
each state s ∈ S is associated naturally to a continuous function M → O, namely
m �→ o(s · m).

Definition 13. Suppose c : M → O is given.

– An intrinsic state is a continuous function f : M → O.
– The universal update rule is (f · m)(n) = f(mn).
– The initial intrinsic state is f0(m) = c(m).
– By Sc or simply S we mean the space of all intrinsic states reachable from the

initial intrinsic state via the universal update rule, endowed with the compact-
open topology. Abusively, we may also mean the deducer with S as the state
space, the universal update rule as the dynamics, the initial intrinic state as
the start state, and the outcome map f �→ f(1M ).

The compact-open topology on a function space F of continuous functions
X → Y , briefly, is the topology of uniform convergence on compact sets. It is a
standard topology on function spaces used in homotopy theory and many other
areas. It has two key properties, provided that X and Y are sufficiently well-
behaved (locally compact Hausdorff). One asserts that certain functions defined
on F are continuous, and the other asserts that certain functions into F are
continuous:

– The application map F × X → Y is continuous.
– If P is a topological space and g : P × X → Y is a continuous map such that

for each fixed p ∈ P , g restricts to a map X → Y which is an element of F ,
then the curried map h : P → F defined by h(p)(x) = g(p, x) is continuous.
Here we think of P as continuously parametrizing a family of functions in F .

The proof of the theorem amounts to using these properties to check that all
the relevant maps are indeed continuous.

Theorem 14. Assume X, M and O are locally compact Hausdorff. Given a
continuous function c : X → O, the corresponding deducer Sc defined above
is indeed a continuous automaton. Furthermore, there is a canonical morphism
from Sc to any other deducer (with the same M and O) computing c. If M and
O are both metrizable, then so is Sc.

Corollary 15. If c can be computed by any deducer with a compact state space,
then in particular Sc must be compact.

The corresponding theorem for transducers is slightly more complicated.

Definition 16. A transducer is a continuous automaton (S,M) together with
a distinguished start state s0 and a continuous map T : S × M → N , written
(s,m) �→ Ts(m), where N is another topological monoid, which satisfies the
transduction law:

Ts(m1m2) = Ts(m1)Ts·m1(m2). (11)
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The transduction law (11) is in the same spirit as the law of causality (1),
and it ensures that the transducer does in fact compute a well-defined function
C : M → N , namely C = Ts0 . C is also a causal function in the sense defined
below.

Remark 17. Given any measurable word as input, the state of an automaton has
to be a continuous function of time. If the transduction output depended only
on state, it would itself be a continuous function of time, rather than a more
general measurable word. The definition just given avoids this restriction. For
example, it allows an identity transducer which copies input to output (requiring
only one state).

In defining the canonical automaton for a continuous function C : M → N ,
there is an additional difficulty that C has no hope of being computed by any
automaton at all unless it is causal, meaning that C(x ·m) can always be written
as C(x) ·n for some n. To obtain a canonical minimum automaton, we will need
that this n is uniquely defined and obtained continuously from x and m.

Convention 18. For the remainder of this section, we make the following
assumptions about N .

– N is left-cancellative: ab = ac =⇒ b = c. Consequently, we can define a\b as
the unique n such that an = b, provided it exists. Then a(a\b) = b.

– The map (a, b) �→ a\b is continuous on its domain.

Note that these conditions do hold in case N is a Young monoid.

Definition 19. A map f : M → N is causal if for every x ∈ M and m ∈ M ,
there exists n ∈ N such that f(x · m) = f(x) · n.

Definition 20. Suppose C : M → N is given.

– An intrinsic state is a causal continuous function f : M → N such that
f(1M ) = 1N .

– The universal update rule is (f · m1)(m2) = f(m1)\f(m1m2).
– The initial intrinsic state is f0(m) = C(m).
– By SC or simply S we mean the space of all intrinsic states reachable from the

initial intrinsic state via the universal update rule, endowed with the compact-
open topology. Abusively, we may also mean the transducer with S as the state
space, the universal update rule as the dynamics, the initial intrinic state as
the start state, and the transduction output Tf (m) = f(m).

Theorem 21. Assume M and N are locally compact Hausdorff and also satisfy
the assumptions of Convention 18. Given a causal continuous function C : M →
N , SC is in fact a well-defined transducer. (The maps are continuous and the
transduction law is satisfied). Furthermore, there is a canonical morphism from
SC to any other transducer (with the same M and N) computing C. If M and
N are both metrizable, then so is SC .
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4 A Fixed Alternation-Counter

Earlier we noted that the differentiator and alternation-counter do not satisfy
our effectiveness criteria. To be precise, they do not correspond to any contin-
uous automaton over the measurable word monoid. Nonetheless, there are real
devices referred to as “differentiators”, for example. Here we suggest a way to
explain such behavior by defining a sort of time-scale dependent approximation
to the behavior of the alternation-counter. The case of the differentiator is more
complicated, but should be amenable to a similar treatment. Note that the work
in this section is of a more preliminary nature.

To make the behavior continuous in the Young metric, we are going to have
the device measure alternations only relative to some specified time-scale con-
stant ε > 0, by waiting for the input to accumulate value at a new alphabet
letter. To keep the state space compact, we will loop back to 0 when we reach
some large number L.

– Recall that Σ = {0, 1}.
– The state space is S = Mε × [0, L]/ {0 ∼ L}.
– If the state is written (v, a), then v continuously updates to record the last ε

time units of input, and a updates as

da

dt
=

2v(ε)(1 − u(t))
ε

where u(t) is the letter currently being read.

If the input contains alternations which are separated by at least ε, then the
a part of the state simply counts their number, assuming it started at zero. (The
initial state of v also matters for whether the first input read is considered an
alternation). The one exception is when an alternation happened more recently
than ε time units ago, in which case it has not yet been fully counted, allowing
a to change continuously. If ε is very small, we might realistically never see a
taking a non-integer value.

5 Conclusions and Future Work

To summarize our main findings:

– The abstract framework of continuous monoid actions neatly covers finite
automata theory as well as continuous-time automata.

– The construction of an appropriate topology allows development of a
continuous-time theory along the same lines as the finite theory.

– Since most of the literature on continuous processes uses differential equations
whose solutions are guaranteed by the Picard-Lindelöf conditions, those mod-
els are covered, at least in principle, by this one. (This point does not apply
to any discontinuous behavior).
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– Furthermore, the Myhill-Nerode theorems suggest that quite a bit more behav-
ior can be considered in the same framework. For example, the delay was easy
for us to understand here, but cannot be described using differential equations.

– This theory is defined using a more abstract description level than differential
equations and is correspondingly simpler, at least if we are willing to accept
the definition of the Young metric as simple.

My hope, at which I have hinted throughout the paper, is that this work
will help bolster the theoretical understanding of many issues of continuous
processes which have previously been examined mainly from a more practical
angle. A prime example is the question of whether and how we might be able
to translate between continuous, discrete, and hybrid computational and control
systems. Having a simple unified framework should make it easier to state and
examine such questions. Much work remains to be done.
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Abstract. We study the extension of Monadic Second Order logic with
the “for almost all” quantifier ∀=1 whose meaning is, informally, that
∀=1X.φ(X) holds if φ(X) holds almost surely for a randomly chosen X.
We prove that the theory of MSO+∀=1 is undecidable both when inter-
preted on (ω, <) and the full binary tree. We then identify a fragment of
MSO+ ∀=1, denoted by MSO+ ∀=1

π , and reduce some interesting prob-
lems in computer science and mathematical logic to the decision problem
of MSO + ∀=1

π . The question of whether MSO + ∀=1
π is decidable is left

open.

Keywords: Monadic second order logic · Lebesgue measure

1 Introduction

Monadic Second Order logic (MSO) is the extension of first order logic with
quantification over subsets of the domain. For example, when interpreted over
the relational structure (ω,<) of natural numbers with the standard order, the
formula ∃A.∀n.∃m.(n < m ∧ m ∈ A) expresses the existence of set A of natural
numbers which is infinite (see Sect. 2 for definitions).

One of the first results about MSO was proved by Robinson [14] in 1958.
He showed, answering a question of Tarski, that the theory MSO(ω,+, <) is
undecidable. In 1962 Büchi [5] proved that the weaker theory MSO(ω,<) is
decidable and in 1969 Rabin [13] extended this positive result to the MSO theory
of the full binary tree (see Sect. 3 for definitions). Büchi and Rabin’s theorems are
widely regarded among the deepest decidability results in theoretical computer
science. Their importance stems from the fact that many problems in the field
of formal verification of programs can be reduced to these logics.

A long standing open problem in the field of verification of probabilistic pro-
grams is the decidability of the SAT(isfability) problem of probabilistic temporal

H. Michalewski—Author supported by Poland’s National Science Centre grant
no. 2012/07/D/ST6/02443
M. Mio—Author supported by grant “Projet Émergent PMSO” of the École
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logics such as pCTL* and its extensions (see, e.g., [2,4]). In the attempt of mak-
ing some progress, it seems worthwhile to formulate some aspects of the SAT
problem as questions expressed in the logical framework of MSO. Given the vast
literature on MSO, this might facilitate the application of known results and
would make the SAT problem of pCTL* simpler to access by a broader group
of logicians.

As a first step in this direction, following the seminal work of Harvey Fried-
man, who introduced and investigated similar concepts in the context of First
Order logic in unpublished manuscripts in 1978–791, we have recently considered
in [12] the extension of MSO on the full binary tree with Friedman’s “for almost
all” quantifier (∀∗) interpreted using the concept of Baire Category as:

∀∗X.φ(X) holds ⇔ the set{A | φ(A) holds} is topologically large

where “topologically large” means comeager in the Cantor space topology of
subsets of the full binary tree. We proved in [12] that the sets definable using
the quantifier ∀∗ can actually be defined without it: MSO = MSO + ∀∗. This
is a result of some independent interest but, most importantly, it fits into the
research program outlined above since we successfully used it to prove [12] the
decidability of the finite-SAT problem (a variant of the SAT problem mentioned
above) for the qualitative fragment of pCTL* and similar logics.

In this paper we consider a natural variant of the above extension. We intro-
duce the logic MSO + ∀=1, interpreted both on (ω,<) and on the binary tree,
obtained by extending MSO with Friedman’s “for almost all” quantifier (∀=1)
interpreted using the concept of Lebesgue measure as:

∀=1X.φ(X) holds ⇔ the set{A | φ(A) holds} is of Lebesgue measure 1.

Thus, informally, ∀=1X.φ(X) holds if φ(A) is true for a random A. We prove,
using results from [1] and [7], that unlike the case of MSO + ∀∗:

Theorem 1. The theory of MSO + ∀=1 on (ω,<) is undecidable.

The proof of this result is presented in Sect. 5. As a consequence also the theory
of MSO + ∀=1 on the full binary tree is undecidable (Corollary 1).

Motivated by this negative result, we investigate the theory of a weaker
fragment of MSO + ∀=1 on trees which we denote by MSO + ∀=1

π . Informally,
∀=1

π X.φ(X) holds if φ(P ) is true for a random path P in the full binary tree. We
observe (Proposition 3) that MSO + ∀=1

π is strictly more expressive than MSO.
However we have not been able to answer the following question2:

Problem 1. Is the theory of MSO + ∀=1
π on the binary tree decidable?

This problem, which we leave open, seems to deserve some attention. Indeed
in Sect. 7 we show that the decidability of MSO + ∀=1

π would have some inter-
esting applications. Most importantly, from the point of view of our research
1 See [15] for an overview of Friedman’s research.
2 Further open problems regarding MSO + ∀=1

π are formulated in Sect. 8.
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program, if the theory of MSO + ∀=1
π is decidable then the SAT problem for

the qualitative fragment of pCTL* is decidable (Theorem 5). Regarding appli-
cations in mathematical logic, we prove (Theorem 8) that the first order theory
of the lattice of Fσ subsets of the Cantor space with the predicates C(X) ⇔
“X is a closed set” and N(X) ⇔ “X is a Lebesgue null set” is interpretable in
MSO+∀=1

π . As another example, we show (Theorem 9) that the first order theory
of the Lebesgue measure algebra with Scott’s closure operator is interpretable
in MSO + ∀=1

π . Hence if MSO + ∀=1
π is decidable, these two theories are also

decidable. Lastly, we also establish (Theorem 6) that the qualitative languages
of trees, recently investigated in [6], are definable by MSO + ∀=1

π formulas.

2 Measure and Probabilistic Automata

The set of natural numbers and their standard total order are denoted by the
symbols ω and <, respectively. Given sets X and Y we denote with XY the
space of functions X → Y . We can view elements of XY as Y -indexed sequences
{xi}i∈Y of elements of X. We refer to Σω as the collection of ω-words over Σ.
The collection of finite sequences of elements in Σ is denoted by Σ∗. As usual we
denote with ε the empty sequence and with ww′ the concatenation of w,w′ ∈ Σ∗.

The set {0, 1}ω of ω-words over {0, 1}, endowed with the product topology
(where {0, 1} is given the discrete topology) is called the Cantor space. Given a
finite set Σ, the spaces Σω and {0, 1}Σ∗

are homeomorphic to the Cantor space.
The Cantor space is zero-dimensional, i.e., it has a basis of clopen (both open
and closed) sets. A subset of {0, 1}ω is a Fσ set if it is expressible as a countable
union of closed sets. For a detailed exposition of these topological notions see
introductory chapters of [9]. We summarize below the basic concepts related
to Borel measures. For more details see, e.g., Chap. 17 of [9]. The smallest σ-
algebra of subsets of {0, 1}ω containing all open sets is denoted by B and its
elements are called Borel sets. Given a A ∈ B we denote its complement by ¬B.
A Borel probability measure on {0, 1}ω is a function μ : B → [0, 1] such that:
μ(∅) = 0, μ({0, 1}ω) = 1 and, if {Bn}n∈ω is a sequence of disjoint Borel sets,
μ(

⋃
n Bn) =

∑
n μ(Bn). Every Borel measure μ on the Cantor space is regular :

for every Borel set B there exists a Fσ set A ⊆ B such that μ(A) = μ(B). We will
be mostly interested in one specific Borel measure on the Cantor space which
we refer to as the Lebesgue measure. This is the unique Borel measure satisfying
the equality μ(Bn=0) = μ(Bn=1) = 1

2 , where Bn=0 = {(bi)i∈ω | bn = 0} and
Bn=1 = {(bi)i∈ω | bn = 1}, respectively. Intuitively, the Lebesgue measure on
{0, 1}ω generates an infinite sequence (b0, b1, . . . ) by deciding to fix bn = 0 or
bn = 1 by tossing a fair coin, for every n ∈ ω.

2.1 Probabilistic Büchi Automata

In this section we define the class of probabilistic Büchi automata introduced in
[1] and state the undecidability of their emptiness problem under the probable
semantics [1, Theorem 7.2]. This is the key technical result used in our proof of
undecidability of MSO +∀=1 in Sect. 5.
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Definition 1 (Probabilistic Büchi Automaton). A probabilistic Büchi
automaton is a tuple A = 〈Σ,Q, qI , F,Δ〉 where: Σ is a finite nonempty input
alphabet, Q is a finite nonempty set of states, qI ∈ Q is the initial state, F ⊆ Q
is the set of accepting states and Δ : Q → (Σ → D(Q)) is the transition
function, where D(Q) denotes the collection of probability distributions on Q.

To illustrate the above definition consider the probabilistic Büchi automaton
(from [1, Lemma 4.3]) A = 〈{a, b}, Q, q1F,Δ〉 where Q = {q1, q2,⊥}, F = {q1}
and Δ is defined as in Fig. 1.

q1 q2

⊥

a : 1
2 a : 1

a : 1, b : 1

a : 1
2

b : 1

b : 1

Δ(⊥) q1 q2 ⊥
a 0 0 1

b 0 0 1

Δ(q1) q1 q2 ⊥
a 1

2
1
2 0

b 0 0 1

Δ(q2) q1 q2 ⊥
a 0 1 0

b 1 0 0

Fig. 1. A probabilistic Büchi automaton with three states. Boxes denote accepting
states and circles denote not accepting states.

We now describe the intended interpretation of probabilistic Büchi automata.
As for ordinary Büchi Automata (see [17] for a detailed introduction to this
classical concept) a probabilistic Büchi automaton “reads” ω-words over the
finite alphabet Σ. However, unlike ordinary Büchi automata, a probabilistic
Büchi automaton “accepts” an input ω-word w with some probability P

A
w . We

now describe this notion.
A probabilistic Büchi automaton starts reading a ω-word w = (a0, a1, . . . ) ∈

Σω from the state q0 = qI . After reading the first letter a0, the automaton
moves to state q ∈ Q with probability Δ(q0, a0, q). If the state q is reached, after
the second letter a1 is read, the automaton reaches the state q′ with probabil-
ity Δ(q, a1, q

′). More generally, if at stage n the automaton is in state q, after
reading the letter an of w, the automaton reaches the state q′ with probability
Δ(q, an, q′). Hence, a ω-word w induces a random walk on the set of states Q
of the automaton A. One can naturally formalize this random walk as a Borel
probability measure μA

w on the space Qω (see [1, §3.1] for detailed definitions).
Considering the example in Fig. 1 and the ω-word aω = (a, a, a . . . ), the

probability measure μA
w assigns probability 1

4 to the set of sequences q1q1q1Q
ω

starting with three consecutive q1’s.
A sequence (q0q1 . . . qn . . . ) ∈ Qω of states of A is accepting if for infinitely

many i ∈ ω, the state qi belongs to the set F of accepting states. We denote with
Acc ⊆ Qω the set of accepting sequences of states. Clearly Acc is a Borel set.
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We say that A accepts the ω-word w ∈ Σω with probability P
A
w = μA

w(Acc). We
are now ready to state a fundamental result about probabilistic Büchi automata.

Theorem 2 (Theorem 7.2 in [1]). It is undecidable if for a given probabilistic
Büchi automaton A there exists w ∈ Σω such that PA

w > 0.

An inspection of the proof of Theorem 2 from [1] reveals that the problem
remains undecidable if we restrict to the class of probabilistic Büchi automaton
A such that, for some k ∈ ω, all probabilities appearing in (the matrices of) Δ
of A belong3 to the set {0, 1

2k , . . . , i
2k , . . . , 1}. We can further restrict attention

to the class of simple probabilistic Büchi automata defined below.

Definition 2. A probabilistic Büchi automaton A is simple if, for some k ∈ ω
all probabilities appearing in (the matrices of) Δ are either 0 or 1

2k .

Proposition 1. It is undecidable if for a given simple probabilistic Büchi
automaton A there exists w ∈ Σω such that PA

w > 0.

Proof. Wecan transforman automatonAwith probabilities in {0, 1
2k . . . i

2k , . . . , 1}
to an equivalent one having only probabilities in {0, 1

2k }by “splitting probabilities”
introducing new copies of the states. �

3 Syntax and Semantics of Monadic Second Order Logic

In this section we define the syntax and the semantics of the MSO logic inter-
preted over the linear order of natural numbers (“MSO on ω-words”) and over
the full binary tree (“MSO on trees”). This material is standard and a more
detailed exposition can be found in [17].

MSO on ω-words. We first define the syntax and the semantics of MSO on (ω,<).
We follow the standard presentation of MSO on (ω,<) where only second order
variables are considered. We refer to Sect. 2.3 of [17] for more details.

Definition 3 (Syntax). The set of formulas of the logic MSO is generated by
the following grammar: φ ::= Sing(X) | X < Y | X ⊆ Y | ¬φ | φ1 ∨ φ2 | ∀X.φ,
where X,Y range over a countable set of variables. We write φ(X1, . . . , Xn) to
indicate that

−→
X = (X1, . . . , Xn) is the list of free variables in φ.

This presentation is convenient since MSO formulas can be regarded as first-order
formulas over the signature S consisting of the unary symbol Sing and the two
binary symbols < and ⊆. MSO formulas are interpreted over the collection of
subsets of ω (i.e., the collection {0, 1}ω of ω-words over {0, 1}) with the following
interpretations of the symbols in S:
3 As observed in [1, Remark 7.3], a proof of Theorem 2 can be derived from the decid-
ability of a similar problem for finite probabilistic automata obtained by Gimbert
and Oualhadj in [7, Theorem 4]. In [7, Proposition 2] the authors notice that the
problem remains undecidable even if all probabilities appearing in the automaton
belongs to {0, 1

4
, 2
4
, 3
4
, 1}.
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– SingI(X) ⇔ X = {n}, for some n ∈ ω, i.e., X ⊆ ω is a singleton.
– <I (X,Y ) ⇔ X = {n}, Y = {m} and n < m.
– ⊆I (X,Y ) ⇔ X ⊆ Y , i.e., X is a subset of Y .

Definition 4 (Semantics). Let W be the structure for the signature S defined
as W = ({0, 1}ω, SingI , <I ,⊆I). The truth of MSO formulas φ is given by the
relation W |= φ, where |= is the standard first-order satisfaction relation. Given
parameters A1, . . . , An ∈ {0, 1}ω, we write

−→
A ∈ φ(

−→
X ) to indicate that W |=

φ(
−→
A ), i.e., that W satisfies the formula φ with parameters

−→
A .

Thus a formula φ(X1, . . . , Xn) defines a subset of ({0, 1}ω)n or, equivalently, a
subset of ({0, 1}n)ω that is a set of ω-words over Σ = {0, 1}n. The subsets of
Σω definable by a MSO formula φ are called regular.

Remark 1. The presentation of MSO(ω,<) as the first order theory of W is
technically convenient. Yet it is often useful to express concisely formulas such as
∀x.(x ∈ Y → φ(x,Z)) where the lowercase letter x ranges over natural numbers
and the relation symbol ∈ is interpreted as membership, as expected. Formulas of
this kind can always be rephrased in the language of the signature {Sing,<,⊆}.
For example the formula above can be expressed as: ∀X.

(
Sing(X) → (X ⊆ Y →

φ(X,Z)). We refer to [17] for a detailed exposition.

MSO on Trees. We now introduce, following a similar approach, the syntax and
the semantics of MSO on trees.

Definition 5 (Full Binary Tree). The collection {L,R}∗ of finite words over
the alphabet {L,R} can be seen as the set of vertices of the infinite binary tree.
We refer to {L,R}∗ as the full binary tree. We use the letters v and w to range
over elements of the full binary tree.

Definition 6 (Syntax). The set of formulas of the logic MSO on the full binary
tree is generated by the following grammar:

φ ::= Sing (X) | SuccL(X,Y ) | SuccR(X,Y ) | X ⊆ Y | ¬φ | φ1 ∨ φ2 | ∀X.φ

where X,Y range over a countable set of variables.

Hence MSO formulas are conventional first-order formulas over the signature S
consisting of one unary symbol Sing and three binary symbols SuccL, SuccR,⊆.
We interpret MSO formulas over the collection {0, 1}∗ → {0, 1} of subsets of the
full binary. To improve the notation, given a set Σ we write TΣ to denote the set
{0, 1}∗ → Σ. Thus MSO formulas are interpreted over the universe T{0,1} with
the following interpretations of the symbols in S:

– SingI(X) ⇔ X = {v}, for some v ∈ {L,R}∗, i.e., if X ∈ T{0,1} is a singleton.
– SuccI

L(X,Y ) ⇔ “X = {v}, Y = {w} and w = vL.
– SuccI

R(X,Y ) ⇔ “X = {v}, Y = {w} and w = vR.
– ⊆I (X,Y ) ⇔ X ⊆ Y , i.e., if X is a subset of Y .
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Definition 7 (Semantics). Let T be the structure for the signature S defined
as 〈T{0,1}, SingI , SuccI

L, SuccI
R,⊆I〉. The truth of a MSO formula φ is given by

the relation T |= φ. Given parameters
−→
A ∈ T{0,1}, we write

−→
A ∈ φ(

−→
X ) to indicate

that T |= φ(A1, . . . , An), i.e., that T satisfies the formula φ with parameters
−→
A .

Thus a formula φ(X1, . . . , Xn) defines a subset of (T{0,1})n or, equivalently,
a subset of TΣ with Σ = {0, 1}n.

4 MSO with Measure Quantifier: MSO +∀=1

In this section we introduce the logic MSO + ∀=1, interpreted both on ω-words
and on trees, obtained by extending ordinary MSO with Friedman’s “for almost
all” quantifier interpreted using the concept of Lebesgue measure.

4.1 MSO +∀=1 on ω-words

Definition 8. The syntax of MSO + ∀=1 on ω-words is obtained by extending
that of MSO (Definition 3) with the quantifier ∀=1X.φ as follows:

φ ::= Sing(X) | X < Y | X ⊆ Y | ¬φ | φ1 ∨ φ2 | ∀X.φ | ∀=1X.φ

The following definition specifies the semantics MSO + ∀=1 on ω-words.

Definition 9. Each formula φ(X1, . . . , Xn) of MSO + ∀=1 is interpreted as a
subset of ({0, 1}ω)n by extending Definition 4 with the following clause:

(A1, . . . , An) ∈ ∀=1X.φ(X,Y1, . . . , Yn)
⇔

μ{0,1}ω

({B | (B,A1, . . . , An) ∈ φ(X,Y1, . . . , Yn)})
= 1

where Ai, B range over {0, 1}ω and μ{0,1}ω is the Lebesgue measure on {0, 1}ω.
For a given formula φ we define ∃>0X.φ as a shorthand for ¬∀=1X.¬φ.

Fig. 2. The large sections
selected by the quantifier ∀=1

are marked in grey.

The set denoted by ∀=1X.φ(X,
−→
Y ) can

be illustrated as in Fig. 2, as the collection
of tuples

−→
A having a large section φ(X,

−→
A ),

that is a section having Lebesgue measure 1.
Informally, (A1, . . . , An) satisfies ∀=1X.φ(X,

−→
Y )

if “for almost all” B ∈ {0, 1}ω, the tuple
(B,A1, . . . , An) satisfies φ. Similarly,

−→
A ∈

∃>0X.φ(X,
−→
Y ) iff the section φ(X,

−→
A ) has posi-

tive measure.
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Remark 2. Every relation on {0, 1}ω definable by a MSO + ∀=1 formula clearly
belongs to a finite level of the projective hierarchy. However, since the fam-
ily of MSO + ∀=1 definable relations is closed under Boolean operations and
projections, it is not clear if every MSO + ∀=1 definable relation is Lebesgue
measurable. We formulate this as Problem 2 is Sect. 8. In the rest of the paper
we assume sufficiently strong set-theoretical assumptions (e.g., Projective Deter-
minacy, see [9, Sect. 38.C]) to guarantee that Definition 9 is well specified, i.e.,
that all considered sets are measurable.

On Fubini’s Theorem. The Fubini theorem is a classical result in analysis which
states that the measure of a set A ⊆ X × Y can be expressed by iterated
integration over the X and Y axis. In terms of MSO + ∀=1, the Fubini theorem
corresponds (see [9, Sect. 17.A]) to the fact that

∀=1X.∀=1Y.φ(X,Y,
−→
Z ) = ∀=1X.∀=1Y.φ(X,Y,

−→
Z )

and, importantly for the proof of Theorem 3, that:

(A1, . . . , An) ∈ ∀=1X.∀=1Y.φ(X,Y,
−→
Z )

⇔
μ({0,1}2)ω

({(B,C) | (B,C,A1, . . . , An) ∈ φ(X,Y,Z1 . . . , Zn)})
= 1

where μ({0,1}2)ω is the Lebesgue measure on the product space ({0, 1}2)ω =
{0, 1}ω × {0, 1}ω defined as the product measure μ{0,1}ω ⊗ μ{0,1}ω .

4.2 MSO + ∀=1 on Trees

The definition of MSO + ∀=1 on trees is similar to that of MSO + ∀=1 on words
and extends the syntax of MSO on trees (Definition 6) with the new quanti-
fier ∀=1X.φ. The semantics of MSO + ∀=1 on trees is obtained by extending
Definition 7 by the following interpretation of ∀=1:

(A1, . . . , An) ∈ (T{0,1})n ∈ ∀=1X.φ(X,Y1, . . . , Yn)
⇔

μT{0,1}

({B | (B,A1, . . . , An) ∈ φ(X,Y1, . . . , Yn)})
= 1

where μT{0,1} is the Lebesgue measure on μT{0,1} .
The Lebesgue measure μT{0,1} can be seen as the random process of gen-

eration of a tree A ∈ T{0,1} by fixing the label (either 0 or 1) of each vertex
v ∈ {L,R}∗ of the binary tree by tossing a fair coin. Hence, intuitively, the
formula ∀=1X.φ(X) holds true if φ(A) holds for a random tree A ∈ T{0,1}.

5 Undecidability of MSO + ∀=1

In this section we prove that the theory of MSO+∀=1 on ω-words is undecidable.
This is done by reducing the (undecidable by Proposition 1) emptiness problem
of simple probabilistic Büchi automaton A to the decision problem of MSO+∀=1.
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The reduction closely resembles the standard translation between ordinary Büchi
automata and MSO on ω-words (see, e.g., [17, Sect. 3.1]).

In what follows, let us fix an arbitrary k-simple probabilistic Büchi automaton
A = 〈{a, b}, qI , Q, F,Δ〉 with Q = {q1, q2, . . . , qn}. We write qi < qj if i < j.
Without loss of generality, let us assume that |Σ| = 2m, for some number m ∈ ω,
so that we can identify Σ with {0, 1}m. Hence a ω-word w ∈ Σω can be uniquely
identified with a tuple

−→
X = (X1, . . . , Xm) with Xi ∈ {0, 1}ω.

Since A is k-simple (see Definition 2), for each state q ∈ Q and letter a ∈ Σ,
there are exactly 2k possible transitions in Δ, each one having probability 1

2k .
Therefore, for each state q and letter a, we can identify the available transitions
by numbers in {0, . . . , 2k − 1} = {0, 1}k as follows: the number i denotes the
transition to the i-th (with respect to the total order < on Q) reachable (with
probability 1

2k ) state. We can identify an infinite sequence of transitions with an
infinite sequence

−→
Y = ({0, 1}k)ω, i.e., by a tuple (Y1, . . . , Yk) with Yj ∈ {0, 1}ω.

The existence of a ω-word w ∈ Σω such that PA
w > 0 is expressed in MSO+∀=1 by

φA = ∃−→
X.∃>0−→Y .ψA(

−→
X,

−→
Y )

where ∃−→
X and ∃>0−→Y stand for ∃X1.∃X2. . . . ∃Xm and ∃>0Y1.∃>0Y2. . . . ∃>0Yk,

respectively. The formula ψA, which we define below, expresses that when inter-
preting

−→
X as a ω-word w ∈ Σω and

−→
Y as an infinite sequence of transitions, the

infinite sequence (qn) of states visited in A, which is uniquely determined by
−→
X

and
−→
Y , contains infinitely many accepting states, that is, (qn) ∈ Acc.

Due to the Fubini Theorem (see Sect. 4) and the fact that an ω-word A ∈
({0, 1}k)ω randomly generated with the Lebesgue measure on {0, 1}k assumes
at a given position n ∈ ω a value in {0, 1}k with uniform probability 1

2k , the
formula φA indeed expresses that there exists w ∈ Σω such that P

A
w > 0. The

formula ψA(
−→
X,

−→
Y ) is defined using standard ideas (see, e.g., [17, Sect. 3.1]):

∃Q1, . . . , Qn.
(
(a) for all i ∈ ω there is a unique j ∈ {1, . . . , n} such that i ∈ Qj

and (b) ∀i ∈ ω, if
−→
X (i) = a and

−→
Y (i) = t then i + 1 ∈ Q(q,a,t)

and (c) ∃j∈F for infinitely many i ∈ ω, i ∈ Qj

)

The formula expresses that: (a) there exists an assignment of states to positions
i ∈ ω such that each position is assigned a unique state; that (b) if position i is
labeled by state q, (Xi

1, . . . , X
i
m) represents the letter a ∈ Σ and (Xi

1, . . . , X
i
k)

represent the transition 0 ≤ t < 2k, then i + 1 belongs to the state (denoted
in the formula by (q, a, t)) which is the t-th reachable state from q on letter a;
(c) the sequence contains infinitely many accepting states. Hence we get a more
detailed version of Theorem 1 stated in the Introduction:

Theorem 3. For each simple probabilistic Büchi automaton A, the MSO+∀=1

sentence φA is true if and only there exists w ∈ Σω such that PA
w > 0. Hence

the theory of MSO + ∀=1 is undecidable.
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Undecidability of MSO + ∀=1 on Trees. The theory of MSO+∀=1 on (ω,<) can
be interpreted within the theory of MSO + ∀=1 on the full binary tree by the
standard interpretation of (ω,<) as the set of vertices of the leftmost branch in
the full binary tree and it is not difficult to see that this interpretation preserves
the meaning of the ∀=1 measure quantifier. We only state the following result.
A detailed proof will be published elsewhere.

Corollary 1. The theory of MSO + ∀=1 on the full binary tree is undecidable.

6 The Logic MSO+∀=1
π on Trees

In this section we identify a variant of MSO + ∀=1 on trees which we denote
by MSO + ∀=1

π . This logic is obtained by extending ordinary MSO with the
quantifier ∀=1

π . Intuitively, the quantifier ∀=1
π is defined by restricting the range

of the measure quantifier ∀=1 to the collection of paths in the full binary tree
(see definition 10 below) so that the formula ∀=1

π X.φ(X) holds if a randomly
chosen path X satisfies the property φ with probability 1. More precisely,

Definition 10. A subset X ⊆ {L,R}∗ (equivalently, X ∈ T{0,1}) is called a
path if it satisfies the following conditions: (1) X is closed downward: for all
x, y ∈ {L,R}∗, if x ∈ X and y is a prefix of x then y ∈ X; (2) X is not empty:
ε ∈ X; and (3) X branches uniquely: for every x ∈ {L,R}∗, if x ∈ X then either
xR ∈ X or xL ∈ X but not both. Let P ⊆ T{0,1} be the collection of all paths.

In other words, X ∈ P if the set of vertices in X describe an infinite branch in
the full binary tree. Clearly P is homeomorphic as a subspace of T{0,1} to the
set {L,R}ω of ω-words over the alphabet {L,R} and it is simple to verify that:

Proposition 2. The equality μT{0,1}(P) = 0 holds.

However the space P carries the natural Lebesgue measure μ{L,R}ω which we
use below to define the semantics of MSO + ∀=1

π .

Definition 11 (Syntax of MSO + ∀=1
π ). The syntax of MSO + ∀=1

π formulas
φ is generated by the following grammar:

φ ::= Sing(X) | SuccL(X,Y) | SuccR(X,Y) | X ⊆ Y | ¬φ | φ1∨φ2 | ∀X.φ | ∀=1
π X.φ

Definition 12 (Semantics of MSO + ∀=1
π ). The semantics of MSO + ∀=1

π is
defined by extending the semantics of MSO on trees (Definition 7) as follows:

(A1, . . . , An) ∈ ∀=1
π X.φ(X,Y1, . . . , Yn)
⇔

μ{L,R}ω

({B ∈ P | (B,A1, . . . , An) ∈ φ(X,Y1, . . . , Yn)})
= 1
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Hence, informally, (A1, . . . , An) ∈ ∀=1
π X.φ(X,Y1, . . . , Yn) if, for a randomly cho-

sen B ∈ P, the formula φ(B,A1, . . . , An) holds almost surely.
It is not immediately clear from the previous definition if the quantifier ∀=1

π

can be expressed in MSO+∀=1 on trees. Indeed note that, since μT{0,1}(P) = 0,
the naive definition ∀=1

π X.φ(X) = ∀=1X.
(

“X is a path” ∧φ(X)
)
, where the

predicate “X is a path” is easily expressible in MSO, but does not work. Indeed
the MSO+∀=1 expression on the right always defines the empty set because the
collection of X ∈ T{0,1} satisfying the conjunction is a subset of P and therefore
has μT{0,1} measure 0.

Nevertheless the quantifier ∀=1
π can be expressed in MSO+∀=1 on trees with

a more elaborate encoding presented below. The main ingredient of the encoding
is a MSO definable continuous function f which maps a tree X ∈ T{0,1} to a
path f(X) ∈ P preserving measure in the sense stated in Lemma 1.2 below.

Definition 13. Define the binary relation f(X,Y ) on T{0,1} by the followingMSO
formula: “Y is a path” and ∀y ∈ Y.∃z.(SuccL(y, z) and (z ∈ Y ⇔ y ∈ X)).

Lemma 1. For every X ∈ T{0,1} there exists exactly one Y ∈ P ⊆ T{0,1} such
that f(X,Y ). Hence the relation f is a function f : T{0,1} → P. Furthermore f
satisfies the following properties:

1. f is a continuous, open and surjective function,
2. Assume B ⊆ P is μ{L,R}ω measurable. Then μ{L,R}ω (B) = μT{0,1}(f−1(B)).

A proof of Lemma 1 will be published elsewhere.
We can now present the correct MSO + ∀=1 encoding of the quantifier ∀=1

π .

Theorem 4. For every MSO + ∀=1
π formula ψ(

−→
Z ) there exists a MSO + ∀=1

formula ψ′(
−→
Z ) such that ψ and ψ′ denote the same set.

Proof. The proof goes by induction on the complexity of ψ with the interesting
case being φ(

−→
Z ) = ∀=1

π Y.ψ(Y,
−→
Z ). By induction hypothesis, there exists a MSO+

∀=1 formula ψ′ defining the same set as ψ. Then the MSO + ∀=1 formula φ′

corresponding to φ is: φ′(
−→
Z ) = ∀=1X.

(∃Y.
(
f(X,Y ) ∧ ψ′(Y,

−→
Z )

))
. We now show

that φ and φ′ indeed define the same set. The following are equivalent:

1.
−→
C ∈ ∀=1

π Y.ψ(Y,
−→
Z ),

2. (by Definition of ∀=1
π X) The set A =

{
Y ∈ P | ψ(Y,

−→
C )

}
is such that

μ{L,R}ω (A) = 1,
3. (by Lemma 1.(2)) The set B ⊆ T{0,1}, defined as B = f−1(A), i.e., as

B =
{
X ∈ T{0,1} | ∃Y.

(
f(X,Y ) ∧ ψ(Y,

−→
C )

)}
. is such that μT{0,1}(B) = 1.

4. (by definition of ∀=1 and using ψ = ψ′)
−→
C ∈ ∀=1X.

(∃Y.
(
f(X,Y ) ∧ φ′

(Y,
−→
Z )

))
.

�
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7 On the Expressive Power of MSO+∀=1
π

In Sect. 5 we proved that the theory of MSO + ∀=1 on ω-words and trees is
undecidable. Motivated by this negative result, in Sect. 6 we introduced the logic
MSO + ∀=1

π on trees and in Theorem 4 we proved that it can be regarded as a
syntactical fragment of MSO + ∀=1 on trees.

We have not been able to establish if the logic MSO+∀=1
π on trees is decidable

or not (Problem 1 in the Introduction). On the one hand we observe (Proposition 3
below), by applying a result of [6], that MSO + ∀=1

π can define non-regular sets.
On the other hand, it does not seem possible to apply the methods utilized in this
paper to prove its undecidability.

In the rest of this section we investigate the expressive power of MSO+∀=1
π . We

show that the the decidability of MSO + ∀=1
π implies the decidability of the SAT

problem for the qualitative fragment of the probabilistic logic pCTL*. We establish
a connection between MSO + ∀=1

π and automata theory by showing that the class
of qualitative languages of trees of [6] can be expressed by MSO + ∀=1

π formulas
(Theorem 6). We prove that the first order theory of the lattice of Fσ subsets of
the Cantor space with the predicates C(X) ⇔ “X is a closed set” and N(X) ⇔
“X is a Lebesgue null set” is interpretable in MSO + ∀=1

π (Theorem 9). Lastly, we
show that the first order theory of the Lebesgue measure algebra equipped with
Scott’s closure operator is interpretable in MSO + ∀=1

π .

7.1 SAT Problem of Probabilistic Temporal Logics

In this subsection we sketch the essential arguments that allow to reduce the
SAT problem of the qualitative fragment of pCTL* and similar logics to the
decision problem of MSO+∀=1

π . We assume the reader is familiar with the logic
pCTL*. We refer to the textbook [2] for a detailed introduction.

The logic pCTL* and its variants are designed to express properties of
Markov chains. The following is a long standing open problem (see, e.g., [4]).

SAT Problem. Given a pCTL* state-formula φ, is there a Markov chain M
and a vertex v ∈ M such that v satisfies φ?

Without loss of generality (see, e.g., Sect. 5 of [12] for details), we can restrict
the statement of the SAT problem to range over Markov chains M whose under-
lying directed graph has the structure of the full binary tree, where each edge
(connecting a vertex to one of its two children) has probability 1

2 . This is a con-
venient restriction that allows to interpret pCTL* formulas φ(P1, . . . , Pn) with
n propositional variables as denoting sets �φ� ⊆ TΣ for Σ = {0, 1}n.

It is well known that there exists pCTL* formulas such that �φ� �= ∅ but �φ�
does not contain any regular tree. This means the logic pCTL* can define non-
regular sets of trees. We show now that every pCTL* definable set �φ� is MSO+
∀=1

π definable. The argument is similar4 to the one used in [16] to prove that sets
4 In fact, following the work of [16], the logic pCTL* is also definable in a weaker logic
such as Thomas’ chain logic extended with the quantifier ∀=1

π .
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of trees defined in the logic CTL* can be defined in MSO. Each pCTL* state
formula φ(P1, . . . , Pn) is translated to a MSO + ∀=1

π formula Fφ(X1, . . . , Xn, y)
and each pCTL* path formula ψ(P1, . . . , Pn) is translated to a MSO + ∀=1

π

formula Fψ(X1, . . . , Xn, Y ) such that:

– a vertex v of the full binary tree satisfies the pCTL* state-formula φ(P1, . . . , Pn)
if and only if Fφ(P1, . . . , Pn, v) is a valid MSO + ∀=1

π formula with parameters,
– a path A ∈ P in the the full binary tree satisfies the pCTL* path-formula

ψ(P1, . . . , Pn) if and only if Fψ(P1, . . . , Pn, A) is a valid MSO + ∀=1
π formula

with parameters.

The only case different from [16] is for a pCTL state-formula of the form φ =
P>0ψ(P1, . . . , Pn) which holds at a vertex v if the collection of paths starting
from v and satisfying ψ has positive measure; φ is is translated to MSO + ∀=1

π

as follows:

Fφ(X1, . . . ,Xn, y) = ∃>0
π Y.

(
Y is a path containing x, and

Fψ(X1 . . . , Xn, Z) holds where Z is the set of descendants of x in Y
)

We state the correctness of this translation as the following
Theorem 5. The decidability of the SAT problem for the qualitative fragment
of pCTL* is reducible to the decidability of MSO + ∀=1

π .

7.2 On the Qualitative Languages of Carayol, Haddad and Serre

In a recent paper [6] Carayol, Haddad and Serre have considered a probablis-
tic interpretation of standard nondeterministic tree automata. Below we briefly
discuss this interpretation referring to [6] for more details. The standard inter-
pretation of a nondeterministic tree automaton A over the alphabet Σ is the set
L(A) ⊆ TΣ of trees X ∈ TΣ such that there exists a run ρ of X on A such that
for all paths π in ρ, the path π is accepting. The probabilistic interpretation in [6]
associates to each nondeterministic tree automaton the language L=1(A) ⊆ TΣ

of trees X ∈ TΣ such that there exists a run ρ of X on A such that for almost
all paths π in ρ, the path π is accepting, where “almost all” means having
Lebesgue measure 1. Using the language of MSO +∀=1

π the language L=1(A)
can be naturally expressed by the following formula ψA(

−→
X ):

ψA(
−→
X ) = ∃−→

Y .
(
“
−→
Y is a run of

−→
XonA” ∧ ∀=1

π Z.(“Z is an accepting path of
−→
Y ”)

)

Theorem 6. Let L ⊆ TΣ be a set of trees definable by a nondeterministic tree
automaton with probabilistic interpretation. Then L is definable in MSO + ∀=1

π .

Let L ⊆ T{0,1} consists of A ∈ T{0,1} such that the set of branches having
infinitely many vertices labeled by 1 has measure 1. In [6, Example 7] it is
proved that L is not regular and definable by a nondeterministic tree automata
with probabilistic interpretation. Therefore:
Proposition 3. MSO + ∀=1

π is a proper extensions of MSO on trees.
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7.3 An Extension of Rabin’s Theory of the Lattice of Fσ Sets

Rabin in [13] proved the decidability of MSO on the full binary tree and as
corollaries obtained several decidability results. One of them ([13, Theorem 2.8])
states that the first order theory of the lattice of Fσ subsets of the Cantor space
{0, 1}ω, with the predicate C(X) ⇔ “X is a closed set”, is decidable. Formally
this result can be stated as follows.

Theorem 7 (Rabin). The FO theory of the structure 〈Fσ,∪,∩, C〉 is decidable.
Rabin proved this theorem by means of a reduction to the MSO theory of the
full binary tree. He observed that the Cantor space {0, 1}ω is a homeomorphic
copy of the set of paths P in the full binary tree (see Definition 10). He then
noted that an arbitrary set of vertices X ∈ T{0,1} can be viewed as a set 〈X〉 ⊆ P
of paths by the MSO expressible definition 〈X〉 = {Y ∈ P | Y ∩ X isfinite}. He
showed that a set of paths A ⊆ P is Fσ if and only if there exists some X ∈ T{0,1}
such that A = 〈X〉 and that it is possible to express in MSO that 〈X〉 is closed.
For details we refer to [13, §2].

We now consider an extension of the structure 〈Fσ,∪,∩, C〉 by a new predi-
cate N(X) ⇔ “X is a Lebesgue null set”.

Theorem 8. The first order theory of the structure 〈Fσ,∪,∩, C,N〉 is inter-
pretable in MSO + ∀π.

Proof. It is straightforward to extend Rabin’s interpretation by an appropriate
MSO + ∀π interpretation of the predicate N . Let φ(X) be the formula with
one free-variable defined as: ∀=1

π Y.(Y ∈ 〈X〉) where, in accordance with Rabin’s
interpretation, the predicate Y ∈ 〈X〉 is defined as “Y ∩X is a finite set”, which
is easily expressible in MSO. Then one has 〈X〉 ∈ N if and only if φ(X) holds,
and this completes the proof. �
Hence if the theory of MSO + ∀=1

π is decidable then the first order theory of
〈Fσ,∪,∩, C,N〉 is also decidable.

7.4 On the Measurable Algebra with Scott’s Closure Operation

In the classic paper “The algebra of Topology” [11] McKinsey and Tarski defined
closure algebras as pairs 〈B,♦〉 where B is a Boolean algebra and ♦ : B → B is
unary operation satisfying the axioms: ♦♦x = ♦x, x ≤ ♦x, ♦(x ∨ y) = ♦x ∨ ♦y
and ♦� = �.

Let B denote the collection of Borel subsets of the Cantor space {0, 1}ω.
Define the equivalence relation ∼ on B as X ∼ Y if μ{0,1}ω (X�Y ) = 0, where
X�Y = (X \Y )∪(Y \X). The quotient B/∼ is a complete Boolean algebra with
operations defined as [X]∼ ∨ [Y ]∼ = [X ∪ Y ]∼ and ¬[X]∼ = [{0, 1}ω \ X]∼. It is
called the (Lebesgue) measure algebra (see, e.g., [9, 17.A]) and denoted by M.

Recently Dana Scott has observed5 that the (Lebesgue) measure algebra M
naturally carries the structure of a closure algebra.
5 Result announced by Scott during a seminar entitled “Mixing Modality and Proba-
bility” given in Edinburgh, June 2010.
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Definition 14. An element [X]∼ ∈ M is called closed if it contains a closed
set, i.e., if there exists a closed set Y such that Y ∈ [X]∼. Let ♦M : M → M
be defined as follows: ♦([X]∼) =

∧{[Y ]∼ | [X]∼ ≤ [Y ]∼ and [Y ]∼ is closed}.
Note that the infimum exists because M is complete.

Proposition 4 (Scott). The pair S = 〈M,♦M〉 is a closure algebra.

Interestingly, it was proved in [10, Theorem 6.3] that S is universal among the
class of all closure algebras: an equation holds in S if and only if it holds in all
closure algebras. We make the following observation.

Theorem 9. The first order theory of S is interpretable in MSO + ∀π.

Proof. By Theorem 8 it is sufficient to observe that the theory of S can be
interpreted within the theory of 〈Fσ,∪,∩, C,N〉. This is possible as, by regularity
of Borel measures, any element [X]∼ contains an Fσ sets. A detailed proof will
be published elsewhere. �
Hence if MSO+∀=1

π is decidable then the first order theory of S is also decidable.

8 Open Problems

In the Introduction we formulated Problem 1 regarding the decidability of the
theory of MSO+∀=1

π . In light of Theorems 8 and 9, the decidability of the theories
of 〈Fσ,∪,∩, C,N〉 and 〈M,♦M〉 is a closely related problem. In particular, if
one of these two theories is undecidable, then also MSO + ∀=1

π is undecidable.
In Sect. 4 in Remark 2 we noticed that the definition of the semantics of

MSO + ∀=1 involves potentially non-measurable sets. One encounters the same
problem in the definition of MSO + ∀=1

π . Hence:

Problem 2. Are relations defined by MSO+∀=1
π formulas Lebesgue measurable?

In previous work [8] we proved that the all regular sets of trees are R-sets and,
as a consequence, Lebesgue measurable. Therefore a variant of Problem 2 above
asks whether all MSO + ∀=1

π definable sets are R-sets. In the other direction,
R-sets belong to the Δ1

2 class of the projective hierarchy. So we can ask:

Problem 3. Is the class of sets definable by MSO + ∀=1
π formulas contained in

a certain fixed level of the projective hierarchy?

A negative answer would likely lead to undecidability of MSO + ∀=1
π (see [3]).
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Abstract. Dynamic Epistemic Logic is a logic that is aimed at for-
mally expressing how a person’s knowledge changes. We provide a cut-
free labelled sequent calculus (GDEL) on the background of existing
studies of Hilbert-style axiomatization HDEL by Baltag et al. (1989)
and labelled calculi for Public Announcement Logic by Maffezioli et al.
(2011) and Nomura et al. (2015). We first show that the cut rule is admis-
sible in GDEL. Then we show GDEL is sound and complete for Kripke
semantics. Lastly, we touch briefly on our on-going work of an automated
theorem prover of GDEL.

Keywords: Dynamic Epistemic Logic · Action models · Labelled
sequent calculus · Admissibility of cut · Validity of sequents

1 Introduction

The purpose of this paper is to provide a cut-free labelled sequent calculus1 for
Dynamic Epistemic Logic (DEL for short). The logic DEL, one of whose original
idea was proposed by Baltag et al. [4] and elaborated in several papers (e.g.,
[4–6,10]), introduces a basic ideas of how to express formally how knowledge
states change. A simple version of DEL is called Public Announcement Logic
(PAL) by Plaza [17], and it introduced a basic idea of knowledge change by using
Kripke semantics. As the name PAL shows, it only deals mainly with ‘public
announcement,’ by which every agent receives the same information; however,
the state of knowledge may be changed not only by public announcements but
also announcements to a specific group in a community. A typical example is
‘private announcements,’ in which someone informs something to only a single
person (e.g., a personal letter). On the other hand, DEL, an expansion of PAL,
is a logic which can express not only public announcement, but more delicate
and complicated flows of information such as private announcement, and such
a factor that causes change of knowledge state is called an event (or action) as
a whole.

1 Labelled sequent calculus is one of the most prevailing methods of sequent calculus
for modal logic (cf. Negri et al. [12]).
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For the last decade, several studies of semantical developments of DEL have
emerged for the sake of capturing characteristics regarding knowledge; never-
theless, compared to the development of semantical variants of DEL, proof-
theoretical aspects of DEL seems undeveloped. However, recently, a labelled
sequent calculus for PAL was proposed by Maffezioli et al. [11], and its revised
version by Balbiani et al. [3] and Nomura et al. [15]; a labelled sequent calculus
for intutionistic PAL was also given by Nomura et al. [14]. We note that there
are some proof-theoretic studies of DEL such as a tableaux calculus for DEL by
Aucher et al. [1,2], a display calculus for it by Frittella et al. [9] and a nested
calculus for it by Dyckhoff et al. [7]. We, in this paper, construct a labelled cal-
culus of DEL on the recent background of studies of a labelled system of PAL,
especially on [15].

The outline of the paper is as follows. In Sect. 2, we introduce the syntax and
Kripke semantics of DEL, and look at a specific example of knowledge change
with DEL. In Sect. 3, we see Hilbert-style axiomatization (HDEL) of DEL, and
then we give our labelled sequent calculus for DEL (GDEL) based on the study
of a labelled system of PAL. In Sect. 4, we establish admissibility of the cut rule
in GDEL. In Sect. 5, we prove the soundness theorem and then give a proof of
the completeness theorem of GDEL as a corollary. In the last section, we give
a brief explanation of our automated theorem prover of GDEL.

2 Dynamic Epistemic Logic

First of all, we define the syntax and Kripke semantics of DEL. In this paper,
we mainly follow the definition of DEL as given in van Ditmarsch et al. [6].2 Let
Agt = {a, b, c, . . .} be a finite set of agents and Prop = {p, q, r, . . .} a countably
infinite set of propositional atoms. An (S5) event frame is a pair (S, (∼a)a∈Agt)
where S is a non-empty finite set of events and ∼a is an equivalence relation on
S (a ∈ Agt), which represents agent a’s uncertainty. In what follows, we use an
element of a countable set Evt = {a, b, c, s, t, . . .} as a meta-variable to refer to
an event.

Definition 1. We define the set LDEL = {A,B, . . .} of all formulas of DEL
and the set of all (S5) event models M = (S, (∼a)a∈Agt, pre) by simultaneous
induction as follows:

A ::= p | ¬A | (A ∧ A) | �aA | [aM]A, (p ∈ Prop, a ∈ Agt, and a ∈ S)

where (S, (∼a)a∈Agt) is an event frame, pre is a function which assigns an LDEL-
formula pre(b) to each event b ∈ S, and an expression aM is an abbreviation of
a pointed event model (M, a). We read [aM]A as ‘after an event aM occurs, A
holds’.3 Boolean connectives such as →,∨ are defined as usual.

2 DEL is called Logic of Epistemic Action in [4] and Action Model Logic in [6].
3 Ditmarsch et al. [6] includes union of events aM ∪a′M′

in the language, but we do not

include it since [aM∪a′M′
]A can be handled as a defined connective by [aM]A∧[a′M′

]A.
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For any event model M = (S, (∼a)a∈Agt, pre), we use M as a superscript of
S, ∼a and pre such as SM, ∼M

a and preM to emphasize that they belong to the
event model M. PEvt is used to denote the set {aM, bN, . . .} of all pointed event
models.

Definition 2 (Composition of Events). Given any two event models M and
M′, the composition of the events (M;M′) is the event model such that:

SM;M′
= SM × SM

′
,

(a, a′)∼M;M′
a (b, b′) iff a∼M

a b and a′∼M′
a b′,

preM;M′
((a, a′)) = preM(a) ∧ [aM]preM

′
(a′).

Given any pointed event models (aM) and (a′M′
), the composition of the pointed

event models, (aM); (a′M′
), is the pointed event model such that (a, a′)M;M′

with
(M;M′).

Note that the above event model (a, a′)M;M′
is a pointed event model (but only

with a complex name of event (a, a′)) by the definition above, and so it is included
in PEvt.

Let us move onto the Kripke semantics of DEL. A Kripke model M is a
triple (W, (Ra)a∈Agt, V ) such that W is a non-empty set of worlds (W of M is
also written as D(M)), (Ra)a∈Agt is an Agt-indexed family of binary relations on
W (a ranges over Agt) and V : Prop → P(W ) is a valuation function. We note
that epistemic logics are usually based on modal logic S5, but here we define
DEL based on modal logic K as a starting point for constructing its sequent
calculus system; therefore, we do not assume any frame property on Ra in this
paper.

Given a Kripke model M and a world w ∈ D(M), the satisfaction relation
M, w |= A for a formula A is inductively defined as follows:

M, w |= p iff w ∈ V (p),
M, w |= ¬A iff M, w � |= A,
M, w |= A ∧ B iff M, w |= AandM, w |= B,
M, w |= �aA iff for all w′ ∈ W : wRaw′ impliesM, w′ |= A,
M, w |= [aM]A iff M, w |= pre(a) impliesM⊗M, (w, a) |= A,

where M⊗M = (W⊗M, (R⊗M
a )a∈Agt, V

⊗M) is the updated Kripke model of M by
an event model M and it is defined as:

W⊗M = {(w, a) ∈ W × SM | M, w |= preM(a)},
(w, a)R⊗M

a (w′, a′) iff wRaw′ and a∼M
a a

′,
(w, a) ∈ V ⊗M(p) iff w ∈ V (p),

where a ∈ Agt and p ∈ Prop. A formula A is valid if M, w |= A holds in
any Kripke model M and any world w ∈ D(M). Intuitively, M⊗M means M
updated by event M. We briefly give an example which will show a way how
DEL expresses a changing knowledge state, by taking an example of an event
model Read (the simplest example of ‘private announcement’) in [6, p. 166].
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Example 1. Suppose there are two agents a and b, and neither of them knows
whether p. Then only a reads a letter where p is written. As a consequence, a’s
knowledge changes and she knows p, but b does not. Let Agt = {a, b}. Then a
Kripke model M and an event model M are defined as follows:

M= (W, Ra, Rb, V )
where W = {w1, w2}, Ra = Rb = W 2 and V (p) = {w1},

Read = (S, ∼a , ∼b , pre)
where S = {p, np}, ∼a = {(p, p), (np, np)}, ∼b = S2 and pre(p) = p, pre(np) = ¬p.

This situation of the agent a and b can be semantically formalized by a pointed
Kripke model (M, w1), an event (Read, p) and the pointed updated model
(M⊗Read, (w1, p)). The models are depicted as follows (assuming reflexivity).

Each double circle indicates the given or resulting point (world or event) which
stands for the actual world or actual event. Intuitively, for any agent x, a bidi-
rectional arrow of x between two worlds (or events) stands for that x cannot
distinguish between two, and he/she is ignorant of the reality (or actually what
occurred) if one side of the arrow is the actual world (or event). (M, w1) stands
for the initial knowledge state of both a and b where both are ignorant of p (the
actual world w1). (Read, p) stands for an event such that only a reads the letter
containing information p, and that is because a does not have her bidirectional
arrow between the two worlds. The updated model (M⊗Read, (w1, p)) stands for
the knowledge state of both a and b where a knows p but b is still ignorant of p.

Additionally, multiple updates (· · · (M⊗M1)⊗···)⊗Mn on M are also possible,
which we write by M⊗M1⊗···⊗Mn for simplicity. Each of Greek letters α, β, . . .
indicates a finite list (aM1

1 ), . . . , (aMn
n ) of pointed event models, and use ε for

the empty list. Moreover, if α is a list (aM1
1 ), . . . , (aMn

n ) of pointed event models,
then we define αevt := (a1, . . . , an) and αmdl := (M1, . . . ,Mn), and αevt := ε
and αmdl := ε if α is ε. The symbol M⊗αmdl indicates M⊗M1⊗M2⊗···⊗Mn when
αmdl = (M1,M2, . . . ,Mn), and M⊗αmdl indicates M when α = ε.

3 Labelled Sequent Calculus for DEL

Hilbert-style axiomatization HDEL of DEL was introduced by Baltag et al. [4]
and the completeness was shown. The axiomatization is defined in Table 1 where
the axioms for event operators are added to the axiomatization of modal logic
K. These additional axioms (from (RA1) to (RA5)) are often called recursion
axioms, as they express a way of reducing each formula of HDEL equivalently
into a formula of K. The completeness theorem of HDEL can be shown by an
argument in [4, Proposition 4.5].
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Table 1. Hilbert-style axiomatization of DEL: HDEL

Proposition 1 (Completeness of HDEL). For any formula A ∈ LDEL, A
is valid in all Kripke models iff A is provable in HDEL.

Now we define our labelled calculus GDEL for DEL. For any i ∈ N and any finite
list α of pointed event models, a pair 〈i, α〉 is called a label, and we abuse i for
an abbreviation of 〈i, ε〉, when it does not cause any confusion. For any formula
A and label 〈i, α〉, we call 〈i, α〉:A a labelled formula. Similarly, for any agent
a ∈ Agt and any lists α, α′ of events, an expression 〈i, α〉Ra〈j, α′〉 is defined to
be a relational atom if (1) αmdl = α′

mdl and (2) ai∼Mi
a bi holds for any 1 ≤ i ≤ n,

where α = (aM1
1 , . . . , aMn

n ) and α′ = (bM1
1 , . . . , bMn

n ). A labelled expression A is
either a labelled formula or a relational atom.

Definition 3. The length of a labelled expression �(A), a formula �(A) and an
event model �(M) is defined as follows:

�(〈i, α〉:A) = �(α) + �(A), �(〈i, α〉Ra〈j, α′〉) = �(α),
�(p) = 1, �(A ∧ B) = �(A) + �(B) + 1, �(¬A) = �(�aA) = �(A) + 1,

�([aM]A) = �(M) + �(A) + 1,

�(M) = max{�(preM(x)) | x ∈ SM}, �(aM1
1 , . . . , aMn

n ) = �(M1) + · · · + �(Mn).

A sequent Γ ⇒ Δ is a pair of multi-sets Γ,Δ of labelled expressions The exis-
tence of the pointed event models aM in our syntax of DEL forces us to handle
many branches in a naturally constructed sequent calculus. For example, we may
consider a set

{1:pre(x) ⇒ 2:pre(y) | p ∼b x and x ∼a y}
of sequents in the setting of Example 1. In order to handle such several branches
simultaneously in a sequent calculus, we introduce the notation

1:pre(x) ⇒ 2:pre(y) ‖ p ∼b x, x ∼a y
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Table 2. Labelled sequent calculus for DEL : GDEL

for representing the above set. In general, we keep a countable proper subset
CVar = {x, y, z, . . .} of Evt for comprehension variables and define that a collective
sequent (simply a c-sequent) is an expression:

Γ ⇒ Δ ‖ Σ
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where Γ ⇒ Δ is a sequent and Σ = {s1∼a1
t1, . . . , sn∼an

tn}, si or ti from Evt
is assumed to be an element of CVar in si∼ai

ti and all the variables from CVar
occuring in Γ ⇒ Δ are bounded in Σ, i.e., they are a subset of all the variables
from CVar occuring in Σ. The c-sequent above represents the following set of
sequents:

{Γ ⇒ Δ | s1∼a1t1 and · · · and sn∼an
tn}.

Throughout the paper we use Greek letter Σ for a finite set
{s1∼a1t1, . . . , sn∼an

tn} of event relations.
We now introduce the set of rules of GDEL which is presented in Table 2. We

call labelled expression A in the lower c-sequent at each inference rule principal
if A is not in either Γ or Δ. Moreover, the following usual inference rules for the
defined logical connectives are all derivable in GDEL:

A derivation of c-sequent Γ ⇒ Δ ‖ Σ in GDEL is a tree of c-sequents satisfying
the following conditions:

1. The uppermost c-sequent of the tree is an initial sequent.
2. Every c-sequent in the tree except the lowest c-sequent is an upper c-sequent

of an inference rule.
3. The lowest c-sequent is Γ ⇒ Δ ‖ Σ.

Given a c-sequent Γ ⇒ Δ ‖ Σ, it is provable in GDEL and we write GDEL

Γ ⇒ Δ ‖ Σ if there is a derivation of the c-sequent; and especially if there exists
a derivation of the c-sequent which is restricted to event models M1, ...,Mn which
appear in the derivation, we say, for emphasizing the fact, it is provable in GDEL
under event models M1, ...,Mn and write M1, ...,Mn GDEL Γ ⇒ Δ ‖ Σ. (In the
case that c-sequent Γ ⇒ Δ ‖ Σ and a derivation of it do not include any event
model, we write ε GDEL Γ ⇒ Δ ‖ Σ to emphasize the case. We remark that
this should be distinguished from GDEL Γ ⇒ Δ ‖ Σ defined above.) Let us
look at a specific derivation of GDEL to help capture the essence of GDEL.
Using the event model Read in Example 1, and we show one of the exercises in
[6, p.166].

Example 2. In the setting of Example 1, we can easily show that ⇒
0:[pRead]�b(�ap ∨ �a¬p) is provable in GDEL as follows (intuitively, this for-
mula means that after the agent a reads a letter containing p, the agent b knows
that a knows whether p):
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The derivation above is restricted to the event model Read, and so

Read GDEL⇒ 0:[pRead]�b(�ap ∨ �a¬p).

4 Admissibility of Cut in GDEL

In this section, we provide a proof of the admissibility of the following rule (Cut)
in GDEL:

For preparations for the proof of the theorem, we show the substitution lemma.
The result of substitution A[nm] (m is substituted by n in A) is defined as follows:

Definition 4. Let n,m be any elements in N.
i[nm] := i (if n �= i), i[nm] := n (if n = i),(〈i, α〉:A)

[nm] := 〈i[nm], α〉:A,
(〈i, α〉Ra〈j, α′〉)[nm] := 〈i[nm], α〉Ra〈j[nm], α′〉.

For a multi-set Γ of labelled expressions, Γ [nm] denotes the set {A[nm] | A ∈ Γ}.
Lemma 1 (Substitution Lemma). If GDEL Γ ⇒ Δ ‖ Σ, then GDEL

Γ [nm] ⇒ Δ[nm] ‖ Σ with the same derivation height, for any n,m ∈ N.

Proof. This proof is done in a similar manner to the proof in Negri et al.
[13, p. 194]. ��
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Theorem 1 (Admissibility of (Cut)). For any c-sequent Γ ⇒ Δ ‖ Σ, if
GDEL Γ ⇒ Δ ‖ Σ with (Cut), then GDEL Γ ⇒ Δ ‖ Σ without (Cut). In
particular, if M1, ...,Mk GDEL Γ ⇒ Δ ‖ Σ with (Cut), then M1, ...,Mk GDEL

Γ ⇒ Δ ‖ Σ without (Cut).

Proof. The proof is carried out with Ono et al.’s method of (Ecut) [16]. (Ecut)
is given as follows:

where n,m ≥ 0 and A is called a cut expression. The theorem is proven by double
induction on the height of the derivation and the length of the cut expression
�(A) of (Ecut). The proof is divided into four cases:

1. At least one of the upper c-sequents of (Ecut) is an initial c-sequent,
2. The last inference rule of either upper c-sequent of (Ecut) is a structural rule,
3. The last inference rule of either upper c-sequent of (Ecut) is a non-structural

rule, and the principal expression introduced by the rule is not a cut expres-
sion, and

4. The last inference rules of two upper c-sequents of (Ecut) are both non-
structural rules, and the principal expressions introduced by the rules used
on the upper c-sequents of (Ecut) are both cut expressions.

Here we consider only the following critical subcases.

Subcase of 3: the last inference rule of left upper c-sequents of (Ecut)
is (R�a2) which is not cut expression.

In this case, we obtain the following derivation:

Since each vh ∈ CVar does not appear in the lower c-sequents, it does not also
appear in A, Γ ′ and Δ′. Therefore, even if a1∼M1

a v1, . . . , ak∼Mk
a vk are added to Σ,

its provability does not obviously change with the same height of the derivation,
and we obtain GDEL An, Γ ′ ⇒ Δ′ ‖ Σ, a1∼M1

a v1, . . . , ak∼Mk
a vk . Then we may

transform the derivation into the following:
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Subcase of 4: both sides of A in (Ecut) are 〈i, aM1
1 , . . . , aMk

k 〉:�aA and prin-
cipal expressions.

Let us consider the case where k = 1 for simplicity, and A = 〈i, aM〉:�aA. In this
case, we obtain the following derivation.

First, replace v with j in the left upper c-sequent by Lemma 1. Next, since we
know that a ∼M

a b by 〈i, aM〉Ra〈j, bM〉 in the middle upper c-sequent and the
condition of an event relation, we have the following.

GDEL 〈i, aM〉Ra〈j, bM〉, Γ ⇒ Δ, 〈j, bM〉:A,Am−1 ‖ Σ

Then the derivation above can be transformed into the following:

where (Ecut)1,2,3 are applicable by induction hypothesis, since the derivation
height of (Ecut) is reduced by comparison with the original derivation. Besides,
the application of (Ecut)4,5 is also allowed by induction hypothesis, where
�(A) is reduced as follows: �

(〈i, aM〉:�aA
)

> �
(〈i, bM〉:A)

and �
(〈i, aM〉:�aA

)
>

�
(〈i, aM〉Ra〈i, bM〉). ��

5 Soundness and Completeness of GDEL

Our task in this sections is to establish that our sequent system GDEL is
sound and complete for Kripke semantics through Proposition 1 (Completeness
of HDEL). We first show the theorem that every provable formula in HDEL
is also provable in GDEL. To show the theorem requires the following trivial
derivable rules in GDEL (for the case of (RA4)) and one lemma (for (RA5)).



A Cut-Free Labelled Sequent Calculus for Dynamic Epistemic Logic 293

† v ∈ CVar does not appear in the lower c-sequent.
‡ b is in ∼a(a).

where A(b) (or A(v)) means that b (or v) possibly appears in formula A. These
rules are only generalizations of (L∧) and (R∧).

Lemma 2. For any finite lists α, β of events, any formula A, any finite set Σ
of relational atoms, the following hold:

(i) GDEL 〈i, α, (a, a′)M;M′
, β〉Ra〈j , α′, (b, b′)M;M′

, β′〉 ⇒ 〈i, α, aM, a′M′
, β〉

Ra〈j , α′, bM, b′M′
, β〉 ‖ Σ

(ii) GDEL 〈i, α, aM, a′M′
, β〉Ra〈j , α′, bM, b′M′

, β〉 ⇒ 〈i, α, (a, a′)M;M′
, β〉

Ra〈j , α′, (b, b′)M;M′
, β′〉 ‖ Σ

(iii) GDEL 〈i, α, (a, a′)M;M′
, β〉:A ⇒ 〈i, α, aM, a′M′

, β〉:A ‖ Σ
(iv) GDEL 〈i, α, aM, a′M′

, β〉:A ⇒ 〈i, α, (a, a′)M;M′
, β〉:A ‖ Σ

Proof. The proofs of (i), (ii), (iii) and (iv) are simultaneously conducted by
double induction on �(A) and the length of β (= β′). We only look at the proof
of (i) (other cases can be shown similarly).

Base case: (i) where β = ε.

We show the following, and it is straightforward to construct a derivation with
(Rrel)/(Lreli) and (R∧)/(L ∧ i). Note that (a, a′)M;M′

is included in PEvt by
Definition 2.

�GDEL 〈i, α, (a, a′)M;M′〉Ra〈j , α′, (b, b′)M;M′〉 ⇒ 〈i, α, aM, a′M′
)Ra〈j , α′, bM, b′M′〉 ‖ Σ

Induction step of (i) where β = (γ, cM
′′
) and β′ = (γ′, dM

′′
)

D1 (and similarly D2) is immediately given by (Lrel2) and induction hypthesis
of (iii). ��
Theorem 2. For any formula A, if HDEL A, then GDEL+⇒ 〈i, ε〉:A for any
i ∈ N.

Proof. Suppose HDEL A, and fix any i ∈ N (let i be 0). The proof is conducted
by induction on the height of derivation of HDEL. We pick up some significant
base cases (the derivation height of HDEL is equal to 0).
(RA4: Right to Left)



294 S. Nomura et al.

where A = 〈0, aM〉Ra〈1, yM〉.
(RA5: Right to Left)

where A = 〈0, aM〉:pre′(a′). Other base cases can also be shown easily. In induc-
tion step, we show the admissibility of the inference rules HDEL, such as (MP )
and (Nec�a). The case of (MP ) is shown with (Cut). The case of (Nec�a) is
shown with Lemma 1, (Lw) and (R →) as follows:

��
Let us move on to a proof of the soundness theorem of GDEL. For the

soundness theorem, we expand the definition of the satisfaction relation to the
labelled expression and the c-sequent. Hereinafter we denote (w, (a1, a2, . . . , an))
for (· · · ((w, a1), a2), . . . , an).

Definition 5. Let M be a Kripke model and f be an assignment function f :
N → D(M), α be any finite list of events. M, f |= A is defined as follows:
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M, f |= 〈i, α〉:A iff M⊗αmdl , (f(i), αevt ) |= A,
and (f(i), αevt ) ∈ D(M⊗αmdl ),

M, f |= 〈i, ε〉Ra〈j, ε〉 iff (f(i), f(j)) ∈ Ra,
M, f |= 〈i, α, aM〉Ra〈j, α′, bM〉 iff M, f |= 〈i, α〉Ra〈j, α′〉

and M⊗αmdl , (f(i), αevt) |= preM(a)
and M⊗α′

mdl , (f(j), α′
evt) |= preM(b).

Nomura et al. [15] gave light on the notion of surviveness of a world in the
definition of satisfaction of the labelled expressions in PAL. The notion should
be also considered in DEL, otherwise the soundness does not hold like in the case
of PAL shown in [15]. Specifically, note that at the satisfaction of the labelled
formula 〈i, α〉:A, not only the labelled formula is true by the valuation, but also
a corresponding world (f(i), αevt ) must exist or survive in the updated domain
D(M⊗αmdl ). Otherwise M⊗αmdl , (f(i), αevt ) |= A is ill-defined. Following the
idea of [15], it is sufficient to pay attention to the negated form of the labelled
expression A taking into the condition of surviveness of a world which must also
survive in the updated domain. With the notion of surviveness, M, f |= A is
defined as follows:

Definition 6. Let f be an assignment function f : N → D(M) (for any M), α
be any finite list of events. M, f |= A is defined as follows:

M, f |= 〈i, α〉:A iff M⊗αmdl , (f(i), αevt ) � |= A
and (f(i), αevt ) ∈ D(M⊗αmdl ),

M, f |= 〈i, ε〉Ra〈j, ε〉 iff (f(i), f(j)) �∈ Ra,

M, f |= 〈i, α, aM〉Ra〈j, α′, bM〉 iff M, f |= 〈i, α〉Ra〈j, α′〉
or M⊗αmdl , (f(i), αevt) � |= preM(a)
or M⊗α′

mdl , (f(j), α′
evt) � |= preM(b).

Additionally, it should be clarified that these semantic definitions for relational
atoms are connected with an accessibility relation as follows:

Lemma 3. The following equivalent relations hold.

(1) M, f |= 〈i, α〉Ra〈j, α′〉 iff ((f(i), αevt), (f(j), α′
evt)) ∈ R⊗αmdl

a

(2) M, f |= 〈i, α〉Ra〈j, α′〉 iff ((f(i), αevt), (f(j), α′
evt)) �∈ R⊗αmdl

a

Proof. Both can be straightforwardly shown by induction on the length
of α (= α′). ��
The validity of c-sequents is defined as follows:

Definition 7 (Validity of a c-sequent). We say that sequent Γ ⇒ Δ is t-
valid in M if there is no assignment f : N → D(M) such that M, f |= A for
all A ∈ Γ , and M, f |= B for all B ∈ Δ. Furthermore, c-sequent Γ ⇒ Δ ‖ Σ
is t-valid if every sequent in {Γ ⇒ Δ | Σ} is valid.
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The reader might think that the validity of the sequent looks strange, since it is
usually defined as follows, which we call here s-validity.

Γ ⇒ Δ is s−valid in M if for all assignment f : N → D(M) such thatM, f |=
A for all A∈ Γ implies M, f |= B for some B∈ Δ.

However, the soundness theorem with respect to s-validity fails, as the fol-
lowing proposition shows.4

Proposition 2. There is a Kripke model M such that (R¬) of GDEL does not
preserve s-validity in M.

Proof. Let Agt = {a}, M = (S,∼a , pre) with S = {n}, ∼a = {(n, n)},
and {(n,¬p)}); moreover, M = (W,Ra , V ) with W = {w1, w2}, Ra =
W 2 and V (p) = {w1}. Therefore, M⊗M = (W⊗M, R⊗M

a , V ⊗M) with W⊗M =
{(w2, n)}, R⊗M

a = {(w2, n)} and V ⊗M(p) = ∅. A particular instance of the appli-
cation of (R¬) is as follows:

We can easily show that the upper c-sequent is s-valid in M⊗M but the lower
c-sequent is not. ��
Theorem 3 (Soundness of GDEL). For any c-sequent Γ ⇒ Δ ‖ Σ, if
GDEL Γ ⇒ Δ ‖ Σ, Γ ⇒ Δ ‖ Σ is t-valid in every Kripke model M.

Proof. The proof is carried out by induction on the height of the derivation of
Γ ⇒ Δ ‖ Σ in GDEL. We only confirm the case where the last applied rule is
(L�a2).

Fix any event variables x1, . . . , xn in Σ. Then we show the contraposition
such that if the lower c-sequent of the rule (L�a2) is not t-valid, then the
upper c-sequent of it is also not t-valid. Suppose that the lower c-sequent
of (L�a2) is not t-valid, and by Definition 7, there is some f : N → W
such that M, f |= A for all A ∈ Γ and M, f |= 〈i, aM1

1 , . . . , aMn
n 〉:�aA and

M, f |= B for all B ∈ Δ. Fix such f . Then it suffices to show M, f |=
〈i, aM1

1 , . . . , aMn
n 〉Ra〈j, bM1

1 , . . . , bMn
n 〉 or M, f |= 〈j, bM1

1 , . . . , bMn
n 〉:A. From the

supposition, i.e., M⊗M1⊗···⊗Mk , (f(i), a1, . . . , an) |= �aA and (f(i), a1, . . . , an) ∈
D(M⊗M1⊗···⊗Mk ), we obtain for all v ∈ D(M⊗M1⊗···⊗Mk ), ((f(i), a1, . . . , ak ), v) �∈
R⊗M1⊗···⊗Mk

a or M⊗M1⊗···⊗Mk , b |= A. Take v as (f(j), b1, . . . , bn). Then by
Lemma 3 and Definition 5, we obtain what we desired. ��
Combining Theorems 2 and 3 with Proposition 1, we have the following.

Corollary 1. (Completeness of GDEL). Given any formula A, the fol-
lowing are equivalent: (i) A is valid on all Kripke models. (ii) HDEL A. (iii)
GDEL⇒ 〈i, ε〉:A for any i ∈ N.
4 This counter-example of the soundness theorem with s-valid is pointed out already

in [15, Proposition4], and the proposition of PAL is also applicable to DEL.
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6 Future Works

As we have seen above, we introduced a cut-free labelled sequent calculus GDEL
which is sound and complete for Kripke semantics. Based on our cut-free sequent
calculus GDEL, we are now developing an automated theorem prover in the pro-
gramming language Haskell.5 Our prover gives a proof of a given c-sequent when
it is valid. Since a formula of DEL which stands for a knowledge state is likely
to be quite complicated, an automated prover for DEL, which will enable us to
quickly and accurately calculate the provability (and validity via completeness)
of a formula, would be quite helpful. The below screen-shot is an example of
proving one direction of (RA1) : [aM]p → (pre(a) → p) by our prover. But, at
the present moment, we have not completed yet showing that our prover will
eventually terminate and give the answer “FAIL” when a c-sequent is not valid.

Moreover, we may consider some other tasks from our labelled calculus such
as expansion of the basis of the calculus from modal logic K to other modal
logics (especially S5), adding ‘common knowledge’ in the language of DEL and
developing GDEL to a contraction-free calculus (G3-system). These will be left
to our future works.
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Abstract. Bishop’s notion of function space, here called Bishop space, is
a function-theoretic analogue to the classical set-theoretic notion of topo-
logical space. Bishop introduced this concept in 1967, without exploring
it, and Bridges revived the subject in 2012. The theory of Bishop spaces
can be seen as a constructive version of the theory of the ring of contin-
uous functions. In this paper we define various notions of embeddings of
one Bishop space to another and develop their basic theory in parallel
to the classical theory of embeddings of rings of continuous functions.
Our main result is the translation within the theory of Bishop spaces
of the Urysohn extension theorem, which we show that it is construc-
tively provable. We work within Bishop’s informal system of constructive
mathematics BISH, inductive definitions with countably many premises
included.

Keywords: Constructive topology · Bishop spaces · Embeddings ·
Urysohn extension theorem

1 Introduction

The theory of Bishop spaces (TBS) is a constructive approach to general topology
based on the notion of function space, here called Bishop space, that it was
introduced by Bishop in [1], p. 71, but it was not really studied until Bridges’s
paper [7], that was followed by Ishihara’a paper [16], and our development of
TBS in [22–24]. The main characteristics of TBS are the following:

1. Points are accepted from the beginning, hence it is not a point-free approach
to topology.

2. Most of its notions are function-theoretic. Set-theoretic notions are avoided
or play a secondary role to its development.

3. It is constructive. We work within Bishop’s informal system of constructive
mathematics BISH (see [4,5]), inductive definitions with rules of countably
many premises included, a system connected to Martin-Löf’s constructivism
[17] and type theory [18]. The underlying logic of BISH is intuitionistic, while
Myhill’s system CST∗ of constructive Set Theory with inductive definitions,
or Martin-Löf’s extensional type theory, can be considered as formalizations
of its underlying set theory.

c© Springer International Publishing Switzerland 2016
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4. It has simple foundation and it follows the style of standard mathematics.

In other words, TBS is an approach to constructive point-function topology. The
main motivation behind the introduction of Bishop spaces is that function-based
concepts suit better to constructive study rather than set-based ones. Instead
of having space-structures on a set X and R, that determine a posteriori which
functions of type X → R are continuous with respect to them, we start from a
given class of “continuous” functions of type X → R that determines a posteriori
a topological space-structure on X. “Continuity” in TBS is a primitive notion,
a starting point similar to Spanier’s theory of quasi-topological spaces in [27], or
to the theory of limit spaces of Fréchet in [13].

TBS permits a “communication” with the classical theory of the rings of
continuous functions, since many concepts, questions and results from the clas-
sical theory of C(X), where X is a topological space, can be translated into
TBS. Although this communication does not imply a direct translation from
the theory of C(X) to TBS, since the logic of TBS is intuitionistic, it is one of
the features of TBS which makes it, in our view, so special as an approach to
constructive topology. One could see TBS as an abstract, constructive version
of the classical theory of C(X), which we hope to be of interest to a classical
mathematician too.

In this paper we develop the constructive basic theory of embeddings of
Bishop spaces in parallel to the classical basic theory of embeddings of rings of
continuous functions which is found in the book [11] of Gillman and Jerison. Our
main result is the incorporation of the fundamental Urysohn extension theorem
within the theory of embeddings of Bishop spaces.

2 Basic Definitions and Facts

In order to be self-contained we include in this section some basic definitions
and facts necessary to the rest of the paper, that are partly found in [23]. For
all proofs not included in this paper we refer to [24].

If X,Y are sets and R is the set of the constructive reals, we denote by
F(X,Y ) the functions of type X → Y , by F(X) the functions of type X → R,
by Fb(X) the bounded elements of F(X), and by Const(X) the subset of F(X)
of all constant functions a, where a ∈ R. A function φ : R → R is called Bishop-
continuous, if φ is uniformly continuous on every bounded subset of R, and we
denote their set by Bic(R). If f, g ∈ F(X), ε > 0, and Φ ⊆ F(X), we define
U(g, f, ε) and U(Φ, f) by

U(g, f, ε) := ∀x∈X(|g(x) − f(x)| ≤ ε),

U(Φ, f) := ∀ε>0∃g∈Φ(U(g, f, ε)).

Definition 1. A Bishop space is a pair F = (X,F ), where X is an inhabited
set and F ⊆ F(X), a Bishop topology on X, or simply a topology on X, satisfies
the following conditions:
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(BS1) a ∈ R → a ∈ F .
(BS2) f ∈ F → g ∈ F → f + g ∈ F .
(BS3) f ∈ F → φ ∈ Bic(R) → φ ◦ f ∈ F ,

X R

R.

...................................................................................................... ........... ............
f

..................................................................................................... ..........
..
.........
...

φ ∈ Bic(R)

............................................................................................................................................................................ .........
...

F 	 φ ◦ f

(BS4) f ∈ F(X) → U(F, f) → f ∈ F .

Bishop used the term function space for F and topology for F . Since the
former is used in many different contexts, we prefer the term Bishop space for
F , while we use the latter, as the topology of functions F on X corresponds nicely
to the standard topology of opens T on X. Using BS2 and BS3 we get that if
F is a topology on X, then fg, λf , −f , max{f, g} = f ∨ g, min{f, g} = f ∧ g
and |f | ∈ F , for every f, g ∈ F and λ ∈ R. By BS4 F is closed under uniform
limits, where fn

u→ f denotes that f is the uniform limit of (fn)n∈N. Moreover,
Const(X) ⊆ F ⊆ F(X), where Const(X) is the trivial topology on X and F(X)
is the discrete topology on X. If F is a topology on X, the set Fb of all bounded
elements of F is also a topology on X that corresponds to the ring C∗(X) of
the bounded elements of C(X), for some topological space X. It is easy to see
that Bic(R) is a topology on R, and the structure R = (R,Bic(R)) is the Bishop
space of reals.

The importance of the notion of a Bishop topology lies on Bishop’s inductive
concept of the least topology including a given subbase F0, found in [1], p. 72,
and in [4], p. 78, where the definitional clauses of a Bishop topology are turned
into inductive rules.

Definition 2. The least topology F(F0) generated by a set F0 ⊆ F(X), called a
subbase of F(F0), is defined by the following inductive rules:

f0 ∈ F0

f0 ∈ F(F0)
,

a ∈ R

a ∈ F(F0)
,

f, g ∈ F(F0)
f + g ∈ F(F0)

,

f ∈ F(F0), φ ∈ Bic(R)
φ ◦ f ∈ F(F0)

,
(g ∈ F(F0), U(g, f, ε))ε>0

f ∈ F(F0)
.

If F0 is inhabited, then the rule of the inclusion of the constant functions is
redundant to the rule of closure under composition with Bic(R). The most com-
plex inductive rule above can be replaced by the rule
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g1 ∈ F(F0) ∧ U(g1, f, 1
2 ), g2 ∈ F(F0) ∧ U(g2, f, 1

22 ), . . .
f ∈ F(F0)

,

which has the “structure” of Brouwer’s �-inference with countably many condi-
tions in its premiss (see e.g., [19]). The above rules induce the following induction
principle IndF on F(F0):

∀f0∈F0(P (f0)) →
∀a∈R(P (a)) →
∀f,g∈F(F0)(P (f) → P (g) → P (f + g)) →
∀f∈F(F0)∀φ∈Bic(R)(P (f) → P (φ ◦ f)) →
∀f∈F(F0)(∀ε>0∃g∈F(F0)(P (g) ∧ U(g, f, ε)) → P (f)) →
∀f∈F(F0)(P (f)),

where P is any property on F(X). Hence, starting with a constructively accept-
able subbase F0 the generated least topology F(F0) is a constructively graspable
set of functions exactly because of the corresponding principle IndF . Despite
the seemingly set-theoretic character of the notion of a Bishop space the core of
TBS is the study of the inductively generated Bishop spaces. For example, since
idR ∈ Bic(R), where idR is the identity on R, we get by the closure of F(idR)
under BS3 that Bic(R) = F(idR). Moreover, most of the new Bishop spaces
generated from old ones are defined through the concept of the least topology.
A property P on F(X) is lifted from a subbase F0 to the generated topology
F(F0), if

∀f0∈F0(P (f0)) → ∀f∈F(F0)(P (f)).

It is easy to see inductively that boundedness is a lifted property. If (X, d) is
a metric space and the elements of F0 are bounded and uniformly continuous
functions, then uniform continuity is also a lifted property.

Since Bishop did not pursue a constructive reconstruction of topology in [1],
he didn’t mention IndF , or some related lifted property. Apart from the notion of
a Bishop space, Bishop introduced in [1], p. 68, the inductive notion of the least
algebra B(B0,F ) of Borel sets generated by a given set B0,F of F -complemented
subsets, where F is an arbitrary subset of F(X). Since this notion was central
to the development of constructive measure theory in [1], Bishop explicitly men-
tioned there the corresponding induction principle IndB on B(B0,F ) and studied
specific lifted properties in that setting. Brouwer’s inductive definition of the
countable ordinals in [8] and Bishop’s inductive notion of a Borel set were the
main non-elementary inductively defined classes of mathematical objects used
in constructive mathematics and motivated the formal study of inductive def-
initions in the 60 s and the 70 s (see [9]). Since then the use of inductive def-
initions in constructive mathematics and theoretical computer science became
a common practice. In [3] Bishop and Cheng developed though, a reconstruc-
tion of constructive measure theory independently from the inductive definition
of Borel sets, that replaced the old theory in [4]. In [2] Bishop, influenced by
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Gödel’s Dialectica interpretation, discussed a formal system Σ that would “effi-
ciently express” his informal system of constructive mathematics. Since the new
measure theory was already conceived and the theory of Bishop spaces was not
elaborated at all, Bishop found no reason to extend Σ to subsume inductive
definitions. In [20] Myhill proposed instead the formal theory CST of sets and
functions to codify [1]. He also took Bishop’s inductive definitions at face value
and showed that the existence and disjunction properties of CST persist in the
extended with inductive definitions system CST∗.

Definition 3. If F = (X,F ) and G = (Y,G) are Bishop spaces, a Bishop mor-
phism, or simply a morphism, from F to G is a function h : X → Y such that
∀g∈G(g ◦ h ∈ F )

X Y

R.

...................................................................................................... ........... ............h

..................................................................................................... ..........
..
.........
...

g ∈ G

............................................................................................................................................................................ .........
...

F 	 g ◦ h

We denote by Mor(F ,G) the set of morphisms from F to G, which are the
arrows in the category of Bishop spaces Bis. It is easy to see that if F =
(X,F ) is a Bishop space, then F = Mor(F ,R). If F = (X,F ) and G0 =
(Y,F(G0)) are Bishop spaces, a function h : X → Y ∈ Mor(F ,G0) if and only if
∀g0∈G0(g0 ◦ h ∈ F )

X Y

R,

...................................................................................................... ........... ............h

..................................................................................................... ..........
..
.........
...

g0 ∈ G0

............................................................................................................................................................................ .........
...

F 	 g0 ◦ h

a very useful property that it is proved inductively and we call the lifting of
morphisms. If h ∈ Mor(F ,G) is onto Y , then h is called a set-epimorphism,
and we denote their set by setEpi(F ,G). We call some h ∈ Mor(F ,G) open, if
∀f∈F ∃g∈G(f = g ◦ h). Clearly, if h ∈ Mor(F ,G) such that h is 1-1 and onto Y ,
then h−1 ∈ Mor(G,F) if and only if h is open. In this case h is called an isomor-
phism between F and G. In [23] we showed that in the case of a set-epimorphism
h, openness of h is also a lifted property.

Definition 4. If F = (X,F ) is a Bishop space and A ⊆ X is inhabited, the
relative Bishop space of F on A is the structure F|A = (A,F|A), where F|A :=
F({f|A | f ∈ F}). We also call F|A a subspace of F . If F = (X,F ) and G =
(Y,G) are given Bishop spaces, their product is the structure F × G = (X ×
Y, F × G), where F × G := F({f ◦ π1 | f ∈ F} ∪ {g ◦ π2 | g ∈ G}), and π1, π2

are the projections of X × Y to X and Y , respectively.
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If F0 is a subbase of F , we get inductively that F|A = F({f0|A | f0 ∈ F0}). It is
straightforward to see that F × G satisfies the universal property for products
and that F × G is the least topology which turns the projections π1, π2 into
morphisms. If F0 is a subbase of F and G0 is a subbase of G, then we get
inductively that F(F0) × F(G0) = F({f0 ◦ π1 | f0 ∈ F0} ∪ {g0 ◦ π2 | g0 ∈ G0}).
Consequently, Bic(R) × Bic(R) = F({idR ◦ π1} ∪ {idR ◦ π2}) = F(π1, π2). The
arbitrary product

∏
i∈I Fi of a family (Fi)i∈I of Bishop spaces indexed by some I

is defined similarly. Using the lifting of morphisms it is easy to show the following
proposition.

Proposition 1. Suppose that F = (X,F ), G = (Y,G), H = (Z,H) are Bishop
spaces and A ⊆ X, B ⊆ Y .

(i) j ∈ Mor(H,F ×G) if and only if π1◦j ∈ Mor(H,F) and π2◦j ∈ Mor(H,G).
(ii) If e : X → B, then e ∈ Mor(F ,G) ↔ e ∈ Mor(F ,G|B).
(iii) (F × G)|A×B = F|A × G|B.

Note that Proposition 1(i) and (iii) hold for arbitrary products too. If Fi =
(Xi, Fi) is a family of Bishop spaces indexed by some inhabited set I and x =
(xi)i∈I ∈ ∏

i∈I Xi, then the slice S(x; j) through x parallel to xj , where j ∈ I, is
the set S(x; j) := Xj ×∏

i�=j{xi} ⊆ ∏
i∈I Xi of all I-tuples where all components

other the j-component are the ones of x, while the j-component ranges over
Xj . The next fact is used in the proof of the Proposition 11 and it is a direct
consequence of the Proposition 1.

Proposition 2. If Fi = (Xi, Fi) is a family of Bishop spaces indexed by some
inhabited set I and x = (xi)i∈I ∈ ∏

i∈I Xi, then the function sj : Xj → S(x; j),
defined by xj �→ xj × ∏

i�=j{xi}, where S(x; j) is the slice through x parallel
to xj, is an isomorphism between Fj and S(x; j) = (S(x; j), F (x; j)), where
F (x; j) = (

∏
i∈I Fi)|S(x;j).

Definition 5. If G = (Y,G) is a Bishop space, X is an inhabited set and θ :
X → Y , the weak topology F (θ) on X induced by θ is defined as F (θ) := F({g ◦
θ | g ∈ G}). The space F(θ) = (X,F (θ)) is called the weak Bishop space on
X induced by θ. If F = (X,F ) is a Bishop space, Y is an inhabited set and
e : X → Y is onto Y , the set of functions Ge := {g ∈ F(Y ) | g ◦ e ∈ F} is
a topology on Y . We call Ge = (Y,Ge) the quotient Bishop space, and Ge the
quotient topology on Y , with respect to e.

The weak topology F (θ) is the least topology on X which makes θ a morphism.
If θ is onto Y , then θ ∈ setEpi(F(θ),G), and by the lifting of openness we get
that F (θ) = {g ◦ θ | g ∈ G}, a fact that we use in the proof of the Proposition 6.
In analogy to classical topology, the quotient topology Ge is the largest topology
on Y which makes e a morphism.

In [4], pp. 91–92, it is shown1 that if D ⊆ X is a dense subset of the metric
space X, Y is a complete metric space, and f : D → Y is uniformly continuous
1 The uniqueness property is included, for example, in [21], p. 238.



The Urysohn Extension Theorem for Bishop Spaces 305

with modulus of continuity ω, then there exists a unique uniform continuous
extension g : X → Y of f with modulus of continuity 1

2ω. The next lemma is a
useful generalization of it2 that we proved in [24] and we use it here in the proof
of the Proposition 3(vi).

Lemma 1. Suppose that X is an inhabited metric space, D ⊆ X is dense in
X and Y is a complete metric space. If f : D → Y is uniformly continuous on
every bounded subset of D, then there exists a unique extension g : X → Y of
f which is uniformly continuous on every bounded subset of X with modulus of
continuity ωg,B(ε) = 1

2ωf,B∩D(ε), for every inhabited, bounded and metric-open
subset B of X. Moreover, if f is bounded by some M > 0, then g is also bounded
by M .

Within BISH a compact metric space is defined as a complete and totally
bounded space. A locally compact metric space X is a space in which every
bounded subset of X is included in a compact one. If X is locally compact, the
set Bic(X), defined like Bic(R), is a topology on X. Using the definition of a con-
tinuous function on a locally compact metric space, given in [4], p. 110, Bishop’s
formulation of the Tietze theorem for metric spaces becomes as follows.

Theorem 1. Let Y be a locally compact subset of a metric space X and I ⊂ R

an inhabited compact interval. Let f : Y → I be uniformly continuous on the
bounded subsets of Y . Then there exists a function g : X → I which is uniformly
continuous on the bounded subsets of X, and which satisfies g(y) = f(y), for
every y ∈ Y .

Corollary 1. If Y is a locally compact subset of R and g : Y → I ∈ Bic(Y ),
where I ⊂ R is an inhabited compact interval, then there exists a function φ :
R → I ∈ Bic(R) which satisfies φ(y) = g(y), for every y ∈ Y .

We use the Corollary 1 in the proof of the Propositions 3(v) and 8, while in [24]
we used it to show the following fundamental fact, which is used here in the
proof of the Proposition 9.

Theorem 2. Suppose that (X,F ) is a Bishop space and f ∈ F such that f ≥ c,
for some c > 0. Then, 1

f ∈ F .

2 According to Bishop and Bridges [4], p. 85, if B ⊆ X, where (X, d) is an inhabited
metric space, B is a bounded subset of X, if there is some x0 ∈ X such that B∪{x0}
with the induced metric is a bounded metric space. If we suppose that the inclusion
map of a subset is the identity (see [4], p. 68), the induced metric on B ∪ {x0} is
reduced to the relative metric on B∪{x0}. We may also denote a bounded subset B
of an inhabited metric space X by (B, x0,M), where M > 0 is a bound for B∪{x0}.
If (B, x0,M) is a bounded subset of X then B ⊆ B(x0,M), and (B(x0,M), x0, 2M)
is also a bounded subset of X. I.e., a bounded subset of X is included in an inhabited
bounded subset of X which is also metric-open i.e., it includes an open ball of every
element of it.
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Definition 6. If (X,F ) is a Bishop space, the relations defined by

x1 �F x2 :↔ ∃f∈F (f(x1) �R f(x2)),

A �F B :↔ ∃f∈F ∀a∈A∀b∈B(f(a) = 0 ∧ f(b) = 1)

where x1, x2 ∈ X, a �R b :↔ a > b ∨ a < b ↔ |a − b| > 0, for every a, b ∈ R,
and A,B ⊆ X, are the canonical point-point and set-set apartness relations on
X. If � is a point-point apartness relation on X3, F is called �-Hausdorff,
if �⊆�F . The F -zero sets Z(F ) of (X,F ) are the subsets of X of the form
ζ(f) = {x ∈ X | f(x) = 0}, where f ∈ F .

In [24] we showed within BISH that Z(F ) is closed under countably infinite
intersections, and the sets [f ≤ a] = {x ∈ X | f(x) ≤ a}, [f ≥ a] = {x ∈ X |
f(x) ≥ a}, where a ∈ R, are in Z(F ). We also used the Theorem 2 to show the
Urysohn lemma for the zero sets of a Bishop space. According to the classical
Urysohn lemma for C(X)-zero sets, the disjoint zero sets of any topological space
X are separated by some f ∈ C(X) (see [11], p. 17). Constructively, we need to
replace the negative notion of disjointness of two zero sets by a positive notion.

Theorem 3 (Urysohn Lemma for F -Zero Sets). If (X,F ) is a Bishop space
and A,B ⊆ X, then A �F B ↔ ∃f,g∈F ∃c>0(A ⊆ ζ(f) ∧ B ⊆ ζ(g) ∧ |f | +
|g| ≥ c).

3 Embeddings of Bishop Spaces

If G,F are Bishop spaces, the notions “G is embedded in F” and “G is bounded-
embedded in F” translate into TBS the notions “Y is C-embedded in X” and
“Y is C∗-embedded in X”, for some Y ⊆ X and a given topology of opens T on
X (see [11], p. 17). If F is a topology on X, f ∈ F and a, b ∈ R such that a ≤ b,
we say that a, b bound f , if ∀x∈X(a ≺ f(x) ≺ b), where ≺∈ {<,≤}.

Definition 7. If F = (X,F ), G = (Y,G) are Bishop spaces and Y ⊆ X, then

(i) G is embedded in F , if ∀g∈G∃f∈F (f|Y = g).
(ii) G is bounded-embedded in F , if Gb is embedded in Fb.
(iii) G is full bounded-embedded in F , if G is bounded-embedded in F , and for

every g ∈ Gb, if a, b bound g, then a, b bound some extension f of g in Fb.
(iv) G is dense-embedded in F , if ∀g∈G∃!f∈F (f|Y = g).
(v) G is dense-bounded-embedded in F and G is dense-full bounded-embedded in

F are defined similarly to (iv).
(vi) F extends G, if ∀f∈F (f|Y ∈ G).

3 See definition 2.1 in [4], p. 72. It is also easy to see that a �R b ↔ a �Bic(R) b, for
every a, b ∈ R.
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Clearly, (X,G) is embedded in (X,F ) if and only if G ⊆ F . The Definition 7(vi)
is necessary, since a topology F on some X does not necessarily behave like
C(X), where every f ∈ C(X) restricted to Y belongs to C(Y ). By the definition
of the relative Bishop space we get immediately that F extends F|Y . If G is
embedded in F , then G′ is embedded in F , where G′ = (Y,G′) and G′ ⊆ G. If
(X,F ) is a Bishop space and Y ⊆ X, a retraction of X onto Y is a function
r : X → Y such that r(y) = y, for every y ∈ Y , and r ∈ Mor(F ,F|Y ). In this
case Y is called a retract of X. For example, the Cantor space with the product
topology on (2, F(2)) is a retract of the Baire space with the product topology
on (N, F(N)).

Proposition 3. Suppose that Y ⊆ X and � is a point-point apartness relation
on X.

(i) (Y,Const(Y )) is embedded in every Bishop space (X,F ).
(ii) If ∀x∈X(x ∈ Y ∨ x /∈ Y ), then (Y, F(Y )) is embedded in (X, F(X)).
(iii) If Y = {x1, . . . , xn}, where xi � xj, for every i �= j ∈ {1, . . . , n}, and F

is a topology on X which is �-Hausdorff, then (Y, F(Y )) is full bounded-
embedded in (X,F ).

(iv) (N, F(N)) is full bounded-embedded in (Q,Bic(Q)).
(v) If X = R and Y is locally compact, then (Y,Bic(Y )) is bounded-embedded

in R.
(vi) If X is a locally compact metric space and Y is dense in X, then (Y,Bic(Y ))

is dense-embedded and dense-bounded-embedded in (X,Bic(X)).
(vii) If F is a topology on X and Y is a retract of X, then F|Y is embedded in F .

Proof. (i) and (ii) are trivial. To show (iii) we fix some g ∈ F(Y ) and let g(xi) =
ai, for every i. If we consider the (n − 1) + (n − 2) + . . . + 1 functions fij ∈ F
such that fij(xi) �R fij(xj), for every i < j, then the function f on X, defined
by f(x) :=

∑n
i=1 aiAi(x), where

Ai(x) :=
n∏

k=i+1

fik(x) − fik(xk)
fik(xi) − fik(xk)

i−1∏

k=1

fki(xk) − fki(x)
fki(xk) − fki(xi)

,

is in F and Ai(xj) = 1, if j = i, Ai(xj) = 0, if j �= i. Hence, f extends g, and
clearly (Y, F(Y )) is full-bounded embedded in (X,F ). We need the �-Hausdorff
condition on F so that (fij(xi) − fij(xj)) �R 0 and then (fij(xi) − fij(xj)−1 is
well-defined, for every i < j.

(iv) If q is a rational such that q ≥ 0, there is a unique n ∈ N such that q ∈
[n, n+1). If g : N → R, we define φ∗(q) = γn(q), where γn : Q∩ [n, n+1) → R is
defined by γn(q) = (g(n+1)−g(n))q+(n+1)g(n)−g(n+1)n i.e., γn(Q∩[n, n+1))
is the set of the rational values in the linear segment between g(n) and g(n+1).
Of course, φ∗(n) = g(n). Next we define φ∗(q) = g(0), for every q < 0. To
show that φ∗ ∈ Bic(Q), and since φ∗ is constant on Q−, it suffices to show that
φ∗ ∈ Bic(Q+). For that we fix a bounded subset (B, q0,M) of Q+, where without
loss of generality M ∈ N. Since B ⊆ B(q0,M), we have that B ⊆ [n,N ], where
n,N ∈ N, n < N , q0−M ∈ [n, n+1) and q0+M ∈ [N,N+1). Each γi is uniformly
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continuous on [i, i+1)∩Q with modulus of continuity ωi(ε) = ε
|g(i+1)−g(i)|+1 , for

every ε > 0. Hence, φ∗ is uniformly continuous on B with modulus of continuity
ωφ∗,B(ε) = min{ωi(ε) | n ≤ i ≤ N}, for every ε > 0. If g is bounded, then by its
definition φ∗ is also bounded and if a, b bound g, then a, b bound φ∗.

(v) If M > 0 such that f(Y ) ⊆ [−M,M ], then we use the Corollary 1.
(vi) Since R is a complete metric space, we use the Lemma 1.
(vii) We show first that r is a quotient map i.e., F|Y = Gr = {g : Y → R |

g ◦ r ∈ F}. By the definition of r ∈ Mor(F ,F|Y ), we have that ∀g∈F|Y (g ◦ r ∈ F )
i.e., F|Y ⊆ Gr. For that we can also use our remark in Sect. 2 that the quotient
topology Gr is the largest topology such that r is a morphism. If g ∈ Gr, then
(g ◦r)|Y = g ∈ F|Y i.e., F|Y ⊇ Gr. Hence, if g ∈ F|Y = Gr, the function g ◦r ∈ F
extends g.

Proposition 4. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces and
Y ⊆ X. If G is embedded in F , then G is bounded-embedded in F .

Proof. We show that if g ∈ Gb and ∃f∈F (f|Y = g), then ∃f∈Fb
(f|Y = g); if

f extends g and |g| ≤ M , then h = (−M ∨ f) ∧ M ∈ Fb and h|Y = g. I.e.,
G is bounded-embedded in F , if ∀g∈Gb

∃f∈F (f|Y = g). Since Gb ⊆ G and G is
embedded in F , G is bounded-embedded in F .

There are trivial counterexamples to the converse of the previous proposition; if
Y is an unbounded locally compact subset of R, then by the Proposition 3(v)
(Y,Bic(Y )) is full bounded-embedded in Rb, while (Y,Bic(Y )) is not embedded
in Rb, since idY ∈ Bic(Y ) and any extension of idY is an unbounded function.

Proposition 5. If Z ⊆ Y ⊆ X, H = (Z,H), G = (Y,G), F = (X,F ) are
Bishop spaces, F extends G and G is embedded in F , then H is embedded in F
if and only if H is embedded in G.

Proof. If ∀h∈H∃f∈F (f|Z = h), we show that ∀h∈H∃g∈G(g|Z = h). If h ∈ H and
we restrict some f ∈ F which extends h to Y , we get an extension of h in G. For
the converse if h ∈ H, we extend it to some g ∈ G, and g is extended to some
f ∈ F , since G is embedded in F .

The next three propositions show how the embedding of G in F generates new
embeddings under the presence of certain morphisms.

Proposition 6. Suppose that F = (X,F ),G = (Y,G) and H = (B,H) are
Bishop spaces, where B ⊆ Y . If H is embedded in G and e ∈ setEpi(F ,G), then
the weak Bishop space F(e|A) on A = e−1(B) induced by e|A is embedded in F .

Proof. Since e : X → Y is onto Y , we have that e|A : A → B is onto B and
e|A ∈ setEpi(F(e|A),H), where by a remark following the definition of weak
topology in Sect. 2 we have that F (e|A) = {h ◦ e|A | h ∈ H}. If we fix some
h ◦ e|A ∈ F (e|A), where h ∈ H, then, since H is embedded in G, there is some
g ∈ G such that g|B = h. Since e ∈ setEpi(F ,G) ⊆ Mor(F ,G), we get that
g ◦ e ∈ F . If a ∈ A, then (g ◦ e)(a) = g(b) = h(b), where b = e(a). Since
(h ◦ e|A)(a) = h(e(a)) = h(b), we get that (g ◦ e)|A = h ◦ e|A i.e., F(e|A) is
embedded in F .
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Proposition 7. If F = (X,F ),G = (Y,G) H = (Z,H) are Bishop spaces,
Y ⊆ X, G is embedded in F and e ∈ Mor(F ,H) is open, then the quotient
Bishop space Ge|Y = (e(Y ), Ge|Y ) is embedded in H.

Proof. Let g′ : e(Y ) → R ∈ Ge|Y i.e., g′ ◦ e|Y ∈ G. Since G is embedded in F ,
there exists some f ∈ F such that f|Y = g′ ◦ e|Y . Since e is open, there exists
some h ∈ H such that f = h ◦ e. We show that h|e(Y ) = g′; if b = e(y) ∈ e(Y ),
for some y ∈ Y , then h(b) = h(e(y)) = f(y) = (g′ ◦ e|Y )(y) = g′(e(y)) = g′(b).

Next we translate to TBS the classical fact that if an element of C(X) carries a
subset of X homeomorphically onto a closed set S in R, then S is C-embedded
in X (see [11], p. 20).

Proposition 8. Suppose that A is a locally compact subset of R, F = (X,F ) is
a Bishop space, Y ⊆ X and f ∈ F such that f|Y : Y → A is an isomorphism
between F|Y and (A,Bic(A)b). Then F|Y is embedded in F .

Proof. Since f|Y is an isomorphism between F|Y and (A,Bic(A)b), its inverse θ
is an isomorphism between (A,Bic(A)b) and F|Y . We fix some g ∈ F|Y . Since
θ ∈ Mor((A,Bic(A)b),F|Y ), we have that g ◦ θ ∈ Bic(A)b. By the Corollary 1
there exists some φ ∈ Bic(R) which extends g ◦θ. By BS3 we have that φ◦f ∈ F
and for every y ∈ Y we have that (φ ◦ f)(y) = ((g ◦ θ) ◦ f)(y) = (g ◦ (θ ◦ f))(y) =
(g ◦ (θ ◦ f|Y ))(y) = (g ◦ id|Y )(y) = g(y).

If (X, T ) is a topological space and Y ⊆ X is C∗-embedded in X, then if Y is
also C-embedded in X, it is (completely) separated in C(X) from every C(X)-
zero set disjoint from it (see [11], pp. 19–20). If we add within TBS a positive
notion of disjointness between Y and ζ(f) though, we avoid the corresponding
hypothesis of G being embedded in F .

Definition 8. If F is a topology on X, f ∈ F and Y ⊆ X, we say that Y and ζ(f)
are separated, Sep(Y, ζ(f)), if ∀y∈Y (|f(y)| > 0), and Y and ζ(f) are uniformly
separated, Usep(Y, ζ(f)), if there is some c > 0 such that ∀y∈Y (|f(y)| ≥ c).

Of course, Usep(Y, ζ(f)) → Sep(Y, ζ(f)). If f, g ∈ F such that |f | + |g| ≥
c (see the formulation of the Theorem 3), then we get Usep(ζ(g), ζ(f)) and
Usep(ζ(f), ζ(g)). Since the sets U(f) = {x ∈ X | f(x) > 0}, where f ∈ F , are
basic open sets in the induced neighborhood structure on X by F (see [4], p.
77), we call Y a uniform Gδ-set, if there exists a sequence (fn)n in F such that
Y =

⋂
n∈N

U(f(n)) and Usep(Y, ζ(fn)), for every n ∈ N.

Proposition 9. If F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X, F
extends G, G is bounded-embedded in F , and f ∈ F , then Usep(Y, ζ(f)) → Y �F

ζ(f).

Proof. Since |f | ∈ F and F extends G, we have that |f ||Y ∈ G, and |f ||Y ≥ c.
By Theorem 2 we get that 1

|f ||Y ∈ G. Since 0 < 1
|f ||Y ≤ 1

c , we actually have that
1

|f ||Y ∈ Gb. Since G is bounded-embedded in F , there exists h ∈ F such that
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h|Y = 1
|f ||Y . Since |h| ∈ F satisfies |h||Y = 1

|f ||Y too, we suppose without loss of

generality that h ≥ 0. If we define g := h|f |, then g ∈ F , g(y) = h(y)|f(y)| =
1

|f(y)| |f(y)| = 1, for every y ∈ Y , and g(x) = h(x)|f(x)| = h(x)0 = 0, for every
x ∈ ζ(f).

Corollary 2. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X,
and G is full bounded-embedded in F . If Y is a uniform Gδ-set, then Y is an
F -zero set.

Proof. Suppose that Y =
⋂

n∈N
U(fn) and ∀y∈Y (|fn(y)| ≥ cn), where cn > 0,

for every n ∈ N. Since U(f) = U(f ∨ 0) and Usep(Y, ζ(f)) → Usep(Y, ζ(f ∨ 0)),
we assume without loss of generality that fn ≥ 0, for every n ∈ N. By the proof
the Proposition 9 we have that there is a function hn ∈ F such that hn ≥ 0,
(hnfn)(Y ) = 1 and (hnfn)(ζ(fn)) = 0, for every n ∈ N. Therefore, Y ⊆ ζ(gn),
where gn = (hnfn − 2

3 ) ∧ 0, for every n ∈ N. Next we show that ζ(gn) ⊆ U(fn),
for every n ∈ N. Since G is full bounded-embedded in F and according to the
proof the Proposition 9, 0 < 1

fn|Y
≤ 1

cn
, we get that 0 < hn ≤ 1

cn
. If z ∈ X

such that gn(z) = 0, then hn(z)fn(z) ≥ 2
3 , and since hn(z) > 0, we conclude

that fn(z) ≥ 2
3hn(z)

> 0. Thus, Y ⊆ ⋂
n∈N

ζ(gn) ⊆ ⋂
n∈N

U(fn) = Y , which
implies that Y =

⋂
n∈N

ζ(gn) = ζ(g), for some g ∈ F , since Z(F ) is closed under
countably infinite intersections.

Without the condition of G being full bounded-embedded in F in the previous
proposition we can show only that ¬(fn(z) = 0). Although fn(z) ≥ 0, we cannot
infer within BISH that fn(z) > 0; the property of the reals ∀x,y∈R(¬(x ≥ y) →
x < y) is equivalent to Markov’s principle (MP) (see [5], p. 14), and it is easy to
see that this property is equivalent to ∀x∈R(x ≥ 0 → ¬(x = 0) → x > 0). Next
we translate to TBS the classical result that if Y is C∗-embedded in X such that
Y is (completely) separated from every C(X)-zero set disjoint from it, then Y
is C-embedded in X. Constructively it is not clear, as it is in the classical case,
how to show that the expected positive formulation of the previous condition
provides an inverse to Proposition 4. The reason is that if (X,F ) is an arbitrary
Bishop space, it is not certain that tan ◦f ∈ F , for some f : X → (−π

2 , π
2 ) ∈ F

(note that tan−1 = arctan ∈ Bic(R)). If Φ1, Φ2 ⊆ F(X), we denote by Φ1 ∨ Φ2

the least topology including them. The proof of the interesting case of the next
theorem is in BISH + MP.

Theorem 4. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X,
a > 0, e : (−a, a) → R such that e−1 : R → (−a, a) ∈ Bic(R), and F(a) =
(X,F (a)), where

F (a) = F ∨ {e ◦ f | f ∈ F and f(X) ⊆ (−a, a)}.

(i) If G is full bounded-embedded in F , then G is embedded in F(a).
(ii) (MP) If ∀f∈F (Sep(Y, ζ(f)) → Y �F ζ(f)) and G is bounded-embedded in F ,

then G is embedded in F(a).
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Proof. We fix some g ∈ G. Since e−1 ∈ Bic(R), by the condition BS3 we have
that e−1 ◦ g : Y → (−a, a) ∈ Gb. Since G is bounded-embedded in F , there is
some f ∈ Fb such that f|Y = e−1 ◦ g.

(i) If G is full bounded-embedded in F , then we have that f : X → (−a, a).
Hence, e ◦ f ∈ F (a), and (e ◦ f)|Y = e ◦ f|Y = e ◦ (e−1 ◦ g) = g.

(ii) In [24] we showed within BISH that [|f | ≥ a] = {x ∈ X | |f |(x) ≥ a} =
ζ(f∗), where f∗ = (|f |−a)∧0 ∈ F . If y ∈ Y , then |f∗(y)| = |(|f(y)|−a)∧0| =
|(|(e−1 ◦ g)(y)| − a) ∧ 0| = ||(e−1 ◦ g)(y)| − a| = a − |(e−1 ◦ g)(y)| > 0, since
|(e−1 ◦ g)(y)| ∈ [0, a) (if −a < x < a, then |x| < a). Since Sep(Y, ζ(f∗)), by
our hypothesis there exists some h ∈ F such that 0 ≤ h ≤ 1, h(Y ) = 1 and
h(ζ(f∗)) = 0. There is no loss of generality if we assume that 0 ≤ h ≤ 1,
since if h ∈ F separates Y and ζ(f∗), then |h| ∧ 1 ∈ F separates them too.
We define J := f · h ∈ F . If y ∈ Y , we have that J(y) = f(y)h(y) = f(y).
Next we show that ∀x∈X(¬(|J(x)| ≥ a)). If x ∈ X such that |J(x)| ≥ a,
then |f(x)| ≥ |f(x)||h(x)| = |j(x)| ≥ a, therefore x ∈ ζ(f∗). Consequently,
h(x) = 0, and 0 = |J(x)| ≥ a > 0, which leads to a contradiction. Because of
MP we get that ∀x∈X(|J(x)| < a)), in other words, J : X → (−a, a). Hence
e ◦ J ∈ F (a), and (e ◦ J)|Y = e ◦ JY = e ◦ f = e ◦ (e−1 ◦ g) = g.

4 The Urysohn Extension Theorem

In this section we show the Urysohn extension theorem within TBS, an adap-
tation of Urysohn’s theorem that any closed set in a normal topological space
is C∗-embedded (see [11], p. 266). As Gillman and Jerison note in [11], p. 18,
it is “the basic result about C∗-embedding”. According to it, a subspace Y of a
topological space X is C∗-embedded in X if and only if any two (completely) sep-
arated sets in Y are (completely) separated in X. Here we call Urysohn extension
theorem the appropriate translation to TBS of the non-trivial sufficient condi-
tion. Next follows the translation to TBS of the trivial necessity condition. The
hypothesis “F extends G” of the Theorem 5 is not necessary to its proof.

Proposition 10. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces and
Y ⊆ X. If G is bounded-embedded in F , then ∀A,B⊆Y (A �Gb

B → A �Fb
B).

Proof. If A,B ⊆ Y such that A,B are separated by some g ∈ Gb, then, since
G is bounded-embedded in F , there is some f ∈ Fb which extends g, hence f
separates A and B.

Next we show that the proof of the classical Urysohn extension theorem can
be carried out within BISH. Recall that if x ∈ R, then x = (xn)n∈N, where
xn ∈ Q, for every n ∈ N, such that ∀n,m∈N+(|xm −xn| ≤ m−1 +n−1). Moreover,
x > 0 :↔ ∃n∈N(xn > 1

n ), and x ≥ 0 :↔ ∀n∈N(xn ≥ − 1
n ) (see [4], pp. 18–22).

If q ∈ Q, then q = (qn)n∈N ∈ R, where qn = q, for every n ∈ N. Using MP
one shows immediately that ¬(x ≤ −q) → ¬(x ≥ q) → |x| < q, where x ∈ R

and q ∈ Q. Without MP and completely within BISH, we show that under the
same hypotheses one gets that |x| ≤ q, which is what we need in order to get a
constructive proof of the Urysohn extension theorem.
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Lemma 2. ∀q∈Q∀x∈R(¬(x ≤ −q) → ¬(x ≥ q) → |x| ≤ q).

Proof. We fix some q ∈ Q, x = (xn)n ∈ R and we suppose that ¬(x ≤ −q) and
¬(x ≥ q). Since |x| = (max{xn,−xn})n∈N, we show that q ≥ |x| ↔ q − |x| ≥
0 ↔ ∀n(q − max{xn,−xn} ≥ − 1

n ). If we fix some n ∈ N, and since xn ∈ Q, we
consider the following case distinction.

(i) xn ≥ 0: Then q − max{xn,−xn} = q − xn and we get that q − xn < − 1
n →

xn − q > 1
n → x > q → x ≥ q → ⊥, by our second hypothesis. Hence,

q − xn ≥ − 1
n .

(ii) xn ≤ 0: Then q − max{xn,−xn} = q + xn and we get that q + xn < − 1
n →

−q − xn > 1
n → −q > x → −q ≥ x → ⊥, by our first hypothesis. Hence,

q + xn ≥ − 1
n .

Theorem 5 (Urysohn Extension Theorem for Bishop Spaces). Suppose
that F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X and F extends G. If
∀A,B⊆Y (A �Gb

B → A �Fb
B), then G is bounded-embedded in F .

Proof. We fix some g ∈ Gb, and let |g| ≤ M , for some natural M > 0. In order
to find an extension of g in Fb we define a sequence (gn)n∈N+ , such that gn ∈ Gb

and
|gn| ≤ 3rn, rn :=

M

2
(
2
3
)n,

for every n ∈ N
+. For n = 1 we define g1 = g, and we have that |g1| ≤ M = 3r1.

Suppose next that we have defined some gn ∈ Gb such that |gn| ≤ 3rn. We
consider the sets

An = [gn ≤ −rn] = {y ∈ Y | gn(y) ≤ −rn},

Bn = [gn ≥ rn] = {y ∈ Y | gn(y) ≥ rn}.

Clearly, g∗
n(An) = −rn and g∗

n(Bn) = rn, where g∗
n = (−rn ∨gn)∧rn ∈ Gb. Since

g∗
n(An) �R g∗

n(Bn), we get that An �Gb
Bn, therefore there exists some f ∈ Fb

such that An �f Bn. Without loss of generality we assume that fn(An) = −rn,
fn(Bn) = rn and |fn| ≤ rn. Next we define

gn+1 := gn − fn|Y ∈ Gb,

since F extends G. If y ∈ An we have that

|gn+1(y)| = |(gn − fn|Y )(y)| = |gn(y) − (−rn)| = |gn(y) + rn| ≤ 2rn,

since −3rn ≤ gn(y) ≤ −rn → −2rn ≤ gn(y) + rn ≤ 0. If y ∈ Bn we have that

|gn+1(y)| = |(gn − fn|Y )(y)| = |gn(y) − rn| = gn(y) − rn ≤ 2rn,

since rn ≤ gn(y) ≤ 3rn → 0 ≤ gn(y) − rn ≤ 2rn. Next we show that

∀y∈Y (|gn+1(y)| ≤ 2rn).
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We fix some y ∈ Y and we suppose that |gn+1(y)| > 2rn. This implies that
y /∈ An ∪ Bn, since if y ∈ An ∪ Bn, then by the previous calculations we get
that |gn+1(y)| ≤ 2rn, which contradicts our hypothesis. Hence we have that
¬(gn(y) ≤ −rn) and ¬(gn(y) ≥ rn). By the Lemma 2 we get that |gn(y)| ≤ rn,
therefore |gn+1(y)| ≤ |gn(y)| + |fn(y)| ≤ rn + rn = 2rn, which contradicts our
assumption |gn+1(y)| > 2rn. Thus we get that |gn+1(y)| ≤ 2rn, and since y is
arbitrary we get

|gn+1| ≤ 2rn = 3rn+1.

By the condition BS4 the function f :=
∑∞

n=1 fn belongs to F , since the partial
sums converge uniformly to f . Note that the infinite sum is well-defined by the
Weierstrass comparison test (see [4], p. 32). Note also that

(f1 + . . . + fn)|Y = (g1 − g2) + (g2 − g3) + . . . + (gn − gn+1) = g1 − gn+1.

Since rn
n→ 0, we get gn+1

n→ 0, hence f|Y = g1 = g. Note that f is also bounded
by M :

|f | = |
∞∑

n=1

fn| ≤
∞∑

n=1

|fn| ≤
∞∑

n=1

M

2
(
2
3
)n =

M

2

∞∑

n=1

(
2
3
)n =

M

2
2 = M.

The main hypothesis of the Urysohn extension theorem

∀A,B⊆Y (A �Gb
B → A �Fb

B)

requires quantification over the power set of Y , therefore it is against the practice
of predicative constructive mathematics. It is clear though by the above proof
that we do not need to quantify over all the subsets of Y , but only over the ones
which have the form of An and Bn. If we replace the initial main hypothesis by
the following

∀g,g′∈Gb
∀a,b∈R([g ≤ a] �Gb

[g′ ≥ b] → [g ≤ a] �Fb
[g′ ≥ b]),

we get a stronger form of the Urysohn extension theorem, since this is the least
condition in order the above proof to work. Actually, this stronger formulation
of the Urysohn extension theorem applies to the classical setting too. A slight
variation of the previous new main hypothesis, which is probably better to use, is

∀g,g′∈Gb
(ζ(g) �Gb

ζ(g′) → ζ(g) �Fb
ζ(g′)),

since the sets of the form An and Bn are Gb-zero sets.

Definition 9. If (X,F ) is a Bishop space and Y ⊆ X is inhabited, we say that
Y is a Urysohn subset of X, if ∀g,g′∈(F|Y )b(ζ(g) �(F|Y )b ζ(g′) → ζ(g) �Fb

ζ(g′)).

Next follows a direct corollary of the Theorem 5 and the previous remark.
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Corollary 3. Suppose that F = (X,F ) is a Bishop space, Y ⊆ X is a Urysohn
subset of X and g : Y → R is in (F|Y )b. Then there exists f : X → R in Fb

which extends g.

An absolute retract for normal topological spaces is a space that can be sub-
stituted for R in the formulation of the Tietze theorem, according to which a
continuous real-valued function on a closed subset of a normal topological space
has a continuous extension (see [10], p. 151).

Definition 10. If Q is a property on sets, a Bishop space H = (Z,H) is called
an absolute retract with respect to Q, or H is AR(Q), if for every Bishop space
F = (X,F ) and Y ⊆ X we have that

Q(Y ) → ∀e∈Mor(F|Y ,H)∃e∗∈Mor(F,H)(e∗
|Y = e).

Clearly, the Corollary 3 says that R is AR(Urysohn). The next proposition shows
that there exist many absolute retracts. In particular, the products Rn,R∞ are
AR(Urysohn).

Proposition 11. Suppose that Hi = (Zi,Hi) is a Bishop space, for every i ∈ I.
Then

∏
i∈I Hi is AR(Q) if and only if Hi is AR(Q), for every i ∈ I.

Proof. (←) If Y ⊆ X such that Q(Y ) and if Hi is AR(Q), for every i ∈ I, then
by the Proposition 1(i) we have that

e : Y →
∏

i∈I

Zi ∈ Mor(F|Y ,
∏

i∈I

Hi∈I) ↔ ∀i∈I(πi ◦ e ∈ Mor(F|Y ,Hi))

→ ∀i∈I(∃e∗
i ∈Mor(F,Hi)(e

∗
i |Y = πi ◦ e)).

We define e∗ : X → ∏
i∈I Zi by x �→ (e∗

i (x))i∈I . Clearly, e∗(y) = e∗
i (y))i∈I =

((πi ◦ e)(y))i∈I = e(y) and e∗ ∈ Mor(F ,
∏

i∈I Hi∈I), by the Proposition 1(i) and
the fact that e∗

i = πi ◦ e∗ ∈ Mor(F ,Hi), for every i ∈ I.
(→) Suppose that

∏
i∈I Hi is AR(Q) and ei : Y → Zi ∈ Mor(F|Y ,Hi). If we

fix z = (zi)i∈I ∈ ∏
i∈I Zi, then by the Proposition 2 the function

si : Zi → S(z; i) = Zi ×
∏

j �=i

{zj} ⊆
∏

i∈I

Zi

zi �→ zi ×
∏

j �=i

{zj}

is an isomorphism between Hi and the slice space S(z; i) = (S(z; i),H(z; i)),
where H(z; i) = (

∏
i∈I Hi)|S(z;i). Hence, the mapping si ◦ ei : Y → ∏

i∈I Zi ∈
Mor(F|Y ,

∏
i∈I Hi∈I). By our hypothesis there exists some e∗ : X → ∏

i∈I Zi ∈
Mor(F|Y ,

∏
i∈I Hi∈I) which extends si◦ei. Thus, πi◦e∗ : X → Zi ∈ Mor(F ,Hi),

for every i ∈ I. But πi ◦e∗ = ei, since for every y ∈ Y we have that (πi ◦e∗)(y) =
π(e∗(y)) = πi((si ◦ ei)(y)) = πi(ei(y) × ∏

j �=i{zj}) = ei(y).
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5 Concluding Comments

In this paper we presented the basic theory of embeddings of Bishop spaces and
we showed that the classical proof of the Urysohn extension theorem for topolog-
ical spaces generates a constructive proof of the Urysohn extension theorem for
Bishop spaces. Our results form only the very beginning of a theory of embed-
dings of Bishop spaces. If we look at the classical theory of embeddings of rings
of continuous functions, we will see too many topics that at first sight it seems
difficult, to say the least, to develop constructively. The Stone-Čech compactifi-
cation and Hewitt’s realcompactification depend on the existence of non-trivial
ultrafilters, while many facts in the characterizations of the maximal ideals of
C(X) or C∗(X) depend on non-constructive formulations of compactness.

Nevertheless, we find encouraging that quite “soon” one can start develop-
ing a theory of embeddings within TBS, and also rewarding that non-trivial
theorems, like the Urysohn extension theorem, belong to it. Behind these par-
tial “successes” lies, in our view, the function-theoretic character of TBS which
offers the direct “communication” between TBS and the theory of C(X) that
we mentioned in the Introduction. Maybe, this is the main advantage of TBS
with respect to other approaches to constructive topology.

The apartness relations mentioned already here show the connection of TBS
with the theory of apartness spaces of Bridges and Vı̂ţă in [6]. Both these the-
ories start from a notion of space that differs from a topological space treated
intuitionistically, as in [28] or [12], or from a constructive variation of the notion
of a base of a topological space, the starting point of the point-free formal topol-
ogy of Martin-Löf and Sambin (see [25,26]) and Bishop’s theory of neighborhood
spaces, as it is developed mainly by Ishihara in [14,15]. In our opinion, if the
notion of space in constructive topology “mimics” that of topological space,
then it is more difficult to constructivise topology than starting from a notion of
space which by its definition is more suitable to constructive study. The function-
theoretic character of the notion of Bishop space and of Bishop morphism, in
contrast to the set-theoretic character of an apartness space and of a strongly
continuous function, seems to facilitate a constructive reconstruction of topology
and a possible future translation of TBS to type theory.
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spaces. Ann. Pure Appl. Logic 141, 296–306 (2006)
15. Ishihara, H.: Two subcategories of apartness spaces. Ann. Pure Appl. Logic 163,

132–139 (2013)
16. Ishihara, H.: Relating Bishop’s function spaces to neighborhood spaces. Ann. Pure

Appl. Logic 164, 482–490 (2013)
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Abstract. Intuitionistic epistemic logic introduces an epistemic opera-
tor, which reflects the intended BHK semantics of intuitionism, to intu-
itionistic logic. The fundamental assumption concerning intuitionistic
knowledge and belief is that it is the product of verification. The BHK
interpretation of intuitionistic logic has a precise formulation in the Logic
of Proofs and its arithmetical semantics. We show here that this interpre-
tation can be extended to the notion of verification upon which intuition-
istic knowledge is based, thereby providing the systems of intuitionistic
epistemic logic extended by an epistemic operator based on verification
with an arithmetical semantics too.

Keywords: Intuitionistic epistemic logic · Logic of proofs · Arithmetic
interpretation · Intuitionistic knowledge · BHK semantics · Verification

1 Introduction

The intended semantics for intuitionistic logic is the Brouwer-Heyting-Kolmo-
gorov (BHK) interpretation, which holds that a proposition is true if proved.
The systems of intuitionistic epistemic logic, the IEL family introduced in [5],
extend intuitionistic logic with an epistemic operator and interpret it in a manner
reflecting the BHK semantics. The fundamental assumption concerning knowl-
edge interpreted intuitionistically is that knowledge is the product of verifica-
tion, where a verification is understood to be a justification sufficient to warrant
a claim to knowledge which is not necessarily a strict proof.

In [5] the notion of verification was treated intuitively. Here we show that ver-
ification can also be given an arithmetical interpretation, thereby showing that
the notion of verification assumed in an intuitionistic interpretation of knowledge
has an exact model.

Following Gödel [11] it is well known that intuitionistic logic can be embed-
ded into the classical modal logic S4 regarded as a provability logic. Artemov
[2] formulated the Logic of Proofs, LP, and showed that S4 in turn can be inter-
preted in LP, and that LP has an arithmetical interpretation as a calculus of

T. Protopopescu—Many thanks to Sergei Artemov for helpful suggestions and inspir-
ing discussions.
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explicit proofs in Peano Arithmetic PA.1 Accordingly this makes precise the
BHK semantics for intuitionistic logic. Intuitionistic logic, then, can be regarded
as an implicit logic of proofs, and its extension with an epistemic/verification
operator in the systems IEL− and IEL (given in Sect. 2) can be regarded as logics
of implicit proofs, verification and their interaction.

This is of interest for a number of reasons. It shows that the notion of verifica-
tion on which intuitionistic epistemic logic is based is coherent and can be made
concrete, and does so in a manner consonant with the intended BHK interpre-
tation of the epistemic operator. Further, given intuitionistic logic’s importance
in computer science as well as the need for a constructive theory of knowledge,
finding a precise provability model for verification and intuitionistic epistemic
logic (see Sect. 5) is well-motivated.

2 Intuitionistic Epistemic Logic

According to the BHK semantics a proposition, A, is true if there is a proof of
it and false if the assumption that there is a proof of A yields a contradiction.
This is extended to complex propositions by the following clauses:

– a proof of A ∧ B consists in a proof of A and a proof of B;
– a proof of A ∨ B consists in giving either a proof of A or a proof of B;
– a proof of A → B consists in a construction which given a proof of A returns

a proof of B;
– ¬A is an abbreviation for A → ⊥, and ⊥ is a proposition that has no proof.

The salient property of verification-based justification, in the context of the
BHK semantics, is that it follows from intuitionistic truth, hence

A → KA (Co-Reflection)

is valid on a BHK reading. Since any proof is a verification, the intuitionistic
truth of a proposition yields that the proposition is verified.

By similar reasoning the converse principle

KA → A (Reflection)

is not valid on a BHK reading. A verification need not be, or yield a method for
obtaining, a proof, hence does not guarantee the intuitionistic truth of a propo-
sition. Reflection expresses the factivity of knowledge in a classical language,
intuitionistically factivity is expressed by

KA → ¬¬A. (Intuitionistic Factivity)

The basic system of intuitionistic epistemic logic, incorporating minimal
assumptions about the nature of verification, is the system IEL−. IEL− can be
seen as the system formalising intuitionistic belief.
1 As opposed to provability in PA, the calculus of which is the modal logic GL, see [6].
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Definition 1 (IEL−). The list of axioms and rules of IEL− consists of:

IE0. Axioms of propositional intuitionistic logic.
IE1. K(A → B) → (KA → KB)
IE2. A → KA

Modus Ponens.

It is consistent with IEL− that false propositions can be verified. It is desirable,
however, that false propositions not be verifiable; to be a logic of knowledge the
logic should reflect the truth condition on knowledge, i.e. factivity – that it is not
possible to know falsehoods. The system IEL incorporates the truth condition
and hence can be viewed as an intuitionistic logic of knowledge.

Definition 2 (IEL). The list of axioms and rules for IEL are those for IEL− with
the additional axiom:

IE3. KA → ¬¬A.

Given Axiom IE2 the idea that it is not possible to know a falsehood can be
equivalently expressed by ¬K⊥.2 For the following we will use this form of the
truth condition in place of Axiom IE3.

Kripke models were defined for both systems, and soundness and complete-
ness shown with respect to them, see [5].

3 Embedding Intuitionistic Epistemic Logic into Classical
Modal Logic of Verification

The well known Gödel translation yields a faithful embedding of the intuitionistic
propositional calculus, IPC, into the classical modal logic S4.3 By extending S4
with a verification modality V, the embedding can be extended to IEL− and IEL,
and shown to remain faithful, see [14].

S4V− is the basic logic of provability and verification.

Definition 3 (S4V− Axioms). The list of axioms and rules of S4V− consists
of:

A0. The axioms of S4 for �.
A1. V(A → B) → (VA → VB)
A2. �A → VA

2 Or indeed, ¬(KA ∧ ¬A), ¬A → ¬KA or ¬¬(K → A), all are equivalent to Axiom
IE3 given Axiom IE2, see [5].

3 The soundness of the translation was proved by Gödel [11] while the faithfulness was
proved by McKinsey and Tarski [12]. See [8] for a semantic, and [15] for a syntactic
proof.
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R1. Modus Ponens
R2. �-Necessitation �A

��A

As with IEL we add the further condition that verifications should be consistent.

Definition 4 (S4V). S4V is S4V− with the additional axiom:4

A3. ¬�V⊥.

Kripke models for each system were outlined in [14] and the systems shown to
be sound and complete with respect to them.

For IEL− and IEL their embedding into S4V− and S4V respectively, is faithful.
For an IEL− or IEL formula F , tr(F ) is the translation of F according to the rule

box every sub-formula

into the language of S4V− or S4V respectively.

Theorem 1 (Embedding). The Gödel translation faithfully embeds IEL− and
IEL into S4V− and S4V, respectively:

IEL−, IEL � F ⇔ S4V−,S4V � tr(F ).

Proof. See [14].

4 Logics of Explicit Proofs and Verification

Gödel [11] suggested that the modal logic S4 be considered as a provability cal-
culus. This was given a precise interpretation by Artemov, see [2,4], who showed
that explicit proofs in Peano Arithmetic, PA, was the model of provability which
S4 described. The explicit counter-part of S4 is the Logic of Proofs LP in which
each � in S4 is replaced by a term denoting an explicit proof. Since intuitionistic
logic embeds into S4 the intended BHK semantics for IPC as an implicit calculus
of proofs is given an explicit formulation in LP, and hence an arithmetical seman-
tics. Here we show that this arithmetical interpretation can be further extended
to the Logic of Proofs augmented with a verification modality, providing S4V−

and S4V, and therefore IEL− and IEL with an arithmetical semantics. Similarly
to the foundational picture regarding the relation between IPC, S4 and LP (see
[2]) we have that5

IEL ↪→ S4V ↪→ LPV

The basic system of explicit proofs and verifications LPV− is defined thus:
4 [14] presented a stronger version of S4V with ¬V⊥ instead of ¬�V⊥. The weaker

axiom presented here is sufficient for the embedding; one can readily check that the
Gödel translation of ¬K⊥, �¬�V�⊥, is derivable in S4V as formulated here. The
weaker axiom allows for a uniform arithmetical interpretation of verification.

5 Similar embeddings hold for IEL−, S4V−, and LPV−.
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Definition 5 (Explicit Language). The language of LPV− consists of:

1. The language of classical propositional logic;
2. A verification operator V;
3. Proof variables, denoted by x, y, x1, x2 . . .;
4. Proof constants, denoted by a, b, c, c1, c2 . . .;
5. Operations on proof terms, building complex proof terms from simpler ones

of three types:
(a) Binary operation · called application;
(b) Binary operation + called plus;
(c) Unary operation ! called proof checker;

6. Proof terms: any proof variable or constant is a proof term; if t and s are
proof terms so are t · s, t + s and !t.

7. Formulas: A propositional letter p is a formula; if A and B are formulas then
so are ¬A, A ∧ B, A ∨ B, A → B, VA, t:A.

Formulas of the type t:A are read as “t is a proof A”.

Definition 6 (LPV−). The list of axioms and rules of LPV− consists of:

E0. Axioms of propositional classical logic.
E1. t:(A → B) → (s:A → (t · s):B)
E2. t:A → A
E3. t:A →!t:t:A
E4. t:A → (s + t):A, t:A → (t + s):A

E5. V(A → B) → (VA → VB)
E6. t:A → VA

R1. Modus Ponens
R2. Axiom Necessitation: �A

� c:A where A is any of Axioms E0 to E6 and c is
some proof constant.

Definition 7 (LPV). The system LPV is LPV− with the additional axiom:

E7. ¬t:V⊥
A constant specification, CS, is a set {c1:A1, c2:A2 . . . } of formulas such that each
Ai is an axiom from the list E0 to E6 above, and each ci is a proof constant.
This set is generated by each use of the constant necessitation rule in an LPV−

proof. The axiom necessitation rule can be replaced with a ‘ready made’ constant
specification which is added to LPV− as a set of extra axioms. For such a CS let
LPV−-CS mean LPV− minus the axiom necessitation rule plus the members of
CS as additional axioms.

A proof term, t, is called a ground term if it contains no proof variables, but
is built only from proof constants and operations on those constants.

LPV− and LPV are able to internalise their own proofs, that is if

A1 . . . An, y1:B1 . . . yn:Bn � F
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then for some term p(x1 . . . xn, y1 . . . yn)

x1:A1 . . . xn:An, y1:B1 . . . yn:Bn � p(x1 . . . xn, y1 . . . yn):F,

see [2]. As a consequence LPV− and LPV have the constructive necessitation
rule: for some ground proof term t,

� F

� t:F.

This yields in turn:

Lemma 1 (V Necessitation). V-Necessitation �A
�VA is derivable in LPV−

and LPV.

Proof. Assume � A, then by constructive necessitation � t:A for some ground
proof term t, hence by Axiom E6 � VA.

Note that the Deduction Theorem holds for both LPV− and LPV.

5 Arithmetical Interpretation of LPV− and LPV

We give an arithmetical interpretation of LPV− and LPV by specifying a trans-
lation of the formulas of LPV− and LPV into the language of Peano Arithmetic,
PA. We assume that a coding of the syntax of PA is given. n denotes a natural
number and n the corresponding numeral. �F� denotes the numeral of the Gödel
number of a formula F . For readability we suppress the overline for numerals and
corner quotes for the Gödel number of formulas, and trust that the appropriate
number or numeral, as context requires, can be recovered.6

Definition 8 (Normal Proof Predicate). A normal proof predicate is a
provably Δ formula Prf (x, y) such that for every arithmetical sentence F the
following holds:

1. PA � F ⇔ for some n ∈ ω,Prf(n, F )
2. A proof proves only a finite number of things; i.e. for every k the set T (k) =

{l|Prf(k, l)} is finite.7

3. Proofs can be joined into longer proofs; i.e. for any k and l there is an n s.t.
T (k) ∪ T (l) ⊆ T (n).

Example 1. An example of a numerical relation that satisfies the definition of
Prf(x, y) is the standard proof predicate Proof(x, y) the meaning of which is

“x is the Gödel number of a derivation of a formula with the Gödel number y”.
6 E.g. by techniques found in [6,9].
7 I.e. T (k) is the set of theorems proved by the proof k.
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Theorem 2. For every normal proof predicate Prf(x, y) there exist recursive
functions m(x, y), a(x, y) and c(x) such that for any arithmetical formulas F
and G and all natural numbers k and n the following formulas hold:

1. (Prf(k, F → G) ∧ Prf(n, F )) → Prf(m(k, n), G)
2. Prf(k, F ) → Prf(a(k, n), F ), Prf(n, F ) → Prf(a(k, n), F )
3. Prf(k, F ) → Prf(c(k),Prf(k, F )).

Proof. See [2].

Definition 9 (Verification Predicate for LPV−). A verification predicate is
a provably Σ formula Ver(x) satisfying the following properties, for arithmetical
formulas F and G:

1. PA � Ver(F → G) → (Ver(F ) → Ver(G))
2. For each n, PA � Prf(n, F ) → Ver(F ).

These are properties which a natural notion of verification satisfies.
Let Bew(x) be the standard provability predicate, and Con(PA) be the state-

ment which expresses that PA is consistent, i.e. ¬Bew(⊥). ¬Con(PA) correspond-
ingly is Bew(⊥).

Example 2. The following are examples of a verification predicate Ver(x):

1. “Provability in PA”, i.e. Ver(x) = Bew(x); for a formula F Ver(F ) is ∃x
Prf(x, F ).

2. “Provability in PA + Con(PA)” i.e. Ver(x) = Bew(Con(PA) → x); one example
of a formula for which Ver(x) holds in this sense is just the formula Con(PA).
Such verification is capable of verifying propositions not provable in PA.

3. “Provability in PA + ¬Con(PA)” i.e. Ver(x) = Bew(¬Con(PA) → x); an
example of a verifiable formula which is not provable in PA, is the formula
¬Con(PA). Such verification is capable of verifying false propositions.

4. �, i.e. Ver(x) = �; that is for any formula F Ver(F ) = �, hence any F is
verified.

Lemma 2. PA � F ⇒ PA � Ver(F ).

Proof. Assume PA � F , then by Definition 8 there is an n such that Prf(n, F ) is
true, hence PA � Prf(n, F ), and by Definition 9 part 2 PA � Ver(F ).

We now define an interpretation of the language of LPV− into the language
of Peano Arithmetic. An arithmetical interpretation takes a formula of LPV−

and returns a formula of Peano Arithmetic; we show the soundness of such an
interpretation, if F is valid in LPV− then for any arithmetical interpretation ∗

F ∗ is valid in PA.8

8 A corresponding completeness theorem is left for future work, as is the development
of a system with explicit verification terms, in addition to proof terms, realising the
verification modality of S4V− or S4V.



324 T. Protopopescu

Definition 10 (Arithmetical Interpretation for LPV−). An arithmetical
interpretation for LPV− has the following items:

– A normal proof predicate, Prf, with the functions m(x, y), a(x, y) and c(x) as
in Definition 8 and Theorem2;

– A verification predicate, Ver, satisfying the conditions in Definition 9;
– An evaluation of propositional letters by sentences of PA;
– An evaluation of proof variables and constants by natural numbers.

An arithmetical interpretation is given inductively by the following clauses:

(p)∗ = p an atomic sentence of PA
⊥∗ = ⊥

(A ∧ B)∗ = A∗ ∧ B∗

(A ∨ B)∗ = A∗ ∨ B∗

(A → B)∗ = A∗ → B∗

(t · s)∗ = m(t∗, s∗)
(t + s)∗ = a(t∗, s∗)

(!t)∗ = c(t∗)
(t:F )∗ = Prf(t∗, F ∗)
(VF )∗ = Ver(F ∗)

Let X be a set of LPV− formulas, then X∗ is the set of all F ∗’s such that F ∈
X. For a constant specification, CS, a CS-interpretation is an interpretation ∗

such that all formulas from CS∗ are true. An LPV− formula is valid if F ∗ is
true under all interpretations ∗. F is provably valid if PA � F ∗ under all inter-
pretations ∗. Similarly, F is valid under constant specification CS if F ∗ is true
under all CS-interpretations, and F is provably valid under constant specification
CS if PA � F ∗ under any CS-interpretation ∗.

Theorem 3 (Arithmetical Soundness of LPV−). For any CS-interpretation ∗

with a verification predicate as in Definition 9 any LPV−-CS theorem, F , is prov-
ably valid under constant specification CS:

LPV−-CS � F ⇒ PA � F ∗.

Proof. By induction on derivations in LPV−. The cases of the LP axioms are
proved in [2].

Case 1. (V(A → B) → (VA → VB)).

[V(A → B) → (VA → VB)]∗ ≡ Ver(F → G) → (Ver(F ) → Ver(G)).

But PA � Ver(F → G) → (Ver(F ) → Ver(G)) by Definition 9.

Case 2. (t:F → VF ).

[t:F → VF ]∗ ≡ Prf(t∗, F ∗) → Ver(F ∗).

Likewise PA � Prf(t∗, F ∗) → Ver(F ∗) holds by Definition 9.

This arithmetical interpretation can be extended to LPV. Everything is as
above except to Definition 9 we add the following item:
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Definition 11 (Verification Predicate for LPV).

1. for any n, PA � ¬Prf(n,Ver(⊥)).

1–3 of Example 2 remain examples of a verification predicate which also satisfies
the above consistency property. In each case respectively Ver(⊥) is

1. Bew(⊥)
2. Bew(¬Bew(⊥) → ⊥), i.e. Bew(¬Con(PA))
3. Bew(¬¬Bew(⊥) → ⊥), i.e. Bew(Con(PA)).

All of these are false in the standard model of PA, and hence not provable in PA,
hence for each n PA � ¬Prf(n,Ver(⊥)).

4. Ver(⊥) = �, is not an example of a verification predicate for LPV in the sense
of Definition 11: Ver(⊥) would be provable in PA, and hence there would be an
n for which PA � Prf(n,Ver(⊥)) holds, which contradicts Definition 11.

Theorem 4 (Arithmetical Soundness of LPV). For any CS-interpretation ∗

with a verification predicate as in Definition 11, if F is an LPV-CS theorem then
it is provably valid under constant specification CS:

LPV-CS � F ⇒ PA � F ∗.

Proof. Add to the proof of Theorem3 the following case:

Case 3. (¬t:V⊥)
[¬t:V⊥]∗ ≡ ¬Prf(n,Ver(⊥)).

PA � ¬Prf(n,Ver(⊥)) holds by Definition 11.

6 Sequent Systems for S4V− and S4V

We give a sequent formulation of S4V− and S4V. We will denote the sequent
formulations by S4V−g, S4Vg respectively.

A sequent is a figure, Γ ⇒ Δ, in which Γ,Δ are multi-sets of formulas.

Definition 12 (S4V−g). The axioms for the system S4V−g are:

Axioms
P ⇒ P, Patomic ⊥ ⇒

The structural and propositional rules are those of the system G1c from [15].
The modal rules are:

�-Rules

Γ,X ⇒ Δ

Γ,�X ⇒ Δ
(� ⇒)

�Γ ⇒ X

�Γ ⇒ �X
(⇒ �)

V-Rule

Γ ⇒ X

VΓ ⇒ VX
(⇒ V)
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Interaction-Rule
Γ,VX ⇒ Δ

Γ,�X ⇒ Δ
(V/� ⇒)

Definition 13 (S4Vg Rules). The system S4Vg is the system S4V−g with the
additional axiom:
�V-Axiom

�V⊥ ⇒
Soundness can be shown by induction on the rules of S4V−g and S4Vg. Com-
pleteness and cut-elimination can be shown in a manner similar to that of [3].9

7 Realisation of S4V− and S4V

Here we show that each � in an S4V− or S4V theorem can be replaced with a
proof term so that the result is a theorem of LPV− or LPV, and hence that IEL−

and IEL each have a proof interpretation. The converse, that for each LPV− or
LPV theorem if all the proof terms are replaced with �’s the result is a theorem
of S4V− or S4V also holds.

Definition 14 (Forgetful Projection). The forgetful projection, F 0 of an
LPV− or LPV formula is the result of replacing each proof term in F with a �.

Theorem 5. LPV−, LPV � F ⇒ S4V−,S4V � F 0 respectively.

Proof. By induction on S4V− derivations. The forgetful projections of Axioms
E1 to E4 and E6 are �(A → B) → (�A → �B), �A → A, �A → ��A,
�A → �A and �A → VA respectively, which are all provable in S4V−. The
forgetful projection of ¬t:V⊥ is ¬�V⊥ which is provable in S4V. The rules are
obvious.

Definition 15 (Realisation). A realisation, F r, of an S4V− or S4V formula F
is the result of substituting a proof term for each � in F , such that if S4V−,S4V �
F then LPV−, LPV � F r respectively.

Definition 16 (Polarity of Formulas). Occurrences of � in F in G → F ,
F ∧ G, G ∧ F , F ∨ G, G ∨ F , �G and Γ ⇒ Δ,F have the same polarity as the
occurrence of � in F .

Occurrences of � from F → G, ¬F and F, Γ ⇒ Δ have the polarity opposite
to that of the occurrence of � in F .

Definition 17 (Normal Realisation). A realisation r is called normal if all
negative occurrences of � are realised by proof variables.
9 See also [13] for another example of the method.
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The informal reading of the S4 provability modality � is existential, �F means
‘there is a proof of F ’ (as opposed to the Kripke semantic reading which is
universal, i.e. ‘F holds in all accessible states’), normal realisations are the ones
which capture this existential meaning, see [2].

The realisation Theorem 6, shows that if a formula F is a theorem of S4V−

then there is a substitution of proof terms for every � occurring in F such
that the result is a theorem of LPV−. This means that every � in S4V− can
be thought of as standing for a (possibly complex) proof term in LPV−, and
hence, by Theorem 3, implicitly represents a specific proof in PA. The proof
of the realisation theorem consists in a procedure by which such a proof term
can be built, see [1,2,7,10]. Given a (cut-free) proof in S4V−g we show how to
assign proof terms to each of the �’s occurring in the S4V−g proof so that each
sequent in the proof corresponds to a formula provable in LPV−; this is done by
constructing a Hilbert-style LPV− proof for the formula corresponding to each
sequent, so as to yield the desired realisation.

Occurrences of � in an S4V−g derivation can be divided up into families
of related occurrences. Occurrences of � are related if they occur in related
formulas of premises and conclusions of rules. A family of related occurrences
is given by the transitive closure of such a relation. A family is called essential
if it contains at least one occurrence of � which is introduced by the (⇒ �)
rule. A family is called positive (respectively negative) if it consists of positive
(respectively negative) occurrences of �. It is important to note that the rules
of S4V−g preserve the polarities of �. Any � introduced by (⇒ �) is positive,
while �’s introduced by (� ⇒), the interaction rule, and by the �V axiom in
the case of S4V are negative.

Theorem 6 (S4V− Realisation). If S4V− � F then LPV− � F r for some
normal realisation r.

Proof. If S4V−g � F then there exists a cut-free sequent proof, S, of the sequent
⇒ F . The realisation procedure described below (following [1,2]) describes how
to construct a normal realisation r for any sequent in S.

Step 1. In every negative family and non-essential positive family replace each
occurrence of �B by x:B for a fresh proof variable x.

Remark 1. Note that this means a � introduced by means of the (⇒,V) rule
(or additionally the axiom �V⊥ ⇒ in the case of LPV below) is realised by a
proof variable.

Step 2. Pick an essential family, f , and enumerate all of the occurrences of
the rule (⇒ �) which introduce �’s in this family. Let nf be the number of
such introductions. Replace all �’s of family f by the proof term v1 + . . . + vnf

where vi does not already appear as the result of a realisation. Each vi is called
a provisional variable which will later be replaced with a proof term.

After this step has been completed for all families of � there are no �’s left
in S.
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Step 3. This proceeds by induction on the depth of a node in S. For each
sequent in S we show how to construct an LPV− formula, F r, corresponding to
that sequent, such that LPV− � F r.

The realisation of a sequent G = Γ ⇒ Δ is an LPV− formula, Gr, of the
following form:

Ar
1 ∧ . . . ∧ Ar

n → Br
1 ∨ . . . ∨ Br

m

The Ar’s and Br’s denote realisations already performed. Let Γ r stand for con-
junctions of formulas and Δr for disjunctions of formulas; Γ r prefixed with a V
stands for conjunctions of V’ed formulas, i.e. VΓ r

n = VA1 ∧ . . . ∧ VAn.
The cases realising the rules involving the propositional connectives and �

are shown in [2]10 (including how to replace provisional variables with terms).
Let us check the rules involving V.

Case 3. [Sequent G is the conclusion of a (⇒ V) rule: VΓ ⇒ VX]

Gr = VΓ r
n → VXr.

Now LPV− � (Γ r
n → Xr) ⇒ LPV− � (VΓ r

n → VXr), hence by the induction
hypothesis the realisation of the premise of the rule, Γ r

n → Xr, is provable in
LPV−, and hence:

LPV− � VΓ r
n → VXr.

Case 4. [Sequent G is the conclusion of an interaction rule (V/� ⇒): Γ,�X ⇒
Δ]

Gr = (Γ r
n ∧ x:Xr) → Δr

m.

Since x:A → VA is provable in LPV− we have that

LPV− � ((Γ r
n ∧ VXr) → Δr

m) → ((Γ r
n ∧ x:Xr) → Δr

m).

By the induction hypothesis the realisation of the formula corresponding to the
premise of the rule, (Γ r

n ∧ VXr) → Δr
m, is provable, and hence:

LPV− � (Γ r
n ∧ x:Xr) → Δr

m.

Step 4. After applying the above three steps each G ∈ S has been translated
into the language of LPV−, and been shown to be derivable in LPV−. Hence for
the formula corresponding to the root sequent, ⇒ F , we have that

LPV− � � → F r.

Since LPV− � �
LPV− � F r.

Hence if S4V− � F there is a normal realisation r such that LPV− � F r.
10 The procedure described in [2] gives an exponential increase in the size of the deriva-

tion of the desired F r. [7] describes a modification of the procedure which gives only
a polynomial increase.
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Theorem 7 (S4V Realisation). If S4V � F then LPV � F r for some normal
realisation r.

Proof. We simply add the following case to Step 3 of Theorem 6. The rest is the
same.

Case (Sequent G is the axiom: �V⊥ ⇒).

Gr = ¬x:V⊥,

which is obviously derivable in LPV.

We are finally in a position to show that the systems of intuitionistic epistemic
logic, IEL− and IEL, do indeed have an arithmetical interpretation.

Definition 18. A formula of IEL− or IEL is called proof realisable if (tr(F ))r

is LPV−, respectively LPV, valid under some normal realisation r.

It follows that IEL− and IEL are sound with respect to proof realisability.

Theorem 8. If IEL−, IEL � F then F is proof realisable.

Proof. By Theorem 1 if IEL−, IEL � F then S4V−,S4V � tr(F ), respectively,
and by Theorems 6 and 7 if S4V−,S4V � tr(F ) then LPV−, LPV � (tr(F ))r

respectively.

By Theorems 3 and 4 LPV− and LPV are sound with respect to their arith-
metical interpretation, and hence by Theorem8 so are IEL− and IEL.

8 Conclusion

Intuitionistic epistemic logic has an arithmetical interpretation, hence an inter-
pretation in keeping with its intended BHK reading. Naturally verification in
Peano Arithmetic, as outlined above, is not the only interpretation of verifi-
cation for which the principles of intuitionistic epistemic logic are valid. IEL−

and IEL may be interpreted as logics of the interaction between conclusive and
non-conclusive evidence, e.g. mathematical proof vs. experimental confirmation,
or observation vs. testimony. The question about exact interpretations for other
intuitive readings of these logics is left for further investigation.
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11. Gödel, K.: An interpretation of the intuitionistic propositional calculus. In:

Feferman, S., Dawson, J.W., Goldfarb, W., Parsons, C., Solovay, R.M. (eds.) Col-
lected Works, vol. 1, pp. 301–303. Oxford University Press, Oxford (1933)

12. McKinsey, J.C.C., Tarski, A.: Some theorems about the sentential
calculi of lewis and heyting. J. Symbolic Logic 13(1), 1–15 (1948).
http://www.jstor.org/stable/2268135

13. Mints, G.: A Short Introduction to Intuitionistic Logic. Springer, Berlin (2000)
14. Protopopescu, T.: Intuitionistic epistemology and modal logics of verification. In:

van der Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394,
pp. 295–307. Springer, Heidelberg (2015)

15. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press, Cambridge (2000)

http://arxiv.org/abs/1406.1582
http://dx.doi.org/10.1016/j.tcs.2006.03.010
http://www.jstor.org/stable/2268135


Definability in First Order Theories
of Graph Orderings

R. Ramanujam and R.S. Thinniyam(B)

The Institute of Mathematical Sciences, Chennai 600113, India
{jam,thinniyam}@imsc.res.in

Abstract. We study definability in the first order theory of graph order:
that is, the set of all simple finite graphs ordered by either the minor, sub-
graph or induced subgraph relation. We show that natural graph families
like cycles and trees are definable, as also notions like connectivity, max-
imum degree etc. This naturally comes with a price: bi-interpretability
with arithmetic. We discuss implications for formalizing statements of
graph theory in such theories of order.

Keywords: Graphs · Partial order · Logical theory · Definability

1 Introduction

Reasoning about graphs is a central occupation in computing science, since
graphs are used to model many computational problems such as those in social
networks, communication etc. In many cases, a single fixed graph is considered
and some property has to be verified (e.g. bipartiteness) or some numerical para-
meter computed(e.g. independence number). However, as the complexity of the
query increases, it can often be naturally recast as a question of relationships
between graphs. For instance, asking if a graph is Hamiltonian is the same as
looking for a cycle of the same order as the graph which occurs as a subgraph;
asking for a k-colouring is the same as asking for a homomorphism of the graph
to the k-clique. Studying the nature of relations on the set of all graphs has led to
results such as the Graph Minor Theorem [18], whose algorithmic implications
and influence on computer science cannot be overstated [1,2].

Consider the natural relations on graphs given by subgraph, induced sub-
graph and minor: these form partial orders over the set of all (simple, finite)
graphs with interesting properties (see Fig. 1). Logical statements about these
partial orders refer to graph families, and typically those given by some ‘first
order’ closure condition, such as including/avoiding specific characteristics. Such
statements are of immense interest to the theory of algorithms, motivating the
logical study of graph order, and first order theories are the natural candidates
for such a study.

Model theorists have taken up such studies. In a series of papers, Jezek
and McKenzie [8–11] study the first order definability in substructure orderings
on various finite ordered structures such as lattices, semilattices etc. Such a
c© Springer International Publishing Switzerland 2016
S. Artemov and A. Nerode (Eds.): LFCS 2016, LNCS 9537, pp. 331–348, 2016.
DOI: 10.1007/978-3-319-27683-0 23
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study is indeed foundational, and yet, it is of interest to study specific order
structures on graphs to exploit their additional properties (if any). Indeed, the
substructure order over graphs corresponds to the induced subgraph order, and
this was investigated by Wires [19]. However, subgraph and minor orders are less
amenable as substructure and hence deserve a closer look, which is the attempt
initiated here. In the setting of directed graphs, the subdigraph order has been
investigated by Kunos [16] recently. Work on word orders has been carried out
by Kuske [17] as well as Kudinov et al. [14,15]. Other recent work on theories of
classes of structures such as boolean algebras, linear orders and groups by Kach
and Montalban [12] are different in spirit to ours, since they consider additive
operations and the underlying structures may be infinite.

Our attempt here is not to study one graph order but rather to highlight
the subtle differences in definability between different graph orders even while
showing that they are all powerful enough to encode first order arithmetic. In
fact, the subgraph and induced subgraph order are shown to be bi-interpretable
with first order arithmetic. Many predicates which are interesting from a graph
theoretic perspective such as connectivity, regularity, etc. are found to be first
order definable, enabling us to articulate classical theorems of graph theory in
such order theories.

We suggest that this paper as well as the related work mentioned are merely
first steps of a larger programme of research, since we lack the tools as yet to
address many related questions regarding indefinability, succinctness, algorith-
mic solutions, and so on.

The paper is organised as follows. After setting up the preliminaries, we study
the subgraph order and show that certain numerical parameters such as order
of a graph, commonly encountered graph families such as paths, cycles etc. and
interesting graph predicates such as connectivity can be defined. We then show
how such results can be lifted to the minor order. The machinery developed is
used to show the bi-interpretability with arithmetic of the induced subgraph
and subgraph orders and to interpret arithmetic in the minor order. Finally we
display some interesting graph theoretical statements which can be stated using
graph orders and discuss the research programme ahead.

2 Preliminaries

For the standard syntax and semantics of first order logic, we refer the reader
to Enderton [4].

Definition 1 (Definability of Constants). Fix a first order language L. Let a be
an element of the domain of an L structure A. We say that a is definable in A
if there exists an L formula φa(x) in one free variable such that A, a � φa(x)
and for any a′ �= a in the domain of A, A, a′

� φa(x).

We use a as a constant symbol representing the domain element a with the
understanding that an equivalent formula can be written without the use of this
constant symbol.
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Fig. 1. The first few layers of the subgraph order.

Definition 2 (Covering Relation of a Poset). Given an element x of a poset
(E,≤), y is called an upper cover of x iff x < y and there exists no element z
of E such that x < z < y.
Similarly y is called a lower cover of x iff y < x and there exists no element z
of E such that y < z < x.

Definition 3 (Graph Partial Orders). Consider the following operations on
graphs:

– A1. Deletion of a vertex (and all the edges incident on that vertex).
– A2. Deletion of an edge.
– A3. Contraction of an edge (given an edge e = uv, delete both u and v and

introduce a new vertex w not in V (g); connect all vertices which were adjacent
to either u or v to w).

For graphs g and g′, g can be obtained from g′ by any finite sequence of the
operations:

1. A1, A2 and A3 iff g ≤m g′(g is a minor of g′).
2. A1 and A2 iff g ≤s g′(g is a subgraph of g′).
3. A1 iff g ≤i g′(g is an induced subgraph of g′).

Let G denote the set of all simple graphs. We consider the base first order lan-
guage L0 which has only the binary predicate symbol ≤ and an extension L1

that extends L0 with a constant symbol P3 which stands for the path on three
vertices. The latter is used in the case of the induced subgraph order in order to
break the symmetry imposed by the automorphism which takes every graph to
its complement.
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Definition 4 (Graph Structures). We denote the first order theories of the sub-
graph and minor orders by L0 structures (G,≤s) and(G,≤m) respectively; and
the induced subgraph order by the L1 structure (G,≤i, P3).

Notation: We use the letters x, y, z to denote variables representing graphs in
formulas, u, v to represent nodes of a graph, e to represent the edge of a graph,
g, h to represent graphs, F ,G to represent families of graphs. We write uv to
denote the edge joining nodes u and v. We will denote by Ni,Ki, Ci, Si, Pi the
graph consisting of i isolated vertices, the i-clique, the cycle on i vertices, the star
on i vertices and the path on i vertices respectively (Fig. 2); and by N ,K, C,S,P
the corresponding families of isolated vertices, cliques, cycles, stars and paths.
F , T represent forests and trees respectively. We will also on occasion, refer to
certain fixed graphs or graph families by descriptive names (see Fig. 4).

k, l,m, n are used for natural numbers (also on occasion, members of the N
family). All subscript or superscript variants such as x′, xi, etc. will be used to
denote the same kind of object.

Given a graph g, V (g) stands for the vertex set of g, E(g) stands for the edge
set of g, |g| stands for the number of vertices of g (also called the order of g) and
|g|gr stands for the graph consisting of only isolated vertices which has the same
number of vertices as g. ||g|| stands for the number of edges of g, also called the
size of g. Given graphs g and h, g ∪ h stands for the disjoint union of g and h.

N5 P5 C5 K5 S5

Fig. 2. Isolated points, path, cycle, clique and star of order 5 from left to right.

3 Definability in the Subgraph Order

We will take up definability in the subgraph order first. The defining formulae
have been chosen such that most of them carry over in a straightforward way to
the minor order. For a few predicates, significant modifications are required.

Constants, Covers and Cardinality

Lemma 1. The upper and lower covering relations, the order of a graph, the
family N and the graphs N1,K2,K3, S4, P4 are definable in subgraph.

The upper and lower covering relations for subgraph can immediately be
defined:
ucs(x, y) iff x is an upper cover of y: ucs(x, y) := y <s x ∧ ¬∃z y <s z <s x
lcs(x, y) iff x is a lower cover of y: lcs(x, y) := x <s y ∧ ¬∃z x <s z <s y
Next we show that certain graphs in the first few layers of the subgraph order
are definable. Refering to Fig. 1, the following formulae can easily be verified:
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1. ∅(x) := ∀y x ≤s y
2. N1(x) := ucs(x, ∅); N2(x) := ucs(x,N1)
3. K2(x) := ucs(x,N2) ∧ ∃y ucs(y, x) ∧ ∀z ucs(z, x) ⊃ z = y
4. N3(x) := ucs(x,N2) ∧ x �= K2

5. K2N1(x) := ucs(x,K2); K2N2(x) := ucs(x,K2N1) ∧ ucs(x,N3)
6. P3(x) := ∃!y ucs(x, y)∧y = K2N1 (where ∃! is short for there exists unique)
7. P3N1(x) := ucs(x, P3)∧ucs(x,K2N2) ∧∀y ucs(x, y) ⊃ (y = P3 ∨ y = K2N2)
8. S4(x) := ucs(x, P3N1) ∧ ∀y ucs(x, y) ⊃ y = P3N1

9. K3(x) := ∃!y lcs(y, x) ∧ y = P3

10. P4(x) := ucs(x, P3N1) ∧ x �= S4

We note that if a family of totally ordered graphs is definable, then every member
is definable as a constant by repeated use of the covering relation.
The family of isolated points is now easily seen to be definable via: N (x) :=
K2 �s x. In addition, using the family N as a “yardstick”, we can capture the
cardinality (order) of a graph.
order(n, x) iff n ∈ N and |x| = |n|:
order(n, x) := N (n) ∧ ∀m (N (m) ∧ m ≤s x) ⊃ m ≤s n.

For definable numerical predicates such as cardinality, we will simply use
them as functions instead of predicates to simplify notation from here on i.e.
|x|gr will denote the member of N whose order is the same as that of x.

Graph Families

Theorem 1. The families K,P, C,F , T ,S are definable using subgraph.

Cliques: Any graph to which an edge can be added contains at least two upper
covers. The unique upper cover of a clique is formed by adding an isolated point
to it. K(x) := ∃!y ucs(y, x).

Paths
In order to define paths, we need to define a few additional families :

1. Disjoint unions of paths and cycles (denoted pac)
2. Disjoint unions of cycles i.e. sums of cycles (denoted soc)
3. Disjoint unions of paths i.e. forest of paths(denoted fop)

Assuming these, we can define paths :
P(x) := fop(x) ∧ ∀y |x|gr = |y|gr ∧ fop(y) ⊃ y ≤s x.

Out of all the fops of the same order n, the Pn forms the maximum element.
Clearly by adding appropriate edges to a fop of the same order, one can form
Pn. Adding any more edges to Pn gives a non-fop.

A graph is a disjoint union of paths and cycles iff it has maximum degree at
most two: pac(x) := S4 �s x.

Assuming soc, fop can be defined: fop(x) := pac(x) ∧ (∀y soc(y) ⊃ y �s x).
if: x is clearly a pac. Since x does not have any cycles as subgraph, it cannot
have any soc as a subgraph.
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only if: Let x = c1 ∪ c2 ∪ ... ∪ cn where ci is either a path or a cycle for all i.
Suppose there is an i with ci cycle. Then clearly ci ≤s x but ci is also a soc,
which is a contradiction. Hence all components are paths and x is a fop.

It is only left to define disjoint unions (sums) of cycles i.e. soc (Fig. 3):

g1 g2 g3

g4g5g6

Fig. 3. g1, g2, g3, g4, g5, g6 all pac, only g2, g5, g6 soc’, only g5 soc.

soc(x) =soc′(x) ∧ ∀y (ucs(y, x) ∧ pac(y)) ⊃ soc′(y)
where

soc′(x) :=x �= ∅ ∧ pac(x) ∧ ∀y (|y|gr = |x|gr ∧ pac(y)) ⊃ ¬x <s y

Claim 1. soc′(x) iff every component of x is a cycle, N1 or K2 and x contains
at most one copy of N1 or one copy of K2 but not both and x is not the empty
graph.

Proof. if: Clearly x is a pac. Suppose there exists a pac y of the same order as x
and x <s y. We can obtain y from x by addition of edges. But addition of any
edge would introduce a degree three node, thus such a y cannot exist.

only if: Let x = c1 ∪ c2 ∪ ... ∪ cn where ci is either a cycle or a path. Suppose
there is an i such that ci is a path of order at least three. Let c′

i be the cycle
formed by joining the ends of ci. Now x′ = c1 ∪ ...ci−1 ∪ c′

i ∪ ci+1... ∪ cn is also
a pac, |y| = |x| and x can obtained from y by deleting the newly added edge to
get ci from c′

i. Thus no path of length more than one can exist. Similarly, we can
obtain a contradiction in the following cases by appropriately constructing x′:

1. There are two copies of K2 in x. Join the two copies end to end to form a
path of length three, to get x′.
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2. There are two copies of N1 in x. Join the copies by an edge to get x′.
3. There is a K2 and an N1 as components in x. Join N1 by an edge to K2 to

get a path of length two, to get x′. �
Now we show the correctness of soc(x).

if: Clearly x is a soc′. The only upper cover of x which is a pac is x ∪ N1 since
adding any more edges would lead to a degree three node. x ∪ N1 is a soc′.

only if: Let x = c1 ∪ c2 ∪ ... ∪ cn and x is a soc′. Suppose there is i such that
ci is K2. Let x′ = x ∪ N1. x′ is an upper cover of x, is a pac but is not a soc′

because it has an N1 and a K2 as components. Similarly we can rule out N1 as
a component of x.

Cycles, Forests, Trees, Stars

C(x) :=pac(x) ∧ ∃y P(y) ∧ |x|gr = |y|gr ∧ ucs(x, y)
forest(x) :=∀y C(y) ⊃ y �s x

T (x) :=forest(x) ∧ ∀y (forest(y) ∧ |x|gr = |y|gr) ⊃ ¬x <s y

S(x) :=T (x) ∧ P4 �s x

It is clear that by deleting any edge from a cycle, we get a path which is a lower
cover of the same order.

Conversely, consider any upper cover of a path with the same order. Adding
an edge which joins the degree one vertices of the path gives a cycle, but adding
an edge any where else creates a degree three vertex, which violates the condition
that x is a pac. Thus only a cycle fulfills all the conditions.

A forest is a graph which contains no cycles. Of all forests with the same
order, a tree is a maximal element since adding another edge gives a cycle.
A non-tree forest can be made into a tree of same order by adding appropriate
edges. A star is a tree which does not contain a path on four vertices as subgraph.
Conversely, consider any tree with longest path on at most three vertices. Any
other vertex must be connected to the midpoint of this longest path, thus it is
a star.

Graph Predicates

Theorem 2. Connectivity, maximum degree and maximum path length are
definable in subgraph.

Connectivity

conn(x) := ∃y T (y) ∧ y ≤s x ∧ |x|gr = |y|gr
A graph is connected iff it has a spanning tree.

Maximum path
maxPath(n, x) iff n ∈ N and the largest path which is a subgraph of x is Pn.

maxPath(n, x) :=N (n) ∧ ∃y P(y) ∧ y ≤s x ∧ |y|gr = n ∧
∀z (P(z) ∧ z ≤s x) ⊃ z ≤s y
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Maximum degree
maxDeg(n, x) iff n ∈ N and the maximum degree of x is |n|.

maxDeg(n, x) :=N (n) ∧ ∃y S(y) ∧ y ≤s x ∧ ucs(|y|gr, n) ∧
∀z (S(z) ∧ z ≤s x) ⊃ z ≤s y

The maximum degree of x is one less than the order of the largest star which is
a subgraph of x.

4 Definability in the Minor Order

Note that the minor order is identical to subgraph in an initial segment; the
first additional relation which occurs in cycles and forests is shown in Fig. 4.
This observation helps us reuse some of the machinery already developed for
subgraph.

Observation 1. The downclosure of S5 and downclosure of K3 are identical
under subgraph and minor.

Observation 2. If |x| = |y| then x ≤s y iff x ≤m y and ucs(x, y) iff ucm(x, y).
Since the contraction operation reduces the number of vertices, restricting the
orders to tuples of the same cardinality makes minor and subgraph equivalent.

double3starS5 K3 C4

Fig. 4. First difference between subgraph and minor.

We also have the following lemma on when the two orders can be taken to
be equivalent.

Lemma 2. Let xn be an tree with at most one degree 3 node and no node of
degree 4 or more. Then for any other graph x0, xn ≤m x0 iff xn ≤s x0.

Proof. It suffices to prove the only if direction since any subgraph is also a minor.
We observe that there is a normal form for any sequence of minor operations.

Let xn ≤m x0 via a sequence of minor operations o1, o2, ..., on, then there exists
a series of minor operations o′

1, ..., o
′
m on x0 resulting in xn such that no deletion

operation occurs after a contraction operation and the number of contraction
operations in the sequence o′

1, ..., o
′
m is at most the number of contractions in

the original sequence o1, ..., on.
The result is proved by induction on the number of contraction operations

in transforming x0 to xn. The details are given in the appendix. �
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The lemma and observations above help us transfer some results on defin-
ability from subgraph and minor order, simply by replacing the subgraph order
by the minor order in the defining formulae.

Lemma 3. The upper and lower covering relations, the order of a graph, the
family N and the graphs N1,K2,K3, S4 are definable in minor order.

Theorem 3. The families K,P, C,F , T ,S are definable using minor.

Firstly note that a graph contains a cycle as subgraph iff it contains K3 as a minor
(by contraction along the cycle). Hence forests are defined by: F(x) := K3 �m x.

Observe that disjoint unions of paths and cycles (pac) can be defined by:
pac(x) := S4 �m x. (By Lemma 2, we replace subgraph by minor in the defining
formula). For forest of paths (fop), note that we can restrict a pac to be a forest,
giving a fop: fop(x) := F(x) ∧ pac(x). Now, using Observation 2, we can
immediately get paths, cliques, cycles and trees; and stars by Lemma 2:

P(x) :=fop(x) ∧ ∀y |x|gr = |y|gr ∧ fop(y) ⊃ y ≤m x

K(x) :=∀y |y|gr = |x|gr ⊃ y ≤m x

C(x) :=pac(x) ∧ ∃y P(y) ∧ |x|gr = |y|gr ∧ ucm(x, y)
T (x) :=forest(x) ∧ ∀y (forest(y) ∧ |x|gr = |y|gr) ⊃ ¬x <m y

S(x) :=T (x) ∧ P4 �m x

Theorem 4. Connectivity, maximum degree and maximum path length are
definable in minor.

conn(x) :=∃y T (y) ∧ y ≤m x ∧ |x|gr = |y|gr
maxPath(n, x) :=N (n) ∧ ∃y P(y) ∧ y ≤m x ∧ |y|gr = n ∧

∀z (P(z) ∧ z ≤m x) ⊃ z ≤m y

maxDeg(n, x) iff the maximum degree of x is |n|.
Here we need to do some more work since the largest star which is a minor
of x may be much larger than the maximum degree of the graph. The slightly
involved construction is given in the appendix.

5 Arithmetic in Graph Orders

We define the ternary predicate version of arithmetic (N, plus, times) in the
subgraph and minor orders. In order to do so, we need the following formulae:
N(g) iff g is a graph representing a number in our chosen representation. Let us
denote by ng the number denoted by g.
plus(x, y, z) iff N(x), N(y), N(z) hold and nx + ny = nz is true.
times(x, y, z) iff N(x), N(y), N(z) hold and nx × ny = nz is true.

As can be gathered from the notation, our choice of (the unique) represen-
tation for natural number i is Ni, and from Lemmas 1 and 3, this family is
definable in subgraph and minor.
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u1

u2uk-2

v1
v i

v2
v l

v0

v1 v2
vn

v11

v12 v1(n-1)

v21 v22 v2(n-1)

vn1 vn2 vn(n-1)

Fig. 5. Gadget graphs for addition and squaring.

To show the definability of the plus and times predicates, we will write out
formulae using subgraph, but by Lemma 2 they can be transferred to minor.

Addition

plus(k, l,m) :=N (k) ∧ N (l) ∧ N (m) ∧
(initial(k, l,m) ∨ (N3 ≤s k ∧ N3 ≤s l ∧

∃x starTail(k, l, x) ∧ plus2(m,x))); where
starTail(k, l, x) :=starTail′(k, l, x) ∧ ∀x′ starTail′(k, l, x′) ⊃ |x|gr ≤s |x′|gr
starTail′(k, l, x) :=T (x) ∧ maxDeg(x) = k ∧ maxPath(x) = l

plus2(m,x) :=∃m′ ucs(|m′|gr, x) ∧ ucs(m, |m′|gr)
initial(k, l,m) :=(k = ∅ ∧ m = l) ∨ (l = ∅ ∧ m = k)∨

(k = N1 ∧ ucs(m, l)) ∨ (l = N1 ∧ ucs(m, k))∨
(k = N2 ∧ ∃m′ ucs(|m′|gr, l) ∧ ucs(m, |m′|gr))∨
(l = N2 ∧ ∃m′ ucs(|m′|gr, k) ∧ ucs(m, |m′|gr))

When either k or l are strictly less than two, we hardcode the function value
using initial.

When both are at least three, consider a tree with maximum degree k and
maximum path l. A tree of least order with these properties is formed from a
path by choosing some degree two vertex of the path vi, adding k−2 new vertices
u1, u2, ..., uk−2 and adding the edges u1vi, u2vi, ..., uk−2vi (see Fig. 5). The order
of this tree is k + l − 2. This is captured in the formula starTail and in plus2
we add two to its cardinality to get k + l.

Multiplication
We will show instead that squaring is definable, multiplication is easily obtained
via the formula

(n1 + n2)2 = n2
1 + n2

2 + 2 × n1 × n2

square(n,m) iff n,m ∈ N and |m| = |n|2

square(n,m) :=N (n) ∧ N (m) ∧ ∃z ntree(n, z) ∧ ucs(|z|gr,m) ∧
∀y ntree(n, y) ⊃ |y|gr ≤s |z|gr; where

ntree(n, z) :=tree(z) ∧ maxDeg(z) = n ∧ P6 �s z
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There exists a tree t of maximum order whose maximum degree is n and maxi-
mum path is P5. To see that t has order n2 + 1, observe that the tree has depth
three (Fig. 5) and the total number of vertices is 1 + n + n × (n − 1) = 1 + n2.

Thus by Lemmas 1, 3 and the definability of addition and multiplication
shown above we have :

Theorem 5. First order arithmetic is definable in the subgraph and minor
orders.

6 Encoding Graph Orders in Arithmetic

We will show that the structures (G,≤s) and (G,≤i, P3) can be interpreted in
first order arithmetic. In order to do this, we define the following formulae:

1. isGraph(x) iff x is a number which represents a graph.
2. sameGraph(x, y) iff x and y are numbers which represent the same graph.
3. subGraph(x, y) iff the graph represented by x is a subgraph of the graph

represented by y.
4. inSubGraph(x, y) iff the graph represented by x is an induced subgraph of

the graph represented by y.
5. P3(x) iff x represents the graph P3.

Lemma 4 (Definable Arithmetical Predicates). The following predicates
are definable in first order arithmetic (defining formulae in appendix):

1. bit(i, x) iff the ith bit of the binary representation of x is a 1.
2. length(n, x) iff the length of the binary representation of x is n. We will

denote this unique n by |x|.
3. pow2(i, x) iff x = 2i.
4. rem(n, x, y) iff n is the remainder when x is divided by y; denoted n =

rem(x, y).
5. div(n, x, y) iff n is the quotient when x is divided by y; denoted n = x/y.
6. nchoose2(n, x) iff x =

(
n
2

)
where

(
n
2

)
= n × (n − 1)/2.

6.1 Encoding Graphs

Any graph on n vertices has
(
n
2

)
possible pairs of vertices. By fixing an appro-

priate order on these pairs, we may interpret any number whose binary repre-
sentation has

(
n
2

)
+1 bits as a graph on n vertices (we ignore the leading 1 since

every binary representation has to start with a 1 except for the number 0). Let
g be a graph on vertices {v1, v2, ..., vn}. We define the ordering ≤e on tuples of
vertices:
For i < j, i′ < j′, vivj ≤e vi′vj′ iff i < i′, or i = i′ and j ≤ j′.
Writing down the tuples in descending order, we get
vnvn−1, vnvn−2, vn−1vn−2, vnvn−3, ..., v3v1, v2v1. If we now replace the tuples by
0’s for non-edges of g and 1’s for edges and prefix a 1 to this string, we get a
number m with bit length

(
n
2

)
+ 1 which we say represents the (isomorphism
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class of) graph g. Note that as presented, there are multiple numbers which
represent the same graph (upto isomorphism). We could choose the smallest of
these to make the representation unique, instead we will stop at showing that
there is a formula which identifies isomorphic graphs. We choose for the sake of
completeness 0 as the unique number representing the empty graph. We denote
the graph represented by x by gx.

isGraph(x) := x = 0 ∨ ∃n x = (1 +
(

n

2

)

)

Since we have arithmetical predicates available, we can define a formula for
the order of a graph. Then to assert that there is an edge from vi to vj in x (where
i < j), note that the tuple {vi, vj} occurs at bit position (2ni−2n−i2−i+2j)/2 =
n(n−1)/2−(n−i)(n−i+1)/2+j−i. We can further use arithmetical predicates
to define formulas such as:
perm(x, n) iff x represents a permutation on [n].
applyperm(x, i, j, n) iff x is a permutation on [n] and sends i to j for i, j ∈ [n].

We can then define the isomorphism of graphs:

sameGraph(x, y) := ∃n |x| = |y| = 1 +
(

n

2

)

∧ ∃z perm(z, n) ∧

∀i ∀j 1 ≤ i < j ≤ n ⊃ (edgeExists(x, i, j) ⇐⇒ (∃i′∃j′ applyPerm(z, i, i′, n)
∧ applyPerm(z, j, j′, n) ∧ edgeExists(y, i′, j′) ))

The formula states that for x and y to represent the same graph, there must exist
a permutation z such that for any tuple {vi, vj} of vertices of x, vivj ∈ E(gx) iff
vz(i)vz(j) ∈ E(gy). Details are given in the appendix.

6.2 Subgraph and Induced Subgraph

subGraph(x, y) iff x, y represent graphs and gx is a subgraph of gy.

subGraph(x, y) := isGraph(x) ∧ isGraph(y) ∧ |gx| ≤ |gy| ∧
∃z sameGraph(y, z) ∧ ∀k 1 ≤ k ≤ |x| ⊃ (bit(k, x) ⊃ bit(k + |y| − |z|, z))

If x on vertices u1, u2, ..., un is a subgraph of y on vertices v1, v2, ..., vm without
regard for vertices, then there is a map f : V (x) → V (y) which witnesses it.
Rename the vertices of y to get z by the map which sends f(ui) for any u ∈ V (x)
to vm−n+i and fixes the other vertices. Then x is a subgraph of the graph on
vm, vm−1..., vm−n+1 when considered with the labels.

Conversely, if the formula is true, the sameGraph predicate gives us a wit-
nessing permutation using which we can define the map witnessing that x is a
subgraph of y.
We can define induced subgraph by a small modification in the subgraph formula
as follows:

inSubGraph(x, y) := isGraph(x) ∧ isGraph(y) ∧ |gx| ≤ |gy| ∧
∃z sameGraph(y, z) ∧ ∀k 1 ≤ k ≤ |x| ⊃ (bit(k, x) ⇐⇒ bit(k, z))
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Defining the constant P3

The formula P3(x) can be easily defined as the disjunction over the formulae
x = c where c is a number representing P3 since there are only finitely many of
them. Thus we have:

Theorem 6. The structures (G,≤s) and (G,≤i, P3) are definable in (N,+,×).

Theorem 7 (Wires [19]). Arithmetic is definable in (G,≤i, P3).

Combining the above result with Theorems 5 and 6 we have:

Theorem 8. The structures (G,≤s) and (G,≤i, P3) are bi-interpretable with
first order arithmetic. The structure (G,≤m) can encode (N, plus, times).

7 Discussion and Future Work

7.1 Decidability and Descriptive Complexity

An obvious corollary of our results is that the theories of the orders consid-
ered are undecidable, but it is natural to ask what the decidable fragments are.
One may consider various restrictions: syntactic ones such as the ∀∗∃∗ fragment,
subclasses of graphs such as trees (T ,≤s) or restrict the order e.g. theory of
the covering relation Th(G, ucs). There is much work on general frameworks
for graph theory, especially extremal graph theory, whose focus is on homomor-
phisms. In particular Hatami’s paper [6] on the undecidability of inequalities over
homomorphism densities underlines the difficulty of answering general questions
about graphs. If our interest is in only obtaining undecidability results, ideas of
recursive inseparability and other techniques (see [5]) may be more apt.

We also note that there is a large body of work on descriptive complexity [7],
which takes the graph-as-a-model point of view. How definable families in our
approach compare with the above is a matter of interest. In particular, every
constant can be defined in the subgraph order using the methods of Wires [19],
just as they can in descriptive complexity.

7.2 Extensions, Interdefinability and Graph Theory

We do not know if subgraph is definable using minor or vice versa. However, if
we add the predicate sameSize(x, y) which stands for x and y have the same
number of edges, we can define subgraph using minor as shown below:

Suppose that x is a subgraph of y. Then we can think of y as being built
from x in two steps. In the first step, we add to x a number of isolated points
to give x′ such that |x′|gr = |y|gr. In the second step, we only add extra edges
to x′ to get y.
We can formalize the two step construction as follows:

x ≤s y :=∃x′ vertdesc(x′, x) ∧ edgedesc(y, x′); where
edgedesc(x, y) :=y ≤m x ∧ |x|gr = |y|gr
vertdesc(x, y) :=y ≤m x ∧ samesize(x, y)
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Such extensions also have serious implications for the kind of graph theoretic
statements that can be made. This is because, though the structure of graph
orders is rich, they have limited access to the “inner structure” of a graph. For
instance, it is not clear how minimum degree of a graph can be defined using
graph orders. We already know that we can do arithmetic over the order of a
graph. By adding the predicate sameSize(x, y), we can do arithmetic over the
size. Consequently, concepts of minimum and average degree can be expressed
and theorems about them written in the extended language. We can capture the
size of a graph using sameSize:

||x||gr = n := N (n) ∧ ∃y C(y) |y|gr = n ∧ sameSize(x, y)

Minimum degree of a graph

minDeg(x, y) :=N (x) ∧ ∃z deleteNeighbours(y, z)
∧ ∀z′ deleteNeighbours(y, z′) ⊃ ||z′||gr ≤s ||z||gr
∧ x = ||z||gr; where

deleteNeighbours(y, z) :=z ≤s y ∧ hasIso(z) ∧ |z|gr = |y|gr
hasIso(x) :=∃y ucs(x, y) ∧ |y|gr <s |x|gr

Average degree of a graph (integer ceiling)

�AvgDeg(x, y)� :=N (x) ∧ (||y||gr ≤s x × |y|gr)
∧ ∀z (N (z) ∧ z <s x) ⊃ (z × |y|gr <s ||y||gr)

We can also define �AvgDeg(x, y)� i.e. the floor instead of the ceiling defined
above. Modifying the definition above by dividing by two gives us floor and ceil-
ing versions of number of edges per vertex i.e. �ε(x, y)� and �ε(x, y)� respectively.

Theorem 9 (Diestel, Proposition 1.2.2 [3]). Every graph g with at least one
edge has a subgraph g′ with δ(g′) > �ε(g′)� ≥ �ε(g)� (where δ denotes minimum
degree):

∀x ¬N (x) ⊃ ∃y y ≤s x ∧ �ε(y)� <s minDeg(y) ∧ �ε(x)� ≤s �ε(y)�

7.3 Differences in Definability

From the work of Wires [19] it is known that all the graph families we defined
in Lemmas 1 and 3 and many more are definable in (G,≤i, P3). Thus they are
definable in all three orders. But as we saw, while maximum degree was definable
easily in subgraph, it takes more work in minor. Similarly, though cardinality
is trivial in minor and subgraph, it seems to take much more work to define
in induced subgraph. On the other hand, here is a predicate definable easily in
induced minor which we do not know how to define in the other two :
α(n, x) iff n ∈ N and |n| is the independence number of x.

α(n, x) := N (n) ∧ n ≤i x ∧ ∀y (N (y) ∧ y ≤i x) ⊃ y ≤i n
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Perhaps the most interesting direction of work lies in pinning down these dif-
ferences, especially as pertains to the definability of predicates which are impor-
tant from the point of view of graph theory and to determine what part of
the“inner structure” of graphs can be determined by their relationships with
other graphs. For this, we need to develop tools to prove indefinability, which is
a challenging task.

Appendix

Proof of Lemma 2

Lemma 2: Let xn be an tree with at most one degree 3 node and no node of
degree 4 or more. Then for any other graph x0, xn ≤m x0 iff xn ≤s x0.

We prove the result by induction on the number of contraction operations in
transforming x0 to xn.
Base Case: There are no contraction operations, there is nothing to be done.

For the induction step there are two cases we consider:

Case 1 : xn has no degree 3 node. Let xn be a path u0, u1, ..., um. Let o1, .., on
be the sequence of minor operations in normal form with xi being obtained
from xi−1 via operation oi. on must be a contraction operation (else all opera-
tions are deletions and we are done). Therefore xn−1 is either a path of length
m + 1 or a graph such that V (xn−1) = V (xn) ∪ {u′} and there exists an i with
E(xn−1) = E(xn)∪{u′ui} or E(xn−1) = E(xn)∪{u′ui, u

′ui+1}. In all cases, we
can delete an endpoint of xn−1 or u′ respectively in order to obtain xn. Thus
there is a sequence o1, .., on−1, o

′
n of operations (o′

n is a deletion) to obtain xn

from x0. Since this sequence has a smaller number of contractions, by induction
hypothesis, xn is a subgraph of x0.

Case 2 : xn has exactly one degree three node. Let xn consist of a degree 3 node
u with paths p1, p2, p3. As before, consider the sequence of minor operations. In
one case xn−1 is a graph with a degree 3 node attached to three paths exactly
one of which has length one more than previously. We can delete the end point
of the appropriate path to get xn from xn−1. Another possibility is that xn−1 is
a graph with a vertex u′ /∈ V (xn) such that u′ is attached to either one or two
adjacent points of one of the paths p1, p2, p3. As before, we can delete u′ to get
xn from xn−1. Then by induction hypothesis xn is a subgraph of xn−1.

Proof of Maximum Degree Definability in Theorem 4

Theorem 4: Connectivity, maximum degree and maximum path length are de-
finable in minor.

In order to apply observation 2, we construct the following family:
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S∪N (x) iff x is formed by addition of some arbitrary number of isolated vertices
to a star.

S ∪ N (x) :=F(x) ∧ ∃y hasStarComp(y, x) ∧ onlystar(x, y)
where

hasStarComp(y, x) :=S(y) ∧ y ≤m x ∧ ∀z conn(z) ∧ z ≤m x ⊃ z ≤m y

onlyStar(x, y) :=∀x′ F(x′) ∧ |x′|gr = |x|gr ∧ ucm(x′, x) ⊃
∀y′ (conn(y′) ∧ y′ ≤m x′) ⊃ ucm(|y′|gr, |y|gr)

onlyStarComp asserts that y is a star minor of x and in addition, every con-
nected minor of x is also a minor of y. To fulfill this condition, x has to contain
y as a connected component.

onlyStar asserts that any forest x′ which is formed by adding an edge to x
(by observation 2) has the property that all its connected minors have order one
more than the order of y.

Clearly, any graph formed by adding isolated vertices to a star has these
properties.

S ∪ N subGraph states that there is a subgraph y of x which is a S ∪ N of
same order as x. Note that for Sn ∪ Nm and Sn′ ∪ Nm′ with n + m = n′ + m′,
Sn ∪ Nm ≤m Sn′ ∪ Nm′ iff n ≤ n′. Thus maximal y satisfying the formula
S∪N subGraph contains the largest star occuring as a subgraph of x. We extract
the star from this object to obtain the maximum degree of x.

Proof of Lemma 4

Lemma 4: The following predicates are definable in first order arithmetic:

1. nchoose2(n, x) iff x =
(
n
2

)
where

(
n
2

)
= n × (n − 1)/2.

nchoose2(n, x) := 2 × x + n = n2.

2. div(n, x, y) iff n is the quotient when x is divided by y; denoted n = x/y.
div(n, x, y) := ∃z x = y × n + z ∧ z < y

3. rem(n, x, y) iff n is the remainder when x is divided by y; denoted n =
rem(x, y). rem(n, x, y) := ∃z x = y × z + n ∧ n < y
We note that the exponentiation relation xy = z is known to be definable in
arithmetic (see [13]).

4. pow2(i, x) iff x = 2i.
pow2(i, x) := ∃y y = 2 ∧ yi = x

5. bit(i, x) iff the ith bit of the binary representation of x is a 1.
bit(i, x) := rem(x, 2i) = rem(x, 2i−1)

6. length(n, x) iff the length of the binary representation of x is n. We will
denote this unique n by |x|.
length(n, x) := bit(n, x) ∧ ∀n′ n < n′ ⊃ ¬bit(n′, x)
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Details of Subsection 6.1

graphOrder(x, n) iff n ∈ N and the order of x is |n|.
graphOrder(x, n) := isGraph(x) ∧ 2 × |x| = 2 + n × (n − 1)

We will denote by |gx| the order of the graph represented by x.
edgeExists(x, i, j) iff x denotes a graph and vivj ∈ E(gx).

edgeExists(x, i, j) :=∃n graphOrder(x, n) ∧
((1 ≤ i < j ≤ n ∧ bit((2ni − 2n − i2 − i + 2j)/2, x))

∨ (1 ≤ j < i ≤ n ∧ bit((2nj − 2n − j2 − j + 2i)/2, x))

By doing some counting, we can see that the tuple {vi, vj}, i < j occurs at bit
position (2ni − 2n − i2 − i + 2j)/2 = n(n − 1)/2 − (n − i)(n − i + 1)/2 + j − i.

Defining Permutations and Isomorphism. Any permutation of vertices of a ver-
tex labelled graph induces a permutation on the edges of a graph. To identify
all numbers which represent the same graph under our encoding, we will need
to represent permutations on [n] and their actions.

perm(x, n) iff x represents a permutation on [n].

perm(x, n) :=|x| = 1 + n × �log(n)� ∧ ∀i 1 ≤ i ≤ n ∃!j 1 ≤ j ≤ n

i = (rem(x, 2j |n|) − rem(x, 2(j−1) |n|))/2(j−1)|n|

We represent a permutation by a bit string which is of length n × �log(n)� + 1,
note that �log(n)� is the same as |n| i.e. the length of the string n. The most
significant digit is to be ignored, after which every block of �log(n)� bits repre-
sents a number from 1 to n. In addition, every such block must be unique (in
order to guarantee that it is a permutation). The permutation sends i ∈ [n] to
the number represented by the ith block from the left. The formula checks that
every i ∈ [n] is obtained from a unique block j ∈ [n].

applyperm(x, i, j, n) iff x is a permutation on [n] and sends i to j for i, j ∈ [n].

applyperm(x, i, j, n) :=perm(x, n) ∧
(rem(x, 2(n−i+1)|n|) − rem(x, 2(n−i)|n|))/2(n−i)|n| = j

We can now define the isomorphism of graphs:

sameGraph(x, y) := ∃n |x| = |y| = 1 +
(

n

2

)

∧ ∃z perm(z, n) ∧

∀i ∀j 1 ≤ i < j ≤ n ⊃ (edgeExists(x, i, j) ⇐⇒ (∃i′∃j′ applyPerm(z, i, i′, n)
∧ applyPerm(z, j, j′, n) ∧ edgeExists(y, i′, j′) ))
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The formula states that for x and y to represent the same graph, there must exist
a permutation z such that for any tuple {vi, vj} of vertices of x, vivj ∈ E(gx) iff
vz(i)vz(j) ∈ E(gy).
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Abstract. In the formal study of security protocols and access con-
trol systems, fragments of intuitionistic logic play a vital role. These are
required to be efficient, and are typically disjunction-free. In this paper,
we study the complexity of adding disjunction to these subsystems. Our
lower bound results show that very little needs to be added to disjunction
to get co-NP-hardness, while our upper bound results show that even a
system with conjunction, disjunction, and restricted forms of negation
and implication is in co-NP. Our upper bound proofs also suggest para-
meters which we can bound to obtain PTIME algorithms.

Keywords: Intuitionistic logic · Proof theory · Disjunction ·
Complexity

1 Introduction

Intuitionistic logic is a subject with a rich history, with connections to fundamen-
tal aspects of mathematics, philosophy and computer science. What is perhaps
surprising is that it also finds application in such concrete areas of computer
science as system security and communication security in distributed protocols.
Consider the question: given a finite set of formulas X, a formula α in a pos-
itive fragment of some propositional logic, and an intuitionistic proof system
�, does X � α? This sounds arcane, but is of practical importance when X is
a security policy that specifies permissions and α is the assertion of someone
being permitted some action [1,10]. Or it might be the case that X is a set
of terms picked by an eavesdropper watching a channel and α is a term to be
kept secret [8]. Inference in such situations is typically intuitionistic. Consider a
formula A has t for an agent A participating in a cryptographic protocol and a
term t. A different agent B might not be able to assert (A has t) ∨ ¬(A has t),
since it might be that B does not have all the components that go into build-
ing the term t and the system does not allow B to assert anything about t in
such a case. To consider another example, B cannot assert A has t by assuming
¬(A has t) and then deriving a contradiction. To consider a third example, con-
sider a formula A can read f , where A is a user and f is a file. An access control
c© Springer International Publishing Switzerland 2016
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policy may be silent on whether A can read the file or not. Thus the formula
(A can read f) ∨ ¬(A can read f) is not a validity in this system. This allows
the possibility that even though A cannot read file f according to the current
policy, it may be allowed that access in an extension of the policy.

In the applications mentioned above, the complexity of derivability is of prime
importance, since a derivability check is often a fundamental component of more
detailed security structures [6]. These systems are usually disjunction-free, with
a PTIME derivability procedure [2,7,11]. But reasoning about disjunction is also
important for security applications, even though it typically increases the com-
plexity of the derivability problem (see [15], for example). In this paper, we
explore the effect of disjunction on the complexity of various subsystems of intu-
itionistic logic.

The PTIME systems referred to above do not include full implication either.
This is obvious, since it is well-known that the derivability problem for intu-
itionistic logic (and even its implication-only fragment) is PSPACE-complete.1

In this context, [11] considers a restriction of full implication, the so-called primal
implication which is defined by the following rule.

X � β →
X � α → β

In this rule, we have the same set of antecedents (set of formulas to the left �)
both in the premise and conclusion, and this contributes to an efficient solution
to the derivability problem.

We show that when we add disjunction to such efficient systems, derivability
is in co-NP. The results are similar to those in [4], but while the results there are
obtained via a translation to classical logic, we provide an explicit algorithm.
Our focus is on the algorithm itself, which is a general procedure to lift a PTIME
decision procedure for a logic to a co-NP procedure for the same logic with
disjunction. We also provide a modification of the above procedure that runs in
PTIME when we restrict the formulas on which disjunction elimination is applied
in a proof.

We also show that we cannot do better than co-NP for the above logics.
Subsystems involving disjunction are co-NP-hard with such minimal additions
as the elimination rule for implication, or the introduction rule for conjunction.
We also show that we get co-NP-hardness when we consider a system with rules
for disjunction and the elimination rule for negation.

Related Work. As we mentioned earlier, application areas like security typically
work with an intuitionistic system, and the complexity of derivability is impor-
tant in such applications. In the study of cryptographic protocols, the crypto-
graphic primitives are represented as rules in a proof system, following Dolev
and Yao [8]. These logics are typically positive and conjunctive. The derivability

1 From now on, whenever we refer to the complexity of a logic, we implicitly mean the
complexity of the derivability problem for it.
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problem for the basic Dolev-Yao system is in PTIME [16]. Other interesting non-
classical conjunctions like blind pairing can make the problem hard when they
interact distributively with the standard pairing operator [3].

The results reported in this paper are very close to work done in the realm
of authorization logics, specifically primal infon logic and its extensions. It was
shown that primal infon logic is in PTIME [2,11] but adding disjunction makes
the problem co-NP-complete [4]. Specifically, it was shown that a system with
primal implication, conjunction, disjunction and ⊥ is co-NP-hard, using a trans-
lation from classical logic. Our lower bound results can be seen as a refinement
of the result in [4], as we show that disjunction with any one of these other con-
nectives is already co-NP-hard. The upper bound results are also very similar
to those in [4], but we provide an explicit algorithm while the results there are
obtained via a translation to classical logic. Our procedures can be seen as a
way of lifting PTIME decision procedures for local theories [7,14] to co-NP pro-
cedures for the same logics with disjunction. More recently, the complexity of
primal logic with disjunction was studied in further detail in [13], but the proofs
are via semantic methods.

Another important area of study is the disjunction property and its effect
on complexity. A system is said to have the disjunction property if it satisfies the
following condition: whenever X � α ∨ β and X satisfies some extra conditions
(for example, ∨ does not occur in any formula of X), then X � α or X � β. The
disjunction property and its effect on decidability and complexity have been the
subject of study for many years. For example, it has been proved that as long as
any (propositional) logic that extends intuitionistic logic satisfies the disjunction
property, derivability is PSPACE-hard, and otherwise it is in co-NP (see Chap. 18
of [5]). Various other papers also investigate extensions of intuitionistic logic
with the disjunction property [9,12,17]. In contrast to these results, our paper
considers subsystems of intuitionistic logic obtained by restricting implication.
Further, in our paper, the focus is more on the left disjunction property : namely
that X,α ∨ β � δ iff X,α � δ and X,β � δ.

2 Preliminaries

Assume a countably infinite set of atomic propositions P. The set of formulas
Φ is given by

α, β:: = p | ¬α | α ∧ β | α ∨ β | α → β

For a set of operators O, we denote by ΦO the set of all formulas consisting
only of the operators in O. For example, Φ{∨} is the set of all formulas built
only using the ∨ operator, Φ{∨,∧} is the set of all formulas built only using the
∨ and ∧ operators, etc. For ease of notation, we ignore the braces and instead
use Φ∨, Φ∨,∧, etc.

The set of subformulas of a formula α, denoted sf(α), is defined to be the
smallest set S such that: α ∈ S; if ¬β ∈ S, β ∈ S; and if β ∧ γ ∈ S or β ∨ γ ∈ S

or β → γ ∈ S, {β, γ} ⊆ S. For a set X of formulas, sf(X) =
⋃

α∈X
sf(α).
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ax
X, α � α

X, α � β X, α � ¬β
¬i

X � ¬α

X � β X � ¬β
¬e

X � α

X � α X � β
∧i

X � α ∧ β

X � α0 ∧ α1 ∧e
X � αj

X � αj ∨i
X � α0 ∨ α1

X � α ∨ β X, α � δ X, β � δ
∨e

X � δ

X, α � β
→ i

X � α → β

X � α → β X � α
→e

X � β

Fig. 1. The system IL

The logic is defined by the derivation system in Fig. 1. By X �IL α, we mean
that there is a derivation in IL of X � α. (For ease of notation, we drop the suffix
and use X � α to mean X �IL α, when there is no confusion.)

Definition 1 (Derivability Problem). Given X and α, is it the case that
X �IL α?

Among the rules, ax, ∧e and → e are the pure elimination rules, ¬e, ¬i and
∨e are the hybrid rules and the rest are the pure introduction rules. A normal
derivation is one where the major premise of every pure elimination rule and
hybrid rule is the conclusion of a pure elimination rule. The following fundamen-
tal properties hold, and the proofs are standard in the proof theory literature.

Proposition 2. 1. (Monotonicity) If X � α and X ⊆ X ′, then X ′ � α.
2. (Admissibility of Cut) If X � α and X,α � β, then X � β.
3. (Left Disjunction Property) X,α ∨ β � δ iff X,α � δ and X,β � δ.
4. (Left Conjunction Property) X,α ∧ β � δ iff X,α, β � δ.

Theorem 3 (Weak Normalization). If there is a derivation π of X � α then
there is a normal derivation � of X � α. Further, if a formula α ∨ β occurs as
the major premise of an instance of ∨e in �, it also occurs as the major premise
of an instance of ∨e in π.
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Theorem 4 (Subformula Property). Let π be a normal derivation with
conclusion X � α and last rule r. Let X ′ � β occur in π. Then X ′ ⊆ sf(X ∪{α})
and β ∈ sf(X∪{α}). Furthermore, if r is a pure elimination rule, then X ′ ⊆ sf(X)
and β ∈ sf(X).

3 The Impact of Disjunction: Lower Bounds

To gauge the effect of disjunction, we first consider disjunction in isolation, and
show that the derivability problem is in PTIME. This indicates that the lower
bound results that appear later in this section are a result of interaction between
the various logical rules, rather than due to disjunction alone.

3.1 The Disjunction-Only Fragment

Let IL[∨] denote the fragment of IL consisting of the ax, ∨i and ∨e rules, and
involving formulas of Φ∨.

Theorem 5. The derivability problem for IL[∨] is in PTIME.

Suppose X = {α1
i ∨ α2

i ∨ · · · ∨ αk
i | 1 ≤ i ≤ n} is a set of formulas from Φ∨, with

each αj
i ∈ P. Let β = β1 ∨ β2 ∨ · · · ∨ βk ∈ Φ∨, with each βj ∈ P. (Note that

any input to the derivability problem of IL∨ can be converted to the above form
by choosing appropriate k, flattening the disjunctions, and repeating disjuncts).
We now have the following claim.

Claim. X � β iff there exists an i ≤ n such that α1
i ∨ α2

i ∨ · · · ∨ αk
i � β.

Proof. It is obvious that if α1
i ∨α2

i ∨ · · · ∨αk
i � β then X � β (by Monotonicity).

For proving the other direction, suppose (towards a contradiction) X � β,
but there is no i such that α1

i ∨ α2
i ∨ · · · ∨ αk

i � β. In particular, from the
Left Disjunction Property, for every i, some αji

i � β. Without loss of generality,
assume that ji = 1 for every i. Thus we have α1

1 � β, α1
2 � β, . . . , α1

n � β.
Now, since X � β and α1

i � α1
i ∨ · · · ∨ αk

i for each i ≤ n, it follows by
Admissibility of Cut that α1

1, . . . , α
1
n � β (and there is a normal proof π with

that conclusion). Since all the α1
i s are atomic propositions, the only rules that

can appear in π are ax and ∨i. Therefore, at some point, one of the α1
i s must have

contributed to a βj via an ax rule. However, this gives us α1
i � β (by deriving

βj and then applying ∨i), which is a contradiction. Thus we have the required
claim. ��
Given this claim, we know that it is enough to see if a particular formula on the
left (say αi) derives β. In particular, from the Left Disjunction Property, we get
that every disjunct in αi needs to derive β. Therefore, the derivability problem
is equivalent to checking if there is a formula in X all of whose disjuncts occur
in β, and thus we obtain the required PTIME procedure.
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3.2 Disjunction and Conjunction

We have now confirmed that the ∨-only fragment is in PTIME. It is also known
that some other fragments (for example the fragment consisting of primal impli-
cation, conjunction, and a restricted negation) give rise to PTIME logics. How-
ever, we obtain the following result for the logic with conjunction and disjunction.

Let IL[∨,∧] denote the fragment of IL consisting of the ax, ∨i, ∨e, ∧i and ∧e
rules, and involving formulas of Φ∨,∧.

Theorem 6. The derivability problem for IL[∨,∧] is co-NP-hard.

The hardness result is obtained by reducing the validity problem for boolean
formulas to the derivability problem for IL[∨,∧]. In fact, it suffices to consider
the validity problem for boolean formulas in disjunctive normal form. We show
how to define for each DNF formula ϕ a set of IL[∨,∧]-formulas Sϕ and an
IL[∨,∧]-formula ϕ such that Sϕ � ϕ iff ϕ is a tautology.

Let {x1, x2, . . .} be the set of all boolean variables. For each boolean variable
xi, fix two distinct atomic propositions pi, qi ∈ P. We define ϕ as follows, by
induction.

– xi = pi

– ¬xi = qi

– ϕ ∨ ψ = ϕ ∨ ψ
– ϕ ∧ ψ = ϕ ∧ ψ

Let Voc(ϕ), the set of all boolean variables occurring in ϕ, be {x1, . . . , xn}.
Then Sϕ = {p1 ∨ q1, . . . , pn ∨ qn}.

Lemma 7. Sϕ � ϕ iff ϕ is a tautology.

Proof. Recall that a propositional valuation v over a set of variables V is just a
subset of V – those variables that are set to true by v.

For a valuation v ⊆ {x1, . . . , xn}, define Sv = {pi | xi ∈ v} ∪ {qi | xi /∈ v}.
By repeated appeal to the Left Disjunction Property, it is easy to see that

Sϕ � ϕ iff for all valuations v over {x1, . . . , xn}, Sv � ϕ. We now show that
Sv � ϕ iff v |= ϕ. The statement of the lemma follows immediately from this.

– We first show by induction on ψ ∈ sf(ϕ) that whenever v |= ψ, it is the case
that Sv � ψ.

• If ψ = xi or ψ = ¬xi, then Sv � ψ follows from the ax rule.
• If ψ = ψ1 ∧ψ2, then it is the case that v |= ψ1 and v |= ψ2. By induction

hypothesis, Sv � ψ1 and Sv � ψ2. Hence, by using ∧i, it follows that
Sv � ψ1 ∧ ψ2.

• If ψ = ψ1 ∨ ψ2, then it is the case that either v |= ψ1 or v |= ψ2. By
induction hypothesis, Sv � ψ1 or Sv � ψ2. In either case, by using ∨i, it
follows that Sv � ψ1 ∨ ψ2.
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– We now show that if Sv � ϕ, then v |= ϕ. Suppose π is a normal proof of
Sv � ϕ, and that there is an occurrence of the ∧e rule or ∨e rule in π with
major premise S′ � γ. We denote by � this subproof with conclusion S′ � γ.
Note that � ends in a pure elimination rule, since π is normal and every pure
elimination rule and hybrid rule has as its major premise the conclusion of
a pure elimination rule. By Theorem4, we see that S′ ⊆ sf(Sv) = Sv, and
γ ∈ sf(S′). But γ is of the form α ∨ β or α ∧ β, and this contradicts the fact
that Sv ⊆ P. Thus π consists of only the ax, ∧i and ∨i rules. We now show
by induction that for all subproofs π′ of π with conclusion Sv � ψ, v |= ψ.

• Suppose the last rule of π′ is ax. Then ψ ∈ Sv, and for some i ≤ n,
ψ = xi or ψ = ¬xi. It can be easily seen that v |= ψ (by the definition
of Sv).

• Suppose the last rule of π′ is ∧i. Then ψ = ψ1 ∧ ψ2, and Sv � ψ1 and
Sv � ψ2. Thus, by induction hypothesis, v |= ψ1 and v |= ψ2. Therefore
v |= ψ.

• Suppose the last rule of π′ is ∨i. Then ψ = ψ1 ∨ ψ2, and either Sv � ψ1

or Sv � ψ2. Thus, by induction hypothesis, either v |= ψ1 or v |= ψ2.
Therefore v |= ψ. ��

3.3 Disjunction and Implication Elimination

We now consider another minimal system, IL[∨,→e], consisting of the rules ax,
∨i, ∨e and →e and involving formulas from Φ∨,→, and prove the following result.

Theorem 8. The derivability problem for IL[∨,→e] is co-NP-hard.

The proof is by reduction from the validity problem for 3-DNF, as detailed below.
Let ϕ be a 3-DNF formula with each clause having exactly three literals. Let

Voc(ϕ) = {x1, . . . , xn}. We define indx(ϕ) to be the set {1, . . . , n}∪ {1′, . . . , n′},
where (i′)′ = i for any i ∈ indx(ϕ). For i ≤ n, we define �(i) = xi and �(i′) = ¬xi.

We define the following sets.

Sϕ := {pa ∨ pa′ | a ∈ indx(ϕ)} .

Tϕ := {pa → pb → pc → pabc | a, b, c ∈ indx(ϕ)} .

We define ϕ as follows:

ϕ :=
∨

{pabc | �(a) ∧ �(b) ∧ �(c) is a disjunct of ϕ} .

For each valuation v ⊆ {x1, . . . , xn}, define Sv to be

{pi | xi ∈ v} ∪ {pi′ | xi /∈ v}.
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Lemma 9. Sϕ, Tϕ � ϕ iff ϕ is a tautology.

Proof. By repeated appeal to the Left Disjunction Property, it is easy to see
that Sϕ, Tϕ � ϕ iff Sv, Tϕ � ϕ for all valuations v over {x1, . . . , xn}. We now
show that for all such valuations, v |= ϕ iff Sv, Tϕ � ϕ.

Let π be a normal proof of Sv, Tϕ � ϕ. The last rule of π has to be ∨i, since
if π ends in an elimination rule, from the Subformula Property it follows that
a disjunction is a subformula of Sv ∪ Tϕ, which is not the case. Repeating this
argument, we see that there is a subproof of π with conclusion Sv, Tϕ � pabc

for some disjunct �(a) ∧ �(b) ∧ �(c) of ϕ. We now show that for any valuation v,
Sv, Tϕ � pabc iff v |= �(a) ∧ �(b) ∧ �(c).

If v |= �(a) ∧ �(b) ∧ �(c), then we have pa, pb, pc ∈ Sv (from the definition of
Sv), and therefore by applying the → e rule to pa → pb → pc → pabc in Tϕ, we
have Sv, Tϕ � pabc. In the other direction, suppose we have a normal proof π of
Sv, Tϕ � pabc. By examining Sv and Tϕ, we see that only pa → pb → pc → pabc

mentions pabc. So it is clear that pc must be derivable from Sv, Tϕ, and the last
rule of π must be →e, applied to pc → pabc. Now in order for this formula to be
derivable, pb must be derivable, and similarly pa must be derivable. Since pa, pb

and pc can only be obtained by ax, it must be that pa, pb, pc ∈ Sv and therefore
v |= �(a) ∧ �(b) ∧ �(c).

Thus we have that Sv, Tϕ � pabc iff v |= �(a) ∧ �(b) ∧ �(c), and the required
claim follows. ��

4 Upper Bounds

We now show that a system with conjunction, disjunction, primal implication,
and a restricted version of negation (allowing only negation elimination, but
not negation introduction) is in co-NP. We first give a PTIME procedure for the
logic without disjunction elimination and then lift it to a co-NP procedure which
accounts for disjunction elimination.2

Fix a set of formulas X0 and a formula α0 for the rest of the section. Let
sf = sf(X0 ∪ {α0}). Let N = |sf|.
Definition 10. For any X ⊆ sf:

– derive(X) = {α ∈ sf | X � α}.
– derive′(X) = {α ∈ sf | there is a proof of X � α not using the ∨ e rule}.

The following properties of derive and derive′ are immediate.

– X ⊆ derive′(X) ⊆ derive(X).
– derive(X) = derive′(derive(X)) = derive(derive(X)) (by Admissibility of

Cut).
2 It is important to note that we consider only the negation elimination rule. The

algorithms in this section do not work in the presence of the ¬i rule. Nor do we
know of a straightforward modification to handle the ¬i rule. It is not easy to say
without further study whether the complexity stays the same or increases, either.
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– derive′(X) = derive′(derive′(X)) (by Admissibility of Cut).
– If X is of the form derive′(Y ), then derive′(X) = X. If X is of the form

derive(Y ), then derive(X) = X.

4.1 A PTIME procedure for derive′

In the absence of ∨e, there is no branching during proof search. Hence we can
compute derive′(Y ) bottom-up in PTIME, as detailed below in Algorithm 1.

For Y ⊆ sf, we define onestep(Y ) ⊆ sf to be the set

{α ∈ sf | α is the conclusion of a rule r (other than ∨e) with premises Z ⊆ Y }.

Two important observations about onestep(Y ).

– Y ⊆ onestep(Y ), because of the rule ax.
– onestep(Y ) is computable in time O(N2), where N = |sf|. This is because in

all the rules other than ∨e, the antecedents (formulas occurring to the left
of �) in the premises are the same as the antecedents in the conclusion. Thus
we need to consider only consequents (the formulas to the right of �) in a
proof. This means that we only need to consider all pairs of formulas in Y to
compute onestep(Y ).

Algorithm 1. Algorithm to compute derive′(X), for X ⊆ sf

1: Y ← ∅;
2: Y ′ ← X;
3: while (Y �= Y ′) do
4: Y ← Y ′;
5: Y ′ ← onestep(Y );
6: end while
7: return Y .

Since |sf| = N and Y increases monotonically, the while loop runs only for
N iterations. Thus derive′(X) is computable in time O(N3).

4.2 A co-NP procedure for derive

Algorithm 2 checks if X0 � α0. It uses the notion of a down-closed set. A set X
of formulas is down-closed if it satisfies the following two conditions:

– derive′(X) ⊆ X.
– whenever α ∨ β ∈ X, then either α ∈ X or β ∈ X.

Y is said to be a down-closure of X if Y is down-closed and X ⊆ Y .
In Algorithm 2, it is an invariant that Y = derive′(Z) for some Z and hence

derive′(Y ) ⊆ Y . Thus when Y is not down-closed, there exists β0 ∨ β1 ∈ Y such
that neither β0 nor β1 is in Y .

The algorithm guesses a down-closure Y of X0 such that α0 ∈ Y . The fol-
lowing theorem guarantees that one can successfully guess such a Y iff X0 � α0.
This ensures the correctness of the algorithm.
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Algorithm 2. Algorithm to check if X0 � α0

1: Y ← derive′(X0);
2: while (Y is not down-closed) do
3: guess a formula β0 ∨ β1 ∈ Y such that β0 �∈ Y and β1 �∈ Y ;
4: guess i ∈ {0, 1};
5: Y ← derive′(Y ∪ {βi});
6: end while
7: Return “Yes” if α0 �∈ Y , and “No” otherwise.

Theorem 11. For any X and α (with X ∪{α} ⊆ sf), X � α iff α ∈ Y for every
down-closure Y of X.

This theorem is a consequence of the following three lemmas. But first we need
a general claim related to the Left Disjunction Property.

Claim. Suppose ϕ0 ∨ ϕ1 ∈ Z and i ∈ {0, 1}. Then Z \ {ϕ0 ∨ ϕ1}, ϕi � θ iff
Z,ϕi � θ.

Lemma 12. For any X and α (with X ∪ {α} ⊆ sf), X � α iff Y � α for every
down-closure Y of X.

Proof. Suppose X � α and Y is a down-closure of X. Then X ⊆ Y and hence it
is immediate that Y � α.

Suppose on the other hand that X � α. We show that there is a sequence
Y0 � Y1 � · · · � Yn ⊆ sf of sets such that

– X ⊆ Y0,
– Yn is down-closed,
– for all i ≤ n, derive′(Yi) ⊆ Yi, and
– for all i ≤ n, Yi � α.

The sequence is constructed by induction. Y0 is defined to be derive′(X). Since
X � α, it follows that Y0 � α. Suppose Yk has been defined for some k ≥ 0 such
that Yk � α. If Yk is down-closed, we are done. Otherwise, since derive′(Yk) ⊆ Yk,
there is a β0 ∨ β1 ∈ Yk such that β0 ∈ Yk and β1 ∈ Yk. Since Yk � α, it follows
by the Left Disjunction property that Yk \ {β0∨, β1}, βi � α for some i ∈ {0, 1}.
By Claim 4.2 it follows that Yk, βi � α for some i ∈ {0, 1}.

Yk+1 =

{
derive′(Yk ∪ {β0}) if Yk, β0 � α

derive′(Yk ∪ {β1}) otherwise

Clearly Yk � Yk+1 and derive′(Yk+1) = Yk+1. Assume without loss of gen-
erality that Yk+1 = derive′(Yk ∪ {β0}). By construction, Yk ∪ {β0} � α. Now
suppose Yk+1 � α. Then, since Yk ∪ {β0} � ϕ for every ϕ ∈ Yk+1, it would
follow by Admissibilty of Cut that Yk ∪{β0} � α, which is a contradiction. Thus
Yk+1 � α. Thus we can always extend the sequence as desired.

Further, the Yi’s are strictly increasing, and are all subsets of sf. Thus n ≤ |sf|
and the above construction terminates. Yn is a down-closure of X that does not
derive α. ��
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Lemma 13. Let π be a proof of X � α with at least one occurrence of the ∨e
rule. Then there is an occurrence of ∨e in π with major premise X � ϕ∨ψ such
that ϕ ∨ ψ ∈ derive′(X).

Proof. In any proof of the form

π1···
X1 � α1

π2···
X2 � α2

π3···
X3 � α3

r
Y � δ

we say that any rule in π1 is to the left of r, r is to the left of any rule in π2, and
any rule in π2 is to the left of any rule in π3.

Now consider the leftmost occurrence of ∨e in π. It is the last rule of a
subproof π′ of π which looks as follows.

π′
1···

X ′ � ϕ ∨ ψ

π′
2···

X ′, ϕ � θ

π′
3···

X ′, ψ � θ ∨e
X ′ � θ

Since this is the leftmost occurrence of ∨e, there is no occurrence of ∨e in π′
1.

Further, if X ′ = X, it means that π′ is part of the proof of a minor premise of
some other ∨e rule in π. But that contradicts the fact that π′ ends in the leftmost
∨e in π. Thus X ′ = X, and π′

1 witnesses the fact that ϕ ∨ ψ ∈ derive′(X). ��
Lemma 14. For a down-closed Y , Y � α iff α ∈ Y .

Proof. If α ∈ Y , then it is obvious that Y � α.
In the other direction, suppose Y � α via a proof π with k instances of ∨e.

We prove the required claim by induction on k.
In the base case, k = 0, and α ∈ derive′(Y ). Since Y is down-closed,

derive′(Y ) ⊆ Y and we have α ∈ Y .
In the induction step, suppose there is an instance of ∨e in the proof of

Y � α. By Lemma 13, we know that there is at least one occurrence of ∨e (say
Y � δ) with major premise Y � ϕ ∨ ψ such that ϕ ∨ ψ ∈ derive′(Y ) ⊆ Y , which
looks as follows.

π1···
Y � ϕ ∨ ψ

π2···
Y, ϕ � δ

π3···
Y, ψ � δ ∨e

Y � δ

Thus we have ϕ ∨ ψ ∈ Y . Since Y is down-closed either ϕ ∈ Y or ψ ∈ Y .
Suppose, without loss of generality, that ϕ ∈ Y . Now consider π2. Since ϕ ∈ Y ,
we know that Y ∪ {ϕ} = Y , and we can replace the big proof of Y � δ by
π2, thereby reducing the number of instances of ∨e in the proof of Y � α. By
induction hypothesis, α ∈ Y , and the lemma follows. ��
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Running Time. We now analyze the running time of Algorithm 2. Since Y
strictly increases with each iteration of the loop, there are at most N = |sf|
iterations of the loop. In each iteration, we test whether Y is down-closed, which
amounts to checking whether there is some β0 ∨ β1 ∈ Y such that neither β0

nor β1 is in Y . This check takes O(N) time. We also compute derive′(Y ) in each
iteration, which takes time O(N3). Thus the overall running time is O(N4). This
can be improved to O(N2) by using a linear-time algorithm for derive′ like the
one given in [11].

4.3 Bounding Resources

As is evident from the lower bound proofs, disjunction elimination contributes
heavily to the complexity of the derivation problem. Thus the use of the ∨e rule
is an important resource. It makes sense to bound the use of this resource and
explore its effect on complexity. In particular, we show that if we bound the
set of formulas on which to perform disjunction elimination, we get a procedure
whose running time is polynomial in the input size, though exponential in the
number of disjunction eliminations allowed. The following definition makes this
notion precise.

Definition 15. Let A be a set of disjunctive formulas. We define a proof of α
from X using A (denoted X �A α) as a proof where any ∨e rules are applied
only to formulas which appear in A.

Recall that we have fixed a set sf of size N , and that we consider the derivability
of X � α where sf(X ∪{α}) ⊆ sf. We define deriveA(X) to be {β ∈ sf | X �A β}.
Note that derive∅(X) is derive′(X). The check for X �A α is done by using
Algorithm 3 to compute deriveA(X) and then testing whether α ∈ deriveA(X).
(For the purposes of the algorithm, we assume that the set A is equipped with
a linear order, so we can refer to the least formula in any subset of A.)

Algorithm 3. Algorithm to compute deriveA(X)
1: function f(A, X)
2: Y ← derive′(X);
3: if A ∩ Y = ∅ then
4: return Y ;
5: else
6: A′ ← A \ {α ∨ β}, where α ∨ β is the least formula in A ∩ Y ;
7: return f(A′, Y ∪ {α}) ∩ f(A′, Y ∪ {β});
8: end if
9: end function

In order to prove the correctness of the above algorithm, we require the
following claim.

Claim. Suppose A is a set of disjunctions and α ∨ β ∈ A. Let A′ = A \ {α ∨ β}.
Then the following hold:
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– If X �A γ then X,α �A′ γ and X,β �A′ γ.
– If X �A α ∨ β, X,α �A′ γ and X,β �A′ γ, then X �A γ.

Proof.

– Suppose X �A γ. Then by monotonicity, we obtain a proof π of X,α � γ,
such that the major premise of every instance of the ∨e rule in π is in A.
Note that for every sequent X ′ � δ in π, α ∈ X ′. Consider any subproof π′

of π whose conclusion is X ′ � δ and last rule is ∨e with major premise α∨β
(if there is no such subproof, then π witnesses the fact that X,α �A′ γ). π′

has the following form.

π′
1···

X ′ � α ∨ β

π′
2···

X ′, α � δ

π′
3···

X ′, β � δ ∨e
X ′ � δ

But observe that since α ∈ X ′, X ′ ∪ {α} = X ′. Thus π′
2 is itself a proof of

X ′ � δ. We can replace π′ by π′
2, thereby removing at least one instance of

the ∨e rule involving α ∨ β in π. Repeating this, we obtain that X,α �A′ γ.
A similar reasoning gives us the result for X,β �A′ γ.

– Performing an or-elimination on α ∨ β using the given proofs of X,α �A′ γ
and X,β �A′ γ and X �A α ∨ β for premises gives us the required result of
X �A γ. ��

Lemma 16. (Correctness of Algorithm 3). For all X and A,

deriveA(X) = f(A,X).

Proof. The proof is by induction on the size of A. The base case is when A = ∅,
when clearly the procedure f returns derive′(X).

For the induction case, suppose X �A δ, and let Y = derive′(X). Consider
a normal proof π witnessing X �A δ and assume without loss of generality that
there is at least one instance of ∨e in π. From Lemma 13, we see that there is an
instance of ∨e in π with major premise X � ϕ∨ψ, where ϕ∨ψ ∈ derive′(X). Thus
A ∩ Y = ∅. Let α ∨ β be the least formula in A ∩ Y . Now since X ⊆ Y , Y �A δ.
Furthermore, α ∨ β ∈ Y . Hence, by Claim 4.3, Y, α �A′ δ and Y, β �A′ δ, where
A′ = A\{α∨β}. Since A′ is of smaller size than A, by the induction hypothesis,
deriveA′(Z) = f(A′, Z) for any Z. Thus δ ∈ f(A′, Y ∪ {α}) ∩ f(A′, Y ∪ {β}). It
follows from the definition of f that δ ∈ f(A,X). Thus deriveA(X) ⊆ f(A,X).

On the other hand suppose δ ∈ f(A,X), and assume without loss of general-
ity that A∩Y = ∅, where Y = derive′(X). Letting α∨β be the least formula in
A ∩ Y and A′ = A \ {α ∨ β}, it is clear that δ ∈ f(A′, Y ∪ {α}) ∩ f(A′, Y ∪ {β})
from the definition of f . Since A′ is of smaller size than A, it follows from the
induction hypothesis that Y, α �A′ δ and Y, β �A′ δ. Since Y = derive′(X), it is
the case that X �′ γ for every γ ∈ Y . Thus we can appeal to the admissibility of
cut to conclude that X,α �A′ δ and X,β �A′ δ. It follows from Claim 4.3 that
X �A δ. Thus f(A,X) ⊆ deriveA(X). ��
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Theorem 17. If |A| = k, then deriveA(X) is computable in time O(2k · N).

Proof. There are at most 2k recursive calls to f , and in each invocation we make
one call to derive′, which takes O(N) time. Thus the overall running time is
O(2k · N). ��

5 Discussion

To summarize our results, we have proved that IL[∨] is in PTIME, while even
minimal extensions like [∨,∧], [∨,→e] and [∨,⊥] are co-NP-hard. On the other
hand, even the system with conjunction, disjunction, primal implication and
negation elimination is in co-NP.

Of the two rules for negation, ¬e does not modify the assumptions in the
sequents, whereas ¬i discharges the assumption α while concluding ¬α. There
does not appear to be a straightforward adaptation of either Algorithm1 or
Algorithm 2 to handle ¬i. As we mentioned earlier, it is not clear whether the
complexity of the logic changes either. Note that [4] considers a fragment with
rules for primal implication, disjunction, and a ⊥ operator. While full implication
and ⊥ can express full negation, primal implication and ⊥ can only capture the
effect of the ¬e rule, not the ¬i rule. So the complexity of the fragment involving
primal implication, conjunction, disjunction and “full” negation is still open. We
leave this for future study.

We can also consider adding �-like modalities to the [∧,∨] fragment of our
logic. This system is in co-NP, and the algorithm proceeds along similar lines
to the one in [15]. On the other hand, if we add modalities to a logic with
implication (even primal implication), the system is PSPACE-complete [4].

There are several interesting ways in which to take this work forward. It
is worthwhile to look for logics with restricted forms of disjunction that are
efficiently solvable. We also need to identify scenarios in which it suffices to
consider a bounded number of disjunction eliminations, wherein our PTIME
algorithm in Sect. 4.3 is applicable.
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Abstract. We study intransitive temporal logic implementing multi-
agent’s approach and formalizing knowledge and uncertainty. An innov-
ative point here is usage of non-transitive linear time and multi-valued
models - the ones using separate valuations Vj for agent’s knowledge of
facts and summarized (agreed) valuation together with rules for com-
putation truth values for compound formulas. The basic mathematical
problems we study here are - decidability and decidability w.r.t. admis-
sible rules. First, we study general case - the logic with non-uniform
intransitivity and solve its decidability problem. Also we consider a mod-
ification of this logic - temporal logic with uniform non-transitivity and
solve problem of recognizing admissibility in this logic.

Keywords: Temporal logic · Multi-agent’s logic · Non-transitive time ·
Deciding algorithms · Knowledge · Admissible rules

1 Introduction

In the area of applications logic to Computer Science worthy place is occupied by
temporal logic. It works very efficiently in various subdivisions of CS, Information
Sciences and KR. An important version of temporal logic for CS, – LTL – linear
temporal logic (with UNTIL and NEXT), was introduced by Z. Manna, and
A. Pnueli in late 1980’. Since then, many impressive results concerning pure
logical properties of LTL (e.g. decidability and axiomatization) were obtained
(cf. e.g. Gabbay and Hodkinson [9–11], Vardi [26,27]). An essential component
of information sciences is the notion of knowledge - a highly reliable information
which is collected up to the moment and has some particular importance.

The approach to concept of knowledge in CS via multi-agent environment,
when the knowledge to be obtained via agent’s discussions, cooperation, eval-
uations, computational experiments, etc. formed a solid branch in CS (cf. e.g.
[5,14,29–31]). An interpretation of knowledge in a multi-agent logic with dis-
tances was offered in Rybakov et al. [22]), an algorithm solving satisfiability
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problem was found. Concept of Chance Discovery in multi-agent’s environment
was studied in Rybakov [23,24]), a logic defining uncertainty via agents opinions
was studied in McLean et al. [15]). Representation of agent’s interaction as a
dual of the logical operation formalizing common knowledge (which earlier was
suggested in Fagin et al. [7]) was elaborated in Rybakov [20,21].

Approach to model knowledge in terms of symbolic logic appeared (probably
first time) in Hintikka [13] in his book Knowledge and Belief. Now the field of
knowledge representation and reasoning about knowledge in logical framework is
very popular area. Various modal and multi-modal logics were used for modeling
agents reasoning. In particular, multi-modal logics were used for this purpose in
Balbiani et al. [6], Vakarelov [28], Fagin et al. [7], Rybakov [17,20]. Modern
study of knowledge and believes in terms of single-modal logic was undertaken
in Halpern et al. [12].

Concept of justification in terms of epistemic logic makes an another view-
angle on knowledge (cf. e.g.. Artemov et al. [2,3]). The problem of rational agents
and its effect to logical omniscience problem is studied recently (cf. Artemov,
et al. [1]).

This our paper investigates intransitive temporal logic implementing multi-
agent’s approach and formalizing knowledge and uncertainty in this framework.
An innovative point here is usage of non-transitive linear time and multi-valued
models - the ones using separate valuations Vj for agent’s knowledge of facts
and summarized (agreed) valuation and rules for computation truth valued for
compound formulas. We illustrate how the notion of knowledge and uncertainty
might be represented in such framework. The basic mathematical problems we
study here are the fundamental ones for any logical system - decidability and
decidability w.r.t. admissible rules. First we consider very general case - the logic
with non-uniform intransitivity and solve its decidability problem. The problem
of recognizing admissible rules in this logic remains open. Next, we consider a
modification of this logic - temporal logic with uniform non-transitivity and solve
problem of recognizing admissibility in this logic.

2 Notation, Logical Language, Brief Motivation

To make our paper easy readable (without looking for external literature) we
very briefly recall necessary definitions and notation. The language of Linear
Temporal Logic (LTL in sequel) extends the language of Boolean logic by oper-
ations N (next) and U (until).

Formation rules for LTL-formulas built up from a set Prop of propositional
letters are as follows: any letter of Prop is a formula. The set of all formulas is
closed w.r.t. applications of Boolean operations, the unary operation N (next)
and the binary operation U (until). Informal interpretation of the formula Nϕ
is: ϕ holds in the next time point (state). A formula ϕUψ has meaning: ϕ will
be true until ψ first time will be true. Standard semantic models for LTL are
the following infinite linear Kripke structures.
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A model is a quadruple M := 〈N ,≤,Next, V 〉, where N is the set of all
natural numbers; ≤ is the standard linear order on N , Next is the binary relation,
where a Next b is true iff b is the number next to a, that is b = a + 1.

The valuation V for a set of letters P ⊆ Prop is a mapping which assigns
truth values to elements of S. That is, for any p ∈ S, V (p) ⊆ N . The set V (p)
is the set of all n from N where p is true (w.r.t. V ).

The triple 〈N ,≤,Next〉 from the above is said to be a Kripke frame (which
we will denote in sequel for short by N ). For any Kripke model M, the truth
values via V for the propositional letters are extended to arbitrary formulas as
follows:

∀p ∈ Prop (M, a) V p ⇔ a ∈ N ∧ a ∈ V (p);
(M, a) V (ϕ ∧ ψ) ⇔ (M, a) V ϕ ∧ (M, a) V ψ;
(M, a) V ¬ϕ ⇔ not[(M, a) V ϕ];
(M, a) V Nϕ ⇔ ∀b[(a Next b) ⇒ (M, b) V ϕ];
(M, a) V (ϕUψ) ⇔ ∃b[(a ≤ b) ∧ ((M, b) V ψ)∧
∀c[(a ≤ c < b) ⇒ (M, c) V ϕ]].

A formula ϕ is said to be valid in the model M (denotation – M ϕ) if, for
any b from M (b ∈ N ), (M, b) V ϕ. The linear temporal logic LTL is the set
of all formulas which are valid in all models.

The aim of our paper is to investigate linear logic with intransitive time.
Therefore we briefly motivated our assumption about non-transitivity. Why we
may assume that time might be non-transitive, what we mean by that? Here we
consider time as a computational resource (e.g. its admitted length), as an indi-
vidual human perception of time, as a background for collection and elicitation
of knowledge.

Let us start from the individual perception of time in our human memory.
We sense time as a sequence of events which we remember, we perceive it as a
linear discrete succession (since we do not memorize very many events within
few seconds). Our human memory if limited, finite. This means that what we
knew and remembered a year ago might not be in our memory now; what we
knew ten years ago may be not remembered by us a year ago. This says about
intransitivity of human memory about time events in past.

Consider now computational aspect of time as a resource for analysis of
results. Time events while computational runs may be recorded in protocols of
computation for inspection and references. Any protocol is a finite sequence of
records and not all necessary information might be found there. Though protocol
may give references to other older protocols recorded in earlier computations.
Here the time in applicational (not philosophical) aspect looks as non-transitive.

Assume that we work with extraction of data from databases. Data may be
recorded in DBs and the storage of any one is finite. Any DB is recorded during
a finite interval of time and may be incomplete. The procedure of updating DBs
is a sequence of actions in time. This sequence may have terminating points, and
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what an old DB may contain could be already omitted in the updated one, so
DBs knowledge in time is non-transitive.

Is we consider multi-agents reasoning than time events may be viewed
as an individual ones (with effects as pointed above) and else this multi-agents
brings its own effects. E.g. the amount of agents participating in taking decisions
may be changed during some intervals of time; it might be not-uniform and to
swell the same as to shrink. The priority of experts views may be changed, etc.
And if experts view on truth of a statement was affirmative five years ago it may
be opposite now. So, agents knowledge in time environment looks as intransitive.

3 Temporal Multi-agent’s Modes, Temporal Logic

Our approach is based on non-transitive temporal logic LTLNT and technique
allowing to find its decision algorithm (cf. Rybakov [25]). We start from giving
precise definition of our new, modified models and description of rules for com-
putation truth values of formulas. Then we first comment how these new models
may represent multi-agent information, knowledge and uncertainty, give some
illustrating examples.

Definition 1. An intransitive linear frame is a tuple

F := 〈N,≤,Next,
⋃

j∈N

[Rj ]〉,

components of which are as follows.

– N =
⋃

i∈In⊂N [i,mi] ([i,mi] is the interval of all natural numbers situated
between i and mi). The set In is a set of indexes - it is a subset of N ;

– ∀i1, i2 ∈ In, i1 �= i2 ⇒ (i1,mi1) ∩ (i2,mi2) = ∅;
– ∀i ∈ In (mi > i); for any j ∈ [i,mi] any Rj is the standard linear order on

the interval [j,mi];
– Next is the standard NEXT relation on N : n Next m if m = n + 1.

For the sequel we fix notation: t(i) := mi - boundary of transitivity for i.
The multi-agent’s models M on such frames F are defined by fixing valuations
Vi, i ∈ A, ||A|| < ∞ for a set of letters P - agents valuations for truth of letters
p ∈ P , – , i.e. ∀i, ∀p ∈ P, Vi(p) ⊆ N .

A is a set of indexes for agents, for each model it may be different (any
model may have its own fixed agents, their quantity may be different). For all
n, n ∈ Vi(p) is interpreted as p is true at the state n by opinion of the agent i.
Also we consider the agreed (global) valuation V for letters from P : –

V(p) = {n | n ∈ N, ||{i | i ∈ A,n ∈ Vi(p)}|| > k},

where k is a fixed rational number (for this given model), which is bigger than
||A||/2.
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That is k is the threshold, which shows that the number of the agents which
are sure that p is true in the given state (world) is big enough, bidder than half.

The particular value of k may vary from model to model - each one has its
own threshold. Now any such model M is a multi-valued model - with a finite
number of different valuations.

The logical language for our logic based at such models is an extension of the
one for LTL from previous section. We extend it by agent’s knowledge operations
Ai, i ∈ A applied to only letters - for all p ∈ P,Ai(p) is a formula. We introduce
rules for computation truth on models M for formulas as follows. For letters
and boolean operations it is standard: ∀p ∈ P,∀n ∈ N, (F , n) �V p ⇔p ∈
V (p); (F , n) �V α ∧ β ⇔ [(F , n) �V α and (F , n) �V β]; etc. For operation N -
next, it is standard again:

∀n ∈ N, (M, n) V Nϕ ⇔ [(n Next m) ⇒ (M,m) V ϕ].

But U - until operation, and agents operations work in a non-standard way,
since the models are intransitive and since agents truth operations work as nom-
inals. We suggest the following rules:

Definition 2. For any formulas ϕ and ψ,

∀n ∈ N, (M, n) V (ϕ U ψ) ⇔

∃m[(nRnm) ∧ ((M,m) V ψ) ∧ ∀k[(n ≤ k < m)⇒(M, k) V ϕ]];

∀n ∈ N,∀i ∈ A, (M, n) V Ai(p) ⇔ n ∈ Vi(p).

The agent’s knowledge operations Ai, as we see, are applied to only
letters but not to temporal compound formulas. The reason for it is as follows.
The origin of the problem comes from our definition of models as multi-valued
models (when each agent has own valuation of propositional letters; but we see
that approach is very natural and well corresponding to multi-agents reasoning).

If we would allow the operations Ai to be freely applied to arbitrary com-
pound formulas and sub-formulas, then usage them in temporal (and modal)
formulas would immediate cause clash/conflict in computation truth values.

E.g. if we have a formula Ai(ϕ) with temporal formula ϕ, we either have
to redefine truth values for letters p always in now and future (which means
to ignore knowledge of other agents), or to resolve what to do with all other
possible agent’s sub-formulas Aj(pm) w.r.t. the agent i. Thus, it might be that
we need to give some agents a preference, but it is not clear what for to make
an advantage to some ones. So, because this uncertainty, we prefer to let these
cobwebs for future research and to study first this basic case.

It is easy to accept that this approach correspond well to our intuition about
multi-agent information and time. The agents have own knowledge about facts,



Intransitive Temporal Multi-agent’s Logic, Knowledge and Uncertainty 369

we code it by Ai(p). But the rules for computation compound formulas are
already objective, general and global, the same for all agents. Though, to consider
different rules for computation truth values for compound, nested formulas –
looks as an attractive and promising idea.

The logic we wish to introduce is the collection of all general statements,
formulas which are valid in all models.

Definition 3. The multi-agent non-transitive logic TMAInt is the set of all
formulas which are valid in all models M.

This logic is temporal, and therefore we may define via U the modal operations
� and � in standard way: �ϕ := �Uϕ, �ϕ := ¬�¬ϕ. The logic is intransitive
which allows such formulas as e.g.

�p ∧ �N¬p

to be satisfiable. Indeed - it is sufficient to take the model with all mi − i = 3
and p to be true on the interval [1, 2, 3] and to be false elsewhere.

The understanding (formal definition(s)) of knowledge, uncertainty and plau-
sibility may be convincingly interpreted if we will consider the models with time
and NEXT directed to past (not to future). We may easy agree that knowledge
is coming from past, but not from the future.

The past time - in our human memory (or in storage of information in DBs
from previous experience, length of protocols for completed computations, etc.)
evidently looks as non-transitive. Indeed, any database contains records stored
in a finite amount of time, though it may contain information where to look for
earlier events (so to say - to use NEXT - pointer to a new time interval).

We may understand knowledge as facts, statements which are convincingly
true for all period of time which we remember (at least for leading part of experts,
agents). This locally, in models, to be expressed by formula �ϕ: ϕ was always
true in past for dominating parts of experts (agents).

Then, the uncertainty (in this approach), may be interpreted as e.g. �ϕ ∧
�¬ϕ - in some time points we remember agent’s view for truth of ϕ was sup-
portive, and in some - the opinion of a majority was against. So, the truth for ϕ
in the interval of time which we remember was uncertain, not stable. Consider
some more subtle example:

�[(ϕ → [�¬ϕ ∨ N¬ϕ]) ∧ (¬ϕ → [�ϕ ∨ Nϕ])].

This formula expresses more delicate statement about uncertainty of truth values
for ϕ - it always oscillates.

Plausibility of ϕ may be interpreted, e.g., as follows: ¬ϕ ∧ N�ϕ: today
experts hesitate about truth of ϕ, but always before today (admittedly - long
time) they accepted it to be true. More example:

�ϕ ∧ ��N2¬ϕ.
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This formula says that ϕ is very plausible - as long as we remember with confi-
dence, it was true, but in 2 steps above our reliable capacity of memory for past
it was a state where it was false with some evidence.

Many similar interpretations reflecting various subtleties of understanding
uncertainty and plausibility may be suggested via this approach (e.g. using pref-
erence in opinion of most knowledgeable agents, and so forth).

3.1 Technical Part, Decidability Algorithm of TMAInt

Now we turn to main technical problems solved in this paper, first we con-
sider decidability of TMAInt. We will use here the approach from Rybakov [25]
extending it for agent’s knowledge operations.

An essential part of this approach is usage of the normal reduced forms for
formulas, more exactly for inference rules to which formulas may be converted.
It is very useful because it allows to avoid complicated calculations and evalu-
ations for nested formulas. We will use reduction of formulas to inference rules
(sequents). An inference rule is a sequent compound from the premises and the
conclusion:

r :=
ϕ1(x1, . . . , xn), . . . , ϕl(x1, . . . , xn)

ψ(x1, . . . , xn)
.

Here ϕ1(x1, . . . , xn), . . . , ϕl(x1, . . . , xn) and ψ(x1, . . . , xn) are formulas
constructed out of letters (variables) x1, . . . , xn. This rule formalizes simplest
reasoning step: ψ(x1, . . . , xn) (which is called conclusion) follows (logically fol-
lows) from all formulas ϕ1(x1, . . . , xn), . . . , ϕl(x1, . . . , xn) .

Definition 4. We say that a rule r is valid in a model M if and only if the
following holds:

[∀n ((M, n) V

∧

1≤i≤l

ϕi)] ⇒ [∀m ((M,m) V ψ)].

Otherwise we say r is refuted in M, or refuted in M by V , and write
M �V r. A rule r is valid in a frame F (notation F r) if it is valid
in any model based at F .

Usage of inference rules for decidability problem (verification if a formula is a
theorem for our logic) is based at the following simple fact. Given a formula ϕ,
we transform ϕ into the rule x → x/ϕ. Then it is evident that

Lemma 1. Formula ϕ is a theorem of TMAInt (that is ϕ ∈ TMAInt) iff the
rule (x → x/ϕ) is valid in any frame F .

Thus, we bring decidability of formulas to decidability of rules; but surprisingly
it simplifies the problem. We will use the rules in the reduced form.
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Definition 5. We say that a rule r has reduced normal form if
r = ε/x1 where

ε :=
∨

1≤j≤l

[
∧

1≤i≤n

x
t(j,i,0)
i ∧

∧

1≤i≤n

(Nxi)t(j,i,1) ∧
∧

m∈A, 1≤i≤n

(Amxi)t(j,m,i,1)∧

∧

1≤i,k≤n,i �=k

(xiUxk)t(j,i,k,1)]

always t(j, i,m), t(j, i, k, 1), t(j,m, i, 1) ∈ {0, 1} and, for any formula α above,
α0 := α, α1 := ¬α.

Definition 6. A rule rnf in reduced normal form is a normal reduced form for
a given rule r iff, for any frame F for TMAInt, F � r ⇔ F � rnf .

Theorem 1. For any given rule r we can construct in (single) exponential time
some it’s reduced normal form rnf .

Proof is rather simple and short. It is sufficient to specify the language of
our logic to the general algorithm described in e.g. Lemma 5 from [4] and to
follow closely its proof. We may consider the rules with only single premise, so
let r = α/β be an inference rule. For r, Sub(r) be the set of all subformulas of r.
We need a set of new variables Z = {zγ | γ ∈ Sub(r)}.

Let us consider the rule in the intermediate form:

rif = zα ∧
∧

γ∈Sub(r)\V ar(r)

(zγ ↔ γ�)/zβ ,

where

γ� =

{
zδ ∗ zε when γ = δ ∗ ε for ∗ ∈ {∧,∨,→,U}.

∗zδ when γ = ∗δ for ∗ ∈ {¬,N, Am,m ∈ A},

The rules r and rif are equivalent w.r.t. truth at any model. Indeed, suppose
M , be a model with a valuation V over its frame such that M ��V r. Then
M �V α and there exists an element w ∈ N , such that (M,w) ��V β. Let W be
the valuation defined as follows: W (zγ) = V (γ). It is straightforward to show
that M �W zα ∧ ∧

γ∈Sub(r)\V ar(r)(zγ ↔ γ�). In addition, (M,w) ��W zβ .
For the other direction, suppose M �W zα∧∧{zγ ↔ γ� | γ ∈ Sub(r)\V ar(r)}

and (M,w) ��W zβ , for some valuation W : Z → 2N and some w ∈ N . Define
V : V ar(r) → 2N by V (xi) = W (zxi

). It follows directly that for all γ ∈ Sub(r),
V (γ) = W (zγ). Thus M �V α, (M,w) ��V β, hence M ��V r.

Finally, we transform the premise of the obtained rule rif into a perfect
disjunctive normal form over primitives of the form xi, Nxi, Amxi and xiUxj .
This requires no more than exponential time on the number of variables, i.e.,
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on the number of sub-formulas of the original rule (the same as for reduction of
any boolean formula to the perfect disjunctive normal form). Q.E.D.

Based at this reduction of formulas to rules in reduced forms and technique
borrowed from Rybakov [25] we may prove

Theorem 2. The satisfiability problem for TMAInt is decidable. There is an
algorithm which, for any given formula, verifies its satisfiability, and computes
a valuation satisfying it in a special finite model F(N(r)) if it is satisfiable (at
next stage we can transform this model in a standard infinite model).

Here we extend the proof from [25] to adopt usage of agents knowledge operations
Am (following closely to the original proof). Thus, the logic TMAInt is decidable;
this is first main technical result of our paper.

4 Problem of Admissibility

Far the more complicated decidability problem is decidability w.r.t. admissible
inference rules. We would like to study admissibility problem for a logics from
suggested background. Recall that a rule

r :=
ϕ1(x1, . . . , xn), . . . , ϕl(x1, . . . , xn)

ψ(x1, . . . , xn)
,

is said to be admissible in a logic L if, for every tuple of formulas, α1, . . . , αn,
we have ψ(α1, . . . , αn) ∈ L whenever ∀i [ϕi(α1, . . . , αn) ∈ L].

The solution of the admissibility problem for the logic LTL itself (i.e. find-
ing an algorithm recognizing admissibility of inference rules) was obtained in
Rybakov, 2008, [19] (cf. also [18]), basis for rules admissible in LTL was found
in Babenyshev and Rybakov, 2011, [4].

We have to specify the notion of admissibility for inference rules in our multi-
agent’s logics because we use agent’s knowledge operations Ai which cannot be
used above nested formulas.

Definition 7. A given rule

r :=
ϕ1(x1, . . . , xn), . . . , ϕl(x1, . . . , xn)

ψ(x1, . . . , xn)
,

is said to be admissible in the logic TMAInt if, for every tuple of formulas,
α1, . . . , αn, we have ψ(α1, . . . , αn) ∈ TMAInt whenever ∀i [ϕi(α1, . . . , αn) ∈
TMAInt], where for any xi above if xi has at least one occurrence in r in form
Aj(xi) then αi = xi.

The restriction for substitutions above is necessary since our multi-agent logic
cannot admit nested formulas bounded by agent’s knowledge operations Aj .
A restriction for substitutions in defining admissibility was already considered
in literature (cf. for instance, - Odintsov, Rybakov - [16]). We currently cannot
answer the question about recognizing admissibility in the logic TMAInt from
previous section, but we are able to do it for its restricted version - the one for
models with bounded intransitivity.
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Definition 8. A temporal frame F with uniform non-transitivity m is a partic-
ular case of frames for TMAInt

F := 〈N,≤,Next,
⋃

i∈N

[Ri]〉

given in Definition 1 in Sect. 3, when any interval [i, t(i)], has length m, where
m is a fixed natural number (measure of intransitivity).

So, the only distinction from our general case in the previous section is that
instead of arbitrary measure on intransitivity mi for any world i, we consider
the same and fixed one - m. It looks as we assume that models (objective world),
not agents, always must remember the same interval of the time in past - the one
with length m. Then we define models on such frames as we did earlier above
(bearing in mind the presence multi-agent’s valuations for agent’s knowledge
about truth the facts and agreed truth valuation V ).

Definition 9. The logic TMAInt,m is the set of all formulas which are valid at
any model M with the measure of intransitivity m.

The definition of admissibility for inference rules in this logic is exactly the same
as we defined above in this section for TMAInt. It seems that to consider and
to discuss such logic is reasonable, since we may put limitations on the size of
time intervals that agents (experts) may introspect in future (or to remember
in past). An easy observation concerning the logic TMAInt,m itself is that it is
decidable: it is trivial (since for verification if a formula of temporal degree k is
a theorem of TMAInt,m we will need to check it on only initial part of the frames
consisting only k + 1 subsequent intervals of length m). One more immediate
observation is:

Proposition 1. TMAInt,m � TMAInt for all m.

Proof is evident since

(
∧

i≤m

[p ∧ Nip] → �p) ∈ TMAInt,m.

The main technical result of this section is solution of the admissibility prob-
lem for logics TMAInt,m.

Theorem 3. For any m, the linear temporal logic with uniform non-transitivity
TMAInt,m is decidable w.r.t. admissibility of inference rules.

The proof is essentially other than the one for decidability w.r.t. admissible rules
of the linear (transitive) temporal logic LTL itself (given in [19]). Presence of
infinite sequence intransitivity intervals in the models makes the case different.
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5 Open Problems

We think the following open questions could be of interest:

(i) Decidability of TMAInt itself w.r.t. admissible inference rules.
(ii) Decidability w.r.t. admissible rules of the variant of TMAInt,m with non-

uniform intransitivity, when intransitivity intervals are of length at most
m, but the length may be different.

(iii) The problems of axiomatization for TMAInt and TMAInt,m are open.
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Abstract. It is known that Ogden lemma fails for the class of k-well-
nested multiple context-free languages for k ≥ 3. In this article we prove a
relaxed version of this lemma for linear well-nested MCFLs and show that
its statement may be applied to generate counterexamples of linear well-
nested MCFLs by the method already existing for the stronger variant.
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1 Introduction

It is known since 1980-s that context-free grammars are too weak to capture the
syntax processes in natural language ([7]). There were several suggestions how
to preserve such properties as polynomial parsing complexity and independence
of derivations from context. One of the most interesting candidates was the class
of well-nested multiple context-free languages (wMCFLs, [2]), which are argued
to be a formalisation of the notion of mildly context-sensitive grammars ([1]).

It is widely accepted that the language MIX = {w ∈ {a, b, c}∗||w|a = |w|b =
|w|c} is not mildly context-sensitive since it allows too much freedom in word
order. Therefore if wMCFLs are indeed the desired formalisation, then MIX
should lie outside this family. In any case, the methods to prove that a language
is not a wMCFL should be developed. In 2014 Alexey Sorokin ([10]) strengthened
the pumping lemma for wMCFLs, extending the earlier result of Kanazawa([2]).
He showed that for every well-nested (k + 1)-MCFL L there exists a number
p such that every word w ∈ L with |w| ≥ p admits a representation w =
x0u0y0v0x1u1x1v1 . . . xkukykvkxk+1 satisfying the following conditions:

1. u0v0 . . . ukvk �= ε,
2.

∑

i

(|ui| + |vi|) ≤ p,

3. For every n ∈ N it holds, that x0u
n
0y0v

n
0 x1u

n
1x1v

n
1 . . . xkun

kykvn
k xk+1 ∈ L
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Sorokin also tried to prove the following statement, similar to standard Ogden
lemma ([5]): for every word w there is a family of decompositions of the form
given above, such that all but at most p symbols is located in some ui, vi (the
“pumpable” segments) in exactly one decomposition and the remaining ones
do not participate in ui, vi at all. However, his proof contained an error, more-
over, Makoto Kanazawa gave a counterexample ([3]): the language including the
words an1bn0cn0dn1$an2bn1cn1dn2$ . . . $anrbnr−1cnr−1dnr , r ≥ 3, n0, . . . , nr ∈ N

is generated by a 3-well-nested-MCFG, but in every possible decomposition the
$-s are outside the pumpable segments. This counterexample is very strong since
the given wMCFG is non-branching (linear in our terminology), i.e. right sides
of its rules contain at most one nonterminal. In fact, non-branching 3-wMCFLs
are the narrowest class of languages which lack Ogden property, because for
2-MCFLs (which are tree-adjoining languages) Ogden lemma was proved in [6].

However, even weaker variants of Ogden lemma may be useful for proving
that a particular language is not a k-MCFL. Our goal is the following relaxed
formulation: the number of unpumped symbols should be bounded not by a con-
stant but by arbitrarily slow linear function. We say that a language L satisfies
limit Ogden property if for any positive α < 1 there exists a number pα such
that for any w ∈ L with |w| ≥ pα at most α|w| symbols do not participate in
pumpable segments and the others take part in them exactly once. We prove
that linear k-wMCFLs satisfy limit Ogden property for all natural k. Before
giving the general proof we explain the construction for linear 3-wMCFLs.

2 Definitions

We use the displacement context-free representation of well-nested MCFLs, bas-
ing on [8]. The only difference is that string tuples are replaced by gapped strings.
Let Σ be a finite alphabet, then Σ∗ denotes the set of all words with letters in
Σ, ε being the empty string. When Σ is fixed, Θk denotes the set of all tuples of
the form (u0, . . . , uk), ui ∈ Σ∗ and Θ =

⋃

k∈N

Θk. We call k the rank of the tuple

u = (u0, . . . , uk) and denote it by rk(u). The length |u| of a tuple |u| is the sum
of lengths of all its components, we denote by Θ(l) the set of all tuples of length
l. The notations Θ(≤l) and Θ(≥l) are understood in a natural way.

On the set of tuples we define the concatenation operation · : Θi ×Θj → Θi+j

and the countable set of intercalation operations �l : Θi × Θj → Θi+j−1, l ≥ 1:

(x0, . . . , xi) · (y0, . . . , yj) = (x0, . . . , xiy0, . . . , yj)
(x0, . . . , xi) �l (y0, . . . , yj) = (x0, . . . xl−1y0, y1, . . . , yjxl, . . . , xi)

Let N be a finite ranked set of nonterminals and rk: N → N be the rank
function. Let Opk = {·,�1, . . . ,�k}, the set Tmk(N,Σ) of k-correct terms is
defined as follows:

1. ∀j ≤ k (Θj ⊂ Tmk(N,Σ)).
2. If α, β ∈ Tmk and rk(α) + rk(β) ≤ k, then (α · β) ∈ Tmk, rk(α · β) =

rk(α) + rk(β).
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3. If j ≤ k, α, β ∈ Tmk, rk(α) + rk(β) ≤ k + 1, rk(α) ≥ j, then
(α �j β) ∈ Tmk, rk(α · β) = rk(α) + rk(β) − 1.

We assume that all the operation symbols are leftassociative and concatena-
tion has greater priority then intercalation. We may also omit the · symbol, so
the notation A �2 BC �1 D means (A �2 ((B · C)) �1 D).

Let Var = {x1, x2, . . .} be a countable ranked set of variables, such that for
every k there is an infinite number of variables having rank k. A context C[x] is
a term where a variable x occurs in a leaf position, the rank of x must respect
the constraints of term construction. Provided β ∈ Tmk and rk(x) = rk(β), C[β]
denotes the result of substituting β for x in C. A valuation function ν maps all
the elements of Θ to themselves and variable — to the words of the same rank.
Interpreting the connectives from Opk as corresponding binary operations, we are
able to calculate the value of every ground term (i.e. containing no nonterminal
occurrences). It is easy to prove that rk(α) = rk(ν(α)) for every α. The set
of k-correct ground terms is denoted by GrTmk(Σ). Analogously, a context is
ground if it contains no nonterminals.

Definition 1. A k-displacement context-free grammar (k-DCFG) is a quadru-
ple G = 〈N,Σ,P, S〉, where Σ is a finite alphabet, N is a finite ranked set of
nonterminals and Σ ∩ N = ∅, S ∈ N is a start symbol such that rk(S) = 0 and
P is a set of rules of the form A → α. Here A is a nonterminal, α is a term
from Tmk(N,Σ), such that rk(A) = rk(α).

Definition 2. The derivability relation G∈ N ×Tmk associated with the gram-
mar G is the smallest reflexive transitive relation such that the facts (B → β) ∈
P and A  C[B] imply that A  C[β] for any context C. Let LG(A) = {ν(α) |
A G α, α ∈ GrTmk} denote the set of word, which are derivable from a non-
terminal A, then L(G) = LG(S).

Example 1. A k-DCFG Gk = 〈{S, T}, {ai, bi | i ∈ [0; k]}, P, S〉, where the set P
is defined below, derives the language Lk = {am

0 bm
0 . . . am

k bm
k }.

S → (. . . (
︸ ︷︷ ︸

(k−1) times

T �1 ε) . . .) �1 ε

T → a0(T �1 (b0, a1) . . . �k (bk−1, ak))bk

T → ( ε, . . . , ε
︸ ︷︷ ︸

(k+1) times

)

Definition 3. A term is called linear, if it contains at most one occurrence of
nonterminal. A DCFG is linear1, if all rights sides of the rules are linear terms.

A linear DCFG is said to be in linear Chomsky normal form, if it has the
rules only of the following form:
1 Following the Russian tradition, the author prefers the term “linear” to “non-
branching”. However, he acknowledges the extreme ambiguity of this term. May
be, some other term should be more proper.
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1. A → B �j u, B ∈ N − {S}, u ∈ Θ(1);
2. A → B · u or A → u · B, B ∈ N − {S}, u ∈ Θ(1);
3. A → u, u ∈ Θ(1);
4. S → ε.

As proved in [11], every linear grammar may be transformed to linear Chom-
sky normal form. To generalize our proofs we introduce an auxiliary notion: a
grammar is said to be reduced if its rules have only the following form:

– A → α ∗ β, ∗ ∈ Opk, α, β ∈ (N − {S}) ∪ (Θ − {ε}) and α or β belongs to N .
– A → u, u ∈ Θ − {ε}.
– S → ε.

If we extend the valuation to nonterminals, matching every A ∈ N with
some tuple μ(A) ∈ Θrk(A), then we are able to calculate the value of arbitrary
term as well. Two terms are equivalent if they have the same value under any
possible valuation. Note that if we replace the term α in the rule A → α by some
equivalent term α′, then the generated language remains the same. Moreover, if
it holds that A G α, then adding a rule A → α′ does not alter the language
as well. We will extensively use this argument in the paper. The equivalence of
contexts is defined analogously. A term is k-essential, if its rank does not exceed
k and all its nonterminal nodes are of rank k or less (internal nodes and terminal
leaves may be of greater rank). The lemma below is an analogue of Lemma 7 in
[10]. Before proving the lemma we introduce some technical notion.

Definition 4. A term α is called specialized if it has one of the following forms:

1. α = u, u ∈ Θ(1);
2. α = β · u or α = u · β, u ∈ Θ(1), β being a specialized term;
3. α = β �j u, u ∈ Θ(1), β being a specialized term.

We want to prove that every term is equivalent to some specialized term
using the next statement, which is easily proved by induction.

Statement 1. For every tuple w ∈ Θ≥1 there exist tuples w1, . . . , wt in Θ1 with
|w1| = . . . = |wt| = 1 and indexes j1, . . . , jt, such that the context x �j w is
equivalent to the context (. . . (x �j1 w1) �j2 . . .) �jt wt.

Lemma 1. For every k, any k-essential specialized linear term α is equivalent
to some k-correct specialized linear term α′.

Proof. The scheme of the proof is taken from Lemma 7 [10]. We use induction
on the size of α, maximal rank of its subterms and the number of subterms of
maximal rank.
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3 Direct Descendance and Pumping Properties

In this section we give introduce the concepts extensively used through the paper.
We assume that an arbitrary linear DCFG G in linear Chomsky normal form is
fixed and consider only the derivations in this fixed grammar. We additionally
assumes that every nonterminal of G derives some word. Notions and statements
valid for every reduced grammar, if the contrary is not explicitly mentioned.

Recall the proof of pumping lemma for context-free languages: we consider
a grammar in Chomsky normal form and by the pigeon-hole principle find on
a sufficiently long branch two nodes labeled by the same nonterminal A. In our
terminology, it means that A  C[A] for some ground context C. Repeating this
derivation, we obtain that A  C[C[A]]  C[C[C[A]]] and so on. Turning from
contexts to strings and using the definition of Chomsky normal form, we obtain
the statement of the lemma.

However, a literal application of this construction to DCFGs fails. Consider a
grammar with the rules A → B(b, c) and B → A�1a, here rk(A) = 1, rk(B) = 0.
Then A  (A�1 a)(b, c), so if A  (u0, u1), then also A  (u0au1b, c), so both the
fragments derived from the lowest A are in the same fragment in the tuple derived
from the highest A, which is not the case predicted by the pumping lemma. The
key problem is the nonterminal of lower rank between the two occurrences of A
in the constructed derivation tree. It is easy to see, that in case of derivation
B → A �1 a → (B(b, c)) �1 a ∼ Bbac we obtain the required statement: B  u
implies B  ubac. To obtain an analogous pumping for nonterminals of higher
rank a grammar should be transformed. The transformation we use improves
the one from [10], which bases on the idea from [2].

To describe the required transformation we need some definitions. The deriva-
tion trees for DCFGs are defined just like for the context-free grammars: if the
derivation has the form A  C[B]  C[β] with the rule B → β applied, then
its tree is obtained from the tree of A  C[B] by attaching the syntactic tree
of β to the leaf corresponding to the distinguished occurrence of B. The tree is
said to be terminal if it derives a tuple from Θ. For every tree node we define
its rank as the rank of the term derived from this node. Nodes are labeled by
nonterminals and binary connectives in a natural way. For example, if the gram-
mar has the rules A → (B �1 b)C, B → (a, c), C → d, then the derivation
A  (B �1 b)C  ((a, c) �1 b)d ∼ abcd has the tree shown below.

A
·

�

B

(a, c)

b

C

d

In what follows we usually denote a derivation tree by T and its nodes by u, v,
possibly with indexes. If u is a node, then Tu denotes the subtree of T consisting
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of all descendants of u and ω(u) the value of the term derived by this tree. Let
u be a node of a derivation tree and v be its descendant, then Tu−v denotes the
tree obtained by removing from Tu all the nodes of Tv except v itself. We also
define a function ιu(v) which shows, in which fragments of ω(u) the fragments
of ω(v) are continuous subwords. Note that this function depends only from the
derivation between u and v. The formal definition of this function is given below.
It works for every reduced grammar; α and β always belong to N ∪ Θ.

1. If u is a node of rank l, then ιu(u) = (0, . . . , l).
2. Let v be a node of rank l + m, where a rule A → αlβm is applied (the

subscripts as usual denote the ranks) and ιu(v) = (i0, . . . , il+m). If v1 and v2
are the nodes corresponding to α and β, then

ιu(v1) = (i0, . . . , il), ιu(v2) = (il, . . . , il+m)

3. Let v be a node of rank l + m, where a rule A → αl+1 �j βm is applied and
ιu(v) = (i0, . . . , il+m). If nodes v1 and v2 correspond to α and β, then

ιu(v1) = (i0, . . . , ij , ij+m, . . . , il+m), ιu(v2) = (ij , . . . , ij+m)

4. If v is a node of rank l, a rule A → α is applied in it and v1 is the node
corresponding to α, then ιu(v1) = ιu(v).

Definition 5 2. A descendant v of u is its direct descendant if rk(v) = rk(u)
and ιu(v) = (0, 1, . . . , rk(u)).

Lemma 2. If v is a direct descendant of u in a terminal tree and ω(v) =
(v0, . . . , vl), then ω(u) = (x0v0y0, . . . , xlvlyl) for some strings x0, y0, . . . , xl, yl,
which depend only from Tu−v.

Proof. Follows from the definition.

Lemma 3. Let v be a descendant of u with rk(v) = rk(u), then

1. If rk(v) = rk(u) = 0, then v is a direct descendant of u.
2. If there is a node of smaller rank on the branch between u and v, then v is

not a direct descendant of u.
3. If all the nodes between u and v have the same rank, then v is a direct descen-

dant of u.

Proof. Easily follows from the definitions. The third statement uses induction
on the distance between v and u.

The notion of direct descendance is defined for syntactic trees just as for
derivation trees. A context C[x] is called direct, if its variable leaf is a direct
descendant of its root.

2 In [10] a more narrow definition of direct descendance was used. However, all the
arguments of that paper are still valid for current definition.
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Lemma 4. If A  C[A] for some direct context and rk(A) = r, then there exist
words x0, y0, . . . , xr, yr, such that for any tuple u = (u0, . . . , ur) ∈ L(A) it also
holds that (x0u0y0, . . . , xruryr) ∈ L(A).

Proof. Because the grammar does not contain useless nonterminals, we may
assume that C is a ground context (just continue all the derivations downwards
from nonterminals in its yield). Then attach the derivation tree of u to A in the
distinguished position of C and obtain another derivation tree T ′ in the grammar
under consideration. Let v be the word derived by T ′, by Lemma 2 it has the
required form.

Let T be a fixed derivation tree, deriving some word w. We call a pumping
pair two occurrences u and v of the same nonterminal A, where v is a direct
descendant of u. The subtree Tu−v is called a pump and the symbols of w which
are in the yield of this subtree — the scope of this pump. Let a language L
be fixed, a word w ∈ L is said to be r-pumpable, if there is a “pumping”
decomposition w = x0u1x1 . . . urxr such that u1 . . . uk �= ε and for every natural
n the word x0u

n
1x1 . . . un

r xr belongs in L. The statement below follows from the
definitions (see [2], Lemma 7).

Lemma 5. Let G be a reduced grammar and T be a terminal derivation tree in
it, which contains a pumping pair of rank t. Then the word w derived by T is
2(t + 1)-pumpable.

We call a word w r-pumpable with coverage α if at least α|w| symbols of
it are inside one of uj in some pumping decomposition. Our ultimate goal is to
prove that in every k-DCFL for any α < 1 all the words except a finite number
are 2(k + 1)-pumpable with coverage α. We prove the following claim: for every
k-DCFL L there is a grammar G, such that L(G) = L, and a number p, such
that for any w ∈ L with |w| ≥ p exists a derivation tree Tw with at least α|w|
symbols of w in scope of some pump of Tw. Note that in this case the pumpable
segments of different pumps would be disjoint.

We make terminological remark on derivation trees of linear grammars in
Chomsky normal form. They can be either terminal or nonterminal, the latter
have one nonterminal node in their yield. In the second case we call this node
the foot node of the tree. In both cases internal nodes of the tree form a single
branch called the spine. Every leaf of the yield is a son of some node in the
spine; moreover, since every leaf contains exactly one alphabet symbol, we may
establish a one-to-one correspondence between the letters of the derived word
and the spine of its derivation tree (in case of nonterminal tree the foot node
is excluded from this bijection). Which is even more important, a symbol is
in scope of some pump if and only if its parent lies on the path between two
elements of the same pumping pair, which we call the pumping chain. Therefore
to measure the fraction of symbols covered by pumps we suffice to measure the
number of spine nodes covered by disjoint pumping chains. That is exactly the
characteristic we will consider in the rest of the paper.
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4 The Main Theorem

Recall, our goal is the following: for every linear DCFL L and every α < 1
we construct a grammar GL,α, which generates this language and possesses the
following property: there is a number p such that for every w ∈ L with |w| ≥ p
there exists a derivation tree T such that at least α|w| symbols of w are in scope
of some pump of T . Equivalently: there is a number β such that for any word
w ∈ L exists a derivation tree T where at least α|w| − β nodes of the spine
are covered by a pumping chain. The desired limit Ogden property is an easy
consequence of this statement.

The main technique we apply is the replacement of “redundant” subtrees by
weakly equivalent trees containing nodes of smaller rank. Two derivation trees
are said to be weakly equivalent if they derive equivalent terms. A rule A → α is
said to be derivable in grammar G if A G α, it is weakly derivable if there exists
a term α′ ∼ α, such that A G α′. Obviously, adding a weakly derivable rule does
not change the language generated by the grammar. We call G′ a conservative
extension of grammar G, if it includes all the rules of G and L(G′) = L(G).

Lemma 6. Let G be a grammar in linear Chomsky normal form, A G α be a
derivable rule and rk(α) = r. Then there exists a grammar G′ in linear Chom-
sky normal form, which is a conservative extension of G and has all the same
nonterminals of rank r + 1 and greater, such that some term α′ ∼ α possesses
the following property: the derivation A → α′ uses only nonterminals of rank r
or smaller.

Proof. Since G is in Chomsky normal form, then α is specialized. Hence, there
exists an equivalent r-correct specilaized term α′. We create the rule A → α′ and
then binarize it, adding a new nonterminal and a new rule for every binary node
in the syntactic tree of α′. The rules obtained through binarization are added
to G to construct the required conservative extension G′. It is easily observed,
that all the new rules satisfy the definition of linear Chomsky normal form.

The previous lemma allows us to avoid redundant usage of nonterminals of
high rank (the initial derivation tree of A  α might have internal nodes of rank
greater than rk(α)). The next lemma shows that in some conditions we are able
to necessitate the existence of lower rank nonterminals.

Lemma 7. Let G be a grammar in linear Chomsky normal form, A G α be a
derivable rule and rk(α) = r. Assume that α = C[B] for some indirect ground
context C and rk(B) = r. Then there exist a term α′ ∼ α and a conservative
extension G′ of G with the following property: the derivation A → α′ in G′

does not use nonterminals of rank greater than r and obligatorily uses some
nonterminal of smaller rank.

Proof. We start as in Lemma 6 by constructing an r-correct specialized linear
term α′, which is equivalent to α. Then α′ has the form C ′[B] and the context C ′

has internal nodes only of rank r or smaller. If all its internal nodes are of rank r,
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then by Lemma 2 C ′ is a direct context. But in this case it is easy to define a
valuation, which maps α and α′ to different tuples. This is a contradiction and
the lemma is proved.

Consider a derivation tree T , a pump π and let u and v be its top and bottom
nodes. We call the collapsing of π the following procedure: the pump is removed
from the tree and Tv is attached to the former position of u.

Statement 2. Let T ′ be obtained from derivation tree T by collapsing some
pump, then:

1. T ′ is a correct derivation tree.
2. If v′ is a direct descendant of u′ in T ′, then it was such descendant in T .

Proof. We prove only the second statement, the first is trivial. In v is not on the
path from u′ to v′ in T ′, then there is nothing to prove. Otherwise we prove for
every descendant z of u′ in T ′ that ι′u′(z) = ιu′(z), where ι′ denotes the ι function
for the tree T ′. This is done by induction on the distance from u′ to z. The only
nontrivial case is z = v where the direct descendance between u and v is used.
The statement is proved.

The next lemma shows which spines are desirable in order to prove a lower
bound on the number of covered symbols. We call an (i, j)-tree a derivation tree
in a specialized linear grammar, whose root has rank i and whose foot node —
rank j. We call a tree direct if its foot node is a direct descendant of its root.
Note that whether a tree is direct or not is preserved modulo equivalence. In
what follows we denote by C(T ) the number of nodes in the spine of derivation
tree T which are covered by pumping chains and by d(T ) the depth of this tree.
We call “direct” spines the spines of direct derivation trees.

Lemma 8. Let π be a continuous segment of the spine containing nodes of the
same rank r. Then there is a coverage by pumping chains, that does not cover
at most d nodes of π, the constant d depends only from the grammar.

Proof. Through the proof and the rest of the paper we denote by Nt the set
of nonterminals of rank t. We claim that the number of uncovered nodes does
not exceed |Nr|. Indeed, consider all uncovered nodes in the optimal cover. If
there are two nodes with the same label outside the cover, then they are direct
descendants and we may add their pumping chain to the cover, possibly removing
its subchains to preserve disjointness. That increases the number of covered
nodes and contradicts optimality, the lemma is proved.

Lemma 9. Let T be a direct (r, r)-tree, which has internal nodes only of rank r
and r + 1, then C(T ) ≥ d(T ) − D for some constant D, depending only from the
grammar.

Proof. Consider a direct (r, r) tree T with the following property: the difference
d(T ) − C(T ) for it is strictly greater then for all trees of smaller size. If we prove
the depth of T to be bounded, the lemma will also be proved.
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Statement 3. The spine of T has no pumping chains.

Proof. Assume the contrary, let u and v be the top and the bottom node of the
corresponding pump π. Collapsing this pump yields a smaller tree T ′. Let us
prove that the number of uncovered nodes in the spine of T ′ cannot be greater
then in T . Indeed, the spine of T ′ is obtained from the spine of T by removing
the semi-interval [u; v). If v is not covered, then we may add to the cover the
pumping chain between u and v and obtain that all the removed nodes were
covered. Otherwise the pumping pair (u′, v′) whose chain covers v in T ′ remains
a pumping pair in T due to Lemma 9. In both cases d(T ′)−C(T ′) = d(T )−C(T )
(all removed nodes were covered) which contradicts the derivation of T .

Observe that all the nodes of rank r in the spine of T are direct descendants.
Hence this spine contains at most |Nr| nonterminals of rank r by Dirichlet’s
principle. By the same argument maximal length of a continuous chain of rank
r + 1 nodes is |Nr+1|. Hence, d(T ) ≤ |Nr| + (|Nr| − 1)|Nr+1| which proves the
lemma.

Now we turn to the proof of our first main result: the limit Ogden property
of linear 2-DCFLs. We fix an arbitrary α ∈ (0, 1) and a DCFG G = 〈N,Σ,P, S〉
and construct its conservative extension G′ = 〈N ′, Σ, P ′, S〉 with the following
property: for every word w there exists a derivation tree Tw in this grammar
with at least α|w| − β nodes of the spine covered by pumping chains, where β is
a constant, depending only from α and the grammar G′.

Let t be some sufficiently large natural number whose exact value will be
determined later. We construct the grammar G′ by duplicating all the rules
corresponding to indirect (1, 1)-derivation trees with depth less than t. For every
word w ∈ L(G) we construct a derivation tree T ′

w with desirable properties,
starting from an arbitrary derivation tree Tw of this word in the grammar G.

We label the nodes of rank 1 by the following algorithm: firstly a topmost
node of rank 1 is labeled. After labeling a node u we either label its furthest direct
descendant, if it differs from u, or the next node of rank 1. Then we partition the
tree by the labeled nodes, obtaining subtrees T0, . . . , Tr. We call an indirect tree
Ti replacable if its spine does not contain nodes of rank 0 and its depth is ≤ t.
To construct the tree T ′

w we replace every replacable Ti by a weakly equivalent
T ′

i tree whose spine contains a rank 0 nonterminal, which exists by construction
and Lemma 7. We call all trees produced in such a way admissible.

Now consider the partition of T ′
i ’s spine by the labeled nodes. We assume

that a segment between two labeled nodes includes the upper one, but not the
lower. The following segments may occur:

1. The segment before the first labeled node,
2. The segment below the last labeled node.
3. The segments between direct descendants, whose length is greater then t, we

call them segments of the first type.
4. The segments of length > t, whose last node is not a direct descendant of the

first — segments of the second type.
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5. The segments between direct descendants, whose length is t or less, we call
them segments of the third type.

6. “Old” segments containing nodes of rank 0, — segments of the fourth type.
7. Segments obtained by duplication, they are segments of the fifth type. Each

such segment has length ≤ t and contains a “new” nonterminal of rank 0.

As earlier, we consider the admissible tree T ′, for which the difference δ(T ′) =
αd(T ′) − C(T ′) called the defect is greater than for all smaller admissible trees.
We prove that δ(T ′) is bound by some constant. We process segments of different
types separately. Note that to satisfy the definition of T ′ its spine should contain
every nonterminal of rank 0 at most once: otherwise removing a pump between
the repeating occurrences leads to a smaller tree with the same defect (the
argument we used in Lemma 9). We denote by Mj the number of type j segments
occurring in T ′ and by Lj — the total length of such segments. Uj stands for
the number of uncovered spine nodes in the segments of type j.

1. The topmost segment contains only nodes of rank 0, therefore by the remark
on repeating occurrences it contains at most |N0| nodes.

2. Since a node of rank 0 cannot immediately precede a node of rank 2, the
lowest segment consists of a continuous chain of rank 2 nodes followed by
a sequence of rank 0 nodes. By the pump collapsing argument the whole
segment contains at most |N2| rank 2 nodes, N0 rank 0 nodes and a single
node of rank 1, which bounds its length by |N0| + |N2| + 1.

3. By Dirichlet’s principle there are at most |N ′
0| segments of the fifth type and

maximal length of such segment is at most t, therefore U5 ≤ L5 ≤ t|N ′
0|.

4. By the arguments we applied to the lowermost segment, the segment of type 4
consists of a continuous chain of rank 2 nodes, followed by a sequence of rank
0 nodes. As before, the chain of rank 2 nodes cannot contain more than |N2|
elements, and the total number of rank 0 nodes in such segments is at most
|N0|. Since every such segment contains a node of rank 0, then M4 ≤ |N0|.
Finally, we conclude that U4 ≤ L4 ≤ 2|N0| + |N0||N2|.

5. A segment of type 3 cannot be followed by segments of type 1 and 3 by
construction (the segment of type 3 will not be maximal contradicting its
definition). Any such segment contains at most |N2| + 1 uncovered nodes by
Lemma 8, we have U3 ≤ (|N2| + 1)(M2 + M4 + M5 + 1) ≤ (|N2| + 1)(M2 +
|N ′

0| + |N0|).
6. By the arguments used before, a segment of type 1 contains at most |N2| + 1

uncovered nodes, and a node of type 2 — |N0| + |N2| + 1 such nodes, so
U1 ≤ M1(|N2|+1) and U2 ≤ M2(|N2|+|N0|+1). Since every such segment has
length t or greater, we obtain that U1 ≤ L1

|N2|+1
t and U2 ≤ L2

|N2|+|N0|+1
t .

Calculating the total number U of uncovered nodes, we have U ≤ |N0| +
(|N0|+|N2|+1)+U1+U2+U3+U4+U5 ≤ D+(L1+L2)

|N2|+|N0|+1
t +L2

|N2|+1
t +

|N ′
0|(|N2| + 1 + t) ≤ L2(|N2|+1)+|N0|

t + E, where D is a constant depending only
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from the parameters of initial grammar G and E additionally depends from t

and G′, but not from the derivation itself. Choosing t ≥ 2(|N2|+1)+|N0|
1−α we obtain

U ≤ (1 − α)L + β which was required. Using the fact that α < 1 was arbitrary
we derive the following theorem:

Theorem 1. For any linear 2-DCFL L and every α < 1 there exists a grammar
GL,α generating L, which has the following property: there is a number p, such
that for every w ∈ L with |w| ≥ p there exists a derivation tree T of G, where at
least α|w| symbols of w are in scope of some pump.

As far as we know, the strongest result of Ogden type known before was Ogden
lemma for tree-adjoining grammars (i.e. 1-DCFGs), proved in [6]. Therefore we
have already made one step forward in DCFGs hierarchy. The goal of the next
section is to generalize the proof to linear DCFGs of arbitrary rank.

5 Ogden Property for Linear DCFGs

In this section we prove the limit Ogden property for the whole family of linear
DCFGs. We fix a number k, an arbitrary k-DCFG G in linear Chomsky normal
form, generating the language L = L(G) and arbitrary α < 1. Our goal is to
construct its conservative extension G′ with the following property: for every
w ∈ L there exists a derivation tree T ′

w, whose spine contains at least α|w| + β
nodes covered by pumping chains with the constant β depending only from
G′. We prove by downward induction on r the following claim: for every (r, s)-
derivation tree T ′ of G′ with s ≥ r, whose spine do not contain nodes of rank less
than r, it is possible to construct at equivalent tree T ′′ with C(T ′) ≥ αd(T ′)+βr,
βr being a constant independent from T ′ (but depending from r).

The claim holds for r = k since a spine of a (k, k)-tree is a chain of direct
descendants and has at most constant number of uncovered nodes by Lemma 8.
Hence the induction base is valid for arbitrary α. Let us prove the induction step
for current r, let G(r+1) be the extension satisfying the induction statement for
the step r + 1 and coverage α′ which we define later. To construct the gram-
mar G(r) we duplicate all the indirect (r, r)-derivation trees whose depth is t or
less with t being a sufficiently large number also determined later. We denote
their sets of nonterminals by N (r+1) and Nr respectively. The structure of the
induction step resembles the proof of Theorem 1.

Consider an arbitrary (r, s)-tree T ′, where duplication was applied to all
(r, r)-segments which can be duplicated. Let π be the spine of the tree obtained,
we start with the following claim: π contains at most 2(t− 1) nonterminals from
Nr. Indeed, a spine of a new subtree (i.e. appeared by duplication) contains
a node of rank less than r by Lemma 7. Therefore the distance from a “new”
nonterminal to the closest nonterminal of smaller rank is at most t − 1. Hence
new nonterminals may occur only between (t − 1) uppermost or lowermost non-
terminals of π. So at the induction step it is enough to consider only the trees
containing old nonterminals. Let us prove the following auxiliary statement:
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Statement 4. Let T be a direct (r, r)-tree, then C(T ) ≥ α′d(T ) + γ for some
constant γ.

Proof. As earlier, consider a tree with the defect α′d(T ) − C(T ) greater than
for any smaller tree. By standard arguments it does not contain any pumping
chains. Consequently, it contains at most |N (r+1)

r | occurrences of rank r nonter-
minals. Consider the segments between the occurrences of rank r nonterminals,
let L1, . . . , Ls be their lengths and C1, . . . , Cs be the number of covered nodes on
each such segment. By induction hypothesis we have Cj ≥ α′Lj + βr+1. So we
obtain C(T ) =

∑

j

Cj ≥ α′ ∑ Lj +sβr+1 ≥ α′(L−|N (r+1)
r |)+s|N (r+1)

r | = α′L+γ

for a constant γ depending only from G(r+1). The statement is proved.

Now we partition the spine by rank r nodes by the same algorithm as we
applied to linear 2-DCFGs: the segments in the partition are either maximal
direct (r, r)-spines, or the segments between adjacent (r, r)-nodes which are not
direct descendants (adjacency means there are no nodes of rank r between them).
As in Theorem 1, we have the segments of the following types:

1. The segment below last rank r node — type 0 segment.
2. Direct (r, r)-segments of length larger than t — type 1 segments.
3. Indirect (r, r)-segments of length larger than t — the segments of type 2.
4. Direct (r, r)-segments of length t or less — type 3 segments. There are no

other types since all short indirect (r, r)-segments have been duplicated.

Let as earlier Mj , Lj and Uj be the number of segments of type j, the total
length of such segments and the number of uncovered nodes on them. The letters
M,L,U stand for the same characteristics of the whole tree. We denote κ = 1−α
and κ′ = 1 − α′, our goal is to prove that U ≤ κL + ζ for some constant ζ.

1. The lowermost segment is a (r + 1, s′)-segment for some s′ ≥ r + 1. Hence
by induction hypothesis U0 ≤ κ′L0 + ζ0 for some constant ζ0 depending only
from G(r+1).

2. As in the proof of Theorem1, M3 ≤ M2 + 1. Applying Statement 4 to every
segment of type 3 and summing the results, we obtain U3 ≤ κ′L3 + γM3 ≤
κ′L3 + γ(M2 + 1) ≤ κ′L3 + γ

t L2 + γ.
3. Analogously applying Statement 4 to every segment of type 1, we have U1 ≤

κ′L1 + γM1 ≤ (κ′ + γ
t )L1.

4. Consider a segment ρ of type 2, all inner nodes of ρ have larger rank. Let
Uρ and Lρ be its number of uncovered nodes and total length, we have Uρ ≤
κ′(Lρ − 1) + ζ0 + 1 ≤ κ′Lρ + ζ0 + 1. It implies U2 ≤ κ′L2 + (ζ0 + 1)M2 ≤
L2(κ′ + ζ0+1

t ).

So the total number of uncovered nodes can be bounded by U = U0+U1+U2+
U3 ≤ κ′L0+ζ0+(κ′+ γ

t )L1+(κ′+ ζ0+1
t )L2+κ′L3+ γ

t L2+γ ≤ (κ′+ γ+ζ0+1
t )L+ζ

for some constant ζ. Since γ and ζ0 do not depend from t, we first choose κ′ = κ
2

and then t ≥ 2γ+ζ0+1
κ′ . Finally we obtain U ≤ κL + ζ which was required. The

induction step is proved. Setting r = 0 we obtain the theorem.
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6 Application of Ogden Lemma

Not to be pure theoreticists, in this section we demonstrate an application of
limit Ogden property. Due to the lack of space we give only one simple example
just to demonstrate the principal components of the technique. The scheme of
the proof closely follows Theorem 5 in [10].

A constituent is the part of the word derived from a node in derivation tree.
A constituent of rank r consists of r + 1 continuous strings (some of them may
be empty). With every constituent we associate a curve as shown below (for
r = 2). The key argument is that either regions bounded by different curves do
not intersect, or one region lies entirely inside another, for the proof see [9].

x0 x1 x2

Since a pump is the difference between two constituents, we match every
pump with the region corresponding to its outer constituent (we call this region
the outer region of the pump). Simple topology shows that there exist only three
principal variants for mutual location of two pumps π1 and π2: (1) the leftmost
element of π1 lies to the right of the rightmost element of π2; (2) the first variant
does not hold, but the outer regions of pumps do not intersect; (3) the outer
region of π1 includes the one of π2. In the first case we say pumps form a linear
pair, in the second π1 embraces π2 and in the third π1 is an outer pump for π2.
This three variants are schematically illustrated below.

π1 π2

π1
π2

π1 π2

We apply the introduced machinery to show that the language 6-MIX =
{w ∈ {a, b, c, d, e, f}∗ | |w|a = |w|b = |w|c = |w|d = |w|e = |w|f} cannot be
generated by a linear 2-DCFG. We use the fact that linear well-nested MCFGs
are closed under intersection with regular languages which is easily proved by
standard means.
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Theorem 2. The language 6-MIX = {w ∈ {a, b, c, d, e, f}∗ | |w|a = |w|b =
|w|c = |w|d = |w|e = |w|f} cannot be generated by a linear 2-DCFG.

Proof. It is enough to prove the statement for the language L = {(a+b+c+d+e+

f+)2}∩6-MIX = {am1bm2cm3dm4em5fm6an1bn2cn3dn4en5fn6 | m1+n1 = . . . =
m6 + n6}. We enumerate maximal continuous segments, containing the same
letter, from left to right. We call a pump intersecting with the segments numbered
i1, . . . , it (and possibly some others) an (i1, . . . , it)-pump. We take some small
κ < 1, which will be determined letter, and consider the grammar Gα generating
L, such that every word w with |w| ≥ pκ has at most κ|w| symbols not covered by
a family of disjoint pumps. Consider a word am1bm2cm3dm4em5fm6an1bn2cn3dn4

en5fn6 satisfying the following properties:

1. min (mj , nj) > κ|w|,
2. m1 > (5M + 1 + κ|w|), where M = max (m5,m6, n2, n3, n4),
3. m6 ≥ (n1 + κ|w| + 1).

For example, we may set κ = 1
100 , p = pα, m5 = n1 = n2 = n3 = n4 = p, m6 =

2p, m1 = m2 = m3 = m4 = n5 = 11p, n6 = 10p. We fix a set of pumps from the
statement of limit Ogden lemma and consider only the pumps from this set.

1. For any i ∈ [1, 12] an i-pump exists. Indeed, every segment contains more
than κ|w| letters.

2. Every pump is a [i1, i2, i3, i4, i5, i6]-pump, where all ij ∈ {j, j + 6}. Every
pump should contain equal positive number of a-s, b-s, c-s and so on, therefore
it intersects with an a-segment, b-segment and so on.

3. There are at most M a-s covered by [1, 5]-pumps. In [5]-pumps all the e-s are
from the fifth segment (due to the previous statement), therefore there are at
most M e-s covered by such pumps, and consequently, at most M a-s.

4. There is a [1, 2, 3, 4, 11, 12]-pump. π1 Equivalently, there is a [1]-pump, which
is not a [1, 5]-, [1, 6]-, [1, 8]-, [1, 9]-, [1, 11]-pump. By the previous step, there
are at most 5M a-s, covered by such pumps, so at least κ|w| + 1 a-s remain.
One of them must be covered by a pump.

5. There is a [1, 6]-pump π2. Analogously to the two previous steps.
6. It is in fact a [1, 6, 12]-pump. Observe the mutual position of π2 and π1. The

outer curve of π2 intersects with 6-segment, which is outside the region of π1.
Since π1 and π2 do not form a linear pair, the only possibility left is that π2

is an outer pump for π1. Then it intersects with 12-th segment.

But then π2 intersects with two f segments, a contradiction. The theorem is
proved.

The same method yields that the language 2(k + 1) − MIX = {w ∈ {a1, . . . ,
a2(k+1)}∗ | |w|a1 = . . . = |w|a2(k+1)} cannot be generated by a linear k-DCFG.

The author thanks the reviewers of LFCS 2016 for their helpful comments.
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7 Conclusion and Future Work

We have proved the limit Ogden property for linear DCFGs (i.e., linear well-
nested MCFGs). There are several natural ways to extend our results: the first
is to prove an analogous statement for the whole class of DCFGs or to show
its falsity, the second is to apply the statement of limit Ogden lemma in a
more sophisticated manner to give more examples of languages which are not
linear DCFLs. For example, the author suggests that the language 3 − MIX =
{w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} lies outside this family (a weak version of
Kanazawa-Salvati conjecture, [4]), but do not has even a sketch of the proof of
this hypothesis. The problem is that in case of higher rank DCFGs we have to
turn from graphic arguments to more systematic use of topology. Nevertheless,
the author hopes his technique will help to determine the exact place of well-
nested MCFLs in the family of context-sensitive languages.
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Abstract. In this note we introduce a generalization of the Levy label
technique which applies easily to lambda calculus with beta-eta conver-
sion and lambda calculus with surjective pairing a’ la PSP.
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1 Introduction

In this note we introduce a generalization of the Levy label technique [5] which
applies easily to lambda calculus with beta-eta conversion and lambda calculus
with surjective pairing a’ la PSP [10]. Our technique is based on the algebraic
approach to recursive types first described by Dana Scott [8]. This approach is,
literally speaking, not a true generalization of Levy labels, but rather Levy labels
are an abstraction of the recursive types approach when the latter is applied to
the case of lambda calculus with beta conversion.

The Levy label technique is a powerful method, which itself generalizes Hind-
ley’s theory of developments [4], for proving the Church-Rosser theorem for
lambda calculus with beta, and other fundamental results such as the stan-
dardization theorem. However, it is very unclear how to apply this technique to
extensions of beta. Already in the case of eta, how does one assign Levy labels
to the eta reduction of

((λx((Okxl)m))ny◦)p,

where O is Barendregt’s big omega term [1], so as to get

(Okymin(l,o,n−1))min(m,n−1,p)?

Similar problems arise in applying this technique to combinators.
The principal properties of Levy labels are

(a) completeness;
all finite reductions can be labeled, and

(b) strong normalization;
all labeled reductions are finite,

in addition to the weak diamond property, which we shall discuss below. The
challenge is to make this work for recursive types.
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-27683-0 27
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2 Preliminaries

We begin with some preliminaries for the untyped calculus with pairing. The
atoms of the language are defined by:

(i) the variables x, y, z, . . . are atoms.
(ii) the constants P,L,R are atoms.

The terms of the language are defined by:

(i) atoms are terms
(ii) if X,Y are terms then so are (XY ) and λxX.

We shall adopt the customary conventions:

(i) parens are deleted and restored by left association and the use of Church’s
infixed “dot”notation when necessary.

(ii) parens are added around abstractions for readability.

The axiom and rules of untyped lambda calculus are the following: The first
5 axioms correspond to the classical theory of untyped lambda calculus with
surjective pairing SP+ eta considered by Colin Mann:

(beta) (λxX) Y = [Y/x] X
(eta) X = λx. Xx x not free in X
(L/Pa) L(PXY ) = X
(R/Pa) R(PXY ) = Y
(P/Dp) P (LX)(RX) = X

The next 6 axioms correspond to the extended theory of Stovring (FP,[12])
and Statman (PSP, [10]),

(P/Ap) PXY Z = P (XZ)(Y Z)
(L/Ap) LXY = L(XY )
(R/Ap) RXY = R(XY )
(L/Ab) L(λxX) = λx(LX)
(R/Ab) R(λxX) = λx(RX)
(P/Ab P (λxX)(λxY ) = λx PXY

There are certain useful derived rules.

(1) (P/Dp) and (P/Ap) implies (L/Ap) and (R/Ap)
L(XY ) = L(P (LX)(RX)Y ) = L(P (LXY )(RXY )) = LXY
similarly for R

(2) (L/Ap) and (R/Ap) and (P/Dp) implies (P/Ap)
L(PXY Z) = L(PXY )Z = XZ and R(PXY Z) = R(PXY )Z = Y Z
therefore
PXY Z = P (L(PXY Z))(R(PXY Z)) = P (XZ)(Y Z).

(3) (eta) and (P/Ap) implies (P/Ab)
P (λxX)(λxY ) = λy. P (λxX)(λxY )y = λy. P ((λxX)y)((λxY )y) = λ xPXY
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(4) (eta) and (L/Ap) implies (L/Ab)
L(λxX) = λy.L(λxX)y = λy.L((λxX)y) = λx(LX)
similarly for R

(5) (eta) implies LP = K and RP = K∗

L(PX) = λx. L(PX)x = λx. L(PXx) = λx.X thus
LP = λx.LPx = λx.L(Px) = λxy. x
similarly
R(PX) = λx. R(PX)x = λx. R(PXx) = λx.x hence
RP = λyx.x

The result of Klop [6] is that the Church-Rosser property fails for the follow-
ing classical reductions for SP :

(beta) (λxX) Y red. [Y/x]X
(L/Pa) L(PXY ) red. X
(R/Pa) R(PXY ) red. Y
(P/Dp) P (LX)(RX) red. X

Nevertheless, this theory was proved conservative over beta by Roel De Vri-
jer [3]. Stovring and, later, Statman (for the combinator case) introduced new
reductions for the first 5 and an additional three which enjoy Church-Rosser.
Stovring Reductions for FP with eta:

(beta) (λxX)Y fpred. [Y/x]X
(etae) X fpred. λx. Xx x not free in X
(L/Pa) L(PXY ) fpred. X
(R/Pa) L(PXY ) fpred. Y
(P/De) X fpred. P (LX)(RX)
P/Ap) PXY Z fpred. P (XZ)(Y Z)
(L/Ab) L(λxX) fpred. λx(LX)
(R/Ab) R(λxX) fpred. λx(RX)

Here we modify these reductions again

(Beta) (λxX)Y ↪→ [Y/x]X
(Etae) X ↪→ λx. Xx x not free in X
(Left) L(PXY ) ↪→ X
(Rght) R(PXY ) ↪→ Y
(Surj) P (LX)(RX) ↪→ X
(Sure) X ↪→ P (LX)(RX)
(Appl) LXY ↪→ L(XY )
(Appr) RXY ↪→ R(XY )
(Appp) PXY Z ↪→ P (XZ)(Y Z)

for a version of PSP+ eta in lambda calculus. It is obvious that the congruence
generated by ↪→ coincides with FP . There will be several occasions below where
we will not want to use Etae. In those cases we shall write “W.W.E.” (works
without Etae).
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3 Properties of ↪→
We shall be interested in a number of subsystems of ↪→:

jj ↪→ := {Surj}
je ↪→ := {Sure}
oj ↪→ := ↪→ −{Surj}
oe ↪→ := ↪→ −{Sure}
oo ↪→ := ↪→ −{Surj,Sure}
oa ↪→ := ↪→ −{Etae}

Fact: je ↪→→ has the strong diamond property W.W.E.: viz, if Xje ↪→→ Y and
Xje ↪→→ Z then there exists W sych that Y je ↪→→ W and Zje ↪→→ W .

Proof. Verify the strong diamond for parallel je ↪→, as in Barendregt 3.2. �

Proposition 1. (Surj postponement W.W.E.)
Suppose that Xoe ↪→→ Y . Then there exists Z such that Xoo ↪→→ Zjj ↪→→ Y .

Proof. By induction on the number of Surj reductions in an oe ↪→ reduction
sequence from X to Y . The basis case is trivial so it suffices to prove that if
Xjj ↪→ Uoo ↪→→ Y then there exists a V such that Xoo ↪→→ V jj ↪→→ Y . Toward
this end we suppose that certain Surj redexes P (LW )(RW ) in X have been beta
expanded to (λxP (Lx)(Rx))W , and the Surj reduction to U can be simulated

(λx P (Lx)(Rx)W Surj (λx x)W Beta W

This can certainly be done in the case of a single Surj redex. In short, we are
assuming that the Surj reduction at hand does not send the two different occur-
rences of W to different terms. Now suppose that Y oo ↪→ Z, we distinguish 4
cases:

Case 1: Beta. This case follows from Appl, Appr, and Appp.
Case 2: Etae. Immediate.
Case 3: Left, Right. This case follows from Appl, Appr, Appp, and Left resp.

Right.
Case 4: Appl, Appr, Appp. This case follows from Appl, Appr, and Appp. End

of proof.

4 Recursive Type Paths

First, we “Church”type untyped terms by paths of recursive types. These typings
convert to other such typings by some simple operations of clockwise and counter-
clockwise rotation, and left and Right shift.

Simple types A,B,C, . . . are built up from atoms pi by →. We shall employ
the usual ideas associated with such types such as the notions of subtypes,
positive and negative occurrences, and strictly positive and negative occurrences.
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Let R be a simultaneous recursion, as in 7.3.10 of [2].

R = {pi = Pi(p1, . . . , pe)|i = 1, . . . , e}.

There is a corresponding reduction relation:

Pi(p1, . . . , pe) Red. pi i = 1, . . . , e.

We make several assumptions about R which can always be arranged:

(i) (non-triviality) each Pi contains →
(ii) (Knuth-Gross) for distinct i, j.

Pi is not a subtype of Pj .

There may be type atoms pj which do not appear in R. These are treated as
simple types and will be mostly ignored below. We write B = A+ and A = B−
if A Red. B. If B = A+ then i is uniquely determined. We write ∗ for + or −
ambiguously.

A type path is a sequence of types A1, . . . , An such that Ai+ = Ai+1 or
Ai− = Ai+1. We denote type paths by r, s, t, . . .. A recursive typing of a term
X is an assignment of type paths to subterms of X, where we write

Y : A1, . . . An

if Y has been assigned the type path A1, . . . , An, satisfying the following
conditions

(1) for subterms (UV ):
U : r,A → B and V : s,A and (UV ) : B, t

(2) for subterms λu U :
each occurrence of u : A, r for possibly different r but always the same A
(we write this as u = u : A,)
U : s,B and λuU : A → B, t.

(3) for each occurrence of P , P : A → (A → A), r
for each occurrence of L, L : A → A, r
for each occurrence of R, R : A → A, r.

As said before, these are to be understood as “Church” typings as this notion
is discussed in 1.1 of [2]. We shall use the usual superscript notation when useful.

We now define the notion of type conversion ⇐ to ⇒, a congruence relation
on typings, by defining type reduction to ⇒ as follows

(1) Clockwise Rotation of an Application:

(∗) (Ur,A→B,A∗→BV s,A∗
)B,t to ⇒

(Ur,A→BV s,A∗A)B,t
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(2) Right Shift of an Application:

(∗) (Ur,A→B,A→B∗
V s,A)B

∗,t to ⇒
(Ur,A→BV s,A)B,B∗,t

(3) Counter-clockwise Rotation of an Abstraction:

(∗) (λuA,Ur,B)A→B,A∗→B,s to ⇒
(λuA∗,A,[uA∗,A,/uA,]Ur,B)A

∗→B,s

(4) Left Shift of an Abstraction:

(∗) (λuA,Ur,B)A→B,A→B∗,s to ⇒
(λuA,Ur,B,B∗

)A→B∗,s

(5) Counter-clockwise Rotation of L:

(∗) LA→A(Ur,A)A,A∗,s to ⇒
LA∗→A∗

(Ur,A,A∗
)A

∗,s

(6) Counter-clockwise Rotation of R

(∗) RA→A(Ur,A)A,A∗,s to ⇒
RA∗→A∗

(Ur,A,A∗
)A

∗,s

(7) Counter-clockwise rotation of P

(∗) ((PA→(A→A)(Ur,A))A→A(V s,A))A,A∗,t to ⇒
((PA∗→(A∗→A∗)(Ur,A,A∗

))A
∗→A∗

(V s,A,A∗
))A

∗,t

Proposition 2. Every sequence of type reductions of a given term terminates.

Proof. Suppose that X has been typed and has an infinite reduction sequence S.
A subterm PUV,LU or RU of X is said to be marginal if at some stage of S the
subterm is a redex of counter-clockwise rotation. Note that the head (P,L,R)
of a marginal subterm cannot have a type path of length greater than 1 after its
first counter-clockwise rotation. Now we order the subterms of X excluding the
heads of its marginal subterms as follows

U, V < PUV PUV marginal
U < LU LU marginal
U < RU RU marginal
V < (UV ) < U UV not marginal
U < λuU

Clearly < is a linear order of height, say, h. Now consider that tail-end of S which
begins after the last marginal subterm is counter-clockwise rotated for the first
time. A simple ordinal assignment of ordinals < ωh+1 shows this tail-end must
be finite. End of proof.
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5 Typed Reductions

In addition, we have beta reduction, eta expansion, and reductions corresponding
to pointwise surjective pairing on terms with types. This relation on typed terms
is denoted ot ⇒.

(1) Beta Reduction:

((λuA,(Ur,B))A→B(V s,A))B,t ot ⇒
[V s,A,/uA,]Ur,B,t

(2) Etae Reduction (Eta Expansion):

Ur,A→B,A∗→B,s ot ⇒
(λuA∗

, (Ur,A→BuA∗,A)B)A
∗→B,s

Ur,A→B,A→B∗,s ot ⇒
(λuA,(Ur.A→BuA)B,B∗

)A→B∗,s

(3) Left Reduction:

(LA→A((PA→(A→A)(Ur,A)(V s,A))A))A,t ot ⇒
Ur,A,t

(4) Rght Reduction:

(RA→A((PA→(A→A)(Ur,A)(V s,A))A))A,t ot ⇒
V s,A,t

(5) Surj Reduction:

(PA→(A→A)((LA→AXr,A)A))A→A

((RA→AXr,A)A))A,s ot ⇒
Xr,A,s

(6) Appl Reduction:

((L(A→B)→(A→B)(Ur,A→B))A→BV s,A)B,t ot ⇒
(LB→B(Ur,A→B(V s,A)B)B)B,t

(7) Appr Reduction:

((R(A→B)→(A→B)(Ur,A→B))A→BV s,A)B,t ot ⇒
(RB→B((Ur,A→B)(V s,A)B)B)B,t

(8) Appp Reduction:

((P (A→B)→((A→B)→(A→B))

(Ur,A→B)(V s,A→B))A→BW t,A)B,t′
ot ⇒

((PB→(B→B)(Ur,A→B(W t,A))B)))B→B

(V s,A→B(W t,A)B))B,t′
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Taken together to ⇒ and ot ⇒ define a reduction relation on typed terms denoted
tt ⇒. The reduction relation generated by just to ⇒, Beta and Etae on typed
terms be denoted tc ⇒. The reduction relation generated by to ⇒, and tt ⇒ -
{Etae} is denoted tp ⇒.
Example: (Barendregt’s big omega)

Let M = λx. xx. and R = {p = p → q}. Set A0 = p and An+1 = An → q.
We type M as follows

(λxA3 .xA3xA3,A2)A4

and extend this to MM by MA4(MA4,A3), where for brevity sake we omit the
outermost type path.
With this typing

MA4(MA4,A3) ot ⇒
(MA4,A3)(MA4,A3,A2) to ⇒
(MA4)(MA4,A3,A2,A3) ot ⇒
(MA4,A3,A2,A3)(MA4,A3,A2,A3,A2) to ⇒
(MA4,A3,A2)(MA4,A3,A2,A3,A2,A1) to ⇒
(MA4,A3)(MA4,A3,A2,A3,A2,A1,A2) to ⇒
(MA4)(MA4,A3,A2,A3,A2,A1,A2,A3) ot ⇒
(MA4,A3,A2,A3,A2,A1,A2,A3)(MA4,A3,A2,A3,A2,A1,A2,A3,A2) to ⇒⇒
MA4(MA4,A3,A2,A3,A2,A1,A2,A3,A2,A1,A0,A1,A2,A3).

Note that an atom appears in the type path of the second occurrence of M
insuring that the reduction terminates. This illustrates the general case.

6 Completeness

Every untyped term has a typing in our system. Indeed, entire finite reduction
trees can be typed; this is similar to case of Levy labels.

Proposition 3. (Completeness of typing terms)
Every term has a typing.

Proof. We refer the reader to Sect. 2.3 of [2]. For the most general typing of a
simply typable term, equations are associated to the subterms of a term and
Robinson’s unification algorithm is employed to find a most general solution.
Robinson’s algorithm actually outputs a simultaneous recursion which solves the
equations associated with a simple typing of a given term, and which is trivial if
the term actually has a simple typing. The simultaneous recursion just encodes
the failures of the “occurs check”, and easily can be made to be a “simple”
recursion. The process assumes only invertibility a → b = c → d implies a = c
and b = d. For this we refer the reader to 8.3.28 of [2]. Here we require only that
for each occurrence of P , P : A → (A → A), for each occurrence of L, L : A → A,
and for each occurrence of R, R : A → A. The paths assigned to sub-terms are
just the sequences of terms resulting from the substitutions of equals for equals



400 R. Statman

which are necessary to solve the corresponding equations. Now suppose that we
are given a positive integer n. Then we can arrange a solution such that each
atom lies below at least n →’s. For those atoms not in the recursion can be
substituted for [A → B/p] and those that appear in R can be replaced

[Pi(p1, . . . , pe)/pi].

This substitution takes the 1 step reduction

Pi(p1, . . . , pe) Red.pi

into the many (at least 2) step reduction

Pi(P1, . . . , pe) Red.∗

Pi(p1, P2, . . . , Pe) Red.∗ pi.

This substitution can be repeated n times. A typing satifying this condition is
said to be pumped up. End of proof.

Proposition 4. (Completeness of typing reductions W.W.E.)

If we have a finite reduction tree T of an untyped term X then there is typing
of all the terms in the tree such that if Y = Y r ↪→ Z = Zs then there exists a
typing Y = Y r′

, Z = Zs′
such that

Y r ⇐ to ⇒ Y r′
ot ⇒ Zs′ ⇐ to ⇒ Zs

except in case the ↪→ is Sure in which case Y r′ ⇐ ot Zs′
.

Proof. Omitted for space considerations.

Theorem 1. The Church-Rosser property for tp ⇒ implies the Church-Rosser
property for oa ↪→.

Proof. It suffices to establish the strong diamond property for oa ↪→→. Suppose
that Y ←←↩ oa X oa ↪→→ Z. By the completeness of typing we can type the
reduction tree with X at its root to obtain typings of Y and Z such that Y ⇐
tp ⇒ Z. By the Church-Rosser property for tp ⇒ there exists typed W such
that

Y tp ⇒ W ⇐ tp Z.

Now by Surj postponement there exist U, V such that

Y oo ↪→→ U jj ↪→→ jj W ←←↩ jj V ←←↩ oo Z

equivalently

Y oo ↪→→ U ←←↩ je W je ↪→→ V ←←↩ oo Z.

By the strong diamond property for je ↪→→ there exists X ′ such that Uje ↪→→
X ′ ←←↩ je V and thus
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Y oo ↪→→ U je ↪→→ X ′ ←←↩ je V ←←↩ oo Z

and

Y oa ↪→→ X ′ ←←↩ oa Z.

End of proof.

7 Localization

Definition: A type reduction is said to be local to an untyped oe ↪→ redex if

(1) the redex is Beta and the reduction is a clockwise rotation or right shift
where U is the abstraction term and V is the argument of the redex or it is
a counter-clockwise rotation or left shift with U and V similarly positioned.

(2) the redex is eta and the reduction is a clockwise rotation or right shift where
U is in function position and u = V is the argument or it is a counter-
clockwise rotation or left shift with U and u similarly positioned.

(3) the redex is Left or Right and the reduction is any rotation or shift originating
from the body of the redex but not from either argument of P .

(4) the redex is Surj and the reduction is any rotation or shift originating from
the body of the redex.

(5) the redex is Appl, Appr, or Appp and the reduction is any clockwise rotation
or right shift as in the case of Beta.

We note that local type reductions precede the contraction of all redexes except
Etae, which they follow.

We have two versions of the localization lemma. The first version is for type
reductions and is straightforward. The second version is for type conversions and
is very useful for proving strong normalization.

Lemma 1. (localization)

(i) For typed term Xr if Xrto ⇒ Y sot ⇒ Zt where the ot ⇒ is the contraction
of the Beta, Left, Right, Surj, Appl, Appr, Appp redex U then there exists
W s′

, V t′
such that Xrto ⇒ W s′

ot ⇒ V t′
to ⇒ Y s where the first to ⇒ is

local to the untyped U and the ot ⇒ is the contraction of the newly typed U .
(ii) For typed term Xr if Xr ot ⇒ Y s to ⇒ Zt where the ot ⇒ is the contraction

of the Etae redex to the Y s subterm λu(Uu) then there exists W s′
, V t′

such
that

Xrto ⇒ W s′
ot ⇒ V t′

to ⇒ Y s

where the second to ⇒ is local to the untyped λu(Uu) and the ot ⇒ is the
contraction to the newly typed λu(Uu)

Proof. Omitted for space considerations.
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8 Strong Normalization

In this section we prove strong normalization for tt ⇒: viz, every tt ⇒ reduction
sequence terminates. The proof is very long because of the number of cases but
most are routine. So, we shall take certain liberties; indeed, we shall give an
explicit proof only for tc ⇒ leaving the rest to the reader. The following lemma
is very convenient for the proof.

Lemma 2. (localization for conversions). If Xr ⇐ to ⇒ Y s Beta Zt, the last
by contracting the beta redex (λuU V ) then there exists a type conversion of Xr

local to (λuU V ), which consists of counter-clockwise rotations or left shifts of
λuU and clockwise rotations or right shifts of (λuU V ), to a term Y ′s′

such that
Y ′s′

Beta Z ′t′ ⇐ to ⇒ Zt.

Proof. Omitted for space considerations.

Definition: An alternating reduction sequence

Xr1
1 , . . . , Xrn

n , . . .

consists of a sequence of typed terms X
rj
j such that X

rj
j type converts to a term

which typed beta reduces to X
rj+1
j+1 in one step. Xr is strongly normalizable if

there are no infinite alternating reduction sequences beginning with Xr.
We shall give a de Vrijer (Tait) style proof. A van Daalen (Sanchiz) style

proof can also be given.

Definition of the sets HSN(A):
We define the set of hereditarily strongly normalizable terms of type A as

follows:

Xr,pi : HSN(pi) iff Xr,pi is strongly normalizable
Xr,A→B : HSN(A → B) iff for all Y s,A

: HSN(A) we have (Xr,A→BY s,A)
: HSN(B)

Lemma 3. On HSN(A):

(i) xr,A : HSN(A)
(ii) If Xr,A : HSN(A), then Xr,A is strongly normalizable.
(iii) If Xr,A : HSN(A) and Xr,A ⇐ to ⇒ Y s,A or Beta

reduces to Y s,A, then Y s,A : HSN(A).
(iv) If Xr,A : HSN(A), then Xr,A,A∗

: HSN(A∗).

Proof. Omitted for space considerations.

Definition: A substitution @ is said to be admissible if for any variable xA,r we
have @(xA,r) has the form Xs,A and Xs,A : HSN(A).
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Lemma 4. (admissible substitution): If for all V s,A : HSN(A), [V s,A/uA,]Ur,B :
HSN(B) then (λuA,Ur,B)A→B : HSN(A → B).

Proof. Omitted for space consideration.

Proposition 5. If @ is admissible then @(Xr,A) : HSN(A).

Corollary 1. Every typed term is strongly normalizable.

Lemma 5. (termination of Etae reductions):
An alternating sequence of Etae reductions and local clockwise rotations or right
shifts always terminates.

Proof. Weassign a value to eachpath of types= 2 sum of the lengths of types in the path

and a value to each term = sum of the values of the paths of subterms. Then Etae
reductions reduce value since

2a+b+c+1+b+d+1+e ≥ 8 ∗ 2max a+b+c+1,b+d+1+e

> 2a+b+c+1 + 2b+d+1+e + 2b + 2c+d

and clockwise rotations and right shifts to eta variables clearly reduce value.
End of proof.

Remark (standardization of Etae): An alternating sequence of eta expansions
and local clockwise rotations or right shifts can always be done from right to left
and top to bottom.

Lemma 6 (short Etae postponement). An Etae reduction, followed by a type
reduction, followed by the contraction of a Beta redex can be replaced by a type
reduction, followed by the contraction of a Beta redex followed by an alternating
sequence of Etae reductions and type reductions.

Proof. By the localization lemma we can assume that the type reduction is local
to the Beta redex. by a second application of localization we can assume that it
is local to the Etae reduction. The eta redex has the form

(λuA,(Ur,A∗→BuA,A∗
)B)A→B,s or

(λuA,(Ur,A→B∗
uA)B

∗,B)A→B,s

which results from the Etae reduction of Ur,A∗→B,A→B,s or Ur,A→B∗,A→B,s

respectively. Now the eta redex may be

(i) in function position as the head of the Beta redex,
(ii) U is the abstraction term of the Beta redex and u is the argument,
(iii) in argument position as the argument of the Beta redex,
(iv) a proper subterm of the head or the argument of the Beta redex, or
(v) disjoint from the Beta redex or the Beta redex is contained in U .
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Case (i): In this case all the Etae local clockwise rotations and right shifts can
be turned into Beta local clockwise rotations and right shifts preceeded by the
single clockwise rotation or right shift affected by the Etae reduction. In this
case both the Etae reduction and the Beta reduction disappear.
Case (ii): In this case all the Etae local clockwise rotations and right shifts can
be turned into counter-clockwise rotations and left shifts of the abstraction term,
U , of the Beta redex. Both the Etae reduction and Beta reduction disappear.
The other cases, (iii), (iv), and (v) are straightforward. End of proof.

Lemma 7. (long Etae postponement): If there is an alternating sequence of type
reductions, Beta reductions, or Etae reductions from Xr to Y s then there is one
with no Etae reduction anywhere before a Beta reduction.

Proof. We first prove this for the case of an alternating sequence of type reduc-
tions and Etae reductions followed by an alternating sequence of typed reductions
and Beta reductions. Since every term is strongly normalizable we can prove this
by induction on the size of the entire tree of alternating type reductions and Beta
reductions beginning with the first term in the alternating sequence. This case
follows from the lemma on Etae postponement. The result now follows from this
case. End of proof.

Theorem 2. An alternating sequence of type reductions and Beta-Etae reduc-
tions terminate.

Proof. We suppose that we have an infinite such sequence. We repeatedly post-
pone Etae reductions. By strong normalization of Beta reduction there must be
some stage after which any Beta reduction cancels with a previous Etae reduc-
tion, and by the lemma on termination of Etae reductions there must be a stage
after that after which each additional Etae reduction is cancelled by a following
Beta reduction. But these cases of cancellation all involve strict type reductions,
which by the proposition on termination of type reduction must eventually ter-
minate. End of proof.

9 Weak Diamond and the Church-Rosser Theorem

Here we verify the weak diamond property for tc ⇒, and tp ⇒. This property
actually fails for tt ⇒. For example, for counter-clockwise rotations of L and
Etae:

L(A→B)→(A→B)(xA→B)A→B,A→B∗
to ⇒

(λuA,

((L(A→B)→(A→B)(xA→B)A→BuA)B,B∗
)A→B∗

and
L(A→B)→(A→B)(xA→B)A→B,A→B∗

to ⇒
L(A→B∗)→(A→B∗)(xA→B,A→B∗

)A→B∗

It is interesting to point out here that for both tc ⇒ and tp ⇒ some cases
for to ⇒ use ot ⇒.
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Proposition 6. (weak diamond)

(i) If Y s ⇐ tcXr tc ⇒ Zt then there exists W r′
such that

Y stc ⇒ W r′ ⇐ tcZt.
(ii) If Y s ⇐⇐ tpXr tp ⇒⇒ Zt then there exists W r′

such that
Y s tp ⇒⇒ W r′ ⇐⇐ tp Zt

Proof. Omitted for space considerations.

Corollary 2. (Church-Rosser for typed terms:)

(i) If Xr ⇐⇐ tp ⇒⇒ Y s then there exists a Zt such that
Xrtp ⇒⇒ Zt ⇐⇐ tpY s.

(ii) If Xr ⇐⇐ tc ⇒⇒ Y s then there exists a Zt such that
Xrtc ⇒⇒ Zt ⇐⇐ tcY s.

It is worth remarking here what happens if eta reduction is used. First,
clockwise rotations and right shifts conflict with eta reduction

(λuA,Us,A∗→B,A→BuA)B)A→B,t to ⇒
((λuA,Us,A∗→BuA,A∗

)B)A→B,t.

This suggests using full type conversion instead of type reduction. If this is done
then weak diamond for eta reduction fails. For example,

λvA∗,(uA→B,A∗→B,A∗→B∗
vA∗

)B
∗ ⇐⇐ to ⇒⇒

λvA,A∗,(uA→B(vA∗,A))B,B∗ ⇐⇐ to ⇒⇒
λvA∗

, (uA→B,A→B∗,A∗→B∗
vA∗

)B
∗
.

This suggests a commutative version of paths but we will not pursue this here.
Nevertheless eta postponement can be proved. The failure of weak diamond can
be overcome by switching to eta expansion at the end of postponed reduction
sequences since, with full type conversion, we have the upward Church-Rosser
property for eta. This is complicated, round about and appears to have no advan-
tage over simply starting with Etae.

10 Conclusion and Open Problems

A corollary to our work is the theorem of Roel de Vrijer that surjective pairing
is conservative over beta conversion. For suppose that X and Y are pure lambda
terms and X ←←↩ oa ↪→→ Y . By the Church-Rosser theorem for ↪→ there exists
Z such that X ↪→→ Z ←←↩ Y . By the proposition on completeness of typing
reductions, and the Church-Rosser theorem for tp ⇒ there exist U, V such that
Xtp ⇒⇒ Y ⇐⇐ tpZtp ⇒⇒ V ⇐⇐ tpY Here U, V are pure terms. Now by the
proposition on Surj postponement there exist U ′, V ′ such that U ←←↩ jjU ′ ←
←↩ oo Z oo ↪→→ V ′jj ↪→→ V . Now ↪→ is obviously Church-Rosser so there exists
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Z ′ such that U ′oo ↪→→ Z ′ ←←↩ ooV ′. Thus by Stovring’s proposition 5.4 (actually
only a weak version is needed) U ′ beta converts to V ′.

It would be very interesting to extend this method to an extension of Stovring’s
FP; possibly including the reduction P (λxX)(λxY ) ↪→ λx(PXY ).

11 Glossary of Abbreviations

To := types only
ot := only terms
tt := both types and terms
tc := types and classical beta-etae (eta expansion)
tp := types and surjective pairing
jj := only surjectivity
je := only surjectivity expansion
oj := everything except surjectivity
oe := everything except surjectivity expansion
oo := everything except surjectivity and surjectivity expansion
oa := everything except etae(eta expansion)
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