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Preface

These proceedings contain the papers that were presented at the 10th International
Conference on Language and Automata Theory and Applications (LATA 2016), held
in Prague, Czech Republic, during March 14–18, 2016.

The scope of LATA is rather broad, including: algebraic language theory; algo-
rithms for semi-structured data mining; algorithms on automata and words; automata
and logic; automata for system analysis and program verification; automata networks;
automata, concurrency, and Petri nets; automatic structures; cellular automata; codes;
combinatorics on words; computational complexity; data and image compression;
descriptional complexity; digital libraries and document engineering; foundations of
finite-state technology; foundations of XML; fuzzy and rough languages; grammars
(Chomsky hierarchy, contextual, unification, categorial, etc.); grammatical inference
and algorithmic learning; graphs and graph transformation; language varieties and
semigroups; language-based cryptography; mathematical and logical foundations of
programming methodologies; parallel and regulated rewriting; parsing; patterns; power
series; string and combinatorial issues in bioinformatics; string processing algorithms;
symbolic dynamics; term rewriting; transducers; trees, tree languages, and tree auto-
mata; unconventional models of computation; weighted automata.

LATA 2016 received 119 submissions. Most of the papers were given at least three
reviews by Program Committee members or by external referees. After a thorough and
vivid discussion phase, the committee decided to accept 42 papers (which represents an
acceptance rate of about 35 %). The conference program also included five invited
talks. Part of the success in the management of such a large number of submissions was
due to the excellent facilities provided by the EasyChair conference management
system.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the reviewers for their cooperation, and Springer for its very
professional publishing work.

December 2015 Adrian-Horia Dediu
Jan Janoušek

Carlos Martín-Vide
Bianca Truthe
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Reconstructing Preferences from Opaque
Transactions

Avrim Blum&

Department of Computer Science,
Carnegie Mellon University,
Pittburgh, PA 15213, USA

http://www.cs.cmu.edu/
*
avrim

Abstract. There has been significant work on learning about utility functions of
single agents from observing their behavior in isolation. In this talk, I will
discuss the problem of learning about utilities of a collection of agents, when the
only information available is some kind of overall outcome of a joint interaction.

For example, consider an auction of a single item where n agents each draw
values from their own personal probability distributions Di, and the only
information that can be observed is the identity of the winner (highest bidder).
From repeated observations, plus the ability to enter the auction (and win or
lose) yourself, can you reconstruct the relevant parts of the individual distri-
butions? Or consider a setting with multiple items where agents have combi-
natorial preferences, and where a seller is running a mechanism that you do not
know. From observing the results of a sequence of these interactions, can you
learn both the preferences of the buyers and the mechanism of the seller? In this
talk I will discuss algorithms in the context of both of these problems. In the
process we will see connections to decision-list learning in learning theory and
Kaplan-Meier estimators in medical statistics.

This is joint work with Yishay Mansour and Jamie Morgenstern [1, 2].

References

1. Blum, A., Mansour, Y., Morgenstern, J.: Learning valuation distributions from partial
observation. In: Proceedings of 29th AAAI Conference on Artificial Intelligence (AAAI),
pp. 798–804 (2015)

2. Blum, A., Mansour, Y., Morgenstern, J.: Learning what’s going on: reconstructing prefer-
ences and priorities from opaque transactions. In: Proceedings of 16th ACM Conference on
Economics and Computation (EC), pp. 601–618 (2015)

Work supported in part by the National Science Foundation under grants CCF-1101215, CCF-
1116892, and CCF-1331175.



Non-Zero Sum Games for Reactive Synthesis

Romain Brenguier1, Lorenzo Clemente2, Paul Hunter3,
Guillermo A. Pérez3, Mickael Randour3, Jean-François Raskin3,&,

Ocan Sankur4, and Mathieu Sassolas5

1 University of Oxford, Oxford, UK
2 University of Warsaw, Warsaw, Poland

3 Université Libre de Bruxelles, Brussels, Belgium
4 CNRS, IRISA, Rennes, France

5 Université Paris-Est – Créteil, LACL, Créteil, France

Abstract. In this invited contribution, we summarize new solution concepts
useful for the synthesis of reactive systems that we have introduced in several
recent publications. These solution concepts are developed in the context of
non-zero sum games played on graphs. They are part of the contributions
obtained in the inVEST project funded by the European Research Council.

Work supported by the ERC starting grant INVEST (FP7-279499), G.A. Pérez is supported
by F.R.S.-FNRS ASP fellowship, M. Randour is a F.R.S.-FNRS Postdoctoral Researcher.



Tangles and Connectivity in Graphs

Martin Grohe&

RWTH Aachen University, Aachen, Germany
grohe@informatik.rwth-aachen.de

Abstract. This paper is a short introduction to the theory of tangles, both in
graphs and general connectivity systems. An emphasis is put on the corre-
spondence between tangles of order k and k-connected components. In partic-
ular, we prove that there is a one-to-one correspondence between the
triconnected components of a graph and its tangles of order 3.



Restricted Turing Machines
and Language Recognition

Giovanni Pighizzini&

Dipartimento di Informatica,
Università degli Studi di Milano, Milano, Italy

pighizzini@di.unimi.it

Abstract. In 1965 Hennie proved that one-tape deterministic Turing machines
working in linear time are equivalent to finite automata, namely they charac-
terize regular languages. This result has been improved in different directions,
by obtaining optimal lower bounds for the time that one-tape deterministic and
nondeterministic Turing machines need to recognize nonregular languages. On
the other hand, in 1964 Kuroda showed that one-tape Turing machines that are
not allowed to use any extra space, besides the part of the tape which initially
contains the input, namely linear bounded automata, recognize exactly context-
sensitive languages. In 1967 Hibbard proved that for each integer d ≥ 2, one-
tape Turing machines that are allowed to rewrite each tape cell only in the first
d visits are equivalent to pushdown automata. This gives a characterization
of the class of context-free languages in terms of restricted Turing machines. We
discuss these and other related models, by presenting an overview of some
fundamental results related to them. Descriptional complexity aspects are also
considered.



Automata for Ontologies

Frank Wolter&

Department of Computer Science,
University of Liverpool, Liverpool, UK

Abstract. We present three reasoning problems for description logic ontologies
and discuss how automata theory can be used to analyze them.
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Abstract. In this invited contribution, we summarize new solution con-
cepts useful for the synthesis of reactive systems that we have introduced
in several recent publications. These solution concepts are developed in
the context of non-zero sum games played on graphs. They are part of the
contributions obtained in the inVEST project funded by the European
Research Council.

1 Introduction

Reactive systems are computer systems that maintain a continuous interaction
with the environment in which they operate. They usually exhibit characteristics,
like real-time constraints, concurrency, parallelism, etc., that make them difficult
to develop correctly. Therefore, formal techniques using mathematical models
have been advocated to help to their systematic design.

One well-studied formal technique is model checking [2,20,39] which compares
a model of a system with its specification. The main objective of this technique
is to find design errors early in the development cycle. So model-checking can be
considered as a sophisticated debugging method. A scientifically more challeng-
ing goal, called synthesis, is to design algorithms that, given a specification for a
reactive system and a model of its environment, directly synthesize a correct sys-
tem, i.e., a system that enforces the specification no matter how the environment
behaves.

Synthesis can take different forms: from computing optimal values of parame-
ters to the full-blown automatic synthesis of finite-state machine descriptions for
components of the reactive system. The main mathematical models proposed for
the synthesis problem are based on two-player zero-sum games played on graphs
and the main solution concept for those games is the notion of winning strategy.
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This model encompasses the situation where a monolithic controller has to be
designed to interact with a monolithic environment that is supposed to be fully
antagonistic. In the sequel, we call the two players Eve and Adam, Eve plays the
role of the system and Adam plays the role of the environment.

A fully antagonistic environment is most often a bold abstraction of reality:
the environment usually has its own goal which, in general, does not correspond
to that of falsifying the specification of the reactive system. Nevertheless, this
abstraction is popular because it is simple and sound: a winning strategy against
an antagonistic environment is winning against any environment that pursues its
own objective. However this approach may fail to find a winning strategy even if
solutions exist when the objective of the environment are taken into account, or
it may produce sub-optimal solutions because they are overcautious and do not
exploit the fact the environment has its own objective. In several recent works,
we have introduced new solution concepts for synthesis of reactive systems that
take the objective of the environment into account or relax the fully adversarial
assumption.

Assume Admissible Synthesis. In [7], we proposed a novel notion of synthe-
sis where the objective of the environment can be captured using the concept
of admissible strategies [3,5,8]. For a player with objective φ, a strategy σ is
dominated by σ′ if σ′ does as well as σ w.r.t. φ against all strategies of the other
players, and better for some of those strategies. A strategy σ is admissible if it
is not dominated by another strategy. We use this notion to derive a meaningful
notion to synthesize systems with several players, with the following idea. Only
admissible strategies should be played by rational players as dominated strate-
gies are clearly sub-optimal options. In assume-admissible synthesis, we make the
assumption that both players play admissible strategies. Then, when synthesiz-
ing a controller, we search for an admissible strategy that is winning against all
admissible strategies of the environment. Assume admissible synthesis is sound:
if both players choose strategies that are winning against admissible strategies
of the other player, the objectives of both players will be satisfied.

Regret Minimization: Best-Responses as Yardstick. In [32] we studied
strategies for Eve which minimize her regret. The regret of a strategy σ of Eve
corresponds to the difference between the value Eve achieves by playing σ against
Adam and the value she could have ensured if she had known the strategy of
Adam in advance. Regret is not a novel concept in game theory see, e.g., [30], but
it was not explicitly used for games played on graphs before [28]. The complexity
of deciding whether a regret-minimizing strategy for Eve exists, and the mem-
ory requirements for such strategies change depending on what type of behavior
Adam can use. We have focused on three particular cases: arbitrary behaviors,
positional behaviors, and time-dependent behaviors (otherwise known as obliv-
ious environments). The latter class of regret games was shown in [32] to be
related to the problem of determining whether an automaton has a certain form
of determinism.
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Games with an Expected Adversary. In [11,12,21], we combined the clas-
sical formalism of two-player zero-sum games (where the environment is con-
sidered to be completely antagonistic) with Markov decision processes (MDPs),
a well-known model for decision-making inside a stochastic environment. The
motivation is that one has often a good idea of the expected behavior (i.e.,
average-case) of the environment represented as a stochastic model based on
statistical data such as the frequency of requests for a computer server, the
average traffic in a town, etc. In this case, it makes sense to look for strategies
that will maximize the expected performance of the system. This is the tradi-
tional approach for MDPs, but it gives no guarantee at all if the environment
deviates from its expected behavior, which can happen, for example, if events
with small probability happen, or if the statistical data upon which probabilities
are estimated is noisy or unreliable. On the other hand, two-player zero-sum
games lead to strategies guaranteeing a worst-case performance no matter how
the environment behaves — however such strategies may be far from optimal
against the expected behavior of the environment. With our new framework of
beyond worst-case synthesis, we provide formal grounds to synthesize strategies
that both guarantee some minimal performance against any adversary and pro-
vide an higher expected performance against a given expected behavior of the
environment — thus essentially combining the two traditional standpoints from
games and MDPs.

Structure of the Paper. Section 2 recalls preliminaries about games played
on graphs while Sect. 3 recalls the classical setting of zero-sum two player games.
Section 4 summarizes our recent works on the use of the notion of admissibil-
ity for synthesis of reactive systems. Section 5 summarizes our recent results on
regret minimization for reactive synthesis. Section 6 summarizes our recent con-
tributions on the synthesis of strategies that ensure good expected performance
together with guarantees against their worst-case behaviors.

2 Preliminaries

We consider two-player turn-based games played on finite (weighted) graphs.
Such games are played on so-called weighted game arenas.

Definition 1 (Weighted Game Arena). A (turn-based) two-player weighted
game arena is a tuple A = 〈S∃, S∀,E, sinit,w〉 where:

– S∃ is the finite set of states owned by Eve, S∀ is the finite set of states owned
by Adam, S∃ ∩ S∀ = ∅ and we denote S∃ ∪ S∀ by S.

– E ⊆ S × S is a set of edges, we say that E is total whenever for all states
s ∈ S, there exists s′ ∈ S such that (s, s′) ∈ E (we often assume this w.l.o.g.).

– sinit ∈ S is the initial state.
– w : E → Z is the weight function that assigns an integer weight to each edge.

We do not always use the weight function defined on the edges of the weighted
game arena and in these cases we simply omit it.
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Unless otherwise stated, we consider for the rest of the paper a fixed weighted
game arena A = 〈S∃, S∀,E, sinit,w〉.

A play in the arena A is an infinite sequence of states π = s0s1 . . . sn . . . such
that for all i ≥ 0, (si, si+1) ∈ E. A play π = s0s1 . . . is initial when s0 = sinit.
We denote by Plays(A) the set of plays in the arena A, and by InitPlays(A) its
subset of initial plays.

A history ρ is a finite sequence of states which is a prefix of a play in A. We
denote by Pref(A) the set of histories in A, and the set of prefixes of initial plays
is denoted by InitPref(A). Given an infinite sequence of states π, and two finite
sequences of states ρ1, ρ2, we write ρ1 < π if ρ1 is a prefix of π, and ρ2 ≤ ρ1 if
ρ2 is a prefix of ρ1. For a history ρ = s0s1 . . . sn, we denote by last(ρ) its last
state sn, and for all i, j, 0 ≤ i ≤ j ≤ n, by ρ(i..j) the infix of ρ between position
i and position j, i.e., ρ(i..j) = sisi+1 . . . sj , and by ρ(i) the position i of ρ, i.e.,
ρ(i) = si. The set of histories that belong to Eve, noted Pref∃(A) is the subset
of histories ρ ∈ Pref(A) such that last(ρ) ∈ S∃, and the set of histories that
belong to Adam, noted Pref∀(A) is the subset of histories ρ ∈ Pref(A) such that
last(ρ) ∈ S∀.

Definition 2 (Strategy). A strategy for Eve in the arena A is a function
σ∃ : Pref∃(A) → S such that for all ρ ∈ Pref∃(A), (last(ρ), σ∃(ρ)) ∈ E, i.e., it
assigns to each history of A that belongs to Eve a state which is a E-successor of
the last state of the history. Symmetrically, a strategy for Adam in the arena A is
a function σ∀ : Pref∀(A) → S such that for all ρ ∈ Pref∀(A), (last(ρ), σ∀(ρ)) ∈ E.
The set of strategies for Eve is denoted by Σ∃ and the set of strategies of Adam
by Σ∀.

When we want to refer to a strategy of Eve or Adam, we write it σ. We denote
by Dom(σ) the domain of definition of the strategy σ, i.e., for all strategies σ of
Eve (resp. Adam), Dom(σ) = Pref∃(A) (resp. Dom(σ) = Pref∀(A)).

A play π = s0s1 . . . sn . . . is compatible with a strategy σ if for all i ≥ 0
such that π(0..i) ∈ Dom(σ), we have that si+1 = σ(ρ(0..i)). We denote by
Outcomes(σ) the set of plays that start in s and are compatible with the strategy
σ. Given a strategy σ∃ for Eve and a strategy σ∀ for Adam, and a state s, we
write Outcomes(σ∃, σ∀) the unique play that starts in s and which is compatible
both with σ∃ and σ∀.

A strategy σ is memoryless when for all histories ρ1, ρ2 ∈ Dom(σ), if we
have that last(ρ1) = last(ρ2) then σ(ρ1) = σ(ρ2), i.e., memoryless strategies
only depend on the last state of the history and so they can be seen as (partial)
functions from S to S. ΣML

∃ and ΣML
∀ denotes memoryless strategies of Eve and of

Adam, respectively. A strategy σ is finite-memory if there exists an equivalence
relation ∼⊆ Dom(σ) × Dom(σ) of finite index such that for all histories ρ1, ρ2
such that ρ1 ∼ ρ2, we have that σ(ρ1) = σ(ρ2). If the relation ∼ is regular
(computable by a finite state machine) then the finite memory strategy can be
modeled by a finite state transducer (a so-called Moore or Mealy machine). If
a strategy is encoded by a machine with m states, we say that it has memory
size m.
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An objective Win ⊆ Plays(A) is a subset of plays. A strategy σ is winning
from state s if Outcomes(σ) ⊆ Win. We will consider both qualitative objectives,
that do not depend on the weight function of the game arena, and quantitative
objectives that depend on the weight function of the game arena.

Our qualitative objectives are defined with Muller conditions (which are a
canonical way to represent all the regular sets of plays). Let π ∈ Sω, be a play,
then inf(π) = {s ∈ S | ∀i · ∃j ≥ i ≥ 0 : π(j) = s} is the subset of elements of S
that occur infinitely often along π. A Muller objective for a game arena A is a
defined by a set of sets of states F and contains the plays {π ∈ Sω | inf(π) ∈ F}.
We sometimes take the liberty to define such regular sets using standard LTL
syntax. For a formal definition of the syntax and semantics of LTL, we refer the
interested reader to [2].

We associate, to each play π, an infinite sequence of weights, denoted w(π),
and defined as follows:

w(π) = w(π(0), π(1))w(π(1), π(2)) . . .w(π(i), π(i + 1)) · · · ∈ Z
ω.

To assign a value Val(π) to a play π, we classically use functions like sup
(that returns the supremum of the values along the play), inf (that returns the
infimum), limsup (that returns the limit superior), liminf (that returns the limit
inferior), MP (that returns the limit of the average of the weights along the play),
or dSum (that returns the discounted sum of the weights along the play). We
only define the mean-payoff measure formally.

Let ρ = s0s1 . . . sn be s.t. (si, si+1) ∈ E for all i, 0 ≤ i < n, the mean-payoff
of this sequence of edges is

MP(ρ) =
1
n

·
i=n−1∑

i=0

w(ρ(i), ρ(i + 1)),

i.e., the mean-value of the weights of the edges traversed by the finite sequence
ρ. The mean-payoff of an (infinite) play π, denoted MP(π), is a real number
defined from the sequence of weights w(π) as follows:

MP(π) = lim inf
n→+∞

1
n

·
i=n−1∑

i=0

w(π(i), π(i + 1)),

i.e., MP(π) is the limit inferior of running averages of weights seen along the play
π. Note that we need to use lim inf because the value of the running averages of
weights may oscillate along π, and so the limit is not guaranteed to exist.

A game is defined by a (weighted) game arena, and objectives for Eve and
Adam.

Definition 3 (Game). A game G = (A,Win∃,Win∀) is defined by a game arena
A, an objective Win∃ for Eve, and an objective Win∀ for Adam.
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3 Classical Zero-Sum Setting

In zero sum games, players have antagonistic objectives.

Definition 4. A game G = (A,Win∃,Win∀) is zero-sum if Win∀ = Plays\Win∃.

1234 5

Fig. 1. An example of a two-player game arena. Rounded positions belong to Eve, and
squared positions belong to Adam.

Example 1. Let us consider the example of Fig. 1. Assume that the objective of
Eve is to visit 4 infinitely often, i.e., Win∃ = {π ∈ Plays | π |= �♦4}, and that
the objective of Adam is Win∀ = Plays \ Win∃. Then it should be clear that Eve
does not have a strategy that enforces a play in Win∃ no matter what Adam
plays. Indeed, if Adam always chooses to stay at state 2, there is no way for Eve
to visit 4 at all.

As we already said, zero-sum games are usually a bold abstraction of reality.
This is because the system to synthesize usually interacts with an environment
that has its own objective, and this objective is not necessarily the complement of
the objective of the system. A classical way to handle this situation (see e.g., [4])
is to ask the system to win only when the environment meets its own objective.

Definition 5 (Win-Hyp). Let G = (A,Win∃,Win∀) be a game, Eve achieves
Win∃ from state s under hypothesis Win∀ if there exists σ∃ such that

Outcomes(σ∃) ⊆ Win∃ ∪ Win∀.

The synthesis rule in the definition above is called winning under hypothesis,
Win-Hyp for short.

Example 2. Let us consider the example of Fig. 1 again. But now assume that
the objective of Adam is to visit 3 infinitely often, i.e., Win∀ = {π ∈ Plays | π |=
�♦3}. In this case, it should be clear then the strategy 1 → 2 and 3 → 4 for Eve
is winning for the objective

Win-Hyp�♦4∨�♦3 = {π ∈ Plays | π |= �♦4} ∪ {π ∈ Plays | π |= �♦3}
i.e., under the hypothesis that the outcome satisfies the objective of Adam.

Unfortunately, there are strategies of Eve which are winning for the rule Win-
Hyp but which are not desirable. As an example, consider the strategy that in
1 chooses to go to 5. In that case, the objective of Adam is unmet and so this
strategy of Eve is winning for Win-Hyp�♦4∨�♦3, but clearly such a strategy is
not interesting as it excludes the possibility to meet the objective of Eve.
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4 Assume Admissible Synthesis

To define the notion of admissible strategy, we first need to define when a strategy
σ is dominated by a strategy σ′. We will define the notion for Eve, the definition
for Adam is symmetric.

Let σ∃ and σ′
∃ be two strategies of Eve in the game arena A. We say that σ′

∃
dominates σ∃ if the following two conditions hold:
1. ∀σ∀ ∈ Σ∀ · Outcomesinit(σ∃, σ∀) ∈ Win∃ → Outcomesinit(σ

′
∃, σ∀) ∈ Win∃

2. ∃σ∀ ∈ Σ∀ · Outcomesinit(σ∃, σ∀) /∈ Win∃ ∧ Outcomesinit(σ
′
∃, σ∀) ∈ Win∃

So a strategy σ∃ is dominated by σ′
∃ if σ′

∃ does as well as σ∃ against any strategy
of Adam (condition 1), and there exists a strategy of Adam against which σ′

∃
does better than σ∃ (condition 2).

Definition 6 (Admissible Strategy). A strategy is admissible if there does
not exist a strategy that dominates it.

Let G = (A,Win∃,Win∀) be a game, the set of admissible strategies for Eve
is noted Adm∃, and the set of admissible strategies for Adam is denoted Adm∀.

Clearly, a rational player should not play a dominated strategy as there
always exists some strategy that behaves strictly better than the dominated
strategy. So, a rational player only plays admissible strategies.

Example 3. Let us consider again the example of Fig. 1 with Win∃ = {π ∈ Plays |
π |= �♦4} and Win∀ = {π ∈ Plays | π |= �♦3}. We claim that the strategy σ∃
that plays 1 → 5 is not admissible in A from state 1. This is because the strategy
σ′

∃ that plays 1 → 2 and 4 → 3 dominates this strategy. Indeed, while σ∃ is always
losing for the objective of Eve, the strategy σ′

∃ wins for this objective whenever
Adam eventually plays 2 → 3.

Definition 7 (AA). Let G = (A,Win∃,Win∀) be a game, Eve achieves Win∃
from s under the hypothesis that Adam plays admissible strategies if

∃σ∃ ∈ Adm∃ · ∀σ∀ ∈ Adm∀ · Outcomes(σ∃, σ∀) ∈ Win∃.

Example 4. Let us consider again the example of Fig. 1 with Win∃ = {π ∈ Plays |
π |= �♦4} and Win∀ = {π ∈ Plays | π |= �♦3}. We claim that the strategy σ∃
of Eve that plays 1 → 2 and 4 → 3 is admissible (see previous example) and
winning against all the admissible strategies of Adam. This is a consequence of
the fact that the strategy of Adam that always plays 2 → 2, and which is the
only counter strategy of Adam against σ∃, is not admissible. Indeed, this strategy
falsifies Win∀ while a strategy that always chooses 2 → 3 enforces the objective
of Adam.

Theorem 1 ([3,7,8]). For all games G = (A,Win∃,Win∀), if Win∃ and Win∀
are omega-regular sets of plays, then Adm∃ and Adm∀ are both non empty sets.

The problem of deciding if a game G = (A,Win∃,Win∀), where Win∃ and
Win∀ are omega-regular sets of plays expressed as Muller objectives, satisfies

∃σ∃ ∈ Adm∃ · ∀σ∀ ∈ Adm∀ · Outcomes(σ∃, σ∀) ∈ Win∃

is PSpace-complete.
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Additional Results. The assume-admissible setting we present here relies on
procedures for iterative elimination of dominated strategies for multiple players
which was studied in [3] on games played on graphs. In this context, dominated
strategies are repeatedly eliminated for each player. Thus, with respect to the
new set of strategies of its opponent, new strategies may become dominated,
and will therefore be eliminated, and so on until the process stabilizes. In [8], we
studied the algorithmic complexity of this problem and proved that for games
with Muller objectives, deciding whether all outcomes compatible with itera-
tively admissible strategy profiles satisfy an omega-regular objective defined by
a Muller condition is PSpace-complete and in UP∩coUP for the special case
of Büchi objectives.

The assume-admissible rule introduced in [7] is also defined for multiple play-
ers and corresponds, roughly, to the first iteration of the elimination procedure.
We additionally prove that if players have Büchi objectives, then the rule can be
decided in polynomial-time. One advantage of the assume-admissible rule is the
rectangularity of the solution set: the set of strategy profiles that witness the rule
can be written as a product of sets of strategies for each player. In particular,
this means that a strategy witnessing the rule can be chosen separately for each
player. Thus, the rule is robust in the sense that the players do not need to agree
on a strategy profile, but only on the admissibility assumption on each other. In
addition, we show in [7] that the rule is amenable to abstraction techniques: we
show how state-space abstractions can be used to check a sufficient condition for
assume-admissible, only doing computations on the abstract state space.

Related Works. The rule “winning under hypothesis” (Win-Hyp) and its weak-
nesses are discussed in [4]. We have illustrated the limitations of this rule in
Example 2.

There are related works in the literature which propose concepts to model
systems composed of several parts, each having their own objectives. The solu-
tions that are proposed are based on n-players non-zero sum games. This is
the case both for assume-guarantee synthesis [17] (AG), and for rational synthe-
sis [29] (RS).

For the case of two player games, AG is based on the concept of secure equi-
libria [18] (SE), a refinement of Nash equilibria [37] (NE). In SE, objectives of the
players are lexicographic: each player first tries to force his own objective, and
then tries to falsify the objectives of the other players. It was shown in [18] that
SE are the NE that form enforceable contracts between the two players. When
the AG rule is extended to several players, as in [17], it no longer corresponds to
secure equilibria. We gave a direct algorithm for multiple players in [7]. The dif-
ference between AG and SE is that AG strategies have to be resilient to deviations
of all the other players, while SE profiles have to be resilient to deviations by
only one player. A variant of the rule AG, called Doomsday equilibria, has been
proposed in [14]. We have also studied quantitative extensions of the notion of
secure equilibria in [13].

In the context of infinite games played on graphs, one well known limita-
tion of NE is the existence of non-credible threats. Refinements of the notion of
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NE, like sub-game perfect equilibria (SPE), have been proposed to overcome this
limitation. SPE for games played on graphs have been studied in e.g., [9,42].
Admissibility does not suffer from this limitation.

In RS, the system is assumed to be monolithic and the environment is made
of several components that are only partially controllable. In RS, we search for
a profile of strategies in which the system forces its objective and the players
that model the environment are given an “acceptable” strategy profile, from
which it is assumed that they will not deviate. “Acceptable” can be formalized
by any solution concept, e.g., by NE, dominant strategies, or sub-game perfect
equilibria. This is the existential flavor of RS. More recently, Kupferman et al.
have proposed in [34] a universal variant of this rule. In this variant, we search
for a strategy of the system such that in all strategy profiles that extend this
strategy for the system and that are NE, the outcome of the game satisfies the
specification of the system.

In [25], Faella studies several alternatives to the notion of winning strategy
including the notion of admissible strategy. His work is for two-players but only
the objective of one player is taken into account, the objective of the other player
is left unspecified. In that work, the notion of admissibility is used to define a
notion of best-effort in synthesis.

The notion of admissible strategy is definable in strategy logics [19,36] and
decision problems related to the assume-admissible rule can be reduced to satis-
fiability queries in such logics. This reduction does not lead to worst-case optimal
algorithms; we presented worst-case optimal algorithms in [7] based on our pre-
vious work [8].

5 Regret Minimization

In the previous section, we have shown how the notion of admissible strategy can
be used to relax the classical worst-case hypothesis made on the environment.
In this section, we review another way to relax this worst-case hypothesis.

The idea is simple and intuitive. When looking for a strategy, instead of trying
to find a strategy which is worst-case optimal, we search for a strategy that takes
best-responses (against the behavior of the environment) as a yardstick. That is,
we would like to find a strategy that behaves “not far” from an optimal response
to the strategy of the environment — when the latter is fixed. The notion of
regret minimization is naturally defined in a quantitative setting (although it
also makes sense in a Boolean setting).

Let us now formally define the notion of regret associated to a strategy of
Eve. This definition is parameterized by a set of strategies for Adam.

Definition 8 (Relative Regret). Let A = 〈S∃, S∀,E, sinit,w〉 be a weighted
game arena, let σ∃ be a strategy of Eve, the regret of this strategy relative to a
set of strategies Str∀ ⊆ Σ∀ is defined as follows:

Reg(σ∃,Str∀) = sup
σ∀∈Str∀

sup
σ′

∃∈Σ∃
Val(σ∀, σ′

∃) − Val(σ∀, σ∃).
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We interpret the sub-expression supσ′
∃∈Σ∃ Val(σ∀, σ′

∃) as the best-response of
Eve against σ∀. Then, the relative regret of a strategy of Eve can be seen as the
supremum of the differences between the value achieved by σ∃ against a strategy
of Adam and the value achieved by the corresponding best-response.

We are now equipped to formally define the problem under study, which is
parameterized by payoff function Val(·) and a set Str∀ of strategies of Adam.

Definition 9 (Regret Minimization). Given a weighted game arena A and
a rational threshold r, decide if there exists a strategy σ∃ for Eve such that

Reg(σ∃,Str∀) ≤ r

and synthesize such a strategy if one exists.

In [32], we have considered several types of strategies for Adam: the set Σ∀,
i.e., any strategy, the set ΣML

∀ , i.e., memoryless strategies for Adam, and the set
ΣW

∀ , i.e., word strategies for Adam.1 We will illustrate each of these cases on
examples below.

Example 5. Let us consider the weighted game arena of Fig. 2, and let us assume
that we want to synthesize a strategy for Eve that minimizes her mean-payoff
regret against Adam playing a memoryless strategy. The memoryless restriction
is useful when designing a system that needs to perform well in an environ-
ment which is only partially known. In practice, a controller may discover the
environment with which it is interacting during run-time. Such a situation can
be modeled by an arena in which choices in nodes of the environment model
an entire family of environments and each memoryless strategy models a spe-
cific environment of the family. In such cases, if we want to design a controller
that performs reasonably well against all the possible environments, we can con-
sider each best-response of Eve for each environment and then try to choose one
unique strategy for Eve that minimizes the difference in performance w.r.t. those
best-responses: a regret-minimizing strategy.

1 2 31

6

0 0

0 0

Fig. 2. An example of a two-player game arena with MP objective for Eve. Rounded
positions belong to Eve, and squared positions belong to Adam.

1 To define word strategies, it is convenient to consider game arenas where edges have
labels called letters. In that case, when playing a word strategy, Adam commits to
a sequence of letters (i.e., a word) and plays that word regardless of the exact state
of the game. Word strategies are formally defined in [32] and below.
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In our example, prior to a first visit to state 3, we do not know if the edge
3 → 2 or the edge 3 → 1 will be activated by Adam. But as Adam is bound to
play a memoryless strategy, once he has chosen one of the two edges, we know
that he will stick to this choice.

A regret-minimizing strategy in this example is as follows: play 1 → 2, then
2 → 3, if Adam plays 3 → 2, then play 2 → 1 and then 1 → 1 forever, otherwise
Adam plays 3 → 1 and then Eve should continue to play 1 → 2 and 2 → 3
forever. This strategy has regret 0. Note that this strategy uses memory and
that there is no memoryless strategy of Eve with regret 0 in this game.

Let us now illustrate the interest of the notion of regret minimization when
Adam plays word strategies. When considering this restriction, it is convenient
to consider letters that label the edges of the graph (Fig. 3). A word strategy
for Adam is a function w : N → {a, b}. In this setting Adam plays a sequence
of letters and this sequence is independent of the current state of the game.
We have shown in [32] that the notion of regret minimization relative to word
strategies is a generalization of the notion of good-for-games automata introduced
by Henzinger and Piterman in [31].

12 3a, b2 a, b 0

b 1 b2

a 3 a9

Fig. 3. An example of a two-player game arena with MP objective for Eve. Edges are
annotated by letters: Adam chooses a word w and Eve resolves the non-determinism
on edges.

Example 6. In this example, a strategy of Eve determines how to resolve non-
determinism in state 1. The best strategy of Eve for mean-payoff regret minimiza-
tion is to always take the edge 1 → 3. Indeed, let us consider all the sequences
of two letters that Adam can choose and compute the regret of choosing 1 → 2
(left) and the regret of choosing 1 → 3 (right):

– ∗a with ∗ ∈ {a, b}, the regret of left is equal to 0, and the regret of right is
5−3
2 = 1.

– ∗b with ∗ ∈ {a, b}, the regret of left is equal to 9−3
2 = 3, and the regret of right

is 0.

So the strategy that minimizes the regret of Eve is to always take the arrow
1 → 3 (right), the regret is then equal to 1.

In [32], we have studied the complexity of deciding the existence of strategies
for Eve that have less than a given regret threshold. The results that we have
obtained are summarized in the theorem below.
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Theorem 2 ([32]). Let A = 〈S∃, S∀,E, sinit,w〉 be a weighted game arena, the
complexity of deciding if Eve has a strategy with regret less than or equal to a
threshold r ∈ Q against Adam playing:

– a strategy in Σ∀, is PTime-Complete for payoff functions inf, sup, liminf,
limsup, and in NP∩coNP for MP.

– a strategy in ΣML
∀ , is in PSpace for payoff functions inf, sup, liminf, limsup,

and MP, and is coNP-Hard for inf, sup, limsup, and PSpace-Hard for
liminf, and MP.

– a strategy in ΣW
∀ , is ExpTime-Complete for payoff functions inf, sup, liminf,

limsup, and undecidable for MP.

The above results are obtained by reducing the synthesis of regret-minimizing
strategies to finding winning strategies in classical games. For instance, a strategy
for Eve that minimizes regret against ΣML

∀ for the mean-payoff measure corre-
sponds to finding a winning strategy in a mean-payoff game played on a larger
game arena which encodes the witnessed choices of Adam and forces him to play
positionally. When minimizing regret against word strategies, for the decidable
cases the reduction is done to parity games and is based on the quantitative
simulation games defined in [15].

Additional Results. Since synthesis of regret-minimizing strategies against word
strategies of Adam is undecidable with measure MP, we have considered the
sub-case which limits the amount of memory the desired controller can use (as
in [1]). That is, we ask whether there exists a strategy of Eve which uses at most
memory m and ensures regret at most r. In [32] we showed that this problem is
in NTime(m2|A|2) for MP.

Theorem 3 ([32]). Let A = 〈S∃, S∀,E, sinit,w〉 be a weighted game arena, the
complexity of deciding if Eve has a strategy using memory of at most m with
regret less than or equal to a threshold λ ∈ Q against Adam playing a strategy
in ΣW

∀ , is in non-deterministic polynomial time w.r.t. m and |A| for inf, sup,
liminf, limsup, and MP.

Finally, we have established the equivalence of a quantitative extension of
the notion of good-for-games automata [31] with determinization-by-pruning of
the refinement of an automaton [1] and our regret games against word strategies
of Adam. Before we can formally state these results, some definitions are needed.

Definition 10 (Weighted Automata). A finite weighted automaton is a tuple
〈Q, qinit, A,Δ,w〉 where: Q is a finite set of states, qinit ∈ Q is the initial state,
A is a finite alphabet of actions or symbols, Δ ⊆ Q × A × Q is the transition
relation, and w : Δ → Z is the weight function.

A run of an automaton on a word a ∈ Aω is an infinite sequence of transitions
ρ = (q0, a0, q1)(q1, a1, q2) · · · ∈ Δω such that q0 = qinit and ai = a(i) for all i ≥ 0.
As with plays in a game, each run is assigned a value with a payoff function
Val(·). A weighted automaton M defines a function Aω → R by assigning to
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a ∈ Aω the supremum over all the values of its runs on a. The automaton is said
to be deterministic if for all q ∈ Q and x ∈ Aω the set {q′ ∈ Q | (q, x, q′) ∈ Δ}
is a singleton.

In [31], Henzinger and Piterman introduced the notion of good-for-games
automata. A non-deterministic automaton is good for solving games if it fairly
simulates the equivalent deterministic automaton.

Definition 11 (α-good-for-games). A finite weighted automaton M is α-
good-for-games if a player (Simulator), against any word x ∈ Aω spelled by
Spoiler, can resolve non-determinism in M so that the resulting run has value
v and M(x) − v ≤ α.

The above definition is a quantitative generalization of the notion proposed
in [31]. We link their class of automata with our regret games in the sequel.

Proposition 1 ([32]). A weighted automaton M = 〈Q, qinit, A,Δ,w〉 is α-good-
for-games if and only if there exists a strategy σ∃ for Eve with relative regret of
at most α against strategies ΣW

∀ of Adam.

Our definitions also suggest a natural notion of approximate determiniza-
tion for weighted automata on infinite words. This is related to recent work by
Aminof et al.: in [1], they introduce the notion of approximate-determinization-
by-pruning for weighted sum automata over finite words. For α ∈ (0, 1], a
weighted sum automaton is α-determinizable-by-pruning if there exists a finite
state strategy to resolve non-determinism and that constructs a run whose value
is at least α times the value of the maximal run of the given word. So, they con-
sider a notion of approximation which is a ratio. Let us introduce some additional
definitions required to formalize the notion of determinizable-by-pruning.

Consider two weighted automata M = 〈Q, qinit, A,Δ,w〉 and M′ =
〈Q′, q′

init, A,Δ′,w′〉. We say that M′ α-approximates M if |M(x) − M′(x)| ≤ α,
for all x ∈ Aω. We say that M embodies M′ if Q′ ⊆ Q, Δ′ ⊆ Δ, and w′ agrees
with w on Δ′. For an integer k ≥ 0, the k-refinement of M is the automaton
obtained by refining the state-space of M using k boolean variables.

Definition 12 ((α, k)-determinizable-by-pruning). A finite weighted auto-
maton M is (α, k)-determinizable-by-pruning if the k-refinement of M embodies
a deterministic automaton which α-approximates M.

We show in [32] that when Adam plays word strategies only, our notion of
regret defines a notion of approximation with respect to the difference metric
for weighted automata (as defined above).

Proposition 2 ([32]). A weighted automaton M = 〈Q, qinit, A,Δ,w〉 is α-
determinizable-by-pruning if and only if there exists a strategy σ∃ for Eve using
memory at most 2m with relative regret of at most α against strategies ΣW

∀ of
Adam.
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Related Works. The notion of regret minimization is important in game and
decision theory, see e.g., [45] and additional bibliographical pointers there. The
concept of iterated regret minimization has been recently proposed by Halpern
et al. for non-zero sum games [30]. In [28], the concept is applied to games played
on weighted graphs with shortest path objectives. Variants on the different sets
of strategies considered for Adam were not considered there.

In [23], Damm and Finkbeiner introduce the notion of remorse-free strate-
gies. The notion is introduced in order to define a notion of best-effort strategy
when winning strategies do not exist. Remorse-free strategies are exactly the
strategies which minimize regret in games with ω-regular objectives in which
the environment (Adam) is playing word strategies only. The authors of [23] do
not establish lower bounds on the complexity of the realizability and synthesis
problems for remorse-free strategies.

A concept equivalent to good-for-games automata is that of history- deter-
minism [22]. Proposition 1 thus allows us to generalize history-determinism to a
quantitative setting via this relationship with good-for-games automata.

Finally, we would like to highlight some differences between our work and the
study of Aminof et al. in [1] on determinization-by-pruning. First, we consider
infinite words while they consider finite words. Second, we study a general notion
of regret minimization problem in which Eve can use any strategy while they
restrict their study to fixed memory strategies only and leave the problem open
when the memory is not fixed a priori.

6 Game Arenas with Expected Adversary

In the two previous sections we have relaxed the worst-case hypothesis on the
environment (modeled by the behavior of Adam) by either considering an explicit
objective for the environment or by considering as yardsticks the best-responses
to the strategies of Adam. Here, we introduce another model where the environ-
ment is modeled as a stochastic process (i.e., Adam is expected to play according
to some known randomized strategy) and we are looking for strategies for Eve
that ensure good expectation against this stochastic process while guarantee-
ing acceptable worst-case performance even if Adam deviates from his expected
behavior.

To define formally this new framework, we need game arenas in which an
expected behavior for Adam is given as a memoryless randomized strategy.2 We
first introduce some notation. Given a set A, let D(A) denote the set of ratio-
nal probability distributions over A, and, for d ∈ D(A), we denote its support
by Supp(d) = {a ∈ A | d(a) > 0} ⊆ A.

2 It should be noted that we can easily consider finite-memory randomized strategies
for Adam, instead of memoryless randomized strategies. This is because we can
always take the synchronized product of a finite-memory randomized strategy with
the game arena to obtain a new game arena in which the finite-memory strategy on
the original game arena is now equivalent to a memoryless strategy.
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1 2 31

6
9
100 0

0 0 1
10

Fig. 4. A game arena associated with a memoryless randomized strategy for Adam
can be seen as an MDP: the fractions represent the respective probability to take each
outgoing edge when leaving state 3.

Definition 13. Fix a weighted game arena A = 〈S∃, S∀,E, sinit,w〉. A memory-
less randomized strategy for Adam is a function

σrnd
∀ : S∀ → D(S)

such that for all s ∈ S∀, Supp(σrnd
∀ (s)) ⊆ {s′ ∈ S | (s, s′) ∈ E}.

For the rest of this section, we model the expected behavior of Adam with a
strategy σrnd

∀ , given as part of the input for the problem we will consider. Given a
weighted game arena A and a memoryless randomized strategy σrnd

∀ for Adam, we
are left with a model with both non-deterministic choices (for Eve) and stochastic
transitions (due to the randomized strategy of Adam). This is essentially what
is known in the literature as a 11

2 -player game or more commonly, a Markov
Decision Process (MDP), see for example [26,38]. One can talk about plays,
strategies and other notions in MDPs as introduced for games.

Consider the game in Fig. 4. We can see it as a classical two-player game if we
forget about the fractions around state 3. Now assume that we fix the memoryless
randomized strategy σrnd

∀ for Adam to be the one that, from 3, goes to 1 with
probability 9

10 and to 2 with the remaining probability, 1
10 . This is represented

by the fractions on the corresponding outgoing edges. In the remaining model,
only Eve still has to pick a strategy: it is an MDP. We denote this MDP by
A[σrnd

∀ ].
Let us go one step further. Assume now that Eve also picks a strategy σ∃

in this MDP. Now we obtain a fully stochastic process called a Markov Chain
(MC). We denote it by A[σ∃, σrnd

∀ ]. In an MC, an event is a measurable set of
plays. It is well-known from the literature [43] that every event has a uniquely
defined probability (Carathéodory’s extension theorem induces a unique proba-
bility measure on the Borel σ-algebra over plays in the MC). Given E a set of
plays in M = A[σ∃, σrnd

∀ ], we denote by PM (E) the probability that a play belongs
to E when M is executed for an infinite number of steps. Given a measurable
value function Val, we denote by EM (Val) the expected value or expectation of
Val over plays in M . In this paper, we focus on the mean-payoff function MP.

We are now finally equipped to formally define the problem under study.

Definition 14 (Beyond Worst-Case Synthesis). Given a weighted game
arena A, a stochastic model of Adam given as a memoryless randomized strategy
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σrnd
∀ , and two rational thresholds λwc, λexp, decide if there exists a strategy σ∃ for

Eve such that {
∀π ∈ OutcomeA

sinit
(σ∃) · Val(π) > λwc

EA[σ∃,σrnd
∀ ](Val) > λexp

and synthesize such a strategy if one exists.

Intuitively, we are looking for strategies that can simultaneously guarantee
a worst-case performance higher than λwc, i.e., against any behavior of Adam in
the game A, and guarantee an expectation higher than λexp when faced to the
expected behavior of Adam, i.e., when played in the MDP A[σrnd

∀ ]. We can of
course assume w.l.o.g. that λwc < λexp, otherwise the problem reduces trivially
to just a worst-case requirement: any lower bound on the worst-case value is also
a lower bound on the expected value.

Example 7. Consider the arena depicted in Fig. 4. As mentioned before, the
probability distribution models the expected behavior of Adam. Assume that
we want now to synthesize a strategy for Eve which ensures that (C1) the mean-
payoff will be at least 1

3 no matter how Adam behaves (worst-case guarantee),
and (C2) at least 3

2 if Adam plays according to his expected behavior (good
expectation).

First, let us study whether this can be achieved through the two classical
solution concepts used in games and MDPs respectively. We start by considering
the arena as a traditional two-player zero-sum game: in this case, it is known
that an optimal memoryless strategy exists [24]. Let σwc

∃ be the strategy of Eve
that always plays 1 → 1 and 2 → 1. That strategy maximizes the worst-case
mean-payoff, as it enforces a mean-payoff of 1 no matter how Adam behaves.
Thus, (C1) is satisfied. Observe that if we consider the arena as an MDP (i.e.,
taking the probabilities into account), this strategy yields an expected value of
1 as the unique possible play from state 1 is to take the self-loop forever. Hence
this strategy does not satisfy (C2).

Now, consider the arena as an MDP. Again, it is known that the expected
value can be maximized by a memoryless strategy [26,38]. Let σexp

∃ be the strat-
egy of Eve that always chooses the following edges: 1 → 2 and 2 → 3. Its expected
mean-payoff can be calculated in two steps: first computing the probability vec-
tor that represents the limiting stationary distribution of the irreducible MC
induced by this strategy, second multiplying it by the vector containing the
expected weights over outgoing edges for each state. In this case, it can be
shown that the expected value is equal to 54

29 , hence the strategy does satisfy
(C2). Unfortunately, it is clearly not acceptable for (C1) as, if Adam does not
behave according to the stochastic model and always chooses to play 3 → 2, the
mean-payoff will be equal to zero.

Hence this shows that the classical solution concepts do not suffice if one
wants to go beyond the worst-case and mix guarantees on the worst-case and
the expected performance of strategies. In contrast, with the framework devel-
oped in [11,12], it is indeed possible for the considered arena (Fig. 4) to build a
strategy for Eve that ensures the worst-case constraint (C1) and at the same time,
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yields an expected value arbitrarily close to the optimal expectation achieved by
strategy σexp

∃ . In particular, one can build a finite-memory strategy that guar-
antees both (C1) and (C2). The general form of such strategies is a combination
of σexp

∃ and σwc
∃ in a well-chosen pattern. Let σ

cmb(K,L)
∃ be a combined strategy

parameterized by two integers K,L ∈ N. The strategy is as follows.

1. Play according to σexp
∃ for K steps.

2. If the mean-payoff over the last K steps is larger than the worst-case threshold
λwc (here 1

3 ), then go to phase 1.
3. Otherwise, play according to σwc

∃ for L steps, and then go to phase 1.

Intuitively, the strategy starts by mimicking σexp
∃ for a long time, and the

witnessed mean-payoff over the K steps will be close to the optimal expectation
with high probability. Thus, with high probability it will be higher than λexp,
and therefore higher than λwc — recall that we assumed λwc < λexp. If this is not
the case, then Eve has to switch to σwc

∃ for sufficiently many steps L in order to
make sure that the worst-case constraint (C1) is satisfied before switching back
to σexp

∃ .
One of the key results of [12] is to show that for any λwc < μ, where μ

denotes the optimal worst-case value guaranteed by σwc
∃ , and for any expected

value threshold λexp < ν, where ν denotes the optimal expected value guaranteed
by σexp

∃ , it is possible to compute values for K and L such that σ
cmb(K,L)
∃ satisfies

the beyond worst-case constraint for thresholds λwc and λexp. For instance, in the
example, where λwc = 1

3 < 1 and λexp = 3
2 < 54

29 , one can compute appropriate
values of the parameters following the technique presented in [12, Theorem 5].
The crux is proving that, for large enough values of K and L, the contribution
to the expectation of the phases when σ

cmb(K,L)
∃ mimics σwc

∃ are negligible, and
thus the expected value yield by σ

cmb(K,L)
∃ tends to the optimal one given by

σexp
∃ , while at the same time the strategy ensures that the worst-case constraint

is met.

In the next theorem, we sum up some of the main results that we have
obtained for the beyond worst-case synthesis problem applied to the mean-payoff
value function.

Theorem 4 ([11,12,21]). The beyond worst-case synthesis problem for the
mean-payoff is in NP ∩ coNP, and at least as hard as deciding the winner
in two-player zero-sum mean-payoff games, both when looking for finite-memory
or infinite-memory strategies of Eve. When restricted to finite-memory strategies,
pseudo-polynomial memory is both sufficient and necessary.

The NP ∩ coNP-membership is good news as it matches the long-standing
complexity barrier for two-player zero-sum mean-payoff games [10,16,24,46]: the
beyond worst-case framework offers additional modeling power for free in terms
of decision complexity. It is also interesting to note that in general, infinite-
memory strategies are more powerful than finite-memory ones in the beyond
worst-case setting, which is not the case for the classical problems in games and
MDPs.
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Looking carefully at the techniques from [11,12], it can be seen that the
main bottleneck in complexity is solving mean-payoff games in order to check
whether the worst-case constraint can be met. Therefore, a natural relaxation of
the problem is to consider the beyond almost-sure threshold problem where the
worst-case constraint is softened by only asking that a threshold is satisfied with
probability one against the stochastic model given as the strategy σrnd

∀ of Adam.
In this case, the complexity is reduced.

Theorem 5 ([21]). The beyond almost-sure threshold problem for the mean-
payoff is in PTime and finite-memory strategies are sufficient.

Related Works We originally introduced the beyond worst-case framework in [12]
where we studied both mean-payoff and shortest path objectives. This frame-
work generalizes classical problems for two-player zero-sum games and MDPs. In
mean-payoff games, optimal memoryless strategies exist and deciding the win-
ner lies in NP ∩ coNP while no polynomial algorithm is known [10,16,24,46].
For shortest path games, where we consider game graphs with strictly positive
weights and try to minimize the accumulated cost to target, it can be shown that
memoryless strategies also suffice, and the problem is in PTime [33]. In MDPs,
optimal strategies for the expectation are studied in [26,38] for the mean-payoff
and the shortest path: in both cases, memoryless strategies suffice and they can
be computed in PTime. While we saw that the beyond worst-case synthesis
problem does not cost more than solving games for the mean-payoff, it is not
the case anymore for the shortest path: we jump from PTime to a pseudo-
polynomial-time algorithm. We proved in [12, Theorem 11] that the problem is
inherently harder as it is NP-hard.

The beyond worst-case framework was extended to the multi-dimensional
setting — where edges are fitted with vectors of integer weights — in [21]. The
general case is proved to be coNP-complete.

Our strategies can be considered as strongly risk averse: they avoid at all cost
outcomes that are below a given threshold (no matter what is their probability),
and inside the set of those safe strategies, we maximize the expectation. Other
different notions of risk have been studied for MDPs: in [44], the authors want
to find policies which minimize the probability (risk) that the total discounted
rewards do not exceed a specified value (target); in [27] the authors want poli-
cies that achieve a specified value of the long-run limiting average reward at a
specified probability level (percentile). The latter problem was recently extended
significantly in the framework of percentile queries, which provide elaborate guar-
antees on the performance profile of strategies in multi-dimensional MDPs [40].
While all those strategies limit risk, they only ensure low probability for bad
behaviors but they do not ensure their absence, furthermore, they do not ensure
good expectation either.

Another body of work is the study of strategies in MDPs that achieve a trade-
off between the expectation and the variance over the outcomes (e.g., [6] for the
mean-payoff, [35] for the cumulative reward), giving a statistical measure of
the stability of the performance. In our setting, we strengthen this requirement
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by asking for strict guarantees on individual outcomes, while maintaining an
appropriate expected payoff.

A survey of rich behavioral models extending the classical approaches for
MDPs—including the beyond worst-case framework presented here—was pub-
lished in [41], with a focus on the shortest path problem.
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Theoret. Comput. Sci. 365(1), 67–82 (2006)

19. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6),
677–693 (2010)

20. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logics of Programs.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)

21. Clemente, L., Raskin, J.-F.: Multidimensional beyond worst-case and almost-sure
problems for mean-payoff objectives. In: Proceedings of LICS, pp. 257–268. IEEE
(2015)

22. Colcombet, T.: Forms of determinism for automata. In: Proceedings of STACS.
LIPIcs, vol. 14, pp. 1–23. Schloss Dagstuhl - LZI (2012)

23. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model?
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer,
Heidelberg (2011)

24. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J.
Game Theory 8, 109–113 (1979)

25. Faella, M.: Admissible strategies in infinite games over graphs. In: Královič, R.,
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Abstract. This paper is a short introduction to the theory of tangles,
both in graphs and general connectivity systems. An emphasis is put on
the correspondence between tangles of order k and k-connected compo-
nents. In particular, we prove that there is a one-to-one correspondence
between the triconnected components of a graph and its tangles of order 3.

1 Introduction

Tangles, introduced by Robertson and Seymour in the tenth paper [21] of their
graph minors series [20], have come to play an important part in structural graph
theory. For example, Robertson and Seymour’s structure theorem for graphs with
excluded minors is phrased in terms of tangles in its general form [22]. Tangles
have also played a role in algorithmic structural graph theory (for example in
[3,7,8,11,14]).

Tangles describe highly connected regions in a graph. In a precise mathemat-
ical sense, they are “dual” to decompositions (see Theorem 23). Intuitively, a
graph has a highly connected region described by a tangle if and only if it does
not admit a decomposition along separators of low order. By decomposition I
always mean a decomposition in a treelike fashion; formally, this is captured by
the notions of tree decomposition or branch decomposition.

However, tangles describe regions of a graph in an indirect and elusive way.
This is why we use the unusual term “region” instead of “subgraph” or “compo-
nent”. The idea is that a tangle describes a region by pointing to it. A bit more
formally, a tangle of order k assigns a “big side” to every separation of order less
than k. The big side is where the (imaginary) region described by the tangle is
supposed to be. Of course this assignment of “big sides” to the separations is
subject to certain consistency and nontriviality conditions, the “tangle axioms”.

To understand why this way of describing a “region” is a good idea, let us
review decompositions of graphs into their k-connected components. It is well
known that every graph can be decomposed into its connected components and
into its biconnected components. The former are the (inclusionwise) maximal con-
nected subgraphs, and the latter the maximal 2-connected subgraphs. It is also
well-known that a graph can be decomposed into its triconnected components,
but the situation is more complicated here. Different from what one might guess,
the triconnected components are not maximal 3-connected subgraphs; in fact they
are not even subgraphs, but just topological subgraphs (see Sect. 2 for a definition
of topological subgraphs). Then what about 4-connected components?
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 24–41, 2016.
DOI: 10.1007/978-3-319-30000-9 2
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Fig. 1. A hexagonal grid

It turns out that in general a graph does not have a reasonable decomposition
into 4-connected components (neither into k-connected components for any k ≥
5), at least if these components are supposed to be 4-connected and some kind of
subgraph. To understand the difficulty, consider the hexagonal grid in Fig. 1. It is
3-connected, but not 4-connected. In fact, for any two nonadjacent vertices there
is a separator of order 3 separating these two vertices. Thus it is not clear what
the 4-connected components of a grid could possibly be (except, of course, just
the single vertices, but this would not lead to a meaningful decomposition). But
maybe we need to adjust our view on connectivity: a hexagonal grid is fairly highly
connected in a “global sense”. All its low-order separations are very unbalanced.
In particular, all separations of order 3 have just a single vertex on one side and all
other vertices on the other side. This type of global connectivity is what tangles are
related to. For example, there is a unique tangle of order 4 in the hexagonal grid:
the big side of a separation of order 3 is obviously the side that contains all but
one vertex. The “region” this tangle describes is just the grid itself. This does not
sound particularly interesting, but the grid could be a subgraph of a larger graph,
and then the tangle would identify it as a highly connected region within that
graph. A key theorem about tangles is that every graph admits a canonical tree
decomposition into its tangles of order k [1,21]. This can be seen as a generalisation
of the decomposition of a graph into its 3-connected components. A different, but
related generalisation has been given in [2].

The theory of tangles and decompositions generalises from graphs to an
abstract setting of connectivity systems. This includes nonstandard notions of
connectivity on graphs, such as the “cut-rank” function, which leads to the
notion of “rank width” [16,17], and connectivity functions on other structures,
for example matroids. Tangles give us an abstract notion of “k-connected com-
ponents” for these connectivity systems. The canonical decomposition theorem
can be generalised from graphs to this abstract setting [5,13].

This paper is a short introduction to the basic theory of tangles, both for
graphs and for general connectivity systems. We put a particular emphasis on
the correspondence between tangles of order k and k-connected components of a
graph for k ≤ 3, which gives some evidence to the claim that for all k, tangles of
order k may be viewed as a formalisation of the intuitive notion of “k-connected
component”.
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The paper provides background material for my talk at LATA. The talk itself
will be concerned with more recent results [6] and, in particular, computational
aspects and applications of tangles [9–11].

2 Preliminaries

We use a standard terminology and notation (see [4] for background); let me just
review a few important notions. All graphs considered in this paper are finite and
simple. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. The order of G is |G| := |V (G)|. For a set W ⊆ V (G), we denote
the induced subgraph of G with vertex set W by G[W ] and the induced subgraph
with vertex set V (G) \ W by G \ W . The (open) neighbourhood of a vertex v in
G is denoted by NG(v), or just N(v) if G is clear from the context. For a set
W ⊆ V (G) we let N(W ) :=

(⋃
v∈W N(v)

)
\ W, and for a subgraph H ⊆ G we

let N(H) := N(V (H)). The union of two graphs A,B is the graph A ∪ B with
vertex set V (A) ∪ V (B) and edge set E(A) ∪ E(B), and the intersection A ∩ B
is defined similarly.

A separation of G is a pair (A,B) of subgraphs of G such that A ∪ B = G
and E(A) ∩ E(B) = ∅. The order of the separation (A,B) is ord(A,B) :=
|V (A) ∩ V (B)|. A separation (A,B) is proper if V (A) \ V (B) and V (B) \ V (A)
are both nonempty. A graph G is k-connected if |G| > k and G has no proper
(k − 1)-separation.

A subdivision of G is a graph obtained from G by subdividing some (or all)
of the edges, that is, replacing them by paths of length at least 2. A graph H is
a topological subgraph of G if a subdivision of H is a subgraph of G.

3 Tangles in a Graph

In this section we introduce tangles of graphs, give a few examples, and review a
few basic facts about tangles, all well-known and at least implicitly from Robert-
son and Seymour’s fundamental paper on tangles [21] (except Theorem 7, which
is due to Reed [19]).

Let G be a graph. A G-tangle of order k is a family T of separations of G
satisfying the following conditions.

(GT.0) The order of all separations (A,B) ∈ T is less than k.
(GT.1) For all separations (A,B) of G of order less than k, either (A,B) ∈ T

or (B,A) ∈ T .
(GT.2) If (A1, B1), (A2, B2), (A3, B3) ∈ T then A1 ∪ A2 ∪ A3 	= G.
(GT.3) V (A) 	= V (G) for all (A,B) ∈ T .

Observe that (GT.1) and (GT.2) imply that for all separations (A,B) of G of
order less than k, exactly one of the separations (A,B), (B,A) is in T .

We denote the order of a tangle T by ord(T ).
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Fig. 2. A (5× 5)-grid

Example 1. Let G be a graph and C ⊆ G a cycle. Let T be the set of all
separations (A,B) of G of order 1 such that C ⊆ B. Then T is a G-tangle of
order 2.

To see this, note that T trivially satisfies (GT.0). It satisfies (GT.1), because
for every separation (A,B) of G of order 1, either C ⊆ A or C ⊆ B. To see that
T satisfies (GT.3), let (Ai, Bi) ∈ T for i = 1, 2, 3. Note that it may happen that
V (A1) ∪ V (A2) ∪ V (A3) = V (G) (if |C| = 3). However, no edge of C can be in
E(Ai) for any i, because C ⊆ Bi and |Ai ∩ Bi| ≤ 1. Hence E(A1) ∪ A(A2) ∪
E(A3) 	= E(G), which implies (GT.2). Finally, T satisfies (GT.3), because V (C)\
V (A) 	= ∅ for all (A,B) ∈ T . �

Example 2. Let G be a graph and X ⊆ V (G) a clique in G. Note that for all
separations (A,B) of G, either X ⊆ V (A) or X ⊆ V (B). For every k ≥ 1, let Tk

be the set of all separations (A,B) of G of order less than k such that X ⊆ V (B).
Then if k < 2

3 |X| + 1, the set Tk is a G-tangle of order k. We omit the proof,
which is similar to the proof in the previous example.

Instead, we prove that Tk is not necessarily a G-tangle if k = 2
3 |X| + 1. To

see this, let G be a complete graph of order 3n, k := 2n + 1, and X := V (G).
Suppose for contradiction that Tk is a G-tangle of order k. Partition X into three
sets X1,X2,X3 of size n. For i 	= j, let Aij := G[Xi ∪ Xj ] and Bij := G. Then
(Aij , Bij) is a separation of G of order 2n < k. By (GT.1) and (GT.3), we have
(Aij , Bij) ∈ Tk. However, A12 ∪ A13 ∪ A23 = G, and this contradicts (GT.2). �

Example 3. Let G be a graph and H ⊆ G a (k × k)-grid (see Fig. 2). Let T be
the set of all separations (A,B) of G of order at most k−1 such that B contains
some row of the grid. Then T is a G-tangle of order k. (See [21] for a proof.) �

The reader may wonder why in (GT.2) we take three separations, instead of
two or four or seventeen. The following lemma gives (some kind of) an expla-
nation: we want our tangles to be closed under intersection, in the weak form
stated as assertion (3) of the lemma; this is why taking just two separations in
(GT.2) would not be good enough. Three is just enough, and as we do not want
to be unnecessarily restrictive, we do not take more than three separations.

Lemma 4. Let T be a G-tangle of order k.
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(1) If (A,B) is a separation of G with |V (A)| < k then (A,B) ∈ T .
(2) If (A,B) ∈ T and (A′, B′) is a separation of G of order < k such that

B′ ⊇ B, then (A′, B′) ∈ T .
(3) If (A,B), (A′, B′) ∈ T and ord(A∪A′, B∩B′) < k then (A∪A′, B∩B′) ∈ T .

Proof. We leave the proofs of (1) and (2) to the reader. To prove (3), let
(A,B), (A′, B′) ∈ T and ord(A∪A′, B ∩B′) < k. By (GT.1), either (A∪A′, B ∩
B′) ∈ T or (B ∪B′, A∩A′) ∈ T . As A∪A′ ∪ (B ∪B′) = G, by (GT.2) we cannot
have (B ∪ B′, A ∩ A′) ∈ T . ��
Corollary 5. Let T be a G-tangle of order k. Let (A,B), (A′, B′) ∈ T . Then
|B ∩ B′| ≥ k.

The following lemma will allow us, among other things, to give an alternative
characterisation of tangles in terms of so-called brambles.

Lemma 6. Let T be a G-tangle of order k. Then for every set S ⊆ V (G) of
cardinality |S| < k there is a unique connected component C(T , S) of G\S such
that for all separations (A,B) of G with V (A) ∩ V (B) ⊆ S we have (A,B) ∈
T ⇐⇒ C(T , S) ⊆ B.

Proof. Let C1, . . . , Cm be the set of all connected components of G \ S. For
every I ⊆ [m], let CI :=

⋃
i∈I Ci. We define a separation (AI , BI) of G

as follows. BI is the graph with vertex set S ∪ V (CI) and all edges that
have at least one endvertex in V (CI), and AI is the graph with vertex set
S∪V (C[m]\I) and edge set E(G)\E(BI). Note that V (AI)∩V (BI) = S and thus
ord(AI , BI) < k. Thus for all I, either (AI , BI) ∈ T or (BI , AI) ∈ T . It follows
from Lemma 4(1) and (GT.2) that (BI , AI) ∈ T implies (A[m]\I , B[m]\I) ∈ T ,
because (G[S], G) ∈ T and BI ∪B[m]\I ∪G[S] = G. Furthermore, it follows from
Lemma 4(3) that (AI , BI), (AJ , BJ ) ∈ T implies (AI∩J , BI∩J ) ∈ T . By (GT.3)
we have (A[m], B[m]) ∈ T and (A∅, B∅) 	∈ T .

Let I ⊆ [m] be of minimum cardinality such that (AI , BI) ∈ T . Since (AI , BI),
(AJ , BJ ) ∈ T implies (AI∩J , BI∩J ) ∈ T , the minimum set I is unique. If |I| = 1,
then we let C(T , S) := Ci for the unique element i ∈ I. Suppose for contradiction
that |I| > 1, and let i ∈ I. By the minimality of |I| we have (A{i}, B{i}) 	∈ T and
thus (A[m]\{i}, B[m]\{i}) ∈ T . This implies (AI\{i}, BI\{i}) ∈ T , contradicting the
minimality of |I|. ��

Let G be a graph. We say that subgraphs C1, . . . , Cm ⊆ G touch if there is
a vertex v ∈ ⋂m

i=1 V (Ci) or an edge e ∈ E(G) such that each Ci contains at
least one endvertex of e. A family C of subgraphs of G touches pairwise if all
C1, C2 ∈ C touch, and it touches triplewise if all C1, C2, C3 ∈ C touch. A vertex
cover (or hitting set) for C is a set S ⊆ V (G) such that S ∩ V (C) 	= ∅ for all
C ∈ C.

Theorem 7 (Reed [19]). A graph G has a G-tangle of order k if and only if
there is a family C of connected subgraphs of G that touches triplewise and has
no vertex cover of cardinality less than k.
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In fact, Reed [19] defines a tangle of a graph G to be a family C of connected
subgraphs of G that touches triplewise and its order to be the cardinality of a
minimum vertex cover. A bramble is a family C of connected subgraphs of G
that touches pairwise. In this sense, a tangle is a special bramble.

Proof (of Theorem 7). For the forward direction, let T be a G-tangle of order k.
We let

C := {C(T , S) | S ⊆ V (G) with |S| < k}.

C has no vertex cover of cardinality less than k, because if S ⊆ V (G) with
|S| < k then S ∩ V (C(T , S)) = ∅. It remains to prove that C touches triplewise.
For i = 1, 2, 3, let Ci ∈ C and Si ⊆ V (G) with |Si| < k such that Ci = C(T , Si).
Let Bi be the graph with vertex set V (Ci) ∪ S and all edges of G that have at
least one vertex in V (Ci), and let Ai be the graph with vertex set V (G) \ V (Ci)
and the remaining edges of G. Since C(T , Si) = Ci ⊆ Bi, we have (Ai, Bi) ∈ T .
Hence A1 ∪ A2 ∪ A3 	= G by (GT.2), and this implies that C1, C2, C3 touch.

For the backward direction, let C be a family of connected subgraphs of G
that touches triplewise and has no vertex cover of cardinality less than k. We
let T be the set of all separations (A,B) of G of order less than k such that
C ⊆ B \ V (A) for some C ∈ C. It is easy to verify that T is a G-tangle of
order k. ��

Let T , T ′ be κ-tangles. If T ′ ⊆ T , we say that T is an extension of T ′. The
truncation of T to order k ≤ ord(T ) is the set {(A,B) ∈ T | ord(A,B) < k},
which is obviously a tangle of order k. Observe that if T is an extension of T ′,
then ord(T ′) ≤ ord(T ), and T ′ is the truncation of T to order ord(T ′).

4 Tangles and Components

In this section, we will show that there is a one-to-one correspondence between
the tangles of order at most 3 and the connected, biconnected, and triconnected
components of a graph. Robertson and Seymour [21] established a one-to-one
correspondence between tangles of order 2 and biconnected component. Here,
we extend the picture tangles of order 3.1

4.1 Biconnected and Triconnected Components

Let G be a graph. Following [2], we call a set X ⊆ V (G) k-inseparable in G if
|X| > k and there is no separation (A,B) of G of order at most k such that
X \ V (B) 	= ∅ and X \ V (A) 	= ∅. A k-block of G is an inclusionwise maximal
k-inseparable subset of V (G). We call a k-inseparable set of cardinality greater
than k + 1 a proper k-inseparable set and, if it is a k-block, a proper k-block.
(Recall that a (k+1)-connected graph has order greater than k+1 by definition.)

1 My guess is that the result for tangles of order 3 is known to other researchers in
the field, but I am not aware of it being published anywhere.
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We observe that every vertex x in a proper k-inseparable set X has degree at
least (k + 1), because it has (k + 1) internally disjoint paths to X \ {x}.

A biconnected component of G is a subgraph induced by a 1-block, which is
usually just called a block.2 It is easy to see that a biconnected component B
either consists of a single edge that is a bridge of G, or it is 2-connected. In the
latter case, we call B a proper biconnected component.

The definition of triconnected components is more complicated, because the
subgraph induced by a 2-block is not necessarily 3-connected (even if it is a
proper 2-block).

Example 8. Let G be a graph obtained from the complete graph K4 by subdivid-
ing each edge once. Then the vertices of the original K4, which are precisely the
vertices of degree 3 in G, form a proper 2-block, but the subgraph they induce
has no edges and thus is certainly not 3-connected.

It can be shown, however, that every proper 2-block of G is the vertex set
of a 3-connected topological subgraph. For a subset X ⊆ V (G), we define the
torso of X in G to be the graph G�X� obtained from the induced subgraph G[X]
by adding an edge vw for all distinct v, w ∈ X such that there is a connected
component C of G \ X with v, w ∈ N(C). We call the edges in E(G�X�) \ E(G)
the virtual edges of G�X�. It is not hard to show that if X is a 2-block of G then
for every connected component C of G \ X it holds that N(C) ≤ 2; otherwise
X would not be an inclusionwise maximal 2-inseparable set. This implies that
G�X� is a topological subgraph of G: if, for some connected component C of
G \ X, N(C) = {v, w} and hence vw is a virtual edge of the torso, then there is
a path from v to w in C, which may be viewed as a subdivision of the edge vw of
G�X�. We call the torsos G�X� for the 2-blocks X the triconnected components
of G. We call a triconnected component proper if its order is at least 4.

It is a well known fact, going back to MacLane [15] and Tutte [25], that
all graphs admit tree decompositions into their biconnected and triconnected
components. Hopcroft and Tarjan [12,24] proved that the decompositions can
be computed in linear time.

4.2 From Components to Tangles

Lemma 9. Let G be a graph and X ⊆ V (G) a (k − 1)-inseparable set of order
|X| > 3

2 · (k − 1). Then

T (k)(X) := {(A,B)
∣∣ (A,B)separation of G of order < k with X ⊆ V (B)

}

is a G-tangle of order k.

Proof. T (k)(X) trivially satisfies (GT.0). It satisfies (GT.1), because the (k−1)-
inseparability of X implies that for every separation (A,B) of G of order < k
either X ⊆ V (A) or X ⊆ V (B).
2 There is a slight discrepancy to standard terminology here: a set consisting of a
single isolated vertex is usually also called a block, but it is not a 1-block, because
its size is not greater than 1.
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To see that T (k)(X) satisfies (GT.2), let (Ai, Bi) ∈ T k(X) for i = 1, 2, 3.
Then |V (Ai)∩X| ≤ k−1, because V (Ai)∩X ⊆ V (Ai)∩V (Bi). As |X| > 3

2 ·(k−1),
there is a vertex x ∈ X such that x is contained in at most one of the sets V (Ai).
Say, x 	∈ V (A2) ∪ V (A3). If x 	∈ V (A1), then V (A1) ∪ V (A2) ∪ V (A3) 	= V (G).
So let us assume that x ∈ V (A1).

Let y1, . . . , yk−1 ∈ X \ {x}. As X is (k − 1)-inseparable, for all i there is a
path Pi from x to yi such that V (Pi) ∩ V (Pj) = {x} for i 	= j. Let wi be the
last vertex of Pi (in the direction from x to yi) that is in V (A1). We claim that
wi ∈ V (B1). This is the case if wi = yi ∈ X ⊆ V (B1). If wi 	= yi, let zi be the
successor of wi on Pi. Then zi ∈ V (B1) \ V (A1), and as wizi ∈ E(G), it follows
that wi ∈ V (B1) as well.

Thus {x,w1, . . . , wk−1} ⊆ V (A1) ∩ V (B1), and as |V (A1) ∩ V (B1)| ≤ k − 1,
it follows that wi = x for some i. Consider the edge e = xzi. We have e 	∈ E(A1)
because zi 	∈ V (A1) and e 	∈ E(A2) ∪ E(A3) because x 	∈ V (A2) ∪ V (A3). Hence
E(A1) ∪ E(A2) ∪ E(A3) 	= E(G), and this completes the proof of (GT.2).

Finally, T (k)(X) satisfies (GT.3), because for every (A,B) ∈ T we have
|V (A) ∩ X| ≤ k − 1 < |X|. ��
Corollary 10. Let G be a graph and X ⊆ V (G).

(1) If X is the vertex set of a connected component of G (that is, a 0-block),
then T 1(X) is a G-tangle of order 1.

(2) If X is the vertex set of a biconnected component of G (that is, a 1-block),
then T 2(X) is a G-tangle of order 2.

(3) If X is the vertex set of a proper triconnected component of G (that is, a
2-block of cardinality at least 4), then T 3(X) is a G-tangle of order 3.

Let us close this section by observing that the restriction to proper tricon-
nected components in assertion (3) of the corollary is necessary.

Lemma 11. Let G be a graph and X ⊆ V (G) be a 2-block of cardinality 3. Then
T 3(X) is not a tangle.

Proof. Let T := T 3(X). Suppose that X = {x1, x2, x3}. For i 	= j, let Sij :=
{xi, xj}, and let Yij be the union of the vertex sets of all connected components C
of G\X with N(C) ⊆ Sij , and let Zij := V (G)\(Yij∪Sij). Let Aij := G[Yij∪Sij ],
and let Bij be the graph with vertex set Sij ∪ Zij and edge set E(G) \ E(Aij).
Then (Aij , Bij) ∈ T , because X ⊆ V (Bij). As X is a 2-block, for every connected
component C of G \ X it holds that |N(C)| ≤ 2, and hence C ⊆ Aij for some
i, j. It is not hard to see that this implies A12 ∪ A13 ∪ A23 = G. Thus T violates
(GT.2). ��

4.3 From Tangles to Components

For a G-tangle T , we let

XT :=
⋂

(A,B)∈T
V (B).
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In general, XT may be empty; an example is the tangle of order k associated
with a (k × k)-grid for k ≥ 5 (see Example 3). However, it turns out that for
tangles of order k ≤ 3, the set XT is a (k−1)-block. This will be the main result
of this section.

Lemma 12. Let T be a G-tangle of order k. If |XT | ≥ k, then XT is a (k − 1)-
block of G and T = T k(XT ).

Proof. Suppose that |XT | ≥ k. If (A,B) is a separation of G of order less than k
then either (A,B) ∈ T or (B,A) ∈ T , which implies XT ⊆ V (B) or XT ⊆ V (A).
Thus XT is (k − 1)-inseparable. If X ⊃ XT , say, with x ∈ X \ XT , then there
is some separation (A,B) ∈ T with x ∈ V (A) \ V (B) and XT ⊆ V (B), and this
implies that X is not (k − 1)-inseparable. Hence XT is a k-block.

We have T = T k(XT ), because XT ⊆ V (B) for all (A,B) ∈ T , and for a
separation (A,B) of order at most k − 1 we cannot have XT ⊆ V (A) ∩ V (B). ��

Let T be a G-tangle. A separation (A,B) ∈ T is minimal in T if there is no
(A′, B′) ∈ T such that B′ ⊂ B. Clearly, XT is the intersection of all sets V (B)
for minimal (A,B) ∈ T . Hence if we want to understand XT , we can restrict
our attention to the minimal separations in T . Let (A,B) ∈ T be minimal and
S := V (A) ∩ V (B). It follows from Lemma 6 that B \ S = C := C(T , S), and it
follows from the minimality that S = N

(
C) and that E(B) consists of all edges

with one endvertex in V (C). Hence B is connected.

Theorem 13 (Robertson and Seymour [21]). Let G be a graph.

(1) For every G-tangle T of order 1, the set XT is a vertex set of a connected
component of G, and we have T = T 1(XT ).

(2) For every G-tangle T of order 2, the set XT is the vertex set of a biconnected
component of G, and we have T = T 2(XT ).

Proof. To prove (1), let T be a G-tangle of order 1. Let C = C(T , ∅). Then (G \
V (C), C) is the unique minimal separation in T , and thus we have XT = V (C).

To prove (2), let T be a G-tangle of order 2. By Lemma 12, it suffices to prove
that |XT | ≥ 2. Let T ′ be the truncation of T to order 1. Then W := XT ′ is the
vertex set of a connected component C of G, and we have XT ⊆ W . Moreover,
for every minimal (A,B) ∈ T we have B ⊆ C, because B is connected and
B ∩ C 	= ∅ by (GT.2).

Claim 1. Let (A1, B1), (A2, B2) ∈ T be distinct and minimal in T . Then A1 ∩
C ⊆ B2 and A2 ∩ C ⊆ B1.

Proof. We have ord(A1∪A2, B1∩B2) ≥ 2, because otherwise (A1∪A2, B1∩B2) ∈
T by Lemma 4(3), which contradicts the minimality of the separations (Ai, Bi).
Suppose that V (Ai) ∩ V (Bi) = {si}. As

V (A1 ∪ A2) ∩ (V (B1 ∩ B2) ⊆ V (A1 ∩ B1) ∪ V (A2 ∩ B2) = {s1, s2},

we must have s1 	= s2 and V (A1 ∪A2)∩V (B1 ∩B2) = {s1, s2} (see Fig. 3). This
implies V (A1∩A2)∩V (B1∪B2) = ∅. Then (A1∩A2, B1∪B2) is a separation of G
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Fig. 3. Proof of Theorem 13

of order 0, and as C is connected and (B1∪B2)∩C 	= ∅, we have A1∩A2∩C = ∅.
The assertion of the claim follows. �

Let (A1, B1), . . . , (Am, Bm) be an enumeration of all minimal separations in
T of order 1. Even if C is 1-inseparable, there is such a separation:

(
G \ (V (C) \

{v}), C
)

for an arbitrary v ∈ V (C). Thus m ≥ 1. If m = 1, then XT = V (B1)
and thus |XT | ≥ 2 by Lemma 4(1).

If m ≥ 2, let Ai ∩ Bi = {si}. We can assume the si to be mutually distinct,
because if si = sj then Bi = Bj . It follows from Claim 1 that s1, . . . , sm ∈⋂

i V (Bi) = XT . This implies |XT | ≥ 2. ��
To extend Theorem 13 to tangles of order 3, we first prove a lemma, which

essentially says that we can restrict our attention to 2-connected graphs. Let G
be graph and X ⊆ V (G). For every A ⊆ G, let A ∩ X := A

[
V (A) ∩ X]. Note

that if (A,B) is a separation of G, then (A ∩ X,B ∩ X) is a separation of G[X]
with ord(A ∩ X,B ∩ X) ≤ ord(A,B).

Lemma 14. Let T be a G-tangle of order 3. Let T ′ be the truncation of T
to order 2, and let W := XT ′ . Let T [W ] be the set of all separations (A ∩
W,B ∩ W ) of G[W ] where (A,B) ∈ T . Then T [W ] is a G[W ]-tangle of order 3.
Furthermore, XT = XT [W ].

Proof. By Theorem 13, G[W ] is a biconnected component of G. This implies
that |W | ≥ 2 and |N(C)| ≤ 1 for every connected component C of G \ W . For
every w ∈ W , we let Yw be union of the vertex sets of all connected components
C of G \ W with N(C) ⊆ {w}. Then V (G) = W ∪ ⋃

w∈W Yw. Let Zw :=
V (G) \ (Yw ∪ {w}). Let Aw := G[Yw ∪ {w}] and Bw := G[Zw ∪ {w}]. Then
W ⊆ V (Bw) and thus (Aw, Bw) ∈ T 2(W ) = T ′ ⊆ T .

Claim 1. Let (A,B) ∈ T . Then W \ V (A) 	= ∅.

Proof. Suppose for contradiction that W ⊆ V (A). Let S := V (A) ∩ V (B) and
suppose that S = {s1, s2}. Let wi ∈ W such that si ∈ Ywi

∪ {wi}. Then A ∪
Aw1 ∪ Aw2 = G, which contradicts (GT.2). This proves that W \ V (A) 	= ∅. �
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It is now straightforward to prove that T [W ] satisfies the tangle axioms
(GT.0), (GT.1), and (GT.3). To prove (GT.2), let (Ai, Bi) ∈ T for i = 1, 2, 3.
We need to prove that (A1 ∩W )∪ (A2 ∩W )∪ (A3 ∩W ) 	= G[W ]. Without loss of
generality we may assume that (Ai, Bi) is minimal in T . Then Ci := Bi \ V (Ai)
is connected. By Claim 1, V (Ci) ∩ W 	= ∅. This implies that if V (Ci) ∩ Yw 	= ∅
for some w ∈ W , then w ∈ V (Ci).

As T satisfies (GT.2), A1 ∪ A2 ∪ A3 	= G, and thus there either is a vertex in
V (C1) ∩ V (C2) ∩ V (C3) or an edge with an endvertex in every V (Ci). Suppose
first that v ∈ V (C1) ∩ V (C2) ∩ V (C3). If v ∈ W then

V
(
(A1 ∩ W ) ∪ (A2 ∩ W ) ∪ (A3 ∩ W )

) 	= W = V
(
G[W ]

)
.

Otherwise, v ∈ Yw for some w ∈ W , and we have w ∈ V (C1)∩V (C2)∩V (C3).
Similarly, if e = vv′ has an endvertex in every V (Ci), then we distinguish between
the case that v, v′ ∈ W , which implies E

(
(A1 ∩ W ) ∪ (A2 ∩ W ) ∪ (A3 ∩ W )

) 	=
E

(
G[W ]

)
, and the case that e ∈ E(Aw) for some w ∈ W , which implies w ∈

V (C1) ∩ V (C2) ∩ V (C3) and thus V
(
(A1 ∩ W ) ∪ (A2 ∩ W ) ∪ (A3 ∩ W )

) 	= W =
V

(
G[W ]

)
. This proves (GT.2) and hence that T [W ] is a tangle.

The second assertion XT = XT [W ] follows from the fact that XT ⊆
XT ′ = W . ��
Theorem 15. Let G be a graph. For every G-tangle T of order 3, the set XT
is a vertex set of a proper triconnected component of G.

Proof. Let T be a G-tangle of order 3. It suffices to prove that |XT | ≥ 3. Then
by Lemma 12, XT is a 3-block and T = T 3(XT ), and by Lemma 11, XT is
proper 3-block, that is, the vertex set of a proper triconnected component.

By the previous lemma, we may assume without loss of generality that G is
2-connected. The rest of the proof follows the lines of the proof of Theorem 13.
The core of the proof is again an “uncrossing argument” (this time a more
complicated one) in Claim 1.

Claim 1. Let (A1, B1), (A2, B2) ∈ T be distinct and minimal in T . Then V (A1) ⊆
V (B2) and V (A2) ⊆ V (B1).

Proof. Let Si := V (Ai) ∩ V (Bi) and Yi := V (Ai) \ Si and Zi := V (Bi) \ Si

(see Fig. 4(a)). By the minimality of (Ai, Bi), we have Zi = V
(
C(T , Si)

)
and

Si = N(Zi). Thus S1 	= S2 and Z1 	= Z2, because the two separations are
distinct.

It follows that (A1 ∪ A2, B1 ∩ B2) is a separation with B1 ∩ B2 ⊂ Bi, and
by the minimality of (Ai, Bi) this separation is not in T . By Lemma 4(3), this
means that its order is at least 3. Thus

|S1 ∩ Z2| + |S1 ∩ S2| + |Z1 ∩ S2| = |V (A1 ∪ A2) ∩ V (B1 ∩ B2)| ≥ 3. (�)

As |Si| ≤ 2 and S1 	= S2, it follows that

|S1 ∩ Y2| + |S1 ∩ S2| + |Y1 ∩ S2| = |V (A1 ∩ A2) ∩ V (B1 ∪ B2)| ≤ 1.
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Fig. 4. Uncrossing minimal separations of order 2

Hence (A1 ∩ A2, B1 ∪ B2) is a separation of order at most 1. As G is 2-
connected, the separation is not proper, which means that either V (A1 ∩ A2) =
V (G) or V (B1 ∪ B2) = V (G). By Lemma 4(2), we have (A1 ∩ A2, B1 ∪ B2) ∈ T
and thus V (A1 ∩ A2) 	= V (G). Thus V (B1 ∪ B2) = V (G), and this implies
Y1 ∩ Y2 = ∅.

To prove that V (Ai) = Si ∪ Yi ⊆ V (B3−i) = S3−i ∪ Z3−i, we still need to
prove that Si ∩ Y3−i = ∅. Suppose for contradiction that S1 ∩ Y2 	= ∅. Then (�)
implies |S1 ∩Y2| = 1 and |S1 ∩Z2| = 1 and |S2 ∩Z1| = 2 and S1 ∩S2 = Y1 ∩S2 =
∅ (see Fig. 4(b)). Note that (Y1 ∪ S1) ∩ Z2 = V (A1) \ V (A2). It follows that
(A1\V (A2), B1) is a separation of G of order 1, and we have (A1\V (A2), B1) ∈ T .
Thus Y1 ∩ Z2 = ∅, which implies V (B2) = Z2 ∪ S2 ⊂ Z1 ∪ S1 = V (B1) (see
Fig. 4(c)). This contradicts the minimality of (A1, B1). Hence S1 ∩ Y2 = ∅, and
similarly Y1 ∩ S2 = ∅. �

Let (A1, B1), . . . , (Am, Bm) be an enumeration of all minimal separations in
T of order 2. Note that there is at least one minimal separation of order 2 even
if G has no proper separations of order 2. Thus m ≥ 1.

Let Si := V (Ai) ∩ V (Bi). Then the sets Si are all distinct, because two
minimal separations in T with the same separators are equal. It follows from
Claim 1 that Si ⊆ V (Bj) for all j ∈ [m] and thus

S1 ∪ . . . ∪ Sm ⊆ XT .

If m ≥ 2 this implies |XT | ≥ 3. If m = 1, then XT = V (B1) and thus |XT | ≥ 3
by Lemma 4. ��

The results of this section clearly do not extend beyond tangles of order 3.
For example, the hexagonal grid H in Fig. 1 has a (unique) tangle T of order 4.
But the set XT is empty, and the graph H has no 3-inseparable set of cardinality
greater than 1.

Nevertheless, it is shown in [6] that there is an extension of the theorem to
tangles of order 4 if we replace 4-connectivity by the slightly weaker “quasi-
4-connectivity”: a graph G is quasi-4-connected if it is 3-connected and for all
separations (A,B) of order 3, either |V (A) \ V (B)| ≤ 1 or |V (B) \ V (A)| ≤ 1.
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For example, the hexagonal grid H in Fig. 1 is quasi-4-connected. It turns out
that there is a one-to-one correspondence between the tangles of order 4 and
(suitably defined) quasi-4-connected components of a graph.

5 A Broader Perspective: Tangles and Connectivity
Systems

Many aspects of “connectivity” are not specific to connectivity in graphs, but
can be seen in an abstract and much more general context. We describe “connec-
tivity” on some structure as a function that assigns an “order” (a nonnegative
integer) to every “separation” of the structure. We study symmetric connectiv-
ity functions, where the separations (A,B) and (B,A) have the same order. The
key property such connectivity functions need to satisfy is submodularity.

Separations can usually be described as partitions of a suitable set, the “uni-
verse”. For example, the separations of graphs we considered in the previous
sections are essentially partitions of the edge set. Technically, it will be conve-
nient to identify a partition (X,X) with the set X, implicitly assuming that X
is the complement of X. This leads to the following definition.

A connectivity function on a finite set U is a symmetric and submodular
function κ : 2U → N with κ(∅) = 0. Symmetric means that κ(X) = κ(X) for all
X ⊆ U ; here and whenever the ground set U is clear from the context we write
X to denote U \X. Submodular means that κ(X)+κ(Y ) ≥ κ(X ∩Y )+κ(X ∪Y )
for all X,Y ⊆ U . The pair (U, κ) is sometimes called a connectivity system.

The following two examples capture what is known as edge connectivity and
vertex connectivity in a graph.

Example 16 (Edge connectivity). Let G be a graph. We define the function νG :
2V (G) → N by letting νG(X) be the number of edges between X and X. Then
νG is a connectivity function on V (G). �

Example 17 (Vertex connectivity). Let G be a graph. We define the function
κG : 2E(G) → N by letting κG(X) be the number of vertices that are incident
with an edge in X and an edge in X. Then κG is a connectivity function on E(G).

Note that for all separations (A,B) of G we have κG(E(A)) = κG(E(B)) ≤
ord(A,B), with equality if V (A) ∩ V (B) contains no isolated vertices of A or
B. For X ⊆ E(G), let us denote the set of endvertices of the edges in X by
V (X). Then for all X ⊆ E(G) we have κG(X) = ord(AX , BX), where BX =
(V (X),X) and AX = (V (X),X). The theory of tangles and decompositions of
the connectivity function of κG is essentially the same as the theory of tangles
and decompositions of G (partially developed in the previous sections). �

Example 18. Let G be a graph. For all subsets X,Y ⊆ V (G), we let M =
MG(X,Y ) be the X × Y -matrix over the 2-element field F2 with entries Mxy =
1 ⇐⇒ xy ∈ E(G). Now we define a connectivity function ρG on V (G) by letting
ρG(X), known as the cut rank of X, be the row rank of the matrix MG(X,X).
This connectivity function was introduced by Oum and Seymour [17] to define
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the rank width of graphs, which approximates the clique width, but has better
algorithmic properties. �

Let us also give an example of a connectivity function not related to graphs.

Example 19. Let M be a matroid with ground set E and rank function r. (The
rank of a set X ⊆ E is defined to be the maximum size of an independent set
contained in X.) The connectivity function of M is the set function κM : E → N

defined by κM (X) = r(X) + r(X) − r(E) (see, for example, [18]). �

5.1 Tangles

Let κ be a connectivity function on a set U . A κ-tangle of order k ≥ 0 is a set
T ⊆ 2U satisfying the following conditions.

(T.0) κ(X) < k for all X ∈ T ,
(T.1) For all X ⊆ U with κ(X) < k, either X ∈ T or X ∈ T .
(T.2) X1 ∩ X2 ∩ X3 	= ∅ for all X1,X2,X3 ∈ T .
(T.3) T does not contain any singletons, that is, {a} 	∈ T for all a ∈ U .

We denote the order of a κ-tangle T by ord(T ).
We mentioned in Example 17 that the theory of κG-tangles is essentially the

same as the theory of tangles in a graph. Indeed, κG-tangles and G-tangles are
“almost” the same. The following proposition makes this precise.

We call an edge of a graph isolated if both of its endvertices have degree 1.
We call an edge pendant if it is not isolated and has one endvertex of degree 1.

Proposition 20. Let G be a graph and k ≥ 0.

(1) If T is a κG-tangle of order k, then

S :=
{
(A,B)

∣∣ (A,B)separation of G of order < k with E(B) ∈ T }

is a G-tangle of order k.
(2) If S is a G-tangle of order k, then

T :=
{
E(B)

∣∣ (A,B) ∈ S}

is a κG-tangle of order k, unless
(i) either k = 1 and there is an isolated vertex v ∈ V (G) such that S is the

set of all separations (A,B) of order 0 with v ∈ V (B) \ V (A),
(ii) or k = 1 and there is an isolated edge e ∈ E(G) such that S is the set

of all separations (A,B) of order 0 with e ∈ E(B),
(iii) or k = 2 and there is an isolated or pendant edge e = vw ∈ E(G) and

S is the set of all separations (A,B) of order at most 1 with e ∈ E(B).

We omit the straightforward (albeit tedious) proof.
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Fig. 5. A graph G with three G tangles of order 2 and two κG-tangles of order 2

Example 21. Let G be the graph shown in Fig. 5. G has one tangle of order 1
(since it is connected) and three tangles of order 2 corresponding to the three
biconnected components. The G-tangle corresponding to the “improper” bicon-
nected component consisting of the edge e1 and its endvertices does not corre-
spond to a κG-tangle (by Proposition 20(2-iii)). �

A star is a connected graph in which at most 1 vertex has degree greater
than 1. Note that we admit degenerate stars consisting of a single vertex or a
single edge.

Corollary 22. Let G be a graph that has a G-tangle of order k. Then G has a
κG-tangle of order k, unless k = 1 and G only has isolated edges or k = 2 and
all connected components of G are stars.

6 Decompositions and Duality

A cubic tree is a tree where every node that is not a leaf has degree 3. An oriented
edge of a tree T is a pair (s, t), where st ∈ E(T ). We denote the set of all oriented
edges of T by

−→
E (T ) and the set of leaves of T by L(T ). A branch decomposition

of a connectivity function κ over U is a pair (T, ξ), where T is a cubic tree and
ξ a bijective mapping from L(T ) to U . For every oriented edge (s, t) ∈ −→

E (T ) we
define ξ̃(s, t) to be the set of all ξ(u) for leaves u ∈ L(T ) contained in the same

connected component of T − {st} as t. Note that ξ̃(s, t) = ξ̃(t, s). We define the
width of the decomposition (T, ξ) be the maximum of the values κ(ξ̃(t, u)) for
(t, u) ∈ −→

E (T ). The branch width of κ, denoted by bw(κ), is the minimum of the
widths of all its branch decompositions.

The following fundamental result relates tangles and branch decompositions;
it is one of the reasons why tangles are such interesting objects.

Theorem 23 (Duality Theorem; Robertson and Seymour [21]). The
branch width of a connectivity function κ equals the maximum order of a κ-
tangle.
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We omit the proof.
Let G be a graph. A branch decomposition of G is defined to be a branch

decomposition of κG, and the branch width of G, denoted by bw(G), is the branch
width of κG.

Fig. 6. A branch decomposition of width 2 of the graph shown in Fig. 5

Example 24. Let G be the graph shown in Fig. 5. Figure 6 shows a branch decom-
position of G of width 2. Thus bw(G) ≤ 2. As G has a tangle of order 2 (see
Example 21), by the Duality Theorem we have bw(G) = 2. �

The branch width of a graph is closely related to the better-known tree width
tw(G): it is not difficult to prove that

bw(G) ≤ tw(G) + 1 ≤ max
{

3
2

bw(κG), 2
}

(Robertson and Seymour [21]). Both inequalities are tight. For example, a com-
plete graph K3n has branch width 2n and tree width 3n−1, and a path of length
3 has branch width 2 and tree width 1. There is also a related duality theorem
for tree width, due to Seymour and Thomas [23]: tw(G)+1 equals the maximum
order of bramble of G. (Recall the characterisation of tangles that we gave in
Theorem 7 and the definition of brambles right after the theorem.)

Acknowledgements. I thank Pascal Schweitzer and Konstantinos Stavropoulos for
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Abstract. In 1965 Hennie proved that one-tape deterministic Turing
machines working in linear time are equivalent to finite automata, namely
they characterize regular languages. This result has been improved in dif-
ferent directions, by obtaining optimal lower bounds for the time that
one-tape deterministic and nondeterministic Turing machines need to
recognize nonregular languages. On the other hand, in 1964 Kuroda
showed that one-tape Turing machines that are not allowed to use
any extra space, besides the part of the tape which initially contains
the input, namely linear bounded automata, recognize exactly context-
sensitive languages. In 1967 Hibbard proved that for each integer d ≥ 2,
one-tape Turing machines that are allowed to rewrite each tape cell
only in the first d visits are equivalent to pushdown automata. This
gives a characterization of the class of context-free languages in terms of
restricted Turing machines. We discuss these and other related models,
by presenting an overview of some fundamental results related to them.
Descriptional complexity aspects are also considered.

Keywords: Models of computation · Turing machines · Descriptional
complexity · Chomsky hierarchy · Context-free languages

1 Introduction

It is well-known that each class of the Chomsky hierarchy can be characterized
by a family of acceptors. Usually the following families are considered: unre-
stricted Turing machines for recursive enumerable languages (type 0), linear
bounded automata for context-sensitive languages (type 1), pushdown automata
for context-free languages (type 2), and finite automata for regular languages
(type 3). It can be observed that these families of devices do not define a hier-
archy of acceptors. In fact, according to the original definition by Myhill [20]
(see also [13]), linear bounded automata are two-way nondeterministic finite
automata extended with the capability of rewriting the tape content, while
pushdown automata are defined by adding to one-way nondeterministic finite
automata an extra storage, with a restricted access. Hence, pushdown automata
cannot seen as a special case of linear bounded automata.

However, using different acceptor characterizations for the classes of lan-
guages in the Chomsky hierarchy, we can obtain machine hierarchies. Let us
mention two possibilities.
c© Springer International Publishing Switzerland 2016
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First, we can consider machines with a read-only input tape and a separate
work-tape. Clearly, these devices have the computational power of unrestricted
Turing machines, namely they characterize type 0 languages. When restricted
to use a linear amount of space, they have the same power as linear bounded
automata, so characterizing context-sensitive languages. On the other hand, each
context-free language can be accepted by a pushdown automaton such that the
height of the pushdown store is bounded by the length of the input. Hence, type 2
languages are accepted by machines working in linear space with the additional
restrictions that the work-tape should be used as a stack, and that on the input
tape the head cannot be moved to the left, i.e., it is one-way. (Notice that
restricting the input tape of Turing machines and of Turing machines working
in linear space to be one-way, the classes of accepted languages remain type 0 and
type 1, respectively.) Since finite automata with a one-way input tape are clearly
a restriction of pushdown automata, this gives a hierarchy of Turing machines
corresponding to the Chomsky hierarchy.

Another characterization can be obtained in terms of restrictions of one-tape
Turing machines. It is well-known that, without any bound on the resources,
these devices still accept all recursive enumerable languages. If the space is
restricted to be linear then it is possible to accept all context-sensitive lan-
guages. If these machines can use only the tape cells which initially contain
the input, namely the space is limited by the input length, then we obtain lin-
ear bounded automata. Hence, under this further restriction, the corresponding
class of languages is still that of context-sensitive. On the other hand, if the
time is restricted to be linear and the transitions are deterministic, then these
machines recognize only regular languages, as proved in 1965 by Hennie [8],
namely they are equivalent to finite automata. A characterization of the class
of context-free languages in terms of one-tape Turing machines was obtained
by Hibbard in 1967, by introducing limited automata [9]. These devices are
defined by restricting the “active visits” to tape cells, namely the visits that can
rewrite cell contents. Fixed an integer d ≥ 0, a d-limited automaton is a linear
bounded automaton that can rewrite each tape cell only in the first d visits.
Hibbard proved that for each d ≥ 2, d-limited automata are equivalent to push-
down automata. Hence, considering one-tape Turing machines, linear bounded
automata, limited automata and finite automata, we have another hierarchy of
devices corresponding to the Chomsky hierarchy.

In this work we mainly focus on one-tape Turing machines operating with
restricted resources. In the first part we consider time bounds. As we already
mentioned, in his seminal paper Hennie proved that deterministic machines
required to be “fast”, namely to work in linear time, are no more powerful
than finite automata [8]. Several extensions of this result has been obtained, by
increasing the time bound and by considering nondeterministic computations.
We discuss some of them. The second part of the work is devoted to the presenta-
tion of limited automata and of other related models characterizing context-free
languages.
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As usual, we denote by Σ∗ the set of all strings over a finite alphabet Σ
and by |x| the length of a string x ∈ Σ∗. We assume that, besides a finite state
control, one-tape Turing machines are equipped with a semi-infinite tape. At the
beginning of the computation the input string is written on the tape starting
from the leftmost cell, while the remaining cells contain the blank symbol. At
each step of the computation, the machine writes a symbol on the currently
scanned cell of the tape (possibly changing its content), and moves its head to
the left, to the right, or keeps it stationary, according to the transition function.
Special states are designed as accepting and rejecting states. We assume that in
these states the computation stops.

2 Fast One-Tape Turing Machines

As mentioned in the Introduction, one-tape Turing machines which are fast
recognize only regular languages. In this section we will explain the meaning of
“fast” by presenting an overview of time requirements for nonregular language
recognition. For more details, and a more extended bibliography, we point the
reader to [22].

The notion of crossing sequence, introduced by Rabin and Scott to study the
behavior of two-way finite automata [28], turns out to be useful in the investi-
gation of one-tape Turing machines. Given a computation C of a machine M ,
the crossing sequence defined by C at a boundary b between two consecutive
tape cells is the sequence of the states of the finite control of M when in the
computation C the head crosses b.

For each computation C of a deterministic or nondeterministic one-tape Tur-
ing machine M , we consider the following resources:

– The time, denoted as t(C), is the number of moves in the computation C.
– The length of the crossing sequences, denoted as c(C), is the number of the

states in the longest crossing sequence used by C.

In the case of deterministic machines, on each input string there is only one
computation. So the measures t and c are trivially defined by taking into account
such computation. On the other hand, in the case of nondeterministic machines,
many different computations could be possible on a same string. This leads to
several measures. We now present and briefly discuss the ones considered in the
paper.

We say that machine M uses r(x) of a resource r ∈ {t, c} (time, length of
crossing sequences, resp.), on an input x if and only if

– strong measure:

r(x) = max{r(C) | C is a computation on x}
– accept measure:

r(x) =
{

max{r(C) | C is an accepting computation on x} if x ∈ L
0 otherwise
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– weak measure:

r(x) =
{

min{r(C) | C is an accepting computation on x} if x ∈ L
0 otherwise

The weak measure corresponds to an optimistic view related to the idea
of nondeterminism: a nondeterministic machine, besides choosing an accepting
computation, if any, is able to choose that of minimal cost. On the opposite side,
the strong measure keeps into account the costs of all possible computations.
Between these two measures, the accept measure keeps into account the costs of
all accepting computations. (For technical reasons, for inputs which are not in
the language it is suitable to set the accept and the weak measure to 0). These
notions have been proved to be different, for example in the context of space
bounded computations [17].

As usual, we will mainly measure complexities with respect to input lengths.
This is done by considering the worst case among all possible inputs of the same
length. Hence, under the strong, accept, and weak measures, for r ∈ {t, c}, we
define

r(n) = max{r(x) | x ∈ Σ∗, |x| = n}.

When an input string w is accepted by a Turing machine M without reading
all its content, namely without reaching its right end, then any string having w
as a prefix should be also accepted by the same machine. Refining this simple
observation, it is not difficult to prove that each Turing machine working in
sublinear time accepts a regular language. Actually, a Turing machine working
in sublinear time works in constant time, namely it inspects only input prefixes of
length bounded by a constant. This simple result holds also for nondeterministic
machines under the weak time measure (for a proof see [22]). What happens
when the time is linear?

As mentioned in the introduction, for deterministic one-tape machines the
language is still regular, as proved by Hennie [8]. This result was independently
improved by Hartmanis and Trakhtenbrot, by increasing the time. In fact, they
showed that in order to recognize a nonregular language, the running time
of a deterministic one-tape machine should grow at least as n log n. Further-
more, the bound is optimal, namely there are nonregular languages accepted in
time O(n log n) [7,32].

The situation for nondeterministic one-tape machines is more complicated.
First of all, the previous lower bound has been extended by Tadaki, Yamakami
and Lin, in the case the time is measured by considering all possible computa-
tions, namely under the strong measure [31]. However, if the time is measured
in an “optimistic” way, that is by taking into account, for each accepted input,
only the shortest accepting computation (weak measure) then the same lower
bound does not hold. Indeed, under the weak measure even in linear time it is
possible to recognize nonregular languages. This is a corollary of a result proved
by Michel, stating the existence of an NP-complete language accepted by a non-
deterministic machine in linear time under the weak measure [18]. The bound
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Table 1. Lower bounds on t(n) and c(n) for nonregular language recognition. Each cell
of the table contains in the first line the lower bound on t(n) and in the second line that
on c(n) for machines indicated at the left of the row, under the measure indicated at the
top of the column. The bounds for deterministic machines under the strong measure
have been proved by Trakhtenbrot [32] and Hartmanis [7]. (A different proof of this
result was obtained by Kobayashi [12].) Hennie [8] proved the same lower bound for
c(n) and a smaller lower bound for the time. The bounds for nondeterministic machines
under the strong measure have been proved by Tadaki, Yamakami, and Lin [31] and
extended to the accept measure in [22]. This also gives, as special cases, the bounds
for deterministic machines under the accept and weak measures (since on each input a
deterministic machine can have at most one accepting computation, for deterministic
machines these two cases are the same). Finally, for nondeterministic machines in the
weak case the lower bound for t(n) is “folklore”, while that for c(n) is from [22]

strong accept weak

One-tape n logn n logn n log n

deterministic logn log n logn

One-tape n logn n logn n

nondeterministic logn log n log log n

for the strong measure has been extended to the intermediate case of the accept
measure in [22].

Together with the above mentioned lower bounds for the time necessary to
recognize nonregular languages, lower bounds for the maximal length of crossing
sequences (measure c(n)) have been also discovered. These bounds are summa-
rized in Table 1.

We briefly discuss the optimality of these lower bounds. As observed in [7],
the set of powers 2 written in unary notation can be accepted by a one-tape
deterministic machine M which works as follows. Suppose that at the beginning
of the computation the tape contains the input an. The head completely scans
the tape from left to right by rewriting each second a with a fixed symbol X from
the working alphabet. If n is odd then M rejects. Otherwise, M starts a sweep of
the tape from right to left again rewriting with X each second a left on the tape.
If the number of as, namely n/2, was odd, then M rejects, otherwise it iterates
the same process, with another sweep of the tape and so on. M accepts the input
when only one a is left on the tape. Since after the kth sweep the number of as
left on the tape is a/2k, if n is a power of 2 this happens after log n sweeps of
the input. Hence, the length of the crossing sequences of M is logarithmic with
respect to the length of the input and the time is O(n log n).

This proves the optimality of all the bounds in the table, with the only excep-
tion of those for nondeterministic machines under the weak measure, for which
the optimality for t(n) follows from the above mentioned result by Michel [18],
while the optimality for c(n) has been proved in [22]. The optimality has been
proved using unary witnesses, i.e., defined over a one-letter alphabet, with the
only exception of the lower bound for t(n) in the nondeterministic case under the



Restricted Turing Machines and Language Recognition 47

weak measure, for which the witness given in [18] has been obtained by a padding
technique which relies on the use of an input alphabet with more than one sym-
bol. The existence of a unary witness for this case is an open problem. We know
the existence of a nonregular unary language accepted in time O(n log log n) by a
one-tape nondeterministic machine under the weak measure [22]. We conjecture
that each unary language accepted within a smaller amount of time should be
regular. This would imply that the time lower bound in the unary case is higher
than in the general case.

We conclude this section by shortly mentioning some recent results in this
area. First of all, Pr̊uša investigated some aspects of Hennie machines. These
devices are linear bound automata visiting each tape cell a number of times
bounded by a constant [27]. Pr̊uša proved that it is undecidable whether or not
a Turing machine is a Hennie machine. For a constructive variant of Hennie
machines, where each symbol written in a tape cell keeps track of the number of
visits already spent in the cell, he studied the cost, in terms of description sizes,
of the simulation by several variants of finite automata. Gajser proved that for
all “reasonable” functions T (n) = o(n log n) it is possible to decide whether of
not a given one-tape Turing machine works in time at most T (n) [4].

3 One-Tape Turing Machines with Rewriting Restrictions

In this part of the paper we consider one-tape Turing machines that can use only
the portion of the tape initially containing the input, namely linear bounded
automata, and are subject to some further restrictions. The restrictions we are
going to consider are mainly related to the use of transitions rewriting the content
of tape cells. Notice that, without any restrictions on rewritings, these machines
characterize context-sensitive languages. On the other hand, if rewritings are
completely forbidden, we obtain two-way finite automata that, as well-known,
recognize only regular languages. A more extended overview can be found in [23].

Limited Automata

Let us start by considering limited automata, introduced by Hibbard in 1967 [9].
Given an integer d ≥ 0, a d-limited automaton is allowed to rewrite the content
of each tape cell only during the first d visits, after that the content of a cell
is “frozen”.1 A few technical details are useful for the next discussion. At the
beginning of the computation the input is stored onto the tape surrounded by
the two special symbols � and �, called the left and the right end-marker,
respectively, the head of the automaton is on the cell containing the first input
symbol, and the finite control contains, as usual, the initial state. At each step
the head can be moved to the left or to the right. However it cannot violate the

1 For technical reasons actually we count the scans from left to right and from right
to left on each cell. Hence, each transition reversing the head direction is counted as
a double visit.
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end-markers, except at the end of computation, where the machine can accept
the input by moving the head to the right from the cell containing the right
end-marker while entering a final state.

Hibbard proved that for each integer d ≥ 2, d-limited automata recognize
exactly the class of context-free languages. 0-limited automata are two-way finite
automata, hence they characterize regular languages. Furthermore, also 1-limited
automata characterize regular languages. The situation is summarized in the
following theorem, where the deterministic versions of these devices are also
mentioned:

Theorem 1. (i) For each d ≥ 2, the class of languages accepted by d-limited
automata coincides with the class of context-free languages [9].

(ii) The class of languages accepted by deterministic 2-limited automata coin-
cides with the class of deterministic context-free languages [26].

(iii) For each d ≥ 2, there exists a language which is accepted by a deterministic
d-limited automaton, which cannot be accepted by any deterministic (d−1)-
limited automaton [9].

(iv) The class of languages accepted by 1-limited automata coincides with the
class of regular languages [33].

We now present two examples.

Example 2. For each integer k ≥ 1, we denote by Ωk the alphabet of k types
of brackets, which will be represented as { ( 1, ) 1, ( 2, ) 2, . . . , (k, )k}. The Dyck
language Dk over the alphabet Ωk is the set of strings representing well balanced
sequences of brackets. We will refer to the ( i symbols as “open brackets” and
the ) i symbols as “closed brackets”, i.e. opening and closing brackets.

The Dyck language Dk can be recognized by a 2-limited automaton AD which
starts having the input on its tape, surrounded by two end-markers � and �,
with the head on the first input symbol. From this configuration, AD moves
to the right to find a closed bracket ) i, 1 ≤ i ≤ k. Then AD replaces ) i with
a symbol X /∈ Ωk and changes the head direction, moving to the left. In a
similar way, it stops when during this scan it meets for the first time a left
bracket ( j . If i �= j, i.e., the two brackets are not of the same type, then AD

rejects. Otherwise, AD writes X on the cell and changes again the head direction
moving to the right. This procedure is repeated until the head of AD reaches
one of the end-markers.

– If the left end-marker is reached, then it means that at least one of the right
brackets in the input does not have a matching left bracket. Hence, AD rejects.

– If instead the right end-marker is reached, then AD has to make sure that
every left bracket has a matching right one. In order to do this, it scans the
entire tape from the right to the left and if it finds a left bracket not marked
with X then AD rejects. On the other hand, if AD reaches the left end-marker
reading only Xs, then it can accept the input. ��
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Example 3. For each integer n, let us denote by Kn the set of all strings over
the alphabet {0, 1} consisting of the concatenation of blocks of length n, such
that at least n blocks are equal to the last one. Formally:

Kn = {x1x2 · · · xkx | k ≥ 0, x1, x2, . . . , xk, x ∈ {0, 1}n,

∃i1 < i2 < · · · < in ∈ {1, . . . , k}, xi1 = xi2 = . . . = xin = x} .

We now describe a 2-limited automaton M accepting Kn. Notice that the para-
meter n is fixed. Suppose M receives an input string w of length N .

1. First, M scans the input tape from left to right, to reach the right end-marker.
2. M moves its head n + 1 positions to the left, namely to the cell i = N − n,

the one immediately to the left of the input suffix x of length n.
3. Starting from this position i, M counts how many blocks of length n coincide

with x. This is done as follows.
When M , arriving from the right, visits a position i ≤ N − n for the first
time, it replaces the content a by a special symbol X, after copying a in the
finite control. Hence, M starts to move to the right, in order to compare the
symbol removed from the cell with the corresponding symbol in the block x.
While moving to the right, M counts modulo n and stops when the counter
is 0 and a cell containing a symbol other than X is reached. The symbol of x
in this cell has to be compared with a. Then, M moves to the left until it
reaches cell i−1, namely the first cell which does not contain X, immediately
to the left of cells containing X.
We observe that the end of a block is reached each time a symbol a copied
from the tape is compared with the leftmost symbol of x, which lies imme-
diately to the right of a cell containing X. If in the block just inspected no
mismatches have been discovered then the counter of blocks matching with x
is incremented (unless its value was already n).

4. When the left end-marker is reached, M accepts if and only if the input length
is a multiple of n and the value of the counter of blocks matching with x is n.

We can easily observe that the above strategy can modify tape cells only in
the first two visits. Hence, it can be implemented by a deterministic 2-limited
automaton. Such an automaton uses O(n2) states and a constant size alphabet.

Actually, using nondeterminism, it is possible to recognize the language Kn

using O(n) states and modifying tape cells only in the first visit, namely Kn

is accepted by a nondeterministic 1-limited automaton M (see [23] and, for a
slightly different example, [25]). ��
The argument used by Hibbard to prove Theorem 1(i) is very difficult. He pro-
vided some constructions to transform a kind of rewriting system, equivalent
to pushdown automata, to 2-limited automata and vice versa, together with
reductions from (d + 1)-limited automata to d-limited automata, for d ≥ 2 [9].

A different construction of 2-limited automata from context-free languages,
based on the Chomsky-Schützenberger representation theorem for context-free
languages [3], has been obtained in [25]. We remind the reader that this theorem
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Fig. 1. A machine accepting L = h(Dk ∩ R)

states that each context-free language can be obtained by selecting in a Dyck
language Dk, with k kinds of brackets, only the strings belonging to a regular
language R, and then renaming the symbols in the remaining strings according
to a homomorphism L. More precisely, every context-free language L ⊆ Σ∗ can
be expressed as L = h(Dk ∩ R), where Dk ⊆ Ω∗

k , k ≥ 1, is a Dyck language,
R ⊆ Ω∗

k is a regular language, and h : Ωk → Σ∗ is a homomorphism.
Given L ⊆ Σ∗ context-free, we can consider the following machines:

– A nondeterministic transducer T computing h−1.
– The 2-limited automaton AD described in Example 2 recognizing the Dyck

language Dk.
– A finite automaton AR accepting the regular language R.

To decide if a string w ∈ Σ∗, we can suitably combine these machines as in
Fig. 1, in such a way that the resulting machine is a 2-limited automaton.

The results in Theorem 1 have been revisited by also taking into account the
size of the descriptions. Concerning the case d ≥ 2, we have the following results:

Theorem 4. (i) Each n-state d-limited automaton can be simulated by a push-
down automaton of size exponential in a polynomial in n.

(ii) The previous upper bound becomes a double exponential when a determinis-
tic 2-limited automaton is simulated by a deterministic pushdown automa-
ton, however it remains a single exponential if the input of the deterministic
pushdown automaton is given with a symbol to mark the right end.

(iii) Each pushdown automaton M can be simulated by a 2-limited automaton
whose size is polynomial with respect to the size of M .

(iv) The previous upper bound remains polynomial when a deterministic push-
down automaton is simulated by a deterministic 2-limited automaton.

Statements (ii), (iii), (iv) have been proved in [26], with statement (i) for the
case d = 2. The proof has been recently extended to d > 2 in [14].
The exponential gap for the conversion of 2-limited automata into equivalent
pushdown automata cannot be reduced. In fact, the language Kn presented in
Example 3 is accepted by a (deterministic) 2-limited automaton with O(n2)
states and a constant size alphabet, while the size of each pushdown automa-
ton accepting it must be at least exponential in n [26]. This also implies that
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the simulation of deterministic 2-limited automata by deterministic pushdown
automata is exponential in size. Actually, we conjecture that this simulation costs
a double exponential, namely it matches the upper bound in Theorem 4(ii).

For 1-limited automata we have the following costs:

Theorem 5 ([25]). Each n-state 1-limited automaton M can be simulated by a
nondeterministic automaton with n ·2n2

states and by a deterministic automaton
with 2n·2n2

states. Furthermore, if M is deterministic then an equivalent one-
way deterministic finite automaton with no more than n · (n + 1)n states can be
obtained.

The doubly exponential upper bound for the conversion of nondeterministic
1-limited automata into deterministic automata is related to a double role of
nondeterminism in 1-limited automata. When a 1-limited automaton visits one
cell after the first rewriting, the possible nondeterministic transitions depend on
the symbol that has been written in the cell in the first visit, which, in turns,
depends on the nondeterministic choice taken in the first visit. This double
exponential cannot be avoided. In fact, as already observed, the language Kn

of Example 3 is accepted by a nondeterministic 1-limited automaton with O(n)
states while, using standard distinguishability arguments, it can be shown that
each deterministic automaton accepting it requires a number of states doubly
exponential in n. As noticed in [25], even the simulation of deterministic 1-limited
automata by two-way nondeterministic automata is exponential in size.

We conclude this section by briefly mentioning the case of unary languages.
It is well-known that in this case each context-free language is regular [6]. Hence,
for each d ≥ 0, d-limited automata with a one letter input alphabet recognize
only regular languages. In [25], a result comparing the size of unary 1-limited
automata with the size of equivalent two-way nondeterministic finite automata
has been obtained. Recently, Kutrib and Wendlandt proved state lower bounds
for the simulation of unary d-limited automata by different variants of finite
automata [15].

Strongly Limited Automata

We observed that, using the Chomsky-Schützenberger representation theorem
for context-free languages, given a context-free language it is possible to con-
struct a 2-limited automaton accepting it. The main component of such automa-
ton is the 2-limited automaton AD accepting the Dyck language Dk (Example 2).
Actually, AD does not use all the capabilities of 2-limited automata. For instance,
it does not need to rewrite each tape cell two times, but only while moving from
right to left during the second visit. So, we can ask if it is possible to further
restrict the moves of 2-limited automata, without reducing the computational
power.

In [24] we gave a positive answer to this question, by introducing strongly
limited automata, a restriction of limited automata which closely imitates the



52 G. Pighizzini

moves that are used by the 2-limited automaton AD in Example 2. In particular,
these machines satisfy the following restrictions:

– While moving to the right, a strongly limited automaton always uses the
same state q0 until the content of a cell (which has not been yet rewritten) is
modified. Then it changes its internal state and starts to move to the left.

– While moving to the left, the automaton, without changing its state, rewrites
each cell it meets that is not yet rewritten up to some position where it
re-enters the state q0 and starts again to move to the right.

– In the final phase of the computation, the automaton inspects all tape cells,
to check whether or not the final content belongs to a given 2-strictly locally
testable language. Roughly, this means that all the factors of two letters of
the string which is finally written on the tape (including the end-markers)
should belong to a given set.

We already mentioned that strongly limited automata have the same compu-
tational power as limited automata, namely they characterize context-free lan-
guages. This equivalence has been studied also considering descriptional com-
plexity aspects:

Theorem 6 ([24]).

(i) Each context-free language L is accepted by a strongly limited automaton
whose description has a size which is polynomial with respect to the size of a
given context-free grammar generating L or of a given pushdown automaton
accepting L.

(ii) Each strongly limited automaton M can be simulated by a pushdown automa-
ton of size polynomial with respect the size of M.

Example 7 The deterministic context-free language {anb2n | n ≥ 0} is accepted
by a strongly limited automaton which guesses each second b. While moving
from left to right and reading b, the automaton makes a nondeterministic choice
between further moving to the right or rewriting the cell by X and turning to the
left. Furthermore, while moving to the left, the content of each cell containing b
which is visited is rewritten by Y, still moving to the left, and when a cell
containing a is visited, its content is replaced by Z, turning to the right. In the
final scan the machine accepts if and only if the string on the tape belongs to
�Z∗(YX)∗�.

We can modify the above algorithm to recognize the language {anbn | n ≥
0}∪{anb2n | n ≥ 0}. While moving from left to right, when the head reaches a cell
containing b three actions are possible: either the automaton continues to move
to the right, without any rewriting, or it rewrites the cell by X, turning to the
left, or it rewrites the cell by W, also turning to the left. While moving from right
to left, the automaton behaves as the one above described for {anb2n | n ≥ 0}.
The input is accepted if and only if the string which is finally on the tape belongs
to �Z∗W∗� + �Z∗(YX)∗�. ��
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Concerning deterministic computations, it is not difficult to observe that
deterministic strongly limited automata cannot recognize all deterministic
context-free languages. Consider, for instance, the deterministic language L =
{canbn | n ≥ 0} ∪ {da2nbn | n ≥ 0}. While moving from left to right, a strongly
limited automaton can use only the state q0. Hence, it cannot remember if the
first symbol of the input is a c or a d and, then, if it has to check whether
the number of as is equal to the number of bs or whether the number of as is
two times the number of bs. A formal proof that the language L, and also the
language {anb2n | n ≥ 0} (Example 7), are not accepted by any deterministic
strongly limited automaton is presented in [24]. In that paper it was also pro-
posed to slightly relax the definition of strongly limited automata, by allowing
state changes while moving to the left and to the right, but still forbidding them
on rewritten cells and by keeping all the other restrictions. This model, called
almost strongly limited automata, still characterizes the context-free languages.
Furthermore, the two above mentioned deterministic context-free languages can
be easily recognized by almost strongly limited automata having only determin-
istic transitions.

It would be interesting to know if almost strongly limited automata are able
to accept all deterministic context-free languages without taking nondetermin-
istic decisions.

Forgetting Automata Deleting Automata

In 1996 Jancar, Mráz, and Plátek introduced forgetting automata [11]. These
devices can erase tape cells by rewriting their contents with a special symbol.
However, rewritten cells are kept on the tape and are still considered during the
computation. For instance, the state can be changed while visiting an erased cell.
In a variant of forgetting automata that characterizes context-free languages,
when a cell which contains an input symbol is visited while moving to the left,
its content is rewritten, while no changes can be done while moving to the right.
This way of operating is very close to that of strongly limited automata. However,
in strongly limited automata the rewriting alphabet can contain more than one
symbol. Furthermore, rewritten cells are completely ignored (namely, the head
direction and the state cannot be changed while visiting them) except in the
final scan of the tape from the right to the left end-marker. So the two models
are different. For example, to recognize the set of palindromes, a strongly limited
automaton needs a working alphabet of at least 3 symbols while, by definition,
to rewrite tape cells forgetting automata use only one symbol [24].

If erased cells are removed from the tape of a forgetting automaton, we
obtain another computational model called deleting automata. This model is
less powerful. In fact it is not able to recognize all context-free languages [11].
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Wechsung’s Model, Return Complexity, Dual Return
Complexity

In 1975 Wechsung considered another variant of one-tape Turing machines which
is defined, as limited automata, by restricting active visits: for any fixed d, each
tape cell can be rewritten only in the last d visits [34]. It should be clear that
for d = 1 only regular languages can be accepted (each cell, after the first
rewriting, will be never visited again, hence the rewriting is useless). However, for
each fixed d ≥ 2, these models still characterize context-free languages. Even in
this case, there exists a hierarchy of deterministic languages (cf. Theorem 1(iii) in
the case of limited automata). However, this hierarchy is not comparable with the
class of deterministic context-free languages. For instance, it can be easily seen
that the set of palindromes, which is not a deterministic context-free language,
can be recognized with d = 2, by using only deterministic transitions. However,
there are deterministic context-free languages that cannot be recognized by any
deterministic machine of this kind, for any integer d [21].

The maximum number of visits to a tape cell, counted starting from the first
visit which modifies the cell content, is also called return complexity [34,35].
Notice that this measure is dual with respect to the one considered to define lim-
ited automata. The maximum number of visits to a cell up to the last rewriting,
namely the measure used to define limited automata, is sometimes called dual
return complexity [33].

4 Final Remarks

We discussed restricted versions of one-tape Turing machines. It is suitable to
remind the reader that many interesting results have been also obtained for
Turing machines having a read-only input tape and one or several work-tapes,
mainly considering the amount of work space used in the computations.

It is well-known that if the space is restricted to be linear then these models
characterize context-sensitive languages, while if the space is constant then they
are equivalent to finite automata. In their pioneering papers, Hartmanis, Stearns,
and Lewis investigated the minimal amount of work space that deterministic
Turing machines need to recognize nonregular languages [16,29]. They proved
that if the input tape is one-way, then a logarithmic amount of space is necessary.

In the case of two-way machines, the lower bound reduces to a function grow-
ing as log log n. These results have been generalized to nondeterministic machines
by Hopcroft and Ullman under the strong space measure, namely by taking
into account all computations [10]. The optimal space lower bound for nonregu-
lar acceptance on one-way nondeterministic machines reduces to log log n, if on
each accepted input the computation using minimum space is considered (weak
space), as proved by Alberts [1]. In [2], the number of reversals of the head on
the input tape has been studied, obtaining a lower bound for the product of
the space by the number of reversals for nonregular language recognition. For a
survey on these lower bounds we point the reader to [17].
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Many interesting results concerning machine working in “low” space have
been proved in the literature. For surveys, see, e.g., the monograph by Szepi-
etowski [30] and the papers by Michel [19] and Geffert [5].
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Abstract. We present three reasoning problems for description logic
ontologies and discuss how automata theory can be used to analyze them.

In computer science, ontologies are used to provide a vocabulary for a domain
of interest and define the logical relationships that hold between the vocabulary
items. Ontologies are employed in many areas. For example, they provide vocab-
ularies for structured data markup on web pages (an example is the Schema.org
ontology initiated by Google, Microsoft, Yahoo, and Yandex), they provide large
scale terminologies in the life sciences and in healthcare (an example is SNOMED
CT, the Systematized Nomenclature of Medicine, which is a comprehensive clin-
ical terminology used in many international and national healthcare systems),
and they provide conceptual models that can be used to access incomplete and
distributed data in large-scale data integration projects.

The majority of ontologies in computing are given in description logics, a
family of fragments of first-order predicate logic developed in Artificial Intelli-
gence in which typical reasoning tasks are, in contrast to full first-order predicate
logic, decidable and efficiently implementable.

In this talk I present three important reasoning tasks in description logic
which can partly be analyzed using tools from automata theory. The tasks are:

– deciding the existence of uniform interpolants of description logic ontologies
for a given signature of vocabulary items;

– deciding query emptiness and containment of ontology-mediated queries for
databases over a given signature of vocabulary items;

– deciding the rewritability of ontology-mediated queries into equivalent first-
order predicate logic queries (equivalently, SQL queries) over a given signature
of vocabulary items.

In what follows we discuss these three reasoning tasks in more detail. Note that
there are many more examples of applications of automata theory in description
logic research which we cannot discuss in detail [1,4,5,9,11,12].

An ontology O in a description logic L is a finite set of axioms given in the
fragment of first-order logic corresponding to L. Ontologies can be very large.
For example, the ontology SNOMED CT mentioned above has more than 300
000 axioms. In many applications of such a large ontology O only a small set S
of predicate symbols from O is relevant. In this case, instead of working with O
itself, one would like to work with a uniform interpolant of O w.r.t. S ; i.e., a
set of axioms OS in L such that
c© Springer International Publishing Switzerland 2016
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– O |= OS ;
– the set of all predicate symbols in OS is included in S;
– for any sentence ϕ in L not using any predicate symbols from O that do not

occur in S: if O |= ϕ, then OS |= ϕ.

Intuitively, it is often more appropriate to use a uniform interpolant OS

rather than the original ontology O since OS only uses predicate symbols that
are relevant for the application but still has the same relevant consequences as
O. Unfortunately, for many description logics L (and for first-order predicate
logic itself), uniform interpolants do not always exist. It is, therefore, an inter-
esting problem to decide for which input ontology O and signature S a uniform
interpolant of O w.r.t. S exists in a description logic L. For the fundamental
description logic ALC, for example, one can provide a model-theoretic charac-
terization of the existence of uniform interpolants based on bisimulations and
then use an exponential encoding in alternating parity tree automata, results on
the closure properties of languages recognized by such automata, and the fact
that emptiness can be decided in exponential time [15], to obtain an algorithm
deciding the existence of uniform interpolants in 2ExpTime (which is optimal)
[14]. The encoding in tree automata can also be used to represent a uniform
interpolant even if it does not exist in ALC. For the weaker description logic EL
(which underpins large-scale ontologies such as SNOMED CT), one can charac-
terize the existence of uniform interpolants using a weaker notion of simulation
and then provide an appropriate encoding in a modified version of tree automata
to obtain an algorithm deciding the existence of uniform interpolants in ExpTime
(which is again optimal) [13].

In many applications, ontologies are used to query incomplete data. In what
follows we assume that a database D is a finite set of ground sentences of the form
P (c1, . . . , cn), where P is a predicate symbol of arity n and c1, . . . , cn are individ-
ual constants. We also assume that our database queries are conjunctive queries;
i.e., first-order formulas ϕ constructed from atomic formulas P (x1, . . . , xn) using
conjunction and existential quantification. Given an ontology O and a conjunc-
tive query q(x ), the (certain) answer to O and q(x ) in D is the set of all tuples
c in D of the same length as x such that

O ∪ D |= q(c).

The pair (O, q(x )) is often called an ontology-mediated query and can be regarded
as a database query for which a tuple c is an answer over data D if O∪D |= q(c).
As answering ontology-mediated queries is the main algorithmic problem when
ontologies are used to access data, it is of interest to investigate the following two
fundamental properties of ontology-mediated queries (well known from database
research). An ontology-mediated query (O, q(x )) is empty w.r.t. signature S if
O∪D �|= q(c) for any database D over S and any tuple c of individual constants
in D. For ontology-mediated queries (O1, q1(x )) and (O2, q2(x )), we say that
(O1, q1(x )) is contained in (O2, q2(x )) w.r.t. signature S, if

O1 ∪ D |= q(c) ⇒ O2 ∪ D |= q(c)
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holds for all databases D over S and all tuples c. Both the emptiness problem
and the containment problem can be characterized model-theoretically. For the
important class of horn description logics one can prove that it is sufficient
to consider tree-shaped databases when deciding emptiness and containment.
In this case the computational complexity of both problems can therefore be
analyzed using non-deterministic bottom-up automata on finite ranked trees
[2,3,7].

In general, answering ontology-mediated queries is computationally much
harder than standard relational query answering [6,10]. In fact, even for rather
weak description logics this problem can be non-tractable in data complexity.
On the other hand, the most popular technique for answering ontology-mediated
queries is by reduction to query answering for relational databases. Thus, one
is interested in the following notion of rewritability which ensures that queries
can be answered using relational database management systems: an ontology-
mediated query (O, q(x )) is first-order rewritable w.r.t. signature S if there exists
a first-order formula ϕ(x ) such that for any database D over S:

O ∪ D |= q(c) ⇔ D |= ϕ(c),

where on the right hand of this equivalence we identify D with the relational
structure given by the ground atoms in D. As query answering can be harder
(in data complexity) for ontology-mediated queries than for standard relational
queries, sometimes no first-order rewriting exists. It is thus of fundamental
importance for ontology-based data access to decide whether a given ontology-
mediated query is first-order rewritable. Again, for horn description logics
the existence of first-order rewritings can be characterized using tree-shaped
databases only which enables the use of tools from automata theory to prove
ExpTime upper bounds for the computational complexity of this problem [8].
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Abstract. We introduce an extension to Description Logics that allows
us to use prototypes to define concepts. To accomplish this, we introduce
the notion of prototype distance functions (pdfs), which assign to each
element of an interpretation a distance value. Based on this, we define
a new concept constructor of the form P∼n(d) for ∼ ∈ {<, ≤, >, ≥},
which is interpreted as the set of all elements with a distance ∼ n
according to the pdf d. We show how weighted alternating parity tree
automata (wapta) over the non-negative integers can be used to define
pdfs, and how this allows us to use both concepts and pointed interpreta-
tions as prototypes. Finally, we investigate the complexity of reasoning
in ALCP(wapta), which extends the Description Logic ALC with the
constructors P∼n(d) for pdfs defined using wapta.

1 Introduction

Description Logics (DLs) [3] can be used to formalize the important notions
of an application domain as concepts, by formulating necessary and sufficient
conditions for an individual to belong to the concept. Basically, such conditions
can be (Boolean combinations of) atomic properties required for the individ-
ual (expressed by concept names) and properties that refer to relationships with
other individuals and their properties (expressed as role restrictions). The expres-
sivity of a particular DL depends on what kind of properties can be required
and how they can be combined. Given an interpretation of the atomic enti-
ties (concept and role names), the semantics of a DL determines, for each con-
cept expressed in this DL, its extension, i.e., the set of individuals satisfying
all the conditions stated in the definition of the concept. Knowledge about the
application domain is then represented by stating subconcept-superconcept rela-
tionships between concepts within a terminology (TBox). Given such a TBox,
reasoning procedures can be used to derive implicit knowledge from the explic-
itly represented knowledge. For example, the satisfiability tests checks whether a
given concept is non-contradictory w.r.t. the knowledge represented in the TBox.

In many applications, it is quite hard to give exact definitions of certain
concepts. In fact, cognitive psychologists [9] argue that humans recognize cate-
gories by prototypes rather than concepts. For example, assume that we want to
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define the concept of a human from an anatomical point of view. One would be
tempted to require two arms and two legs, five fingers on each hand, a heart on
the left side, etc. However, none of these conditions are necessarily satisfied by
an individual human being, though most of them should probably be satisfied to
be categorized as human being. Thus, an anatomical description talking about
arms and legs etc. describes a prototypical human being rather than necessary
and sufficient conditions for being human. As an other example, taken from [8],
consider the notion of a cup: we can say that cups are small, cylindrical, concave
containers with handles, whose top side is open; they can hold liquids and are
used for drinking; and they are made of plastic or porcelain. But again, this
describes a prototypical cup rather than stating necessary and sufficient condi-
tions for being a cup: square metal cups are easily imaginable, measuring cups
are not used for drinking and may hold non-liquids such as flour, while sippy
cups for toddlers are not open on the top. One could, of course, try to capture all
such exceptional cups by using a big disjunction of (exactly defined) concepts,
but this would obviously be rather clumsy and with high likelihood one would
overlook some exceptions.

In order to be used within a formal knowledge representation language with
automated reasoning capabilities, prototypes need to be equipped with a formal
semantics. To obtain such a semantics, we use the ideas underlying Gärdenfors’
conceptual spaces [6], where categories are explained in terms of convex regions,
which are defined using the distance from a focal point. To obtain a concrete
representation language, we need to define what are focal points and how to
define the distance of an individual to such a focal point. Instead of employing
prototypical individuals or concepts as focal points, we take a more abstract
approach based on automata, which is inspired by the automata-approach for
reasoning in DLs (see Sect. 3.2 in [1] for a gentle introduction). Basically, in
this approach, a given concept C and a TBox T are translated into a tree
automaton AC,T that accepts all the tree-shaped models of T whose root belongs
to C. Testing satisfiability of C w.r.t. T then boils down to the emptiness test
for AC,T , i.e., checking whether there is a tree accepted by AC,T . Instead of
using a classical automaton that returns 1 (accepted) or 0 (not accepted) for
an input tree, we propose to use a weighted automaton [5]. Intuitively, this
automaton receives as input a tree-shaped interpretation and returns as output
a non-negative integer, which we interpret as the distance of the individual at the
root of the tree to the prototype (focal point) described by the automaton. This
approach can be applied to non-tree-shaped models by the usual unraveling
operation. In order to integrate such prototypes into a Description Logic, we
propose to use thresholds to derive concepts from prototypes. More precisely,
the threshold concept P∼n(A) for ∼ ∈ {<,≤, >,≥} is interpreted as the set of
all elements with a distance ∼ n according to the weighted automaton A. The
concepts obtained this way can then be used like atomic concepts within a DL.

It might appear to be more intuitive to use concepts or individuals rather
than automata to describe prototypes. However, in these alternative settings,
one then needs to give formal definitions of the distance between two individuals



Reasoning with Prototypes in the DescriptionLogic ALC 65

or between an individual and a concept, whereas in our approach this comes for
free by the definition of the semantics of weighted automata. We show that these
alternative settings can actually be seen as instances of our weighted automata
approach.

In this paper, we investigate the extension ALCP(wapta) of the DL ALC
by threshold concepts defined using weighted alternating parity tree automata.
In order to obtain inference procedures for the extended DL, the weighted
automata are turned into automata that accept the cut-point language con-
sisting of the trees whose distance (computed by the weighted automaton) is
below a given threshold. In fact, this cut-point construction yields languages
accepted by unweighted alternating parity tree automata, for which the empti-
ness problem is decidable. This allows us to extend the automata-approach for
reasoning in ALC to ALCP(wapta).

Regarding related work, non-monotonic logics are sometimes also used to
formalize prototypes. However, there one usually tries to maximize typicality, i.e.
one assumes that an individual stated to belong to a prototype concept has all
the properties of the prototype, unless one is forced by other knowledge to retract
this assumption. In contrast, our new logic is monotonic and we only conclude
that an individual belongs to a threshold concept P∼n(d) if this follows from
the available knowledge. The work that comes closest to this paper is [2], where
concepts of the lightweight DL EL are used to describe prototypes. To be more
precise, the paper introduces a graded membership function, which for a given
EL-concept C and an individual d of an interpretation returns a membership
degree in the interval [0, 1]. This is then used as “distance” to define threshold
concepts and an extension of EL by such concepts basically in the same way
as sketched above. The difference to the present work is, on the one hand, that
prototypes are given by concepts rather than weighted automata and that the
interval [0, 1] is used in place of the non-negative integers. On the other hand,
we consider a more expressive DL (ALC rather than EL), and we can reason
w.r.t. general TBoxes in the extended language, whereas the results in [2] are
restricted to reasoning without a TBox.

2 Preliminaries

The Description Logic ALC. ALC-concepts are built from two disjoint sets
NC of concept names and NR of role names using concept constructors. Every
concept name is a basic ALC-concept. Furthermore, one can construct com-
plex ALC-concepts using conjunction, disjunction, negation, and existential and
universal restrictions as shown in Table 1. As usual, we use � as abbreviation
for the concept A � ¬A, where A is an arbitrary concept name. The semantics
of ALC-concepts is defined using interpretations I consisting of a non-empty
interpretation domain ΔI and an interpretation function ·I , which assigns to
all concept names A ∈ NC a subset AI ⊆ ΔI , and to all role names r ∈ NR

a binary relation rI ⊆ ΔI × ΔI on the domain. The interpretation function is
extended to complex concepts as shown in the last column of Table 1. Note that
� is interpreted as ΔI .
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Table 1. Concept constructors for ALC.

Constructor Syntax Semantics

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

negation ¬C ΔI \ CI

existential restriction ∃r.C {d ∈ ΔI | ∃e.(d, e) ∈ rI ∧ e ∈ CI}
universal restriction ∀r.C {d ∈ ΔI | ∀e.(d, e) ∈ rI ⇒ e ∈ CI}

Terminological knowledge can be expressed using general concept inclusions
(GCIs) of the form C 	 D, where C and D are ALC-concepts. A GCI C 	 D
is satisfied by an interpretation I if CI ⊆ DI . A TBox T is a set of GCIs, and
we call an interpretation I a model of T if it satisfies all GCIs in T .

For example, to express that every container that has a handle and is only
used to hold liquids is either a cup or a jug, one could use the GCI

Container 
 ∃hasPart.Handle 
 ∀holds.Liquid 	 Cup � Jug.

DL systems usually come equipped with a range of reasoning services. Stan-
dard inferences provided by most DL systems include concept satisfiability and
subsumption. We say that a concept C is satisfiable w.r.t. a TBox T if there
exists a model I of T with CI = ∅; and a concept C is subsumed by a concept
D w.r.t. T (C 	T D) if for all models I of T we have CI ⊆ DI . Subsumption
can be reduced to concept satisfiability. Indeed, we have C 	T D iff C 
 ¬D is
unsatisfiable in T . Therefore, an algorithm that decides concept satisfiability can
also be used to decide subsumption. It is well-known [1] that ALC has the tree
model property, i.e., every satisfiable ALC-concept C has a tree-shaped model
in which the root of the tree is an instance of C. Thus, to decide concept satisfi-
ability, it is enough to consider tree-shaped interpretations. In fact, we will show
that the tree model property still holds for the extended logic with prototypes,
which is important for our approach to work.

Deciding Concept Satisfiability Using Alternating Parity Tree
Automata. We show how tree automata can be used to decide satisfiability
of ALC-concepts w.r.t. ALC-TBoxes. This result is a simple adaptation of the
approach in [10] to ALC. This approach requires the concept and the TBox to be
in negation normal form. Recall that an ALC-concept C is in negation normal
form if negation occurs only directly in front of concept names. Any concept
can be transformed in linear time into an equivalent concept in negation normal
form [1].

We can transform a TBox T into a single concept CT =
�

C�D∈T ¬C � D;
then an interpretation satisfies T iff it satisfies the GCI � 	 CT . In order to
decide ALC-concept satisfiability using tree automata, we first need to introduce
the relevant notions from automata theory.
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A tree domain is a prefix-closed, non-empty set D ⊆ N
∗, i.e., for every ui ∈ D

with u ∈ N
∗ and i ∈ N we also have u ∈ D. The elements of D are called nodes,

the node ε is the root of D, and for every u ∈ D, the nodes ui ∈ D are called
children of u. A node is called a leaf, if it has no children. A path π in D is
a subset π ⊆ D such that ε ∈ π and for every u ∈ π, u is either a leaf or
there is a unique i ∈ N with ui ∈ π. Given an alphabet Σ, a Σ-labeled tree
is a pair (domT , T ) consisting of a tree domain domT and a labeling function
T : domT → Σ. Instead of the pair (domT , T ) we often use only T to denote a
labeled tree. With Tree(Σ) we denote the set of all Σ-labeled trees.

The automata type we introduce now is based mainly on the alternating tree
automata defined by Wilke [11], which are working on P(Σ)-Trees, which are
labeled with the power set of some finite alphabet Σ. Given such a Σ and a set
of states Q, a transition condition TC(Σ,Q) is one of the following: true; false;
σ or ¬σ for σ ∈ Σ; q1 ∧ q2 or q1 ∨ q2 for q1, q2 ∈ Q; or �q or ♦q for q ∈ Q.

Definition 1 (alternating parity tree automaton). An alternating parity
tree automaton (apta) A working on P(Σ)-trees is a tuple A = (Σ,Q, q0, δ, Ω),
where 1. Σ is a finite alphabet; 2. Q is a finite set of states and q0 ∈ Q is the
initial state; 3. δ : Q → TC(Σ,Q) is the transition function; and 4. Ω : Q → N

is the priority function that specifies the parity acceptance condition.

Given a P(Σ)-labeled tree T , a run is a (domT ×Q)-labeled tree R such that
ε ∈ domR, R(ε) = (ε, q0), and for all u ∈ domR with R(u) = (v, q) we have:

– δ(q) = false
– if δ(q) = σ, then σ ∈ T (v); and if δ(q) = ¬σ, then σ ∈ T (v);
– if δ(q) = q1 ∧ q2, then there exists i1, i2 ∈ N such that R(ui1) = (v, q1) and

R(ui2) = (v, q2);
– if δ(q) = q1 ∨ q2, then there exists i ∈ N such that R(ui) = (v, q1) or R(ui) =

(v, q2);
– if δ(q) = ♦q′, then there exists i, j ∈ N with R(ui) = (vj, q′); and
– if δ(q) = �q′, then for every j ∈ N with vj ∈ domT there exists i ∈ N with

R(ui) = (vj, q′).

A run is accepting, if every infinite path in R satisfies the parity acceptance
condition specified by Ω, i.e., the largest priority occurring infinitely often along
the branch is even. The language accepted by an apta A, L(A), is the set of all
P(Σ)-trees T for which there exists an accepting run R of A on T .

The emptiness problem for apta, i.e., deciding whether L(A) = ∅, is in
ExpTime; the complement automaton which accepts the complement language
Tree(Σ) \ L(A) can be constructed in linear time [11]. Note that, instead of
only the transition conditions mentioned above, one could allow for complex
transition conditions like �(q1 ∧ ¬B) ∨ q2. Automata with complex transition
conditions can be transformed into equivalent automata using only simple tran-
sition conditions by introducing new states for each subformula of the transition
condition [11].
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Fig. 1. Transition function δ, P(Σ)-tree T , and accepting run R of Aex on T .

Example 2. Let Aex = (Σ,Q, q0, δ, Ω) be an apta with alphabet Σ = {A,B},
with states Q = {q0, . . . , q6}, initial state q0, transition function δ as given in
Fig. 1, and priority function Ω with Ω(q) = 1 for all q ∈ Q.

This automaton accepts only trees where the root label contains B (state q1),
or it is labeled with A and all of its successors (at least one) are again of this
form. Since the parity function prohibits infinite paths in the run (though not in
the input tree), Aex accepts exactly those trees where all paths start with nodes
labeled with A until eventually a node with a label containing B is encountered.
Figure 1 shows such a tree T and an accepting run R of Aex on T .

We now show how to construct an automaton that decides concept satis-
fiability in ALC. Given a TBox T and a concept C, the idea underlying this
approach is that the constructed automaton will accept exactly the tree models
of T for which the root is an instance of C. Note that the trees introduced above
do not have labeled edges, while interpretations do. To overcome this, we push
role names into the labels of the children. Thus, the alphabet Σ consists of all
concept and role names of C and CT (called the signature, sig). The automaton
contains a state for each subconcept of C and T , denoted sub(C) and sub(CT ),
which are used to simulate the semantics of ALC. Cycles in T can enforce infinite
tree models; infinite paths are always accepting if they satisfy the axioms in T .

Definition 3. Let T be an ALC-TBox of the form {� 	 CT } and C an ALC-
concept with both C and CT in negation normal form. We define the automaton
AC,T = (Σ,Q, q0, δ, Ω) as follows:

– Σ = sig(C) ∪ sig(CT ) and Ω(q) = 0 for all q ∈ Q,
– Q = {qD | D ∈ sub(C)∪ sub(CT )}∪{qr, q¬r | r ∈ sig(C)∪ sig(CT )}∪{q0, qT },
– the transition function δ is defined as follows (where σ ∈ NC ∪ NR):
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δ(q0) = qC ∧ qT δ(qT ) = qCT ∧ �qT
δ(qσ) = σ δ(q¬σ) = ¬σ

δ(qC1�C2) = qC1 ∧ qC2 δ(qC1	C2) = qC1 ∨ qC2

δ(q∃r.C) = ♦(qr ∧ qC) δ(q∀r.C) = �(q¬r ∨ qC)

The proof of the following proposition is similar to the one in [7, pp. 59–62].
It relies on the fact that any tree with accepting run can be interpreted as a
model of the TBox with the root being an instance of C, and any model of the
TBox can be unraveled into a tree for which an accepting run can be inductively
constructed.

Proposition 4. Given an ALC-TBox T and an ALC-concept C, the concept C
is satisfiable w.r.t. T iff L(AC,T ) = ∅.

Since the automaton AC,T is polynomial in the size of the TBox T and the
concept C, this approach yields an ExpTime algorithm for concept satisfiability,
which is worst-case optimal [3].

3 Prototypes and Weighted Tree Automata

In general, a prototype is some kind of structure that can be compared to ele-
ments of an interpretation, distinguishing elements that are closer (more similar
or related) to the prototype from elements that are further away (dissimilar or
different). More specifically, one may view a prototype as a function that assigns
to each element a distance value from the focal point, where small distances
correspond to similar elements, and large distances to dissimilar elements.

Definition 5. A prototype distance function (pdf) d is a function that assigns
to each element e of an interpretation I a distance value dI(e) ∈ N. The con-
structor P∼n(d) for a threshold n ∈ N is interpreted in an interpretation I as
the set of all elements e ∈ ΔI such that dI(e) ∼ n, for ∼ ∈ {<,≤, >,≥}. If D
is a set of pdfs, we use ALCP(D) to denote the Description Logic ALC extended
by the prototype constructor for pdfs from D.

As explained before, we will use weighted alternating tree automata to define
pdfs. These automata can express distance functions from trees (in our case, tree-
shaped pointed interpretations1) to the non-negative integers N. By unraveling
pointed interpretations we can extend this to a function from arbitrary pointed
interpretations to N, i.e., a prototype distance function.

The main idea behind the use of weighted automata to describe pdfs is that
the automaton can punish a pointed interpretation by increasing the distance
value whenever a feature described by the automaton is not as expected. For
example, the automaton can require the current node to be labeled with the
1 Recall that a pointed interpretation is an interpretation together with an element of
the interpretation domain.
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concept name Cup, and increase the distance by some number if this is not the
case. Using this idea, the most natural interpretation of the transition conditions
in the weighted setting is as follows: q1∧q2 will compute the sum of the distances
for q1 and q2 (both features should be present), ∨ will be interpreted as the
minimum (one of the feature should be present), ∃ will also be interpreted as
the minimum (one of the successors should have the feature, i.e., we choose the
best one); and ∀ will be interpreted as the maximum (all successors should have
the feature; if not, we take the distance of the worst).

A weighted alternating parity tree automaton is nearly the same as in the
unweighted case, with the exception that the transition function may also contain
non-negative integers. Given an alphabet Σ and a set of states Q, a weighted
transition condition wTC(Σ,Q) is one of the following: n ∈ N; σ or ¬σ for
σ ∈ Σ; q1 ∧ q2 or q1 ∨ q2 for q1, q2 ∈ Q; or �q or ♦q for q ∈ Q.

Definition 6 (weighted alternating parity tree automaton). A weighted
alternating parity tree automaton (wapta) A working on P(Σ)-trees is a tuple
A = (Σ,Q, q0, δ, Ω), where 1. Σ is a finite alphabet; 2. Q is a finite set of states
and q0 ∈ Q is the initial state; 3. δ : Q → wTC(Σ,Q) is the transition function;
and 4. Ω : Q → N is the priority function.

Runs are defined as in the unweighted case, where nodes labeled with a state
for which the transition function yields a number do not need to satisfy any
additional conditions, they can be leafs in the run. In order to define the behavior
of such a weighted automaton on a tree, we need to define the �-fixation of a
run, which basically chooses for a �-operator a single successor node (instead
of all of them). Given a run R, a �-fixation is a tree R′ with domR′ ⊆ domR,
which can be obtained from R as follows: starting with the root, we keep all
the successors for nodes where the transition function does not yield a box; for
nodes u labeled with a state q for which the transition function is of the form
δ(q) = �q′, the �-fixation R′ keeps at most one successor ui ∈ domR. All nodes
u ∈ domR′ have the same label R′(u) = R(u) as in R.

Then, we can define the behavior of the automaton as a function ‖A‖ :
Tree(P(Σ)) → N. The weight of a �-fixation R′ of a run R is defined as

weightA(R′) =
∑

u∈domR′ ,R′(u)=(d,q),δ(q,T (u))=n∈N

n.

Note that this (possibly infinite) sum is well-defined: If infinitely many values n >
0 occur in R′, the weight of R′ is ∞; otherwise it is the finite sum of all weights in
R′. The weight of a run R on T is weightA(R) = supR′� -fixation of R weightA(R′),
and the behavior of A is ‖A‖(T ) = minR accepting run on T weightA(R).

Constructions of Prototype Automata. In the following we will give a
concrete example of how a weighted automaton can be constructed from an
ALC-concept. Recall from the introduction that a prototypical cup is a small
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container with handles, which can hold liquids and is made of plastic or porcelain.
We can express this as an ALC-concept:

Container 
 Small 
 ∃hasPart.Handle 
 ∀holds.Liquid 
 ∀material.(Glass � Porcelain)

This concept can directly be translated into a complex transition condition for
an alternating tree automaton:

Container ∧ Small ∧ ♦(hasPart ∧ Handle)
∧ �(¬holds ∨ Liquid) ∧ �(¬material ∨ (Glass ∨ Porcelain))

Now, we can add weights in order to punish missing features:

(Container ∨ 3) ∧ (Small ∨ 1) ∧ (♦(hasPart ∧ Handle) ∨ 1)
∧ �(¬holds ∨ (Liquid ∨ 2)) ∧ �(¬material ∨ ((Glass ∨ 1) ∨ (Porcelain ∨ 1)))

The meaning of this weighted transition condition is as follows: If an element
is not a container, it will be punished with a weight of 3 since there cannot
be a run that uses the option Container at the root. Otherwise, there is such a
run, which does not contribute a weight. Accordingly, the absence of the feature
small is punished with weight 1. If the cup does not have a successor that is
labeled with both hasPart and Handle, then a weight of 1 is added. Finally, if
there is a material-successor that is not labeled with Glass or Porcelain, then this
is punished with weight 1. If the cup does not have any material-successors, or
all of them are glass or porcelain, no weight is added. Similarly for holding only
liquids. In general, choosing the weights appropriately allows us to punish the
absence of different features by different values.

For universal restrictions, the weights of several offending successors are
not added up, but rather the supremum is taken. As a consequence, equiva-
lent concepts may not yield equivalent wapta using this approach. For example,
∀r.(A 
 B) ≡ ∀r.A 
 ∀r.B, but the corresponding transition conditions after
adding weights may lead to different results. However, one can argue that, when
viewed as prototype descriptions, these two concept descriptions do actually
encode different intentions. While in the first case we want to make sure that
all r-successors are instance of A and B simultaneously (and pick the weight of
the worst offender if there is one), in the second case we want to enforce both
features separately, and punish for the worst offenders separately.

From the above example, it should be clear how a translation from ALC-
concepts to wapta works in general. On the other hand, one can also create
prototypes from finite pointed interpretations. For this, one introduces a state
for each element of the interpretation, and as transition condition for each state
one simply conjoins all the concept names the element is instance of, negations
of all concept names it is not instance of, and a ♦-transition for each successor
in the interpretation, labeled with both the role name and the state of the
successor-element. If one also introduces a �-transition with a disjunction of all
possible successor-states and adds positive weights as in the above example, this
weighted automaton will only give distance 0 to pointed interpretations that are
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bisimilar to the prototypical interpretation, and otherwise punish each difference
by increasing the distance accordingly.

4 Reasoning with Prototype Automata in ALC
To reason in ALC with prototypes, we have to achieve two things: First, for
each prototype constructor P≤n(A), we have to transform the wapta A into an
unweighted automaton that accept exactly those trees T for which ‖A‖(T ) ≤ n.
Then we need to combine the alternating tree automaton AC,T from Sect. 2 with
the unweighted automata for the prototypes such that the resulting automaton
accepts exactly the tree models of C w.r.t. T . An emptiness test can then be
used to decide (un-)satisfiability.

Cut-Point Automata. Given a weighted alternating parity tree automaton A
and a threshold value n ∈ N, we want to construct an unweighted automa-
ton A≤n that accepts exactly the cut-point language, i.e. L(A≤n) = {T ∈
Tree(P(Σ)) | ‖A‖(T ) ≤ n}. In this cut-point automaton, each state needs to
keep track of both the weight and the current state of the corresponding weighted
automaton. However, instead of tracking the weight that has already been accu-
mulated, it needs to track the weight that the automaton is still allowed to spend.
The reason for this is that for trees each state can have multiple successors, and
thus we have to budget the allowed weight for each of the successors so that the
sum is not greater than the threshold.

Definition 7. Given a wapta A = (Σ,Q, q0, δ, Ω), the cut-point automaton
A≤n = (Σ,Q′, q′

0, δ
′, Ω′) for the threshold n ∈ N is an apta defined as follows:

Q′ = {(q, i) ∈ Q × N | i ≤ n} ∪ {q′
0} and Ω′((q, i)) = Ω(q)

δ′(q′
0) =

∨

0≤i≤n

(q0, i) δ′((q, i)) = δ(q) if δ(q) = σ,¬σ

δ′((q, i)) = true if δ(q) = j ≤ i δ′((q, i)) = false if δ(q) = j > i

δ′((q, i)) = ♦(q′, i) if δ(q) = ♦q′ δ′((q, i)) = �(q′, i) if δ(q) = �q′

δ′((q, i)) = (q1, i) ∨ (q2, i) if δ(q) = q1 ∨ q2

δ′((q, i)) =
∨

0≤j≤i

(q1, j) ∧ (q2, i − j) if δ(q) = q1 ∧ q2

Proposition 8. Let A be a wapta and A≤n the cut-point automaton derived
from A using the threshold n ∈ N. Then A≤n accepts the cut-point language,
i.e., L(A≤n) = {T ∈ Tree(P(Σ)) | ‖A‖(T ) ≤ n}.
Proof (sketch). We have to prove both directions. Given a tree T ∈ L(A≤n),
and an accepting run R of A≤n on T , we can construct a run R′ of A on T by
removing all weights from the labels of R. By induction on the weight i, we can
then show that whenever we have R(u) = (v, (q, i)) for some node u ∈ domR, all



Reasoning with Prototypes in the DescriptionLogic ALC 73

�-fixations of R′ starting from u will have a weight at most i. This follows from
the claim that the sum of the weights of the children of a node v is never larger
than the weight of v itself for all �-fixations. Since the first successor of the root
of R is labeled with R(0) = (ε, (q0, n)), this means that weightA(R′) ≤ n.

Similarly, if we have a tree T ∈ Tree(P(Σ)) with ‖A‖(T ) ≤ n, and a run R
of A on T with weightA(R) ≤ n, we can construct a run R′ of A≤n on T by
setting R′(u) = (v, (q, i)) where R(u) = (v, q) and i is the weight assigned by A
to the subtree of R rooted at u, starting in state q. It can then be shown that
the run R′ obtained this way is an accepting run of A≤n on T . 
�

The cut-point automaton A≤n has O(n · q) states, where q is the number
of states of the weighted automaton A. Thus, if n is encoded in unary, this
construction is polynomial, otherwise it is exponential.

Combined Reasoning Using Alternating Automata. We want to combine
the cut-point automata constructed from prototype concepts with the automa-
ton from Definition 3 in order to decide the concept satisfiability problem in
ALCP(wapta); more specifically, we want to construct an automaton A that
accepts all those (tree-shaped) pointed interpretations that are instances of an
ALCP(wapta)-concept w.r.t. an ALCP(wapta)-TBox.

For ALCP(wapta)-concepts, one can again define a normal form. This
extends the negation normal form used in Sect. 2 by requiring that prototype
constructors occur only in the form P≤n(A), possibly negated. For example, one
can transform P≥n(A) for n ≥ 1 into negation normal form by replacing it with
¬P≤n−1(A); P≥0(A) can be replaced by �. The set of subconcepts now contains
such prototype concepts as well.

In case a prototype constructor occurs negated, the complement automaton
Ā for a cut-point automaton A can be constructed in linear time, by exchanging
true and false, ∨ and ∧, � and ♦, and σ and ¬σ for all σ ∈ Σ in all transition
conditions, as well as adding one to the priority of all states [11].

Definition 9. Let T be an ALCP(wapta)-TBox of the form {� 	 CT } and C
an ALCP(wapta)-concept, with both C and CT in negation normal form, and let
Ai,≤n be the cut-point automaton of the wapta Ai for each prototype constructor
P≤n(Ai) occurring in C or T .

The apta AP,C,T is the disjoint union of AC,T from Definition 3, all automata
Ai,≤n for prototypes P≤n(Ai) occurring in C or CT , and all automata Āi,≤n for
negated prototypes ¬P≤n(Ai) occurring in C or CT , such that the transition func-
tion additionally is defined for subconcepts of the form P≤n(Ai) and ¬P≤n(Ai)
as follows:

δ(qP≤n(Ai)) = qi where qi is the initial state of Ai,≤n

δ(q¬P≤n(Ai)) = qi where qi is the initial state of Āi,≤n

The following theorem is an easy consequence of Propositions 4 and 8.



74 F. Baader and A. Ecke

Theorem 10. Given an ALCP(wapta)-TBox T and an ALCP(wapta)-concept
C, the concept C is satisfiable w.r.t. T iff L(AP,C,T ) = ∅.

Because of the size of the cut-point automata and the ExpTime-emptiness
test for alternating tree automata, concept satisfiability can thus be deciding
in ExpTime if the numbers are given in unary. This is worst-case optimal. If
the numbers are given in binary, the complexity of the algorithm increases to
2ExpTime. It is an open problem whether this second exponential blowup can
be avoided.

5 Conclusions

We have introduced an extension to Description Logics that allows to define
prototypes and reason over them. In particular, we have introduced the proto-
type constructors P∼n(d) that are interpreted as the set of all elements of the
interpretation with distance ∼ n according to the prototype distance functions
d. We have shown that pdfs can be defined using waptas, and that reasoning
in ALCP(wapta) has he same complexity as reasoning in ALC (if the threshold
numbers n are coded in unary).

Of course, this approach has some limitations. As mentioned in Sect. 3, the
pdfs obtained through a straightforward translation of ALC-concepts into waptas
are not equivalence invariant. This is due to the fact that we use the supremum
rather than the sum to combine the weights obtained from different �-fixations.
However, replacing supremum by sum has the disadvantage that the cut-point
language need no longer be recognizable by an apta. We conjecture that in that
case, the cut-point language can actually be accepted by a graded apta [4], but
the construction to be developed would definitely be considerably more complex
than the one used in this paper. More generally, one could of course also look
at weighted automata using other domains for weights and other operations
combining them.

Finally, we are interested in adding prototypes to other DLs. Since prototypes
can be used to express negation, considering less expressive DLs does not make
sense. But adding nominals and quantified number restrictions would be inter-
esting, as would be considering the instance problem and answering conjunctive
queries.
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T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 76. Springer, Heidelberg (2001)

11. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Belg. Math. Soc. 8, 359–391 (2001)

http://www.qucosa.de/fileadmin/data/qucosa/documents/846/1201792812059-1908.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/846/1201792812059-1908.pdf


+ω-Picture Languages Recognizable by
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Abstract. We consider +ω-pictures, i.e., 2-dimensional pictures with a
finite number of rows and a countably infinite number of columns. We
extend conventional tiling systems with a Büchi acceptance condition
and define the class of Büchi-tiling recognizable +ω-picture languages.
We show that this class has the same closure properties as the class
of tiling recognizable languages of finite pictures. We characterize the
class of Büchi-tiling recognizable +ω-picture languages by generalized
Büchi-tiling systems and by the logic EMSO∞, an extension of existential
monadic second-order logic with quantification of infinite sets. The Büchi
characterization theorem (stating that the ω-regular languages are finite
unions of languages of the form L1 · Lω

2 , for regular languages L1 and
L2), however, does not carry over from regular ω-languages to Büchi-
tiling recognizable languages of +ω-pictures.

Keywords: Automata and logic · Picture languages · Tiling systems ·
Existential monadic second-order logic

1 Introduction

The theory of two-dimensional languages as a generalization of formal languages
of words was motivated by problems arising from image processing and pattern
recognition [6], and also plays a role in the theory of cellular automata and other
devices of parallel computing [16,17]. In the 1990s, Giammarresi and Restivo
introduced the family of recognizable languages of finite pictures [7,9]. This
family is very robust and has been characterized by many different devices,
including automata, tiling systems, rational operations, and existential monadic
second-order logic [7–10,13–15]. Notions of recognizability have also been studied
for languages of ωω-pictures, i.e., analogues of ω-words that are infinite in two
dimensions [1,3,5,11,12,18].

In this paper, we study +ω-pictures, i.e., pictures that have a finite number
of rows and an infinite number of columns. As a motivation for studying these
pictures, consider for example the potentially infinite streams of taped videos
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captured by digital security cameras. To the best of our knowledge, languages
of +ω-pictures have not been studied before.

We summarize our main contributions as follows: To obtain a notion of recog-
nizability of languages of +ω-pictures, we introduce the Büchi-tiling systems.
These are an extension of the classical tiling systems [9] by a Büchi acceptance
condition. This way, the Büchi-tiling recognizable +ω-picture languages can be
viewed as a natural generalization of the ω-regular languages. We show that
the class of Büchi-tiling recognizable +ω-picture languages has the same closure
properties as the class of tiling recognizable languages of finite pictures [10]: it
is closed under projection, union, and intersection, but not under complementa-
tion. We show that the class of Büchi-tiling recognizable +ω-picture languages
is robust, as it (1) can be characterized by generalized Büchi-tiling systems,
and (2) has a logical characterization via an extension of existential monadic
second-order logic by existential quantification of infinite sets.

The results mentioned so far witness that many results and techniques that
have been developed for the tiling recognizable languages of finite pictures or for
the ω-regular languages recognized by Büchi-automata, can be transferred to the
Büchi-tiling recognizable +ω-picture languages. However, using combinatorial
arguments, we show that the well-known Büchi characterization theorem (stating
that the ω-regular languages are unions of finitely many languages of the form
L1 ·Lω

2 , for regular languages L1 and L2) does not carry over to the Büchi-tiling
recognizable languages of +ω-pictures.

The remainder of the paper is structured as follows. Section 2 fixes the
basic notation. Section 3 introduces the Büchi-tiling systems, presents the men-
tioned closure properties, and establishes the characterization by generalized
Büchi-tiling systems. Section 4 is devoted to the logical characterization. Section 5
shows that there is no Büchi characterization theorem for the Büchi-tiling recog-
nizable +ω-picture languages. Section 6 concludes the paper. Due to space limi-
tations, most proof details had to be omitted. Detailed proofs will be provided
in the paper’s full version.

2 Preliminaries

We write N for the set of non-negative integers, and we let N�1 := N \ {0} and
[n] := {1, . . . , n}, for any n ∈ N�1. Somewhat abusing notation, [ω] will denote
the set N�1. Throughout this paper, alphabets are finite non-empty sets.

A finite picture over Σ is a finite rectangular array of elements of Σ. Formally,
for m,n ∈ N�1, a picture of size (m,n) over Σ is a mapping p : [m] × [n] →
Σ. The number �1(p) := m of rows is called the height of p, and the number
�2(p) := n of columns is called the width of p. For i ∈ [�1(p)] and j ∈ [�2(p)]
we write pij := p(i, j) to denote the letter of p in row i and column j. For
m,n ∈ N�1, we write Σm,n for the set of all pictures over Σ of size (m,n), and
we let Σ++ :=

⋃
m,n∈N�1

Σm,n be the set of all finite pictures over Σ. Often,
we will refer to finite pictures as ++-pictures. A ++-picture language over Σ is
a subset of Σ++.
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We generalize these notions to pictures that have an infinite number of
columns: For m ∈ N�1, an mω-picture over Σ is a mapping p : [m]×N�1 → Σ.
Thus, p has exactly m rows and an infinite number of columns. We write Σmω

to denote the set of all mω-pictures over Σ. The set of all +ω-pictures over Σ
is the set Σ+ω :=

⋃
m∈N�1

Σmω. A +ω-picture language over Σ is a subset
of Σ+ω. Similarly as for finite pictures, for an mω-picture p we write �1(p) to
denote the number m of rows of p. We write �2(p) = ω to indicate that there is
an infinite number of columns. The size of p is (m,ω).

We identify finite pictures of height 1 over Σ with finite non-empty words
over Σ (i.e., with elements in Σ+), and we identify +ω-pictures of height 1
over Σ with ω-words over Σ (i.e., with elements in Σω).

When given a (finite or +ω-)picture p and numbers j1, j2 with 1 � j1 � j2 �
�2(p) we write p[j1, j2] for the picture obtained from p by deleting all columns j
with j < j1 or j > j2.

The (column) concatenation of a finite picture p and a (finite or +ω-)picture
q of the same height m = �1(p) = �1(q) yields the picture p � q of height m whose
first �2(p) columns are identical with p and whose remaining columns �2(p) + 1,
�2(p)+2, . . . are identical with the columns 1, 2, . . . of q. I.e., (p � q)[1, �2(p)] = p
and (p � q)[�2(p)+1, �2(p)+�2(q)] = q (using the convention “n+ω = ω”). The
concatenation of a language L ⊆ Σ++ of finite pictures and a language L′ ⊆ Σ+ω

of +ω-pictures is defined as L � L′ := { p � p′ : p ∈ L, p′ ∈ L′, �1(p) = �1(p′) }.
I.e., a picture q belongs to L � L′ if, and only if, some initial segment of q
belongs to L and the rest of q belongs to L′. Let L,L′ ⊆ Σ++ be two lan-
guages of finite pictures. The concatenation L � L′ is the ++-picture language
L � L′ := {p � p′ : p ∈ L, p′ ∈ L′, �1(p) = �1(p′)}. We define the iterated con-
catenation L�n via L�1 := L and L�n := L � L�(n−1) for every n ∈ N with
n � 2. Clearly, for every n ∈ N�1, L�n is a language of finite pictures. We let L�ω

be the +ω-picture language that consists of all +ω-pictures p for which there is
an infinite sequence 1 = j1 < j2 < · · · of integers such that for every i ∈ N�1,
the picture p[ji, ji+1−1] belongs to L. I.e., L�ω consists of all +ω pictures of the
form p1 � p2 � p3 � · · · where pi ∈ L for every i ∈ N�1, and all pi have the same
height. For a finite picture p ∈ Σ++ we write p�ω for the unique +ω-picture in
{p}�ω. Accordingly, for n ∈ N�1 we write p�n for the unique ++-picture in the
set {p}�n.

3 Büchi-Tiling Recognizable +ω-Picture Languages

Local sets of words play an important role in the theory of regular string lan-
guages. The notion has been generalized to languages of finite pictures [7] and
to ωω-picture languages [3]. In this section, we extend this notion to +ω-picture
languages and introduce tiling systems with a Büchi acceptance condition. We
exhibit closure properties of the class of +ω-picture languages that are recogniz-
able with these Büchi-tiling systems.

For a (finite or +ω-)picture p over Σ and for numbers i1, i2, j1, j2 with 1 �
i1 � i2 � �1(p) and 1 � j1 � j2 � �2(p) we write pi1

i2
[j1, j2] for the subpicture of



+ω-Picture Languages Recognizable by Büchi-Tiling Systems 79

p at rows i1, . . . , i2 and columns j1, . . . , j2. I.e., pi1
i2

[j1, j2] is the picture obtained
from p by deleting all rows i with i < i1 or i > i2 and deleting all columns j
with j < j1 or j > j2. For numbers m,n ∈ N�1 we write Tm,n(p) for the set of
all subpictures of p of size (m,n), i.e.,

Tm,n(p) =
{

pi
i+m−1[j, j+n−1] : 1 � i � �1(p)−m+1, 1 � j � �2(p)−n+1

}

(with the convention “ω − n = ω”).
For an alphabet Γ , we write Γ̂ for the alphabet Γ ∪ {#}, where # is a

special boundary symbol that does not belong to Γ . For a finite picture q of size
(m,n) over Γ , we write q̂ for the picture of size (m+2, n+2) over Γ̂ , obtained
by surrounding q with the boundary symbol #. Accordingly, for a +ω-picture
q over Γ we write q̂ for the (m+2)ω-picture over Γ̂ , obtained by surrounding q
with the boundary symbol # from the left, top and bottom. A tile is a picture
of size (2, 2) over the alphabet Γ̂ .

Definition 1. Let Γ be an alphabet and let • be one of the symbols + or ω.
The +•-picture language recognized by a set Θ ⊆ Γ̂ 2,2 of tiles is L+•(Θ) :=
{q ∈ Γ+• : T2,2(q̂) ⊆ Θ}. A +•-picture language L over Γ is called local if
there exists a set Θ ⊆ Γ̂ 2,2 of tiles such that L = L+•(Θ).

In the literature, mappings π : Γ → Σ, for alphabets Γ and Σ, are called
projections. Such mappings are lifted to pictures and picture languages in the
canonical way: for a picture q over Γ , π(q) is the picture p over Σ of the same
height and width as q, where for each row i and each column j, the letter
pij in row i and column j is π(qij). For a picture language L over Γ , we let
π(L) = {π(q) : q ∈ L}.

A language L ⊆ Σ++ of finite pictures is called tiling recognizable [7] if there
exists an alphabet Γ , a local ++-picture language L′ over Γ , and a projection
π : Γ → Σ, such that L = π(L′). When dealing with recognizability, it is often
convenient to assume that the alphabet Γ has the special form Γ = Σ × Q, and
the projection π : Γ → Σ just cancels the Q-component. It is straightforward to
see that this assumption can be made without loss of generality (cf., e.g., [10]).
Thus, a language L ⊆ Σ++ is tiling recognizable if, and only if, there exists a
tiling system T with L = L++(T ) in the following sense.

Definition 2 (Tiling system).

(a) A tiling system is a 3-tuple T = (Σ,Q,Θ) where Σ and Q are alphabets,
and Θ ⊆ Γ̂ 2,2 for Γ := Σ × Q. The elements of Q are called states of T .

(b) Let Σ and Q be alphabets. For a (finite or +ω-)picture p over Σ and a
picture r over Q of the same size as p, we write (p× r) for the picture q over
Γ := Σ ×Q that has the same size as p, and where for every row i and every
column j, the entry qij in row i and column j is (pij , rij).

(c) Let T = (Σ,Q,Θ) be a tiling system, let • be one of the symbols + or ω,
and let p be a +•-picture over Σ.
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A run of T on p is a picture r over Q of the same size as p, such that the
picture q := (p × r) has the following property: every subpicture of size
(2, 2) of q̂ belongs to Θ, i.e., T2,2(q̂) ⊆ Θ.
The picture p is accepted by T if there exists a run of T on p.
The +•-picture language recognized by T is the set L+•(T ) of all +•-pictures
p over Σ that are accepted by T .
A picture language L ⊆ Σ+• is tiling recognizable if there is a tiling system
T with L = L+•(T ).

We now extend tiling systems with a Büchi acceptance condition. This will lead
to a notion of Büchi-tiling recognizable +ω-picture languages that can be viewed
as a 2-dimensional generalization of the ω-regular languages (i.e., the languages
of ω-words recognized by Büchi-automata).

Definition 3 (Büchi-tiling system).

(a) A Büchi-tiling system is a 4-tuple S = (Σ,Q,Θ, F ), where (Σ,Q,Θ) is a
tiling system and F ⊆ Q. The elements of F are called accepting states ; the
set F is called the acceptance condition.

(b) Let S = (Σ,Q,Θ, F ) be a Büchi-tiling system and let p ∈ Σ+ω.
A run of S on p is a run of the tiling system T := (Σ,Q,Θ) on p.
For a run r of S on p we write inf1(r) for the set of states that occur infinitely
often in the first row of r.
A run r of S on p is accepting, if inf1(r) ∩ F �= ∅ (i.e., there is an accepting
state that occurs infinitely often in the first row of the run).
The +ω-picture p is accepted by S if there exists an accepting run of S on p.
The +ω-picture language recognized by S is the set L+ω(S) of all +ω-pictures
p over Σ that are accepted by S.

(c) A +ω-picture language L over Σ is Büchi-tiling recognizable if there is a
Büchi-tiling system S = (Σ,Q,Θ, F ) with L = L+ω(S).

The interested reader may want to consider a variant of Büchi-tiling systems
where the acceptance condition does not only refer to the first row, but to the
entire run — i.e., a variant where a run is called accepting iff there is an accepting
state that occurs infinitely often in the run. It is not difficult to transform this
variant into our version of Büchi-tiling systems, and vice versa (in fact, this an
easy consequence of our logical characterization provided in Theorem11).

A simple counting argument shows that Büchi-tiling systems are strictly
stronger than tiling systems:

Proposition 4. Let Σ := {a, b} consist of two distinct letters.
The +ω-picture language L over Σ which consists of all p ∈ Σ1ω that contain
an infinite number of a′s, is Büchi-tiling recognizable, but not tiling recognizable.

Proof. The Büchi-tiling recognizability of L is straightforward.
Assume for contradiction that L is also tiling recognizable. I.e., assume that

T = (Σ,Q,Θ) is a tiling system with L = L+ω(T ). Let n := |Q| + 1 and
let p be the +ω-picture of height 1 that corresponds to the ω-word (bna)ω.
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Since p ∈ L and L = L+ω(T ), there exists a run r of T on p. Consider the
1ω-picture q := (p×r). By our choice of n, there must be two columns j, j′ ∈ [n]
with j < j′ such that q1j = q1j′ . Now consider the 1ω-pictures p̃ := p[1, j] �
p[j+1, j′]�ω and r̃ := r[1, j] � r[j+1, j′]�ω. It is straightforward to check that r̃
is a run of T on p̃. Hence, p̃ ∈ L+ω(T ). However, p̃ does not contain any a and
therefore p̃ �∈ L. A contradiction! 	


Büchi-tiling systems and the Büchi-tiling recognizable +ω-picture languages
can be viewed as generalizations of Büchi-automata and the ω-regular languages.
Recall that a Büchi-automaton B = (Σ,Q,Δ, q0, F ) consists of the same com-
ponents as a conventional non-deterministic finite automaton with transition
relation Δ ⊆ Q × Σ × Q. A run r of B on an ω-word w ∈ Σω is accepting if it
visits at least one of the states in F infinitely often. The ω-language recognized
by B is the set Lω(B) of all ω-words w ∈ Σω on which B has an accepting run.

We identify ω-words w ∈ Σω with 1ω-pictures over Σ, and we identify lan-
guages L ⊆ Σω of ω-words with +ω-picture languages that contain pictures of
height 1 only. It is straightforward to see that for languages of +ω-pictures of
height 1, recognizability by Büchi-tiling systems is equivalent to recognizability
by Büchi-automata.

It is well-known that Büchi-automata are equivalent to generalized Büchi-
automata, i.e., Büchi-automata where the acceptance condition F is replaced by
an acceptance condition of the form {F1, . . . , Fk} with k ∈ N�1 and Fi ⊆ Q for
every i ∈ [k]. A run r of such a generalized Büchi-automaton on an ω-word w is
called accepting if for each i ∈ [k] at least one of the states of Fi occurs infinitely
often in r. We use the same generalization for Büchi-tiling systems.

Definition 5 (Generalized Büchi-tiling system). A generalized Büchi-
tiling system is a 4-tuple S = (Σ,Q,Θ, F̃ ), where (Σ,Q,Θ) is a tiling system,
and F̃ = {F1, . . . , Fk} for a k ∈ N�1 and sets F1, . . . , Fk ⊆ Q. The set F̃ is called
the acceptance condition.

A run of S on a +ω-picture p over Σ is a run of the tiling system T =
(Σ,Q,Θ) on p. A run r is accepting if inf1(r) ∩ Fi �= ∅ for every i ∈ [k].

A +ω-picture w over Σ is accepted by S if there exists an accepting run
of S on p. The +ω-picture language recognized by S is the set L+ω(S) of all
+ω-pictures over Σ that are accepted by S.

For translating a generalized Büchi-automaton B = (Σ,Q,Δ, q0, {F1, . . . ,
Fk}) into equivalent Büchi-automaton B = (Σ,Q′,Δ′, q′

0, F
′), one uses the well-

known counting construction: it suffices to choose Q′ := [k] × Q, q′
0 := (1, q0),

and F ′ := [1]×F1, and to let Δ′ be the set consisting of all transitions of the form(
(i, q), a, (j, q′)

)
, where the following is true: (q, a, q′) ∈ Δ, and j ≡ i+1 mod k if

q ∈ Fi, and j = i otherwise. This construction can easily be adapted to obtain:

Proposition 6. Let Σ be an alphabet and let L ⊆ Σ+ω.
L is Büchi-tiling recognizable if, and only if, there is a generalized Büchi-tiling
system S with L = L+ω(S).
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It is an easy (but somewhat tedious) exercise to show:

Lemma 7. Let Σ be an alphabet and let L ⊆ Σ++ be a tiling recognizable
language of finite pictures over Σ. Then, the following is true:

(a) The +ω-picture language L�ω is Büchi-tiling recognizable.
(b) For every Büchi-tiling recognizable +ω-picture language L′ ⊆ Σ+ω, the +ω-

picture language L � L′ is Büchi-tiling recognizable.

Techniques known for tiling systems over finite pictures (see [9,10]) can eas-
ily be adapted to show that the class of Büchi-tiling recognizable +ω-picture
languages has the same closure properties as the class of tiling recognizable lan-
guages of finite pictures:

Proposition 8. Let Σ be an alphabet of size |Σ| � 2.
The family of Büchi-tiling recognizable +ω-picture languages over Σ is closed
under projection, union, and intersection, but not under complementation.

An example for a +ω-picture language that witnesses the non-closure under
complementation is the following language. Let Σ = {a, b} consist of two distinct
letters. Let L1 ⊆ Σ++ be the language of all finite pictures of the form s � s
for all s ∈ ⋃

m∈N�1
Σm,m, and let Lall := Σω+ be the language of all +ω-

pictures over Σ. From [10] we know that the ++-picture language L1 is not
tiling recognizable, while its complement Σ++\L1 is tiling recognizable. An easy
adaptation of their proof shows that the +ω-picture language L := L1 � Lall is
not Büchi-tiling recognizable, while its complement Σ+ω \ L is Büchi-tiling
recognizable.

4 A Logical Characterization of the Büchi-Tiling
Recognizable +ω-Picture Languages

The well-known Büchi-Elgot-Trakhtenbrot Theorem establishes a bridge
between logic and automata by showing that a language L of finite words is
regular if, and only if, it is definable in monadic second-order logic MSO, and
that MSO-definability of L coincides with definability of L in existential monadic
second-order logic EMSO. This result has been extended to various structures
including ω-words and finite and infinite trees (for an overview, see [19]).

As the class of tiling recognizable picture languages is not closed under com-
plementation, but MSO is closed under negation, a characterization of the tiling
recognizable picture languages by MSO is not conceivable. A characterization by
EMSO, however, has been obtained in [10]: the tiling recognizable ++-picture
languages are exactly the ++-picture languages that are definable in EMSO.
For this, the authors of [10] use the signature τΣ = {S1, S2} ∪ {Pa : a ∈ Σ}
which consists of two binary relation symbols S1 and S2 and a unary rela-
tion symbol Pa for every letter a ∈ Σ. A finite picture p of size (m,n) over
Σ is represented by a finite relational structure p of signature τΣ as follows:
p :=

(
dom(p), Sp

1 , Sp
2 , (P p

a )a∈Σ

)
, where
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– the domain dom(p) := [m] × [n] consists of all “positions” of p,
– for every a ∈ Σ, the relation P p

a consists of all positions (i, j) ∈ dom(p) with
pij = a (i.e., a is the letter in row i and column j of p),

– Sp
1 is the vertical successor relation on the positions of p, i.e., it consists of all

tuples of positions in dom(p) of the form
(
(i, j), (i+1, j)

)
,

– Sp
2 is the horizontal successor relation on the positions of p, i.e., it consists of

all tuples of positions in dom(p) the form
(
(i, j), (i, j+1)

)
.

We use the same representation for +ω-pictures p, where the domain dom(p) of
a +ω-picture of height m is defined as dom(p) := [m] × N�1.

For describing picture languages by logical formulas, we use a countably
infinite set Vari of so-called individual variables and a countably infinite set
Vars of so-called set variables. Individual variables will always be interpreted
with positions of a picture (i.e., with elements in dom(p)), while set variables will
be interpreted with sets of positions of a picture (i.e., with subsets of dom(p)).
We will use letters like x, y, z, x1, x2, . . . to denote individual variables, and we
will use letters like X,Y,Z,X1,X2, . . . to denote set variables. The set FO[τΣ ]
of all first-order formulas of signature τΣ is inductively defined as follows:

FO[τΣ ] contains all atomic formulas of the form x=y, Pa(x), X(x),
S1(x, y), and S2(x, y), for all individual variables x, y ∈ Vari, all letters a ∈ Σ,
and all set variables X ∈ Vars. The intended meaning of these formulas is “x and
y are interpreted by the same position”, “the letter at position x is a”, “posi-
tion x belongs to the set X”, “position y is the vertical successor of position x”
(same column, next row), and “position y is the horizontal successor of position
x” (same row, next column). FO[τΣ ] is closed under Boolean combinations, i.e.,
whenever ϕ and ψ belong to FO[τΣ ], then FO[τΣ ] also contains the formulas ¬ϕ,
(ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), and (ϕ ↔ ψ). FO[τΣ ] is closed under existential
and universal quantification of individual variables, i.e., whenever ϕ belongs to
FO[τΣ ] and x ∈ Vari, then FO[τΣ ] also contains the formulas ∃xϕ and ∀xϕ.
The intended meaning of these formulas is “there exists a position x such that
the statement made by ϕ is true” and “for all positions x, the statement made
by ϕ is true”.

The set free(ϕ) of all free variables of ϕ consists of all set variables occurring
in ϕ and all individual variables x that have at least one free occurrence in ϕ,
i.e., an occurrence that is not within the range of a quantifier of the form ∃x
or ∀x. If free(ϕ) ⊆ {X1, . . . , Xk, x1, . . . , x�}, p is a (finite or +ω-)picture over
Σ, A1, . . . , Ak are subsets of dom(p), and a1, . . . , a� are elements in dom(p), we
write

(
p,A1, . . . , Ak, a1, . . . , a�

) |= ϕ to indicate that the statement made by ϕ
is true in p when interpreting the set variable Xi with the set Ai and interpreting
the free occurrences of xj with the position aj , for all i ∈ [k], j ∈ [�]. We often
abbreviate sequences A1, . . . , Ak and a1, . . . , a� by A and a.

The set EMSO[τΣ ] of existential monadic second-order formulas of signature
τΣ consists of all formulas Φ of the form ∃X1 · · · ∃Xk ϕ, where k � 0 and
ϕ ∈ FO[τΣ ]. The set of free variables of Φ is free(Φ) := free(ϕ) \ {X1, . . . , Xk}.
If free(Φ) ⊆ {Xk+1, . . . , Xk+k′ , x1, . . . , x�}, p is a (finite or +ω-)picture over Σ,
A = Ak+1, . . . , Ak+k′ ⊆ dom(p), and a = a1, . . . , a� ∈ dom(p), then (p,A, a)
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satisfies Φ (in symbols: (p,A, a) |= Φ) if there exist sets A1, . . . , Ak ⊆ dom(p)
such that (p,A1, . . . , Ak, A, a) |= ϕ. Sentences are formulas Φ with free(Φ) = ∅.
For a sentence Φ we write p |= Φ instead of (p) |= Φ.

Definition 9 (EMSO-definable picture language).
Let Σ be an alphabet and let • be one of the symbols + or ω.
The +•-picture language defined by an EMSO[τΣ ]-sentence Φ is L+•(Φ) :=
{p ∈ Σ+• : p |= Φ}. Let L ⊆ EMSO[τΣ ]. A +•-picture language L ⊆ Σ+• is
L-definable if there exists a sentence Φ ∈ L such that L = L+•(Φ).

Giammarresi et al. [10] have shown that a language of finite pictures is tiling
recognizable if, and only if, it is EMSO[τΣ ]-definable. Their characterization does
not carry over to languages of +ω-pictures:

Proposition 10. Let Σ := {a, b} consist of two distinct letters.
Let L := {p ∈ Σ1ω : p contains at least one occurrence of the letter a}, and
let L′ := {p ∈ Σ1ω : p contains infinitely many a′s}.
L is FO[τΣ ]-definable, but not tiling recognizable.
L′ is Büchi-tiling recognizable, but not EMSO[τΣ ]-definable.

Proof (idea). L is defined by the FO[τΣ ]-sentence ∃xPa(x). The proof that L is
not tiling recognizable can be taken verbatim from the proof of Proposition 4.
The Büchi-tiling recognizability of L′ was already observed in Proposition 4. For
proving that L′ is not EMSO[τΣ ]-definable, one can use a standard tool from
mathematical logic: a Hanf-locality argument (cf., e.g., [4]). 	


To obtain a logical characterization of the Büchi-tiling recognizable Σ+ω-
picture languages, we extend EMSO by quantifiers of the form ∃∞X, for set
variables X ∈ Vars, with the intended meaning “there exists an infinite set X”.
We write EMSO∞[τΣ ] for the set of all formulas Ψ of the form ∃∞X1 · · · ∃∞Xk Φ
where k � 0, X1, . . . , Xk ∈ Vars, and Φ ∈ EMSO[τΣ ]. The set of free variables of
Ψ is free(Ψ) := free(Φ)\{X1, . . . , Xk}. If free(Ψ) ⊆ {Xk+1, . . . , Xk+k′ , x1, . . . , x�},
p is a +ω-picture over Σ, A = Ak+1, . . . , Ak+k′ ⊆ dom(p), and a = a1, . . . , a� ∈
dom(p), then (p,A, a) satisfies Ψ (in symbols: (p,A, a) |= Ψ) if there exist infinite
sets A1, . . . , Ak ⊆ dom(p) such that (p,A1, . . . , Ak, A, a) |= Φ.

It is not difficult to see that EMSO∞[τΣ ] is expressive enough to describe all
Büchi-tiling recognizable +ω-picture languages. For the opposite direction, we
follow the overall approach of Giammarresi et al. [10]. The main step is to trans-
late a given FO[τΣ ]-formula ϕ(X1, . . . , Xk) (with free set variables X1, . . . , Xk)
into a generalized Büchi-tiling system over the extended alphabet Σ × {0, 1}k

(a position that carries a letter (a, (α1, . . . , αk)) of this extended alphabet cor-
responds to a position that carries the letter a ∈ Σ and, for each i ∈ [k], belongs
to the set Xi iff αi = 1). Afterwards, we lift the translation so that it applies
also to EMSO∞[τΣ ]-sentences. Due to the equivalence of generalized Büchi-tiling
systems and Büchi-tiling systems, we then obtain the following:

Theorem 11. Let Σ be an alphabet and let L ⊆ Σ+ω.
L is Büchi-tiling recognizable if, and only if, L is EMSO∞[τΣ ]-definable.
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5 No Büchi Characterization Theorem For +ω-Picture
Languages

It is well-known (see e.g., [19]) that the ω-regular word-languages are exactly
the languages of ω-words that are unions of finitely many ω-languages of the
form L1 · Lω

2 , where L1, L2 are regular languages of finite words. It is tempting
to conjecture that the same holds true for Büchi-tiling recognizable languages of
+ω-pictures. Indeed, by Lemma 7 and Proposition 8 we obtain the “easy direc-
tion” of the characterization theorem: If L is a +ω-picture language that is the
union of a finite number of sets of the form L1 � L�ω

2 , where L1, L2 ⊆ Σ++

are tiling recognizable sets of finite pictures, then L is Büchi-tiling recognizable.
The opposite direction, however, is not true — even if we drop the requirement
that L1 and L2 are tiling recognizable:

Theorem 12. Let Σ be an alphabet with |Σ| � 2.
For every m ∈ N�1 let Lm be the language consisting of all +ω-pictures over
Σ that are of the form s1 � s2 � s3 � · · · where sν ∈ Σm,m for every ν ∈ N�1

and sν �= s1 for infinitely many ν ∈ N�1. Then, the +ω-picture language L :=⋃
m∈N�1

Lm is Büchi-tiling recognizable, but not equal to any union of a finite
number of sets of the form L1 � L�ω

2 with L1, L2 ⊆ Σ++.

Proof (sketch). For proving the first statement, we show that L is EMSO∞[τΣ ]-
definable and then use Theorem11. The essential idea for constructing the
EMSO∞[τΣ ]-formula is to “guess” a position z = (i, j) of s1 such that for infi-
nitely many ν the letter of sν at position (i, j) is different from the letter of s1
at position (i, j). To do this, we use a quantifier ∃∞Z for the set of positions
(i, j) in sν for the suitable ν. To make sure that z indeed belongs to s1, we use
further existential quantifiers X1,X2,X3 with the intended meaning that X1

consists of all positions on the diagonal of s1, X2 consists of all positions in the
rightmost column of s1, and X3 consists of all positions of s1. To make sure that
the set Z only contains positions in row i and in columns of the form m·k+j, for
k � 1, we use additional existential quantifiers Yr, Yc, Zc, Zd with the intended
meaning that Yr consists of all positions in the same row as z (i.e., row i), Yc

consists of all positions in the same column as z (i.e., column j), Zc consists
of all positions in columns j + km for all k � 0 (where m is the height of the
considered picture), and Zd consists of all positions in the particular diagonals
that start at positions directly to the right of top-row positions in Zc and always
proceed from one position to the one in the next row and next column. It is not
difficult (but somewhat tedious) to construct an EMSO∞[τΣ ]-formula with the
intended meaning.

For proving the second statement, assume for contradiction that L =⋃k
κ=1 Lκ1�L�ω

κ2 , where k ∈ N�1, and Lκj ∈ Σ++ for every κ ∈ [k] and j ∈ {1, 2}.
Using a combinatorial argument, we can show the following:

Claim 13. Let m ∈ N�1 and let s, t ∈ Σm,m with s �= t.
There exist numbers κ ∈ [k] and r ∈ [m] such that

(
t[r,m] � t�ω

) ∈ L�ω
κ2 .
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Furthermore, there exist numbers �, n ∈ N�1 and a finite picture u of height m
such that the picture (s�u) belongs to Lκ1 �L��

κ2 and has width m ·n+(r − 1).

For each picture t ∈ Σm,m let K(t) be the set of all (κ, r) ∈ [k] × [m] such
that (t[r,m] � t�ω) ∈ L�ω

κ2 . Claim 13 implies for all t ∈ Σm,m that K(t) �= ∅
(note that here we use that |Σ| � 2).

Let us now choose a number m ∈ N�1 such that |Σ|(m2) > 2k·m. The
pigeon hole principle shows that there are pictures t1, t2 ∈ Σm,m with t1 �= t2
and K(t1) = K(t2).

Now apply Claim 13 for s := t1 and t := t2. This yields numbers (κ, r) ∈
K(t2), a finite picture u of height m, and numbers �, n ∈ N�1 such that the
picture (t1 � u) belongs to Lκ1 � L��

κ2 and has width m · n + (r − 1).
Since (κ, r) ∈ K(t2) = K(t1), we know that (t1[r,m] � t�ω

1 ) ∈ L�ω
κ2 .

Hence, also the +ω-picture p := (t1 �u)� t1[r,m]� t�ω
1 belongs to Lκ1 �L�ω

κ2 .
However, p �∈ L. A contradiction! 	


6 Conclusion

We introduced Büchi-tiling systems and Büchi-tiling recognizable +ω-languages.
We showed that the class of all Büchi-tiling recognizable +ω-picture languages
has the same closure properties as the class of tiling recognizable languages of
finite pictures: it is closed under projection, union, and intersection, but not
under complementation (see Proposition 8).

While for languages of finite pictures, tiling recognizability coincides with
EMSO[τΣ ]-definability [10], the situation is quite different for languages of +ω-
pictures: In this setting, the notion of tiling recognizability does not even cover
the language of all +ω-pictures over Σ = {a, b} in which the letter a occurs at
least once — a picture-language that can easily be defined in first-order logic
FO[τΣ ]. As a consequence, EMSO[τΣ ] is too strong for capturing the class of
tiling recognizable +ω-picture languages. On the other hand, EMSO[τΣ ] is too
weak for capturing the class of all Büchi -tiling recognizable +ω-picture languages
(see Proposition 10). To obtain a logical characterization of this class, we intro-
duced the logic EMSO∞, which extends EMSO with existential quantification of
infinite sets. Our main characterization results are summarized in the following
theorem.

Theorem 14. Let Σ be an alphabet and let L ⊆ Σ+ω.
The following are equivalent:

(a) L is Büchi-tiling recognizable,
(b) L = L+ω(S) for a generalized Büchi-tiling system S,
(c) L is EMSO∞[τΣ ]-definable.

The equivalence of (a) and (b) is provided by Proposition 6, equivalence of (a)
and (c) is provided by Theorem11. Using combinatorial arguments, we showed
that the Büchi characterization theorem for ω-regular languages does not carry
over to the Büchi-tiling recognizable +ω-picture languages (see Theorem 12).
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Concerning future work, a generalization of our results to the quantitative
setting would be interesting. Recently, in [2], the equivalence of a quantitative
automaton model over finite pictures and a fragment of quantitative monadic
second-order logic has been studied. Can these results be extended to the setting
of +ω-picture languages?
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Abstract. Two of the most celebrated results that effectively exploit
visual representation to give logical characterization and decidable
model-checking include visibly pushdown automata (VPA) by Alur
and Madhusudan and event-clock automata (ECA) by Alur, Fix and
Henzinger. VPA and ECA—by making the call-return edges visible
and by making the clock-reset operation visible, respectively—recover
decidability for the verification problem for pushdown automata imple-
mentation against visibly pushdown automata specification and timed
automata implementation against event-clock timed automata specifica-
tion, respectively. In this work we combine and extend these two works
to introduce dense-time visibly pushdown automata that make both the
call-return as well as resets visible. We present MSO logic characteri-
zation of these automata and prove the decidability of the emptiness
problem for these automata paving way for verification problem for
dense-timed pushdown automata against dense-timed visibly pushdown
automata specification.

Keywords: Visibly pushdown · Event-clock · Logical characterization

1 Introduction

Timed automata [2] are simple yet powerful generalization of finite automata
where a finite set of continuous variables with uniform rates, aptly named clocks,
are used to measure critical timing constraints among various events by permit-
ting reset of these clocks to remember occurrence of an event. Due to the carefully
crafted dynamics, the emptiness of timed automata is a decidable problem using
a technique known as region-construction that computes their time-abstract fini-
tary bisimulation. Timed automata are closed under union and intersection, but
not under complementation and determinization, which makes it impossible to
verify timed automata implementation against timed automata specifications.

Event-clock automata [3] are a determinizable subclass of timed automata
that enjoy a nice set of closure properties: they are closed under union, inter-
section, complementation, and determinization. Event-clock automata achieve
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the closure under determinization by making clock resets visible—the reset of
each clock variable is determined by a fixed class of event and hence visible
just by looking at the input word. Partially thanks to these closure properties
and closure under projection of certain “quasi” subclass, they are known to be
precisely capture timed languages defined by an appropriate class of monadic
second-order logic [7].

Recursive timed automata (RTA) [9] and dense-time pushdown automata
(dtPDA) [1] are generalization of timed automata that accept certain real-time
extensions of context-free languages. In general, the emptiness problem for the
RTA in undecidable, however [9] characterizes classes of RTA with decidable
emptiness problem. The emptiness problem for the dtPDA is known to be decid-
able. RTA and dtPDA naturally model the flow of control in time-critical software
systems with potentially recursive procedure calls. Alur and Madhusudan [4]
argued the need for context-free (representable using pushdown automata) spec-
ification while verifying systems modeled as pushdown systems. The goal of this
paper is to develop decidable verification framework for RTA and dtPDA by
introducing an appropriate class of specification formalism for context-free and
time-critical properties that permit decidable verification.

Already for untimed pushdown automata it is not feasible to verify against
general context-free specification, since pushdown automata are not closed under
determinization and complementation. Alur and Madhusudan [4] introduced vis-
ibly pushdown automata as a specification formalism where the call and return
edges are made visible in a structure of the word. This visibility enabled clo-
sure of these automata under determinization and hence complementation, and
allowed them to be used in a decidable verification framework. Also, again owing
to these closure properties, visibly pushdown automata are known to precisely
capture the context-free languages definable by an appropriate class of monadic
second order (MSO) logic [4].

In this paper we present dense-time visibly pushdown automata (dtVPA)
that form a subclass of dense-time pushdown automata of Abdulla, Atig, and
Stenman [1] and generalize both visibly pushdown automata and event-clock
automata. We show that dtVPA are determinizable, closed under Boolean oper-
ations (union, intersection, and complementation), and a subclass is closed under
projection. We build on these closure properties to give a logical characterization
of the timed languages captured by dtVPA.

Related Work. Tang and Ogawa in [10] proposed a model called event-clock vis-
ibly pushdown automata (ECVPA) that generalized both ECA and VPA. For the
proposed model they showed determinizability as well as closure under boolean
operations, and proved the decidability of the verification problem for timed vis-
ibly pushdown automata against such event-clock visibly pushdown automata
specifications. However, unlike dtVPAs, ECVPAs do not permit pushing the clocks
on the stack and hence dtVPA capture a larger specification class than ECVPA.
Moreover [10] did not explore any logical characterization of ECVPA. Our paper
builds upon the ideas presented in D’Souza [7] for event-clock automata and
Alur and Madhusudan [4] to present a visualized specification framework for



Dense-Time Visibly Pushdown Automata 91

dense-time pushdown automata. For the decidability of the emptiness prob-
lem, we exploit the recent untiming construction proposed by Clemente and
Lasota [6]. For a survey of models related to recursive timed automata and
dense-time pushdown automata we refer the reader to [1,9].

2 Preliminaries

We assume that the reader is comfortable with standard concepts from automata
theory (such as context-free languages, pushdown automata, MSO logic), con-
cepts from timed automata (such as clocks, event clocks, clock constraints, and
valuations), and visibly pushdown automata. Due to space limitation, we only
give a very brief introduction of required concepts in this section, and for a
detailed background on these concepts we refer the reader to [2–4,7].

A finite timed word over Σ is a sequence (a1, t1), (a2, t2), . . . , (an, tn) ∈
(Σ×R≥0)∗ such that ti ≤ ti+1 for all 1 ≤ i ≤ n − 1. Alternatively, we can
represent timed words as tuple (〈a1, . . . , an〉, 〈t1, . . . , tn〉). We use both of these
formats depending on technical convenience. We represent the set of finite timed
words over Σ by TΣ∗. Before we introduce dtVPA in the next section, let us recall
the basic notions of event-clock automata and visibly pushdown automata.

Event-Clock Automata. Event-clock automata (ECA) [3] are a determinizable
subclass of timed automata [2] that for every action a ∈ Σ implicitly associate
two clocks xa and ya, where the “recorder” clock xa records the time of the last
occurrence of action a, and the “predictor” clock ya predicts the time of the next
occurrence of action a. Hence, event-clock automata do not permit explicit reset
of clocks and it is implicitly governed by the input timed word. This property
makes ECA determinizable and closed under all Boolean operations. However,
ECAs are not closed under projection.

In order to develop a logical characterization of ECA D’Souza [7] required a
class of ECA that is closed under projections. For this purpose, he introduced
an equi-expressive generalization of event-clock automata – called quasi-event
clock automata (qECA) – where event recorders and predictors are associated
with a set of actions rather than a single action. Here, the finite alphabet Σ is
partitioned into finitely many classes via a ranking function ρ : Σ → N giving
rise to finitely many partitions P1, . . . , Pk of Σ where Pi = {a ∈ Σ | ρ(a) = i}.
The event recorder xPi

records the time elapsed since the last occurrence of
some action in Pi, while the event predictor yPi

predicts the time required for
any action of Pi to occur.

Notice that since clock resets are “visible” in input timed word, the clock
valuations after reading a prefix of the word is also determined by the timed
word. For example, for a timed word w = (a1, t1), (a2, t2), . . . , (an, tn), the value
of the event clock xρ(a) at position j is tj − ti where i is the largest position
preceding j where an action of Pρ(a) has occurred. If no symbols from Pρ(a) have
occurred before the jth position, then the value of xρ(a) is undefined denoted by
a special symbol �. Similarly, he value of yρ(a) at position j of w is undefined
if no symbols of Pρ(a) occur in w after the jth position. Otherwise, it is defined
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as tk − tj , where k is the first position after j where a symbol of Pρ(a) occurs.
We write Cρ for the set of all event clocks for a ranking function ρ and we use
R

�
>0 for the set R>0∪{�}. Formally, the clock valuation after reading j-th prefix

of the input timed word w, νw
j : Cρ 	→ R

�
>0, is defined in the following fashion:

νw
j (xq) = tj−ti if there exists an 0≤i<j such that ρ(ai) = q and ak /∈Pq for all

i<k<j, otherwise νw
j (xq) = � (undefined). Similarly, νw

j (yq) = tm − tj if there
is j<m such that ρ(am) = q and al /∈Pq for all j<l<m, otherwise νw

j (yq) = �.
A quasi-event clock automaton [7] is a tuple A = (L,Σ, ρ, L0, F,E) where

L is a set of finite locations, Σ is a finite alphabet, ρ is the alphabet ranking
function, L0 ∈ L is the set of initial locations, F ∈ L is the set of final locations,
and E is a finite set of edges of the form (�, �′, a, ϕ) where �, �′ are locations,
a ∈ Σ, and ϕ is a clock constraint over the clocks Cρ. A clock constraint over Cρ

is a boolean combination of constraints of the form z ∼ c where z ∈ Cρ, c ∈ N

and ∼∈ {≤,≥}. Event clock automata are a special kind of quasi-event clock
automata when the ranking function ρ is a one-to-one function.

Quasi event-clock automata and event-clock automata are known to be equi-
expressive [3,7]. Quasi event-clock automata are determinizable and closed under
Boolean operations, concatenation, Kleene closure, and projection. The language
accepted by (quasi) event-clock automata can be characterized by MSO logic
over timed words augmented with timed modalities.

Visibly Pushdown Automata. Visibly pushdown automata [4] are a determiniz-
able subclass of pushdown automata that operate over words that dictate the
stack operations. This notion is formalized by giving an explicit partition of the
alphabet into three disjoint sets of call, return, and local symbols and the visibly
pushdown automata must push one symbol to stack while reading a call symbol,
and must pop one symbol (given stack is non-empty) while reading a return
symbol, and must not touch the stack while reading the local symbol.

A visibly pushdown alphabet is a tuple Σ = 〈Σc, Σr, Σl〉 where Σ is parti-
tioned into a call alphabet Σc, a return alphabet Σr, and a local alphabet Σl.
A visibly pushdown automata over Σ = 〈Σc, Σr, Σl〉 is a tuple (L,Σ, Γ, L0, δ, F )
where L is a finite set of locations including a set L0 ⊆ L of initial loca-
tions, a finite stack alphabet Γ with special end-of-stack symbol ⊥, and Δ ⊆
(L×Σc×L×(Γ\⊥)) ∪ (L×Σr×Γ×L) ∪ (L×Σl×L) and F ⊆ L is final locations.

Alur and Madhusudan [4] showed that visibly pushdown automata are deter-
minizable and closed under Boolean operations, concatenation, Kleene closure,
and projection. They also showed that the language accepted by visibly push-
down automata can be characterized by MSO over words augmented with a
binary matching predicate first studied in [8].

3 Dense-Time Visibly Pushdown Automata (dtVPA)

We introduce the dense-time visibly pushdown automata as an event-clock
automaton equipped with a timed stack along with visibly pushdown alpha-
bet Σ = 〈Σc, Σr, Σl〉. Due to space limitation and notational convenience, we
assume that the partitioning function is one-to-one, i.e. each symbol a ∈ Σ has
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unique recorder xa and predictor ya clocks assigned to it. This permits us to
drop the ranking function ρ for the further discussion. However, note that for
closure under projection, we require the definition with such ranking function.
We refer the reader to [5] for more details.

Syntax and Semantics. Let CΣ (or C when Σ is clear) be a finite set of event
clocks. Let Φ(C) be the set of clock constraints over C and I be the set of
intervals of the form 〈a, b〉 with a ∈ N, a ≤ b and b ∈ N ∪ {∞}.
Definition 1. A dense-time visibly pushdown automata over Σ= {Σc, Σr, Σl}
is a tuple M=(L,Σ, Γ, L0, F,Δ = Δc ∪ Δr ∪ Δl), where L is a finite set of
locations including a set L0 ⊆ L of initial locations, Γ is a finite stack alphabet
with special end-of-stack symbol ⊥, Δc = (L×Σc×Φ(C)×L×(Γ\⊥)) is the set
of call transitions, Δr = (L×Σr×I×Γ×Φ(C)×L) is set of return transitions,
Δl=(L×Σl×Φ(C)×L) is set of local transitions, and F⊆L is final locations set.

Let w = (a0, t0), . . . , (an, tn) be a timed word. A configuration of the dtVPA is a
tuple (�, νw

i , (γσ, age(γσ))) where � is the current location of the dtVPA, νw
i gives

the valuation of all the event clocks at position i ≤ |w|, γσ ∈ ΓΓ ∗ is the content
of the stack with γ being the topmost symbol and σ is the string representing
the stack content below γ, while age(γσ) is a sequence of real numbers encoding
the ages of all the stack symbols (the time elapsed since each of them was pushed
on to the stack). We follow that assumption that age(⊥) = 〈�〉 (undefined). If
for some string σ ∈ Γ ∗ we have that age(σ) = 〈t1, t2, . . . , tn〉 and for τ ∈ R≥0

we write age(σ) + τ for the sequence 〈t1 + τ, t2 + τ, . . . , tn + τ〉. For a sequence
σ = 〈γ1, . . . , γn〉 and a member γ we write γ ::σ for 〈γ, γ1, . . . , γn〉.

The run of a dtVPA on w = (a0, t0), . . . , (an, tn) is a sequence of configuratio-
ns (�0, νw

0 , (〈⊥〉, 〈�〉)), (�1, νw
1 , (σ1, age(σ1))), . . . , (�n+1, ν

w
n+1, (σn+1, age(σn+1)))

where �i ∈ L, σi ∈ Γ ∪ {⊥}, �0 ∈ L0, and for each i, 0 ≤ i ≤ n, we have:

– If ai ∈ Σc, then there is a transition (�i, ai, ϕ, �i+1, γ)∈Δ s.t. νw
i |= ϕ. The

symbol γ ∈ Γ\{⊥} is then pushed onto the stack, and its age is initialized
to zero, obtaining (σi+1, age(σi+1)) = (γ ::σi, 0 :: (age(σi)+ (ti − ti−1))). Note
that all symbols in the stack excluding the topmost age by ti − ti−1.

– If ai ∈ Σr, then there is a transition (�i, ai, I, γ, ϕi, �i+1) ∈ Δ. The configura-
tion (�i, νi, (σi, age(σi))) evolves to (�i+1, νi+1, (σi+1, age(σi+1))) iff νw

i |= ϕi,
σi = γ ::κ ∈ ΓΓ ∗ and age(γ) + (ti − ti−1) ∈ I. Then we obtain σi+1 = κ,
with age(σi+1) = age(κ) + (ti − ti−1). However, if γ = 〈⊥〉, the symbol is not
popped, and the attached interval I is irrelevant.

– If ai ∈ Σl, then there is a transition (�i, ai, ϕi, �i+1) ∈ Δ such that νw
i � ϕi. In

this case stack remains unchanged i.e. σi = σi+1, and age(σi+1) = age(σi) +
(ti − ti−1). All symbols in the stack age by ti − ti−1.

A run ρ of a dtVPA M is accepting if it terminates in a final location.
A timed word w is an accepting word if there is an accepting run of M on w. The
language L(M) of a dtVPA M , is the set of all timed words w accepted by M .

Deterministic dtVPA. A dtVPA M = (L,Σ,L0, F,Δ) is said to be deterministic
if it has exactly one start location, and for every configuration and input action
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exactly one transition is enabled. Formally, we have the following conditions:
for every (�, a, φ1, �

′, γ1), (�, a, φ2, �
′′, γ2) ∈ Δc, φ1 ∧ φ2 is unsatisfiable; for every

(�, a, I1, γ, φ1, �
′), (�, a, I2, γ, φ2, �

′′) ∈ Δr, either φ1 ∧ φ2 is unsatisfiable or I1 ∩
I2 = ∅; and for every (�, a, φ1, �

′), (�, a, φ2, �
′) ∈ Δl, φ1 ∧ φ2 is unsatisfiable.

Example 2. Consider the timed languages of the form anbcnd where the first
c comes precisely 1 time-unit after last a and the first a and the last c are 2
time-units apart, and every other matching a and c are within (1, 2) time-unit
apart, i.e.

{
(anbcnd, 〈t1, . . . , tn, t, t′n, . . . , t′1, t

′〉) | t′n − tn = 1, t′1 − t1 = 2, t′i − ti ∈
(1, 2) for all i≤n

}
. Given a partition Σc = {a}, Σl = {b, d}, Σr = {c} and

Γ = {α} this language can be accepted by the dtVPA shown below.

l0start l1 l2 l3 l4

a, push(α)

b c, xb≤1, pop(α)∈[1, 1]

c, pop(α) ∈ (1, 2)

c, pop(α)∈[2, 2] d, pop(⊥)

Here l0 is the initial location and l4 is only accepting location. The transitions
relation contains the following transitions: the call transition (l0, a, true, l0, α) ∈
Δc, the local transition (l0, b, true, l1) ∈ Δl and the following set of return tran-
sitions (l1, c, [1, 1], α, xb ≤ 1, l2), (l2, c, (1, 2), α, true, l2), (l2, c, [2, 2], α, true, l3),
(l3, d, true,⊥, true, l4) ∈ Δr. In the figure we have omitted clock constraints
that are logically true and depicted testing the age of the top symbol as
pop(·) ∈ I.

The following is one of the central result of the paper.

Theorem 3 (Determinizability, Emptiness and Closure). Dense-time
visibly pushdown automata are determinizable and closed under Boolean opera-
tions, concatenation, Kleene closure and an appropriate extension is closed under
projection. Their emptiness is also decidable.

The proofs for the union, intersection, concatenation, and Kleene closure are
straightforward extensions of the closure of visibly pushdown automata and
event-clock automata under these operations. The proof for the closure under
projection, like [7], uses the extension of the model with the ranking function and
the proof details can be found in [5]. The proof for the determinizability (and
hence the complementation) is slightly more involved. In the next section we
present a proof for the determinizability as well as decidability of the emptiness
problem for dtVPA. Section 5 presents a logical characterization of dtVPA.

4 Emptiness and Determinizability

Event-clock visibly-pushdown automata (ECVPA) [10] can be considered as a
subclass of dtVPA where the ages are not pushed on the stack. Hence a dtVPA
M = (L,Σ,L0, F,Δ) is an ECVPA if for every (�, a, I, γ, φ, �′)∈Δr we have that
I = [−∞,+∞]. Tang and Ogawa, in [10], proved the following for ECVPA.
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Theorem 4. ECVPAs are determinizable and closed under Boolean operations.

We now describe the untiming-the-stack construction to obtain from a dtVPA M
over Σ, an ECVPA M ′ over an extended alphabet Σ′ such that L(M) = h(L(M ′))
where h is a homomorphism h : Σ′×R

≥0 → Σ×R
≥0 defined as h(a, t) = (a, t)

for a∈Σ and h(a, t) = ε for a/∈Σ. Our construction builds upon that of [6].
However, [6] cannot directly be used here since [6] introduces extra clocks that
require resets which is not available under event-clock restriction.

Untiming Construction. We will first sketch the construction informally. In the
following we write k for the maximum constant used in the dtVPA M within any
interval I to check the age of a popped symbol. Let us first consider a call tran-
sition (l, a, ϕ, l′, γ) encountered in M . To construct an ECVPA M ′ from M , we
guess the interval used in a constraint in return transition when γ will be popped
from the stack. Assume the guess is an interval of the form [0, κ). This amounts
to checking that the age of γ at the time of popping is <κ. In M ′, the control
switches from l to a special location (l′a,<κ, {<κ}), and the symbol (γ,<κ, first)
is pushed onto the stack. Let Z∼

k = {∼ c | c∈N, c ≤ k,∼ ∈{<,≤, >,≥,=}} and
let Σ′ = Σ∪Z∼

k be the extended alphabet. All symbols of Z∼
k are local symbols in

M ′ i.e. Σ′ = {Σc, Σl ∪ Z∼
k , Σr}. At location (l′a,<κ, {<κ}), the new symbol <κ is

read and we have the following transition: ((l′a,<κ, {<κ}), <κ, xa = 0, (l′, {<κ})),
which results in resetting the event recorder x<κ corresponding to the new sym-
bol <κ. The constraint xa = 0 ensures that no time is elapsed by the new tran-
sition. The information <κ is retained in the control state until (γ,<κ, first)
is popped. At (l′, {<κ})), we continue the simulation of M from l′. Assume
that we have another push operation at l′ of the form (l′, b, ψ, q, β). In M ′,
from (l′, {<κ}), we first guess the constraint that will be checked when β will
be popped from the stack. If the guessed constraint is again <κ, then control
switches from (l′, {<κ}) to (q, {<κ}), and (β,<κ,−) is pushed onto the stack and
simulation continues from (q, {<κ}). However, if the guessed pop constraint is
<ζ for ζ �= κ, then control switches from (l′, {<κ}) to (qb,<ζ , {<κ,<ζ}). The new
obligation <ζ is also remembered in the control state. From (qb,<ζ , {<κ,<ζ}),
we read the new symbol <ζ which resets the event predictor x<ζ and control
switches to (q, {<κ,<ζ}), pushing (β,<ζ, first) on to the stack. The idea thus
is to keep the obligation <κ alive in the control state until γ is popped; the value
of x<κ at the time of the pop determines whether the pop is successful or not. If
a further <κ constraint is encountered while the obligation <κ is already alive,
then we do not reset the event clock x<κ. The x<κ is reset only at the next call
transition after (γ,<κ, first) is popped, when <κ is again guessed. The case
when the guessed popped constraint is of the form >κ is similar. In this case,
each time the guess is made, we reset the event recorder x>κ at the time of the
push. If the age of a symbol pushed later is >κ, so will be the age of a symbol
pushed earlier. In this case, the obligation >κ is remembered only in the stack.
Handling guesses of the form ≥ ζ∧ ≤ κ is similar, and we combine the ideas
discussed above.

Now consider a return transition (l, a, I, γ, ϕ, l′) in M . In M ′, we are at some
control state (l, P ). On reading a, we check the top of stack symbol in M ′.



96 D. Bhave et al.

It is of the form (γ, S, first) or (γ, S,−), where S is either a singleton set
of the form {<κ} or {>ζ}, or a set of the form {<κ,>ζ}. Consider the case
when the top of stack symbol is (γ, {<κ,>ζ}, first). In M ′, on reading a, the
control switches from (l, P ) to (l′, P ′) for P ′ = P\{<κ} iff the guard ϕ evaluates
to true, the interval I is (ζ, κ) (this validates our guess made at the time of
push) and the value of clock x<κ is <κ, and the value of clock x>ζ is >ζ. Note
that the third component first says that there are no symbols in the stack
below (γ, {<κ,>ζ}, first) whose pop constraint is <κ. Hence, we can remove
the obligation <κ from P in the control state. If the top of stack symbol was
(γ, {<κ,>ζ},−), then we know that the pop constraint <κ is still alive. That is,
there is some stack symbol below (γ, {<κ,>ζ},−) of the form (β, S, first) such
that <κ∈S. In this case, we keep P unchanged and control switches to (l′, P ).

We now give the formal construction. Given dtVPA M = (L,Σ, Γ, L0, F,Δ)
with max constant k used in return transitions, we construct ECVPA M ′ =
(L′, Σ′, Γ ′, L′0, F ′,Δ′) where L′=(L×2Z∼

k )∪(LΣ×Z∼
k

×2Z∼
k )∪(LΣ×Z∼

k ×Z∼
k

×2Z∼
k )

Σ′ = (Σc, Σl ∪ Z∼
k , Σr) and Γ ′ = Γ×2Z∼

k ×{first,−}, L0 = {(l0, ∅) | l0∈L0},
and F = {(lf , ∅) | lf∈F}. The transitions Δ′ are defined as follows. For every
(l, a, ϕ, l′, γ)∈Δc, we have the following classes of transitions in M ′.

1. The first class of transitions correspond to the guessed pop constraint being
<κ. In the first case, <κ is alive, and hence there is no need to reset the clock
x<κ. In the second case, the obligation <κ is fresh and hence it is remembered
as first in the stack, and the clock x<κ is reset.

((l, P ), a, ϕ, (l′, P ), (γ, {<κ},−))∈Δ′
c if <κ∈P

((l, P ), a, ϕ, (l′a,<κ, P ′), (γ, {<κ}, first))∈Δ′
c if <κ/∈P and P ′ = P ∪ {<κ}

((l′a,<κ, P ′), <κ, xa = 0, (l′, P ′))∈Δ′
l

2. The second class of transitions correspond to the case when the guessed pop
constraint is >κ. The clock x>κ is reset, and obligation is stored in stack.

((l, P ), a, ϕ, (l′a,>κ, P ), (γ, {>κ}, −))∈Δ′
c and ((l′a,>κ, P ), >κ, xa=0, (l′, P ))∈Δ′

l

3. Finally the following transitions consider the case when the guessed pop con-
straint is >ζ and <κ. Depending on whether <κ is alive or not, we have two
cases. If alive, then we simply reset the clock x>ζ and remember both the
obligations in the stack. If <κ is fresh, then we reset both clocks x>ζ and x<κ

and remember both obligations in the stack, and <κ in the state.

((l, P ), a, ϕ, (l′a,<κ,>ζ , P ′), (γ, {<κ, >ζ}, first))∈Δ′
c if <κ/∈P, P ′=P ∪ {<κ, >ζ}

((l′a,<κ,>ζ , P ′), >ζ, xa = 0, (l′a,<κ, P ′))∈Δ′
l

((l, P ), a, ϕ, (l′a,>ζ , P ), (γ, {<κ, >ζ}, −))∈Δ′
c if <κ∈P

For every (l, a, ϕ, l′)∈Δl we have the set of transition ((l, P ), a, ϕ, (l′, P ))∈Δ′
l,

and for every (l, a, I, γ, ϕ, l′)∈Δr, we have following transitions in Δ′
r.
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1. ((l, P ), a, (γ, {<κ,>ζ},−), ϕ ∧ x<κ<κ ∧ x>ζ>ζ, (l′, P )) if I = (ζ, κ).
2. ((l, P ), a, (γ, {<κ,>ζ}, first), ϕ ∧ x<κ<κ ∧ x>ζ>ζ, (l′, P ′))

where P ′ = P\{<κ}, if I = (ζ, κ).
3. ((l, P ), a, (γ, {<κ},−), ϕ ∧ x<κ<κ, (l′, P )) if I = [0, κ).
4. ((l, P ), a, (γ, {<κ}, first), ϕ ∧ x<κ<κ, (l′, P ′)) with P ′=P\{<κ} if I=[0, κ).
5. ((l, P ), a, (γ, {>ζ},−), ϕ ∧ x>ζ>ζ, (l′, P )) if I = (ζ,∞).

For the pop to be successful in M ′, the guess made at the time of the push
must be correct, and indeed at the time of the pop, the age must match the
constraint. The control state (lf , P ) is reached in M ′ on reading a word w′

iff M accepts a string w and reaches lf . Accepting locations of M ′ are of the
form (lf , P ) for P ⊆ Z∼

k . For any w = (a1, t1) . . . (an, tn)∈L(M), we have w′ =
(a1, t1)T1(a2, t2)T2 . . . (antn)Tn accepted by L(M ′), where for 1 ≤ l ≤ n, |Tl| ≤
2k, and Tl is a timed word (b1, tl) . . . (bj , tl) where j ≤ 2k and bi∈Z∼

k for 1 ≤ i ≤ j
and the only time stamp used in Ti is ti, since no time elapses in M ′ while
remembering obligations and resetting the appropriate clocks.

Emptiness and Determinizability. In the construction above, it can shown by
inducting on the length of words accepted that h(L(M ′)) = L(M). Thus,
L(M ′) �= ∅ iff L(M) �= ∅. Since M ′ is ECVPA, we can apply the standard region
construction of event clock automata [3] to obtain a PDA preserving emptiness.

Next, we focus on the determinizability of dtVPA. Consider a dtVPA M =
(L,Σ, Γ, L0, F,Δ) and the corresponding ECVPA M ′ = (L′, Σ′, Γ ′, L′0, F ′,Δ′)
as constructed in Sect. 4. From Theorem 4 we know that M ′ is determinizable.
Let Det(M ′) be the determinized automaton such that L(Det(M ′)) = L(M ′).
That is, L(M) = h(L(Det(M ′))). By construction of M ′, we know that the new
symbols introduced in Σ′ are Z∼

k (Σ′ = Σ ∪Z∼
k ) and (i) no time elapse happens

on reading these symbols, and (ii) no stack operations happen on reading these
symbols. Consider any transition in Det(M ′) involving the new symbols. Since
Det(M ′) is deterministic, let (s1, α, ϕ, s2) be the unique transition on α∈Z∼

k .
In the following, we eliminate these transitions on Z∼

k preserving the language
accepted by M and the determinism of det(M ′). In doing so, we will construct
a dtVPA M ′′ which is deterministic, and which preserves the language of M . We
now analyze various types for α∈Z∼

k .

1. Assume that α is of the form >ζ. Let (s1, α, ϕ, s2) be the unique transition on
α∈Z∼

k . By construction of M ′ (and hence det(M ′)), we know that ϕ has the
form xa = 0 for some a∈Σ. We also know that in Det(M ′), there is a unique
transition (s0, a, ψ, s1, (γ, α,−)) preceding (s1, α, ϕ, s2). Since (s1, α, ϕ, s2) is
a no time elapse transition, and does not touch the stack, we can combine
the two transitions from s0 to s1 and s1 to s2 to obtain the call transition
(s0, a, ψ, s2, (γ, α,−)). This eliminates transition on >ζ.

2. Assume that α is of the form <κ. Let (s1, α, ϕ, s2) be the unique transition
on α∈Z∼

k . We know that ϕ has the form xa = 0 for some a∈Σ. From M ′, we
also know that in Det(M ′), there is a unique transition of one of the following
forms preceding (s1, α, ϕ, s2):
(a) (s0, a, ψ, s1, (γ, α,−)), (b) (s0, a, ψ, s1, (γ, α, first)), or
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(c) (s0, >ζ, ϕ, s1) where it is preceded by (s′
0, a, ψ, s0, (γ, {α,>ζ},X)) for

X∈{first,−}.
Since (s1, α, ϕ, s2) is a no time elapse transition, and does not touch the stack,
we can combine two transitions from s0 to s1 (cases (a), (b)) and s1 to s2 to
obtain the call transition (s0, a, ψ, s2, (γ, α,−)) or (s0, a, ψ, s2, (γ, α, first)).
This eliminates the transition on <κ. In case of transition (c), we first elim-
inate the local transition on >ζ obtaining (s′

0, a, ψ, s1, (γ, {α,>ζ},X)) and
then obtain the call transitions (s′

0, a, ψ, s2, (γ, {α,>ζ},X)). We have thus
eliminated local transitions on <κ.

Merging transitions as done here does not affect transitions on Σ as they
simply eliminate the newly added transitions on Σ′−Σ. Recall that checking
constraints on these clocks were required during return transitions. We now
modify the pop operations in Det(M ′) as follows: Return transitions have the
following forms, and in all of these, ϕ is a constraint checked on the clocks of
CΣ in M during return:

– transitions (s, a, (γ, {<κ},X), ϕ ∧ x<κ<κ, s′) for X∈{−, first} are modified
to (s, a, [0, κ), (γ, {<κ},X), ϕ, s′);

– transitions (s, a, (γ, {<κ,>ζ},X), ϕ ∧ x>ζ>ζ ∧ x<κ<κ, s′) for X∈{−, first}
are modified to (s, a, (ζ, κ), (γ, {<κ,>ζ},X), ϕ, s′); and

– transition (s, a, (γ, {>ζ},−), ϕ ∧ x>ζ>ζ, s′) are modified to the transitions
(s, a, (ζ,∞), (γ, {>ζ},−), ϕ, s′).

Now it is straight forward to verify that the deterministic dtVPA M ′′ obtained
from det(M ′) is such that L(M ′′) = L(M) and h(L(M ′′)) = L(det(M ′)). This
completes the proof of determinizability of dtVPA.

5 Logical Characterization of dtVPA

Monadic Second-Order Logic on Timed Words. We consider a timed word
w = (a0, t0), (a1, t1), . . . , (am, tm) over Σ as a word structure over the universe
U = {1, 2, . . . , |w|} of positions in the timed word. The predicates in the word
structure are Qa(i) which evaluates to true at position i iff w[i] = a, where w[i]
denotes the ith position of w. Following [4], we use the matching binary relation
μ(i, j) which evaluates to true iff the ith position is a call and the jth position is
its matching return. We also introduce three predicates �a, �a, and θ capturing
the following relations. For an interval I, the predicate �a(i) ∈ I evaluates to
true on the word structure iff νw

i (xa) ∈ I for recorder clock xa. For an interval
I, the predicate �a(i) ∈ I evaluates to true on the word structure iff νw

i (ya) ∈ I
for predictor clock ya. For an interval I, the predicate θ(i) ∈ I evaluates to true
on the word structure iff w[i] ∈ Σr, and there is some k < i such that μ(k, i)
evaluates to true and ti − tk ∈ I. The predicate θ(i) measures the time elapse
between position k where a call was made, and position i, its matching return.
This time elapse is the age of the symbol pushed on to the stack during the call
at position k. Since position i is the matching return, this symbol is popped at
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position i; if the age lies in the interval I, the predicate evaluates to true. We
define MSO(Σ), the MSO logic over Σ, as:

ϕ := Qa(x) | x∈X | μ(x, y) | �a(x)∈I | �a(x)∈I | θ(x)∈I | ¬ϕ | ϕ∨ϕ | ∃x.ϕ | ∃X.ϕ

where a∈Σ, xa∈CΣ , x is a first order variable and X is a second order variable.
The models of a formula φ ∈ MSO(Σ) are timed words w over Σ. The semantics
of these logic is standard where first order variables are interpreted over positions
of w and second order variables over subsets of positions. As an example consider
the formula ϕ = ∀x(Qa(x) → ∃y[Qc(y)∧θ(y) ∈ (1, 2)]) over Σ = ({a}, {b}, {c})).
It expresses that for every a ∈ Σc, there exists a c ∈ Σr as the matching return
such that the time elapse between the call and return is in the interval (1, 2). The
word w = (a, 0)(a, 0.2)(b, 0.5)(c, 1.3)(b, 1.7)(b, 1.9)(c, 1.99) satisfies ϕ. We define
the language L(ϕ) of an MSO sentence ϕ as the set of all words satisfying ϕ.

Logic to automata. We first show that for any MSO formula ϕ over Σ =
(Σc, Σl, Σr), L(ϕ) is accepted by a dtVPA. Let Z = (x1, . . . , xm,X1, . . . , Xn)
be the free variables in ϕ. We work on the extended alphabet Σ′ = (Σ′

c, Σ
′
l , Σ

′
r)

where Σ′
s=Σs×(V al : Z → {0, 1}m+n), for s ∈ {c, l, r}. A word w′ over Σ′

encodes a word over Σ along with the valuation of all first order and second
order variables. Thus Σ′ consists of all symbols (a, v) where a ∈ Σ is such that
v(x) = 1 means that x is assigned the position i of a in the word w, while
v(x) = 0 means that x is not assigned the position of a in w. Similarly, v(X) = 1
means that the position i of a in w belongs to the set X. Next we use quasi-event
clocks for Σ′ by assigning suitable ranking function. We partition Σ′ such that
for a fixed a ∈ Σ, all symbols of the form (a, d1, . . . , dm+n) and di ∈ {0, 1} lie
in the same partition (a determines their partition). Let ρ′ : Σ′ → N be the
ranking function of Σ′ wrt above partitioning scheme.

Let L(ψ) be the set of all words w′ over Σ′ such that the underlying word w
over Σ satisfies formula ψ along with the valuation V al. Structurally inducting
over ψ, we show that L(ψ) is accepted by a dtVPA. The cases Qa(x), μ(x, y) are
exactly as in [4]. We only discuss the new predicates here.

Consider the atomic formula �a(x) ∈ I. We construct a dtVPA that on read-
ing a symbol (b, v) ∈ Σ′ with v(x) = 1 checks the constraint xa ∈ I for accep-
tance. The case of �a(x) ∈ I is similar, and the check is done on clock ya. Consider
the atomic formula θ(x) ∈ I. To handle this, we build a dtVPA that keeps pushing
symbols (a, v) onto the stack whenever a ∈ Σc, initializing the age to 0 on push. It
keeps popping the stack on reading return symbols (a′, v′), and checks whether
v′(x) = 1 and age((a′, v′)) ∈ I. It accepts on finding such a pop. The check
v′(x) = 1 ensures that this is the matching return of the call made at position x.
The check age((a′, v′)) ∈ I confirms that the age of this symbol pushed at posi-
tion x is indeed in the interval I. Negations, conjunctions and disjunctions follow
from the closure properties of dtVPA. Existential quantifications correspond to
projection by excluding the chosen variable from the valuation and renaming
the alphabet Σ′. Let M be an dtVPA constructed for ϕ(x1, . . . , xn,X1, . . . , Xm)
over Σ′. Consider ∃xi.ϕ(x1, . . . , xn,X1, . . . , Xm) for some first order variable
xi. Let Zi = (x1, . . . , xi−1, xi+1, . . . , xn,X1, . . . , Xm) by removing xi from Z.
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We simply work on the alphabet Σ′
i = Σ × (V al : Zi → {0, 1}m+n−1). Note

that Σ′
i is partitioned exactly in the same way as Σ′. For a fixed a ∈ Σ, all

symbols (a, d1, . . . , dm+n−1) for di ∈ {0, 1} lie in the same partition. Thus,
Σ′ and Σ′

i have exactly the same number of partitions, namely |Σ|. Thus,
an event clock xa = x(a,d1,...,dm+n) used in M can be used the same way
while constructing the automaton for ∃xi.ϕ(x1, . . . , xn,X1, . . . , Xm). The case of
∃Xi.ϕ(x1, . . . , xn,X1, . . . , Xm) is similar. Hence we obtain in all cases, a dtVPA
that accepts L(ψ) when ψ is an MSO sentence.

Automata to logic. Consider a dtVPA M = (L,Σ, Γ, L0, F,Δ). Let L = {l1, . . . ln}
and Γ = {γ1, . . . , γm}. The MSO formula encoding accepting runs of dtVPA is:
∃Xl1 . . . XlnCγ1 . . . Cγm

Rγ1 . . . Rγm
ϕ(Xl1 , . . . , Xln , Cγ1 , . . . , Cγm

, Rγ1 , . . . , Rγm
),

where Xq denotes the set of positions in the word where the run is in loca-
tion q, Cγ , Rγ stand for the set of positions in the run where γ is pushed
and popped from the stack respectively. We assert that the starting position
must belong to Xl for some l ∈ L0. Successive positions must be connected
by an appropriate transition. To complete the reduction we list these con-
straints. For call transitions (�i, a, ψ, �j , γ) ∈ Δc, for positions x, y, we assert
that X�i(x) ∧ X�j (y) ∧ Qa(x) ∧ Cγ(x) ∧ ∧

b∈Σ

(( ∧
(xb∈I)∈ψ �b(x) ∈ I

) ∧ ( ∧
(yb∈I)∈ψ �b(x) ∈ I

))
.

For return transitions (�i, a, I, γ, ψ, �j) ∈ Δr for positions x and y we assert that
X�i(x) ∧ X�j (y) ∧ Qa(x) ∧ Rγ(x) ∧ θ(x)∈I ∧ ∧

b∈Σ

(( ∧
(xb∈I)∈ψ �b(x)∈I

)∧( ∧
(yb∈I)∈ψ �b(x)∈I

))
.

Finally, for local transitions (�i, a, ψ, �j) ∈ Δl for positions x and y

we assert X�i(x) ∧ X�j (y) ∧ Qa(x) ∧ ∧
b∈Σ

(( ∧
(xb∈I)∈ψ �b(x) ∈ I

) ∧ ( ∧
(yb∈I)∈ψ �b(x) ∈ I

))
. We

also assert that the last position of the word belongs to some Xl such that
there is a transition (call, return,local) from l to an accepting location. The
encoding of all 3 kinds of transitions is as above. Additionally, we assert
that corresponding call and return positions should match, i.e. ∀x∀y μ(x, y) ⇒∨

γ∈Γ\⊥ Cγ(x) ∧ Rγ(y).
These two parts together finish the proof of the main result of the paper.

Theorem 5. A language L over Σ is accepted by an dtVPA iff there is a MSO
sentence ϕ over Σ such that L(ϕ) = L.
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Abstract. We define a complexity measure on non-deterministic Büchi
automata, based on the notion of the width of the skeleton tree intro-
duced by Kähler and Wilke. We show that the induced hierarchy tightly
correlates to the Wagner Hierarchy, a corner stone in the theory of regular
ω-languages that is derived from a complexity measure on determinis-
tic Muller automata. The relation between the hierarchies entails, for
instance, that a nondeterministic Büchi automaton of width k can be
translated to a deterministic parity automaton of degree at most 2k +1.

Keywords: Automata and logic · Automata for system analysis and
program verification · Classification of regular ω-languages

1 Introduction

There are various way to define acceptance on infinite words, deriving different
types of ω-automata. Büchi automata have the simplest acceptance criterion:
a run is declared accepting if the set of states visited infinitely often intersect
a designated set of accepting states F . Their dual, co-Büchi automata declare
a run accepting if the set of states visited infinitely often does not intersect a
designated set of rejecting states F . Muller automata have the most general
acceptance criterion: a run is accepting if the set of states visited infinitely often
is exactly one of a set of designated subsets of states F1, F2, . . . , Fk. Other types
of ω-automata include Rabin, Streett and parity.

The different ω-automata have varying levels of complexity and expressivity.
Using the convention that DT (NT) for T ∈ {B, C, R, S, M, P} denotes the class of
languages accepted by deterministic (nondeterministic) automata of type Büchi,
co-Büchi, Rabin, Street, Muller or parity, resp., the following relations are known.
The class DB is less expressive than NB which is as expressive as DM, DP,
DR, DS, which recognize all regular ω-languages. The classes DB and DC have
incomparable expressive power, in the sense that there exists languages in DB \
DC and in DC \ DB.

Wagner [13] has suggested a complexity measure on Muller automata, and
showed that this complexity measure is language-specific and is invariant over
all automata accepting the same language. This result, referred to as the Wagner
Hierarchy, is a corner stone in the theory of regular ω-languages. The classes DB
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and DC coincide with classes of the lower levels of this hierarchy. For a language
L the minimal number of colors required by a recognizing deterministic parity
automaton, and the minimal number of pairs required by a deterministic Rabin
or Streett automaton tightly correlates to the minimal class in the hierarchy in
which the recognized language L resides.

In this paper we define a complexity measure on nondeterministic Büchi
automata (nba). The measure is based on the notion of the width of the
skeleton-tree, a structure for summarizing runs of nbas, introduced by Kähler
and Wilke [7]. A language L is said to be of degree k, or belong to NBk, if there
exists an nba N recognizing L such that the width of the skeleton-tree of all
words with respect to N is at most k. We show that this measure induces a
strict hierarchy of classes of languages, and that this hierarchy tightly corre-
lates to the Wagner hierarchy. The relation between the hierarchies entails, for
instance, that an nba of width k can be translated to a parity automaton using
at most 2k + 1 colors, and a language L ∈ NBk+1 \ NBk cannot be translated to
a parity automaton using less than 2k colors.

We provide definitions for ω-automata, a summary of the Wagner hierarchy,
and a definition of the skeleton-tree in Sect. 2. The contribution of the paper
starts in Sect. 3 where we define the complexity measure on Büchi automata,
and state the main theorem of the paper, that the induced hierarchy tightly cor-
relates to the Wagner hierarchy. Section 4 proves the direction from the proposed
hierarchy to the Wagner hierarchy and Sect. 5 the other direction. In a sense,
the direction from the Wagner hierarchy to the proposed hierarchy provides an
insight on the need for non-determinism in the Büchi model, and a quantifica-
tion of the amount of non-determinism needed relative to the complexity of the
Muller automaton.

2 Preliminaries

Automata on Infinite Words. An automaton is a tuple A = 〈Σ,Q, q0, δ, α〉
consisting of a finite alphabet Σ of symbols, a finite set Q of states, an initial
state q0, a transition function δ : Q × Σ → 2Q, and an acceptance condition α.
A run of an automaton on an infinite word v = a1a2 . . . is an infinite sequence
of states p0, p1, p2 . . . , such that p0 = q0 and pi+1 ∈ δ(pi, ai) for every i ∈ N.
The transition function can be extended to a function from Q × Σ∗ (to Q) by
defining δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v) for q ∈ Q, a ∈ Σ and v ∈ Σ∗,
where ε denotes the empty word. We say that A is deterministic if |δ(q, a)| ≤ 1
for every q ∈ Q and a ∈ Σ.

An automaton accepts a word if at least one of the runs on that word is
accepting. We use [[A]] to denote the set of words accepted by A. We use L
to denote the language Σω \ L. For finite words the acceptance condition is a
set F ⊆ Q and a run on v is accepting if it ends in an accepting state, i.e., if
δ(q0, v) ∈ F . For infinite words, there are many acceptance conditions in the
literature; here we mention four: Büchi, co-Büchi, parity and Muller. In Büchi
and co-Büchi automata the acceptance condition refers to a subset F of the
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states set. In parity automata the acceptance condition refers to a mapping
κ : Q �→ [1..k] from the set of states to the set of colors [1..k].1 In Muller
automata the acceptance condition is a function τ : 2Q → {+,−} assigning
positive/negative polarity to subsets of states.

Let ρ be an infinite sequence of states s0, s1, s2 . . .. We use κ(ρ) to denote
the respective sequence of colors κ(s0), κ(s1), κ(s2) . . .. We use Inf(ρ) to denote
the set of states that appear infinitely often in ρ. An infinite path ρ satisfies the

– Büchi condition w.r.t F iff Inf(ρ) ∩ F 
= ∅.
– co-Büchi condition w.r.t F iff Inf(ρ) ∩ F = ∅.
– parity condition w.r.t κ iff min(Inf(κ(ρ))) is odd.
– Muller condition w.r.t τ iff τ(Inf(ρ)) = +.

We use dba, dca, dpa, and dma, to denote deterministic Büchi, co-Büchi, parity
and Muller automata and nba, nca, npa, and nma to denote the respective non-
deterministic automata. Similarly, we use DB, DC, DP and DM to denote the
class of languages recognized by dba, dca, dpa and dma, respectively, and NB,
NC, NP, NM to denote the class of languages accepted by nba, nca, npa, and
nma, respectively. For parity automata we use DPk to denote the set of languages
recognized by a dpa with k colors, and refer to it as the DPk hierarchy.

The Chain Measure. Let D = 〈Σ,Q, q0, δ, τ〉 be a complete dma (i.e. a dma
where |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ). A set of states S ⊆ Q is said to
be admissible if S is a reachable strongly connected component (scc) of D. An
admissible set S is said to be positive or accepting (resp. negative or rejecting) iff
τ(S) = + (resp. τ(S) = −). A chain of admissible sets S0 ⊂ S1 ⊂ · · · ⊂ Sm−1 is
a D-chain iff the sets are alternately positive and negative. The length of such a
chain is m. The polarity of a D-chain is determined according to the polarity of
its bottom set. That is, the above D-chain is said to be positive (resp. negative)
iff S0 is positive (resp. negative). We use k(D), k+(D) and k−(D) to denote
the maximal length of a D-chain, a positive D-chain and a negative D-chain,
resp. In the sequel we will focus on k+(D) to which we refer as the positive-
chain measure. Note that 0 ≤ k(D) ≤ |Q|. Also |k+(D) − k−(D)| ≤ 1 simply by
omitting the bottom set.

Definition 1 (The Classes DM
+
k and DM

−
k [13]). Let k ∈ N. The class of

languages DM
+
k and DM

−
k are defined as follows.

– DM
+
k = { L | ∃ dma D : L = [[D]], k+(D) ≤ k}

– DM
−
k = { L | ∃ dma D : L = [[D]], k−(D) ≤ k}

The Wagner hierarchy consists of an additional measure, the length of the
longest sequence of chains that are reachable from each other and have alternat-
ing polarities, and takes into account also the polarity of the chains. We omit
the details for lack of space and since this measure is of less importance to this
paper. Wagner [13] has shown that the hierarchy is strict and that these mea-
sures are invariant overall dmas accepting the same language. He further showed
1 For j, k ∈ N s.t. j ≤ k, we use [j..k] to denote the set {j, j+1, j+2, . . . , k}.
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that the chain hierarchy tightly correlates to the minimal numbers of chains in
a Rabin automaton. A similar result regarding parity automata (see f.g. [2,3])
states that L ∈ DM

+
k iff L ∈ DPk. The relation between dbas and the class

DM
+
1 was already shown by Landweber [10]. The Wagner hierarchy has been

rediscovered several times [1,8].

Theorem 1 [2,3,10,13].

1. L ∈ DM
+
k ⇐⇒ L ∈ DM

−
k

2. DM
−
k � DM

−
k+1 and DM

+
k � DM

+
k+1

3. L ∈ DM
+
1 ⇐⇒ L ∈ DB and L ∈ DM

−
1 ⇐⇒ L ∈ DC.

4. L ∈ DM
+
k ⇐⇒ L ∈ DPk

The Skeleton Tree. The complexity measure we propose is based on the notion
of the width of the skeleton tree introduced by Kähler and Wilke [7]. Kähler and
Wilke, aiming to provide constructions unifying Büchi determinization, com-
plementation and disambiguation introduced the notions of the split tree, the
reduced tree and the skeleton tree, where the latter has been said to be identified
from the work of Muller and Schupp [11]. All three are mechanisms to summarize
runs of nbas. For lack of space we suffice here with an informal description.

The split-, reduced- and skeleton-trees are defined per a given word w and
w.r.t. a given nba N . A key invariant that is maintained is that if there exists
an accepting run of N on w then there is an accepting infinite path in all of
these trees. Roughly speaking, the split tree refines the subset construction by
separating accepting and non-accepting states. From each node of the tree the left
son holds its accepting successors and the right son its non-accepting successor.
Thus, an accepting path has infinitely many left turns, and is also referred to as
left recurring. The width of a layer of the split-tree is generally unbounded. The
reduced tree bounds the number of nodes on a layer of the tree to n, the number
of states of the given Büchi automaton N , by eliminating from a node of the tree
all states that appeared in a node to its left. The skeleton-tree is the smallest
sub-tree of the reduced-tree that contains all its infinite paths. The width of the
skeleton tree thus equals the number of infinite paths in the reduced tree. We
use width(N , w) to denote the width of the skeleton tree for w w.r.t to N .

3 A Complexity Measure on NBAs

Given an nba N we say that the width of N is the maximal width of a skeleton
tree on any given word. Formally

width(N ) = max {width(N , w) | w ∈ Σω}
It is not hard to see that two nbas N1 and N2 may have different widths

even if [[N1]] = [[N2]] since we can add nondeterministic transitions to accepting
and non-accepting states without changing the language. For instance, consider
the nbas N1 and N2 over alphabet Σ = {a} depicted in Fig. 1. We have [[N1]] =
[[N2]] = {aω}, yet width(N1, a

w) = 1 and width(N2, a
w) = 2. Moreover, since aω

is the only word in Σω we have width(N1) = 1 and width(N2) = 2.
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Fig. 1. Two nbas N1 and N2 such that [[N1]] = [[N2]] yet width(N1) �= width(N2).

Definition 2 (The Classes NBk). Let k ≥ 1 be a natural number. The class
of languages NBk is defined as follows.

NBk = {L | ∃ nba N : L = [[N ]], width(N ) ≤ k}
The main contribution of this paper can be summarized by the following two

theorems. Theorem 2 states that the hierarchy is strict. For every level k of the
hierarchy there exists a language L such that L cannot be recognized by any nba
of width k or smaller. Theorem 3 states that this hierarchy is tightly correlated
to the Wagner hierarchy.

Theorem 2. NBk � NBk+1

Proof. This is a corollary of Theorem 1 and the forthcoming Theorem3. ��
Theorem 3. Let L be an ω-language, and let k ≥ 0 be a natural number. Then

– L ∈ NBk =⇒ L ∈ DM
+
2k+1

– L ∈ DM
+
k =⇒ L ∈ NB� k

2 �+1

Proof. The first and second items are respectively given by the forthcoming
Corollary 7 and Proposition 12. ��
Deciding the Width. In view of these relations, an important question is to
find the width of a given nba N .

Proposition 4. The problem of finding the width of an nba is solvable in time
nO(n) where n is the number of states in the given nba.

Proof. Fisman and Lustig [4, Proposition 2] provide a construction for a dba
Bk that accepts a word w iff width(N , w) < k when N is a given nba. A dba
can be seen as a dpa with 2 colors (accepting states are colored 1 and non-
accepting states are colored 2). Given a dpa Pk one can construct a dpa Pk for
its complement by assigning κ(q) = κ(q) + 1 (where κ is the coloring function
of Pk and κ is the coloring function of Pk). The constructed dpa Pk accepts a
word w iff width(N , w) ≥ k. Thus, width(N ) < k iff Pk is empty. Emptiness
of a dpa can be solved in time polynomial in the number of states and colors.
Applying a binary search would add a factor of log n where n is the number of
states in N . When n is the number of states in N , the dba Bk may have upto
nO(n) states. Since the dpa Pk has the same number of states as Bk (and the
time spent to build Bk is polynomial in the size of Bk), we can decide the width
in time nO(n). ��
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Krishnan, Puri and Brayton [9] show that determining the Rabin index
(Streett index) of a given a dra (dsa) is np-complete, yet it is decidable in
polynomial time whether a dra (dsa) with f pairs has Rabin index (Streett
index) f or any constant c.2 Wilke and Yoo [14] show that the chain measure
of a given dma over an alphabet of size 
 with n states, m strongly connected
components, and f accepting sets can be decided in time O(f2n
 + m log m).
Note that m and f may be exponential in n. Since the width is not an invariant
among all nbas accepting a given language, the question of finding the minimal
k for which [[N ]] ∈ NBk where the input is N is not answered by Proposition 4.
It can be answered e.g. by translating it to a dra or dma and inferring the
result using the above mentioned results and the relations of the hierarchies, but
a lower bound remains open.

4 From NBk to DMk′

The proof of the first part of Theorem3 goes via dpas, using the relations
between their rank and the chain measure as stated in Theorem1.

Proposition 5. L ∈ NBk =⇒ L ∈ DP2k+1.

Proof. The known constructions from nba to dpa, given an nba N with n states
produce a dpa of rank 2n [4,12]. The construction of Fisman and Lustig [4] is
based on the notion of the width of the skeleton tree. Given an nba N , they
first show how to construct a dpa Pk that provides a correct answer only for
words of width exactly k w.r.t. N , as stated in Lemma 6.

Lemma 6 [4, Proposition 4]. Let N be an nba with n states, and let k ∈ [1..n].
There exists a dpa Pk using colors {0, 1, 2} such that for any word w

– if width(N , w) = k then Pk accepts w iff N does,
– if width(N , w) < k then Pk rejects w,
– if Pk accepts w then w is accepted by N , and
– Pk visits 0 infinitely often iff width(N , w) < k.

They then show that a dpa recognizing the same language as N can be
constructed by running the dpas for width 1 to n in parallel, where n is the size
of N . The colors are distributed so that Pk uses colors 2k, 2k + 1 and 2n + 2,
and the color of the compound state (s1, s2, . . . , sn) where si is the state of Pi

is min{c1, c2, . . . , cn} where ci is the color of si. The obtained dpa has rank
2n + 2. Clearly the same reasoning shows that given the width of N is at most
k, the dpa obtained by running in parallel the automata P1,P2, . . . ,Pk provides
a correct result, and uses 2k + 1 colors. ��

The following is a direct corollary of Proposition 5 and Theorem 1.

Corollary 7. L ∈ NBk =⇒ L ∈ DM
+
2k+1.

2 The Rabin index (Streett index) is the least possible number of accepting pairs used
in a dra (dsa) recognizing the language.
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Fig. 2. A dma M2 in DM
+
1 and a minimal equivalent dba B2.

5 From DM
+
k to NBk′

We show here the second item of Theorem 3. We start with the simple cases
DM

+
1 and DM

−
1 , and then generalize the ideas of these constructions to obtain

the construction for DM
+
k for arbitrary k.

By Theorem 1, L ∈ DM
+
1 ⇐⇒ L ∈ DB. Any dba has width 1 when regarded

as an nba. It follows that L ∈ DM
+
1 implies L ∈ NB1. We note, however, that

given a dma M such that M ∈ DM
+
1 it is not always the case that we can

define a dba on the same structure as M. Consider, for instance, the dma M2

of Fig. 2 defined over alphabet Σ = {a, b, c}. It accepts the language (Σ∗aΣ∗b)ω.
No rejecting set subsumes an accepting set, thus the maximal length of a positive
chain is 1 and [[M2]] ∈ DM

+
1 . While M2 has two states there is no dba with

two states that accepts the same language. A minimal dba for [[M2]] requires at
least 3 states. The dba B2 of the same figure is a minimal dba for [[M2]].

Proposition 8 below follows from the fact that L ∈ DM
+
1 ⇐⇒ L ∈ DB.

We provide a direct construction based on the lar (latest appearance record)
data structure due to Gurevich and Harrington [6], for completeness and to
introduce lar which will be used in the proof of the relations of higher levels of
the hierarchy as well.

Proposition 8. L ∈ DM
+
1 implies L ∈ NB1.

Proof. Let M be a dma in DM
+
1 . From the definition of the hierarchy class

DM
+
1 it follows that no superset of an accepting scc in M can be rejecting.

On the other hand, a subset of an accepting set may be rejecting. To be able
to use a Büchi condition we need to define a set of states F such that a visit
to F guarantees that all states of some accepting set were visited. The solution
uses the lar (latest appearance record) data structure due to Gurevich and
Harrington [6]. The idea is to construct a deterministic automaton whose states
are permutations of the states of M augmented by a hit position, denoted �. If
the current state is p1p2 . . . pi�pi+1 . . . pn and δ(pn, a) = q and q = pj , then

δB(〈p1p2 . . . pi�pi+1 . . . pn〉, a) = 〈p1p2 . . . pj−1�pj+1 . . . pnpj〉

That is, the transition relation moves the state pj currently visited by M to the
rightmost position in the list, and moves the � symbol to the position on the list
where pj resided previously.



A Complexity Measure on Büchi Automata 109

We formalize this using the following definitions, that will also be used in later
proofs. Formally, let Q = {q0, q1, . . . , qn−1}, δ : Q × Σ → Q, τ : 2Q → {+,−}, �
a symbol not in Q, and A ⊆ Q a subset of cardinality 
 with states p1, p2, . . . , p�

so that if pi = qj and pi+1 = qk then j < k. Let
– larset(A) = {w ∈ (A ∪ {�})∗ | ∀q ∈ A ∪ {�}, |w|q = 1}3
– larinit(A, pi) = 〈p1p2 . . . pi−1�pi+1pi+2 . . . p�pi〉
– lartrans(A) = {(〈p1p2 . . . pi�pi+1 . . . p�〉, a, 〈p1p2 . . . pj−1�pj+1 . . . p�pj〉) |

δ(p�, a) = pj}
– laracc(A, τ) = {u�v | set(uv) = A, τ(set(v)) = +} where set(v) denotes the

set of states in the word v.

Let M = 〈Σ,Q, q0, δ, τ〉. Let B be the dba 〈Σ, larset(Q), larinit(Q, q0),
lartrans(Q), laracc(Q, τ)〉.
Lemma 9 [5, Lemma 1.21]. Let ρ be a run of M on a given word w and let
ρB = s0s1s2 . . . be the run of B on w where si = ui�vi. Then Inf(ρ) = S iff the
following conditions hold
– for some i0 ∈ N for all i > i0 we have set(vi) ⊆ S and
– for infinitely many i’s we have set(vi) = S

Since M ∈ DM
+
1 guarantees that no superset of an accepting set may be reject-

ing, it is enough to require that we infinitely often visit a state u�v where all
states of v form an accepting set of M, this is exactly the acceptance condition
of B. Therefore, [[B]] = [[M]]. Since B is deterministic, the width of B is one.
Hence, L ∈ NB1. ��

For L ∈ DM
−
1 there is no guarantee that an equivalent dba exists. We are

guaranteed, though, that an equivalent dca exists. In Proposition 11 we show
that this entails that L ∈ NB2.

First we need some terms and a lemma.
Let ρ = q0q1q2 . . . be a run of a given automaton A on a given word w. We

say that the run ρ gets trapped in an scc S if starting from some z ∈ N for every
z′ > z the state qz′ of this run belongs to S. In an automaton with finitely many
states, every run on an infinite word should eventually get trapped in some scc.
We let trap(ρ) denote the minimal scc that ρ gets trapped in. If the automaton
is non-deterministic, there may be several runs on a given word and each run
may get trapped in a different scc. For a skeleton path � = Q0Q1Q2 . . . we say
that it gets trapped in {S1, . . . , Sk} if starting from some z ∈ N for every z′ > z
we have Qz′ ⊆ ∪i∈[1..k]Si. We let trap(�) = {S1, . . . , Sk} denote the minimal set
of minimal sccs that � gets trapped in.
Lemma 10. Let N = 〈Σ,Q, q0, δ, F 〉 be an nba with an scc S satisfying the
following two conditions:
– For every letter a ∈ Σ and every state q ∈ S, |δ(q, a)| = 1.
– For every pair of states q, p ∈ S we have [[Nq0,q]] ∩ [[Nq0,p]] = ∅.4
3 We use |w|a to denote the number of occurrences of the letter a in w.
4 The notation Nq,q′ is used to denote the nfa 〈Σ, Q, q, δ, {q′}〉 obtained from N by

making q the initial state, q′ the final state, and regarding it as a nondeterminsitc
automaton on finite words.
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Let SKA
w be the skeleton-tree of w w.r.t N . Let �1 and �2 be two skeleton paths

in SKA
w . Then S ∈ trap(�1) implies S /∈ trap(�2).

Proof. Consider a word w = a1a2a3 . . ., and let ρ1 and ρ2 be two different runs
of N on w. Assume now both ρ1 and ρ2 get trapped in S. We claim that there
exists a point in which both runs reach the same state. That is, if ρ1 = q0q1q2 . . .
and ρ2 = p0p1p2 . . . then there exists z ∈ N such that for every z′ > z we have
qz′ = pz′ . Assume ρ1, ρ2 enter the scc S at time points z1, z2, resp. and w.l.o.g.
z1 ≤ z2. Then ρ1 (resp. ρ2) entered S after reading the prefix a1a2 . . . az1 of w
(resp. a1a2 . . . az2). We claim that pz2 = qz2 . If not, then exists two states p, q ∈ S
such that p = pz2 
= qz2 = q and a1a2 . . . az2 ∈ [[Nq0,p]]∩ [[Nq0,q]] contradicting the
second premise of the lemma. Now that we established pz2 = qz2 , since by the
first premise all transitions within S are deterministic, it follows that pz′ = qz′

for every z′ > z2. Since all runs that get trapped in S eventually reach the same
state, it follows that they must conjoin to the same path � of SKA

w . ��
Proposition 11. L ∈ DM

−
1 implies L ∈ NB2.

Proof. Let M be a dma in DM
−
1 . From the definition of the hierarchy class DM

−
1

it follows that no subset of an accepting scc in M can be rejecting. We show
that we can build an equivalent nba B of width 2 using the following idea. The
nba B will consists of all of M’s states and transitions. In addition, for each
maximal accepting scc A of M , B will have the ability to non-deterministically
transit to a copy A′ of A. The primed copy of A will have all the inner transitions
of A, but no transitions out of A′. This way B can at any point during the run
choose to move to a primed copy A′ of one of the accepting sccs A. Once this
choice was made, B can only remain in A′ or fall off the automaton. The set of
accepting states of B consists of all states in the primed copies. If B visits such a
state in say the accepting scc A′

i infinitely often then the run of M gets trapped
in Ai, and if the run of M gets trapped in Ai, then there exists a run of B that
will get trapped in A′

i. Therefore, both recognize the same language.
Formally, let M = 〈Σ,Q, λ, δ, τ〉. Let A1, A2, . . . , Ak be the maximal accept-

ing sccs of M.5 The nba B = 〈Σ,QB, q0B, δB, FB〉 is defined as follows. The
states of QB are Q ∪ A′

1 ∪ A′
2 . . . ∪ A′

k where A′
i = {q′ | q ∈ Ai}. The initial state

q0B is q0. The accepting states FB are ∪i∈[1..k]A
′
i. The transitions δB are defined

as follows. If (q, a, p) ∈ δ then (q, a, p) ∈ δB. In addition, if q ∈ Q and p ∈ Ai

then (q, a, p′) ∈ δB. If q ∈ Ai and p ∈ Ai then (q′, a, p′) ∈ δB.
Suppose a run q0q1q2 . . . of M on a given word w gets trapped in an accepting

scc Ai. Since no subset of Ai is rejecting, this run is accepting. Let z0 be such
that qz ∈ Ai for every z > z0. Then B can mimic M up to point z0 − 1, at
z0 it can make a nondeterministic transition to A′

i and then stay there forever
long. That is, the run q0q1q2 . . . qz0−1q

′
z0

q′
z0+1q

′
z0+2 . . . where q′

z0+i is the primed
version of qz0+i is a run of B, and this run is accepting. For the other direction, if

5 An scc A of M is said to be maximal accepting if no accepting scc A′ subsumes it.
Note that A is not required to be an mscc. E.g. if R = A ∪ {q} is an mscc, and R is
rejecting and A is accepting, then A is a maximal accepting scc, but not an mscc.



A Complexity Measure on Büchi Automata 111

there exists an accepting run of B on a given word w, it means that starting from
some point the run moved to one of the A′

i’s and stayed there forever long. This
entails that when M reads w, it will get trapped in the scc Ai. (If this was not
the case, that run of B on w would encounter a letter for which no transitions
is available.) Thus [[M]] = [[B]].

Next we show that the width of B is 2. Let ρw be the run of M on a given
word w and let trap(ρw) = T . If T is rejecting then B can only get trapped
in T , since on any choice to move to some A′

i it will end up falling of A′
i since

M ∈ DM
−
1 implies T 
⊆ Ai. (If this was not the case then, since for any transition

in A′
i there is a transition from Ai to Ai, this would entail that M would have

got trapped in Ai which is not the case.) If T is accepting then it equals some Aj

for j ∈ [1..k]. Then a run of B on w can get trapped either in Aj or in A′
j , but it

cannot get trapped in any other Ai or A′
i. Since, from the same arguments as in

the rejecting case, if at some point B chooses to transit to A′
i it will eventually fall

off of it. We have shown that each run of B may get trapped in at most 2 msccs.
Since all msccs of B (the originals of M and the new msccs A′

i) satisfy the
premises of Lemma 10, and since for each skeleton path � we have trap(�) 
= ∅,
the maximum width of any run of B is 2. Thus [[M]] ∈ NB2. ��

We can now generalize these two ideas to obtain a construction for DM
+
k for

arbitrary k.

Proposition 12. L ∈ DM
+
k =⇒ L ∈ NB� k

2 �+1.

Proof. Let M be a dma in DM
+
k . From the definition of the hierarchy classes

DM
+
k it follows that the maximum length of a positive chain is k. We build

an equivalent nba B of width at most �k
2 � + 1 using the following idea. As in

the proof of Proposition 11, B will consists of all states of the given dma M,
and will have nondeterministic transitions to copies of accepting sccs. Unlike in
that proof, we will need to consider not just the maximal accepting sccs but
all accepting sccs. As in the proof of Proposition 8, since an accepting scc A
may contain rejecting sccs, we will use a lar construction to make sure that
all states of an accepting scc are visited infinitely often.

Formally, let M = 〈Σ,Q, λ, δ, τ〉. Assume A1, A2, . . . , Am are the accepting
sccs of M. We define the nba B = 〈Σ,QB, q0B, δB, FB〉 as follows.

– q0B = q0
– QB = Q �i∈[1..m] larset(Ai)
– δB = δ �i∈[1..m] lartrans(Ai)∪

{(q, a, larinit(Ai, p)) | (q, a, p) ∈ δ, q ∈ Q \ Ai, p ∈ Ai}
– FB = �i∈[1..m]laracc(Ai, τi) where τi(S) = + iff S = Ai.

We claim that B recognizes the same language as M. Let w be a word and
let ρ be the run of M on w. Let Inf(ρ) = S. If τ(S) = + then S = Ai for some
i ∈ [1..m]. Assume ρ gets trapped in S after time point z. Thus B, at some
time point after z, can choose a transition of the form (q, a, larinit(Ai, p)) and
move to larset(Ai). Since M gets trapped in Ai, B will not fall off larset(Ai),
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and by Lemma 9, infinitely often B will visit a state of the form �iv such that
set(v) = Ai. Thus B will accept. Suppose now τ(S) = −. If B did not move to any
of the larset(Ai), clearly it will not accept. Suppose it did move to larset(Ai)
for some i. If Ai does not subsume S then B will fall off larset(Ai). Assume
thus Ai ⊇ S. Then by Lemma 9, eventually only states of the form u�iv where
set(v) ⊆ S will be visited. Since Ai � S, by Lemma 9, it will not be the case
that infinitely often states of the form �iv with set(v) = Ai will be visited, thus
B will reject. Hence, [[B]] = [[M]].

We turn to reason about B’s width. Let ρw be the run of M on w and assume
trap(ρw) = T . Let ρ be a run of B, then from the same arguments as in the proof
of Proposition 11 we have that either trap(ρ) = T or trap(ρ) = larset(Ai) for
some Ai ⊇ T . Note that by definition of B, for every i ∈ [1..m] the set larset(Ai)
is an mscc, and all the msccs of B satisfy the premises of Lemma 10. Thus if �1
and �2 are two skeleton paths of SKB

w then trap(�1) ∩ trap(�2) = ∅. We claim
further that if larset(A1) ∈ trap(�1) and larset(A2) ∈ trap(�2) then either
A1 ⊆ A2 or A2 ⊆ A1. Assume this is not the case. Note that ∃� ∈ SKB

w such
that T ∈ trap(�). Since there is a single run leading to T , and all of its states are
non-accepting, � must be the rightmost skeleton-path in SKB

w. Since Q is the
only non sink mscc of B, all skeleton paths split from � at some point. Assume
�1 and �2 split from � at time points z1 and z2, resp. The nodes at the splits
must be accepting (since their sibling in � is non-accepting). Thus at z1 it must
be that �1 recently visited all states of A1 and at z2 it must be that �2 recently
visited all states of A2. Assume w.l.o.g. z1 < z2. If at some time point between
z1 and z2, the original path of M, ρw visited a node in A2 \ A1 then �1 will
not have any descendants (since larset(A1) has no corresponding transitions).
Assume thus all nodes of A2 \ A1 have recently been visited before z1. Then
at z1 not only all A1 are visited but also all of A2, thus there exists a split
corresponding to larset(A2) before or at z2, which contradicts the split at z2
since larset(A2) can only be trapped in one skeleton-path. Therefore if the set
of skeleton paths of SKB

w is {�} ∪ {�1, . . . , ��} where �i split from � before �i+1

then trap(�1), . . . , trap(��) will correspond to accepting sets A1, . . . , A� along
one inclusion chain of M. Since the length of a positive chain is bounded by k,
the number of accepting sets along such a chain is bounded by �k

2 �. Adding �,
the rightmost branch, we obtain that the width of B is �k

2 � + 1. ��
This completes the proof of Theorem 3.
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Abstract. Formal verification of PCTL properties of MDPs with convex
uncertainties has been recently investigated by Puggelli et al. However,
model checking algorithms typically suffer from state space explosion. In
this paper, we address probabilistic bisimulation to reduce the size of such
an MDP while preserving PCTL properties it satisfies. We give a compo-
sitional reasoning over interval models to understand better the ways how
large models with interval uncertainties can be composed. Afterwards, we
discuss computational complexity of the bisimulation minimization and
show that the problem is coNP-complete. Finally, we show that, under
a mild condition, bisimulation can be computed in polynomial time.

Keywords: Markov decision process · Interval MDP · Compositional-
ity · Bisimulation · Complexity

1 Introduction

Probability, nondeterminism, and uncertainty are three core aspects of real sys-
tems. Probability arises when a system, performing an action, is able to reach
more than one state and we can estimate the proportion between reaching each
of such states: probability can model both specific system choices (such as flip-
ping a coin, commonly used in randomized distributed algorithms) and general
system properties (such as message loss probabilities when sending a message
over a wireless medium). Nondeterminism represents behaviors that we can not
or we do not want to attach a precise (possibly probabilistic) outcome to. This
might reflect the concurrent execution of several components at unknown (rel-
ative) speeds or behaviors we keep undetermined for simplifying the system or
allowing for different implementations. Uncertainty relates to the fact that not
all system parameters may be known exactly, including exact probability values.

Probabilistic automata (PAs) [32] extend classical concurrency models in a
simple yet conservative fashion. In probabilistic automata, concurrent processes
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may perform probabilistic experiments inside a transition. Labeled transition
systems are instances of this model family, obtained by restricting to Dirac
distributions (assigning full probability to single states). Thus, foundational
concepts and results of standard concurrency theory are retained in full and
extend smoothly to the PA model. PAs are akin to Markov decision processes
(MDPs), their fundamental beauty can be paired with powerful model checking
techniques, as implemented for instance in the PRISM tool [27].

In PAs and MDPs, probability values need to be specified precisely. This is
often an impediment to their applicability to real systems. Instead it appears
more viable to specify ranges of probabilities, so as to reflect the uncertainty in
these values. This leads to a model where intervals of probability values replace
probabilities. This is the model studied in this paper, we call it interval Markov
decision processes, IMDPs.

In standard concurrency theory, bisimulation plays a central role as the undis-
puted reference for distinguishing the behaviour of systems. Besides for distin-
guishing systems, bisimulation relations conceptually allow us to reduce the size
of a behaviour representation without changing its properties (i.e., with respect
to logic formulae the representation satisfies). This is particularly useful to alle-
viate the state explosion problem notoriously encountered in model checking. If
the bisimulation is a congruence with respect to a parallel composition operator
used to build up the model out of smaller ones, this can give rise to a composi-
tional strategy to associate a small model to a large system without intermediate
state space explosion. In several related settings, this strategy has been proven
very effective [9,18]. In order to be of practical use also for IMDPs, efficient
bisimulation decision procedures are required.

This paper discusses the key ingredients for this to work for bisimulation on
IMDPs. On the one hand, we discuss congruence properties, on the other hand
we discuss the complexity of deciding bisimulation on IMDPs. More precisely, on
the one hand we show that the probabilistic bisimulation for IMDPs proposed
in [16] for the cooperative resolution of the nondeterminism in a dynamic setting
is preserved by parallel composition and that it is transitive, so it is indeed a
congruence. On the other hand, we show that deciding probabilistic bisimulation
for IMDPs is in general coNP-complete; under a mild restriction on the amount
of nondeterminism in the IMDP, the bisimulation becomes polynomial.

Related Work. Various probabilistic formalisms with uncertain transitions are
studied in the literature. Uncertain MDPs [28,30,37] allow more general sets of
distributions to be associated with each transition, not only those described by
intervals. Usually, they are restricted to rectangular uncertainty sets requiring
that the uncertainty is linear and independent for any two transitions of any
two states. Our general algorithm working with polytopes can be easily adapted
to this setting. Parametric MDPs [14] instead allow such dependencies as every
probability is described as a rational function of a finite set of global parameters.

From the compositional specification point of view, Interval MCs [21,25] and
Abstract PAs [10] serve as specification theories for MC and PAs featuring sat-
isfaction relation, and various refinement relations. In order to be closed under



116 V. Hashemi et al.

parallel composition, Abstract PAs allow general polynomial constraints on prob-
abilities instead of interval bounds. Since for Interval MCs it is not possible to
explicitly construct parallel composition, the problem of whether there is a com-
mon implementation of a set of Interval MCs is addressed instead [11]. To the
contrary, interval bounds on rates of outgoing transitions work well with paral-
lel composition in the continuous-time setting of Abstract Interactive MCs [24].
The reason is that unlike probabilities, rates do not need to sum up to 1. Authors
of [39] successfully define parallel composition for interval models by separating
synchronizing transitions from the transitions with uncertain probabilities.

Probabilistic bisimulation for uncertain probabilistic models has been studied
quite recently in [16]. To the best of our knowledge, we are not aware of any
other existing results on probabilistic bisimulations for uncertain or parametric
models. Among similar concepts studied in the literature are simulation [39] and
refinement [10,21] relations for the previously mentioned models.

Many new verification algorithms for interval models appeared in last few
years. Reachability and expected total reward is addressed for Interval MCs [8]
as well as IMDPs [38]. PCTL model checking and PLTL model checking are
studied for Interval MCs [6,8] and also for IMDPs [30,37]. Among other technical
tools, all these approaches make use of (robust) dynamic programming relying
on the fact that transition probability distributions are resolved dynamically. For
the static resolution of distributions, adaptive discretization technique for PCTL
parameter synthesis is given in [14]. Uncertain models are also widely studied in
the control community (see, e.g. [28,38]), mainly interested in maximal expected
finite-horizon/discounted reward.

Organization of the paper. We start with necessary preliminaries in Sect. 2. In
Sect. 3, we give the definition of probabilistic bisimulation for IMDPs and dis-
cuss the main results of [16]. Furthermore, we show that the probabilistic bisim-
ulation over IMDPs is compositional and transitive. In Sect. 4, we discuss the
hardness of deciding probabilistic bisimulation and also show that polynomiality
is achievable under a mild condition. Finally, in Sect. 5 we conclude the paper.

2 Preliminaries

Given n ∈ N, we denote by 1 ∈ R
n the unit vector and by 1T its transpose.

In the sequel, the comparison between vectors is element-wise and all vectors
are column ones unless otherwise stated. For a given set P ⊆ R

n, we denote by
CH(P ) the convex hull of P . We denote by I is a set of closed subintervals of
[0, 1] and, for a given [a, b] ∈ I, we let inf[a, b] = a and sup[a, b] = b.

For a given set X, we denote by Δ(X) the set of discrete probability dis-
tributions over X. For an equivalence relation R on X and ρ1, ρ2 ∈ Δ(X), we
write ρ1 L(R) ρ2 if for each C ∈ X/R, it holds that ρ1(C) = ρ2(C). By abuse of
notation, we extend L(R) to distributions over X/R, i.e., for ρ1, ρ2 ∈ Δ(X/R),
we write ρ1 L(R) ρ2 if for each C ∈ X/R, it holds that ρ1(C) = ρ2(C).
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2.1 Interval Markov Decision Processes

Let us formally define Interval Markov Decision Processes.

Definition 1. An Interval Markov Decision Process (IMDP) M is a tuple M =
(S, s̄,A, AP, L, I ), where S is a finite set of states, s̄ ∈ S is the initial state, A
is a finite set of actions, AP is a finite set of atomic propositions, L : S → 2AP is
a labelling function, and I : S × A × S → I is an interval transition probability
function such that for each s, there exist a and s′ such that I (s, a, s′) �= [0, 0].

We denote by A(s) the set of actions that are enabled from state s, i.e., A(s) =
{ a ∈ A | ∃s′ ∈ S.I (s, a, s′) �= [0, 0] }. Furthermore, for each state s and action
a ∈ A(s), we denote by s a−→ μs that μs ∈ Δ(S) is a feasible distribution, i.e., for
each state s′ we have μs(s′) ∈ I (s, a, s′). We require that the set {μs | s a−→ μs },
also denoted by Ps,a, is non-empty for each state s and action a ∈ A(s). We
denote by bM the branching of M, where bM = maxs∈S{|A(s)|}.

An IMDP is initiated in some state s1 and then moves in discrete steps from
state to state forming an infinite path s1 s2 s3 . . . . One step, say from state si, is
performed as follows. First, an action a ∈ A(s) is chosen nondeterministically by
scheduler. Then, nature resolves the uncertainty and chooses nondeterministi-
cally one corresponding feasible distribution μsi

∈ Psi,a. Finally, the next state
si+1 is chosen randomly according to the distribution μsi

.
Let us define the semantics of an IMDP formally. A path is a finite or infinite

sequence of states ω = s1 s2 · · · . For a finite path ω, we denote by last(ω) the last
state of ω. The set of all finite paths and the set of all infinite paths are denoted
by Pathsfin and Paths inf , respectively. Furthermore, let Pathsω = {ωω′ | ω′ ∈
Paths inf } denote the set of paths that have the finite prefix ω ∈ Pathsfin .

Definition 2. A scheduler is a function σ : Pathsfin → Δ(A) that to each finite
path ω assigns a distribution over the set of actions. A nature is a function
π : Pathsfin × A → Δ(S) that to each finite path ω and action a ∈ A(last(ω))
assigns a feasible distribution, i.e., an element of Ps,a where s = last(ω). We
denote by Σ the set of all schedulers and by Π the set of all natures.

For a state s, a scheduler σ, and a nature π, let Prσ,π
s denote the unique probabil-

ity measure over (Paths inf ,B)1 such that the probability Prσ,π
s [Pathss′ ] of start-

ing in s′ equals 1 if s′ = s and 0, otherwise; and the probability Prσ,π
s [Pathsωs′ ]

of traversing a finite path ωs′ equals Prσ,π
s [Pathsω] · ∑a∈A σ(ω)(a) · π(ω, a)(s′).

Observe that the scheduler does not choose an action but a distribution over
actions. It is well-known [32] that such randomization brings more power in the
context of bisimulations. Note that for nature this is not the case, since Ps,a is
closed under convex combinations, thus nature can choose all distributions.

1 Here, B is the standard σ-algebra over Paths inf generated from the set of all cylinder
sets {Pathsω | ω ∈ Pathsfin}. The unique probability measure is obtained by the
application of the extension theorem (see, e.g. [3]).
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2.2 Probabilistic Computation Tree Logic (PCTL)

There are various ways how to describe properties of interval MDPs. Here we
focus on probabilistic CTL (PCTL) [15]. The syntax of PCTL state formulas ϕ
and PCTL path formulas ψ is given by:

ϕ := true | x | ¬ϕ | ϕ1 ∧ ϕ2 | P��p(ψ)

ψ := Xϕ | ϕ1Uϕ2 | ϕ1U
≤kϕ2

where x ∈ AP , p ∈ [0, 1] is a rational constant, �� ∈ {≤, <,≥, >}, and k ∈ N.
The satisfaction relation for PCTL formulae depends on the way how nonde-

terminism is resolved for the probabilistic operator P��p(ψ). When quantifying
both the nondeterminisms universally, we define the satisfaction relation s |=c ϕ
as follows: s |=c x if x ∈ L(s); s |=c ¬ϕ if not s |=c ϕ; s |=c ϕ1 ∧ ϕ2 if both
s |=c ϕ1 and s |=c ϕ2; and

s |=c P��p(ψ) if ∀σ ∈ Σ ∀π ∈ Π : Prσ,π
s [{ω ∈ Paths inf | ω |=c ψ }] �� p

where the satisfaction relation ω |=c ψ for an infinite path ω = s1s2 · · · and a
path formula ψ is given by:

ω |=c Xϕ if s2 |= ϕ;
ω |=c ϕ1U

≤kϕ2 if there exists i ≤ k such that si |=c ϕ2 and sj |=c ϕ1

for each 1 ≤ j < i;
ω |=c ϕ1Uϕ2 if there exists k ∈ N such that ω |=c ϕ1U

≤kϕ2.

It is easy to show that the set |=c ψ is measurable for any path formula ψ, hence
the definition is mathematically well defined.

3 Probabilistic Bisimulation for Interval MDPs

We now recall the main results on probabilistic bisimulation for IMDPs, as devel-
oped in [16]. In this work, we consider the notion of probabilistic bisimulation
for the cooperative resolution of nondeterminism. This semantics is very natural
in the context of verification of parallel systems with uncertain transition proba-
bilities in which we assume that scheduler and nature are resolved cooperatively
in the most adversarial way. Moreover, resolution of a feasible probability distri-
bution respecting the interval constraints can be either done statically [21], i.e.,
at the beginning once for all, or dynamically [20,33], i.e., independently for each
computation step. In this paper, we focus on dynamic approach in resolving the
stochastic nondeterminism that is easier to work with algorithmically and can
be seen as a relaxation of the static approach that is often intractable [2,6].

Let s −→ μs denote that a transition from s to μs can be taken cooperatively,
i.e., that there is a scheduler σ ∈ Σ and a nature π ∈ Π such that μs =∑

a∈A(s) σ(s)(a) · π(s, a). In other words, s −→ μs if μs ∈ CH(
⋃

a∈A(s) Ps,a).
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Definition 3 (cf. [16]). Given an IMDP M, let R ⊆ S × S be an equivalence
relation. We say that R is a probabilistic bisimulation if for each (s, t) ∈ R
we have that L(s) = L(t) and for each s −→ μs there exists t −→ μt such that
μs L(R) μt. Furthermore, we write s ∼c t if there is a probabilistic bisimulation
R such that (s, t) ∈ R.

Intuitively, each (cooperative) step of scheduler and nature from state s needs
to be matched by a (cooperative) step of scheduler and nature from state t;
symmetrically, s also needs to match t. It is shown in [16] that ∼c preserves the
(cooperative) universally quantified PCTL satisfaction |=c. More precisely,

Theorem 4 (cf. [16]). For states s ∼c t and any PCTL formula ϕ, we have
s |=c ϕ if and only if t |=c ϕ.

Computation of probabilistic bisimulation for IMDPs follows the standard
partition refinement approach [22,29]. However, the core part of the algorithm
is to find out whether two states “violate the definition of bisimulation”. Veri-
fication of this violation, however, amounts to check the inclusion of polytopes
defined as follows. For s ∈ S and an action a ∈ A, recall that Ps,a denotes the
polytope of feasible successor distributions over states with respect to taking
the action a in the state s. By Ps,a

R , we denote the polytope of feasible successor
distributions over equivalence classes of R with respect to taking the action a
in the state s. Formally, for μ ∈ Δ(S/R) we set μ ∈ Ps,a

R if

μ(C) ∈
[

∑

s′∈C
inf I (s, a, s′),

∑

s′∈C
sup I (s, a, s′)

]
for each C ∈ S/ R .

Furthermore, we define Ps
R = CH(

⋃
a∈A(s) Ps,a

R ), the set of feasible successor
distributions over S/R with respect to taking an arbitrary distribution over
enabled actions in state s. As specified in [16], checking violation of a given pair of
states amounts to check equality of the corresponding constructed polytopes for
the states. As regards the computational complexity of the proposed algorithm,
the following theorem indicates that it is fixed parameter tractable. Formally,

Theorem 5 (cf. [16]). Computing ∼c on an IMDP M is in |M|O(1) · 2O(f)

where |M| = |S|2 · |A| and f = maxs∈S,a∈A(s) |{ s′ ∈ S | I (s, a, s′) �= [0, 0] }|.

3.1 Compositional Reasoning

The compositional reasoning is a widely used technique (see, e.g., [7,18,23]) that
permits to deal with large systems. In particular, a large system is decomposed
into multiple components running in parallel; such components are then mini-
mized by replacing each of them by a bisimilar but smaller one so that the overall
behaviour remains unchanged. In order to apply this technique, bisimulation has
first to be extended to pairs of components and then to be shown to be transitive
and preserved by the parallel composition operator. The extension to a pair of
components is trivial and commonly done (see, e.g., [4,32]):
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Definition 6. Given two IMDPs M1 and M2, we say that they are probabilis-
tic bisimilar, denoted by M1 ∼c M2, if there exists a probabilistic bisimulation
on the disjoint union of M1 and M2 such that s̄1 ∼c s̄2.

The next step is to define the parallel composition for IMDPs:

Definition 7. Given two IMDPs M1 and M2 with Mi = (Si, s̄i,Ai, APi, Li, Ii),
i = 1, 2, we define the parallel composition of M1 and M2, denoted by M1 ‖ M2

as the IMDP (S, s̄,A, AP, L, I ) where S = S1 × S2, s̄ = (s̄1, s̄2), A = A1 × A2,
AP = AP1 ∪ AP2, for each (s1, s2) ∈ S, L(s1, s2) = L1(s1) ∪ L2(s2), and for
each (s1, s2) ∈ S, (a1, a2) ∈ A, and (t1, t2) ∈ S, I ((s1, s2), (a1, a2), (t1, t2)) =
I1(s1, a1, t1) × I2(s2, a2, t2) = [l1 · l2, u1 · u2] where [l1, u1] = I1(s1, a1, t1) and
[l2, u2] = I2(s2, a2, t2).

Proposition 8. For each IMDP M1, M2, and M3, if M1 ∼c M2, then M1 ‖
M3 ∼c M2 ‖ M3.

Another property that is needed for ∼c in order to support the compositional
reasoning is that it has to be transitive. This is indeed a property of ∼c, as stated
by the following proposition:

Proposition 9. For each IMDP M1, M2, and M3, if M1 ∼c M2 and M2 ∼c

M3, then M1 ∼c M3.

By being transitive and preserved by parallel composition, ∼c fully supports
the compositional verification of complex systems.

4 Hardness and Tractability

Definition 3 is the central definition around which the paper revolves. Given
an IMDP M, the complexity of computing ∼c strictly depends on checking
bisimilarity of a pair of states as a core part: in this section we will show that
this verification routine is coNP-complete and therefore, the computation of ∼c

as a whole is coNP-complete. Later on, we show how an equivalence relation
can be computed in polynomial time under a mild condition. The definition of
bisimulation can be reformulated equivalently as follows:

Definition 10. Let R ⊆ S × S be an equivalence relation. We say that R is a
probabilistic bisimulation if (s, t) ∈ R implies that L(s) = L(t) and Ps

R = Pt
R.

As it is clear from Definition 10, the complexity of verifying bisimilarity of a
pair of states s and t strictly depends on the complexity of the Convex Hull
Equivalence (CHE) problem stated as follows:

Definition 11. Given an IMDP M, a pair of states s and t, n, ns, nt ∈ N, two
sets {P s,i | i ∈ {1, . . . , ns} } and {P t,i | i ∈ {1, . . . , nt} } where for each r ∈
{s, t} and i ∈ {1, . . . , nr}, for given lr,i,ur,i ∈ R

n, P r,i is the convex polyhedron

P r,i =
{
xr,i ∈ R

n

∣∣∣∣
lr,i ≤ xr,i ≤ ur,i

1Txr,i = 1

}
,

the CHE problem asks to determine whether CH(
⋃ns

i=1 P s,i) = CH(
⋃nt

i=1 P t,i).
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Theorem 12. The CHE problem is coNP-complete.

Proof (Sketch). We show that CHE problem is in coNP by reducing it to the
coNP quantified linear implication problem [12] and that it is coNP-hard by
reducing the coNP-hard tautology problem for 3DNF [13] to CHE. ��
With this result at hand, together with Definition 10, we know that checking the
bisimilarity of two states of an IMDP M is coNP-complete. Since the standard
partition refinement algorithm performs this check a polynomial number of times
(see, e.g., [4,5,22,29,35]), it follows that also computing ∼c is coNP-complete.

Theorem 13. Given an IMDP M, computing ∼c is coNP-complete.

4.1 Decision Algorithm

In the previous section we have shown that the problem of deciding whether two
states of an IMDP are bisimilar is coNP-complete. In this section we show that,
under a mild restriction on IMDPs, the problem is solvable in polynomial time.

In the following we present a polynomial algorithm for deciding ∼c on IMDPs,
provided its branching is considered as a constant. Given an IMDP M as in
Definition 1 and an equivalence relation R ⊆ S × S, according to Definition 10,
R is a probabilistic bisimulation iff for any (s, t) ∈ R, Ps

R = Pt
R. Our algorithm

relies on an algorithm in [34] to check efficiently whether Ps
R = Pt

R. However,
the algorithm in [34] requires that both Ps

R and Pt
R are represented in form of

H-polytopes, i.e., defined as intersection of a finite number of closed half-spaces.
Note Ps

R = CH(
⋃

a∈A(s) Ps,a
R ). Therefore, we focus on the procedure of obtaining

an equivalent H-polytope of Ps
R given all Ps,a

R being represented as H-polytopes.
Now we show how to represent each Ps,a

R as an H-polytope. To simplify our
presentation, we shall fix an order over all equivalence classes in S/R. By doing
so, any distribution ρ ∈ Δ(S/R) can be seen as a vector v such that vi = ρ(Ci)
for each 1 ≤ i ≤ n, where n = |S/R|, Ci is the i-th equivalence class, and vi

the i-th element in v. For the above discussion, ρ ∈ Ps,a
R iff ρ(Ci) ∈ [lai ,ua

i ] for
any 1 ≤ i ≤ n and ρ ∈ Δ(S/R), where la and ua are vectors whose components
are lai =

∑
s′∈Ci

inf I (s, a, s′) and ua
i =

∑
s′∈Ci

sup I (s, a, s′) for each 1 ≤ i ≤ n,
respectively. Therefore, Ps,a

R corresponds to an H-polytope defined by:
{
xa ∈ R

n

∣∣∣∣
la ≤ xa ≤ ua

1Txa = 1

}
. (1)

We have represented each Ps,a
R for a ∈ A(s) as an H-polytope. It is remained

to show that Ps
R = CH(

⋃
a∈A(s) Ps,a

R ) can be represented by an H-polytope as
well. For this, we use the Balas Extension Theorem [1] in order to compute the
H-representation of the convex hull in polynomial time. The theorem allows for
additional variables and thus maps the original space of variables to a higher
dimensional space. By definition, x ∈ Ps

R iff there exist λa ∈ R and xa ∈ Ps,a
R
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for each a ∈ A(s) such that x =
∑

a∈A(s) λaxa, λa ≥ 0, and
∑

a∈A(s) λa = 1.
Therefore, together with Eq. (1), we have

Ps
R =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ R
n

∣∣∣∣∣∣∣∣∣∣

∃λa ≥ 0.∃xa. ∀a ∈ A(s)
x =

∑
a∈A(s) λaxa

1Txa = 1 ∀a ∈ A(s)
la ≤ xa ≤ ua ∀a ∈ A(s)∑

a∈A(s) λa = 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (2)

Unfortunately, the constraint x =
∑

a∈A(s) λaxa of Eq. (2) is not linear,
hence is not a desirable H-representation of Ps

R. In order to avoid non-linearity
in the representation, we let ta = λaxa for each a ∈ A(s). Constraints in Eq. (2)
can be rewritten to an equivalent form as follows:

Ps
R =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ R
n

∣∣∣∣∣∣∣∣∣∣

∃λa ≥ 0.∃ta. ∀a ∈ A(s)
x =

∑
a∈A(s) t

a

1T ta = λa ∀a ∈ A(s)
λala ≤ ta ≤ λaua ∀a ∈ A(s)∑

a∈A(s) λa = 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (3)

Alternatively, Eq. (3) can be seen as an H-polytope over variables x, ta, and λa

(where a ∈ A(s)), whose projection on the space of variables x gives exactly the
H-polytope corresponding to Ps

R. We first try to project out variables ta for all
a ∈ A(s). According to Eq. (3), x =

∑
a∈A(s) t

a, so all constraints related to ta

can be combined. As a result, we obtain:

Ps
R =

⎧
⎪⎪⎨

⎪⎪⎩
x ∈ R

n

∣∣∣∣∣∣∣∣

∃λa ≥ 0. ∀a ∈ A(s)
1Tx = 1∑

a∈A(s) λala ≤ x ≤ ∑
a∈A(s) λaua

∑
a∈A(s) λa = 1

⎫
⎪⎪⎬

⎪⎪⎭
. (4)

In Eq. (4), we still have extra variables λa, which should be eliminated
in order to obtain an H-polytope representing Ps

R. For this, we apply the
well-known Fourier-Motzkin (FM) elimination method. The main idea of the
FM elimination is to partition all inequalities relevant to y into two sets:
{∑

1≤j≤n eijxj ≤ y}1≤i≤m1 and {∑
1≤j≤n eijxj ≥ y}m1<i≤m, where eij (1 ≤ i ≤

m, 1 ≤ j ≤ n) are coefficients and y is the variable to be eliminated. The resultant
set of inequalities will contain those in form of

∑
1≤j≤n eijxj ≤ ∑

1≤j≤n ei′jxj

for each 1 ≤ i ≤ m1 and m1 < i′ ≤ m, which defines a projection of the original
H-polytope on variables {xj}1≤j≤n ∪{y} to an H-polytope on {xj}1≤j≤n. More
details can be found in e.g. [26].

However, the FM elimination causes an exponential blow-up and results in
4(m

4 )2
d

inequalities in the worst case, where m is the number of inequalities in the
original representation and d the number of variables having been eliminated [31].
Given an IMDP M, the number of inequalities in Eq. (4) is in O(S) and the
number of λa is upper-bounded by the branching of M. Therefore, if we assume
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bM to be a constant, FM elimination will not cause exponentially blow-up after
removing all λa in Eq. (4) and we obtain an H-polytope representing Ps

R, the
number of inequalities in which is at most 4( |S|

4 )2
d

with d = bM.
Given we have obtained H-polytopes of both Ps

R and Pt
R, to check whether

Ps
R = Pt

R, the convex set inclusion checking algorithm in [34, Algorithm 1] can
be applied to decide whether Ps

R ⊆ Pt
R and Pt

R ⊆ Ps
R hold, which can be done

in polynomial time. Our algorithm for deciding ∼c mainly follows the partition-
refinement approach [4,17,22,35], the key ingredient of which is a refinement
procedure that keeps refining a relation R until for every pair of states s and
t in a same equivalence class, Ps

R = Pt
R. Let L(n,m) denote the polynomial

running time of an LP algorithm on n inequalities and m variables [36]. The
complexity of the algorithm for deciding ∼c is shown in the following theorem.

Theorem 14. Given an IMDP M, ∼c on M can be decided in time O(|S|3 ×
η × L(η, |S|)), where η = 4( |S|

4 )2
d

with d = bM.

In practice it often holds that the branching of an IMDP is constant. As an
evidence, all MDPs in PRISM [27] benchmarks have constant branching. Thus,
our algorithm for computing ∼c will often terminate in polynomial time for
practical models. It is worthwhile to mention that even in the case where bM
is a constant for an IMDP M, its equivalent MDP can be exponentially larger
than M. Consequently, for such models our algorithm can avoid an exponential
blow-up comparing to the bisimulation decision algorithm for MDPs in [4].

5 Concluding Remarks

In this paper, we have studied the probabilistic bisimulation problem for inter-
val MDPs in order to speed up the run time of model checking algorithms that
often suffer from the state space explosion. Interval MDPs include two sources
of nondeterminism for which we have considered the cooperative resolution in a
dynamic setting. We have extended the results in [16] by further investigating
two core aspects of the defined bisimulation relation: compositional reasoning
and complexity analysis of the decision algorithm. As regards the former, we
have established a framework for compositional verification of complex systems
with interval uncertainty. As regards the latter, we have shown that deciding
probabilistic bisimulation for IMDPs is coNP-complete and also shown that
tractability is guaranteed under a mild restriction on the class of IMDP models.
There are various promising directions for future work. From modelling view-
point, it is worthwhile to address more expressive formalisms to encode uncer-
tainties (such as polynomial constraints or even parameters appearing in multiple
states/actions). Moreover, from semantics viewpoint, it would be interesting to
extend the current results for the competitive semantics of resolving nondeter-
minism. Finally, from algorithmic viewpoint, we conjecture that probabilistic
bisimulation problem can be decided in polynomial time for IMDPs if a proper
model of uncertainty is considered. More precisely, the probabilistic bisimulation
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problem can be modeled as an instance of uncertain LPs based on the techniques
in [17,35]. This class of uncertain LPs is computationally tractable [19], under
some technical assumption regarding a proper model of uncertainty.
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24. Katoen, J.-P., Klink, D., Neuhäußer, M.R.: Compositional abstraction for stochas-
tic systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS,
vol. 5813, pp. 195–211. Springer, Heidelberg (2009)

25. Kozine, I., Utkin, L.V.: Interval-valued finite Markov chains. Reliable Comput.
8(2), 97–113 (2002)

26. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View,
1st edn. Springer, Heidelberg (2008)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

28. Nilim, A., Ghaoui, L.E.: Robust control of Markov decision processes with uncer-
tain transition matrices. Oper. Res. 53(5), 780–798 (2005)

29. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

30. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013)

31. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
Amsterdam (1998)

32. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, MIT (1995)

33. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence
of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol.
3920, pp. 394–410. Springer, Heidelberg (2006)

34. Subramani, K.: On the complexities of selected satisfiability and equivalence
queries over boolean formulas and inclusion queries over hulls. JAMDS, 2009 (2009)

35. Turrini, A., Hermanns, H.: Polynomial time decision algorithms for probabilistic
automata. Inf. Comput. 244, 134–171 (2015)



126 V. Hashemi et al.

36. Vaidya, P.M.: An algorithm for linear programming which requires O(((m+n)n2)+
(m + n)1.5)n)L) arithmetic operations. Math. Program. 47, 175–201 (1990)

37. Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision
processes with temporal logic specifications. In: CDC, pp. 3372–3379 (2012)

38. Wu, D., Koutsoukos, X.D.: Reachability analysis of uncertain systems using
bounded-parameter Markov decision processes. AI 172(8–9), 945–954 (2008)

39. Yi, W.: Algebraic reasoning for real-time probabilistic processes with uncertain
information. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT
1994 and ProCoS 1994. LNCS, vol. 863, pp. 680–693. Springer, Heidelberg (1994)



A Weighted MSO Logic with Storage Behaviour
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Abstract. We introduce a weighted MSO-logic in which one outermost
existential quantification over behaviours of a storage type is allowed.
As weight structures we take unital valuation monoids which include all
semirings, bounded lattices, and computations of average or discounted
costs. Each formula is interpreted over finite words yielding elements
in the weight structure. We prove that this logic is expressively equiv-
alent to weighted automata with storage. In particular, this implies a
Büchi-Elgot-Trakhtenbrot Theorem for weighted iterated pushdown lan-
guages. For this choice of storage type, the satisfiability problem of the
logic is decidable for each bounded lattice provided that its infimum is
computable.

1 Introduction

The Büchi-Elgot-Trakhtenbrot Theorem [1,2,10,24] (for short: BET-theorem)
states that the languages definable by monadic second-order logic (MSO-logic)
coincide with the recognizable languages. This theorem has been extended to
the weighted setting where the weight structures are semirings [4,5], valuation
monoids [6], bounded lattices [8], and multioperator monoids (for trees) [15,16].

Another direction of extension was taken in [20] where context-free languages
(CFL) were characterized by an extension of MSO-logic in which formulas of the
form ∃M.ϕ are allowed and M is a matching and ϕ is a formula of first-order
logic. Roughly speaking, a matching is a set of pairs of positions of the given
word which can be regarded as a word from the Dyck-language or, in automata
terms, as an executable sequence of instructions of a pushdown automaton, e.g.,

push(α); push(β); pop(β); push(γ); pop(γ); pop(α).

The quantification over matchings allows to express non-local properties which
go beyond regularity and capture precisely context-freeness. A semiring-weighted
version of the BET-theorem for CFL was proved in [22]. In the unweighted case,
this direction was further investigated in [14] where a BET-theorem for realtime
indexed languages was proved.
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A sequence of instructions as above can be considered as a behaviour of the
pushdown storage. Scott [23] introduced the general concept of (unweighted)
automata with storage type. As in Engelfriet [12], a storage type S consists of
a set C of configurations, a set P of predicates on C, a set F of instructions
transforming the configurations, and an initial configuration c0. A behaviour is
an executable sequence

(p1, f1)(p2, f2) . . . (pn, fn)

of predicates pi and instructions fi starting from c0.
Inspired by the logic in [20], we introduce a new weighted MSO-logic which is

based on [15,16]. Additionally, we allow one outermost second-order existential
quantification over behaviours of an arbitrary storage type. As new atomic for-
mulas we introduce equalities B(x) = (p, f) describing that the x-th element of
a behaviour chosen for the variable B is the pair (p, f). As weight structure we
employ unital valuation monoids [6,9]. These include all semirings and bounded
lattices but also computations of average or of discounted costs.

In this paper, we prove the following BET-theorem (Theorem8): our new
weighted MSO-logic is expressively equivalent to weighted automata with stor-
age type S [18]. The idea for this result derives from the setting of [20] as
follows. The class CFL of languages accepted by pushdown automata is a full
principle abstract family of languages (fp-AFL) generated by the Dyck language.
Unweighted automata with arbitrary storage type can be considered as a finitely-
encoded abstract family of acceptors (fe-AFA). By [17, Theorem 5.2.1], each class
of languages accepted by an fe-AFA is a fp-AFL and consequently generated by
one language: the set of behaviours of the storage [17, Lemma 4.2.4]. Our new
MSO-logic results from the one of [20] by replacing the existential quantification
over the generator for CFL by the existential quantification over the generator
for an arbitrary fe-AFA.

In our proof of the equivalence, first we describe the computations of weighted
automata with storage by usual logic formulas, but employing the new atomic
formulas B(x) = (p, f). For the converse, we first transform formulas without
the quantification over behaviours inductively into usual weighted automata, i.e.
without storage, taking care of the behaviours in a symbolic way. Then, for the
outermost existential quantification, we apply a projection to obtain weighted
automata with storage (cf. Lemma 15).

By choosing the n-iterated pushdown storage type [3,11,12,21], our equiva-
lence result yields a BET-theorem for weighted n-iterated pushdown languages.
For this choice, our result implies the decidability of the satisfiability problem
of our logic for a large class of zero-sum-free commutative strong bimonoids, in
particular, the class of all bounded lattices with computable infimum.

2 Preliminaries

Notations andNotions. We denote the set of all non-negative integers (including 0)
by N, and the set N \ {0} by N+. For n ∈ N we let [n] = {i ∈ N | 1 ≤ i ≤ n}.
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Let A be a set. We denote the set of all subsets of A by P(A). We denote the
set of all words over A by A∗; ε is the empty word; the length of a word u ∈ A∗

is denoted by |u|. Let B be a set and ν : A → B. Then we denote the unique
extension of ν to a monoid morphism from (A∗, ·, ε) to (B∗, ·, ε) where · denotes
concatenation of words, also by ν.

Let A1, . . . , An be sets and a = (a1, . . . , an) ∈ A1 × . . . × An. Then, for each
i ∈ [n], the i-th projection of a, denoted by pri(a), is defined by pri(a) = ai.

An alphabet Σ is a non-empty, finite set. Let u ∈ Σ∗. We denote the i-th
symbol of u by ui; thus, u = u1 . . . un for some n ≥ 0 and ui ∈ Σ. We denote
the set [n] of positions of u by pos(u). For α ∈ Σ and u ∈ Σ∗ we denote the
number of occurrences of α in u by |u|α.

Unital Valuation Monoids. A unital valuation monoid [6,9,18] is an algebra
(K,+, val, 0, 1) such that (K,+, 0) is a commutative monoid and val : K∗ → K
is a mapping such that (i) val(k) = k for each k ∈ K, (ii) val(k) = 0 for each
k ∈ K∗ such that ki = 0 for some i ∈ [|k|], and (iii) val(k 1 k′) = val(k k′) for
every k, k′ ∈ K∗. It follows that val(ε) = 1.

Strong bimonoids [7] (K,+, ·, 0, 1) are algebras where (K,+, 0) is a commu-
tative monoid, (K, ·, 1) is a monoid, and 0 ·k = k ·0 = 0 for each k ∈ K. Clearly,
all semirings, in particular, the Boolean semiring B = ({0, 1},∨,∧, 0, 1), and all
bounded lattices are strong bimonoids. Each strong bimonoid naturally becomes
a unital valuation monoid by letting val be the product of finite sequences
of elements. Other important examples of unital valuation monoids arise by
taking the average or discounting (see below) operations on real numbers, see
[9, Example 1] for further examples.

Example 1. Let R̃ = R≥0 ∪ {−∞}. We define the unital valuation monoid
(R̃,max, valdisc,−∞, 0) such that for each n ∈ N and k1, . . . , kn ∈ R̃ \ {0} we
have valdisc(k1 . . . kn) = 0.50 · k1 + . . . + 0.5n−1 · kn. For instance valdisc(2 1 2) =
0.50 · 2 + 0.51 · 1 + 0.52 · 2 = 3. �

A (K-)weighted language (over Σ) is a mapping s : Σ∗ → K. The support of
s is the set supp(s) = {u ∈ Σ∗ | s(u) �= 0}.

3 Weighted Automata with Storage

Storage Types. A storage type S [12,23] is a tuple (C,P, F, c0) where C is a
set (configurations), P is a set of total functions each having the type p : C →
{true, false} (predicates), F is a set of partial functions each having the type
f : C → C (instructions), and c0 ∈ C (initial configuration).

Example 2. Let c be an arbitrary, fixed symbol. The trivial storage type is the
storage type TRIV = ({c}, {ptrue}, {fid}, c) where ptrue(c) = true and fid(c) = c.

Next we recall the pushdown operator P from [12, Definition 5.1] and [13,
Definition 3.28]: P(S) is the storage type of which the configurations have the
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form of a pushdown; each cell contains a pushdown symbol and a configuration
of S. Formally, the pushdown of S is the storage type P(S) = (C ′, P ′, F ′, c′

0)
where

– C ′ = (Γ × C)+ and Γ is the pushdown alphabet and c′
0 = (γ0, c0),

– P ′ = {bottom} ∪ {(top = γ) | γ ∈ Γ} ∪ {test(p) | p ∈ P}, and
– F ′ = {pop} ∪ {stay(γ) | γ ∈ Γ} ∪ {push(γ, f) | γ ∈ Γ, f ∈ F}
with the usual interpretation. For each n ≥ 0 we define Pn(S) inductively as
follows: P0(S) = S and Pn(S) = P(Pn−1(S)) for each n ≥ 1.

Example 3. Intuitively, P(TRIV) corresponds to the usual pushdown storage
except that there is no empty pushdown. For n ≥ 0, we abbreviate Pn(TRIV)
by Pn and call it the n-iterated pushdown storage. �
Behaviour. Let Ω be a finite subset of P × F . Moreover, let n ≥ 0 and b =
(p1, f1) . . . (pn, fn) ∈ Ω∗. We call b an Ω-behaviour of length n if for every i ∈ [n]
we have (i) pi(c′) = true and (ii) fi(c′) is defined where c′ = fi−1(. . . f1(c0) . . .)
(note that c′ = c0 for i = 1). We denote the set of all Ω-behaviours of length n
by B(Ω,n), and we let B(Ω) =

⋃
n∈N

B(Ω,n). We note that each behaviour of c
is a path in the approximation of c0 according to [13, Definition 3.23].

Automata: An (S,Σ,K)-automaton [18] is a tuple A = (Q,Qi, Qf , T,wt) where
Q is a finite set (states), Qi ⊆ Q (initial states), Qf ⊆ Q (final states), T ⊆
Q × Σ × P × Q × F is a finite set (transitions), and wt: T → K.

The set Q × Σ∗ × C is the set of A-configurations. For every transition τ =
(q, α, p, q′, f) in T we define the binary relation �τ on the set of A-configurations:
for every u ∈ Σ∗ and c ∈ C, we let (q, αu, c) �τ (q′, u, f(c)) if p(c) is true and f(c)
is defined. The computation relation of A is the binary relation �=

⋃
τ∈T �τ .

A computation is a sequence θ = (d0 �τ1 d1 · · · �τn dn) where n ∈ N and
di are A-configurations with di−1 �τi di. We abbreviate this computation by
θ = (d0 �∗ dn). For each u ∈ Σ∗, we denote the (finite) set of computations
{θ | θ = ((q, u, c0) �∗ (q′, ε, c′)), q ∈ Qi, q

′ ∈ Qf , c′ ∈ C} by ΘA(u). Thus,
ΘA(ε) = {(q, ε, c0) | q ∈ Qi ∩Qf}. Obviously, each computation of A induces an
ΩA-behaviour where ΩA = {(p, f) | (q, α, p, q′, f) ∈ T}.

Let θ = (d0 �τ1 d1 · · · �τn dn) be a computation of A. The weight of
θ is the element in K defined by wt(θ) = val(wt(τ1) . . . wt(τn)). Note that
wt(θ) = val(ε) = 1 for each θ ∈ ΘA(ε). The weighted language recognized
by A is the weighted language [[A]] : Σ∗ → K defined for every u ∈ Σ∗ by
[[A]](u) =

∑
θ∈ΘA(u) wt(θ). Thus [[A]](ε) =

∑
q∈Qi∩Qf

1. A weighted language
r : Σ∗ → K is (S,Σ,K)-recognizable if there is an (S,Σ,K)-automaton A such
that r = [[A]]. We denote the class of (S,Σ,K)-recognizable weighted languages
by Rec(S,Σ,K).

For each n ≥ 0, we call a (Pn, Σ,K)-recognizable weighted language a
weighted n-iterated pushdown language over Σ and K.

Example 4. We consider the alphabet Σ = {α, β,#} and the unital valua-
tion monoid K of Example 1. Moreover, we consider the weighted language
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s : Σ∗ → K such that for each u ∈ Σ∗: if u = w# for some w ∈ {α, β}∗,
and |w|α = |w|β , then s(u) = 0.50 · w̃t(w1)+ . . .+0.5n−1 · w̃t(wn) where n is the
length of w and w̃t(α) = 2 and w̃t(β) = 1, and otherwise we have s(u) = −∞.

Indeed, s is recognizable by a (P1, Σ,K)-automaton. For this, we can choose
a deterministic pushdown automaton accepting {w# ∈ Σ∗ | w ∈ {α, β}∗, |w|α =
|w|β} and then weight its transitions according to the function w̃t and such that
the transition which reads # is of weight 0.

Special Cases. If S = TRIV, then we drop all references to S from the con-
cepts introduced for (S,Σ,K)-automata. Thus T ⊆ Q × Σ × Q, and we speak
about (Σ,K)-automata and (Σ,K)-recognizable. We denote the class of (Σ,K)-
recognizable weighted languages by Rec(Σ,K). If K is a semiring (or unital
valuation monoid), then (Σ,K)-automata coincide with the weighted automata
of [4] apart from initial and final weights (respectively, of [9]).

If K = B, then we drop wt from the automaton specification, and we speak
about (S,Σ)-automata. They coincide with REG(S) r-acceptors [12, p. 11]. The
language recognized by an (S,Σ)-automaton A is the set L(A) = {u ∈ Σ∗ |
ΘA(u) �= ∅}. A language L ⊆ Σ∗ is (S,Σ)-recognizable if there is an (S,Σ)-
automaton A such that L(A) = L. We denote the class of all (S,Σ)-recognizable
languages by Rec(S,Σ). For instance, (P1, Σ)-automata are essentially push-
down automata (apart from ε-moves), and for each n ≥ 1, (Pn, Σ)-automata cor-
respond to n-iterated pushdown automata of [3,11,21]; for n = 2, they accept the
OI-macro languages, cf. [3] (equivalently, the indexed languages, cf. [12, p. 18],
and nested stack languages, cf. [18, Example 3]).

If S = TRIV and K = B, then we obtain the classical finite state automata.

4 Weighted Logic with Storage Behaviour

Here we will introduce our new weighted MSO-logic with storage behaviour.
Technically the logic is based on the weighted MSO-logic of [15,16].

As usual, we use first-order variables, like x, x1, x2, . . . , y, z to denote single
positions of a given word, and second-order variables, like X,X1,X2, . . . , Y, Z to
denote sets of positions of a given word.

We recall the (unweighted) MSO-logic where we parameterize the set of
atomic formulas. For a set C, we define the set of formulas of MSO-logic over
Σ with atomic formulas in C, denoted by MSO(Σ, C), as the set generated by
the EBNF: ϕ ::= ψ | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∃x.ϕ | ∀x.ϕ | ∃X.ϕ | ∀X.ϕ where
ψ ∈ C.

The set of MSO-logic formulas over Σ, denoted by MSO(Σ), is the set
MSO(Σ, CMSO) where CMSO contains all formulas of either of the following three
forms: (i) Pα(x) where α ∈ Σ, (ii) next(x, y), or (iii) (x ∈ X). In the usual way
we define the set Free(ϕ) of free variables of a formula ϕ.

Let ϕ ∈ MSO(Σ) and V be a set of variables such that Free(ϕ) ⊆ V. In
the usual way, we define the set LV(ϕ) = {(u, σ) | u ∈ Σ∗, σ is a V-variable
assignment of u, (u, σ) |= ϕ} of models of ϕ. We will use macros like first(x),
last(x), and ϕ → ψ with their obvious meaning.
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Our new weighted logic extends M-expressions [15,16] by allowing one out-
ermost existential quantification over a second-order behaviour variable B. Intu-
itively, a variable assignment σ interprets B as an Ω-behaviour for some finite
subset Ω of P × F . Atomic expressions of our new logic have the form Valκ (cf.
[16, Sect. 4.2]) where κ maps symbols from an extended alphabet ΣU to K. For
each finite set U of variables with B ∈ U we let

ΣU = Σ × P(fo(U) ∪ so(U)) × Ω

where fo(U) and so(U) are the subsets of first-order variables and second-order
variables occurring in U , respectively. Moreover, in expressions of the form ϕ�e,
in ϕ additionally atomic formulas of the form B(x) = (p, f) are allowed; they can
be used to retrieve the predicate and the instruction assigned by the behaviour
σ(B) to the position σ(x).

Definition 5. Let Ω be a finite subset of P × F . We define the set
BExp(Ω,Σ,K) of B-expressions over (Ω,Σ,K) to be the set generated by the
EBNF:

e ::= Valκ | (e + e) | (ϕ � e) | ∑
x e | ∑

X e

where κ : ΣU → K for some finite set U of variables with B ∈ U , and ϕ ∈
MSO(Σ, CMSO ∪ CB); the set CB contains all formulas of the form B(x) = (p, f)
where (p, f) ∈ Ω.

Let e ∈ BExp(Ω,Σ,K). The set of free variables of e, denoted by Free(e), is
defined as usual where we set Free(B(x) = (p, f)) = {x,B} and Free(Valκ) = U .
(Note that B ∈ Free(e) for each e ∈ BExp(Ω,Σ,K).)

We define the set Exp(Ω,Σ,K) of expressions over (Ω,Σ,K) to be the set
of all expressions of the form ∑beh

B e

where e ∈ BExp(Ω,Σ,K) with Free(e) = {B}. An expression over (S,Σ,K) is
an expression over (Ω,Σ,K) for some finite set Ω ⊆ P × F .

Let V be a finite set of variables with B ∈ V. Let u ∈ Σ∗. A V-assignment for
u is a function with domain V which maps each element in fo(V) to an element
of pos(u), each element in so(V) to a subset of pos(u), and B to an Ω-behaviour
of length |u|. We let ΦV,u denote the set of all V-assignments for u.

In the usual way we define updates of V-assignments. Let σ ∈ ΦV,u and
i ∈ pos(u). By σ[x �→ i] we denote the (V ∪ {x})-assignment for u that agrees
with σ on V \ {x} and that satisfies σ[x �→ i](x) = i. Similarly, we define the
update σ[X �→ I] for a set I ⊆ pos(u).

Extending the usual technique (cf., e.g., [4]), we can encode a pair (u, σ),
where u ∈ Σ∗ and σ is a V-assignment for u, as a word over the extended
alphabet ΣV . A word ζ ∈ Σ∗

V is called valid if (i) for each x ∈ fo(V) there is a
unique i ∈ pos(ζ) such that x occurs in the second component of ζi and (ii) the
word pr3(ζ1) . . . pr3(ζn) is an Ω-behaviour of length n where n = |ζ|. We denote
the set of all valid words in Σ∗

V by Σ∗v
V .
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It is clear that, for each finite set V of variables with B ∈ V, there is a
one-to-one correspondence between the set {(u, σ) | u ∈ Σ∗, σ ∈ ΦV,u} and the
set Σ∗v

V . Thus, as usual, we will not distinguish between the pair (u, σ) and the
corresponding word ζ ∈ Σ∗v

V .

Definition 6. Let e ∈ BExp(Ω,Σ,K) and V be a finite set of variables con-
taining Free(e). The semantics of e with respect to V is the weighted language
[[e]]V : ΣV∗ → K such that supp([[e]]V) ⊆ Σ∗v

V and for each ζ = (u, σ) ∈ Σ∗v
V we

define [[e]]V(ζ) inductively as follows:

– for every U ⊆ V with B ∈ U and every κ : ΣU → K : [[Valκ]]V(ζ) =
val(κ(ζU )) where ζU is obtained from ζ by replacing each symbol (a, V, ω) by
(a, V ∩ (fo(U) ∪ so(U)), ω),

– for every e1, e2 ∈ BExp(Ω,Σ,K) : [[e1 + e2]]V
(
ζ
)

= [[e1]]V
(
ζ
)

+ [[e2]]V
(
ζ
)
,

– for every ϕ ∈ MSO(Σ, CMSO ∪ CB) and e ∈ BExp(Ω,Σ,K):
[[ϕ � e]]V

(
ζ
)

= [[e]]V
(
ζ
)
, if ζ ∈ LV(ϕ), and 0 otherwise

where LV(ϕ) = {ξ ∈ Σ∗v
V | ξ |= ϕ} and |= extends the usual models operator

of (classical) MSO-formulas in MSO(Σ, CMSO) by defining (u, σ) |= (B(x) =
(p, f)) is true if σ(B)σ(x) = (p, f), otherwise it is false,

– for every first-order variable x and e ∈ BExp(Ω,Σ,K):
[[
∑

x e]]V
(
ζ
)

=
∑

i∈pos(ζ)[[e]]V∪{x}
(
u, σ[x �→ i]

)
,

– for every second-order variable X and e ∈ BExp(Ω,Σ,K):
[[
∑

X e]]V
(
ζ
)

=
∑

I⊆pos(ζ)[[e]]V∪{X}
(
u, σ[X �→ I]

)
.

Now let e =
∑beh

B e′ be an expression over (Ω,Σ,K). Then we define the
weighted language [[e]] : Σ∗ → K for each u ∈ Σ∗ by:

[[
∑beh

B e′]](u) =
∑

b∈B(Ω,|u|)[[e
′]]{B}

(
u, [B �→ b]

)
.

We say that s : Σ∗ → K is definable by an expression over (S,Σ,K) if there is
an expression e over (S,Σ,K) such that s = [[e]].

Example 7. We consider the weighted language s of Example 4 and construct
an expression e =

∑beh
B (ϕ � Valκ) over (P1, Σ,K) such that [[e]] = s. For this,

we let Ω consist of the following seven elements.

ω1 = (top = γ0,push(β, fid)), ω4 = (top = γ0,push(α, fid)),
ω2 = (top = β,push(β, fid)), ω5 = (top = α,push(α, fid)),
ω3 = (top = β,pop), ω6 = (top = α,pop),

ω7 = (bottom, stay($)).

Recall that γ0 is the initial pushdown symbol of P1; we let $ be an arbitrary
pushdown symbol different from α, β, and γ0.

Then, using a rational expression over singletons and context-free sets, it is
easy to see that B(Ω) = Pref

(
(ω1 · C2,3 + ω4 · C5,6)∗ · ω7

)
where Pref(D) is the

set of all prefixes of any set D ⊆ Ω∗ and

C2,3 = {b ∈ {ω2, ω3}∗ | |b|ω2 + 1 = |b|ω3 ,∀b′ prefix of b : |b′|ω2 + 1 ≥ |b′|ω3},

C5,6 = {b ∈ {ω5, ω6}∗ | |b|ω5 + 1 = |b|ω6 ,∀b′ prefix of b : |b′|ω5 + 1 ≥ |b′|ω6}.
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Next we define the MSO-formula ϕ ∈ MSO(Σ{B}, CMSO ∪ CB) which checks for
some given b ∈ B(Ω) whether it ends with ω7. Moreover, ϕ forces a labeling with
symbols from Σ. We let ϕ = ϕlast ∧ ϕsymb where

– ϕlast = ∀x.(last(x) → B(x) = ω7)
– ϕsymb = ∀x.

∧
ω∈Ω(B(x) = ω → Pρ(ω)(x))

where ρ(ω) = α if ω ∈ {ω1, ω2, ω6}, ρ(ω) = β if ω ∈ {ω4, ω5, ω3}, ρ(ω7) = #.

We note that for each u ∈ Σ∗ there is at most one b ∈ B(Ω) such that (u, [B �→
b]) |= ϕ; let us call this bu.

Moreover, we define κ : Σ{B} → K for each ω ∈ Ω by κ((α, ∅, ω)) = 2,
κ((β, ∅, ω)) = 1, and κ((#, ∅, ω)) = 0. Then we obtain

[[e]](u) =
∑

b∈B(Ω,|u|)
[[ϕ � Valκ]]{B}(u, [B �→ b])

= [[Valκ]]{B}(u, [B �→ bu]) = valdisc(κ((u, [B �→ bu]))) = s(u).

The above example employed for each word only a single behaviour. By start-
ing with pushdown automata for inherently ambiguous context-free languages
and introducing weights for the transitions, we could obtain expressions whose
semantics use several behaviours.

5 Results

The next theorem is our main result and it follows from Lemmas 9 and 16.

Theorem 8. Let K be a unital valuation monoid, Σ an alphabet, and S a
storage type. Moreover, let s : Σ∗ → K be a weighted language. Then the follow-
ing are equivalent:

1. s is (S,Σ,K)-recognizable.
2. s is definable by an expression over (S,Σ,K).

The constructions in both directions are effective.

By taking S = Pn, Theorem 8 shows a BET-theorem for weighted n-iterated
pushdown languages over Σ and K. For instance, by taking S = P2 and K = B,
Theorem 8 shows a BET-theorem for OI-macro languages; these were investi-
gated e.g. in [3]. Since OI-macro languages coincide with indexed languages,
Theorem 8 might be considered as an alternative to the BET-theorem in [14].

From Automata to Expressions. For an arbitrary (S,Σ,K)-automaton A we will
construct an equivalent expression e over (S,Σ,K). The construction follows
the usual idea, but additionally the existential quantifier over the second-order
behaviour variable B is employed to ensure that e simulates behaviours of the
storage.
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Lemma 9. For each (S,Σ,K)-automaton A, the weighted language [[A]] is
definable by an expression over (S,Σ,K).

Proof. Let A = (Q,Qi, Qf , T,wt) and T = {τ1, . . . , τm}. We define the set V =
{Xτ | τ ∈ T} and consider each element of V to be a second-order variable.
Recall ΩA from Sect. 3. We define the expression e over (ΩA, Σ,K) as follows:

e =
∑beh

B

∑
Xτ1

· · · ∑Xτm

(
(ϕ � Valκ) + (ϕε � Valκ + . . . + Valκ︸ ︷︷ ︸

k

)
)
,

where k = |Qi ∩ Qf | and ϕ = ϕpart ∧ ϕcomp ∧ ¬ϕε and

– ϕpart = ∀x.
∨

τ∈T

(
(x ∈ Xτ ) ∧ ∧

τ ′∈T :
τ 
=τ ′

¬(x ∈ Xτ ′)
)
,

– ϕcomp = ∀x. ψ ∧ ψ′ ∧ ∧
τ=(q,a,p,q′,f)∈T

(
(x ∈ Xτ ) → (ψ1 ∧ ψ2 ∧ ψ3)

)
and

- ψ = first(x) → ∨
τ ′∈T : pr1(τ

′)∈Qi
(x ∈ Xτ ′),

- ψ′ = last(x) → ∨
τ ′∈T : pr4(τ

′)∈Qf
(x ∈ Xτ ′)

- ψ1 = Pa(x) and ψ2 = (B(x) = (p, f)),
- ψ3 = ∀y.

(
next(x, y) → ∨

τ ′∈T : pr1(τ
′)=q′ (y ∈ Xτ ′)

)
,

– ϕε = ∀x.next(x, x). Note: LV∪{B}(ϕε) = {(ε, σε)} for σε(Xτi
) = ∅, σε(B) = ε.

Intuitively, ϕ models the computations of A as it is usual for weighted automata
without storage; additionally, ψ2 assures that the ΩA-behaviour guessed by the
semantics of

∑beh
B fits to the behaviour guessed by the semantics of the sequence∑

Xτ1
· · · ∑Xτm

. We use ϕε to handle the empty input word appropriately.
We define the mapping κ : ΣV∪{B} → K for each (a, V, ω) ∈ ΣV∪{B} by:

κ((a, V, ω)) = wt(τ) if V = {Xτ}, and 0 otherwise.
Finally, we can compute for each u ∈ Σ∗\{ε} of some length n > 0 as follows:

[[e]](u) =
∑

b∈B(ΩA,n)

∑

I1,...,Im⊆pos(u)

[[ϕ � Valκ]]V∪{B}(u, σ) =
∑

θ∈ΘA(u)

wt(θ) = [[A]](u)

where σ(B) = b and σ(Xτi
) = Ii for each 1 ≤ i ≤ n. Moreover,

[[e]](ε) = [[Valκ + . . . + Valκ︸ ︷︷ ︸
k=|Qi∩Qf |

]]V∪{B}(ε, σε) =
∑

q∈Qi∩Qf

1 = [[A]](ε),

where the last but one equation holds, because [[Valκ]]V∪{B}(ε, σε) = 1. Thus,
[[A]] is definable by an expression over (S,Σ,K). �

From Expressions to Automata. The proof consists of a first part, which is an
induction on B-expressions (similar to [15, Sect. 4.2]) and a second part which
transforms B-expressions into weighted automata with storage (see Lemma 15).
In the sequel we let Ω be a finite subset of P × F .

In Lemmas 10–14 we will deal with the class Rec(ΣV ,K). Since (ΣV ,K)-
automata cannot check whether a word b ∈ Ω∗ is an Ω-behaviour, we always
have to intersect with Σ∗v

V in the following sense. Let s : Σ∗ → K and L ⊆



136 H. Vogler et al.

Σ∗. We define the weighted language (s ∩ L) : Σ∗ → K for every u ∈ Σ∗ by
(s ∩ L)(u) = s(u) if u ∈ L, and 0 otherwise. We extend this intersection to a set
Ψ of weighted languages of type Σ∗ → K by letting Ψ ∩ L = {(s ∩ L) | s ∈ Ψ}.

Lemma 10 (compare [4, Proposition 3.3] and [15, Lemma 3.8]). Let e be a
B-expression over (Ω,Σ,K) and let V and W be finite sets of variables with
Free(e) ⊆ W ⊆ V. Then, [[e]]W ∈ Rec(ΣW ,K) ∩ Σ∗v

W if and only if [[e]]V ∈
Rec(ΣV ,K) ∩ Σ∗v

V .

Lemma 11 (cf. [15, Lemma 4.5]). Let U and V be finite sets of variables such
that B ∈ U and U ⊆ V. Moreover, let κ : ΣU → K. Then [[Valκ]]V ∈ Rec(ΣV ,K)∩
Σ∗v

V .

Lemma 12 (cf. [15, Lemma 4.6]). Let V be a finite set of variables such that
B ∈ V. Moreover, let e1, e2 be two B-expressions over (Ω,ΣV ,K) such that
Free(e1) ∪ Free(e2) ⊆ V. If [[ei]]V ∈ Rec(ΣV ,K) ∩ Σ∗v

V for i ∈ {1, 2}, then [[e1 +
e2]]V ∈ Rec(ΣV ,K) ∩ Σ∗v

V .

Lemma 13 (cf. [15, Lemma 4.10]). Let V be a finite set of variables such that
B ∈ V. Moreover, let e be a B-expression over (Ω,ΣV ,K) such that Free(e) ⊆ V.
Also let ϕ ∈ MSO(Σ, CMSO ∪CB) with Free(ϕ) ⊆ V. If [[e]]V ∈ Rec(ΣV ,K)∩Σ∗v

V ,
then [[ϕ � e]]V ∈ Rec(ΣV ,K) ∩ Σ∗v

V .

Lemma 14 (cf. [4, Lemma 4.3] and [15, Lemma 4.9]). Let V be a finite set of
variables such that B ∈ V.

1. If e is a B-expression over (Ω,ΣV∪{x},K), Free(e) ⊆ V ∪{x}, and [[e]]V∪{x} ∈
Rec(ΣV∪{x},K) ∩ Σ∗v

V∪{x}, then [[
∑

x e]]V ∈ Rec(ΣV ,K) ∩ Σ∗v
V .

2. If e is a B-expression over (Ω,ΣV∪{X},K), Free(e) ⊆ V∪{X}, and [[e]]V∪{X} ∈
Rec(ΣV∪{X},K) ∩ Σ∗v

V∪{X}, then [[
∑

X e]]V ∈ Rec(ΣV ,K) ∩ Σ∗v
V .

In the next lemma we obtain the required (S,Σ,K)-automaton A′ as a
suitable projection of the given (Σ{B},K)-automaton A by incorporating the
Ω-information contained in its extended alphabet into the transitions of A′.

Lemma 15. Let e be a B-expression over (Ω,Σ{B},K) with Free(e) = {B}. If
[[e]]{B} ∈ Rec(Σ{B},K) ∩ Σ∗v

{B}, then [[
∑beh

B e]] ∈ Rec(S,Σ,K).

Proof. Let A = (Q,Qi, Qf , T,wt) be a (Σ{B},K)-automaton such that [[e]]{B} =
[[A]] ∩ Σ∗v

{B}. We construct the (S,Σ,K)-automaton A′ = (Q,Qi, Qf , T ′,wt′) as
follows. If τ = (q, (a, ∅, (p, f)), q′) is in T , then τ ′ = (q, a, p, q′, f) is in T ′ and we
let wt′(τ ′) = wt(τ).

Let u ∈ Σ∗ of some length n ≥ 0. We define the mapping ν : ΘA′(u) →
B(Ω,n) for each θ = (d0 �τ ′

1 d1 · · · �τ ′
n dn) by ν(θ) = b1 . . . bn where bi = (pi, fi)

if pi = pr3(τ ′
i) and fi = pr5(τ ′

i).
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Then, for each b ∈ B(Ω,n), the mapping δ : ΘA((u, [B �→ b])) → ΘA′(u) ∩
ν−1(b) induced by δ(τ) = τ ′ is a bijection, and wt(θ) = wt′(δ(θ)) for each
θ ∈ ΘA((u, [B �→ b])). Then we can calculate as follows:

[[
∑beh

B e]](u) =
∑

b∈B(Ω,n)

[[e]]{B}(u, [B �→ b]) =
∑

b∈B(Ω,n)

(
[[A]] ∩ Σ∗v

{B}
)(

u, [B �→ b]
)

=
∑

b∈B(Ω,n)

[[A]](u, [B �→ b]) =
∑

b∈B(Ω,n)

∑

θ∈ΘA(u,[B �→b])

wt(θ)

=
∑

b∈B(Ω,n)

∑

θ′∈ΘA′ (u)∩ν−1(b)

wt′(θ′) =
∑

θ′∈ΘA′ (u)

wt′(θ′) = [[A′]](u).

Lemma 16. Let s : Σ∗ → K. If s is definable by some expression over (S,Σ,K),
then s is (S,Σ,K)-recognizable.

Proof. Using Lemmas 10–14 we can prove by induction that for each finite set V
of variables such that B ∈ V and for each B-expression e over (Ω,ΣV ,K) with
Free(e) ⊆ V, we have [[e]]V ∈ Rec(ΣV ,K) ∩ Σ∗v

V .
Now let s : Σ∗ → K be definable by some expression over (S,Σ,K). Then

there is a finite set Ω ⊆ P ×F and a B-expression e over (Ω,Σ{B},K) such that
Free(e) = {B} and s = [[

∑beh
B e]]. Since [[e]]{B} ∈ Rec(Σ{B},K) ∩ Σ∗v

{B} by the
above, we obtain from Lemma 15 that s ∈ Rec(S,Σ,K). �

Support and Decidability. Let (K, ·, 1) be a monoid. For k1, . . . , kn ∈ K, we
let 〈k1, . . . , kn〉 denote the smallest submonoid of K containing k1, . . . , kn. If
k ∈ K and A ⊆ K, let k · A = {k · a | a ∈ A}. As defined by Kirsten [19],
the zero generation problem (ZGP) for a monoid (K, ·, 1) with zero 0 consists
of two integers m,n ∈ N, elements k1, . . . , km, k′

1, . . . , k
′
n ∈ K and the question

whether 0 ∈ k1 · . . . · km · 〈k′
1, . . . , k

′
n〉. For instance, each idempotent monoid

has a decidable ZGP problem. A strong bimonoid (K,+, ·, 0, 1) [8] is called zero-
sum-free, if k + k′ = 0 implies k = k′ = 0, and commutative, if k · k′ = k′ · k (for
k, k′ ∈ K).

Theorem 17. Let K be a zero-sum-free commutative strong bimonoid.

1. For every (S,Σ,K)-recognizable series s : Σ∗ → K, supp(s) is (S,Σ)-recog-
nizable.

2. Let |Σ| ≥ 2. There is an effective construction of an (S,Σ)-automaton recog-
nizing supp([[A]]) from any given (S,Σ,K)-automaton A iff (K, ·, 1) has a
decidable ZGP.

From Theorems 8 and 17 and the fact that the emptiness problem of iterated
pushdown automata is decidable [11, Corollary 1], we obtain the following result:

Corollary 18. Let |Σ| ≥ 2, K be a zero-sum-free commutative strong bimonoid
with a decidable ZGP, and s : Σ∗ → K be definable by an expression over
(Pn, Σ,K) for some n ≥ 0. Then it is decidable whether supp(s) = ∅.
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This shows the decidability of the satisfiability problem of the logic given by
(Pn, Σ,K)-expressions for Σ and K as indicated. In particular, each bounded lat-
tice with computable infimum is a zero-sum-free commutative strong bimonoid
with a decidable ZGP.
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Abstract. Nested words allow modeling of linear and hierarchical struc-
ture in data, and nested word automata are special kinds of pushdown
automata whose push/pop actions are directed by the hierarchical struc-
ture in the input nested word. The resulting class of regular languages of
nested words has many appealing theoretical properties, and has found
many applications, including model checking of procedural programs. In
the nested word model, the hierarchical matching of open- and close- tags
must be properly nested, and this is not the case, for instance, in program
executions in presence of exceptions. This limitation of nested words nar-
rows its model checking applications to programs with no exceptions.

We introduce the model of colored nested words which allows such
hierarchical structures with mismatches. We say that a language of col-
ored nested words is regular if the language obtained by inserting the
missing closing tags is a well-colored regular language of nested words.
We define an automata model that accepts regular languages of colored
nested words. These automata can execute restricted forms of
ε-pop transitions. We provide an equivalent grammar characterization
and show that the class of regular languages of colored nested words has
the same appealing closure and decidability properties as nested words,
thus removing the restriction of programs to be exception-free in order
to be amenable for model checking, via the nested words paradigm.

1 Introduction

Nested words, introduced in [4], are a data model capturing both a linear order-
ing and a hierarchically nested matching of items. Examples for data with both
of these characteristics include executions of structured programs, annotated
linguistic data, and documents in marked-up languages such as xml. While
regular languages of nested words allow capturing of more expressive structure
than traditional words, they retain all the good properties of regular languages.
In particular, deterministic nested word automata are as expressive as their
non-deterministic counterparts; the class is closed under the following opera-
tions: union, intersection, complementation, concatenation, Kleene-*, prefixes
and language homomorphism; and the following problems are decidable: empti-
ness, membership, language inclusion and language equivalence.
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Fig. 1. (a) A procedural program. (b) An illustration of an execution of the code of
the program where function calls are captured hierarchically.

Many algorithms for problems concerning such data can be formalized and
solved using constructions for basic operations and algorithms for decision prob-
lems. This fact led the way to many interesting applications and tools. Two
prominent areas are xml processing (see e.g. [8,14,15]) and model checking of
procedural programs (see e.g. [1–3,6,9,20]). By modeling executions of struc-
tured programs as nested words, one can algorithmically verify/refute various
aspects of program correctness. Consider for instance, the program in Fig. 1a. An
example execution is illustrated in Fig. 1b. Each step of the execution is mapped
to the program counter line, and in addition, function calls create hierarchical
connections to their respective returns. In the illustrations calls are depicted
with down arrows, returns with up arrows, and internal code with horizontal
arrows.

Nested words can be represented by graphs as in Fig. 1b or via an implicit rep-
resentation using words over an alphabet Σˆtx, ¨, yu. We use xa, 9a and ay as abbre-
viations for pa, xq, pa, ¨q and pa, yq, respectively.1 For the program in Fig. 1a, we
can define the first component of the alphabet to be the set of possible program
counter lines tp0, p1, . . . , r4u. Then the call to Q(), for instance, will be modeled
by the letter xq0. The implicit representation for the nested word in Fig. 1b is the
word obtained by concatenating the letters on the path consisting of all solid edges.
The fact that the hierarchical matching between calls and returns is explicitly cap-
tured (in comparison to treating them as a linear sequence of instructions) can be

1 Our notation for internal letters, marking a letter with a dot as in 9a, differs slightly
from nested words literature which uses simply a. When there is no risk of confusion
we may use un-dotted versions too.
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Fig. 2. (a) A Python program. (b) An excerpt from an HTML document.

exploited for writing more expressive specifications of procedural programs such
as pre/post conditions that can be algorithmically verified — see [17] for details.

But what happens if an exception is thrown? Then a call (or several calls)
will not have a matching return. Viewing the run as a nested word might match
the thrown exception with the most recent call, but this is not what we want.

A similar situation happens in parsing programs written in programming
languages like Python or Haskell, that use whitespace to delimit program blocks
and deduce variables’ scope. In such programming languages, a new block begins
by a line starting at a column greater than that of the previous line. If the current
line starts at column n (i.e. after n spaces from a new line) and the following line
starts at the same column n it is considered on the same block. If the next line
starts at a column n1 ą n it is considered a new block. Last, if the next line starts
in a column n1 ă n then it is considered in the block that started at n1 and this
implicitly closes all blocks that were opened in between. (If no block started at
column n1 this would be a syntax error.) If we were to model this with nested
words, we can only close the last block, but here we need to close as many blocks
as needed.

For strongly matched languages, such as xml, one might want to use this
principle to help recover un-closed tags, in cases where this will not result in
a confusion, but rather help processing the rest of the document. Consider for
instance, the example of Fig. 2b. In this example we have a list with a couple of
well-matched list items, and one list item that has no closing tag. We would like
to be able to process it and recover from the unmatched list item. If we consider
</ol> in a way similar to a thrown exception, we can achieve this task.

If we can’t model exceptions correctly, we cannot use model checking to for-
mally prove/refute properties about them, and a fundamental property such as
“if a certain condition occurs in a program, an exception is thrown and properly
caught” is left beyond the scope of verification.

In this work we suggest to augment the nested words model with colors. Each
call and return, or opening and closing tags, are associated with some color. The
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Fig. 3. (a) a colored nested word corresponding to an execution of the code in Fig. 1a
where an exception is thrown. (b) a colored nested word corresponding to the HTML
excerpt in Fig. 2b (Color figure online).

hierarchical structure matches only nodes of the same color. This allows relaxing
the requirements on the hierarchical edges. A hierarchical edge of a certain color
may be unmatched if it is encapsulated by a matched hierarchical edge of a
different color. This models catching thrown exceptions, closing as many blocks
as needed, or recovering from unmatched tags. Figure 3a depicts colored nested
words for the two elaborated examples.

Following a formalization of colored nested words, we ask ourselves whether
we can use existing machinery of nested word automata and/or nested words
tranducers to process colored nested words. Realizing that this is unfeasible, we
present colored nested word automata (cna). These automata augment automata
for nested words with restricted forms of ε-pop transitions. These ε-transitions
enable the automaton to read all the information on the stack that was pushed
on un-matched calls. We study also a blind version (bcna), that can see just the
information recorded on the matched call. We show that although there could
be unboundedly many stack symbols that it cannot observe in comparison to
the first automata model, their expressive power is the same.

We show that cna recognize exactly the class of regular languages of colored
nested words. We then show that this class of languages is as robust as regular
languages: Deterministic cna are as expressive as their non-deterministic coun-
terparts. It is closed under the following operations: union, intersection, comple-
mentation, concatenation, Kleene-*, prefixes, suffixes, reversal, homomorphism
and inverse homomorphism. The following problems are decidable: emptiness,
membership, language inclusion and language equivalence. We conclude with a
grammar characterization. Due to lack of space proofs are omitted; they can be
found in the full version on the authors’ homepages.
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Related Work. The key idea in the model of nested words as well as colored
nested words is to expose the hierarchical matching between the open and close
tags, and the corresponding automata models are really processing the input
dag. To understand the relationship of these automata with classical formalisms
such as context-free languages, we can view the input as a sequence of symbols,
with the hierarchical structure only implicit, and measure expressiveness by the
class of languages of words they define. With this interpretation, the class of reg-
ular languages of nested words is a strict superset of regular word languages and
a strict subset of dcfls. This relationship has led to renewed interest in finding
classes between regular languages and dcfls such as realtime height determin-
istic pdas [16], synchronized grammars [5], and Floyd grammars/automata [7]
(and some interested in languages accepted by higher order pushdown automata,
e.g. [13], which are not cfl.) The class of regular languages of colored nested
words is a strict superset of regular nested-word-languages and a strict subset of
Floyd grammars. While a cna can be encoded as a Floyd automaton by defin-
ing a suitable dependency matrix between input symbols to dictate the stack
operations, the view that cnas are finite-state machines operating over the dag
structure of the input colored nested word leads to a clean theory of regular
languages of colored nested words.

2 Colored Nested Words

As is the case in nested words, colored nested words can be represented explicitly
using graphs as in Fig. 3a or implicitly using words over an augmented alphabet.
We start with the implicit representation. Formally, we define colored nested
words to be words over alphabets of the form A Y A ˆ C ˆ t`, ´u. Given a
triple xa, c, hy, the first component a P A provides some content, the second
component c P C provides a color and the third component h indicates whether
a hierarchical connection starts (`) or ends (´). Letters in A do not influence
the hierarchical structure. Letters of the form xa, red, `y and xa, red, ´y, can be
abbreviated using (a and a), respectively, and similarly for other colors. One
can use instead, different parenthesis types for the different colors and form
abbreviations such as ta, ra, (a and au, as, a). More generally, we can use (ca,
ac) to abbreviate xa, c, `y and xa, c, ´y, respectively. When A and C are clear
from the context we use (Σ, 9Σ and Σ) for A ˆ C ˆ t`u, A and A ˆ C ˆ t´u,
respectively. For a given color c P C we use (cΣ and Σc) for the sets Aˆtcuˆt`u
and A ˆ tcu ˆ t´u, respectively. Finally, we use Σ̂ for (Σ Y 9Σ Y Σ), and a, b,
c, and w, u, v for letters and words in Σ̂, respectively.

Explicit Representation. A colored nested word of length n can be represented
by explicitly a tuple pw, κ, è , � , à , ã q where w is a word of length n over a
finite set of symbols A; κ maps nodes in r0..ns to colors in C; è , � are binary
relations in r0..n ´ 1s ˆ r1..ns and ã and à are unary relations over r0..n ´ 1s
and r1..ns, resp. The relations è , � , à , ã describe the hierarchical edges.
The linear edges are implicit; there is a linear edge from every i P r0..n ´ 1s to
i ` 1, and w maps the linear edges to the A-symbols, as shown in Fig. 3a.
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We refer to è and � as matched edges, and recovered edges, and to à
and ã as pending calls and pending returns. The following conditions must be
satisfied, where for uniformity we view the relations à and ã as binary by
interpreting i à and ã j as i à 8 and ´8 ã j.

1. Edges point forward: if i � j for some � P t è , � , à , ã u then i ă j.
2. Edges do not cross: if i � j and i1 �1 j1 for some � ,�1 P t è , � , à , ã u

then it is not the case that i ă i1 ă j ă j1.
3. Source positions may not be shared: if i � j and i1 �1 j1 for some � ,�1 P

t è , � , à u then i ‰ i1.2
4. Target positions join at a match: for every j P r1..ns if the set ti � j | � P

t è , � uu is non-empty then it contains exactly one è edge.

A colored nested word is said to be well-colored if (a) matched edges are
monochromatic, i.e. if i è j then κpiq “ κpjq, and (b) recovered edges are bi-
chromatic, i.e. if i � j then κpiq ‰ κpjq and there exists i1 ă i such that i1 è j. A
well-colored colored nested word is said to be well-matched if it has no pending
calls, no pending returns, and no recovered edges. It is said to be weakly-matched
if it has no pending returns and no pending calls (but it may have recovered
edges). A weakly-matched colored nested word is said to be rooted if the first
letter is in (Σ and the last letter is in Σ). It is said to be c-rooted if it is rooted
and the first and last letters are colored c. The outer level of a colored nested
word is the word obtained by omitting all weakly-matched proper infixes. For
instance, if w “ (a[bb]c(d[ef )g) its outer level is (acg).

For executions of programs with exceptions (Figs. 1b and 3a), a word is well-
matched if no exceptions are thrown. For the html example, being well-matched
means that all open tags are closed in the correct order. If not, as is the case
Fig. 2b, the explicit representation of the nested word will contain bi-chromatic
edges. In the case of Python programs, being well matched means that after a
block ends, there are always some lines of code before the outermost block ends,
which is very unlikely.

3 Regularity

Next, we define a notion of regularity for colored nested words. We would like to
say that a language of colored nested words is regular if the language obtained
by inserting the missing closing tags is a well-colored regular language of nested
words. First we need to define this mapping from a colored nested word to the
uncolored nested word obtained by adding the missing closing tags.

Assume our colored alphabet is Σ̂ “ A Y A ˆ C ˆ t`, ´u. We can define the
uncolored alphabet Σ̃ “ A Y pA ˆ C ˆ t`, ´uq Y p ˆ C ˆ t´uq. A letter a P Σ̂
can be mapped to a letter ã in Σ̃ as follows. An opening letter pa, c, `q can be
mapped to xpa, cq, an internal letter a to itself, and a closing letter pa, c, ´q can
be mapped to pa, cqy. We will use letters of the form p , cqy to fill the gap of

2 Pending returns ( ã ) by definition share a source.
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“missing” closing letters. We say that a language over Σ̃ is well-colored if it can
be accepted by a product of two nested word automata (nwa) A and Ac where
Ac is a fixed two-state nwa that upon reading (ca letters pushes the color c to
the stack and upon reading bd) checks that the color on the stack is d, and if it
is not goes to its rejecting state.

Adding the missing closing letters is the tricky part. The opening letter cor-
responding to a missing closing letter is some index i such that in the explicit
representation i � j for some j. For each j ď |w| let Ij be the set of indices
i such that i � j. That is, Ij is the set of indices i that are recovered by j.
Assume Ij “ ti1, i2, . . . , i�j u where i1 ă i2 ă . . . i�j . Define uj “ c�j ¨ ¨ ¨ c2c1
where ck “ p , κpikqqy for k P r1..�js. Note that if Ij is empty then uj “ ε. Then
adding uj just before the j-th letter will close the missing parenthesis recovered
by j (if such exist). Formally, for a word w P Σ̂ we define the mapping

fpa1a2 ¨ ¨ ¨anq “ u1ã1u2ã2 . . .unãn

Definition 1. A language L of colored nested words is regular if the language
fpLq “ tfpwq | w P Lu is a well-colored regular language of nested words.

Now that we have a definition of regularity in place, we can ask what machin-
ery can we use to process regular languages of colored nested words. If we can
define a transducer machine M that implements f then we can feed its output
fpwq to a nested word automaton and process it instead of w. But such a trans-
ducer machine M won’t be a finite state transducer, nor it will be a nested words
transducer (nwt) [10–12,18,19]. Intuitively, since it needs to map a return let-
ter to several return letters, in fact to an unbounded number of return letters,
dependent on the number of unmatched call letters, and while the stack can be
used to store this information, an nwt can only inspect the top symbol of the
stack.

Therefore we need new machinery to process colored nested words. We can
either define a new transducer model that will allow implementing the desired
transformation or we can simply define a new automata model that directly
process colored nested words. We pursue the second option, which generalizes
nested words, and can serve as a base line for a respective transducer model.

4 Colored Nested Word Automata

A colored nested word automaton (cna), is a pushdown automaton that operates
in a certain manner, capturing the colored nested structure of the read word.
A cna over Σ̂ uses some set of stack symbols P to record information on the
hierarchical structure. As in the case of nested word automata, opening letters
always cause a push, closing letters always cause a pop, and internal letters
do not affect the stack. For cnas, when a symbol is pushed to the stack, it is
automatically colored by the color of the opening letter. Formally on reading (ca
a letter in P ˆ tcu is pushed. When reading a closing letter bc) the cna will pop
from the stack symbol after symbol until reaching the most recent stack symbol
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which is c-colored, and make its final move on this letter. We can see this move as
composed of several ε-transitions. Note, though, that these are the only possible
ε-transitions; the cna can and must apply an ε-transition only when reading a
closing letter of color c, and until a symbol colored c is visible on the stack, but
it may not apply an ε-transition at any other time.

We assume a default color K P C for coloring the bottom of the stack. We
use Γ to denote stack pairs, i.e. symbols in P ˆ C. For c P C we use Γc and Γ´c

for P ˆ tcu an P ˆ pCztcuq, respectively. A configuration of the automaton is
a string γq where q is a state and γ P ΓKΓ ˚. The frontier of a configuration
s “ γq, denoted frntpγqq is the pair pq, pq where pp, cq is the top pair of γ for
some c P C. We use the term frontiers also for arbitrary pairs in Q ˆ P .

Definition 2 (Colored Nested Word Automaton (CNA)). A cna over
alphabet A Y A ˆ C ˆ t`, ´u is a tuple A “ pQ,P, I, F, δ(, 9δ, δ), δεq where Q is
a finite set of states, P is a finite set of stack symbols, I Ď Q ˆ P is a set of
initial frontiers, F Ď Q ˆ P is a set of final frontiers. The transition relation
is split into four components δ(, 9δ, δ), δε. Letters in (Σ and 9Σ are processed by
δ( and 9δ, respectively. Letters in Σ) are processed by both δ) and δε. The types
of the different δ’s are as follows: δ( : Q ˆ (Σ Ñ 2QˆP , 9δ : Q ˆ 9Σ Ñ 2Q,
δ) : Q ˆ Σ) ˆ P Ñ 2Q and δε : Q ˆ P Ñ 2Q.

From δ we can infer the evolution of the configuration of the automaton, η
as follows.

– Case a P 9Σ: ηpγq, 9aq “ tγq1 | q1 P 9δpq, 9aqu
– Case a P (Σ: ηpγq, (caq “ tγpp1, cqq1 | pq1, p1q P δ(pq, (caqu
– Case a P Σ):

ηpγq, ac)q “
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ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
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ˇ
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ˇ
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γ “ pp0, Kqpp1, c1q . . . ppk, ckq P Γ ˚́

c,
@0 ď i ă k : qi P δεpqi`1, pi`1q

,
//.

//-

A run of the automaton on a Σ̂-word w “ a1 . . .an is a sequence of con-
figurations s0s1 . . . sn such that s0 is an initial frontier and si`1 P ηpsi,ai`1q for
every 0 ď i ă n. A run is accepting if frntpsnq P F . The automaton accepts a
word w if there exists an accepting run on w. We also use pq, pq wùñA pq1, p1q
if A starting from configuration pq, pq and reading w may reach a configuration
whose frontier is pq1, p1q. Thus w is accepted by A if pq, pq wùñA pq1, p1q for some
pq, pq P I and pq1, p1q P F . We use LpAq to denote the set of words accepted by
A. An automaton is deterministic if I is a singleton and the right hand side of
all the δ’s are singletons. We use dcna and ncna for deterministic and non-
deterministic cnas, respectively.
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Fig. 4. Some examples of cnas.

Figure 4 provides some examples of cnas. Push and pop transitions are col-
ored by the respective color, whereas internal transitions are colored black. Push
edges have labels of the form (cb Ó p signifying that p is pushed to the stack,
pop edges have labels of the form bc) Ò p signifying that the top symbol of the
respective color is p. To ease distinction between push and pop transitions, pop
edges are dashed. Finally, ε-transitions use grey dotted edges. The initial fron-
tiers in first and second line are all pdiv, Kq and peven, Kq, respectively, and the
final frontier of each is the same as its initial frontier.

In the first line we have a cna recognizing a subset of html with div, ol and
li tags requiring the document to be well matched (left), and a cna allowing
li to be unmatched if recovered by ol (right).

In the second line the left and middle automata are actually nested word
automata — no use of the color is made. The left recognizes all words over ta, (, )u
where the number of a’s within any () and within the outer level, is even. The
middle recognized words over t[, ], a, (, )u where in addition the number of a’s
between any [] is odd. When we say here “the number of a’s in the word” we mean
in the outer level of the word as defined in Sect. 2. The language recognized by the
right automaton allows also unmatched ( if it is recovered by an encapsulating
[] in which case the number of a letters in between should be odd. For instance
[a(a(aa(a] should be accepted whereas [a(a(aa(aa] should not.

Theorem 1. A language of colored nested words is regular iff it is accepted by
a dcna.

5 Equivalent Models

We show that as is the case in finite automata and nested word automata, non-
determinism does not add expressive power. The proof goes via a generalization
of the subset construction. The states of the dcna are sets of pairs of states. A
run of the dcna on word w will reach state tpq1, q1

1q, pq2, q1
2q, . . . , pqk, q1

kqu iff any
run of the ncna on w reaches one of the states q1

i for i P r1..ks and for every
i P r1..ks the respective run entered the current hierarchical level at state qi.

Theorem 2. dcnas have the same expressive power as ncnas.
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Blind CNA. Next we consider a model where upon reading a return letter ac)
the automaton does not have the privilege to read all the stack until the most
recent c-symbol. Instead it immediately jumps to the most recent c-colored stack
symbol p, popping and ignoring everything above it, and makes a move solely
on the base of that p. We call this model blind cna and show that blind cnas
are as expressive as (sighted) cnas.3 Dependent on the application the blind
or original (sighted) cna may be more natural. For instance, in the context of
software executions, one might prefer the sighted automata to allow modeling
of operations such as releasing allocated memory that are taken when an excep-
tion is thrown. In the context of parsing Python programs, or recovering from
unmatched html tags, the blind model may be more natural.

Definition 3 (Blind Colored Nested Word Automaton (BCNA)). A
bcna is a tuple B “ pQ,P, I, F, δ(, 9δ, δ)q where all the components are as in the
definition of a cna. The evolution of the configuration of the automaton for
9δ and δ( is the same as in cnas. For δ) we have that ηpγq, ac)q “ tγ1q1 | γ “
γ1pp, cqγ2 where γ2 P Γ ˚́

c and q1 P δ)pq, p, ac)quYtpp0, Kqq | γ “ pp0, Kqγ1 P Γ ˚́
cu.

As in cnas a run of a bcna is a sequence of configurations which adheres to η
and whose first element is an initial frontier.

Clearly every bcna can be simulated by a cna whose epsilon transitions
do not change the state of the automaton. Some cnas are naturally blind. For
instance, the cna at the top right of Fig. 4 can be made blind by omitting the
ε-transition. Simulating the cna at the bottom right of Fig. 4 by a blind cna
requires adding more states to account for the computations done by the ε-
transitions. The proof of the following theorem provides a constructive way to
perform such a simulation. The idea is that the states and stack symbols carry
an additional component recording a function ϕ : Q ˆ C Ñ Q such that ϕpq, cq
tells to which state the cna will get after popping all non c-stack symbols if the
current state is q.

Theorem 3. Given a deterministic cna A with n states, k colors and m stack
symbols, one can effectively construct a deterministic bcna B such that LpBq “
LpAq with knn`1 states and kmnn stack symbols.

6 Closure Properties and Decision Problems

Theorem 4. Regular languages of colored nested words are closed under com-
plementation, intersection and union.

Complementation is done by complementing the set of final frontiers, and inter-
section and union are done via a product construction.

Theorem 5. Regular languages of colored nested words are closed under con-
catenation and Kleene-*.

3 Note that a blind cna is still different than a traditional nested word automaton, as
it has the means to skip all the unmatched calls and arrive to the matching call.
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Concatenation is proved by guessing a split point and simulating the automata
for the operands on each part of the split word. The second automaton treats
stack symbols of the first automaton as the bottom of the stack. For Kleene-* the
idea is similar, but requires two copies of the simulated automaton to distinguish
different sub-words of the split.

Theorem 6. Regular languages of colored nested words are closed under the
operations of prefix, suffix and reversal.

Closure under reversal is done by dualizing the transitions and switching initial
and final frontiers. Closure under prefixes requires guessing an accepting frontier
for an extension of the word and tracking it via the transitions. It relies on
decidability of emptiness that is provided in Theorem8. Closure for suffix follows
from these two: suffpLq “ pprefpLRqqR.

Let Σ̂ and Σ̂1 be two colored alphabets. For every a P Σ̂ let Hpaq be a
language of colored nested words over Σ̂1. We call H a substitution. We say that
substitution H is color-respecting if the following three conditions hold: (1) for
every 9a P 9Σ any word w1 P Hp 9aq is weakly-matched, (2) for every (ca P (Σ any
word w1 P Hp(caq is of the form (c1 bv where v is weakly-matched (3) for every
ac) P Σ) any word w1 P Hpac)q is of the form v bc1) where v is weakly-matched.
When H maps every a to a singleton set, we refer to H as an homomorphism, and
usually denote it with small h. A homomorphism thus maps letters to strings. If
h is a homomorphism from Σ̂ to Σ̂1, given a language L1 over Σ̂1 we can define
its inverse-homomorphic image as h´1pL1q “ tw | Dw1 P L1. hpwq “ w1u.
Theorem 7. Regular languages of colored nested words are closed under color-
respecting substitution, homomorphism and inverse homomorphism.

The idea in these proofs is to use an ncna that guesses a substituted letter a
and then runs in parallel the dcna for L on the guessed letter a and the dcna
Ma for the substitution Hpaq.

We note that in general, it may be that hph´1pLqq ‰ L and h´1phpLqq ‰ L,
or moreover that, h´1phpLqq Ę L. Examples are given in the full version.

The following theorem follows from the result on emptiness of pushdown
automata and from the closure under complementation and intersection.

Theorem 8. Emptiness of ncnas can be solved in polynomial time. Inclusion,
universality and equivalence of ncnas are exptime-complete.

The membership problem for non-deterministic pushdown automata too is
solvable in polynomial time. It thus follows that we can decide on ncna’s mem-
bership in polynomial time.

In some contexts, it makes sense to ask about the complexity of membership
when the given cna is fixed. This is the case, for instance, in parsing programs
in a given programming language. A cna for this will stay valid as long as the
programming language syntax has not changed. If A is fixed, we can construct
the equivalent deterministic automaton D using the method in Theorem 2 and
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then simulate it on the given membership query w. This yields a streaming
algorithm—an algorithm which reads the input in one pass from left to right
(and cannot traverse it again). Thus, this would take Op|w|q time and Opdpwqq
space where dpwq is the hierarchical nesting depth of the colored nested word w.

Theorem 9. Membership of ncnas can be solved in polynomial time. For a
fixed cna A and colored nested word w of length � and depth d, the membership
problem can be solved in time Op�q and space Opdq.

7 Grammar Characterization

In the following we provide a grammar characterization for regular languages of
colored nested words. We first recall some basic definitions. We assume familiar-
ity of basic definition of context-free grammar (and provide it explicitly in the
full version.)

Definition 4. A grammar pV, S, Prodq is said to be a cnw grammar w.r.t a
set C “ tc1, c2, . . . , cku of colors if its variables can be partitioned into sets
V(,V),Vc1 ,Vc2 , . . . ,Vck such that the production rules of the grammar are in
one of the following forms, where X(, Y (, Z( P V(, X) P V), Y,Z P V) Y V(,

Xc, Y c, Zc P Vc and X P V:

´ X( ÝÑaY ( for a P 9Σ Y (Σ ´ X ÝÑ ε
´ X( ÝÑ (ca Y c bc)Z( ´ Xc ÝÑ 9a Y c

´ X) ÝÑaY for a P Σ) Y 9Σ ´ Xc ÝÑ (c1 a Y c bc1)Zc

´ X) ÝÑ (ca Y c bc)Z ´ Xc ÝÑ (c1 a Y c for c1 ‰ c

Intuitively, variables in V( and V) derive words with no pending returns and
no pending calls, respectively, and variables in Vci derive weakly matched ci-
rooted words. Note that while the grammar characterization of nested words
partitions the grammar variables into two categories, one that disallows pending
calls and one that disallows pending returns. For colored nested words, we have
additional categories, one per each color. The variables in the category of color c
derive weakly matched c-rooted words, thus allowing pending calls of any color
other than c.

Theorem 10. A language L is derived by a cnw-grammar iff L is recognized
by a cna.
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M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 251–263. Springer, Heidelberg (2012)

13. Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown
automata and recursion schemes. In: LICS, pp. 452–461 (2008)

14. Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: Královič,
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Abstract. For input-driven queue automata (IDQA) the input alpha-
bet is divided into three distinct classes and the actions on the queue
(enter, remove, nothing) are solely governed by the input symbols. Here,
this model is extended in such a way that the input of an IDQA is
preprocessed by an internal deterministic sequential transducer. These
automata are called tinput-driven queue automata (TDQA). It turns
out that even TDQAs with weak, that is, deterministic injective and
length-preserving, internal transducers are more powerful than IDQAs.
We study closure properties of the family of languages accepted by
TDQAs. For example, for compatible signatures the closure under the
Boolean operations union, intersection, and complementation is shown.
For incompatible signatures and the operations reversal, concatenation,
iteration, and length-preserving homomorphism non-closure results are
obtained. Depending on the working mode of the transducer and the
IDQA, there are three nondeterministic working modes for tinput-driven
queue automata. It is shown that for devices with nondeterministic
transducers the nondeterministic IDQA can be determinized. The other
classes form a strict hierarchy. Finally, several decidability problems are
addressed.

Keywords: Automata and formal languages · Input-driven automata ·
Queue automata · Closure properties · Decidability

1 Introduction

Finite automata possess many nice properties such as equivalence of nondeter-
ministic and deterministic models, existence of minimization algorithms, closure
under many operations, and decidable questions such as emptiness, inclusion,
or equivalence. On the other hand, their computational power is quite low since
only regular languages are accepted. It is therefore natural to consider extensions
of the model featuring additional storage media such as pushdown stores, stacks,
or queues. In general, such extensions lead to a broader family of accepted lan-
guages, but also to a weaker manageability of the models since certain closure
properties do not longer hold, minimization algorithms do not exist, and formerly
decidable questions become undecidable. Thus, there is an obvious interest in
extensions which enlarge the language family, but keep as many of the ‘good’
properties as possible.
c© Springer International Publishing Switzerland 2016
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One such extension is represented by input-driven automata. Basically, for
such devices the operations on the storage medium are dictated by the input
symbols. The first references date back to [6,12], where input-driven pushdown
automata are introduced in which the input symbols define whether a push oper-
ation, a pop operation, or no operation on the pushdown store has to be per-
formed. A recent survey with many valuable references on complexity aspects
of input-driven pushdown automata may be found in [13]. Extensions of the
model with respect to multiple pushdown stores or more general auxiliary stor-
ages are introduced in [9,11]. Recently, the computational power of input-driven
automata using the storage medium of a stack and a queue, respectively, have
been investigated in [3,8]. Here we are particularly interested in queue automata.
Some contributions relate these devices to other well-known concepts in formal
language theory and theoretical computer science. For instance, in [5] queue
automata (there called Post machines) with certain features are shown to char-
acterize the class of languages accepted by multi-reset machines [4], as well as
some classes of languages defined by equality sets. In [7], a restricted version of
context-free grammars, called breadth-first grammars, are provided as a gener-
ating system for certain classes of languages accepted by queue automata. The
computational capacity and complexity of queues are compared with the storage
types stack and tapes in [10].

The edge between languages that are accepted by input-driven queue
automata (IDQA) or not is very small. For example, language { an$bn | n ≥ 1 }
is accepted by an IDQA where an a means an enter operation, b means a remove
operation, and a $ leaves the queue unchanged. On the other hand, the very
similar language { an$an | n ≥ 1 } is not accepted by any IDQA. Similarly,
the language {w$w | w ∈ {a, b}+ } is not accepted by any IDQA, but if the
second w is written down with some marked alphabet {â, b̂}, then language
{w$ŵ | w ∈ {a, b}+ } is accepted by an IDQA. To overcome these obstacles
we provide the input-driven queue automaton with an internal sequential trans-
ducer that preprocesses the input. In the first example above such a transducer
translates every a before reading $ to a and after reading $ to b. An IDQA with
internal transducer is said to be tinput-driven (TDQA). While an internal trans-
ducer does not affect the computational capacity of general queue automata, it
clearly does for input-driven versions. To implement the idea without giving
the transducers too much power for the overall computation, essentially, we will
consider only deterministic injective and length-preserving transducers.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.

A classical deterministic queue automaton is called input-driven if the next
input symbol defines the next action on the queue, that is, entering a symbol at
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the end of the queue, removing a symbol from the front of the queue, or changing
the internal state without modifying the queue content. To this end, we assume
that the input alphabet Σ is partitioned into the sets ΣD, ΣR, and ΣN , that
control the actions enter (D), remove (R), and state change only (N). Such a
partition is called a signature. A formal definition is:

Definition 1. A deterministic input-driven queue automaton, abbreviated as
IDPDA, is a system M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉, where

1. Q is the finite set of internal states,
2. Σ is the finite set of input symbols consisting of the disjoint union of sets

ΣD, ΣR, and ΣN ,
3. Γ is the finite set of queue symbols,
4. q0 ∈ Q is the initial state,
5. F ⊆ Q is the set of accepting states,
6. ⊥ /∈ Γ is the empty-queue symbol,
7. δD is the partial transition function mapping Q × ΣD × (Γ ∪ {⊥}) to Q × Γ ,
8. δR is the partial transition function mapping Q × ΣR × (Γ ∪ {⊥}) to Q,
9. δN is the partial transition function mapping Q × ΣN × (Γ ∪ {⊥}) to Q.

A configuration of an IDQA M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 is a triple
(q, w, s), where q ∈ Q is the current state, w ∈ Σ∗ is the unread part of the
input, and s ∈ Γ ∗ denotes the current queue content, where the leftmost symbol
is at the front. Thus, the initial configuration for an input string w is set to
(q0, w, λ). During the course of its computation, M runs through a sequence of
configurations. One step from a configuration to its successor configuration is
denoted by 
. Let a ∈ Σ, w ∈ Σ∗, z, z′ ∈ Γ , and s ∈ Γ ∗. We set

1. (q, aw, zs) 
 (q′, w, zsz′), if a ∈ ΣD and (q′, z′) = δD(q, a, z),
2. (q, aw, λ) 
 (q′, w, z′), if a ∈ ΣD and (q′, z′) = δD(q, a,⊥),
3. (q, aw, zs) 
 (q′, w, s), if a ∈ ΣR and q′ = δR(q, a, z),
4. (q, aw, λ) 
 (q′, w, λ), if a ∈ ΣR and q′ = δR(q, a,⊥),
5. (q, aw, zs) 
 (q′, w, zs), if a ∈ ΣN and q′ = δN (q, a, z),
6. (q, aw, λ) 
 (q′, w, λ), if a ∈ ΣN and q′ = δN (q, a,⊥).

So, whenever the queue is empty, the successor configuration is computed accord-
ing to the definition of the transition functions on the special empty-queue sym-
bol ⊥. We denote the reflexive and transitive (resp. transitive) closure of 
 by

∗ (resp. 
+). The language accepted by the IDQA M is the set L(M) of words
for which there exists a computation beginning in the initial configuration and
ending in a configuration in which the whole input is read and an accepting state
is entered. Formally:

L(M) = {w ∈ Σ∗ | (q0, w, λ) 
∗ (q, λ, s) with q ∈ F, s ∈ Γ ∗ }.

For the definition of tinput-driven queue automata we need the notion of
deterministic one-way sequential transducers (DST) which are basically deter-
ministic finite automata equipped with an initially empty output tape. In every
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transition a DST appends a string over the output alphabet to the output tape.
The transduction defined by a DST is the set of all pairs (w, v), where w is the
input and v is the output produced after having read w completely. Formally,
a DST is a system T = 〈Q,Σ,Δ, q0, δ〉, where Q is the finite set of internal
states, Σ is the finite set of input symbols, Δ is the finite set of output symbols,
q0 ∈ Q is the initial state, and δ is the total transition function mapping Q × Σ
to Q×Δ∗. By T (w) ∈ Δ∗ we denote the output produced by T on input w ∈ Σ∗.
Here we will consider only injective and length-preserving DSTs which are also
known as injective Mealy machines.

Let M be an IDQA and T be an injective and length-preserving DST so that
the output alphabet of T is the input alphabet of M . The pair (M,T ) is called
a tinput-driven queue automaton (TDQA) and the language accepted by (M,T )
is L(M,T ) = {w ∈ Σ∗ | T (w) ∈ L(M) }.

For a computation of a queue automaton, a turn is a phase in which the
length of the queue first increases and then decreases. Formally, a sequence of at
least three configurations (q1, w1, s1) 
 (q2, w2, s2) 
 · · · 
 (qm, wm, sm) is a turn
if |s1| < |s2| = · · · = |sm−1| > |sm|. For any given k ≥ 0, a k-turn computation
is any computation containing exactly k turns.

A TDQA performing at most k turns in any computation is called k-turn
TDQA and will be denoted by TDQAk. Analogously, k-turn IDQA are defined,
and will be denoted by IDQAk.

In order to clarify this notion we continue with an example.

Example 2. Language L1 = { an$an | n ≥ 1 } is accepted by a TDQA. Before
reading symbol $ the transducer maps an a to an a, and after reading $ it maps
an a to a b. Thus, L1 is translated to { an$bn | n ≥ 1 } which is accepted by
some IDQA.

Similarly, L2 = {w$w | w ∈ {a, b}∗ } can be accepted by some TDQA. Here,
the transducer maps any a, b to a, b before reading $ and to â, b̂ after reading $.
This gives the language {w$ŵ | w ∈ {a, b}∗ } which clearly is accepted by some
IDQA.

Finally, consider L3 = { anb2n | n ≥ 1 }. Here, the transducer maps an a to a
and every b alternately to b and c. This gives language { an(bc)n | n ≥ 1 } which
is accepted by some IDQA: every a implies an enter-operation, every b implies
a remove, and every c leaves the queue unchanged. �

3 Closure Properties

The property of working input-driven forces the device to perform the operation
on its storage medium that is associated with the current input symbol. Con-
sidering input-driven automata and closure properties under binary operations
like for union, intersection, and concatenation, it may happen that certain let-
ters have to be associated with different operations to accept the both languages
involved. In the worst case this implies that the input-driven language families
are not closed under these operations [8]. On the other hand, for input-driven
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queue (resp. pushdown) automata, strong closure properties have been derived
in [8] (resp. [1]) provided that all automata involved share the same partition
of the input alphabet. Here we distinguish this important special case from the
general one. We call the partition of an input alphabet a signature, and say that
two signatures Σ = ΣD ∪ ΣR ∪ ΣN and Σ′ = Σ′

D ∪ Σ′
R ∪ Σ′

N are compatible if
and only if

⋃
j∈{D,R,N}(Σj \ Σ′

j) ∩ Σ′ = ∅ and
⋃

j∈{D,R,N}(Σ
′
j \ Σj) ∩ Σ = ∅.

The following technical lemma allows to earn several non-closure properties.

Lemma 3. The concatenation of the input-driven queue automata languages
L = { anbn | n ≥ 1 } and L′ = { bmam | m ≥ 1 } is not accepted by any TDQA.

Proof. In contrast to the assertion, assume that the concatenation LL′ is
accepted by some TDQA (M,T ) with M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 and
T = 〈Q′, Σ′, Σ, q′

0, δ
′〉. The transducer T translates an input word r = uvw,

where u = ai, v = bibj , w = aj , to some word rT = uT vT wT with |u| = |uT |,
|v| = |vT |, |w| = |wT |. Since the subwords u, v, w are unary, the transducer runs
into a loop while each of them is processed. So, each of uT , vT , and wT has the
form

x1x2 · · · xk(y1y2 · · · y�)cy1y2 · · · ym

where k ≤ |Q′| is the length of the initial part until T enters the loop, � ≤ |Q′| is
the length of the loop, c ≥ 0 is some constant, m < � is the length of a possible
incomplete loop at the end, and xi, yj ∈ Σ, 1 ≤ i ≤ k, 1 ≤ j ≤ �. Since M is
input driven, for a given uT (resp. vT , wT ) it can be determined whether the
computation of M on uT (resp. vT , wT ) for growing c increases the length of the
queue, decreases the length of the queue, or leaves the length unchanged up to
a constant. In the following, these three cases are distinguished for growing c.

First we consider uT and assume that the length of the queue does not
increase for growing c. Then there is a constant su so that the length of the
queue content is at most su after (M,T ) has processed any input prefix of the
form ai, i ≥ 1. So, there are two different prefixes ai and ai′

with i �= i′ that
drive (M,T ) into the same states with the same queue contents. Since aibibjaj

and ai′
bi′

bjaj are accepted, ai′
bibjaj is accepted as well, a contradiction. Thus,

for growing c, M has to increase the length of the queue while processing uT .
Next we consider vT and assume that the length of the queue does not

increase for growing c. Let i ≥ 1 be fixed. Then there is a constant suv so that
the length of the queue content is at most suv after (M,T ) has processed any
input prefix of the form aibi+j , j ≥ 1. So, there are two different prefixes aibi+j

and aibi+j′
with j �= j′ that drive (M,T ) into the same states with the same

queue contents. Since aibi+jaj and aibi+j′
aj′

are accepted, aibi+j′
aj is accepted

as well, a contradiction. Thus, for growing c, M has to increase the length of the
queue while processing vT .

Finally, the subword zT remains to be considered. Let i ≥ 1 be large compared
with j ≥ 1. We choose the word aibibjaj . From above it is known that the length
of the queue increases while processing aibib∗. So, there is another j′ �= j where
the two different prefixes aibi+j and aibi+j′

drive (M,T ) into the same states
with the same content at the front of the queue. Moreover, the length of the
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matching queue content exceeds j. Since aibi+jaj and aibi+j′
aj′

are accepted,
aibi+j′

aj is accepted as well. The reason is that M cannot access the possibly
different part of the queue content during the last j time steps. Now the assertion
follows from the contradiction. ��

As an immediate consequence we obtain the non-closure under concatenation.

Theorem 4. The family of languages accepted by tinput-driven queue automata
is not closed under concatenation.

Proof. By Example 2 the two languages of Lemma 3 are accepted by TDQAs.
So, the theorem follows by Lemma 3. ��
Theorem 5. The family of languages accepted by tinput-driven queue automata
is not closed under length-preserving homomorphism.

Proof. It is not hard to construct a tinput-driven queue automaton that accepts
language L = { anbncbm−1am | m,n ≥ 1 }.

Let h : {a, b, c}∗ → {a, b}∗ be the length-preserving homomorphism defined
by h(a) = a, h(b) = b, h(c) = b. Then h(L) = { anbnbmam | m,n ≥ 1 } which is
not accepted by any TDQA by Lemma 3. ��
Theorem 6. The family of languages accepted by tinput-driven queue automata
is not closed under iteration.

Proof. We consider the language L = { anbn | n ≥ 1 } ∪ { bnan | n ≥ 1 }, which
is clearly accepted by some tinput-driven queue automaton.

Words of the form a+b+a+ that belong to L∗ must be from the concatenation
{ anbn | n ≥ 1 } · { bnan | n ≥ 1 }, that is, from the two-fold iteration of L.
However, the proof of Lemma 3 shows that if these words are accepted by some
TDQA, then also some words not belonging to L∗ are accepted. ��

Now we turn to the Boolean operations and obtain a first positive closure
under complementation.

Theorem 7. Let (M,T ) be a TDQA. Then a TDQA accepting the complement
of L(M,T ) can effectively be constructed.

For the remaining Boolean operations union and intersection one has to dis-
tinguish whether or not the given TDQAs have identical or at least compatible
signatures. Clearly, two TDQAs M and M ′ have identical signatures if they
are defined over the same input alphabet and the behavior of the queue of M
and M ′ is identical for all input symbols. In case of compatible signatures, the
input alphabets of M and M ′ may differ, but the behavior of the queue of M
and M ′ is identical for all input symbols belonging to the intersection of both
input alphabets. We consider first TDQAs having compatible signatures and
identical translations. Later, we will see that TDQAs lose some positive closure
properties if the signatures are no longer compatible.
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Theorem 8. Let (M,T ) and (M ′, T ) be two TDQAs with compatible signatures.
Then a TDQA accepting the intersection L(M,T ) ∩ L(M ′, T ), can effectively be
constructed.

The effective closure under union follows from the effective closure under
intersection and complementation.

Corollary 9. Let (M,T ) and (M ′, T ) be two TDQAs with compatible signa-
tures. Then a TDQA accepting the union L(M,T )∪L(M ′, T ), can effectively be
constructed.

In contrast, TDQAs are not closed under union and intersection in case of
incompatible signatures.

Theorem 10. The family of languages accepted by TDQAs is not closed under
union.

Proof. As witnesses for the non-closure we consider L1 = { bancanb | n ≥ 0 } and
L2 = { banbamcamb | m,n ≥ 0 }. Both languages are accepted by some TDQA,
but it is shown in [7] that the union L1∪L2 is not even accepted by any realtime
deterministic queue automaton. This shows the non-closure under union. ��

Since the family of languages accepted by TDQAs is closed under comple-
mentation by Theorem 7, we obtain non-closure under intersection as well.

Corollary 11. The family of languages accepted by TDQAs is not closed under
intersection.

Similarly, the non-closure under reversal can be derived.

Theorem 12. The family of languages accepted by TDQAs is not closed under
reversal.

Proof. The reversal of L = { bancanb | n ≥ 0 } ∪ { banbamcamb | m,n ≥ 0 }
is accepted by some TDQA, but L itself is not even accepted by any realtime
deterministic queue automaton [7]. ��

Finally it should be noted that TDQAs are closed under intersection with
regular languages.

Theorem 13. Let (M,T ) be a TDQA and M ′ be a deterministic finite automa-
ton. Then a TDQA accepting the intersection L(M,T ) ∩ L(M ′) can effectively
be constructed.

The examples given in Example 2 showed that the computational capacity of
TDQAs is larger than that of IDQAs. In Lemma 3 it was shown that language
{ anbnbmam | n,m ≥ 1 } is not accepted by any TDQA. However, this language
can easily be accepted by a realtime deterministic queue automaton. Let us
denote the latter type of queue automata with rt−QA. Then, we obtain the
following hierarchy:

L (IDQA) ⊂ L (TDQA) ⊂ L (rt-QA).
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4 Determinization

Each language accepted by a nondeterministic input-driven pushdown automa-
ton is also accepted by a deterministic input-driven pushdown automaton. The
simulation costs for an n-state nondeterministic input-driven pushdown automa-
ton are 2Θ(n2) states [6]. It is shown in [2] that this size is necessary in the worst
case.

The basic idea of the proof is that the automaton stores applicable transition
rules onto the pushdown store, when a push operation should be done, instead
of pushing the appropriate symbol. The actual push operation is simulated at
the time at which the symbol to be pushed is popped. In this way, it may
happen that some transition rule pushed does not belong to a valid computation.
However, the construction allows to distinguish these cases and, thus, only valid
transitions will be evaluated. This technique cannot be assigned to input-driven
queue automata. The reason is that on input-driven pushdown automata the
last symbol pushed is used first. Thus it can be determined whether it belongs
to a valid computation or not. In contrast, input-driven queue automata work
according to the FIFO principle. Therefore, there could be many symbols in
between the queue symbol currently to be removed and the symbol that has
been entered last. So, the technique does not allow to verify that the remove
operation simulates only enter operations belonging to a valid computation.

This brings us to the question whether the nondeterministic version of a
tinput-driven queue automaton can be determinized as well. There are four
different working modes for a tinput-driven queue automaton. The sequential
transducer can be deterministic or nondeterministic and also the input-driven
queue automaton may be deterministic or nondeterministic. We use the notation
TDQAx,y with x, y ∈ {d, n} where x stands for the working mode of the trans-
ducer and y for the mode of the input-driven queue automaton. For example,
TDQAn,d is a tinput-driven queue automaton with a nondeterministic sequential
transducer and a deterministic input-driven queue automaton. We require here
that nondeterministic sequential transducers are injective and length-preserving
as their deterministic variant. The first result reveals that, for nondeterministic
transducers, the nondeterministic IDQA can be determinized.

Theorem 14. The family of languages accepted by TDQAn,n and TDQAn,d

coincide.

Proof. In the following we use the abbreviation δ for the union of the tran-
sition functions δD, δR, and δN of an IDQA. Given a TDQAn,n with nonde-
terministic transducer T = 〈Q,Σ,Δ, q0, σ〉 and nondeterministic IDQA M =
〈P,Δ, Γ, p0, F,⊥, δD, δR, δN 〉, the basic idea of the construction of a nondetermin-
istic transducer T ′ and a deterministic IDQA M ′ so that L(M ′, T ′) = L(M,T ) is
to let T ′ simulate T and additionally guess which transition M ′ would perform
dependent on the current symbol at the front of the queue. The guess is the
output symbol of T ′.

At first we construct the nondeterministic transducer T ′ as 〈Q,Σ,Δ′, q0, σ′〉,
where Δ′ is the set of deterministic transition functions of an IDQA with state
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set P , a fixed input symbol from Δ, and set of queue symbols Γ . Formally, for
d ∈ Δ, let δ̂d be a mapping from P × {d} × (Γ ∪ {⊥}) to P × Γ ∪ P , and Δ′ be
the union of all such mappings δ̂d for all d ∈ Δ. Now, it is sufficient to define σ′:
for all p ∈ Q, a ∈ Σ,

σ′(q, a) ={(q′, δ̂b) | (q′, b) ∈ σ(q, a) and

δ̂b so that δ̂b(s, b, γ) ∈ δ(s, b, γ), for all s ∈ P and γ ∈ Γ ∪ {⊥}}.
The deterministic IDQA M ′ = 〈P,Δ′, Γ, p0, F,⊥, δ′

D, δ′
R, δ′

N 〉 is now defined
through δ′(p, δ̂b, γ) = δ̂b(p, b, γ), for all p ∈ P and γ ∈ Γ ∪ {⊥}. Clearly, M ′ is
length-preserving and M ′ is injective since M is.

In order to show that (M ′, T ′) and (M,T ) are equivalent, assume that both
TDQAs M and M ′ are in the same state p ∈ P , have the same queue content
s ∈ Γ ∗, and that both transducer T and T ′ are in the same state q ∈ Q. By
definition and construction this is true for the initial configurations.

Let (M,T ) perform a transition on some input symbol a ∈ Σ that drives T
nondeterministically into state q′ whereby symbol b ∈ Δ is output. Furthermore,
let M apply δ(p, b, γ) so that its successor state is nondeterministically chosen to
be p′ ∈ P and the queue is manipulated by some operation op. By construction,
then and only then T ′ may perform a nondeterministic transition on a that
yields state q′ as well, and outputs the deterministic transition function δ̂ so
that δ̂(p, b, γ) gives the successor state p′ and manipulates the queue by the
operation op. So, after processing the next input symbol, M and M ′ are again
in the same state, have again the same queue content, and T and T ′ are again
in the same state. Therefore, (M ′, T ′) and (M,T ) accept the same language. ��

So, the nondeterminism of the transducer is a powerful resource. Once it
is available, it does not matter whether the IDQA is nondeterministic or not.
In both cases the same language family is accepted. However, the next result
shows that the absence of nondeterminism of the transducer strictly weakens the
TDQA, regardless whether or not nondeterminism is provided for the IDQA.

Theorem 15. The family of languages accepted by TDQAd,n is properly
included in the family of languages accepted by TDQAn,d.

The previous theorem showed once more that the nondeterminism of the
transducer is a powerful resource. Even if the associated IDQA is deterministic,
the nondeterminism of the transducer cannot be compensated by a nondeter-
ministic IDQA. On the other hand, the next result reveals that nondeterminism
for the IDQA is better than determinism if the transducers are deterministic.

Theorem 16. The family of languages accepted by TDQAd,d is properly
included in the family of languages accepted by TDQAd,n.

Proof. The inclusion L (TDQAd,d) ⊂ L (TDQAd,n) follows immediately for
structural reasons. The properness of the inclusion is witnessed by language

L = { an$h(w1)$h(w2)$ · · · $h(wm) | m,n ≥ 1, wk ∈ {a, b}n, 1 ≤ k ≤ m,

and there exist 1 ≤ i < j ≤ m so that wi = wj },
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where h is the homomorphism that maps a to #a and b to #b. It is accepted by
a TDQAd,n with ΣD = {a, b}, ΣR = {#} and ΣN = {$}. The transducer can be
chosen to compute the identity mapping. Then, the accepting nondeterministic
IDQA M first stores the prefix an into its queue, whereby the first symbol is
marked. Subsequently, whenever a $ appears in the input, M guesses whether the
following subword is h(wi). If not, for every input symbol # one queue symbol is
removed from the queue and stored in the state, and for every symbol from {a, b}
the symbol stored in the state is entered in the queue again. If yes, instead of the
symbols removed from the queue, the current input symbols are entered in the
queue, whereby in both cases the first symbol is marked, again. In this way, M
verifies that the lengths of the subwords read are correct. After storing wi into
the queue, the IDQA M continues to read subwords and to verify their lengths
whereby the queue content is shifted circularly through the queue. Moreover,
whenever a $ appears in the input, M guesses whether the following subword
is h(wj). If yes, it compares the subwords symbol by symbol with the current
queue content and accepts if and only if both match.

In order to show that L is not accepted by any TDQAd,d we assume in
contrast to the assertion that it is accepted by some TDQAd,d (M ′, T ). Let
n ≥ 1 be a fixed and long enough integer. There are 2n different words over the
alphabet {a, b} whose length is n. We consider a subset W = {w1, w2, . . . , w�}
of such words and associate an input w = an$h(w1)$h(w2)$ · · · $h(w�)$h(x)
with it, where x ∈ {a, b}n. When the computation on w has reached the last $
symbol, the remaining computation depends only on the current state of T ,
the current state of M ′, and the queue content that is still accessible in the
last |h(x)| = 2n time steps. For the latter we have the first 2n symbols in
the queue. So, there are at most |Q| · |P | · |Γ |2n ∈ o(22

n

) different possibili-
ties for such situations. On the other hand, there are 22

n

different subsets of
binary words of length n. This implies that there are two different subsets, say
W = {w1, w2, . . . , w�} and W ′ = {w′

1, w
′
2, . . . , w

′
�′} whose associated words drive

the TDQAd,d (M ′, T ) in the same situation. We conclude that, for all x ∈ {a, b}n,
the input an$h(w1)$h(w2)$ · · · $h(w�)$h(x) is accepted if and only if the input
an$h(w′

1)$h(w′
2)$ · · · $h(w′

�′)$h(x) is accepted. However, without loss of general-
ity we may assume that there is a word in W , say wi, that does not belong to W ′.
Since an$h(w1)$h(w2)$ · · · $h(w�)$h(wi) is accepted, we conclude that the input
an$h(w′

1)$h(w′
2)$ · · · $h(w′

�′)$h(wi) is accepted as well. But the latter does not
belong to L since all subwords appearing are different. The contradiction shows
that L is not accepted by any TDQAd,d. ��

Summarizing the results regarding determinization, we end up with the fol-
lowing hierarchy:

L (TDQAd,d) ⊂ L (TDQAd,n) ⊂ L (TDQAn,d) = L (TDQAn,n).

5 Decidability Questions

It has been shown in [8] that IDQAs with an unbounded number of turns are
a powerful model, since they can encode in a suitable way the computations
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of linear bounded automata. Owing to this encoding it is possible to reduce
decidability questions for linear bounded automata to decidability questions for
IDQAs. Since it is known that for the former class of automata many decid-
ability questions are undecidable and not even semidecidable, we obtain by our
reduction that the commonly studied questions of emptiness, finiteness, inclu-
sion, equivalence, regularity, and context-freeness are all undecidable and not
semidecidable for IDQAs.

Theorem 17. [8] The questions of emptiness, finiteness, infiniteness, univer-
sality, inclusion, equivalence, regularity, and context-freeness are not semidecid-
able for IDQA0s.

Since every IDQA can be considered as a TDQA such that its corresponding
injective and length-preserving deterministic sequential transducer simply real-
izes the identity map, we immediately obtain that all the above questions are
not semidecidable for TDQAs as well.

Corollary 18. The questions of emptiness, finiteness, infiniteness, universality,
inclusion, equivalence, regularity, and context-freeness are not semidecidable for
TDQAs.

In the turn-bounded case, it has been shown in [8] that the questions of
emptiness, finiteness, and equivalence with regular languages are decidable for
k-turn DQAs which are not necessarily input-driven. These results help to show
the following decidability results for TDQAs.

Theorem 19. Let k ≥ 0 be a constant and (M,T ) be a k-turn TDQA. Then
emptiness and finiteness of L(M,T ) is decidable. Furthermore, equivalence with
regular sets and, in particular, universality is decidable for (M,T ) as well.

Proof. Let (M,T ) be a k-turn TDQA. Then the DST T is in particular length-
preserving and maps every letter of the input alphabet Σ to another letter of M ’s
input alphabet Δ. Now, we construct a DQA M ′ which translates in its state set
every input symbol a ∈ Σ to T (a) ∈ Δ and simulates M on input T (a). Thus,
w ∈ L(M ′) if and only if w ∈ L(M,T ) and we obtain that L(M ′) = L(M,T ).
Moreover, M ′ is k-turn since M is k-turn. Thus, we obtain our statements by
applying the decidability results for k-turn DQAs [8]. ��

Now, we turn to show more decidable questions for k-turn TDQAs. We
obtain that inclusion and equivalence is decidable as long as the signatures are
compatible.

Theorem 20. Let k ≥ 0 be a constant and (M,T ) as well as (M ′, T ) be k-turn
TDQA with compatible signatures. Then the inclusion and the equivalence of
L(M,T ) and L(M ′, T ) is decidable.

The positive decidability of inclusion gets lost if the signatures are no longer
compatible. In [8] an example is given which shows that the inclusion problem
for two 1-turn IDQAs with incompatible signatures is not semidecidable. Clearly,
this result holds for TDQAs as well. Thus, we obtain the following corollary.
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Corollary 21. Let k ≥ 1 be a constant and (M,T ) as well as (M ′, T ) be two
k-turn TDQA. Then the inclusion L(M,T ) ⊆ L(M ′, T ) is not semidecidable.

It should be noted that it is currently an open question whether the equiva-
lence of k-turn IDQAs or k-turn TDQAs becomes undecidable in case of incom-
patible signatures. Now, we turn back to TDQAs with an unbounded number of
turns. Here, we get the interesting result that inclusion and equivalence remain
not semidecidable even if compatible signatures are provided.

Theorem 22. Let (M,T ) and (M ′, T ) be two TDQAs with compatible signa-
tures. Then the inclusion L(M,T ) ⊆ L(M ′, T ) and the equivalence L(M,T ) =
L(M ′, T ) is not semidecidable.
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Abstract. In [4] Gandhi, Khoussainov, and Liu introduced and stud-
ied a generalized model of finite automata able to work over arbitrary
structures. The model mimics the finite automata over finite structures
but has an additional ability to perform in a restricted way operations
attached to the structure under consideration. As one relevant area of
investigations for this model the authors of [4] identified studying the
new automata over uncountable structures such as the real numbers.
This research was started in [7]. However, there it turned out that many
elementary properties known from classical finite automata are lost. This
refers both to structural properties of accepted languages and to decid-
ability and computability questions. The intrinsic reason for this is that
the computational abilities of the new model turn out to be too strong.

We therefore propose a restricted version of the model which we call
periodic GKL automata. The new model still has certain computational
abilities which, however, are restricted in that computed information is
deleted again after a fixed period in time. We show that this limitation
regains a lot of classical properties including the pumping lemma and
many decidability results. Thus the new model seems to reflect more
adequately what might be considered as a finite automata over the reals
and similar structures. Though our results resemble classical properties,
for proving them other techniques are necessary. One fundamental proof
ingredient will be quantifier elimination over real closed fields.

Keywords: Unconventional models of computation · Computational
complexity

1 Introduction

In recent work Gandhi, Khoussainov, and Liu [4] introduced a generalized model
of finite automata called (S, k)-automata. It is able to work over an arbitrary
structure S, and here in particular over infinite alphabets like the real numbers.
A structure is characterized by an alphabet (also called universe) together with
a finite number of binary functions and relations over that alphabet. Intuitively
the model processes words over the underlying alphabet componentwise. Each
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single step is made of finitely many test operations relying on the fixed relations
as well as finitely many computational operations relying on the fixed functions.
For performing the latter an (S, k)-automaton can use a finite number k of
registers. It moves between finitely many states and finally accepts or rejects an
input.

The motivation to study such generalizations is manifold. In [4] the authors
discuss different previous approaches to design finite automata over infinite
alphabets and their role in program verification and database theory. One goal
is to look for a generalized framework that is able to homogenize at least some of
these approaches. As the authors remark, many classical automata models like
pushdown automata, Petri nets, visible pushdown automata can be simulated by
the new model. Another major motivation results from work on algebraic mod-
els of computation over structures like the real and complex numbers. Here, the
authors suggested their model as a finite automata variant of the Blum-Shub-
Smale BSS model [1,2]. They then ask to analyze such automata over structures
like real or algebraically closed fields.

This line of research has been started recently by the present authors in [7].
Given the tremendous impact finite automata have in classical computability
theory it looks promising to introduce and study a similar concept as restriction
of the real computational model introduced by Blum, Shub, and Smale. However,
the main lesson from [7] is that the general automata model by Gandhi et al.
turns out to be too strong when applied to computations over the real or complex
numbers. Almost all basic automata problems turn out to be undecidable in the
BSS framework for these two uncountable structures. As another consequence,
only weak structural properties can be derived for real languages accepted by
such an automaton. The intrinsic reason for this is the automata’s ability to
store intermediate results during an entire computation, something obviously
not possible in the finite automata world. We therefore suggest a restricted
version of the Ghandi-Khoussainov-Liu (for short: GKL) model. The basic idea
is to force the automaton to periodically forget after a constant number of steps
its intermediate results. This still enables the automaton to perform operations
present in the given structure, but in a limited way.

For the resulting restricted periodic version of real GKL automata we shall
prove both structural as well as several decidability results. Since the automata
can perform basic arithmetic operations over R semi-algebraic sets naturally
show up; computability and decidability results then naturally rely on quantifier
elimination algorithms for the first order theory of the reals.

Our results hopefully indicate that the restricted model is a meaningful alter-
native giving back many of the features finite automata have, but non-trivially
related to the uncountable structure under consideration. Some of the further
questions arising are discussed at the end.

In the next section we recall the automata model by Gandhi et al., equipped
with the additional restriction of periodicity. The main results are proved in
Sects. 3 and 4, which collect both decidability results for several questions about
our periodic automata and structural properties of the languages accepted by
them.
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The paper intends to be a further step towards the development of a gener-
alized model of finite automata. It might be promising to analyse our variant as
well for the many further scenarios treated in [4].

2 Periodic GKL Automata

We suppose the reader to be familiar with the basics of the Blum-Shub-Smale
model of computation and complexity over R. Very roughly, algorithms in this
model work over finite strings of real numbers. The operations either can be com-
putational, in which case addition, subtraction, and multiplication are allowed;
without much loss of generality we do not consider divisions in this paper to
avoid technical inconveniences. Or an algorithm can branch depending on the
result of a binary test operation. The latter will be inequality tests of form ‘is
x ≥ 0?’ The size of a string is the number of components it has, the cost of an
algorithm is the number of operations it performs until it halts. For more details
see [1].

The generalized finite automata introduced in [4] work over structures. Here,
a structure S consists of a universe D together with finite sets of (binary) func-
tions and relations over the universe. An automaton informally works as follows.
It reads a word from the universe, i.e., a finite string of components from D
and processes each component once. Reading a component the automaton can
set up some tests using the relations in the structure. The tests might involve a
fixed set of constants from the universe D that the automaton can use. It can as
well perform in a limited way computations on the current component. Towards
this aim, there is a fixed number k of registers that can store elements from D.
Those registers can be changed using their current value, the current input and
the functions related to S. The new aspect we include here is that such computa-
tions cannot be performed unlimited; after a fixed number of steps performed all
register values are reset to the intial assignment 0, thus forgetting intermediate
results. After having read the entire input word the automaton accepts or rejects
it depending on the state in which the computation stops. These automata can
both be deterministic and non-deterministic.

The approach in particular easily can be adapted to define generalized finite
automata over structures like R and C. We shall in the rest of the paper focus on
the real numbers, though all our results hold as well in their corresponding vari-
ant for the complex numbers. Statements about computability and decidability
refer to the real BSS model of computation.

We consider exclusively the structure SR := (R,+,−, •, pr1, pr2,≥,=) of reals
as ring with order. As in the original work [4] we include the projection oper-
ators pr1, pr2 which give back the first and the second component of a tuple,
respectively. In order to avoid technicalities for the subtraction operation we
allow both orders of the involved arguments, i.e., applying − to two values x, v
can mean x − v or v − x. Similarly, the order test can be performed both as
x ≤ v? and v ≤ x? We do not include division as an operation. This will not
significantly change our results.
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The following definition makes these ideas precise. We alternatively call the
resulting automata real periodic (SR, k, T )-automata or (a bit less clumsy) real
periodic GKL automata, where GKL refers to the initials of the authors of [4].
The definition below adapts the general automata definition in [4] and its real
number version from [7].

Definition 1. (Periodic GKL automata over R) Let k, T ∈ N be fixed.

(a) A deterministic periodic (SR, k, T )-automaton A, also called real periodic
GKL automaton, consists of the following objects:
- a finite state space Q and an initial state q0 ∈ Q,
- a set F ⊆ Q of final (accepting) states,
- a set of � registers which contain fixed given constants c1, . . . , c� ∈ R,
- a set of k registers which can store real numbers denoted by v1, . . . , vk,
- a counter containing a number t ∈ {0, 1, . . . , T − 1}; we call T the period-

icity of the automaton,
- a transition function δ : Q × R × R

k × {0, 1}k+� × {0, 1, . . . , T − 1} �→
Q × R

k × {0, 1, . . . , T − 1}.
The automaton processes elements of R

∗ :=
⊔

n≥1

R
n, i.e., words of finite

length with real components. For such an (x1, . . . , xn) ∈ R
n it works as

follows. The computation starts in q0 with initial assignment 0 ∈ R for the
values v1, . . . , vk ∈ R. The automaton has a counter which stores an integer
t ∈ {0, 1, . . . , T − 1}. At the beginning of a computation its value is 0. A
reads the input components step by step. Suppose a value x is read in state
q ∈ Q with counter value t. The next state together with an update of the
values vi and t is computed as follows:
- A performs the k + � comparisons xσ1v1?, xσ2v2?, . . . , xσkvk?, xσk+1c1?,

. . . , xσk+�c�?, where σi ∈ {≥,≤,=}. This gives a vector b ∈ {0, 1}k+�,
where a component 0 indicates that the comparison that was tested is
violated whereas 1 codes that it is valid;

- depending on state q and b the automaton moves to a state q′ ∈ Q (which
could again be q);

- if the value of the counter is t = T − 1, then the counter as well as all
register entries vi are reset to 0. Otherwise, the counter value is increased
by 1 and the values of all vi are updated applying one of the operations
in the structure: vi ← x ◦i vi. Here, ◦i ∈ {+,−, •, pr1, pr2}, 1 ≤ i ≤ k
depends on q and b only.

When the final component of an input is read A performs the tests for this
component and moves to its last state without any further computation. It
accepts the input if this final state belongs to F , otherwise A rejects.

(b) Non-deterministic (SR, k, T )-automata are defined similarly with the only
difference that δ becomes a relation in the following sense: If in state q the
tests result in b ∈ {0, 1}k+� the automaton can non-deterministically choose
for the next state and the update operations one among finitely many tuples
(q′, ◦1, . . . , ◦k) ∈ Q × {+,−, •, pr1, pr2}k. The counter, however, is changed
as in the deterministic case and if t = T − 1 the register values have to be
reset to 0 as well in the non-deterministic case.
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As usual, a non-deterministic automaton accepts an input if there is at least
one accepting computation.

(c) The language of finite strings accepted by A is denoted by L(A) ⊆ R
∗.

(d) A configuration of A is a tuple from Q × R
k × {0, . . . , T − 1} specifying the

current data during a computation.

Example 2. (a) Every classically regular language L ⊆ {0, 1}∗ when considered
as language in R

∗ can be accepted by a real periodic GKL automaton. This can
be seen easily by interpreting a corresponding finite automaton for L as GKL
automaton which does not use its registers.

(b) For every semi-algebraic set S ∈⊆ R
n, n ∈ N there is an m ∈ N and a real

periodic GKL automaton A such that S is the projection of the set L(A) ∩ R
m

onto its first n components. This was shown in [7] for the real GKL automata
model, but the proof applies as well in the periodic case; this is true because the
main point is to give a bound on the number of steps needed to evaluate the
polynomial conditions defining S. The peridocity of the new automaton then
should be larger than this bound.

Below in Sect. 4 we outline a more systematic description of acceptable
languages which resembles the structure of regular sets over finite alphabets.

3 Decidability

Let us start with the study of some typical decision problems for periodic GKL
automata. To each periodic (SR, k, T )-automaton A we attach a directed graph
GA. Additionally, the edges are labeled by certain semi-algebraic sets. Both the
graph and those sets turn out to be crucial for solving many of the fundamental
decision problems about periodic GKL automata. Before being more precise let
us describe the intuition behind those definitions. Since A has periodicity T we
are naturally led to consider the following two questions: Starting in a state q
with register values 0, which other states are reachable within precisely a number
of t steps from q, where 1 ≤ t ≤ T? And this happens when processing which
inputs from R

t? We therefore split any computation on inputs x ∈ R
n in s blocks

of length T and t remaining steps, where n = s · T + t, s ∈ N0, 0 ≤ t < T.

Definition 3. Let A be a deterministic (SR, k, T )-automaton with state set Q,
initial state q0 and final states F ⊆ Q.

(a) The directed graph GA = (V,E) attached to A is defined as follows: For each
q ∈ Q the set V contains a vertex q and vertices q(t) for 1 ≤ t < T. GA
has an edge (p, q) iff there is a computation of A that when starting in p
with register values 0 reaches q after T steps. GA has an edge (p, q(t)) for
an 1 ≤ t < T iff there is a computation of A that when starting in p with
register values 0 reaches q after t steps. No other edges are present in GA.



Periodic Generalized Automata over the Reals 173

(b) For edges (p, q) and (p, q(t)) of GA, respectively, define S(p, q) ⊆ R
T and

S(p, q(t)) ⊆ R
t as set of those x ∈ R

T or x ∈ R
t, respectively, for which A

moves from p to q when reading x according to the conditions under (a).

Intuitively, vertices named by p ∈ Q are used for dealing with sequences of T
computational steps of A, whereas the copies q(t), 1 ≤ t < T are used to reflect
the final t steps of a computation. Therefore, there are no directed edges of form
(q(t), p).

Theorem 4. Let A be an (SR, k, T )-automaton with attached directed graph
GA = (V,E), S(u, v) be defined as above for vertices u, v ∈ V. Then the fol-
lowing holds:

(a) All S(p, q) are semi-algebraic in R
T , all S(p, q(t)) are semi-algebraic in R

t.1

(b) The edge relation of GA is BSS-computable, i.e., for given u, v ∈ V one can
decide by a BSS algorithm whether (u, v) ∈ E.

(c) For each q ∈ Q, 0 ≤ t ≤ T − 1 the set V (q, t) of register values v ∈ R
k that

occur as valid entries during a computation of A which reaches q such that
the counter contains t is semi-algebraic (and thus BSS decidable).

Proof. We are in this paper not interested in efficiency results and thus only
argue how the questions under consideration lead to certain quantifier elimina-
tion tasks in the first order theory of the reals. Since this theory is BSS decidable,
see [8] for more on the history of respective algorithms, the claimed results then
follow.

Ad (a) Let p, q ∈ Q be fixed. The arguments below will be the same for a pair
(p, q(t)) of vertices. Suppose A uses � constants and is in state p with all register
values equal to 0. We enumerate all sequences P := (p0, p1, p2, . . . , pT ) of states
pi ∈ Q, where p0 = p and pT = q, together with sequences β := (b1, . . . , bT ), bi ∈
{0, 1}k+� of decision vectors such that in A it is possible to move from state pi

to pi+1 if the actual input component xi+1 yields the test results coded by the
components of bi.

We now construct for each such pair (P, β) a first order formula Φ(P,β)(x)
expressing for which inputs x ∈ R

T the path P is representing A’s computation
on x. Towards this aim we must record the changes of the register values as
well as check the related test results. For each 1 ≤ i ≤ T let h

(i)
1 , . . . , h

(i)
k :

R
i �→ R be polynomials such that h

(i)
j (x1, . . . , xi) is the entry in register vj if the

computation follows (P, β) on input x1, . . . , xi starting from register values 0.
The h

(i)
j clearly are polynomials of degree at most i given the way A can compute.

Next, first order formulas ϕi(x1, . . . , xi) express that if A is in state pi−1 with
register values v1 = h

(i−1)
1 (x1, . . . , xi−1), . . . , vk = h

(i−1)
k (x1, . . . , xi−1) and reads

xi, then all performed tests give a result according to bi, A moves to state pi,
and the new register values are v1 = h

(i)
1 (x1, . . . , xi), . . . , vk = h

(i)
k (x1, . . . , xi).

Once again, all above conditions can be expressed in first order logic over R

1 A semi-algebraic set in R
n is a set that can be defined as a finite union of solution

sets of polynomial equalities and inequalities.
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due to the form of the tests that can be performed. Φ(P,β)(x) now is the con-
junction of all these formulas for all 1 ≤ i ≤ T. It follows that S(p, q) = {x ∈
R

T | ⋃
(P,β)∈Γ

Φ(P,β)(x)}, where Γ contains all suitable sequences leading in T steps

from p to q respecting the constraints described above. Since there are only
finitely many suitable pairs and for each of it the set of x satisfying Φ(P,β)(x) is
semi-algebraic, the claim follows. The argument for vertices (p, q(t)) is the same.

Ad (b) Given the result in (a) for each pair (u, v) of vertices of the graph
GA it is decidable whether S(u, v) �= ∅ by (one of) the well known algorithms
for quantifier elimination over real closed fields [8]. Therefore, the edge relation
of GA is BSS computable.

Ad (c) The argument is similar to those in (a). First, any computation of n
steps that reaches state q such that the counter has value t can be decomposed
into s blocks of T steps followed by t final steps, where n = sT + t. In order
to determine the realizable register assignments we have to figure out for which
states p ∈ Q automaton A can reach q in t steps when starting with register
values 0. Among those states we are only interested in the ones reachable in sT
steps, i.e., those p for which there is a path in GA from q0 to p. The latter can
be checked by a usual search algorithm on directed graphs once GA has been
computed according to (b). Let H(q, t) be the set of states p reachable in the
above sense and such that S(p, q(t)) �= ∅. Then a v ∈ R

k is in V (q, t) iff there is
a p ∈ H(q, t) and an x ∈ S(p, q(t)) with v = (h(t)

1 (x), . . . , h(t)
k (x)), where h

(t)
j are

as defined in the proof of part (a). Clearly, this set is again semi-algebraic. �
The above theorem implies several decidability results of fundamental ques-

tions about real periodic GKL automata. Decidability here refers to the real
number BSS model. Whereas for most of the problems treated below decidability
follows relatively straightforwardly from the proof of Theorem4, the equivalence
problem is a bit harder to handle. Note that we do not currently know about
a state minimization algorithm, thus the idea behind the classical algorithm for
deciding equivalence of deterministic finite automata using minimal ones is not
applicable. Note also that given the significantly extended computability fea-
tures of the original definition of real GKL automata in [4] none of the problems
listed below is decidable in this more general model, as was shown in [7].

Theorem 5. The problems below are decidable in the real BSS model:

(a) Emptiness: Given an (SR, k, T )-automaton A, is L(A) = ∅?
(b) Reachability I: Given A as in (a) with state set Q together with a state q ∈ Q,

is there a computation starting in A’s initial state with register entries 0 that
reaches q?

(c) Reachability II: Given an automaton A, a state q, a counter value t ∈
{0, . . . , T − 1}, and a v ∈ R

k, is there a computation starting in A’s ini-
tial state with register entries 0 that reaches p such that the counter’s value
is t and the register values equal v?
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(d) Reachability III: Similar to Reachability II, but without t being specified?
(e) Equivalence: Given two real periodic GKL automata A1,A2, is L(A1) =

L(A2)?

Proof. Decidability of the questions under consideration is a relative immediate
consequence of (the proof of) Theorem 4.

Ad (a) For emptiness we compute a set H of states reachable by A from
its starting configuration in some s · T steps, where s ∈ N0. The computation
of H can be done using the arguments from the proof of parts (a) and (b) in
Theorem 4. If H ∩ F �= ∅ it follows L(A) �= ∅. Otherwise, for each p ∈ H, 1 ≤
t < T , and q ∈ Q we compute a description of the semi-algebraic set S(p, q(t))
and check whether it is empty or not using quantifier elimination. It follows that
now L(A) = ∅ iff all those S(p, q(t)) are empty.

Ad (b) Using GA and the corresponding sets S(u, v) it is easy to check
whether a state q or one of its copies q(t), 1 ≤ t < T are reachable in GA from
the starting state. This can be done, for example, by a breadth-first search.

Ad (c) Check whether q (if t = 0) or q(t) (if t > 0) are reachable in GA. In
case it is we analyze the set of attainable register values V (q, t) as in the proof
of Theorem 4.

Ad (d) As in (c), but instead of checking one fixed t the algorithm has to
be performed for all 0 ≤ t ≤ T − 1.

Ad (e) Let A1,A2 be given with state sets Q1, Q2 and parameters (ki, Ti), i ∈
{1, 2}, respectively. The key idea is to give a bound N for the dimension of an
x ∈ R

N which is accepted by exactly one of the two automata in case they are
not equivalent. Knowing such a bound we can search for x by using once more
the previous arguments together with quantifier elimination algorithms.

For both automata we consider computational blocks of length T := T1 · T2.
It then follows that for each integer r ∈ N after r · T steps both automata
have 0 as its register assignments. Suppose L(A1) �= L(A2), then there exist an
N ∈ N and an x ∈ R

N such that without loss of generality x ∈ L(A1) \ L(A2).
Decompose N = s · T + t, s ∈ N0, 0 ≤ t < T. We want to find an absolute upper
bound s0 for s such that a witness x can be proved to exist up to dimension
s0 · T + t < (s0 + 1)T if one exists at all.

In order to determine s0 define once again directed graphs GA1 , GA2 attached
to the given automata as in Definition 3. However, this time both graphs are
defined with respect to computational blocks of length T instead of taking the
respective periodicities of the two automata. In the first reasoning below we want
to decide existence of a witness x ∈ R

N for some N = s · T , i.e., if t = 0.
For 0 ≤ i ≤ s let (p(1)

i , p
(2)
i ) ∈ Q1 ×Q2 denote the pairs of states that A1,A2

attain after i · T steps of processing input x. Define s0 := |Q1| · |Q2| − 1. Then
no matter how x looks like after at most s0 · T steps a pair of states occurs
for the second time. Since the configurations of both automata at these steps
are the same, we can neglect the corresponding part of the computation. By
removing other loops along the computation path in a similar way it follows
that if a witness x exists at all (for choice t = 0) there is one of dimension
at most N := s0 · T. This reduces the question to a finite set of quantifier
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elimination problems in the spaces R
T ,R2T , . . . ,Rs0T . For each R

iT , 1 ≤ i ≤ s0

express the question whether there is an x ∈ R
iT such that x ∈ L(A1) \ L(A2)

as closed existential first order formula. This can be done using the arguments
in Theorem 4. We then decide truth of the formula by quantifier elimination.

If this decision procedure shows that there is no x of a dimension N ∈
{T, 2T, 3T, . . .} witnessing the difference of the two automata we next decide the
respective question for dimensions of the form N = sT + t with 1 ≤ t < T . As
before, we first compute the set H of all pairs (p, q) ∈ Q1×Q2 that can be reached
by A1,A2 in a sequence of some sT steps. For each fixed 1 ≤ t < T and all pairs
(p′, q′) ∈ F1 × F2 of final states we decide, whether there are edges in GA1 and
GA2 , respectively, from p to p′(t) and from q to q′(t). In order to guarantee that
both corresponding computations by A1,A2 are followed for the same input x ∈
R

t we consider the conjunction of the first order formulas expressing reachability
of p′ from p and of q′ from q and only then apply quantifier elimination. If pairs
(p, q) ∈ H, (p′, q′) ∈ F1 × F2, t ∈ {1, . . . , T − 1} are found it follows L(A1) �=
L(A2), otherwise the two automata are equivalent. �

4 Structural Results

In this section the focus is on elaborating elementary structural results for
languages acceptable by real periodic GKL automata. They extend the cor-
responding ones for discrete finite automata and include a pumping lemma, the
equivalence of non-deterministic and deterministic periodic GKL automata, and
some initial ideas about a generalization of regular expressions to our setting.
Note that in its usual form the pumping lemma does not hold for general GKL
automata over R and no variant is known to be true; similarly, non-deterministic
real GKL automata are strictly more powerful than deterministic ones, see [7]
for both issues and [4] for similar results over other structures. Thus, periodic-
ity significantly reduces the computational power of GKL automata and brings
them probably closer to what one would expect from a real version of finite
automata.

Lemma 6 (Pumping Lemma for Real Periodic GKL Automata). Let
L ⊆ R

∗ be accepted by a real periodic GKL automaton A with periodicity T, k
registers and s states. Then for all w ∈ L of algebraic size |w| ≥ sT there exist
x, y, z ∈ R

∗ such that w = xyz, |y| ≥ T, |xy| ≤ sT, and ∀i ∈ N0 xyiz ∈ L.

Proof. Periodicity of A implies that for all r ∈ N after rT steps of any com-
putation the register values are all 0. The actual configuration thus after rT
steps only depends on the current state. For inputs w of length at least sT there
occurs at least one state twice among the current states after one of the time
steps {0, T, 2T, . . . , sT}. The rest of the proof is as usual: If p is a state occuring
twice, x the prefix of w processed by A until p is reached for first time, y the part
processed until p occurs for the second time, and z the rest, then w = xyz by
definition and xyiz ∈ L for all i ∈ N0 because A’s configuration is (p, 0, 0) both
when it starts to process y and when it has finished. The remaining conditions
obviously are satisfied. �
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The lemma shows that the language {0n1n|n ∈ N} , as in the finite automata
world, is neither acceptable by a periodic real GKL automaton. It might be
interesting to sharpen the statement by not only considering loops having a
length being an integer multiple of the periodicity; this, however, would require
to control the evolvement of the register entries, something that seemed to hinder
a sharper structural result in [7].

Without requiring periodicity non-deterministic real GKL automata are more
powerful than deterministic ones [7]. This difference vanishes if we include the
periodicity requirement into the model.

Theorem 7. The classes of languages over R
∗ acceptable by non-deterministic

and by deterministic periodic real GKL automata are the same.

Proof. Let A be a periodic non-deterministic (SR, k, T )-automaton with state
set Q and final states F ⊆ Q. The construction of an equivalent deterministic
automaton A′ in principle uses the classical powerset idea; however, it is more
complicated because of the automata’s ability to compute. The new automaton
has not only to record states that can be reached non-deterministically, but also
register entries. In particular, it might be possible that A in a state has several
choices how to continue to the same successor state but with different compu-
tations performed on the registers. Therefore, instead of (unordered) subsets of
Q we are lead to consider (ordered) tuples of elements in Q as states of the new
automaton A′.

Let M ∈ N upper bound the maximal number of non-deterministic transi-
tions A can choose from for any of its states. A begins its computations in a
start state q0 with register assignment 0. For t < T steps A can achieve at most
M t−1 different configurations. After T steps, i.e., one sweep of length the peri-
odicity, there are at most |Q| different configurations since the register values
are reset. For the following sweeps of length T the same reasoning shows that
at most m := |Q| · MT−1 different configurations can occur at any stage of a
computation of A.

This motivates the definition of the state set Q′ of A′: Q′ will be used to
code the multi-set of states of Q that can occur with potentially different register
values at a certain point of a computation. Since not necessarily m different con-
figurations are realizable let q∗ �∈ Q denote a new dummy symbol and define Q′

as a subset of (Q∪{q∗})m; a state in Q′ lists with the respective cardinalities the
set of states in Q reachable non-deterministically within a given number of steps.
If less than m different configurations are reachable the lacking components are
filled with q∗.2 The starting state of A′ is (q0, q

∗, q∗, . . . , q∗) ∈ (Q∪{q∗})m, final
states in Q′ are those which contain at least one state from F as a component.
A′ uses km registers which are divided into m blocks of length k; each block is
used to code the evolvement of A’s k registers during one possible computation.

2 In order to make the coding unique we could order the components of any tuple in
Q′ according to an order of Q∪{q∗}, but we refrain from elaborating on this because
it will likely not increase understandability.
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The transition function can now be defined straightforwardly; in order not to
overload the presentation notationally we just describe its functioning informally.
If A after t steps on input x can reach a configuration (p, v1, . . . , vk, t), then A′

after t steps is in a state p′ which has p as one of its components; attached to each
component is one block of k registers - and the one attached to the component
containing the above p has (v1, . . . , vk) as its register values. Now each of the
at most M many non-deterministic transitions A can perform next is coded via
changing the corresponding components of p′ and their attached register blocks
accordingly. If A′ has less than M many choices, in p the lacking components
are set to q∗ and the corresponding register values to 0. Of course, it has to be
specified which components of a state p′ and which register blocks of A′ code
which potential computation path of A. However, it should be obvious that this
easily can be done. Finally, A has an accepting computation on x ending in a
state qf ∈ F if and only if A′ reaches at the end a state that has qf as one of
its components, i.e., A′ accepts x. �

The results especially of Theorem 4 resemble a strong similarity between the
structures of real languages acceptable by periodic GKL automata and of regular
languages. Due to space limitations we just outline this similarity and postpone
a more complete treatment to a full version.

It has been shown in Sect. 3 that computation cycles of length the periodicity
T play a crucial role in the analysis of periodic automata. If such an automaton
can move in T steps from state p to q assuming all registers have been initialized
to 0, then the (non-empty) semi-algebraic sets S(p, q) introduced in Definition 3
constitute building blocks of words being processed by the automaton; similarly
at the end of a computation with sets of form S(p, q(t)). Thus, for the develop-
ment of a theory of ‘regular expressions’ in our context such sets could serve as
elementary objects. Of course, this requires as well taking more care about what
kind of semi-algbraic sets can be allowed here.

Next, there is as well a natural way to define a Kleene-∗ operation
on those sets. Starting from the automata side, each cycle in the directed
graph GA indicates that a corresponding sequence of operations can be per-
formed by A arbitrarily many times, each time processing a word from a
corresponding semi-algebraic set; the latter has the concatenated structure
S(p1, p2)S(p2, p3) . . . S(pr, p1), where p1 → p2 → . . . → pr → p1 denotes the
underlying cycle. That way, we obtain a recursive construction of expressions
being built on base of certain semi-algebraic sets. It is then not hard to work out
a decomposition result for all real languages L accepted by a real periodic GKL
automaton. Each such L can be decomposed using the operations of concatena-
tion of fundamental semi-algebraic sets together with the ∗-operation related to
the cycle structure in GA. It is probably more demanding to work out the other
direction: Which kind of semi-algebraic ground-pieces can be allowed to obtain
in the above way exactly those languages that are accepted by real periodic
GKL automata? Nevertheless, the structural similarity to the concept of regular
languages seems striking.
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5 Further Questions

There are several ways to go. First, one could continue the line of research in
this paper and analyze further properties of real languages acceptable by periodic
GKL automata. For example, is there a way to minimize the number of states and
of registers, and what impact has the choice of the periodicity? Next, above we
completely disregarded complexity issues and only applied elimination results in
their general form. In many of our problems requiring quantifier elimination the
formulas obtained have a very specific structure because the automata process an
input component only once and it is only influencing T steps of a computation.
Therefore, one might ask which of the problems treated above are efficiently
solvable, which are NPR-complete in the BSS framework? Especially finding
new NPR-complete problems is interesting since the list of known such problems
still is relatively limited.

A third area of further research is considering other underlying structures
than the reals. One major motivation of [4] was to have a generalized automata
model for many different structures which also homogenizes existing ones. So the
question is in how far our restricted version of GKL automata also is meaningful
for further structures like those considered in [4]? Finally, it seems promising to
analyze the new automata model as well for infinite computations over countably
infinite sequences of reals. The classical theory initiated by Büchi, see [9] for a
longer introduction into the topic, established a close relation between such infi-
nite automata and logic. For working with infinite structures meta-finite model
theory was developed in [5] and applied to BSS computability theory in [3,6].
We believe it to be interesting to investigate potential links between the latter
and a kind of periodic real Büchi automata.
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Abstract. Finding minimal separating sequences for all pairs of inequiv-
alent states in a finite state machine is a classic problem in automata
theory. Sets of minimal separating sequences, for instance, play a central
role in many conformance testing methods. Moore has already outlined a
partition refinement algorithm that constructs such a set of sequences in
O(mn) time, where m is the number of transitions and n is the number
of states. In this paper, we present an improved algorithm based on the
minimization algorithm of Hopcroft that runs in O(m log n) time. The
efficiency of our algorithm is empirically verified and compared to the
traditional algorithm.

Keywords: Algorithms on automata and words · Partition refinement

1 Introduction

In diverse areas of computer science and engineering, systems can be modelled
by finite state machines (FSMs). One of the cornerstones of automata theory
is minimization of such machines (and many variation thereof). In this process
one obtains an equivalent minimal FSM, where states are different if and only if
they have different behaviour. The first to develop an algorithm for minimization
was Moore [9]. His algorithm has a time complexity of O(mn), where m is the
number of transitions, and n is the number of states of the FSM. Later, Hopcroft
improved this bound to O(m log n) [6].

Minimization algorithms can be used as a framework for deriving a set of
separating sequences that show why states are inequivalent. The separating
sequences in Moore’s framework are of minimal length [3]. Obtaining minimal
separating sequences in Hopcroft’s framework, however, is a non-trivial task.
In this paper, we present an algorithm for finding such minimal separating
sequences for all pairs of inequivalent states of a FSM in O(m log n) time.

Coincidentally, Bonchi and Pous recently introduced a new algorithm for
the equally fundamental problem of proving equivalence of states in non-
deterministic automata [1]. As both their and our work demonstrate, even classi-
cal problems in automata theory can still offer surprising research opportunities.
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Moreover, new ideas for well-studied problems may lead to algorithmic improve-
ments that are of practical importance in a variety of applications.

One such application for our work is in conformance testing. Here, the goal is
to test if a black box implementation of a system is functioning as described by
a given FSM. It consists of applying sequences of inputs to the implementation,
and comparing the output of the system to the output prescribed by the FSM.
Minimal separating sequences are used in many test generation methods [2].
Therefore, our algorithm can be used to improve these methods.

2 Preliminaries

We define a FSM as a Mealy machine M = (I,O, S, δ, λ), where I,O and S are
finite sets of inputs, outputs and states respectively, δ : S × I → S is a transition
function and λ : S × I → O is an output function. The functions δ and λ are
naturally extended to δ : S ×I∗ → S and λ : S ×I∗ → O∗. Moreover, given a set
of states S′ ⊆ S and a sequence x ∈ I∗, we define δ(S′, x) = {δ(s, x)|s ∈ S′} and
λ(S′, x) = {λ(s, x)|s ∈ S′}. The inverse transition function δ−1 : S × I → P(S)
is defined as δ−1(s, a) = {t ∈ S|δ(t, a) = s}. Observe that Mealy machines are
deterministic and input-enabled (i.e. complete) by definition. The initial state is
not specified because it is of no importance in what follows. For the remainder of
this paper we fix a machine M = (I,O, S, δ, λ). We use n to denote its number of
states, i.e. n = |S|, and m to denote its number of transitions, i.e. m = |S| × |I|.
Definition 1. States s and t are equivalent if λ(s, x) = λ(t, x) for all x in I∗.

We are interested in the case where s and t are not equivalent, i.e. inequivalent.
If all pairs of distinct states of a machine M are inequivalent, then M is minimal.
An example of a minimal FSM is given in Fig. 1.

Definition 2. a separating sequence for states s and t in s is a sequence x ∈ i∗

such that λ(s, x) �= λ(t, x). We say x is minimal if |y| ≥ |x| for all separating
sequences y for s and t.

A separating sequence always exists if two states are inequivalent, and there
might be multiple minimal separating sequences. Our goal is to obtain minimal
separating sequences for all pairs of inequivalent states of M .

2.1 Partition Refinement

In this section we will discuss the basics of minimization. Both Moore’s algo-
rithm and Hopcroft’s algorithm work by means of partition refinement. A similar
treatment (for DFAs) is given in [4].

A partition P of S is a set of pairwise disjoint non-empty subsets of S whose
union is exactly S. Elements in P are called blocks. If P and P ′ are partitions
of S, then P ′ is a refinement of P if every block of P ′ is contained in a block of
P . A partition refinement algorithm constructs the finest partition under some
constraint. In our context the constraint is that equivalent states belong to the
same block.
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Definition 3. A partition is valid if equivalent states are in the same block.

Partition refinement algorithms for FSMs start with the trivial partition P =
{S}, and iteratively refine P until it is the finest valid partition (where all states
in a block are equivalent). The blocks of such a complete partition form the states
of the minimized FSM, whose transition and output functions are well-defined
because states in the same block are equivalent.

Let B be a block and a be an input. There are two possible reasons to split
B (and hence refine the partition). First, we can split B with respect to output
after a if the set λ(B, a) contains more than one output. Second, we can split B
with respect to the state after a if there is no single block B′ containing the set
δ(B, a). In both cases it is obvious what the new blocks are: in the first case each
output in λ(B, a) defines a new block, in the second case each block containing a
state in δ(B, a) defines a new block. Both types of refinement preserve validity.

Partition refinement algorithms for FSMs first perform splits w.r.t. output,
until there are no such splits to be performed. This is precisely the case when
the partition is acceptable.

Definition 4. A partition is acceptable if for all pairs s, t of states contained
in the same block and for all inputs a in I, λ(s, a) = λ(t, a).

Any refinement of an acceptable partition is again acceptable. The algorithm
continues performing splits w.r.t. state, until no such splits can be performed.
This is exactly the case when the partition is stable.

Definition 5. A partition is stable if it is acceptable and for any input a in I
and states s and t that are in the same block, states δ(s, a) and δ(t, a) are also
in the same block.

Since an FSM has only finitely many states, partition refinement will terminate.
The output is the finest valid partition which is acceptable and stable. For a
more formal treatment on partition refinement we refer to [4].

2.2 Splitting Trees and Refinable Partitions

Both types of splits described above can be used to construct a separating
sequence for the states that are split. In a split w.r.t. the output after a, this
sequence is simply a. In a split w.r.t. the state after a, the sequence starts with
an a and continues with the separating sequence for states in δ(B, a). In order to
systematically keep track of this information, we maintain a splitting tree. The
splitting tree was introduced by Lee and Yannakakis [8] as a data structure for
maintaining the operational history of a partition refinement algorithm.

Definition 6. A splitting tree for M is a rooted tree T with a finite set of nodes
with the following properties:

– Each node u in T is labelled by a subset of S, denoted l(u).
– The root is labelled by S.
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– For each inner node u, l(u) is partitioned by the labels of its children.
– Each inner node u is associated with a sequence σ(u) that separates states

contained in different children of u.

We use C(u) to denote the set of children of a node u. The lowest common
ancestor (lca) for a set S′ ⊆ S is the node u such that S′ ⊆ l(u) and S′ �⊆ l(v)
for all v ∈ C(u) and is denoted by lca(S′). For a pair of states s and t we use
the shorthand lca(s, t) for lca({s, t}).

The labels l(u) can be stored as a refinable partition data structure [11]. This
is an array containing a permutation of the states, ordered so that states in the
same block are adjacent. The label l(u) of a node then can be indicated by a
slice of this array. If node u is split, some states in the slice l(u) may be moved
to create the labels of its children, but this will not change the set l(u).

A splitting tree T can be used to record the history of a partition refinement
algorithm because at any time the leaves of T define a partition on S, denoted
P (T ). We say a splitting tree T is valid (resp. acceptable, stable, complete) if
P (T ) is as such. A leaf can be expanded in one of two ways, corresponding to
the two ways a block can be split. Given a leaf u and its block B = l(u) we
define the following two splits:

split-output. Suppose there is an input a such that B can be split w.r.t output
after a. Then we set σ(u) = a, and we create a node for each subset of B that
produces the same output x on a. These nodes are set to be children of u.

split-state. Suppose there is an input a such that B can be split w.r.t. the
state after a. Then instead of splitting B as described before, we proceed as
follows. First, we locate the node v = lca(δ(B, a)). Since v cannot be a leaf,
it has at least two children whose labels contain elements of δ(B, a). We can
use this information to expand the tree as follows. For each node w in C(v)
we create a child of u labelled {s ∈ B|δ(s, a) ∈ l(w)} if the label contains at
least one state. Finally, we set σ(u) = aσ(v).

A straight-forward adaptation of partition refinement for constructing a stable
splitting tree for M is shown in Algorithm 1. The termination and the correctness
of the algorithm outlined in Sect. 2.1 are preserved. It follows directly that states
are equivalent if and only if they are in the same label of a leaf node.

Example 7. Figure 1 shows a FSM and a complete splitting tree for it. This
tree is constructed by Algorithm 1 as follows. First, the root node is labelled by
{s0, . . . , s5}. The even and uneven states produce different outputs after a, hence
the root node is split. Then we note that s4 produces a different output after
b than s0 and s2, so {s0, s2, s4} is split as well. At this point T is acceptable:
no more leaves can be split w.r.t. output. Now, the states δ({s1, s3, s5}, a) are
contained in different leaves of T . Therefore, {s1, s3, s5} is split into {s1, s5} and
{s3} and associated with sequence ab. At this point, δ({s0, s2}, a) contains states
that are in both children of {s1, s3, s5}, so {s0, s2} is split and the associated
sequence is aab. We continue until T is complete.
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Input: A FSM M
Result: A valid and stable splitting tree T
initialize T to be a tree with a single node labeled S
repeat

find a ∈ I, B ∈ P (T ) such that we can split B w.r.t. output λ(·, a)
expand the u ∈ T with l(u) = B as described in (split-output)

until P (T ) is acceptable
repeat

find a ∈ I, B ∈ P (T ) such that we can split B w.r.t. state δ(·, a)
expand the u ∈ T with l(u) = B as described in (split-state)

until P (T ) is stable
Algorithm 1. Constructing a stable splitting tree

s0

s1 s2

s3

s4s5

b/0
a/0

a/1

b/0
b/0
a/0

b/0
a/1

a/0

b/1

b/0
a/1

(a) (b)

Fig. 1. A FSM (a) and a complete splitting tree for it (b)

3 Minimal Separating Sequences

In Sect. 2.2 we have described an algorithm for constructing a complete splitting
tree. This algorithm is non-deterministic, as there is no prescribed order on the
splits. In this section we order them to obtain minimal separating sequences.

Let u be a non-root inner node in a splitting tree, then the sequence σ(u)
can also be used to split the parent of u. This allows us to construct splitting
trees where children will never have shorter sequences than their parents, as
we can always split with those sequences first. Trees obtained in this way are
guaranteed to be layered, which means that for all nodes u and all u′ ∈ C(u),
|σ(u)| ≤ |σ(u′)|. Each layer consists of nodes for which the associated separating
sequences have the same length.

Our approach for constructing minimal sequences is to ensure that each layer
is as large as possible before continuing to the next one. This idea is expressed
formally by the following definitions.

Definition 8. A splitting tree T is k-stable if for all states s and t in the same
leaf we have λ(s, x) = λ(t, x) for all x ∈ I≤k.

Definition 9. A splitting tree T is minimal if for all states s and t in different
leaves λ(s, x) �= λ(t, x) implies |x| ≥ |σ(lca(s, t))| for all x ∈ I∗.
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Minimality of a splitting tree can be used to obtain minimal separating sequences
for pairs of states. If the tree is in addition stable, we obtain minimal separating
sequences for all inequivalent pairs of states. Note that if a minimal splitting tree
is (n−1)-stable (n is the number of states of M), then it is stable (Definition 5).
This follows from the well-known fact that n−1 is an upper bound for the length
of a minimal separating sequence [9].

Algorithm 2 ensures a stable and minimal splitting tree. The first repeat-
loop is the same as before (in Algorithm 1). Clearly, we obtain a 1-stable and
minimal splitting tree here. It remains to show that we can extend this to a
stable and minimal splitting tree. Algorithm3 will perform precisely one such
step towards stability, while maintaining minimality. Termination follows from
the same reason as for Algorithm 1. Correctness for this algorithm is shown by
the following key lemma. We will denote the input tree by T and the tree after
performing Algorithm 3 by T ′. Observe that T is an initial segment of T ′.

Lemma 10. Algorithm3 ensures a (k + 1)-stable minimal splitting tree.

Proof. Let us proof stability. Let s and t be in the same leaf of T ′ and let x ∈ I∗

be such that λ(s, x) �= λ(t, x). We show that |x| > k + 1.
Suppose for the sake of contradiction that |x| ≤ k + 1. Let u be the leaf

containing s and t and write x = ax′. We see that δ(s, a) and δ(t, a) are separated
by k-stability of T . So the node v = lca(δ(l(u), a)) has children and an associated
sequence σ(v). There are two cases:

– |σ(v)| < k, then aσ(v) separates s and t and is of length ≤ k. This case
contradicts the k-stability of T .

– |σ(v)| = k, then the loop in Algorithm3 will consider this case and split.
Note that this may not split s and t (it may occur that aσ(v) splits different
elements in l(u)). We can repeat the above argument inductively for the newly
created leaf containing s and t. By finiteness of l(u), the induction will stop
and, in the end, s and t are split.

Both cases end in contradiction, so we conclude that |x| > k + 1.
Let us now prove minimality. It suffices to consider only newly split states in

T ′. Let s and t be two states with |σ(lca(s, t))| = k+1. Let x ∈ I∗ be a sequence
such that λ(s, x) �= λ(t, x). We need to show that |x| ≥ k + 1. Since x �= ε we
can write x = ax′ and consider the states s′ = δ(s, a) and t′ = δ(t, a) which are
separated by x′. Two things can happen:

– The states s′ and t′ are in the same leaf in T . Then by k-stability of T we get
λ(s′, y) = λ(t′, y) for all y ∈ I≤k. So |x′| > k.

– The states s′ and t′ are in different leaves in T and let u = lca(s′, t′). Then
aσ(u) separates s and t. Since s and t are in the same leaf in T we get
|aσ(u)| ≥ k + 1 by k-stability. This means that |σ(u)| ≥ k and by minimality
of T we get |x′| ≥ k.

In both cases we have shown that |x| ≥ k + 1 as required. �	
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Input: A FSM M with n states
Result: A stable, minimal splitting tree T
initialize T to be a tree with a single node labeled S
repeat

find a ∈ I, B ∈ P (T ) such that we can split B w.r.t. output λ(·, a)
expand the u ∈ T with l(u) = B as described in (split-output)

until P (T ) is acceptable
for k = 1 to n − 1 do

perform Algorithm 3 or Algorithm 4 on T for k

Algorithm 2. Constructing a stable and minimal splitting tree

Input: a k-stable and minimal splitting tree T
Result: T is a (k + 1)-stable, minimal splitting tree
forall the leaves u ∈ T and all inputs a do

locate v = lca(δ(l(u), a))
if v is an inner node and |σ(v)| = k then

expand u as described in (split-state) (which generates new leaves)

Algorithm 3. A step towards the stability of a splitting tree

Example 11. Figure 2a shows a stable and minimal splitting tree T for the
machine in Fig. 1a. This tree is constructed by Algorithm 2 as follows. It exe-
cutes the same as Algorithm 1 until we consider the node labeled {s0, s2}. At
this point k = 1. We observe that the sequence of lca(δ({s0, s2}, a)) has length
2, which is too long, so we continue with the next input. We find that we can
indeed split w.r.t. the state after b, so the associated sequence is ba. Continuing,
we obtain the same partition as before, but with smaller witnesses.

The internal data structure (a refinable partition) is shown in Fig. 2b: the
array with the permutation of the states is at the bottom, and every block
includes an indication of the slice containing its label and a pointer to its parent
(as our final algorithm needs to find the parent block, but never the child blocks).

4 Optimizing the Algorithm

In this section, we present an improvement on Algorithm3 that uses two ideas
described by Hopcroft in his seminal paper on minimizing finite automata [6]:
using the inverse transition set, and processing the smaller half. The algorithm
that we present is a drop-in replacement, so that Algorithm2 stays the same
except for some bookkeeping. This way, we can establish correctness of the new
algorithms more easily. The variant presented in this section reduces the amount
of redundant computations that were made in Algorithm3.

Using Hopcroft’s first idea, we turn our algorithm upside down: instead of
searching for the lca for each leaf, we search for the leaves u for which l(u) ⊆
δ−1(l(v), a), for each potential lca v and input a. To keep the order of splits as
before, we define k-candidates.
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(a)

B2

B4 B8

B6 B3 B10 B7

B0 B5 B1 B9

s2 s0 s4 s5 s1 s3

(b)

Fig. 2. A complete and minimal splitting tree for the FSM in Fig. 1a (a) and its internal
refinable partition data structure (b)

Definition 12. A k-candidate is a node v with |σ(v)| = k.

A k-candidate v and an input a can be used to split a leaf u if v = lca(δ(l(u), a)),
because in this case there are at least two states s, t in l(u) such that δ(s, a) and
δ(t, a) are in labels of different nodes in C(v). Refining u this way is called
splitting u with respect to (v, a). The set C(u) is constructed according to (split-
state), where each child w ∈ C(v) defines a child uw of u with states

l(uw) = {s ∈ l(u) | δ(s, a) ∈ l(w)} (1)

= l(u) ∩ δ−1(l(w), a)

In order to perform the same splits in each layer as before, we maintain a list Lk

of k-candidates. We keep the list in order of the construction of nodes, because
when we split w.r.t. a child of a node u before we split w.r.t. u, the result
is not well-defined. Indeed, the order on Lk is the same as the order used by
Algorithm 2. So far, the improved algorithm still would have time complexity
O(mn).

To reduce the complexity we have to use Hopcroft’s second idea of processing
the smaller half. The key idea is that, when we fix a k-candidate v, all leaves are
split with respect to (v, a) simultaneously. Instead of iterating over of all leaves
to refine them, we iterate over s ∈ δ−1(l(w), a) for all w in C(v) and look up in
which leaf it is contained to move s out of it. From Lemma 8 in [7] it follows
that we can skip one of the children of v. This lowers the time complexity to
O(m log n). In order to move s out of its leaf, each leaf u is associated with a set
of temporary children C ′(u) that is initially empty, and will be finalized after
iterating over all s and w.

In Algorithm 4 we use the ideas described above. For each k-candidate v
and input a, we consider all children w of v, except for the largest one (in case
of multiple largest children, we skip one of these arbitrarily). For each state
s ∈ δ−1(l(w), a) we consider the leaf u containing it. If this leaf does not have
an associated temporary child for w we create such a child (line 9), if this child
exists we move s into that child (line 10).
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Input: a k-stable and minimal splitting tree T , and a list Lk

Result: T is a (k + 1)-stable and minimal splitting tree, and a list Lk+1

1 Lk+1 ← ∅
2 forall the k-candidates v in Lk in order do
3 let w′ be a node in C(v) such that |l(w′)| ≥ |l(w)| for all nodes w in C(v)
4 forall the inputs a in I do
5 forall the nodes w in C(v) \ w′ do
6 forall the states s in δ−1(l(w), a) do
7 locate leaf u such that s ∈ l(u)
8 if C′(u) does not contain node uw then
9 add a new node uw to C′(u)

10 move s from l(u) to l(uw)

11 foreach leaf u with C′(u) �= ∅ do
12 if |l(u)| = 0 then
13 if |C′(u)| = 1 then
14 recover u by moving its elements back and clear C′(u)
15 continue with the next leaf

16 set p = u and C(u) = C′(u)

17 else
18 construct a new node p and set C(p) = C′(u) ∪ {u}
19 insert p in the tree in the place where u was

20 set σ(p) = aσ(v)
21 append p to Lk+1 and clear C′(u)

Algorithm 4. A better step towards the stability of a splitting tree

Once we have done the simultaneous splitting for the candidate v and input
a, we finalize the temporary children. This is done at lines 11–21. If there is
only one temporary child with all the states, no split has been made and we
recover this node (line 14). In the other case we make the temporary children
permanent.

The states remaining in u are those for which δ(s, a) is in the child of v that
we have skipped; therefore we will call it the implicit child. We should not touch
these states to keep the theoretical time bound. Therefore, we construct a new
parent node p that will “adopt” the children in C ′(u) together with u (line 16).

We will now explain why considering all but the largest children of a node
lowers the algorithm’s time complexity. Let T be a splitting tree in which we
color all children of each node blue, except for the largest one. Then:

Lemma 13. A state s is in at most (log2 n) − 1 labels of blue nodes.

Proof. Observe that every blue node u has a sibling u′ such that |l(u′)| ≥ |l(u)|.
So the parent p(u) has at least 2|l(u)| states in its label, and the largest blue
node has at most n/2 states.

Suppose a state s is contained in m blue nodes. When we walk up the tree
starting at the leaf containing s, we will visit these m blue nodes. With each
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visit we can double the lower bound of the number of states. Hence n/2 ≥ 2m

and m ≤ (log2 n) − 1. �	
Corollary 14. A state s is in at most log2 n sets δ−1(l(u), a), where u is a blue
node and a is an input in I.

If we now quantify over all transitions, we immediately get the following result.
We note that the number of blue nodes is at most n − 1, but since this fact is
not used, we leave this to the reader.

Corollary 15. Let B denote the set of blue nodes and define

X = {(b, a, s) | b ∈ B, a ∈ I, s ∈ δ−1(l(b), a)}.

Then X has at most m log2 n elements.

The important observation is that when using Algorithm4 we iterate in total
over every element in X at most once.

Theorem 16. Algorithm2 using Algorithm4 runs in O(m log n) time.

Proof. We prove that bookkeeping does not increase time complexity by dis-
cussing the implementation.

Inverse transition. δ−1 can be constructed as a preprocessing step in O(m).
State sorting. As described in Sect. 2.2, we maintain a refinable partition data

structure. Each time new pair of a k-candidate v and input a is considered,
leaves are split by performing a bucket sort.
First, buckets are created for each node in w ∈ C(v) \ w′ and each leaf u
that contains one or more elements from δ−1(l(w), a), where w′ is a largest
child of v. The buckets are filled by iterating over the states in δ−1(l(w), a)
for all w. Then, a pivot is set for each leaf u such that exactly the states that
have been placed in a bucket can be moved right of the pivot (and untouched
states in δ−1(l(w′), a) end up left of the pivot). For each leaf u, we iterate
over the states in its buckets and the corresponding indices right of its pivot,
and we swap the current state with the one that is at the current index. For
each bucket a new leaf node is created. The refinable partition is updated
such that the current state points to the most recently created leaf.
This way, we assure constant time lookup of the leaf for a state, and we can
update the array in constant time when we move elements out of a leaf.

Largest child. For finding the largest child, we maintain counts for the tempo-
rary children and a current biggest one. On finalizing the temporary children
we store (a reference to) the biggest child in the node, so that we can skip
this node later in the algorithm.

Storing sequences. The operation on line 20 is done in constant time by using
a linked list. �	
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5 Application in Conformance Testing

A splitting tree can be used to extract relevant information for two classical test
generation methods: a characterization set for the W-method and a separating
family for the HSI-method. For an introduction and comparison of FSM-based
test generation methods we refer to [2].

Definition 17. A set W ⊂ I∗ is called a characterization set if for every pair
of inequivalent states s, t there is a sequence w ∈ W such that λ(s, w) �= λ(t, w).

Lemma 18. Let T be a complete splitting tree, then {σ(u)|u ∈ T} is a charac-
terization set.

Proof. Let W = {σ(u)|u ∈ T}. Let s, t ∈ S be inequivalent states, then by
completeness s and t are contained in different leaves of T . Hence u = lca(s, t)
exists and σ(u) separates s and t. Furthermore σ(u) ∈ W . This shows that W
is a characterisation set. �	
Lemma 19. A characterization set with minimal length sequences can be con-
structed in time O(m log n).

Proof. By Lemma 18 the sequences associated with the inner nodes of a splitting
tree form a characterization set. By Theorem 16, such a tree can be constructed
in time O(m log n). Traversing the tree to obtain the characterization set is linear
in the number of nodes (and hence linear in the number of states). �	
Definition 20. A collection of sets {Hs}s∈S is called a separating family if for
every pair of inequivalent states s, t there is a sequence h such that λ(s, h) �=
λ(t, h) and h is a prefix of some hs ∈ Hs and some ht ∈ Ht.

Lemma 21. Let T be a complete splitting tree, the sets {σ(u)|s ∈ l(u), u ∈
T}s∈S form a separating family.

Proof. Let Hs = {σ(u)|s ∈ l(u)}. Let s, t ∈ S be inequivalent states, then by
completeness s and t are contained in different leaves of T . Hence u = lca(s, t)
exists. Since both s and t are contained in l(u), the separating sequence σ(u) is
contained in both sets Hs and Ht. Therefore, it is a (trivial) prefix of some word
hs ∈ Hs and some ht ∈ Ht. Hence {Hs}s∈S is a separating family. �	
Lemma 22. A separating family with minimal length sequences can be con-
structed in time O(m log n + n2).

Proof. The separating family can be constructed from the splitting tree by col-
lecting all sequences of all parents of a state (by Lemma 21). Since we have to
do this for every state, this takes O(n2) time. �	
For test generation one moreover needs a transition cover. This can be con-
structed in linear time with a breadth first search. We conclude that we can con-
struct all necessary information for the W-method in time O(m log n) as opposed
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the O(mn) algorithm used in [2]. Furthermore, we conclude that we can con-
struct all the necessary information for the HSI-method in time O(m log n+n2),
improving on the reported bound O(mn3) in [5]. The original HSI-method was
formulated differently and might generate smaller sets. We conjecture that our
separating family has the same size if we furthermore remove redundant prefixes.
This can be done in O(n2) time using a trie data structure.

6 Experimental Results

We have implemented Algorithms 3 and 4 in Go, and we have compared their
running time on two sets of FSMs.1 The first set is from [10], where FSMs
for embedded control software were automatically constructed. These FSMs are
of increasing size, varying from 546 to 3 410 states, with 78 inputs and up to
151 outputs. The second set is inferred from [6], where two classes of finite
automata, A and B, are described that serve as a worst case for Algorithms 3
and 4 respectively. The FSMs that we have constructed for these automata have
1 input, 2 outputs, and 22 – 215 states. The running times in seconds on an Intel
Core i5-2500 are plotted in Fig. 3. We note that different slopes imply different
complexity classes, since both axes have a logarithmic scale.
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Fig. 3. Running time in seconds of Algorithms 3 (gray) and 4 (black)

7 Conclusion

In this paper we have described an efficient algorithm for constructing a set of
minimal-length sequences that pairwise distinguish all states of a finite state
machine. By extending Hopcroft’s minimization algorithm, we are able to con-
struct such sequences in O(m log n) for a machine with m transitions and n
states. This improves on the traditional O(mn) method that is based on the

1 Available at https://gitlab.science.ru.nl/rick/partition/.

https://gitlab.science.ru.nl/rick/partition/
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classic algorithm by Moore. As an upshot, the sequences obtained form a char-
acterization set and a separating family, which play a crucial in conformance
testing.

Two key observations were required for a correct adaptation of Hopcroft’s
algorithm. First, it is required to perform splits in order of the length of their
associated sequences. This guarantees minimality of the obtained separating
sequences. Second, it is required to consider nodes as a candidate before any
one of its children are considered as a candidate. This order follows naturally
from the construction of a splitting tree.

Experimental results show that our algorithm outperforms the classic app-
roach for both worst-case finite state machines and models of embedded control
software. Applications of minimal separating sequences such as the ones occur-
ring in [2,10] therefore show that our algorithm is useful in practice.
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Abstract. We consider forkable regular expressions, which enrich reg-
ular expressions with a fork operator, to establish a formal basis for
static and dynamic analysis of the communication behavior of concur-
rent programs. We define a novel compositional semantics for forkable
expressions, establish their fundamental properties, and define deriva-
tives for them as a basis for the generation of automata, for matching,
and for language containment tests.

Forkable expressions may give rise to non-regular languages, in gen-
eral, but we identify sufficient conditions on expressions that guarantee
finiteness of the automata construction via derivatives.

Keywords: Automata and logic · Forkable expressions · Derivatives

1 Introduction

Languages like Concurrent ML and Go come with built-in support for fine-
grained concurrency, dynamic thread creation, and channel-based communica-
tion. Analyzing the communication behavior of programs in these languages
may be done by an effect system. Such a system computes an abstraction of the
sequences of events (i.e., the communication traces with events like communica-
tion actions or synchronizations) that a program may exhibit.

Effect systems for concurrent programs have been explored by the
Nielsons [12], who proposed to model event traces with “behaviors” which are
regular expressions extended with a fork operator that encapsulates the behav-
ior of a newly created thread. While their work enables the analysis of finiteness
properties of the communication topology, it stops short of providing a seman-
tics of behaviors in terms of effect traces. Subsequent work by the same authors
[1,2,11] concentrates on subtyping and automatic inference of effects.

We take up the Nielsons’ notion of behavior and tackle the problem of defin-
ing a compositional semantics for behaviors in terms of effect traces. Our novel
definition yields a semantic basis for the static and dynamic analysis of concur-
rent languages with dynamic thread creation and other communication effects.

c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 194–206, 2016.
DOI: 10.1007/978-3-319-30000-9 15
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We show that, in general, a behavior may give rise to a non-regular trace lan-
guage. This observation is in line with previous work on concurrent regular
expressions [4], flow expressions [13], and shuffle expressions [6] all of which aug-
ment regular expressions with (at least) shuffle and shuffle closure operators.
The shuffle closure is also referred to as the iterated shuffle [7].

We explore two application areas for forkable expressions. In a run-time ver-
ification setting (aka dynamic analysis), we are interested in matching traces
against behaviors, either at run time or post-mortem. To this end, we extend
Brzozowski derivatives to forkable expressions. Although Brzozowski’s construc-
tion no longer gives rise to a finite automaton, in general, derivatives can still
be used to solve instances of the word problem (which is hence decidable).

For static analysis, we are interested in approximation and testing language
containment in a specification. For this use case, we give a decidable criterium that
guarantees finiteness of (our extension of) Brzozowski’s automaton construction.
This criterium essentially requires a finite communication topology, that is, it for-
bids that new communicating threads are created in loops. We conjecture that this
property can be established with the Nielsons’ original analysis [12].

In summary our contributions are:

– In Sect. 3, we define a novel trace semantics of behaviors (i.e., regular expres-
sions with fork), and establish their fundamental properties.

– Section 4 extends Brzozowski’s derivative operation to behaviors.
– In Sect. 5, we characterize a class of behaviors with regular trace languages.

For these behaviors, Brzozowski’s construction yields finite automata.

Related work is discussed in Sect. 6.
The online version of this paper contains an appendix with all proofs.1

2 Preliminaries

For a set X, we write �X for the cardinality of X and ℘(X) for its powerset. If
F : ℘(X) → ℘(X) is a monotone function (i.e., X ⊆ Y implies F (X) ⊆ F (Y )),
then we write μF for the least fixpoint of this function, which is uniquely defined
due to Tarski’s theorem. We write μX.e for the fixpoint μ(λX.e) where e is a
set-valued expression composed of monotone functions assuming that X is a set
with the same type of elements. (The scope of the μ operator extends as far to
the right as possible.) We will employ this operator to define the meaning of
forkable Kleene star behaviors [10].

Let Σ be a finite set, the alphabet of primitive events. We write Σ∗ for the set
of finite words over Σ and denote with v·w the concatenation of words v, w ∈ Σ∗.
For languages L,M ⊆ ℘(Σ∗), we write L ·M = {v ·w | v ∈ L,w ∈ M} for the set
of all pairwise concatenations. We write v · M as a shorthand for {v} · M . The
(asynchronous) shuffle operation v‖w ⊆ Σ∗ on words is the set of all interleavings
of words v and w. It is defined inductively by

ε‖w = {w} v‖ε = {v} xv‖yw = {x} · (v‖yw) ∪ {y} · (xv‖w)
1 http://arxiv.org/abs/1510.07293.

http://arxiv.org/abs/1510.07293
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L(r) = L(r, {ε}) L(φ, K) = ∅
L(ε, K) = K
L(x, K) = {x} · K

L(r + s, K) = L(r, K) ∪ L(s, K)
L(r · s, K) = L(r, L(s, K))

L(r∗, K) = μX.L(r, X) ∪ K
L(Fork(r), K) = L(r) K

Fig. 1. Trace language of a behavior

The shuffle operation is lifted to languages by L‖M =
⋃{v‖w | v ∈ L,w ∈ M}.

We write L1\L2 to denote the left quotient of L2 with L1 where L1\L2 =
{w | ∃v ∈ L1.v · w ∈ L2}. We write x\L as a shorthand for {x}\L.

3 Behaviors

Recall that Σ is the alphabet of primitive events. Intuitively, a primitive event
x ∈ Σ is a globally visible side effect like sending or receiving a message. A
behavior is a regular expression over Σ extended with a new fork operator.

r, s, t ::= φ | ε | x | r + s | r · s | r∗ | Fork(r) | (r)

As usual, we assume that · binds tighter than +.
The semantics of a behavior r is going to be a trace language L(r) ⊆ Σ∗.

However, due to the presence of the fork operator, its definition is not a simple
extension of the standard semantics �·� of a regular expression.

Definition 1. Figure 1 defines, for a behavior r and a continuation language
K ⊆ Σ∗, the trace languages L(r) ⊆ Σ∗ and L(r,K) ⊆ Σ∗.

By induction on r, we can show that the mapping K �→ L(r,K) in ℘(Σ∗) →
℘(Σ∗) is monotone, so that L is well-defined. For fork-free behaviors that do not
make use of the Fork(r) operator, the trace language is regular and coincides
with the standard semantics �r� of a regular expression.

Theorem 2. If r is fork-free, then L(r) is regular and L(r) = �r�.

It is known that the regular languages are closed under the shuffle opera-
tion [5]. However, for forkable expressions the semantics of Fork(r) is defined
by shuffling with the continuation language so that the language defined by a
behavior need not be regular as the following example shows.

Example 3. Consider the behavior Fork(s)∗ for a fork-free regular expression
s. Its semantics is the shuffle closure of �s� as demonstrated by the following
calculation

L(Fork(s)∗
, {ε}) = μX.L(Fork(s),X) ∪ {ε} = μX.L(s)‖X ∪ {ε} (1)

= {ε} ∪ L(s) ∪ L(s)‖L(s) ∪ . . .

where we assume that ‖ binds tighter than ∪.
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C(φ) = φ
C(ε) = ε
C(x) = φ
C(r + s) = C(r) + C(s)
C(r · s) = C(r) · C(s)
C(r∗) = C(r)∗

C(Fork(r)) = Fork(r)

S(φ) = φ
S(ε) = φ
S(x) = x
S(r + s) = S(r) + S(s)
S(r · s) = S(r) · s + C(r) · S(s)
S(r∗) = C(r)∗ · S(r) · r∗

S(Fork(r)) = φ

Fig. 2. Concurrent and sequential part of a behavior

In general, the shuffle closure is not regular [7] as the following concrete
instance shows. Consider the behavior r = Fork(x · y + y · x )∗. By the calcula-
tion in (1), L(r) is the shuffle closure of {x · y, y · x} which happens to be the
context-free language {w ∈ {x, y}∗ | �(x,w) = �(y, w)} of words that contain the
same number of xs and ys. This language is not regular.

Some of our proofs rely on semantic equivalence and employ identities from
Kleene algebra [9] that hold for standard regular expressions. Hence, we need to
establish that forkable expressions also form a Kleene algebra.

Definition 4 (Semantic equality and containment)

1. Behaviors r and s are equal, r ≡ s, if L(r,K) = L(s,K), for all K.
2. Behaviors r and s are contained, r � s, if L(r,K) ⊆ L(s,K), for all K.

Theorem 5. The set of forkable expressions with semantic equality and con-
tainment is a Kleene algebra.

Each behavior r can be decomposed into a sequential part S(r) and a concur-
rent part C(r), which are defined by induction on r in Fig. 2. The intuition is that
the sequential part of a behavior describes what must happen next, inevitably,
whereas the concurrent part describes behavior that happens eventually and
concurrent to the sequential behavior. For example, in case of concatenation
r · s, the sequential part must either start with S(r), or must end with S(s).
For Kleene star r∗ it is similar, we simply consider the possible unrolling of the
underlying expression r.

Our decomposition theorem proves that every behavior is semantically equiv-
alent to the union of its concurrent part and its sequential part. Its proof requires
the Kleene identity r∗ ≡ ε + r · r∗.2

Theorem 6. For all r, r ≡ C(r) + S(r).

The next lemma establishes some algebraic properties of the functions C()
and S() that we need in subsequent proofs.

2 We generally write r = s for syntactic equality of expressions and use other symbols
like r ≡ s for equivalences where some additional reasoning may be involved.
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Lemma 7. For all r: 1. C(C(r)) = C(r) (syntactic equality); 2. C(S(r)) ≡ φ;
3. S(C(r)) ≡ φ; 4. S(S(r)) ≡ S(r).

Proof. The proof for part 1 is by trivial induction on r. See the online version
for the remaining parts; they are not needed in the rest of this paper. 
�
Lemma 8. For all r, ε ∈ L(r) iff ε � C(r).

4 Derivatives

We want to use Brzozowski’s derivative operation [3] to translate behaviors
to automata and to create algorithms for checking language containment and
matching. To this end, we extend derivatives to forkable expressions. The deriv-
ative of r w.r.t. some symbol x, written dx(r), yields the new behavior after
consumption of the leading symbol x. The derivative operation for behaviors is
defined by structural induction. In addition to the regular operators, the deriva-
tive needs to deal with Fork(r) expressions and the case of concatenated expres-
sions r · s requires special attention.

Definition 9 (Derivatives). The derivative of behavior r w.r.t. some symbol
x is defined inductively as follows:

dx(φ) = φ
dx(ε) = φ

dx(y) =
{

ε if x = y
φ otherwise

dx(r + s) = dx(r) + dx(s)
dx(r · s) = dx(r) · s + C(r) · dx(s)
dx(r∗) = dx(r) · r∗

dx(Fork(r)) = Fork(dx (r))

We just explain the cases that differ from Brzozowski’s definition. The derivative
of a fork, Fork(r), is simply pushed down to the underlying expression. The
derivative of r ·s consists of two components. The first one, dx(r)·s, is identical to
the standard definition: it computes the derivative of r and continues with s. The
second one covers symbols that may reach s. In a fork-free regular expression,
a symbol in s can only be consumed if r is nullable, i.e. ε ∈ L(r). For forkable
behaviors, a symbol in s can also be consumed if r exhibits concurrent behavior.
Hence, we extract the concurrent behavior C(r) and concatenate it with the
derivative of s. The concurrent behavior generalizes nullability in the sense that
ε ∈ C(r) iff ε ∈ L(r). See Lemma 8.

Next, we verify that the derivative operation is correct in the sense that the
resulting expression dx(r) denotes the left quotient of r by x.

Theorem 10 (Left Quotients). Let r be a behavior and x be a symbol. Then,
we have that L(dx(r)) = x\L(r).

Proof. We need to expand the definition of L(r) = L(r, {ε}) and generalize the
statement to an arbitrary continuation language K ⊆ Σ∗:

∀r. ∀K. L(dx(r),K) ∪ L(C(r))‖(x\K) = x\L(r,K) (2)
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Recall that L‖∅ = ∅ so that the original statement follows by setting K = {ε}:

L(dx(r)) = L(dx(r)) ∪ L(C(r))‖∅
= L(dx(r), {ε}) ∪ L(C(r))‖(x\{ε})
(2)
= x\L(r, {ε}) = x\L(r)

The proof of (2) proceeds by induction on r. 
�
Like in the standard regular expression case, we can conclude (based on the

above result) that each behavior can be represented as a sum of its derivatives.

Theorem 11 (Representation). For any behavior r, we have L(r) = (ε ∈
L(r) =⇒ {ε}) ∪ ⋃

x∈Σ x · L(dx(r)).

Expression (ε ∈ L(r) =⇒ {ε}) denotes {} if ε ∈ L(r), otherwise, {}.
The representation theorem is the basis for solving the word problem with

derivatives. Here, we extend the derivative operation to words as usual by dε(r) =
r and daw(r) = dw(da(r)).

Corollary 12. For a behavior r and w ∈ Σ∗, w ∈ L(r) iff ε ∈ L(dw(r)).

This corollary implies decidability of the word problem for forkable expressions:
the derivative is computable and the nullability test ε ∈ L(dw(r)) is a syntactic
test as for standard regular expressions. Full details how to compute all dissimilar
derivatives can be found in the online version.

To construct an automaton from an expression r, Brzozowski repeatedly
takes the derivative with respect to all symbols x ∈ Σ. We call these derivatives
descendants.

Definition 13 (Descendants). A descendant s of a behavior r is either r
itself, a derivative of r, or the derivative of a descendant. We write s � r, if s
is a direct descendant of r, that is, if s = dx(r), for some x. The “is descendant
of” relation is the reflexive, transitive closure of the direct descendant relation:
s � r = s �∗ r. The “is a true descendant of” relation is the transitive closure
of the direct descendant relation: s ≺ r = s �+ r. We define d(r) = {s | s � r}
as the set of descendants of r.

For standard regular expressions, Brzozowski showed that the set of descen-
dants of an expression is finite up to similarity. Two expressions are similar
if they are equal modulo associativity, commutativity, and idempotence. This
result no longer holds in our setting.

In the following, we write r
x−→ s if s = dx(r). Subterms on which the

derivation operation is applied are underlined.

Example 14. Let r = (Fork(x · y))∗ and take the derivative by x repeatedly.

(Fork(x · y))∗
x−→ Fork(y) · r
x−→ Fork(φ) · r + Fork(y) · Fork(y) · r
x−→ · · · + Fork(φ) · Fork(y) · r + Fork(y) · (Fork(φ) · r + Fork(y) · Fork(y) · r)
x−→ . . .
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(Refl, Trans, Sym, Comp) r r
r s s t

r t

s t

t s

s t

E[s] E[t]

(Assoc, Comm) r + (s + t) (r + s) + t r + s s + r

(Idem, Unit) r + r r r + φ r φ + r r

(Empty Word) ε · r r r · ε r ε∗ ε Fork(ε) ε

(Empty Language) φ · r φ r · φ φ φ∗ ε Fork(φ) φ

(Regular Contexts) E ::= [] | E∗ | E · s | r · E | E + s | r + E | Fork(E)

Fig. 3. Rules and axioms for similarity

Here we omit parentheses (assuming associativity) and apply equivalences such
as C(C(r)) = C(r) (Lemma 7). Clearly, we obtain an increasing sequence of behav-
iors of the form Fork(y) · ... · Fork(y) · r. Hence, the set of descendants of r is
infinite even if we consider behaviors equal modulo associativity, commutativity,
and idempotence of alternatives.

This observation is no surprise, given that behaviors may give rise to
non-regular languages (cf. Example 3). In general, there is no hope to retain
Brzozowski’s result, but it turns out that we can find a well-behavedness condi-
tion for behaviors that is sufficient to retain finiteness of descendants.

5 Well-Behaved Behaviors

In this section, we develop a criterion to guarantee that a forkable expression
only gives rise to a finite set of dissimilar descendants. To start with, we adapt
Brzozowski’s notion of similarity to our setting. In addition to associativity, com-
mutativity, and idempotence we introduce simplification rules that implement
further Kleene identities and that deal with forks.

Definition 15 (Similarity). Behaviors r and s are similar, if r � s is derivable
using the rules and axioms in Fig. 3.

The compatibility rule (Comp) uses regular contexts E, which are regular expres-
sions with a single hole []. In the rule, we write E[t] to denote the expression
with the hole replaced by t.

We establish some basic results for similar behaviors, all with straightfor-
ward inductive proofs: Similarity implies semantic equivalence, it is complete
for recognizing ε and φ, and it is compatible with derivatives and extraction of
concurrent parts.

Lemma 16. If r � s, then r ≡ s.
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Lemma 17. 1. If L(r) = {ε} then r � ε. 2. If L(r) = {} then r � φ.

Lemma 18. 1. If r � r′, then dx(r) � dx(r′), for all x ∈ Σ.
2. If r � r′, then C(r) � C(r′).

Similarity is an equivalence relation. We write [s] = {t | t � s} to denote the
equivalence class of all expressions similar to s. If R is a set of behaviors, we
write R/� = {[r] | r ∈ R} for the set of equivalence classes of elements of R.

To identify the set of well-behaved behaviors, we need to characterize the set
of dissimilar descendants. First, we establish that each composition of derivatives
and applications of C() that finishes in some C(r) may be compressed to the
composition of the derivatives applied to the remaining C(r).

Lemma 19. For a behavior r and symbol x, C(dx(C(r))) = dx(C(r)), syntacti-
cally.

The above result makes it easier to classify the forms of dissimilar descendants.
The Kleene star case is clearly highly relevant. The following statement con-

firms the observation in Example 14.

Lemma 20. For w ∈ Σ+, dw(r∗) � dw(r) · r∗ + t where t is a possibly empty
sum of terms of the form s1 · . . . · sn · r′ · r∗ where r′ ≺ r, n ≥ 1, and for each
si, si � C(s) for some descendant s ≺ r.

Proof. Induction on w.
Case x: dx(r∗) = dx(r) · r∗

� dx(r) · r∗ + φ.
Case wx: dwx(r∗) = dx(dw(r∗)). By induction for w, dw(r∗) � dw(r) · r∗ + t

where each summand of t has the form s1 · . . . · sn · r′ · r∗. First, observe that
dx(dw(r) ·r∗ + t) = dwx(r) ·r∗ +C(dw(r)) ·dx(r) ·r∗ +dx(t). We show by auxiliary
induction on n that the derivative of t is a sum of terms of the desired form.

Case 0: dx(r′ · r∗) = dx(r′) · r∗ + C(r′) · dx(r∗)
= dx(r′) · r∗ + C(r′) · dx(r) · r∗

which has the desired format.
Case n > 0: dx(s1 · . . . · sn · r′ · r∗)

= dx(s1) · s2 · . . . · sn · r′ · r∗ + C(s1) · dx(s2 · . . . · sn · r′ · r∗)
The first summand has the desired form. By induction (on n), each summand

of dx(s2 · . . . · sn · r′ · r∗) has the desired form and multiplying with C(s1) from
the left retains this form: By Lemma 19, C(s1) is still a descendant of C(s) for
some descendant s of r. 
�

To obtain finiteness it appears that a sufficient condition is to ensure that
the subterms si are trivial (either ε or φ). Via similarity, the explosion of terms
derived from Kleene star can then be avoided. To verify this claim we also
characterize the descendants of concatenated behaviors.
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Lemma 21. For w ∈ Σ+, dw(r · s) has the form

dw(r · s) � dw(r) · s + C(r) · dw(s) + t

where t is a sum of terms of the form r′ · s′ where s′ is a descendant of s and r′

is a descendant of C(r′′) and r′′ is a descendant of r.

Proof. By induction on w.
Case x: Immediate from the definition of dx(r · s) with t = φ.
Case wx: By induction

dx(dw(r · s)) � dx(dw(r) · s + C(r) · dw(s) + t)
� dwx(r) · s + C(dw(r)) · dx(s)

+ dx(C(r)) · dw(s) + C(r) · dwx(s)

+ dx(t)

The underlined summands have the expected forms. The newly created sum-
mands have a form corresponding to r′ · s′. It remains to observe that the deriv-
ative of a summand in t has the expected form by Lemmas 7 and 19.

dx(r′ · s′) = dx(r′) · s′ + C(r′) · dx(s′) 
�

Definition 22 (Well-behaved Behaviors). A behavior t is well-behaved if
all subterms of the form r∗ have the property that C(dw(r)) � ε, for all w ∈ Σ∗.

The intuition for this definition is simple: Well-behaved behaviors do not fork
processes with non-trivial communication behavior in a loop (i.e., under a star).
Indeed, we have a simple decidable sufficient condition for well-behavedness.

Lemma 23. If r � r′ and r′ is fork-free, then C(dw(r)) � ε, for all w ∈ Σ∗.

Thus, a behavior is also well-behaved if, for all subterms of the form r∗, r is
similar to a fork-free expression.

Recall that d(r) is the set of all descendants of r and d(r)/(�) denotes the set
of equivalence classes of descendants of r. If we pick a representative from each of
these equivalence classes, we obtain the dissimilar descendants of r. In a practical
implementation, we may want to compute the canonical representative of each
equivalence class. See the online version for further details. For the purpose of
this paper, an arbitrary representative is sufficient.

Definition 24 (Dissimilar Descendants). We define the set of dissimilar
descendants of r, d�(r), as a complete set of arbitrarily chosen representative
behaviors for the equivalence classes d(r)/(�).

We extend the function C() on behaviors pointwise to sets of behaviors and
relation � to sets of behaviors by

R � S iff (∀r ∈ R.∃s ∈ S.r � s) ∧ (∀s ∈ S.∃r ∈ R.r � s)
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Lemma 25. For any behavior r, C(d�(C(d�(r)))) � d�(C(d�(r))).

Proof. Follows from Lemmas 18 and 19. 
�
Lemma 26. For any behavior r, d(r) � d�(r).

Proof. We need to verify that for each t1 ∈ d(r) there exists t2 ∈ d�(r) such
that t1 � t2. We prove this property by induction on the number of derivative
steps.

Case w = ε: Then, t1 = r. Clearly, there exists t2 ∈ d�(r) such that t1 � t2.
Case w = x · w′: Then, t1 = dx(dw′(r)). By the IH, dw′(r) � t2 where

t2 ∈ d�(r). By Lemma 18, t1 ≡ dx(t2) where dx(t2) � t3 for some t3 ∈ d�(r).
Thus, we are done. 
�

The next result can be verified via similar reasoning.

Lemma 27. For any behavior r, d(d�(r)) � d�(r).

Theorem 28 (Finiteness of Well-Behaved Dissimilar Descendants).
Let t be a well-behaved behavior. Then, �d�(t) < ∞.

Proof. We need to generalize the statement to obtain the result: If t is well-
behaved then �di

t < ∞ for all i ≥ 0 where d0t = d�(t) and dn+1
t = d�(C(dn

t )).
Based on Lemmas 25 and 27 we find that dn+1

t = dn
t for n ≥ 1. That is, in

the induction step it is sufficient to establish that d0t and d1t are finite.
We proceed by induction on t. For brevity, we only consider the case of

concatenation.
Case r · s: By the IH, di

r and di
s are finite for any i ≥ 0. We first show that d0r·s

is finite.

1. By Lemma 21, the elements of d(r · s) are drawn from the set

d(r) · s + C(r) · d(s) +
∑

d(C(d(r))) · d(s)

2. By Lemma 26 the above is similar to

d�(r) · s + C(r) · d�(s) +
∑

d�(C(d�(r))) · d�(s)

3. Immediately, we can conclude that d0r·s is finite.

Next, we consider d1r·s.

1. From above, the (dissimilar) descendants of r · s are drawn from

d(r) · s︸ ︷︷ ︸
t1

+ C(r) · d(s)︸ ︷︷ ︸
t2

+
∑

d(C(d(r))) · d�(s)︸ ︷︷ ︸
t3

For each ti we will show that d1ti is finite and thus follows the desired result.
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2. By Lemma 21, descendants of C(t1) are of the form

d(C(d(r))) · C(s) + C(d(r)) · d(C(s)) +
∑

d(C(d(C(d(r))))) · d(C(s))

3. As we know by the IH, di
r and di

s are finite for any i ≥ 0. Hence, via similar
reasoning as above we can conclude that the above is similar to expressions
of the form

d1r · C(s) + C(d0r) · d1s +
∑

d2r · d1s

As all sub-components are finite, we conclude that d1t1 is finite.
4. We consider the descendants of C(t2) which are of the following form

d(C(r)) · C(d(s)) + C(r) · d(C(d(s))) +
∑

d(C(d(C(r)))) · d(C(d(s)))

5. The above is similar to

d1r · C(d0s) + C(r) · d1r +
∑

d2r · d1s

Thus, we find that d1t2 is finite.
6. Finally, we observe that shape of descendants of C(t3)

d(C(d(C(d(r))))) · C(d(s)) + C(d(C(d(r)))) · d(C(d(s)))
+

∑
d(C(d(C(d(C(d(r))))))) · d(C(d(s)))

7. The above is similar to

d2r · C(d0s) + C(d1r) · d1s +
∑

d3r · d1s

8. Then, d1t3 is finite which concludes the proof for this case.


�
The result no longer holds if we replace the assumption C(dw(r)) � ε, for

w ∈ Σ∗ by a simpler assumption like C(r) � ε. For example, consider the
behavior (x · Fork(y))∗ where C(x · Fork(y)) = φ � ε. However, the set of
dissimilar descendants of (x · Fork(y))∗ is infinite as shown by the calculation

(x · Fork(y))∗
x→ (ε · Fork(y)) · (x · Fork(y))∗

� Fork(y) · (x · Fork(y))∗
x→ Fork(φ) · (x · Fork(y))∗ + Fork(y) · Fork(y) · (x · Fork(y))∗

� Fork(y) · Fork(y) · (x · Fork(y))∗

...

The example also shows that the assumption C(dw(r)) � ε, for w ∈ Σ∗ is
necessary and cannot be weakened to words w of a fixed length.

As an example, consider the behavior t = (x1 · ... · xn · xn+1Fork(y))∗ where
for all w ∈ Σ∗ with length less or equal n we find that C(dw(x1 · ... · xn ·
xn+1Fork(y))) � ε. Via a similar calculation as above, we can show that the
set of dissimilar descendants of t is infinite.
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6 Related Work

Shuffle expressions are regular expressions with operators for shuffle and shuf-
fle closure. Shaw [13] proposes to describe the behavior of software using flow
expressions, which extend shuffle expressions with further operators. Gischer [6]
shows that shuffle expression generate context-sensitive languages and proposes
a connection to Petri net languages.

The latter connection is made precise by Garg and Ragunath [4], who study
concurrent regular expressions (CRE), which are shuffle expressions extended
with synchronous composition. They show that the class of CRE languages is
equal to the class of Petri net languages. The proof requires the presence of syn-
chronous composition. Forkable expressions do not support synchronous com-
position, but they are equivalent to unit expressions, which are also defined by
Garg and Ragunath and shown to be strictly less powerful than CREs.

Warmuth and Haussler [14] present more refined complexity results for the
languages generated by shuffle expressions. Jedrzejowicz [8] shows that the nest-
ing of iterated closure operators matters.

Acknowledgments. We thank the reviewers for their comments.
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Abstract. Given a word P and a maximal number of errors k, we
address the problem of counting the number of strings whose Leven-
shtein distance to P does not exceed k. We give an algorithm that scales
linearly with the size of P and that is based on a variant of the classical
Levenshtein automaton.

1 Introduction

The problem of measuring the similarity between two strings arises in many areas
such as computational molecular biology, natural language processing, spelling
correction, plagiarism detection, music information retrieval. A common metric
for it is the Levenshtein distance, also simply called the Edit Distance. This dis-
tance is defined as the smallest number of substitutions, insertions, and deletions
of symbols required to transform one of the words into the other.

In this paper, we investigate the basic problem of the size of the neighbour-
hood of a given string: count how many strings are within a bounded distance of
a fixed reference string. This problem has been exposed in [2,6], among others.
As far as we know, there is no efficient algorithm for solving it. We propose
a dynamic programming algorithm that runs linearly in the length of the pat-
tern. This algorithm heavily relies upon the Universal Levenshtein Automaton,
which is an advanced automaton for the Levenshtein distance problem intro-
duced in [4,5]. This automaton is universal in the sense that it does not depend
on the two strings that have to be compared.

The paper is organized as follows. In Sect. 2, we present the Universal Leven-
shtein Automaton. We review its main principles, and revisit them by proposing
some new features, such as the introduction of a Nondeterministic Universal
Levenshtein Automaton. In Sect. 3, we present the algorithm to compute the
cardinality of the neighbourhood of a word.

2 Definition and Construction of the Deterministic
Universal Levenshtein Automaton

2.1 Preliminaries and Notations

Let Σ be a finite alphabet, and let P and V be two strings over Σ. The
Levenshtein distance between P and V , denoted Lev(P, V ), is the smallest
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 207–218, 2016.
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number of edit operations needed to transform P into V , where the allowed
operations are substitution of one symbol with another, deletion of a symbol and
insertion of a symbol. A sequence of operations transforming P into V is called
an edit script. For any pair of strings P and V , the distance between P and V
can be computed by dynamic programming in time proportional to the product
of the length of P and V with the Wagner-Fischer algorithm [9].

Assume now that we are given a fixed threshold for the number of errors k.
We consider the decision problem associated to the Levenshtein distance: for any
pair of strings P and V , decide whether the Levenshtein distance is lesser than
or equal to k. In this decision problem, we can also introduce the additional
hypothesis that the pattern P is fixed, and consider the neighbourhood of P ,
noted Lev(P, k): Lev(P, k) = {V ∈ Σ∗; Lev(P, V ) ≤ k}.

When P is fixed, it is highly desirable to preprocess P , so that the deci-
sion problem can be solved more efficiently than with the dynamic programming
algorithm. There has been an abundance of literature on this subject. A stan-
dard approach is to start from the Levenshtein automaton, depicted in Fig. 1,
which recognizes the set of strings which are at most at distance k to P . This
Levenshtein automaton is a Nondeterministic Finite Automaton (NFA). A run
can be simulated using dynamic programming or bit parallelism [1,3]. However,
it is of little help to count the number of accepted strings, because distinct paths
in this NFA can recognize the same string. Another possibility is to transform
the Levenshtein automaton into an equivalent Deterministic Finite Automaton
(DFA) [7,8]. This is a tedious task, that should be performed for each target
string P .

In [4,5], a universal Levenshtein automaton was introduced. The term univer-
sal conveys its one-time construction and independency of the two input strings.
Thus it can be applied to any pair of strings P and V of arbitrary length over
any arbitrary alphabet Σ. This new automaton is based upon insightful obser-
vations of the nondeterministic Levenshtein automaton for a fixed word, and
extends the work done for the determinization algorithm described by the same
authors in [7].

The remainder of this section is devoted to a thorough presentation of the
Universal Levenshtein Automaton. First, in Sect. 2.2, we explain how to con-
vert the two input strings, P and V , into a single string that contains the
required information to determine their distance. Then, in Subsects. 2.3 and
2.4, we explain how to construct the Universal Levenshtein Automaton.

Notation: For a word V ∈ Σ∗, |V | is the length of this word, and |V |Σ is the
number of distinct symbols of Σ present in V . For each positions i, j in V
(1 ≤ i ≤ |V |), Vi is the ith letter of V and V [i..j] is the subtring of V starting
at position i and ending at position j. ε denotes the empty string.

2.2 Bit Vector Representation

Let P and V be the two strings. In the two-dimensional dynamic programming
table of the Wagner-Fischer algorithm, all edit scripts with at most k errors have
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Fig. 1. Levenshtein automaton for the word SALAD. In general, this automaton has m+
1 columns and k+1 levels. The i#x notation for each state corresponds to i symbols read
in the pattern and x errors recorded. Horizontal transitions represent identities, vertical
transitions represent insertions, and the two types of diagonal transitions represent
substitutions (Σ) and deletions (ε), respectively.

a path that stays around the diagonal. The width of this diagonal is 2k + 1.
To compute the values in this portion of the table, it is sufficient to know which
coordinates (i, j) of the cells are such that Pi = Vj . This information captures the
similarity between the two strings P and V . We show an example in Fig. 2 (left),
where grey cells represent coordinates such that Pi = Vj , and white cells represent
other coordinates. At this point, one can forget the two input words, P and V .

The idea of the Universal Levenshtein Automaton is to work directly on
these configurations of white and grey cells. For this, each horizontal line of the
diagonal is represented by a bit vector of length 2k + 1: 0 for white cells, and 1
for grey cells. These bit vectors will serve as the new alphabet, rather than Σ.
This encoding captures the local structural properties of the input words, and
guarantees alphabet independence.

Definition 1. Let P ∈ Σ∗ and let s ∈ Σ. The characteristic vector χ(s, P ) is
the bit vector of length |P | such that the ith bit is 1 if s = Pi, and 0 otherwise.

Definition 2. Let P ∈ Σm, V ∈ Σn such that n ≤ m + k. Let P ′ = $kP$2k

and V ′ = V $m−n+k, where $ is a new symbol not present in Σ. The k-encoding
of V with respect to P is the sequence of m + k bit vectors of length 2k + 1 such
that the jth element is the characteristic vector χ(V ′

j , P ′[j − k..j + k]).

Fig. 2. Bit vector representation for the string SALAD with respect to BALLAD



210 H. Touzet

The new symbol $ is a sentinel character that serves two purposes. It is added
to the prefix and to the suffix of P to standardize the length of bit vectors.
Additionnaly, it is added to the suffix of V to deal with edit scripts that end
with one or several deletions of symbols of P . These operations will be treated
as substitutions with $. Note that the k-encoding of V with respect to P is not
defined when the length of V exceeds the length of P by more than k characters.
Indeed, there is no point in asking Lev(P, V ) ≤ k in this case.

Example 3. 2-encodings with respect to the pattern BALLAD.
B A L L A D

S A L A D 00000 00100 00110 10010 00010 00011 00111 01111

B A L D 00100 00100 00110 00001 00001 00011 00111 01111

B A L L 00100 00100 00110 00110 00001 00011 00111 01111

B A L L A D S 00100 00100 00110 01100 00100 00100 00000 01111

Finally, we define Lev(P, k) as the set of bit vector sequences u in ({0, 1}2k+1)∗

such that there exists V in Lev(P, k) whose k-encoding wrt P is u.

Remark 4. In [4], the authors use a different encoding. They have bit vectors of
length 2k+2 bits, instead of 2k+1. The last bit is used to identify the transition
between non-accepting and accepting states. Here, we get rid of this additional
bit by adding $ symbols to the suffix of V . In Subsect. 2.4, it will allow us to
obtain a smaller automaton.

2.3 Construction of the Nondeterministic Universal Levenshtein
Automaton

In [4], the authors directly build the Deterministic Universal Levenshtein
Automaton from the Levenshtein automaton for a fixed word. They consider
a symbolic triangular area of a state to simulate multiple active states. Here
we take a different approach, and introduce a Nondeterministic Universal
Levenshtein Automaton. We find this intermediate step useful to facilitate under-
standing. Moreover it allows us to give an effective algorithm to build the Deter-
ministic Universal Levenshtein Automaton, which is not so easy to infer from [4]1.

Let us come back to the table in Fig. 2. An edit script between P and V can
be seen as a path in the white and grey grid. The portions of the path that stay
in the same lane, correspond to a series of identity and substitution operations.
In this context, traversing a white cell costs one error. Everytime you change
lanes, you have to pay either for an insertion (moving to the left) or a deletion
(moving to the right). To capture this idea, we introduce states of the form (x, y),
meaning “I am in the lane y, and have made x errors so far”.

We now examine which are the outgoing transitions for the state (x, y). If we
prefer not to have ε-transitions, the automaton should read a bit vector from
its input sequence at each time step. So each transition should consume exactly

1 The authors write: “We describe only the basic idea”.
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one symbol v of V . In a first approach, an edit script can be decomposed into
a series of one the two following basic events: an insertion of v, or a series of �
deletions in P (0 ≤ � ≤ k − x), followed by either a substitution or an identity
with v. In this decomposition, we make the usual hypothesis that a deletion is
not followed by an insertion. To reduce the nondeterminism, we add another
local condition: a deletion is not followed by a substitution. Indeed, it is always
possible to intervert the two operations, and to apply the substitution before the
deletion. Doing so, we obtain three types of edit events.

– ins: insertion of v,
– sub: substitution of v,
– � del+id: � deletions in P (0 ≤ � ≤ k), followed by an identity with v.

ins makes the automaton transits from (x, y) to (x + 1, y − 1), sub from (x, y)
to (x + 1, y) and � del+id from (x, y) to (x + �, y + �). Figure 3 shows all these
transitions.

We are now ready to formally define NULA(k), the Nondeterministic Uni-
versal Levenshtein Automaton for k errors.

Definition 5. Let k be a positive number. The Nondeterministic Universal
Levenshtein Automaton for k, denoted NULA(k), is the NFA represented as
follows.

– the input alphabet is {0, 1}2k+1,
– the set of states Qk is {(x, y) ∈ IN × ZZ; 0 ≤ x ≤ k,−x ≤ y ≤ x},
– the transition function Δk : Qk × {0, 1}2k+1 → P (Qk) is constituted of three

types of transitions.

Fig. 3. Outgoing transitions for the state (x, y), k = 3. For each bit vector, the bit in
position k + y + 1 corresponding to the lane y is framed, and − is used to denote any
sequence of bits.
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insertion transitions: (x + 1, y − 1) ∈ Δk((x, y), u) for all states (x, y) ∈ Qk

such that x < k and all u ∈ {0, 1}k+y0{0, 1}k−y

substitution transitions: (x + 1, y) ∈ Δk((x, y), u) for all states (x, y) ∈ Qk,
such that x < k and all u ∈ {0, 1}k+y0{0, 1}k−y

deletion+identity transitions: (x+�, y+�) ∈ Δk((x, y), u) for all states (x, y) ∈
Qk, all � such that 0 ≤ � ≤ k − x and all u ∈ {0, 1}k+y0�1{0, 1}k−y−�

– the start state is (0, 0),
– all states are accepting.

Figure 4 shows NULA(2). The automaton is very regular and easy to construct.
The reader can check that all 2-encodings of Example 3 are accepted. In general,
NULA(k) can be seen as an extension of NULA(k−1): just add 2k+1 new states
of the form (k, y) and incoming transitions. Thus NULA(k) has (k + 1)2 states.

We prove that NULA(k) effectively recognizes the expected language. Recall
that the right language of a state q ∈ Qk, denoted L(q), is the set of all sequences
of bit vectors u such that NULA(k) when started in q will accept u.

Proposition 6. Let (x, y) ∈ Qk. Given P ∈ Σm and V ∈ Σn, we have

– when y = 0: u ∈ L(x, y) if, and only if, Lev(P, V ) ≤ k − x,
– when y > 0: u ∈ L(x, y) if, and only if, Lev(P [1 + y..m], V ) ≤ k − x,
– when y < 0: u ∈ L(x, y) if, and only if, Lev(P, V [1 − y..n]) ≤ k − x,

where u is the k-encoding of V with respect to P .

Proof. The proof is by induction on the length of u.

Fig. 4. NULA(2), the Nondeterministic Universal Levenshtein Automaton for k = 2
errors. All states on the same horizontal level carry the same number of errors x, and
all states in same column correspond to the same phase y in the pattern. Each looping
arrow is an identity transition, each vertical arrow a substitution transition, each north-
east arrow a deletion transition, and each north-west arrow an insertion transition. For
the sake of readability, the symbol ◦ in a bit vector is either 0 or 1. (0, 0) is the start
site and all states are accepting.
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Corollary 7. Let P ∈ Σ∗, V ∈ Σ∗. Lev(P, V ) ≤ k, if, and only if, the k-
encoding of V with respect to P is accepted by NULA(k).

2.4 Construction of the Deterministic Universal Levenshtein
Automaton

We now explain how to build the Deterministic Universal Levenshtein Automa-
ton from the NFA introduced in the preceding section. The principle is to use
the standard powerset construction that converts a NFA into a DFA. In this
construction, we show that it is possible to reduce the number of states by defin-
ing subsumed states. This notion is already present in [7], where it is defined for
the Levenshtein automaton for a fixed word. Here, we adapt it to the states of
NULA(k).

Definition 8. Let (x, y) and (x′, y′) be two states of Qk. We say that (x, y)
subsumes (x′, y′), denoted (x′, y′) � (x, y), if x < x′ and y + x − x′ ≤ y′ ≤
y + x′ − x.

It is clear from the definition that the relation � is a well-founded partial order.

Proposition 9. Let q ∈ Qk, q′ ∈ Qk, such that q′ � q. Then L(q′) ⊆ L(q).

Proof. Consequence of Proposition 6. ��
This proposition implies that all subsumed states can be removed from a subset
of Qk without modifying its right language. In other words, for any subset Q′ of
Qk, Q′ and Reduced(Q′) cannot be distinguished, where Reduced(Q′) is defined
as the largest subset of Q′ such that no two elements of Reduced(Q′) are sub-
sumed. It allows us to prune the set of states considered during the construction
of DULA(k). Figure 1 gives the corresponding algorithm and Definition 10 the
formal definition of DULA(k).

Definition 10. Let k be a positive number. The Deterministic Universal
Levenshtein Automaton for k, denoted DULA(k), is the DFA represented as
follows.

– the input alphabet is {0, 1}2k+1,
– the set of states is the set of reduced subsets of Qk,
– the transition function δ is given by Algorithm of Fig. 1,
– the start site is {(0, 0)},
– all states are accepting.

Figure 5 shows DULA(1), that has 8 states. DULA(2), the automaton obtained
from NULA(2) visible on Fig. 4, has 50 states, and is not represented here. For
each value of k, the number of states of DULA(k) is computed with R(k).

Rk(x, y) =
∑

(x′,y′)∈Qk,y<y′,(x,y) ��(x′,y′),(x′,y′) ��(x,y) Rk(x′, y′)
R(k) =

∑
(x,y)∈Qk

Rk(x, y)
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Add {(0, 0)} to DULA(k) as an unmarked state;
while DULA(k) contains an unmarked state do

Let T be that unmarked state;
Mark T ;

for each bit vector u ∈ {0, 1}2k+1 do
S = {q′ ∈ Qk; ∃q ∈ T q′ ∈ Δ(q, u)};
S′ = Reduced(S);
Define δ(T, u) = S′;
if S′ is not in DULA(k) already then

Add S′ to DULA(k) as an unmarked state;
end

end

end

Algorithm 1: Construction of DULA(k) from NULA(k)

Fig. 5. DULA(1), Deterministic Universal Levenshtein Automaton for k = 1. It has 8
states, numbered from 0 to 7, that are all accepting. In the table, we report the subset
of Q1 corresponding to each state, as well as the semantics of the state.

Rk(x, y) is the number of reduced subsets of Qk such that the state (x, y) is
the element with the smallest y in the subset. The total number of reduced
subsets for Qk, R(k) is obtained by summing over all possible states of Qk.
For k ranging from 1 to 10, R equals 8, 50, 322, 2187, 15510, 113633, 853466,
6536381, 50852018, 400763222. We conjecture that R(k) is in O(7k).

3 Application to the Neighbourhood Counting Problem

We now turn to the problem of computing the cardinality of Lev(P, k). This
value depends on the length of the word, the input alphabet and the internal
structure of the word. Consider for example the three-letter alphabet {A,B,L}.
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Lev( AAA,1) = { AAA, AA, AAB, AAL, ABA, ALA, BAA, LAA, AAAA, BAAA,
LAAA, ABAA, ALAA, AABA, AALA, AAAB, AAAL}

Lev(LAB,1) = { LAB, LA, AB, LB, AAB, BAB, LBB, LLB, LAA, LAL, ALAB,
BLAB, LLAB, LAAB, LBAB, LALB, LABA, LABB, LABL}

In the first case, the neighbourhood has 17 elements, and in the latter case 19
elements. The combinatorics is even more complex for greater values of k.

We show how to solve this problem efficiently with the help of DULA(k).
Indeed, it is enough to intersect DULA(k) with the set of all sequences of bit
vectors that are a valid encoding for some string V with respect to P . We
designate by Encod(P, k) this latter language.

3.1 A DFA for Encod(P, k)

Definition 11. Let P be a string of Σ∗. Encod(P, k) is the set {u ∈
({0, 1}2k+1)∗;∃V ∈ Σ∗ s.t. u is the k-encoding of V wrt to P}.
From Definition 2, we know that the elements of Encod(P, k) are strings of k+m
bit vectors.

Definition 12. Let V ∈ (Σ ∪ {$})∗. Define B(V ) = {χ(s, V ); s ∈ Σ}.
B(V ) is the set of all bit vectors u of length |V | that satisfies the three following
properties.

– If Vi = Vj , then ui = uj .
– If ui = 1 and uj = 1, then Vi = Vj .
– If Vi = $, then ui = 0.

Example 13. B(ABL)={000, 001, 010, 100}, B(ABB)={000, 011, 100},
B(AA$)= {000, 110}.

Encod(P, k) is recognized by the following DFA.

– the input alphabet is ({0, 1}2k+1)∗,
– the set of states is {0, . . . , m + k} ∪ {$m−k+1, . . . , $m+k},
– the transition function γ is defined by

γ(i − 1, u) = i, 1 ≤ i ≤ m + k, u ∈ B(P ′[i − k..i + k])
γ(i − 1, 0k+1+m−i1i+k−m) = $i, m − k + 1 ≤ i ≤ m + k

γ($i−1, 0k+1+m−i1i+k−m) = $i, m − k + 1 < i ≤ m + k

– the start state is 0,
– there are two accepting states: m + k and $m+k.

Each state i recognizes the encodings of strings of Σ+ of length i, and each state
$i recognizes the encodings of strings of Σ+$+ of length i. The transition from
i − 1 to $i corresponds to the first occurrence of $ in the string. Figure 6 shows
the DFAs obtained for AAA, LAB and k = 1. We also give the DFA for BALLAD

and k = 2, for which several encodings were provided in Example 3.
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Fig. 6. DFAs for Encod(AAA, 1), Encod(LAB, 1) and Encod(BALLAD, 2)

3.2 Back to the Counting Problem

Considering that Lev(P, k) = DULA(k) ∩ Encod(P, k), we will exploit the prod-
uct automaton of DULA(k) and Encod(P, k). This product automaton needs not
to be constructed explicitely. It will serve us to design the recurrence formula to
compute the size of Lev(P, k).

From the product automaton, we can deduce what is the size of the language
recognized by Lev(P, k). This is simply the total number of distinct paths leading
from the start state to an accepting state. What we still have to do is to bring
the problem back to the initial alphabet Σ. For that, we need a function α :
{0, 1}2k+1 ×Σ2k+1 → IN that computes the number of symbols s of Σ such that
χ(s, V ) = u, for each bit vector u and each word V over Σ.

α(u, V ) = 1, whenever at least one bit of u is 1
α(u, V ) = |Σ| − |V |Σ otherwise (in this case, u = 00 · · · 00)

α is used to assign a multiplicity to each transition of the product automaton.
In this context, the total number of underlying strings of Σ∗ is the sum of all
multiplicities of all distinct paths. Define S as follows.

S : Reduced(Qk) × ({0, . . . , m + k} ∪ {$m−k+1, . . . , $m+k}) → IN
S(0, 0) = 1

S(q′, i + 1) =
∑

u,q,q′=δk(q,u) α(u, P ′[i − k..i + k]) × S(q, i), 0 ≤ i < m + k

S(q′, $m−k) =
∑

u,q,q′=δk(q,u) S(q,m − k − 1)
S(q′, $i+1) =

∑
u,q,q′=δk(q,u) S(q, i − 1) + S(q, $i), m − k ≤ i < m + k

m is the length of P . S(q, i) is the number of distinct paths leading from the
start site to the state (q, i) in the product automaton. The final result is obtained
by summing over the accepting states.
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Proposition 14.

|Lev(P, k)| =
∑

q∈Reduced(Qk)

S(q,m + k) + S(q, $m+k)

Figure 7 shows the developments of S for Lev(AAA, 1) and Lev(LAB, 1), which
were obtained from DULA(1) in Fig. 5 on the one hand, and Encod(AAA,1),
Encod(LAB,1) in Fig. 6 on the other hand. S can be implemented by dynamic
programming with a table of size R(k) × (m + 3k). Each element of the table is
computed in constant time. So the algorithm has a time complexity of O(m). In
practice, for each possible word structure (e.g. AAA, AAB, ABL), the associated
transitions in DULA(k) can be extracted during a preprocessing step. As for the
space complexity, this is not necessary to store the full dynamic table. At any
instant, the algorithm only requires elements from the current row (i) and the
previous row (i − 1). Thus the space complexity is in O(1).

Remark 15. In Sect. 2, we have put a lot of efforts into defining a universal
automaton that is able to process any pair of strings. In this Section, we have

Fig. 7. Computation of S for AAA and LAB, Σ = {A,B, L} and k = 1. For each state
(q, i) or (q, $i) (left part of the box), we indicate the value of S (right part of the box).
The labels on the transitions are the bit vectors. For each bit vector, we also mention
the corresponding symbol(s) of Σ. The number of such symbols is α. The result is the
sum of S over the last column.
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specialized this automaton for a fixed pattern P and have obtained a DFA for
Lev(P, k). Alternatively, we could have directly used the DFA presented in [7].
The construction of this DFA is also in linear time, for a fixed value of k. How-
ever it requires a complex table-based preprocessing, that is dependent on each
pattern. In our approach, the computational burden is reported to the design
of DULA(k), which is performed only once. This is a new route to recover the
result established in [7].

4 Conclusion

We have shown how to count the number of strings present in the neighbourhood
of some fixed reference word P . The algorithm produces a product automaton,
which could also be used to generate the set of all strings in the neighbour-
hood of P , or to sample it. This generic approach could extend to other target
regular languages, instead of the singleton language {P}. The downside of the
method, however, is that it requires the computation of the DFA DULA(k),
whose size increases exponentially with the number of errors k. It exceeds one
million states with k = 8. Another route is to construct the product automaton
with NULA(k), instead of DULA(k), and then determinize the resulting automa-
ton with an optimization similar to Proposition 9. This could lead to a lower
memory consumption for regular languages that do not need all transitions of
DULA(k).
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Abstract. In 2014, it was conjectured that any polyomino can be fac-
torized uniquely as a product of prime polyominoes [7]. In this paper,
we present simple tools from words combinatorics and graph topology
that seem very useful in solving the conjecture. The main one is called
parallelogram network, which is a particular subgraph of G(Z2) induced
by a parallelogram morphism, i.e. a morphism describing the contour
of a polyomino tiling the plane as a parallelogram would. In particular,
we show that parallelogram networks are homeomorphic to G(Z2). This
leads us to show that the image of the letters of parallelogram morphisms
is a circular code provided each element is primitive, therefore solving
positively a 2013 conjecture [8].

Keywords: Codes · Combinatorics on words · Graphs · Digital
geometry · Topological graph theory · Morphisms

1 Introduction

The interaction between combinatorics on words and digital geometry has been
extensively studied in the last decades [1,6,9,10]. The most famous example is
without doubt the family of Sturmian words, which can be seen as the discrete
counterpart of lines having irrational slope [15]. Another remarkable example is
about digital convexity: It was recently established that it can be decided very
efficiently if some discrete figure is convex by factorizing its boundary in Lyndon
and Christoffel words [10]. In the same spirit, one can decide in linear time and
space whether some discrete path is self-intersecting, by using combinatorial
arguments together with an enriched radix quadtree [9]. Finally, generalizations
of discrete lines in 3D have also been proposed, such as in [6].

In parallel, the theory of codes has been developed for more than 50 years.
Here, we focus on circular codes, i.e. sets of words that allow unique encoding
of words written on a circle. Circular codes were first introduced and studied by
Golomb and Gordon [13] and have received a lot of attention from researchers
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since then. From an algebraic perspective, Schützenberger has contributed sig-
nificantly to a better understanding of their structure [17]. His results have been
generalized by Bassino who described the generating functions of weighted circu-
lar codes [3]. Circular codes have also been extensively studied in bioinformatics.
For instance, a remarkable circular code for the protein coding genes of mito-
chondria has been brought to light by Arques and Michel [2].

More recently, researchers (including both authors) have been interested in
the shape of parallelogram tiles (also called square tiles in [16]) using words
combinatorics formalism [7,8,11,16]. In particular, in 2008, Provençal defined
the product (or composition) of a polyomino and a parallelogram polyomino,
which consists in substituting each unit square of the first polyomino with a
copy of the parallelogram polyomino (see Fig. 1). This leads to the natural def-
inition of prime and composed polyominoes: A polyomino is called prime if it
cannot be obtained by the composition of two smaller nontrivial polyominoes
[16]. Provençal’s definition was further studied in [7], where it was proved that
every polyomino can be factorized as a product of prime polyominoes, a result
in the same spirit than the Fundamental Theorem of Arithmetic. However, the
authors were not able to prove that such a factorization is unique and left it as
a conjecture:

Conjecture 1. Let U be the unit square polyomino and P �= U be a polyomino.
Then P can be factorized uniquely as a product of a prime polyomino Q and
primes parallelogram polyominoes P1, P2, . . ., Pn, i.e. P = Q ◦ P1 ◦ P2 ◦ · · · ◦ Pn.

In this paper, we neither prove nor disprove Conjecture 1, but we provide
tools that we believe are essential in showing the unicity of the prime factor-
ization. It relies on basic words combinatorics as well as graph topology. In
particular, it introduces parallelogram networks, i.e. undirected subgraphs of the
grid graph Z

2 induced by special morphisms called parallelogram [7]. They turn
out to be expressive and easy to manipulate: As a byproduct, we obtain a simple
proof that the image of parallelogram morphisms is a circular code under very
mild conditions (Theorem 13), thus solving another conjecture stated in [8].

The content is divided as follows. In Sect. 2, we introduce the basic definitions
about words and codes. In Sect. 3, we recall basic definitions about graphs and
their interaction with words. Section 4 is devoted to the study of the properties

◦ =

Fig. 1. The composition of a polyomino (left) with a parallelogram polyomino (middle)
is a composed polyomino (right).
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of parallelogram networks, culminating with Theorem 13 in Sect. 5. We briefly
conclude with an open problem.

2 Words and Codes

We recall the basic definitions and notation for words and codes (see [15] for
more details). An alphabet is a finite set Σ whose elements are called letters. A
word on Σ is a finite sequence w = w1w2 · · · wn of letters of Σ. The i-th letter
of w is denoted by wi. The length of w, written |w| is the number of elements
in the sequence w. The unique word of length 0 is called the empty word and is
written ε. Whenever |w| > 0, we write Fst(w) and Lst(w) for the first and last
letter of w. Moreover, for any letter a ∈ Σ, |w|a is the number of occurrences of
the letter a in w.

Given two words u = u1u2 · · · um and v = v1v2 · · · vn, the concatenation of u
and v, denoted by uv or u · v, is the word u1u2 · · · umv1v2 · · · vn. If u is a word
and n is an integer, then un = u · u · · · u (n times). A word w is called primitive
if there does not exist any word u and integer n ≥ 2 such that w = un. A
well-known fact is the following:

Proposition 2 [15]. Let w be a word such that there exist words u and v with
w = uv = vu. Then w is not primitive.

The set of all words on Σ having length n is denoted by Σn. The free monoid
is defined by Σ∗ =

⋃
n≥0 Σn. Its name comes from the fact that it has a monoid

structure when combined with the concatenation operation, and with neutral
element ε. A submonoid of Σ∗ is a subset M ⊆ Σ∗ which is stable under the
concatenation and which includes ε. The submonoid M is pure if for all x ∈ Σ∗

and n ≥ 1, xn ∈ M implies x ∈ M . Moreover, we say that M is very pure
if for all u, v ∈ Σ∗, the relations uv ∈ M and vu ∈ M imply u, v ∈ M . It is
straightforward to show that any very pure submonoid is also pure. However,
the converse is false: The submonoid of {a, b}∗ generated by {ab, ba} is pure but
not very pure.

Let w be some word. Then we say that u is a factor of w if there exist words
x and y such that w = xuy. Moreover, if x = ε (resp. y = ε), u is called prefix
(resp. suffix ) of w. The set of prefixes (resp. suffixes) of a word w is denoted by
Pref(w) (resp. Suff(w)). Also, the unique prefix (resp. suffix) of length � of w is
denoted by Pref�(w) (resp. Suff�(w)), where 0 ≤ � ≤ |w|.

Given two alphabets A and B, an application ϕ : A∗ → B∗ is called morphism
(resp. antimorphism) if ϕ(uv) = ϕ(u)ϕ(v) (resp. ϕ(uv) = ϕ(v)ϕ(u)) for all
u, v ∈ A∗. Given w = w1w2 · · · wn, the reversal of w, denoted by w̃, is defined by
w̃ = wnwn−1 · · · w2w1. The operator ·̃ is an antimorphism. It is easy to see that
morphisms and antimorphisms are completely defined by their action on single
letters.

Let Σ be an alphabet and X ⊆ Σ∗. Then X is a code over Σ if for all m,n ≥ 1
and x1, x2, . . . , xm, y1, y2, . . . , yn ∈ X, the condition x1x2 · · · xm = y1y2 · · · yn

implies m = n and xi = yi for i = 1, 2, . . . , n. Roughly speaking, X is a code if
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any word in X∗ can be written uniquely as a product of words in X. Similarly, we
say that X is a circular code if for all m,n ≥ 1 and x1, x2, . . . , xm, y1, y2, . . . , yn ∈
X, p ∈ Σ∗ and s ∈ Σ+, the relations sx2x3 · · · xmp = y1y2 · · · yn and x1 = ps
imply m = n, p = ε and xi = yi for i = 1, 2, . . . , n. In other words, X is a circular
code if any circular permutation of a word in X∗ can be written uniquely as a
product of words in X. It is not hard to prove that any circular code is a code.
The reader is referred to [5] for more details about code theory, but one important
result for our purpose is the following characterization of circular codes:

Theorem 3 (Proposition 1.1 of [5]). A submonoid M of A∗ is very pure if
and only if its minimal set of generators is a circular code.

3 Discrete Paths and Graphs

An alphabet of particular interest for our purposes is the Freeman chain code
F = {0,1,2,3}, which encodes the four elementary steps on the square grid Z

2

with respect to the bijection

0 	→ →, 1 	→ ↑, 2 	→ ←, 3 	→ ↓ .

Two basic operations on Freeman words have useful geometrical interpreta-
tions. The application · is the morphism defined by

0 = 2, 1 = 3, 2 = 0, 3 = 1,

which corresponds geometrically to the application of a rotation of angle π. Also,
the antimorphism ·̂ = · ◦ ·̃ corresponds to traveling the sequence of elementary
steps in the opposite order.

Given w ∈ F∗, we write −→w = (|w|0 − |w|2, |w|1 − |w|3). Any word w ∈ F∗

is called closed if −→w is the null vector. Moreover, w is called simple if none of
its proper factor is closed, and is a contour word if it is nonempty, closed and
simple.

A discrete path is a sequence of connected unit segments whose endpoints
are on Z

2. Discrete paths can naturally be represented by an ordered pair γ =
(p,w), where p ∈ Z

2 and w ∈ F∗. Thus, the set of points of Z
2 visited by γ

is Points(γ) = {p + −→u | u ∈ Pref(w)}. A discrete path is called closed (resp.
simple) if w is closed (resp. simple). Given a closed discrete path γ, the region
of γ, denoted by R(γ), is defined as the closed subset of R2 whose boundary is
exactly described by γ.

Every discrete path yields a unique undirected graph G(γ) = (V,E), where
V = Points(γ) and (q, q′) ∈ E if and only if there exist two consecutive prefixes
u, u′ of w such that q = p + −→u and q′ = p + −→u ′. Also, the (graph) distance
between two vertices p and p′ is the length of a shortest discrete path γ between
p and p′.

The grid graph G(Z2) is the infinite graph whose set of vertices is Z
2 and

whose set of edges E is defined as follows: {p, p′} ∈ E if and only if dist(p, p′) = 1,
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where dist is the usual Euclidean distance. The set of all discrete paths of G(Z2)
is denoted by Γ (Z2). Clearly, for any γ ∈ Γ (Z2), the undirected version of the
graph G(γ) is a subgraph of G(Z2).

We now recall topological graph theoretic definitions. We use the same ter-
minology as in [12]. Let G = (V,E) be a undirected graph. A subdivision of
G is any graph obtained from G by replacing some edges in E with new paths
between their ends such that those paths have no inner vertex in V or in another
path. The original vertices of G are then called branch vertices and the new ver-
tices are called inner vertices. It is clear that inner vertices have degree 2 while
branch vertices retain their respective degree from G.

Given two graphs G = (V,E) and G′ = (V ′, E′), G and G′ are called iso-
morphic, and we write G  G′, if there exists a bijection f : V → V ′ such that
{u, v} ∈ E if and only if {f(u), f(v)} ∈ E′. From this, one defines the notion of
graph homeomorphism: Two graphs G and G′ are homeomorphic (i.e. topologi-
cally isomorphic) if there exist two isomorphic subdivisions T and T ′ of G and
G′ respectively. It is easy to show that G and any of its subdivision T are home-
omorphic. Also, the notions of graph homeomorphism and standard topological
homeomorphism are equivalent when considering the topological representations
of graphs (i.e. the topological space obtained by representing vertices as distinct
points and edges by homeomorphic images of the closed unit interval [0, 1]) [14].

4 Parallelogram Networks

Some morphisms are of particular interest from a geometrical perspective. We
recall some definitions from [7].

Definition 4 [7]. Let ϕ : F∗ → F∗ be a morphism. Then ϕ is called

(i) homologous if ϕ(a) = ϕ̂(a);
(ii) parallelogram if it is homologous, ϕ(0123) is a contour word and

Fst(ϕ(a)) = a for all a ∈ F .

Let ϕ : F∗ → F∗ be a parallelogram morphism. For simplicity of writing,
we extend the application ϕ as follows. For any p = (x, y) ∈ Z

2, let ϕ(p) =
ϕ(x, y) = (0, 0) + x

−−→
ϕ(0) + y

−−→
ϕ(1) ∈ Z

2. Moreover, if γ = (p,w) is a discrete path,
then ϕ(γ) is the discrete path ϕ(γ) = (ϕ(p), ϕ(w)).

The graph of ϕ is defined by

G(ϕ) =
⋃

γ∈Γ (Z2)

G(ϕ(γ)) =
⋃

p∈Z2

G(ϕ(p,0123)). (1)

Any such graph is called parallelogram network. The second equality of Eq. (1)
is easy to check: The inclusion ⊇ follows directly from the fact that (p,0123) is
a path in G(Z2) while the inclusion ⊆ follows from the fact that any path γ in
G(Z2) can be divided into discrete paths of length 1, each belonging to at least
one discrete path of the form (p,0123), for some p ∈ Z

2.
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Fig. 2. The parallelogram network G(ϕ) induced by the parallelogram morphism such
that ϕ(0) = 0010 and ϕ(1) = 121. The white dots correspond to branch vertices.

Example 5. The graph G(ϕ) is represented in Fig. 2, where ϕ is the parallelogram
morphism such that ϕ(0) = 0010 and ϕ(1) = 121.

Clearly, if ϕ is a parallelogram morphism, then the morphism ϕi defined
by ϕi(a) = ϕ(a + i) is also a parallelogram morphism for i = 0,1,2,3 and
a + i is the addition modulo 4. Therefore, for unicity purposes, we assume that
Fst(ϕ(a)) = a for all a ∈ F , and that any discrete path whose associated word
is ϕ(0123) is traveled counterclockwise.

The following basic properties of homologous morphisms are useful.

Proposition 6. Let ϕ be an homologous morphism and w ∈ F∗.

(i) For any a ∈ F ,
−−→
ϕ(a) +

−−→
ϕ(a) =

−→
0 .

(ii) If −→w = (x, y), then
−−−→
ϕ(w) = x

−−→
ϕ(0) + y

−−→
ϕ(1).

Proof. (i) Since ϕ is homologous, for any a ∈ F , we have
−−→
ϕ(a) =

−−→̂
ϕ(a) = −−−→

ϕ(a).
(ii) Write w = w1w2 · · · wn. Then

−−−→
ϕ(w) =

n∑

i=1

−−−→
ϕ(wi)

=
∑

a∈F
|w|a

−−→
ϕ(a)

=
∑

a∈{0,1}
(|w|a

−−→
ϕ(a) + |w|a

−−→
ϕ(a))

=
∑

a∈{0,1}
(|w|a − |w|a)

−−→
ϕ(a)

= x
−−→
ϕ(0) + y

−−→
ϕ(1),

as claimed. ��
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It is worth noticing that for any parallelogram morphism ϕ, the graph G(ϕ)
is a regular parallelogram tiling of the plane R

2. In other words, it is possible
to completely cover the plane by non-overlapping translated copies of ϕ(0123)
along the direction of the two vectors

−−→
ϕ(0) and

−−→
ϕ(1), i.e.

R
2 =

⋃

(a,b)∈Z2

{
R((0, 0);ϕ(0123)) + a

−−→
ϕ(0) + b

−−→
ϕ(1)

}
,

Indeed, as shown in [4], a tile admitting a contour word w ∈ F∗ tiles the plane
by translation along the direction of exactly two vectors if and only if w can be
factorized as w = XY X̂Ŷ , where X,Y ∈ F . Moreover, the authors character-
ize such regular tiling by describing the surrounding of parallelogram tiles (see
Fig. 3). From this, Proposition 7 follows.

Fig. 3. The surrounding of a tile t coded by w = XY X̂Ŷ obtained by taking the four

translated copies t±−−→
ϕ(0) or

−−→
ϕ(1) and matching the corresponding homologous factors.

It induces a regular parallelogram tiling of the plane R
2.

Proposition 7. Let ϕ be a parallelogram morphism. Then
{−−→

ϕ(0),
−−→
ϕ(1)

}
is a

basis of the vector space R
2.

Proof. Let −→u =
−−→
ϕ(0) and −→v =

−−→
ϕ(1). It suffices to prove that −→u and −→v are

linearly independent since R
2 is a vector space of dimension 2. Arguing by con-

tradiction, assume that this is not the case and let

T =
⋃

(a,b)∈Z2

{
R((0, 0), ϕ(0123)) + a

−−→
ϕ(0) + b

−−→
ϕ(1)

}
.

Now, since the region R((0, 0), ϕ(0123)) is bounded, there exist points p1, p2 ∈
R

2 such that R((0, 0), ϕ(0123)) lies completely in the region B between the two
parallel lines l1 = p1 + t1

−→u and l2 = p2 + t2
−→u , where t1, t2 ∈ R. Further, the

linear dependance of −→u and −→v implies that any point of T lies entirely in B,
so that T is a subset of B. But then T is a proper subset of R2, contradicting
T = R

2.
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A remarkable property of parallelogram morphisms is that they preserve
closed and simple paths. The former is an immediate consequence of Propo-
sition 7 while the latter is more complicated to show and we need additional
results. First, we recall a result of [18] about tessellation that translates directly
to our context:

Theorem 8. Let ϕ be a parallelogram morphism, −→a =
−−→
ϕ(0),

−→
b =

−−→
ϕ(1), p, q ∈

Z
2 and P,Q be the regions enclosed inside the discrete paths (p, ϕ(0123)) and

(q, ϕ(0123)) respectively. Then exactly one of the following conditions holds:

(i) P = Q and then p = q;
(ii) P and Q share a single point and then −−−→

q − p = ±−→a ± −→
b ;

(iii) P and Q share a chain in ϕ(F) and then −−−→
q − p ∈ {±−→a ,±−→

b };
(iv) P and Q are disjoint.

Proof. By definition, the regions enclosed inside the discrete path ϕ(0123) is a
polyomino tiling the plane by translation in a parallelogram manner. It follows
from Theorem 4.13 of [18] that P and Q verify one and only one of Conditions
(i)–(iv). ��

We observe from Fig. 2 that each vertex x
−−→
ϕ(0) + y

−−→
ϕ(1), where x, y ∈ Z of

G(ϕ) has degree 4. We call such vertices branch vertices. A non branch vertex
p is called inner vertex of type a if there exists some discrete path (p′, ϕ(a))
visiting p. Note that if p is an inner vertex of type a, then it is also an inner
vertex of type a. An immediate consequence of Theorem 8 is a simple description
of parallelogram networks.

Corollary 9. Let ϕ be some parallelogram morphism and p ∈ Z
2. Then

deg(p) =

{
4, if p is a branch vertex;
2, otherwise.

The remainder of this section is devoted to proving that G(Z2) and G(ϕ)
are homeomorphic. First, observe that any parallelogram morphism ϕ induces
a subdivision Tϕ of Z

2: Subdivide horizontal edges {u, v} of G(Z2) by adding
|ϕ(0)| − 1 inner vertices between the two branch vertices u and v. Similarly,
vertical edges are subdivided using |ϕ(1)| − 1 new inner vertices. Therefore,
the new horizontal (resp. vertical) chains obtained between two branch vertices
adjacent in the original graph have length |ϕ(0)| (resp. |ϕ(1)|), since |ϕ(0)| =
|ϕ(2)| and |ϕ(1)| = |ϕ(3)|.

Our first main result follows:

Theorem 10. Let ϕ be a parallelogram morphism. Then, Tϕ  G(ϕ).

Proof. Let V (Tϕ) and V (G(ϕ)) be the set of vertices of Tϕ and G(ϕ) respectively.
Also, let (x, y) be a vertex of Tϕ. By construction, we have

(x, y) ∈
{

(�x�, �y�) +
(

k1
|ϕ(0)| ,

k2
|ϕ(1)|

)}
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Fig. 4. The effect of f on two vertices of Tϕ

with 0 ≤ k1 < |ϕ(0)|, 0 ≤ k2 < |ϕ(1)| and k1k2 = 0. Now consider the function
f : V (Tϕ) → V (G(ϕ)) defined by

f(x, y) = ϕ(�x�, �y�) +

{−−−−−−−−−→
Prefk1(ϕ(0)), if k2 = 0;−−−−−−−−−→
Prefk2(ϕ(1)), if k1 = 0.

Intuitively, the transformation f finds the closest bottom or left branch ver-
tex (�x�, �y�) of any vertex (x, y), and then consider the k-th vertex in the path
ϕ((x, y), a) in G(ϕ), where k ∈ {k1, k2} and a ∈ {0,1} (see Fig. 4). It is straight-
forward to check that f is a bijection. It remains to show that p, q ∈ Z

2 are
adjacent in Tϕ if and only if f(p) and f(q) are adjacent in G(ϕ).

First, for any p ∈ Z
2 and a ∈ F , let C(p, a) be the sequence whose i-th

element is p + i−→a , for i = 0, 1, . . . , |ϕ(a)| and consider the sequence C ′(p, a)
whose i-th element is f(p + i−→a ), for i = 0, 1, . . . , |ϕ(a)|. Then

f(p + i−→a ) = ϕ(p) +
−−−−−−−−→
Prefi(ϕ(a)).

Consequently, C(p, a) is a chain of Tϕ if and only if C ′(p, a) is a chain of G(ϕ),
since (p, a) is a discrete path of Tϕ if and only if (p, ϕ(a)) is a discrete path of
G(ϕ).

In other words, paths between vertices having integer coordinates in Tϕ are
isomorphic to path between branch vertices in G(ϕ). By Corollary 9, the degrees
of vertices match, so that we have considered all possible neighbors. ��

From Theorem 10, we deduce that G(Z2) and G(ϕ) have essentially the same
structure.

Corollary 11. Let ϕ be a parallelogram morphism. Then, G(Z2) and G(ϕ) are
homeomorphic.

Finally, from Corollary 11, one deduces that ϕ preserves both closed and
simple paths. In other words, G(ϕ) is a deformed image of G(Z2).
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Fig. 5. Geometric representation of the paths u and v. (a) u, v ∈ M . (b) u, v /∈ M .

5 Main Result

Before proving Theorem 13, we describe the graph distance between particular
pairs of vertices in parallelogram networks.

Lemma 12. Let ϕ be any parallelogram morphism and p be a vertex of G(ϕ).
Moreover, let q = p + k

−−→
ϕ(a) for some a ∈ F and some positive integer k.

(i) If p and q are branch vertices, then (p, ϕ(a)k) is the unique shortest path
going from p to q and distG(ϕ)(p, q) = k|ϕ(a)|.

(ii) If p and q are inner vertices of type b, where b ∈ F and b �= a, a, then
distG(ϕ)(p, q) > k|ϕ(a)|.

Proof. (i) By definition of parallelogram network, there is a path from p to q in
G(ϕ) described by ϕ(a)k. This path is also the shortest: Any other path from
p to q must be composed of at least k non-overlapping subpaths of the form
(pi, ϕ(a)), where b = (a + 1) mod 4, pi = p + i

−−→
ϕ(a) + ji

−−→
ϕ(b) and ji ∈ Z for

i = 0, 1, . . . , k.
(ii) A shortest path from p to q is obtained by going to the nearest branch

vertex, then traveling along ϕ(b)k and then going to q. Since p and q are inner
vertices, the number of edges in this shortest path is more than k|ϕ(a)|. ��

We are now ready to solve Conjecture 36 of [8].

Theorem 13. Let ϕ be any parallelogram morphism. Then ϕ(F) is a circular
code if and only if ϕ(0) and ϕ(1) are both primitive words.

Proof. (⇒) If ϕ(F) is a circular code, then each of its element must be primitive,
in particular ϕ(0) and ϕ(1).

(⇐) Let M = ϕ(F)∗. We show that M is very pure. Arguing by contradiction,
assume the contrary, i.e. there exist u, v ∈ F∗ such that uv, vu ∈ M but u, v /∈ M .

Clearly, −→uv = −→vu, which implies that the discrete paths (p, uv) and (p, vu)
of G(ϕ) end at the same point, for any p ∈ Z

2. Moreover, there exist branch
vertices p, r ∈ Z

2 of G(ϕ) and inner vertices q, q′ of type a, a′ of G(ϕ) such that
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the discrete paths (p, u) and (r, v̂) both end at q and the discrete paths (p, v)
and (r, û) both end at q′ (the situation is depicted in Fig. 5). There are two cases
to consider.

First, suppose that uv = ϕ(b)k for some b ∈ F . Since |uv| = |vu| and since
(p, ϕ(b)k) is the unique shortest path from p to r (Lemma 12(i)), we deduce
that uv = ϕ(b)k = vu. Write u = u′u′′ and v = v = v′v′′, where u′, v′′ ∈ M
and u′′v′ = ϕ(b) (such a decomposition exists and is unique since uv ∈ M
but u, v /∈ M). Then ϕ(b)k = uv = vu = v′v′′u′u′′, which implies that v′ is a
prefix of ϕ(b) and u′′ is a suffix of ϕ(b). Hence, u′′v′ = ϕ(b) = v′u′′, so that, by
Proposition 2, ϕ(b) is not primitive, contradicting the theorem assumption.

Otherwise, let u′ and v′ be the maximal words of F∗ such that ϕ(u′) is a
prefix of u and ϕ(v′) is a suffix of v. Let

Q = {q′ +
−−−→
ϕ(u′′) | u′′ ∈ Pref(u′)} ∪ {q′ +

−−−→
ϕ(v̂′′) | v′′ ∈ Suff(v′)}.

Since u, v /∈ M , all elements of Q are inner vertices. Moreover, they all are of
type a′ (the same type as q′). However, there must exist at least two distinct
s, s′ ∈ Q such that s′ = s +

−−→
ϕ(b), where b �= a′, a′: Otherwise, we would have

uv = ϕ(a′) = vu which was considered in the previous paragraph. But then
Lemma 12 applies to s and s′, so that distG(ϕ)(s, s′) > |ϕ(b)|, contradicting the
fact that s′ can be reached from s through the path (s, ϕ(b)). ��

6 Concluding Remarks

Theorem 13 might be seen as a first important step in solving Conjecture 1.
Indeed, as mentioned in Sect. 4, parallelogram networks are not uniquely repre-
sented by a parallelogram morphism ϕ, since its circular permutations also yield
the same parallelogram network. Moreover, there exist examples of parallelogram
morphisms having a circular permutation which induces a distinct parallelogram
network. In fact, there are infinitely many of them, and their structure has been
described in [8].

For instance, it is easy to verify that for any p ∈ Z
2, (p, ϕ(0123)) is a discrete

path of both G(ϕ) and G(ϕ′) defined by

ϕ(0) = 01010, ϕ(1) = 121, ϕ′(0) = 030, ϕ′(1) = 10101.

However, it seems that no other closed discrete path can exist in both parallel-
ogram networks.
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Abstract. A partial word is a string over a finite alphabet with some
undefined places which are known as holes or “do not know” symbols. A
partial word w is said to be primitive if there does not exist any word
v such that w is contained in vn with n ≥ 2. We investigate the effect
of a point mutation on primitive partial words with a single hole. We
characterize a special class of such words, del-robust primitive partial
words with one hole, that remains primitive on deletion of any symbol
or the hole. We identify some important properties of such words and
prove that the language of non-del-robust primitive partial words with
one hole is not context-free. Finally we approximate the counting of del-
robust primitive partial words with one hole for a fixed length.

Keywords: Combinatorics on words · Primitive words · Partial words ·
Del-robust · Context-free language · Reflective

1 Introduction

Let Σ be a finite alphabet. A word is a sequence of symbols from the alphabet Σ.
Words are natural objects of interest in several research areas including formal
language and automata theory [8], coding theory [1], computational biology and
DNA computing [12]. The research in the area of combinatorics on words has
been actively pursued in last two decades. Several aspects of words such as,
algebraic [15], applied [16] and algorithmic [10], have been extensively explored.

A word w = a1a2 · · · an of length n is a sequence of symbols over a finite
alphabet Σ where ai ∈ Σ. A partial word w = a1a2 · · · an of length n over the
finite alphabet where ai ∈ Σ ∪ {♦} and ♦ is referred as hole. Equivalently, a
partial word is a string that contain some “do not know symbols” and a total
word is a string without holes.

In the context of combinatorics on words, primitive words are of special
interest where a word is said to be primitive if it cannot be represented as an
integer power of a smaller word [14]. A partial word is said to be primitive if it
is not contained in an integer(≥2) power of a word. The relation between the
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 233–244, 2016.
DOI: 10.1007/978-3-319-30000-9 18
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language of primitive words and the language of primitive partial words with
conventional formal language classes has been extensively studied [9,13,17,19].
It is still an open problem that whether the language of primitive words is
context-free [9,19].

In [18], G.Păun et al. have studied the robustness of the language of primi-
tive words with respect to various point mutation operations such as insertion,
deletion or substitution of a symbol by another symbol. In [7], Dassow et al.
considered the word ww′ where w is a primitive word and w′ is a modification of
w and studied whether ww′ is primitive. Similarly, in [6], Sadri et al. extended
the work of Dassow et al. to partial words. In this paper we discuss the robust-
ness property of primitive partial words with one hole with respect to deletion
of a symbol or a hole from a partial word that preserves the primitivity. This
special class of primitive partial words with one hole is referred to as del-robust
primitive partial words with one hole.

The rest of the paper is organized as follows. In Sect. 2 we review some basic
concepts and preliminaries which are used in the rest of the paper. In Sect. 3, we
characterize del-robust primitive partial words with one hole and identify their
properties. In Sect. 4, we prove that the language of non-del-robust primitive
partial words with one hole is not context-free. We give a lower bound on the
number of del-robust primitive partial words with one hole for a given length in
Sect. 5. Finally, the conclusions and some open problems are discussed in Sect. 6.

2 Preliminaries

Let Σ be a finite set of symbols known as alphabet. We assume that Σ is a
nontrivial alphabet, which means that it has at least two distinct symbols. A
total word (referred to as simply a word) u = a0a1a2 · · · an−1 of length n can be
defined by a total function u : {0, . . . , n−1} �→ Σ where each ai ∈ Σ [2]. We use
string and word interchangeably. The set Σ∗ is the free monoid generated by Σ
which contains all the strings. The length of a string u is the number of symbols
contained in it and is denoted by |u|, and α(u) is the set of symbols appearing
in u from Σ. The empty word, λ, is a word that does not contain any letter
and therefore |λ| = 0. The notation |u|a denotes the number of times letter a
appears in the word u. The set of all words of length n over Σ is denoted by
Σn. We define Σ∗ =

⋃
n≥0 Σn where Σ0 = {λ}, and Σ+ = Σ∗ \ {λ} is the free

semigroup generated by Σ. A language L over Σ is a subset of Σ∗.
A partial word u of length n over alphabet Σ can be defined by a partial

function u : {0, . . . , n − 1} �→ Σ. The partial word u contains some do not know
symbols known as holes along with the usual symbols. For 0 ≤ i < n, if u(i)
is defined, then we say i ∈ D(u) (the domain of u), otherwise i ∈ H(u) (the
set of holes) [2]. A word is a partial word without any hole. If u and v are two
partial words of equal length, then u is said to be contained in v, if all elements
in D(u) are also in the set D(v) and u(i) = v(i) for all i ∈ D(u) and u is said to
be compatible to v if there exists a partial word w such that u ⊂ w and v ⊂ w.
The containment and compatibility are denoted as ⊂ and ↑ respectively. Two
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partial words x and y are conjugate if there exist partial words u and v such
that x ⊂ uv and y ⊂ vu [3].

A word is said to be primitive if it cannot be expressed as a nontrivial power
of another word. Formally, a word w is primitive if there does not exist any word
v such that w = vn with n ≥ 2. The language of primitive and nonprimitive
words over an alphabet Σ are denoted as Q and Z respectively. Similarly, a
partial word u is said to be primitive if there does not exist any word v such
that u ⊂ vn, n ≥ 2. Note that if u is primitive and u ⊂ v, then v is primitive as
well [2]. The language of primitive partial words and nonprimitive partial words
are denoted as Qp and Zp respectively. The language of primitive partial words
with i holes is represented as Qi

p.

Theorem 1 [20]. Every nonempty word w can be expressed uniquely in the
form w = xn, where n ≥ 1 and x is primitive.

Observe that the above result is not true for partial words, that is, the unique-
ness does not hold in case of partial word. For example, u = a♦, we have u ⊂ a2

and u ⊂ ab for Σ = {a, b}.

Definition 2 (Reflective Language [18]). A language L is called reflective
if uv ∈ L implies vu ∈ L, for all u, v ∈ Σ∗.

It is easy to observe that a language L is reflective if it is closed under
conjugacy relation. Several facts are known about the language of primitive
words Q and the language of primitive partial words Qp. Let us recall some of
them which will be useful later in the paper.

Lemma 3 [20]. The languages Q and Z are reflective.

Theorem 4 [2]. Let u and v be partial words. If there exists a primitive word
x such that uv ⊂ xn for some positive integer n, then there exists a primitive
word y such that vu ⊂ yn. Moreover, if uv is primitive then vu is primitive.

Corollary 5. The language Qp is reflective.

Proof. This follows from the Theorem 4. 
�
Corollary 6. The language Zp is reflective.

Proof. Let w = uv be a non-primitive partial word. Let w = uv ⊂ xn for n ≥ 2
but vu /∈ Zp. If vu is primitive then by Corollary 5 uv is also primitive which is
a contradiction. Hence, vu ∈ Zp. 
�

Let w = uv be a nonempty partial word. Then, the partial words u and v
are said to be prefix and suffix of w, respectively. A partial word y is said to be
a factor of a word w if w can be written as xyz, where x, z ∈ (Σ ∪ {♦})∗ and
y ∈ (Σ∪{♦})+. The partial word y is said to be proper factor if x �= λ or z �= λ. A
prefix (suffix) of length k of a partial word w is denoted as pref(w, k) (suff(w, k)),
respectively, where k ∈ {0, 1, . . . , |w|} and pref(w, 0) = suff(w, 0) = λ.
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The robustness of primitive words has been defined in [18]. Given a primitive
word, w, the robustness of w is considered with respect to insertion of a symbol
from Σ, deletion of a symbol from w, substitution of a symbol in w by another
symbol from Σ. We state some of the properties about robustness of primitive
words and primitive partial words that will be useful later.

The next result shows the possibility of obtaining primitive partial words by
appending a symbol or removing the last symbol in any nonempty partial word.
Specifically, if u is nonempty partial word with one hole, then at least one of the
u or ua is primitive for a ∈ Σ.

Lemma 7 [2].

(i) Let u be a partial word with one hole such that |α(u)| ≥ 2. If a is any letter
then u or ua is primitive.

(ii) Let u1, u2 be nonempty partial words such that u1u2 has one hole such that
|α(u1u2)| ≥ 2. Then for any letter a, u1u2 or u1au2 is primitive.

The next result is an extension of Lemma 7 in total words.

Lemma 8 [18]. For every word u ∈ Σ+ and all symbols a, b ∈ Σ, where a �= b,
at least one of the words ua, ub is primitive.

The next proposition holds for partial words with exactly one hole.

Proposition 9 [2]. Let u be a partial word with one hole which is not of the form
x♦x for any word x. If a and b are distinct letters, then ua or ub is primitive.

The following proposition shows the possibility of obtaining primitive word by
deletion of a symbol in a primitive word.

Proposition 10 [18]. Every word w ∈ Q,|w| ≥ 2, can be written in the form
w = u1au2, for some u1, u2 ∈ Σ∗, a ∈ Σ, such that u1u2 ∈ Q.

We have the following result for partial primitive word with one hole that gives
an alternative to obtain new primitive partial words by deleting a symbol a ∈
Σ ∪ {♦}.

Lemma 11. Every primitive partial word w ∈ Q1
p, |w| ≥ 3 can be written as

w = u1au2 for some a ∈ Σ ∪ {♦} such that u1u2 ∈ Qp.

Proof. Take w ∈ Q1
p such that |w| ≥ 3. Since w ∈ Q1

p, the word w can be written
as either w = v1a♦v2 or w = v1♦av2 for some v1, v2 ∈ Σ∗, a ∈ Σ. From Lemma
7, one of the words u1u2 or u1au2 is primitive. The partial word u1u2 is obtained
by deleting the symbol a from w = v1a♦v2. Hence, u1 = v1 and u2 = ♦v2. The
partial word u1au2 is obtained from w = v1a♦v2 by erasing ♦ and therefore
u1 = v1a and u2 = v2. The argument is similar for w = v1♦av2. 
�
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3 Del-Robust Primitive Partial Words with One Hole

In this section, we study a special class of primitive partial words having one
hole which remain primitive after deletion of any one symbol. We refer to this
special class as del-robust primitive partial words with one hole that are formally
defined as follows.

Definition 12 (Del-Robust Primitive Partial Words). A primitive partial
word w of length n with one hole is said to be del-robust if and only if the partial
word

pref(w, i) . suff(w, n − i − 1)

is a primitive partial word for all i ∈ {0, 1, . . . , n − 1}.
Note that a del-robust primitive partial word must remain primitive on deletion
of any symbol or the hole. The number of such words is infinite. For example,
a♦bba and am♦bn for m, n ≥ 2 are del-robust primitive partial words with one
hole.

We denote the set of all del-robust primitive partial words with one hole by
Q1D

p over an alphabet Σ ∪ {♦}. It is obvious that the language of del-robust
primitive partial words with one hole is a subset of Q1

p and hence w ∈ Q1
p for all

w ∈ Q1D
p where Q1

p be the set of all primitive partial words with one hole. Let
Q1

p(1) = Q1
p ∪ {λ}, and for all n ≥ 2 let Q1

p(n) = {un | u ∈ Q1
p}.

Proposition 13. Let m and n be two distinct positive integers. Then Q1
p(m) ∩

Q1
p(n) = φ (φ is the usual set symbol denote an empty set).

Next we give complete structural characterization of those primitive partial
words with one hole which are in the set Q1

p but not in Q1D
p , that is, deletion of

a symbol or hole from such words will result in non-primitive partial words.

Theorem 14. A primitive partial word w with one hole is not del-robust if and
only if w is contained in any word which is of the form uk1u1au2u

k2 where
u = u1u2, a ∈ Σ, k1, k2 ≥ 0 and k1 + k2 ≥ 1.

Proof. The necessary and sufficient parts are proved as follows.

(⇐) The sufficient part is easy. Let us consider a primitive partial word with
one hole w ⊂ uk1u1au2u

k2 where u1u2 = u and a ∈ Σ. If the symbol
in w for which a is replaced in the word uk1u1au2u

k2 is deleted then the
obtained partial word will be contained in exact integer power of u which
is non-primitive. Hence, w is not a del-robust primitive partial word.

(⇒) Let w be a primitive partial word with one hole which is not del-robust.
Therefore w can be written as w = w1cw2 for some c ∈ Σ ∪ {♦} such that
w1w2 is not a primitive partial word. Thus w1w2 ⊂ un for u ∈ Q and n ≥ 2.
Hence, w1 ⊂ uru1 and w2 ⊂ u2u

s for r, s ≥ 0 and r + s ≥ 1 such that
u1u2 = u. Therefore, w ⊂ uk1u1au2u

k2 where c ⊂ a. 
�
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It is easy to observe that the language of primitive partial words with one
hole Q1

p is closed under cyclic permutation. Next we prove that similar result
also holds for del-robust primitive partial words with one hole Q1D

p .

Lemma 15. Q1D
p is reflective.

Proof. We prove it by contradiction. Let a partial word w = xy ∈ Q1D
p such

that yx /∈ Q1D
p . Since w ∈ Q1D

p , hence w ∈ Q1
p. So yx ⊂ uk1u1au2u

k2 where
u = u1u2, a ∈ Σ and k1 + k2 ≥ 1. We consider two cases depending upon the
inclusion of a either in y or in x.

Case 1. If a is included in y, we consider two cases.
Case 1.1. If u1au2 is completely in y, then y ⊂ uk1u1au2u

ru′
1 and x ⊂ u′

2u
s

where u′
1u

′
2 = u, r + s + 1 = k2. Now xy ⊂ u′

2u
suk1u1au2u

ru′
1 which

will not be del-robust after deletion of the symbol for which a is replaced
and the obtained partial word will be non-primitive. Hence, this is a
contradiction to the assumption that xy ∈ Q1D

p .
Case 1.2. If u1au2 is not completely in y, that is, some portion of u2 is in

y, then y ⊂ uk1u1au′
2 and x ⊂ u′′

2uk2 where u = u1u2 and u2 = u′
2u

′′
2 .

Now xy ⊂ u′′
2uk2uk1u1au′

2 which will not result in a del-robust primitive
partial word after deletion of the symbol for which a is replaced. Moreover,
the partial word will be contained in (u′′

2u1u
′
2)

k1+k2+1 and xy is a non-
primitive partial word. Hence it is a contradiction.

Case 2. If a is included in x, we need to consider two cases with similar proofs
as in the previous case.

Hence the language of del-robust primitive partial words with one hole Q1D
p is

reflective. 
�
Next we study the subset of primitive partial words with one hole in which

deletion of a symbol results in a non-primitive partial word. We call such partial
words as non-del-robust primitive partial words with one hole and the set is
denoted by Q1D

p .

Definition 16 (Non-Del-Robust Primitive Partial Words). A primitive
partial word w with one hole is said to be non-del-robust if and only if deletion
of a symbol a ∈ Σ ∪ {♦} from w makes it non-primitive.

Thus Q1D
p = Q1

p \ Q1D
p where ‘\’ is the set difference operator. The number

of such non-del-robust words is infinite. For example, a♦b, ban♦ for n ≥ 1 are
non-del-robust words.

Corollary 17. Q1D
p is reflective.

Theorem 18. A primitive partial word w with one hole is non-del-robust if and
only if w is contained in una or is contained in its cyclic permutation for some
for some u ∈ Qp where a ∈ Σ, n ≥ 2, and |α(u)| ≥ 2.
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Proof. We prove the necessary and sufficient conditions as follows:

(⇒) Let w ∈ Q1
p be non-del-robust, that is, w ∈ Q1D

p . So w is contained in the
word which of the form upu1cu2u

q for some u = u1u2 ∈ Q and c ∈ Σ.
Since Q1D

p is reflective, so u2u
qupu1c = (u2u1)p+q+1c is also in Q1D

p . Hence
w ⊂ (u2u1)p+q+1c.

(⇐) Let w be either contained in the word una or its cyclic permutation. Deletion
of that symbol in w for which a is replaced from una gives a non-primitive
partial word w′ ⊂ un which is non-primitive (Zp is reflective). Hence, w ∈
Q1D

p . 
�
Let us prove a simple observation which shows that if a primitive partial

word w with one hole is del-robust then the reverse of w denoted by rev(w) is
also del-robust.

Lemma 19. If w ∈ Q1D
p then rev(w) ∈ Q1D

p .

Proof. We prove this by contradiction. Let w be a primitive partial word with one
hole which is del-robust, that is, w ∈ Q1D

p but rev(w) /∈ Q1D
p . Using the struc-

tural characterization of non-del-robust words, we have rev(w) ⊂ umu1au2u
n

where u = u1u2, m + n ≥ 1. Now,

rev(rev(w)) = w ⊂ rev(umu1au2u
n)

rev(umu1au2u
n) = (rev(u))nrev(u2)rev(a)rev(u1)(rev(u))m

Since u = u1u2, we have rev(u) = rev(u2)rev(u1). Thus,

w ⊂ (rev(u2)rev(u1))nrev(u2)arev(u1)(rev(u2)rev(u1))m.

It is clear that w is non-del-robust which is a contradiction to the assumption. 
�
An existing algorithm [4] that recognizes if a given partial word, w, with at

most one hole is primitive uses the fact that if w is primitive and ww ↑ xwy then
it implies that either x = λ or y = λ. Observe that if a partial word with one
hole w is in set Q1D

p then there exists a cyclic permutation of w that contains a
non-primitive partial word factor of length |w| − 1. Also note that ww contains
all the cyclic permutations of w.

Theorem 20. Let w be a primitive partial word with one hole. Then w is non-
del-robust if and only if ww contains at least one non-primitive partial word
factor of length |w| − 1.

Proof. The necessary and sufficient conditions are proved below.

(⇒) Let w be a primitive partial word with one hole. Let w ∈ Q1D
p . Since

w is non-del-robust then w ⊂ upu1au2u
q for some u ∈ Q, u1u2 = u,

a ∈ Σ and p + q ≥ 1. So, ww ⊂ upu1au2u
qupu1au2u

q which has a factor
u2u

qupu1 = (u2u1)p+q+1 of length |w|−1. Since p+q+1 ≥ 2, so (u2u1)p+q+1

is a non-primitive word. Hence a factor of ww contains one non-primitive
partial word of length |w| − 1.
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(⇐) Let the partial word ww has a non-primitive factor of length |w| − 1 where
w ∈ Q1

p. So, ww ⊂ u1v
nu2, where u1, u2 ∈ Σ∗, |vn| = |w| − 1, v ∈ Q and

n ≥ 2. There are two cases depending upon whether vn entirely lies in w
or partly in w.

Case 1. Let vn, n ≥ 2 is entirely lies in w. Since |vn| = |w| − 1, so w ⊂ vna.
The deletion of that particular symbol c ∈ Σ∪{♦} for which a is replaced
will gives a non-primitive partial word. Hence, w is non-del-robust.

Case 2. Let vn be partially in w and ww ⊂ u1v
nu2. Since Z is reflective, so

u2u1v
n ∈ Z. So there must exists a partial word x such that xx ⊂ u2u1v

n

where x is a cyclic permutation of w. If vn is entirely in x, then either
x ⊂ avn or x ⊂ vna. In both cases the word x is a non-del-robust primitive
partial word. As w is a cyclic permutation of x and Qp is reflective, we
conclude that w is a non-del-robust partial word. 
�

4 Context-Freeness of Q1D
p

In this section we investigate the relation between the language of non-del-robust
primitive partial words with one hole Q1D

p and the conventional language classes
in Chomsky hierarchy. In particular, we show that Q1D

p is not a Context-Free
Language (CFL) over a nontrivial alphabet Σ ∪ {♦}. Let us recall the pumping
lemma for context-free language which is required to prove this result.

Lemma 21 (Pumping Lemma for Context-Free Languages [11]). Let
L be a CFL. Then there exists an integer n > 0 such that for every u ∈ L with
|u| ≥ n, u can be decomposed into vwxyz such that the following conditions hold:

(a) |wxy| ≤ n.
(b) |wy| > 0.
(c) vwixyiz ∈ L for all i ≥ 0.

Theorem 22. Q1D
p is not a context-free language.

Proof. We prove it by contradiction. Let us assume that Q1D
p is a CFL. Let

n > 0 be an integer which is the pumping length that is guaranteed to exist by
pumping lemma. Since Q1D

p is context-free, then it satisfies all the conditions
of Lemma 21. Consider a string w = anbnanbnanbn♦ where a, b ∈ Σ and are
distinct. It is clear that w ∈ Q1D

p and of length at least n.
Hence, by the pumping lemma for CFL, w can be factorized into uvxyz such

that |vy| ≥ 1, |vxy| ≤ n and for all i ≥ 0, uvixyiz ∈ Q1D
p . There are several

possibilities, that we consider below, depending on whether the substrings v and
y contain more than one alphabet symbol or hole.

Case 1. When both v and y contain one type of symbol, that is v does not
contain both a’s and b’s, and same holds for y. Consider one such case. Let
v and y contain only a’s from the first set of a’s. Let vy = ak for some
k > 0. Let u = aj , vxy = ap and z = aqbnanbnanbn♦ such that j ≥ 0 and
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j + p + q = n. Now for i = 0, we have uvixyiz = ajap−kaqbnanbnanbn♦ =
aj+p+q−kbnanbnanbn♦ = an−kbnanbnanbn♦ /∈ Q1D

p for k > 1 and for k = 1,
we have an−1bnanbnanbn♦ ⊂ (an−1bna)3 /∈ Q1D

p .
Similar cases can be handled if both v and y contain only symbol b.

Case 2. If v and y contain more than one type of symbol. There will be several
cases depending upon whether v contains combinations of a’s and b’s and
y contains only one type of symbol or v contains one type of symbol and y
contains the combination of symbols or x contains combinations of a’s and
b’s. Let us consider one such case.
Let vxy = ajbk for some j and k such that 0 < j + k ≤ n. Observe that
j, k > 0 otherwise it will fall into Case 1. Suppose u = al, v = aj1 , x =
aj2 , y = aj3bk and z = bpanbnanbn♦ such that j1 + j2 + j3 = j, l + j = n,

and k + p = n. For i = 0, the string uvixyiz = al+j2bpanbnanbn♦ /∈ Q1D
p as

l + j2 < n and p < n.
Similarly other cases in which v and y contain more than one symbol can
be handled.

Case 3. Let us consider the last case. If vxy = bp♦ then there are following
possibilities:
(a) If the symbol ♦ is in vy then vy = bl♦ and x = bp−l. For i = 0,

uvixyiz = anbnanbnanbn−p /∈ Q1D
p .

(b) If the symbol ♦ is in x then v = bl, y = λ and x = bp−l♦ and l ≥ 1.
Now, uvixyiz = anbnanbnanbn−l♦ /∈ Q1D

p for i = 0.

Observe that one of the above cases will occur. Since all the above cases result
in a contradiction, the assumption that the language of non-del-robust primitive
partial words with one hole Q1D

p is context-free is not true. 
�
Next we prove that the language of non-del-robust primitive partial words is

not context-free in general.

Corollary 23. The language Q1D
p is not context-free over the alphabet Σ ∪ {♦}

where Σ has at least two distinct letters.

Proof. This is a direct consequence of Theorem 22. 
�

5 Counting n-Length Words in Q1D
p

In this section we give a lower bound on the number of del-robust primitive par-
tial words with one hole of length n. We begin the counting with some notation.
Denote by Q1D

p (n) (respectively, Q1D
p (n)) the set of del-robust (respectively, non-

del-robust) primitive partial words with one hole of length n over an alphabet Σ.
We use earlier results [4] on counting of primitive words as well as primi-

tive partial words. Let Ph,k(n) (respectively, Nh,k(n)) denote the set of primi-
tive (respectively, non-primitive) partial words with h holes of length n over an
alphabet of size k. Also, denote by Ph,k(n) (respectively, Nh,k(n)) the number
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of primitive (respectively, non-primitive) partial words with h holes of length n
over an alphabet of size k. Let Th,k(n) denote the total number of partial words
of length n with h holes over Σ. We have, from [5],

Th,k(n) = Ph,k(n) + Nh,k(n), and

Th,k(n) =
(

n

h

)
kn−h =

n!
h!(n − h)!

kn−h

Theorem 24 [3]. N1,k(n) = nN0,k(n).

A consequence of Theorem 24 can be observed as follows.

Corollary 25 [3]. The equality P1,k(n) = n(P0,k(n) + kn−1 − kn) holds.

Next we give an upper bound on the number of non-del-robust primitive
partial words of length n over an alphabet of size k.

Theorem 26. The following inequality holds:

|Q1D
p (n)| ≤

{
[nk − (n − 2)] N1,k(n − 1) − 2k(n − 1) if 2 � (n − 2),
[nk − (n − 2)] N1,k(n − 1) − 2k(n − 1) − 2k2 otherwise.

Proof. We give a constructive proof of the theorem. A non-del-robust primitive
partial word with one hole of length n can be obtained in two ways either by
inserting a hole ♦ in a non-primitive word of length (n−1) or inserting a symbol
a ∈ Σ in a non-primitive partial word with one hole of length (n − 1). But
the first case results in repetition because all those partial words that will be
generated by inserting ♦ in a word w ∈ Zn−1 are already in the second case
because the partial words are obtained from words by replacing holes. Thus we
will consider only the second case, that is, inserting a symbol a ∈ Σ in a partial
word w ∈ N1,k(n − 1) to obtain non-del-robust primitive partial words with one
hole of length n.

Take a partial word w ∈ N1,k(n − 1). The number of new partial words that
will be generated by inserting a symbol a ∈ Σ in w is

|{w1aw2 | w = w1w2, w1, w2 ∈ (Σ ∪ {♦})∗}| = n − |w|a
Now for a partial word w ∈ N1,k(n − 1), the total number of partial words
generated by inserting any symbol a ∈ Σ is

∑

a∈Σ

|{w1aw2 | w = w1w2, w1, w2 ∈ (Σ ∪ {♦})∗}| = nk − (n − 2)

where k is the size of the alphabet.
As we can observe there are non-primitive partial words with one hole which

remains non-primitive by inserting a symbol a ∈ Σ and such partial words are
of the form {w | w ⊂ an} or {x♦x | x ∈ Σ+}. Since, in case of partial words,
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position of a hole gives different partial words, so there are total k(n − 1) non-
primitive partial words. Inserting a symbol a ∈ Σ before or after ♦ gives two
different partial words. Hence, the total number of partial words is 2k(n − 1).

Also, there are some non-primitive partial words which are contained in an−1

but inserting a symbol b where b �= a gives a non-primitive partial word. For
example, aa♦aa. Inserting b �= a either in suffix (respectively, prefix) gives us
aa♦aab (respectively, baa♦aa) which are non-primitive. Those case in which
(n − 2) is divisible by 2, we have to extract some extra partial words. Hence,

|Q1D
p (n)| ≤

{
[nk − (n − 2)] N1,k(n − 1) − 2k(n − 1) if 2 � (n-2),
[nk − (n − 2)] N1,k(n − 1) − 2k(n − 1) − 2k2 otherwise.


�
Now the lower bound on the count of number of del-robust primitive partial

words with one hole of length n can be obtained by subtracting the number of
non-del-robust primitive words with one hole of length n from the total number
of primitive partial words of length n with one hole. This gives us

|Q1D
p (n)| ≥

{
[nk − (n − 2)] N1,k(n − 1) − 2k(n − 1) if 2 � (n-2),
[nk − (n − 2)] N1,k(n − 1) − 2k(n − 1) − 2k2 otherwise.

6 Conclusions

In this paper, we have discussed a special subclass of primitive partial words
with one hole referred to as del-robust primitive partial words. We have charac-
terized such words and identified several properties. We have also proved that
the language of non-del-robust primitive partial words with one hole Q1D

p over a
nontrivial alphabet is not context-free. We have provided a lower bound on the
number of such partial words of a given length.

Several interesting questions for the language of del-robust primitive partial
words need further exploration. We mentioned a few of them: (1) Generalizing
the del-robustness properties for primitive partial words with at least two holes.
(2) Is the language of del-robust primitive partial words with one hole Q1D

p

context-free? We believe that proving Q1D
p is not context-free will help to solve

the long standing conjecture that the language of primitive words, Q, is not
context-free.
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Abstract. Following (Kolpakov et al., 2013; Gawrychowski and Manea,
2015), we continue the study of α-gapped repeats in strings, defined as
factors uvu with |uv| ≤ α|u|. Our main result is the O(αn) bound on
the number of maximal α-gapped repeats in a string of length n, pre-
viously proved to be O(α2n) in (Kolpakov et al., 2013). For a closely
related notion of maximal δ-subrepetition (maximal factors of exponent
between 1 + δ and 2), our result implies the O(n/δ) bound on their
number, which improves the bound of (Kolpakov et al., 2010) by a log n
factor.

We also prove an algorithmic time bound O(αn+S) (S size of the out-
put) for computing all maximal α-gapped repeats. Our solution, inspired
by (Gawrychowski and Manea, 2015), is different from the recently pub-
lished proof by (Tanimura et al., 2015) of the same bound. Together with
our bound on S, this implies an O(αn)-time algorithm for computing all
maximal α-gapped repeats.

1 Introduction

Notation and basic definitions. Let w = w[1]w[2] . . . w[n] = w[1 . . n] be an arbi-
trary word. The length n of w is denoted by |w|. For any 1 ≤ i ≤ j ≤ n, word
w[i] . . . w[j] is called a factor of w and is denoted by w[i . . j]. Note that notation
w[i . . j] denotes two entities: a word and its occurrence starting at position i in
w. To underline the second meaning, we will sometimes use the term segment.
Speaking about the equality between factors can also be ambiguous, as it may
mean that the factors are identical words or identical segments. If two factors u, v
are identical words, we call them equal and denote this by u = v. To express that
u and v are the same segment, we use the notation u ≡ v. For any i = 1 . . . n,
factor w[1 . . i] (resp. w[i . . n]) is a prefix (resp. suffix) of w. By positions on w we
mean indices 1, 2, . . . , n of letters in w. For any factor v ≡ w[i . . j] of w, positions
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i and j are called respectively start position and end position of v and denoted
by beg(v) and end(v) respectively. Let u, v be two factors of w. Factor u is con-
tained in v iff beg(v) ≤ beg(u) and end(u) ≤ end(v). Letter w[i] is contained in v
iff beg(v) ≤ i ≤ end(v).

A positive integer p is called a period of w if w[i] = w[i + p] for each i =
1, . . . , n−p. We denote by per(w) the smallest period of w and define the exponent
of w as exp(w) = |w|/per(w). A word is called periodic if its exponent is at least 2.
Occurrences of periodic words are called repetitions.

Repetitions, squares, runs. Patterns in strings formed by repeated factors are
of primary importance in word combinatorics [24] as well as in various appli-
cations such as string matching algorithms [10,13], molecular biology [16], or
text compression [26]. The simplest and best known example of such patterns
is a factor of the form uu, where u is a nonempty word. Such repetitions are
called squares. Squares have been extensively studied. While the number of all
square occurrences can be quadratic (consider word an), it is known that the
number of primitively-rooted squares is O(n log n) [10], where a square uu is
primitively-rooted if the exponent of u is not an integer greater than 1. An
optimal O(n log n)-time algorithm for finding all primitively-rooted squares was
proposed in [5].

Repetitions can be seen as a natural generalization of squares. A repetition
in a given word is called maximal if it cannot be extended by at least one letter
to the left nor to the right without changing (increasing) its minimal period.
More precisely, a repetition r ≡ w[i . . j] in w is called maximal if it satisfies the
following conditions:

1. w[i − 1] �= w[i − 1 + per(r)] if i > 1,
2. w[j + 1 − per(r)] �= w[j + 1] if j < n.

For example, word cababaaa has two maximal repetitions: ababa and aaa. Max-
imal repetitions are usually called runs in the literature. Since any repetition is
contained in some run, the set of all runs can be considered as a compact encoding
of all repetitions in the word, and can then be used to efficiently infer various use-
ful properties related to repetitions [7]. For any word w, we denote by R(w) the
number of maximal repetitions in w and by E(w) the sum of exponents of all max-
imal repetitions in w. Let R(n) = max|w|=n R(w) and E(n) = max|w|=n E(w).
The following statements are proved in [18].

Theorem 1. E(n) = O(n).

Corollary 1. R(n) = O(n).

A series of papers (e.g., [6,9]) focused on more precise upper bounds on E(n) and
R(n) trying to obtain the best possible constant factor behind the O-notation.
A breakthrough in this direction was recently made in [2] where the so-called
“runs conjecture” R(n) < n was proved. To the best of our knowledge, the
currently best upper bound R(n) ≤ 22

23n on R(n) is shown in [12].
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On the algorithmic side, an O(n)-time algorithm for finding all runs in a word
of length n was proposed in [18] for the case of constant-size alphabet. Another
O(n)-time algorithm, based on a different approach, has been proposed in [2].
The O(n) time bound holds for the (polynomially-bounded) integer alphabet
as well, see, e.g., [2]. However, for the case of unbounded-size alphabet where
characters can only be tested for equality, the lower bound Ω(n log n) on com-
puting all runs has been known for a long time [25]. It is an interesting open
question (raised over 20 years ago in [3]) whether the O(n) bound holds for an
unbounded linearly-ordered alphabet. Some results related to this question have
recently been obtained in [23].

Gapped repeats and subrepetitions. Another natural generalization of squares are
factors of the form uvu where u and v are nonempty words. We call such factors
gapped repeats. For a gapped repeat uvu, the left (resp. right) occurrence of u is
called the left (resp. right) copy, and v is called the gap. The period of this gapped
repeat is |u| + |v|. For a gapped repeat π, we denote the length of copies of π
by c(π) and the period of π by p(π). Note that a gapped repeat π = uvu may
have different periods, and per(π) ≤ p(π). For example, in string cabacaabaa,
segment abacaaba corresponds to two gapped repeats having copies a and aba
and periods 7 and 5 respectively. Gapped repeats forming the same segment but
having different periods are considered distinct. This means that to specify a
gapped repeat it is generally not sufficient to specify its segment. If u′, u′′ are
equal non-overlapping factors and u′ occurs to the left of u′′, then by (u′, u′′)
we denote the gapped repeat with left copy u′ and right copy u′′. For a given
gapped repeat (u′, u′′), equal factors u′[i . . j] and u′′[i . . j], for 1 ≤ i ≤ j ≤ |u′|,
of the copies u′, u′′ are called corresponding factors of repeat (u′, u′′).

For any real α > 1, a gapped repeat π is called α-gapped if p(π) ≤ αc(π).
Maximality of gapped repeats is defined similarly to repetitions. A gapped repeat
(w[i′ . . j′], w[i′′ . . j′′]) in w is called maximal if it satisfies the following conditions:

1. w[i′ − 1] �= w[i′′ − 1] if i′ > 1,
2. w[j′ + 1] �= w[j′′ + 1] if j′′ < n.

In other words, a gapped repeat π is maximal if its copies cannot be extended
to the left nor to the right by at least one letter without breaking its period
p(π). As observed in [21], any α-gapped repeat is contained either in a (unique)
maximal α-gapped repeat with the same period, or in a (unique) maximal rep-
etition with a period which is a divisor of the repeat’s period. For example, in
the above string cabacaabaa, gapped repeat (ab)aca(ab) is contained in maxi-
mal repeat (aba)ca(aba) with the same period 5. In string cabaaabaaa, gapped
repeat (ab)aa(ab) with period 4 is contained in maximal repetition abaaabaaa
with period 4. Since all maximal repetitions can be computed efficiently in O(n)
time (see above), the problem of computing all α-gapped repeats in a word can
be reduced to the problem of finding all maximal α-gapped repeats.

Several variants of the problem of computing gapped repeats have been stud-
ied earlier. In [4], it was shown that all maximal gapped repeats with a gap length
belonging to a specified interval can be found in time O(n log n + S), where n is
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the word length and S is output size. In [22], an algorithm was proposed for find-
ing all gapped repeats with a fixed gap length d running in time O(n log d + S).
In [21], it was proved that the number of maximal α-gapped repeats in a word of
length n is bounded by O(α2n) and all maximal α-gapped repeats can be found
in O(α2n) time for the case of integer alphabet. A new approach to computing
gapped repeats was recently proposed in [11,15]. In particular, in [15] it is shown
that the longest α-gapped repeat in a word of length n over an integer alphabet
can be found in O(αn) time. Finally, in a recent paper [27], an algorithm is
proposed for finding all maximal α-gapped repeats in O(αn + S) time where S
is the output size, for a constant-size alphabet. The algorithm uses an approach
previously introduced in [1].

Recall that repetitions are segments with exponent at least 2. Another way
to approach gapped repeats is to consider segments with exponent smaller than
2, but strictly greater than 1. Clearly, such a segment corresponds to a gapped
repeat π = uvu with per(π) = p(π) = |u| + |v|. We will call such factors (seg-
ments) subrepetitions. More precisely, for any δ, 0 < δ < 1, by a δ-subrepetition
we mean a factor v that satisfies 1 + δ ≤ exp(v) < 2. Again, the notion of
maximality straightforwardly applies to subrepetitions as well: maximal subrep-
etitions are defined exactly in the same way as maximal repetitions. The relation-
ship between maximal subrepetitions and maximal gapped repeats was clarified
in [21]. Directly from the definitions, a maximal subrepetition π in a string w
corresponds to a maximal gapped repeat with p(π) = per(π). Futhermore, a
maximal δ-subrepetition corresponds to a maximal 1

δ -gapped repeat. However,
there may be more maximal 1

δ -gapped repeats than maximal δ-subrepetitions, as
not every maximal 1

δ -gapped repeat corresponds to a maximal δ-subrepetition.
Some combinatorial results on the number of maximal subrepetitions in a

string were obtained in [20]. In particular, it was proved that the number of max-
imal δ-subrepetitions in a word of length n is bounded by O(n

δ log n). In [21], an
O(n/δ2) bound on the number of maximal δ-subrepetitions in a word of length n
was obtained. Moreover, in [21], two algorithms were proposed for finding all
maximal δ-subrepetitions in the word running respectively in O(n log log n

δ2 ) time
and in O(n log n+ n

δ2 log 1
δ ) expected time, over the integer alphabet. In [1], it is

shown that all subrepetitions with the largest exponent (over all subrepetitions)
can be found in an overlap-free string in time O(n), for a constant-size alphabet.

Our results. In the present work we improve the results of [21] on maximal
gapped repeats: we prove an asymptotically tight bound of O(αn) on the number
of maximal α-gapped repeats in a word of length n (Sect. 2). From our bound,
we also derive an O(n/δ) bound on the number of maximal δ-subrepetitions
occurring in a word, which improves the bound of [20] by a log n factor. Then,
based on the algorithm of [15], we obtain an asymptotically optimal O(αn) time
bound for computing all maximal α-gapped repeats in a word (Sect. 3). Note
that this bound follows from the recently published paper [27] that presents
an O(αn + S) algorithm for computing all maximal α-gapped repeats. In this
work, we present an alternative algorithm with the same bound that we obtained
independently.
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2 Number of Maximal Repeats and Subrepetitions

In this section, we obtain an improved upper bound on the number of maxi-
mal gapped repeats and subrepetitions in a string w. Following the general app-
roach of [21], we split all maximal gapped repeats into three categories according
to periodicity properties of repeat’s copy: periodic, semiperiodic and ordinary
repeats. Bounds for periodic and semiperiodic repeats are directly borrowed from
[21], while for ordinary repeats, we obtain a better bound.

Periodic repeats. We say that a maximal gapped repeat is periodic if its copies
are periodic strings (i.e. of exponent at least 2). The set of all periodic maximal
α-gapped repeats in w is denoted by PPα. The following bound on the size of
PPα was been obtained in [21, Corollary 6].

Lemma 1. |PPk| = O(kn) for any natural k > 1.

Semiperiodic repeats. A maximal gapped repeat is called prefix (suffix) semi-
periodic if the copies of this repeat are not periodic, but have a prefix (suffix)
which is periodic and its length is at least half of the copy length. A maxi-
mal gapped repeat is semiperiodic if it is either prefix or suffix semiperiodic.
The set of all semiperiodic α-gapped maximal repeats is denoted by SPα. In
[21, Corollary 8], the following bound was obtained on the number of semiperi-
odic maximal α-gapped repeats.

Lemma 2 ([21]). |SPk| = O(kn) for any natural k > 1.

Ordinary repeats. Maximal gapped repeats which are neither periodic nor semi-
periodic are called ordinary. The set of all ordinary maximal α-gapped repeats
in the word w is denoted by OPα. In the rest of this section, we prove that
the cardinality of OPα is O(αn). For simplicity, assume that α is an integer
number k.

To estimate the number of ordinary maximal k-gapped repeats, we use the
following idea from [17]. We represent a maximal repeat π ≡ (u′, u′′) from OPk

by a triple (i, j, c) where i = beg(u′), j = beg(u′′) and c = c(π) = |u′| = |u′′|.
Such triples will be called points. Obviously, π is uniquely defined by values i, j
and c, therefore two different repeats from OPk can not be represented by the
same point.

For any two points (i′, j′, c′), (i′′, j′′, c′′) we say that point (i′, j′, c′) covers
point (i′′, j′′, c′′) if i′ ≤ i′′ ≤ i′ + c′/6, j′ ≤ j′′ ≤ j′ + c′/6, c′ ≥ c′′ ≥ 2c′

3 . A point
is covered by a repeat π if it is covered by the point representing π. By V [π] we
denote the set of all points covered by a repeat π. We show that any point can
not be covered by two different repeats from OPk.

Lemma 3. Two different repeats from OPk cannot cover the same point.

Proof. Let π1 ≡ (u′
1, u

′′
1), π2 ≡ (u′

2, u
′′
2) be two different repeats from OPk

covering the same point (i, j, c). Denote c1 = c(π1), c2 = c(π2), p1 = per(π1),
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p2 = per(π2). Note that beg(u′′
1) − beg(u′

1) = p1 and beg(u′′
2) − beg(u′

2) = p2.
Without loss of generality we assume c1 ≥ c2. From c1 ≥ c ≥ 2c1

3 , c2 ≥ c ≥ 2c2
3

we have c1 ≥ c2 ≥ 2c1
3 , i.e. c2 ≤ c1 ≤ 3c2

2 . Note that w[i] is contained in both
left copies u′

1, u
′
2, i.e. these copies overlap. If p1 = p2, then repeats π1 and π2

must coincide due to the maximality of these repeats. Thus, p1 �= p2. Denote
Δ = |p1 − p2| > 0. From beg(u′

1) ≤ i ≤ beg(u′
1) + c1/6 and beg(u′′

1) ≤ j ≤
beg(u′′

1) + c1/6 we have

(j − i) − c1/6 ≤ p1 ≤ (j − i) + c1/6.

Analogously, we have

(j − i) − c2/6 ≤ p2 ≤ (j − i) + c2/6.

Thus Δ ≤ (c1 + c2)/6 which, together with inequality c1 ≤ 3c2
2 , implies Δ ≤ 5c2

12 .
First consider the case when one of the copies u′

1, u
′
2 is contained in the other,

i.e. u′
2 is contained in u′

1. In this case, u′′
1 contains some factor û′′

2 corresponding
to the factor u′

2 in u′
1. Since beg(u′′

2) − beg(u′
2) = p2, beg(û′′

2) − beg(u′
2) = p1 and

u′′
2 = û′′

2 = u′
2, we have

|beg(u′′
2) − beg(û′′

2)| = Δ,

so Δ is a period of u′′
2 such that Δ ≤ 5

12c2 = 5
12 |u′′

2 |. Thus, u′′
2 is periodic which

contradicts that π2 is not periodic.
Now consider the case when u′

1, u
′
2 are not contained in one another. Denote

by z′ the overlap of u′
1 and u′

2. Let z′ be a suffix of u′
l and a prefix of u′

r where
l, r = 1, 2, l �= r. Then u′′

l contains a suffix z′′ corresponding to the suffix z′

in u′
l, and u′′

r contains a prefix ẑ′′ corresponding to the prefix z′ in u′
r. Since

beg(z′′) − beg(z′) = pl and beg(ẑ′′) − beg(z′) = pr and z′′ = ẑ′′ = z′, we have

|beg(z′′) − beg(ẑ′′)| = |pl − pr| = Δ,

therefore Δ is a period of z′. Note that in this case

beg(u′
l) < beg(u′

r) ≤ i ≤ beg(u′
l) + cl/6,

therefore 0 < beg(u′
r) − beg(u′

l) ≤ cl/6. Thus

|z′| = cl − (beg(u′
r) − beg(u′

l)) ≥ 5
6
cl ≥ 5

6
c2.

From Δ ≤ 5
12c2 and c2 ≤ 6

5 |z′| we obtain Δ ≤ |z′|/2. Thus, z′ is a periodic suffix
of u′

l such that |z′| ≥ 5
6 |u′

l|, i.e. πl is either suffix semiperiodic or periodic which
contradicts πl ∈ OPk. ��

Denote by Qk the set of all points (i, j, c) such that 1 ≤ i, j, c ≤ n and
i < j ≤ i + (32k + 1

4 )c.

Lemma 4. Any point covered by a repeat from OPk belongs to Qk.
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Proof. Let a point (i, j, c) be covered by some repeat π ≡ (u′, u′′) from OPk.
Denote c′ = c(π). Note that w[i] and w[j] are contained respectively in u′ and
u′′ and n > c′ ≥ c ≥ 2c′

3 > 0, so inequalities 1 ≤ i, j, c ≤ n and i < j are obvious.
Note also that

j ≤ beg(u′′) + c′/6 = beg(u′) + per(π) + c′/6 ≤ i + kc′ + c′/6,

therefore, taking into account c′ ≤ 3c
2 , we have j ≤ i + (32k + 1

4 )c. ��
From Lemmas 3 and 4, we obtain

Lemma 5. |OPk| = O(nk).

Proof. Assign to each point (i, j, c) the weight ρ(i, j, c) = 1/c3. For any finite
set A of points, we define

ρ(A) =
∑

(i,j,c)∈A

ρ(i, j, c) =
∑

(i,j,c)∈A

1
c3

.

Let π be an arbitrary repeat from OPk represented by a point (i′, j′, c′). Then

ρ(V [π]) =
∑

i′≤i≤i′+c′/6

∑

j′≤j≤j′+c′/6

∑

2c′/3≤c≤c′

1
c3

>
c′2

36

∑

2c′/3≤c≤c′

1
c3

.

Using a standard estimation of sums by integrals, one can deduce that∑
2c′/3≤c≤c′

1
c3 ≥ 5

32
1

c′2 for any c′. Thus, for any π from OPk

ρ(V [π]) >
1
36

5
36

= Ω(1).

Therefore, ∑

π∈OPk

ρ(V [π]) = Ω(|OPk|). (1)

Note also that

ρ(Qk) ≤
n∑

i=1

∑

i<j≤i+( 3
2k+ 1

4 )c

n∑

c=1

1
c3

< n(
3
2
k +

1
4
)c

n∑

c=1

1
c3

< 2nk
n∑

c=1

1
c2

< 2nk
∞∑

c=1

1
c2

=
nkπ2

3
.

Thus,
ρ(Qk) = O(nk). (2)
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By Lemma 4, any point covered by repeats from OPk belongs to Qk. On the
other hand, by Lemma 3, each point of Qk can not be covered by two repeats
from OPk. Therefore, ∑

π∈OPk

ρ(V [π]) ≤ ρ(Qk).

Thus, using 1 and 2, we conclude that |OPk| = O(nk). ��
Putting together Lemmas 1, 2, and 5, we obtain that for any integer k ≥ 2,

the number of maximal k-gapped repeats in w is O(nk). The bound straightfor-
wardly generalizes to the case of real α > 1. Thus, we conclude with

Theorem 2. For any α > 1, the number of maximal α-gapped repeats in w is
O(αn).

Note that the bound of Theorem 2 is asymptotically tight. To see this, it is
enough to consider word wk = (0110)k. It is easy to check that for a big enough α
and k = Ω(α), wk contains Θ(α|wk|) maximal α-gapped repeats whose copies
are single-letter words.

We now use Theorem 2 to obtain an upper bound on the number of maximal
δ-subrepetitions. The following proposition, shown in [21, Proposition 3], follows
from the fact that each maximal δ-subrepetition defines at least one maximal
1/δ-gapped repeat (cf. Introduction).

Proposition 1 ([21]). For 0 < δ < 1, the number of maximal δ-subrepetitions
in a string is no more then the number of maximal 1/δ-gapped repeats.

Theorem 2 combined with Proposition 1 immediately imply the following
upper bound for maximal δ-subrepetitions that improves the bound of [20] by a
log n factor.

Theorem 3. For 0 < δ < 1, the number of maximal δ-subrepetitions in w is
O(n/δ).

The O(n/δ) bound on the number of maximal δ-subrepetitions is asymptot-
ically tight, at least on an unbounded alphabet : word ab1ab2 . . . abk contains
Ω(n/δ) maximal δ-subrepetitions for δ ≤ 1/2.

3 Computing All Maximal α-gapped Repeats

We now turn to the algorithmic question how to efficiently compute all maximal
α-gapped repeats in a given word. Recall (cf Introduction) that an algorithm
with running time O(α2n+S) has been proposed in [21] for this problem, which
becomes O(α2n)-time taken into account the bound on S. On the other hand,
it was shown in [15] that computing the longest α-gapped repeat can be done
in time O(αn). It is therefore a natural question whether all maximal α-gapped
repeats can be computed in time O(αn + S). Here we answer this question
positively. Together with the S = O(αn) bound of Theorem 2, this implies the
following result.
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Theorem 4. For a fixed α > 1, all maximal α-gapped repeats in a word of
length n over a constant alphabet can be computed in O(αn) time.

The proof of Theorem 4 can be found in the full version of this work [8]. It
is based on a case analysis and uses ideas of [15].

We note that independently of our work, another O(αn + S)-time algorithm
for computing all maximal α-gapped repeats has been recently announced in [27].

Note that, as mentioned earlier, a word can contain Θ(αn) maximal α-gapped
repeats, and therefore the O(αn) time bound stated in Theorem 4 is asymptot-
ically optimal.

4 Concluding Remarks

In this work, we proved the tight O(αn) bound on the number of maximal
α-gapped repeats in a word. We note that while submitting this paper, manu-
script [14] appeared that proves that the number of maximal α-gapped repeats
is bounded by 18αn. From our bound, we obtain an O(n/δ) bound on the num-
ber of maximal δ-subrepetitions in a word, which improves the bound of [20] by
a log n factor. We also presented an O(αn)-time algorithm (obtained indepen-
dently from [27]) for computing all maximal α-gapped repeat in a word.

Besides gapped repeats we can also consider gapped palindromes which are
factors of the form uvuR, where u and v are nonempty words and uR is the
reversal of u [19]. A gapped palindrome uvuR in a word w is called maximal
if w[end(u) + 1] �= w[beg(uR) − 1] and w[beg(u) − 1] �= w[end(uR) + 1] for
beg(u) > 1 and end(uR) < |w|. A maximal gapped palindrome uvuR is α-
gapped if |u| + |v| ≤ α|u| [15]. It can be shown analogously to the results of this
paper that for α > 1 the number of maximal α-gapped palindromes in a word
of length n is bounded by O(αn) and for the case of constant alphabet, all these
palindromes can be found in O(αn) time1.

In this paper, we consider maximal α-gapped repeats with α > 1. However,
this notion can be formally generalized to the case of α ≤ 1. In particular,
maximal 1-gapped repeats are maximal repeats whose copies are adjacent or
overlapping. It is easy to see that such repeats form runs whose minimal periods
are divisors of the periods of these repeats. Moreover, each run in a word is
formed by at least one maximal 1-gapped repeat, therefore the number of runs
in a word is not greater than the number of maximal 1-gapped repeats. More
precisely, each run r is formed by 	exp(r)/2
 distinct maximal 1-gapped repeats.
Thus, if a word contains runs with exponent greater than or equal to 4 then
the number of maximal 1-gapped repeats is strictly greater than the number
of runs. However, using an easy modification of the proof of “runs conjecture”
from [2], it can be also proved the number of maximal 1-gapped repeats in a
word is strictly less than the length of the word. Moreover, denoting by R1(n)
the maximal possible number of maximal 1-gapped repeats in words of length n,
1 Note that in [15], the number of maximal α-gapped palindromes was conjectured to

be O(α2n).
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we conjecture that R(n) = R1(n) since known words with a large number of
runs have no runs with big exponents. We can also consider the case of α < 1
for repeats with overlapping copies and, in particular, the case of maximal 1/k-
gapped repeats where k is integer greater than 1. It is easy to see that such
repeats form runs with exponents greater than or equal to k + 1. It is known
from [2, Theorem 11] that the number of such runs in a word of length n is less
than n/k, and it seems to be possible to modify the proof of this fact to prove
that the number of maximal 1/k-gapped repeats in the word is also less than
n/k = αn. These observations together with results of computer experiments
for the case of α > 1 leads to a conjecture that for any α > 0, the number of
maximal α-gapped repeats in a word of length n is actually less than αn. This
generalization of the “runs conjecture” constitutes an interesting open problem.
Another interesting open question is whether the obtained O(n/δ) bound on
the number of maximal δ-subrepetitions is asymptotically tight for the case of
constant alphabet.
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Abstract. Let f : {−1, 1}n → {−1, 1} be a Boolean function. We say
that a multilinear polynomial p sign-represents f if f(x) = sgn(p(x))
for all x ∈ {−1, 1}n. In this paper, we consider the length and weight
of polynomials sign-representing Boolean functions of the form f ⊕ f ⊕
· · · ⊕ f where each f is on a disjoint set of variables. Obviously, if p
sign-represents f , then p(x)p(y) sign-represents f(x) ⊕ f(y). We give a
constructive proof that there is a shorter polynomial when f is AND on
n variables for every n ≥ 3. In addition, we introduce a parameter v∗

f of
a Boolean function and show that the k-th root of the minimum weight
of a polynomial sign-representing f ⊕ f ⊕ · · · ⊕ f (k times) converges
between v∗

f and (v∗
f )

2 as k goes to infinity.

Keywords: Computational complexity · Boolean functions · PTF ·
Integer programming

1 Introduction

Throughout the paper, we consider a Boolean function as a mapping from
{−1, 1}n to {−1, 1}; −1 denotes True and 1 denotes False. We discuss the rep-
resentation of Boolean functions by polynomial threshold functions (PTF, in
short).

Let p be a multilinear polynomial on n variables. If f(x) = sgn(p(x)) for every
x ∈ {−1, 1}n, we say that f is computed by a polynomial threshold function p,
or p sign-represents f . The PTF representation of Boolean functions have been
extensively studied especially in complexity theory and learning theory (see e.g.,
[1–3,6–8,15]).

The most well-investigated measure in the study of PTF representation is
its degree, which is defined as the minimum degree over all polynomials sign-
representing f . Other important but less understood measures are the weight
and length. The weight of a Boolean function f is the minimum value of the sum
of the absolute values of integer coefficients of a polynomial that sign-represents
f . The length of f is the minimum number of monomials in a polynomial that
sign-represents f .

In this paper, we focus on these two measures for a certain class Boolean
functions. For Boolean functions f and g, let f ⊕ g denote the XOR of f and g

c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 259–269, 2016.
DOI: 10.1007/978-3-319-30000-9 20



260 K. Amano

on disjoint sets of variables. If p sign-represents f and q sign-represents g, then
pq sign-represents f ⊕g. It is natural to ask whether this gives a most economical
polynomial for f ⊕ g.

O’Donnell and Servedio [11] proved that the answer is “yes” for PTF degree.
In fact, they proved the “XOR Lemma” saying that the degree of f ⊕ g is equal
to the sum of the degrees of f and g. It would be natural to expect that such a
property holds for PTF length. The problem to verify this is presented, e.g., in
a list of open problems compiled by Filmus et al. [5].

Recently, Sezener and Oztop [14] gave a heuristic algorithm to find a short
PTF and computationally verified that every 6-variable Boolean function can
be sign-represented using at most 26 monomials. This is surprising because it
implies that the length of the function x1x2⊕x3x4⊕x5x6 is at most 26, which is
strictly smaller than 33; the cube of the length of x1x2 = sgn(x1 + x2 + 1). This
shows that the “XOR Lemma” does not hold for PTF length in its “ideal” form,
and gives us a strong motivation for further research. What functions admit such
a saving? How much saving can be possible?

In the first part of this paper (in Sect. 3), we see that such a saving is possible
for a wider class of functions. Namely, we give an explicit polynomial that sign-
represents the XOR of two ANDs on an arbitrary number of variables whose
length is less than the square of the length of a single AND function (Theorem6).

In the second part of this paper (in Sect. 4), we analyze the length and weight
of the function of the form ⊕kf which denotes the XOR of k copies of f on
disjoint sets of variables. We introduce a parameter of a Boolean function and
obtain an “XOR Lemma” for PTF weight. This parameter v∗

f (the definition
will be given in Sect. 4) is given by the value of a certain linear programming
problem. Interestingly, this LP problem is a relaxation of two LP problems. The
first one is a problem whose value is the weight of f , and the second one is a
problem whose value is the spectral norm (a.k.a. Fourier L1-norm) of f . We show
that the k-th root of the weight of ⊕kf converges between v∗

f and (v∗
f )2 as k goes

to infinity by analyzing the tensor product of these LP problems (Theorem12).
The organization of the paper is as follows: In Sect. 2, we give notations and

definitions. In Sect. 3, we exhibit an explicit construction of short polynomials
sign-representing the XOR of two ANDs. In Sect. 4, we show that the weight and
length of Boolean functions of the form ⊕kf is strongly related to a parameter
based on a certain LP problem. Finally, in Sect. 5, we give some open questions.

2 Preliminaries

Let [n] denote the set {1, 2, . . . , n}. Let Z denote the set of integers and Z
+

denote the set of non-negative integers. For a set S ⊆ [n], we write xS to denote
the monomial

∏
i∈S xi. Note that x∅ is the constant 1. A multilinear polynomial

is the sum of the monomials

p(x1, . . . , xn) =
∑

S⊆[n]

pSxS .

Throughout the paper, we assume that all the coefficients pS are integers.
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Definition 1. Let f : {−1, 1}n → {−1, 1} be a Boolean function and let p :
{−1, 1}n → Z be a multilinear polynomial with integer coefficients. We say that
p sign-represents f if f(x) = sgn(p(x)) and p(x) �= 0 for every x ∈ {−1, 1}n,
where sgn(y) = 1 if y > 0 and sgn(y) = −1 if y < 0.

Definition 2. The weight of a polynomial p(x) =
∑

S⊆[n] pSxS is the sum of
the absolute values of the coefficients

∑
S⊆[n] |pS |. Let f : {−1, 1}n → {−1, 1}

be a Boolean function. The weight of f , denoted by wt(f), is defined as the
minimum weight of a polynomial that sign-represents f . The length of f , denoted
by len(f), is defined as the minimum number of monomials in a polynomial that
sign-represents f .

Definition 3. Let f be a Boolean function on {x1, . . . , xn} and g be a Boolean
function on {y1, . . . , yn}. Let f ⊕ g denote the Boolean function on {x1, . . . , xn,
y1, . . . , yn} whose value is the XOR of f(x1, . . . , xn) and g(y1, . . . , yn). Let ⊕kf
denote the XOR of k copies of f on disjoint sets of variables.

3 Upper Bounds on the Length of XOR of ANDs

Let ANDn denote the AND of n variables. Let IPn : {−1, 1}2n → {−1, 1} denote
the inner product function defined as

IPn(x1, . . . , xn, y1, . . . , yn) = ⊕i∈[n]xiyi.

Equivalently, IPn = ⊕nAND2.

Fact 4. len(AND2) = 3, len(⊕2AND2) = 9 and len(⊕3AND2) ≤ 26.

The first equality is obvious by observing AND2(x1, x2) = sgn(x1 + x2 + 1)
is (one of) the shortest polynomial for AND2. The second equality can easily
be verified by using a computer. The last inequality is proved by Sezener and
Oztop [14, Sect.7.2] who gave a polynomial of length 26 and total weight 686
that sign-represents ⊕3AND2.

Below we describe another polynomial p(x) of the same length that sign-
represents x1x2 ⊕ x3x4 ⊕ x5x6.

p(x) = 2(x{3,5} − x{1,2,3,5} + x{4,5} + x{2,4,5} − x{2,3,4,5} + x{1,2,3,4,5} + x{1,6}

+x{2,3,6} + x{4,6} + x{1,2,3,4,6} − x{3,5,6} − x{2,3,5,6} + x{1,2,3,5,6}

−x{2,4,5,6} + x{2,3,4,5,6})
+3(x{2} − x{1,2} − x{1,3,4} + x{1,5} − x{1,2,4,5} + x{1,3,6}

−x{1,2,3,6} − x{2,3,4,6} − x{4,5,6} + x{1,2,4,5,6} − x{1,2,3,4,5,6}).

The weight of this polynomial is 63. This is the smallest among all 26-
monomial polynomials that we have found. Note that we found this polynomial
using an IP solver. We strongly believe that len(⊕3AND2) is actually 26, but we
have not succeeded in showing this.
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Fact 4 shows that len(⊕kAND2) is strictly smaller than len(AND2)k for every
k ≥ 3. Below we generalize this to show that len(⊕kANDn) is strictly smaller
than len(ANDn)k for every k ≥ 2 and n ≥ 3.

The following fact should be folklore, but we include a proof for completeness.

Fact 5. For every n, len(ANDn) = n + 1.

Proof. The upper bound is obvious by the representation ANDn(x1, . . . , xn) =
sgn(x1 + · · · + xn + (n − 1)). Below we show the lower bound. For the sake of
notational simplicity, we consider the length of NORn (Negation of OR) instead
of ANDn. This is harmless because NORn(x1, . . . , xn) = AND(−x1, . . . ,−xn) by
the De Morgan’s law.

Suppose for a contradiction that a polynomial p(x) =
∑

1≤i≤n pix
Si sign-

represents NORn, i.e., p(x) < 0 if x = (1, 1, . . . , 1) and p(x) > 0 otherwise.
Let M be the 0/1-valued n × n matrix such that its (i, j) entry is 1 iff xj

appears in the i-th monomial in p (i.e., xj ∈ Si).
We divide the proof into two cases: (i) the rank of M is strictly smaller than

n, and (ii) M has full rank.
For the case (i), we consider the system Mv = 0 over GF (2), where v is a

0/1-valued column vector of length n and 0 is the all-zero column vector of length
n. Let χ : {0, 1} → {−1, 1} be the mapping such that χ(0) = 1 and χ(1) = −1.
Then, for any vector v = (v1, . . . , vn) satisfying Mv = 0, x = (x1, . . . , xn) =
(χ(v1), . . . , χ(vn)) satisfies xSi = 1 for every i. Since M is degenerate, there
exists a non-zero vector v′ with Mv′ = 0. Let x′ ∈ {−1, 1}n be the input vector
obtained from v′ by the mapping χ, we have p(x′) =

∑
i pi and hence

∑
i pi > 0

since x′ �= (1, 1, . . . , 1). This contradicts p(1, 1, . . . , 1) =
∑

i pi < 0, completing
the proof for the case (i).

The proof for the case (ii) is similar. Let a be any 0/1-valued column vector
of length n such that a �= (0, 0, . . . , 0)T and a �= (1, 1, . . . , 1)T . Let a denote the
complement of a, that is the vector obtained from a by flipping 0 s and 1s. Let v1

and v2 be the solutions to the systems Mv1 = a and Mv2 = a. Let x1 and x2

be the input vectors obtained from v1 and v2 by the mapping χ, respectively.
Then, we have p(x1) = −p(x2), but this contradicts NORn(x1) = NORn(x2)
since x1, x2 �= (1, 1, . . . , 1). 	

Theorem 6. For every n ≥ 3, len(ANDn ⊕ ANDn) ≤ n2 + n + 4.

Proof. The proof is constructive. Let U = {1, . . . , n} and V = {n + 1, . . . , 2n}.
Consider a polynomial of the form

p(x1, . . . , xn, xn+1, . . . , x2n) = a + b
∑

i∈U∪V

xi + c
∑

i∈U,j∈V

i
=j (mod n)

xixj

+d(xU + xV ) + e · xU∪V .

Let a = (n − 1)2, b = (n − 1.5), c = 1, d = 0.5(−1)n+1 and e = 1. Here we use
half integral weights for simplicity. The number of monomials in p is

1 + 2n + n(n − 1) + 2 + 1 = n2 + n + 4.
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Below we show that p sign-represents the XOR of ANDn(x1, . . . , xn) and
ANDn(xn+1, . . . , x2n).

For any input x = (x1, . . . , x2n), let u and v denote the number of −1’s in the
first half and second half of x, respectively, and let s := |{i ∈ [n] | xi �= xn+i}|.
Observe that the value of p depends only on u, v and s, which we denote by
p(u, v, s). An easy calculation shows that

p(u, v, s) = a + b{2n − 2(u + v)} + c{(n − 2u)(n − 2v) + 2s − n}
+d{(−1)u + (−1)v)} + e(−1)u+v. (1)

What we should verify is that p(u, v, s) > 0 if u = v = n or u, v < n and
p(u, v, s) < 0 otherwise. Without loss of generality we can assume that u ≥
v. Since as s increases, p(u, v, s) increases, it is sufficient to verify that (a)
p(n, n, 0) > 0, (b) p(u, v, u − v) > 0 (∀v ≤ u < n), and (c) p(n, v, n − v) < 0
(∀v < n).

The proof of these is a bit tedious but elementary. First we consider the case
u = v which covers (a) and a part of (b). We have that

p(u, u, 0) = 4(n − u)(n − u − 1.5) + 1 + 2 · 1[(n − u) is odd],

here 1[·] is an indicator function. It is easy to check that the value of the right
hand side of the above formula is positive for every integer 0 ≤ u ≤ n.

Now we consider the case u �= v which covers the rest of (b) and (c). Let
p̃(u, v) denote the sum of the first three terms of p(u, v, u − v) in Eq. (1). Put
v = u − α (α ≥ 1). We have

p̃(u, u − α) = 4(n − u)(n − u + α − 1.5) − α + 1.

What we should show is p(u, u − α, α) is negative when u = n, and is positive
when u ≤ n − 1. Since p̃(n, n − α) = 1 − α, we have p(n, n − α, α) < 0 for every
α ≥ 1.

Since the derivative dp̃(u,u−α)
du is negative when u ≤ n − 1 < n + 2α−3

4 , we
have

p̃(u, u − α) ≥ p̃(n − 1, n − 1 − α) = 3α − 1 ≥ 2,

which implies p(u, u − α, α) ≥ 1 for every 1 ≤ α ≤ u ≤ n − 1 as desired. 	

By Theorem 6, we have

len(⊕2ANDn) ≤ n2 + n + 4 = len(ANDn)2 − (n − 3),

which is strictly smaller than len(ANDn)2 for n ≥ 4.
For n = 3, we can verify that the following polynomial with 15 monomials

sign-represents x1x2x3 ⊕ x4x5x6.

p(x) = 8 + 3x{1} + 3x{2} + 3x{3} + 3x{4} + 2x{1,4} + 2x{3,4} + 3x{5} + 2x{1,5}

+2x{2,5} + 3x{6} + 2x{2,6} + 2x{3,6} + x{4,5,6} + 2x{1,2,3,4,5,6}.

In summary, we have:

Corollary 7. For k ≥ 2 and n ≥ 2, len(⊕kANDn) is strictly smaller than
len(ANDn)k except for k = n = 2.
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4 The XOR Lemma for PTF Weight

In this section, we consider the weight and length of Boolean functions of the
form ⊕kf for large k. We first introduce a parameter v∗

f for a Boolean function f .
The problem to find a minimum weight polynomial p(x) =

∑
S pSxS that

sign-represents f can be represented by the following integer programming prob-
lem, which we call the problem Pf .

Minimize:
∑

S⊆[n]

|pS |,

Subject to:
∑

S⊆[n]

pSMf,(x,S) ≥ 1, (∀x ∈ {−1, 1}n),

pS ∈ Z, (∀S ⊆ [n]),

where Mf,(x,S) := f(x)xS (for x ∈ {−1, 1}n and S ⊆ [n]). The value of Pf gives
the weight of f and the optimal solution to Pf gives the coefficients of such a
polynomial.

It is natural to consider the LP-relaxation of Pf , denoted by P ∗
f , in which

the integral conditions on pS ’s are removed. Let vf denote the value of Pf and
let v∗

f denote the value of P ∗
f .

Interestingly, the problem P ∗
f is also a relaxation of the one whose value is

the spectral norm (a.k.a Fourier L1-norm) of f .
For S ⊆ [n], we define χS : {−1, 1}n → {−1, 1} by

χS(x) =
∏

i∈S

xi.

In fact, χS(x) = xS in our notation. Every Boolean function f can be uniquely
represented as

f(x) =
∑

S⊆[n]

f̂(S)χS(x). (2)

This expression is called the Fourier expansion of f , and f̂(S) is called the
Fourier coefficient of f on S. The spectral norm of f is defined as

||f̂ ||1 =
∑

S⊆[n]

|f̂(S)|.

Multiplying f(x) to both sides of Eq. (2) and substituting χS(x) by xS , we
have

1 =
∑

S⊆[n]

f(x)f̂(S)xS .

Recalling that Mf,(x,S) = f(x)xS , we see that the system
∑

S⊆[n]

pSMf,(x,S) = 1 (∀x ∈ {−1, 1}n)
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has a unique solution pS = f̂(S) (for S ⊆ [n]), and hence
∑

S⊆[n] |pS | = ||f̂ ||1.
This means that the value of the following problem, which we denote Qf ,

Minimize:
∑

S⊆[n]

|pS |,

Subject to:
∑

S⊆[n]

pSMf,(x,S) = 1, (∀x ∈ {−1, 1}n)

gives the spectral norm of f . We can immediately see that the problem P ∗
f

is a relaxation of Qf by replacing the equality (“=”) in the constraints with
inequality (“≥”).

The following is now obvious.

Fact 8. For every f , v∗
f ≤ vf = wt(f) and v∗

f ≤ ||f̂ ||1.
If we wish to remove the absolute symbols in the problem Pf or P ∗

f , we can
achieve this by splitting each variable pS into two non-negative variables p+S and
p−

S .
Given the problem Pf , we define the linear programming program P ′

f as
follows:

Minimize:
∑

S⊆[n]

p+S +
∑

S⊆[n]

p−
S ,

Subject to:
∑

S⊆[n]

p+S M+
f,(x,S) +

∑

S⊆[n]

p−
S M−

f,(x,S) ≥ 1, (∀x ∈ {−1, 1}n),

p+S , p−
S ∈ Z

+, (∀S ⊆ [n]),

where M+
f,(x,S) := Mf,(x,S) and M−

f,(x,S) := −Mf,(x,S).
The following fact shows that the problems Pf and P ′

f are essentially the
same, i.e., the value of P ′

f is vf and the value of the LP-relaxation of P ′
f is v∗

f .

Fact 9. The optimal solution to P ′
f satisfies that, for every S ⊆ [n], at least one

of p+S and p−
S is 0. This is also true for the LP-relaxation of P ′

f .

Proof. Suppose that α = min(p+S , p−
S ) > 0 in the optimal solution to P ′

f (or the
LP-relaxation of P ′

f ). Then by changing the value of p+S to p+S − α and p−
S to

p−
S − α, the value of the objective function is decreased but still satisfy all the

constraints. 	

Fact 9 guarantees that we can interchange the optimal solutions to Pf and

P ′
f via the mapping

pS :=

⎧
⎨

⎩

p+S , (if p+S > 0),
−p−

S , (if p−
S > 0),

0, (if p+S = p−
S = 0).

Below we show that the gap between vf and v∗
f , which is in fact the integrality

gap of P ∗
f , is at most quadratic (when v∗

f is sufficiently large).
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Theorem 10. For every Boolean function f on n variables, vf = wt(f) ≤
8n(v∗

f )2.

Proof. The proof is analogous to the proof of a weaker bound of wt(f) =
O(n||f̂ ||21) by Bruck and Smolensky [4] (or see [10, Theorem 5.12]).

Let v(p+S ) and v(p−
S ) be the values of an optimal solution to the problem P ′

f .
Let D be the distribution on the set of signed monomials {±xS | S ⊆ [n]} such
that the probability of choosing +xS is v(p+S )/v∗

f and −xS is v(p−
S )/v∗

f . Let Q
be a random signed monomial chosen according to D. Then, for every fixed x,
we have

Pr[Q(x) = f(x)] ≥ 1
2

(
1 + (v∗

f )−1
)
.

Let F be the sum of � random signed monomials Q1, . . . , Q� where Qi is
chosen independently from this distribution and the value of � will be chosen

later. Let μ = E[|{i ∈ [�] | Qi(x) = 1}|] = �
2 (1 + (v∗

f )−1) and put δ = (v∗
f )

−1

2 . An
easy calculation shows that (1 − δ)μ > �

2 . Then, applying Chernoff Bound (see,
e.g., [9, Theorem 4.5-2]), we have that for every fixed x,

Pr[sgn(F (x)) �= f(x)] ≤ Pr[|{i ∈ [�] | Qi(x) = 1}| ≤ (1 − δ)μ]
≤ exp(−μδ2/2).

By setting � = 8n(v∗
f )2, this probability is less than 2−n. Then by the union

bound, we get

Pr[sgn(F (x)) �= f(x) for some x] < 1.

This says that there exists a polynomial F of length 8n(v∗
f )2 that sign-represents

f , which completes the proof. 	

We see next that the quadratic gap in Theorem 10 is tight for almost all

functions.

Fact 11. For almost all functions f , the gap between vf and v∗
f is quadratic.

Proof. By Parseval’s theorem (
∑

S⊆[n] f̂(S)2 = 1) and Cauchy-Schwartz inequal-

ity, we have ||f̂ ||1 ≤ 2n/2 for every f on n variables. This implies v∗
f ≤ 2n/2 by

Fact 8. On the other hand, Saks [13] proved that, for almost all Boolean func-
tions f on n variables, len(f) ≥ (0.11)2n. The fact follows from vf = wt(f)
≥ len(f). 	


We are now ready to discuss the weight and length of the function ⊕kf . It
seems that the parameters

wt⊕(f) := lim
k→∞

k
√

wt(⊕kf),

len⊕(f) := lim
k→∞

k
√

len(⊕kf)
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well characterize the complexity of f . Since wt(⊕i+jf) ≤ wt(⊕if)wt(⊕jf) and
len(⊕i+jf) ≤ len(⊕if)len(⊕jf) for all i and j, these limits do exist by Fekete’s
lemma.

For example, we know

2 ≤ len⊕(x1 ∧ x2) ≤ log3 26 < 2.966,

2 ≤ wt⊕(x1 ∧ x2) ≤ 3.

The lower bounds follow from the bound of len(IPn) ≥ 2n by Bruck [3] and the
upper bound on len⊕(x1 ∧ x2) follows from Fact 4.

Below we show that wt⊕(f) is between v∗
f and (v∗

f )2. The key observation in
proving this is that the value of P⊕kf is given by the tensor power of the problem
Pf .

We write the following integer linear programming problem as P = (A,b, c).

Minimize: cTx
Subject to: Ax ≥ b,

every entry of x is in Z
+.

where A is m × d integer matrix, b is a non-negative column vector of length
m, c is a non-negative column vector of length d, and x ranges over the set of
non-negative integer column vector of length d.

We define the tensor product of two problems P1 = (A1,b1, c1) and P2 =
(A2,b2, c2) as P1⊗P2 = (A1⊗A2,b1⊗b2, c1⊗c2), where A1⊗A2 denotes the
tensor product of matrices A1 and A2 and b1 ⊗ b2 (c1 ⊗ c2, resp.) denotes the
tensor product of vectors b1 and b2 (c1 and c2, resp.). The k-th power tensor
of P is denoted by P⊗k. For an IP problem P , let v(P ) denote the value of P
and v∗(P ) denote the value of the LP-relaxation of P .

Note that v∗(P1 ⊕ P2) = v∗(P1)v∗(P2) and v(P1 ⊗ P2) ≤ v(P1)v(P2) always
hold, but v(P1 ⊗P2) = v(P1)v(P2) does not hold in general (see e.g., [12, p. 130]
for an example).

Theorem 12. For every Boolean function f , v∗
f ≤ wt⊕(f) ≤ (v∗

f )2.

Proof. Let n be the number of input variables of f . We first verify that v∗
⊕kf =

(v∗
f )k. Recall that v∗

⊕kf is the value of the LP relaxation of P ′
⊕kf .

Consider two IP problems P ′
⊕kf and (P ′

f )⊗k. One may see that these two
problems are different because P ′

⊕kf contains 2 × 2nk variables p+S and p−
S (for

S = (S1, . . . , Sk) ⊆ [n]k) and (P ′
f )⊗k contains 2k × 2nk variables pL

S (for L ∈
{+,−}k and S = (S1, . . . , Sk) ⊆ [n]k). However, an easy inspection shows that
these two problems are equivalent. Namely, if {p+S , p−

S | S ⊆ [n]k} is a feasible
solution to P ′

⊕kf , then any {pL
S | L ∈ {+,−}k, S ⊆ [n]k} satisfying

p+S =
∑

L:|L|=even

pL
S ,

p−
S =

∑

L:|L|=odd

pL
S ,
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is a feasible solution to (P ′
f )⊗k, and vice versa. Here |L| denotes the number of ‘−’

symbols in L. In addition, the value of the objective functions are the same. Since
it is known that v∗(P1 ⊗ P2) = v∗(P1)v∗(P2) for every IP problems P1 and P2

(see e.g., [12, Proposition 4(iii)]), we have v∗
⊕kf = v∗(P ′

f )⊗k = v∗(P ′
f )k = (v∗

f )k

Now the proof is completed by observing

(v∗
f )k = v∗

⊕kf ≤ v⊕kf = wt(⊕kf) ≤ 8n(v∗
⊕kf )2 = 8n(v∗

f )2k.

Here we use Theorem 10 to derive the last inequality. 	

As P ∗

f is an LP problem with 2n variables and 2n constraints, we can compute
v∗

f for reasonable size of n, say n ∼ 10, by an LP-solver. Based on some computer
experiments, it is very plausible that, for f = ANDn,

3 − 2−(n−2) = ||f̂ ||1 = v∗
f < vf = n + 1, (3)

and, for f = MAJn(= sgn(
∑

i∈[n] xi), n is odd),

(n + 1)/2 = v∗
f < vf = n,

The formal proof of the above values of v∗
f could be provided by considering the

dual of P ∗
f .

For example, Ineq. (3) implies that 3 − 2−(n−2) ≤ wt⊕(ANDn) < 9 and
len⊕(ANDn) < 9, which show that there is a large gap between wt⊕(ANDn) and
wt(ANDn) = 2n − 1 (len⊕(ANDn) and len(ANDn) = n + 1, resp.).

For the lower bound on len⊕(ANDn), we only know 2 ≤ len⊕(ANDn) follow-
ing from AND2(x1, x2) = ANDn(x1, x2,−1, . . . ,−1). Currently, the relationship
between three parameters vf , v∗

f and ||f̂ ||1 seems mysterious.

5 Concluding Remarks

There are many interesting problems for future research. Below we list some of
them.

– Can we obtain a good parameter which gives the lower bound on len⊕(f)?
By the result of Bruck [3], we have 1/||f̂ ||∞ ≤ len⊕(f), where ||f̂ ||∞ is the
Fourier L∞-norm of f . However, this seems weak for non-bent functions. In
fact, we conjecture that v∗

f ≤ len⊕(f).
– We have not found any examples satisfying wt(f ⊕ g) �= wt(f)wt(g). It is

interesting to give an explicit construction of such polynomials. As we have
seen in Sect. 4, this problem is closely related to the problem to seek the
(sufficient/necessary) conditions on an IP problem P satisfying v(P ⊗ P ) =
v(P )v(P ), which would be interesting in its own right.
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Abstract. We consider n beachcombers who are set to search a line
segment whose length can be any real number. Each beachcomber has a
high walking speed and a lower searching speed of its own. The problem
is to find the optimal schedule such that the line segment can be searched
with the minimum makespan.

We assume that the length of the segment is known in advance and
beachcombers all start from an arbitrary inner point of the line segment.
We show that the problem is NP-hard even if all beachcombers have
the same walking speed. Then we give an efficient algorithm for the case
where all beachcombers are identical.

Keywords: Computational complexity · Mobile agents · Algorithms ·
Schedule · Searching · Walking · Speed · Partitioning

1 Introduction

In many applications, we are to search a large domain with mobile agents in
the minimum makespan. A mobile agent usually needs to first walk towards this
area, and then search it. The walking speed of an agent is normally considered
faster than its searching speed since the latter is a more demanding task. The
Beachcombers’ Problem is introduced in [6] to model such a setting: We have n
mobile agents, the ith of whom has a walking speedwi and a searching speed si

with wi > si > 0. The agents are requested to collectively search a given line
segment whose length can be any real number. The goal is to schedule them
such that the makespan is minimized.

In [6], all mobile agents are required to start from one endpoint of the line
segment. If the length of the line segment is known at the beginning, an optimal
solution is known to solve the scheduling problem in polynomial time [6]. In [2,7],
the mobile agents can be divided into groups and the algorithm can choose the
starting point for each group.
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In this work, we consider the problem where agents may all initially start
from an arbitrary inner point of the line segment. It will be demonstrated that
the problem is NP-hard even if all mobile agents have the same walking speed
(but possibly different searching speeds). An algorithm will also be given under
the condition that all agents are identical. A similar problem is considered in
[2,7]. However, in their work an algorithm can choose several starting points and
assign each agent to one of them. If we do not have efficient tools to move agents
to their starting points, the model in [2,7] is not so intuitive.

1.1 Related Work

Agent exploration has been an extensively studied topic. Some papers consider
topological model (i.e., the real world is abstracted as an unknown graph and
for each edge we want to figure out where it leads to), such as [1,4,10,11,15].
In [1,10], all the nodes and edges are distinguishable and the competitive ratio
is considered (i.e., we compare the effort needed by the algorithm to search
the whole graph with the effort needed if the graph is known in advance). In
[4,11,15], the nodes and edges are indistinguishable and some pebbles or markers
need to be used to mark nodes or edges.

Geometric explorations are studied in other works (c.f. [5,9,12]). The goal is
to record geometric information of the real world. While our task is to record
more information of the geometric world, the acquired geometric information can
also be used as a feedback to help us in the process of exploration and mapping.

Mobile agents with different speeds have been considered in recent studies. In
[8,13], mobile agents with different speeds are used for boundary patrolling. In
[3], agents’ different speeds are used to devise protocols which converge quickly.
Different speeds of mobile agents can make the search more efficient but the
structure of the optimal schedule also becomes more complicated in this way.

1.2 Outline of the Paper

We introduce notations, terminologies, and techniques we use in Sect. 2.
In Sect. 3, we consider the problem in which all agents start from an inner

point of the line segment. This problem is NP-hard even if all agents have the
same walking speed. For the case where all agents are the same, we give an
efficient algorithm.

2 Preliminaries

We are given a set A of n mobile agents, r1, r2, . . ., rn. Without loss of generality,
we assume n ≥ 2. Each agent either takes the walking mode where the maximal
walking speed is denoted by wi, or the searching mode where the maximal
searching speed is denoted by si, with wi > si > 0. Using the terminology in [7],
if all wi’s are identical, we call this input a W-uniform instance.
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We need to search a line segment (i.e., each point of the line segment needs
to be searched at least once) using these mobile agents. Agents can change their
modes, speeds and directions, and cross over each other on the line segment. The
length of the segment is denoted by L. In our work, L can be any real number.
We want to compute the optimal schedule which minimizes the makespan (i.e.,
the time by which each point of the line segment is searched at least once).

More formally, a schedule A contains a series of time points 0 = τ0 < τ1 <
τ2 < . . . < τz. In each time interval [τi, τi+1], 0 ≤ i < z, each agent either walks
or searches without changing its direction. The mode switching and direction
change only happen at τ1, or τ2, . . ., or τz−1. At time τz, each point of the line
segment must be searched at least once. τz is the makespan of this schedule,
which we want to minimize.

The area searched by agent ri is denoted by σ(ri). Note that by definition,
σ(ri) may have zero length or contain a large number of subintervals of the
segment. Later more properties of σ(ri) will be introduced.

For any possible schedule, we make the following assumptions in our work:

Assumption 1. For any two agents ri and rj, σ(ri) ∩ σ(rj) has zero length.

Assumption 2. For agent ri, it either walks with a speed of wi, or searches
with a speed of si.

It should be noted that no generality is sacrificed under these two assumptions
since given any schedule we can modify it and make Assumptions 1 and 2 correct
without increasing the makespan. Actually, in the following it will be shown that
Assumptions 1 and 2 are satisfied by any optimal schedule.

Due to Assumption 2, we will just call wi the walking speed of ri and si the
searching speed of ri, leaving out the adjective “maximal”.

2.1 Starting from an Endpoint

If all agents start from the same endpoint of the segment, we call this problem
EBP (“E” refers to “endpoint”). The minimum makespan in this case is denoted
by TEBP. Note that in EBP, it is unnecessary for an agent to change its direction.

EBP is wholly solved in [6]. First the following lemma is proved there under
Assumptions 1 and 2:

Lemma 1. For an EBP problem, in any optimal schedule,

– All agents stop at the same time.
– For each agent ri, σ(ri) has a positive length and contains only one subinterval

of the line segment (i.e., each agent must search a continuous area of positive
length).

– If for some ri and rj, wi < wj, then σ(ri) is closer to the starting point
than σ(rj). If wi = wj, then the order of σ(ri) and σ(rj) does not affect the
makespan of the schedule.
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In fact, with Lemma 1 we can prove that every optimal schedule of an EBP
problem must satisfy Assumptions 1 and 2. Actually for any optimal schedule
O we can change it into an optimal schedule O′ satisfying Assumptions 1 and 2
where all agents stop at the same time, which is impossible if Assumptions 1 and
2 do not hold in O. Thus Lemma 1 is valid regardless of Assumptions 1 and 2.

What’s more, the following crucial notion of search power is introduced.

Definition 2 (Search Power). Consider a set A of mobile agents r1, r2, . . .,
rn. Sort the agents such that w1 ≤ w2 ≤ . . . ≤ wn. The search power of A is
defined as:

SP(A) =
n∑

i=1

si

n∏

j=i+1

(1 − sj

wj
) (1)

One can easily verify that if some agents have identical walking speed, then the
order of them does not matter. Therefore the search power is well-defined.

For later reference, we also give some other forms of the above formula. We
set

ei =
n∏

j=i+1

(
1 − sj

wj

)
(2)

and en = 1. Then

SP(A) =
n∑

i=1

wi(ei − ei−1) (3)

Note that we always have SP(A) < wn. If all wi’s are equal to w, then

SP(A) = w

⎛

⎝1 −
n∏

j=1

(
1 − sj

w

)
⎞

⎠ (4)

What is the meaning of search power? It is proved in [6] that

Lemma 3.
SP(A) = L/TEBP (5)

To understand this result, we can consider some special cases. For example, as
wi’s tend to infinity, the search power tends to

∑n
i=1 si, which is consistent with

our intuition. Another example is to let sn tend to wn and consequently the
search power will tend to sn. This is also intuitive: In this way sn ≈ wn ≥
wn−1 ≥ . . . ≥ w1 and we will tend to use only rn to search the whole segment.

2.2 Starting from an Inner Point

In our work, we consider the problem where the starting point can be an arbitrary
inner point of the line segment. We call this problem IBP (“I” refers to “inner
point”). In IBP agents may need to change their directions.
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We assume that the starting point is L1 away from the left endpoint and
L2 away from the right endpoint. We use [−L1, L2] to denote the whole line
segment, with the starting point at position 0. By Assumption 1, we can have
−L1 = c−p < c−p+1 < . . . < c−1 < c0 = 0 < c1 < . . . < cq−1 < cq = L2, such
that for each k, −p ≤ k < q, the subinterval [ck, ck+1] is searched wholly by a
single agent and no two consecutive subintervals are searched by the same agent
except for [c−1, c0] and [c0, c1] (since they are on different sides of the starting
point and may be searched by the same agent). Denote [ck, ck+1] by σk and the
label of the agent searching σk by a(σk), −p ≤ k < q. Thus for each agent ri,
σ(ri) = ∪k∈Hi

σk, where Hi = {k|a(σk) = i}.
Our main result is that IBP, even W-uniform IBP, is NP-hard. To prove

this result, we consider two modified versions of IBP:

– NoBackIBP: Agents are not allowed to change their directions after setting
out from the starting point.

– ReturnToStartIBP: Agents can return to the starting point instanta-
neously (i.e., without spending any time) from any point on the line segment.

For example, suppose an agent with a walking speed of 1 starts from point 0
and reaches point 1. In ReturnToStartIBP, it can return to point 0 instan-
taneously. However, in IBP it must spend at least 1 time unit to return to 0.

The above two modified models are not intuitive but important in our proof.
Our main idea is the following: First, we show the NP-hardness of W-uniform
NoBackIBP; more specifically, we show the NP-hardness of deciding whether
we can divide the agents into two groups having the same search power. Then we
show that if we can divide the agents into two groups of identical search power,
then in any optimal schedule of W-uniform IBP, no agent changes its direction.
In the proof, ReturnToStartIBP serves as a bridge between IBP and EBP
with which we can invoke previous results.

3 Searching a Line Segment Starting from an Inner Point

3.1 Mobile Agents Which Cannot Turn Back

In this subsection, we consider the NoBackIBP model in which the mobile
agents can choose a direction at the beginning but cannot change the direction.
This model is not so natural but to show the NP-hardness of IBP, it is helpful
to first understand the NP-hardness of NoBackIBP.

In such a situation we need to divide the set A of mobile agents into two
disjoint sets A1 and A2. Intuitively, we want the ratio of their search powers to
be close to L1/L2.

Next we show that such a problem is NP-hard even if the input is a
W-uniform instance. We mention that this proof is actually equivalent to the
proof of the NP-hardness of 2-SBP in [7]. However, since the model is a little
different, we still put the proof here.
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Theorem 4. W-uniform NoBackIBP is NP-hard.

Proof. In [14] it is shown that ProductPartition (where we are given a
set of positive integers and asked whether we can partition them into two
groups having the same product) is NP-hard. We prove the theorem by reducing
ProductPartition to W-uniform NoBackIBP.

Suppose we are given a set X of integers x1, x2, . . ., xn. Without loss of gener-
ality, we assume there is no 1 in X. Take wi = w =

∏n
i=1 xi and si = w(1−1/xi).

What’s more, put all the mobile agents at the middle of a line segment of length
2 (i.e., L1 = L2 = 1). In this way, we need to divide the set A of mobile agents
into two disjoint subsets A1 and A2 which maximizes min{SP(A1),SP(A2)}.
Since all wi’s are equal, (4) shows that we need to maximize

min

{
1 −

∏

i∈A1

(1 − si

w
), 1 −

∏

i∈A2

(1 − si

w
)

}
(6)

Since
∏

i∈A(1 − si/w) = 1/(
∏

i∈A xi) is a constant, X can be divided into two
disjoint subsets having identical product if and only if the maximum of (6) is
1 − √∏

i∈A(1 − si/w) = 1 − √
1/(

∏
i∈A xi). ��

3.2 Mobile Agents Which Can Return to the Starting Point
Instantaneously

In this section we consider the ReturnToStartIBP model where agents can
return to the starting point instantaneously from any point on the segment. This
model is also significant in proving the NP-hardness of IBP.

Like Lemma 1, we have the following lemma for ReturnToStartIBP:

Lemma 5. In any optimal schedule of a ReturnToStartIBP problem:

– All agents stop at the same time.
– For each agent ri, σ(ri) has a positive length and either σ(ri) = {σk}, −p ≤

k < q, or σ(ri) = {σk1 , σk2}, −p ≤ k1 < 0 ≤ k2 < q.

The proof is very similar to the proof of Lemma 1 in [6] so we leave it out.
Here is the another lemma, which is about mobile agents that search in both

directions:

Lemma 6. Suppose ri, rj ∈ A both search in two directions. ri searches σu and
σx while rj searches σv and σy, −p ≤ u, v < 0 ≤ x, y ≤ q − 1. Then in any
optimal schedule, u < v and x < y cannot both hold.

Proof. We prove the above lemma by contradiction. Assume in an optimal sched-
ule O,u < v and x < y. Furthermore assume the length of σv is smaller than
or equal to σx. Then we can change our schedule and let ri search σu, σv and
[cx, cx+1 − (cv+1 −cv)] while let rj search σy and [cx+1 − (cv+1 −cv), cx+1]. Their
searching distances remain unchanged but their walking distances decrease by
at least (cv+1 − cv). Therefore they spend less time in the new schedule, which
contradicts the optimality of O due to Lemma 5. ��
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Another observation of the ReturnToStartIBP problem is the following:
Suppose mobile agent ri ∈ A searches in both directions and spends x time units
in the positive direction and y time units in the negative direction. Then the
work of ri can be seen as done by two agents ri1 and ri2 . ri1 has a walking speed
of wix/(x+y) and a searching speed of six/(x+y) while ri2 has a walking speed
of wiy/(x+ y) and a searching speed of siy/(x+ y). Both ri1 and ri2 use (x+ y)
time units. Inspired by this observation, we define the directional speed:

Definition 7 (directional speed). Suppose in a given schedule the line seg-
ment [−L1, L2] is searched using t time units. For each agent ri ∈ A which
searches a subinterval in the positive direction, if it spends xt (0 < x ≤ 1) time
units in the positive direction, then its positive directional speed is

wi+ = xwi, si+ = xsi (7)

The negative directional speed (i.e., wi− and si−) can be defined similarly.

With the notion of directional speed, we can see a ReturnToStartIBP
problem as two EBP problem in different directions. With Lemma 1, we have:

Lemma 8. In any optimal schedule of a ReturnToStartIBP problem,
wa(σ0)+ ≤ wa(σ1)+ ≤ . . . ≤ wa(σq−1)+ and wa(σ−1)− ≤ wa(σ−2)− ≤ . . . ≤
wa(σ−p)−. What’s more, if in the positive (negative) direction some agents have
identical positive (negative) directional walking speed, then the order of them does
not affect the makespan of the schedule.

Combining Lemmas 6 and 8, we have the following crucial lemma:

Lemma 9. In a W-uniform ReturnToStartIBP problem, if mobile agents
all start from the middle of the segment and the set A of agents can be partitioned
into two disjoint subsets A1 and A2 such that SP(A1) = SP(A2), then (A1, A2)
is one of the optimal schedules of the problem (i.e., for an optimal schedule we
can let agents in A1 search in the positive direction and agents in A2 search in
the negative direction).

Proof. Suppose O is an optimal schedule that is strictly better than (A1, A2).
There must be some agents which search in both directions in O; otherwise
O cannot be strictly better than (A1, A2) since we assume SP(A1) = SP(A2)
(recalling the proof of Theorem 4). Suppose there are k agents searching in both
directions. Notice that all the walking speeds are identical. Due to Lemma 8,
σ−k, σ−k+1, . . . , σk−1 are searched by these k agents. We prove k must be 0 case
by case and thus achieve a contradiction.

Case 1 : k ≥ 2 and wa(σ0)+ < wa(σk−1)+. Denote a(σ0) by i and a(σk−1) by
j. Since wi− + wi+ = wj− + wj+, we have wi− > wj−. Because of Lemma 8, in
the negative direction the interval searched by rj must be closer to the starting
point than that searched by ri. This contradicts Lemma 6.

Case 2 : k ≥ 2 and wa(σ0)+ = wa(σk−1)+. Still denote a(σ0) by i and a(σk−1)
by j. Note that we also have wa(σ−1)− = wa(σ−2)− = . . . = wa(σ−k)−. Due to
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Lemma 8, in the negative direction the order of these k agents does not affect
the makespan. Thus in the negative direction we can always make the interval
searched by rj closer to the starting point than that searched by ri, which
contradicts Lemma 6.

Case 3 : k = 1. Suppose σ−1 and σ0 are searched by agent ri. According to
the observation above Definition 7, the work of ri can be seen as done by ri1

in the positive direction and ri2 in the negative direction. Let X and Y denote
the set of agents which search in the positive direction and negative direction
respectively, except for ri. We set (w is the common walking speed):

T (X) =
∏

i∈X

(1 − si

w
)

T (Y ) =
∏

i∈Y

(1 − si

w
)

By Definition 2, we have SP(X ∪ ri1) = SP(X) + si+ · T (X) and SP(Y ∪ ri2) =
SP(Y ) + si− · T (Y ). Suppose T (X) ≥ T (Y ). Then we have

min{SP(X ∪ ri1),SP(Y ∪ ri2)}
≤ 1

2
(SP(X) + si+ · T (X) + SP(Y ) + si− · T (Y ))

≤ 1
2
(SP(X) + si · T (X) + SP(Y ))

≤ 1
2
(SP(X ∪ ri) + SP(Y ))

≤ 1
2
(SP(A1) + SP(A2))

= SP(A1)

��

3.3 Mobile Agents Which Can Turn Back

Now we consider the IBP problem where agents can turn back. We will show
that W-uniform IBP is NP-hard.

We can show that the conclusions of Lemma 5 also hold in the IBP problem
(i.e., in any optimal schedule of an IBP problem, all agents stop at the same
time and for each agent and each direction, it either does not walk or search
in this direction, or search a continuous subinterval in this direction). The only
difference is that if an agent wants to turn back and search in the other direction,
it must walk across the subinterval between the turning point and the starting
point. It is also easy to see that each agent changes its direction at most once.

Lemma 10. Consider a W-uniform IBP instance. Suppose agents all start from
the middle of the line segment. If we can divide the set A of agents into two
disjoint subsets A1 and A2 such that SP(A1) = SP(A2), then in any optimal
schedule of this instance, no mobile agent turns back.
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Proof. Suppose the conditions of Lemma 10 hold and in an optimal schedule O
of the IBP problem, some agents turn back. The makespan of O is denoted by
TI(O).

O can be changed easily to a schedule O′ for the W-uniform Return-
ToStartIBP model without increasing the makespan: We just allow agents
which turn back in O to return (or “jump”) to the starting point instanta-
neously. The makespan of O′ is denoted by TRTS(O′). What’s more, (A1, A2) is
a schedule for both models and the makespan of it is denoted by TI((A1, A2)) =
TRTS((A1, A2)).

If in O there exists an agent which does not turn back, then in O′ not
all agents stop at the same time and thus O′ is not an optimal schedule for
the W-uniform ReturnToStartIBP model due to Lemma 5. However, by
Lemma 9 (A1, A2) is an optimal schedule for the W-uniform ReturnToStart-
IBP. Therefore TI(O) ≥ TRTS(O′) > TRTS((A1, A2)) = TI((A1, A2)), which
contradicts the optimality of O.

If in O all agents change directions, then we have TI(O) > TRTS(O′) ≥
TRTS((A1, A2)) = TI((A1, A2)), which also contradicts the optimality of O. ��

Combining Lemma 10 and the proof of Theorem 4, we have

Theorem 11. W-uniform IBP is NP-hard.

Proof. The construction is the same as that in the proof of Theorem 4. X can
be partitioned into two subgroups having identical product if and only if in any
optimal schedule of the constructed IBP problem, no agent changes its direction
and A is partitioned into two subsets with the same search power. ��

3.4 An Algorithm for Identical Agents Which Can Turn Back

In this section, we consider the problem with n identical agents which can turn
back. We have the following theorem.

Theorem 12. If all agents are the same, there exists an optimal schedule such
that at most one agent turns back and if there is one (say ri), it searches σ0 and
σ−1.

Based on this theorem, we have an algorithm computing the optimal schedule.
In fact, we only need to consider:

– whether there exists an agent that turns back and if there exists one, its
initial direction and how long are σ0 and σ−1 (in other words, what are c1 and
(−c−1));

– the number of agents in each direction.

We just need to calculate the makespan each situation and choose the best one.
A formal algorithm is given in the next page.

Now we prove Theorem 12. For agent ri, let −ui(ui > 0) and vi(vi > 0) be
the leftmost and rightmost point it has ever touched respectively.
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For n identical agents, assume each of them has searching speed s and walking1

speed w. Let a = 1 − s
w

and then the search power is w(1 − an). At most one
agent needs to turn back.
Suppose no agent turns back. Let m be the number of agents walking left.2

Enumerate m from 1 to n − 1, and check L1
w(1−am)

= L2
w(1−an−m)

. If some m (say

m0) satisfies this equation, let ans = L1
w(1−am0 )

. Otherwise let ans = +∞.

Suppose exactly one agent turns back. For brevity, suppose this agent first walks3

in negative direction and then turns back. The other case needs to be discussed
similarly. Let m be the number of agents that walk in negative direction first
and do not turn back. There are three possibilities (c−1 and c1 are unknown):

1. m = 0: Solve L1+c1
s

+ L1
w

= L2−c1
w(1−an−1)

+ c1
w
. If 0 ≤ c1 < L2, update ans with

L1+c1
s

+ L1
w

.
2. 0 < m < n − 1: Enumerate m from 1 to n − 2, and solve{

L1+c−1
w(1−am)

+
−c−1

w
=

c1−c−1
s

+
−c−1

w
L2−c1

w(1−an−m−1)
+ c1

w
=

c1−c−1
s

+
−c−1

w

If −L1 < c−1 < 0 and 0 < c1 < L2, update ans with
c1−c−1

s
+

−c−1
w

.

3. m = n − 1: Solve
L2−c−1

s
+

−c−1
w

=
L1+c−1

w(1−an−1)
+

−c−1
w

. If −L1 < c−1 ≤ 0,

update ans with
L2−c−1

s
+

−c−1
w

.

Algorithm 1: n-identical IBP

Lemma 13. There exists an optimal schedule where at most one agent turns
back.

Proof. If there are at least two agents that turn back, arbitrarily choose two
from them (say ri, rj). Supposing ui ≤ uj , there are several cases:

1. vi ≤ vj

(a) ri and rj take the same direction at the beginning. Suppose they both
take the negative direction first.

0

t1 t2

t3
t4

ri

rj

−uj −ui vi vj

Thick lines in the picture represent search and normal lines represent
walk. t1 is the time of ri going from 0 to −ui and returning to 0. t2 is the
time of ri going from 0 to vi after returning to 0. t3 and t4 are similarly
defined as the figure shows. In the remaining proof of this lemma, we use
the same notations.
Since they stop at the same time, we know that t1 + t2 > t3 + t4 ⇒ t1 >
t4 ∨ t2 > t3. If t1 > t4, let ri do as rj in [vi, vj ]. Since ri and rj are



280 Y. Chen et al.

identical, it takes ri t4 units of time additionally. Then let ri retrace at
some point x ∈ [−ui, 0] such that ri spends t4 units of time in [−ui, x]
originally. Thus the time used by ri does not change. However, at the
same time, let rj get rid of the work in [vi, vj ] (which is done by ri now)
and do the work in [−ui, x] (which is done by ri before). rj does not need
to turn back now since it does not search some area in [0, L2] and the
ending time does not increase. So this case can be avoided in an optimal
schedule. If t2 > t3, we can make similar arguments.

(b) ri and rj take different directions at the beginning. Suppose ri takes the
positive direction first.

0

t1
t2

t3
t4 t5

ri

rj

−uj −ui vi vj

Because they stop at the same time, t1 + t2 > t3 + t4 + t5 ⇒ t1 >
t4∨t2 > t3+t5. If t1 > t4, we can make similar argument as 1a. Otherwise
t2 > t3 + t5, let ri take the negative direction first and do the work in
[vi, vj ]. In this way ri spends at most (t3 + t5) units of time additionally.
In order to keep the ending time of ri unchanged, let ri get rid of some
work in [−ui, 0] which takes (t3 + t5) units of time. This work can be
done by rj because rj does not need to turn back and do its original work
in [vi, vj ]. Now, the ending time does not increase. So this case can be
avoided in an optimal schedule.

2. vi > vj The proof of this case is essentially the same as before so we leave
out it because of page limit. ��

Lemma 14. There exists an optimal schedule where there is either no agent
that turns back or exactly one agent that turns back and searches [−ui, vi].

Proof. By Lemma 13, there exists an optimal schedule in which at most one agent
turns back. If there is such an agent, denote it by ri. Without loss of generality,
suppose ri walks in the negative direction first. Suppose agent rj (j �= i) searches
a subinterval of [−ui, vi] which is next to one of the two subintervals searched
by ri. There are two cases:

1. rj walks in the negative direction as the following figure shows:

0

rj

ri

d1 d2

−qj−ui −uj

Now we let rj search [−ui,−ui + x] and ri search [−ui + x,−qj ]. In order to
make the ending time of rj same as before, x need to satisfy x

s + d1+d2−x
w = d2

s ,
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where s is the searching speed and w is the walking speed. Solving this equa-
tion, we have x = d2 − s

w−sd1. Since ri and rj stop at the same time, we have
d2
s − d1+d2

w > 0, thus d2 − s
w−sd1 > 0 and 0 < x < d2. We also have d2

s > 2d2
w

and then w > 2s. What’s more, we have d2
s > d1

w + d1
s + 2d2

w ⇔ d2
d1

> w+s
w−2s . And

the ending time of ri does not increase: (d1+d2−x
s + d1+d2−x

w )−(d1
s + d1+2d2

w ) <

0 ⇔ d2
d1

> w+s
2(w−s) ⇐ d2

d1
> w+s

w−2s > w+s
2(w−s) .

2. rj walks in the positive direction:

0

rj

ri

d1d2

qj vivj

Using the same skill as before, let rj search [vi−x, vi] and ri search [qj , vi−x],
and x need to satisfy x

s + d1+d2−x
w = d2

s ⇔ x = d2 − s
w−sd1. Since ri and rj

stop at the same time, we have d2
s > d2

w + d1
s ⇔ d2

d1
> w

w−s . And the time
used by ri does not increase: d1+d2−x

s − (d1
s + d2

w ) < 0 ⇔ d2
d1

> w
w−s . ��

4 Conclusions and Open Problems

In this paper, we consider the Beachcombers’ Problem where agents start from
an inner point. The problem is NP-hard even in W-uniform instances. It would be
interesting to find efficient algorithms for some special cases and approximation
or randomized algorithms for the NP-hard instances. Also note that many of our
discussion can be extended to the star-shaped structure. If we further extend
the star-shaped structure, we can get the tree structure and graph structure.
Algorithms in these situations would be interesting and useful.

Another interesting problem is to search each point by at least k distinct
agents since some agents may be faulty. At first glance, we may still need to
partition the agents into k parts and try to maximize the minimum search power.
However, the optimal schedule may not follow this pattern. For example, consider
searching a segment whose length is 3 using 3 mobile agents with walking speed
2 and searching speed 1 and set k = 2. This problem is also of much interest.
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Abstract. We investigate in a method for proving lower bounds for
abstract circuit classes. A well established method to characterize vari-
eties of regular languages are identities. We use a recently established
generalization of these identities to non-regular languages by Gehrke,
Grigorieff, and Pin: so called equations, which are capable of describ-
ing arbitrary Boolean algebras of languages. While the main concern
of their result is the existence of these equations, we investigate in a
general method that could allow to find equations for circuit classes in
an inductive manner. Thereto we extend an important tool – the block
product or substitution principle – known from logic and algebra, to
non-regular language classes. Furthermore, we abstract this concept by
defining it directly as an operation on (non-regular) language classes.
We show that this principle can be used to obtain equations for certain
circuit classes, given equations for the gate types. Concretely, we demon-
strate the applicability of this method by obtaining a description via
equations for all languages recognized by circuit families that contain a
constant number of (inner) gates, given a description of the gate types
via equations.

1 Introduction

In Boolean circuit complexity, deriving lower bounds on circuit size and depth
has up to now shown to generally be difficult. While there have been results prov-
ing lower bounds, we still lack methods that are applicable in general. Algebraic
methods have improved our understanding of circuit complexity. Here we are
especially interested in the constant depth circuit complexity classes AC0,CC0,
and ACC0 that have tight connections to algebra via programs. For instance
the class AC0 is equal to the class of languages recognized by polynomial-length
programs over finite aperiodic monoids [6]. Using these connections allowed the
usage of algebraic methods in circuit complexity [3–5,14,21]. For an overview
see the book of Straubing [19].

It is a well known method from algebra to characterize regular language
classes by identities and has successfully been applied to describe varieties of
regular languages stemming from various logic classes (see for example the book
of Pin [15]). Recently, Gehrke, Grigorieff and Pin generalized the approach to
work with non-regular language classes [9].
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A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 283–294, 2016.
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While many concrete characterizations via identities or equations exist for
classes of regular languages (see for example the book of Almeida [1]), only
few concrete examples are known for non-regular classes [10]. One of the main
difficulties is, that these equations hold for all languages in a circuit class and
not only the regular ones, for which we have other manageable descriptions.
Furthermore, the question arises how to achieve an abstract method to obtain
equations for circuit classes, instead of calculating them concretely for each class.

As the result of [9] shows the existence of equational descriptions for arbitrary
Boolean algebras, circuit classes form suitable candidates. However, it is not clear
how to obtain these equations in a constructive way. The method presented in
the paper allows us to obtain equations for more complex classes of circuits,
starting with equations from simple classes. In this paper, we would like to dare
a first step towards an approach to derive circuit lower bounds for abstract classes
of circuits. Even though the classes described are fairly simple and separation
results could be proven by using combinatorical arguments, this is the first effort
made towards a procedure to compute equations for more general circuit classes.

In order to reach our goal we abstract another powerful technique: the block
product or substitution principle [20]. The idea of computing the defining equa-
tions for a more complex variety constructed by some principle from simpler
varieties has been successfully used in the regular case [2,13]. While all these
previous results rely on regular language classes, we extended it to work on non-
regular classes by defining an operation purely on language classes, not relying
on monoids or automata, which reflects a decomposition of the computation of
the circuit.

As our main contribution, we show that in principle it is possible to system-
atically construct equations for the block product under certain restrictions. To
demonstrate that our method can be applied, we concretely compute the equa-
tions for languages recognized by constant size circuit families, given equations
that describe the gate types allowed in the circuit family.

Organization of the Paper. We organized this paper in a way that all the
definitions are introduced along with our demonstration of how to compute the
equations for constant size circuit families. Further background on the not (yet)
well known theory of topology and duality is put in [18].

As a first step, circuit classes whose gates are defined by a variety of lan-
guages are introduced in Sect. 2. In Sect. 3, we define an abstract version of the
block product. Then in Sect. 4 we introduce basic definitions and results from
Stone duality as far as needed to formulate the main theorem in Sect. 5. We
conclude and give hints for further research in Sect. 6. The proof of soundness
and completeness of the equations provided in the main theorem can be found
in [18]. For a more in depth presentation of the background, we refer to [18].

2 Constant Size Circuits Families

In this paper we consider circuits over arbitrary alphabets. In contrast to the
usual notion of size we do not count input gates, and hence only call them inputs.
Thus, the size of a circuit is the number of inner nodes. This is necessary to allow
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circuit families with gates of unbounded fan-in to access inputs of arbitrary length
and still have constant size. A formal definition of circuits can be found in [18].

Definition 1 (Family of Boolean functions defined by a language). A
language L ⊆ {0, 1}∗ in a natural way defines a family of Boolean functions,
denoted by fL = (fL

i )i∈N where fL
i (x0, . . . , xi−1) = 1 iff x0 . . . xi−1 ∈ L.

Definition 2. A variety of languages is a class of languages V such that

1. for each alphabet A, VA is a Boolean algebra over A∗

2. for each morphism ϕ : A∗ → B∗, the condition L ∈ VB implies ϕ−1(L) ∈ VA

3. for each L ∈ VA and a ∈ A, we have a−1L := {w ∈ A∗ | aw ∈ L} ∈ VA and
La−1 := {w ∈ A∗ | wa ∈ L} ∈ VA

Recall that a base is a set containing Boolean functions and families of
Boolean functions. To treat circuits in a more general way we will define a base
defined by a variety of languages. This allows us to describe different constant
size circuit families over arbitrary alphabets simply by considering different vari-
eties. The definition will allow a base to consist of an infinite number of Boolean
families, but a circuit family over an (infinite) base is only allowed to use a finite
subset of the elements in the base.

Definition 3 (Bases defined by a variety of languages). Given a variety
V of regular languages, V{0,1} is a collection of languages in {0, 1}∗ and each of
these languages defines a family of Boolean functions. We call the set {fL | L ∈
V{0,1}} the base defined by V.

For our purpose, it suffices to consider bases generated by varieties of lan-
guages, where the languages are regular and commutative. This is not much of
a limitation as many gate types correspond to commutative regular languages
(see table on the left of Fig. 1).

Gate Type Language

∧ 1∗

∨ {0, 1}∗1{0, 1}∗

modp {0, 1}∗((10∗)p)∗

Circuit class Base

AC0 {∧,∨}
CC0 {modp | p ∈ N}
ACC0 {∧,∨,modp | p ∈ N}

Fig. 1. On the left: Typical gate types and the languages they are defined by. On the
right: Typical circuit classes

The following lemma implies that for each circuit over a base generated by a
variety of regular commutative languages V, there exists a circuit that accepts
exactly the same languages and can be written as one layer of gates from V
accessing the inputs and below an NC0 circuit.
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Lemma 4. Let B be a base generated by a variety V of regular commutative
languages. A language L is recognized by a constant size circuit family over B if
and only if it is recognized by a constant size circuit family where the gates only
accessing inputs are from B, and all other gates are labeled by ∧2 or ∨2.

The proof can be found in [18].

3 The Block Product for Varieties of Languages

In the last section, we introduced bases for circuits that were defined by a variety
of languages. Here we will define an unary operation ·� Parb on varieties mapping
a variety of commutative regular languages V to the variety of languages V �Parb

recognized by constant size circuits over the base V.
This rather strange looking notation comes from the algebraic background

where similar ideas have been used on the algebraic side in [7]. Using the algebraic
tools from that paper one could show that constant size circuit families recognize
the same languages as the finitely typed groups in the block product V�Parb,
where V are the (typed) monoids corresponding to the gate types and Parb are
the typed monoids corresponding to arbitrary predicates and hence to the non-
uniform wiring of the circuit family. In this paper however, we omit the algebraic
definition of the block product of (typed) monoids but rather define a mechanism,
that provides us with the same languages as recognized by the block product, and
that is purely defined on the language side. For more details on the algebraic and
logic side for varieties of regular languages, we refer to a survey about the block
product principle [20] or for the non-regular case to [12].

Here we will restrict to the unary operation ·� Parb suitable for our constant
size circuit classes.

There is a natural morphism | · | : A∗ → N that maps each word to its length.
We say a mapping f : A∗ → B∗ is length preserving, if |f(u)| = |u| for all u ∈ A∗.

Definition 5 (N-transduction). Let D be a finite partition of N2. By [(i, j)]D
denote the equivalence class that (i, j) belongs to. Then a N-transduction
is a length preserving map τD : A∗ → (A × D)∗, where (τD(w))i =
(wi, [(|w<i|, |w>i|)]D) = (wi, [(i, |w| − i − 1)]D).

Finally we can use these transductions to define the block product. We only
define a unary operation that maps a variety V to a variety V �Parb. This
notation stems from the strong connection of Parb with N-transducers.

Definition 6 (V � Parb). Let V be a variety of languages. We define V �Parb as
the variety of languages, where (V � Parb)A is generated by the languages τ−1

D (L)
for all partitions D of N2, and L ∈ VA×D.

Because of the connection to the block product we call the languages
V �Parb.



Using Duality in Circuit Complexity 287

Lemma 7. The languages in constant size circuits over a base defined by the
variety V, are exactly the languages in V �Parb.

Proof. Let L ⊆ A∗ be a language recognized by a constant size circuit. Then L is
recognized by Lemma 4 by a Boolean combination of depth 1 circuits with gates
from V{0,1}. As (V � Parb)A is a Boolean algebra it suffices to show that every
language recognized by a depth 1 circuit with gates from V is in (V �Parb)A.
So we assume that L is recognized by a circuit of depth 1 which is just a single
gate. Let L′ be the language corresponding to the function computed by this
single gate. As the functions of the gates are symmetric we can assume that the
gate queries the inputs in order. Also as L′ is regular the multiplicity of edges
querying the same input position to the gate is limited by some constant. Let c
be this constant. Hence we can upper bound the different ways an input position
is wired to this gate by (2|A|)c. Let D be a partition where the equivalence classes
correspond to the different ways the input can be wired. We define a morphism
h : (A × D) → {0, 1}∗ where each (a, P ) is mapped to the way an input in the
equivalence class P reading the letter a as input would influence the gate. As V
is a variety L′′ = h−1(L′) is in V(A×D). But then τ−1

D (L′′) = L.
For the other direction as constant size circuits over the base generated by V

are closed under Boolean combinations it suffices to show that any language L ⊆
A∗ with L = τ−1

D (L′) and L′ ∈ V(A×D) is recognized by a constant size circuit.
As L′ ∈ V(A×D) is a symmetric regular language it is a Boolean combination
of languages L′

1, . . . , L
′
k ∈ V(A×D), such that there exists a morphism hi : (A ×

D)∗ → {0, 1}∗ and L′
i = h−1

i (L′′
i ), where L′′

i ∈ V{0,1}. Fix an input length n.
We construct a circuit that consists of exactly this Boolean combination of gates
g1, . . . , gk computing the functions corresponding to L′′

1 , . . . , L′′
k . We wire each

input to the gates such that for a word w ∈ An each input position j with
wj = a contributes to the gate gi the value hi((τD(w))j) and some neutral string
otherwise. Please note that this definition of the wires is only well defined as
(τD(w))j does only depend on the wj , the length of w and the position j, but
not on the other letters. This completes our construction of the circuit.

4 Duality and the Block Product

We briefly introduce some theory from Stone Duality, which will be used to
characterize the classes of languages we are interested in and to obtain separation
results for them. A short introduction on the idea behind the theory is stated
here. For a more detailed and possibly apprehensible introduction, see [18].

By duality, each Boolean algebra B has an associated compact space, called
its Stone Space S(B). For any two Boolean algebras B and C, if C is a subalgebra
of B, a relation between the Stone spaces exists, namely S(C) is a quotient of
S(B). Since every Boolean algebra of languages is a subalgebra of the powerset
of A∗, there always exists a canonical projection from the Stone space of P (A∗)
to the Stone space of any Boolean algebra of languages over A∗. The idea is to
characterize the Boolean algebra of languages B by the kernel of said projection,
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that is finding all pairs of elements in the Stone space of P (A∗) that get identified
in S(B).

In order to define the points of the Stone space we need to define the notion
of an ultrafilter.

Definition 8 ((Ultra)Filter). Let B be a Boolean algebra. A proper filter of
B is a non-empty subset γ of B that satisfies

1. ∅ /∈ γ,
2. if L ∈ γ and K ⊇ L, then K ∈ γ, (γ is closed under extension)
3. if L,K ∈ γ then K ∩ L ∈ γ, (γ is closed under finite intersections)

A proper filter is called ultrafilter if it additionally satisfies

4. for each L ∈ B, either L ∈ γ or Lc ∈ γ. (ultrafilter condition)

Definition 9 (Stone Space). Let B be a Boolean algebra. The Stone space
S(B) of B is the space of all ultrafilters of B equipped with the topology generated
by the sets L̂ = {γ ∈ S(B) | L ∈ γ} for L ∈ B.

The topology that the Stone spaces are equipped with is of importance, since
it holds informations about the languages in the underlying Boolean algebra. For
those familiar with topology: The clopen sets of S(B) are exactly the topological
closures of the sets L ∈ B.

The Stone Space of the full Boolean algebra P (A∗) is a special case, also
known as the Stone-Čech compactification of A∗, which is denoted by β(A∗) =
S(P(A∗)). For a Boolean algebra B ⊆ P (A∗), we denote the canonical projection
from β(A∗) onto S(B) by πB. Let A∗ and B∗ be two free monoids and f : A∗ →
B∗ be a function. Then there exists a unique continuous extension βf : βA∗ →
βB∗, which is defined by

L ∈ βf(γ) ⇔ f−1(L) ∈ γ.

See [11].

Definition 10 (Equation). An ultrafilter equation is a tuple (μ, ν) ∈ βA∗ ×
βA∗. Let B be a boolean algebra. We say that B satisfies the equation (μ, ν) if
πB(μ) = πB(ν). With respect to some Boolean algebra B we say that [μ ↔ ν]
holds.

Lemma 11. Let B be a subalgebra of P (A∗). For μ, ν ∈ βA∗ we have πB(μ) =
πB(ν) iff for all L ∈ B the equivalence L ∈ μ ⇔ L ∈ ν holds.

Proof. The projection πB is given by πB(μ) = {L ∈ μ | L ∈ B} and thus the
equivalence holds.

Recently, Gehrke, Grigorieff and Pin [9] were able to show that any Boolean
algebra of languages can be defined by a set of equations of the form [μ ↔ ν],
where μ and ν are ultrafilters on the set of words. That is L ∈ B if and only if
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for all equations [μ ↔ ν] of B the equivalence L ∈ μ ⇔ L ∈ ν holds. We say a set
of equations is sound, if all L in B satisfy the equivalence above and complete,
if a language in A∗ satisfying all equations is in B.

This theorem provides us with the existence of ultrafilter equations for
(V � Parb)A. However, it does not answer the question on how to obtain them.
The following lemma provides us with a set of equations that define precisely the
kernel of the projection π(V � Parb)A

. It builds on the knowledge, that (V � Parb)A

was defined by the functions τD.

Lemma 12. Let μ, ν ∈ βA∗. Then for each partition D of N2 the Boolean alge-
bra V(A×D) satisfies the equation [βτD(μ) ↔ βτD(ν)] if and only if [μ ↔ ν] is an
equation of (V � Parb)A.

Proof. Let μ, ν ∈ βA∗ such that [βτD(μ) ↔ βτD(ν)] holds for all partitions D of
N

2 and let L ∈ (V �Parb)A be a generator of the Boolean algebra. Recall that
by definition there exists a partition D of N2 and a language S ∈ V(A×D) such
that L = τ−1

D (S). Then

L ∈ μ ⇔ τ−1
D (S) ∈ μ ⇔ S ∈ βτD(μ) ⇔ S ∈ βτD(ν) ⇔ τ−1

D (S) ∈ μ ⇔ L ∈ ν.

This proves both directions of the claim.

This set of equations already provides us with a full characterization of
(V � Parb)A, but we are interested in a set that satisfies conditions that are
easier to check and still is sound and complete.

5 Equations for the Block Product

In this chapter we find a set of equations that holds for (V �Parb)A, depending
on the equations that define the variety V of the gate types, which in our case
is regular and commutative. As a corollary, we expose separation results for a
selection of classes, to demonstrate the applicability of the equations.

As we describe the base of the circuits by a variety V of regular languages,
we use a description that has already been applied in the regular case. Thereto,
we introduce the notion of identities of profinite words. Here, we define a profi-
nite word as an ultrafilter on the regular languages. Commonly a different but
equivalent [16] definition is used. For the interested reader, we refer to [18]. The
combined results of Reiterman [17] and Eilenberg [8] state that for each variety
of regular languages V, there is a set of profinite identities, defining the vari-
ety. Informally speaking, an identity is an equation that holds not only for a
language, but also for all quotients of a language.

As such, we can define the notion of profinite identities in the following way:
A Boolean algebra of regular languages B satisfies the profinite identity [u = v],
where u, v ∈ S(Reg) instead of u, v ∈ β(A∗), if for all L ∈ B the equivalence
x−1Ly−1 ∈ u ⇔ x−1Ly−1 ∈ v for all x, y ∈ A∗ holds. As varieties are closed
under quotients, it suffices to consider L ∈ u ⇔ L ∈ v for all L ∈ B.
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To define the equations that hold for (V � Parb)A, we define a function, that
gets as arguments a word w, another word s and a vector of positions p, such
that the positions of p in w are substituted by the letters of s. Naturally, such
a substitution only makes sense, if the input is restricted to be reasonable. For
instance the positions in p should not exceed the length of the word w. For tech-
nical reasons, each element of the vector of positions will be a tuple containing
the distance of the position from the beginning and the end of the word.

For an element p ∈ N
2 denote by p1 the first and by p2 the second component

of p, i.e. p = (p1, p2). We define the set of correct substitutions

D =

⎧
⎨

⎩(w, s, p) ∈ A∗ × A∗ × (N2)∗

∣∣∣∣∣∣

|s| = |p|
∀i : |w| − 1 = p1i + p2i
p10 < . . . < p1|p|−1 < |w|

⎫
⎬

⎭ .

Given a word w = w0 . . . wm−1 ∈ A∗ of length m and k, l with 0 ≤ k ≤ l < m, we
define wk,l = wk . . . wl. Let n be the length of s, then the function f : A∗ × A∗ ×
(N2)∗ → A∗ is defined as

f(w, s, p) =

{
w0,p1

0−1s0wp1
0+1,p1

1−1s1 . . . sn−1wp1
n−1+1,m−1 if (w, s, p) ∈ D,

w otherwise.

Furthermore, define the function that maps the second component to its length as

λ : A∗ × A∗ × (N2)∗ → A∗ × N × N
∗

(w, s, p) �→ (w, |s| , p)

and let π2 : A∗ × A∗ × (N2)∗ → A∗ with π2(w, s, p) = s be the projection on the
second component.

As the function f substitutes letters in certain positions, we need the follow-
ing definition in order to define which positions of p are “indistinguishable” by
a language in (V �Parb)A.

Define the mapping πc : A∗ × A∗ × (N2)∗ → P(N2) that maps the third
component onto its content, given by πc(w, s, p) = {p0, . . . , p|p|}. Note that any
finite subset of N

2 is a finite subset of β(N2) and thus πc can be interpreted
as a mapping into the space F(N2) of all filters of P(N2), by sending it to
the intersection of all ultrafilters containing the set. Furthermore, β(N2), which
contains all ultrafilters of P(N2) can be seen as a subspace of F(N2), which
is homeomorphic to Vietoris of β(N2). Then there exists and extension of πc

denoted by βπc, known as the Stone-Čech extension βπc : β(A∗ ×A∗ × (N2)∗) →
F(N2).

Together with these definitions we can formulate the theorem that provides
us with a set of equations for (V �Parb)A.

Theorem 13. The variety (V �Parb)A is defined by the equations

[βf(γu) ↔ βf(γv)].

where [u = v] is a profinite equation that holds on V and γu, γv ∈ β(A∗ × A∗ ×
(N2)∗) satisfying
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(1) βλ(γu) = βλ(γv)
(2) u ⊆ βπ2(γu) and v ⊆ βπ2(γv)
(3) βπc(γu) = βπc(γv) ∈ β(N2)

Proof. For the proof of soundness and completeness of these equations in [18].

While the following separation result itself is not surprising, and strong sep-
arations are known, the proof method has the advantage that there is no need
for probabilistic methods to find specific inputs for the circuits to be fixed or
swapped.

For a fixed x ∈ A∗ define the profinite word, also denoted by x as

x = {L ∈ Reg | x ∈ L}
and xω as

xω = {L ∈ Reg | ∃n0 ∈ N ∀n ≥ n0 : xn! ∈ L}
The following varieties are used for characterization of V �Parb by equations
(Fig. 2).

Gates Profinite Identities Circuit Class (constant size)

{∧,∨} xy = yx x2y = xy2 AC0

{∧,∨,modp | p ∈ N} xy = yx ACC0

{modp | p ∈ N} xy = yx xω = yω CC0

Fig. 2. Varieties defining the gate types and the defining profinite identities.

Corollary 14. Constant size CC0 is strictly contained in constant size ACC0

and constant size AC0 is strictly contained in constant size ACC0. Also constant
size CC0 and constant size AC0 are not comparable.

Proof. We show this by proving LAND = 1∗ is not contained in constant size
CC0 and parity LPARITY = (0∗10∗1)∗0∗ is not contained in constant size AC0.

For that we construct ultrafilters from filterbases, using Lemmata 27, 28 and
Theorem 29 from [18], such that they satisfy conditions 1.-3. from Theorem 13.

Take the identity [0ω = 1ω], that holds for the variety providing us with the
gate types of CC0. By Theorem 13, we know that for any two ultrafilters γ0ω

and γ1ω satisfying the conditions of the Theorem, provide us with an equation
[βf(γ0ω ) ↔ βf(γ1ω )]. In constructing two such filters, such that LAND is con-
tained in βf(γ0ω ), but not in βf(γ0ω ), we prove that it is not an element of
constant size CC0. Consider the filter base

F1 = {A∗ × {n! | n ≥ N} × (N2)∗ | N ∈ N}
and the second base
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F2 = {
n⋃

i=0

A∗ × N × P ∗
i | {P0, . . . , Pn} is a partition of N2}.

Adding the two together yields another filterbase, denoted by F , as none of the
elements have empty intersection. Let μ ∈ β(A∗ × N × N

∗) be an ultrafilter
containing the filter base F . Next, consider the set

1∗ × {1n! | n ∈ N} × (N2)∗.

By definition of f , we obtain f(1∗ × {1n! | n ∈ N} × (N2)∗) ⊆ LAND and thus
1∗ ×{1n! | n ∈ N}× (N2)∗ ⊆ f−1(LAND). Adding this to the pullback by λ−1(μ)
yields another filter base, denoted by F1ω . By F0ω we denote the base λ−1(μ)
when adding the set

1∗ × {0n! | n ∈ N} × (N2)∗.

Let γ0ω be an ultrafilter containing F0ω and γ1ω be an ultrafilter containing
F1ω . Then both ultrafilters satisfy conditions 1.-3. of the Theorem, such that
[βf(γ0ω ) ↔ βf(γ1ω )] holds for CC0. But LAND ∈ βf(γ1ω ) and LAND /∈ βf(γ0ω ).
Hence LAND is not in constant size CC0.

Equivalently, we use the identity [110 = 100] satisfied by the variety corre-
sponding to the gate types of AC0. Again let

F2 = {
n⋃

i=0

A∗ × N × P ∗
i | {P0, . . . , Pn} is a partition of N2}.

Adding the set A∗ × {3} ×N
∗ yields a filter base F ′. Let ν ∈ β(A∗ ×N×N

∗) be
an ultrafilter containing F ′. Consider the sets

S110 = 0∗ × {110} × (N2)∗ and S100 = 0∗ × {100} × (N2)∗.

Adding the set S110 to the pullback λ−1(ν) provides us with a new filter base F110

and respectively adding S100 to λ−1(ν) with a filter base F100. Let γ110 be an
ultrafilter containing F110 and γ100 be an ultrafilter containing F100. Then both
ultrafilters satisfy conditions 1.-3. of the main theorem and thus [βf(γ110) ↔
βf(γ100)] is an equation satisfied by constant size AC0. Since f(S110) ⊆ LPARITY

and f(S100) ⊆ Lc
PARITY, we obtain LPARITY ∈ βf(γ110) but LPARITY /∈ βf(γ100)

and thus it is not in constant size AC0.

6 Conclusion

We have presented a method to describe circuit classes by equations. The tools
and techniques used originate from algebra and topology and have previously
been used on regular language classes. Due to recent developments in generalizing
these methods to non-regular classes, they are now powerful enough to describe
circuit classes. But the knowledge that they are powerful enough itself is not
sufficient, as we require a constructive mechanism behind these descriptions.
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Since non-uniform circuit classes are by definition not finitely presentable, this
seemed to be impossible.

Nevertheless, we were able to find a description of small but natural circuit
classes via equations. This description seems helpful as it easily allows to prove
non-membership of a language to some circuit class. Another advantage is the
possibility of using Zorn’s Lemma for the extension of filter bases to ultrafilters,
which prevents us from having to use probabilistic arguments in many places.
Also in [18], Lemma 34, we use purely topological arguments of convergence to
prove completeness, for which it is unclear how this could be achieved purely
combinatorially.

The results we acquired are not so different from the results about equations
for varieties of regular languages by Almeida and Weil [2]. This gives hope that
their results can be used as a roadmap for further research.

In [7] it was shown that a certain restricted version of the block product of
our constant size circuit classes would actually yield linear size circuit classes
(over the same base). Here having equations for all languages captured by this
circuit class, not just the regular ones, would pay off greatly. By showing that a
padded version of a language is not in a linear circuit class we could already prove
that PARITY is not in a polynomial size circuit class. Equations for non-regular
language classes could be used to overcome previous bounds. The separation
results in the corollary can easily be extended to show that a padded version of
those languages is not contained in these circuit classes.

A different approach would be to examine the way the block product was
used here. The evaluation of a circuit is equivalent to a program over finite
monoids. While the program itself has little computational power, it allows non-
uniform operations like our N-transducers. The finite monoid itself corresponds
loosely speaking to the computational power of the gates of the circuit, which was
handled by our variety V. For general circuit classes one would need to consider
larger varieties containing also non-commutative monoids. While the methods
here seem to be extendable to non-commutative varieties, the more complicating
problem remaining is to find an extension of the block product that corresponds
to polynomial programs over these monoids.
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Abstract. We study Minimum Entropy Submodular Set Cover, a vari-
ant of the Submodular Set Cover problem (Wolsey [21], Fujito [8], etc.)
that generalizes the Minimum Entropy Set Cover problem (Halperin and
Karp [11], Cardinal et al. [4]) We give a general bound on the approxi-
mation performance of the greedy algorithm using an approach that can
be interpreted in terms of a particular type of biased network flows. As
an application we rederive known results for the Minimum Entropy Set
Cover and Minimum Entropy Orientation problems, and obtain a non-
trivial bound for a new problem called the Minimum Entropy Spanning
Tree problem. The problem can be applied to (and is partly motivated
by) a worst-case approach to fairness in concave cooperative games.

Keywords: Submodular set cover · Minimum entropy · Approximation
algorithms

1 Introduction

Submodularity encodes the notion of diminishing returns and plays a crucial
role in many problems in combinatorial optimization [7], cooperative game the-
ory [5,19], information theory [16] and in applications like clustering, learning,
natural language and signal processing or constraint satisfaction. Submodular
optimization is well-understood: minimization has polynomial time algorithms
[12,18]; maximization is intractable but has efficient approximation algorithms.
Minimizing the cost is not the only possible objective for submodular optimiza-
tion: a problem in computational biology led Halperin and Karp [11] to study
a Minimum Entropy version of the Set Cover problem (MESC). MESC is NP-
hard, but the GREEDY algorithm produces [11] an approximate solution with
an additive approximation guarantee. The optimal constant is log2(e) [4].
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It must be stressed that minimizing entropy is a reasonably common scenario:
the authors of [4] subsequently studied other combinatorial problems under min-
imum entropy objectives [13,14]. Minimal Entropy Graph Coloring is relevant
in coding and information theory [1]. Entropy minimization has been applied
e.g. to word segmentation [20] or (for the non-extensive entropy) to maximum
parsimony haplotype inference [10].

In this paper we join these two directions, submodularity and combinatorial
optimization under a minimum entropy objective, by investigating an extension
of MESC we call Minimum Entropy Submodular Set Cover (MESSC). While the
problem is clearly NP-hard (as a generalization of MESC), our main result shows
that the approximation guarantees of the GREEDY algorithm for MESC extend
to MESSC, with the additional appearance of a certain covering parameter that
has an interpretation in terms of a type of certain “biased” network flows. This
interpretation allows a fairly illuminating rederivation of results in [13,14] and
applications to several new problems, which are special cases of MESSC.

Besides the conceptual integration, the framework we investigate was devel-
oped with several applications in mind. The most important of them (developed
in a companion paper [3]) concerns the development of a worst-case approach
to fairness in concave cooperative games similar in spirit to the price of
anarchy from noncooperative game theory. We measure unfairness of an alloca-
tion in the core by the entropy of the associated distribution, and seek allocations
in the core minimizing entropy. Here we analyze a concrete example of such a
game, the Minimum Entropy Spanning Tree (MEST) problem.

The organisation of the paper is as follows: in Sect. 2 we briefly review some
relevant concepts and notions. In Sect. 3 define the problems we are interested
in and show that they are NP-hard; next we introduce a greedy approach to
Minimum Entropy Submodular Set Cover. Section 4 contains our main result:
we quantify the performance of the GREEDY algorithm in terms of an instance-
specific “covering constant”. We then rederive (in Sect. 6) existing results on
the performance of the GREEDY algorithm for the Minimum Entropy Orien-
tations and Set Cover problems [13,14]. Section 7 contains an interpretation of
the covering constant using network flows that allows us to tighten up our main
theorem using a “multi-level” version of our covering constant. As an application
we obtain in Sect. 8 a result on the approximability of the Minimum Entropy
Spanning Tree problem that matches the log2(e) bound for MESC from [4].

Because of space constraints, some proofs are omitted from this extended
abstract. We refer the reader to an extended version available online [9].

2 Preliminaries

We will use the Shannon entropy of a distribution P = (pi)i∈I , defined as
Ent(P ) = −∑

i∈I pi log2(pi). We will assume general familiarity with submodu-
lar optimization, see e.g. [7]. In particular a set function f : P(U) → R+ will be
called integer if range(f) ⊆ Z, monotone if f(S) ≤ f(T ) whenever S ⊆ T ⊆ U ,
submodular if f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ U , modular if
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f(S) + f(T ) = f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ U , and polymatroid if f is
monotone, submodular and satisfies f(∅) = 0.

An instance of the (Minimum Cost) Set Cover (SC) is specified by a universe
Z and a family P = {P1, . . . ,Pm} of parts of Z. Each set Pi comes with a
nonnegative cost c(i). Given set X ⊆ Z, a cover of X is a function g : X → [m]
such that for every x ∈ X, x ∈ Pg(x) (“x is covered by Pg(x)”). The goal is to
find a cover g of Z whose cost, defined as cost[g] =

∑
j∈range(g)

c(Pj), is minimized.

The following classical generalization called submodular set cover (SSC) [8,21]
shares many properties with SC: we are given an integer polymatroid f and a
cost function c : U → R+. The cost of a set S ⊆ U , denoted cost(S), is simply
the sum of costs of its elements. Feasible solutions to SSC are subsets S ⊆ U
with f(S) = f(U). The goal is to find a feasible subset S ⊆ U of minimum cost.

An equivalent restatement of SSC relies on the notion of matroids and related
concepts (such as basis and flats) we will assume known (see [17]):

Proposition 1. The following problem is equivalent to SSC: given matroid M =
(U, I) and a covering P = {P1, . . . ,Pm} of the universe U find a basis B of M
and a cover g : B → [m] of B such that c[g] is minimized.

Proof. We use the well-known representation of polymatroids as the rank func-
tion of a system of flats in a matroid (Theorem 12.1.9 in [17]): for every
f : [m] → Z there exists a matroid M and a set of flats of M, P = {P1, . . . ,Pm}
such that for all S ⊆ M , f(S) = rankM

( ∪i∈S Pi

)
. See the extended online

version [9] for more details and a self-contained proof. 
�
On the other hand, Halperin and Karp introduced [11] the following variation

on SC called Minimum Entropy Set Cover (MESC): Consider an instance of SC,
Z = {u1, u2, . . . , un}, n ≥ 1, P = {P1, P2, . . . , Pm}. Given X ⊆ Z and cover
g : X → [m] of X, the entropy of g is Ent[g] = − ∑

i∈[m]

|g−1({i})|
|X| ln

(
|g−1({i})|

|X|
)
.

The goal is to find a cover g of Z of minimum entropy.

3 Minimum Entropy Submodular Set Cover: Definition,
Special Cases and Applications

The following definition states the problem we are interested in this paper:

Definition 2 [Min-Entropy Submodular Set Cover] (MESSC): Given a
matroid M = (U, I) of rank N , find a basis B and a cover g of B minimizing
Ent[g].

MESSC indeed generalizes MESC: if M is the transversal matroid of the bipartite
graph G = (U,P) naturally associated to instance X = (U,P) of MESC then
solving instance M of MESSC is equivalent to solving instance X of MESC.

Problem MESSC has applications to fuzzy set theory: a fuzzy measure (Cho-
quet capacity) is an extension of a probability measure. Submodular Choquet
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capacities coincide with polymatroids. Various definitions of the notion of the
entropy of a Choquet capacity have been proposed in the literature. One such
definition, due to Dukhovny [6], is of special interest: for submodular capacities,
it is equivalent to our definition of Minimum Entropy Cover (proof details could
be funded in [9]). Thus solving MESSC is equivalently stated as computing the
Dukhovny entropy of a submodular Choquet capacity.

Polymatroids are just a different name for concave games in theory of coop-
erative games [5]. If (M,P) is the rank representation of an integer polymatroid
f , then the convex hull of the incidence vectors of bases in M (the matroid
polytope) coincides with the core of the cooperative game defined by f . Since
entropy is a concave function, its minimum over the core(f) is obtained at an
extremal point. That is, finding a basis of minimum entropy is equivalent to
finding a minimum entropy imputation in the core. MESSC can, therefore, be
restated as follows:

Definition 3. Given an integer-valued polymatroid f , find a vector (x1, . . . , xm)

of nonnegative reals satisfying
m∑

i=1

xi = f([m]) and, for all S ⊆ [m],
∑

i∈S xi ≤

f([S]) minimizing the entropy of distribution
(

xi

f([m])

)

i=1,...,m.

We will freely switch between the two equivalent definitions of MESSC.
A class of matroids that yields a particular interesting class of cooperative

games is that of cycle matroids of a connected graph. We will call the correspond-
ing particularization of MESSC the Minimum Entropy Spanning Tree (MEST)
problem; it can be specified as follows: we define a cover of a spanning tree T in
a graph G as an orientation of its edges. The entropy of a cover is the entropy
of the distribution of indegrees (the number of edges oriented to the vertex).
The objective is to find a spanning tree T of G and a cover of T of minimum
entropy. Intuitively in MEST players correspond to graph nodes, each of which
may contribute the edges it is adjacent to, each at a unit cost. The submodular
(cost) function is f(S) = |{v ∈ V : v ∈ S or ∃w ∈ S, (v, w) ∈ E}| for S ⊆ V .
The goal of the players is to form a spanning tree with the contributed edges.
We seek the “most unfair” spanning tree.

Theorem 4 (proved in the full version [9]). The decision problem associated to
MEST is NP-hard.1

Finally, we would like to mention a potential practical application of MESSC
to Web Search Diversification: Matroids are a natural way to encode diversity
in web search results [22]. One could formalize this by following special case of
MESSC, a generalization of MESC, called Minimum Entropy Diverse Multicover
(MEDM). We are given a bipartite graph of queries and pages, and an integer
k ≥ 1. Each web page p ∈ P has a type t(p) from a set of types T . We assume
that each query is adjacent to pages of at least k types. Feasible solutions are
1 The problem is NP-hard, rather than NP-complete, since its specification involves
general real numbers that may put it outside class NP.
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k-covers, i.e. a set of edges covering the n queries, each query by exactly k pages
(a top-k answer) and all the types of pages that cover a given query are distinct.
We seek a partial cover with minimal entropy. A justification for this objective
function comes from adapting the maximum likelihood approach developed by
Halperin and Karp [11] for MESC to our problem.

3.1 The Greedy Algorithm

We will denote by XOPT an optimal solution for an instance of MESSC. Also,
given a permutation σ ∈ Sm define vector Xσ as follows: for 1 ≤ i ≤ m,
Xσ(σ(i)) = f({σ(1), σ(2), . . . , σ(i)}) − f({σ(1), σ(2), . . . , σ(i − 1)}). It is easy
to see that, for every σ ∈ Sm, Xσ is a feasible (but perhaps not optimal) solu-
tion to instance f of MESSC, and that one of Xσ, σ ∈ Sn, is an optimal solution.
This is easy to see using the language of cooperative games: in concave games the
core is non-empty, a polytope whose extremal points are those produced greedily
on permutations of U , that is Xσ. Since the entropy is a concave function, the
optimum is reached at some extremal point Xσ.

A GREEDY approximation algorithm is presented in Algorithm1. Note that
it is well known that the resulting vector is also one of the vectors Xσ. We will
use, throughout the rest of the paper, the following notations: i1, i2, . . . , im will
be the indices chosen by the GREEDY algorithm, in this order. Furthermore, we
define for 1 ≤ r ≤ m the greedy rank function by rank(ir) = r. For 1 ≤ r ≤ m,
Wr = {i1, . . . , ir} is the set of first r elements added by the GREEDY algorithm;
also W0 = ∅. XGR

r = f(Wr) − f(Wr−1) is the increase in the objective function
caused by the choice of the r’th element.

input : An instance (U, f) of MESSC
output: Vector XGR = (XGR

r )r∈[m]

S := ∅, r := 1;
while S �= U do

choose i ∈ U \ S that maximizes f(S ∪ {i}) − f(S) (amount may be 0);
XGR

r := f(S ∪ {i}) − f(S);
S := S ∪ {i}; r+ = 1

end

Algorithm 1. Greedy algorithm for Minimum Entropy Submodular Set
Cover.

4 Main Result and Definition of the Covering
Coefficient α

By the analogy with MESC, we would expect to upper bound the entropy of the
cover produced by the GREEDY algorithm by the entropy of the optimal cover
plus log2(e). We almost accomplish this: our upper bound further depends on a
covering constant α. It can be stated as follows:
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Theorem 5. Given a polymatroid G = (U, f), the greedy algorithm produces a
solution XGR to the instance G of MESSC related to the optimal cover XOPT

by the relation:

Ent[XGR] ≤ 1
α

· [Ent[XOPT ] + log2(e)] + [1 − 1
α

] log2(n) (1)

The rest of the section is devoted to precisely defining α. First we define a
quantity that will play a fundamental role in our results: for any 1 ≤ r, j ≤ m
let aj

r = f(Wr) − f(Wr−1) − (f(Wr ∪ {j}) − f(Wr−1 ∪ {j})) . The best way to
make sense of the (admittedly unintuitive) definition of the aj

r coefficients is to
particularize them in the case of the set cover problem. In this case coefficients aj

r

have a very intuitive description: they represent the size of the intersection of the
j’th set Pj to the r’th set in the GREEDY solution. Indeed, f(Wr) − f(Wr−1)
is the number of elements newly added by GREEDY at step r, whereas the
subtracted term f(Wr ∪ {j}) − f(Wr−1 ∪ {j}) is the number of elements that
would still be newly added if Pj were present too.

Proposition 6. For any 1 ≤ r, j ≤ m we have aj
r ≥ 0.

When j ∈ Wr this follows directly from the monotonicity of f. Assume now that
j /∈ Wr, and employ the submodularity of f with S = Wr, T = Wr−1 ∪ {j}. 
�

To define the covering coefficient α we introduce a large number of apparently
superfluous variables Zj

r . Intuitively Zj
r is the portion of optimal solution XOPT

j

that can be assigned to cover XGR
r . This explains the equations below: first,

one has to allocate all of XOPT
j and no more than that. Second, one cannot

allocate to any “set XGR
r ” more than “its intersection with XOPT

j ”. The quoted
statements above make full sense, of course, only for regular set cover.

Definition 7. Given a polymatroid G, let α = αG the smallest positive value
such that there exist Zj

r ∈ Z, Zj
r ≥ 1 so that the following inequalities hold

m∑

r=1

Zj
r = XOPT

j , 1 ≤ j ≤ m (2)

m∑

j=1

Zj
r ≤ α · XGR

r , 1 ≤ r ≤ m (3)

Given the discussion above, α can be seen as a covering coefficient. It mea-
sures the amount of “redundancy” inherent into “assembling” the GREEDY
solution from pieces obtained by breaking up the optimal solution.

Proposition 8. The coefficient α is always greater than or equal to 1.

Proof. Sum all Eq. (3) for all r = 1, . . . ,m. The left-hand side is
m∑

r=1

(
m∑

j=1

Zj
r

)
=

m∑
j=1

(
m∑

r=1
Zj

r

)
=

∑m
j=1 XOPT

j = N.

On the other hand the right-hand side is α·
m∑

r=1
XGR

r ≤ α·N, by the GREEDY

algorithm. The result follows. 
�
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5 Proof of Main Result

By the greedy choice we infer XGR
r = f(Wr−1 ∪ {ir}) − f(Wr−1) for any 1 ≤

r ≤ m. We first prove several auxiliary results:

Lemma 9. For any j ∈ [m] we have
m∑

r=1
aj

r = f({j}).

Proof: By the definition of aj
k and using the equalities f(W0) = 0, f(Wm ∪

{j}) = f(Wm) = N we have:

m∑

r=1

aj
r =

m∑

r=1

(f(Wr) − f(Wr−1) − (f(Wr ∪ {j}) − f(Wr−1 ∪ {j}))) = f(Wm)

− f(W0) − (f(Wm ∪ {j}) − f(W0 ∪ {j})) = N − (N − f({j})) = f({j}). 
�

Lemma 10. Given r, j ∈ [m] we have f({j}) −
r∑

k=1

aj
k = f(Wr ∪ {j}) − f(Wr).

Proof: Similarly with the previous proof, based on the coefficients definition
and by using the equations f(W0) = 0, f(W0 ∪ {j}) = f({j}) is obtaining the

proof.
r∑

k=1

aj
k = f(Wr)−f(W0)−(f(Wr ∪ {j}) − f(W0 ∪ {j})) = f(Wr)−f(Wr∪

{j}) + f({j}). 
�

Lemma 11. We have
m∏

r=1

(
XGR

r

)αXGR
r ≥

m∏
j=1

(
XOPT

j

)
!.

Proof: By the greedy choice, Lemmas (9), (10) and Zj
r ≤ aj

r: XGR
r = f(Wr−1 ∪

{ir}) − f(Wr−1) ≥ f(Wr−1 ∪ {j}) − f(Wr−1) = f({j}) −
r−1∑
k=1

aj
k =

m∑
k=r

aj
k ≥

m∑
k=r

Zj
k = XOPT

j − ∑r−1
k=1 Zj

k.

Thus
m∏

j=1

(
m∏

r=1

(
XGR

r

)Zj
k

)
≥

m∏
j=1

⎛

⎝
m∏

r=1

(
XOPT

j −
r−1∑
k=1

Zj
k

)Zj
k

⎞

⎠ ≥
m∏

j=1

(
XOPT

j

)
!

By Definition (7):
m∏

j=1

(
m∏

r=1

(
XGR

r

)Zj
k

)
=

m∏
r=1

(
XGR

r

)
m∑

j=1
Zj

k ≤
m∏

r=1

(
XGR

r

)αXGR
r .


�
With Lemma (11) in hand, we get

ENT [XGR] = −
m∑

r=1

XGR
r

n
log2

(
XGR

r

n

)
= −

m∑

r=1

XGR
r

n
log2(X

GR
r ) + log2(n)

= − 1
nα

log2
m∏

r=1

(
XGR

r

)αXGR
r + log2 n ≤ − 1

nα
log2

∏

j∈OPT

(
XOPT

j

)
! + log2 n
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Using inequality n! ≥ (
n
e

)n we infer:

ENT[XGREEDY] ≤ − 1
nα

log2
∏

j∈OPT

(
XOPT

j

e

)XOPT
j

+ log2 n

= − 1
nα

∑

j∈OPT

XOPT
j

(
log2 XOPT

j − log2 e
)

+ log2 n

=
1
α

( −
∑

j∈OPT

Xj

n
log2

Xj

n
− log2 n

)
+

1
α

log2 e + log2 n

=
1
α

(
ENT[XOPT] + log2 e

)
+

(
1 − 1

α

)
log2 n. 
�

6 Applications: Special Cases with α = 1

A simple problem where one can determine the value of α is the Minimum
Entropy Orientation (MEO) problem [13,14]. The input to MEO is a graph
G = (V,E). An orientation of G is a function u : E → V such that for all e ∈ E,
u(e) is one of the vertices of e. The entropy of orientation u is defined in an
obvious way, as the entropy of the distribution of indegrees. The objective is to
find an orientation u of G that minimizes the entropy.

MEO is a special case of MESC: each instance G = (V,E) of MEO can
be regarded as an instance of MESC with submodular cost function f : V →
Z, f(S) = |{e ∈ E : e ∩ S = ∅}|. We first recover (using a different method)
the upper bound on the performance of the GREEDY algorithm for MEO (an
algorithm that is, however, not optimal [13]).

Proposition 12. For any instance G of MEO, αG = 1.

Proof. A simple application of the definition of f yields aj
r = 1, if ir =

j, (ir, j) ∈ E, j ∈ Wr; aj
r = XGR

r , if ir = j; aj
r = 0, otherwise. This allows us

to turn an orientation of minimum entropy (corresponding to an optimal solu-
tion) into the greedy orientation (and define coefficients Zj

r ) as follows:

– At each stage r, after the choice of ir we reorient the edges (j, ir), j ∈ Wr that
have different orientations in the optimal and greedy solution. Correspond-
ingly, we define Zj

r = 1 for such edges.
– Also let Zir

r be the number of edges (j, ir) that are oriented towards ir in
both the greedy and the optimal orientation. Note that there are at most
air

r = XGR
r such edges.

– Note that an edge that is reoriented at stage r is not reoriented again at a
later stage (because of the restriction j ∈ Wr). Hence the process ends up

with the greedy solution. In other words
m∑

j=1

Zj
r = XGR

r (as we add one unit

for each edge counted by XGR
r ). 
�
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We can also rederive the results of Cardinal et al. on MESC using our
approach:

Proposition 13. For any instance G of MESC αG = 1.

Proof. For MESC the submodular function is f(S) = | ∪i∈S Pi|, for S ⊆ [m].
By a direct application of their definition aj

r = |(Pir \ ∪r−1
k=1Pik

) ∩ Pj |.
Let u : [N ] → [m] be an optimal solution to MESC, i.e. for any 1 ≤ i ≤ N ,

i ∈ Pu(i) and the cover specified by u has minimum entropy. Denote, for j =
1, . . . ,m, Uj = {x ∈ [N ] : u(x) = j}. Uj ⊆ Pj is the set of elements assigned by
cover u to set Pj . Define, for 1 ≤ r ≤ l

Zj
r = |Uj ∩ (

Pir \ ∪r−1
k=1Pik

)|. (4)

Then 0 ≤ Zj
r ≤ aj

r. Moreover

l∑

r=1

Zj
r =

l∑

r=1

|Uj ∩ (
Pir \ ∪r−1

k=1Pik

)| = |Uj |

m∑

j=1

Zj
r =

m∑

j=1

|Uj ∩ (
Pir \ ∪r−1

k=1Pik

)| = |(Pir \ ∪r−1
k=1Pik

)|,

(as each of the two set systems (Uj)j∈[m] and
(
Pir \ ∪r−1

k=1Pik

)m

r=1
consists of

disjoint sets), hence Xj = |Uj | and Zj
r satisfy the conditions for α = 1. 
�

7 Network Flow Interpretation of α and a Multistage
Approach

Theorem 5 is, of course, most interesting when αG = 1, matching the log2(e)
additive guarantee of MESC. However, there exist instances G of MESSC for
which the associated constant αG is strictly greater than 1.

To circumvent this problem we will develop a more powerful technique: we
first reinterpret the constant αG using one-stage network flows. This will allow us
to generalize our method to multistage flows, characterized by a related constant
βG. A variant of Theorem 5 holds for the constant βG as well. The extension
allows us to prove that the log2(e) additive guarantee is valid for all instances
of MEST; the result follows from a multistage flow construction witnessing that
for any instance G of MEST βG = 1.

Consider the flow network in Fig. 1 (a). In addition to source/sink nodes s, t,
F has two layers of nodes; the first layer of nodes corresponding to the optimal
solution, the second layer of nodes corresponding to the greedy one. In each layer
we have a node for every player in the game. Edges appear between nodes of
type k and ir, with capacity equal to ar

k. The fact that the first layer of nodes
corresponds to the optimal solution is reflected by setting capacity XOPT

j on the
edge between node s and node j. Similarly, capacities between node ir of the
second layer and node t are set to value XGR

r . These values are seen as requests
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Fig. 1. (a) Network flow interpretation of the constant α. (b) Multistage flow network
between solutions.

of node Yr that may be satisfied by the flow (which in general might send an
amount larger than XGR

r to this node).
It follows that αG = 1 amounts to the existence of an integer flow fl of value

N in the flow network of Fig. 1 (a) (that is, fl satisfies the request of each node
Yr exactly). More generally, α is the minimum amount needed to multiply the
capacities on the edges entering t in order to accommodate a s − t integer flow
with value N .

Our solution to MEO could be easily recast in terms of flows: we construct the
flow iteratively, by considering the paths between a node in the first layer and a
node in the second layer. The induction starts determined by the order of second-
layer nodes (corresponding to the GREEDY algorithm) and then continue by
the order of the nodes in the first layer (according to a fixed ordering).

There are lessons to be learned from the construction this flow and our proof
of Theorem 5: The key point was that when we had to reorient an edge towards
a node in the greedy solution, we could do so without overflowing this node.
Similarly, the general proof depended on the following invariant we maintained
(*): XGR

r ≥ ∑l
k=r Zj

k. Condition (*) does not have a direct flow interpretation,
since XGR

r is the request, rather than the actual flow value at the given node.
However, its relaxation involving α does: the actual flow into node yr is at
most αXGR

r , so requiring that the total flow into node yr is at least
∑l

k=r Zj
k

guarantees the following relaxed version of equation (*): α · XGR
r ≥ ∑l

k=r Zj
k.

We will see (in Theorem 16) that the relaxed condition can be applied as well.
We generalize the setting of Theorem 5 by considering flow networks with

q ≥ 1 levels (see Fig. 1(b) for q = 2). The nodes in each level are ordered accord-
ing to a fixed ordering, e.g. the ordering induced by the GREEDY algorithm,
with nodes not chosen by this algorithm coming after all chosen nodes in a
fixed, arbitrary sequence. Capacities correspond either to values ar

j (if the cho-
sen indices are j and ir, respectively) or ∞, for edges between nodes with the
same index j but on different levels. Note that each path ending in a greedy
node with index ir has finite capacity, at most the capacity of its last edge. We
use the notation P : [j . . . k] to indicate the fact that path P starts at node j
on the first level and ends at node k on the last. Also write P ∼ v to indicate
the fact that path P is adjacent to node v. We will also need to consider a total
ordering < on paths (explicitly constructed when analyzing particular problems,
e.g. MEST):
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Definition 14. A flow fl is admissible with respect to total path ordering < if
for any path P between, say, node Xj and Yr, the remaining flow into node Xj

just before path P is considered is at most the final value of the final total flow
into node Yr. Formally

∑
Q∼Xj ,P≤Q fl(Q) ≤ ∑

W∼Yr
fl(W ).

Even in a multiple-layer flow network it may not be possible to obtain an admis-
sible flow of value N . As before, the solution is to multiply the capacities of
edges into node t by some fixed β ≥ 1.

Definition 15. Define βG as the infimum (over all multi-level flow networks
corresponding to the optimal and greedy solution) of all values β > 0 for which
there exists a path ordering < and a flow fl admissible w.r.t. < such that for
every pair of nodes j and r,

∑
j

(∑
P :[j...ir]

flP

)
≤ β · XGR

r . The reader is
requested to compare Definitions 7 and this definition.

Similarly to the proof of Proposition 8, we obtain β = βG ≥ 1. On the other
hand, admissibility will guarantee in general only a weaker version of Theorem 5
(though no weaker for the main setting we have in mind, β = 1):

Theorem 16. Given an instance G = (N, f) of MESSC the greedy algorithm
produces a solution XGR satisfying β · Ent[XGR] ≤ Ent[XOPT ] + log2(e) +
β log2(β) + (β − 1) log2(n).

The proof is almost identical to that of Theorem 5, and detailed in [9].

8 Application to MEST

Theorem 16 applies to MEST, yielding a nontrivial special case of MESSC with
the same additive constant as that of Minimum Entropy Set Cover:

Theorem 17. For any instance G of MEST, βG = 1. Therefore

Ent[XGR] ≤ Ent[XOPT ] + log2(e).

Proof. A rather construction of an admissible multistage flow, given in [9]. 
�
We conjecture that a similar result holds for MEDM, and that it can be

proved using multilevel flows (single level ones do not seem powerful enough).

9 Conclusions and Open Problems

The most important open question raised by our work is whether log2(e) is an
additive approximation guarantee for all instances of MESSC. A deeper matroid-
theoretic study of MESSC would be useful in this respect. Finding the optimal
additive approximation guarantee for MEST is an open problem as well.

Second, a problem in information theory called the Minimum Entropy Cou-
pling [15] problem led us to consider an extension of the framework from this
paper to string submodular functions. Variations on “worst-case fairness” are a
topic for further study, given the large variety of interesting combinatorial games
[2]. Finally, MESSC may have many potential practical applications, including
MEDM. It would be interesting to study more realistic version of this problem.
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Abstract. Capacitated automata (CAs) have been recently introduced
in [8] as a variant of finite-state automata in which each transition is
associated with a (possibly infinite) capacity. The capacity bounds the
number of times the transition may be traversed in a single run.

The study in [8] includes preliminary results about the expressive
power of CAs, their succinctness, and the complexity of basic decision
problems for them. We continue the investigation of the theoretical prop-
erties of CAs and solve problems that have been left open in [8]. In partic-
ular, we show that union and intersection of CAs involve an exponential
blow-up and that their determinization involves a doubly-exponential
blow up. This blow-up is carried over to complementation and to the com-
plexity of the universality and containment problems, which we show to
be EXPSPACE-complete. On the positive side, capacities do not increase
the complexity when used in the deterministic setting. Also, the con-
tainment problem for nondeterministic CAs is PSPACE-complete when
capacities are used only in the left-hand side automaton. Our results sug-
gest that while the succinctness of CAs leads to a corresponding increase
in the complexity of some of their decision problems, there are also set-
tings in which succinctness comes at no price.

1 Introduction

Finite automata (FAs) are used in the modeling and design of finite-state sys-
tems and their behaviors, with applications in engineering, databases, linguistics,
biology, and many more. The traditional definition of an automaton does not
refer to its transitions as consumable resources. Indeed, a run of an automaton
is a sequence of successive transitions, and there is no bound whatsoever on the
number of times that a transition may be traversed. In practice, the use of a
transition may correspond to the use of some resource. For example, it may be
associated with filling a buffer, consumption of bandwidth, or a usage of some
energy-consuming machine. In [8], the authors introduced capacitated automata
(CAs) – a variant of finite automata in which each transition is associated with
a (possibly infinite) capacity, which limits the number of times the transition
may be traversed in a single run.

c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 307–319, 2016.
DOI: 10.1007/978-3-319-30000-9 24



308 O. Kupferman and S. Sheinvald

The study in [8] examines CAs from two points of view. The first views
CAs as recognizers of formal languages. The interesting questions that arise in
this view are the classical questions about automata: their expressive power,
succinctness, closure properties, determinization, etc. The second view, more
related to traditional resource-allocation problems, views CAs as labeled flow
networks. The interesting questions then have to do with maximum utilization
of the system modeled by CA and can be viewed as a generalization of the
max-flow problem in networks [6].

Our work here continues the study of the first approach taken in [8]. There,
the authors study the expressive power of CAs, their succinctness with respect
to FA, and the basic decision problems of non-emptiness and membership. The
study in [8] also relates CAs with extensions of FAs of similar flavor. For com-
pleteness, we briefly repeat the main findings here. For a full description, see
[8]. Augmenting the transitions of automata by numerical values is common in
the quantitative setting, for example in probabilistic automata and weighted
automata [5,10]. There, the values are used for modeling probabilities, costs,
rewards, certainty, and many more. The semantics of these models is multi-
valued. CAs, on the other hand, maintain the Boolean nature of regular lan-
guages and only augment the way in which acceptance is defined. In this family
of extensions, we can find Parikh automata [7], whose semantics involves count-
ing of the number of occurrences of each letter in the word, and their variants,
in particular the constrained automata of [3]. The expressive power of Parikh
automata and their variants goes beyond regular languages, and the type of
questions studied for them is different than these studied for CAs. Additional
strictly more expressive models include multiple counters automata [4], where
transitions can be taken only if guards referring to traversals so far are satisfied,
and queue-content decision diagrams, which are used to represent queue content
of FIFO-channel systems [1,2]. Finally, a model with the same name – finite
capacity automata – is used in [9] for modeling the control of an automated
manufacturing system. This model is different from the CAs studied here and is
more related to Petri nets.

In order to describe the results in [8], we first need some definitions. Let Δ be
the set of transitions of a CA A and let c : Δ → N∪{∞} be its capacity function.
That is, for every transition τ ∈ Δ, a run of A can traverse τ at most c(τ) times.
A naive translation of A to an FA involves a blow-up that is polynomial in the
number γ of “capacity configurations”. Formally, γ = Πτ∈Δ:c(τ) �=∞(c(τ) + 1).
That is, for every transition τ with a bounded capacity, the FA has to remember
how many more times τ can be traversed. It is not hard to see that by attributing
the states of A by the current capacity configuration, we can obtain an equivalent
FA. Note that γ is exponential in the number of transitions with finite capacities.
The above implies that CAs are not more expressive than FAs, but may be
exponentially more succinct. Indeed, as shown in [8], the blow-up in γ may not
be avoided in some cases. Consider, for example, the language Ln,m over the
alphabet Σn = {1, . . . , n} that contains exactly all words in which each letter in
Σn appears at most m times. It is not hard to see that a traditional, possibly
nondeterministic, automaton for Ln,m needs at least mn states. On the other
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hand, a deterministic CA for Ln,m consists of a single state with n self loops,
each labeled with a different letter and having capacity m.

A key question in the theory of CAs is the role that γ plays in constructions
and decision problems. For example, it is shown in [8] that while determinization
of nondeterministic CAs (NCAs) does involve a blow up in γ, the non-emptiness
problem for NCAs can be solved in linear time and its complexity is independent
of γ. The study of succinctness and complexity in [8] is preliminary. In particular,
even for determinization, only an exponential lower bound has been shown, with
no matching upper bound, leaving open also the blow-up involved in other basic
constructions like union, intersection, and complementation. Decision problems
whose solution makes use of these constructions, most notably universality and
containment, have been left open too.

We solve the problems left open in [8]. Our news is mainly bad: the expo-
nential lower bound for determinization that is proven there is not tight, and
determinization of NCAs actually involves a doubly-exponential blow-up. This
is an interesting phenomenon, implying that the power of nondeterminism in the
capacitated model goes beyond the subset construction. Even though the deter-
ministic automaton we end up with is capacitated, it sometimes cannot make use
of its capacities and has to maintain not only sets of states but also sets of capac-
ity configurations. The doubly-exponential blow-up in determinization is carried
over to complementation of NCAs. Also there, even though the complementing
NCA is both nondeterministic and capacitated, it may be doubly-exponentially
bigger, as an exponential blow up in γ cannot be avoided. Moreover, even the
constructions of union and intersection involve a blow-up in γ. Essentially, it
follows from the inability to merge the capacity functions of the underlying CAs
to a single capacity function in the product CA. In fact, the blow-up applies even
when one of the automata is not capacitated. An exception is union of NCAs,
which can be defined by putting the NCAs “side by side”, and thus involves no
blow up.

We continue to the decision problems of universality (given a CA A, decide
whether L(A) = Σ∗) and containment (given two CAs A and A′, decide whether
L(A) ⊆ L(A′)) and show that the bad news is carried over also to their complex-
ity, but only in the nondeterministic model: While the universality problem for
DCAs is NLOGSPACE-complete, thus is not more complex than the problem
for DFAs, it is EXPSPACE-complete for NCAs. The EXPSPACE complexity of
universality immediately implies an EXPSPACE lower bound also for contain-
ment, in fact already containment of DFAs in NCAs. We study the various cases
according to whether each of A and A′ is capacitated and/or nondeterministic.
Here, we are also able to come up good news: the containment problem for NCAs
in NFAs is PSPACE-complete, thus is not harder than containment for NFAs.
We conclude that while the succinctness of CAs often leads to a corresponding
increase in the complexity of their decision problems, capacities come at no price
when they model systems or when used in a deterministic automaton.

Due to the lack of space, some of the proofs are omitted from this version
and can be found in the full version, in the authors’ URLs.
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2 Preliminaries

A nondeterministic finite automaton (NFA, for short) is a tuple A =
〈Σ,Q,Q0,Δ, F 〉, where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q
is a set of initial states, Δ ⊆ Q × Σ × Q is a transition relation, and F ⊆ Q
is a set of final states. Given a word w = σ1 · σ2 · · · σl, a run of A on w is a
sequence r of successive transitions in Δ that reads w and starts in a transition
from the set of initial states. Thus, r = 〈q0, σ1, q1〉, 〈q1, σ2, q2〉, . . . , 〈ql−1, σl, ql〉,
for q0 ∈ Q0. The run is accepting if ql ∈ F . The NFA A accepts the word w iff it
has an accepting run on it. Otherwise, A rejects w. The language of A, denoted
L(A), is the set of words that A accepts. If |Q0| = 1 and for all q ∈ Q and σ ∈ Σ
there is at most one q′ ∈ Q with Δ(q, σ, q′), then A is deterministic. Note that
a deterministic finite automaton (DFA) has at most one run on each word.

A nondeterministic capacitated automaton (NCA, for short) is an NFA in
which each transition has a capacity, bounding the number of times it may be
traversed. A transition may not be bounded, in which case its capacity is ∞.
Let N

∞ = N ∪ {∞} and N
+ = N \ {0}. Formally, an NCA is a tuple A =

〈Σ,Q,Q0,Δ, F, c〉, where Σ,Q,Q0,Δ, and F are as in NFAs and c : Δ → N
∞ is

a capacity function that maps each transition in Δ to its capacity. A legal run
of A is defined as for NFA, with the additional condition that the number of
occurrences of each transition e ∈ Δ is at most c(e). When the underlying NFA
is deterministic, then so is A. The width of an NCA A is the maximal finite
capacity that c assigns to a transition in Δ.

For a capacity function c : Δ → N
∞, let c↓ be the set of capacity functions

obtained by closing c downwards. Formally, a function c′ : Δ → N
∞ is in c↓ if for

all transitions e ∈ Δ with c(e) = ∞, we have c′(e) = ∞, and for all transitions
e ∈ Δ with c(e) ∈ N, we have 0 ≤ c′(e) ≤ c(e). It is easy to see that the size of
c↓, denoted |c↓|, is Πe:c(e)∈N+(c(e) + 1). Thus, |c↓| is exponential in the number
of transitions with finite capacities and is bounded by w|Δ|, where w is the width
of A plus 1.

Example 1. For a word w ∈ {0, 1}∗, let w̃ be the word obtained by flipping all
the letters in w. For example, if w = 0010, then w̃ = 1101. We refer to w̃ as the
negative of w.

We use the NCA Ak appearing in Fig. 1 as a “box” in some of our con-
structions. As a warm-up example, consider the NCA Uk appearing in Fig. 1. It

Fig. 1. The NCAs Ak and Uk, with L(Uk) = {v# : v ∈ (0+1)k}∪{v#ṽ# : v ∈ (0+1)k}.
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is easy to see that Uk accepts only words in (0 + 1)k# + (0 + 1)k#(0 + 1)k#.
Moreover, since the capacity of all the transitions labeled 0 or 1 is 1, the only
way to traverse the sequence of states p0, . . . , pk twice is by reading a word
v ∈ (0 + 1)k during the first traversal, then #, and then the negative ṽ of v.
Hence L(Uk) = {v# : v ∈ (0 + 1)k} ∪ {v#ṽ# : v ∈ (0 + 1)k}. Note that an NFA
for L(Uk) requires at least 2k states.

3 Closure Constructions

Since CAs are as expressive as FAs, the closure of regular languages under
Boolean operations implies a similar closure for NCAs and DCAs. In this section
we study the blow up that is involved in the corresponding constructions. We
start with NCA determinization. In [8], the authors show an exponential blow-
up for determinization. We tighten this result and show that determinization is
tightly doubly exponential.

Theorem 1. Determinization of NCAs is tightly doubly-exponential.

Proof: For the upper bound, consider an NCA A = 〈Σ,Q,Q0,Δ, F, c〉. By [8],
A has an equivalent NFA A′ with |Q| · |c↓| states, which is exponential in the
size of A. By determinizing A′, we get an equivalent DFA that is exponential in
A′ and hence doubly-exponential in A.

For the lower bound, we define a sequence of languages L1, L2, . . . over the
alphabet Σ = {0, 1,#, $} as follows. We define L1 = (0+1+#)∗, and for n ≥ 1,
we define L2

n = {(0+1+#)∗#w#(0+1+#)∗$(0+1+#)∗#w̃#(0+1+#)∗ : w ∈
(0+1)n}. That is, each word in L2

n is of the form u$v, for words u, v ∈ (0+1+#)∗.
Inside u, there should be some word w ∈ (0+1)n between two #’s, and v includes
w̃ between #’s. Now, Ln = L1 ∪ L2

n.
The language Ln can be recognized by an NCA Un with O(n) states. The

NCA Un, described in Fig. 2, guesses when the # before w starts, then reads
w and traverses the NCA An from Example 1 once. Reading the # after w, it
guesses whether the input word belongs to L1, in which case it goes with # to
a state that accepts all words in (0 + 1 + #)∗, or belongs to L2

n, in which case

Fig. 2. the NCA Un.
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it moves to a state that waits for a $ and then waits for the # before w̃, with
which it returns to the initial state of An.

A DFA for Ln must have at least 22
n

states. Indeed, in order to recognize
words in L2

n, upon reaching the $, the DFA must remember the subset of words
in (0 + 1)n that have appeared between #’s before the $.

The same arguments imply that the language Sn = Σ∗ ·Ln can be recognized
by an NCA with O(n) states but requires a DFA with at least 22

n

states. As
shown in [8], a minimal DCA for a language of the form Σ∗ · L is not smaller
than a minimal DFA for it. It follows that a minimal DCA for Sn requires 22

n

states, hence the lower bound for determinization. ��
We continue to study complementation. For DFAs, complementation is easy,

as one only has to dualize the set of accepting states. In the case of DCAs, we also
need to dualize the upper bound on the number of traversals of transitions that
is imposed by capacities. Such a dualization amounts to adding lower bounds
on the number of traversals, which is not supported in CAs. As we show, this
makes complementation of DCAs exponential. When, however, we complement
the DCA into an NCA, we can “implement” the lower bound with a polyno-
mial blow-up. Starting, however, with an NCA, a doubly-exponential blow-up
in complementation cannot be avoided.

Theorem 2. Complementing a DCA to a DCA is tightly exponential. Comple-
menting a DCA to an NCA is polynomial.

Proof: Consider a DCA A. By translating A to a DFA and complementing the
latter, we obtain a complementing DCA (in fact, DFA) of exponential size. For
the lower bound, consider the language Lm,n described in Sect. 1. A DCA for
Ln,m consists of a single state with n self loops, one for each letter, with capacity
m. Let L̃n,m be the complement of Ln,m. That is, L̃n,m contains all words in
which at least one letter appears more than m times. Note that L̃n,m = Σ∗

n ·L̃n,m.
Hence, by [8], a minimal DCA for L̃n,m is not smaller than a minimal DFA for
it, which needs at least mn states.

Now, let A = 〈Σ,Q,Q0,Δ, F, c〉. Intuitively, the complementing NCA A′

has |Δ| components, one for each transition τ ∈ Δ. The component Aτ accepts
exactly all words w such that the run of A on w traverses τ more than c(τ) times
or ends in a rejecting state. Thus, Aτ has c(τ) copies of A, starts from the first
copy and moves to the next copy whenever τ is traversed. When τ is traversed
in the c(τ)-th copy, the component moves to an accepting sink. In all copies, the
states in Q \ F are accepting. Note that we end up with an NFA (in fact, the
only nondeterminism is in choosing the component) that consists of

∑
τ∈Δ c(τ)

copies of A. For the lower bound, observe that an NCA for the language L̃n,m

above requires O(mn) states. ��
Theorem 3. Complementation of NCAs is tightly doubly-exponential.

Proof. The upper bound follows from the doubly-exponential DFA that the
determinization in Theorem 1 results in, which can be complemented with no
blow-up.
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For the lower bound, consider the sequence of languages L1, L2, . . . defined in
the proof of Theorem 1. An NCA for the complement L̃n = Σ∗\Ln needs at least
22

n

states. Upon reaching the $, the NCA must remember the subset of words
in (0 + 1)n that have appeared between #’s before the $. Formally, let Ũn be an
NCA for L̃n. For a word u ∈ (0+1+#)∗, let Su be the set of words w ∈ (0+1)n

in which w appears in u between #’s, and let Cu ∈ 2(0+1+#)∗
be the set of words

u′ such that a word x ∈ (0+1)n is in Su′ iff x̃ is not in Su. For example, if n = 3
and u = 0#000#10#010#110#, then Su = {000, 010, 110}. Thus, (0+1)3\Su =
{001, 011, 100, 101, 111}, so a possible u′ ∈ Cu is #110#100#011#010#000#.
Indeed, Su′ = {110, 100, 011, 010, 000}, which contains exactly all the negatives
of words not in Su.

It is easy to see that for all u ∈ (0 + 1 + #)∗, a word u$u′ such that u′ ∈ Cu

is not in Ln and thus should be accepted by Ũn. Let Qu be the set of states that
all accepting runs of Un over u$u′ reach after reading the $. In the full version,
we prove that if u1, u2 ∈ (0 + 1 + #)n are such that Su1 = Su2 , then it must be
that Qu1 ∩ Qu2 = ∅. ��

We now turn to intersection of NCAs. We show that a blow-up in the capacity
factor of the underlying automata cannot be avoided. Moreover, it applies even
when we construct an NCA for the intersection of a DCA and a DFA.

Theorem 4. Intersection of NCAs and DCAs is tightly exponential.

Proof: For the upper bound, given two NCAs (or DCAs), we can construct their
intersection by first removing capacities, obtaining exponentially bigger NFAs
(or DFAs), and then constructing the product of the latter. Note that this leads
to a DFA or an NFA with no capacities.

For the lower bound, we define two sequences of languages L1
1, L

1
2, L

1
3, . . . and

L2
1, L

2
2, L

2
3, . . . such that for all n ≥ 1, the language L1

n can be recognized by a
DCA with one state, the language L2

n can be recognized by a DFA with n + 1
states, and the minimal NCA for their intersection requires at least 2n states.

Let n ≥ 1, and let Σn = {1, . . . , n}. We define L1
n as the set of all words over

Σn in which every letter i ∈ Σn occurs at most once. We define L2
n to be the set

of all words over Σn whose length is n. It is easy to see that indeed L1
n can be

recognized by a DCA with one state (it has a self-loop transition with capacity
1 for each letter in Σn), and L2

n can be recognized by a DFA with n + 1 states.
We prove that an NCA for the language Ln = L1

n ∩ L2
n needs at least 2n states.

Note that Ln includes exactly all words that form a permutation of Σn.
For a set S ⊆ Σn, let wS be the word obtained by concatenating the letters

in S in ascending order, and let S̄ = Σn \ S. Note that wS · wS̄ ∈ Ln

Consider an NCA A for Ln. Assume by way of contradiction that A has less
than 2n states. Then, there are two sets S, T ⊆ Σn such that S = T and there
is a state q that is visited by both an accepting run r of A on wS · wS̄ after it
reads wS and by an accepting run r′ of A on wT · wT̄ after it reads wT . Recall
that r and r′ are sequences of transitions. Let rS · rS̄ be a partition of r to the
parts that traverse wS and wS̄ , respectively, and similarly for rT · rT̄ and r′.
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In the full version, we show that the existence of two sets S and T , and a
state q as above leads to a contradiction. ��

The union of two NFAs can be easily constructed in linear time by putting
the two NFAs “side by side”. The product construction can be used to construct
a DFA for the union of two DFAs in polynomial time. We now show that while
the union of two NCAs can be constructed linearly, the construction of a DCA
for the union of two DCAs involves an exponential blow up.

Theorem 5. Union of NCAs is linear. Union of DCAs is tightly exponential.

Proof: The union of two NCAs can be constructed linearly, similarly to the
union construction for NFAs.

We proceed to DCAs. For the upper bound, given two DCAs, we can con-
struct their union by removing capacities, obtaining exponentially bigger DFAs,
and then constructing the product of the latter. As in the case of intersection,
this construction ends up with a DFA with no capacities. As we show in the
lower bound below, however, a blow-up in the capacity factor of the underlying
automata cannot be avoided. Moreover, it applies even when we construct a
DCA for the union of a DCA and a DFA.

Consider the two sequences of languages L1
1, L

1
2, L

1
3, . . . and L2

1, L
2
2, L

2
3, . . .

used in the proof of Theorem4. We prove that a DCA for the language Ln =
L1

n ∪ L2
n needs at least 2n−2 states.

Consider a DCA A for Ln. Assume by way of contradiction that A has less
than 2n−2 states. Then, there are two sets S, T ⊆ Σn of size at most n − 2 such
that S = T , and there is a state q such that both the run of A on wS and the run
of A on wT reach q. Assume w.l.o.g. that there is a letter i ∈ S \ T . Consider the
transition τ = 〈q, i, q′〉. That is, when A is in state q and reads the letter i, it moves
to state q′. Clearly, wT · i ∈ Ln, so q′ is accepting. Also, since |S| = n − 1, then
wS ·i ∈ Ln. Hence, either q′ is not accepting, and we have reached a contradiction,
or τ was taken c(τ) times while wS is read. Then, however, as |S| ≤ n−2, the run
of A on wS · in−|S| has to traverse τ more than c(τ) times, and is thus rejecting.
But wS · in−|S| is of length n, a contradiction. ��

Note that in all lower-bound proofs we have used NCAs and DCAs of width 1.

4 Decision Procedures

The universality problem is to decide, given an automaton A and an alphabet Σ,
whether L(A) = Σ∗. The problem is known to be NLOGSPACE-complete for
DFAs, and PSPACE-complete for NFAs. The containment problem is to decide,
given two automata A1 and A2, whether L(A1) ⊆ L(A2). The problem is known
to be PSPACE-complete when A2 is an NFA and NLOGSPACE-complete when
A2 is a DFA.

In this section we study the universality and containment problems for the
different classes of CA. We start with the universality problem. In the case of FA,
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the solution involves a construction of a complementing automaton and checking
its emptiness. By [8], the emptiness problem for NCAs is NLOGSPACE com-
plete, as it is for NFAs. Complementation of CAs, however, is expensive (and in
fact results in FAs). We show that the blow-up in complementation is carried
over to the complexity of the universality problem. Still, in the deterministic set-
ting it is possible to reason directly on the structure of the DCA and circumvent
the construction of a complementing automaton.

Theorem 6. The universality problem for DCA is NLOGSPACE-complete.

Proof: Since DFAs, for which universality is known to be NLOGSPACE-hard,
are a special case of DCAs, the lower bound is immediate.

For the upper bound, we claim that a DCA D = 〈Σ,Q, q0,Δ, F, c〉 is not
universal iff there exists a path from q0 to a state q /∈ F , or to a state q from
which there is no transition labeled σ for some σ ∈ Σ, or a path from q0 to a
transition 〈q, a, q′〉 that is part of a cycle and such that c(〈q, a, q′〉) = k for some
k ∈ N. In the first two cases, a path to a rejecting state or to a state from which
some letter cannot be read induces a word that is rejected by D. In the third
case, a path to a cycle on which 〈q, a, q′〉 occurs induces a word that gets stuck
after at most k traversals through the cycle. Checking all cases can be performed
in NLOGSPACE by guessing the path to a rejecting state in the former case, or
a path to a finitely capacitated transition 〈q, a, q′〉 followed by a path from q′ to
q in the latter case. ��
Theorem 7. The universality problem for NCAs is EXPSPACE-complete.

Proof: An NCA can be translated to a DFA with a doubly-exponential blow-up.
The upper bound then follows from the NLOGSPACE complexity for universal-
ity of DFAs.

For the lower bound, we show a reduction from an exponent version of the
tiling problem, defined as follows. We are given a finite set T of tiles, two relations
V ⊆ T × T and H ⊆ T × T , an initial tile t0, a final tile tf , and a bound n > 0.
We have to decide whether there is some m > 0 and a tiling of a 2n × m-grid
such that (1) The tile t0 is in the bottom left corner and the tile tf is in the top
left corner, (2) A horizontal condition: every pair of horizontal neighbors is in H,
and (3) A vertical condition: every pair of vertical neighbors is in V . Formally,
we have to decide whether there exist m ∈ N and a function f : {0, . . . , 2n −1}×
{0, . . . , m−1} → T such that (1) f(0, 0) = t0 and f(0,m−1) = tf , (2) For every
0 ≤ i ≤ 2n −2 and 0 ≤ j ≤ m−1, we have that (f(i, j), f(i+1, j)) ∈ H, and (3)
For every 0 ≤ i ≤ 2n−1 and 0 ≤ j ≤ m−2, we have that (f(i, j), f(i, j+1)) ∈ V .
When n is given in unary, the problem is known to be EXPSPACE-complete.

We encode a tiling as a word over T ∪ {0, 1,#, $}, consisting of a sequence of
rows (each row is of length 2n). Each row is a sequence of tile blocks, where each
tile block contains the tile and its index in the row, as an n-bit counter. Each row
starts with #, and the entire grid ends with #$. Such a word represents a proper
tiling if it starts with t0, has a last row that starts with tf , every pair of adjacent
tiles in a row are in H, and every pair of tiles that are 2n tiles apart are in V .
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We reduce the tiling problem to the universality problem for NCAs. Given
a tiling problem ρ = 〈T,H, V, t0, tf , n〉, we construct an NCA Aρ that accepts a
word w iff w is not an encoding of a legal tiling for ρ. Thus, Aρ rejects a word
w iff w encodes a legal tiling ρ, and is universal iff no such tiling exists.

The difficulty lies in relating vertical neighbors – tiles that are 2n far apart.
Detecting a violation of the vertical condition amounts to the existence of two
tiles t and t′ such that (t, t′) ∈ V , and there is a row with tile t in position i,
such that the tile in position i in the successive row is t′. Recall the NCA Ak

from Example 1. In order to use it for detecting when the position i repeats in
the successive row, we maintain both the counter and its negative. That is, each
tile block is of length 1 + 2n, and consists of the tile, its index i in the row, and
the negative ĩ. Then, the property we need in order to find a violation of the
condition V becomes “there is a row with tile t in position i, such that the tile
whose negative position is ĩ in the successive row is t′”.

We define Aρ as the union of several NCAs, each guessing a different type of
violation of an encoding of a legal tiling for ρ. We begin with a violation of the
pattern and counters.

– The pattern is not of the form (# · (T · (0 + 1)2n)∗)∗#$.
– It is not the case that every # precedes $ or a block with counter value 0.
– It is not the case that # follows all blocks with counter value 2n − 1.
– It is not the case that in every tile block the last n bits are the negation of

the n bits before them.
– The counters are not increased properly. We check this separately for even

and odd counter values. For even values, there exists a block whose counter
value i ends with 0 and either the first n − 1 bits of the counter i′ in the next
block do not agree with the first n − 1 bits of i, or the last bit of i′ is not
1. For odd counters, there exists a block with counter value i that ends with
0(1k) for some 0 < k < n such that the first n − k − 1 bits of the counter i′ in
the next block do not agree with the first n − k − 1 bits of i, or the last k + 1
bits in i′ are not 1(0k).

Secondly, we have violations of the tiling conditions:

– The tiling does not start with t0.
– The first tile in the last row is not tf . That is, there is a row that starts with

a tile that is different from tf and the row ends with #$.
– For a violation of the horizontal condition, namely that there is 0 ≤ i ≤ 2n −2

and 0 ≤ j ≤ m − 1 for which (f(i, j), f(i + 1, j)) ∈ H, we use the union of at
most |T |2 NFAs, one for each pair (t, t′) ∈ H. The NFA AH

(t,t′) accepts a word
if it has a block with tile t such that the next block in the row (that is, the
next letter in T in the word) is t′. Formally, L(AH

(t,t′)) = Σ∗t(0 + 1)2nt′Σ∗.
– For a violation of the vertical condition, namely that there is 0 ≤ i ≤ 2n − 1

and 0 ≤ j ≤ m−2 for which (f(i, j), f(i, j +1)) ∈ V , we use a union of NCAs,
one for each pair (t, t′) ∈ V .

The NCA AV
(t,t′) accepts a word if it has a tile block with t and the tile block

with the same counter value in the next row is t′. To check that the counters
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Fig. 3. the NCA AV
(t,t′).

are identical, we check that the negation in the next counter is the negation of
the current counter. This can be achieved by using a component similar to Ak of
Example 1,withk = n.As described inFig. 3, theNCAAV

(t,t′) guesses a tile block
with t and the counter traverses An. After a single occurence of #, it guesses a
tile block with t′ and the negation of the counter in the tile block traverses An

again. If the counter of the two tile blocks is identical, the second traversal of An

is successful, and we have indeed identified a violation. Thus, AV
(t,t′) now accepts

the rest of the word. Notice that An must be traversed twice in order to accept,
as the first letter after the first traversal is the first bit of the negative, causing
the run to take the cycle that leads back to An. ��

Theorem 8. The containment problem of a DFA or an NFA in a DCA is
NLOGSPACE-complete.

Proof: The lower bound directly follows from the NLOGSPACE-hardness of
the containment problem for DFAs.

For the upper bound, intuitively, we can guess a run on a word w such that
w ∈ L(A1) and w /∈ L(A2). We do so by running simultaneously, one transition at
a time, on A1 and on the complement of A2, on the fly. It holds that w /∈ L(A2)
iff we reach a rejecting state, or traverse some finitely capacitated transition too
many times. For the latter case, we can guess this transition in advance, and track
the number of times it is traversed. The full details are in the full version. ��
Theorem 9. The containment problem of a DCA or an NCA in a DCA or a
DFA is co-NP-complete.

Proof: For the lower bound, we reduce from the Hamiltonian cycle problem for
directed graphs. Given a directed graph G = 〈V,E〉, we construct a DCA A1

and a DFA A2 as follows. The DFA A2 accepts all words over V whose length
is at most 2n − 1. The DCA A1 is the DCA described in Theorem 6 in [8],
which accepts a word of length 2n iff G has a Hamiltonian cycle, and in any
case, accepts only words whose length is at most 2n. Therefore, we have that
L(A1) ⊆ L(A2) iff G does not have a Hamiltonian cycle.
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For the upper bound, it can be shown that if L(A1) � L(A2), then there
exists a witness word w such that w ∈ L(A1) and w /∈ L(A2), and whose length
is polynomial in the sizes of A1,A2, and the maximal finite capacity in A2.

Indeed, let A be the product of A1 and A2 which ignores the capacities of A1.
A witness word w is either induced by a path to a state in A that is rejecting in
A1 and accepting in A2, or by a path to a state in A that is accepting in A1, and
traverses some transition in A2 too many times. In both cases, the length of the
path can be polynomially bounded. The full details are in the full version. ��
Theorem 10. The containment problem of a DCA or an NCA in an NFA is
PSPACE-complete.

Proof: The lower bound follows from the containment problem of a DFA in an
NFA.

For the upper bound, intuitively, we can guess a run on a word w such that
w ∈ L(A1) and w /∈ L(A2). We do so by running simultaneously, one transition
at a time, on A1 and on the complement of A2. To do so in PSPACE, we run
on the latter on-the-fly. The full details are in the full version. ��
Theorem 11. The containment problem of a DFA, an NFA, a DCA, or an
NCA in an NCA is EXPSPACE-complete.

Proof: The upper bound follows from the doubly-exponential translation of
NCA to DFA. Since Σ∗ can be recognized by a one-state DFA, the lower bound
follows from Theorem 7. ��

5 Conclusion and Future Work

We have shown that while the succinctness that capacities offer often comes with
a corresponding increase in the complexity of decision problems for them, there
are some cases where it comes for free. In the future, we plan to study the idea of
capacities in the formalism of temporal logic. The analogue of a capacitated transi-
tion would be bounding operators in the logic, which bound the number of prefixes
alongwhich a sub-specificationmayhold. Such operators can conveniently and suc-
cinctly bound the number of occurrences of events in a computation. We believe
that the classical translation of LTL into automata [11] can be generalized so that
LTL with bounded operators are translated to CAs.
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Abstract. Williams’s celebrated circuit lower bound technique works
by showing that the existence of certain small enough nonuniform cir-
cuits implies that nondeterministic exponential time can be speeded up in
such a way that it implies a contradiction with the nondeterministic time
hierarchy.

We apply Williams’s technique by speeding up instead (i) determinis-
tic exponential-time computations and (ii) nondeterministic exponential-
time computations that use only a limited number of nondeterministic bits.
From (i), we obtain that EXP ⊆ ACC0 has a consequence that might
seem unlikely, while (ii) yields an exponential ACC0 size-depth tradeoff for

ENP[2n
cδ

], which is the class of exponential-time computation with access
to an NP oracle where the number of oracle queries is bounded.

Keywords: Circuit lower bounds · ACC · EXP

1 Introduction

Williams’s breaktrough circuit lower bound technique [10,11] can be described
as working as follows. For the sake of a contradiction, assume that the desired
circuit lower bound does not hold. Show that this implies that we can speed up
NTIME(2n/n10) computations in such a way that we get a contradiction with
the nondeterministic time hierarchy.

This technique requires that there is a non-trivial satisfiability algorithm for
the circuit class that we want to prove lower bounds against. For the case of
ACC0 circuits, Williams [11] provided such an algorithm and thus solves the
long-standing open problem of showing NEXP �⊆ ACC0:

Theorem 1 ([11]). For every depth d and modulus m, there is a δ = δ(d,m)
such that satisfiability of depth-d ACC circuits with MODm gates, n inputs, and
2n

δ

size can be determined deterministically in 2n−nδ

time.

The contribution of this paper is to investigate what happens if we use this
approach to speed up instead deterministic exponential-time computations or
nondeterministic exponential-time computations that use only a limited number
of nondeterministic bits.
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 320–329, 2016.
DOI: 10.1007/978-3-319-30000-9 25
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First, we describe a few more details on how Williams achieved the
speed-up for NTIME(2n/n10) computations (assuming the existence of small-
enough circuits). Williams’s algorithm starts with reducing any problem L
in NTIME(2n/n10) to SUCCINCT-3SAT.1 SUCCINCT 3SAT is an NEXP-
complete version of the classical NP-complete problem 3SAT, where the formulas
are succinctly represented by circuits that have these formulas as truth table.

Throughout this paper, we often follow Arora and Barak’s presentation [1]
of Williams’s proof.

Decision Problem SUCCINCT-3SAT [7] (see also [1])
Input: A 3CNF formula φ with 2n clauses and 2n variables that is described in
succinct form by a circuit C of size n5 as follows.

The circuit C has n inputs and 3n + 3 outputs. For any j ∈ {0, 1}n, C(j)
outputs the description (neg1(j), var1(j),neg2(j), var2(j),neg3(j), var3(j)) of the
jth clause in φ. Here, var1(j), . . . , var3(j) are the indices of the variables appear-
ing in clause j and neg1(j), . . . ,neg3(j) are three bits that are 1 iff the corre-
sponding variable appears negated in clause j.
Output: Is the formula φ described by C satisfiable?

It has been known for a long time that SUCCINCT-3SAT is NEXP-complete:

Theorem 2 ([7]). SUCCINCT-3SAT is NEXP-complete under polynomial-time
many-one reduction.

However, in order to lose not too much time in the speed up of
NTIME(2n/n10) computations, Williams needs the following stronger reduction
to SUCCINCT-3SAT.

Theorem 3 ([10]). Let L ∈ NTIME(2n/n10). Then there is a reduction f com-
putable in time O(n5) such that for all x ∈ {0, 1}n, f(x) = Cx is a circuit of
size at most n5 with n inputs such that

x ∈ L ⇐⇒ Cx ∈ SUCCINCT-3SAT

The crucial new property of this stronger reduction is that the number of input
bits of circuit Cx equals n. This reduction is obtained as an exponentially scaled-
up version of a more efficient Cook-Levin reduction that reduces NTIME(t(n))
languages to 3CNF formulas of length O(t(n) log(t(n))) [2], which in turn can
be shown using the efficient simulation of Turing machines by oblivious 2-tape
Turing machines [8]. A key feature of the efficient Cook-Levin reduction, which
is needed to obtain that the circuits Cx are of polynomial size, is that each bit of
the Cook-Levin reduction can be computed in polylogarithmic time (assuming
random access to the input). That this is the case has been observed for instance
in [3]. (Note that the size of Cx depends on the time needed to compute each

1 Williams actually takes L ∈ NTIME(2n). As in [1], we instead use NTIME(2n/n10)
so that the circuit C in SUCCINCT-3SAT has exactly n inputs instead of n+c logn
inputs.
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bit of the 3CNF formula represented by Cx, while the number of inputs of Cx

depends on the length of of the 3CNF formula represented by Cx.)
The next step in Williams algorithm to solve NTIME(2n/n10) faster than

allowed by the nondeterministic time hierarchy, is to use the fast ACC SAT
algorithm stated in Theorem1 on a circuit composed of a circuit that is equiv-
alent to Cx and three circuits that succinctly describe satisfying assignments
(which are guessed nondeterministically). As the running time of this algorithm
is exponential in the number of input bits of the circuit, it is very important
that the number of input bits of Cx in this reduction is not larger than |x|.

The circuits succinctly describing satisfying assignments needed above exist
for instance under the assumption NEXP ⊆ P/poly:

Definition 4 [5]. SUCCINCT-3SAT has succinct witnesses if there exists c > 0
such that for every circuit C ∈ SUCCINCT-3SAT with n inputs, there exists
a circuit D of size at most nc such that the assignment given by the sequence
D(0n), . . . , D(1n) satisfies the 3CNF formula represented by C.

Theorem 5 ([10], follows from [5]). If NEXP ⊆ P/poly then SUCCINCT-
3SAT has succinct witnesses.

To make this whole approach work, Williams found a solution to (nondetermin-
istically) convert Cx into an ACC0 circuit. For this we need only the assumption
P ⊆ ACC0.

This ends the outline of Williams’s approach to solve NTIME(2n/n10) prob-
lems in NTIME(o(2n/n10)) (under the assumption of the existence of small
ACC0 circuits).

In this paper, we apply the same idea to speed up DTIME(2n/n10) compu-
tations (see Sect. 2) and NTIME(2n/n10) computations with bounded number
of nondeterministic bits (see Sect. 3).

Of course, since any problem in NTIME(2n/n10) can be efficiently reduced
to SUCCINCT-3SAT, also any problem in DTIME(2n/n10) can be efficiently
reduced to SUCCINCT-3SAT. Note that the efficient Cook-Levin reduction
applied to a problem L in the deterministic class DTIME(t(n)) yields a 3CNF
formula φ of length O(t(n) log(t(n))) that has a unique satisfying assignment.
This unique satisfying assignment can be interpreted as transcript of the deter-
ministic computation and can therefore be computed deterministically in time
poly(t(n)). This is not very interesting in the case of polynomial-time computa-
tion. However, in the context of exponential time computation, in particular in
the reduction from DTIME(2n/n10) to SUCCINCT-3SAT, this means that the
succinct witness circuits exist under the weaker assumption EXP ⊆ P/poly (see
Theorem 10). We get as main theorem of Sect. 2 the following theorem:

Theorem 6. If EXP ⊆ ACC0 then there exist constants δ > 0 and c such that
DTIME(2n/n10) ⊆ NTIMEGUESS(2n−nδ

, nc).2

2 If nothing else is said then ACC0 stands for the class of languages that have ACC0

circuits of polynomial size.
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The notation NTIMEGUESS(t(n), g(n)) was introduced by Fortnow and
Santhanam [4] for nondeterministic classes with bounded numbers of nonde-
terministic bits.

Definition 7 [4]. NTIMEGUESS(t(n), g(n)) is the class of all languages
accepted by nondeterministic Turing machines running in time O(t(n)) and using
at most O(g(n)) nondeterministic bits.

Theorem 6 is an attempt to improve Williams result NEXP �⊆ ACC0 to
EXP �⊆ ACC0. It seems unlikely that deterministic exponential time computa-
tion can be speeded up this much at the expense of only a polynomial number
of nondeterministic bits. It is not clear if it is possible to resolve this question
by (for instance) diagonalization or any other techniques.

In Sect. 3, we apply the same construction to speed up the limited nonde-
terministic class NTIMEGUESS(2n/n10, 2n

cδ

). Williams showed the following
exponential size-depth tradeoff for ACC0:

Theorem 8 [11]. For every d and m, there is a δ > 0 and a language in ENP

that does not have ACC0 circuits of depth d and size 2n
δ

with MODm gates.

We obtain the following result:

Theorem 9. There exists a universal constant c such that the following is true.
For every d and m, there is a δ > 0 and a language in ENP[2n

cδ
] that does not

have ACC0 circuits of depth d and size 2n
δ

with MODm gates.

This means that we get a tradeoff behavior for classes ENP[2n
cδ

], which is the
class ENP where the number of oracle queries is bounded by 2n

cδ

.
The intuition behind the proof of Theorem9 is that for the limited nondeter-

minism class NTIMEGUESS(2n/n10, 2n
cδ

), the largest accepting computation
can be found with only 2n

cδ

calls to an NP oracle.

2 A Consequence of the Inclusion EXP ⊆ ACC0

In this section, we prove the following theorem.

Reminder of Theorem 6. If EXP ⊆ ACC0 then there exist constants δ > 0
and c such that DTIME(2n/n10) ⊆ NTIMEGUESS(2n−nδ

, nc).

Theorem 5 says that NEXP ⊆ P/poly implies that SUCCINCT-3SAT has
succinct witnesses. It is not known if this follows also from the weaker assump-
tion EXP ⊆ P/poly, but we can show that EXP ⊆ P/poly implies that all
SUCCINCT-3SAT instances obtained by reduction from problems in EXP have
succinct witnesses, and this is all need to prove Theorem 6. More precisely, we
can show the following theorem.

Theorem 10. Suppose EXP ⊆ P/poly. Let L ∈ DTIME(2n/n10). Then there
exists a reduction f computable in deterministic time O(n5) and c1 > 0 such that
for any x ∈ {0, 1}n, f(x) = Cx is a circuit of size at most n5 with n inputs and
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– If x ∈ L then Cx ∈ SUCCINCT-3SAT and there exists a circuit D of size
at most nc1 such that the assignment given by the sequence D(0n), . . . , D(1n)
satisfies the 3CNF formula represented by Cx.

– If x /∈ L then Cx /∈ SUCCINCT-3SAT.

Proof. The reduction f is basically the same as the one in Theorem 3. The differ-
ence is that L is now in a deterministic class. Hence we now consider the efficient
Cook-Levin reduction of [2] when applied to languages in the deterministic class
DTIME(t(n)). We still get a formula ψ of length O(t(n) log(t(n))). However, all
inputs of ψ originate only from the Tseitin transformation converting boolean
circuits to 3CNF formulas. That is, the formula ψ obtained by reduction from
DTIME(t(n)) does not contain any inputs that represent nondeterministic bits
of nondeterministic Turing machines. (See the construction in [2]. The second
binary input I2 is not needed here.) Hence the formulas ψ have a unique sat-
isfying assignment that is given by the values of the gates of the circuit that
is constructed as intermediate step in the efficient Cook-Levin reduction [2].
Therefore, this assignment can be computed deterministically in time O(t(n)).

Now we obtain the succinct witness circuit D for Cx as follows. Define a deter-
ministic exponential-time Turing machine M(x, i) as follows. M(x, i) determines
the satisfying assignment of the 3CNF formula represented by Cx and accepts
if and only if the variable with index i is set to true. Because of our assumption
EXP ⊆ P/poly, M can be simulated by a circuit C of size poly(|x|). By hard-
wiring x into the inputs of C, we obtain a circuit D of size |x|c1 that describes
the satisfying assignment. ��
Lemma 11 (Folklore, see [1,11]). Suppose P ⊆ ACC0. Then there exist con-
stants d0, c2, and m such that for every (unrestricted) circuit C of size s there
exists an equivalent ACC0 circuit C ′ of depth at most d0 and size sc2 with MODm

gates.

Proof. If P ⊆ ACC0 then in particular the problem CIRCUIT-EVAL, which
given C and x, determines the output of circuit C on input x, is in ACC0. The
circuit C ′ equivalent to C is obtained by hardwiring the description of C in the
ACC0 circuit for CIRCUIT-EVAL. ��

The following lemma is implicit in [11].

Lemma 12. Suppose P ⊆ ACC0. Then there exists a constant δ such that the
following is true. There exists a nondeterministic algorithm that given two (unre-
stricted) circuits C and D of size at most s with n inputs, checks if they are
equivalent, runs in O(2n−nδ

s) time and uses at most poly(s) nondeterministic
bits.

Proof. We assume P ⊆ ACC0. For every gate i of C, we guess an ACC0 circuit
C ′

i with n inputs of depth d0 and size sc with MODm gates that is equivalent to
the value of the ith gate of C, i.e., for all x ∈ {0, 1}n, C ′

i(x) equals the value of
the ith gate in C(x) (needs poly(s) nondeterministic bits). These circuits exist
by Lemma 11. If j is the output gate of C then C ′ := C ′

j is an ACC0 circuit



On Limited Nondeterminism and ACC Circuit Lower Bounds 325

that is equivalent to C. The correctness of the guessed circuits can be checked
gate by gate with the help of Williams’s ACC0 satisfiability algorithm stated in
Theorem 1 as follows.

Let i be any gate of C. If gate i is an AND of gates j and k then we have to
check if for all x ∈ {0, 1}∗, C ′

i(x) = C ′
j(x)∧C ′

k(x). Construct an ACC0 circuit E
such that for all x ∈ {0, 1}n, E(x) = C ′

i(x) ↔ C ′
j(x) ∧ C ′

j(x). Then we have ¬E
is unsatisfiable if and only if for all x ∈ {0, 1}n, C ′

i(x) = C ′
j(x)∧C ′

k(x). To check
that ¬E is unsatisfiable, we can use Williams’s ACC0 satisfiability algorithm,
which needs 2n−nδ

deterministic time. The case that gate i is an OR gate or a
negation gate is treated analogously. Repeating this for all s gates in C needs
O(2n−nδ

s) determinstic time, where δ = δ(d0,m) from Theorem 1.
Next, we apply the same procedure to circuit D to obtain an equivalent ACC0

circuit D′.
Finally, we construct an ACC0 circuit F that is equivalent to C ′ ↔ D′. Then

we have that C ′ and D′ are equivalent if and only if ¬F is unsatisfiable. Checking
that ¬F is unsatisfiable can again be done with Williams’s ACC0 satisfiability
algorithm in time O(2n−nδ

). ��

Proof of Theorem 6. Suppose EXP ⊆ ACC0. Let L ∈ DTIME(2n/n10). We
will show L ∈ NTIMEGUESS(2n−nδ

, nc) for some δ and c. Let x ∈ {0, 1}n be
any input for L. Let Cx be the circuit of size at most n5 constructed according
to Theorem 10. Guess a circuit D of size at most nc1 describing a satifying
assignment for Cx. It remains to check that D indeed describes a satisfying
assignment. To this end we use the construction by Williams [10] (we follow [1]).
Construct an (unrestricted) circuit G such that for each clause index j ∈ {0, 1}n,

G(j) = [D(var1(j)) ⊕ neg1(j)] ∨ [D(var2(j)) ⊕ neg2(j)] ∨ [D(var3(j)) ⊕ neg3(j)],

where (neg1(j), var1(j),neg2(j), var2(j),neg3(j), var3(j)) is the output of Cx(j)
as described in the definition of SUCCINCT-3SAT.

Circuit G constists of 3 copies of D and one copy of Cx. Hence G has size
at most 3nc1 + n5 + O(1). By Lemma 11, there exist constants c2 and d0 such
that there is an ACC0 circuit G′ of depth d0 and size nc2 with MODm gates
that is equivalent to G. Guess this circuit G′. (This takes no more than nc2+1

nondeterministic bits.) Use Lemma 12 to verify that G′ is indeed equivalent to
G. This takes O(2n−nδ

nc2) time and uses at most poly(nc2) nondeterministic
bits. Finally, use Williams’s ACC0 satisfiability algorithm to check that ¬G′ is
unsatisfiable, which can be done in deterministic time O(2n−nδ

nc2).
Altogether, we obtain a nondeterministic algorithm that determines if x ∈ L,

runs in time O(2n−nδ

), and uses at most nc nondeterministic bits for some
constants c and δ. Hence we have shown that L ∈ NTIMEGUESS(2n−nδ

, nc). ��
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3 An Exponential Size-Depth Tradeoff for ENP[2ncδ
]

In this section, we prove the following theorem.

Reminder of Theorem 9. There exists a universal constant c such that the
following is true. For every d and m, there is a δ > 0 and a language in ENP[2n

cδ
]

that does not have ACC0 circuits of depth d and size 2n
δ

with MODm gates.

The following theorem is an analogon to Theorem10 for the case of bounded
nondeterminism, and where the assumption on the circuit size is 2n

δ

instead of
polynomial. Note however that in this case we assume the existence of ACC0

circuits and obtain witness circuits D that are already ACC0 circuits.

Theorem 13. For every c > 0, the following is true.
Suppose ENP[2n

cδ
] has ACC0 circuits of depth d and size 2n

δ

with MODm

gates. Let L ∈ NTIMEGUESS(2n/n10, 2n
cδ

). Then there exists a reduction f
computable in deterministic time O(n5) such that for any x ∈ {0, 1}n, f(x) = Cx

is a circuit of size at most n5 with n inputs and

– If x ∈ L then Cx ∈ SUCCINCT-3SAT and there exists an ACC0 circuit D of
depth d and size at most 2n

δ

with MODm gates such that the assignment given
by the sequence D(0n), . . . , D(1n) satisfies the 3CNF formula represented by
Cx.

– If x /∈ L then Cx /∈ SUCCINCT-3SAT.

Proof. The proof uses the same ideas as the one for Theorem 10. The difference is
that now instead of zero, the computation has 2n

cδ

nondeterministic bits. Hence
the formulas ψ obtained from the efficient Cook-Levin reduction contain not only
variables originating from the Tseitin transformation, but also 2n

cδ

variables cor-
responding to the nondeterministic bits in NTIMEGUESS(2n/n10, 2n

cδ

). How-
ever, for any satisfying assignment of ψ, once the variable assignment for the 2n

cδ

variables corresponding to the nondeterministic bits are determined, the remain-
ing variables (i.e., the variables from the Tseitin transformation) are uniquely
determined and can be computed in deterministic exponential time.

Now we obtain the succinct witness circuit D for Cx as follows. Define a
deterministic exponential-time Turing machine M(x, i) that makes 2n

cδ

queries
to an NP oracle as follows. As in [11, Fact 2], M(x, i) determines the lexico-
graphically smallest satisfying assignment of the 3CNF formula represented by
Cx and accepts if and only if the variable with index i is set to true. Because
the number of variables corresponding to nondeterministic bits is limited to 2n

cδ

(and the remaining variables can be computed deterministically once these are
determined), M(x, i) needs in our case only 2n

cδ

queries to an NP oracle.

Because of our assumption that ENP[2n
cδ

] has ACC0 circuits of depth d and
size 2n

δ

with MODm gates, M can be simulated by such an ACC0 circuit C. By
hardwiring x into the inputs of C, we obtain an ACC0 circuit D of depth d and size
2n

δ

with MODm gates that describes (the smallest) satisfying assignment. ��
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Lemma 14 (Folklore, See [1,11]). Suppose P has ACC0 circuits of depth d

and size 2n
δ

with MODm gates. Then every (unrestricted) circuit C of size s

there exists an equivalent ACC0 circuit C ′ of depth d and size at most 2(s
2)δ

=
2s

2δ

with MODm gates.

Proof. The proof is similar to the proof of Theorem11.
If P has ACC0 circuits of depth d and size 2n

δ

with MODm gates then in
particular the problem CIRCUIT-EVAL, which given C and x, determines the
output of circuit C on input x has such circuits. The circuit C ′ equivalent to C is
obtained by hardwiring the description of C in the ACC0 circuit for CIRCUIT-
EVAL. Note that the description of a circuit of size s together with the input x
needs no more than O(s log s) + n = O(s2) bits. ��

Proof of Theorem 9. We prove the theorem for c = 12. Fix any depth d
and modulus m. Let δ = δ(2d + 5,m)/11, where δ(·, ·) is the function from
Williams’s satisfiability algorithm (Theorem1). To get a contradiction, sup-

pose ENP[2n
12δ

] has ACC0 circuits of depth d and size 2n
δ

with MODm gates.
Let L be any language in NTIMEGUESS(2n/n10, 2n

12δ

). We will now show
L ∈ NTIMEGUESS(2n−nδ

n5, 2n
11δ

). Let x ∈ {0, 1}n be any input for L. Let
Cx be the circuit constructed according to Theorem 13. Guess an ACC0 circuit
D of depth d and size at most 2n

δ

with MODm gates such that the assignment
given by the sequence D(0n), . . . , D(1n) satisfies the 3CNF formula represented
by Cx. (Such a circuit exists by Theorem 13.) It remains to describe how to verify
that D indeed describes a satisfying assignment for Cx.

First, we need to find an ACC0 circuit C ′
x that is equivalent to Cx.3 Since

by our assumption, ENP[2n
12δ

] has ACC0 circuits of depth d and size 2n
δ

with
MODm gates, P also has such circuits. Hence by Lemma 14, for each gate i of
Cx there exists an ACC0 circuit Ci

x
′ of depth d and size ≤ 2(n

5)2δ

= 2n
10δ

with
MODm gates that is equivalent to the value of the ith gate of Cx, i.e., for each
y ∈ {0, 1}n, Ci

x
′(y) equals the ith gate of Cx(y). (Note that Cx has size at most

n5.) We obtain C ′
x as follows.

For each gate i of Cx, we guess the corresponding above-described ACC0

circuit Ci
x

′. This needs no more than 2n
11δ

nondeterministic bits. The correctness
of the guessed circuits can be verified by going through the gates of Cx gate by
gate with the help of Williams’s ACC0 circuit satisfiability algorithm stated in
Theorem 1 as follows.

Let i be any gate of Cx. If gate i is an AND of gates j and k then we have to
check if for each y ∈ {0, 1}n, Ci

x
′(y) = Cj

x
′(y)∧Ck

x
′(y). To this end, construct an

ACC0 circuit E such that for all y ∈ {0, 1}n, E(y) = Ci
x

′(y) ↔ Cj
x

′(y) ∧ Cj
x

′(y).
Then we have ¬E is unsatisfiable if and only if for all y ∈ {0, 1}n, Ci

x
′(y) =

Cj
x

′(y) ∧ Ck
x

′(y). To check that ¬E is unsatisfiable, we can use Williams’s ACC0

3 Alternatively, C′
x could have been constructed to be ACC0 right away using the

recent result by Jahanjou, Miles, and Viola [6], but we don’t know if the required
witness circuit can be shown to exist also in this case.
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circuit satisfiability algorithm, which needs no more than 2n−nδ

deterministic
time. (Note that E has size ≤ 2n

11δ

.) The case that gate i is an OR gate or a
negation gate is treated analogously. Repeating this for all n5 gates of Cx needs
O(2n−nδ

n5) deterministic time. The desired circuit C ′
x is composed of all those

circuits Cj
x

′ such that j is an output gate of Cx. Hence C ′
x is an ACC0 circuit

with n inputs, 3n + 3 outputs, depth d, size at most (3n + 3)2n
10δ

with MODm

gates.
It remains to verify that circuit D guessed above describes a satisfying assign-

ment for C ′
x. We use the construction by Williams [10] (we follow [1]). We con-

struct an ACC0 circuit G such that for each clause index j ∈ {0, 1}n,

G(j) = [D(var1(j)) ⊕ neg1(j)] ∨ [D(var2(j)) ⊕ neg2(j)] ∨ [D(var3(j)) ⊕ neg3(j)],

where (neg1(j), var1(j),neg2(j), var2(j),neg3(j), var3(j)) is the output of C ′
x(j)

as described in the definition of SUCCINCT-3SAT.
Circuit G consists of 3 copies of D and one copy of C ′

x. Hence G has size at
most 3 · 2n

δ

+ (3n + 3)2n
10δ

+ O(1) ≤ 2n
11δ

and depth at most 2d + 5. Finally,
use Williams’s ACC0 satisfiability algorithm to check that ¬G is unsatisfiable.
This takes deterministic time O(2n−nδ

).
Altogether, we obtain a nondeterministic algorithm that determines if x ∈ L,

runs in time O(2n−nδ

n5), and uses no more than 2n
11δ

nondeterministic bits. This
means L ∈ NTIMEGUESS(2n−nδ

n5, 2n
11δ

).
We have therefore shown

NTIMEGUESS(2n/n10, 2n
12δ

) ⊆ NTIMEGUESS(2n−nδ

n5, 2n
11δ

),

which is a contradiction because

NTIMEGUESS(2n/n10, 2n
12δ

) �⊆ NTIMEGUESS(2n−nδ

n5, 2n
11δ

)

can be shown by delayed diagonalization [9,12]. ��
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Abstract. A reconfiguration problem asks when we are given two fea-
sible solutions A and B, whether there exists a reconfiguration sequence
(A0 = A, A1, . . . , A� = B) such that (i) A0, . . . , A� are feasible solu-
tions and (ii) we can obtain Ai from Ai−1 under the prescribed rule (the
reconfiguration rule) for each i = 1, . . . , �. In this paper, we address the
reconfiguration problem for induced trees, where an induced tree is a con-
nected and acyclic induced graph of an input graph. This paper treats the
following two rules as the prescribed rules: Token Jumping; removing
u from an induced tree and adding v to the tree, and Token Sliding;
removing u from an induced tree and adding v adjacent to u to the
tree, where u and v are vertices in an input graph. As the main results,
we show (I) the reconfiguration problem is PSPACE-complete, (II) the
reconfiguration problem is W[1]-hard when parameterized by both the
size of induced trees and the length of the reconfiguration sequence, and
(III) there exists an FPT algorithm when parameterized by both the size
of induced trees and the maximum degree of an input graph, under each
of Token Jumping and Token Sliding.

Keywords: Reconfiguration problem · Induced tree · PSPACE-
complete · W[1]-hard · FPT

1 Introduction

A reconfiguration problem is the following problem: given two feasible solutions
A and B for a search problem P, asking whether there exists a reconfiguration
sequence (A0 = A,A1, . . . , A� = B) such that (i) A0, . . . , A� are feasible solutions
and (ii) we can obtain Ai from Ai−1 under the prescribed rule (reconfiguration
rule) for each i ∈ {1, . . . , �}. For reconfiguration problems of vertex-subset prob-
lems on graphs, in which feasible solutions are subsets of vertex set of input
graphs, the following three reconfiguration rules are usually considered. For the
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current feasible solution F and two vertices u ∈ F and v /∈ F , (1) Token Slid-
ing(TS [7]): Removing u from F and adding v adjacent to u to F . (2) Token
Jumping(TJ [14]): Removing u from F and adding v to F . (3) Token Addi-
tion/Removal(TAR [9]): Removing u from F or adding v to F .

In this decade, for a large number of NP-complete problems, their reconfig-
uration problems have been shown to be PSPACE-complete [8,10,12,14]. How-
ever, interestingly, we can not determine the computational complexity of the
reconfiguration version of P by the complexity of P. For example, the 3-coloring
problem for a general graph is NP-complete, however, it is known that the 3-
coloring reconfiguration problem [2] is in P. On the other hand, the shortest
path problem is in P, however, the shortest path reconfiguration problem [1] is
PSPACE-complete. Kamiński et al. [14] showed that given a perfect graph, the
independent set reconfiguration problem is PSPACE-complete under TS, TJ, or
TAR. On the other hand, they also developed polynomial-time algorithm for the
reconfiguration problem when an input graph is even-hole-free or P4-free.

Some notable theorems of the computational complexity of the reconfigu-
ration problems are shown. Gopalan et al. [6] investigated the st-connectivity
problem of 3SAT. This problem asks, given two feasible solutions s and t of
a Boolean formula W with n variables, whether or not s and t are connected.
Roughly speaking, s and t are connected if t can be obtained from s by repeatedly
flipping the value of a variable such that the resulting assignment also satisfies
W . Their dichotomy theorem states that the st-connectivity problem is in P if
W is tight or Schaefer [17]; otherwise is PSPACE-complete. Here, W is tight if
(1) every connected component in the n-dimensional hypercube of all tuples in
W is bijunctive (componentwise bijunctive), (2) (x ∨ y) is not definable from W
by fixing n − 2 variables (OR-free), or (3) (x ∨ y) is not definable from W by
fixing n − 2 variables (NAND-free), where x and y are any variables in W . W is
Schaefer if W is a 2CNF, Horn, Dual-Horn, or Affine formula. Mouawad
et al. [15] showed the trichotomy theorem of the shortest st-reconfiguration prob-
lem asking whether or not there exists a reconfiguration sequence with length
less than a given value. The theorem says that the shortest st-reconfiguration
problem is in P if a given formula W is navigable, is NP-complete if W is tight
but not navigable, and is PSPACE-complete otherwise, where W is navigable
if (1) W is OR-free and (x ∨ y ∨ z) is not definable from W by fixing n − 3
variables (Horn-free), (2) W is NAND-free and (x ∨ y ∨ z) is not definable from
W by fixing n−3 variables (Dual-Horn-free), or (3) W is componentwise bijunc-
tive, where x, y, and z are any variables in W . For some problems, the char-
acteristics/restrictions on the instances with which the reconfiguration problem
becomes polynomial-time solvable have been studied.

There are some other known results for the complexity of the reconfigura-
tion problems. Hearn and Demaine [7] showed that sliding-block puzzles such
as Klotski puzzles are PSPACE-complete. They solved the outstanding problem
by Martin Gardner [5] since 1964. Kamiński et al. [13] showed that finding the
shortest reconfiguration sequence for the shortest path is NP-hard even when we
know the sequence has polynomial length. Mouawad et al. [16] showed the meta-
theorem of the hardness of reconfiguration problems for graphs with hereditary
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Fig. 1. An example of an induced tree S1 = {v2, v3, v5, v6, v7, v9} in a graph G1. Bold
solid edges indicate that they belong to S1. Moreover, for any vertex v in {v1, v4, v8},
S1 ∪ {v} has a cycle. Thus, S1 is also a maximal induced tree.

properties under TAR. In addition, reconfiguration problems for cliques [12], list
L(2, 1)-labelings [11], subset sums [8], list edge-colorings [10], and swapping
labeled tokens [18] are studied. However, there are few results for reconfiguration
problems for graphs having a connected hereditary property.

In this paper, we address the induced tree reconfiguration problem ITRe-
conf under various settings. An induced tree is a connected and acyclic induced
subgraph in an undirected graph (See Fig. 1) and is well known as a vertex-subset
with a connected hereditary property. An informal description of ITReconf is
as follows: Suppose that we are given two distinct induced trees S and T of an
input graph and each vertex of S has a token. Then, we obtain T from S by
changing the positions of some tokens of S according to the given reconfiguration
rule. In our contributions, we first show that ITReconf is PSPACE-complete
under TS and TJ. This is the first hardness result for the induced tree recon-
figuration problem. Next, we investigate the problem from the viewpoint of the
parameterized complexity. We show that ITReconf is W[1]-hard when para-
meterized by both the size of induced trees and the length of reconfiguration
sequences under TJ, and fixed parameter tractable when parameterized by both
the size of induced trees and the maximum degree of an input graph under TS
and TJ.

Our paper is organized as follows: In Sect. 2, we will give the definitions of
terms used in our paper and the definition of ITReconf. In Sect. 3, we will
show the PSPACE-completeness of ITReconf. In Sect. 4, we will show that
ITReconf is W[1]-hard when parameterized by both the size of induced trees
and the length of reconfiguration sequences. In Sect. 5, we will give an FPT
algorithm for ITReconf when parameterized by both the size of induced trees
and the maximum degree of an input graph.

2 Preliminaries

2.1 Graphs

An undirected graph G = (V (G), E(G)) is a pair of a vertex set V (G) and an
edge set E(G) ⊆ V (G)2. In this paper, we assume that G is simple and finite.
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For any two vertices u and v in V (G), u and v are adjacent in G if (u, v) ∈ E(G).
NG(u) = {v ∈ V (G) | (u, v) ∈ E(G)} denotes the set of the adjacent vertices of u
in G. We define the degree dG(u) of u ∈ V (G) as the number of vertices adjacent
to u. For any vertex subset S ⊆ V (G), NG(S) =

(⋃
u∈S NG(u)

) \ S. In what
follows, we omit the subscript G and fix a graph G = (V (G), E(G)) if it is clear
from the context.

Suppose that, for any two vertices u and v in V (G), π(u, v) = (v1 =
u, . . . , vj = v) is a sequence of vertices. π(u, v) is a path from u to v if ver-
tices in π(u, v) are distinct and for every i = 1, . . . , j − 1, (vi, vi+1) ∈ E(G).
The length |π(u, v)| of a path π(u, v) is the number of edges in π(u, v). π(u, v) is
called a cycle if |π(u, v)| ≥ 3, u = v, vertices in π(u, v) are distinct other than u
and v, and (vi, vi+1) ∈ E(G) for every i = 1, . . . , j − 1. We say that G is acyclic
if G has no cycle. G is connected if for any pair of vertices in G, there exists a
path between them. G is a tree if G is acyclic and connected.

Let S be a subset of V (G). G[S] = (S,E[S]) denotes the graph induced by S,
where E[S] = {(u, v) ∈ E(G) | u, v ∈ S}. We call G[S] the induced subgraph of
G. If no confusion, we identify S with G[S]. We say that S is an induced tree if S
forms a tree. Moreover, an induced tree S is maximal if there exists no induced
tree S′ such that S ⊆ S′ (See Fig. 1). A connected component of G is a maximal
connected induced subgraph of G.

2.2 Reconfiguration Problem

We firstly consider the following function f : 2V (G) × V (G) × V (G) → 2V (G):
f(S, u, v) = (S \ {u}) ∪ {v}, where u ∈ S and v /∈ S. For any two induced
trees S and T in G, S and T are adjacent each other if there exist two ver-
tices u and v satisfying f(S, u, v) = T . That is, for any induced tree S, T
is an induced tree adjacent to S if we can obtain T by removing u ∈ S
from S and adding v /∈ S to S. We refer f as Token Jumping (TJ) and
f is one of reconfiguration rules (we will introduce another rule, Token
Sliding (TS) in Sect. 3.3). Next, we construct a reconfiguration graph under
TJ. Let IT (G) be the set of induced trees of G. A reconfiguration graph
RIT(G) = (IT (G), E(G, f)) is a pair of the set IT (G) and the set E(G, f).
Here, E(G, f) =

{
(S, T ) ∈ IT (G)2 | ∃u ∈ S,∃v /∈ S (f(S, u, v) = T )

}
, that is,

each edge in E(G, f) is a pair of two induced trees that are adjacent. For any two
induced trees S and T , a reconfiguration sequence from S to T is a path π(S, T )
on RIT(G). Figure 2 shows an example of a reconfiguration sequence from S1

to T1 on G1. Now, we give the definition of the induced tree reconfiguration
problem ITReconf.

Problem 1 (Induced Tree Reconfiguration Problem). Given a graph G and two
induced trees S and T in G, ITReconf(G,S, T ) asks whether there exists a
reconfiguration sequence from S to T on RIT(G) under TJ.

3 PSPACE-Completeness

In this section, we show ITReconf is PSPACE-complete. To prove the com-
pleteness, we demonstrate that we reduce from 3SAT reconfiguration problem [6]
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Fig. 2. An example of a reconfiguration sequence. The above figure shows that there
exists a reconfiguration sequence π(S1, T1) = (S1, S2, S3, S4 = T1) between two induced
trees S1 = {v2, v3, v5, v6, v7, v9} and T1 = {v1, v4, v5, v7, v8, v9} on an input graph G1,
where S2 = f(S1, v6, v8), S3 = f(S2, v2, v1), and S4 = f(S3, v3, v4).

to ITReconf in polynomial time. In Sect. 3.1, at first, we give the definition
of 3SAT reconfiguration problem. Next, in Sect. 3.2, we give a polynomial time
reduction. In Sects. 3.3 and 3.4, we show that some variations of ITReconf are
also PSPACE-complete.

3.1 3SAT Reconfiguration Problem

Let W = C1 ∧ · · · ∧ Cm be an instance formula of 3SAT on a variable set
X = {x1, . . . , xn}, where Ci is a disjunctive clause consisting of three literals for
each i = 1, . . . ,m. We say that s = (s1, . . . , sn) is a satisfying assignment if for
each j = 1, . . . , n, sj is a truth value for xj , and for each i = 1, . . . ,m, at least
one literal in Ci is true, that is, W is true.

Now we consider the following function g : {0, 1}n × [n] → {0, 1}n: g(s, j) =
(s1, . . . , sj−1, sj , sj+1, . . . , sn), where [n] = {1, . . . , n}. We say that two satisfy-
ing assignments s and t are adjacent if there exists a positive integer j such
that g(s, j) = t. That is, s is adjacent to t if the hamming distance between
s and t is exactly one. In a similar way of a reconfiguration graph of induced
trees of G, we define a reconfiguration graph R3SAT(W ) = (SA(W ), E(W, g))
of W , where SA(W ) is the set of satisfying assignments of W and E(W, g) ={
(s, t) ∈ SA(W )2 | ∃j ∈ [n](g(s, j) = t)

}
. That is, for any two satisfying assign-

ments s and t of W , an edge (s, t) belongs to E(W, g) if and only if s and t are
adjacent to each other. We also say that a path between s and t on R3SAT(W ) is a
reconfiguration sequence between them. In the following, we show the definition
and the hardness result of the reconfiguration problem 3SATReconf.

Problem 2 (3SAT Reconfiguration Problem). Given an instance W of 3SAT and
two satisfying assignments s and t of W , 3SATReconf(W, s, t) asks whether
there exists a reconfiguration sequence from s to t on R3SAT(W ).

Theorem 3 (Gopalan et al. [6]). 3SATReconf is PSPACE-complete.

3.2 Polynomial-Time Reduction

In this subsection, we will give a polynomial-time reduction from 3SATReconf
to ITReconf. In what follows, we fix W = C1∧· · ·∧Cm to an instance of 3SAT
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Fig. 3. An example of H(W1) for a formula W1 = C1 ∧ C2 ∧ C3 on a variable set
{x1, . . . , x4}. Here, C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), and C3 = (x2 ∨ x3 ∨ x4).
Bold vertices and edges indicate a satisfying induced tree in TW1(s1) consisting of
V (Gr) ∪ Vs1 ∪ {a1, c1, b2, d2, b3, c3}, where s1 = (1, 1, 0, 1).

on a variable set X = {x1, . . . , xn} and s and t to two satisfying assignments for
W . In addition, let L(X) = {x1, . . . , xn, x1, . . . , xn} be the set of literals of W
and C(W ) = {C1, . . . , Cm} be the set of clauses of W .

By combining the following three gadgets, we construct an input graph H(W )
of ITReconf (See Fig. 3). (1) Variable gadget Gxj

: For each variable xj ∈ X,
Gxj

=
(
V (Gxj

), E(Gxj
)
)

consists of a vertex set V (Gxj
) = {xj , xj} and an

edge set E(Gxj
) = {(xj , xj)}. (2) Clause gadget GCi

: For each clause Ci ∈
C(W ), GCi

= (V (GCi
), E(GCi

)) is a K4 consisting of a vertex set V (GCi
) =

{ai, bi, ci, di}. (3) Root gadget Gr: Gr = (V (Gr), E(Gr)) consists of a vertex set
V (Gr) = {r1, r2} and an edge set E(Gr) = {(r1, r2)}. Next, by joining the three
gadgets by some edges, we construct H(W ) = (V (W ), E(W )) as follows:

V (W ) = V (Gr) ∪
⎛

⎝
n⋃

j=1

V (Gxj
)

⎞

⎠ ∪
(

m⋃

i=1

V (GCi
)

)
and

E(W ) = E(Gr) ∪ EX,r ∪
(

m⋃

i=1

ECi,X

)
∪

⎛

⎝
n⋃

j=1

E(Gxj
)

⎞

⎠ ∪
(

m⋃

i=1

E(GCi
)

)
,

where EX,r = {(r1, x) | x ∈ L(X)} and ECi,X = {(ai, u), (bi, v), (ci, w)} for each
clause Ci = (u ∨ v ∨ w).

In the remaining of this section, we show that there exists a reconfiguration
sequence on R3SAT(W ) if and only if there exists a reconfiguration sequence on
RIT(H(W )). We denote by Vs = {xj | sj = 1} ∪ {xj | sj = 0} a satisfying vertex
set. Then, we consider a family of induced subgraphs corresponding to s.
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Definition 4. Let W be an input formula and s be a satisfying assignment of
W . We define the set TW (s) as follows: Each element S of TW (s) satisfies

S = V (Gr) ∪ Vs ∪
(

m⋃

i=1

{αi, βi}
)

,

where αi ∈ V (GCi
) ∩ N(Vs) and βi ∈ V (GCi

) \ N(Vs) for each i = 1, . . . ,m. We
say TW (s) the family of satisfying induced trees of s for W .

That is, every satisfying induced tree in TW (s) corresponds to a satisfying assign-
ment s. In the next lemma, we show that every element in TW (s) is actually an
induced tree of H(W ).

Lemma 5. Let s be a satisfying assignment of W . Then, S ∈ TW (s) is an
induced tree of H(W ).

Proof. We first show S is connected. By the construction of S, r1 is adjacent to
r2 and all vertices in Vs. For each i = 1, . . . ,m, there exists a vertex in Vs that
is adjacent to αi since s is a satisfying assignment. In addition, αi and βi are
adjacent. Thus, S is connected. Next, we show S is acyclic. No vertex in Gr is
adjacent to vertices in clause gadgets. Moreover, xj and xj are not adjacent to
vertices in other variable gadgets. The same can be said for clause gadgets. ��
Example 6. For a given formula W1, Fig. 3 shows an example of H(W1) and a
satisfying induced tree S1 belonging to TW1(s1). The vertex set of S1 is V (S1) =
V (Gr) ∪ Vs1 ∪ {a1, c1, b2, d2, b3, c3}. Since S1 is connected and acyclic, S1 is an
induced tree of H(W1).

Note that sometimes there are many satisfying induced trees for an
instance formula. Actually, in Fig. 3, the tree induced by V (Gr) ∪ Vs1 ∪
{a1, d1, b2, d2, c3, d3} is another satisfying induced tree for W1 and the tree is
in TW1(s1). Lemma 7 implies that if S and T are distinct satisfying induced
trees of the same satisfying assignment, then there always exists a reconfigura-
tion sequence from S to T .

Lemma 7. Let s be a satisfying assignment of W . Then, RIT(H(W ))[TW (s)]
is connected.

Proof. For any two distinct induced trees S and S′ in TW (s), SS′ consists of
vertices in clause gadgets, where SS′ = (S \ S′) ∪ (S′ \ S). For convenience
of explanation, we first assume that SS′ only includes vertices in V (GCi

) and
Di = V (GCi

)∩ (SS′) �= ∅. Since |S ∩V (GCi
)| = |S′ ∩V (GCi

)| = 2, there exist
two cases: (I) |Di| = 2 and (II) |Di| = 4. (I) Suppose that Di = {α, α′}, α ∈ S,
and α′ ∈ S′. In this case, both α and α′ are adjacent to vertices in variable
gadgets, or not adjacent to vertices in variable gadgets. Thus, f(S, α, α′) =
S′. (II) Suppose that Di = {α, β, α′, β′}, α and β in S, and α′ and β′ in S′.
Without loss of generality, we can assume that α and α′ are adjacent to vertices
in variable gadgets. From (I), there exists a satisfying tree T = f(S, α, α′).
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Then, TS′ = {β, β′}. Thus, S and S′ are connected in TW (s). When SS′

includes vertices of more than one clause gadgets, we can obtain S′ from S by
iteratively applying the above operation to each clause gadget. ��

From Lemma 8, we can see that for any satisfying induced tree S ∈ TW (s),
if an induced tree S′ is adjacent to S, S′ is a satisfying induced tree of either s
or of another satisfying assignment t of W .

Lemma 8. Let S be an induced tree in TW (s). For any two vertices u ∈ S and
v /∈ S, if S′ = f(S, u, v) is an induced tree of H(W ), then either (I) u ∈ Vs and
v = u or (II) there exists i ∈ {1, . . . , m} such that u, v ∈ GCi

.

Proof. The lemma says that if we pick u and v from the different gadgets of
H(W ), S′ is not an induced tree of H(W ). Let i = 1, . . . ,m and j = 1, . . . , n be
arbitrary integers. (1) Suppose u ∈ GCi

. If v ∈ GCk
such that k �= i, GCk

∩ S′ is
K3. On the other hand, if v ∈ Gxj

, {r1, xj , xj} is also K3. (2) Suppose u ∈ Gxj
.

If v ∈ GCi
, GCi

∩ S′ is K3. On the other hand, if v ∈ Gxk
such that k �= j,

{r1, xk, xk} is also K3. (3) Suppose u ∈ Gr. If v ∈ GCi
, GCi

∩ S′ is K3. On the
other hand, if v ∈ Gxj

, {r1, xj , xj} is K3. Thus, the statement holds. ��
Then, we show that, in the following lemma, s and t are also adjacent to

each other on R3SAT(W ).

Lemma 9. Let s and t be two distinct satisfying assignments of W . The con-
ditions (I) and (II) are equivalent: (I) s and t are adjacent to each other on
R3SAT(W ). (II) There exist S ∈ TW (s) and T ∈ TW (t) such that S and T are
adjacent to each other on RIT(H(W )).

Proof. From Lemma 5, both S and T are induced trees of H(W ). Firstly, we
show (I) → (II). Suppose that the jth variable of s and t are different. We can
assume that, without loss of generality, sj = 1. For any clause C including xj ,
there exist S ∈ TW (s) and T ∈ TW (t = g(s, j)) such that S ∩ GC = T ∩ GC

since C is satisfied by another variable xk �= xj and sk = tk. Thus, S and T are
adjacent to each other. Next, we show (II) → (I). Since S and T are adjacent
to each other and s �= t, there are two vertices u ∈ Vs and v = u such that
f(S, u, v) = T from Lemma 8. Therefore, the hamming distance between s and
t is exactly one. Thus, s is adjacent to t and the statement holds. ��

From Lemma 9, for any connected component C of RIT(H(W )) including a
satisfying induced tree, each induced tree belonging to C has a corresponding
satisfying assignment. From the above discussion, we have the main theorem.

Theorem 10. ITReconf is PSPACE-complete under TJ.

Proof. At first, we show ITReconf is in PSPACE. Ito et al. [9] showed that
for any problem P in NP, a reconfiguration version of P belongs to PSPACE.
Thus, ITReconf is in PSPACE since a problem for finding an induced tree of a
graph is in NP. Next, we give a polynomial-time reduction from 3SATReconf
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to ITReconf. Firstly, given an instance (W, s, t) of 3SATReconf, we construct
H(W ), S ∈ TW (s), and T ∈ TW (t). This can be done in polynomial time. From
Lemma 5, S and T are induced trees of H(W ). From Lemmas 7 and 9, there
exists a reconfiguration sequence π(S, T ) on RIT(H(W )) if and only if there
exists a reconfiguration sequence π(s, t) on R3SAT(W ). Since 3SATReconf is
PSPACE-complete by Theorem 3, ITReconf is also PSPACE-complete. ��

3.3 Token Sliding Case

Until now, we assume that the reconfiguration rule is TJ. Next, we consider
another reconfiguration rule f ′(S, u, v) = (S \{u})∪{v} such that u ∈ S, v /∈ S,
and v ∈ N(u). We say f ′ Token Sliding (TS). Now, we immediately obtain the
following corollary, since Lemma 8 indicates that we always select such u and v
that are adjacent to each other on H(W ).

Corollary 11. ITReconf is PSPACE-complete under TS.

3.4 Maximal Induced Tree Reconfiguration Problem

In the previous subsections, we demonstrated that ITReconf is PSPACE-
complete. Now, we show that the maximal induced tree version MITReconf
remains PSPACE-complete. RMIT(G) denotes the reconfiguration graph for
maximal induced trees of G. The maximal induced tree reconfiguration prob-
lem is defined as follows:

Problem 12 (Maximal Induced Tree Reconfiguration Problem). Let G be a graph
and S and T be two maximal induced trees of G. MITReconf(G,S, T ) asks
whether there exists a reconfiguration sequence from S to T on RMIT(G).

Theorem 13. MITReconf is PSPACE-complete under both TS and TJ.

Proof. Let s be a satisfying assignment of a formula W . Firstly, for any S ∈
TW (s), we show that S is maximal. (I) For each clause gadget GCi

, if u ∈ GCi
\S,

then (S ∪ {u}) ∩ GCi
is a cycle. (II) For a literal xj ∈ Vs, {xj , xj , r1} induces

a cycle. From (I) and (II), S is maximal. Thus, the component of RIT(G) that
includes S consists only of maximal ones. Hence, the statement holds. ��

4 W[1]-Hardness

In this section, we show that ITReconf is W[1]-hard when parameterized by
k + �, where k is the size of induced trees and � is the number of steps in the
reconfiguration sequences. To show the hardness, we use the following fact:

Theorem 14 (Downey and Fellows [4]). Let G = (V (G), E(G)) be a graph
and k be a positive integer. The following question is W[1]-complete: does there
exist a vertex subset S ⊆ V such that S is an independent set of G and |S| = k?
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Fig. 4. An example of I(G). The edges in G are omitted. The vertex r is adjacent to
all vertices. The induced subgraph I(G)[U ∪ W ] forms a biclique Kk+1,k+1.

We refer to the independent set problem as k-IS. Now, we consider an
FPT-reduction from k-IS to ITReconf. To demonstrate the FPT-reduction,
firstly, we construct the graph I(G) = (V (I(G)), E(I(G))) from an instance
G = (V (G), E(G)) of k-IS as follows:

V (I(G)) = V (G) ∪ {r} ∪ U ∪ W and
E(I(G)) = E(G) ∪ {(r, v) | v ∈ V ∪ U ∪ W} ∪ {(ui, wj) | i, j = 1, . . . , k + 1} ,

where U = {u1, . . . , uk+1} and W = {w1, . . . , wk+1}. Note that TU = I(G)[{r}∪
U ] and TW = I(G)[{r} ∪ W ] form induced trees (See Fig. 4). The next theorem
shows that ITReconf is W[1]-hard when parameterized k + �.

Theorem 15. ITReconf is W[1]-hard when parameterized by k + � under
TJ, where k is the size of induced trees and � is the length of reconfiguration
sequences.

Proof. Let G = (V (G), E(G)) be a graph and k be a positive integer. Then, we
show that the following (I) and (II) are equivalent: (I) G has an independent
set whose size is k. (II) There exists a reconfiguration sequence from TU to
TW such that the number of steps in the sequence is 2k + 1. (I) → (II): Let
S be an independent set whose size is k. For any two vertices u and v in S,
(u, v) /∈ E(I(G)) from the definition of an independent set. Thus, I(G)[S ∪ {r}]
is an induced tree since there is the edge between u and r for any vertex u in S.
Hence, we can actually construct the reconfiguration sequence of length 2k + 1
from TU to TW as follows: Firstly, we move u1, . . . , uk to S one by one. Secondly,
we move uk+1 to wk+1. Finally, we move the vertices in S to W one by one.
(II) → (I): We assume that there exists a reconfiguration sequence from TU to
TW of length 2k + 1. Note that the following two facts: (a) for any distinct four
vertices u, u′ ∈ U and w,w′ ∈ W , I(G)[{u, u′, w, w′}] forms a cycle, and (b)
for any two vertices u ∈ U and w ∈ W , I(G)[{r, u, w}] forms a cycle. That is,
for any two vertices u ∈ U and w ∈ W , (TU \ {u}) ∪ {w} has a cycle. On the
other hand, for any vertex w ∈ W , (TU \{r})∪{w} is an induced tree. However,
for any two vertices u ∈ U and w′ ∈ W , (TU \{r, u})∪{w,w′} has a cycle. Thus,
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when we reconfigure from TU to TW , we firstly move all vertices of U \ {u} to
a vertex subset S ⊆ V (G) other than an arbitrary vertex u ∈ U . This needs k
steps. After that, the intersection of T ′ = (TU \ (U \{u}))∪S and TW consists of
a singleton {r}. Then, we move other k + 1 vertices to W starting from u. From
the above discussion, we can see that all (2k + 1)-step reconfiguration sequences
can be obtain from the above steps. Moreover, S must be an independent set
with k vertices. Hence, G is an yes-instance of k-IS if and only if (I(G), TU , TW )
is an yes-instance of ITReconf. Thus, from Theorem 14, the theorem holds. ��

5 Fixed Parameter Tractability

As shown in the previous sections, ITReconf is a computationally hard prob-
lem. ITReconf is PSPACE-complete and W[1]-hard when parameterized by
both the size of induced tree and the length of the reconfiguration sequence. In
this section, we show that ITReconf is fixed parameter tractable when para-
meterized by the size of induced trees and the maximum degree of an input
graph.

Theorem 16. ITReconf is fixed parameter tractable when parameterized by
k + Δ, where k is the size of induced trees and Δ is the maximum degree of an
input graph.

Proof. Let G = (V (G), E(G)) be an input graph. If the size of IT (G) is polyno-
mial, then we can solve ITReconf in polynomial time since the reachability of
the graph can be solved in polynomial time. Thus, to prove this theorem, all we
have to do is to show that the number of induced trees is polynomial. For any
vertex v in G, the number of vertices whose distance from v is at most k is fewer
than N = Δ

Δ−2 (Δ − 1)k [3], and then the number of induced trees including v is
at most

(
N
k

)
. Hence, the number of induced trees of G is O(|V (G)|(N

k

)
), linear

in the number of vertices. ��
We can easily see that the above theorem also holds for MITReconf.

Corollary 17. MITReconf is fixed parameter tractable when parameterized
by k + Δ, where k is the size of induced trees and Δ is the maximum degree of
an input graph.

There exists some variations of ITReconf such as ShortestITReconf;
outputting the shortest length reconfiguration sequence between two induced
trees, and ConITReconf; answering whether the reconfiguration graph is con-
nected or not. From Theorem 16, the size of a reconfiguration graph is linear in
the number of the vertices of an input graph when k + Δ is constant, where k
is the size of induced trees and Δ is the maximum degree of an input graph.
Hence, not only ITReconf and MITReconf but also ShortestITReconf
and ConITReconf are fixed parameter tractable when parameterized by k+Δ.
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6 Conclusion

In this paper, we addressed the reconfiguration problem for induced trees. We
showed that ITReconf and MITReconf are PSPACE-complete under TJ and
TS. Moreover, ITReconf is W[1]-hard when parameterized by k + � under TJ.
On the other hand, we also showed ITReconf is FPT when parameterized by
k + Δ. Future work includes to consider whether ITReconf can be solved in
polynomial time when input graphs are restricted. In addition, it is still open to
determine the hardness of ITReconf when parameterized by either k or Δ.
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Abstract. The theorem by Chomsky and Schützenberger (CST) says
that every context-free language L over alphabet Σ is representable as
h(Dk ∩ R) where Dk is the Dyck language over k pairs of brackets, R
is a local (i.e., 2-strictly-locally-testable language) regular language, and
h is an alphabetic homomorphism that may erase symbols; the Dyck
alphabet size depends on the size of the grammar generating L. In the
Stanley variant, the Dyck alphabet size only depends on the size of Σ,
but the homomorphism has to erase many more symbols than in the pre-
vious version. Berstel found that the number of erasures in CST can be
linearly limited if the grammar is in Greibach normal form, and recently
Okhotin proved a non-erasing variant of CST for grammars in Double
Greibach normal form. In both statements the Dyck alphabet depends
on the grammar size. We present a new non-erasing variant of CST that
uses a Dyck alphabet independent from the grammar size and a regular
language that is strictly-locally-testable, similarly to a recent generaliza-
tion of Medvedev theorem for regular languages.

1 Introduction

The theorem by Chomsky and Schützenberger (CST) [2] says that every context-
free language L over an alphabet Σ is representable as h(Dk ∩ R), where Dk is
the Dyck language over k ≥ 1 pairs of brackets, R is a regular language and h is
an erasing alphabetic homomorphism; the Dyck alphabet size is 2k and depends
on the size of the grammar G that generates L. In the later variant by Stanley
[11], also presented in Ginsburg [5], the Dyck alphabet size only depends on
the size of Σ, but the homomorphism has to erase many more symbols than
in the original version. Berstel [1] found that the number of erasures in CST
can be linearly limited if G is in Greibach normal form. Recently, Okhotin [9]
proved a non-erasing variant of CST, by using grammars in Double Greibach
normal form (see e.g. [4]). In both Berstel’s and Okhotin’s statements, however,
the Dyck alphabet depends on the grammar size. Other formal language books
(cited in [9]) includ essentially equivalent statements and proofs of the CST.
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To sum up, we may classify the existing versions of CST with respect to
two parameters: the erasing vs. nonerasing homomorphism, and the grammar-
dependence versus grammar-independence of the Dyck alphabet, as shown in
the following table:

grammar-dependent alphabet grammar-independent

alphabet

erasing homomorphism Chomsky and Schützenberger [2], Stanley [11]

Berstel [1]

nonerasing homomorphism Okhotin [9]

We fill the empty case of the table by presenting a new non-erasing version of
CST that uses a Dyck alphabet polynomially dependent on the terminal alphabet
size, but not on the grammar size (measured by the number of nonterminals or
of rules).

Since the interest of our contribution is purely theoretical, we rely on the
standard constructions for pushdown automata, grammars and sequential trans-
ductions, without any optimization effort. As a consequence, the size of the Dyck
alphabet, though independent from the grammar size, is rather large. At the end,
we observe that a substantial size reduction is easy in special cases. We quantify
this for the linear grammars, by exploiting our recent result [3] that reduces the
alphabet needed to homomorphically characterize a regular language by means
of Medvedev theorem [8,10].

Paper organization: Section 2 lists the basic definitions and recalls a rele-
vant CST formulation. Section 3 proves the CST variant based on a grammar-
independent alphabet and a non-erasing homomorphism, first for the case of
languages containing strings of even length, then for the general case. Section 4
exploits the extended Medvedev theorem to show that a much smaller alphabet
suffices for linear context-free languages, and concludes. An Appendix shows an
example of our version of the CST.

2 Preliminaries

For brevity, we omit the classical definitions of context-free grammars and their
normal forms, pushdown and finite automata, and finite transducers, for which
we refer primarily to [6]. Let Σ denote a finite terminal alphabet and ε the
empty word. For a word x, |x| denotes the length of x; the i-th letter of x is
x(i), 1 ≤ i ≤ |x|, i.e., x = x(1)x(2) . . . x(|x|). The mirror image of word x is
denoted as xR = x(|x|) . . . x(2)x(1). For finite alphabets Δ,Γ , a homomorphism
is a mapping h : Δ → Γ ∗; if for some d ∈ Δ, h(d) = ε, then h is called erasing,
while it is called letter-to-letter if for every d ∈ Δ, h(d) is in Γ .

A finite automaton (FA) is specified by a 5-tuple (Σ,Q, δ, q0, F ) where Q
is the set of states, δ the state-transition function, q0 the initial state, and F
is the set of final states. A sequential transducer [6] is denoted by a 5-tuple
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Sm = (Q,Σ,Δ, δ, q0) where Δ is the output alphabet and δ is a finite subset of
Q × Σ∗ × Δ∗ × Q, i.e., every transition may read a string u ∈ Σ∗ outputting a
string v ∈ Δ∗.

A context-free grammar is a 4-tuple G = (Σ,N,P, S) where N is the non-
terminal alphabet, P the rule set, and S the axiom. Since we only deal with
context-free grammars and languages, we often omit the term “context-free”.
A pushdown automaton (PDA) [6] is denoted by a 7-tuple (Q,Σ, Γ, δ, Z0, F ),
where Γ is the stack alphabet and Z0 the initial stack symbol. The languages
recognized by a PDA A, using the traditional accepting conditions, are denoted:
T (A) for acceptance by final state and N(A) for acceptance by empty stack.

A function f : N → N is said to be in POLY (n) if f(n) is upper bounded by
a polynomial expression in n, i.e., there exists α > 1 such that f(n) < nα for all
n > 1.

The family SLT of strictly locally testable languages [7] is next defined dealing
only with ε-free languages for simplicity. For every word w ∈ Σ+, for all k ≥ 2,
let ik(w) and tk(w) denote the prefix and, resp., the suffix of w of length k if
|w| ≥ k, or w itself if |w| < k. Let fk(w) denote the set of words of w of length
k. Extend ik, tk, fk to languages as usual.

Definition 1. A language L is k-strictly locally testable (k-SLT), if there exist
finite sets W ⊆ Σ ∪ Σ2 ∪ · · · ∪ Σk−1, Ik−1, Tk−1 ⊆ Σk−1, and Fk ⊆ Σk such
that, for every x ∈ Σ+, x ∈ L if, and only if,

x ∈ W ∨ (ik−1(x) ∈ Ik−1 ∧ tk−1(x) ∈ Tk−1 ∧ fk(x) ⊆ Fk) .

A language is strictly locally testable (SLT) if it is k-SLT for some k, called its
width.

Value k = 2 yields the well known family of local languages. The SLT family
is strictly included in the family of regular languages and forms a hierarchy w.r.t.
the width.

The following notation for Dyck alphabets and languages is from [9]. For any
finite set X, the set, denoted ΩX , of brackets labeled with elements of X is

ΩX = { [x | x ∈ X} ∪ { ]x | x ∈ X} . The Dyck language DX ⊂ Ω∗
X is gener-

ated by the following grammar:
S → [x S ]x for each x ∈ X, S → SS, S → ε Let k = |X|. Clearly, each

Dyck language DX is isomorphic to D{1,...,k}, For brevity we write Ωk and Dk

instead of Ω{1,...,k} and D{1,...,k}, respectively.
We need the following statement of CST

Theorem 1 (Theorem1 of Okhotin [9]). A language L ⊆ (
Σ2

)∗ is context-
free if, and only if, there exists a number k, a regular language R ⊆ Ω∗

k and a
letter-to-letter homomorphism h : Ωk → Σ, such that L = h (Dk ∩ R).

The proof in [9] assumes that L is generated by a grammar G = (Σ,N,P, S) in
Chomsky normal form and first converts it into a grammar G′ = (Σ,N ′, P ′, S′)
in Double Greibach normal form. It then labels each bracket with (essentially)
a pair of rules of P ′. Therefore the size of the Dyck alphabet Ωk is in O

(|P ′|2),
which is in POLY (|N |).
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3 Homomorphic Characterization

The first, more complex part shows that every language containing just sentences
of even length is homomorphically characterized by means of a letter-to-letter
homomorphism of the intersection of a Dyck and a regular language over an
alphabet that only depends on Σ. Then, the second easy part extends the prop-
erty to any language, using a Dyck alphabet completed with neutral symbols.

Definition 2 (Tuple alphabet and homomorphism). For an alphabet Σ,
let Δr = {〈a1, . . . , ar〉 | a1, . . . , ar ∈ Σ} for all r ≥ 2. An element of alphabet Δr

is called an r-tuple or simply a tuple. Let m ≥ 2 be an even number and define
the alphabet

Δ[m,3m) =
3m−1⋃

r=m

Δr.

The tuple homomorphism π : Δ[m,3m) → Σ+ is: π (〈a1, . . . , ar〉) = a1 . . . ar.

Mapping by sequential transducer and relation between grammar sizes. In our
construction we shall use a mapping Sm from a language L over alphabet Σ
to another language L′ = Sm(L) over alphabet Δ[m,3m), computed by a finite
sequential transducer. We are going to compute a relation between the sizes of
the grammars G for L and G′ for L′; for that we have to analyze the sizes of the
PDAs accepting L and L′; we shall do that following Harrison [6] Theorem 6.4.3
and some standard conversion algorithms from and to grammars and PDAs.

First, we specify the sequential transduction, which complies with Harrison
definition ([6], p. 198), but for convenience is equipped with a final state.

Definition 3. Let m ≥ 2 be an even number and let Sm : Σ2mΣ∗ → (Δ[m,3m))+

be the mapping defined for all integer j ≥ 0 and for all v1, . . . , v2j , v2j+1 ∈ Σm,
for all w ∈ Σ+ with m ≤ |w| ≤ 3m − 1 as:

Sm(v1 . . . v2j+1w) = π−1(v1) · · · π−1(v2j+1) · π−1(w).

Property 1. For all x ∈ Σ+ such that |x| ≥ 2m, mapping Sm is defined and
single-valued, i.e., there exists one, and only one, decomposition of x as x =
v1 . . . v2j+1w, for v1, . . . , v2j , v2j+1 ∈ Σm and w ∈ ⋃3m−1

r=m Σr such that Sm(x) =
Sm(v1 . . . v2j+1w). Moreover, Sm(x) ∈ π−1(x) has even length; if |x| is even,
then also |w| is even.

Proof. We show that |x| can be written as m(2j+1)+t, for some j ≥ 0, m ≤ t ≤
3m−1: x can be factorized into 2j+1 consecutive words of length m and a suffix
of length at least m and at most 3m− 1, as in Definition 3. In fact, the length of
a word x ∈ Σ2mΣ∗ can be written as |x| = hm + r, for some integer h ≥ 2, and
number r with 0 ≤ r ≤ m−1. If h is even, then h = 2j +2 for some j ≥ 0, hence
|x| can be represented as m(2j+1)+(m+r). If h is odd, then h = 2i+1 for some
i ≥ 1 (since h ≥ 2 when h is odd it must also be greater than 3); hence, |x| can
be represented as m(2i−1)+(2m+r): let j = i−1, i.e., 2i−1 = 2j+1, hence |x|
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can be represented as m(2j + 1) + (2m + r). To show that the decomposition is
unique, assume by contradiction that there exist j, j′ ≥ 0, j′ �= j and t′ �= t, with
m ≤ t′, t ≤ 3m − 1, such that both |x| = m(2j + 1) + t and |x| = m(2j′ + 1) + t′.
By symmetry, it is enough to consider j′ > j, i.e., j′ − j = p > 0. Then,
|x| = m(2j′ + 1) + t′ = m(2(j + p) + 1) + t′ = m(2j + 1) + 2pm + t′. Clearly,
t = 2pm + t′, but t′ ≥ m and p > 0 hence t ≥ 3m, a contradiction. Finally, if |x|
is even, then also r must be even, therefore |w|, which is equal either to m + r
or 2m + r, is also even. ��
Mapping Sm is computed by the following (nondeterministic) sequential trans-
ducer, also named Sm, specified by the 5-tuple

Sm =
(
QSm

, Σ,Δ[m,3m), δ2, q0, {qF })
,

where QSm
= {q0, q1, q2, qF } and :

∀v ∈ Σm :
(
q0, v, π−1(v), q1

)
,
(
q1, v, π−1(v), q2

)
,
(
q2, v, π−1(v), q1

) ∈ δ2;
∀w ∈ Σ+,m ≤ |w| ≤ 3m − 1 :

(
q1, w, π−1(w), qF

) ∈ δ2.

It may help to look at the following state-transition graph:

Notice for later reference that, in each move, the length of the input word (v or
w) is at most 3m − 1 and the length of the output word is at most one (tuple).

The next lemma states the relation between the grammar sizes.

Lemma 1. Let L = L(G), where G = (Σ,N,P, S) is in Chomsky normal
form. Let m ≥ 2 be an even number and let Sm be the transduction of
Definition 3. Then, the language L′ = Sm(L) is generated by a grammar
G′ = (Δ[m,3m), N

′, P ′, S′) such that |N ′| and |P ′| are in POLY (|Σ|m|N |).
Proof. The proof tracks the size of the language descriptions corresponding to
the PDA AN such that L = N(A), the PDA AT such that L = T (AT ), the PDA
AS such that L′ = Sm(L) = T (AS), and the grammar G′ equivalent to AS . ��
Claim. The size of the transition function of the PDA AN such that L = N(AN )
is |AN | = O(|P |).
This follows from the standard construction of the one-state PDA that accepts
by empty stack. The machine pushes onto the stack at most two symbols since
G is in Chomsky normal form. The size of the stack alphabet is |N | + 1.

Converting AN to an equivalent machine AT that accepts by final state, we
claim:

Claim. The size of the transition function of the PDA AT such that T (AT ) =
N(A) is |AT | = O(|AN |) therefore also |AT | = O(|P |).
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This follows from the standard conversion from acceptance by empty store
to acceptance by final state. The conversion adds a constant number of states,
of stack symbols, and of moves. Machine AT , as AN , pushes onto the stack at
most two symbols.

Building the PDA AS that recognizes Sm (T (AT )) by final state, we claim:

Claim. Let AS be the PDA such that T (AS) = Sm (T (AT )) = L′. Then, the
size of the state set QAS of AS is in POLY (|Σ|m) and the size of the transition
function of AS is O

(
|QAS |2 |P |

)
.

According to the construction in [6] (Theorem 6.4.3), producing a PDA simulat-
ing both AT and Sm, the set of states QAS is:

QAT × QSm
×

λ⋃

i=0

Σi ×
λ⋃

i=0

(Δ[m,3m))i (1)

where λ = 3m−1 (see earlier motivation). But, in our case, we do not need that
many states: the fourth component in Eq. (1) is meant to record all prefixes of
an output word to be emitted by the sequential transducer. Our output word is a
single character in Δ[m,3m), uniquely defined by the mapping π−1(v) or π−1(w):
it is a function only of three components of Eq. (1). Thus, the set QAS of states
of AS can actually be reduced to:

QAT × QSm
×

3m−1⋃

i=0

Σi.

Since the value |QAT ||QSm
| is a constant, it follows that the number |QAS | is in

POLY (|Σ|m). Moreover, since each move may push at most two symbols onto
the stack (as in machine AT ), the number of moves in the transition function of
AS is: O

(
|QAS |2 |P |

)
.

Claim. There exists a grammar G′ = (Δ[m,3m), N
′, P ′, S′), defining the same

language of AS , such that both |P ′| and |N ′| are in POLY (|Σ|m|N |).
This follows from the standard construction of grammar G′: every nonter-

minal of N ′ is a tuple of the form 〈qi, B1, qj〉 where qi, qj ∈ QAS and B1 is a
pushdown stack symbol of AS , which is O(|N |). Hence, |N ′| is in O(|QAS |2)|N |),
i.e., in POLY (|Σ|m|N |). G′ is in Chomsky normal form, therefore |P ′| is in
O(|N ′|3) and thus also |P ′| is in POLY (|Σ|m|N |). Since |P | for Chomsky nor-
mal form grammar is in O(|N |3), it follows immediately that also |P ′| is in
POLY (|Σ|m|N |).

The next theorem states the main result. The proof applies Okhotin’s
Theorem 1 to language L′ = Sm(L) over the tuple alphabet: thus, L′ may be
represented as h (Dk ∩ R). Homomorphism h maps every bracket ω of Dk into
a tuple symbol h(ω), corresponding to a word π(h(ω)) in Σm. Then the idea is
to map, by means of another homomorphism ρ, each open bracket ω of Dk into
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a word ρ(ω), made by m open brackets of a new Dyck alphabet Ωn; similarly,
every closed bracket ω′ is mapped into a sequence ρ(ω′) of closing brackets of
Ωn. Moreover, the opening brackets in ρ(ω) are exactly matched by the closing
brackets of π(h(ω′)). Homomorphism ρ is such that the word ρ(ω) represents two
pieces of information: the word π(h(ω)) and an identifier of the original bracket
ω. The identifier is a number, encoded as m digits in a suitably chosen base. For
the closing brackets, the word ρ(ω′) represents π(h(ω′)) and the same identifier
of the original bracket ω, but in reverse order.

Theorem 2. Let L ⊆ (
Σ2

)∗ be a language generated by a Chomsky normal
form grammar G = (Σ,N,P, S). Then, there exists a number q in POLY (|Σ|)
(independent of |N |), a Dyck alphabet Ωq, a regular language T ⊆ Ω+

q and a
letter-to-letter homomorphism ν, such that L = ν (Dq ∩ T ).

Proof. Let m ≥ 2 be an even number, to be bounded later in the proof. The
proof for words longer than 2m − 1 is next outlined and afterwards expanded.
At the end, the proof deals with the simple case of short sentences. First, by
Lemma 1 we transform L into the language L′ = Sm(L) over the tuple alphabet,
which can be characterized using Okhotin’s Theorem 1, by means of a letter-to-
letter homomorphism h, a Dyck language Dk ⊆ Ωk

∗ , and a regular language R.
Clearly it holds: L = π (h (Dk ∩ R)).

Second, we define a Dyck alphabet Ωn, made by matching open and closed brack-
ets, ζ, ζ ′, each one represented by a 4-tuple carrying the following information:

1. whether the element is an open or closed bracket;
2. the character of Σ to which ζ will be mapped by homomorphism ρ;
3. the character of Σ to which ζ ′ will be mapped by homomorphism ρ;
4. a digit i in a given constant base j ≥ 2, as next explained. In any two matching

elements ζ, ζ ′, value i is identical.

We recall that each element ω ∈ Ωk is identified by a number ι in 1 . . . k. We
represent the value of ι in base j using m digits. We show that it is possible to
choose a base j in POLY (|Σ|) as long as m is chosen in Ω(log |N |) (as customary,
here Ω(.) denotes a lower bound of a complexity function). As said, each digit
in base j occurs as fourth component of 4-tuples ζ and ζ ′.

Third, we define a new homomorphism τ : Ωk → Ω+
n such that the image of

Dk is a subset of the Dyck language Dn, i.e., τ(Dk) ⊂ Dn. Such subset will be
obtained, by means of the regular language τ(R), as τ(Dk) = Dn ∩ τ(R).

Fourth, we define the letter-to-letter homomorphism ρ : Ωn → Σ that
extracts the second component from each 4-tuple, proving that ρ (Dn ∩ τ(R)) is
exactly π (h (Dk ∩ R)).

Details of the Proof. Let L′ = Sm(L). By Definition 3 it is L′ ⊆ Δ∗
m · Δ[m,3m).

By Property 1, L′ contains only even-length sentences. By Lemma 1, L′ = L(G′),
where grammar G′ =

(
Δ[m,3m), N

′, P ′, S′) has |N ′| in POLY (|Σ|m|N |).
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By Theorem 1, there exist k > 0, a Dyck alphabet Ωk and a letter-to-letter
homomorphism h : Ωk → Δ[m,3m) such that L(G′) = h (Dk ∩ R), where k is in
POLY (|N ′|).

For a number j ≥ 2, let n = j|Σ|2 and define the new Dyck alphabet:

Ωn = {‘[’ , ‘]’ } × Σ × Σ × ({0, . . . , j − 1}) (2)

and the matching open/closed elements ζ, ζ ′ in Ωn:

ζ = 〈‘[’, a, b, o〉 matches ζ ′ = 〈‘]’, b, a, o〉 (3)

Note: the 2nd and 3d components are interchanged; component o is in 0, . . . , j−1.
Let Dn be the Dyck language over Ωn.

We want to represent each one of the k open parentheses in Ωk with a distinct
string, composed of m digits in base j ≥ 2. Therefore, we must choose a number
j such that logj k ≤ m. Denoting with log the base 2 logarithm, we require
that log k

log j ≤ m, that is the inequality: log j ≥ log k
m . Although j can be chosen

arbitrarily, we notice that n = j|Σ|2: therefore, n is in POLY (|Σ|) if, and only
if, also j is in POLY (|Σ|).

By Theorem 1, k ∈ POLY (|N ′|), with |N ′| ∈ POLY (|Σ|m|N |) by Claim 3.
Hence, k is in POLY (|Σ|m|N |). Therefore, there exist α, β > 1 such that k <

|Σ|αm|N |β for every k > 1, i.e., k1/m <
(|Σ|αm|N |β)1/m, which entails:

log k1/m < log
(
|Σ|α|N | β

m

)
, i.e., log k

m < log |Σ|α + log |N |β
m

If m > log(|N |β), then log k
m < log |Σ|α + 1 = log (2|Σ|α).

Hence, the condition that log j ≥ log k
m can be verified, when m is in

Ω(log |N |), by choosing j such that log j > log (2|Σ|α), i.e., it suffices to choose a
suitable j in POLY (|Σ|). Hence, under the above assumption on j and m, every
open parenthesis ω ∈ Ωk can be represented in base j by a distinct string with m
digits, to be denoted in the following as [[ω]]j . The closed parenthesis ω′ matching
ω has no encoding of its own, but it is just represented with the reversal of the
encoding of ω, i.e., ([[ω]]j)

R (as we will see, no confusion can arise).
As noticed, if j is in POLY (|Σ|), then n is in POLY (|Σ|): asymptotically,

the cardinality of Ωn is polynomial in the terminal alphabet Σ and does not
depend on the number |P | of productions of G, as long as m is in Ω(log |N |).

To define the homomorphism τ : Ωk → Ω+
n , we first need the partial mapping:

⊗ : (Σ1)+ × (Σ2)+ × (Σ3)+ × (Σ4)+ → (Σ1 × Σ2 × Σ3 × Σ4)
+

where each Σi is a finite alphabet, to combine four words of identical length into
one word of the same length over the alphabet of 4-tuples. This combinator ⊗
is defined for all l ≥ 1, xi ∈ (Σi)l, 1 ≤ i ≤ 4, as:

⊗ (x1, x2, x3, x4) = 〈x1(1), x2(1), x3(1), x4(1)〉 . . . 〈x1(l), x2(l), x3(l), x4(l)〉 .

For instance, let x1 = ab, x2 = cd, x3 = ef, x4 = ca; then ⊗ (x1, x2, x3, x4) =
〈a, c, e, c〉 〈b, d, f, a〉.
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Since L′ is a subset of Δ∗
m · Δ[m,3m), the image h(ω) of an open parenthesis

ω ∈ Ωk is in Δm, while the image of a closing parentheses ω′ may be in Δ[m,3m) ⊃
Δm. The definition of τ is then split into two cases. The first case is when
h(ω′) ∈ Δm:

τ(ω) = ⊗
(
‘[’m , π (h(ω)) , (π (h(ω′)))R

, [[ω]]j
)

τ(ω′) = ⊗
(
‘]’m , π (h(ω′)) , (π (h(ω)))R

, ([[ω]]j)
R
) (4)

All four arguments of ⊗ are words of length m, therefore the combinator
⊗ returns a word of length m over the alphabet of 4-tuples. For instance, if
h(ω) = 〈a1, . . . , am〉 ∈ Δm, h(ω′) = 〈bm, . . . , b1〉 ∈ Δm, and [[ω]]j = o1o2 . . . om,
with o1, . . . , om ∈ {0, . . . , j − 1}, then ([[ω]]j)

R = omom−1 . . . o1 and:

τ(ω) = 〈‘[’, a1, b1, o1〉 〈‘[’, a2, b2, o2〉 . . . 〈‘[’, am, bm, om〉
τ(ω′) = 〈‘]’, bm, am, om〉 〈‘]’, bm−1, am−1, om−1〉 . . . 〈‘]’, b1, a1, o1〉

The second case for τ is when h(ω′) �∈ Δm (still, h(ω′) ∈ Δ[m,3m)). Since m is
even and both L′, L only contain even length sentences, then h(ω′) ∈ Δm+2t, for
some 1 ≤ t ≤ (3m − 2)/2, i.e., h(ω′) = 〈a1, . . . am, b1, . . . , bt, ct, . . . , c1〉, for some
ai, bi, ci ∈ Σ. The definition of τ in this case is:

τ(ω) = ⊗ (‘[’m , π (h(ω)) , π (〈am, . . . , a1〉) , [[ω]]j)
τ(ω′) = ⊗

(
‘]’m , π (〈a1, . . . , am〉) , (π (h(ω)))R

, ([[ω]]j)
R
)

·
·〈‘[’, b1, c1, 0〉 . . . 〈‘[’, bt, ct, 0〉〈‘]’, ct, bt, 0〉 . . . 〈‘]’, c1, b1, 0〉

(5)

Claim. (a) Let ω, ω′ ∈ Ωk be a matching pair. Then τ(ω) = ζ1 . . . ζm and either
(case (4)) τ(ω′) = ζ ′

m . . . ζ ′
1, or (case (5)) τ(ω′) = ζ ′

m . . . ζ ′
1 β1 . . . βtβ

′
t . . . β′

1 where
for all i both the pair ζi, ζ

′
i and the pair βi, β

′
i are matching in Ωn.

(b) τ(Dk) ⊆ Dn.

Proof. (a) The fact that the above elements match according to formula (3),
follows immediately from the definition of τ . (b) Since, for every w ∈ Ω+

k , τ(w)
preserves the parenthetization of w, if w ∈ Dk, τ(w) ∈ Dn. We show that
mapping τ is one-to-one:

Claim. For all w,w′ ∈ (Ωk)+, if τ(w) = τ(w′), then w = w′.

Proof. Let ω1, ω2 ∈ Ωk; if ω1 �= ω2, then [[ω1]]j �= [[ω2]]j by definition of [[. . .]]j .
Therefore τ(ω1) �= τ(ω2) because at least one position differs. ��

We define the letter-to-letter homomorphism ρ : Ωn → Σ as the projection
on the second component of each 4-tuple: ρ (〈x1, x2, x3, x4〉) = x2 ∈ Σ.

Claim. For all w ∈ (Ωk)+, ρ(τ(w)) = π(h(w)).

Proof. By the definitions of τ and ρ, for every χ ∈ Ωk it is ρ (τ(χ)) = π(h(χ)).
This is true for both cases (4) and (5).

Claim. τ−1(Dn) ⊆ Dk.
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Proof. Although τ−1 is not defined for every word in Dn, mapping τ is defined so
that, if a word w �∈ Dk, then τ(w) �∈ Dn; hence if τ(w) ∈ Dn, then also w ∈ Dk.

Then we prove the identity: ρ (Dn ∩ τ(R)) = π (h (Dk ∩ R)) (6)

By Claim 3, τ(Dk)∩τ(R) = τ(Dk∩R); hence, by Claim 3, part (b), ρ (τ(Dk ∩ R))
is equal to ρ (τ(Dk) ∩ τ(R)) ⊆ ρ (Dn ∩ τ(R)). The inclusion π (h (Dk ∩ R)) ⊆
ρ (τ(Dk ∩ R)) then follows: if z ∈ π(h (Dk ∩ R)), then there exists a word w ∈
Dk ∩R such that π(h(w)) = z, hence z = ρ(τ(w)) by Claim 3. Since w ∈ Dk ∩R,
then τ(w) ∈ τ(Dk ∩ R), hence z ∈ ρ (τ(Dk ∩ R)) ⊆ ρ (Dn ∩ τ(R)).

The opposite inclusion ρ (Dn ∩ τ(R)) ⊆ π (h (Dk ∩ R)) also follows: if z ∈
ρ (Dn ∩ τ(R)), then there exists w ∈ R such that τ(w) ∈ Dn and ρ(τ(w)) = z.
By Claim 3, if τ(w) ∈ Dn, then also w ∈ Dk. Since z = π(h(w)) by Claim 3, it
follows that z ∈ π (h (Dk ∩ R)).

It remains to consider the “short” words in Fm = {x ∈ L | |x| is even and 0 ≤
|x| ≤ 2m − 1}. Let p = |Σ|2 and let Ωp = { [, ] } × Σ × Σ, where a triple of the
form 〈[, a, b〉 is an open parenthesis and 〈], b, a〉 is the corresponding closed one,
and the Dyck language is Dp. Let σ be the projection σ : Ωp → Σ defined as:
σ (〈 [ , a, b〉) = a, σ (〈 ] , b, a〉) = b, and let RF be the regular language σ−1(Fm).
It is then obvious that Fm = σ(Dp ∩ RF ), i.e., the CST holds for language Fm.

To finish, define the homomorphism ν : (Ωn ∪ Ωp) → Σ as ∀ω ∈ Ωn, ν(ω) =
ρ(ω) and ∀ω ∈ Ωp, ν(ω) = σ(ω); let T = R ∪ RF . The thesis then follows with
q = n + p, i.e., Ωq = Ωn ∪ Ωp. (An example is in the Appendix.) ��

Theorem 2 homomorphically characterizes any language having sentences of
even length, by means of a regular and a Dyck language over an alphabet with
size not depending on the complexity of the original grammar, but only on its
terminal alphabet.

We observe that the regular language constructed in the proof of Theorem2
is no longer local, i.e., 2-SLT (Definition 1). Yet, it would be straightforward to
modify our construction to obtain an SLT language having width greater than
two: it suffices to modify homomorphism τ (Eqs. (4) and (5)) so that the first
bracket of τ(ω) and the last one of τ(ω′) are typographically different from the
remaining m − 1 brackets.

We also remark that Theorem 2 leaves the value of m unspecified, provided
that it is larger than β log |N |, for a constant β. In this paper we do not analyze
the relation between m and the alphabet size |Δn|, but in Sect. 4 we discuss the
tradeoff between the alphabet size, |N | and m in a special case.

Homomorphic Characterization for Languages of Words of Arbitrary Length.
It is simple to remove the restriction to even-length sentences, thus obtaining
a homomorphic characterization that holds for any context-free language. For
dealing also with the special case of singleton sentences of the form a ∈ Σ,
it suffices to consider a variant of the Dyck language equipped with neutral
symbols, as in Okhotin’s Theorem 3.
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Let Ωn,l be an alphabet with n pairs of parentheses and l ≥ 1 new symbols
called neutral [9]; let Dn,l denote the corresponding Dyck language with neutral
symbols.

In our treatment, l = |Σ| and Ωn,l = Ωn ∪ {〈−, a, a, 0〉 | a ∈ Σ}, where “−”
is a new symbol. If a word x ∈ L has odd length, then Sm(x) is composed of
2j + 1 tuples in Δm (of even total length) and one tuple h(ω′) ∈ Δm+2t+1,
for some number t, 1 ≤ t ≤ (3m − 2)/2, and ω′ ∈ Ωk (i.e., |π(h(ω′)| must
be odd). Therefore, there exist letters a, ai, bi, ci ∈ Σ such that h(ω′) =
〈a1, . . . am, b1, . . . , bt, ct, . . . , c1, a〉. Redefine Case (5) for τ(ω′) in the proof of
Theorem 2 as follows:

τ(ω′) = ⊗
(
‘]’m , π (〈a1, . . . , am〉) , (π (h(ω)))R

, ([[ω]]j)
R
)

·
·〈‘[’, b1, c1, 0〉 . . . 〈‘[’, bt, ct, 0〉 · 〈‘]’, ct, bt, 0〉 . . . 〈‘]’, c1, b1, 0〉 · 〈−, a, a, 0〉

Also, we extend the definition of ρ by setting ρ(〈−, a, a, 0〉) = a for all a ∈ Σ.

Theorem 3. A language L ⊆ Σ∗ is context-free if, and only if, there exist a
number n that only depends, polynomially, on the size of Σ, a regular language
R ⊆ (

Ωn,|Σ|
)∗ and a letter-to-letter homomorphism h : Ωn,|Σ| → Σ, such that

L = h
(
Dn,|Σ| ∩ R

)
.

4 Relation with Medvedev Theorem and Conclusion

It would be possible but tedious to compute the precise size of the Dyck alphabet
founding the proof in Theorem2, by analyzing the standard transformations
involving grammars and PDAs used, but such computation would likely yield a
large overestimation, because of the generality of such transformations. For the
particular case of linear context-free grammars, we show that a small alphabet
suffices.

Since the following remark does not aim to generality, for brevity we consider
a language L devoid of odd-length sentences, generated by a linear grammar
G = (Σ,P,N, S) with rules of the form A → aBb,A → ab, a, b ∈ Σ, A,B ∈ N .

It is known that, for every such linear language L, there exist a regular
language RL ⊆ Γ ∗, and two letter-to-letter homomorphisms h1, h2 : Γ → Σ,
such that L = {h1(v) · h2(vR) | v ∈ RL}.

More precisely, let Γ = {‘[’}×Σ×Σ and RL ⊆ Γ+ be the language recognized
by the following FA. The state set is N ∪{qF }, with S and qF respectively initial
and final; the state transition function is:

A
[〈a,b〉−→ B if A → aBb ∈ P, A

[〈a,b〉−→ qF if A → ab ∈ P.

Define the similar alphabet Γ ′ = {‘]’} × Σ × Σ and the Dyck alphabet Δ′ =
Γ ∪Γ ′ of size 2|Σ|2. Positing that [〈a,b〉 and ]〈a,b〉 are matching, denote the Dyck
language as D′ and define the regular language R′ = RL · (Γ ′)+. Then, it is
straightforward that language L can be represented as
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L = h′(D′ ∩ R′), where h′ : Δ′ → Σ is : h′ ([〈a,b〉
)

= a, h′ (]〈a,b〉
)

= b. (7)

Notice that the regular language R′, in general, is not SLT (Definition 1); e.g.,
for the language

{
(a2)n(b2)n | n ≥ 1

}
, language RL (and R′) is not non-counting

hence not SLT [7]. However, we can derive from (7) a representation that uses
an SLT language, if we accept to pay a small extra cost in terms of alphabet
size.

In [3] we have extended the historical Medvedev theorem [8,10], which states
that every regular language R can be represented as a letter-to-letter homomor-
phism of a 2-SLT language over a (much) larger alphabet. Moving to higher
width, we proved the following relation between the alphabet sizes, the com-
plexity of language R (measured by the number of states of its nondeterministic
FA), and the SLT width parameter.

Theorem 4 [3]. Given an alphabet Σ, if a regular language R ⊆ Σ∗ is accepted
by an FA with |Q| states, then for every c, 2 ≤ c ≤ |Q|, there exists a letter-to-
letter homomorphism f and an s-SLT language T over an alphabet of size c|Σ|,
such that R = f(T ). The width parameter s is in Θ( log |Q|

log c ).

By applying Theorem4 to language R′ of (7) and setting parameter c to its
minimum value 2, we obtain that every linear language L(G), where G has the
form considered, can be homomorphically characterized using a Dyck alphabet
of size 4|Σ2| and an s-SLT language, where s logarithmically depends on |N |.
The c parameter of Theorem 4 expresses a tradeoff between the alphabet size
and the SLT width.

Returning to the case of unrestricted context-free grammars, to the best of
our knowledge the past research on CST has not dealt with the relationship
between the Dyck alphabet size and the class of the regular language, in partic-
ular, whether it is SLT and its width. The present work may provide a starting
point for such investigation.

Appendix: An Example

The example illustrates the crucial part of our constructions, namely the homo-
morphism τ defined by formulas (4) and (5). Consider language L = {a2n+4b6n |
n ≥ 0} (generated, e.g., by grammar {S → aaSb6 | a4}), and choose the value
m = 2 for Definition 3, meaning that the substrings of length two occurring in the
language are mapped on the 2-tuples 〈a, a〉, 〈a, b〉, 〈b, b〉, shortened as 〈aa〉, etc.
The following grammar in Double Greibach normal form, though constructed by
hand, takes the place of grammar G′ of Lemma 1:

1 : S → 〈aa〉S B 〈bb〉, 2 : S → 〈aa〉 〈aa〉, 3 : B → 〈bb〉 〈bb〉.
The sentence a8b12 ∈ L becomes 〈aa〉4〈bb〉6 ∈ L(G′), with the syntax tree:
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1 : S

aa 1 : S

aa 2 : S

aa aa

3 : B

bb bb

bb

3 : B

bb bb

bb

For Okhotin Theorem1, this sentence is the image by homomorphism h of the
following sequence γ of labeled parentheses, where the numbers identify the rules
and the dash marks the root:

γ = (−
1 (11 (12 )12 (13 )13 )11 (13 )13 )−

1

We choose to represent the labeled parentheses with m = 2 binary digits, defining
τ as:

ω ω′ τ(ω) τ(ω′)
(−
1 )−

1 [a,b,0 [a,b,0 ]b,a,0 ]b,a,0

(11 )11 [a,b,0 [a,b,1 ]b,a,1 ]b,a,0

(12 )12 [a,a,1 [a,a,0 ]a,a,0 ]a,a,1

(13 )13 [b,b,1 [b,b,1 ]b,b,1 ]b,b,1

Hence τ (π(h(γ))) is

(−
1︷ ︸︸ ︷

[a,b,0 [a,b,0

(11︷ ︸︸ ︷
[a,b,0 [a,b,1

(12︷ ︸︸ ︷
[a,a,1 [a,a,0

)12︷ ︸︸ ︷
]a,a,0 ]a,a,1

(13︷ ︸︸ ︷
[b,b,1 [b,b,1

)13︷ ︸︸ ︷
]b,b,1 ]b,b,1

)11︷ ︸︸ ︷
]b,a,1 ]b,a,0

(13︷ ︸︸ ︷
[b,b,1 [b,b,1

)13︷ ︸︸ ︷
]b,b,1 ]b,b,1

)−
1︷ ︸︸ ︷

]b,a,0 ]b,a,0

Notice that the 2-SLT language of the classical CST (applied to language L) is
now replaced by an SLT language of higher width.
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1 Introduction

The well known Chomsky–Schützenberger theorem [6] states that every context-
free language L can be represented as L = h(R∩Dk), for some integer k, regular
set R and homomorphism h. The set Dk used in this expression, called Dyck lan-
guage, is the set of well-bracketed words over k pairs of brackets. Combined with
Nivat’s characterization of rational transductions, this means that any context-
free language can be defined as a set L = h(g−1(D2)∩R), for some regular set R,
and homomorphisms h and g.

Let us consider wider families of languages, Maslov defines in [13] an infinite
hierarchy of languages included in recursively enumerable languages. The level
1 consists of context-free languages, the level 2 of indexed languages (initially
defined by Aho [1]). Known as higher order languages since the last decades, the
languages of the hierachy and derived objects as higher order trees [12], higher
order schemes [9], or higher order graphs [5], are used to model programming
languages and have been subject to recent researches in program verification [18].

It is stated in [14] and proved in [8] that each level Lk of the hierarchy is
a principal rational cone generated by a language Mk ∈ Lk. This means that
each language in Lk is the image of Mk by a rational transduction. Roughly
speaking, the language Mk consists of words composed by k embedded Dyck
words and can be viewed as a generalization of the Dyck language. Indeed it
gives a description of derivations of an indexed grammar of level k, in the same
way that the Dyck language encodes derivations of a context-free grammar.

This latter characterization describes Lk from a single language Mk, but
this one is very complicated as soon as k ≥ 2, as the majority of higher order
languages. To better understand higher order languages, we think that it is
necessary to characterize them using more simple objects. So, we may wonder

c© Springer International Publishing Switzerland 2016
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whether it is possible to give versions of the Chomsky–Schützenberger theorem
and a characterization by transduction of the level k + 1 of the hierarchy, using
only the level k of the hierarchy. The fundamental point is then to identify
mechanisms that bridge the level k to the level k + 1.

In this paper, we solve the problem for the class IL of Indexed Languages
(the level 2 of the hierarchy). In order to identify a difficulty, let us remark
that from [10], recursively enumerable languages are sets that can be written as
L = h(K∩Dk) where K is a context-free language, and h a homomorphism. So if
we want a homomorphic characterization of IL using only context-free or regular
sets, we would have to consider a restricted class of context-free languages. We
then introduce the class of ε-Reducible Context-Free Languages (ε-CFLs), which
is a strict subclass of context-free languages that reduce to ε by the bilateral
reduction S = {aā → ε, āa → ε}a∈Γ (these languages are thus defined over
an alphabet Γ and its copy Γ̄ ). We extend this definition to transductions: an
ε-Reducible Context-Free Transduction (ε-CFT) is a context-free transduction
whose domain is an ε-CFL. Using these objects, we obtain simple generalizations
of the Chomsky–Schützenberger theorem. Indexed languages are:

– the images of D2 by ε-reducible context-free transductions. (Theorem 15);
– sets h(Z ∩ Dk); where k is an integer, Z an ε-CFL, and h a homomorphism

(Theorem 18).

Beyond these two results, we study the classes of ε-CFLs and ε-CFTs defined
by means of context-free grammars and context-free transduction grammars.

First we express them using symmetric homomorphisms which are homomor-
phisms under which there are closed. We establish a Chomsky–Schützenberger-
like Theorem for ε-CFLs, and a Nivat-like characterization for ε-CFTs: every
ε-CFL L can be represented as L = g(R ∩ Dk) for some integer k, regular
set R, and symmetric homomorphism g; and ε-CFTs are relations that can be
represented as {(g(x), h(x)) | x ∈ R ∩ Dk} for some integer k, regular lan-
guage R, homomorphism h and symmetric homomorphism g. This leads to a
third characterization: indexed languages are languages that can be described
as L = h(g−1(D2) ∩ R ∩ Dk), for some integer k, regular set R, homomorphism
h and symmetric homomorphism g (Corollary 17).

Similar characterizations have been given for subclasses of indexed languages,
by Weir [20] for linear indexed languages, by Kanazawa [11] and Sorokin [19] for
yields of tree languages generated by simple context-free grammars. The main
difference is that in their cases, the homomorphism g is not symmetric, but is
fixed in function of k.

Overview. Section 1 is devoted to the study of ε-CFLs. After introducing neces-
sary notions as free groups and Dyck languages, we define the class of grammars
generating ε-CFLs. We then study their closure properties, and conclude the
section by giving a Chomsky–Schützenberger-like characterization of the class
of ε-CFLs. In Sect. 2, we extend our definition to transductions and define the
class of ε-CFTs. After a subsection giving background on transductions, we give
a Nivat-like characterization of ε-CFTs.
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The last section is devoted to indexed languages. After introducing indexed
grammars, we prove that indexed languages are images of the Dyck language by
ε-CFTs and deduce from this result several homomorphic characterizations.

2 Epsilon-Reducible Context-Free Languages

In this section, we study a family of context-free languages defined over a
union of an alphabet and its opposite-disjoint copy and that reduce to the neu-
tral element ε when projected into the free group. The main result here is a
Chomsky–Schützenberger-like homomorphic characterization of these languages.
We assume the reader to be familiar with context-free grammars and languages
(see [3] for example), and present below a few necessary notions on free groups.

2.1 Free Groups and Dyck Languages

Given an alphabet Γ , we denote by Γ a disjoint copy Γ = {ā | a ∈ Γ} of it, and
by Γ̂ the set Γ ∪ Γ . We adopt the following conventions: ¯̄a = a for all a ∈ Γ ,
ε̄ = ε and for any word u = α1 · · · αn ∈ Γ̂ ∗, ū = ᾱn · · · ᾱ1.

Let us consider the reduction system S = {(aā, ε), (āa, ε)}a∈Γ̂ . A word in Γ̂ ∗

is said to be reduced if it is S-reduced, i.e. it does not contain occurrences of
aā, āa, for a ∈ Γ . As S is confluent, each word w is equivalent (mod ↔∗

S) to a
unique reduced word denoted ρ(w). Note that for all u ∈ Γ̂ ∗, ρ(uū) = ρ(ūu) = ε.
Given a set X, we denote by ρ(X) the set {ρ(x) | x ∈ X}.

The free group F(Γ ) consists of reduced words over Γ̂ . Its neutral element is
the empty word and its product • is defined as u • v = ρ(uv).

The set of all words u ∈ Γ̂ ∗ such that ρ(u) = ε is denoted TΓ . The Dyck
language over Γ , denoted DΓ , is the set of all u ∈ TΓ , such that for every prefix
v � u: ρ(v) ∈ Γ ∗. We will also write Dk, k ≥ 1, to refer to the set of Dyck words
over any alphabet of size k.

2.2 ε-Reducible Context-Free Languages and Grammars

Definition 1. An ε-Reducible Context-Free Grammar (ε-CFG) is a con-
text free grammar G = (N,T, S, P ) (N is the set of nonterminal symbols, Γ̂ the
terminal alphabet, S ∈ N is the start symbol, and P is the set of productions)
such that T = Γ̂ for some alphabet Γ and every production is in the form:

X −→ ωΩω̄, for ω ∈ Γ̂ ∗, and Ω ∈ N∗

For all X ∈ N , we define LG(X) = {u ∈ Γ̂ ∗ | X
∗−→G u}; the language

generated by G is LG = LG(S).
An ε-Reducible Context-Free Language (ε-CFL) is a context-free language L

that can be generated by an ε-CFG.
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Example 2. Let G = (N, {α, β, ᾱ, β̄}, S, P ) be the ε-CFG whose productions are:
S −→ βXβ̄, X −→ αXᾱ + Y , Y −→ ᾱY Zα + β̄β, Z −→ ᾱZα + β̄β.

One can easily check that:

LG(Z) =
⋃

n≥0 ᾱnβ̄βαn, LG(Y ) =
⋃

n≥0 ᾱnββ̄(Πn
i=1LG(Z)α),

LG(S) = βLG(X)β̄, LG(X) =
⋃

n≥0 αnLG(Y )ᾱn.

It follows that: LG =
⋃

n,m,r1,...rm≥0

βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄. �	

It seems clear that every ε-CFL L satisfies ρ(L) = {ε}. One can indeed
observe that every terminal word generated from a nonterminal symbol X ∈ N
reduce to ε. However, there are context-free languages that reduce to ε and which
are not ε-CFL. We prove this by using a “pumping lemma” for ε-CFLs.

Lemma 3. If L ⊆ Γ̂ ∗ is an ε-CFL, then there exists some integer p ≥ 1 such
that every word s ∈ L with |s| ≥ p can be written as s = uvwxy with

1. ρ(uy) = ε, ρ(vx) = ε and ρ(w) = ε
2. |vwx| ≤ p,
3. |vx| ≥ 1, and
4. uvnwxny is in L for all n ≥ 0.

Proof (Sketch). Let G be an ε-CFG generated L. The proof of the pumping
lemma for context-free languages is based on the fact that if a word s ∈ L is
long enough, there is a non terminal A and terminal words u, v, w, x, y such that
S

∗−→G uAy
∗−→G uvAxy

∗−→G uvwxy and s = uvwxy. Since G is an ε-CFG,
this implies that ρ(uy) = ε, ρ(vx) = ε and ρ(w) = ε �	
Proposition 4. There is a context-free language L satisfying ρ(L) = ε which is
not an ε-CFL.

By applying Lemma 3 to the set L = {(αᾱ)nβ(αᾱ)nβ̄, n ≥ 0}, one can show that
L is not an ε-CFL.

Proposition 5. The class of ε-CFLs is closed under union, intersection with
regular sets, concatenation and Kleene star.

Proof. Obviously, the class of ε-CFLs is closed under union, concatenation and
Kleene star. Let us prove the closure under intersection with regular sets. Let
L be generated by an ε-CFG G = (N, Γ̂ , P, S) and R be a regular language.
There is a monoid morphism μ : Γ̂ ∗ → M , where M is a finite monoid and
H ⊆ M such that R = μ−1(H). We construct the ε-CFG G′ = (N ′, Γ̂ , P ′, S′)
where N ′ = {Xm | X ∈ N,m ∈ M} ∪ {S′} and P ′ is the set of all productions:

– Xm −→ αX1,m1 · · · Xn,mn
ᾱ such that X −→ αX1 · · · Xnᾱ ∈ P and m =

μ(α)m1 · · · mnμ(ᾱ)
– S′ −→ Sm for every m ∈ H

Then for every u ∈ Γ̂ ∗, for every X ∈ N and m ∈ M :

Xm
∗−→G′ u iff X

∗−→G u and u ∈ μ−1(m).

It follows that LG′ = L ∩ μ−1(H). �	
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2.3 A Chomsky–Schützenberger-like Theorem for ε-CFLs

The Chomsky–Schützenberger theorem states that a language L ⊆ Σ∗ is context-
free iff there is an alphabet Γ , a regular set R ⊆ Γ̂ ∗, and a homomorphism
h : Γ̂ ∗ → Σ∗ such that

L = h(R ∩ DΓ ).

This implies that the whole class of context-free languages can be generated as
homomorphic images of ε-CFLs since R ∩DB is an ε-CFL. To get an homomor-
phic characterization for ε-CFLs, we introduce a class of homomorphisms under
which the family of ε-CFLs is closed.

Definition 6. A homomorphism g : Σ̂∗ → Γ̂ ∗ is said to be symmetric if for all
α ∈ Σ̂, g(ᾱ) = g(α).

Proposition 7. The class of ε-CFLs is closed under symmetric homomorphism.

Proof. Consider a language L generated by an ε-CFG G = (N, Γ̂ , P, S) and g :
Γ̂ ∗ → Σ̂∗ be a symmetric homomorphism. We build an ε-CFG G′ = (N, Σ̂, P ′, S)
generating g(L) as follows:

P ′ = {X −→ g(u)Ωg(ū) | X −→ uΩū ∈ P,Ω ∈ N∗, u ∈ Γ̂ ∗}. �	
More generally, ε-CFLs are closed under homomorphisms g satisfying

“∀u ∈ Γ̂ ∗ : ρ(u) = ε =⇒ ρ(g(u)) = ε”.
The main result of this section is the following.

Theorem 8. A set L ⊆ Γ̂ ∗ is an ε-CFL iff there is an alphabet Σ, a symmetric
homomorphism g : Σ̂∗ → Γ̂ ∗, and a regular set R ⊆ Σ̂∗ such that

L = g(R ∩ DΣ).

The “if” part of Theorem8 is a direct consequence of Propositions 5 and 7. The
“only if” part is obtained using a slight adaptation of the proof of the non-erasing
variant of the Chomsky–Schützenberger theorem given in [17]. Intuitively, in our
case, the symmetric homomorphism expresses the opposition of terminals in the
productions of an ε-CFG.

We conclude this section by emphasizing that Theorem 8 and Propositions 5
and 7 provide another characterization of the class of ε-CFLs:

Corollary 9. The family of ε-CFLs is the least family of languages that contains
the Dyck language and is closed under union, intersection with regular sets,
symmetric homomorphisms, concatenation and Kleene star.

2.4 Related Works

In [4], the authors define (pure) balanced grammars that are context-free gram-
mars whose set of productions is a (possibly infinite) regular set of rules of the
form X −→ αmᾱ, where α ∈ Γ and m ∈ N∗. Balanced grammars do not
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generate all ε-CFLs included in DΓ , for example they cannot generate the set
{β(αᾱ)n(γγ̄)nβ̄ | n ≥ 0}.

Introduced in [15], input-driven languages–more recently known as Visibly
Pushdown Languages (VPLs)–are extensions of balanced languages defined over
a structured alphabet: Σc is the set of call symbols, Σr the set of returns and
Σ� the set of local symbols. They are recognized by pushdown automata that
push onto the stack only when reading a call, pop the stack only on returns,
and do not use the stack when reading local actions. The input word hence
controls the permissible operations on the stack. However, there is no restriction
on the symbols that can be pushed or popped. This implies that there are visibly
pushdown languages which are not ε-CFLs. However the ε-CFL {(αᾱ)n(ββ̄)n |
n ≥ 0} is not a VPL when Σc = Γ and Σr = Γ̄ .

Also note that unlike ε-CFLs, VPLs are closed under intersection. We will
see (Theorem 18) that the intersection of an ε-CFL with the Dyck language is
an indexed language.

3 Epsilon-Reducible Context-Free Transductions

In this section, we extend the notion of ε-reducibility to transductions. We con-
sider a subclass of context-free transductions such that their domains are ε-CFLs.
We give a Nivat-like presentation of those transductions.

3.1 Transductions

We briefly introduce rational and context-free transductions. The reader can
refer to [2] for a more detailed presentation.

Let Γ and Σ be two finite alphabets, we consider the monoid Γ ∗ ×Σ∗ whose
product is the product on words, extended to pairs of words: (u1, v1)(u2, v2) =
(u1u2, v1v2). A subset τ of Γ ∗ × Σ∗ is called a (Γ,Σ)-transduction.

Transductions are viewed as (partial) functions from Γ ∗ toward subsets of
Σ∗: for any u ∈ Γ ∗, τ(u) = {v ∈ Σ∗ | (u, v) ∈ τ}. For every L ⊆ Γ ∗, the
image (or transduction) of L by τ is τ(L) =

⋃
u∈L τ(u). The domain of τ is

Dom(τ) = {u | ∃v, (u, v) ∈ τ}.

Rational Transductions: A rational (Γ,Σ)-transduction is a rational subset of the
monoid Γ ∗×Σ∗. Among the different characterizations of rational transductions,
let us cite the Nivat theorem [16] stating that rational transductions are relations
τ = {(g(u), f(u)) | u ∈ R}, for some regular set R and homomorphisms f and g.

Rational transductions are closed by composition and many classes of lan-
guages are closed under rational transductions. In particular, τ(L) is rational if
L is rational, and τ(L) is context-free if L is context-free.

Associated with the Nivat theorem, the Chomsky–Schützenberger theorem
establish in a stronger version that a language L is context-free iff there is a
rational transduction τ such that L = τ(D2).

Context-Free Transductions: Following [2, page 62], a transduction τ ⊆ Γ ∗ ×Σ∗

is context-free if there is an alphabet A, a context-free language K ⊆ A∗ and
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two homomorphisms f : A∗ → Σ∗ and g : A∗ → Γ ∗ such that τ = {(g(u), f(u)) |
u ∈ K}. Equivalently, τ is context-free if it is generated by a context-free trans-
duction grammar. This is a context-free grammar whose terminals are pairs of
words. Derivations are done as usually but the product used on terminal pairs
is the product of the monoid Γ ∗ × Σ∗.

Context-free transductions enjoy however fewer good properties, in particu-
lar, [2, page 62] they are not closed under composition and classes of languages
are usually not closed under them. For example, images of regulars languages
are context-free languages and images of context-free languages are recursively
enumerable languages.

3.2 ε-Reducible Context-Free Transductions and Transducers

Definition 10. An ε-Reducible Context-Free Transduction Grammar
(ε-CFTG) is a context-free transducer G = (N, Γ̂ ,Σ, S, P ) in which every pro-
duction is in the form

X −→ (ω, u)Ω(ω̄, v), with X ∈ N,ω ∈ Γ̂ ∗, u, v ∈ Σ∗, Ω ∈ N∗.

The transduction generated by G is TG = {(u, v) ∈ Γ̂ ∗ × Σ∗ | S
∗−→G (u, v)}.

An ε-reducible context-free transduction (ε-CFT) is a context-free transduction
generated by an ε-CFTG.

Example 11. Let G = (N, {α, β, ᾱ, β̄}, {a}, S, P ) be the ε-CFTG whose produc-
tions are:

S −→ (β, ε)X(β̄, ε) X −→ (α, ε)X(ᾱ, ε) X −→ (ε, ε)Y (ε, ε)
Y −→ (ᾱ, a)Y Z(α, ε) Z −→ (ᾱ, a)Z(α, a)Y −→ (β̄, ε)(β, ε) Z −→ (β̄, ε)(β̄, ε).

Let τ be the transduction generated by G. The domain of τ is the ε-CFL given
in Example 2 and one can easily check that

τ =
⋃

n,m,r1,...rm≥0

(βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄, am+2r1+···+2rm). �	

Theorem 12. Given a transduction τ ⊆ Γ̂ ∗ × A∗, the following properties are
equivalent:

1. τ is an ε-reducible context-free transduction;
2. there is an alphabet Δ, an ε-CFL X ⊆ Δ̂∗, a symmetric homomorphism

g : Δ̂∗ → Γ̂ ∗ and a homomorphism h : Δ̂∗ → A∗ such that

τ = {(g(u), h(u)) | u ∈ X};

3. there is an alphabet Δ, a symmetric homomorphism g : Δ̂∗ → Γ̂ ∗, a homo-
morphism h : Δ̂∗ → A∗ and a regular set R ⊆ Δ̂∗ such that

τ = {(g(u), h(u)) | u ∈ R ∩ DΔ}.
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Proof. (1 ⇒ 2) Suppose τ to be generated by an ε-CFTG G = (N, Γ̂ ,Σ, S, P ).
We define the ε-CFG G′ = (N, Δ̂, S, P ′) where Δ = P , and the set of productions
of P ′ is obtained by transforming every p : X −→ (ω, v)Ω(ω̄, w) ∈ P into
X −→ pΩp̄. Now, let h : Δ̂∗ → A∗ and g : Δ̂∗ → Γ̂ ∗ such that for every
p : X −→ (ω, v)Ω(ω̄, w) ∈ P , g(p) = ω, g(p̄) = ω̄ and h(p) = v, h(p̄) = w.
Clearly we have

TG = {(g(u), h(u)) | u ∈ L(G′)}.

(2 ⇒ 3) Suppose that τ = {(g(u), h(u)) | u ∈ X} where X is an ε-CFL and
g symmetric. From Theorem 8, there is an alphabet C, a regular set R ⊆ Ĉ∗,
and a symmetric homomorphism g′ : Ĉ∗ → Δ̂∗ such that X = g′(R ∩ DΔ).
The homomorphism g ◦ g′ is symmetric as g and g′ are both symmetric and
τ = {(g(g′(x)), h(g′(x))) | x ∈ R ∩ DΔ}.

(3 ⇒ 1) Let τ = {(g(u), h(u)) | u ∈ R ∩DΔ} where R is a regular language and
g is symmetric. From Proposition 5, R ∩ DΔ is an ε-CFL. Let us suppose that
R ∩DΔ is generated by the ε-CFG G = (N, Δ̂, P, S), then τ is generated by the
ε-CFTG G′ = (N, Γ̂ , Σ̂P ′, S) where

P ′ = {X −→ (g(u), f(u))Ω(g(ū), h(ū)) | X −→ uΩū ∈ P, Ω ∈ N∗, u ∈ Γ̂ ∗}. �	
Theorem 12 implies that the image of a set X by an ε-CFT can be represented

as h(g−1(X) ∩ R ∩ DΔ) with R being a regular set, h a morphism and g a
symmetric morphism. It is then clear that the family of images of regular sets
by ε-CFTs is the family of context-free languages; we will see (Theorem 15) that
the family of images of the Dyck language is that of indexed languages, but more
generally, images of ε-CFLs by ε-CFTs are recursively enumerable languages.

Proposition 13. Given a recursively enumerable language E, there is an ε-
CFT τ , and an ε-CFL Z such that E = τ(Z).

Proof. Let E ⊆ Σ∗. From [10], there is an alphabet Γ , a homomorphism h :
Γ̂ ∗ → Σ∗, and a context-free language K ⊆ Γ̂ ∗ such that E = h(K ∩ DΓ ). Let
g : Γ̂ ∗ → Γ̂ ∗ be the injective symmetric homomorphism defined by x �→ xx̄,
for all x ∈ Γ̂ . Then E = h(g−1(Z) ∩ DΓ ), for Z = g(K). Note finally that Z
is an ε-CFL: from the grammar in Chomsky normal form generating K, one
obtain an ε-CFG generating Z by replacing the terminal productions X −→ a
by X −→ g(a). Then from Theorem 12, E = τ(Z), where τ is an ε-CFT. �	

4 Characterizations of Indexed Languages

In this final section, we relate indexed languages to ε-CFTs by showing that
indexed language are sets τ(D2), where τ is an ε-CFT. This gives rise to various
homomorphic characterizations of indexed languages.
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4.1 Indexed Grammars and Languages

Introduced by Aho [1], indexed grammars extend context-free grammars by
allowing nonterminals to yield a stack. Derivable elements are then represented
by symbols Xω where X is a nonterminal and ω is a word called index word.
Index words are accessed by a FIFO process: during a step of derivation of Xω,
it is possible to add a symbol in head ω, or to remove its first letter. Additionally,
ω can be duplicated and distributed over other nonterminals.

Formally, an indexed grammar is a structure I = (N, I,Σ, S, P ), where N
is the set of nonterminals, Σ is the set of terminals, S ∈ N is the start symbol,
I is a finite set of indexes, and P is a finite set of productions of the form

X0
η0 −→ u0X1

η1u1 · · · Xn
ηnun

with ui ∈ Σ∗,Xi ∈ N and ηi ∈ I ∪ {ε} for i ∈ {0, . . . , n}.

Indexes are denoted as superscript, and we do not write indexes equal to ε.
Sentences are words u1A1

ω1 . . . unAn
ωnun+1 with ui ∈ Σ∗, Ai ∈ N and

ωi ∈ I∗. The derivation rule “−→I” is a binary relation over sentences defined
by

Ω1A
ηωΩ2 −→IΩ1u0B1

η1ω · · · Bn
η1ωunΩ2

iff there is a production Aη −→ u0B1
η1u1 . . . Bn

ηnun ∈ P.

The language generated by I is LI = {u ∈ Σ∗ | S
∗−→I u}. Languages generated

by indexed grammars are called indexed languages.

Example 14. Let us consider the following indexed grammar I = (N, I,A, S, P )
with N = {S,X,A,B,C}, I = {β, α}, A = {a, b, c} and P consists of the
following rules:

p1 : S −→ Xβ , p2 : S −→ ε, p3 : X −→ Xα, p4 : X −→ ABC,
p5 : Aα −→ aA, p6 : Aβ −→ ε, p7 : Bα −→ bB, p8 : Bβ −→ ε,
p9 : Cα −→ cC, p10 : Cβ −→ ε.

Here is a possible derivation:

S
p1−→I Xβ p3−→I Xαβ p3−→I Xααβ p4−→I AααβBααβCααβ p5−→I aAαβBααβCααβ

p5−→I aaAβBααβCααβ p6−→I aaBααβCααβ p7p7p8−→I aabbCααβ p9p9p10−→I aabbcc

The language generated by I is {anbncn, n ≥ 0}. �	

4.2 Characterizations of Indexed Languages

We provide now homomorphic characterizations of indexed languages by estab-
lishing a strong connexion between indexed languages and ε-CFTs.

Theorem 15. A language L is indexed iff there is an ε-CFT τ such that

L = τ(D2).
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Let us informally explain the proof of Theorem15. First we need to consider
normal forms of indexed grammars (which extend the normal form given in [1])
and ε-CFT grammars.

An indexed grammar is said to be reduced if its productions are in the forms:

X0 −→ uX1
α · · · Xn

αv, or X0
α −→ uX1 · · · Xnv;

with n ≥ 0,Xi ∈ N,u, v ∈ Σ∗ and α ∈ I ∪ {ε}.

An ε-CFTG is said to be reduced if its productions are in the form:

X0 −→ (α, u)Ω(ᾱ, v) with Ω ∈ N∗, u, v ∈ Σ∗ and α ∈ Γ̂ ∪ {ε}.

Let us consider the bijective mapping ϕ that maps a reduced indexed gram-
mar I = (N, I,Σ, P, S) into a reduced ε-CFTG ϕ(I) = (N, Î,Σ, ϕ(P ), S) by
transforming every production

p : X0 −→ uX1
α · · · Xn

α v into ϕ(p) : X0 −→ (α, u)X1 · · · Xn (ᾱ, v), and
p : X0

α −→ uX1 · · · Xn v into ϕ(p) : X0 −→ (ᾱ, u)X1 · · · Xn (α, v).

The idea behind the construction is to write, into the terminal inputs of the
ε-CFTG, the index operations made by the indexed grammar. The transduc-
tion grammar thus created is able to capture every index modifications of the
initial indexed grammar, but also accepts bad computations. We claim that by
restricting the domain to Dyck words, we exactly get derivations equivalent to
those of the indexed grammar.

For example, there would be a derivation

X −→ u1X1
αv1 −→ u2Y1

αY2
αv2 −→ u3Y1

αw3Zv3

in I iff there was a derivation of the following form in ϕ(I):

X −→ (α, u1)X1(ᾱ, v1) −→ (α, u2)Y1Y2(ᾱ, v2) −→ (α, u3)Y1(ᾱ, w3)Z(αᾱ, v3).

Claim: There is a derivation S
∗−→I v1Y1

w1v2 · · · Yn
wnvn+1 iff there is a deriva-

tion S
∗−→ϕ(I) (u1, v1)Y1(u2, v2) · · · Yn(un+1, vn+1) where u1 · · · un+1 belongs to

DI and ρ(u1 · · · ui) = wR
i for i ∈ {1, . . . , n} (wR

i is the mirror image of wi).

This can be proved by induction over the length of derivations, and implies that
Tϕ(I)(DI) = LI. Because of the bijectivity of the construction, we obtain:

“A language L is indexed iff there is an ε-CFT τ and k ∈ N s.t. L = τ(Dk).”

Finally, it is possible to define from every ε-CFT τ , an ε-CFT τ ′ such that
τ(DΓ ) = τ ′(D2), by encoding every αi ∈ Γ by a word 01i0 and ᾱi by 0̄1̄i0̄.

Example 16. Let I = (N, I,Σ, S, P ) be an indexed grammar with N = {S,X, Y,
W,Z}, I = {β, α}, A = {a} and P consists of the rules:

S −→ Xβ , X −→ Xα, X −→ Y, Y α −→ aY Z
Y β −→ ε, Zα −→ aZa, Zβ −→ ε.
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Initially defined in [7], the grammar I generates the language L = {an2 | n ≥ 0}.
Applying the bijection ϕ defined above to I, we get the ε-CFTG G given in

Example 11 and generating the transduction

τ =
⋃

n,m,r1,...rm≥0

(βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄, am+2r1+···+2rm).

For every u = βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄ ∈ Dom(τ),

u is a Dyck word =⇒ m = n, r1 = 0, and for all i ∈ [0,m − 1], ri+1 = ri + 1

=⇒ τ(u) = an+2(0+1+ ···+n−1)

=⇒ τ(u) = an2
.

It follows that τ(DI) = {an2}n≥0 = LI. �	
Corollary 17. A language L is indexed if there is a homomorphism h, a sym-
metric homomorphism g, a regular set R and k ∈ N such that

L = h(g−1(D2) ∩ R ∩ Dk).

Theorem 18. A language L is indexed iff there is an ε-CFL K, a morphism h,
and an alphabet Γ such that

L = h(K ∩ DΓ ).

Proof. (⇒) Let L ⊆ A∗ be an indexed language. From Theorems 12 and 15,
there are alphabets Σ,Γ , an ε-CFL K ⊆ Γ̂ ∗, a homomorphism h : Γ̂ ∗ → A∗ and
a symmetric homomorphism g : Γ̂ ∗ → Σ̂∗ such that L = h(K ∩ g−1(DΣ)). We
suppose that Σ ∩ A = ∅ (otherwise, it suffices to work with a copy of Σ), and
define the homomorphism μ : Γ̂ ∗ → Δ̂∗, for Δ = Σ ∪ A, by α �→ g(α)h(α)h(α).
For all u ∈ Γ̂ ∗, μ(u) ∈ DΔ iff u ∈ g−1(DΣ); in addition, πA(μ(u)) = h(u), with
πA being the projection of Δ̂∗ into A∗. Then we have:

πA(μ(K) ∩ DΔ) = h(K ∩ g−1(DΣ)) = L.

Now, as the homomorphism μ satisfies “ρ(u) = ε =⇒ ρ(g(u)) = ε”, since K is
an ε-CFL, so is μ(K).

(⇐) Obvious from Theorem 15 and Proposition 12, by choosing g to be the iden-
tity mapping. �	
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Abstract. I present a simple example of a multiple context-free lan-
guage for which a very weak variant of generalized Ogden’s lemma fails.
This language is generated by a non-branching (and hence well-nested)
3-MCFG as well as by a (non-well-nested) binary-branching 2-MCFG;
it follows that neither the class of well-nested 3-MCFLs nor the class
of 2-MCFLs is included in Weir’s control language hierarchy, for which
Palis and Shende proved an Ogden-like iteration theorem. I then give a
simple sufficient condition for an MCFG to satisfy a natural analogue
of Ogden’s lemma, and show that the corresponding class of languages
is a substitution-closed full AFL which includes Weir’s control language
hierarchy. My variant of generalized Ogden’s lemma is incomparable in
strength to Palis and Shende’s variant and is arguably a more natural
generalization of Ogden’s original lemma.

Keywords: Grammars · Ogden’s lemma · Multiple context-free gram-
mars · Control languages

1 Introduction

A multiple context-free grammar [12] is a context-free grammar on tuples of
strings (of varying length). An analogue of the pumping lemma, which asserts the
existence of a certain number of substrings that can be simultaneously iterated,
has been established for well-nested MCFGs and (non-well-nested) MCFGs of
dimension 2 [6]. So far, it has been unknown whether an analogue of Ogden’s [10]
strengthening of the pumping lemma holds of these classes. This paper negatively
answers the question for both classes, and moreover proves a generalized Ogden’s
lemma for the class of MCFGs satisfying a certain simple property. The class of
languages generated by the grammars in this class includes Weir’s [13] control
language hierarchy, the only non-trivial subclass of MCFLs for which an Ogden-
style iteration theorem has been proved so far [11].
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2 Preliminaries

The set of natural numbers is denoted N. If i and j are natural numbers, we
write [i, j] for the set {n ∈ N | i ≤ n ≤ j }. We write |w| for the length of a string
w and |S| for the cardinality of a set S; the context should make it clear which is
intended. If u, v, w are strings, we write (u[v]w) for the subinterval [|u| + 1, |uv|]
of [1, |uvw|]. If w is a string, wR denotes the reversal of w.

2.1 Multiple Context-Free Grammars

A multiple context-free grammar (MCFG) [12] is a quadruple G = (N,Σ,P, S),
where N is a finite set of nonterminals, each with a fixed dimension ≥ 1, Σ is a
finite alphabet of terminals, P is a set of rules, and S is the distinguished initial
nonterminal of dimension 1. We write N (q) for the set of nonterminals in N of
dimension q. A nonterminal in N (q) is interpreted as a q-ary predicate over Σ∗.
A rule is stated with the help of variables interpreted as ranging over Σ∗. Let X
be a denumerable set of variables. We use boldface lower-case letters as elements
of X . A rule is a definite clause (in the sense of logic programming) constructed
with atoms of the form A(α1, . . . , αq), with A ∈ N (q) and α1, . . . , αq patterns,
i.e., strings over Σ ∪ X . An MCFG rule is of the form

A(α1, . . . , αq) ← B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn),

where n ≥ 0, A,B1, . . . , Bn are nonterminals of dimensions q, q1, . . . , qn, respec-
tively, the xi,j are pairwise distinct variables, and each αi is a string over
Σ ∪ {xi,j | i ∈ [1, n], j ∈ [1, qi] }, such that (α1, . . . , αq) contains at most one
occurrence of each xi,j . An MCFG is an m-MCFG if the dimensions of its non-
terminals do not exceed m; it is r-ary branching if each rule has no more than
r occurrences of nonterminals in its body (i.e., the part that follows the symbol
←). We call a unary branching grammar non-branching.1

An atom A(α1, . . . , αq) is ground if α1, . . . , αq ∈ Σ∗. A ground instance of
a rule is the result of substituting a string over Σ for each variable in the rule.
Given an MCFG G = (N,Σ,P, S), a ground atom A(w1, . . . , wq) directly fol-
lows from a sequence of ground atoms B1(v1,1, . . . , v1,q1), . . . , Bn(vn,1, . . . , vn,qn)
if A(w1, . . . , wq) ← B1(v1,1, . . . , v1,q1), . . . , Bn(vn,1, . . . , vn,qn) is a ground
instance of some rule in P . A ground atom A(w1, . . . , wq) is derivable, writ-
ten �G A(w1, . . . , wq), if it directly follows from some sequence of deriv-
able ground atoms. In particular, if A(w1, . . . , wq) ← is a rule in P , we have
�G A(w1, . . . , wq).

A derivable ground atom is naturally associated with a derivation tree, each
of whose nodes is labeled by a derivable ground atom, which directly follows from
the sequence of ground atoms labeling its children. The language generated by
G is defined as L(G) = {w ∈ Σ∗ | �G S(w) }, or equivalently, L(G) = {w ∈
Σ∗ | G has a derivation tree for S(w) }. The class of languages generated by m-
MCFGs is denoted m-MCFL, and the class of languages generated by r-ary
branching m-MCFGs is denoted m-MCFL(r).
1 Non-branching MCFGs have been called linear in [1].
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Example 1. Consider the following 2-MCFG:

S(x1#x2) ← D(x1,x2)
D(ε, ε) ←

D(x1y1,y2x2) ← E(x1,x2),D(y1,y2)
E(ax1ā, āx2a) ← D(x1,x2)

Here, S is the initial nonterminal and D and E are both nonterminals of
dimension 2. This grammar is binary branching and generates the language
{w#wR | w ∈ D∗

1 }, where D∗
1 is the (one-sided) Dyck language over the alpha-

bet {a, ā}. Figure 1 shows the derivation tree for aaāāaā#āaāāaa.

Fig. 1. A derivation tree of a 2-MCFG.

It is also useful to define the notion of a derivation of an atom A(α1, . . . , αq)
from an assumption C(x1, . . . ,xr), where x1, . . . ,xr are pairwise distinct vari-
ables. An atom A(α1, . . . , αq) is derivable from an assumption C(x1, . . . ,xr),
written C(x1, . . . ,xr) �G A(α1, . . . , αq), if either

1. A = C and (α1, . . . , αq) = (x1, . . . ,xr), or
2. there are some atom Bi(β1, . . . , βqi) and ground atoms Bj(vj,1, . . . , vj,qj ) for

each j ∈ [1, i − 1] ∪ [i + 1, n] such that C(x1, . . . ,xr) �G Bi(β1, . . . , βqi),
�G Bj(vj,1, . . . , vj,qj ), and

A(α1, . . . , αq) ← B1(v1,1, . . . , v1,q1), . . . , Bi−1(vi−1,1, . . . , vi−1,qi−1),
Bi(β1, . . . , βqi), Bi+1(vi+1,1, . . . , vi+1,qi+1), . . . , Bn(vn,1, . . . , vn,qn)

is an instance of some rule in P .

Let us write [v1/x1, . . . , vr/xr] for the simultaneous substitution of strings
v1, . . . , vr for variables x1, . . . ,xr. Evidently, when we have �G B(v1, . . . , vr) and
B(x1, . . . ,xr) �G A(α1, . . . , αq), the two derivations can be combined into one
witnessing �G A(α1, . . . , αq)[v1/x1, . . . , vr/xr]. The following lemma says that
when B(v1, . . . , vr) is derived in the course of a derivation of A(w1, . . . , wq), the
derivation can be decomposed into one for B(v1, . . . , vr) and a derivation from
an assumption B(x1, . . . ,xr):
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Lemma 2. Let τ be a derivation tree of an MCFG G for some ground atom
A(w1, . . . , wq), and let B(v1, . . . , vr) be the label of some node of τ . Then
there is an atom A(α1, . . . , αq) such that B(x1, . . . ,xr) �G A(α1, . . . , αq) and
(w1, . . . , wq) = (α1, . . . , αq)[v1/x1, . . . , vr/xr].

Example 3. Consider the derivation tree in Fig. 1 and the node ν labeled by
E(aaāā, āāaa). Let τ be the subtree of this derivation tree consisting of ν and the
nodes that lie below it. Consider the node ν1 labeled by E(aā, āa) in τ . The rules
used in the portion of τ that remains after removing the nodes below ν1 deter-
mine a derivation tree for E(x1,x2) �G E(ax1ā, āx2a), depicted in Fig. 2. Note
that substituting aā, āa for x1,x2 in E(ax1ā, āx2a) gives back E(aaāā, āāaa).

Fig. 2. A derivation of E(ax1ā, āx2a) from assumption E(x1,x2).

An MCFG rule A(α1, . . . , αq) ← B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn)
is said to be

– non-deleting if all variables xi,j in its body occur in (α1, . . . , αq);
– non-permuting if for each i ∈ [1, n], the variables xi,1, . . . ,xi,qi occur in

(α1, . . . , αq) in this order;
– well-nested if it is non-deleting and non-permuting and there are no i, j ∈

[1, n], k ∈ [1, qi − 1], l ∈ [1, ql − 1] such that xi,k,xj,l,xi,k+1,xj,l+1 occur in
(α1, . . . , αq) in this order.

Every m-MCFG(r) has an equivalent m-MCFG(r) whose rules are all non-
deleting and non-permuting, and henceforth we will always assume that these
conditions are satisfied. An MCFG whose rules are all well-nested is a well-nested
MCFG [6]. The 2-MCFG in Example 1 is well-nested. It is known that there is
no well-nested MCFG for the language {w#w | w ∈ D∗

1 } [9], although it is easy
to write a non-well-nested 2-MCFG for this language.

Every (non-deleting and non-permuting) non-branching MCFG is by defin-
ition well-nested. The class

⋃
mm-MCFL(1) coincides with the class of output

languages of deterministic two-way finite-state transducers (see [1]).

2.2 The Control Language Hierarchy

Weir’s [13] control language hierarchy is defined in terms of the notion of a
labeled distinguished grammar, which is a 5-tuple G = (N,Σ,P, S, f), where
G = (N,Σ,P, S) is an ordinary context-free grammar and f : P → N is a func-
tion such that if π ∈ P is a context-free production with n occurrences of nonter-
minals on its right-hand side, then f(π) ∈ [0, n]. We view P as a finite alphabet,
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and use a language C ∈ P ∗ to restrict the derivations of G. The pair (G,C) is
a control grammar. For each nonterminal A ∈ N , define R(G,C)(A) ⊆ Σ∗ × P ∗

inductively as follows: for each production π = A → w0B1w1 . . . Bnwn in P ,

– if f(π) = 0 and ({vj} × C) ∩ R(G,C)(Bj) �= ∅ for each j ∈ [1, n], then
(w0v1w1 . . . vnwn, π) ∈ R(G,C)(A);

– if f(π) = i ∈ [1, n], (vi, z) ∈ R(G,C)(Bi), and ({vj} × C) ∩ R(G,C)(Bj) �= ∅ for
each j ∈ [1, i − 1] ∪ [i + 1, n], then (w0v1w1 . . . vnwn, πz) ∈ R(G,C)(A).

The language of the control grammar (G,C) is L(G,C) = {w ∈ Σ∗ | ({w} ×
C) ∩ R(G,C)(S) �= ∅ }.

The first level of the control language hierarchy is C1 = CFL, the family of
context-free languages, and for k ≥ 1,

Ck+1 = {L(G,C) | (G,C) is a control grammar and C ∈ Ck }.

The second level C2 is known to coincide with the family of languages generated
by well-nested 2-MCFGs, or equivalently, the family of tree-adjoining languages
[13].

Example 4. Let G = (N,Σ,P, S, f) be a labeled distinguished grammar consist-
ing of the following productions:

π1 : S → aSāS, π2 : S → bSb̄S, π3 : S → ε,

where f(π1) = 1, f(π2) = 1, f(π3) = 0. Let C = {πn
1 πn

2 π3 | n ∈ N }. Then
L(G,C) = D∗

2 ∩ ({ anbn | n ∈ N }{ā, b̄}∗)∗, where D∗
2 is the Dyck language over

{a, ā, b, b̄}. Since C is a context-free language, this language belongs to C2.

Palis and Shende [11] proved the following Ogden-like theorem for Ck:

Theorem 5 (Palis and Shende). If L ∈ Ck, then there is a number p such that
for all z ∈ L and D ⊆ [1, |z|], if |D| ≥ p, there are u1, . . . , u2k+1, v1, . . . , v2k ∈ Σ∗

that satisfy the following conditions:

(i) z = u1v1u2v2 . . . u2kv2ku2k+1.
(ii) for some j ∈ [1, 2k],

D ∩ (u1v1 . . . [uj ]vjuj+1vj+1 . . . u2kv2ku2k+1) �= ∅,

D ∩ (u1v1 . . . uj [vj ]uj+1vj+1 . . . u2kv2ku2k+1) �= ∅,

D ∩ (u1v1 . . . ujvj [uj+1]vj+1 . . . u2kv2ku2k+1) �= ∅.

(iii) |D ∩ (u1v1 . . . u2k−1 [v2k−1u2k−1+1v2k−1+1] . . . u2kv2ku2k+1)| ≤ p.
(iv) u1v

n
1 u2v

n
2 . . . u2kvn

2ku2k+1 ∈ L for all n ∈ N.

Kanazawa and Salvati [8] proved the inclusion Ck ⊆ 2k−1-MCFL, while using
Theorem 5 to show that the language RESP2k−1 belongs to 2k−1-MCFL−Ck for
k ≥ 2, where RESPl = { am

1 am
2 bn1 bn2 . . . am

2l−1a
m
2lb

n
2l−1b

n
2l | m,n ∈ N }.
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3 The Failure of Ogden’s Lemma for Well-Nested
MCFGs and 2-MCFGs

Let G be an MCFG, and consider a derivation tree τ for an element z of L(G).
When a node of τ and one of its descendants are labeled by ground atoms
B(w1, . . . , wr) and B(v1, . . . , vr) sharing the same nonterminal B, the portion
of τ consisting of the nodes that are neither above the first node nor below
the second node determines a derivation tree σ witnessing B(x1, . . . ,xr) �G

B(β1, . . . , βr) (called a pump in [6]), where (β1, . . . , βr)[v1/x1, . . . , vr/xr] =
(w1, . . . , wr). This was illustrated by Example 3. When each xi occurs in
βi, i.e., βi = v2i−1xiv2i for some v2i−1, v2i ∈ Σ∗ (in which case σ is an
even pump [6]), iterating σ gives a derivation tree for B(x1, . . . ,xr) �G

B(vn
1x1v

n
2 , . . . , vn2r−1xrv

n
2r). Combining this with the rest of τ gives a deriva-

tion tree for z(n) = u1v
n
1 u2v

n
2 . . . u2rv

n
2ru2r+1 ∈ L(G) for every n ∈ N, where

z(1) = z. When some xi occurs in βj with j �= i (σ is an uneven pump), how-
ever, the result of iterating σ exhibits a complicated pattern that is not easy to
describe.

A language L is said to be k-iterative if all but finitely many elements of
L can be written in the form u1v1u2v2 . . . ukvkuk+1 so that v1 . . . vk �= ε and
u1v

n
1 u2v

n
2 . . . ukv

n
kuk+1 ∈ L for all n ∈ N. A language that is either finite or

includes an infinite k-iterative subset is said to be weakly k-iterative. (These
terms are from [3,4].) The possibility of an uneven pump explains the difficulty
of establishing 2m-iterativity of an m-MCFL. In 1991, Seki et al. [12] proved
that every m-MCFL is weakly 2m-iterative, but whether every m-MCFL is 2m-
iterative remained an open question for a long time, until Kanazawa et al. [7]
negatively settled it in 2014 by exhibiting a (non-well-nested) 3-MCFL that is
not k-iterative for any k. Earlier, Kanazawa [6] had shown that the language of
a well-nested m-MCFG is always 2m-iterative, and moreover that a 2-MCFL is
always 4-iterative. The proof of this last pair of results was much more indirect
than the proof of the pumping lemma for the context-free languages, and did
not suggest a way of strengthening them to an Ogden-style theorem. Below, we
show that there is indeed no reasonable way of doing so.

Let us say that a language L has the weak Ogden property if there is a natural
number p such that for every z ∈ L and D ⊆ [1, |z|] with |D| ≥ p, there are
strings u1, . . . , uk+1, v1, . . . , vk (k ≥ 1) satisfying the following conditions:

1. z = u1v1 . . . ukvkuk+1,
2. D ∩ (u1v1 . . . ui[vi] . . . ukvkuk+1) �= ∅ for some i ∈ [1, k], and
3. u1v

n
1 . . . ukv

n
kuk+1 ∈ L for all n ≥ 0.

The elements of D are referred to as distinguished positions in z.

Theorem 6. There is an L ∈ 3-MCFL(1) ∩ 2-MCFL(2) that does not satisfy
the weak Ogden property.
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Fig. 3. Two grammars generating the same language.

Proof. Let L be the set of all strings over the alphabet {a, b, $} that are of the
form

ai1bi0$ai2bi1$ai3bi2$ . . . $ainbin−1 (†)
for some n ≥ 3 and i0, . . . , in ≥ 0. This language is generated by the non-
branching 3-MCFG (left) as well as by the binary branching 2-MCFG (right) in
Fig. 3. Now suppose L has the weak Ogden property, and let p be the number
satisfying the required conditions. Let

z = a$a2b$a3b2$ . . . $ap+1bp,

and let D consist of the positions in z occupied by $. Note that |D| = p. By the
weak Ogden property, there must be strings u1, . . . , uk+1, v1, . . . , vk (k ≥ 1) such
that z = u1v1 . . . ukvkuk+1, at least one of v1, . . . , vk contains an occurrence of $,
and u1v

n
1 . . . ukv

n
kuk+1 ∈ L for all n. Without loss of generality, we may assume

that v1, . . . , vk are all nonempty strings. Let us write z(n) for u1v
n
1 . . . ukv

n
kuk+1.

First note that none of v1, . . . , vk can start in a and end in b, since otherwise z(2)
would contain ba as a factor and not be of the form (†). Let i be the greatest
number such that vi contains an occurrence of $. Since none of vi+1, . . . , vk
contains an occurrence of $, it is easy to see that vi+1, . . . , vk are all in a+ ∪ b+.
We consider two cases, depending on the number of occurrences of $ in vi. Each
case leads to a contradiction.

Case 1. vi contains just one occurrence of $. Then vi = x$y, where x is a
suffix of aj+1bj and y is a prefix of aj+2bj+1 for some j ∈ [0, p − 1]. Note that
z(3) contains $yx$yx$ as a factor. Since z(3) is of the form (†), this means that
yx = albl for some l ≥ 0.

Case 1.1. l ≤ j + 1. Then y must be a prefix of aj+1 and since x is a suffix of
aj+1bj , it follows that l ≤ j. Since yui+1vi+1 . . . ukvkuk+1 has aj+2bj+1 as a prefix
and vi+1, . . . , vk ∈ a+ ∪b+, $yx$yui+1v

2
i+1 . . . ukv

2
kuk+1 has $albl$aqbr as a prefix

for some q ≥ j + 2 and r ≥ j + 1. The string $albl$aqbr is a factor of z(2) and
since z(2) is of the form (†), we must have l ≥ r, but this contradicts l ≤ j.
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Case 1.2. l ≥ j + 2. In this case x must be a suffix of bj and y must have
aj+2b2 as a prefix, so l = j + 2. Note that

$yx$yui+1v
2
i+1 . . . ukv

2
kuk+1 = $albl$yui+1v

2
i+1 . . . ukv

2
kuk+1

is a suffix of z(2), so either yui+1v
2
i+1 . . . ukv

2
kuk+1 equals aqbl or has aqbl$ as

a prefix for some q. Since l = j + 2 and yui+1vi+1 . . . ukvkuk+1 either equals
aj+2bj+1 or has aj+2bj+1$ as a prefix, it follows that there is some h > i such
that vh = b and vi+1, . . . , vh−1 are all in a+. But then z(3) will contain

$yx$yui+1v
3
i+1 . . . ukv

3
kuk+1,

which must have
$aj+2bj+2$aq′

bj+3

as a prefix for some q′, contradicting the fact that z(3) is of the form (†).
Case 2. vi contains at least two occurrences of $. Then we can write

vi = x$al+1bl$ . . . $am+1bm$y,

where 1 ≤ l ≤ m ≤ p − 1, x is a suffix of albl−1, and y is a prefix of am+2bm+1.
Since

$am+1bm$yx$al+1bl$

is a factor of z(2), we must have

yx = albm+1.

Since y is a prefix of am+2bm+1 and l < m + 2, y must be a prefix of al. It
follows that x has bm+1 as a suffix. But then bm+1 must be a suffix of albl−1,
contradicting the fact that l − 1 < m + 1. �

Since Theorem 5 above implies that every language in Weir’s control language
hierarchy satisfies the weak Ogden property, we obtain the following corollary:2

Corollary 7. There is a language in 3-MCFL(1) ∩ 2-MCFL(2) that lies outside
of Weir’s control language hierarchy.

Previously, Kanazawa et al. [7] showed that Weir’s control language hiearchy
does not include 3-MCFL(2), but left open the question of whether the former
includes the languages of well-nested MCFGs. The above corollary settles this
question in the negative.
2 The language L in the proof of Theorem 6 was inspired by Lemma 5.4 of Greibach [5],

where a much more complicated language was used to show that the range of a deter-
ministic two-way finite-state transducer need not be strongly iterative. One can see
that the language Greibach used is an 8-MCFL(1). In her proof, Greibach essen-
tially relied on a stronger requirement imposed by her notion of strong iterativity,
namely that in the factorization z = u1v1 . . . ukvkuk+1, there must be some i such
that ui and ui+1 contain at least one distinguished position and vi contains at least
two distinguished positions. Strong iterativity is not implied by the condition in
Theorem 5, so Greibach’s lemma fell short of providing an example of a language in⋃

m m-MCFL(1) that does not belong to Weir’s hierarchy.
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4 A Generalized Ogden’s Lemma for a Subclass
of the MCFGs

An easy way of ensuring that an m-MCFG G satisfies a generalized Ogden’s
lemma is to demand that whenever B(x1, . . . ,xr) �G B(β1, . . . , βr), each xi

occurs in βi. This is a rather strict requirement, however, and the resulting class
of grammars does not seem to cover even the second level C2 of the control
language hierarchy. In this section, we show that a weaker condition implies a
natural analogue of Ogden’s [10] condition; we prove in the next section that the
result covers the entire control language hierarchy.

Let us say that a derivation of B(β1, . . . , βr) from assumption A(x1, . . . ,xq)
is non-decreasing if it cannot be broken down into two derivations witness-
ing A(x1, . . . ,xq) �G C(γ1, . . . , γs) and C(z1, . . . ,zs) �G B(β′

1, . . . , β
′
r) such

that s < q. (If q > r, there can be no non-decreasing derivation witnessing
A(x1, . . . ,xq) �G B(β1, . . . , βr).) An m-MCFG G = (N,Σ,P, S) is proper if for
each A ∈ N (q), whenever A(x1, . . . ,xq) �G A(α1, . . . , αq) with a non-decreasing
derivation, each xi occurs in αi. It is easy to see that properness is a decidable
property of an MCFG.

Theorem 8. Let L be the language of a proper m-MCFG. There is a natural
number p such that for every z ∈ L and D ⊆ [1, |z|] with |D| ≥ p, there are
strings u1, . . . , u2m+1, v1, . . . , v2m satisfying the following conditions:

1. z = u1v1 . . . u2mv2mu2m+1,
2. for some j ∈ [1, 2m],

D ∩ (u1v1 . . . [uj ]vjuj+1vj+1 . . . u2mv2mu2m+1) �= ∅,

D ∩ (u1v1 . . . uj [vj ]uj+1vj+1 . . . u2mv2mu2m+1) �= ∅,

D ∩ (u1v1 . . . ujvj [uj+1]vj+1 . . . u2mv2mu2m+1) �= ∅,

3. |D ∩ ⋃m
i=1(u1v1 . . . u2i−1[v2i−1u2iv2i] . . . u2mv2mu2m+1)| ≤ p,

4. u1v
n
1 u2v

n
2 . . . u2mvn

2mu2m+1 ∈ L for all n ∈ N.

The case m = 1 of Theorem 8 exactly matches the condition in Ogden’s [10]
original lemma (as does the case k = 1 of Theorem 5).

Proof. Let G = (N,Σ,P, S) be a proper m-MCFG. For a rule A(α1, . . . , αq) ←
B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn), let its weight be the number of
occurrences of terminal symbols in α1, . . . , αq plus n, and let d be the maxi-
mal weight of a rule in P .

Let z ∈ L, D ⊆ [1, |z|], and τ be a derivation tree for z. We refer to
elements of D as distinguished positions. Note that it makes sense to ask
whether a particular symbol occurrence in the atom A(w1, . . . , wq) labeling a
node ν of τ is in a distinguished position or not. This is because by Lemma2,
there are strings z1, . . . , zq+1 such that ν determines a derivation witnessing
A(x1, . . . ,xq) �G S(z1x1z2x2 . . . zqxqzq+1), which tells us where in z each argu-
ment of A(w1, . . . , wq) ends up. Henceforth, when the ground atom labeling a
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node ν contains a symbol occurrence in a distinguished position, we simply say
that ν contains a distinguished position. We call a node ν a B-node (cf. [10])
if at least one of its children contains a distinguished position and ν contains
more distinguished positions than any of its children. The B-height of a node ν
is defined as the maximal B-height h of its children if ν is not a B-node, and
h + 1 if ν is a B-node. (When ν has no children, its B-height is 0.) It is easy
to see that a node of B-height h can contain no more than dh+1 distinguished
positions.

Our goal is to find an h such that, when |D| ≥ dh+1, we can locate four
nodes μ1, μ2, μ3, μ4, all of B-height ≤ h, on the same path of τ that together
decompose τ into five derivations witnessing

A(x1, . . . ,xq) �G S(z1x1z2x2 . . . zqxqzq+1), (1)
B(x1, . . . ,xq) �G A(y1x1y2, . . . , y2q−1xqy2q), (2)
B(x1, . . . ,xq) �G B(v1x1v2, . . . , v2q−1xqv2q), (3)
C(x1, . . . ,xq) �G B(x1x1x2, . . . , x2q−1xqx2q), (4)

�G C(w1, . . . , wq), (5)

where for some j ∈ [1, 2q], each of xj , vj , yj contains at least one distinguished
position. Since y1v1x1w1x2v2y2, . . . , y2q−1v2q−1x2q−1wqx2qv2qy2q together can
contain no more than dh+1 distinguished positions, this establishes the theo-
rem, with p = dh+1 and u1 = z1y1, u2 = x1w1x2, u3 = y2z2y3, etc.

We let h =
∑m

q=1 h(q), where h(0) = 0 and h(q) = (2q · (|N |+1)+1) · (h(q −
1) + 1) for q ∈ [1,m]. By the “dimension” of a node, we mean the dimension of
the nonterminal in the label of that node. Assume |D| ≥ dh+1. Then the root
of τ has B-height ≥ h, and τ must have a path that contains a node of each
B-height ≤ h. For each i = 0, . . . , h, from among the nodes of B-height i on that
path, pick a node νi of the lowest dimension.

By a q-stretch, we mean a contiguous subsequence of ν0, ν1, . . . , νh consisting
entirely of nodes of dimension ≥ q. We claim that some q-stretch contains more
than 2q·(|N |+1)+1 nodes of dimension q. For, suppose not. Then we can show by
induction on q that ν0, ν1, . . . , νh contains no more than h(q) nodes of dimension
q, which contradicts h =

∑m
q=1 h(q). Since the entire sequence ν0, ν1, . . . , νh is a

1-stretch, the sequence contains at most 2·(|N |+1)+1 = h(1) nodes of dimension
1. If the sequence contains at most h(q − 1) nodes of dimension q − 1, then there
are at most h(q−1)+1 maximal q-stretches, so the number of nodes of dimension
q in the sequence cannot exceed (2q · (|N | + 1) + 1) · (h(q − 1) + 1) = h(q).

So we have a q-stretch that contains nodes νi0 , . . . , νik of dimension q
for some q ∈ [1,m], where k = 2q · (|N | + 1) + 1. Let An be the non-
terminal in the label of νin . By the definition of a q-stretch and the way
the original sequence ν0, . . . , νh is defined, the nodes of τ that are neither
below νin−1 nor above νin determine a non-decreasing derivation witness-
ing An−1(x1, . . . ,xq) �G An(xn,1x1xn,2, . . . , xn,2q−1xqxn,2q) for some strings
xn,1, . . . , xn,2q. Since there must be a B-node lying above νin−1 and below or
at νin , at least one of xn,1, . . . , xn,2q must contain a distinguished position.
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By the pigeon-hole principle, there is a j ∈ [1, 2q] such that {n ∈ [1, k] |
xn,j contains a distinguished position } has at least |N |+2 elements. This means
that we can pick three elements n1, n2, n3 from this set so that n1 < n2 < n3

and An1 = An2 . Letting μ1 = νi0 , μ1 = νin1
, μ2 = νin2

, μ3 = νin3
, we see that

(2), (3) and (4) hold with C = Ai0 , B = Ain1
= Ain2

, A = Ain3
and xj , vj , yj all

containing a distinguished position, as desired. �
Let us write m-MCFLprop for the family of languages generated by proper

m-MCFGs. Using standard techniques (cf. Theorem 3.9 of [12]), we can easily
show that for each m ≥ 1, m-MCFLprop is a substitution-closed full abstract
family of languages.

5 Relation to the Control Language Hierarchy

Kanazawa and Salvati [8] showed Ck ⊆ 2k−1-MCFL for each k through a tree
grammar generating the derivation trees of a level k control grammar (G,C). In
fact, detour through tree languages is not necessary—a level k control language
can be obtained from a level k − 1 control language by certain string language
operations. It is easy to see that the family

⋃
m m-MCFLprop is closed under

those operations.
Let us sketch the idea using Example 4. We start by applying a homomorphic

replication [2,5] 〈(1, R), h1, h2〉 to the control set C = {πn
1 πn

2 π3 | n ∈ N },
obtaining

〈(1, R), h1, h2〉(C) = {h1(w)h2(wR) | w ∈ C }, (6)

where h1(π1) = a, h1(π2) = b, h1(π3) = ε, h2(π1) = āS, h2(π2)b̄S, h2(π3) = ε.
For instance, π2

1π
2
2π3 is mapped to aabbb̄Sb̄SāSāS. Iterating the substitution

S ← 〈(1, R), h1, h2〉(C) on the resulting language and then throwing away strings
that contain S gives the language of the control grammar of this example.

In general, if π is a production A → w0B1w1 . . . Bnwn of a labeled dis-
tinguished grammar G = (N,Σ,P, S, f) and f(π) = i ∈ [1, n], then we
let h1(π) = w0B1w1 . . . Bi−1wi−1 and h2(π) = wiBi+1wi+1 . . . Bnwn. In case
f(π) = 0, h1(π) is the entire right-hand side of π and h2(π) = ε. The control set
C is first intersected with a local set so as to ensure consistency of nonterminals
in adjacent productions, and then partitioned into sets CA indexed by nonter-
minals, with CA holding only those strings whose first symbol is a production
that has A on its left-hand side. Let LA = 〈(1, R), h1, h2〉(CA) for each A ∈ N .
The final operation is iterating simultaneous substitution A ← LA and throwing
away strings containing nonterminals:

L0 = LS , Ln+1 = Ln[A ← LA]A∈N , L =
⋃

n

Ln ∩ Σ∗. (7)

This last step may be thought of as the fixed point computation of a “context-free
grammar” with an infinite set of rules {A → α | A ∈ N,α ∈ LA }.

Lemma 9. If L ∈ m-MCFLprop and h1, h2 are homomorphisms, then the lan-
guage 〈(1, R), h1, h2〉(L) defined by (6) belongs to 2m-MCFLprop.
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Example 1 in Sect. 2.1 illustrates Lemma 9 with m = 1, L = D∗
1 , and h1, h2 both

equal to the identity function.
The proof of the next lemma is similar to that of closure under substitution.

Lemma 10. If LA ⊆ (N ∪ Σ)∗ belongs to m-MCFLprop for each A ∈ N , then
the language L defined by (7) also belongs to m-MCFLprop.

Theorem 11. For each k ≥ 1, Ck � 2k−1-MCFLprop.

Again, the language RESP2k−1 separates 2k−1-MCFLprop from Ck. For k = 2,
{w#w | w ∈ D∗

1 } also witnesses the separation. I currently do not see how
to settle the question of whether the inclusion of

⋃
k Ck in

⋃
m m-MCFLprop is

strict.

6 Conclusion

Theorems 5 and 8 with m = 2k−1 both apply to languages in Ck, but
place incomparable requirements on the factorization z = u1v1 . . . u2kv2ku2k+1.
Theorem 8 does not require v2k−1u2k−1v2k−1+1 to contain ≤ p distinguished posi-
tions. On the other hand, it does not seem easy to derive additional restrictions
on v2i−1u2iv2i from Palis and Shende’s [11] proof. From the point of view of
MCFGs, the conditions in Theorem8 are very natural: the substrings that are
simultaneously iterated should contain only a small number of distinguished
positions.
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Abstract. In order to transmit secret messages such that the informa-
tion exchange itself cannot be detected, steganography needs a channel,
a set of strings with some distribution that occur in an ordinary commu-
nication. The elements of such a language or concept are called cover-
documents. The question how to design secure stegosystems for natural
classes of languages is investigated for pattern languages. We present a
randomized modification scheme for strings of a pattern language that
can reliably encode arbitrary messages and is almost undetectable.

Keywords: Language-based cryptography · Steganography · Pattern

1 Introduction

Steganography, the art of hiding secret messages in unsuspicious communication,
is an interesting topic, in theory as well as for practical applications. While in
cryptographic information transfer an observer is aware of the fact that mes-
sages are exchanged, but their contents cannot be detected due to encryption, a
steganographic system even tries to keep the fact undetected that secret infor-
mation is transmitted at all. Therefore, the transmission channel itself plays an
important role. Such a channel is described by a subset Σ′ of a large alphabet Σ
with elements called coverdocuments that might be sent over the channel, and a
probability distribution on the documents. In the simplest case of uniform prob-
abilities, to determine the channel means learning concepts Σ′ of universe Σ.

A computational model for steganography was introduced by Hopper, von
Ahn, and Langford [7] and independently by Katzenbeisser and Petitcolas [9].
A stegosystem consists of an encoding and a decoding algorithm. The encoding
algorithm (also called Alice) tries to hide a secret message in a sequence of strings
called stegodocuments that are transmitted over the channel. The decoding algo-
rithm (Bob) tries to reconstruct the message from these stegodocuments. As the
channel is completely monitored by an adversary (Warden), the distribution of
stegodocuments should be indistinguishable from the distribution of coverdoc-
uments. In the steganographic setting, learning such a channel distribution can
only be done via positive samples. The only thing Alice can do is sampling from
the channel to get an idea of typical coverdocuments.

In [7] a stegosystem has been proposed that can embed up to log n bits of
information into documents of length n securely (under cryptographic assump-
tions). It is universal or black-box since it works for arbitrary channels as long as
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 387–399, 2016.
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their min-entropy is large enough to allow the transmission of log n bits. Later
Dedić et al. [5] have proven under cryptographic assumptions that no universal
polynomial time stegosystem can embed more than O(log n) bits per document
by giving a family of channels called pseudorandom flat h-channels.

It has been observed that the stegosystems used in practice typically embed
up to O(

√
n) bits in documents of length n [10,11], but they are non-universal

and tailored to specific types of channels. In order to close this gap between
theory and practice, Lískiewicz, Reischuk and Wölfel [13] have introduced the
model of grey-box stegosystems that are specialized to certain subsets F of all
possible channels – thus there is some a priori information how the channel may
look like. In addition, they have investigated a weaker notion of security called
undetectability, where both stegoencoder and adversary face the same learning
problem of determining the actual channel out of the possible elements in F .

In [13] it has been shown that the family of channels described by arbitrary
monomials, a family that can be learned easily, possesses a secure stegosystem
that can embed up to

√
n bits in a single document. Monomials are rather simple

objects, thus cannot model many real communication channels. It is therefore an
interesting question whether secure grey-box stegosystems can be designed for
more complex communication channels. Since some common structure is neces-
sary in order to apply embedding techniques for secret messages, channels that
can be described by formal languages are of special interest. To construct a good
stegosystem two tasks have to be solved efficiently: learning the channel distribu-
tion and modifying this distribution in an (almost) undetectable way. Obviously,
one cannot allow arbitrary distributions on the document space Σ since for sim-
ple information theoretic reasons they cannot be learned efficiently. Recently,
progress has been made for the case of k-term DNF-formulas [6]. The goal of
this work is to investigate this question for pattern languages, and therefore let
us call the corresponding channels pattern channels. Learning algorithms for pat-
tern languages have been studied intensively. Thus, here we concentrate on the
second issue, the undetectable modification of strings within such a language.

Pattern languages have been introduced by Angluin [1]. It makes a significant
difference whether erasing substitutions are allowed or not [14]. Both cases have
sparked a huge amount of work both in the fields of formal languages (e.g. [16])
and machine learning (e.g. [3,4,12,14,15,17,19]). Some of these results were also
used in the context of molecular biology (e.g. [18]). An important example of
communication channels that can be defined by pattern languages is the set of
filled out forms (either in paper or digital).

1.1 Our Contributions

We design a method to alter strings of a pattern language that are provided
according to some distribution in an almost undetectable way. On this basis we
show how a rate-efficient, secure and reliable stegosystem can be constructed for
a wide class of pattern channels if the patterns can be learned efficiently or are
given explicitly. To the best of our knowledge this is the first stegosystem ever
for this class of channels. As a novel technical contribution we analyze the rank
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of random matrices that are generated by the distribution of random strings
when substituting variables in a pattern. We present a generalized form of the
poisson approximation typically used for randomized processes that may be of
independent interest.

2 Basics and Notations

Let [n] denote the set {1, 2, . . . , n}, Fq the finite field on q elements and A ∈ F
μ×σ
q

and b ∈ F
μ
q . The set Sol(A, b) = {x ∈ F

σ
q | Ax = b} denotes the solutions of the

linear equation system (LES) Ax = b. The rank rk(A) of a matrix A is the size
of the largest subset of rows or columns that are linearly independent. It is a
known fact that Sol(A, b) is either empty or of size qσ−rk(A). For a fixed matrix
A, varying over b ∈ F

μ
q defines a partition of Fσ

q . Hence, the number of b with
|Sol(A, b)| > 0 is exactly qrk(A).

In the following we assume that the elements of a finite set S can be described
by binary strings of length O(log |S|). Writing s ∈R S we mean that s is a
uniformly distributed random element of S. As computational model we use
probabilistic Turing machine (PTM) equipped with different oracles:

– For a random variable X the PTM MX gets a sample x distributed according
to X. If X is the uniform distribution on a set S we simply write MS .

– If f : U → V is a function, Mf can provide an element u ∈ U and gets back
the value f(u).

If M can access several oracles O1, O2, . . . we write MO1,O2,....

2.1 Steganography

We give a short formal description of the steganographic model. More details
can be found in the references cited.

Definition 1 (channel and history). For a set Σ (the set of possible strings
that may be sent) the set of all probability distributions on Σ will be denoted
by Prob(Σ). A channel C over Σ is a mapping C : Σ∗ → Prob(Σ) that for each
history h ∈ Σ∗ (a sequence of previous strings) defines a probability distribution
C(h), also denoted by Ch. An element in the support of Ch is called a document.
A history h ∈ Σ∗ = h1h2 · · · hr is called legal for C iff Ch1h2···hi−1(hi) > 0 for
every 0 < i < r, that means each hi can actually occur within the prefix history.

A pattern channel is a channel where for every history h the support of the
distribution Ch equals a subset of all strings generated by some pattern π that
may depend on h. In the next section to keep the exposition simple we will
only discuss the case where Ch is identical for all h, that means there is a single
pattern π defining the support – the channel is memoryless. Such a channel will
be denoted by Cπ. Our techniques also carry over to the more complex case
where every history implies a different pattern.



390 S. Berndt and R. Reischuk

Definition 2 (stegosystem). Given a key space K, a message space M and
a family F of channels over Σ, a stegosystem S = [SE, SD] consists of two
probabilistic algorithms: an encoding algorithm SE and a decoding algorithm
SD. Given a key K ∈ K, an unknown channel C ∈ F and a legal history h, SE
has access to a sampling oracle for C (denoted by SEC(·)). It takes a message
m ∈ M and produces a sequence c of l elements of Σ, the stegotext that invisibly
should include m. Using the same key K, the decoding algorithm SD, given a
sequence c ∈ Σl, computes an element in M (hopefully the original m).

Definition 3 (reliability and security). For ρ ≥ 0 a stegosystem S =
[SE, SD] is ρ-reliable on F if

max
h legal, m∈M, C∈F

{ Pr
K∈RK

[SD(K,SEC(·)(K,m, h)) �= m]} ≤ ρ ,

where in addition to the random choice of K ∈R K the probability is taken
with respect to the coin flips of SE and SD and the output of the sampling
oracle C(·).

In order to define the security of a stegosystem, we consider an attacker,
called a warden W . This is a PTM equipped with the sampling oracle C(·) and
in addition a challenging oracle CH(·, ·) that is either distributed according to
SEC(·)(·,m, h) (the stego case) or distributed according to the channel distribu-
tion EXl

C(h) (the nonstego case), where

Pr[EXl
C(h) = d1d2 . . . dl] =

l∏

i=1

Pr
d←Chd1d2···di−1

[d = di].

Warden W can call CH with message m and legal history h and gets a sequence
d1d2 · · · dl and its goal is to distinguish between the two cases outputting 1 if he
believes that the challenging oracle is SEC and 0 otherwise. A stegosystem S
is (t, ε)-secure for F if

∣∣∣PrK∈RK[W C(·),SEC(·)(K,·,·) = 1] − Pr[W C(·),EXl
C(·) = 1]

∣∣∣ ≤
ε for all wardens W with running time at most t and all C ∈ F , where the
probability is taken over the output of the oracles and the coin flips of the
warden.

As W may choose history and message, this security notion is called security
against chosen-message attacks or security against chosen-hiddentext attacks.

2.2 Cryptographic Primitives

For two finite sets U, V , let Fun(U, V ) be the set of all functions from U to V .
A function F : K×U → V is called a (t, ε)-secure pseudorandom function (PRF)
with respect to U and V if

∣∣Prf∈RFun(U,V )[Af(·) = 1] − PrK∈RK[AFK(·) = 1]
∣∣ ≤

ε for every probabilistic algorithm A with running time at most t where FK(·) =
F (K, ·). Such a PRF is thus indistinguishable from a random function. We extend
this notion to the case of side information since the warden has access to the
channel oracle C. The function F is a (t, ε)-secure PRF relative to C if



Steganography Based on Pattern Languages 391

∣∣∣∣ Pr
f∈RFun(U,V )

[AC(·),f(·) = 1] − Pr
K∈RK

[AC(·),FK(·) = 1]
∣∣∣∣ ≤ ε .

Bellare et al. [2] have shown that the existence of a PRF F : {0, 1}κ ×
{0, 1}μ → {0, 1}μ implies the existence of a secure encryption scheme (the XOR-
scheme). They designed the so called random counter mode working as follows:

Algorithm 1. CTR$F (K,mes)
Data: secret key K of suitable length κ,

a binary string mes = m1m2 . . . ml of l blocks of length μ
choose r ∈R {0, 1}μ;
return
(r, FK(r) ⊕ m1, FK(r + 1 mod 2n) ⊕ m2, . . . , FK(r + l − 1 mod 2μ) ⊕ ml)

In [2] it has been proven that for every (t, ε)-secure PRF F : {0, 1}κ ×
{0, 1}μ → {0, 1}μ, probabilistic algorithm A running in time t and mes ∈ {0, 1}lμ

∣∣∣∣ Pr
K∈RK

[ACTR$F (K,mes) = 1] − Pr[A{0,1}(l+1)μ
= 1]

∣∣∣∣ ≤ 2ε + t2 · (l + 1) 2−μ .

The output of CTR$F (·,mes) is thus indistinguishable from a random element
of {0, 1}(l+1)μ. In particular, each output block m = FK(r + j − 1 mod 2μ)⊕mj

is indistinguishable from a random string of length μ. As the reduction is a
black-box reduction, this property also holds if A has side information that is
independent of the construction of F . We use this randomization technique for
the steganographic transmission of a message mes. Thus, we have reduced the
problem to embed a single string m of length μ that looks almost random in a
document such that this embedding cannot be detected.

2.3 Pattern Languages

Let Γ be a finite alphabet of size at least 2, V = {v1, v2, . . .} be a disjoint set of
variables and PAT := (Γ ∪ V)+. An element π = π1π2 · · · πm of PAT is called a
pattern. Let Var(π) denote the set of variables appearing in π — we may assume
Var(π) = {v1, . . . , vd} for some d ∈ N. For v ∈ Var(π) let occ(v, π) be the number
of occurrences of v in π, that is occ(v, π) = |{j ∈ [1..m] : πj = v}|.

A (possibly erasing) substitution Θ is a string homomorphism Γ ∪ V → Γ ∗

such that Θ(a) = a for all a ∈ Γ . By πΘ we denote the application of Θ to π
i.e., πΘ := Θ(π1)Θ(π2) · · · Θ(πm). For n ∈ N let Subsn(π) denote the set of all
substitutions that generate strings of length n and Langn(π) these strings, i.e.,
Langn(π) := {πΘ | Θ ∈ Subsn(π)} ⊆ Γn. The set Lang(π) =

⋃
n Langn(π) is

the language generated by π.
According to the length of variable substitutions we further partition

Subsn(π) into subsets Subs[�]n (π) where 	 = (	1, . . . , 	d) ∈ [0..n]d:

Subs[�]n (π) := {Θ ∈ Subsn(π) | ∀i |Θ(vi)| = 	i} .
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Such a set may be empty for many parameters n, 	, but if not, then its size is
exactly |Γ |σ(�) where σ(	) :=

∑
i 	i denotes the total length of variable substi-

tutions. Let Lang[�]n (π) denote the set of strings generated by Subs[�]n (π).
For steganographic applications it is necessary that a substitution generates

enough entropy. This could either be guaranteed by requiring that the pattern
contains a sufficient number of different variables with the restriction that eras-
ing substitutions are not allowed. Alternatively, if we do not want to exclude
erasing substitutions the number of independent symbols that are generated by
all variables substitutions has to be of a certain size – the number σ(	) as defined
above. Otherwise, a pattern like v1v2v1v3 . . . v1vn could generate strings cn−1 for
c ∈ Γ by substituting v1 by c and erasing all other variables. Such strings are
obviously not suitable for embedding secret information, as σ(	) = 1.

For steganography with strings generated by a pattern π we model the
application of a substitution Θ to a variable v as generating a sequence of
new intermediate variables u

(1)
v , u

(2)
v , . . . , u

(|Θ(v)|)
v which later can be replaced

by a single letter of Γ . The intermediate pattern [π]Θ for π and Θ is thus
defined as [π]Θ := [π1]Θ[π2]Θ · · · [πm]Θ with [a]Θ = a for all a ∈ Γ and
[v]Θ = u

(1)
v u

(2)
v · · · u(|Θ(v)|)

v for new variables u
(j)
v . Note that two substitutions

Θ,Θ′ generate the same intermediate pattern ([π]Θ = [π]Θ′) iff they belong to
the same subset Subs[�]n (π). Thus, we denote the intermediate pattern also by
[π�].

Example 4. Let π = v1v200v20v1v1 and 	1 = |Θ(v1)| = 1, 	2 = |Θ(v2)| = 3, thus
σ(	) = 4. Then Θ belongs to Subs[(1,3)]

12 (π). The intermediate pattern of length
n = 12 has the form

[π(1,3)] = [π]Θ = u(1)
v1

u(1)
v2

u(2)
v2

u(3)
v2

0 0 u(1)
v2

u(2)
v2

u(3)
v2

0 u(1)
v1

u(1)
v1

.

3 Steganography Using Patterns

This section develops a stegosystem for pattern channels. The general strategy
works as follows. Beforehand, Alice and Bob agree on the number μ of bits that
should be hidden in a document. When Alice wants to transmit a longer message
she splits it into blocks m of length μ. As part of their secret key they choose a
pseudorandom partition of the positions i of a string y = y1y2 . . . yi . . . yn into μ
subsets B1, . . . , Bμ. The letters at positions in Bj will be used to encode the j-th
secret bit. If they want to use strings of different lengths they define a separate
partition for each such n.

When Alice has access to a pattern channel Cπ in order to transmit stegodoc-
uments she needs information about π. Either this is given to her explicitly, or
in case of a grey-box situation she has to learn the pattern by sampling from
the channel. It has been shown that this can be done efficiently for certain sub-
classes of pattern languages. For the moment, let us assume that Alice knows π.
To generate a stegotext that encodes the secret m, Alice tries to modify a doc-
ument slightly into a stegotext y of the same length that can also be generated
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by π. In order to make this modification undetectable, Alice must ensure that
the distribution of these stegodocuments y is (almost) identical to the original
distribution of documents generated by Cπ. In the next section we will show
that with high probability a nonempty subset Lang[�]n (π) is able to encode every
possible secret m.

3.1 Coding Bits by Random Subsets

In the following we restrict to the case of a binary alphabet Γ = {0, 1}, which
turns out to be the most difficult case. Arithmetic in Γ will be done as in the field
F2. For larger alphabets these techniques can be adopted easily. Let π be a pat-
tern and 	 a vector for the length of variable substitutions that generate an inter-
mediate pattern [π�] of length n with variables Var([π�]) = {v1, v2, . . . , vσ(�)}. In
the following we consider only parameters such that Subs[�]n (π) �= ∅. For a parti-
tion of [n] into μ subsets specified by a function f : [n] → [μ] we define a binary
(μ × σ(	))-matrix Zf,π,� = (zν,i). The entry zν,i equals the parity of the number
of positions in [π�] that hold the i-th variable and are mapped to ν, i.e.

zν,i := |{j ∈ [n] : [π�]j = vi ∧ f(j) = ν}| mod 2.

Example 5. For π and 	, resp. Θ used in the previous example and the partition
f(j) = (j mod 3) + 1, the subset B1 collects the symbols at position 3, 6, 9, 12
(which are u

(2)
v2 , 0, u

(3)
v2 , u

(1)
v1 ), the set B2 those at position 1, 4, 7, 10 (which are

u
(1)
v1 , u

(3)
v2 , u

(1)
v2 , 0) and B3 those at 2, 5, 8, 11, namely u

(1)
v2 , 0, u

(2)
v2 , u

(1)
v1 . Then the

matrix Zf,π,� has rank 3 and looks as follows

Zf,π,� =

⎡

⎢⎢⎣

u
(1)
v1 u

(1)
v2 u

(2)
v2 u

(3)
v2

1 1 0 1 1
2 1 1 0 1
3 1 1 1 0

⎤

⎥⎥⎦.

For a reliable embedding of an arbitrary secret message of length μ into a string
of Langn(π) the matrix Zf,π,� must have maximal rank μ. As already noted,
this implies that the pattern and the substitution must generate enough entropy
with respect to μ. In particular, σ(	) has to be larger than μ.

3.2 Bounding the Rank of Matrices Obtained by Random
Assignments of Intermediate Patterns

With high probability a random (0, 1)-matrix of dimension μ × σ has maximal
rank μ over F2 if σ is slightly larger than μ. In Zf,π,�, however, the entries are
not independent. In addition, an entry does not necessarily take value 0 and
1 with probability exactly 1/2. The second problem can be solved by showing
that the deviation from the uniform distribution is not too large. To handle the
non-independence significantly more technical effort is required.
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For this purpose let us define the function

ζ(σ, μ) :=
μ · (4/5)μ

1 − 2 exp
(
−2(1 − 2

e 4√σ
+ 1

e2

√
σ)

)

which for larger σ goes exponentially fast to 0 for growing μ.

Theorem 6. For every π ∈ PAT, n ∈ N and every vector 	 ∈ [0..n]|Var(π)| with
σ(	) ≥ μ2 and maxv∈Var(π){occ(v, π)} ≤ σ(	) · e−2

Pr
f∈RFun([n],[μ])

[Zf,π,� has maximal rankμ] ≥ 1 − ζ(σ(	), μ) .

The main idea of the proof is to show that a random assignment of pattern
variables to subsets can be approximated by independent Poisson processes. This
follows from the following claims.

Lemma 7. Let C = (cν,j)ν∈[1..μ], j∈[1..σ] be a matrix of random variables (RV)
that are obtained as follows. We are given a sequence of colored balls, where color
j appears aj ≥ 1 often for j ∈ [1..σ]. Let ξ := maxj aj. The balls are thrown
uniformly and independently into μ bins. Then cν,j denotes the number of balls
of color j that fall into the ν-th bin.

Similarly, let X = (xν,j)ν∈[1..μ], j∈[1..σ] be a matrix of pairwise independent
Poisson-distributed RVs, where xν,j has mean λj = aj/μ (the same as cν,j).

Let P be an arbitrary predicate over N
μ×l. For a (μ × σ)-matrix X of RVs

define the predicate EP (X) as the probability that X has a subset of l columns
Xz1 , . . . , Xzl

such that P (Xz1 , . . . , Xzl
) holds. Then for η(l, σ, ξ) := ( σ

e·√ξ
−

l)2/σ,

Pr[EP (C)] ≤ Pr[EP (X)]
1 − 2 exp (−2 η(l, σ, ξ))

.

For l < σ
e·√ξ

− √
σ and σ > e2ξ the denominator in the inequality above is at

least 1 − 2e−2 ≥ 0.729, thus the probability for C is at most a constant factor
larger than for independent Poison variables.

Lemma 8. Let X be a (μ×σ)-matrix of independent Poisson RVs with E[xν,j ] =
aj/μ > 0 and σ ≥ μ2 ≥ 6.

The matrix M = (mν,j) with mν,j = xν,j mod 2 has full rank over F2 with
probability at least 1 − μ · (4/5)μ.

In the steganographic application described below we replace the random
function f ∈R Fun([n], [μ]) by a pseudo-random function FK . Its seed is deter-
mined by the secret key of Alice and Bob. The function FK may add another
super-polynomial small error to the property that Zf,π,� has maximal rank.



Steganography Based on Pattern Languages 395

3.3 Modifying Strings of a Pattern Language to Embed Secrets

Note that the equation Zf,π,� · x = b has a solution x ∈ {0, 1}σ(�) for every
b ∈ {0, 1}μ if the matrix Zf,π,� has full rank.

Example 9. For the matrix in the previous example and b = (1, 1, 0), the vector
x = (0, 0, 0, 1) is a solution to the linear equation Zf,π,� · x = b. The corre-
sponding substitution Θx(v1) = 0, Θx(v2) = 001 applied to π yields the string
y = 0 0 0 1 0 0 0 0 1 0 0 0.

This example illustrates how we generate a string y = y(x) in Lang[�]n from
a solution x ∈ {0, 1}σ(�) of the equation Zf,π,� · x = b : Simply replace each
intermediate variable by the corresponding symbol in x.

To embed a message m into a string of Lang[�]n we use the following algorithm
modify. For a given pattern π ∈ PAT and length vector 	 let Ter(π, 	) be those
positions in [π�] that are taken by constants.

Algorithm 2. modify
Data: function f : [n] → [μ], message m = m1 . . . mμ ∈ {0, 1}μ,

pattern π ∈ PAT, vector 	.
for ν = 1, . . . , μ do

let bν ← mν +
∑

j∈Ter(π,�),f(j)=ν [π� ]j

let b ← (b1, b2, . . . , bμ);
if Zf,π,� has rank μ then

choose randomly x ∈R Sol(Zf,π,�, b);
return the string y = y(x)

else
return y ∈R Lang[�]n

The running time of modify is O(μ ·n). One can prove the following lemma.

Lemma 10. For every π ∈ PAT, n ∈ N and every vector 	 ∈ [0..n]|Var(π)|

holds: the output y of modify(f,m, π, 	) is uniformly distributed over Lang[�]n if
m ∈R {0, 1}μ is chosen at random.

Furthermore, if f ∈R Fun([n], [μ]) is chosen randomly and σ(	) ≥ μ2 and
maxv∈Var(π){occ(v, π)} ≤ σ(	) · e−2, with probability at least 1 − ζ(σ(	), μ) the
output y satisfies: for every m ∈ {0, 1}μ and every ν ∈ [1..μ] :

∑
j: f(j)=ν yj = mν .

The second property shows how the receiver of string y can decrypt a bit mν

of the hiddentext: Add up all symbols in y whose position is mapped to ν by f .

Proof. If Zf,π,� has maximal rank, for each vector b ∈ {0, 1}μ the set Sol(Zf,π,�, b)
is nonempty. These sets form an equal size partition of {0, 1}σ(�). If m is chosen
at random the vector b generated in the for-loop is random, too. Thus, modify
returns a random element of Lang[�]n . In the other case this property is obvious.

By the previous lemma, with probability at least 1 − ζ(σ(	), μ) the rank is
maximal. If we take any solution x ∈ Sol(Zf,π,�, b) a simple calculation shows
that the string y(x) specifies all bits mν correctly.



396 S. Berndt and R. Reischuk

3.4 Sampling a Pattern Channel

Next we discuss how to select n and 	 in order to match the distribution of the
pattern channel Cπ. In general, we cannot sample directly from Cπ to determine
the parameters n and 	. From a sample y we obviously get n = |y| for free.
But for complex patterns, determining the substitution lengths of the variables
might be difficult since this information allows to solve the membership problem
for Lang(π) easily and this is already NP-hard in case of arbitrary patterns [1].

We call a distribution on Lang(π) fixed variable length if independently to
each variable vi a substitution of length 	i is applied where the value 	i is chosen
according to some distribution Δi. For fixed 	i each possible substitution by a
string in Γ �i is equally likely. In this case we assume that the Δi are known to the
stegoencoder. Thus, a typical channel document can be generated by selecting
a value 	i for each vi and then a random string of Γ �i . For the modification
procedure described above it suffices to generate a random vector 	 = (	1, . . . , 	d)
that matches the distribution of Cπ.

We can also handle a second type of distributions that focuses on the length
n of the documents. Let us call a distribution D on Lang(π) total length-uniform
if for every n every nonempty set Subs[�]n (π) has the same probability and within
such a set all substitutions are equally likely. Note that this a nontrivial class
because the probabilities for generating a specific length n may be very different.
In particular, it includes the simple case that there is only a single n̄ with positive
probability, that means the pattern channel may generate only strings of fixed
length n̄ that are generated by arbitrary variable substitutions. Let Dπ,n be the
marginal distribution of D on Langn(π) for nonempty Langn(π). If D is total
length-uniform and x ∈ Langn(π) we get Dπ,n(x) = |{Θ ∈ Subsn(π) | πΘ =
x}| / |Subsn(π)|. We now describe how to sample such length vectors 	 uniformly
in order to sample strings from a total length-uniform distribution.

For Var(π) = {v1, . . . , vd} and ai = occ(vi, π) let a = a(π) := (a1, . . . , ad) ∈
N

d. Given n, consider the task to uniformly generate vectors 	 = (	1, . . . , 	d) ∈
[0..n]d that satisfy the diophantine equation

∑d
i=1 ai	i = n and let Sa(n) denote

the set of such vectors 	. For k ∈ [1..d] define

Fa(n, k) := |{	 ∈ [1..n]k |
k∑

i=1

ai	i = n}| .

The value |Sa(n)| = Fa(n, d) can be computed by dynamic programming. It
holds Fa(n, 1) = 1 iff a1 divides n and 0 else. If Fa(n′, k) is known for all n′ ≤ n

we can compute Fa(n, k + 1) as Fa(n, k + 1) =
∑�n/ak+1	

i=0 Fa(n − ak+1 · i, k).
Thus, |Sa(n)| can be obtained in time O(n2 · d). Since the problem of com-

puting such diophantine sets is self-reducible, the work of Jerrum, Valiant and
Vazirani [8] (Theorem 6.3) implies the existence of a PTM M that generates
these elements with arbitrary precision efficiently. For every 	 ∈ Sa(n) and every
ε > 0

(1 + ε)−1|Sa(n)|−1 ≤ Pr[M(a , n, ε) = 	] ≤ (1 + ε)|Sa (n)|−1
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and M is polynomially time-bounded with respect to n,a , log ε−1. The statisti-
cal distance between the output of M(a , n, ε) and the uniform distribution on
Sa(n) is at most ε. The statistical distance of the string πΘ generated by the
following algorithm and a total length-uniform distribution Cπ on Lang(π) is
thus at most ε:

Algorithm 3. Samp
Data: π ∈ PAT and ε > 0
let Var(π) = {v1, . . . , vd} and ai = occ(vi, π);
sample x from the channel Cπ;
sample 	 ∈ [1..|x|]d ← M((a1, . . . , ad), |x|, ε);
for i = 1 to d do

choose Θ(vi) ∈R {0, 1}�i ;
return |x|, 	, πΘ

3.5 A Secure Stegosystem for Pattern Channels

Let Π be a subset of PAT that restricts the family of pattern channels Cπ.
We consider two cases: either Π is a simple concept like 1-variable patterns
or regular patterns with terminal blocks of fixed length that efficiently can be
learned probabilistically exact [4]. Alternatively, Π may be more complex, but
then we have to assume that the stegoencoder is told the pattern π of the channel
to be used. But note that in any case Alice and Bob first have to agree on a
stegosystem and a secret key. After that the pattern channel is determined, and
this may even be done by an adversary.

In addition, one cannot allow arbitrary distributions on Lang(π) since the
stegoencoder needs information on the distribution and such a description in
general is at least of exponential size. Above, we have introduced two families of
meaningful distributions, fixed variable length and total length-uniform. In both
cases, for an arbitrary π a pattern channel Cπ with such a distribution can be
sampled efficiently given π.

The new techniques to design a stegosystem for pattern channels have been
described above. To get a complete picture we list the main steps of the encoder:

1. Alice and Bob have agreed on a secret key K used as seed for two pseudo-
random functions;

2. Alice learns or gets the pattern defining the channel and is informed about
the type of the channel distribution;

3. given a message m Alice randomizes it by CTR$FK
to a string m′;

4. Alice draws a length vector 	 using Samp(π) in case of a total length-uniform
distribution, or samples it for each variable individually in case of a fixed
variable length distribution;

5. using modify(FK ,m′, π, 	) Alice generates a stegotext y that encodes m′,
which is then sent to Bob

Based on the analysis given above, the following theorem can be proved.
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Theorem 11. There exists a stegosystem S for pattern languages. It embeds
secret messages of length μ for any number μ and can be applied to arbitrary
families F of pattern channels if the channels can be sampled efficiently and
have entropy at least μ2. The stegosystem S is ρ-reliable and (t, δ)-secure, where
the parameters ρ, δ and t depend on the security of the pseudorandom functions
for randomizing the message and partitioning the bits of a coverdocument. The
values ρ and δ decrease super-polynomially with respect to μ.

The precise estimation of the error parameters are tedious and skipped due
to space limitations.
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Abstract. An XML schema specifies the structural properties of XML
documents generated from the schema and, thus, is useful to manage
XML data efficiently. However, there are often XML documents without
a valid schema or with an incorrect schema in practice. This leads us to
study the problem of inferring a Relax NG schema from a set of XML
documents that are presumably generated from a specific XML schema.
Relax NG is an XML schema language developed for the next generation
of XML schema languages such as document type definitions (DTDs)
and XML Schema Definitions (XSDs). Regular hedge grammars accept
regular tree languages and the design of Relax NG is closely related
with regular hedge grammars. We develop an XML schema inference
system using hedge grammars. We employ a genetic algorithm and state
elimination heuristics in the process of retrieving a concise Relax NG
schema. We present experimental results using real-world benchmark.

Keywords: XML schema inference · Regular hedge grammar · Relax
NG · Genetic algorithm

1 Introduction

Most information in the real-world has structured with linear ordering and hier-
archies. Structural information is often represented in XML (Extensible Markup
Language) format, which is both human-readable and machine-readable. An
XML schema describes properties and constraints about XML documents. We
can manipulate XML data efficiently if we know the corresponding XML schema
for the input XML data [11,16,20]. Many researchers demonstrated several
advantages when the corresponding XML schema exists [14,21].

All valid XML documents should conform to a DTD or a XML schema. How-
ever, in practice, we may not have a valid schema or have an incorrect schema
or have an incorrect schema for an input XML data [2,17]. For these reasons,
there were several attempts to infer a valid XML schema from a given XML
data [3–5]. Bex et al. [3,4] presented an idea for learning deterministic regular
expressions for inferring document type definitions (DTDs) concisely from XML
documents. Bex et al. [5] designed an algorithm for inferring XML Schema Def-
initions (XSDs), which are more powerful than DTDs, from XML documents.
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 400–411, 2016.
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We consider a schema language called Relax NG, which is more powerful than
both DTDs and XSDs [19]—due to its expressive power, researchers proposed
several applications based on Relax NG schema language [1,15]. League and
Eng [15] proposed a compression technique of XML data with a Relax NG
schema and showed its effectiveness, especially, for highly tagged and nested
data.

We study the problem of inferring a concise Relax NG schema from XML
documents based on the genetic algorithm approach. Note that a XML document
can be described as an ordered tree. Then a Relax NG schema is a regular tree
language. Therefore, we use normalized regular hedge grammars (NRHGs) [18]
as theoretical tools for representing Relax NG schema since NRHGs exactly
captures the class of regular tree languages. We employ a genetic algorithm
for learning NRHGs from a set of trees and design a conversion algorithm for
obtaining a concise Relax NG schema from NRHGs.

The main idea of inferring a Relax NG schema consists of the following three
steps:

1. construct an initial NRHG that only generates all positive instances,
2. reduce the size of the NRHG using genetic algorithm while considering all

negative examples, and
3. convert the obtained NRHG into a concise Relax NG schema with the help

of state elimination algorithm and variable dependency computation.

We present experimental results with three benchmark schemas and show the
preciseness and conciseness of our approach. Our Relax NG inference system suc-
cessfully infers three benchmark schemas with instances randomly generated by
a Java library called xmlgen. We measure the accuracy of our inference algorithm
by validating XML documents generated from the original schema against the
inferred schema. The inferred schema accepts about 90 % of positive examples
and rejects about 80 % of negative examples.

We give some basic notations and definitions in Sect. 2, and present a tech-
nique for inferring an NRHG from a set of positive examples in Sect. 3. In Sect. 4,
we present a conversion algorithm that converts an NRHG into a Relax NG
schema. Experimental results are presented in Sect. 5.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ be the set of all strings over the alphabet Σ
including the empty string λ. The size |Σ| of Σ is the number of characters in
Σ. For a string w ∈ Σ∗, we denote the length of w by |w| and the ith character
of w by wi. A language over Σ is any subset of Σ∗.

Let t be a tree, tn be the number of nodes in t and te be the number of edges
in t. We define the size |t| of a tree t to be tn + te, which is the number of nodes
and edges in t. The root node of t is denoted by troot. Let v be a node of a tree.
Then, we denote the parent node of v by vparent, the left sibling of v by vsibling,
and the ith child of v by v[i]. We also denote the number of children of the node
v by |vchild| and the label of a node v by label(v).
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A regular expression over Σ is ∅, λ, or a ∈ Σ, or is obtained by applying the
following rules finitely many times. For two regular expressions R1 and R2, the
union R1 + R2, the catenation R1 · R2, and the star R∗

1 are regular expressions.
A nondeterministic finite-state automaton (NFA) A is specified by a

tuple (Q,Σ, δ, s, F ), where Q is a finite set of states, Σ is an input alphabet,
δ : Q × Σ → 2Q is a multi-valued transition function, s ∈ Q is the initial state
and F ⊆ Q is a set of final states. The transition function δ can be extended
to a function Q × Σ∗ → 2Q that reflects sequences of inputs. A string w over
Σ is accepted by A if there is a labeled path from s to a state in F such that
this path spells out the string w; namely, δ(s, w) ∩ F �= ∅. The language L(A)
recognized by A is the set of all strings that are spelled out by paths from s to
a final state in F : L(A) = {w ∈ Σ∗ | δ(s, w) ∩ F �= ∅}.

A normalized regular hedge grammar (NRHG) G is specified by a quintu-
ple (Σ,VT , VF , P, s), where Σ is an alphabet, VT is a finite set of tree variables,
VF is a finite set of forest variables, s ∈ VT is the starting symbol, and P is a
set of production rules, each of which takes one of the following four forms:

(a) vt → x, where vt is a tree variable in VT , and x is a terminal in Σ,
(b) vt → x〈vf 〉, where vt is a tree variable in VT , x is a terminal in Σ and vf is

a forest variable in VF ,
(c) vf → vt, where vf is a forest variable and vt is a tree variable,
(d) vf → vtv

′
f , where vf and v′

f are forest variables and vt is a tree variable.

We consider a derivation of NRHGs. Given a sequence of variables, we repeat-
edly replace variables with productions on the right-hand side.

1. for a production rule vt → x, a node labeled by x ∈ Σ is derived from the
tree variable vt,

2. for a production rule vt → x〈vf 〉, a tree with a root node labeled by x and
its child node vf is derived from vt,

3. for a production rule vf → vt, a node vt is derived from vf , and
4. for a production vf → vtv

′
f , a sequence of nodes vt and v′

f is derived from vf .

The language generated by G is the set of trees derived from s. Given an
NRHG G = (Σ,VT , VF , P, s), the size |G| of G to be |VT |+ |VF |+ |P |. Note that
the NRHGs generate regular tree languages of unranked trees. Thus an NRHG
can be converted into an unranked tree automaton and vice versa [6].

For more knowledge in automata and formal language theory, the reader may
refer to the textbooks [12,22].

3 Inference of an NRHG from Trees

A XML document is useful to store a structured information and, often, repre-
sented as a labeled and ordered tree. Given a set of positive examples (trees)
and a set of negative examples, we aim at learning an NRHG that generates all
positive examples and does not generate all negative examples.
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Let T be a given set of examples, T+ ⊆ T denote the set of positive examples
and T− ⊆ T be a set of negative examples. First, we construct primitive NRHGs
from positive examples; For each tree t ∈ T+, we construct an NRHG Gt that
only accepts the tree t. Namely, L(Gt) = {t}. Then, we take the union of all
primitive NRHGs and construct an NRHG GT+ that only accepts all positive
examples, that is,

L(GT+) =
⋃

t∈T+

L(Gt).

We reduce the size of the resulting NRHG by merging variables using a genetic
algorithm. Note that the problem of minimizing the NRHG is at least as hard as
any PSPACE-complete problem as the problem of minimizing NFAs is PSPACE-
complete [13]. Therefore, we rely on the genetic algorithm approach to reduce
the size of very large primitive NRHGs as much as possible.

3.1 Primitive NRHG Construction

We present a linear-time algorithm for constructing a primitive NRHG that only
accepts a given tree t. Our algorithm runs recursively from the root node of t to
the leaf nodes.

For each node of t, we recursively construct an NRHG according to the
number of children of t. If a node v labeled by x has no child, then we create
a production rule T → x. If a node v labeled by x has more than one child,
then we create a production rule T → x〈F 〉. Then, we make a forest variable F
to generate the sequence of subtrees of v. Let us assume that v has n subtrees
from t1 to tn and a tree variable Ti generates a subtree ti. Then, by creating
the following variables and production rules, we let F generate the sequence of
subtrees: F → T1F1, F1 → T2F2, · · · Fn−2 → Tn−1Fn−1, Fn−1 → Tn. Since
each node in t is represented by a tree variable, each edge in t is represented
by a forest variable and left side of each production rule is a tree variable or a
forest variable, |VT | = tn, |VF | = te and |P | = |t| = tn + te. Therefore, it is easy
to verify that the algorithm produces an NRHG G = (Σ,VT , VF , P, s) in O(|t|)
time such that L(G) = t, where |VT | = tn, |VF | = te, and |P | = |t|.

Suppose that we have n positive examples from t1 to tn. We first construct
n primitive NRHGs called G1 to Gn, where L(Gi) = {ti}, 1 ≤ i ≤ n. From the n
primitive NRHGs, we take the union of the NRHGs and obtain a single NRHG
G such that L(G) = ∪n

i=1Gi. Let Gi = (Σi, VTi
, VFi

, Pi, si) be an NRHG that
accepts ti. Then, we construct a new NRHG G = (Σ,VT , VF , P, s) that accepts
all instances as follows :

Σ =
n⋃

i=1

Σi, VT =
n⋃

i=1

VTi
, VF =

n⋃

i=1

VFi
, and P =

n⋃

i=1

Pi.

Namely, L(G) = {t1, t2, . . . , tn}. Then, we merge all occurrences of starting
symbols from s1 to sn and denote the merge symbol by s.
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3.2 Grammar Optimization by Merging Indistinguishable Variables

Now we have an NRHG G = (Σ,VT , VF , P, s) that only generates all positive
examples. Since we aim at retrieving a concise Relax NG schema, we need to
reduce the size of G as much as possible. As a first step, we find redundant
structures from G by identifying indistinguishable variables. Given a variable v,
which is either in VT or VF , we define RS(v) to be the set of variables that appear
in the right-hand side of production rules, where v appears in the left-hand side.
Similarly, we define LS(v) to be the set of variables that appear in the left-hand
side of production rules,where v appears in the right-hand side.

RS(v) =

{
{x | v → x ∈ P} ∪ {(x, vf ) | v → x〈vf 〉 ∈ P}, if v ∈ VT ,

{vt | v → vt ∈ P} ∪ {(vt, vf ) | v → vtvf ∈ P}, if v ∈ VF .

We say that two variables v1 and v2, where v1, v2 ∈ VT or v1, v2 ∈ VF are
right-indistinguishable if and only if RS(v1) = RS(v2). It is easy to see that we
do not change the language of G if we replace the occurrences of v1 and v2 with
a new variable v′ since two variables generate exactly the same structures.

LS(v) =

{
{vf | vf → v ∈ P} ∪ {(vf1 , vf2) | vf1 → vvf2 ∈ P}, if v ∈ VT ,

{(vt, x) | vt → x〈v〉 ∈ P}, if v ∈ VF .

We also define two variables v1 and v2 to be left-indistinguishable if and only
if LS(v1) = LS(v2). We say that two variables v1 and v2 are indistinguishable if
they are right-indistinguishable or left-indistinguishable. Here we show that the
language of the resulting NRHG does not change when we merge indistinguish-
able variables into a single variable.

Theorem 1. Given two indistinguishable variables v1 and v2 of an NRHG G =
(Σ,VT , VF , P, s), let G′ be a new NRHG where all indistinguishable variables are
merged according to indistinguishable classes of G. Then, L(G) = L(G′).

We repeat the merging process until there is no pair of indistinguishable
variables in the NRHG. Empirically, we have obtained about 80 % size reduc-
tion by merging indistinguishable variables in primitive NRHGs. We show the
experimental evidence in Sect. 5.

3.3 Genetic Algorithm

We now have a primitive NRHG from a set of positive examples without any
indistinguishable variables. Next, we need to make it as small as possible while
considering a set of negative examples. Recall that our main goal is to compute
a concise NRHG that generates all positive examples and does not generate all
negative examples.

We employ a genetic algorithm (GA), which involves an evolutionary process,
to find a small NRHG from a given primitive NRHG. In a genetic algorithm,
we first make a population of candidate solutions called individuals and make
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it evolve to the population of better solutions by the help of genetic operators
such as structural crossover and structural mutation.

We explain how these genetic operators work in our schema inference algo-
rithm. We assume that every individual in the first population is indeed an
NRHG with seven variables and thus encoded as a string of length 7.

– structural crossover: In the population, we randomly select two encoded indi-
viduals p1 and p2 as parents. We use p1 = 1324133 and p2 = 2234144 as a
running example for explaining our approach.

p1 = 1324133 and p2 = 2234144.

These strings encode two partitions πp1 and πp2 as follows:

πp1 : {1, 5}, {3}, {2, 6, 7}, {4} and πp2 : {5}, {1, 2}, {3}, {4, 6, 7}.

Namely, the ith number of p1 implies the index of the block where the ith
variable of p1 belongs. For example, the third number of p1 is 2, and therefore,
the variable 3 belongs to the second block #2 of πp1 . Now we randomly select
two blocks, say #2 and #4. The #2 block is copied from p1 to p2 by taking
the union of #2 blocks in p1 and p2 and #2 block to be moved from p1, and
#4 block is copied from p2 to p1 in the same way. We obtain the following
results:

πp′
1

: {1, 5}, {3}, {2}, {4, 6, 7} πp′
2

: {5}, {1, 2}, ∅, {3, 4, 6, 7}
In this way, the number of blocks of each partition can diminish by merging
randomly selected blocks.

– structural mutation: We randomly select an individual p = 1324133 and
replace a character in the string by some random number. For example, if we
replace the second character by 4, then the following offspring is produced:

πp′ : {1, 5}, {3}, {2, 6, 7}, {2, 4}.

We employ the GA approach for inferring a concise NRHG from a set of
positive examples and a set of negative examples as follows:

1. Initialize the population of candidate solutions. Here we set the population
size to, 1000. The initial candidate solutions are the primitive NRHGs reduced
by merging indistinguishable variables.

2. Select some pairs of individuals according to the crossover rate (0.4) and
construct new pairs of individuals by applying the crossover operator to the
selected pairs.

3. Select some individuals according to the mutation rate (0.03) and modify the
selected individuals by applying the mutation operator.

4. Calculate a fitness value f(p) for each individual p by the fitness function.
Let p be an individual encoding for an NRHG G = (Σ,VT , VF , P, s). Then,
the fitness value f(p) of p is defined as follows:

f(p) =

⎧
⎨

⎩

1
|VF | + |VT | +

1
|P | +

|{w ∈ U+ | w ∈ L(G)}|
|U+| , if U− ∩ L(G) = ∅,

0 otherwise.
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where U+ is the set of positive examples and U− is the set of negative
examples.

5. Generate a next generation by roulette-wheel selection from the current pop-
ulation of solutions. Note that we retain the individuals from the best 10 %
of the current population unchanged in the next generation and select only
the remaining 90 % by roulette-wheel selection.

6. Iterate 1–5 steps until the fitness value of the best individual reaches the given
threshold.

4 Converting NRHG into Relax NG Schema

Here we present a conversion algorithm from an NRHG into a corresponding
Relax NG schema. A Relax NG schema uses references to named pattern using
the define elements. Now tree or forest variables in NRHGs can be directly
converted into the define elements for being used as references.

4.1 Horizontal NFA Construction

Given an NRHG G = (Σ,VT , VF , P, s), let us consider the starting symbol s.
Without loss of generality, we assume that there is a production rule s → x〈vf 〉 ∈
P , where x ∈ Σ and vf ∈ VF . Then, we convert s into the corresponding define
element in the resulting Relax NG schema. Now it remains to convert the forest
variable vf into the corresponding element in the schema.

We construct an NFA that accepts all possible sequences of tree variables that
can be generated by vf . We call this procedure the horizontal NFA construction
for vf . For each forest variable vf ∈ VF , where vt → x〈vf 〉 ∈ P , we construct a
horizontal NFA Avf

= (Q,Σ, δ, q0, qf ) as follows:

1. Q = VF ∪ {qf} is a finite set of states,
2. Σ = VT is an input alphabet,
3. q0 = vf is the initial state, and
4. the transition function δ is defined as follows:

(a) q′ ∈ δ(q, vt) for each q → vtq
′ ∈ P , and

(b) qf ∈ δ(q, vt) for each q → vt ∈ P .

For example, Fig. 1 shows how we construct horizontal NFAs from a sim-
ple NRHG. From the first two production rules, we know that F0 generates
a sequences of sub-elements of records and F1 generates a sequences of sub-
elements of car. Therefore, we generate two horizontal NFAs AF0 and AF1 with
the initial states are F0 and F1, respectively.

4.2 State Elimination for Obtaining Regular Expressions

Recall that a Relax NG schema can specify a regular tree language when we
consider the tree structures of XML documents captured by the schema. When a
Relax NG schema describes a set of possible sequences of trees, we use several
elements such as choice, group, zeroOrMore, and so on.
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F0

F1

f

F2

T1

T1

T2

T3

T0 → records〈F0〉, T1 → car〈F1〉,
F1 → T2F2,

F0 → T1, F2 → T3,

F0 → T1F0,

T2 → countryT3 → record,

NFA AF0

NFA AF1

Fig. 1. Since two forest variables F0 and F1 are used for generating sequences of sub-
elements of records and car, respectively, we construct two horizontal NFAs AF0 and
AF1 . Note that the final states of AF0 and AF1 are merged into a single final state f .

The choice element implies that one of the sub-elements inside the element
can be chosen. Therefore, we can say that the role of the choice element in Relax
NG corresponds to the role of the union operator in regular expression. Similarly,
the group element implies that the sub-elements inside the element should appear
in exactly the same order. Thus, the group element corresponds to the catenation
operator in regular expression. For this reason, we need to convert the obtained
horizontal NFAs into the corresponding regular expressions since regular expres-
sions are described in a very similar manner with the Relax NG schema.

State elimination is an intuitive algorithm that computes a regular expression
from a finite-state automaton (FA) [9]. There are several heuristics of state
elimination for obtaining shorter regular expressions from FAs [7–10]. Delgado
et al. [7] observed that an order in eliminating states is crucial for obtaining a
shorter regular expression. They defined the weight of a state to be the size of
new transition labels that are created as a result of eliminating the state. We
borrow their idea and define the weight of a state q in an FA A = (Q,Σ, δ, s, F )
as follows:

IN∑

i=1

(Win(i) × OUT) +
OUT∑

i=1

(Wout(i) × IN) + Wloop × (IN × OUT),

where IN is the number of in-transitions excluding self-loops, OUT is the number
of out-transitions excluding self-loops, Win(i) is the size of the transition label
on the ith in-transition, Wout(i) is the size of the transition label on the ith
out-transition, and Wloop is the size of the self-loop label. After calculating the
weights of all states, we eliminate the state with the smallest weight and calculate
the state weights again. We repeat this procedure until there are only the initial
state and the single final state.

4.3 Schema Refinement

Now we have regular expressions for forest variables of an NRHG and are ready
to convert these regular expressions into the form of Relax NG schema. We also
use several additional techniques for converting an NRHG into a Relax NG
schema.
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– Replacing zeroOrMore elements by oneOrMore elements: The zeroOrMore ele-
ment is used when there is optionally a repetition of a certain pattern like the
Kleene star ∗ operator in regular expression. For example, a regular expres-
sion a∗ can be converted using a zeroOrMore element and an element named
a inside the zeroOrMore element. In some cases such as a∗ · a or a · a∗, we
can describe the pattern using the Kleene plus operator a+. Since Relax NG
schema supports the oneOrMore element that corresponds to the Kleene plus
in regular expression, we can make the resulting schema smaller in some cases.

– Checking the dependency of forest variables: Consider two forest variables v1
and v2, where v2 can be derived from v1, but v1 cannot be derived from v2. If
we construct regular expressions for two forest variables, then there should be
some redundancy in two regular expression since the pattern described for v2
is already contained in the pattern described for v1. Therefore, we can write
the pattern for v2 by just referring to the pattern for v1 instead of writing two
redundant patterns.

5 Experimental Results

We conduct experiments for inferring a Relax NG schema from a given XML
data. For the experiments, we use a Java library xmlgen developed as a part
of Sun Multi-Schema XML Validator1 from randomly generating positive and
negative XML instances for an input Relax NG schema.

5.1 Experimental Setup

We use three benchmark Relax NG schemas—XENC, XML-DSig, IBTWSH—to
evaluate the performance of our Relax NG inference algorithm.

We aim at inferring only the relationship between elements from XML data.
Therefore, we ignore the descriptions for attributes of XML data from benchmark
schemas. Moreover, we manually replace the elements defined by the anyName
name by the elements with the name anyName since otherwise randomly gener-
ated instances may have too many elements with arbitrary names. We also limit
the maximum number of appearing sub-elements in the zeroOrMore elements to
2 since otherwise we may have very large XML instances compare to the size of
input schema.

5.2 Size Reduction of NRHGs by Optimization

We show that the optimization process helps to reduce the size of primitive
NRHGs generated by positive instances.

Table 1 exhibits that the optimization process reduce 84.15 %, 82.13 %,
77.04 % of redundancy from the primitive NRHGs constructed from the pos-
itive instances of XENC, XML-DSig and IBTWSH, respectively. Note that the
optimization process contributes to the speedup of the genetic process as the
size of initial population also decreases substantially.
1 The Oracle Multi-Schema XML Validator (MSV). https://msv.java.net/.

https://msv.java.net/
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Table 1. The compression ratio ([size of NRHG before optimization]/[size of NRHG
before optimization]) achieved by merging indistinguishable variables from primitive
NRHGs.

Benchmark schema XENC XML-DSig IBTWSH

Before After Before After Before After

# of tree variables 755.17 123.67 1048.73 123.20 1222.86 162.57

# of forest variables 705.17 187.17 998.73 176.93 1122.86 208.29

# of production rules 1460.33 359.83 2047.47 349.13 2345.71 467.29

Average size of NRHG 4094.93 649.27 4691.43 838.14 2920.67 670.67

Compression ratio (%) 15.85 17.87 22.96

5.3 Precision of Inferred Schema

For three benchmark schemas, we generate 50 positive instances and 25 negative
instances by xmlgen. Note that we set the error rate to 1/100 when generat-
ing negative instances. Then we run our inference algorithm to infer Relax NG
schemas for the instances. We repeat the process 100 times and calculate the
average value.

We evaluate the precision of our inference system in two directions. First,
we validate the inferred schema against 1,000 positive instances generated from
the original benchmark schema. Second, we validate the inferred schema against
1,000 negative instances generated from the original benchmark schema. We
expect that the inferred schema should generate the positive instances and
not generate the negative instances if they are inferred closely to the original
schemas.

Table 2. The precision of our Relax NG schema inference system

Benchmark schema XENC XML-DSig IBTWSH IBTWSH

(50/25) (100/50)

Precision for positive instances (%) 91.98 93.50 46.05 96.87

Precision for negative instances (%) 82.43 83.85 83.45 74.67

Table 2 shows the precision of our inference algorithm. Note that the fourth
column shows the results for the benchmark IBTWSH with 100 positive and 50
negative instances. Speaking of the first two results, precisions for positive and
negative instances are very similar. The inferred schemas generate more than
90 % of positive instances of the original schemas and do not generate more than
80 % of negative instances. The performance is good considering that we infer
schemas with only a small number of instances.

For the benchmark IBTWSH, only 46.05 % of positive instances can be gener-
ated by the inferred schema. The inference precision improves significantly when
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we double the number of instances to 100 positive and 50 negative instances.
We suspect that the reason why the precision for the benchmark IBTWSH is
especially low is because IBTWSH schema has several interleave elements that
allow the sub-elements to occur in any order. Since our inference system does not
support the inference of interleave elements, it seems more difficult to infer
schemas with interleave elements.

6 Conclusions

XML schemas are formal languages that describe structures and constraints
about XML instances. They are crucial to maintain and manipulate XML doc-
uments efficiently—an XML document should conform a specific XML schema.
However, in practice, we may not have a valid schema or have an incorrect
schema. This has led many researchers to design an efficient schema inference
algorithm.

We have presented an Relax NG schema—one of the most powerful XML
schema languages—inference algorithm based on 1) a genetic algorithm for learn-
ing process and 2) state elimination heuristics for retrieving a concise Relax NG
schema. We have implemented the proposed algorithm and measured the pre-
ciseness and conciseness of the algorithm using well-know benchmark schemas.
Our experiments have showed that the proposed algorithm has 90 % precise-
ness for accepting positive examples and 80 % preciseness for rejecting negative
examples. In future, we plan to consider other learning approaches for better
performance and more Relax NG specifications such as interleave.
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Abstract. We study the loss version of adversarial multi-armed bandit
problems with one lossless arm. We show an adversary’s strategy that
forces any player to suffer K − 1 − O(1/T ) loss where K is the number
of arms and T is the number of rounds.

Keywords: Algorithmic learning · Online learning · Bandit problem

1 Introduction

In this paper, we study a kind of the loss version of adversarial multi-armed
bandit problems with one lossless arm, that is, the problem in the noise-free
case. The gain (reward) version of an adversarial multi-armed bandit problem
was studied first by Auer et al. [1] and its loss version has been also studied in
some papers such as [2,3]. To the best of our knowledge, however, the problem
in the noise-free setting has not been studied yet. This could be because the
problem is too trivial to study. In fact, it is easy in the full-information case; with
{0, 1} losses and K arms, loss

∑K
i=2(1/i) = Θ(ln K) is achieved by the minmax

strategy: the adversary’s maximization strategy sets the loss of an arm with the
highest probability of being chosen to 1 in addition to the past lossy arms, and
the player’s minimization strategy always chooses one of the arms with no loss
so far randomly with equal probability. In the bandit case, however, it does not
seem so trivial because the arms with no loss so far in player’s observation might
already have suffered 1-loss. Thus, the adversary may have to stick to its loss
assignments, waiting for the player to choose one of the lossy arms.

In this paper, we focus on an adversary’s strategy. The adversary’s strategy
studied in [1] selects a best arm randomly and sets losses of the non-best arms
to 1 with probability 1/2 and sets the loss of the best arm to 1 with probability
1/2 − ε at each time for some small ε. Their strategy can be modified for the
noise free case by changing the probabilities of 1-loss to ε and 0. This adversary’s
strategy is very weak against the player’s strategy that sticks to the same random
arm until he/she suffers 1-loss, forcing only (K − 1)/2 loss in the K-arm case.
We show an adversary’s strategy that forces any player to suffer K −1−O(1/T )
loss for K-arm and T -round case.

c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 412–423, 2016.
DOI: 10.1007/978-3-319-30000-9 32
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2 Problem Setting

For any natural numbers i, j with i ≤ j, [i..j] denotes the set {i, . . . , j} and we let
[j] denote [1..j]. For any sequence x1, . . . , xn, we let x[b..e] denote its contiguous
subsequence xb, . . . , xe.

The noise-free multi-armed bandit problem we consider here is the loss version
of an adversarial multi-armed bandit problem with one lossless arm. It is a T -
round game between a player and an adversary. There are K arms (of slot
machines): arm 1, . . . ,arm K. At each time t = 1, . . . , T , the adversary picks a
loss �t,i ∈ [0, 1] for each arm i ∈ [K]. Let �t ∈ [0, 1]K denote a K-dimensional
vector (�t,1, . . . , �t,K). The player, who does not know �t, chooses arm It and
suffers loss �t,It . The player’s and the adversary’s objectives are minimization
and maximization, respectively, of player’s (expected) cumulative loss

∑T
t=1 �t,It .

The most popular measure for evaluating player’s strategies is regret, which
is difference between player’s and the best arm’s cumulative losses. Throughout
this paper, we assume that there is an arm whose cumulative loss is zero. In this
case, regret coincides with cumulative loss. Note that this assumption constrains
the adversary’s choices.

We allow the player to use a randomized strategy, so at each time t the
player’s choice It is a random variable. Let it denote a realization of random
variable It. We call (it, �t,it) a player’s observation at time t and denote it by ot.
Each player’s choice It can depend only on his/her past observations o[1..t − 1].
The adversary that we consider here is assumed to have infinite computation
power; no limitation is set on adversary’s computational time and space. The
Adversary is also allowed to behave adaptively: the adversary’s decision �t can
depend on both the player’s past choices i[1..t − 1] and the adversary’s past
decisions �[1..t − 1].

Example 1. Let K = 2. Consider a randomized consistent conservative player
who chooses each arm i with equal probability at t = 1 and continues to choose
the same arm i until suffering a non-zero loss, and after that chooses the other
arm, which must be a lossless arm by the assumption of one lossless arm. For this
player, E

[∑T
t=1 �t,It

]
= 1/2 if �1 = · · · = �T = (1, 0) or (0, 1). The adversary,

however, can achieve E
[∑T

t=1 �t,It

]
= 1 using �1 = (0, 0) because the adversary

can know I2 from I1. For a mere randomized consistent player who chooses each
arm of no loss so far with equal probability, using �1 = (0, 0) only reduces
E
[∑T

t=1 �t,It

]
and the best strategy of the adversary is to use �1 = · · · = �T =

(1, 0) or (0, 1) which achieves E
[∑T

t=1 �t,It

]
= 1 − (1/2)T . Note that, for this

loss sequence, E
[∑T

t=1 �t,It

]
= 1/2 holds in the full-information setting because

the lossless arm can be identified at t = 1 regardless of the loss suffered by the
player.
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Algorithm 1. RepeatW&S[K,T ]
parameter: K: number of arms, T : number of trials
initialize : t0, . . . , tm, k1, . . . , km ← the solution of Problem 2, d ← 1

for time t = 1, . . . , T do
if t ≥ td−1 then

b ← td−1, e ← td − 1
c ←BestSwitchingTime(b, e,o[1..b − 1], kd)
d ← d + 1

end
�t ← Wait&Sticking[b, c, e,o[1..b − 1], kd](t,o[b, ..t − 1])
Observe the player’s choice it

end

Algorithm 2. BestSwitchingTime(b, e,o[1..b − 1], k)
input : b, e ∈ N: beginning and ending times with 1 ≤ b ≤ e

o[1..b− 1]: players observations from time 1 to time b− 1
k: number of no-loss arms to switch to 1-loss

output: c∗: best time to switch from waiting to sticking

S ← the set of arms with no loss by time b − 1
pmax = −1
for c = b, . . . , e do

pc←EI[b..e−1]

[
max

s⊆S,|s|=k
P

{
e∑

t=c

�t,It≥1

∣∣∣∣∣
O[1..b − 1] = o[1..b − 1], I[b..c − 1],
�b = · · · = �c−1 = 1[K]\S ,
�c = · · · = �e = 1([K]\S)∪s

}]

if pc > pmax then
c∗ ← c
pmax ← pc

end

end
return c∗

3 Adversary’s Strategy

For any set S ⊆ [K], define 1S to be the K-dimensional {0, 1}-vector whose
ith component is 1 if and only if i ∈ S. At any time t ∈ [T ], the decision
�t made by our adversary algorithm RepeatW&S[K,T ] (Algorithm 1) is 1St

for some set St ⊆ [K] and will satisfy �1 ≤ · · · ≤ �T , that is, once the ith
component becomes 1, it never becomes 0. Based on the loss analysis in Sect. 4,
for some natural number m ∈ [K − 1], the adversary divides [T ] into m parts
[t0..t1−1], · · · , [tm−1, tm−1], and also divides K−1 into m non-negative integers
k1, . . . , km with

∑m
i=1 ki = K − 1. We explain how to divide [T ] and K − 1 later

in this section.
During the ith period [ti−1..ti − 1], that is, for times t ∈ [ti−1, ti − 1],

the adversary switches the loss vector �t at most once: beginning with 1[K]\S ,
where S is the set of lossless arms so far, it calculates the best time c ∈
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Algorithm 3. Wait&Sticking[b, c, e,o[1..b − 1], k](t,o[b..t − 1])
parameter: b, c, e ∈ N: beginning, switch, and end times, 1 ≤ b ≤ c ≤ e

o[1..b − 1]: players observations from time 1 to time b − 1
k: positive integer at most the number of arms with no loss.

input : t ∈ N: b ≤ t ≤ e
o[b..t − 1]: players observations from time b to time t − 1

output : �t ∈ {0, 1}K : loss vector at time t

S ← the set of arms with no loss by time b − 1
if t < c then

return 1[K]\S
else

if t = c then

s∗ ← arg max
s⊆S,|s|=k

P

{
e∑

t′=c

�t′,It′ ≥ 1

∣∣∣∣∣ O[1..c − 1] = o[1..c − 1],
�c = · · · = �e = 1([K]\S)∪s

}

end
return 1([K]\S)∪s∗

end

[ti−1..ti] to switch the loss vector using BestSwitchingTime(ti−1, ti,o[1..ti−1 −
1], ki) (Algorithm 2). At this time t = c, the adversary calculates the best sub-
set s ⊆ S to add to [K] \ S and changes the loss vector �t to 1([K]\S)∪s using
Wait&Sticking[ti−1, c, ti,o[1..ti−1 − 1], k](t,o[b..t − 1]) (Algorithm 3).

In RepeatW&S[K,T ], [T ] and K − 1 is divided by the solution of Problem 2
shown below. We introduce notation F (T ′,K ′, k) for simple description of the
problem: for any three integers T ′ ≥ 1, K ′ ≥ 2 and k ≥ 0, define function
F (T ′,K ′, k) as

F (T ′,K ′, k) =
T ′ +

(
K ′ − 1
k − 1

)
− 1

T ′ +
(

K ′

k

)
− 1

.

Consider the following problem.

Problem 2. Given two integers T ≥ 1 and K ≥ 2, find two non-negative integer
sequences t0, . . . , tm and k1, . . . , km that maximize

m∑

i=1

F (ti − ti−1,K −
i−1∑

j=1

kj , ki)

subject to

1 ≤ m ≤ K − 1, (1)
1 = t0 < t1 < · · · < tm = T + 1 and (2)
k1 + · · · + km = K − 1. (3)
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Example 3. Assume that K = 2. Then m = 1, t0 = 1, t1 = T + 1, k1 = 1 is the
solution of Problem 2. The best time c∗ to switch is 2 (p1 = 1/2, p2 = · · · = pT =
1) for the randomized consistent conservative player and 1 (pc = 1−(1/2)T+1−c)
for the randomized consistent player.

4 Lower Loss Bound

Lemma 4. Let b and T ′ be arbitrary positive integers and let k be an arbitrary
non-negative integer. Let c∗ be the returned value from BestSwitchingTime(b, b+
T ′ − 1,o[1..b − 1], k). Then, for any player algorithm, the following holds with
respect to the loss vectors generated by Wait&Sticking[b, c∗, b+T ′ − 1,o[1..b−
1]](t,o[b..t−1]):

EI[b..b+T ′−1]

⎡

⎣
b+T ′−1∑

t=b

�t,It

⎤

⎦ ≥ F (T ′, |S|, k),

where S is the set of arms with no loss by time b − 1, that is, S = {i ∈ [K] :∑b−1
t=1 �t,i = 0}.

Remark 5. In the case with K = 2, Lemma 4 implies

EI[1..T ]

[
T∑

t=1

�t,It

]
≥ F (T, 2, 1) =

T

T + 1
. (4)

Equation (4) trivially holds for T = 1 because

max
i∈{1,2}

P
{
�1,I1 ≥ 1|�1 = 1{i}

}
= max

i∈{1,2}
P {I1 = i} ≥ 1/2.

Let p1 = P{I1 = 1}, p11 = P{I2 = 1|o1 = (1, 0)} and p21 = P{I2 = 1|o1 =
(2, 0)}. Then, the maximum of the three probabilities

P{�1,I1 + �2,I2 ≥ 1|�1 =�2 = 1{1}} = P{I1 = 1 or I2 = 1} = p1 + (1 − p1)p21,
P{�1,I1 + �2,I2 ≥ 1|�1 =�2 = 1{2}} = (1 − p1) + p1(1 − p11)

and

EI1

[
max

i∈{1,2}
P{�2,I2 ≥ 1|I1, �1 = 0, �2 = 1{i}}

]

= EI1

[
max

i∈{1,2}
P{I2 = i|I1, �1 = 0}

]

= p1 max{p11, 1 − p11} + (1 − p1)max{p21, 1 − p21}
is at least 2/3 because the sum of them is at least 2. The above probabilities are
lower bounds of E [�1,I1 + �2,I2 ] for the cases with �1 = �2 = 1{1}, �1 = �2 = 1{2}
and �1 = 0 and �2 = 1{i∗}, respectively, where i∗ = arg maxi∈{1,2} P{I2 = i|I1}.
Thus, Eq. (4) also holds for T = 2. This idea of the proof can be extended to
that of Lemma 4. ��
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Proof of Lemma 4. Let

pb,s(o[1..b − 1], T ′)

=P

⎧
⎨

⎩

b+T ′−1∑

t=b

�t,It ≥ 1

∣∣∣∣∣∣
O[1..b − 1] = o[1..b − 1],
�b = · · · = �b+T ′−1 = 1([K]\S)∪s

⎫
⎬

⎭

and for any positive integer c ∈ [b, b + T ′ − 1], let pc(o[1..b − 1], T ′) denote the
value pc that is set at Line 4 of BestSwitchingTime(b, b + T ′ − 1,o[1..b − 1], k).
Note that,

pb(o[1..b − 1], T ′) = max
s⊆S,|s|=k

pb,s(o[1..b − 1], T ′)

holds. Then, with respect to the loss vectors generated by Wait&Sticking [b, c∗, b+
T ′−1,o[1..b−1]](t,o[b..t−1]),

pc∗(o[1..b − 1], T ′) ≤ EI[b..b+T ′−1]

⎡

⎣
b+T ′−1∑

t=b

�t,It

⎤

⎦

holds. We prove

pmax = max
t=b,...,e

pt(o[1..b − 1], T ′) ≥ F (T ′, |S|, k),

which is implied from the inequality

∑

s⊆S,|s|=k

pb,s(o[1..b−1], T ′) +
b+T ′−1∑

c=b+1

pc(o[1..b−1], T ′) ≥ T ′ +
( |S| − 1

k − 1

)
− 1

(5)

because the average of the term values in the left hand side of the inequality is
at least (

T ′ +
(|S| − 1

k − 1

)
− 1

)/(
T ′ +

(|S|
k

)
− 1

)

if Eq. (5) holds. We prove Eq. (5) for any positive integer b by mathematical
induction on T ′. When T ′ = 1,

pb,s(o[1..b − 1], 1) =P
{
�b,Ib ≥ 1|O[1..b−1] = o[1..b−1], �b = 1([K]\S)∪s

}

=P {Ib ∈ ([K] \ S) ∪ s|O[1..b−1] = o[1..b−1]}
holds. Thus, Eq. (5) holds for any positive integer b because

∑

s⊆S,|s|=k

pb,s(o[1..b − 1], 1) +
b∑

c=b+1

pc(o[1..b − 1], 1)

=
∑

s⊆S,|s|=k

P {Ib ∈ ([K] \ S) ∪ s|O[1..b−1] = o[1..b−1]}

≥
( |S| − 1

k − 1

)
=
( |S| − 1

k − 1

)
+ T ′ − 1.
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Here, the above inequality holds because each arm i ∈ S belongs to at least( |S| − 1
k − 1

)
size-k subsets of S. Assume that Eq. (5) holds when T ′ = n for any

positive integer b. Then,

pb,s(o[1..b − 1], n + 1)

=P

{
b+n∑

t=b

�t,It ≥ 1

∣∣∣∣∣O[1..b − 1] = o[1..b − 1], �b = · · · = �b+n = 1([K]\S)∪s

}

=P
{
�b,Ib ≥ 1|O[1..b−1]=o[1..b−1], �b=1([K]\S)∪s

}

+ P

{
�b,Ib < 1,

b+n∑

t=b+1

�t,It ≥ 1

∣∣∣∣∣
O[1..b − 1] = o[1..b − 1],
�b= · · ·=�b+n=1([K]\S)∪s

}

=P{Ib ∈ ([K] \ S) ∪ s|O[1..b − 1] = o[1..b − 1]}

+ P

⎧
⎨

⎩Ib 	∈ ([K] \ S) ∪ s,

b+n∑

t=b+1

�t,It ≥ 1

∣∣∣∣∣

O[1..b − 1] = o[1..b − 1],
�b = 1[K]\S ,
�b+1= · · ·=�b+n=1([K]\S)∪s

⎫
⎬

⎭

=P{Ib ∈ ([K] \ S) ∪ s|O[1..b − 1] = o[1..b − 1]}

+ P

{
b+n∑

t=b+1

�t,It ≥ 1

∣∣∣∣∣
O[1..b − 1] = o[1..b − 1], �b = 1[K]\S ,
�b+1= · · ·=�b+n=1([K]\S)∪s

}

− P

⎧
⎨

⎩Ib ∈ ([K] \ S) ∪ s,

b+n∑

t=b+1

�t,It ≥ 1

∣∣∣∣∣

O[1..b − 1] = o[1..b − 1],
�b = 1[K]\S ,
�b+1= · · ·=�b+n=1([K]\S)∪s

⎫
⎬

⎭

=P{Ib ∈ ([K] \ S) ∪ s|O[1..b − 1] = o[1..b − 1]}
+ EIb [pb+1,s(o[1..b − 1], (Ib,1[K]\S,Ib), n)]

−
∑

i∈[K]\S∪s

P{Ib = i|O[1..b − 1] = o[1..b − 1]}
×pb+1,s(o[1..b − 1], (i,1[K]\S,i), n)

and
pc(o[1..b − 1], n + 1) = EIb

[
pc(o[1..b − 1], (Ib,1[K]\S,Ib), n)

]

holds for c ≥ b + 1. Therefore,

∑

s⊆S,|s|=k

pb,s(o[1..b−1], n + 1) +
b+n∑

c=b+1

pc(o[1..b−1], n + 1)

=
∑

s⊆S,|s|=k

(
P{Ib ∈ ([K] \ S) ∪ s|O[1..b − 1] = o[1..b − 1]}

+EIb

[
pb+1,s(o[1..b − 1], (Ib,1[K]\S,Ib), n)

])

−
∑

i∈[K]\S∪s

P{Ib = i|O[1..b − 1] = o[1..b − 1]}
×pb+1,s(o[1..b − 1], (i,1[K]\S,i), n)
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+
b+n∑

c=b+1

EIb

[
pc(o[1..b − 1], (Ib,1[K]\S,Ib), n)

]

≥EIb

{ ∑

s⊆S,|s|=k

pb+1,s(o[1..b − 1], (Ib,1[K]\S,Ib), n)

+
b+n∑

c=b+2

pc(o[1..b − 1], (Ib,1[K]\S,Ib), n)
}

+
∑

i∈S

P{ Ib = i|O[1..b − 1] = o[1..b − 1]}
×
{ ∑

i∈s⊆S,|s|=k

(1 − pb+1,s(o[1..b − 1], (i,1[K]\S,i), n))

+ max
s⊆S,|s|=k

pb+1,s(o[1..b − 1], (i,1[K]\S,i), n)
}

+
∑

i∈[K]\S
P{ Ib = i|O[1..b − 1] = o[1..b − 1]}

×
{ ∑

s⊆S,|s|=k

(1 − pb+1,s(o[1..b − 1], (i,1[K]\S,i), n))

+ max
s⊆S,|s|=k

pb+1,s(o[1..b − 1], (i,1[K]\S,i), n)
}

≥EIb

[( |S| − 1
k − 1

)
+ n − 1

]
+ 1 =

( |S| − 1
k − 1

)
+ (n + 1) − 1

holds, which means Eq. (5) holds for any positive integer b when T ′ = n + 1.
Note that the last inequality holds by the assumption that Eq. (5) holds for any
positive integer b when T ′ = n. ��

The following theorem is trivial by Lemma 4.

Theorem 6. RepeatW&S[K,T ] forces any player algorithm to suffer the expected
loss of at least

m∑

i=1

F (ti − ti−1,K −
i−1∑

j=1

kj , ki)

for any positive integers t0, . . . , tm, k1, . . . , km that satisfies (1),(2) and (3).

Corollary 7. RepeatW&S[K,T ] forces any player algorithm to suffer the expected
loss of at least

T (1 − K−1/T ) − 1 − K(T−1)/T

K(1 − K1/T )
(6)

for T ≤ K − 2,

HK − Hh+1 + h − A2(h)(B(h) + 4h)
2B2(h)

(7)
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for T ≥ h(h−1)
2 +K−1 (h = 1, . . . ,K−1), where Hn is the nth harmonic number

for any natural number n and

A(h) =2
h∑

j=1

√
j

B(h) =2T − 2(K − 1) + (h + 3)h.

Proof. For T ≤ K − 2, consider positive integers t0, . . . , tm that satisfy

m = T and t1 = 2, t2 = 3, ..., tm−1 = T, tm = T + 1

Then, in this case,

m∑

i=1

F (ti − ti−1,K −
i−1∑

j=1

kj , ki) =
T∑

i=1

F (1,K −
i−1∑

j=1

kj , ki)

=
T∑

i=1

(
K −∑i−1

j=1 kj − 1
ki − 1

)

(
K −∑i−1

j=1 kj
ki

)

=
T∑

i=1

ki

K −∑i−1
j=1 kj

=T −
T∑

i=1

K −∑i
j=1 kj

K −∑i−1
j=1 kj

holds. By the inequality of arithmetic and geometric means, we have

T −
T∑

i=1

K −∑i
j=1 kj

K −∑i−1
j=1 kj

≤ T − TK−1/T

with equality if and only if

K −∑i
j=1 kj

K −∑i−1
j=1 kj

= K−1/T (8)

for all i = 1, . . . , T . Unfortunately, k1, . . . , kT that satisfy (8) are not integers.
As an approximate solution, use k1, . . . , kT that satisfy

K −
i∑

j=1

kj = 
K(T−i)/T �,

then
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T −
T∑

i=1

K −∑i
j=1 kj

K −∑i−1
j=1 kj

= T −
T∑

i=1


K−(T−i)/T �

K−(T−i+1)/T �

≥ T −
T−1∑

i=1

K(T−i)/T + 1
K(T−i+1)/T

+
1

K1/T

= T (1 − K−1/T ) − 1 − K(T−1)/T

K(1 − K1/T )
.

Let h be an arbitrary integer in [1,K − 1]. Consider the case with T ≥
h(h−1)

2 + K − 1. Let m = K − 1 and let

ti =
{

ti−1 + 1 (i = 1, . . . ,K − h − 1)
ti−1 + Ti (i = K − h, . . . ,K − 1)

and k1 = · · · = kK−1 = 1, where Ti is non-negative integer with

h∑

i=1

TK−i = T − (K − 1). (9)

Then,

m∑

i=1

F (ti − ti−1,K −
i−1∑

j=1

kj , ki)

=
K−h−1∑

i=1

F (1,K − i + 1, 1) +
K−1∑

i=K−h

F (Ti + 1,K − i + 1, 1)

=
K−h−1∑

i=1

1
K − i + 1

+
K−1∑

i=K−h

1 + Ti

K − i + 1 + Ti

=HK − Hh+1 + h −
K−1∑

i=K−h

K − i

K − i + 1 + Ti

=HK − Hh+1 + h −
h∑

i=1

i

i + 1 + TK−i
(10)

holds. Let

f(TK−h, . . . , TK−1) =
h∑

i=1

i

i + 1 + TK−i
.

By solving the problem of maximizing f(TK−h, . . . , TK−1) subject to Constraint
(9) using the method of Lagrange multipliers, we obtain

TK−i =
B(h)

√
i

A(h)
− (i + 1) for i = 1, . . . , h. (11)
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All the TK−i are non-negative because

B(h)
√

i

A(h)
− (i + 1) =

2T − 2(K − 1) + h(h + 3)

2
∑h

j=1

√
j

√
i − (i + 1)

≥ 2h(h + 1)

2
∑h

j=1

√
j

√
i − (i + 1)

≥ 2h(h + 1)
h
√

2(h + 1)

√
i − (i + 1)

=
√

2(h + 1)i − (i + 1) ≥ 0

holds for i = 1, . . . , h. Here, the first inequality holds because T ≥ h(h−1)
2 +K−1

and the second inequality holds by inequality
∑h

j=1

√
j ≤ h

√
h+1
2 . Due to integer

constraint, instead of TK−i defined by Eq. (11), we use TK−i defined as follows:

i + 1 + TK−i =

⎢⎢⎢⎣
i∑

j=1

B(h)
√

j

A(h)

⎥⎥⎥⎦−
⎢⎢⎢⎣

i−1∑

j=1

B(h)
√

j

A(h)

⎥⎥⎥⎦ .

Then,
h∑

i=1

i

i + 1 + TK−i
<

h∑

i=1

i
B(h)
A(h)

√
i − 1

=A(h)
h∑

i=1

i

B(h)
√

i − A(h)

=
A2(h)
2B(h)

+
A2(h)
B2(h)

h +
A3(h)
B2(h)

h∑

i=1

1
B(h)

√
i − A(h)

≤ A2(h)
2B(h)

+
A2(h)
B2(h)

h +
A2(h)
B2(h)

h

=
A2(h)(B(h) + 4h)

2B2(h)
(12)

holds. Here, the first inequality uses
⎢⎢⎢⎣

i∑

j=1

B(h)
√

j

A(h)

⎥⎥⎥⎦−
⎢⎢⎢⎣

i−1∑

j=1

B(h)
√

j

A(h)

⎥⎥⎥⎦ >
B(h)

√
i

A(h)
− 1

and the second inequality uses the fact that

B(h)
√

i − A(h) ≥ B(h) − A(h) ≥ A(h),

which can be implied from inequalities

A(h) ≤ h
√

2(h + 1)

and
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B(h) = 2
{

T − (K − 1) − h(h − 1)
2

}
+ 2h(h + 1) ≤ 2h(h + 1).

By Eqs. (10) and (12), Bound (7) holds in this case. ��
Corollary 8. RepeatW&S[K,T ] forces any player algorithm to suffer expected
loss at least

K − 1 − K(K − 1)2(2T + (K − 1)(K + 4))
(2T + K(K − 1))2

for T ≥ K(K − 1)/2.

Proof. This corollary can be derived from Bound (7) of Corollary 7 with h =
K − 1 and the fact that

A2(K − 1) = 4

⎛

⎝
K−1∑

j=1

√
j

⎞

⎠
2

≤ 4(K − 1)
K−1∑

j=1

j = 2K(K − 1)2.
��

5 Concluding Remark

In this paper, we focus on the adversary’s strategy. Any consistent player that
avoids arms with previously observed loss incurs total loss at most K − 1. This
leaves a small O(1/T ) gap between the loss forced by our adversary and this
trivial loss bound for consistent players. Finding minimax strategies to close this
gap remains an open problem.
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Properties of Regular DAG Languages
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Abstract. A DAG is a directed acyclic graph. We study the properties
of DAG automata and their languages, called regular DAG languages. In
particular, we prove results resembling pumping lemmas and show that
the finiteness problem for regular DAG languages is in P.

1 Introduction

String and tree languages have been the subject of many years of research,
with thousands of papers contributing to their theory. Tree languages are espe-
cially useful in computational linguistics because trees can represent the syntac-
tic structure of sentences. However, trees are not equally well suited for dealing
with meaning representations, which naturally lead to directed acyclic graphs
(DAGs). Recently, the question of developing an appropriate theory of DAG
languages has gained interest as a basis for the study of so-called abstract mean-
ing representations (AMRs, see [2]). Quernheim and Knight [10] have therefore
proposed a notion of DAG automata. Chiang et al. [5] propose a mathematically
simpler model of ranked DAG automata, which coincide with the edge-marking
DAG automata of [8].1 They can also be viewed as a slightly simplified ranked
version of the DAG automata in [9]. Here, ranked means that the vertices of
the DAGs in a regular DAG language have bounded degree. While the DAGs
that occur in AMRs are unranked, Chiang et al. point out that for almost all
purposes it suffices to study ranked DAG languages since unranked ones can be
binarized in a way similar to the first-sibling next-child encoding used in the
study of unranked tree languages.

In this paper, we study some basic language theoretic and algorithmic prop-
erties of these ranked DAG languages, which we call regular DAG languages. To
keep the theory closer to the theory of regular tree languages, we deviate slightly
from the definition by Chiang et al. in that ordered DAGs are considered, i.e. the
ingoing edges of a node form a sequence, and similarly for the outgoing edges.
Imagining a ranked and ordered version of Priese’s DAG automata, the difference
between both types is that his would allow to specify admissible sequences of
root states (initial states), and admissible sequences of leaf states (final states),
whereas our automata intentionally lack this ability. As shown in [5], one of the

This paper is based on the master thesis [3] of the first author.
1 For further types of DAG automata that, however, are significantly different from

those studied here, see [1,4,7].
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consequences is that the so-called path languages of our regular DAG languages
are regular string languages whereas Priese shows that they are not even in
general context-free in his formalism.

In this paper, we first study closure properties of the class of regular DAG
languages. Expectedly, it turns out that it is closed under union and intersection.
It is, however, not closed under complement. These results, shown in Sect. 3,
parallel those of Priese. We then turn to necessary properties of regular DAG
languages in Sect. 4, where we show results resembling pumping lemmas. These
yield a characterization of the finite regular DAG languages. Finally, we prove
in Sect. 5 that useless rules can be removed from DAG automata, and that this
can be used to decide finiteness of regular DAG languages in polynomial time,
thus answering a problem left open in [5].

2 Regular DAG Languages

In this section we compile some basic notation and introduce DAG automata
and their languages.

The set of non-negative integers is denoted by N. For n ∈ N we let [n] =
{1, . . . , n}; in particular, [0] = ∅. The composition of functions f : A → B and
g : B → C is denoted by g ◦ f . Given a set S, its cardinality is denoted by |S|,
and the set of all finite sequences (or strings) over S, including the empty string
λ, is denoted by S∗. The length of s ∈ S∗ is denoted by |s|, and [s] denotes the
smallest set S such that s ∈ S∗. If f is a function defined on S, then the canonical
extensions of f to functions on the powerset of S and to S∗ are denoted by f as
well, i.e. f(S′) = {f(s) | s ∈ S′} for S′ ⊆ S and f(s1 · · · sn) = f(s1) · · · f(sn).

An alphabet Σ is a finite set of symbols. Given such an alphabet, a Σ-graph
is a tuple G = (V,E, lab, in, out) with the following components:

– V and E are the finite sets of vertices and edges, resp.,
– lab : V → Σ is the vertex labelling, and
– in, out : V → E∗ assign to each vertex its ingoing and outgoing edges, in such

a way that, for every edge e ∈ E, there is exactly one pair (u, v) ∈ V 2 such
that e ∈ [out(u)] ∩ [in(v)], i.e. each edge has unique start and end vertices.

Given a Σ-graph G as above, we may refer to its components by VG, EG,
labG, inG, and outG, resp. For an edge e ∈ EG we let nodG(e) = (u, v) where u
and v are the unique vertices such that e ∈ [outG(u)] ∩ [inG(v)]. An alternating
sequence v0e1v1 · · · envn of vertices v0, . . . , vn ∈ VG and edges e1, . . . , en ∈ EG

is a path from v0 to vn if nodG(ei) ∈ {(vi−1, vi), (vi, vi−1)} for all i ∈ [n]. The
path is simple if vi �= vj for all distinct i, j ∈ [n], empty if n = 0, directed if
nodG(ei) = (vi−1, vi) for all i ∈ [n], and a cycle if n > 0 and v0 = vn. G is
connected if, for all u, v ∈ VG, there exists a (not necessarily directed) path from
u to v in G. Naturally, G is said to be empty if VG = ∅, in which case we may
also denote G by ∅.

As usual, graphs G,G′ are said to be isomorphic if there is a pair (g, h) of
bijective mappings g : VG → VG′ and h : EG → EG′ , called an isomorphism, such
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that labG = labG′ ◦ g, h ◦ inG = inG′ ◦ g, and h ◦ outG = outG′ ◦ g. Throughout
this paper we will not distinguish between isomorphic graphs except in a few
cases where it is necessary in order to avoid confusion.

Definition 1 (DAG). Let Σ be an alphabet. A Σ-DAG (or simply DAG) is
a Σ-graph that does not contain any nonempty directed cycle. The set of all
nonempty connected Σ-DAGs is denoted by DΣ. A DAG language is a subset of
DΣ, for some alphabet Σ.

Sometimes it is convenient to assign explicit ranks to the symbols of an
alphabet. We say that an alphabet Σ is doubly ranked or simply ranked if a rank
rkΣ(σ) ∈ N

2 is specified for every symbol σ ∈ Σ. If Σ is ranked, we restrict the
set DΣ of all Σ-DAGs to those DAGs G over Σ such that every vertex v ∈ VG

satisfies rkΣ(labG(v)) = (|inG(v)|, |outG(v)|).
Now we are ready to introduce our notion of DAG automata.

Definition 2 (DAG automaton). A DAG automaton is a triple A = (Q,Σ,
R) where Q is a finite set of states, Σ is an alphabet and R is a finite set of
rules of the form α

σ↔ β where σ ∈ Σ and α, β ∈ Q∗.
A run of A on a DAG G = (V,E, lab, in, out) is a mapping ρ : E → Q such

that R contains the rule ρ(in(v))
lab(v)←→ ρ(out(v)) for every vertex v ∈ V . If such

a run exists, we say that A accepts G. The language accepted by A is the set
L(A) of all DAGs in DΣ accepted by A.

The class RDL of regular DAG languages consists of all DAG languages
accepted by DAG automata.

If the alphabet Σ of A is ranked, we say that A is ranked and require that
all rules respect the ranks of symbols, i.e. every rule α

σ↔ β satisfies rkΣ(σ) =
(|α|, |β|). Thus, both in the general and in the ranked case we have L(A) ⊆ DΣ .
For a vertex v ∈ V with lab(v) = σ, a run ρ on G is said to use the rule
ρ(in(v)) σ↔ ρ(out(v)) in v.

One may note that trees over an alphabet Σ, in the usual sense of tree
language theory, are a special case of DAGs. A DAG automaton “is” a finite-
state tree automaton if all rules α

σ↔ β satisfy |α| ≤ 1. Thus, it is straightforward
to show that a tree language over Σ is regular (in the sense of tree language
theory) if and only if it is a regular DAG language in the sense defined above.

RDL is also closed under “turning DAGs upside down”: for a DAG G, let
G� = (VG, EG, labG, outG, inG), and, for a DAG automaton A = (Q,Σ,R),
A� = (Q,Σ,R�) where r� = (β σ↔ α) for a rule r = (α σ↔ β). Then L(A�) =
L(A)�. This yields a strong duality principle: properties and results regarding
DAG automata and their languages also hold if they are “turned upside down”.

As a final remark regarding Definition 2, it is worth emphasizing that L(A)
only contains nonempty connected DAGs, even though DAG automata can run
on arbitrary DAGs. This definition of L(A) is motivated by the fact that A
accepts a disjoint union of DAGs if and only if it accepts each of its connected
components. More precisely, given two disjoint DAGs G1 and G2 (where dis-
jointness means that VG1 ∩ VG2 = ∅ = EG1 ∩ EG2), let us denote their union by
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G1 & G2, i.e. G1 & G2 = (VG1 ∪VG2 , EG1 ∪EG2 , labG1 ∪labG2 , inG1 ∪inG2 , outG1 ∪
outG2), where the union of functions is defined by viewing them as special binary
relations. If G1 and G2 are not disjoint, we silently take disjoint copies to be
able to build G1 &G2. For a set L of DAGs, let L& be the set of all DAGs of the
form G1 & · · · & Gn such that n ∈ N and Gi ∈ L for all i ∈ [n]. Then we have
the following as a direct consequence of the definition of runs:

Observation 1. For every DAG automaton A, a DAG G is in L(A)& if and
only if A accepts G.

Thus, our definition of L(A) makes it sensible to speak about DAG automata
accepting finite, empty, and infinite DAG languages, whereas L(A)& is never
empty (it always contains the empty DAG ∅), and is finite if and only if it equals
{∅} if and only if L(A) = ∅.

Example 3. Consider the DAG automaton A = (Q,Σ,R) where Q = {p, q}, Σ =
{s, a, b, t} and R = {λ

s↔ pq, p
a↔ qq, q

b↔ pp, qp
t↔ λ}. Thus, A is actually

ranked, with rkΣ(s) = (0, 2), rkΣ(a) = rkΣ(b) = (1, 2), and rkΣ(t) = (2, 0). A
run of A and a sample DAG G is shown in Fig. 1 on the left. In such drawings
ingoing and outgoing edges are ordered from left to right.

The run can be constructed in a top-down manner, as follows. In the root of
G the only rule we can use is λ

s↔ pq. Now, since the left child of the root has
the label a, we can use the rule p

a↔ qq there. In the child with label b we use
the rule q

b↔ pp. In the two leaves the rule (q, p) t↔ λ can then be used, which
completes the run. Thus, A accepts G.

The right part of Fig. 1 shows a run on another DAG accepted by A. It also
illustrates the fact that L(A) is not finite as one can systematically construct a
sequence of DAGs of increasing size that are accepted by A.

The DAG automaton in the previous example is in fact top-down determin-
istic, meaning that for all α ∈ Q∗, σ ∈ Σ, and n ∈ N there is at most one

s

a b

t

t

p q

q

q p

p

s

a b

b b a a

t t

t t

p q

q q p p

p
pq

qp p q q

Fig. 1. Runs of the DAG automaton in Example 3
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β ∈ Q∗ with |β| = n such that α
σ↔ β is a rule in A. In such a case, an input

DAG permits at most one run, and this run can be constructed deterministi-
cally from the roots downwards. A dual notion of bottom-up determinism can
be defined in the obvious way. For tree languages it is well known that the class
of top-down deterministic regular tree languages is strictly included in the class
of regular tree languages, the standard example being the finite tree language
L0 = {f(a, b), f(b, a)} (where trees are denoted as terms). Clearly, a top-down
deterministic DAG automaton accepting a tree language “is” a top-down deter-
ministic finite-state tree automaton. Consequently, it follows from the fact that
a tree language is regular if and only if it is a regular DAG language, that top-
down deterministic DAG automata fail to accept all regular DAG languages.
By the duality principle mentioned above this holds for bottom-up determinis-
tic DAG automata as well, in contrast to the fact that bottom-up deterministic
finite-state tree automata are equally powerful as nondeterministic ones. In fact,
looking a bit more closely at the argument, even the union of the classes of top-
down deterministic and bottom-up deterministic regular DAG languages turns
out to be strictly included in RDL. This is because, for a DAG automaton A,
removing all rules α

σ↔ β with |α| > 1 yields a DAG automaton that accepts
{G ∈ L(A) | G is a tree}. As this construction preserves top-down determinism,
it implies (together with its dual) that the regular DAG language L0 ∪ L

�
0 is

neither top-down nor bottom-up deterministic.

3 Closure Properties

Before discussing more interesting properties of the class RDL, let us note that
it is, similarly to the case of tree languages, closed under union and intersection:

Lemma 4. RDL is closed under union and intersection.

We omit the proofs, which are direct generalizations of the corresponding
proofs for finite-state tree automata.

In view of the lemma above, it may be an interesting observation that
RDL& = {L& | L ∈ RDL} is not closed under union. To see this, consider
two arbitrary regular DAG languages L1 = {G1} and L2 = {G2} where G1

and G2 are DAGs that are not isomorphic. We have L&
i ∈ RDL& for i = 1, 2.

Assume now that there is a DAG automaton A that accepts a DAG G if and only
if G ∈ L&

1 ∪ L&
2 . Then A accepts G1 & G2 as we can mix connected components

of graphs accepted by A, but we have G1 & G2 �∈ L&
1 ∪ L&

2 .
We are now going to show that RDL is not closed under complement. For

this, we introduce a simple but very useful operation on DAGs.

Definition 5 (edge swap). Let G = (V,E, lab, in, out) be a DAG. Two edges
e0, e1 ∈ E with nodG(ei) = (ui, vi) are independent if there is no directed path
between u0 and u1.2 In this case, the edge swap of e0 and e1is defined and yields
the DAG G[e0 �	 e1] = (V,E, lab, h ◦ in, out) given by
2 A directed path between u and v is a directed path from u to v or from v to u.



432 J. Blum and F. Drewes

e′
0 e0 e′

0
e0 e′

1 e1 e′
0

e0 e′
1 e1 e′

2 e2

G(e �� e′)0 G(e �� e′)1 G(e �� e′)2

Fig. 2. The repeated edge swap between k +1 copies of G; G(e �� e′)0 is isomorphic to
G and each further copy Gk+1 is attached to G(e �� e′)k by swapping its edge e′ with
the edge e of the preceding copy.

h(e) =
{

e1−i if e = ei for some i ∈ {0, 1}
e otherwise.

By the requirement of independence G[e0 �	 e1] is indeed a DAG. Note that
the condition is vacuously true in (G& G′)[e �	 e′], where e ∈ EG and e′ ∈ EG′ .

For k ∈ N, we can moreover connect k + 1 disjoint isomorphic copies of a
DAG G by systematically swapping copies of two edges e, e′ ∈ EG between them.
For this, choose disjoint isomorphic copies G0, G1, . . . of G. For i ∈ N let ei and
e′

i be the corresponding copies of e and e′ in Gi. Then the graph G(e �	 e′)k is
formally defined as follows, for k ∈ N (see also the illustration in Fig. 2):

G(e �	 e′)0 = G0 and G(e �	 e′)k+1 = (G(e �	 e′)k & Gk+1)[ek �	 e′
k+1].

The usefulness of edge swaps is due to the fact that, given a run, indepen-
dent edges that are assigned the same state can obviously be swapped without
affecting the validity of the run. Thus, we have the following lemma.

Lemma 6. Let A be a DAG automaton and let G ∈ L(A)&. Then for all inde-
pendent edges e1, e2 ∈ EG, every run ρ of A on G that satisfies ρ(e1) = ρ(e2) is
also a run on G[e1 �	 e2]. In particular, we have G[e1 �	 e2] ∈ L(A)& if such a
run ρ exists.

Edge swapping allows us to prove that RDL is not closed under complement.

Theorem 7. There are ranked alphabets Σ and regular DAG languages L ⊆ DΣ

such that DΣ \ L is not regular.

Proof. Consider the ranked alphabets Σ = {s, a, b} and Σ0 = {s, a}, where the
rank of s is (0, 2) and a and b have the rank (2, 0). Then L = DΣ0 ∈ RDL by the
top-down deterministic DAG automaton A = ({p}, Σ, {λ

s↔ (p, p), (p, p) a↔ λ}).
Now consider L̄ = DΣ \ L, the set of all DAGs in DΣ that contain at

least one vertex with label b. Assume that there is a DAG automaton Ā
with L(Ā) = L̄. In particular, Ā accepts, for every i ≥ 1, the DAG Gi

with VGi
= {s1, . . . , si, a1, . . . , ai−1, b}, built as follows. For j ∈ [i] we have

labGi
(sj) = s, for j ∈ [i − 1] we have labGi

(aj) = a and labGi
(b) = b. Moreover

every vertex aj has two ingoing edges e1j and e2j from s(j−2 mod i)+1 and sj ,
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s1 s2 si−1 si

a1 a2 a3 ai−1 b

. . .
sk−1 sk sl−1

ak al−1 al

p

p

. . . . . . . . .

Gi Gi[e
1
k �� e1l ] = G & G′

Fig. 3. The generic DAG Gi and its decomposition into G & G′

respectively, and vertex b has two ingoing edges from si−1 and si; see the left
DAG in Fig. 3.

Since Ā has only a finite number of states, we can now choose i large enough
such that for every run ρ of Ā on Gi there are distinct ak, al such that the states
of their first ingoing edges are identical, i.e. ρ(e1k) = ρ(e1l ). Now let ρ be a run of
Ā on Gi and k, l satisfy ρ(e1k) = ρ(e1l ) = p. If we swap the two edges e1k and e1l ,
Gi falls apart into two connected components, i.e. we have Gi[e1k �	 e1l ] = G& G′

for DAGs G and G′, as is illustrated in Fig. 3 on the right.
According to Lemma 6 we have G& G′ ∈ L(Ā)& which means that G,G′ ∈

L(Ā). But one of these DAGs contains only vertices with labels s and a and is
thus in L, a contradiction. ��

4 Necessary Properties of Regular DAG Languages

In this section we present two necessary properties of regular DAG languages
that exploit the fact that a DAG automaton has to reuse some states when
it processes a DAG of a certain size. Using Lemma 6, we can thus pump the
DAG up by connecting it to an isomorphic copy through an edge swap without
changing the acceptance behaviour of the automaton.

Lemma 8. For every L ∈ RDL there is a constant k ∈ N such that for all DAGs
G ∈ L with |EG| > k there are two edges e, e′ ∈ EG such that for all n ∈ N the
DAG G(e �	 e′)n is in L&. Furthermore, each G(e �	 e′)n contains a connected
component C such that |VC | > n.

Proof Sketch. Let L ∈ RDL be a regular DAG language and A = (Q,Σ,R) be
a DAG automaton with L(A) = L. Let G ∈ L with |EG| > |Q|. Given a run ρ
of A on G, there are two edges e, e′ ∈ EG such that ρ(e) = ρ(e′) as ρ must use
one state at least twice. By induction on n, and using Lemma 6 it can thus be
shown that G(e �	 e′)n ∈ L(A)& for all n ∈ N. This is illustrated in Fig. 4.

But the proof is not finished yet, because the DAGs G(e �	 e′)n may fall
apart into n connected components Ci with |VCi

| = |VG|. As illustrated in Fig. 5
this can happen if e and e′ have different orientations in the sense that there
is no path between the end vertex of e′ and the start vertex of e that does not
contain the edge e or e′. However, if e and e′ point into the same direction then
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e′ = e′
0

e = e0

e0

e′
1

e1

e′
2

G(e �� e′)0 G(e �� e′)1 G(e �� e′)2

Fig. 4. An example of the graphs G = G(e �� e′)0, G(e �� e′)1 and G(e �� e′)2

e′ = e′
0

e = e0

e0

e′
1

e1

e′
2

G(e �� e′)0 G(e �� e′)1 G(e �� e′)2

Fig. 5. The components of G(e �� e′)n do not necessarily increase in size

all copies of e in G(e �	 e′)n are part of the same connected component, which
means that this component contains more than n vertices as two copies of e
share at most one vertex. This is the situation depicted in Fig. 4.

Now, for m ∈ N let Dm be the set of all DAGs G ∈ L such that the maximum
length of all shortest paths between two vertices is at most m. As R is finite, the
degree of all vertices is bounded and Dm is finite. Let k be the maximum number
of edges of all G ∈ D2|Q|. Then every DAG G ∈ L with |EG| > k contains a
simple path ω of length greater than 2|Q|. Thus, a run of A on such a DAG G
assigns the same state to three distinct edges on ω, of which at least two point
into the same direction. This completes the proof. ��

The above lemma required a DAG of a certain size. However, one can pump
up every DAG that contains a simple undirected cycle, regardless of its size.

Lemma 9. For every DAG language L ∈ RDL and every DAG G ∈ L that
contains a simple (undirected) cycle there is an edge e ∈ EG with G(e �	 e)n ∈ L
for all n ∈ N.

Proof. Let e be an edge which belongs to a simple cycle in G. Since G ∈ L,
Lemma 6 tells us that Gn = G(e �	 e)n is in L& for all n ∈ N. It remains to
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e = e0
e0

e1

e0 e1

e2

Fig. 6. Cycles in the DAGs G0, G1 and G2

be shown that Gn is connected. For this, one can argue by induction on n that
all copies of e in each Gn are part of the same cycle. By the choice of e this is
true for G0. Now, up to isomorphism Gn+1 = (Gn &G)[e′ �	 e], where e′ is the
relevant copy of e in Gn. Now the cycle in Gn and that in G together form a
bigger cycle in Gn+1 that contains all the copies of e. This is illustrated in Fig. 6.
Consequently, for all n ∈ N the entire DAG Gn is connected. ��

Thus no finite DAG language in RDL contains a DAG with a simple undi-
rected cycle. On the other hand, all finite DAG languages whose DAGs do not
contain any such cycle belong to RDL. This yields the following characterization.

Theorem 10. Let L be a finite DAG language. Then we have L ∈ RDL if and
only if there is no DAG G ∈ L that contains a simple undirected cycle.

Proof. By Lemma 9 and the closedness of RDL under union it suffices to show
that {G} ∈ RDL for every DAG G that does not contain a simple cycle.

Given such a DAG G, build A = (Q,Σ,R) as follows: Q = EG, and for every

vertex v of G, R contains the rule r(v) = inG(v)
lab(v)←→ outG(v).

We have to show that L(A) = {G}. For two rules r(v) = α
σ↔ β and r(v′) =

α′ σ′
↔ β′ we have [β] ∩ [α′] �= ∅ if and only if there is an edge from v to v′ in G.

Consider now a DAG G′ ∈ L(A) and a run ρ of A on G′. We show that ρ uses
every rule in R exactly once. If ρ uses a rule r(v1) ∈ R more than once, there is
a k > 0 and a sequence of rules r(vi) = αi

σi↔ βi (0 ≤ i ≤ k) such that v0 = vk

and ([βi−1] ∩ [αi]) ∪ ([αi−1] ∩ [βi]) �= ∅ for all i ∈ [k]. But this means that there
is a simple cycle from v0 to v0 in G, contradicting the assumption. Thus, ρ uses
every rule at most once. Moreover we can observe that for every state q ∈ Q
there is exactly one rule such that q occurs in its left-hand side and exactly one
rule such that q occurs in its right-hand side. Therefore the run ρ must use every
rule at least once (as G′ �= ∅ and G is connected).

This means that we have |VG′ | = |VG| and |EG′ | = |EG|, and we can define
the following isomorphism (gV , gE) from G to G′. Let v ∈ VG with r(v) =
e1 · · · em

σ↔ f1 · · · fn, and assume that v′ is the vertex ρ uses r(v) in, where
inG′(v′) = e′

1 · · · e′
m and outG′(v′) = f ′

1 · · · f ′
n. Then we let gV (v) = v′, gE(ei) =

e′
i and gE(fj) = f ′

j for all i ∈ [m] and j ∈ [n]. It should be clear that (gV , gE) is
an isomorphism, which shows that L(A) = {G}. ��
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5 Finiteness

We shall now sketch the proof that the finiteness problem for DAG automata
is in P. Like the corresponding proof for the emptiness problem [5], the argu-
ment makes use of Petri nets. A Petri net is a bipartite unlabeled graph N =
(V,E, in, out), where V = P ∪ T for disjoint sets P and T of places and transi-
tions, and nod(e) ∈ (P ×T )∪(T ×P ) for all e ∈ E. A configuration of N is a func-
tion φ : P → N that assigns φ(p) to every place p ∈ P , interpreted as the number
of tokens on that place. Given such a configuration, a transition t is enabled if
φ(p) ≥ Δ(p, t) for all p ∈ P , where Δ(u, v) = |{e ∈ E | nod(e) = (u, v)}|.
If t is enabled it can fire by consuming Δ(p, t) tokens from each place p and
adding Δ(t, p) tokens to it. Hence the firing of t leads from φ to φ′ defined by
φ′(p) = φ(p) − Δ(p, t) + Δ(t, p) for all p ∈ P . We denote this as φ

t→ φ′.
As observed in [5], every DAG automaton A = (Q,Σ,R) gives rise to a

Petri net NA = (P ∪ T,E, in, out) where P = Q, T = R and for every rule
r = p1 · · · pm

σ↔ q1 · · · qn there is an edge from every pi to r (i ∈ [m]) and one
from r to every qi (i ∈ [n]). The idea behind this construction is that, if we view
a run as a top-down process, using r can be seen as an action that consumes
states p1, . . . , pm and produces states q1, . . . , qn. Every run ρ of A on a DAG
G that uses the rules r1, . . . , rk in a top-down fashion gives thus rise to a firing
sequence φ0

r1→ . . .
rk→ φk in which the initial configuration has no states at all,

i.e. φ0 is the null configuration 0 with 0(p) = 0 for all p ∈ P . Since the run
uses a rule in each vertex of G, all tokens are eventually consumed, i.e. we have
φk = 0 as well. Below, we call such a (nonempty) firing sequence a zero cycle. It
is no difficulty to show that also the converse of the above holds: every zero cycle
0 r1→ . . .

rk→ 0 of NA gives rise to a run ρ on a DAG with k vertices such that ρ
uses the rules r1, . . . , rk in those vertices. (But note that G is neither uniquely
determined and nor necessarily connected!)

It is thus of interest to be able to decide whether a Petri net N admits a zero
cycle. This problem has been shown to be in P in [6]. We use this to approach
the finiteness problem. In order to solve it, we first show that a DAG automaton
can be turned into a reduced one, where a DAG automaton is reduced if each of
its rules r is useful in the sense that there is a run ρ on some DAG G such that
ρ uses r in some vertex of G.

Lemma 11. For every DAG automaton A a reduced DAG automaton Ared with
L(A) = L(Ared ) can be computed in polynomial time.

Proof. Let A = (Q,Σ,R) be a DAG automaton. As explained above, a rule
r ∈ R is useful if and only if it occurs in a zero cycle of NA. In other words, Ared

can be constructed by keeping only those rules r that occur in a zero cycle of
NA. This set is denoted by Λ(NA) in [6], where it was shown to be computable
in polynomial time; see [6, Theorem 6.2]. ��

Using this result we can now show the finiteness problem to be in P.

Theorem 12. For DAG automata A it is decidable in polynomial time if L(A)
is finite.
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Proof. Owing to space restrictions, we only sketch the proof, omitting some
details and illustrations (especially in the second last paragraph).

Let A = (Q,Σ,R) be a reduced DAG automaton. We define a cycle in A as
a nonempty sequence of rules α1

σ1↔ β1, . . . , αk
σk↔ βk for which there exist states

p1, . . . , pk such that (a) for i ∈ [k] we have pi ∈ ([βi] ∩ [α(i mod k)+1]) ∪ ([αi] ∩
[β(i mod k)+1]) and (b) if pi = p(i mod k)+1 then the state pi occurs at least twice
in the rule r(i mod k)+1. (State q is said to occur at least twice in α

σ↔ β if it
occurs in two or more distinct positions in αβ.) If A contains a cycle it is called
cyclic. We show that L(A) is infinite if and only if A is cyclic.

Assume first that A is not cyclic, let G ∈ L(A) be a DAG and ρ be a run
of A on G. Consider a simple undirected path ω = v0e1v1 · · · ekvk in G, let
ri = αi

σi↔ βi be the rule used by ρ in vi (i ∈ {0, . . . , k}) and let ρ(ei) = pi

(i ∈ [k]). Then for i ∈ [k] we have pi ∈ ([βi−1] ∩ [αi]) ∪ ([αi−1] ∩ [βi]) and if
pi = pi+1 for some i ∈ [k − 1] then pi occurs at least twice in the rule ri.

We argue that at most two edges along ω can be marked with the same
state. Assume that three edges along ω are marked with a state p ∈ Q. Then
at least two of them have the same orientation, i.e. there is an undirected path
vi−1eivi · · · vj−1ejvj in G such that ρ(ei) = ρ(ej) = p and either ei ∈ in(vi−1)
and ej ∈ out(vj) or ei ∈ out(vi−1) and ej ∈ in(vj). But this means that the
sequence ri, . . . , rj is a cycle. Hence every simple undirected path in G contains
at most 2|Q| edges which means that L(A) is finite.

For the other direction assume that A is cyclic. Let r1, . . . , rk be a cycle in
A and p1, . . . , pk a corresponding sequence of states. As A is reduced there is
a DAG Gi ∈ L(A) for every i ∈ [k] such that there exists an run ρi of A on
Gi which uses the rule ri in a vertex vi ∈ VGi

. Every vertex vi is incident to
two distinct edges ei and e′

i such that ρi(ei) = pi = ρ(i mod k)+1(e′
(i mod k)+1)

and ei ∈ [outGi
(vi)] iff e′

(i mod k)+1 ∈ [inG(i mod k)+1(v(i mod k)+1)] for all i ∈ [k].
Then G = (G1 & · · · & Gk)[e1 �	 e′

2] · · · [ek−1 �	 e′
k] is defined and contains a path

that contains the edges e′
1 and ek such that, by Lemma 6, there is a run ρ of A on

G with ρ(e′
1) = ρ(ek). Again by Lemma 6 it follows that G(e′

1 �	 ek)n ∈ L(A)&

for all n ∈ N and as e′
1 and ek have the same orientation every G(e′

1 �	 ek)n

contains a connected component C with |VC | > nk (cf. the proof of Lemma 8).
Therefore L(A) is infinite.

The language recognized by a reduced DAG automaton A is therefore infinite
if and only if A is cyclic. Given an arbitrary DAG automaton A we can hence
decide if L(A) is finite by constructing an equivalent reduced DAG automaton
Ared and checking if Ared is cyclic. According to Lemma 11 the construction of
Ared can be performed in polynomial time and it should be clear that the same
holds for checking whether Ared is cyclic. ��

6 Conclusion

We have shown that regular DAG languages admit pumping lemmas similar to
those of regular string and tree languages, and that the finiteness problem for
languages accepted by DAG automata is in P. In almost all of this, edge swapping
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turned out to be a central technique. Further results that can be found in [3] had
to be left out for lack of space. In particular, this includes the connection between
regular DAG languages and regular tree languages. Again making use of edge
swapping it can be shown that “unfolding” DAGs into trees is an operation that
turns regular DAG languages into regular tree languages. In addition to being
interesting in its own right, this provides a constructive proof of the fact (known
from [5], though by means of a non-constructive proof) that the path languages
of regular DAG languages are regular. An even more recent result by the first
author is that top-down deterministic DAG automata can be minimized. As in
the tree case the minimal top-down deterministic DAG automaton is uniquely
determined, and hence the equivalence of top-down deterministic DAG automata
is decidable. These results will appear in a forthcoming long version of this paper.

Altogether, we dare to conclude that the notion of DAG automata considered
in this paper has desirable properties and is thus worth being studied further.

Acknowledgment. We thank the referees for their careful work, and especially for
pointing out a mistake in the original version of the proof of Lemma 8. The second
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Abstract. We study a subclass of tree-to-word transducers: linear tree-
to-word transducers, that cannot use several copies of the input. We aim
to study the equivalence problem on this class, by using minimization
and normalization techniques. We identify a Myhill-Nerode characteri-
zation. It provides a minimal normal form on our class, computable in
Exptime. This paper extends an already existing result on tree-to-word
transducers without copy or reordering (sequential tree-to-word trans-
ducers), by accounting for all the possible reorderings in the output.

Keywords: Transducers · Tree-to-word transducers · Normal form

1 Introduction

Transducers and their properties have long been studied in various domains of
computer sciences. The views on transducers that motivate this paper’s field of
research are mostly the result of the intersection of two approaches.

Language theory sees transducers as the natural extension of automata, with
an output. This view extends almost as far back as the study of regular languages,
and developed techniques to solve classical problems such as equivalence, type-
checking, or even learning problems (e.g. [4,9,10]) on increasingly wide classes
of transducers.

Functional programming sees transducers as a formal representation of some
programs. In order to study languages such as XSLT, XQuery, or XProc, used
to transform XML trees, classes of transducers that acted more and more like
functional programs were designed and studied. For example, deterministic top-
down tree transducers can be seen as a functional program that transform trees
from the root to the leaves, with finite memory. Different classes extend the
reach of transducers to encompass more of the functionalities of programming
languages.

Concatenation in the output, notably, plays an important role in the way
XSLT produces its outputs. Classes like macro-tree transducers [5], tree-to-word
transducers, or even word-to-word transducers with copies in the output [1] allow
such concatenation, but as this functionality appears to be difficult to combine
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 439–451, 2016.
DOI: 10.1007/978-3-319-30000-9 34
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with the classical techniques of language theory, this is to the cost of very few
results carrying to these classes.

Tree-to-word transducers and Macro-tree transducers are of particular rel-
evance, as they allow concatenation in their output, and are at the current
frontier between the language theory approach of transducers and the approach
of transducers seen as functional programs.

Many problems are left open in these classes. Notably, in the general case for
Macro-tree transducers, the decidability equivalence is a famous long-standing
question, that has yet to be resolved. However, some pre-existing results exist
for fragments of these classes.

Equivalence for the subclass of linear size increase macro-tree transducers [3]
is proven to be decidable. It comes from a logic characterization, as if we bound
the number of times a transducer can copy the same subtree in the output,
then we limit the expressivity of macro-tree transducers into MSO-definable
translations, where equivalence is decidable in non-elementary complexity [4].

Equivalence for all tree-to-word transducers has recently been proven to be
decidable in randomized polynomial time [11]. Note that this result uses neither
classic logic methods nor the classic transducer methods, and does not provide
a characterization or Myhill-Nerode theorem.

Equivalence is Ptime for sequential tree-to-word transducers [6], that pre-
vents copying in the output and forces subtrees to produce following the order of
the input. Furthermore, using a Myhill-Nerode characterization, a normal form
computable in Exptime is shown to exist. This normal form was later proven
to be learnable in Ptime [7].

In this paper, we aim to study the linear tree-to-word transducers (or ltws),
a restriction of deterministic tree-to-word transducers that forbids copying in
the output, but allows the image of subtrees to be flipped in any order. This
is a more general class than sequential tree-to-word transducers, but still less
descriptive than general tree-to-word transductions. In this class, we show the
existence of a normal form, computable in Exptime.

Note that even if equivalence is already known to be decidable in a reasonable
complexity, finding a normal form is of general interest in and of itself. For
example, in [7,8,10], normal forms on transducers defined using a Myhill-Nerode
theorem are used to obtain a learning algorithm.

To define a normal form on ltws, we start by the methods used for sequential
tree-to-words transducers (stws) in [6]. We consider the notion of earliest stws,
which normalizes the output production. We can extend this notion to ltws and
study only earliest ltws without any loss of expressivity.

In [6], this is enough to obtain a Myhill-Nerode characterization. However,
by adding the possibility to flip subtree images to ltws, we created another way
for equivalent transducers to differ. The challenge presented by the extension of
the methods of [6] becomes to resolve this new degree of freedom, in order to
obtain a good normal form with a Myhill-Nerode characterization.

Outline. After introducing basic notions on words and trees, we will present
our class of linear tree-to-word transducers in Sect. 2. Then in Sect. 3 we will
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extend the notion of earliest production in [6] to the linear case, and find out
that we can also extend the algorithm that takes a transducer and compute and
equivalent earliest one. However, this is no longer sufficient, as transducers can
now also differ in the order they produce their subtrees’ output in. Section 4
will detail exactly how two earliest transducers can still differ, by categorizing
all possible flips. Finally, Sect. 5 will compile these results into a Myhill-Nerode
theorem. This will allow us to establish a normal form, computable in Exptime.
We will conclude by a brief recap of the result, and propose several possible next
steps for this line of research.

2 Preliminaries

Words and Trees

We begin by fixing notations on standard notions over words and ranked
trees.

Words. For a finite set of symbols Δ, we denote by Δ∗ the set of finite words
over Δ with the concatenation operator · and the empty word ε. For a word u,
|u| is its length. For a set of words L, we denote lcp(L) the longest word u that is
a prefix of every word in L, or largest common prefix. Also, lcs(L) is the largest
common suffix of L. For w = u · v, the left quotient of w by u is u−1 ·w = v, and
the right quotient of w by v is w · v−1 = u.

Ranked Trees. A ranked alphabet is a finite set of ranked symbols
Σ =

⋃
k�0 Σ(k), where Σ(k) is the set of k-ary symbols. Every symbol has a

unique arity. A tree is a ranked ordered term over Σ. For example, t = f(a, g(b))
is a tree over Σ if f ∈ Σ(2), g ∈ Σ(1), a, b ∈ Σ(0). The set of all trees on Σ is TΣ .

Linear Tree-to-Word Transducers

We define linear tree-to-word transducer, that define a function from TΣ

to Δ∗.

Definition 1. A linear tree-to-word transducer ( ltw) is a tuple
M =

{
Σ,Δ,Q, ax, δ

}
where

– Σ is a tree alphabet,
– Δ is a finite word alphabet of output symbols,
– Q is a finite set of states,
– ax is a axiom of form u0qu1, where u0, u1 ∈ Δ∗ and q ∈ Q,
– δ is a set of rules of the form

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

where q, q1, . . . , qn ∈ Q, f ∈ Σ of rank n and u0 . . . un ∈ Δ∗; σ is a permuta-
tion on {1, . . . , n}. There is at most one rule per pair q, f .

We define recursively the function [[M ]]q of a state q. [[M ]]q(f(t1...tn)) is
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– u0[[M ]]q1(tσ(1))u1 . . . [[M ]]qn(tσ(n))un, if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ
– undefined, if there is no rule for q, f in δ.

The function [[M ]] of a transducer M with axiom u0qu1 is defined as
[[M ]](s) = u0[[M ]]q(s)u1.

Note that to get the definition of stws as made in [6], we just have to impose
that in every rule, σ is the identity.

Example 2. Consider the function [[M ]] : t �→ 0|t|, that counts the number of
nodes in t and writes a 0 in the output for each of them. Our ltw has only one
state q, and its axiom is ax = q

q(f(x1, x2)) → 0 · q(x1) · q(x2)
q(a) → 0, q(b) → 0

The image of f(a, b) is [[M ]](f(a, b)) = [[M ]]q(f(a, b)), using the axiom. Then we
use the first rule to get 0 · [[M ]]q(a) · [[M ]]q(b), and finally, 0 · 0 · 0.

We denote with dom([[M ]]) the domain of a transducer M , i.e. all trees such
that [[M ]](t) is defined. Similarly, dom([[M ]]q) is the domain of state q.

We define accessibility between states as the transitive closure of appear-
ance in a rule. This means q is accessible from itself, and if there is a rule
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, and q accessible from q′, then all states qi,
1 � i � n, are accessible from q′.

We note Lq the set of all productions of q: Lq = {[[M ]]q(t)|t ∈ dom([[M ]]q)}.
We call a state periodic of period w ∈ Δ∗ if Lq ⊆ w∗.

We start the normalization process with a natural notion of trimmed ltws.

Definition 3. A ltw is trimmed if its axiom is u0q0v0, and every state q is
accessible from q0 and of non-empty domain.

Note that all ltws can be made trimmed by deleting all their useless states.

Lemma 4. For M a ltw, one can compute an equivalent trimmed ltw in
linear time.

3 Earliest Linear Transducers

It is possible for different ltws to encode the same transformation. To reach a
normal form, we start by requiring our ltws to produce their output “as soon as
possible”. This method is common for transducers [2,9], and has been adapted
to sequential tree-to-word transducers in [6]. In this case, the way an output
word is produced by a tree-to-word can be “early” in two fashions: it can be
produced sooner in the input rather than later, or it can output letters on the
left of a rule rather than on the right. We take the natural extension of this
definition for ltws and find we can reuse the results and algorithms of [6].
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Example 5. Consider our previous example (Example 2). The function
[[M ]] : t �→ 0|t|, Our transducer has only one state q, and its axiom is ax = q

q(f(x1, x2)) → 0 · q(x1) · q(x2)
q(a) → 0, q(b) → 0

Since all productions of q start with a 0, this ltw does not produce as up in the
input as possible. To change this, we form a new state q′ that produces one 0
less than q. By removing the 0 at the beginning of each rule of q, and replacing
each call q(xi) by 0q′(xi), we get a new equivalent ltw M ′ of axiom ax′ = 0 · q′

q′(f(x1, x2)) → 0 · q′(x1) · 0 · q′(x2)
q′(a) → ε q′(b) → ε

Example 6. Consider our previous example (Example 5). We could replace the
first rule by q′(f(x1, x2)) → 0 · 0 · q′(x1) · q′(x2). This new ltw would produce
“more to the left”, but still be equivalent to the first M .

In order to eliminate these differences in output strategies, we want transducers
to produce the output as up in the input tree as possible, and then as to the left
as possible. We formalize these notions in the definition of earliest ltws.

To simplify notations, we note lcp(q) (or lcs(q)) for lcp(Lq) (or lcs(Lq)). By
extension, for u ∈ Δ∗, we note lcp(qu) (or lcs(qu)) for lcp(Lq.u) (or lcs(Lq.u)).

Definition 7. A ltw M is earliest if it is trimmed, and:

– For every state q, lcp(q) = lcs(q) = ε
– For each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ, for every i from 1 to n,

lcp(qiui) = ε

This definition is a generalization of the one found in [6] from stws to all
ltws. The first item ensures an earliest ltw outputs as soon as possible, the
second that it produces as to the left as possible. Note that this means that
u0q1(xσ(1))...qi(xσ(i))ui produces as much of [[M ]]q(f(s1...sn)) by just knowing
sσ(1), ..., sσ(i), i.e. the lcp of all [[M ]]q(f(s1...sn)) for some fixed sσ(1), ..., sσ(i).

Lemma 8. For M an earliest ltw, q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ, for
i such that i � n, tσ(1), ..., tσ(i) respectively in dom([[M ]]q1), ..., dom([[M ]]qi), then
u0[[M ]]q1(tσ(1))...[[M ]]qi(tσ(i))ui is the lcp of the set:

{
[[M ]]q(f(s1, ...sn))|sσ(1) = tσ(1), ..., sσ(i) = tσ(i)

}
.

In intuition, this comes from the fact that in an earliest, on the
right of u0[[M ]]q1(tσ(1))...[[M ]]qi(tσ(i))ui, one cannot guess the first letter of
[[M ]]qi+1(tσ(i+1))...[[M ]]qn(tσ(n))un.

Some important properties extend from [6] to earliest ltws, most notably
the fact that all ltws can be made earliest.
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Lemma 9. For M a ltw, one can compute an equivalent earliest ltw in expo-
nential time.

This result is a direct generalization of the construction in Section 3 of [6].
We build the equivalent earliest ltw M ′ with two kinds of steps:

– If lcp(qu) = v, where v is a prefix of u, we can slide v through state q by
creating a new state

[
v−1qv

]
such that for all t, [[M ′]][v−1qv](t) = v−1[[M ]]q(t)v.

Every occurrence of q(xi)v in a rule of M is replaced by v
[
v−1qv

]
(xi).

– If lcp(q) = v, we can produce v outside of q by creating a new state
[
v−1q

]

such that for all t, [[M ′]][v−1q](t) = v−1[[M ]]q(t). Every occurrence of q(xi) in a
rule of M is replaced by v

[
v−1q

]
(xi).

Symmetrically, if lcs(q) = v, we create a state
[
qv−1

]
, and every occurrence

of q(xi) in a rule of M is replaced by
[
qv−1

]
(xi)v.

Note that the exponential bound is, in fact, an exact bound, as some ltws
gain an exponential number of states through this process.

In [6], earliest stws are actually enough to make a normal form using a
Myhill-Nerode theorem: by minimizing earliest stws (merging states with the
same [[M ]]q), we end up with a normal form with a minimal number of states.
However, in the wider case of ltws, there are still ways for two states to be
equivalent and yet not syntactically equal. This impedes the process of mini-
mization. As we will see in the next part, it remains to study how the images of
subtrees can be reordered in earliest ltws while preserving equivalence.

4 Reordering in Earliest Transducers

Syntactically different earliest ltws may still be equivalent. Indeed, unlike
sequential tree transducers [6], which impose the output to follow the order
of the input, ltws permit to flip the order.

The main point of this paper is the observation that it is sufficient to nor-
malize the flips in the output production of earliest ltws, in order to find a
unique normal form for equivalent ltws. To this end, we will prove that order
differences are only possible in very specific cases. We start illustrating such flips
in some examples, and then discuss the necessary and sufficient condition that
dictates when a flip is possible.

Example 10. We reconsider Example 6. This earliest transducer “counts” the
number of nodes in the input tree has only one state q′. It has the axiom
ax′ = 0 · q′ and the following rules:

q′(f(x1, x2)) → 0 · 0 · q′(x1) · q′(x2), q′(a) → ε, q′(b) → ε.

We can now flip the order of the terms q′(x2) and q′(x1) in the first rule, and
replace it by:

q′(f(x1, x2)) → 0 · 0 · q′(x2) · q′(x1).

This does not change [[M ′]], since just the order is changed in which the nodes of
the first and second subtree of the input are counted.



Normal Form on Linear Tree-to-Word Transducers 445

Of course, it is not always possible to flip two occurrences of terms q1(xσ(1)) and
q2(xσ(2)) in ltw rules.

Example 11. Consider an earliest transducer that outputs the frontier of the
input tree while replacing a by 0 and b by 1. This transducer has a single state
q, the axiom ax = q, and the following rules:

q(f(x1, x2)) → q(x1) · q(x2), q(a) → 0, q(b) → 1.

Clearly, replacing the first rule by a flipped variant q(f(x1, x2)) → q(x2) · q(x1)
would not preserve transducer equivalence since f(a, b) would be transformed to
10 instead of 01. More generally, no ltw with rule q(f(x1, x2)) → u0 · q1(x2) ·
u1 · q2(x1) · u2 produces the correct output.

Our goal is to understand the conditions when variable flips are possible.

Definition 12. For M, M ′ two ltws, q ∈ Q, q′ ∈ Q′,

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ

q′, f → u′
0q

′
1(xσ′(1)) . . . q′

n(xσ′(n))u′
n ∈ δ′

are said to be twin rules if q and q′ are equivalent.

4.1 Reordering Erasing States

We start the study of possible reordering with the obvious case of states that
only produce ε: they can take every position in every rule without changing the
semantics of the states. The first step towards normalization would then be to
fix the positions of erasing states in the rules, to prevent differences in equivalent
earliest ltws: we put all erasing states at the end of any rule they appear in, in
ascending subtree order.

Definition 13. For M a ltw, a state q is erasing if for all t ∈ dom([[M ]]q),
[[M ]]q(t) = ε.

We show that if two states are equivalent, they call erasing states on the same
subtrees. We start by this length consideration:

Lemma 14. For two twin rules of earliest ltws

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′
0q

′
1(xσ′(1)) . . . q′

n(xσ′(n))u′
n

For i, j such that σ(i) = σ′(j), and tσ(i) ∈ dom([[M ]]qi) then
|[[M ]]qi(tσ(i))| = |[[M ′]]q′

i
(tσ(i))|

Proof. The equivalence of q and q′ gives for all t1, ..., tn:

u0[[M ]]q1(tσ(1))...[[M ]]qn(tσ(n))un = u0[[M ′]]q′
1
(tσ′(1))...[[M ′]]q′

n
(tσ′(n))u′

n
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By fixing every tk except tσ(i) we get that for some u, v, u′, v′, u[[M ]]qi(tσ(i))v =
u′[[M ′]]q′

j
(tσ(i))v′. If |[[M ]]qi(tσ(i))| > |[[M ′]]q′

j
(tσ(i))| then |u| < |u′|, or |v| < |v′|.

If |u| < |u′|, then u′ = uw. For all tσ(i), [[M ]]qi(tσ(i)) �= ε (it is longer than
[[M ′]]q′

j
(tσ(i))), and its first letter is always the first letter of w. This means

lcp(qi) �= ε, which is impossible in an earliest ltw. |v| < |v′| leads to lcs(qi) �= ε,
another contradiction. By symmetry, |[[M ′]]q′

j
(tσ(i))| > |[[M ]]qi(tσ(i))| also leads to

contradiction. Therefore, both are of same size.

Lemma 15. For two twin rules of earliest ltws

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′
0q

′
1(xσ′(1)) . . . q′

n(xσ′(n))u′
n

For i, j such that σ(i) = σ′(j), If qi is erasing, then q′
j is erasing.

To normalize the order of erasing states in twin rules, we note that since an
erasing state produces no output letter, its position in a rule is not important
to the semantics or the earliest property. We can thus push them to the right.

Lemma 16. For M an earliest ltw, q, f → u0q1(xσ(1)) . . . qn(xσ(n))un a rule
in M , and qi an erasing state. Then replacing this rule by

q, f → u0q1(xσ(1))...ui−1ui...qn(xσ(n))unqi(xσ(i))

does not change [[M ]]q, and M remains earliest.

Note that the earliest property also imposes that if qi is erasing, ui = ε.
Given this lemma, we can define a first normalization step where all erasing

states appear at the end of the rules in ascending subtree order.

Definition 17. An earliest ltw M is erase-ordered if for every rule
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ, if qi is erasing, then for all j > i, qj

is erasing, and σ(i) < σ(j).

Lemma 18. For M an earliest ltw, one can make M erase-ordered in polyno-
mial time without changing the semantic of its states.

We can detect if a state q is erasing by checking that no accessible rule produces
a letter. From there, Lemma 16 ensures that making a ltw erase-ordered is just
a matter of pushing all erasing states at the end of the rules and them sorting
them in ascending subtree order.

4.2 Reordering Producing States

As we saw in Example 11, some flips between states are not possible. We will now
study what makes reordering non-erasing states possible. As we will see, only
few differences are possible between twin rules in erase-ordered earliest ltws.
Two states transforming the same subtree are equivalent, and the only order
differences are caused by flipping states whose productions commute in Δ∗.

To prove this, we begin by establishing a few preliminary results. We first
show that to the left of σ and σ′’s first difference, both rules are identical.
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Lemma 19. For two twin rules of erase-ordered earliest ltws M, M ′

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′
0q

′
1(xσ′(1)) . . . q′

n(xσ′(n))u′
n

For i such that if k � i then σ(k) = σ′(k), [[M ]]qi = [[M ′]]q′
i
, and ui = u′

i′

Proof. This results from Lemma 8: if σ and σ′ coincide before i, then for all
tσ(1), ..., tσ(i), u0[[M ]]q1(tσ(1))...ui and u′

0[[M
′]]q1(tσ′(1))...u′

i are both equal to the
lcp of

{
[[M ]]q(f(s1, ..., sn))|sσ(1) = tσ(1), ..., sσ(n) = tσ(n)

}
. This means that:

u0[[M ]]q1(tσ(1))...[[M ]]qi(tσ(i))ui = u0[[M ′]]q′
1
(tσ′(1))...[[M ′]]q′

i
(tσ′(i))u′

i

Since this is also true for i−1, we can remove everything but the last part for each
side of this equation, to obtain that for all tσ(i), [[M ]]qi(tσ(i))ui = [[M ′]]q′

i
(tσ(i))u′

i.
Lemma 14 gives us |[[M ]]qi(tσ(i))| = |[[M ′]]q′

i
(tσ′(i))|, and ui = u′

i. This means that
qi and q′

i are equivalent, and ui = u′
i.

It still remains to show what happens when σ and σ′ stop coinciding. We
study the leftmost order difference between two twin rules in erasing-ordered
earliest ltws, that is to say the smallest i such that σ(i) �= σ′(i). Note that
Lemma 15 ensures that such a difference occurs before the end of the rule where
the erasing states are sorted.

Lemma 20. For two twin rules of erase-ordered earliest ltws M, M ′

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′
0q

′
1(xσ′(1)) . . . q′

n(xσ′(n))u′
n

For i such that σ(i) �= σ′(i) and for any k < i, σ(k) = σ′(k), for j such that
σ′(i) = σ(j), we have:

(A) For all k from i to j−1, uk = ε and there exists tεσ(k) such that [[M ]]qk(tεσ(k)) = ε

(B) For all k from i to j, for k′ such that σ(k) = σ′(k′), qk is equivalent to q′
k′

(C) All qi, ..., qj are periodic of same period.

As a proof intuition, we first prove point (A), then use it to show point (B), then
from (A) and (B) we finally show point (C).

For point (A), we use the equivalence of q and q′. For all t1, ..., tn,

u0[[M ]]q1(tσ(1))...[[M ]]qn(tσ(n))un = u0[[M ′]]q′
1
(tσ′(1))...[[M ′]]q′

n
(tσ′(n))u′

n

Lemma 19 gives us that everything up to ui−1 and u′
i−1 coincide. We then get

[[M ]]qi(tσ(i))...[[M ]]qn(tσ(n))un = [[M ′]]q′
i
(tσ′(i))...[[M ′]]q′

n
(tσ′(n))u′

n

Since q′
i is not erasing, we can fix tσ′(i) such that [[M ′]]q′

i
(tσ′(i)) �= ε. We call its

first letter a. All non-ε productions of qi must begin by a. This is only possible in
an earliest if there exists tεσ(i) such that [[M ]]qi(t

ε
σ(i)) = ε. We now fix tσ(i) = tεσ(i).
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If ui �= ε, its first letter is a. This is impossible in an earliest since it would mean
lcp(qiui) �= ε. Hence ui = ε We can make the same reasoning for qi+1 and ui+1,
and so on all the way to qj−1 and uj−1.

For point (B), we use point (A) to eliminate everything in front of qk and q′
k′

by picking all tεσ(l) up to k − 1 and all tεσ′(l′) up to k′ − 1.

[[M ]]qk(tσ(k))...[[M ]]qn(tσ(n))un = [[M ′]]q′
k′ (tσ′(k′))...[[M ′]]q′

n
(tσ′(n))u′

n

From Lemma 14, we know that |[[M ]]qk(tσ(k))| = |[[M ′]]q′
k′ (tσ(k))|. We conclude

that qk and q′
k′ are equivalent.

For point (C), we take k′ such that σ(k) = σ′(k′). We use (A) to erase
everything but qk, qj , q′

i and q′
k′ by picking every tεσ(l) and tεσ′(l′) except theirs.

[[M ]]qk(tσ(k))[[M ]]qj (tσ(j))...un = [[M ′]]q′
i
(tσ′(i))[[M ′]]q′

k′ (tσ′(k′))...u′
n

Point (B) gives qk is equivalent to q′
k′ and qj is equivalent to q′

i. We get that
[[M ]]qk(tσ(k))[[M ]]qj (tσ(j)) = [[M ]]qj (tσ(j))[[M ]]qk(tσ(k)). This means that the produc-
tions of qk and qj commute, which in Δ∗ is equivalent to say they are words of
same period. Therefore, qj and qk are periodic of same period.

This result allows us to resolve the first order different between two twin
rules by flipping qj with neighbouring periodic states of same period. We can
iterate this method to solve all order differences.

Theorem 21. For two twin rules of erase-ordered earliest ltws,

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′
0q

′
1(xσ′(1)) . . . q′

n(xσ′(n))u′
n

One can replace the rule of q to another rule of same subtree order as the rule
of q′ only by flipping neighbour states qk and qk+1 of same period where uk = ε.

We can use Lemma 20 to solve the leftmost difference: for i first index such that
σ(i) �= σ′(i), and j such that σ(i) = σ′(j), we have ui = ... = uj−1 = ε and
qi, ..., qj commute with each other. This means we can replace the first rule by:

q, f → u0...qj(xσ(j))qi(xσ(i))...qj−1(xσ(j−1))uj ...un

where qj(xσ(j)) is to the left of qi(xσ(i))...qj−1(xσ(j−1)) without changing [[M ]]q.
This solves the leftmost order difference: we can iterate this method until

both rules have the same order.
Finally, we call Lemma 19 on the rules reordered by Theorem 21 to show

that two twin rules use equivalent states and the same constant words:

Theorem 22. For two twin rules of erase-ordered earliest ltws,

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

q′, f → u′
0q

′
1(xσ′(1)) . . . q′

n(xσ′(n))u′
n

u0 = u′
0, ..., un = u′

n, and for k, k′ such that σ(k) = σ′(k′), [[M ]]qk = [[M ′]]q′
k′ .
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5 Myhill-Nerode Theorem and Normal Form

In Sect. 3, we showed that ltws can be made earliest. In Sect. 4, we first showed
that all earliest ltws can be made erase-ordered, then we made explicit what
reorderings are possible between two rules of two equivalent states. In this
section, we use these results to fix a reordering strategy. This will give us a new
normal form, ordered earliest ltws. We will show that each ltw in equivalent
to a unique minimal ordered earliest ltw, whose size is at worst exponential.

We first use Theorem 21 to define a new normal form: ordered earliest ltws.

Definition 23. A ltw M is said to be ordered earliest if it is earliest, and for
each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un:

– If qi is erasing, then for any j > i, qj is erasing.
– If ui = ε, and qi and qi+1 are periodic of same period, σ(i) < σ(i + 1).

Note that this definition notably implies that any ordered earliest is erase-
ordered earliest. On top of that, we impose that if two adjacent states are periodic
of same period, and thus could be flipped, they are sorted by ascending subtree.

Lemma 24. For M an earliest ltw, one can make M ordered in polynomial
time without changing the semantic of its states.

We saw in Lemma 18 that one can push and sort erasing states. For this result,
sorting periodic states is not more complicated. However, one must test first
whether two states are periodic of same period. This can be done in polynomial
time. One can prove that the productions of a ltw state q form an algebraic
language (described by a context-free grammar). Then, the problem of deciding
if two algebraic languages are periodic of same period is known to be polynomial.

Our goal is now to show the existence of a unique minimal normal ltw
equivalent to any M . To this end, we first show that two equivalent ltws will
use the same states: any q ∈ Q has an equivalent q′ ∈ Q′.

Lemma 25. For two equivalent earliest ltws M and M ′, for q state of M ,
there exist an equivalent state q′ in M ′.

Proof. We start by the axioms: if ax = u0q0v0 and ax′ = u′
0q

′
0v

′
0, since M and M ′

are earliest, u0 = lcp([[M ]]) = lcp([[M ′]]) = u′
0. Then, v0 = lcs(q0v0) = lcs(q′

0v
′
0) =

v′
0. We then get that q0 and q′

0 are equivalent.
We can then call Theorem 22 to twin rules of equivalent states q, q′ to get

new equivalent pairs qk, q′
k′ for σ(k) = σ′(k′). Since M is trimmed, this recursive

calls will eventually reach all q ∈ Q and pair them with an equivalent q′ ∈ Q′.

Since all equivalent earliest ltws use the same states, they have the minimal
amount of states when they don’t have two redundant states q, q′ such that
[[M ]]q = [[M ]]q′ . We show this characterises a unique minimal normal form.

Theorem 26. For M a ltw, there exists a unique minimal ordered earliest
ltw M ′ equivalent to M (up to state renaming).
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The existence of such a minimal ordered earliest ltw derives directly from
Lemma 24. All we need to make an ordered earliest M ′ minimal is to merge
its equivalent states together, which is always possible without changing [[M ′]].

The uniqueness derives from several properties we showed in this paper.
Imagine M and M ′ two equivalent minimal ordered earliest ltws. The fact
that they have equivalent states come from Lemma 25. Since both are minimal,
neither have redundant state: each q of M is equivalent to exactly one q′ of
M ′ and vice-versa. From Theorem 22, we know that two equivalent states call
equivalent states in their rules, with only the possibility of reordering periodic
states. Since M and M ′ are ordered, twin rules also have same order.

6 Conclusion and Future Work

This paper’s goal was to solve the equivalence problem on linear tree-to-word
transducers, by establishing a normal form and a Myhill-Nerode theorem on
this class. To do so we naturally extended the notion of earliest transducers that
already existed in sequential tree transducers [6]. However it appeared that this
was no longer enough to define a normal form: we studied all possible reorderings
that could happen in an earliest ltw. We then used this knowledge to define a
new normal form, that has both an output strategy (earliest) and an ordering
strategy (ordered earliest), computable from any ltw in Exptime.

There are several ways to follow up on this result: one would be adapting the
learning algorithm presented in [7], accounting for the fact that we now also have
to learn the order in which the images appear. It could also be relevant to note
that in [6], another algorithm decides equivalence in polynomial time, which is
more efficient than computing the normal form. Such an algorithm would be an
improvement over the actual randomized polynomial algorithm by [11]. As far
as Myhill-Nerode theorems go, the next step would be to consider all tree-to-
word transducers. This problem is known to be difficult. Recently, [11] gave a
randomized polynomial algorithm to decide equivalence, but did not provide a
Myhill-Nerode characterization.
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Abstract. Cauchy unital tree valuation monoids are introduced as
weight structures for weighted tree automata. Rational tree series over
this kind of monoids are defined and Kleene’s classical theorem is proved
for this setting: a tree series over a Cauchy unital tree valuation monoid
is recognizable if and only if it is rational.

Keywords: Weighted tree automata · Rational expressions · Valuation
monoids · Kleene theorem

1 Introduction

Trees or terms are one of the most fundamental concepts both in mathematics
and in computer science. Tree automata were introduced in the 1960s and since
then the theory of tree automata and tree languages has developed rapidly, see
[4,13] for surveys. At the beginning of the 1980s also quantitative aspects gained
attention and weighted tree automata (wta) were introduced [1,2]. Since then a
wide range of wta models have been considered.

Wta recognize tree series which are mappings from the set of trees into a
weight structure D. The semantics of a wta is usually defined in terms of runs
and is based on the algebraic structure of D. The weight structure D has a
binary operation called addition, and the weight of an input tree is obtained by
summing up the weights of all runs over the tree. When D is a semiring (i.e., for
s-wta), the weight of a run is the product of the weights of the transitions in the
run [8,12]. If D is a multi-operator monoid (i.e., for m-wta), then the weight of
each transition is an operation over D and the weight of a run is the evaluation
of the weights of the transitions in that run, see [15,16]. In the weighted (word)
automaton on real numbers introduced in [3], the weight of a run is determined
in a global way, for instance by calculating the average of all weights of the run.
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This concept was generalized to weighted automata over a more general weight
structure called valuation monoid in [6] and to wta over tree valuation monoids
(tv-wta) in [5].

In this paper we focus on Kleene-type results for wta. Kleene’s classical the-
orem [14] states that the class of recognizable languages and that of rational
languages are the same. This theorem has already been extended to various
discrete structures like trees [18] as well as to the weighted settings, cf. e.g.
Schützenberger’s fundamental paper [17]. In particular, a Kleene-type result was
proved for s-wta in [10] and [8], and for m-wta in [11]. The corresponding result
for tv-wta was missing up to now. In this paper we fill the gap and provide a
Kleene-type characterization of tv-wta (Theorem 12).

The Kleene-type results are based on the fact that the semantics of the
involved automaton models can be defined inductively. (For instance, the weight
of a run of an s-wta on a tree is, roughly speaking, the product of the weights of
the corresponding sub-runs on the direct subtrees and the weight of the transi-
tion applied at the root of the tree.) This phenomenon makes it possible to show
that, under appropriately defined rational operations, automata and rational
expressions are equally powerful. However, the semantics of a tv-wta cannot be
defined inductively because the weight of a run on a tree is simply delivered by
a global valuation function. Therefore, we enrich the tree valuation monoid by a
family of decomposition operations. Such a decomposition operation is parame-
terized by a tree domain which later determines the shape of the decomposed
tree, some incomparable positions of the tree domain which represent the posi-
tions at which the decomposition took place, and an additional component for
technical reasons. By these decomposition operations we can define the rational
operations concatenation and Kleene-star on tree series appropriately. We call
this enriched structure a Cauchy tree valuation monoid because our approach is
based on the ideas in [7] where Cauchy valuation monoids were introduced and a
Kleene-type result was proved for weighted automata over this kind of monoids.

In order to ensure that the concatenation and the Kleene-star of tree series
defined by using the decomposition operations preserve recognizability, we fol-
low [11] and use variables as additional labels for leaves of trees. Moreover, we
assume that the tree valuation monoid has a unit element and hereby our weight
structures will be Cauchy unital tree valuation monoids. This seems to be con-
venient to show that the expressive power of rational tree series expressions is
the same as that of wta. As usual, we represent rational trees series by rational
expressions. Then our main result states that weighted rational expressions and
wta over Cauchy unital tree valuation monoids are expressively equivalent.

2 Trees and Tree Valuation Monoids

Let N = {1, 2, . . .} be the set of all natural numbers and N0 = N∪{0}. For a set
H, we denote by |H| the cardinality of H and by H∗ the set of all finite words
over H. We denote by |w| the length of a word w ∈ H∗. The empty word is
denoted by ε.
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A tree domain is a finite, non-empty subset B of N∗ such that for all u ∈ N∗

and i ∈ N, if u.i ∈ B, then u, u.1, . . . , u.(i−1) ∈ B. The subtree domain B|u of B
at u is {v ∈ N∗ | u.v ∈ B}. An unranked tree over a set H (of labels) is a mapping
t : B → H such that dom(t) = B is a tree domain. The set of all unranked trees
over H is denoted by UH . For every h ∈ H, we denote also by h the particular
tree defined by t : {ε} → H and t(ε) = h. Let t ∈ UH . The elements of dom(t)
are called positions of t and the set im(t) = {t(u) | u ∈ dom(t)} is the image of t.
For every G ⊆ H and h ∈ H, we define domG(t) = {u ∈ dom(t) | t(u) ∈ G} and
abbreviate dom{h}(t) with domh(t). Let u ∈ dom(t). We call t(u) the label of t at
u. The rank rkt(u) of u is defined to be max{i ∈ N | u.i ∈ dom(t)}. If rk(u) = 0,
then u is also called a leaf of t. We denote by leaf(t) the set of all leaves of t.
Moreover, for every G ⊆ H and h ∈ H, we define leafG(t) = leaf(t) ∩ domG(t)
and we write leafh(t) for leaf{h}(t). The height hg(t) of a tree t is max{|u| |
u ∈ dom(t)} and its size size(t) is |dom(t)|. The subtree t|u of t at position
u is defined by dom(t|u) = dom(t)|u and t|u(v) = t(u.v) for all v ∈ dom(t|u).
Moreover, we denote by t[u ← t′] the tree which is obtained from t by replacing
t|u by t′. Let B be a tree domain. We denote by �B the lexicographic order on
B. Note that �B is a total order. For a subset P ⊆ B, we denote by

−→
P the vector

obtained by enumerating the elements of P in the order �B. Moreover, we define
the partial order <B =�B \{(u, v) ∈ B × B | v = u.w for some w ∈ N∗}.

A ranked alphabet is a pair (Σ, rkΣ), where Σ is an alphabet and rkΣ : Σ →
N0 is a mapping which assigns to each symbol of Σ its rank. We denote by Σ(k)

the set of all symbols which have rank k. Usually we drop rkΣ and denote a
ranked alphabet simply by Σ. In this paper we assume that Σ(0) �= ∅. We define
maxΣ = max{rkΣ(σ) | σ ∈ Σ}.

Let X be a finite set of variables disjoint with Σ. A ranked tree over a ranked
alphabet Σ and X is an unranked tree over the set Σ ∪ X such that for all
u ∈ dom(t), rkt(u) = k whenever t(u) ∈ Σ(k) and rkt(u) = 0 for t(u) ∈ X.
We denote the set of all ranked trees over Σ and X by TΣ(X). If X = ∅,
then TΣ(X) is written as TΣ . Variables can be seen as symbols with rank zero
and thus TΣ(X) = TΣ∪X . Let t ∈ TΣ(X), x ∈ X, r ∈ N0 be the number of
occurrences of x in t, and t1, . . . , tr ∈ TΣ(X). We denote by t[x ← (t1, . . . , tr)]
the tree obtained by replacing the i-th occurrence of x in t by ti (counted from
left to right).

A tree valuation monoid (tv-monoid for short) [5,6] is a quadruple
(D,+,V,0) such that (D,+,0) is a commutative monoid and V: UD → D is a
function, called (tree) valuation function, which satisfies that V(d) = d for every
tree d ∈ D, and V(t) = 0 for every t ∈ UD with 0 ∈ im(t).

Next we generalize unital valuation monoids [9] and define unital tv-monoids.
Roughly speaking, the presence of the unit element in a tree t ∈ UD does not
change V(t). However, we require the unit element to behave so only if it is in a
leaf position and no inner positions of the tree are labeled with it.

Let t ∈ UD and ui ∈ leaf(t) for some u ∈ N∗ and i ∈ N. We denote by [t\ui]
the tree obtained by dropping its leaf ui and moving each position u(j + 1)v
with j + 1 > i to the position ujv. More exactly, we define dom([t\ui]) =
(dom(t) \ {ujv | j ≥ i, v ∈ N∗}) ∪ {ujv | j ≥ i, u(j + 1)v ∈ dom(t)} and
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[t\ui](v) =

{
t(u(j + 1)w) if v = ujw for some j ≥ i and w ∈ N∗,
t(v) otherwise,

for every v ∈ dom([t\ui]). Now a unital tree valuation monoid is a system
(D,+,V,0,1) where (D,+,V,0) is a tv-monoid and 1 ∈ D is a unit element
satisfying that for every t ∈ UD with dom1(t) = leaf1(t) and ui ∈ leaf1(t) with
i ∈ N, we have V([t\ui]) = V(t). Next we generalize Cauchy valuation monoids
of [7] and introduce Cauchy unital tree valuation monoids.

Definition 1. A Cauchy unital tree valuation monoid ( cutv-monoid for short)
is a structure D = (D,+,V,Π,0,1) such that (D,+,V,0,1) is a unital tree
valuation monoid and Π is a family of decomposition operations

ΠB,B′,u1,...,ur
: D × Dr → D

where B is a tree domain, B′ is a subset of the leaves of B, r ∈ N0, and
u1, . . . , ur ∈ B with u1 <B · · · <B ur. The operation ΠB,B′,u1,...,ur

satisfies:

1. For all d, d1, . . . , dr ∈ D, we have ΠB,B′,u1,...,ur
(d, d1, . . . , dr) = 0 if 0 ∈

{d, d1, . . . , dr} .
2. For each tree t ∈ UD with dom(t) = B and leaf1(t) ⊆ B′ ⊆ leaf{0,1}(t), we

have V(t) = ΠB,B′,u1,...,ur
(V(s),V(t1), . . . ,V(tr)), where s = t[u1 ← 1] . . .

[ur ← 1] and ti = t|ui
for every 1 ≤ i ≤ r.

3. For all finite subsets A,A1, . . . , Ar of D:

ΠB,B′,u1,...,ur
(
∑

d∈A

d,
∑

d1∈A1

d1, . . . ,
∑

dr∈Ar

dr)

=
∑

d∈A,d1∈A1,...,dr∈Ar

ΠB,B′,u1,...,ur
(d, d1, . . . , dr) .

Note that V(d(1, . . . ,1)) = d for any occurrences of 1 and cutv-monoid D .

Example 2.1 From any semiring (S,+, ·, 0, 1) we can derive a cutv-monoid
(S,+,V, 0, 1) by letting V(t) =

∏
u∈dom(t) t(u) (where the weights are

multiplied in the order induced by depth first search) for t ∈ US and
ΠB,B′,u1,...,ur

(d, d1, . . . , dr) = d · ∏
1≤i≤r dr for all tree domains B, set of leaves

B′ ⊆ B, r ∈ N0, positions u1 <B · · · <B ur of B, and d, d1, . . . , dr ∈ S.

Example 3. The structure Qmax = (Q ∪ {−∞},max, avg,−∞) with avg(t) =∑
u∈dom(t) t(u)

size(t) for all t ∈ UQ∪{−∞} of [5, Example 3.2] is a tv-monoid2. The valu-
ation function avg calculates the average of all labels of a tree. The idea for the
average calculation was already suggested in [3,6] for words.

1 We are thankful to an anonymous referee for spotting a mistake in a previous version
of this example.

2 Here
∑

denotes the ordinary sum of numbers with the natural extension to −∞.
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We can extend Qmax to the Cauchy unital tree valuation monoid

QCu
max = (Q ∪ {−∞,�},max′, avg′,Π,−∞,�)

as follows. We define

max′(a, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(a, b) if a, b ∈ Q ∪ {−∞},
a if (a ≥ 0 ∧ b = �) or (a = � ∧ b < 0),
b if (b ≥ 0 ∧ a = �) or (b = � ∧ a < 0),
� if a = b = �,

(i.e., with respect to the linear order < on Qmax we insert � between the negative
numbers and 0) and

avg′(t) =

∑
u∈domQ∪{−∞}(t) t(u)

|dom(t) \ leaf�(t)| ,

respectively, for all t ∈ (UQ∪{−∞,�} \ {�}); and avg′(�) = �. Moreover, we
define decomposition operators as follows. Let B be a tree domain, B′ ⊆ B a
set of leaves, r ∈ N0, and u1 <B · · · <B ur positions of B. Let B = B \ B′,
Bi = {uiv | v ∈ N∗}, B′

i = {v ∈ N∗ | uiv ∈ B′} for 1 ≤ i ≤ r, and define n ·� = 0
for all n ∈ N and 0 · (−∞) = −∞. For every d, d1, . . . , dr ∈ (Q ∪ {−∞,�}) we
define

ΠB,B′,u1,...,ur
(d, d1, . . . , dr) =

|B \ (
⋃

1≤i≤r Bi)| · d +
∑

1≤i≤r |(B|ui
) \ B′

i| · di

|B|
whenever B′ �= B; and let ΠB,B,ε(d, d1) = ΠB,B,

−→∅ (d) = −∞ for B′ = B = {ε}.
It is clear that ΠB,B′,u1,...,ur

calculates the average of the labels of a tree with
domain B in which all positions “outside” u1, . . . , ur are labeled with d and all
positions of the form uiv (v ∈ N∗) are labeled with di for every 1 ≤ i ≤ r, and
such that the positions in B′ are not taken into account. One can check that
QCu
max is a cutv-monoid.

For the rest of this paper, let Σ be a ranked alphabet, X a finite set of variables,
and D = (D,+,V,Π,0,1) a cutv-monoid.

A mapping S : TΣ(X) → D is called a tree series (over Σ, X, and D ).
The set of all tree series is denoted by D 〈〈TΣ(X)〉〉. Let d ∈ D, t ∈ TΣ(X). The
tree series which maps every tree to d is denoted by d̃. Moreover, we denote by
d.t the tree series which maps the tree t to d and every other tree to 0. Such a
tree series is called a monomial. For x ∈ X, a tree series S is called x-proper if
S(x) = 0.

3 Rational Operations and Rational Tree Series

In this section we introduce rational operations over tree series. Moreover, we
define the concept of rational expressions and rational tree series. In what follows,
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we often specify a decomposition operator in the form Πdom(t),domL(t),u1,...,ur
, for

some t ∈ TΣ(X), L ⊆ X, and u1, . . . , ur ∈ dom(t). For the sake of brevity, we
shorten this notation to Πt,L,u1,...,ur

.
Let k ≥ 0, σ ∈ Σ(k), and d ∈ D. The top-concatenation with σ and d is a

mapping topd
σ : D 〈〈TΣ(X)〉〉k → D 〈〈TΣ(X)〉〉 which is defined for every t ∈ TΣ(X)

such that

topd
σ(S1, . . . , Sk)(t) =

{
Πt,X,1,...,k(d, S1(t1), . . . Sk(tk)) if t = σ(t1, . . . , tk),
0 otherwise.

Let x ∈ X and S, S′ ∈ D 〈〈TΣ(X)〉〉. The sum S + S′ of S and S′ is defined by
(S + S′)(t) = S(t) + S′(t) for all trees t ∈ TΣ(X). The x-concatenation S ·x S′

of S and S′ is the tree series defined by

(S ·x S′)(t) =
∑

s,t1,...,tr∈TΣ(X)
t=s[x←(t1,...,tr)]

Π
t,X,

−−−−−→
domx(s)

(S(s), S′(t1), . . . , S′(tr))

for all t ∈ TΣ(X). Note that in the index set of the sum we have r ≥ 0.
Let x ∈ X and S ∈ D 〈〈TΣ(X)〉〉 be x-proper. For every n ∈ N0, we define

n-th x-iteration Sn,x of S by induction: S0,x = 0 and Sn+1,x = (S ·x Sn,x)+1.x.

Lemma 4. (cf. [8, Lemma 3.10]) Let x ∈ X, S ∈ D 〈〈TΣ(X)〉〉 be x-proper and
t ∈ TΣ(X). Then Sn+1,x(t) = Sn,x(t) for every n ≥ hg(t) + 1.

Proof. We prove by induction on hg(t). If t ∈ (Σ(0) ∪ X), then three cases are
possible. If t = x, then for all n ≥ 0: Sn+1,x(x) = (S ·x Sn,x)(x) + 1.x(x) =
Πx,X,ε(S(x), Sn,x(x)) + 1.x(x) = Πx,X,ε(0, Sn,x(x)) + 1.x(x) = 0 + 1.x(x) = 1 .
Similarly, Sn+1,x(y) = Π

y,X,
−→∅ (S(y)) and Sn+1,x(α) = S(α) for all x �= y ∈ X,

α ∈ Σ(0), and n ≥ 0. Now we assume that hg(t) > 0 and let n ≥ hg(t)+1. Then

Sn+1,x(t) = (S ·x Sn,x)(t) + 1.x(t) = (S ·x Sn,x)(t)

=
∑

t=s[x←(t1,...,tr)], s �=x

Π
t,X,

−−−−−→
domx(s)

(S(s), Sn,x(t1), . . . , Sn,x(tr))

(∗)
=

∑

t=s[x←(t1,...,tr)], s �=x

Π
t,X,

−−−−−→
domx(s)

(S(s), Sn−1,x(t1), . . . , Sn−1,x(tr))

= Sn,x(t) .

We can restrict the summation to s �= x because S(x) = 0. This allows us to
apply the induction hypothesis at (∗). ��

Again, let x ∈ X and S ∈ D 〈〈TΣ(X)〉〉 be x-proper. The x-Kleene star S∗,x

of S is defined by S∗,x(t) = Shg(t)+1,x(t) for all t ∈ TΣ(X).

Lemma 5. (cf. [8, Lemma 3.13]) Let x ∈ X and S ∈ D 〈〈TΣ(X)〉〉 be x-proper.
Then S∗,x is the unique solution of the equation ξ = S ·x ξ + 1.x.
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Proof. Let t ∈ TΣ(X) and n = hg(t) + 1. Then

(S∗,x)(t)
(∗)
= (Sn+1,x)(t) = (S ·x Sn,x)(t) + 1.x(t)

=
∑

t=s[x←(t1,...,tr)]

Π
t,X,

−−−−−→
domx(s)

(S(s), Sn,x(t1), . . . , Sn,x(tr)) + 1.x(t)

(†)
=

∑

t=s[x←(t1,...,tr)]

Π
t,X,

−−−−−→
domx(s)

(S(s), S∗,x(t1), . . . , S∗,x(tr)) + 1.x(t)

= (S ·x S∗,x + 1.x)(t)

At (∗) and (†) we could apply Lemma 4, since n = hg(t) + 1 ≥ hg(ti) + 1. To
show that S∗,x is the unique solution, we can prove that T = S∗,x for every
solution T . The proof is analogous to that of Lemma 4. ��

The operations topd
σ, +, x-concatenation, and x-Kleene star are called ratio-

nal operations. The set Rex(Σ,X,D ) of rational tree series expressions (over Σ,
X, and D ) is defined to be the smallest set R satisfying the following condi-
tions. For every E ∈ Rex(Σ,X,D ), we define its semantics [[E]] ∈ D 〈〈TΣ(X)〉〉
simultaneously.

– for all x ∈ X: x ∈ R and [[x]] = 1.x,
– for all σ ∈ Σ(k), d ∈ (D \ {1}), and E1, . . . , Ek ∈ R with k ≥ 0:

d.σ(E1, . . . , Ek) ∈ R and [[d.σ(E1, . . . , Ek)]] = topd
σ([[E1]], . . . , [[Ek]]),

– for all E1, E2 ∈ R: E1 + E2 ∈ R and [[E1 + E2]] = [[E1]] + [[E2]],
– for all E1, E2 ∈ R and x ∈ X: E1 ·x E2 ∈ R and [[E1 ·x E2]] = [[E1]] ·x [[E2]],
– for all E ∈ R and x ∈ X s.t. [[E]] is x-proper: E∗,x ∈ R and [[E∗,x]] = [[E]]∗,x.

A tree series S ∈ D 〈〈TΣ(X)〉〉 is rational if there is an E ∈ Rex(Σ,X,D ) such
that [[E]] = S. The set of all rational tree series is denoted by D rat〈〈TΣ(X)〉〉.
Note that 0̃ is rational, since 0̃ = [[0.σ]] for each σ ∈ Σ(0). Obviously, rational
tree series are closed under rational operations.

Example 6. Let QCu
max be the cutv-monoid from Example 3, α ∈ Σ(0), σ ∈ Σ(1),

and x ∈ X a variable. We abbreviate t = σ(σ(. . . σ(x) . . . )) with n occurrences of
σ by σnx. For the rational expression 0.σ(x) we have [[0.σ(x)]](σx) = top0

σ([[x]]) =
Πσx,X,1(0, [[x]](x)) = Πσx,X,1(0,�) = 0 and [[0.σ(x)]](t) = −∞ for every other
t ∈ TΣ(X). Let us abbreviate [[0.σ(x)]] to T and consider now 0.σ(x)∗,x. We have

[[0.σ(x)∗,x]](σnx) = [[0.σ(x)n+1,x]](σnx) =

= Πσnx,X,1(T (σx),Πσn−1x,X,1(T (σx), . . . Πσx,X,1(T (σx), T 2,x(x)) . . . ))
= Πσnx,X,1(0,Πσn−1x,X,1(0, . . . Πσx,X,1(0,�) . . . )) = 0

and [[0.σ(x)∗,x]](t) = −∞ for all t �∈ {σnx | n ≥ 1}. For the expression E =
0.σ(x)∗,x ·x 1.α with S = [[0.σ(x)∗,x]], we get

[[E]](σnα) = Πσnα,X,1n(S(σnx), [[1.α]](α)) = Πσnα,X,1n(0, 1) =
1

n + 1
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and [[E]](t) = −∞ for all t �∈ {σnx | n ≥ 1}. Using similar arguments, we can
show that the semantics of the expression

( ∑

σ∈Σ(k),k≥0

0.σ(x, . . . , x)
)∗,x

·x
( ∑

α∈Σ(0)

1.α
)

where
∑

denotes the “syntactic sum” of rational expressions, calculates the
leaves-to-size ratio of every tree in TΣ .

4 Weighted Tree Automata over Cutv-Monoids

In this section we introduce weighted tree automata over cutv-monoids. Basi-
cally, we follow the definition of a weighted tree automaton over a tv-monoid in
[5]. However, our input trees, like input trees in [11], may contain variables.

Definition 7. A weighted tree automaton (wta for short) (over Σ, X, and D )
is a system M = (Q,Σ,X, μ, ν, F ) where Q is a non-empty, finite set of states,
the sets Σ, Q, and X are pairwise disjoint, μ is a family (μk | 0 ≤ k ≤ maxΣ)
of transition mappings μk : Qk ×Σ(k) ×Q → (D \ {1}), ν : X ×Q → {0,1}, and
F ⊆ Q is a set of final states.

In order to be able to use the unital property of D for the weight of a run
(defined below), we do not allow 1 to be the weight of a transition. Unfortunately,
this yields some limitations which should be explored later.

In the rest of this section, let M = (Q,Σ,X, μ, ν, F ) be a wta overD . We define
the behavior of M by a run semantics. First we give a general definition of a run
which is similar to the one in [8, Definition 4.2]. Let P ⊆ Q and t ∈ TΣ(X ∪Q). A
run r of M on t using P is a mapping r : dom(t) → Q such that r(u) ∈ P for all
u ∈ (dom(t)\ (domQ(t)∪{ε})), and r(u) = t(u) for all u ∈ domQ(t). Such a run r
reaches q ∈ Q if r(ε) = q. The set of all runs on t using P reaching q is denoted by
RP,q

M (t). Moreover, we put Rq
M(t) = RQ,q

M (t) and RM(t) =
⋃

q∈Q Rq
M(t). If M is

clear from the context, then we drop the index and write RP,q(t), Rq(t), and R(t)
for the sets of the corresponding runs, respectively. Let r ∈ R(t). We define the
weight mapping wt(t, r) : dom(t) → D by

wt(t, r)(u) =

⎧
⎪⎨

⎪⎩

μk(r(u.1) . . . r(u.k), t(u), r(u)) if t(u) ∈ Σ(k), k ≥ 0,

ν(t(u), r(u)) if t(u) ∈ X,

1 if t(u) ∈ Q

for every u ∈ dom(t). We call wt(t, r)(u) the weight of r on t at u. Note that
wt(t, r) is an unranked tree in UD. The run r is called valid if 0 /∈ im(wt(t, r)).
We call V(wt(t, r)) the weight of r on t. The behavior of M is the tree series
‖M‖ : TΣ(X) → D defined by

‖M‖(t) =
∑

r∈Rq(t),q∈F

V(wt(t, r))
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for every t ∈ TΣ(X). Note that if F = ∅, then ‖M‖ = 0̃.
For examples of wta see [5, Example 3.2]. The automata given there can be

easily adapted to our settings. Note that the first automaton of [5, Example 3.2]
computes the leaves-to-size ratio which we described by the rational tree series
expression of Example 6.

A tree series S is called recognizable if S = ‖M‖ for some wta M. Then
we say that M recognizes S. We denote by D rec〈〈TΣ(X)〉〉 the class all recog-
nizable tree series (over Σ, X, and D ). Moreover, we abbreviate the class⋃

Q finite set D
rec〈〈TΣ(X ∪ Q)〉〉 by D rec〈〈TΣ(X ∪ Q∞)〉〉.

5 From Automata to Rational Expressions and Vice
Versa

In this section we show that wta and rational expressions are equally power-
ful. First we prove that the behavior of a wta over a cutv-monoid is rational.
Throughout the section M = (Q,Σ,X, μ, ν, F ) denotes an arbitrary wta over D .
For Q′ ⊆ Q, we define the tree series ‖M‖Q′,P,q which describes the behavior of
M on trees in TΣ(X ∪ Q′) provided that we restrict to runs which use P and
reach q. More exactly, for all P,Q′ ⊆ Q and q ∈ Q we define

‖M‖Q′,P,q(t) =

{∑
r∈RP,q(t) V(wt(t, r)) if t ∈ (TΣ(X ∪ Q′) \ Q′),

0 if t ∈ Q′

for all t ∈ TΣ(X ∪ Q′). Obviously, ‖M‖Q′,P,q is p-proper for all p ∈ Q′. Analo-
gously to [8, Lemma 5.1] we can prove the following key lemma.

Lemma 8. Let P,Q′ ⊆ Q and q ∈ Q. Moreover, let p ∈ (Q′ \ P ). Then

‖M‖Q′,P∪{p},q = ‖M‖Q′,P,q ·p (‖M‖Q′,P,p)∗,p .

Let D rat〈〈TΣ(X ∪ Q∞)〉〉 =
⋃

Q finite set D
rat〈〈TΣ(X ∪ Q)〉〉.

Theorem 9. D rec〈〈TΣ(X ∪ Q∞)〉〉 ⊆ D rat〈〈TΣ(X ∪ Q∞)〉〉.
Proof. Since TΣ(X ∪ Q) can be seen as TΣ∪Q(X), it suffices to show that
D rec〈〈TΣ(X)〉〉 ⊆ D rat〈〈TΣ(X∪Q∞)〉〉. The proof is analogous to [8, Theorem 5.2].

Consider the wta M and assume that Q = {q1, . . . , qm}. Let P ⊆ Q and
abbreviate ‖M‖Q,P,q by ‖M‖P,q. Let us recall that ‖M‖P,q is p-proper for all
p ∈ Q and note that ‖M‖Q,q(t) may not be 0 for some t ∈ (TΣ(X ∪Q)\TΣ(X)).
However,

‖M‖ =
∑

q∈F

(· · · ((‖M‖Q,q ·q1 0̃) ·q2 0̃) · · · ) ·qm
0̃ .

It means that ‖M‖ is rational if ‖M‖Q,q is rational for all q ∈ Q. Therefore,
we prove by induction on |P | that ‖M‖P,q is rational for all P ⊆ Q and q ∈ Q.
Firstly, let P = ∅. For every tree t ∈ TΣ(X ∪ Q), if t �= σ(p1, . . . , pk) (for
some k ≥ 0, σ ∈ Σ(k), and p1, . . . , pk ∈ Q) or t /∈ X, then R∅,q(t) = ∅ and
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thus ‖M‖∅,q(t) = 0. If t = σ(p1, . . . , pk), then R∅,q(t) = {rσ,q
p1,...,pk

}, where
the run rσ,q

p1,...,pk
: dom(σ(p1, . . . , pk)) → Q is defined by rσ,q

p1,...,pk
(ε) = q and

rσ,q
p1,...,pk

(i) = pi for all 1 ≤ i ≤ k. Thus

‖M‖∅,q(t) = ‖M‖∅,q(σ(p1, . . . , pk)) = V(wt(σ(p1, . . . , pk), rσ,q
p1,...,pk

))

= V(μk(p1 . . . pk, σ, q)(1, . . . ,1))
(∗)
= μk(p1 . . . pk, σ, q) .

At (∗) we used that D is a unital tv-monoid. Moreover, for t = x ∈ X,
‖M‖∅,q(x) = V(wt(x, q)) = V(ν(x, q)) = ν(x, q). Thus, ‖M‖∅,q is a finite sum
of monomials of the form μk(p1 . . . pk, σ, q).σ(p1, . . . , pk) and ν(x, q).x. We can
show easily that both kinds of monomials are rational. Since rational tree series
are closed under +, the tree series ‖M‖∅,q is rational.

Now let P ⊆ Q and p ∈ (Q \ P ). By the induction hypothesis, ‖M‖P,q

is rational. Since rational tree series are closed under rational operations, by
Lemma 8 (with Q′ = Q), the tree series ‖M‖P∪{p},q = ‖M‖Q,P∪{p},q is also
rational. ��

Next we will show that rational tree series are recognizable by wta. For this
first we prove that recognizable tree series are closed under rational operations.

Theorem 10. The class D rec〈〈TΣ(X)〉〉 is closed under rational operations.

Proof. To show the closedness under weighted top-concatenation we let k ≥ 0,
σ ∈ Σ(k), d ∈ D, S1, . . . , Sk ∈ D rec〈〈TΣ(X)〉〉 such that Si = ‖Mi‖ for the
wta Mi = (Qi, Σ,X, μi, νi, Fi) for 1 ≤ i ≤ k. Assume that Qi ∩ Qj = ∅ for
all j �= i. We will construct an automaton Md

σ recognizing topd
σ(S1, . . . , Sk) as

follows. We build the disjoint union of the Mi and add a new state f which will
be the only final state. Moreover, all transitions (q1 . . . qk, σ, f) where qi ∈ Fi

have weight d. All other transitions containing f have weight zero. Formally,
Md

σ = (Q,Σ,X, μ, ν, F ), where Q = {f} ∪ ⋃
1≤i≤k Qi with F = {f},

μn(q1 . . . qn, γ, q) =

⎧
⎪⎨

⎪⎩

(μi)n(q1 . . . qn, γ, q) if q1, . . . , qn, q ∈ Qi,

d if γ = σ, q = f, and qi ∈ Fi,

0 otherwise,

for all n ≥ 0, γ ∈ Σ(n), q1, . . . , qn, q ∈ Q, and for all x ∈ X we set ν(x, q) =
νi(x, q) for q ∈ Qi and ν(x, f) = 0.

The proof of closedness of D rec〈〈TΣ(X)〉〉 under sum is analogous to the proof
of [5, Theorem 5.12].

Let x ∈ X and Si = ‖Mi‖ with the wta Mi defined above for i = 1, 2. We
will build an automaton Mx with ‖Mx‖ = S1 ·x S2 by “sticking together” M1

and M2. For this we will have glue states (p, p′), where p is a final state of M2

and p′ is a state of M1 with ν(x, p′) = 1. These glue states will later be attached
to the concatenation points of the input tree. Above the concatenation points
Mx will behave like M1 and below like M2. Let Mx = (Q,Σ,X, μ, ν, F ) be
defined by Q = Q1 ∪ Q2 ∪ F2 × Q1, F = F1 ∪ F2 × F1;
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μk(q1 . . . qk, σ, q) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(μ1)k(q21 . . . q2k, σ, q) if q1, . . . , qk ∈ (Q1 ∪ F2 × Q1),
q ∈ Q1,

(μ2)k(q1 . . . qk, σ, q1) if q1, . . . , qk ∈ Q2 ∧ (q ∈ Q2 ∨
q ∈ F2 × Q1 with ν1(x, q2) = 1),

0 otherwise,

for all σ ∈ Σ(k), q1, . . . , qk, q ∈ Q where q1 = q2 = q if q ∈ (Q1 ∪Q2), and q1 = p
and q2 = p′ if q = (p, p′) ∈ F2 × Q1; and for all y ∈ X:

ν(y, q) =

⎧
⎪⎨

⎪⎩

ν1(y, q) if y �= x and q ∈ Q1,

ν2(x, q1) if q ∈ F2 × Q1 and ν1(x, q2) = 1,

0 otherwise.

By decomposing the valid runs of Mx into sub-runs of M1 and M2 we can show
that ‖Mx‖ = S1 ·x S2.

To show that recognizable tree series are closed under x-Kleene star, basically
we will follow up the ideas for Mx. But now a new state fx will mark the
concatenation points. Let M = (Q,Σ,X, μ, ν, F ) be a wta recognizing a tree
series S. We define M∗ = (Q∗, Σ,X, μ∗, ν∗, F∗) by Q∗ = Q∪F×(Q∪{fx})∪{fx},
F∗ = F ∪ {fx};

(μ∗)k(q1 . . . qk, σ, q) =

⎧
⎪⎨

⎪⎩

μk(q21 . . . q2k, σ, q1) if q1, . . . , qk ∈ Q∗, q ∈ Q,

or (q ∈ F × Q ∧ ν(x, q2) = 1),
0 otherwise,

for all σ ∈ Σ(k), q1, . . . , qk, q ∈ Q∗ where q1 = q2 = q if q ∈ Q and q1 = p and
q2 = p′ if q = (p, p′) ∈ F × (Q ∪ {fx}); and for all y ∈ X:

ν∗(y, q) =

⎧
⎪⎨

⎪⎩

ν(y, q1) if y �= x, q ∈ (Q ∪ F × Q), and ν(x, q2) = 1,

1 if y = x, q ∈ ({fx} ∪ F × {fx}),
0 otherwise.

Similarly to the closedness under ·x, we can show that ‖M∗‖ = S∗,x. ��
Let x ∈ X. Then [[x]] is recognizable by M = ({q}, Σ,X, μ, ν, {q}) with

ν(x, q) = 1, μk(q . . . q, σ, q) = 0 for all k ≥ 0 and σ ∈ Σ(k), and ν(y, q) = 0 for
all y �= x. This fact and Theorem 10 justify the following theorem.

Theorem 11. D rat〈〈TΣ(X)〉〉 ⊆ D rec〈〈TΣ(X)〉〉.
By Theorems 9 and 11 we can conclude the main result of our paper.

Theorem 12. D rat〈〈TΣ(Q∞)〉〉 = D rec〈〈TΣ(Q∞)〉〉 .
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MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 537–548. Springer, Heidelberg (2010)

7. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation
monoids. Int. J. Found. Comput. Sci. 22, 1829–1844 (2011)

8. Droste, M., Pech, C., Vogler, H.: A Kleene theorem for weighted tree automata.
Theory Comput. Syst. 38(1), 1–38 (2005)

9. Droste, M., Vogler, H.: The Chomsky-Schützenberger theorem for quantitative
context-free languages. Int. J. Found. Comput. Sci. Special Issue of DLT 2013(25),
955–969 (2014)
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Abstract. Hankel matrices (aka connection matrices) of word func-
tions and graph parameters have wide applications in automata theory,
graph theory, and machine learning. We give a characterization of real-
valued functions on nested words recognized by weighted visibly pushdown
automata in terms of Hankel matrices on nested words. This complements
C. Mathissen’s characterization in terms of weighted monadic second order
logic.

1 Introduction and Background

1.1 Weighted Automata for Words and Nested Words

Classical word automata can be extended to weighted word automata by assign-
ing weights from some numeric domain to their transitions, thereby having them
assign values to their input words rather than accepting or rejecting them.
Weighted (word) automata define the class of recognizable word functions, first
introduced in the study of stochastic automata by A. Heller [39]. Weighted
automata are used in verification, [6,52], in program synthesis, [13,14], in digital
image compression, [19], and speech processing, [1,28,53]. For a comprehensive
survey, see the Handbook of Weighted Automata [27]. Recognizable word func-
tions over commutative semirings S were characterized using logic through the
formalism of Weighted Monadic Second Order Logic (WMSOL), [26], and the
formalism of MSOLEVAL1, [44].

Nested words and nested word automata are generalizations of words and
finite automata, introduced by Alur and Madhusudan [2]. A nested word nw ∈
NW (Σ) over an alphabet Σ is a sequence of linearly ordered positions, aug-
mented with forward-oriented edges that do not cross, creating a nested struc-
ture. In the context of formal verification for software, execution paths in pro-
cedural programs are naturally modeled by nested words whose hierarchical
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structure captures calls and returns. Nested words also model annotated lin-
guistic data and tree-structured data which is given by a linear encoding, such
as HTML/XML documents. Nested word automata define the class of regular
languages of nested words. The key feature of these automata is their ability
to propagate hierarchical states along the augmenting edges, in addition to the
states propagated along the edges of the linear order. We refer the reader to
[2] for details. Nested words nw ∈ NW (Σ) can be (linearly) encoded as words
over an extended tagged alphabet Σ̂, where the letters in Σ̂ specify whether
the position is a call, a return, or neither (internal). Such encodings of regu-
lar languages of nested words give the class of visibly pushdown languages over
the tagged alphabet Σ̂, which lies between the parenthesis languages and deter-
ministic context-free languages. The accepting pushdown automata for visibly
pushdown languages push one symbol when reading a call, pop one symbol when
reading a return, and only update their control when reading an internal symbol.
Such automata are called visibly pushdown automata. Since their introduction,
nested words and their automata have found applications in specifications for
program analysis [24,25,37], XML processing [31,54], and have motivated several
theoretical questions, [3,20,55].

Visibly pushdown automata and nested word automata were extended by
assigning weights from a commutative semiring S to their transitions as well.
Keifer et al. introduced weighted visibly pushdown automata, and their equiva-
lence problem was showed to be logspace reducible to polynomial identity testing,
[41]. Mathissen introduced weighted nested word automata, and proved a logical
characterization of their functions using a modification of WMSOL, [51].

1.2 Hankel Matrices and Weighted Word Automata

Given a word function f : Σ� → F , its Hankel matrix Hf ∈ FΣ�×Σ�

is
the infinite matrix whose rows and columns are indexed by words in Σ� and
Hf (u, v) = f(uv), where uv is the concatenation of u and v. In addition to the
logical characterizations, there exists a characterization of recognizable word
functions via Hankel matrices, by Carlyle and Paz [12].

Theorem 1 (Carlyle and Paz, 1971). A real-valued word function f is recog-
nized by a weighted (word) automaton iff Hf has finite rank.

The theorem was originally stated using the notion of external function rank,
but the above formulation is equivalent. Multiplicative words functions were
characterized by Cobham [15] as exactly those with a Hankel matrix of rank 1.

Hankel matrices proved useful also in the study of graph parameters. Lovász
introduced a kind of Hankel matrices for graph parameters [48] which were used
to study real-valued graph parameters and their relation to partition functions,
[30,49]. In [33], the definability of graph parameters in monadic second order
logic was related to the rank of their Hankel matrices. Meta-theorems involving
logic, such as Courcelle’s theorem and generalizations there of [16,17,23,50],
were made logic-free by replacing their definability conditions with conditions
on Hankel matrices, [43,45,46].



466 N. Labai and J.A. Makowsky

1.3 Our Contribution

The goal of this paper is to prove a characterization of the functions recognizable
by weighted visibly pushdown automata (WVPA), called here recognizable nested
word functions, via Hankel matrices. Such a characterization would nicely fill the
role of the Carlyle-Paz theorem in the words setting, complementing results that
draw parallels between recognizable word functions and nested word functions,
such as the attractive properties of closure and decidability the settings share
[2], and the similarity between the WMSOL-type formalisms used to give their
logical characterizations.

The first challenge is in the choice of the Hankel matrices at hand. A naive
straightforward adaptation of the Carlyle-Paz theorem to the setting of nested
words would involve Hankel matrices for words over the extended alphabet Σ̂
with the usual concatenation operation on words. However, then we would have
functions recognizable by WVPA with Hankel matrices of infinite rank. Consider
the Hankel matrix of the characteristic function of the language of balanced
brackets, also known as the Dyck language. This language is not regular, so its
characteristic function is not recognized by a weighted word automaton. Hence,
by the Carlyle-Paz Theorem 1, its Hankel matrix would have infinite rank despite
the fact its encoding over a tagged alphabet is recognizable by VPA, hence also
by WVPA.

Main Results. We introduce nested Hankel matrices over well-nested words
(see Sect. 2) to overcome the point described above and prove the following
characterization of WVPA-recognizable functions of well-nested words:

Theorem 2 (Main Theorem). Let F = R or F = C, and let f be an F-
valued function on well-nested words. Then f is recognized by a weighted visibly
pushdown automaton with n states iff the nested Hankel matrix nHf has rank
≤ n2.

As opposed to the characterizations of word functions, which allow f to have
values over a semiring, we require that f is over R or C. This is due to the
second challenge, which stems from the fact that in our setting of functions
of well-nested words, the helpful decomposition properties exhibited by Hankel
matrices for word functions are absent. This is because, as opposed to words,
well-nested words cannot be split in arbitrary positions and result in two well-
nested words. Thus, we use the singular value decomposition (SVD) Theorem,
see, e.g., [35], which is valid only over R and C.

Outline. In Sect. 2 we complete the background on well-nested words and
weighted visibly pushdown automata, and introduce nested Hankel matrices.
The rather technical proof of Theorem2 is given in Sect. 5. In Sect. 3 we discuss
the applications of Theorem 2 to learning theory. In Sect. 4 we briefly discuss
limitations of our methods and possible extensions of our characterization.
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2 Preliminaries

For the remainder of the paper, we assume that F is R or C. Let Σ be a finite
alphabet. For � ∈ N, we denote the set {1, . . . , �} by [�]. For a matrix or vector
N , denote its transpose by NT . Vectors are assumed to be column vectors unless
stated otherwise.

2.1 Well-Nested Words

We follow the definitions in [2,51]. A well-nested word over Σ is a pair (w, ν)
where w ∈ Σ� of length � and ν is a matching relation for w. A matching relation2

for a word of length � is a set of edges ν ⊂ [�]× [�] such that the following holds:

1. If (i, j) ∈ ν, then i < j.

2. Any position appears in an edge of ν at most once: For 1 ≤ i ≤ �,
|{j | (i, j) ∈ ν}| ≤ 1 and |{j | (j, i) ∈ ν}| ≤ 1

3. If (i, j), (i′, j′) ∈ ν, then it is not the case that i < i′ ≤ j < j′. That is, the
edges do not cross.

Denote the set of well-nested words over Σ by WNW(Σ).
Given positions i, j such that (i, j) ∈ ν, position i is a call position and

position j is a return position. Denote Σcall = {〈s | s ∈ Σ}, Σret = {s〉 | s ∈ Σ},
and Σ̂ = Σcall ∪Σret ∪Σint where Σint = Σ and is disjoint from Σcall and Σret.
By viewing calls as opening parentheses and returns as closing parentheses, one
can define an encoding taking nested words over Σ to words over Σ̂ by assigning
to a position labeled s ∈ Σ:

• the letter 〈s, if it is a call position,
• the letter s〉, if it is a return position,
• the same letter s, if it is an internal position.

We denote this encoding by nw w : WNW (Σ) → Σ̂� and give an example
in Fig. 1. Note that any parentheses appearing in such encoding will be well-
matched (balanced) parentheses. Denote its partial inverse function, defined only
for words with well-matched parentheses, by w nw : Σ̂� → WNW (Σ). See [2]
for details. We will freely pass between the two forms.

Given a function f : WNW (Σ) → F on well-nested words, one can natu-
rally define a corresponding function f ′ : Σ̂� → F on words with well-matched
parentheses by setting f ′(w) = f(w nw(w)). We will denote both functions by f .

2.2 Nested Hankel Matrices

Given a function on well-nested words f : WNW (Σ) → F , define its nested
Hankel matrix nHf as the infinite matrix whose rows and columns are indexed
by words over Σ̂ with well-matched parentheses, and nHf (u, v) = f(uv). That

2 The original definition of nested words allowed “dangling” edges. We will only be
concerned with nested words that are well-matched.
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b a a b b b〈a〈ab〉b〉

Fig. 1. On the left, a well-nested word, where the successor relation of the linear order
is in bold edges, the matching relation is in dashed edges. On the right, its encoding
as a word over a tagged alphabet.

is, the entry at the row labeled with u and the column labeled with v is the value
f(uv). A nested Hankel matrix nHf has finite rank if there is a finite set of rows
in nHf that linearly span it. We stress the fact that nHf is defined over words
whose parentheses are well-matched, as this is crucial for the proof of Theorem2.

As an example, consider the function f which counts the number of pairs of
parentheses in a well-nested word over the alphabet Σ = {a}. Then the corre-
sponding word function is on words over the tagged alphabet Σ̂ = {a, 〈a, a〉}. In
Fig. 2 we see (part of) the corresponding nested Hankel matrix nHf with labels
on its columns and rows.

2.3 Weighted Visibly Pushdown Automata

For notational convenience, now let Σ = Σcall ∪ Σret ∪ Σint. We follow the
definition given in [41]. An F-weighted visibly pushdown automaton (WVPA) on
Σ is a tuple A = (n,α,η, Γ,M) where

• n is the number of states,

• α,η ∈ Fn are initial and final vectors, respectively,

• Γ is a finite stack alphabet, and

• M are matrices in Fn×n defined as follows.

ε a 〈aa〉 aa 〈aaa〉 〈a〈aa〉a〉 · · ·
ε 0 0 1 0 1 2 · · ·
a 0 0 1 0 1 2 · · ·

〈aa〉 1 1 2 1 2 3 · · ·
aa 0 0 1 0 1 2 · · ·

〈aaa〉 1 1 2 1 2 3 · · ·
〈a〈aa〉a〉 2 2 3 2 3 4 · · ·

...
...

...
...

...
...

...

Fig. 2. The nested Hankel matrix nHf . Note that nHf has rank 2.
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For every γ ∈ Γ and every c ∈ Σcall, the matrix M
(c,γ)
call ∈ Fn×n is given by

M
(c,γ)
call (i, j) = the weight of a c-labeled transition from

state i to state j that pushes γ on the stack.

The matrices M
(r,γ)
ret ∈ Fn×n are given similarly for every r ∈ Σret, and

the matrices M
(s)
int ∈ Fn×n are given similarly for every s ∈ Σint.

For each well-nested word u ∈ WNW (Σ), the automaton A inductively com-
putes M

(A)
u ∈ Fn×n for u in the following way.

• Base cases:

M (A)
ε = I, and M (A)

s = M
(s)
int for s ∈ Σint.

• Closure:

M (A)
uv = M (A)

u · M (A)
v for u, v ∈ WNW (Σ),

M (A)
cur =

∑

γ∈Γ

M
(c,γ)
call · M (A)

u · M
(r,γ)
ret for c ∈ Σcall and r ∈ Σret.

The behavior of A is the function fA : WNW (Σ) → F where

fA(u) = αT · M (A)
u · η

A function f : WNW (Σ) → F is recognizable by WVPA if it is the behavior of
some WVPA A.

3 Applications in Computational Learning Theory

A passive learning algorithm for classical automata is an algorithm which given
a set of strings accepted by the target automaton (positive examples) and a set
of strings rejected by the target automaton (negative examples), and is required
to output an automaton which is consistent with the set of examples. It is well
known that in a variety of passive learning models, such as Valiant’s PAC model,
[58], and the mistake bound models of Littlestone and Haussler et al., [38,47], it is
intractable to learn or even approximate classical automata, [4,34,56]. However,
the problem becomes tractable when the learner is allowed to make membership
and equivalence queries, as in the active model of learning introduced by Angluin,
[4,5]. This approach was extended to weighted automata over fields, [10].

The problem of learning weighted automata is of finding a weighted automa-
ton which closely estimates some target function, by considering examples con-
sisting of pairs of strings with their value. The development of efficient learning
techniques for weighted automata was immensely motivated by the abundance
of their applications, with many of the techniques exploiting the relationship
between weighted automata and their Hankel matrices, [9,11,36].
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3.1 Learning Weighted Visibly Pushdown Automata

The proof of our Theorem2 suggests a template of learning algorithms for
weighted visibly pushdown automata, with the difficult part being the construc-
tion of the matrices that correspond to call and return symbols. The proof of
Lemma 5 spells out the construction of these matrices, given an algorithm for find-
ing SVD expansions (see Subsect. 5.2). To the best of our knowledge, learning algo-
rithms for weighted visibly pushdown automata have not been proposed so far.

In recent years, the spectral method of Hsu et al. [40] for learning hidden
Markov models, which relies on the SVD of a Hankel matrix, has driven much
follow-up research, see the survey [8]. Balle and Mohri combined spectral meth-
ods with constrained matrix completion algorithms to learn arbitrary weighted
automata, [7]. We believe the possibility of developing spectral learning algo-
rithms for WVPA is worth exploring in more detail.

Lastly, we should note that one could employ existing algorithms to produce
a weighted automaton from a nested Hankel matrix, if it is viewed as a partial
Hankel matrix for a word function. However, any automaton which is consistent
with the matrix will have as many states as the rank of the nested Hankel matrix,
[12,29]. This may be less than satisfying when considering how, in contrast,
Theorem 2 assures the existence of a weighted visibly pushdown automaton with
n states, given a nested Hankel matrix of rank ≤ n2. This discrepancy funda-
mentally depends on the SVD Theorem.

4 Extension to Semirings

The proof of Theorem2 relies on the SVD Theorem, which, in particular, assumes
the existence of an inverse with respect to addition. Furthermore, notions of
orthogonality, rank, and norms do not readily transfer to the semiring setting.
Thus it is not clear what an analogue to the SVD theorem would be in the
context of semirings, nor whether it could exist. Therefore the proof of Theorem2
cannot be used to characterize nested word functions recognized by WVPA over
semirings.

However, in the special case of the tropical semirings, De Schutter and De
Moor proposed an extended max algebra corresponding to R, called the sym-
metrized max algebra, and proved an analogue SVD theorem for it, [21]. See also
[22] for an extended presentation. These results suggest a similar Hankel matrix
based characterization for WVPA-recognizable nested word functions may be
possible over the tropical semirings. This would be beneficial in situations where
we have a function that has a nested Hankel matrix of infinite rank when inter-
preted over R, but has finite rank when it is interpreted over a tropical semiring.
It is easy to verify that any function on well-nested words which is maximizing
or minimizing with respect to concatenation would fall in this category.
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5 The Characterization of WVPA-Recognizability

In this section we prove both directions of Theorem2.
Let p, q ∈ [n]. Define the matrix A(p,q) ∈ Fn×n as having the value 1 in the

entry (p, q) and zero in all other entries. That is,

A(p,q)(i, j) =

{
1, if (i, j) = (p, q)
0, otherwise

Obviously, for any matrix M ∈ Fn×n with entries M(i, j) = mij we have
M =

∑
i,j∈[n] mijA

(i,j).

5.1 Recognizability Implies Finite Rank of Nested Hankel Matrix

Theorem 3. Let f be recognized by a weighted visibly pushdown automaton A
with n states. Then the nested Hankel matrix nHf has rank ≤ n2.

Proof. We define infinite row vectors v(i,j) where i, j ∈ [n], whose entries are
indexed by well-nested words w ∈ WNW (Σ), and show they span the rows of
nHf . We define the entries of v(i,j) to be

v(i,j)(w) = αT · A(i,j)M (A)
w · η

Note that there are n2 such vectors. Now let u ∈ WNW (Σ) and let M (A)(u)
be the matrix computed for u by A. By the definition of the behavior for A, the
row ru corresponding to u in nHf has entry ru(w) = αT ·M (A)(u) ·M (A)(w) ·η.
Consider the linear combination

vu =
∑

1≤i,j≤n

M (A)
u (i, j) · v(i,j).

Then

vu(w) =
∑

1≤i,j≤n

M (A)
u (i, j) · v(i,j)(w) =

∑

1≤i,j≤n

M (A)
u (i, j) ·

(
αT · A(i,j)M (A)

w · η
)

= αT · M (A)
u · M (A)

w · η = ru(w)

Therefore the rank of nHf is at most n2. 	


5.2 Finite Rank of Nested Hankel Matrix Implies Recognizability

Theorem 4 (The SVD Theorem, See [35]). Let N ∈ Fm×n be a non-zero
matrix, where F = R or F = C. Then there exist orthogonal matrices

X = [x1 . . .xm] ∈ Fm×m, Y = [y1 . . .yn] ∈ Fn×n

such that
Y T NX = diag(σ1, . . . , σp) ∈ Fm×n

where p = min{m,n}, diag(σ1, . . . , σp) is a diagonal matrix with the values
σ1, . . . , σp, and σ1 ≥ σ2 ≥ . . . ≥ σp.
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As a consequence, if we define r by σ1 ≥ . . . ≥ σr > σr+1 = . . . = 0, then we
have the SVD expansion of N :

N =
r∑

i=1

σixiyT
i

In particular, if N is of rank r = 1, then N = xyT .
The SVD is perhaps the most important factorization for real and complex

matrices. It is used in matrix approximation techniques, signal processing, com-
putational statistics, and many more areas. See [32,42,57] and references therein.

Lemma 5. Let f : WNW (Σ) → F and let its nested Hankel matrix nHf have
finite rank r(nHf ) ≤ n2 with spanning rows B = {w1,1, . . . , wn,n}. There are

• matrices Mwi,j
∈ Fn×n for wi,j ∈ B,

• vectors α,η ∈ Fn,

• matrices Ma for a ∈ Σint, and

• matrices M
(c,γ)
call and M

(r,γ)
ret for γ ∈ Γ , and c ∈ Σcall, r ∈ Σret,

such that the following equations hold:

f(wi,j) = αT · Mwi,j
· η (1)

f(a) = αT · Ma · η (2)

f(cwi,jr) = αT

⎛

⎝
∑

γ∈Γ

M
(c,γ)
call · Mwi,j

· M
(r,γ)
ret

⎞

⎠ η (3)

Proof. Consider the matrix N ∈ Fn×n defined as N(i, j) = f(w1,j). By
Theorem 4, since N has rank 1, there exist vectors x,y ∈ Fn such that N = xyT .
Set η = y and α = x, and Mwi,j

= βi,j · A(i,j), where βi,j = f(wi,j)f(w1,j)−1.
Note that for w1,j , we have β1,j = 1 and Mw1,j

= A(1,j).
We need to show that αT · Mwi,j

· η = f(wi,j) for wi,j ∈ B. Since the entries
of Mwi,j

are zero except for entry (i, j), we have

αT · Mwi,j
· η = α(i) · βi,j · η(j) (4)

Since α(i)η(j) = f(w1,j), we have

αT · Mwi,j
· η = βi,j · f(w1,j) = f(wi,j) · f(w1,j)−1 · f(w1,j) = f(wi,j)

and Eq. 1 holds.
Let ra denote the row in nHf corresponding to some letter a ∈ Σint. B spans

the matrix, so there is a linear combination

ra =
∑

1≤i,j≤n

z(a)i,j · rwi,j
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and in particular, f(a) = ra(ε) =
∑

1≤i,j≤n z(a)i,jf(wi,j).
Set

Ma =
∑

1≤i,j≤n

z(a)i,jMwi,j

We need to show that f(a) = αT · Ma · η. We have

αT · Ma · η = αT ·
⎛

⎝
∑

1≤i,j≤n

z(a)i,jMwi,j

⎞

⎠·η =
∑

1≤i,j≤n

z(a)i,j

(
αT Mwi,j

η
)

=
∑

1≤i,j≤n

z(a)i,jf(wi,j) = f(a)

and Eq. 2 holds.
Lastly, we show there exist matrices M c,γ

call and Mr,γ
ret for c ∈ Σcall, r ∈ Σret

and γ ∈ Γ such that Eq. 3 holds. The summation in Eq. 3 can be replaced by
multiplication of block matrices as follows. In the sequel, all the defined matrices
are n2×n2 block matrices with n blocks of n×n matrices. We define the following
notation, given any matrices M c,i

call and Mr,j
ret for i = 1, . . . , n.

• M c
call is the matrix where the ith block is M c,i

call.

• Mr
ret is the matrix where the jth block is Mr,j

ret.

• M̃wi,j
is the matrix where each block is Mwi,j

. That is, Mwi,j
is repeated along

the diagonal n times.

• α̃ denotes the column vector of length n2 which is the vertical concatenation
of α for n times. η̃ is defined similarly for η.

There exist matrices M c,γ
call and Mr,γ

ret , where γ ∈ Γ , such that Eq. 3 holds if and
only if:

f(cwi,jr) = α̃T · M c
call · M̃wi,j

· Mr
ret · η̃ (5)

Consider matrices of the following form. For a matrix M c,γ
call, the only row which

is not zero is the row associated with γ. We denote this row vector by qc,γ . For
a matrix Mr,γ

ret , the column associated with γ is the only column which is not
zero. We denote this column vector by qr,γ .
Then there exist matrices of the above form such that Eq. 5 holds if and only if

f(cwi,jr) =
n∑

k=1

α(i)(qc,k(i) · βi,j · qr,k(j))η(j)

= (α(i) · βi,j · η(j))
n∑

k=1

qc,k(i) · qr,k(j)

if and only if the n × n matrix N(i, j) = f(cwi,jr) · (α(i)βi,jη(j))−1 has a
decomposition N =

∑n
k=1 q

c,k · qr,k. Since N has rank ≤ n, Theorem 4 implies
this decomposition exists. Therefore there exist matrices M

(c,i)
call and M

(r,j)
ret , of

the form described above, such that Eq. 3 holds. 	
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We are now ready to prove the second direction of Theorem 2.

Theorem 6. Let f : WNW (Σ) → F have a nested Hankel matrix nHf of rank
≤ n2. Then f is recognizable by a weighted visibly pushdown automaton A with
n states.

Proof. Use Lemma 5 to build a WVPA A with n states, and set M
(A)
ε = I. It

remains to show that M
(A)
ut = M

(A)
u · M

(A)
t , for u, t ∈ WNW (Σ).

Note that we defined the matrices M
(A)
wi,j such that rwi,j

= v(i,j) up to a
constant factor. We show that if ru =

∑
1≤i,j≤n M

(A)
u (i, j) · v(i,j) and rt =

∑
1≤i,j≤n M

(A)
t (i, j) · v(i,j), then

rut =
∑

1≤i,j≤n

(M (A)
u · M

(A)
t )(i, j) · v(i,j)

Or, equivalently, that for every w ∈ WNW (Σ),

rut(w) = αT · M (A)(u) · M (A)(t) · M (A)(w) · η

Consider the linear combination:

vut =
∑

1≤i,j≤n

(M (A)
u · M

(A)
t )(i, j) · v(i,j) =

∑

1≤i,k,j≤n

M (A)
u (i, k) · M

(A)
t (k, j) · v(i,j)

Then, for w ∈ WNW (Σ) we have

vut(w) =
∑

1≤i,k,j≤n

M (A)
u (i, k) · M

(A)
t (k, j) · v(i,j)(w)

=
∑

1≤i,k,j≤n

M (A)
u (i, k) · M

(A)
t (k, j) ·

(
αT · A(i,j)M (A)

w · η
)

Note that for N = A(i,j)M
(A)
w , the row i of N is row j of M

(A)
w and all other

rows are zero. Then

vut(w) =
∑

1≤i,k,j≤n

M (A)
u (i, k) · M

(A)
t (k, j) ·

(
n∑

l=1

α(i)M (A)
w (j, l) · η(l)

)

=
∑

1≤i,k,j,l≤n

α(i) · M (A)
u (i, k) · M

(A)
t (k, j) · M (A)

w (j, l) · η(l)

= αT · M (A)
u · M

(A)
t · M (A)

w · η = rut(w)

	

From Theorems 3 and 6 we have our main result, Theorem2.

Acknowledgments. We thank Boaz Blankrot for helpful discussions on matrix
decompositions and the anonymous referees for valuable feedback.
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Abstract. We prove that the class of linear context-free tree languages
is not closed under inverse linear tree homomorphisms. The proof is by
contradiction: we encode Dyck words into a context-free tree language
and prove that its preimage under a certain linear tree homomorphism
cannot be generated by any context-free tree grammar. However, the
closure can be proved for the linear monadic context-free tree languages.

1 Introduction

Context-free tree grammars (cftg), introduced by Rounds [10], generalize the
concept of context-free rewriting to the realm of tree languages. In general, cftg
can copy parts of a sentential form in the application of a production, and a
lot of their complexity in comparison to regular tree grammars is due to the
interplay between copying and nondeterminism (cf. e.g. [5]).

Recently, there has been renewed interest in cftg in natural language process-
ing, where trees are used to express the structure of the processed sentences. In
this area only non-copying, or linear, cftg (l-cftg) are considered, as copying adds
too much undesired power when it comes to linguistic applications.

The modular design of syntax-based language processing systems requires
that the used class of tree languages C possesses certain closure properties. In
particular, for translation tasks it is important that C is closed under inverse
linear tree homomorphisms. But this closure property does not hold when C is
the class of context-free tree languages [1]. The proof in [1] works by constructing
a copying cftg G, and the preimage of the tree language of G under a certain
tree homomorphism is shown to be non-context-free.

But since copying is not required anyway – are maybe the linear context-free
tree languages closed under inverse linear tree homomorphisms? In this work,
we answer this question in the negative: there are an l-cftg Gex and a linear tree
homomorphism h such that L = h−1(L(Gex)) is not a context-free tree language
(where L(Gex) is the tree language of Gex).
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The intuition behind our proof is as follows. Every tree t in L is of the form
σ σ · · · σ σ #

# u1

#
v1

#
u2

#
vn−1

#
un

#
vn

#
#

for some n ≥ 1 and monadic trees u1, v1, . . . , un, vn. Here, the root of t is the
leftmost symbol σ. The subtrees ui, vi, called chains in the following, are built
up over a parenthesis alphabet, such that the chains ui contain only opening
parentheses, the chains vi only closing parentheses, and uR

1 v1 · · · uR
n vn is a well-

parenthesized word (wR denotes the reversal of the word w).
If one were to cut such a tree t into two parts t1 and t2, right through an

edge between two σs, then one could observe that there are some chains uj in
t1 which contain opening parentheses which are not closed in t1, but only in t2.
A similar observation holds of course for some chains vj in t2. The “unclosed”
parts of the chains uj and vj will be called their defects.

We assume that there is some (not necessarily linear) cftg G with L(G) = L,
and show that if G exists, then it can be assumed to be of a special normal form.
We analyze the derivations of such a G in normal form. A derivation of a tree t
will be shown to cut t into two pieces as described above, as it must branch at
some moment of the derivation. If G exists, it must therefore prepare the defects
of t1 and t2 such that they “fit together” before the derivation branches. But
there are only finitely many nonterminal parameters in which the defects could
be prepared. We give a sequence of trees in L such that the number of their
defects is strictly increasing, no matter how they are cut apart. Then there is
some tree t in this sequence whose defects cannot be prepared fully. Hence it is
possible to show by a pumping argument that if t ∈ L(G), then there is also a
tree t′ ∈ L(G) whose respective parts do not fit together, and therefore t′ /∈ L.
Thus the existence of G is ruled out.

We conclude our work by stating a positive result: the tree languages of lin-
ear monadic cftg (lm-cftg), i.e. of l-cftg where each nonterminal has at most
one parameter, are closed under inverse linear tree homomorphisms. The impor-
tance of lm-cftg is underscored by their expressive equivalence to the well-known
linguistic formalism of tree-adjoining grammars [7,8].

Due to space limitations, some proofs had to be omitted. The reader can find
an extended version of this paper, with all proofs, on arXiv [9].

2 Preliminaries

The set of natural numbers with zero is denoted by N. For every m, n ∈ N, the
set {i ∈ N | m ≤ i ≤ n} is denoted by [m,n], and the set [1, n] by [n]. We use the
standard notions from formal language theory. In particular, the empty word is
denoted by ε, the length of a word w by |w|, and the reversal of w by wR. The
Dyck language over a parenthesis alphabet A is denoted by D∗

A and the Dyck
congruence is ≡.

An alphabet Σ equipped with a function rkΣ : Σ → N is a ranked alphabet.
Let Σ be a ranked alphabet. When Σ is obvious, we write rk instead of rkΣ . Let
k ∈ N. Then Σ(k) = rk−1(k). We often write σ(k) and mean that rk(σ) = k.
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Let U be a set and Λ denote Σ∪U ∪C, where C consists of the three symbols
‘(’, ‘)’, and ‘,’. The set TΣ(U) of trees (over Σ indexed by U) is the smallest set
T ⊆ Λ∗ such that U ⊆ T , and for every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ T , we
also have that σ(t1, . . . , tk) ∈ T . A tree γ(t), γ ∈ Σ(1), is abbreviated by γt, and
TΣ(∅) by TΣ . The notation γt suggests a bijection between Σ∗U and TΣ(U) for
monadic ranked alphabets Σ (i.e. Σ = Σ(1)), and in fact we will often confuse
such monadic trees with words.

Let s, t ∈ TΣ(U). The set of positions of t is denoted by pos(t) ⊆ N
∗, and

the number of occurrences of a symbol σ ∈ Σ in t by |t|σ. The size of t is
|t| =

∑
σ∈Σ |t|σ. Denote the label of t at its position w by t(w), and the subtree

of t at w by t|w. The result of replacing the subtree t|w in t by s is t[s]w. Fix the
infinite set of variables X = {x1, x2, . . .}. For each k ∈ N, let Xk = {xi | i ∈ [k]}.
Given n, k ∈ N, t ∈ TΣ(Xn), and s1, . . . , sn ∈ TΣ(Xk), denote by t[s1, . . . , sn]
the result of substituting si for each occurrence of xi in t, where i ∈ [n]. When
no other variable is used, we will also write x instead of x1.

We use notation associated with magmoids [2,3]. Let k, n ∈ N. Then the
set {〈k, t1, . . . , tn〉 | t1, . . . , tn ∈ TΣ(Xk)} is denoted by T(Σ)n

k . From now on we
omit the component k from such a tuple. We identify the sets TΣ(Xk) and T(Σ)1k
and write t instead of 〈t〉. The tree σ(x1, . . . , xk) ∈ T(Σ)1k is identified with the
symbol σ ∈ Σ(k). In particular, we can write α instead of α(), for α ∈ Σ(0).
The set of all u ∈ T(Σ)n

k such that the left-to-right sequence of variables in u

is x1, . . . , xk is denoted by T̃(Σ)n
k . The set Θn

k of torsions is {〈xi1 , . . . , xin
〉 |

i1, . . . , in ∈ [k]}. Note that Θn
k ⊆ T(Σ)n

k . The torsion 〈x1, . . . , xn〉 ∈ Θn
n is

denoted by Idn, and the torsion 〈xi〉 ∈ T(Σ)1k, i ∈ [k], by πk
i (when k is clear

from the context, we write πi instead). A tuple u ∈ T̃(Σ)n
k is called torsion-free.

Let n, 	, k ∈ N, and let u = 〈u1, . . . , un〉 ∈ T(Σ)n
� , v = 〈v1, . . . , v�〉 ∈ T(Σ)�

k.
We define u · v ∈ T(Σ)n

k by u · v =
〈
u1[v1, . . . , v�], . . . , un[v1, . . . , v�]

〉
. Note that

the operation · is associative. If u ∈ T(Σ)n
n, then let u0 = Idn and u(j+1) = u ·uj

for every j ∈ N. Moreover, if u ∈ T(Σ)n
k and v ∈ T(Σ)�

k, define [u, v] ∈ T(Σ)n+�
k

by [u, v] = 〈u1, . . . , un, v1, . . . , v�〉. Clearly, this operation is associative, so we
will write, e.g., [u, v, t] instead of [[u, v], t].

Let us introduce the following auxiliary notation. Let n, k ∈ N. Then S(Σ)n
k ={

[u, xk+1]
∣∣ u ∈ T(Σ)n

k

}
, S̃(Σ)n

k = T̃(Σ)n+1
k+1 ∩ S(Σ)n

k , and Θ̂n
k = Θn+1

k+1 ∩ S(Σ)n
k .

Moreover, for every s ∈ T(Σ)1n+1 and t ∈ T(Σ)1k, let s �t = s · [Idn, t]. For
example, let t = σ(b(x2), x1, x5), then t

�

t = σ
(
b(x2), x1, σ(b(x2), x1, x5)

)
. We

assume · to bind stronger than �. So, for instance, t·u �

s·v means (t·u) �(s·v).
A context-free tree grammar (cftg) over Σ is a tuple G = (N,Σ, η0, P ) such

that Σ and N are disjoint ranked alphabets (of terminal resp. nonterminal
symbols), η0 ∈ T(N ∪Σ)10 (the axiom) and P is a finite set of productions of the
form A(x1, . . . , xk) → t for some k ∈ N, A ∈ N (k), and t ∈ T(N ∪ Σ)1k. By the
above convention, such a production can be abbreviated by A → t.

The cftg G is said to be linear if in every production A → t in P the right-
hand side t contains each variable xi, i ∈ [k], at most once. Further, G is monadic
if N = N (0) ∪ N (1). Linear (and monadic) cftg are abbreviated l-cftg (lm-cftg).
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Let G = (N,Σ, η0, P ) be a cftg, and let n, k ∈ N. Given η, ζ ∈ T(N ∪ Σ)1n,
we write η ⇒G ζ if there are A → t in P , A ∈ N (k), and κ ∈ T(N ∪ Σ)1n+1,
τ ∈ T(N ∪ Σ)k

n such that κ contains xn+1 exactly once, η = κ · [Idn, A · τ ] and
ζ = κ · [Idn, t · τ ]. Let η ∈ T(N ∪ Σ)1n. Then the set {t ∈ T(Σ)1n | η ⇒∗

G t} is
denoted by L(G, η), and the tree language of G, denoted by L(G), is L(G, η0).
We call L ⊆ T(Σ)10 a (linear) (monadic) context-free tree language if there is a
(linear) (monadic) cftg G with L = L(G). Two cftg G and G′ are equivalent if
L(G) = L(G′).

Let Σ and Δ be ranked alphabets. A mapping h : Σ → TΔ(X) is said to be
a tree homomorphism if h

(
Σ(k)

) ⊆ TΔ(Xk) for every k ∈ N. We extend h to a
mapping ĥ : TΣ(X) → TΔ(X) by setting ĥ(xi) = xi for every i ∈ N and

ĥ(σ(t1, . . . , tk)) = h(σ)[ĥ(t1), . . . , ĥ(tk)]

for every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(X). In the following, we will no
longer distinguish between h and ĥ. Recall the following properties of tree homo-
morphisms (e.g. from [4]). Let h : TΣ(X) → TΔ(X) be a tree homomorphism.
We say that h is linear (resp. nondeleting) if for every k ∈ N, σ ∈ Σ(k), and
i ∈ [k], xi occurs at most (resp. at least) once in h(σ). A linear and nondeleting
tree homomorphism is called simple. Finally, h is strict if h(Σ) ∩ X = ∅.

3 The Tree Language L

We start out by introducing the l-cftg Gex. The preimage L of L(Gex) under a
simple tree homomorphism h, introduced afterwards, will be shown to be non-
context-free later on.

Let Δ = {δ
(2)
1 , δ

(2)
2 ,#(0)} ∪ Γ , where Γ = {a(1), b(1), c(1), d(1)}. Consider the

linear cftg Gex = (Nex,Δ, ηex, Pex) with nonterminal set Nex = {A(3)}, axiom
ηex = δ1

(
#, A(c#, d#, δ2(#,#))

)
, and productions in Pex given by

A → A(ax1, bx2, x3) + A
(
ccx1, d#, A(c#, ddx2, x3)

)
+ δ2

(
cx1, δ1(dx2, x3)

)
.

Example 1. The following is an example derivation of a tree in L(Gex).

ηex ⇒∗
Gex

δ1(#, x) �A(c2a2c#, d#, x) �A(c#, d2b2d#, x) �δ2(#,#)

⇒∗
Gex

δ1(#, x) �δ2(cac2a2c#, x) �δ1(dbd#, x)

�

δ2(ca2c#, x) �

δ1(db2d2b2d#, x) �

δ2(#,#) .

Let Σ = {σ(3),#(0)} ∪ Γ and let h : TΣ(X) → TΔ(X) be such that

h(σ(x1, x2, x3)) = δ1(x1, δ2(x2, x3)) and h(ω) = ω for each ω ∈ Σ \ {σ} .

Note that h is injective, strict, and simple. In the following, we will analyse the
tree language L = h−1(L(Gex)). It is easy to see that every t ∈ L is of the form

σ
(
#, u1#, x

) �σ
(
v1#, u2#, x

) �· · · �σ
(
vn−1#, un#, x

) �σ
(
vn#,#,#

)
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for some n ≥ 1, and ui ∈ (ca∗c)+, vi ∈ (db∗d)+, for each i ∈ [n]. In general,
given a tree t of the form

σ
(
v1#, u1#, x

) �· · · �σ
(
vn#, un#, ζ

)
with n ≥ 1 , ζ ∈ {#} ∪ X , (1)

where vi ∈ (db∗d)∗ and ui ∈ (ca∗c)∗, i ∈ [n], we will call the monadic subtrees
uj (resp. vj) of t the a-chains (resp. the b-chains) of t. A chain is either an
a- or a b-chain. The rightmost root-to-leaf path in t (that is labeled σ · · · σζ) will
be referred to as t’s spine.

For every tree t of the form as in (1), we let ι(t) = v1u
R
1 v2u

R
2 · · · vnuR

n . We
view Γ as a parenthesis alphabet, such that b acts as right inverse to a, and d
to c. Then ι(t) is a Dyck word, for every t ∈ L.

Proposition 2. For every t ∈ L, ι(t) ∈ D∗
Γ .

There is the following relation between the numbers of symbols in t ∈ L.

Proposition 3. For every t ∈ L, |t|c = |t|d = 4 · |t|σ − 6.

Both propositions are proved by induction on the derivations in Gex. Each
chain of t ∈ L is determined by the other chains of t, because ι(t) is a Dyck
word, and every chain contains either only symbols from {a, c}, or from {b, d}.

Observation 4. Let t ∈ L, let w ∈ pos(t) with t(w) ∈ Γ ∪ {#}, and let s =
t[x1]w. There is exactly one u ∈ T(Γ ∪ {#})10 such that s · u ∈ L.

Example 5. The preimage under h of the tree from Example 1 is

t = σ(#, cac2a2c#, x) �σ(dbd#, ca2c#, x) �σ(db2d2b2d#,#,#) .

We have ι(t) = ca2c2acdbdca2cdb2d2b2d, and one can verify that ι(t) ∈ D∗
Γ .

In the following sections, we prove the following theorem.

Theorem 6. The preimage of the linear context-free tree language L(Gex) under
the injective, strict, and simple tree homomorphism h is not context-free.

Corollary 7. The class of linear context-free tree languages is not closed under
inverse linear tree homomorphisms.

The theorem might seem surprising, as L and L(Gex) are nearly the same:
their only difference is that σ is split up into δ1 and δ2. However, this separation
gives Gex the power to create the chains under δ1 and δ2 independently, while
a cftg generating L would have to derive them simultaneously. As described
in the introduction, and proved further on, this would require nonterminals of
unbounded rank and is therefore impossible.

Assume that there is a cftg G with L(G) = L. The following lemma shows
that then G may be chosen to be of a very constrained form. Due to space
restrictions, we cannot reproduce its proof (but see [9]). In a nutshell, the lemma
follows from two properties which hold for every t ∈ L: (i) that t has a spine,
and (ii) that each chain of t is determined by its siblings (see Observation 4).
This means that a derivation’s nondeterminism is confined to the spine of t, and
the productions of G are quite close to those of context-free word grammars.
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Lemma 8. We may assume that G is of the form G = (N,Σ, η0, P ), such that
N = N (p+1) for some p ∈ N, η0 = S(#, . . . ,#) for some S ∈ N and every
production in P is of the form

A → B · u , A → B · ϑ1

�

C · ϑ2 , or A → σ(xi, xj , xp+1) ,

where u ∈ S̃(Γ )p
p, ϑ1, ϑ2 ∈ Θ̂p

p, i, j ∈ [p], and A, B, C ∈ N .

Assume until contradiction that there is a cftg G of the form in Lemma8
such that L(G) = L. Let χ denote the tuple 〈#, . . . ,#〉. Then η0 = S · χ.

4 Derivation Trees

A derivation of a tree t ∈ L(G) can be described faithfully by a binary tree κ.1

These derivation trees will help us analyze the structure of the derivations in G.
Formally, let κ be a binary tree such that each position δ ∈ pos(κ) is equipped

with two nonterminal symbols Aδ and Bδ ∈ N , a torsion-free tuple sδ ∈ S̃(Γ )p
p,

a torsion ϑδ ∈ Θ̂p
p, and two numbers iδ and jδ ∈ [p]. Then κ is an (Aε, ϑε)-

derivation tree if for every δ ∈ pos(κ),

(i) Aδ ⇒∗
G Bδ · sδ,

(ii) if δ is a leaf of κ, then the production Bδ → σ(xiδ
, xjδ

, xp+1) is in P ,
(iii) otherwise, Bδ → Aδ1 · ϑδ1

�
Aδ2 · ϑδ2 is a production in P .

Let t ∈ T(Σ)1p+1. Then κ is an (Aε, ϑε)-derivation tree of t (or: κ derives t) if
either κ has only one node and t = σ(xiε

, xjε
, xp+1)·sε·ϑε, or, otherwise, there are

t1, t2 ∈ T(Σ)1p+1 such that κ|1 derives t1, κ|2 derives t2, and t = (t1

�t2) ·sε ·ϑε.
An (S, Idp+1)-derivation tree (of t) will simply be called a derivation tree (of t).
There is the following relation between derivations and derivation trees.

Proposition 9. Let t ∈ T(Σ)1p+1, let A ∈ N , and ϑ ∈ Θ̂p
p. Then A · ϑ ⇒∗

G t if
and only if there is an (A, ϑ)-derivation tree of t.

As a direct corollary, t · χ ∈ L if and only if there is a derivation tree of t. We
close our discussion of derivation trees with the following pumping lemma. It
states that if there is some sδ in κ which has a sufficiently large component,
then an iterable pair of nonterminals occurs in the derivation of sδ.

In the sequel, fix the pumping number H = |N | · hmax, where hmax is the
maximal size of a component of u in a production of G of form A → B ·u.

Lemma 10. Let κ be a derivation tree and δ ∈ pos(κ). If there are i ∈ [p]
and w, w′ ∈ Γ ∗ such that πi · sδ = w′wxi and |w| > H, then there exist v, y,
z ∈ S̃(Σ)p

p such that (i) sδ = v ·y ·z, (ii) πi ·y ·z is a suffix of wxi, (iii) |πi ·y| > 0,
and (iv) for each j ∈ N, Aδ ⇒∗

G Bδ · v · yj · z.

1 As a prefix-closed subset pos(κ) ⊆ {1, 2}∗ and such that w1 ∈ pos(κ) iff w2 ∈ pos(κ).
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5 Dyck Words and Sequences of Chains

This section prepares some necessary notions for the upcoming counterexample.
We introduce a sequence U1, U2, . . . of Dyck words. Later, an element of this
sequence will contribute the chains to the tree t used in the counterexample. As
described in the introduction, the proof revolves around the factorization of t
into trees t1 and t2 that is induced by a derivation of t. So we will analyze the
corresponding factorizations of the Dyck words Ui.

Moreover, we will introduce here the notion of defects, which can be under-
stood as the “unclosed parentheses” in t1, resp. t2. Finally, a lemma on pertur-
bations is given, which will be used to show that if the defects in t1 are modified
(or: perturbed), then the word formed by the chains of the resulting tree lies in
another Dyck congruence class. This implies that the resulting tree does not “fit
together” with t2 any longer.

Let q = 2p, and let m = 2q−1 + 1. For every i ∈ N, let αi = caimHc and
βi = dbimHd. Note that αR

i = αi, and βR
i = βi. Define the sequence U1, U2, . . .

of words over Γ by U1 = α1β1 and Ui+1 = αi+1UiUiβi+1 for every i ≥ 1.

Observation 11. For every i ≥ 1,

(1) Ui ∈ D∗
Γ , and

(2) Ui = u1v1 · · · unvn, where n = 2i−1, uj ∈ (ca+c)+, vj ∈ (db+d)+, j ∈ [n].

For each Ui of the above form, let Zi = 〈uR
1 , v1, . . . , u

R
n , vn〉. The components uR

�

and v� of Zi will also be called chains, as later on they will end up as the chains
of some t ∈ L. For every factorization of Zi into

Z ′
i = 〈uR

1 , v1, u
R
2 , v2, . . . , u

R
j 〉 and Z ′′

i = 〈vj , u
R
j+1, vj+1, . . . , u

R
n , vn〉 , j ∈ [n] ,

consider the factors Pi,j = u1v1u2v2 · · · uj and Si,j = vjuj+1vj+1 · · · unvn of Ui.

Proposition 12. The factors Pi,j and Si,j can be written as

Pi,j = αiVi−1αi−1 · · · V1α1 and Si,j = β1W1 · · · βi−1Wi−1βi , (2)

such that V�, W� ∈ {ε, U�} and V� �= W� for every 	 ∈ [i − 1].

Proof. By induction on i. The base case U1 = α1β1 has only one factoriza-
tion, P1,1 = α1 and S1,1 = β1, which fulfills the property. Let i ≥ 1 and
consider Ui+1 = αi+1UiUiβi+1. A factorization Pi+1,jSi+1,j of Ui+1 induces a
factorization of either the first or the second occurrence of Ui into, say Pi,j′

and Si,j′ for some j′ ∈ [2i−1]. Therefore, Ui+1 = αi+1ViPi,j′Si,j′Wiβi+1 for Vi,
Wi ∈ {ε, Ui} with Vi �= Wi. By induction, Pi,j′ = αiVi−1αi−1 · · · V1α1, and
therefore Pi+1,j = αi+1ViαiVi−1αi−1 · · · V1α1, for Vi, . . . , V1 as given above. The
same kind of argument works for Si+1,j . ��

Let Ui be factorized into Pi,j and Si,j as in (2). We denote by Di,j the word

$αiV
′
i−1αi−1 · · · V ′

1α1$β1W
′
1 · · · βi−1W

′
i−1βi$
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over Γ ∪{$}, where for every 	 ∈ [i− 1], V ′
� = $ if V� = U�, and V ′

� = ε if V� = ε,
and, analogously, W ′

� = $ if W� = U�, and W ′
� = ε if W� = ε. Let 	, k ∈ N with

	 ≤ k. We say that a word γ = α� · · · αk (resp. γ = β� · · · βk) is an a-defect (resp.
a b-defect) in Di,j if $γR$ (resp. $γ$) occurs in Di,j . When the factorization is
clear, the reference to Di,j is omitted. Both a-defects and b-defects will be called
defects. A chain in Zi whose suffix is a defect is called a critical chain.

Proposition 13. Consider a factorization of Ui into Pi,j and Si,j.
(1) There is no 	 ∈ [i] such that α� (or β�) occurs in two distinct defects.
(2) The number of defects in Di,j is i + 1.
(3) Each a-defect (resp. b-defect) is the suffix of some chain un (resp. vn) in

Zi, with n ∈ [2i−1].

Proof. For (1), observe that the a-defects in Di,j are disjoint (non-overlapping)
factors of the word α1 · · · αi, analogously for the b-defects in Di,j . For (2), it is
easy to see from Proposition 12 that there are exactly i + 2 occurrences of the
symbol $ in Di,j . So there are i + 1 factors of the form $γ$ in Di,j , for γ ∈ Γ ∗.
By (1), the defects are pairwise distinct, so Di,j contains precisely i + 1 defects.

Regarding (3), let γ = α� · · · αk, 	 ≤ k, be an a-defect in Di,j and let

Di,j = D′$αk · · · α�︸ ︷︷ ︸
γR

$D′′ for some D′,D′′ ∈ (Γ ∪ {$})∗ .

By definition of Di,j , Pi,j is of the form Pi,j = P ′Ukαk · · · U�α�P
′′ for some

P ′, P ′′ ∈ Γ ∗ if k < i, and Pi,j = αk · · · U�α�P
′′ if k = i. As Uk ends with βk, γ

is the suffix of some chain un in Zi. A similar argument can be made if γ is a
b-defect. ��

Let P , P ′ ∈ (ca∗c)∗. We say that P ′ is a perturbation of P if it results from P
by modifying the exponents of a in P . More precisely, let P be of the form P =
w0a

f1w1 · · · w�−1a
f�w�, such that 	 ∈ N, w0, . . . , w� ∈ c∗, and for each i ∈ [	],

fi > 0. Then P ′ ∈ Γ ∗ is called a perturbation of P if P ′ = w0a
f ′
1w1 · · · w�−1a

f ′
�w�,

for some f ′
1, . . . , f ′

� ∈ N. The only perturbation of ε is ε itself.
Lemma 14. Consider a factorization of Ui into Pi,j and Si,j, and let P ′

i,j be a
perturbation of Pi,j, i.e.

Pi,j = αiVi−1αi−1 · · · V1α1 and P ′
i,j = α′

iV
′
i−1α

′
i−1 · · · V ′

1α
′
1 . (3)

Then P ′
i,j ≡ Pi,j if and only if V ′

� ≡ ε for every 	 ∈ [i− 1] and α′
� = α� for every

	 ∈ [i].

Proof. The direction “if” is trivial. For the other direction, one can prove by
induction that for every i > 0 and every perturbation U ′

i of Ui, either U ′
i ≡ ε or

U ′
i = cXd for some X �≡ ε. Let P ′

i,j ≡ Pi,j . As V� ∈ {U�, ε} for every 	 ∈ [i − 1],
Pi,j reduces to αi · · · α1. Assume that there is some 	 ∈ [i−1] with V ′

� �≡ ε. Then
the reduction of P ′

i,j would contain an occurrence of d, by the property shown
above. But this is in contradiction to the assumption that P ′

i,j ≡ Pi,j . Hence,
V ′
1 , . . . , V ′

i−1 ≡ ε. Then clearly also α′
� = α� for every 	 ∈ [i]. ��

Let us remark that an analogous lemma can be formulated for perturbations of
Si,j . However, we will only consider perturbations of Pi,j afterwards.
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σ · · · σ · · · σ · · · x1t1 =

α1

α2

α3

α4

α5

#

#

︸︷︷︸

uk

β1

β2

β3

#

α1

α2

α3

#
γ

U3

Fig. 1. Occurrence of a defect γ in the critical chain uk of t1

6 A Witness for L(G) �= L

In this section, we choose a tree t ∈ L whose chains form a sufficiently large word
Ui. By viewing a derivation tree κ of t, which induces a factorization t = t1

�t2,
we will see that the pumping lemma from Sect. 4 can be applied, and this leads
to a perturbation in the defects of t1. By Lemma 14, we receive the desired
contradiction.

Let Zq = 〈u1, v1, . . . , um−1, vm−1〉, recalling that m = 2q−1 + 1, and denote

σ(#, u1#, x) �σ(v1#, u2#, x) �· · · �σ(vm−2#, um−1#, x) �σ(vm−1#,#,#)

by t. Observe that t contains m occurrences of σ, and that ι(t) = Uq. Moreover,
it is easy to see that t ∈ L. The chains of t are of the form α1 · · · α�, resp.
β1 · · · β�, for some 	 ∈ [q]. As m > 1, there are t1, t2 ∈ T(Σ)11 such that

Aε · χ ⇒∗
G Bε · sε · χ ⇒G (A1 · ϑ1 · sε

�A2 · ϑ2 · sε) · χ ⇒∗
G t1

�t2 = t .

Since both t1 and t2 contain at least one occurrence of σ, there is a j ∈ [m − 1]
such that

t1 = σ(#, u1#, x) �σ(v1#, u2#, x) �· · · �σ(vj−1#, uj#, x) and
t2 = σ(vj#, uj+1#, x) �· · · �

σ(vm−2#, um−1#, x) �

σ(vm−1#,#,#) ,

and this factorization of t induces a factorization of Zq into Z ′ and Z ′′ with

Z ′ = 〈u1, v1, . . . , uj〉 and Z ′′ = 〈vj , . . . , um−1, vm−1〉 .

Example 15. Let us consider an example which relates the introduced concepts.
Figure 1 displays the critical chain uk in t1, whose defect is γ = α4α5. As uk

is critical, every a-chain uk′ in t1 to its right (i.e., with k′ > k) is of the form
α1 · · · α�, for some 	 ≤ 3. In our intuition, γ is a sequence of opening parentheses
which have no corresponding closing parenthesis in t1. Therefore, t2 must contain
a suitable sequence of closing parentheses. Formally, γR occurs in Pi,j as Pi,j =
P ′U5α5α4U3P

′′, so Di,j = D′$γR$D′′, for some P ′, P ′′ ∈ Γ ∗ and D′, D′′ ∈
(Γ ∪ {$})∗. Therefore, γ is indeed a defect by definition.
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By Proposition 13(2), the number of defects in Dq,j is q + 1 = 2p + 1. Thus
either t1 contains at least p + 1 critical chains, or t2 does. For the rest of this
work, assume that t1 contains at least p + 1 critical chains. The proofs for the
other case are obtained mainly by substituting b for a and β for α.

By Proposition 9, there are a t̂ ∈ T(Σ)1p+1 with t = t̂ · χ, and a derivation
tree κ of t̂. Note that the height of κ is at most m. Therefore |δ| < m for every
δ ∈ pos(κ). If δ = i1 · · · id, then we denote the prefix i1 · · · id−� of δ by δ�, for
every 	 ∈ [0, d]. In particular, δ0 = δ and δd = ε.

Let s ∈ S(Γ )p
p and w ∈ Γ ∗. If there is no possibility of confusion, we will

briefly say that w is a component of s if s has a component of the form wxi, for
some i ∈ [p].

Proposition 16. Let ui be an a-chain of t1, with i ∈ [j]. There is a leaf δ of
κ such that ui = w0 · · · wd, where d = |δ|, and w� is a component of sδ�

, for
	 ∈ [0, d]. Moreover, δd−1 = 1.

Proof. Every leaf node of κ contributes exactly one occurrence of σ to t. So the
chain ui is contributed to t by κ’s i-th leaf node δ, when enumerated from left
to right. Let d = |δ|. By tracing the path from δ to the root of κ, we see that

ui# = πjδ0
· sδ0 · ϑδ0 · · · sδd−1 · ϑδd−1 · sε · χ .

Therefore ui = w0 · · · wd, where w� is a component of sδ�
, for each 	 ∈ [0, d]. ��

In particular, wd is a component of sε. The next lemma is a consequence of
the fact that sε has only p components apart from xp+1.

Lemma 17. There is an a-defect γ whose critical chain is of the form w′w for
some w′, w ∈ Γ ∗ such that w is a component of sε, and |γ| > |w| + mH.

Proof. Since t1 contains more than p critical chains, by Proposition 16 and the
pigeonhole principle, there must be two critical chains, say uγαi and u′γ′αj ,
where γαi and γ′αj are distinct a-defects with i < j, such that

uγαi = w′w and u′γ′αj = w′′w for some w′, w′′ ∈ Γ ∗ ,

and some component w of sε. Observe that αi is not a suffix of w, as otherwise
αi would be a suffix of αj . Therefore |w| < |αi|, and hence

|w| + mH < |αi| + mH = |αi+1| ≤ |αj | ≤ |γ′αj | .

So the a-defect γ′αj satisfies the properties in the lemma. ��
Theorem 18. There is some t′ ∈ L(G) \ L.

Proof. Let γ be the a-defect from Lemma 17. Assume that γ’s critical chain in
t1 is uk, where k ∈ [j]. Then uk = w0 · · · wd, where w� is a component of s�, for
each 	 ∈ [0, d]. Moreover, |γ| > |wd| + mH. Let f be the largest number such
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that wf · · · wd has γ as suffix, then f ∈ [0, . . . , d − 1], and there are w, w′ ∈ Γ ∗

such that wf = w′w and γ = wwf+1 · · · wd.
Since d < m and |wwf+1 · · · wd−1| > mH, there is a w̃ ∈ {w,wf+1, . . . , wd−1}

such that |w̃| > H. In other words, there is an 	 ∈ [f, d − 1] such that Aδ�
⇒∗

G

Bδ�
·sδ�

, and there is some i ∈ [p] such that either (i) 	 = f and πi ·sδ�
= w′w̃xi,

or (ii) 	 �= f and πi · sδ�
= w̃xi. In both cases Lemma 10 can be applied, and we

receive that sδ�
= v · y · z, and by pumping zero times, also Aδ�

⇒∗
G Bδ�

· v · z.
Therefore a derivation tree κ′ can be constructed from κ by replacing the tuple
sδ�

by v · z. As δ� begins with the symbol 1, this alteration does only concern
t1, thus κ′ derives a tree t̂′ ∈ T(Σ)1p+1 such that t̂′ · χ = t′1

�

t2, for some
t′1 ∈ T(Σ)11. Denote t̂′ · χ by t′.

Let us compare the k-th a-chain u′
k of t′1 to uk. Assume that the i-th compo-

nents of v, y, and z are, respectively, v′xi, y′xi and z′xi. Then in case (i), there
is a w′′ ∈ Γ ∗ such that v′ = w′w′′, as y′z′ is a suffix of w. Therefore,

uk = w1 · · · w′ w′′y′z′wf+1 · · · wd︸ ︷︷ ︸
γ

, u′
k = w1 · · · w′w′′z′wf+1 · · · wd .

In case (ii),

uk = w1 · · · wwf+1 · · · w�−1v
′y′z′w�+1 · · · wd︸ ︷︷ ︸

γ

, u′
k = w1 · · · w�−1v

′z′w�+1 · · · wd .

It is easy to see that |t′|σ = |t|σ, as the shape of κ was not modified. Thus Propo-
sition 3 implies that if t′ ∈ L, then also |t′|c = |t|c and |t′|d = |t|d. In particular,
y′ ∈ a∗. Therefore, both in case (i) and (ii), P ′

i,j = ι(t′1) is a perturbation of Pi,j .
Say that Pi,j and P ′

i,j are of the form as in (3). Since |y′| > 0 by Lemma 10, at
least one a was removed from the occurrence of γR in Pi,j . Therefore, there is
some e ∈ [q] such that αe �= α′

e. By Lemma 14, therefore P ′
i,j �≡ Pi,j , and hence

ι(t′) ≡ ι(t′1) ι(t2) �≡ ι(t1) ι(t2) ≡ ε .

So ι(t′) /∈ D∗
Γ , and by Proposition 2, t′ /∈ L. ��

Therefore, there is no cftg G with L(G) = h−1(L(Gex)), and we have proven
Theorem 6. We close this paper with the positive result announced in the intro-
duction.

Theorem 19. The class of linear monadic context-free tree languages is closed
under inverse linear tree homomorphisms.

The proof of this theorem, omitted due to space constraints and to be found
in [9], is based on the Greibach normal form of lm-cftg [6]. In fact, the closure of
Greibach cftg under inverse linear tree homomorphisms was already proven [4],
but this construction results in a copying cftg of higher nonterminal rank. Our
proof follows the same line as the one in [4]. As every linear tree homomorphism
can be decomposed into a linear alphabetic and a finite number of elementary
ordered tree homomorphisms, it suffices to prove the closure of lm-cftg under
the inverse of these restricted types. The respective proofs rely heavily on the
Greibach normal form and are akin to those in [4].
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7 Conclusion

In this work, we proved that the class of linear context-free tree languages is not
closed under inverse linear tree homomorphisms. However, the tree languages of
linear monadic context-free tree grammars, which are employed in praxis under
the pseudonym of tree-adjoining grammars, are closed under this operation.

In applications which require nonmonadicity and closure under inverse homo-
morphisms, it may prove beneficial to revisit the formalism of k-algebraic gram-
mars, i.e. context-free tree grammars over magmoids, where a nonterminal may
derive a tuple of trees [2, Chapter V]. The class of languages defined by this type
of grammar is indeed closed under inverse linear tree homomorphisms.
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Control 46(2), 108–134 (1980)

5. Engelfriet, J., Schmidt, E.M.: IO and OI. J. Comput. Syst. Sci. 15(3), 328–353
(1977) and 16(1), 67–99 (1978)

6. Fujiyoshi, A.: Analogical conception of Chomsky normal form and Greibach nor-
mal form for linear, monadic context-free tree grammars. IEICE Trans. Inf. Syst.
E89–D(12), 2933–2938 (2006)

7. Gebhardt, K., Osterholzer, J.: A direct link between tree adjoining and context-free
tree grammars. In: Proceedings of FSMNLP (2015)

8. Kepser, S., Rogers, J.: The equivalence of tree adjoining grammars and monadic
linear context-free tree grammars. J. Log. Lang. Inf. 20(3), 361–384 (2011)

9. Osterholzer, J., Dietze, T., Herrmann, L.: Linear context-free tree languages and
inverse homomorphisms. http://arxiv.org/abs/1510.04881

10. Rounds, W.C.: Mappings and grammars on trees. Theor. Comput. Syst. 4(3),
257–287 (1970)

http://arxiv.org/abs/1510.04881


Language Varieties and Semigroups



Scalar Ambiguity and Freeness in Matrix
Semigroups over Bounded Languages

Paul C. Bell1(B), Shang Chen1, and Lisa Jackson2

1 Department of Computer Science, Loughborough University,
Loughborough LE11-3TU, UK

{P.Bell,S.Chen3}@lboro.ac.uk
2 Department of Aeronautical and Automobile Engineering,
Loughborough University, Loughborough LE11-3TU, UK

L.M.Jackson@lboro.ac.uk

Abstract. There has been much research into freeness properties of
finitely generated matrix semigroups under various constraints, mainly
related to the dimensions of the generator matrices and the semiring over
which the matrices are defined. A recent paper has also investigated free-
ness properties of matrices within a bounded language of matrices, which
are of the form M1M2 · · · Mk ⊆ F

n×n for some semiring F [9]. Most free-
ness problems have been shown to be undecidable starting from dimen-
sion three, even for upper-triangular matrices over the natural numbers.
There are many open problems still remaining in dimension two.

We introduce a notion of freeness and ambiguity for scalar reachability
problems in matrix semigroups and bounded languages of matrices.
Scalar reachability concerns the set {ρTMτ |M ∈ S}, where ρ, τ ∈ F

n

are vectors and S is a finitely generated matrix semigroup. Ambiguity
and freeness problems are defined in terms of uniqueness of factorizations
leading to each scalar. We show various undecidability results.

Keywords: Matrix semigroup freeness · Scalar ambiguity · Bounded
languages · Undecidability

1 Introduction

We start with some general notations and motivation.
Let A = {x1, x2, . . . , xk} be a finite set of letters called an alphabet. A word

w is a finite sequence of letters from A, the set of all words over A is denoted
A∗ and the set of nonempty words is denoted A+. The empty word is denoted
by ε. For two words u = u1u2 · · · ui and v = v1v2 · · · vj , where u, v ∈ A∗, the
concatenation of u and v is denoted by u · v (or by uv for brevity) such that
u · v = u1u2 · · · uiv1v2 · · · vj . Given a word u = u1u2 · · · ui, a prefix of u is any
word u = u1u2 · · · uj , where j ≤ i. A subset L of A∗ is called a language. A
language L ⊆ A∗ is called a bounded language if and only if there exist words
w1, w2 . . . , wm ∈ A+ such that L ⊆ w∗

1w
∗
2 · · · w∗

m.

c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 493–505, 2016.
DOI: 10.1007/978-3-319-30000-9 38
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We denote by F
n×n the set of all n × n matrices over a semiring F. Given

M ∈ F
m×m and N ∈ F

n×n, we define the direct sum M ⊕ N of M and N by:

M ⊕ N =
(

M ∅

∅ N

)
,

where ∅ is the zero matrix of appropriate dimension. Given a finite set of matri-
ces G ⊆ F

n×n, 〈G〉 is the semigroup generated by G.
For a semigroup S, and a subset G′ ⊆ S, we say that G′ is a code if x1 · · · xk1 =

y1 · · · yk2 , where xi, yi ∈ G′ implies that k1 = k2 and xi = yi for 1 ≤ i ≤ k1.
Alternatively stated, G′ is not a code if and only if some element of S has more
than one factorization over G′. We call G′ a prefix code if no w1 ∈ G′ is a prefix
of another word w2 ∈ G′.

Given a set G ⊆ F
n×n, the freeness problem is to determine if G is a code for

S = 〈G〉. It was proven by Klarner et al. that the freeness problem is undecidable
over N

3×3 in [12] and this result was improved by Cassaigne et al. to hold even
for upper-triangular matrices over N

3×3 in [6].
There are many open problems related to freeness in 2×2 matrices, see [8–10]

for good surveys. The freeness problem over H
2×2 is undecidable [4], where H is

the skew-field of quaternions (in fact the result even holds when all entries of the
quaternions are rationals). The freeness problem for two upper-triangular 2 × 2
rational matrices remains open, despite many partial results being known [9].

The freeness problem for matrix semigroups defined by a bounded language
was recently studied. Given a finite set of matrices {M1, . . . ,Mk} ⊆ Q

n×n, we
define a bounded language of matrices to be of the form:

{M j1
1 · · · M jk

k |ji ≥ 0 where 1 ≤ i ≤ k}.

The freeness problem for a bounded language of matrices asks if there exists
j1, . . . , jk, j

′
1, . . . , j

′
k ≥ 0, where at least one ji 	= j′

i such that M j1
1 · · · M jk

k =

M
j′
1

1 · · · M j′
k

k in which case the bounded language of matrices is not free. This
problem was shown to be decidable when n = 2, but undecidable in general [9].

In this paper we will introduce two notions of freeness in matrix semigroups
called Scalar Ambiguity and Scalar Freeness problems. These are related to the
uniqueness of factorizations of a set of scalar values of the form {ρTMτ |M ∈ S},
where S is a finitely generated matrix semigroup (see Sect. 2 for details). Such
a set of scalars can be used to represent computations in many models. Related
problems for vector ambiguity were studied in [3], where we were interested in
the uniqueness of factorizations of a set of vectors {Mτ |M ∈ S}.

In Sect. 3, we also study a related ambiguity problem for Probabilistic Finite
Automata (PFA), defined in Sect. 1.1. The reachability problem for PFA (or
emptiness problem) is known to be undecidable [14], even in a fixed dimension
[5,11]. The reachability problem for PFA defined on a bounded language (i.e.
where input words are from a bounded language which is given as part of the
input), was recently shown to be undecidable [2].

Associated with each input word is the probability of that word being
accepted by the PFA. In this paper, we show that determining whether every
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probability is unique is undecidable over a bounded language. In other words,
to determine if there exists two input words which have the same probability of
being accepted is undecidable. This is a similar concept to the threshold isolation
problem shown in [5] to be undecidable, where we ask if each probability can be
approximated arbitrarily closely.

1.1 Probabilistic Finite Automata

A vector y ∈ Q
n is a probability distribution if its elements are nonnegative and

sum to 1 (y has an L1 norm of 1). Matrix M is called a column stochastic matrix
if each column is a probability distribution, a row stochastic matrix if each row is
a probability distribution and it is called a doubly stochastic matrix if it is both
row and column stochastic. For any row stochastic matrix M , if y is a probability
distribution, then so is yTM , since M preserves the L1 norm on vectors and is
nonnegative. The product of two row/column/doubly stochastic matrices is also
row/column/doubly stochastic (respectively) as is not difficult to verify.

A Probabilistic Finite Automaton (PFA, see [5,14] for further details) over
an alphabet A is a triplet (u, ϕ, v), where u ∈ Q

n is the initial probability dis-
tribution, ϕ : A∗ → Q

n×n is a monoid homomorphism whose range is the set of
n-dimensional row stochastic matrices and v ∈ Q

n is the final state vector whose
ith coordinate is 1, if state i is final, and 0 otherwise.1

For a given PFA denoted R = (u, ϕ, v) and a word w ∈ A∗, we can define a
function fR : A∗ → [0, 1], where:

fR(w) = uTϕ(w)v ∈ [0, 1] ; w ∈ A∗.

This is the probability of R being in a final state after reading word w ∈ A∗.
We will require the following undecidable problem for proving later results,

which is a variant of the famous Post’s Correspondence Problem (PCP).

Problem 1 (Mixed Modification PCP (MMPCP)). Given a finite set of
letters Σ, a binary alphabet Δ, and a pair of homomorphisms h, g : Σ∗ → Δ∗, the
MMPCP asks to decide whether there exists a word w = x1 . . . xk ∈ Σ+, xi ∈ Σ
such that

h1(x1)h2(x2) . . . hk(xk) = g1(x1)g2(x2) . . . gk(xk),

where hi, gi ∈ {h, g}, and there exists at least one j such that hj 	= gj .

Theorem 1 [7]. - The Mixed Modification PCP is undecidable.

2 Scalar Ambiguity and Freeness for Matrices

Consider a finite set G = {G1, G2, . . . , Gk} ⊂ F
n×n, generating a semigroup of

matrices S = 〈G〉 and two column vectors ρ, τ ∈ F
n. Let Λ(G) be the set of scalars

1 The definition of a PFA in the literature often interchanges the roles of u and v from
our definition and requires column stochastic matrices, but the two can easily be
seen to be equivalent by transposing all matrices and interchanging u and v.
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such that Λ(G) = {λ : λ = ρTMτ |M ∈ S}. If for λ ∈ Λ(G) there exists a unique
matrix M ∈ S such that λ = ρTMτ , then we say that λ is unambiguous with
respect to G, ρ, τ . Λ(G) is called unambiguous if every λ ∈ Λ(G) is unambiguous.
If for λ ∈ Λ(G) there exists a unique product Gi1Gi2 · · · Gim ∈ S, with each
Gil ∈ G such that λ = ρTGi1Gi2 · · · Gimτ , then we say that λ is free with
respect to G, ρ, τ . Λ(G) is called free if every λ ∈ Λ(G) is free.

Problem 2 (Scalar Ambiguity). Is Λ(G) unambiguous with respect to G, ρ, τ?

Problem 3 (Scalar Freeness). Is Λ(G) free with respect to G, ρ, τ?

Problems 2 and 3 look similar at first glance. However, the scalar ambiguity
problem concentrates more on the properties of the semigroup S while the scalar
freeness problem cares more about the properties of the set G. A fact one can see
from the definitions is that if the identity matrix I is contained in set G, then the
corresponding scalar set Λ(G) is not free, but the same property does not hold
for the scalar ambiguity problem. Also, we define the scalar freeness problem in
a similar way of the matrix semigroup freeness problem. The links between the
scalar ambiguity problem, scalar freeness problem and matrix semigroup freeness
problem are illustrated in the following theorem.

Proposition 1. Given a semigroup of matrices S generated by a finite set G,
and two column vectors ρ and τ, let Λ(G) be a set of scalars generated by G, ρ
and τ. Then the following relations hold:

(1) If Λ(G) is ambiguous, then Λ(G) is not free.
(2) if Λ(G) is free, then S is free.

Proof. (1) Suppose Λ(G) is ambiguous, then by definition there exist two matri-
ces M1,M2 ∈ S,M1 	= M2 such that ρTM1τ = ρTM2τ. Thus, there exists factor-
izations M1 = Gi1Gi2 . . . Gim1

	= Gj1Gj2 . . . Gjm2
= M2, where each Gi, Gj ∈ G

so Λ(G) is not free.
(2) We proceed by contradiction. Suppose Λ(G) is free but S is not. If S is

not free, there exists Gi1Gi2 . . . Gim1
= Gj1Gj2 . . . Gjm2

∈ S, where Gi, Gj ∈ G,
and for at least one k, Gik 	= Gjk , or m1 	= m2. Thus, clearly it also holds that
ρTGi1Gi2 . . . Gim1

τ = ρTGj1Gj2 . . . Gjm2
τ, which contradicts the definition of

scalar freeness. �
It can be seen that by answering the scalar freeness problem, one can ‘partly’

answer the scalar ambiguity problem and the matrix semigroup freeness problem.
However, neither problem is a sub-problem of the other, and it seems there
is no direct connection between the scalar ambiguity problem and the matrix
semigroup freeness problem. We are now ready to prove the main result of this
section.

Theorem 2. The Scalar Freeness Problem is undecidable over Z
3×3 and the

Scalar Ambiguity Problem is undecidable over Z
4×4.
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Proof. We prove the result by encoding an instance of the MMPCP problem.
The basic idea is inspired by [7]. We start by showing the undecidability of
the scalar freeness problem. We construct a finite set of matrices G, generating
a matrix semigroup S and two fixed vectors ρ and τ such that the encoded
MMPCP instance has a solution if and only if the scalar set Λ(G) is free. In
other words, there exists a scalar λ ∈ Λ(G) such that λ = ρTGi1Gi2 . . . Gim1

τ =
ρTGj1Gj2 . . . Gjm2

τ , where Gi, Gj ∈ G and some Gik 	= Gjk or m1 	= m2.
Let Σ = {x1, x2, . . . , xn−2} and Δ = {xn−1, xn} be distinct alphabets and

h, g : Σ∗ → Δ∗ be an instance of the mixed modification PCP. The naming
convention will become apparent below. We define two homomorphisms α, β :
(Σ ∪ Δ)∗ → Q by:

α(xi1xi2 · · · xim) = Σm
j=1ij(n + 1)m−j ,

β(xi1xi2 · · · xim) = Σm
j=1ij(n + 1)j−m−1,

and α(ε) = β(ε) = 0. Thus α represents xi1xi2 · · · xim as an (n+1)-adic number
and β represents xi1xi2 · · · xim as a fractional number (0.xim · · · xi2xi1)(n+1) (e.g.
the number 123 may be represented as 0.321, base 10). Note that ∀w ∈ (Σ ∪
Δ)∗, α(w) ∈ N and β(w) ∈ (0, 1) ∩ Q. It is not difficult to see that ∀w1, w2 ∈
(Σ ∪Δ)∗, (n+1)|w2|α(w1)+α(w2) = α(w1w2) and (n+1)−|w2|β(w1)+β(w2) =
β(w1w2).

Define γ′ : (Σ ∪ Δ)∗ × (Σ ∪ Δ)∗ → Q
3×3 by

γ′(u, v) =

⎛

⎝
(n + 1)|u| 0 α(u)

0 (n + 1)−|v| β(v)
0 0 1

⎞

⎠ .

It is easy to verify that γ′(u1, v1)γ′(u2, v2) = γ′(u1u2, v1v2), i.e., γ′ is a homo-
morphism. Define two more matrices T and T−1 :

T =

⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ , T−1 =

⎛

⎝
1 −1 0
0 1 0
0 0 1

⎞

⎠ .

We now define γ : (Σ ∪ Δ)∗ × (Σ ∪ Δ)∗ → Q
3×3:

γ(u, v) = Tγ′(u, v)T−1 =

⎛

⎝
(n + 1)|u| (n + 1)−|v| − (n + 1)|u| α(u) + β(v)

0 (n + 1)−|v| β(v)
0 0 1

⎞

⎠ .

We can now verify that, γ(u1, v1)γ(u2, v2) = Tγ′(u1, v1)TT−1γ′(u2, v2)T−1 =
Tγ′(u1u2, v1v2)T−1 = γ(u1u2, v1v2), hence γ is a homomorphism.

Let G = {γ(xi, g(xi)), γ(xi, h(xi))|xi ∈ Σ, 1 ≤ i ≤ n − 2}, S = 〈G〉, ρ =
(1, 0, 0)T and τ = (0, 0, 1)T . Assume that there exists M1 = Gi1Gi2 · · · Git ∈ 〈G〉
and M2 = Gj1Gj2 · · · Gjt′ ∈ 〈G〉 such that t 	= t′ or else at least one Gip 	= Gjp

where 1 ≤ p ≤ t and λ = ρTM1τ = ρTM2τ . We see that:

λ = ρTM1τ = (M1)[1,3] = α(xi1xi2 · · · xit) + β(f1(xi1)f2(xi2) · · · ft(xit)),
λ = ρTM2τ = (M2)[1,3] = α(xj1xj2 · · · xjt′ ) + β(f ′

1(xj1)f
′
2(xj2) · · · f ′

t′(xjt′ )),
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where each fi, f
′
i ∈ {g, h}. Since α(w) ∈ N and β(w) ∈ (0, 1)∩Q, ∀w ∈ (Σ ∪Δ)∗,

injectivity of α and β implies that if ρTM1τ = ρTM2τ , then t = t′ and
ik = jk for 1 ≤ k ≤ t. Furthermore, if ρTM1τ = ρTM2τ , we have that
β(f1(xi1)f2(xi2) · · · ft(xit)) = β(f ′

1(xi1)f
′
2(xi2) · · · f ′

t(xit)) and since at least one
fp 	= f ′

p for 1 ≤ p ≤ t by our above assumption, then this corresponds to a cor-
rect solution to the mixed modification PCP instance (h, g). On the other hand,
if there does not exist a solution to (h, g), then β(f1(xi1)f2(xi2) · · · ft(xit)) 	=
β(f ′

1(xi1)f
′
2(xi2) · · · f ′

t(xit)), and injectivity of β implies that ρTM1τ 	= ρTM2τ .
Since set G ⊆ Q

3×3 is finite and has a finite description, there exists a com-
putable constant c ∈ N such that c · G ⊆ Z

3×3 (based on the least common
multiple of the denominators of elements of the matrices of G). This completes
the proof of the scalar freeness problem.

For the scalar ambiguity problem, we sketch the proof technique. The above
encoding has the property that if some λ = ρTM1τ = (M1)[1,3] = ρTM2τ =
(M2)[1,3], then it implies that M1 = M2. If there exists a solution to the PCP
instance, then some matrix M ∈ S has two distinct factorizations as above,
each using a different sequence of morphisms f, g. We increase the dimension
of γ by 1 to store an additional word, using mapping α, which is unique for
each matrix. For example xi

1x2 for matrices corresponding to h(xi) and xi
3x4

for matrices corresponding to g(xi). Any two different matrix products will now
have a distinct word stored in this element since {xi

1x2, x
i
3x4|1 ≤ i ≤ n − 2} is

clearly a code. We modify ρ and τ to have an additional dimension which does
not select this new word (i.e. they have zeros in the corresponding elements),
and therefore its inclusion does not affect the set Λ. �

3 Ambiguity and Freeness over a Bounded Language

We now study the concept of scalar ambiguity and scalar freeness for a bounded
language of matrices, showing that these problems are undecidable. We start with
the definition of Hilbert’s tenth problem, which was shown to be undecidable by
Matiyasevich. The following problem was stated as part of 23 open problems for
the 20th century by David Hilbert in his 1900 address:

Hilbert’s Tenth Problem (HTP) - “Given a Diophantine equation with any
number of unknown quantities and with rational integral numerical coefficients:
To devise a process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers”.

To use a more modern terminology, Hilbert’s tenth problem is to determine
if there exists n1, n2, . . . nk ∈ N such that P (n1, n2, . . . , nk) = 0 is a Diophantine
equation (i.e. P is a polynomial with integer coefficients). The undecidability
of Hilbert’s tenth problem was shown in 1970 by Yu. Matiyasevich building
upon earlier work of many mathematicians, including M. Davis, H. Putman and
J. Robinson. For more details of the history of the problem as well as the full
proof of its undecidability, see the excellent reference [13]. We may restrict all
the variables of the problem to be natural numbers without loss of generality,
see [13, p.6].
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The following corollary can be found in [2], or from the proof construction
shown in [1].

Corollary 1 [2]. Given an integer polynomial P (n1, n2, . . . , nk), one can con-
struct two vectors ρ = (1, 0, . . . , 0)T ∈ N

n and τ = (0, . . . , 0, 1)T ∈ N
n, an

alphabet Σ = {x1, x2, . . . , xk} and a homomorphism μ : Σ∗ → Z
n×n, such that

for any word of the form w = xy1
1 xy2

2 . . . xyk

k ∈ Σ+ :

ρTμ(w)τ = P (y1, y2, . . . , yk)2,

and ρTμ(ε)τ = 0 for the empty word ε. The triple (ρ, μ, τ) is a linear represen-
tation of a Z-regular formal power series Z ∈ N〈〈Σ〉〉.

We will require the following lemma.

Lemma 1. Given two integer polynomials P1 and P2 over variables (x1, . . . , xk)
and with integer coefficients. It is undecidable to decide whether there exist inte-
gers (y1, . . . , yk) such that P 2

1 (y1, . . . , yk) = P 2
2 (y1, . . . , yk).

Proof. Let P (x2, . . . , xk) be an instance of Hilbert’s tenth problem, i.e. a polyno-
mial with integer coefficients and variables. Define P1(x1, x2, . . . , xk) = (x2

1+1)P
and P2(x1, x2, . . . , xk) = (x2

1 + 2)P . Since 0 < x2
1 + 1 < x2

1 + 2, we see that
P 2
1 (x1, x2, . . . , xk) = P 2

2 (x1, x2, . . . , xk) ⇔ P1 = P2 = 0, which implies that
P (x2, . . . , xk) = 0, which is undecidable to determine. This result holds for any
value of x1 since x2

1 + 1 	= x2
1 + 2. We will use this property in the later proof. �

Now we show the main result of this section.

Theorem 3. The Scalar Freeness Problem over a bounded language is unde-
cidable. In other words, given k matrices M1,M2, . . . ,Mk ∈ Q

n×n, generating
bounded language M = M∗

1 M∗
2 · · · M∗

k , and two vectors ρ, τ ∈ Z
n, it is undecid-

able to decide if there exist l1, l2, . . . , lk, r1, r2, . . . , rk ∈ N such that

ρTM l1
1 M l2

2 . . . M lk
k τ = ρTMr1

1 Mr2
2 . . . Mrk

k τ,

where lj 	= rj for at least one j.

Proof. We prove this theorem by 4 steps. We will define a set of matrices
{Mi, Ni|0 ≤ i ≤ k+1} for some k+1 > 0, which will define the bounded language
of matrices M = M∗

0 M∗
1M∗

2 · · · M∗
kM∗

k+1N
∗
0 N∗

1 N∗
2 · · · N∗

kN∗
k+1. The matrices

{Mi} encode a polynomial P1 and matrices {Ni} will encode a separate polyno-
mial P2. The proof will show that if we have ρTA1τ = ρTA2τ , where A1, A2 ∈ M
and A1, A2 have different factorizations, then A1 = M j0

0 M j1
1 M j2

2 · · · M jk
k M

jk+1
k+1

and A2 = N
j′
0

0 N j1
1 N j2

2 · · · N jk
k N

j′
k+1

k+1 (or vice versa). We will show that this implies
that P 2

1 (j1, · · · , jk) = P 2
2 (j1, · · · , jk), the determination of which was shown to

be undecidable in Lemma 1.

Step 1. Given two integer coefficient polynomials P1 and P2 of same number of
variables, from Corollary 1, we can construct an alphabet Σ = {x1, x2, . . . , xk},
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two vectors ρ′ = (1, 0, . . . , 0)T , τ ′ = (0, . . . , 0, 1)T ∈ N
n, and two homomorphisms

μ1, μ2 : Σ∗ → Z
n×n such that:

ρ′Tμi(w)τ ′ =
{

Pi(y1, y2, . . . , yk)2, if w ∈ L\{ε};
0, if w = ε;

where i ∈ {1, 2} and L is the bounded language L = x∗
1x

∗
2 . . . x∗

k ⊂ Σ∗.

Step 2. Given alphabets K = {0, 1, . . . , k, k + 1} and Ω = K ∪ {#, ∗}, define
left and right desynchronizing morphisms l and r : K∗ → Ω∗ by

l(0) = #0, l(1) = ∗1, l(i) = #i, l(k + 1) = #(k + 1)#,
r(0) = #0∗, r(1) = 1#, r(i) = i#, r(k + 1) = (k + 1)#,

where 2 ≤ i ≤ k. In the sequel, by abuse of notation, we use lj , rj to represent
the words derived from the morphisms l(j), r(j), 0 ≤ j ≤ k+1. We define a word
u ∈ Ω∗ as ‘free’ if there is a unique factorization of u over {lj , rj}.

Let L′ = l∗0l
∗
1 · · · l∗k+1r

∗
0r

∗
1 · · · r∗

k+1 ∈ Ω∗. We shall now prove that any word

u = lj00 lj11 · · · ljk+1
k+1 r

j′
0

0 r
j′
1

1 · · · rj
′
k+1

k+1 ∈ L′ is not free if and only if all ji = 0 or all
j′
i = 0 where 1 ≤ i ≤ k.

Note that no element of Γ = {lt, rt|0 ≤ t ≤ (k + 1)} is a prefix of any other
word from the set, except for l0 which is a prefix of r0. Thus, Γ \ {l0} is a prefix
code. If u does not begin with l0 to some nonzero power, then by the definition
of L′, word u thus has a unique factorization.

If u has a prefix #0, but not #0∗, then the prefix only matches with l0, not
r0 and this prefix can be extracted from u since it has only a single possible
factorization. We can continue this argument iteratively, until we reach u which
begins with #0∗. Thus assume that u begins with #0∗. Let u = l0u1 = r0v1 be
the two possible factorizations. Since u1 must start with ∗, then u1 = l1u2. This
implies that v1 starts with symbol ‘1’, which implies v1 = r1v2 since r1 is the
only word with prefix 1. Now, u2 must be of the form lpu3 for some 2 ≤ p ≤ k.
Then v2 must be of the form rpv3. This matching continues iteratively, until
eventually we reach (k +1), at which point we must use lk+1 for the u-word and
rk+1 for the v-word.

At this point we have the two factorizations u = l∗0l0l1l
j2
2 · · · ljkk lk+1r

∗
k+1 and

u = l∗0r0r1r
j2
2 · · · rjkk rk+1r

∗
k+1 as the only possibilities. An example of this follows:

u = #0 ∗ 1#3#5#(k + 1)# = l0l1l3l5lk+1 = #0 · ∗1 · #3 · #5 · #(k + 1)#
= r0r1r3r5rk+1 = #0 ∗ ·1# · 3# · 5# · (k + 1)#

Step 3. We now encode the words li and rj (0 ≤ i, j ≤ k + 1) into rational
numbers in the interval (0, 1). For simplicity we first define a mapping σ : Ω →
X, where X = {x0, x1, . . . , xk+3} such that

σ(z) =

⎧
⎨

⎩

xz if z ∈ {0, 1, . . . , k + 1};
xk+2 if z = #;
xk+3 if z = ∗.
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We can extend σ to be a homomorphism σ : Ω∗ → X∗. We then define a
homomorphism β : X∗ → (0, 1)∩Q in a similar way as in the proof of Theorem2:

β(xi1xi2 · · · xim) = Σm
j=1ij(n + 1)j−m−1,

and β(ε) = 0, where n = |X| = k + 4. Moreover, we use a similar definition as
in the proof of Theorem2 for γ, but only on a single word v ∈ X∗, such that
γ : X∗ → Q

2×2 :

γ(v) =
(

(n + 1)−|v| β(v)
0 1

)
.

It can be verified that γ(v1v2) = γ(v1)γ(v2), and thus γ is a homomorphism.
Finally, we define γl, γr : K∗ → Q

2×2 by γl(i) = γ(σ(li)) and γr(i) =
γ(σ(ri)), where 0 ≤ i ≤ k + 1. It can be seen that ρ′′T γlτ

′′ and ρ′′T γrτ
′′ are

two homomorphisms from K∗ to (0, 1), where ρ′′ = (1, 0)T and τ ′′ = (0, 1)T ,
mapping the words derived from left and right desynchronizing morphisms l and
r to (0, 1) ∩ Q.

Step 4. In step 1 we showed how to encode an integer polynomial into a matrix.
In step 2 and 3 we defined left and right desynchronizing morphisms and wrote
them into matrix form. We now combine these steps together by defining a set
of matrices {Mi, Ni} ⊂ Q

(n+2)×(n+2):

M0 = I ⊕ γl(0), Mi = μ1(xi) ⊕ γl(i), Mk+1 = I ⊕ γl(k + 1),
N0 = I ⊕ γr(0), Ni = μ2(xi) ⊕ γr(i), Nk+1 = I ⊕ γr(k + 1),

where 1 ≤ i ≤ k, and I is the n × n identity matrix. Then we let a scalar λ be
written as:

λ = ρTMp0
0 Mp1

1 . . . M
pk+1
k+1 Nq0

0 Nq1
1 . . . N

qk+1
k+1 τ

= ρ′Tμ1(w1)μ2(w2)τ ′ + ρ′′T γl(v1)γr(v2)τ ′′,

where ρ = (ρ′T , ρ′′T )T , τ = (τ ′T , τ ′′T )T , w1, w2 ∈ L, v1, v2 = 0∗1∗ . . . (k + 1)∗ ∈
K∗. It can be seen that scalar λ contains two parts, one part consists of the
homomorphisms μ1, μ2 we constructed in step 1 related to the polynomials,
which is the integer part; the other part consists of the homomorphisms γl, γr
we constructed in step 3 related to the desynchronizing morphisms, which is
the fractional part. We now show that scalar λ is not free if and only if there
exists some nonzero integer variables (y1, . . . , yk) such that P 2

1 (y1, . . . , yk) =
P 2
2 (y1, . . . , yk).

If λ is not free, by definition there must be integers p0, . . . , pk+1, q0, . . . , qk+1

and p′
0, . . . , p

′
k+1, q

′
0, . . . , q

′
k+1 such that

λ = ρTMp0
0 . . . M

pk+1
k+1 Nq0

0 . . . N
qk+1
k+1 τ = ρTM

p′
0

0 . . . M
p′
k+1

k+1 N
q′
0

0 . . . N
q′
k+1

k+1 τ,

where pt 	= p′
t or qt 	= q′

t for at least one 0 ≤ t ≤ k + 1. Since the value of the
fractional part of λ only depends on the desynchronizing morphisms, l, r, and
the fractional parts are identical in both factorizations, from step 2 we have

pi = q′
i and qi = p′

j = 0, for 1 ≤ i, j ≤ k, or
pi = q′

i = 0 and qj = p′
j , for 1 ≤ i, j ≤ k.
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We only consider the first case, the second case can be analysed in a similar
way. As the integer parts of λ in both factorizations are also identical, and
M0,Mk+1, N0, Nk+1 are defined in a way that the value of p0, pk+1, q0, qk+1 and
p′
0, p

′
k+1, q

′
0, q

′
k+1 do not affect the value of the integer part, we have

ρ′Tμp1
1 (x1) . . . μpk

1 (xk)τ ′ = ρ′Tμp1
2 (x1) . . . μpk

2 (xk)τ ′,

which implies that P 2
1 (p1, . . . , pk) = P 2

2 (p1, . . . , pk). So (p1, . . . , pk) is a solution.
If λ is free, we show there is no solution such that P 2

1 = P 2
2 by contradic-

tion. Assume there is a nonzero solution (y1, . . . , yk), such that P 2
1 (y1, . . . , yk) =

P 2
2 (y1, . . . , yk). From the way we construct P1 and P2 in Lemma 1, we know

the value of y1 can be any integer value without changing the equality. Thus it
must be true that P 2

1 (1, y2, . . . , yk) = P 2
2 (1, y2, . . . , yk), and there exists a word

w = x1x
y2
2 . . . xyk

k ∈ L∗ such that

ρ′Tμ1(w)τ ′ = ρ′Tμ2(w)τ ′,

which implies that

ρ′Tμ1(x1)μ
y2
2 (x2) . . . μyk

k (xk)τ ′ = ρ′Tμ1(x1)μ
y2
2 (x2) . . . μyk

k (xk)τ ′.

Since
Mi = μ1(xi) ⊕ γl(i),
Ni = μ2(xi) ⊕ γr(i),

for 1 ≤ i ≤ k, we can set v = 0 · 1 · 2y2 · · · kyk · (k + 1), and scalar λ can be
written as

λ = ρ′Tμ1(w)τ ′ + ρ′′T γl(v)τ ′′ = ρTM0M1M
y2
2 · · · Myk

k Mk+1τ

= ρ′Tμ2(w)τ ′ + ρ′′T γr(v)τ ′′ = ρTN0N1N
y2
2 · · · Nyk

k Nk+1τ.

This shows that λ has two different factorizations, which is a contradiction. Thus
we showed that scalar freeness problem can be reduced to the problem stated in
Lemma 1, which is undecidable. �
Theorem 4. The Scalar Ambiguity Problem over a bounded language is unde-
cidable.

Proof. We can use the same idea as in the proof of Theorem 2, increasing the
dimension of matrices Mi, Ni constructed in the proof of Theorem3 to store an
additional word which is unique for each matrix. Vectors ρ, τ are modified with
an additional zero-value dimension such that the value of scalar λ is not affected.
Hence in the case λ = ρTM1τ = ρTM2τ , we must have M1 	= M2. �
Corollary 2. Vector ambiguity over a bounded language is undecidable.

Proof. Immediately from Theorem 4 in the case when only one vector τ is con-
sidered. �

Finally, we show a result related to Probabilistic Finite Automata (PFA).
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Problem 4 (PFA Ambiguity Problem). Given a PFA R = (u, ϕ, v) over a
bounded language L ∈ A∗, do there exist two different words w1, w2 ∈ L such
that uTϕ(w1)v = uTϕ(w2)v?

Corollary 3. Ambiguity for PFA over a bounded language is undecidable.

Proof. This proof follows the construction of [15]; see also [2,11].
Let Mi, Ni ∈ Q

(t−2)×(t−2) be matrices of dimension (t − 2) defined in the
proof of Theorem3, where 0 ≤ i ≤ k + 1. First, define a morphism ζ : A∗ =
{a0, a1, . . . , a2k+3}∗ → {Mi, Ni} :

ζ(aj) =
{

Mj if 0 ≤ j ≤ k + 1;
Nj−(k+2) if k + 2 ≤ j ≤ 2k + 3.

We then extend the dimension of the matrix ζ(aj) to t by defining ζ ′ → Q
t×t :

ζ ′(aj) =

⎛

⎝
0 0 0
pj ζ(aj) 0
rj qj 0

⎞

⎠ ,

where pj , qj ∈ Q
(t−2)×(t−2) and rj ∈ Q are properly chosen such that, for each

ζ ′(aj), the row and column sums of ζ ′(aj) are all 0.
We now modify ζ ′(aj) so that every entry is positive. To do this we let Δ be

the matrix of dimension t with all elements being 1. Assume bi is in the set of
entries of all ζ ′(aj), let c > max{|bi|} ∈ Q. Define ζ̂ : A∗ → Q

t×t
+ as

ζ̂(aj) = ζ ′(aj) + cΔ.

It can be seen that all entries of the matrices ζ̂(aj) are positive. Finally, let
ϕ : A∗ → [0, 1]t×t be

ϕ(aj) =
1
ct

ζ̂(aj) =
1
ct

ζ ′(aj) +
1
t
Δ.

Since row and column sums of ζ ′(aj) are all 0, and Δ is a matrix of dimension t
with all elements being 1, it can be verified that all ϕ(aj) are stochastic matrices.

Then let u = (0, 1
2ρT , 0)T and v = (0, 1

2τT , 0)T , where ρ, τ ∈ Z
(t−2)×(t−2)

are defined the same as in the proof of Theorem 3, we have constructed a PFA
(u, ϕ, v) over a bounded language w = a∗

0a
∗
1 . . . a∗

2k+3 ∈ L ⊂ A∗.
To see that ambiguity for PFA (u, ϕ, v) is undecidable, we notice that Δn =

tn−1Δ (as Δ2 = tΔ), and by the definition of ζ ′(aj), it holds that ζ ′(aj) · Δ =
Δ · ζ ′(aj) = ∅ (the zero matrix). Thus,

uTϕ(w)v = uT

((
1
ct

)|w|
ζ ′(w) +

(
1
t

)|w|
Δ|w|

)
v

=
(

1
ct

)|w|
(ρT ζ(w)τ) + uT

(
Δ

t

)
v
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=
(

1
ct

)|w|
(ρTMp0

0 · · · Mpk+1
k+1 Nq0

0 · · · Nqk+1
k+1 τ) +

1
t

= ρT
(

M0

ct

)p0

· · ·
(

Mk+1

ct

)pk+1
(

N0

ct

)q0

· · ·
(

Nk+1

ct

)qk+1

τ +
1
t

Since c and t are all fixed, the question of whether there exist two different
words w1, w2 ∈ L such that uTϕ(w1)v = uTϕ(w2)v, can be reduced to the scalar
ambiguity problem over bounded languages, hence is undecidable. �

4 Conclusion

We defined two related problems for matrix semigroups: the scalar ambiguity
problem and the scalar freeness problem. We discussed the relations between
these two problems and the matrix semigroup freeness problem. We showed
that both problems are undecidable in low dimensions, three for ambiguity and
four for freeness. These two problems remain undecidable even over bounded
languages, but require higher dimensions. Using these results, we showed the
ambiguity problem for probabilistic finite automata is also undecidable.
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Abstract. In our work [4], we studied the structure of HNN-extensions
of inverse semigroups by investigating properties of their Schützenberger
graphs. We introduced certain classes of HNN-extensions for which we
were able to provide an iterative procedure for building Schützenberger
automata. In the present paper, we show that in some cases this pro-
cedure yields an effective construction of the Schützenberger automata
and thus provides a solution for the word problem. We analyze conditions
under which the procedure is effective and show that the word problem
is solvable in particular for HNN-extensions of free inverse semigroups.

Keywords: Semigroups · Monoids · Automata · Decidability ·
Word-problem

1 Preliminaries

The concept of HNN-extensions of groups was introduced by Higman, Neumann
and Neumann [3] in their study of embedability of groups in 1949. In combina-
torial group theory, HNN-extensions play an important role in applications to
algorithmic problems ([3,6]). Work of Yamamura [14] shows the usefulness of
HNN-extensions also in the category of inverse semigroups by proving the unde-
cidability of any Markov and several non-Markov properties for finitely presented
inverse semigroups. Similar questions for amalgams of inverse semigroups have
been addressed in [1,2].

An inverse semigroup is a semigroup S which fulfills the following “weak
invertibility” property: for each element a ∈ S there is a unique element a−1 ∈ S
such that a = aa−1a and a−1 = a−1aa−1; the element a−1 is called the inverse
of a. As a consequence of the definition, the set of the idempotents E(S) is a
semilattice. One may also define a natural partial order on S by setting a ≤ b if
and only if a = eb for some e ∈ E(S).

Inverse semigroups may be regarded as semigroups of partial one-to-one
transformations, so they arise very naturally in several areas of mathematics
and more recently also in computer science, mainly since the inverse of an ele-
ment can be seen as an “undo with a trace” of the action represented by that
element. We refer the reader to the book of Petrich [11] for basic results and
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 506–517, 2016.
DOI: 10.1007/978-3-319-30000-9 39
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notation about inverse semigroups and to the more recent books of Lawson [5]
and Paterson [10] for many references to the connections between inverse semi-
groups and other branches of mathematics and computer science.

The free object on a set X in the category of inverse semigroups is denoted
by FIS(X). It is the quotient of the free semigroup (X ∪ X−1)+ by the least
congruence ν that makes the resulting quotient semigroup inverse (see [11]). The
inverse semigroup S presented by a set X of generators and a set R of relations is
denoted by S = Inv〈X|R〉. This is the quotient of the free semigroup (X∪X−1)+

by the least congruence τ that contains ν and the relations in R. The structure
of FIS(X) was studied via graphical methods by Munn [9]. Munn’s work was
greatly extended by Stephen [13] who introduced the notion of Schützenberger
graphs associated with presentations of inverse semigroups.

The HNN-extension operation, is a classical operation over groups that builds,
from a “base”group G, and two isomorphic subgroups A,B, another group H
which is an extension of G. Although the general idea of HNN-extensions of semi-
groups is similar to the idea behind HNN-extensions of groups, generalizing this
operation over semigroups, in such a way that the resulting semigroup is an exten-
sion of the base, is not trivial. In our paper, we will use the definition of HNN-
extension of inverse semigroups introduced by Yamamura in [14]:

Definition 1 (A.Yamamura). Let S be an inverse semigroup. Let ϕ : A −→
B be an isomorphism of an inverse subsemigroup A onto an inverse subsemigroup
B where e ∈ A ⊆ eSe and f ∈ B ⊆ fSf (or e /∈ A ⊆ eSe and f /∈ B ⊆ fSf for
some e, f ∈ E(S)). Then the inverse semigroup presented by

S∗ = Inv〈S, t | t−1at = aϕ, t−1t = f, tt−1 = e,∀a ∈ A〉

is called the HNN-extension of S associated with ϕ : A −→ B and is denoted by
[S;A,B;ϕ].

We denote the set of all t-rules {t−1at = aϕ,∀a ∈ A, t−1t = f, tt−1 = e,} by
RHNN . Then S∗ = Inv〈X, t | R ∪ RHNN 〉. HNN-extensions have a natural
universal mapping property which is described by the next proposition.

Proposition 2. Let S∗ = [S;A,B;ϕ] be an HNN-extension of an inverse semi-
group S. Then S∗ has the following universal mapping property:

(i) There is a unique homomorphism σ : S → S∗ such that

t−1σ(a)t = σ(aϕ)∀a ∈ A and t−1t = σ(f), tt−1 = σ(e).

(ii) For each inverse semigroup T and homomorphism ρ : S → T such that
there exists p ∈ T such that p−1ρ(a)p = ρ(aϕ)∀a ∈ A, pp−1 = ρ(e) and
p−1p = ρ(f), there is a unique homomorphism ρ′ : S → T such that ρ′(t) = p
and ρ′ ◦ σ = ρ.

Yamamura in [14] showed that S embeds into S∗, provided that e ∈ A ⊆ eSe
and f ∈ B ⊆ fSf (or e /∈ A ⊆ eSe and f /∈ B ⊆ fSf) for some e, f ∈ E(S).
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One of the main purposes for studying HNN-extensions is to employ HNN-
extensions to study algorithmic problems in inverse semigroups.

The Schützenberger automata are crucial in the study of inverse semigroup
presentations (See for instance [7,8,13]).

Definition 3 (Schützenberger graph). Let w be a word in (X ∪X−1)+. The
Schützenberger graph of w relative to the presentation Inv〈X|R〉 is the graph
SΓ (X,R,wτ) whose vertices are the elements of the R-class Rwτ of wτ in S,
and whose set of edges is

{(v1, x, v2) | v1, v2 ∈ Rwτ and v1(x τ) = v2}.

It is clear that for any two words w and w′ representing the same element s in S,
i.e., w = s = w′ in S (in other words, w = w′ (mod τ)), the Schützenberger graphs
SΓ (X,R,wτ) and SΓ (X,R,w′τ) are isomorphic. Therefore the Schützenberger
graph depends only on the element s represented by the word w and we speak
of Schützenberger graphs of elements of S. It should be also noted that any two
elements from the same R-class determine the same Schützenberger graph.

The Schützenberger automaton of w relative Inv〈X|R〉 can now be defined
to be the inverse automaton A(X,R,wτ) = (ww−1τ, SΓ (X,R,wτ), wτ). The
language of A(X,R,wτ) is the set {v ∈ (X ∪ X−1)+ | vτ ≥ wτ} which we
denote by [w]τ ↑.

In particular, for the word problem, we have the result of Stephen [13] stating
that for any two words u and v in (X∪X−1)+, u = v in S = Inv〈X|R〉 if and only
if their corresponding Schützenberger automata are isomorphic, i.e. A(X,R, u) ∼=
A(X,R, v). Equivalently, u = v in S if and only if u ∈ L[A(X,R, v)] and v ∈
L[A(X,R, u)]. Thus, an effective construction of the automaton A(X,R,w) for
each w ∈ S provides a solution to the word problem for S. We say that an
automaton A is effectively constructible if there exists an algorithm that decides
for any word w ∈ (X ∪ X−1)+ whether or not w belongs to the language of A.

Conversely, if an inverse semigroup S has a decidable word problem and w ∈
(X ∪X−1)+, then there is an algorithm to decide for each word u ∈ (X ∪X−1)+

whether uu−1 = ww−1 in S and thereby to decide whether uRw in S. Thus,
for each letter x ∈ X ∪ X−1 and each word u ∈ (X ∪ X−1)+, there is an
algorithm to decide whether or not the edge that starts at u, ends at ux, and
is labelled by x belongs to the Schützenberger automaton A(X,R,w). Thus
the word problem for an inverse semigroup S is decidable if and only if each
Schützenberger automaton A(X,R,w) for S is effectively constructible.

In [4], we introduced an iterative procedure for constructing Schützenberger
automata corresponding to, so called, lower bounded HNN-extensions. In the
present paper, we first analyze this procedure and later apply this analysis to
study HNN-extensions of the free inverse semigroups.

2 Effectiveness Analysis

In [4], we showed that if one starts with a lower bounded HNN-extension and a
word w ∈ (X∪X−1∪{t, t−1})+, then it is possible to carefully organize repeated
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Stephen’s [13] elementary expansions and determinations into Constructions
1–6 ([4], Chap. 3). In turn, repeated applications of Constructions 1–6 yields
the Schützenberger automaton A(X ∪ {t}, R ∪ RHNN , w). Recall the defintion
of a lower bounded HNN-extension ([4]):

Definition 4. An HNN-extension S∗ = [S;A,B;ϕ] of an inverse semigroup S
is called lower bounded if it satisfies the following conditions:

1. For all idempotents e ∈ E(S), each of the sets UA(e) = {u ∈ A|e ≤ u} and
UB(e) = {u ∈ B|e ≤ u} is either empty or has a least element.

2. For all idempotents e ∈ E(S), there does not exist an infinite sequence
{ui}∞

i=1, where ui ∈ E(A), such that ui > fA(eui) > ui+1 for all i;
and for all idempotents e ∈ E(S), there does not exist an infinite sequence
{ui}∞

i=1, where ui ∈ E(B), such that ui > fB(eui) > ui+1 for all i.

A motivation for defining the class of lower bounded extensions comes
from the fact that t-free subgraphs (lobes) of a Schützenberger graph of
an HNN-extension S∗ relative to the usual presentation are not, in general,
Schützenberger graphs relative to the presentation of the original semigroup. For
the class of lower bounded HNN-extensions all lobes of Schützenberger graphs
relative to Inv〈X, t |R∪RHNN 〉 will always stay Schützenberger graphs relative
to Inv〈X |R〉. Furthermore, those graphs which can be Schützenberger graphs of
lower bounded HNN-extensions have nice lobe structure: they are characterized
as complete T -automata that possess a host – a T -subgraph with only finitely
many lobes (lobes themselves can be infinite) such that the whole automaton
may be obtained from any automaton containing the host by repeated applica-
tions of Construction 6 - that is a finite-lobe host already contains all “vital”
information about the whole automaton with possibly infinitely many lobes. In
[4], we showed that the class of lower bounded HNN-extensions is quite rich, and
contains many well known inverse semigroups.

In the group case, thanks to Britton’s Lemma the word problem for HNN-
extension is decidable. The situation for inverse semigroups is more complicated.
In the case of another extension, the free product with amalgamation, the group
case is decidable, but the inverse semigroup case turned out to be undecidable
in general (see E. Rodaro and P.V. Silva [12]).

In certain cases the iterative procedure of building the Schützenberger
automaton A(X ∪ {t}, R ∪ RHNN , w), gives an effective construction of the
Schützenberger automata corresponding to lower bounded HNN-extensions and
thus provides a solution for the word problem for the associated presentations.
We will now examine the conditions under which our construction is effective.

First observe that if an HNN-extension S∗ = [S;A,B;ϕ] of an inverse
semigroup S = Inv〈X|R〉 satisfies Condition 1 of the definition of a lower
bounded HNN-extension (Definition 4), then it is possible to perform all the
steps of the iterative construction of the Schützenberger automaton relative to
Inv〈X, t | R ∪ RHNN 〉 as described in [4]. Condition (2) of Definition 4 guar-
antees that only finitely many applications of Construction 3 are needed in the
process of building the Schützenberger automaton relative to this presentation.
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Note that for a given arbitrary HNN-extension S∗ = [S;A,B;ϕ], it may be
hard to decide whether or not S∗ is lower bounded. We believe that in general
this problem may be undecidable. Consequently, in our analysis, we will assume
that the HNN-extension S∗ = [S;A,B;ϕ] considered is lower bounded.

Before we examine the procedure from [4] step by step, let us first make some
general observations. In order for the iterative procedure for building a Schützen-
berger graph corresponding to a lower bounded HNN-extension S∗ = [S;A,B;ϕ]
to be effective, the following conditions must clearly be satisfied:

(C1) The word problem for the original inverse semigroup S = Inv〈X|R〉 is
decidable.

This requirement, as we have pointed out above, is equivalent to the condition
that each Schützenberger automaton A(X,R,w) is effectively constructible.

(C2) The isomorphisms ϕ and ϕ−1 from the definition of HNN-extension
(Definition 1) are effectively calculable.

(C3) The membership problem for both inverse subsemigroups A and B in S is
decidable.

We now analyze Constructions 1–6 as they are used in the iterative procedure
that begins with a linear automaton, linA(w).

Construction 1. Is used to close our graphs with respect to Inv〈X|R〉. One
step of the construction consists of either a folding of a single pair of t-edges
or a replacement of a single lobe by the Schützenberger graph of the element
of S approximated by the lobe. Since in (C1) we require each Schützenberger
graph relative to Inv〈X|R〉 to be effectively constructible, each single application
of Construction 1 is effective. Moreover, all the graphs we repeatedly apply
Construction 1 to, have only finitely many lobes. Thus the process will require
only finitely many applications of Construction 1 and is therefore effective.

Construction 2. e − f completion attaches the Schützenberger graph
SΓ (X,R, e) to the initial vertex of every t-edge of our graph and the
Schützenberger graph SΓ (X,R, f) to the terminal vertex of every t-edge. The con-
struction is clearly effective, since each of the Schützenberger graphs SΓ (X,R, e)
and SΓ (X,R, f) is effectively constructible by (C1) and Construction 2 is applied
in our procedure only once and only to a graph with finitely many t-edges.

Let us point out again that Construction 2 has to be applied only at the
original t-edges of linA(w) after Construction 1 has been applied. Each newly
added t-edge in subsequent constructions will have a loop labelled by e attached
to its initial vertex and a loop labelled by f attached to its terminal vertex.

Construction 3. In order to be able to apply Construction 3 to an automaton A
we need to be able to verify, for every t-edge z, whether the sets UA(e(α(z),Δ))
and UB(e(ω(z),Δ′)) are empty or not. Thus the next condition must be satisfied:

(C4) There is an algorithm that will decide for every idempotent e ∈ E(S)
whether or not the set UA(e) = {u ∈ A|u ≥ e} is empty and whether or
not the set UB(e) = {u ∈ B|u ≥ e} is empty.
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If the sets UA(e) and UB(e) are non-empty, then the least elements fA(e) and
fB(e) exist since we assume that S∗ is lower bounded. To effectively carry out
Construction 3 we need to be able to compute fA(e) and fB(e). Thus the next
condition is needed.

(C5) There is an algorithm to compute fA(e) for each idempotent e ∈ E(S) for
which UA(e) �= ∅. Similarly, if UB(e) �= ∅ , then fB(e) is computable.

To decide whether to apply Construction 3 to a t-edge z and whether Construc-
tion 3 entails an expansion at α(z) or at ω(z), we need to check whether or not
[UA(e(α(z),Δ))]ϕ ⊆ UB(e(ω(z),Δ′)) and whether or not [UA(e(α(z),Δ))]ϕ ⊇
UB(e(ω(z),Δ′)). As follows from Lemmas 3.2.7 and 3.2.8 in [4] and the defin-
itions of UA(e), UB(e), fA(e) and fB(e), in the case that both UA(e(α(z),Δ))
and UB(e(ω(z),Δ′)) are non-empty, it is equivalent to check whether or not
[fA(e(α(z),Δ))]ϕ ≥ fB(e(ω(z),Δ′)), and whether or not [fA(e(α(z),Δ))]ϕ ≤
fB(e(ω(z),Δ′)). We can use the algorithm from (C4) to decide, whether or not
the sets UA(e(α(z),Δ)) and UB(e(ω(z),Δ′)) are empty. In the case that they
are both non-empty, decidability of these questions is equivalent to decidability
whether

[fA(e(α(z),Δ))]ϕ · fB(e(ω(z),Δ′)) = fA(e(α(z),Δ))]ϕ,

or
[fA(e(α(z),Δ))]ϕ · fB(e(ω(z),Δ′)) = fB(e(ω(z),Δ′))

or neither. Thus we can decide these questions using the algorithm for the word
problem for S. In the case that both sets are empty, it is clear that they are
equal. If one of them is empty, then one of the inclusions is satisfied trivially.

If (C1)–(C5) are satisfied, then each application of Construction 3 can be
effectively realized. Construction 3 is used several times throughout our process
of building Schützenberger automata, but it is always applied to an automaton
with finitely many lobes. Thus, as Lemma 3.2.9 in [4] asserts, repeated applica-
tions of Construction 3 to such an automaton results after finitely many steps
in an automaton satisfying the equality property.

Let us emphasize that the key argument in the proof of Lemma 3.2.9 is the
fact that S∗ is a lower bounded HNN-extension. Namely, it is Condition 2 of
the definition of a lower bounded HNN-extension that guarantees that repeated
application of Construction 3 will terminate after finitely many steps.

Construction 4. One step of the construction removes an occurrence of a pair
of non-parallel t-edges whose initial (terminal) vertices are connected by a path
labelled by an element from A (from B).

In order to apply Construction 4 we need to be able to recognize such pairs
of t-edges. In general, it is possible to have infinitely many paths connecting
two vertices of a Schützenberger graph relative to Inv〈X |R〉. Thus we need the
following condition:

(C6) There is an effective way to decide whether for two given vertices in any
Schützenberger graph relative to Inv〈X |R〉 there is a path from one vertex
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to the other labelled by an element from A (from B).
If such paths exist, the algorithm will produce one of them.

In (C6), the algorithm takes as input a word w and two words s1 and s2, and
decides first if s1 and s2 are R-related to w (i.e. if s1 and s2 are vertices of
SΓ (w)), and then decides if there is a path in SΓ (w) from s1 to s2 labelled by an
element of A (of B). Note that (C1) ensures that we can decide if s1 and s2 are R-
related to w and further ensures that we can decide for any given word whether
or not it belongs to L[(s1, SΓ (w), s2)]. However (C6) ensures decidability of
whether or not A ∩ L[(s1, SΓ (w), s2)] is empty.

Construction 4 is only applied to automata with finitely many t-edges. Thus
there are only finitely many pairs of the initial (terminal) vertices of t-edges to
check. Thus using (C6), we can recognize t-edges that have to be separated. As
the algorithm produces a path labelled by some a ∈ A (b ∈ B), and the isomor-
phisms ϕ and ϕ−1 are effectively computable, we can effectively find the element
aϕ (bϕ−1) and thus also the vertex v2 needed to carry out Construction 4. Note
that in the proof of Lemma 3.2.12 in [4], we showed that there are two different
paths labelled by elements from A each starting at the same initial vertex of
some t-edge and each ending at the same vertex v if and only if both images of
these paths start at the terminal vertex of the t-edge and end at the same ver-
tex v′. Thus, out of all possible paths between two vertices labelled by elements
from A (from B), it is enough to know just one, as it will uniquely determine
the vertex v2.

Since there are only finitely many pairs of t-edges that need to be separated,
finitely many repeated applications of Construction 4 are needed.

Construction 5. t-saturation adds all possible t-edges that are equivalent to
an existing t-edge of a graph. Two t-edges are equivalent if they are parallel and
there is a path connecting their initial vertices labelled by some a ∈ A and a
path connecting their terminal vertices labelled by aϕ ∈ B.

Since the graphs to which Construction 5 is applied possess the equality
property, recognizing whether a new t-edge should be added to a graph at some
vertex v is equivalent to recognizing whether there is a path from the initial
(terminal) vertex of some already existing t-edge to v labelled by an element
of A (of B) and obtaining one such path. Then the terminal (initial) vertex
of the new t-edge can be uniquely determined. Thus to realize Construction 5
effectively, we need to be able to decide if any given vertex can be “t-saturated”.
It follows from the above discussion that (C6) ensures decidability of this.

In [4], we showed that if we start with linA(w) for some w ∈ (X ∪ X−1 ∪
{t, t−1})+ and apply of Constructions 1 - 5 as many times as possible in the
prescribed order, then the resulting automaton is a T -automaton with finitely
many lobes. The lobes in general can be infinite graphs.

Construction 6. It is Construction 6 (“sprouting” new lobes) that causes the
Schützenberger automata relative to Inv〈X, t | R ∪ RHNN 〉 to possibly have
infinitely many lobes. However, all the lobes introduced in Construction 6 are
determined by the lobes already existing in the finite-lobe automaton obtained
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from linA(w) by Constructions 1–5. This fact motivates the concept of a host,
that is a subgraph with finitely many lobes that “stores” all important infor-
mation about the whole Schützenberger graph and that stays unaffected by the
consequent steps of the procedure.

In order for our iterative procedure to be effective we need to be able to
effectively recognize so called A-buds and B-buds, i.e. for any given vertex v of
a Schützenberger graph relative to Inv〈X |R〉 there must be an effective way to
decide whether there is a loop at v labelled by e and whether there is a loop at
v labelled by f .

Since we assume that each Schützenberger graph Γ relative to Inv〈X |R〉 is
effectively constructible, there is an algorithm that decides whether or not e, f
belongs to L[(v, Γ, v)].

Once we can recognize such a vertex v of a graph Γ , we can effectively perform
one application of Construction 6:

We check whether or not the set UA(e(v,Δ)) is empty (effective by (C4)); here
Δ denotes a lobe that contains v.

If UA(e(v,Δ)) �= ∅, we compute fA(e(v,Δ)) (this can be done by (C5)) and
set f := [fA(e(v,Δ))]ϕ (effective by (C2)). Otherwise we add a new lobe to
Γ . The lobe is isomorphic to SΓ (f) and is connected to Γ by a t-edge with
the initial vertex at v. SΓ (f) is effectively constructible by (C1). After this,
Construction 5 is applied to the new t-edge.

The observations made in this section thus far will be used in the proof of the
following theorem.

Theorem 5. Let S∗ = [S;A,B;ϕ] be a lower bounded HNN-extension of an
inverse semigroup S = Inv〈X |R〉. Then the word problem for S∗ relative to
Inv〈X, t |R ∪ RHNN 〉 is decidable if the conditions (C1)–(C6) are satisfied.

Proof. From the above analysis of Constructions 1 - 6, it is clear that if the
conditions (C1)–(C6) are satisfied then each Schützenberger automaton relative
to Inv〈X, t |R∪RHNN 〉 is effectively constructible and hence the word problem
for S∗ is decidable. ��

Let us now describe a bit more directly how our algorithm decides whether or
not two words are equal in S∗: Given two words w1, w2 ∈ (X ∪X−1 ∪{t, t−1})+,
we have to decide whether or not w1 ∈ L[A(X ∪ {t} , R ∪ RHNN , w2)] and
w2 ∈ L[A(X ∪ {t} , R ∪ RHNN , w1)].

We start with the linear automaton A1 = linA(w1). This is an automaton
with finitely many lobes where each lobe is the linear automaton of a t-free
subword of w1. In Construction 1 the lobes are replaced by Schützenberger
automata of these subwords (with some lobes possibly folded together). Since
by (C1) all Schützenberger automata of S are effectively constructible, there is
a finite description of each lobe (in fact, each lobe can be represented by the
word v from the original alphabet, such that SΓ (X,R, v) is isomorphic to the
lobe.) This allows a finite description of the whole automaton. Moreover, we
are also able to record the adjacency vertices of the automaton. Throughout
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applications of Constructions 1–4 the lobes are either folded or enlarged by mul-
tiplication by a Schützenberger automaton relative to Inv〈X |R〉. (This clearly
corresponds to multiplication of the associated words.) Moreover, only finitely
many applications of Constructions 1–4 are needed. Thus we maintain a finite
description of each automaton throughout all applications of Constructions 1–4.
Denote by A2 the automaton obtained from A1 by all possible applications of
Constructions 1–4. Note that the subsequent applications of Constructions 5 and
6 will not alter the lobes of A2. This in particular means that A2 embeds into
automaton A(X ∪ {t}, R ∪ RHNN , w1), A2 ↪→ A(X ∪ {t}, R ∪ RHNN , w1), and
moreover, that A2 is a T -subautomaton of A(X ∪{t}, R∪RHNN , w1). We write
A2 = (α, Γ, β) and note that w1 labels a path in A2 from the initial vertex α to
the terminal vertex β.

Consider now the word w2 and the problem of deciding if w2 ∈ L[A(X ∪
{t} , R∪RHNN , w1)]. Suppose, inductively, that we were effectively able to decide
that there is a path in A2 labelled by some prefix u1 of w2 starting at the initial
root α and ending at some vertex v in some lobe Δ of A2. Suppose that the next
letter read in w2 is x.

– If x ∈ (X ∪ X−1), then since (C1) holds, we can decide whether in the lobe
Δ there is an edge labelled by x starting at v. If there is no such edge in Δ,
we can conclude that w2 /∈ L[A(X ∪ {t}, R ∪ RHNN , w1)] and thus w1 �= w2

in S∗. If there is such an edge z, we move to its terminal vertex ω(z) (i.e. we
set v := ω(z)), and repeat the process for the next letter of w2, if such exists.

– If x = t and v is the initial vertex of some t-edge z of A2. Then set v := ω(z)
and repeat the process for the next letter of w2. If v is not the initial vertex
of any t-edge of A2, then we use the algorithm guaranteed by (C6) to check
whether or not v is a vertex that would be t-saturated in Construction 5. We
have a record of all adjacency vertices of A2 (there are just finitely many of
them), and thus we can decide whether or not there is a path labelled by an
element from A between v and one of these adjacency vertices.
• If the output is positive, the algorithm guaranteed by (C6) will produce a

word a ∈ A that labels such a path. Thus we can compute aϕ ( by (C2)) and
determine the vertex v′, that would be the terminal vertex of the t-edge.
We move to vertex v′ and repeat the process for the next letter from w2.

• If the output is negative, we use the algorithm that decides whether or not
v is an A-bud. If the answer is positive, then we attach the new t-edge
to v and record the new lobe that gets attached to the terminal vertex of
this new t-edge (as described in Construction 6). We move to the terminal
vertex of this t-edge and repeat the process for the next letter of w2. If the
answer is negative, i.e. v is not an A-bud of Γ then we can conclude that
w2 /∈ L[A(X ∪ {t}, R ∪ RHNN , w1)] and w1 �= w2 in S∗.

– If x = t−1 and v is the terminal vertex of some t-edge z of A2, then set
v := α(z) and repeat the process for the next letter of w2, if such exists. If v is
not the terminal vertex of any t-edge of A2, we use the algorithm guaranteed
by (C6) to check whether or not v is the vertex that would be t-saturated in
Construction 5.
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• If the output is positive, the algorithm will produce a path labelled by some
b ∈ B. Then we can compute bϕ−1 (by (C2)) and determine the vertex v′

that would be the initial vertex of the t-edge. We move to the vertex v′

and repeat the process for the next letter from w2.
• If the output is negative, we use the algorithm to decide whether or not v

is a B-bud. If the answer is positive, then we attach the new lobe to Δ,
by a new t-edge with the terminal vertex of t at v. We move to the initial
vertex of this t-edge and repeat the process for the next letter of w2. If the
answer is negative, i.e. v is not a B-bud of Γ , then we can conclude that
w2 /∈ L[A(X ∪ {t}, R ∪ RHNN , w1)] and w1 �= w2 in S∗.

If x was the last letter of w2, then we need to check whether or not the
terminal vertex of the edge z labelled by the letter x is equal to the terminal
vertex of A2.

– If ω(z) = β, then w2 ∈ L[A(X ∪ {t}, R ∪ RHNN , w1)].
– If ω(z) �= β, then w2 /∈ L[A(X ∪ {t}, R ∪ RHNN , w1)] and w1 �= w2 in S∗.

Similarly we can decide whether or not w1 ∈ L[A(X ∪ {t} , R ∪ RHNN , w2)], by
simply interchanging the roles of w1 and w2. If both w1 ∈ L[A(X ∪ {t} , R ∪
RHNN , w2)] and w2 ∈ L[A(X ∪ {t} , R ∪ RHNN , w1)] are true, then w1 = w2

in S∗.

3 The Word Problem for HNN-extensions of Free
Inverse Semigroups

Throughout this section, we consider an HNN-extension of the form S∗ =
[S;A,B;ϕ] where A and B are isomorphic finitely generated subsemigroups
of FIS(X). By analyzing Conditions (C1) - (C6) from the previous section, we
show that our iterative procedure is effective and thus the word problem for
HNN-extensions of free inverse semigroup S∗ is decidable. This result is well-
connected to the general study of decidability and complexity questions on (free)
inverse monoids like, solvability of equations, model-checking for some logics,
word-problem, membership problem for submonoids, etc.

Recall that each element of FIS(X) can be represented as a birooted Munn
tree [9]. Since, for a word w, the birooted Munn tree (αw,MT (w), βw) is the
determinized form of the linear automaton linA(w), it is constructible and its
underlying graph is a tree. The pleasant consequence for the graphs in our con-
structions is that all lobes stay finite trees throughout the whole procedure. This
is the key point in most of the following arguments.

First notice that S∗ = [S;A,B;ϕ] is lower bounded: Every idempotent e ∈
S = FIS(X) is uniquely associated with its finite rooted tree (αe,MT (e), βe).
The natural partial order of S satisfies e ≤ f if and only if (αf ,MT (f), βf ) ↪→
(αe,MT (e), βe). Condition 1 of Definition 4 then follows from the fact that
only finitely many birooted Munn tree can be embeded into (αe,MT (e), βe).
For any two idempotents e and f , the birooted Munn tree of their product
(αef,MT (ef), βef) has the property that each edge of MT (ef) is covered by
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an edge from MT (e) or MT (f). Condition 2 of lowerboundedness is somewhat
technical but not hard to check, and it follows as in Example 7, Chap. 2 in [4].

To show the decidability of the word problem for S∗ it is now enough to
check that the conditions of Theorem 5 are satisfied.

(C1) The solution to the word problem for FIS(X) is given by Munn’s
Theorem [9], that says that two words u and v in (X ∪ X−1)∗ are equal if and
only if (αu,MT (u), ωw) = (αv,MT (v), ωv).

(C2) The isomorphisms ϕ and ϕ−1 are effectively calculable due to the fact
that the inverse subsemigroups A and B are finitely generated. In such a case,
it is enough to define ϕ (ϕ−1) on the generators of A (B).

(C3) That this condition is satisfied follows from the next result of Cherubini,
Meakin and Piochi [1]. The proof given there uses the Munn trees associated with
elements of FIS(X).

Lemma 6. If U is a finitely generated inverse subsemigroup of a free inverse
semigroup FIS(X) then the membership problem for U in FIS(X) is decidable.

(C4) and (C5) The algorithms required in these conditions are described
again in [1]. Let us briefly give an idea how they work. Let e ∈ E(FIS(X)).
Consider the birooted Munn tree of e, (αe,MT (e), βe). Since e is an idempotent,
we have αe = βe. Note that if u is any other element of FIS(X) with the Munn
tree of the form (αu,MT (u), βu), then u ≥ e if and only if MT (u) ⊂ MT (e)
and αu = βu = αe. Thus the set of all elements of FIS(X) that are greater or
equal to e corresponds to the set of all subtrees of MT (e) rooted at αe. Since
there are only finitely many such subtrees, we can try all of them and use the
algorithm from (C3) to each to check if any of them corresponds to an element
of A (of B). Thus we can decide whether or not UA(e) (UB(e)) is empty. If there
is an element from A (from B) such that u ≥ e, i.e. there is a subtree of MT (e)
rooted at αe corresponding to an element of A (of B), then the maximal such
subtree will correspond to the least idempotent fA(e) (fB(e)).

(C6) Since each Schützenberger graph of FIS(X) is a finite tree, there are
only finitely many elements of FIS(X) that can be read in a tree between two
vertices. Check this finite set for membership in A (in B).

The next theorem is an immediate corollary of Theorem5, Lemma 6 and the
above arguments.

Theorem 7. The word problem is decidable for any HNN-extension of the form
S∗ = [S;A,B;ϕ] where A and B are isomorphic finitely generated inverse
subsemigroups of FIS(X).
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Abstract. Motivated by applications in natural language processing,
we study the uniform membership problem for hyperedge-replacement
grammars that generate directed acyclic graphs. Our major result is a
low-degree polynomial-time algorithm that solves the uniform member-
ship problem for a restricted type of such grammars. We motivate the
necessity of the restrictions by two different NP-completeness results.
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1 Introduction

Hyperedge-replacement grammars (HRGs [5,7]) are one of the most successful
formal models for the generation of graph languages, because their properties
resemble those of context-free grammars to a great extent. Unfortunately, poly-
nomial parsing is an exception from this rule: graph languages generated by
HRGs may be NP-complete. Thus, not only is the uniform membership problem
intractable (unless P �= NP), but the non-uniform one is as well [1,8].

Recently, Chiang et al. [4] advocated the use of hyperedge-replacement for
describing meaning representations in natural language processing (NLP), and in
particular the abstract meaning representations (AMRs) proposed by Banarescu
et al. [2], and described a general recognition algorithm together with a detailed
complexity analysis. Unsurprisingly, the running time of the algorithm is expo-
nential even in the non-uniform case, one of the exponents being the maximum
degree of nodes in the input graph. Unfortunately, this is one of the parameters
one would ideally not wish to limit, since AMRs may have unbounded node
degree. However, AMRs are directed acyclic graphs (DAGs), a fact that is not
exploited in [4]. Another recent approach to HRG parsing is [6], where predictive
top-down parsing in the style of SLL(1) parsers is proposed. This is a uniform
approach yielding parsers of quadratic running time in the size of the input
graph, but the generation of the parser from the grammar is not guaranteed to
run in polynomial time. (For a list of earlier attempts to HRG parsing, see [6].)
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 521–532, 2016.
DOI: 10.1007/978-3-319-30000-9 40
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In this paper, we study the complexity of the membership problem for DAG-
generating HRGs. Since NLP applications usually involve a machine learning
component in which the rules of a grammar are inferred from a corpus, and
hence the resulting HRG cannot be assumed to be given beforehand, we are
mainly interested in efficient algorithms for the uniform membership problem.
We propose restricted DAG-generating HRGs and show, in Sect. 4, that their
uniform membership problem is solvable in time O(n2 + nm), where m and n
are the sizes of the grammar and the input graph, resp. In linguistic applications,
where grammars are usually much larger than the structures to be parsed, this
is essentially equivalent to O(nm). To our knowledge, this is the first uniform
polynomial-time parsing algorithm for a non-trivial subclass of HRGs. Naturally,
the restrictions are rather strong, but we shall briefly argue in Sect. 5 that they
are reasonable in the context of AMRs. We furthermore motivate the restrictions
with two NP-completeness results for DAG-generating HRGs, in Sect. 6.

To save space, most proofs have been omitted. They are available in [3].

2 Preliminaries

The set of non-negative integers is denoted by N. For n ∈ N, [n] denotes
{1, . . . , n}. Given a set S, let S� be the set of non-repeating lists of elements of
S. If sw ∈ S� with s ∈ S, we shall also denote sw by (s, w). If � is a (partial)
ordering of S, we say that s1 · · · sk ∈ S� respects � if si � sj implies i ≤ j.

Hypergraphs and DAGs. A ranked alphabet is a pair (Σ, rank) consisting of
a finite set Σ of symbols and a ranking function rank : Σ → N which assigns a
rank rank(a) to every symbol a ∈ Σ. We usually identify (Σ, rank) with Σ and
keep ‘rank’ implicit.

Let Σ be a ranked alphabet. A (directed hyperedge-labeled) hypergraph over
Σ is a tuple G = (V,E, src, tar, lab) consisting of

– finite sets V and E ⊆ V × V � of nodes and hyperedges, respectively
– source and target mappings src : E → V and tar : E → V � assigning to each

hyperedge e its source src(e) and its sequence tar(e) of targets, and
– a labeling lab: E → Σ such that rank(lab(e)) = |tar(e)| for every e ∈ E.

Below, we call hyperedges edges and hypergraphs graphs, for simplicity. Note
that edges have only one source but several targets, similarly to the usual notion
of term (hyper)graphs. The DAGs we shall consider below are, however, more
general than term graphs in that nodes can have out-degree larger than one.

Continuing the formal definitions, a path in G is a (possibly empty) sequence
e1, e2, . . . , ek of edges such that for each i ∈ [k − 1] the source of ei+1 is a target
of ei. The length of a path is the number of edges it contains. A nonempty path
is a cycle if the source of the first edge is a target of the last edge. If G does not
contain any cycle then it is acyclic and is called a DAG . The height of a DAG
G is the maximum length of any path in G. A node v is a descendant of a node
u if u = v or there is a nonempty path e1, . . . , ek in G such that u = src(e1) and
v occurs in tar(ek). An edge e′ is a descendant edge of an edge e if there is a
path e1, . . . , ek in G such that e1 = e and ek = e′.
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The in-degree of a node u ∈ V is the number of edges e such that u is a target
of e. The out-degree of u is the number of edges e such that u is the source of e.
A node with in-degree 0 is a root and a node with out-degree 0 is a leaf.

For a node u of a DAG G = (V,E, src, tar, lab), the sub-DAG rooted at u is the
DAG G↓u induced by the descendants of u. Thus G↓u = (U,E′, src′, tar′, lab′)
where U is the set of all descendants of u, E′ = {e ∈ E | src(e) ∈ U}, and src′,
tar′, and lab′ are the restrictions of src, tar and lab to E′. A leaf v of G↓u is
reentrant if there exists an edge e ∈ E \ E′ such that v occurs in tar(e).

DAG Grammars. A marked graph is a tuple G = (V,E, src, tar, lab,X) where
(V,E, src, tar, lab) is a graph and X ∈ V � is nonempty. The sequence X is
called the marking of G, and the nodes in X are referred to as external nodes.
If X = (v, w) for some v ∈ V and w ∈ V � then we denote them by root(G) and
ext(G), resp. This is motivated by the form or our rules, which is defined next.

Definition 1 (DAG grammar). A DAG grammar is a system H = (Σ,N, S,
P ) where Σ and N are disjoint ranked alphabets of terminals and nonterminals,
respectively, S is the starting nonterminal with rank(S) = 0, and P is a set of
productions. Each production is of the form A → F where A ∈ N and F is
a marked DAG over Σ ∪ N with |ext(F )| = rank(A) such that root(F ) is the
unique root of F and ext(F ) contains only leaves of F .

Naturally, a terminal (nonterminal) edge is an edge labeled by a terminal
(nonterminal, resp.). We may sometimes just call them terminals and nontermi-
nals if there is no danger of confusion. By convention, we use capital letters to
denote nonterminals, and lowercase letters for terminal symbols.

A derivation step of H is described as follows. Let G be a graph with an edge
e such that lab(e) = A and let A → F in P be a rule. Applying the rule involves
replacing e with an unmarked copy of F in such a way that src(e) is identified
with root(F ) and for each i ∈ [|tar(e)|], the ith node in tar(e) is identified
with the ith node in ext(F ). Notice that |tar(e)| = |ext(F )| by definition. If
the resulting graph is G′, we write G ⇒H G′. We write G ⇒∗

H G′ if G′ can be
derived from G in zero or more derivation steps. The language L(H) of H are
all graphs G over the terminal alphabet T such that S• ⇒∗

H G where S• is the
graph consisting of a single node and a single edge labeled by S.

The graphs produced by DAG grammars are connected, single-rooted, and
as the name implies, acyclic. This can be proved in a straightforward manner
by induction on the length of the derivation. In the following, we consider only
graphs of height at least 1, as the (single) graph of height 0 requires simple but
cumbersome special cases.

Ordering the Leaves of a DAG. Let G = (V,E, src, tar, lab) be a DAG and
let u and u′ be leaves of G. We say that an edge e with tar(e) = w is a common
ancestor edge of u and u′ if there are t and t′ in w such that u is a descendant of
t and u′ is a descendant of t′. If, in addition, there is no edge with its source in w
that is a common ancestor edge of u and u′, we say that e is a closest common
ancestor edge of u and u′.

Note that in a DAG, a pair of nodes can have more than one closest common
ancestor edge.
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Definition 2. Let G = (V,E, src, tar, lab) be a DAG. Then �G is the partial
order on the leaves of G defined by u �G u′ if, for every closest common ancestor
edge e of u and u′, tar(e) can be written as wtw′ such that t is an ancestor of u
and all ancestors of u′ in tar(e) are in w′.

3 Restricted DAG Grammars

DAG grammars are a special case of hyperedge-replacement grammars. We now
define further restrictions that will allow polynomial time uniform parsing. Every
rule A → F of a restricted DAG grammar is required to satisfy the following
conditions (in addition to the conditions formulated in Definition 1):

1. If a node v of F has in-degree larger than one, then v is a leaf
2. If F consists of exactly two edges e1 and e2, both labeled by A, such that

src(e1) = src(e2) and tar(e1) = tar(e2) we call A → F a clone rule. Clone
rules are the only rules in which a node can have out-degree larger than 1
and the only rules in which a nonterminal can have the root as its source.

3. For every nonterminal e in F , all nodes in tar(e) are leaves.
4. If a leaf of F has in-degree exactly one, then it is an external node or its

unique incoming edge is terminal.
5. The leaves of F are totally ordered by �F and ext(F ) respects �F .

We now demonstrate some properties of restricted DAG grammars.

Lemma 3. Let H = (Σ,N, S, P ) be a restricted DAG grammar, G a DAG such
that S• ⇒∗

H G, and U the set of nodes of in-degree larger than 1 in G. Then U
contains only leaves of G and tar(e) ∈ U� for every nonterminal e of G.

Note that the lemma implies that leaves with in-degree exactly one are only
connected to terminal edges. The lemma is proven by induction on the length
of derivations, starting with the observation that S• has the properties claimed.
To simplify the presentation of our algorithm, we introduce a normal form.

Definition 4. A restricted DAG grammar H = (Σ,N, S, P ) is on normal form
if every rule A → F in P has one of the following three forms.

(a) The rule is a clone rule.
(b) F has a single edge e, which is terminal.
(c) F has height 2, the unique edge e with src(e) = root(F ) is terminal, and all

other edges are nonterminal.

See Fig. 1 for examples of right-hand sides of the three types. In particular,
right-hand sides F of the third type consist of nodes v, v1, . . . , vm, u1, . . . , un, a
terminal edge e and nonterminal edges e1, . . . , ek such that

– v = root(F ) = src(e) and v1 · · · vm is a subsequence of tar(e),
– src(ei) ∈ {v1, . . . , vm} for all i ∈ [k],
– ext(F ) and tar(ei), for i ∈ [k], are subsequences of u1 · · · un.
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A A a

a

B C

Fig. 1. Examples right-hand sides F of normal form rules of types (a), (b), and (c)
for a nonterminal of rank 3. In illustrations such as these, boxes represent hyperedges
e, where src(e) is indicated by a line and the nodes in tar(e) by arrows. Filled nodes
represent the marking of F . Both tar(e) and ext(F ) are drawn from left to right unless
otherwise indicated by numbers

The proof of the following lemma follows the standard technique of dividing
rules with large right-hand sides into several rules with smaller right-hand sides
as in the proof of the Chomsky normal form of context-free grammars. The total
size of the grammar does not change (except for a small constant factor).

Lemma 5. Every restricted DAG grammar H can be transformed in linear time
into a restricted DAG grammar H ′ on normal form such that L(H) = L(H ′).

One can now show that restrictions 1–5 imply that, in a DAG G generated
by a restricted DAG grammar, the orders �G↓v

are consistent for all nodes v,
that is, we have the following lemma the proof of which can be found in [3] (like
the other proofs left out in this short version).

Lemma 6. Let H be a restricted DAG grammar and G = (V,E, src, tar, lab) a
DAG generated by H. Then there is a total order � on the leaves of G such that
�G ⊆ � and for every v ∈ V and every pair u, u′ of reentrant nodes of G↓v we
have u � u′ ⇔ u �G↓v

u′.

If a DAG G has been derived by a restricted DAG grammar in normal form,
it is uniquely determined which subgraphs of G have been produced by a nonter-
minal, and which leaves were connected to it at that point. In particular, given
a non-leaf node v in G, consider the subgraph G↓v. Consider the earliest point
in the derivation where there was a nonterminal e having v as its source. We
say that e generated G↓v. From the structure of G and G↓v, we know that all
reentrant nodes of G↓v are leaves and, by restriction 4, that e must have had
exactly these reentrant leaves of G↓v as targets. By Lemma 6 and restriction 5,
the order of these leaves in tar(e) coincides with the total order �G↓v

.
In other words, during the generation of G by a restricted DAG grammar,

G↓v must be generated from a nonterminal e such that src(e) = v and tar(e) is
uniquely determined by the condition that it consists of exactly the reentrant
nodes of G↓v and respects �G↓v

. Therefore, we will from now on view G↓v as a
marked DAG, where the marking is (v, tar(e)).
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4 A Polynomial Time Algorithm

We present the parsing algorithm in pseudocode, after which we explain vari-
ous subfunctions used therein. Intuitively, we work bottom-up on the graph in
a manner resembling bottom-up finite-state tree automata, apart from where a
node has out-degree greater than one. We assume that a total order � on the
leaves of the input DAG G, as ensured by Lemma 6, is computed in a preprocess-
ing step before the algorithm is executed. At the same time, the sequence wv of
external nodes of each sub-DAG G↓v is computed. (Recall from the paragraph
above that these are the reentrant leaves of G↓v, ordered according to �G↓v

.)
For a DAG G of size n, this can be done in time O(n2) by a bottom-up process.
To explain how, let us denote the set of all leaves of G↓v by Uv for every node
v of G. We proceed as follows. For a leaf v, let �v = {(v, v)} and wv = v. For
every edge e with tar(e) = u1 . . . uk such that ui has already been processed for
all i ∈ [k], first check if �0 =

⋃
i∈[k] �ui

is a partial order. If so, define �e to be
the unique extension of �0 given as follows. Consider two nodes u, u′ ∈ Usrc(e)

that are not ordered by �0. If i, j are the smallest indices such that u ∈ Uui

and u′ ∈ Uuj
, then u �e u′ if i < j. Note that �e is uniquely determined and

total. Moreover, let we be the unique sequence in U�
src(e) which respects �0 and

contains exactly the nodes in Usrc(e) which are targets of edges of which e is not
an ancestor edge. Similarly, if v is a node and all edges e1, . . . , ek having v as
their source have already been processed, check if

⋃
i∈[k] �ei

is a partial order.
If so, define �e to be any total extension of this order. Moreover, check that
we1 = · · · = wek

, and let wv be exactly this sequence. The preprocessing may
fail for some graphs, but as these may not be part of L(G) for any restricted
DAG grammar G, we simply reject.

After this preprocessing, Algorithm 1 can be run. As the sequences wu of
external nodes for each sub-DAG G↓u were computed in the preprocessing step,
we consider this information to be readily available in the pseudocode. This,
together with the assumption that the DAG grammar H is in normal form
allows for much simplification of the algorithm.

Walking through the algorithm step by step, we first extract the root node
(line 2) and determine which kind of (sub-)graph we are dealing with (line 4):
one with multiple outgoing edges from the root must have been produced by
a cloning rule to be valid, meaning we can parse each constituent subgraph
(line 5) recursively (line 6) and take the intersection of the resulting nontermi-
nal edges (line 7). Each nonterminal that could have produced all the parsed
subgraphs and has a cloning rule is entered into returns (line 8). The procedure
subgraphs below is used to partition the sub-DAG G↓v into one sub-DAG per
edge having v as its source, by taking each such edge and all its descendant
edges (and all their source and target nodes) as the subgraph. Note that the
order among these subgraphs is undefined, though they are all guaranteed by
the preprocessing to have the same sequence of external nodes wv.

If, on the other hand, we have a single outgoing edge from the root node
(line 9), we iterate through the subgraphs below the (unique) edge below the
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Algorithm 1. Parsing of restricted graph grammars
1: function parses to(restricted DAG grammar H in normal form, DAG G)
2: v ← root(G)
3: returns ← ∅
4: if out degree(v) > 1 then
5: for Gi ← subgraphs below(v) do
6: Xi ← parses to(Gi)
7: X ← ⋂i Xi

8: returns ← {A ∈ X | has clone rule(A)}
9: else

10: e ← edge below(v)
11: children ← ()
12: for v′ ← targets(e) do
13: if leaf(v′) then
14: append(children, external node(v′))
15: else
16: append(children, parses to(G↓v′))
17: returns ← {A | (A → F ) ∈ P and match(F, e, children)}
18: return returns

root node (line 12). Nodes are marked either with a set of nonterminals (that
the subgraph below the nodes can parse to) (line 16), or, if the node is a leaf,
with a Boolean indicating whether or not the node is reentrant in the currently
processed subgraph G (line 14).

The match function used in line 17 deserves a closer description, as much of
the complexity calculations depend on this function taking no more than time
linear in the size of the right-hand side. Let src(e) = v and tar(e) = v1 · · · vk.
Each vi has an entry in emphchildren. If vi is a leaf it is a Boolean, otherwise a
set of nonterminal labels. From G and children, we create a DAG G′ as follows.
Let T be the union of {v, v1, . . . , vk} and the set of leaves � of G such that �
is reentrant to G (as indicated by children) or there is an i ∈ [k] with � being
external in G↓vi

. Let T = {v, v1, . . . , vk, t1, . . . , tp}. Then G′ has the set of nodes
U = {u, u1, . . . , uk, s1, . . . , sp}. Let h be the bijective mapping with h(v) = u
and h(vi) = ui for every i ∈ [k] and h(ti) = (si) for every i ∈ [p]. We extend h
to sequences in the obvious way. The root of G is u and there is a single edge d
connected to it such that lab(d) = lab(e), src(d) = u and tar(d) = u1 · · · uk. For
every i ∈ [k] such that vi is not a leaf, G′ has an edge di with src(di) = ui and
tar(di) = h(wi), where wi is the subsequence of leaves of G↓vi

that belong to T ,
ordered by �. The edge is labeled by the set of nonterminals children[i].

Once match has built G′ it tests whether there is a way of selecting exactly one
label for each nonterminal edge in G′ such that the resulting graph is isomorphic
to rhs. This can be done in linear time since the leaves of both G′ and rhs are
totally ordered and, furthermore, the ordering on v1 · · · vk and u1 · · · uk makes
the matching unambiguous.

Let us now discuss the running time of Algorithm 1. Entering the if branch
of parses to, we simply recurse into each subgraph and continue parsing.
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The actual computation in the if-clause is minor: an intersection of the l sets of
nonterminals found. Each time we reach the else clause in parses to, we con-
sume one terminal edge of the input graph. We recurse once for each terminal
edge below this (no backtracking), so the parsing itself enters the else-clause
n times, where n is the number of terminal edges in the input graph. For each
rule r = A → F , we build and compare at most |F | nodes or edges in the match
function. Thus, it takes O(nm) operations to execute Algorithm 1 in order to
parse a graph with n terminal hyperedges according to a restricted DAG gram-
mar H in normal form of size m. If H is not in normal form, Lemma 5 can be
used to normalize it in linear time. Since the process does not affect the size of
H by more than a (small) linear factor, the time bound is not affected. Finally,
a very generous estimation of the running time of the preprocessing stage yields
a bound of O(n2), because n edges (and at most as many nodes) have to be
processed, each one taking no more than n steps. Altogether, we have shown the
following theorem, the main result of this paper.

Theorem 7. The uniform membership problem for restricted DAG grammars
is solvable in time O(n2 + mn), where n is the size of the input graph and m is
the size of the grammar.

5 Representing and Generating AMRs

An Abstract Meaning Representation (AMR) is an ordinary directed edge-labeled
acyclic graph expressing the meaning of a sentence. An example expressing
“Anna’s cat is missing her” is shown in Fig. 2. The root corresponds to the
concept “missing”, which takes two arguments, the misser and the missed.

In this representation every node has a special “instance edge” that deter-
mines the concept represented by its source node (miss, cat, anna). The most
important concepts are connected to (specific meanings of) verbs, which have a
number of mandatory arguments arg0, arg1 depending on the concept in ques-
tion. While the representation shown is not directly compatible with the restric-
tions introduced in Sect. 3 a simple translation helps. Every concept with its k
mandatory arguments is turned into a hyperedge of rank k +1, the target nodes
of which represent the instance (a leaf) and the roots of the arguments. The
resulting hypergraph is shown in Fig. 2 on the right. Note that all shared nodes
on the left (corresponding to cross-references) are turned into reentrant leaves.
This is important because in a DAG generated by a restricted DAG grammar
only leaves can have an in-degree greater than 1.

It might seem that we only need graphs with nodes of out-degree at most 1,
and thus no cloning rules for their generation. However, a concept such as miss
can typically also have optional so-called modifiers, such as in “Anna’s cat is
missing her heavily today”, not illustrated in the figure. Such modifiers can typ-
ically occur in any number. We can add them to the structure by increasing the
rank of miss by 1, thus providing the edge with another target v. The out-degree
of this node v would be the number of modifiers of miss. Using the notation
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=⇒

arg1
miss’

arg0

anna’

poss

cat’

miss’

anna’

cat’

arg1
inst

arg0

inst

poss
inst

Fig. 2. Example translation of AMR

of Sect. 4, each sub-DAG G↓e given by one of the outgoing edges e of v would
represent one (perhaps complex) modifier. To generate these sub-DAGs G↓e a
restricted DAG grammar would use a nonterminal edge that has v as its source
and which can be cloned. The latter makes it possible to generate any number
of modifiers all of which can refer to the same shared concepts.

6 NP-Hardness Results

In order to motivate the rather harsh restrictions we impose on our grammars,
we present NP-hardness results for two different classes of grammars that are
obtained by easing the restrictions in different ways.

Theorem 8. The uniform membership problem for DAG grammars that con-
form to restrictions 1–4 is NP-complete.

Proof. The problem is in NP since the restrictions guarantee that derivations are
of linear length in the size of the input graph. It remains to prove NP-hardness.

Let us consider an instance ϕ of the satisfiability problem SAT, i.e., a set
{C1, . . . , Cm} of clauses Ci, each being a set of literals xj or ¬xj , where j ∈ [n] for
some m,n ∈ N. Recall that the question asked is whether there is an assignment
of truth values to the variables xj such that each clause contains a true literal. We
have to show how to construct a DAG grammar H conforming to conditions 1–4
and an input graph G such that G ∈ L(H) if and only if ϕ is satisfiable.

We first give a construction that violates conditions 4 and 5. It uses nonter-
minals S,K,Ki,Kij with i ∈ [m], j ∈ [n]. The terminal labels are c, all j ∈ [m],
and an “invisible” label. The labels K,Ki,Kij , c are of rank 2n, S is of rank 0
and the remaining ones are of rank 1. Figure 3 depicts the rules of the grammar.
Note that the rules are on normal form.

The first row of rules generates 2n leaves which, intuitively, represent x1,¬x1,
. . . , xn,¬xn and are targets of a K-labeled nonterminal. The nonterminal is
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S → K

. . .

K → K K

. . .

K →
i

Ki

. . .

(1 ≤ i ≤ m)

Ki → Kij

. . .

if xj ∈ Ki Ki → Kij

. . .
2j−1 2j

. . .

if ¬xj ∈ Ki

Kij → Kij

. . .

Kij

. . .
2�−1 2�

. . .

for � ∈ [n] \ {j} c

. . .

Fig. 3. Reduction of SAT to the uniform membership problem

cloned any number of times (with the intention to clone it m times, once for
each clause). Afterwards it “guesses” which clause Ci (i ∈ N) it should check.
The second row of rules lets every Ki “guess” which literal makes Ci true. If the
literal is negative, it interchanges the corresponding targets, otherwise it keeps
their order. The third row of rules, for all pairs (x�,¬x�) that are not used to
satisfy Ci, interchanges the corresponding targets or keeps their order. Finally,
it replaces the nonterminal edge by a terminal one.

Now, consider the input DAG G in Fig. 4 (left). Suppose that G is indeed
generated by H. Since the jth outgoing tentacles of all c-labeled edges point
to the same node (representing either xj or ¬xj), a consistent assignment is
obtained that satisfies ϕ. Conversely, a consistent assignment obviously gives rise
to a corresponding derivation of G, thus showing that the reduction is correct.

Finally, let us note that changing the initial rule to the one shown in the left
part of Fig. 4 (using a new terminal � of rank 2) makes H satisfy condition 4
as well. This change being made, the input graph is changed by including two
copies of the original input, both sharing their leaves, and adding a new root
with an outgoing �-hyperedge targeting the roots of the two copies. �

If we also disregard restriction 2, the non-uniform membership problem also
becomes NP-complete, even if we only consider graphs of height 1.

Theorem 9. There is a DAG grammar H that conforms to restrictions 1, 3,
and 4, such that all graphs in L(H) have height 1 and L(H) is NP-complete.
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Fig. 4. Input graph in the proof of Theorem 8 (left) and modified starting rule (right)

The proof is by reduction from the membership problem for context-free gram-
mars with disconnecting (CFGDs), using a result from [8]. A CFGD is an
ordinary context-free grammar in Chomsky normal form, with additional rules
A → �, where � is a special symbol that cuts the string into two. Thus, an
element in the generated language is a finite multiset of strings rather than a
single string. As shown in [8], CFGDs can generate NP-complete languages. We
represent a multiset {s1, . . . , sk} of strings si as a graph consisting of k DAGs
of height 1 sharing their roots. If si = a1 · · · am then the DAG representing it
consists of the root v, leaves u0, . . . , um, and ai-hyperedges ei with src(ei) = r
and tar(ei) = ui−1ui. Moreover, there are two “unlabeled” terminal edges from
v to u0 and un, resp. Now, every CFGD can be turned into an equivalent DAG
grammar using the schemata in Fig. 5. �

S → S0 A → B C A → a A →

Fig. 5. Rules of a DAG grammar equivalent to a CFGD with initial nonterminal S0,
from left to right: initial rule, A → BC, A → a, A → 	.

7 Future Work

A number of interesting questions remain open. Is it the case that lifting any one
of our five restrictions, while keeping the others, leads to NP-hardness? It seems
that the algorithm we propose leads to a fixed-parameter tractable algorithm,
with the size of right-hand sides in the grammar as the parameter, when we
lift restriction 5 (enforcing that the marking respects �F ). Is this actually the
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case and are there other interesting parameterizations that give tractability for
some less restricted classes of grammars? Another open question is whether
the algorithm for checking the structure of the input graph and computing the
ordering on the leaves can be optimized to run in linear or O(n log n) time.

From a practical point of view, one should study in detail how well suited
restricted DAG grammars are for describing linguistic structures such as AMRs.
Which phenomena can be modeled in an appropriate manner and which cannot?
Are there important aspects in AMRs that can be modeled by general DAG-
generating HRGs but not by restricted DAG grammars? If so, can the restrictions
be weakened appropriately without sacrificing polynomial parsability?
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Abstract. The problem of parsing has been studied extensively for var-
ious formal grammars. Given an input string and a grammar, the parsing
problem is to check if the input string belongs to the language generated
by the grammar. A closely related problem of great importance is one
where the input are a string I and a grammar G and the task is to pro-
duce a string I′ that belongs to the language generated by G and the
‘distance’ between I and I′ is the smallest (from among all the strings in
the language). Specifically, if I is in the language generated by G, then
the output should be I. Any parser that solves this version of the problem
is called an error correcting parser. In 1972 Aho and Peterson presented a
cubic time error correcting parser for context free grammars. Since then
this asymptotic time bound has not been improved under the assumption
that the grammar size is a constant. In this paper we present an error
correcting parser for context free grammars that runs in O(T (n)) time,
where n is the length of the input string and T (n) is the time needed to
compute the tropical product of two n × n matrices.

In this paper we also present an n
M

-approximation algorithm for the
language edit distance problem that has a run time of O(Mnω), where
O(nω) is the time taken to multiply two n × n matrices. To the best
of our knowledge, no approximation algorithms have been proposed for
error correcting parsing for general context free grammars.

1 Introduction

Parsing is a well studied problem owing to its numerous applications. For exam-
ple, parsing finds a place in programming language translations, description of
properties of semistructured data [12], protein structures prediction [11], etc.
For context free grammars (CFG), two classical algorithms can be found in the
literature: CYK [2,6,15] and Earley [3]. Both of these algorithms take O(n3)
time in the worst case. Valiant has shown that context free recognition can be
reduced to Boolean matrix multiplication [13].

The problem of parsing with error correction (also known as the language
edit distance problem) has also been studied well. Aho and Peterson presented
an O(n3) time algorithm for CFG parsing with errors. Three kinds of errors
were considered, namely, insertion, deletion, and substitution. This algorithm

c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 533–546, 2016.
DOI: 10.1007/978-3-319-30000-9 41
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depended quadratically on the size of the grammar and was based on Earley
parser. Subsequently, Myers [9] presented an algorithm for error correcting pars-
ing for context free grammars that also runs in cubic time but the dependence
on the grammar size was linear. This algorithm is based on the CYK parser.

As far as the worst case run time is concerned, to the best of our knowledge,
cubic time is the best known for error correcting parsing for general context free
grammars. A number of approximation algorithms have been proposed for the
DYCK language (which is a very specific context free language). See e.g., [12].

In this paper we present a cubic time algorithm for error correcting parsing
that is considerably simpler than the algorithms of [1,9]. This algorithm is based
on the CYK parser. Even though the algorithm of [9] is also based on CYK
parser, there are some crucial differences between our algorithm and that of [9].
We also show that the language edit distance problem can be reduced to the
problem of computing the tropical product (also known as the distance product
or the min-plus product) of two n×n matrices where n = |I|. Using the current
best known run time [14] for tropical matrix product, our reduction implies that
the language edit distance problem can be solved exactly in O(n3/2Ω(

√
log n))

time, improving the cubic run time that has remained the best since 1972.
In many applications, it may suffice to solve the language edit distance prob-

lem approximately. To the best of our knowledge, no approximation algorithms
are known for general context free grammars. However, a number of such algo-
rithms have been proposed for the DYCK language (which is a specific context
free language with a lot of applications). For example, the algorithm of [7] takes
subcubic time but its approximation factor is Θ(n). If I ′ is a string in the lan-
guage generated by the input grammar G that has the minimum language edit
distance (say d) with the input string I and if an algorithm A outputs a string
I ′′ such that the language edit distance between I and I ′′ is no more than
dβ(n), then we say A is a β(n)-approximation algorithm. The algorithm of [12]
runs in time O(n1+ε) for any constant ε > 0 and has a polylogarithmic approx-
imation factor. It is noteworthy that DYCK grammar parsing (without error
correction) can easily be done in linear time. On the other hand, it is known
that parsing of arbitrary context free grammars is as difficult as boolean matrix
multiplication [8]. For an extensive discussion on approximation algorithms for
the DYCK language, please see [12]. In this paper we present an approxima-
tion algorithm for general context free grammars. Specifically, we show that if
we are only interested in edit distances of no more than M, then the language
edit distance problem can be solved in O((M + 1)nω) time where O(nω) is the
time taken to multiply two n × n matrices. (Currently the best known value for
ω is < 2.373 [4]). As a corollary, it follows that there is an n

M -approximation
algorithm for the language edit distance problem with a run time of O(Mnω).

Some Notations: A context free grammar G is a 4-tuple (N,T, P, S), where T
is a set of characters (known as terminals) in the alphabet, N is a set of variables
known as nonterminals, S is the start symbol (that is a nonterminal) and P is
a set of productions.

We use L(G) to denote the language generated by G. Capital letters such as
A,B,C, . . . will be used to denote nonterminals, small letters such as a, b, c, . . .
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will be used to denote terminals, and Greek letters such as α, β, . . . will be used
to denote any string from (N ∪ T )∗.

A production of the form A → ε is called an ε-production. A production of
the kind A → B is known as a unit production.

Let G be a CFG such that L(G) does not have ε. Then we can convert G
into Chomsky Normal Form (CNF). A context free grammar is in CNF if the
productions in P are of only two kinds: A → a and A → BC.

Let U and V be two n × n real matrices. Then the tropical (or distance)
product Z of X and Y is defined as: Zij = minn

k=1(Xik + Ykj), 1 ≤ i, j ≤ n.
The edit distance between two strings I and I ′ from an alphabet T is the

minimum number of (insert, delete, and substitution) operations needed to con-
vert I to I ′.

In this paper we assume that the grammar size is O(1) which is a standard
assumption made in many works (see e.g., [13]).

A Summary of Aho and Peterson’s Algorithm: The algorithm of Aho
and Peterson [1] is based on the parsing algorithm of Earley [3]. There are some
crucial differences. Let I = a1a2 . . . an be the input string. If G(N,T, P, S) is
the input grammar, another grammar G′ = (N ′, T, P ′, S′) is constructed where
G′ has all the productions of G and some additional productions that can be
used to make derivations involving errors. Each such additional production is
called an error production. Three kinds of errors are considered, namely, inser-
tion, deletion, and substitution. G′ also has some additional nonterminals. The
algorithm derives the input string beginning with S′, minimizing the number of
applications of the error productions.

The parser of [1] can be thought of as a modified version of the Earley parser.
Like the algorithm of Earley, n+1 levels of lists are constructed. Each list consists
of items where an item is an object of the form [A → α.β, i, k]. Here A → αβ
is a production, . is a special symbol that indicates what part of the production
has been processed so far, i is an integer indicating input position at which
the derivation of α started, and k is an integer indicating the number of error
productions that have been used in the derivation from α. If we use Lj to denote
the list of level j, 0 ≤ i ≤ n, then the item [A → α.β, i, k] will be in Lj if and
only if for some ν in (N ∪T )∗, S′ ∗⇒ a1a2 · · · aiAν and α

∗⇒ ai+1ai+2 · · · aj using
k error productions.

The algorithm constructs the lists L0,L1, . . . ,Ln. An item of the form [S′ →
α., 0, k] will be in Ln, for some integer k. In this case, k is the minimum edit
distance between I and any string in L(G).

Note that the Earley parser also works in the same manner except that an
item will only have two elements: [A → α.β, i].

A Synopsis of Valiant’s Algorithm: Valiant has presented an efficient algo-
rithm for computing the transitive closure of an upper triangular matrix. The
transitive closure is with respect to matrix multiplication defined in a spe-
cific way. Each element in a matrix will be a set of items. In the case of
context free recognition, each matrix element will be a set of nonterminals.
If N1 and N2 are two sets of nonterminals, a binary operator · is defined as:
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N1 ·N2 = {A|∃B ∈ N1, C ∈ N2 such that (A → BC) ∈ P}. If a and b are matri-
ces where each element is a subset of N , the product matrix c of a and b is defined
as follows: cij =

⋃n
k=1 aik · bkj . Under the above definition of matrix multiplica-

tion, we can define transitive closure for any matrix a as: a+ = a(1) ∪ a(2) ∪ · · ·
where a(1) = a and a(i) =

⋃i−1
j=1 a(j) · a(i−j)

Valiant has shown that this transitive closure can be computed in O(S(n))
time, where S(n) is the time needed for multiplying two matrices with the above
special definition of matrix product. In fact this algorithm works for the com-
putation of transitive closure for generic operators � and union as long as these
operations satisfy the following properties: The outer operation (i.e., union) is
commutative and associative, the inner operation (�) distributes over union, ∅
is a multiplicative zero and an additive identity.

2 A Simple Error Correcting Parser

In this section we present a simple error correcting parser for CFGs. This algo-
rithm is based on the algorithm of [10]. We also utilize the concept of error
productions introduced in [1]. If G = (N,T, P, S) is the input grammar, we gen-
erate another grammar G′ = (N ′, T, P ′, S) where N ′ = N ∪ {H, I}. P ′ has all
the productions in P . In addition, P ′ has some additional error productions. We
parse the given input string I using the productions in P ′. For each production,
we associate an error count that indicates the minimum number of errors the
use of the production will amount to. The goal is to parse I using as few error
productions as possible. Specifically, the sum of error counts of all the error pro-
ductions used should be minimum. If A → α is an error production with an error
count of k, we denote this rule as A

k→ α. If there is no integer above → in any
production, the error count of this production should be assumed to be 0.

2.1 Construction of a Covering Grammar

Let G = (N,T, P, S) be the given grammar and I = a1a2 . . . an be the given
input string. Without loss of generality assume that L(G) does not have ε and
that G is in CNF. Even if G is not in CNF, we could employ standard techniques
to convert G into this form (see e.g., [5]). We construct a new grammar G′ =
(N ′, T, P ′, S) as follows. P ′ has the following productions in addition to the ones
in P : H

0→ HI, H
0→ I, and I

1→ a for every a ∈ T . Here H and I are new
nonterminals. If A → a is in P , then add the following rules to P ′: A

1→ b for
every b ∈ T − {a}, A

1→ ε, A
0→ AH, and A

0→ HA. Each production in P has
an error count of 0.

Elimination of ε-productions: We first eliminate the ε-productions in P ′ as
follows. We say a nonterminal A is nullable if A

∗⇒ ε. Let k be the number
of errors needed for A to derive ε. We denote this as follows: A

∗,k⇒ ε. Call k
the nullcount of A, denoted as nullcount(A). We only keep the minimum such
nullcount for any nonterminal. Let the minimum nullcount for any terminal A
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be Mnullcount(A). For example, if A
0→ BC,B

1→ ε, and C
1→ ε are in P ′,

then A
∗,2⇒ ε. We identify all the nullable nonterminals in P ′ using the following

procedure. If B → CD is in P ′ and if both C and D are nullable, then B is
nullable as well. In this case, nullcount(B) = nullcount(C) + nullcount(D).

After identifying all nullable nonterminals and their Mnullcount values, we
process each production as follows. Let A

k→ BC be any production in P ′. If B
is nullable and C is not, and if Mnullcount(B) = �, then we add the production
A

k+�→ C to P ′. If C is nullable and B is not, and if Mnullcount(C) = �, then we
add the production A

k+�→ B to P ′. If both or none of B and C are nullable, then
we do not add any additional production to P ′ while processing the production
A

k→ BC. If there are more than one productions in P ′ with the same precedent
and consequent, we only keep that production for which the error count is the
least. Finally, we remove all the ε productions.

Elimination of Unit Productions: We eliminate unit productions from P ′ as

follows. Let A
k1→ B1, B1

k2→ B2, . . . , Bq−3
kq−2→ Bq−2, Bq−2

kq−1→ B be a sequence

of unit productions in P ′ and B
kq→ α be a non unit production. In this case we

add the production A
Q→ α to P ′, where Q =

∑q
i=1 ki. After processing all such

sequences and adding productions to P ′ we eliminate duplicates. In particular,
if there are more than one rules with the same precedent and consequent, we
only keep the production with the least error count. At the end we remove all
the unit productions.

Observation: Aho and Peterson [1] indicate that G′ is a covering grammar
for G and prove several properties of G′. Note that they don’t keep any error
counts with their productions. Also, the validity of the procedures we have used
to eliminate ε and unit productions can be found in [5].

An Example. Consider the language {anbn : n ≥ 1}. A CFG for this language
has the productions: S → aSb|ab. We can get an equivalent grammar G =
(N,T, P, S) in CNF where N = {S,A,B,A1}, T = {a, b}, and P = {S →
AA1|AB,A1 → SB,A → a,B → b}.

We can get a grammar G1 = (N ′, T, P1, S) with error productions where
N ′ = {S,A,B, A1,H, I} and P1 = {S → AA1|AB,A1 → SB,A → a,B →
b,H → HI,H → I, I

1→ a, I
1→ b, A

1→ b, A
1→ ε, A → HA,A → AH,B

1→
a,B

1→ ε, B → HB,B → BH}. Note that any production with no integer above
→ has an error count of zero.

Eliminating ε-productions: We identify nullable nonterminals. We realize
that the following nonterminals are nullable: A,B, S, and A1. For example, A1

is nullable since we have: A1
∗⇒ SB

∗⇒ ABB
∗,1⇒ BB

∗,1⇒ B
∗,1⇒ ε. We also realize:

A
∗,1⇒ ε, B

∗,1⇒ ε, S
∗,2⇒ ε, and A1

∗,3⇒ ε.
Now we process every production in P1 and generate new relevant rules. For

instance, consider the rule S → AA1. Since A1
∗,3⇒ ε, we add the rule S

3→ A to P1.
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When we process the rule S → AB, since B
∗,1⇒ ε, we realize that S

1→ A has to
be added to P1. However, S

3→ A has already been added to P1. Thus we replace
S

3→ A with S
1→ A.

Processing in a similar manner, we add the following productions to P1 to
get P2: S

1→ A1, S
1→ A,S

1→ B,A1
1→ S,A1

2→ B, A
1→ H, and B

1→ H. We
eliminate all the ε-productions from P2.

Eliminating Unit Productions: We consider every sequence of unit produc-

tions A
k1→ B1, B1

k2→ B2, . . . , Bq−3
kq−2→ Bq−2, Bq−2

kq−1→ B in P2 with B
kq→ α

being a non unit production. In this case we add the production A
Q→ α to P2,

where Q =
∑q

i=1 ki.
Consider the sequence S

1→ A,A → a. This sequence results in a new pro-
duction: S

1→ a. The sequence S
1→ A1, A1

2→ B,B
1→ a suggests the addition

of the production S
4→ a. But we have already added a better production and

hence this production is ignored.
Proceeding in a similar manner we realize that we have to add the following

productions to P2 to get P3: S
1→ a, S

1→ b,H
1→ a,H

1→ b, A1
2→ a, A1

2→ b,
S

1→ HB, S
1→ BH, A

1→ HI, B
1→ HI, S

2→ HI, A1
3→ HI, A1

2→ BH,
A1

2→ HB, S
1→ AH, S

1→ HA, A1
2→ AH, and A1

2→ HA . We eliminate all
the unit productions from P3.

The final grammar we get is G3 = (N ′, T, P3, S) where P3 = {S → AA1|AB,

A1 → SB,A → a,B → b,H → HI, I
1→ a, I

1→ b, A
1→ b, A → HA,A →

AH,B
1→ a,B → HB,B → BH,S

1→ a, S
1→ b,H

1→ a,H
1→ b, A1

2→ a,A1
2→

b, S
1→ HB,S

1→ BH,A
1→ HI,B

1→ HI, S
2→ HI,A1

3→ HI,A1
2→ BH,A1

2→
HB,S

1→ AH,S
1→ HA,A1

2→ AH,A1
2→ HA}.

2.2 The Algorithm

The algorithm is a modified version of an algorithm given in [10]. This algo-
rithm in turn is a slightly different version of the CYK algorithm. Let G′ =
(N ′, T ′, P ′, S′) be the grammar generated using the procedure given in Sect. 2.1.
The basic idea behind the algorithm is the following: The algorithm has n stages.
In any given stage we scan through each production in P ′ and grow larger and
larger parse trees. At any given time in the algorithm, each nonterminal has a list
of tuples of the form (i, j, �). If A is any nonterminal, LIST (A) will have tuples

(i, j, �) such that A
∗,�⇒ ai . . . aj−1 and there is no �′ < � such that A

∗,�′
⇒ ai . . . aj−1.

If A
�3→ BC is a production in P ′, then in any stage we process this produc-

tion as follows: We scan through elements in LIST (B) and look for matches in
LIST (C). For instance, if (i, k, �1) is in LIST (B) (for some integer �1), we check
if (k, j, �2) is in LIST (C), for some j and �2. If so, we insert (i, j, �1 + �2 + �3)
into LIST (A). If LIST (A) for any A has many tuples of the form (i, j, ∗) we
keep only one among these. Specifically, if (i, j, �1), (i, j, �2), . . . , (i, j, �q) are in
LIST (A), we keep only (i, j, �) where � = minq

m=1 �m.
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We maintain the following data structures: (1) for each nonterminal A, an
array (call it XA) of lists indexed 1 through n, where XA[i] is the list of all
tuples from LIST (A) whose first item is i (1 ≤ i ≤ n); and (2) an n × n upper
triangular matrix M whose (i, j)th entry will be those nonterminals that derive
aiai+1 . . . aj−1 with the corresponding (minimum) error counts (for 1 ≤ i ≤ n
and 2 ≤ j ≤ (n + 1)). There can be O(n2) entries in LIST (B), and for each
entry (i, k) in this list, we need to search for at most n items in LIST (C).

By induction, we can show that at the end of stage s (1 ≤ s ≤ n), the algo-
rithm would have computed all the nonterminals that span any input segment of
length s or less, together with the minimum error counts. (We say a nonterminal
spans the input segment J = aiai+1 . . . aj−1 if it derives J ; the nonterminal is
said to have a “span-length” of j − i.)

A straightforward implementation of the above idea takes O(n4) time. How-
ever, we can reduce the run time of each stage to O(n2) as follows: In stage s,
while processing the production A → BC, work only with tuples from LIST (B)
and LIST (C) whose combination will derive an input segment of length exactly
s. That is, for each tuple (i, k, �) in LIST (B), we look for a tuple (k, i+s, �′) (for
any integer �′) in LIST (C). Such a tuple can be found in time O(1) by searching
for (C, �′) in Mk,i+s. With this modification, each stage of the above algorithm
will only take O(n2) time and hence the total run time of the algorithm is O(n3).
The pseudocode is given in Algorithm 1.

Algorithm 1. ErrorCorrectingParser(G, I)
input : G = (N, T, P, S), a grammar; I = a1a2 . . . an, input string;
output: minimum distance � between I and any string in L(G);
Generate G′ using the procedure in Sect. 2.1;
for A ∈ N ′ and i ← 1 to n do XA[i] := {};
for i ← 1 to n and j ← (i + 1) to (n + 1) do Mi,j = {};

for i ← 1 to n and (A
�→ ai) ∈ P ′ do

insert (A, �) into Mi,i+1; and insert (i, i + 1, �) into XA[i];

for s ← 2 to n do

for (A
�3→ BC) ∈ P ′ and (i, k, �1) ∈ XB [i] and (C, �2) ∈ Mk,i+s do

� := �1 + �2 + �3;
insert (A, �) into Mi,i+s; and insert (i, i + s, �) into XA[i];

return � for which (1, n + 1, �) ∈ XS [1];

Theorem 1. When the above algorithm completes, for any nonterminal A,
LIST (A) has a tuple (i, j, �) if and only if A

∗,�⇒ ai . . . aj−1 and there is no

�′ < � such that A
∗,�′
⇒ ai . . . aj−1.

Proof. The proof is by induction on the stage number s.

Base Case: s = 1, i.e., j − i = 1, for 1 ≤ i, j ≤ (n+1). Note that all the nonter-
minals, except H and I, are nullable. As a result, P ′ will have a production of
the kind A

�→ b for every nonterminal A and every terminal b, for some integer �.



540 S. Rajasekaran and M. Nicolae

By the way we compute Mnullcount for each nonterminal and eliminate unit
productions, it is clear that � is the smallest integer for which A

∗,�⇒ b.

Induction Step: Assume that the hypothesis is true for span lengths up to
s − 1. We can prove it for a span length of s. Let A

l3→ BC be any production
in P ′. Let (i, k, �1) be a tuple in LIST (B) and (k, j, �2) be a tuple in LIST (C)

with j− i = s. Then this means that A
∗,L⇒ ai . . . aj−1, where L = �1+�2+�2. We

add the tuple (i, j, L) to LIST (A). Also, the induction hypothesis implies that

B
∗,�1⇒ ai . . . ak−1 and there is no � < �1 for which B

∗,�⇒ ai . . . ak−1. Likewise, �2 is

the smallest integer for which C
∗,�2⇒ ak . . . aj−1. We consider all such productions

in P that will contribute tuples of the kind (i, j, ∗) to LIST (A) and from these
only keep (i, j, �) where � is the least such integer. �

3 Less Than Cubic Time Parser

In this section we present an error correcting parser that runs in time O(T (n))
where n is the length of the input string and T (n) is the time needed to compute
the tropical product of two n × n matrices. There are two main ingredients in
this parser, namely, the procedure given in Sect. 2.1 for converting the given
grammar into a covering grammar and Valiant’s reduction given in [13] (and
summarized in Sect. 1).

As pointed out in Sect. 1, Valiant has presented an efficient algorithm for
computing the transitive closure of an upper triangular matrix. The transitive
closure is with respect to matrix multiplication defined in a special way. Each
element in a matrix will be a set of items. In standard matrix multiplication we
have two operators, namely, multiplication and addition. In the case of special
matrix multiplication, these operations are replaced by � and ∪ (called union).
Valiant’s algorithm works as long as these operations satisfy the following prop-
erties: The outer operation (i.e., union) is commutative and associative, the inner
operation � distributes over union, ∅ is a zero with respect to � and an identity
with respect to union.

Valiant has shown that transitive closure under the above definition of matrix
multiplication can be computed in O(S(n)) time, where S(n) is the time needed
for multiplying two matrices with the above special definition of matrix product.

In the context of error correcting parser we define the two operations as
follows. Let I = w1w2 . . . wn be the input string. Matrix elements are sets of
pairs of the kind (A, �) where A is a nonterminal and � is an integer. We initialize
an (n + 1) × (n + 1) upper triangular matrix a as:

ai,i+1 = {(A, �)|(A �→ wi) ∈ P ′}, and ai,j = ∅, for j �= i + 1. (1)

If N1 and N2 are sets of pairs of the kind (A, �), define the union operation as:

N1 ∪ N2 = {(A, k) :(1) (A, k) ∈ N1 and (A, k′) /∈ N2 for any k′ or
(2) (A, k) ∈ N2 and (A, k′) /∈ N1 for any k′ or
(3) (A, k1) ∈ N1, (A, k2) ∈ N2 and k = min(k1, k2)}.
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It is easy to see that the union operation is commutative and associative since
if there are multiple pairs for the same nonterminal with different error counts,
the union operation has the effect of keeping only one pair for each nonterminal
with the least error count.

If N1 and N2 are sets of pairs of the kind (A, �) then N1 �N2 is defined with
the procedure in Algorithm 2.

Algorithm 2. N1 � N2

Let G′ = (N ′, T, P ′, S) be the grammar with error productions;
for A ∈ N ′ do h[A] := +∞ ;

for (B, k) ∈ N1 and (C, �) ∈ N2 and (A
m→ BC) ∈ P ′ do

h[A] := min(h[A], k + � + m);

return {(A, h[A])|A ∈ N ′, h[A] �= +∞};

We can verify that � distributes over union. Let N1, N2, and N3 be any three
sets of pairs of the type (A, �). Let Q = N1 � (N2 ∪ N3), R = (N1 � N2) ∪ (N1 �
N3),X = (N1 � N2), and Y = (N1 � N3). If (B, �) ∈ N1, (C, k1) ∈ N2, (C, k2) ∈
N3, k = min(k1, k2), and (A m→ BC) ∈ P ′, then (A, k + � + m) ∈ Q. Also,
(A, k1 + � + m) ∈ X and (A, k2 + � + m) ∈ Y . Thus, (A, k + � + m) ∈ R.

Put together, we get the following algorithm. Given a grammar G and an
input string I, generate the grammar G′ using the procedure in Sect. 2.1. Con-
struct the matrix a described in Eq. 1. Compute the transitive closure a+ of a
using Valiant’s algorithm [13]. (S, �) will occur in a+

1,n+1 for some integer �. In
this case, the minimum distance between I and any string in L(G) is �. The
pseudocode is given in Algorithm 3.

Algorithm 3. ErrorCorrectingParser2(G, I)
input : G = (N, T, P, S), a grammar; I = w1w2 . . . wn, a string;
output: the minimum distance � between I and any string in L(G);
Generate G′ = (N ′, T, P ′, S) using the procedure in Sect. 2.1;
for i ← 1 to n and j ← (i + 1) to (n + 1) do ai,j := {} ;

for i ← 1 to n do ai,i+1 := {(A, �)|(A �→ wi) ∈ P ′} ;
a+ := TransitiveClosure (a); // using Valiant’s algorithm [13]
return � for which (S, �) ∈ a+

1,n+1;

Note that, by definition, a+ = a(1) ∪ a(2) ∪ · · · where a(1) = a and a(i) =⋃i−1
j=1 a(j) · a(i−j). It is easy to see that (A, �), where A is a nonterminal and � is

an integer in the range [0, n], will be in a
(k)
i,j if and only if A

∗,�⇒ aiai+1 · · · aj−1

such that (j − i) = k and there is no q < � such that A
∗,q⇒ aiai+1 · · · aj−1. Also,

a
(k)
i,j = ∅ if (j − i) �= k.

As a result, (S, �) will be in a+
1,n+1 if and only if S

∗,�⇒ a1a2 · · · an and there

is no q < � such that S
∗,q⇒ a1a2 · · · an. We get the following
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Theorem 2. Error correcting parsing can be done in O(S(n)) time where S(n)
is the time needed to multiply two matrices under the new definition of matrix
product. �

It remains to be shown that S(n) = O(T (n)) where T (n) is the time needed
to compute the tropical product of two matrices.

Let a and b be two matrices where the matrix elements are sets of pairs of
the kind (A, �) where A is a nonterminal and � is an integer. Let c = ab be the
product of interest under the special definition of matrix product.

For each nonterminal B in G′, we define a matrix aB and for each nonterminal
C in G′, we define a matrix bC . aB [i, j] = � if (B, �) ∈ a[i, j], for 1 ≤ i, j ≤ n.
Likewise, bC [i, j] = � if (C, �) ∈ b[i, j], for 1 ≤ i, j ≤ n. We call aB and bC as
distance matrices. The pseudocode for computing a distance matrix is given in
Algorithm 6 in the appendix. Compute the tropical product cBC of aB and bC

for every nonterminal B and every nonterminal C.
For every production A

k→ BC in P ′ do the following: for every 1 ≤ i, j ≤ n,
if cBC [i, j] = � then add (A, k + �) to c[i, j], keeping only the smallest distance
if A is already present in c[i, j]. The pseudocode is given in Algorithm 4.

Algorithm 4. MatrixMultiplication(a, b,G′)
input : a, b: m × q and q × n matrices respectively; each entry of a and b is a

set of pairs (A, �) such that A is a nonterminal and � is an integer;
G′ = (N ′, T, P ′, S), grammar with error productions;

output: c = ab where multiplication is done with respect to (�, ∪);
for i ← 1 to m and j ← 1 to n and A ∈ N ′ do minDisti,j [A] := +∞ ;

for (A
k→ BC) ∈ P ′ do

aB := DistMatrix (a, B); and bC := DistMatrix (b, C);
cBC := TropicalProduct (aB , bC);
for i ← 1 to m and j ← 1 to n do

minDisti,j [A] := min(k + cBC [i, j], minDisti,j [A]);

for i ← 1 to m and j ← 1 to n do
c[i, j] := {(A, �)|A ∈ N ′, minDisti,j [A] = �, � �= ∞};

return c;

Clearly, the time spent in computing ab (under the new special definition of
matrix product) is O(T (n) + n2) assuming that the size of the grammar is O(1)
(in fact, it suffices that the number of productions of the form A

k→ BC is O(1)).
Put together we get the following theorem.

Theorem 3. Error correcting parsing can be done in O(T (n)) time where T (n)
is the time needed to compute the tropical product of two matrices. �

Using the currently best known algorithm for tropical products [14], we get
the following theorem.

Theorem 4. Error correcting parsing can be done in O
(

n3

2Ω(log n)1/2

)
time. �
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Furthermore, consider the case of error correcting parsing where we know a
priori that there exists a string I ′ in L(G) such that the distance between I
and I ′ is upper bounded by m. We can solve this version of the language edit
distance problem using the tropical matrix product algorithm of Zwick [16]. This
algorithm multiplies two n × n integer matrices in O(Mnω) time if the matrix
elements are in the range [−M,M ] [16]. Here O(nω) is the time taken to multiply
two n × n real matrices. Recall that when we reduce the matrix multiplication
under � and ∪ to tropical matrix multiplication, we have to compute the tropical
product cBC of aB and bC for every nonterminal B and every nonterminal C.
Elements of aB and bC are integers in the range [0, n]. Note that even if all the
elements of cBC are ≤ m, some of the elements of aB and bC could be larger than
m. Before using the algorithm of [16] we have to ensure that all the elements
of aB and bC are less than M (where M is some function of m). This can be
done as follows. Before invoking the algorithm of [16], we replace every element
of aB and bC by m + 1 if the element is > m. m + 1 is ’infinity’ as far as this
multiplication is concerned. By doing this replacement, we are not affecting the
final result of the algorithm and at the same time, we are making sure that the
elements of aB and bC are ≤ M = (m + 1). As a result, we get the following
theorem.

Theorem 5. Error correcting parsing can be done in O (mnω) time where m is
an upper bound on the edit distance between the input string I and some string
I ′ in L(G), G being the input CFG. O(nω) is the time it takes to multiply two
n × n matrices. �

As a corollary to the above theorem we can also get the following theorem.

Theorem 6. There exists an n
m -approximation algorithm for the language edit

distance problem that has a run time of O(mnω), where O(nω) is the time taken
to multiply two n × n matrices.

Proof. Here again, we replace every element of aB and bC by m+1 if the element
is > m. In this case the elements of cBC will be ≤ (2m + 2). We replace any
element in cBC that is larger than m with (m + 1). In general whenever we
generate or operate on a matrix, we will ensure that the elements are ≤ (m+1).
If S

�⇒ I for some � ≤ m, then the final answer output will be exact. If � > m,
then the algorithm will always output n. Thus the theorem follows. �

Retrieving I ′. In all the algorithms presented above, we have focused on com-
puting the minimum edit distance between the input string I and any string I ′

in L(G). We have also shown that I ′ can be found in O(n2) time, where n = |I|.
Please see the Appendix for details.

4 Conclusions

In this paper we have presented an error correcting parser for general context
free languages. This algorithm takes less than cubic time, improving the 1972
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algorithm of Aho and Peterson that has remained the best until now. We have
also shown that if M is an upper bound on the edit distance between the input
string I and some string of L(G), then we can solve the parsing problem in
O(Mnω) time, where O(nω) is the time it takes to multiply two n × n matrices.
As a corollary, we have presented an n

M -approximation algorithm for the general
context free language edit distance problem that runs in time O(Mnω).

Acknowledgments. This work has been supported in part by the following grant:
NIH R01LM010101. The first author thanks Barna Saha for the introduction of this
problem and Alex Russell for providing pointers to tropical matrix multiplication.

Appendix: Retrieving I ′

In all the algorithms presented above, we have focused on computing the mini-
mum edit distance between the input string I and any string I ′ in L(G). In this
section we address the problem of finding I ′. We show that I ′ can be found in
O(n2) time, where n = |I|. Let S

∗,�⇒ I such that there is no k < � such that

S
∗,k⇒ I. Let I = a1a2 · · · an.
Realize that in the algorithms given in Sects. 2.2 and 3 we compute, for every

i and j (with j > i), all the nonterminals A such that A spans aiai+1 . . . aj−1 and

we also determine the least k such that A
∗,k⇒ aiai+1 . . . aj−1. In this case, there

will be an entry for A in the matrix M. Specifically, (A, k) will be in M(i, j). We
can utilize this information to identify an I ′ such that the edit distance between
I and I ′ is equal to �. Note that we can deduce I ′ if we know the sequence of
productions used to derive I ′. The pseudocode is given in Algorithm 5. We will
invoke the algorithm as ParseTree(M, S, 1, n + 1, �).

Algorithm 5 finds the first production in O(n) time. Having found the first
production, we can proceed in a similar manner to find the other productions
needed to derive I ′. In the second stage we have to find a production that can
be used to derive a1a2 . . . aj from A and another production that can be used
to derive aj+1aj+2 . . . an from B. Note that the span length of A plus the span
length of B is n and hence both the productions can be found in a total of O(n)
time.

We can think of a tree T where S is the root and S has two children A and
B. If A → CD is the first production that can be used to derive a1a2 . . . aj from
A and B → EF is the first production that can be used to derive aj+1aj+2 . . . an

from B, then A will have two children C and D and B will have two children E
and F .

The rest of the tree is constructed in the same way. Clearly, the total span
length of all the nonterminals in any level of the tree is ≤ n and hence the time
spent at each level is O(n). Also, there can be at most n levels. As a result, we
get the following theorem.

Theorem 7. We can identify I ′ in O(n2) time. �
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Algorithm 5. ParseTree(M,D, i, j, �)
input : M, transitive closure matrix as discussed in the text;

D, a non terminal;
i, j − 1, start and end position in the input string I, where
I = a1a2 . . . an;
�, an edit distance;

output: a parse tree which can derive I[i..(j − 1)] from D with � errors;
begin

if i = j − 1 then
find � for which (D, �) ∈ Mi,j ;

return new node(i, j, D
�→ ai);

for k ← (i + 1) to (j − 1) do
if ∃(A, q1) ∈ M(i, k) and ∃(B, q2) ∈ M(k, j) then

if ∃(D
q3→ AB) ∈ P ′ and q1 + q2 + q3 = � then

break;

T1 := ParseTree(M, A, i, k, q1);
T2 := ParseTree(M, B, k, j, q2);

r := new node(i, j, D
q3→ AB);

left(r) := T1;
right(r) := T2;
return r;

Appendix: Computing the distance matrices

Algorithm 6. DistMatrix(a,B)
input : a, m × n matrix where each entry is a set of pairs (A, �) such

that A
is a nonterminal and � is an integer;

B, a nonterminal;
output: aB , m × n matrix where each entry is an integer � such that

either (B, �) ∈ a[i, j] or l = +∞;
begin

for i ← 1 to m and j ← 1 to n do
if ∃� for which (B, �) ∈ a[i, j] then

aB [i, j] := �;
else

aB [i, j] := +∞;

return aB ;
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Abstract. Diagnosis of partially observable stochastic systems prone to
faults was introduced in the late nineties. Diagnosability, i.e. the exis-
tence of a diagnoser, may be specified in different ways: (1) exact diag-
nosability (called A-diagnosability) requires that almost surely a fault
is detected and that no fault is erroneously claimed while (2) approxi-
mate diagnosability (called ε-diagnosability) allows a small probability
of error when claiming a fault and (3) accurate approximate diagnos-
ability (called AA-diagnosability) requires that this error threshold may
be chosen arbitrarily small. Here we mainly focus on approximate diag-
noses. We first refine the almost sure requirement about finite delay
introducing a uniform version and showing that while it does not dis-
criminate between the two versions of exact diagnosability this is no
more the case in approximate diagnosis. Then we establish a complete
picture for the decidability status of the diagnosability problems: (uni-
form) ε-diagnosability and uniform AA-diagnosability are undecidable
while AA-diagnosability is decidable in PTIME, answering a longstand-
ing open question.

Keyword: Automata for system analysis and programme verification

1 Introduction

Diagnosis and diagnosability. The increasing use of software systems for critical
operations motivates the design of fast automatic detection of malfunctions. In
general, diagnosis raises two important issues: deciding whether the system is
diagnosable and, in the positive case, synthesizing a diagnoser possibly satis-
fying additional requirements about memory size, implementability, etc. One of
the proposed approaches consists in modelling these systems by partially observ-
able labelled transition systems (LTS) [11]. In such a framework, diagnosability
requires that the occurrence of unobservable faults can be deduced from the pre-
vious and subsequent observable events. Formally, an LTS is diagnosable if there

S. Haddad—This author was partly supported by ERC project EQualIS (FP7-
308087).

c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 549–561, 2016.
DOI: 10.1007/978-3-319-30000-9 42



550 N. Bertrand et al.

exists a diagnoser that satisfies reactivity and correctness contraints. Reactivity
requires that if a fault occurred, the diagnoser eventually detects it. Correctness
asks that the diagnoser only claims the existence of a fault when there actu-
ally was one. Diagnosability for LTS was shown to be decidable in PTIME [7]
while the diagnoser itself could be of size exponential w.r.t. the size of the LTS.
Diagnosis has been extended to numerous models (Petri nets [3], pushdown sys-
tems [8], etc.) and settings (centralized, decentralized, distributed), and have had
an impact on important application areas, e.g. for telecommunication network
failure diagnosis. Also, several contributions, gathered under the generic name
of active diagnosis, focus on enforcing the diagnosability of a system [4,5,10,13].

Diagnosis of stochastic systems. Diagnosis was also considered in a quantitative
setting, and namely for probabilistic labelled transition systems (pLTS) [1,12],
that can be seen as Markov chains in which the transitions are labelled with
events. Therefore, one can define a probability measure over infinite runs. In
that context, the specification of reactivity and correctness can be relaxed.
Here, reactivity only asks to detect faults almost surely (i.e. with probability
1). This weaker reactivity constraint takes advantage of probabilities to rule
out negligible behaviours. For what concerns correctness, three natural variants
can be considered. A-diagnosability sticks to strong correctness and therefore
asks the diagnoser to only claim fault occurrences when a fault is certain. ε-
diagnosability tolerates small errors, allowing to claim a fault if the conditional
probability that no fault occurred does not exceed ε. AA-diagnosability requires
the pLTS to be ε-diagnosable for all positive ε, allowing the designer to select
a threshold according to the criticality of the system. A-diagnosability and AA-
diagnosability were introduced in [12]. Recently, we focused on semantical and
algorithmic issues related to A-diagnosability, and in particular we established
that A-diagnosability is PSPACE-complete [1]. When it comes to approximate
diagnosability (i.e. ε and AA-diagnosability), up to our knowledge, a (PTIME-
checkable) sufficient condition for AA-diagnosability [12] has been given, but no
decidability result is known.

Contributions. Our contributions are twofold. From a semantical point of view,
we investigate the specification of reactivity, introducing uniform reactivity
which requires that once a fault occurs, the probability of detection when
time elapses converges to 1 uniformly w.r.t. faulty runs. Uniformity provides
the user with a stronger guarantee about the delay before detection. We show
that uniform A-diagnosability and A-diagnosability coincide while this is no
longer the case for approximate diagnosability. From an algorithmic point of
view, we first show that ε-diagnosability and its uniform version are undecid-
able. Then we characterize AA-diagnosability as a separation property between
labelled Markov chains (LMC), precisely a distance 1 between appropriate pairs
of LMCs built from the pLTS. Thanks to [6], this yields a polynomial time algo-
rithm for AA-diagnosability. AA-diagnosability can thus be checked more effi-
ciently than A-diagnosability (PTIME vs PSPACE), yet, surprisingly, contrary to
A-diagnosers, AA-diagnosers may require infinite memory. Finally, we show that
uniform AA-diagnosability is undecidable.
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Organization. In Sect. 2, we introduce the different variants of diagnosability and
establish the full hierarchy between these specifications. In Sect. 3, we address
the decidability and complexity issues related to approximate diagnosis. Full
proofs can be found in the companion research report [2].

2 Specification of Diagnosability

2.1 Probabilistic Labelled Transition Systems

To represent stochastic discrete event systems, we use transition systems labelled
with events and in which the transition function is probabilistic.

Definition 1. A probabilistic labelled transition system (pLTS) is a tuple A =
〈Q, q0, Σ, T,P〉 where:

– Q is a finite set of states with q0 ∈ Q the initial state;
– Σ is a finite set of events;
– T ⊆ Q × Σ × Q is a set of transitions;
– P : T → Q>0 is the probability function fulfilling for every q ∈ Q:∑

(q,a,q′)∈T P[q, a, q′] = 1.

Observe that a pLTS is a labelled transition system (LTS) equipped with
transition probabilities. The transition relation of the underlying LTS is defined
by: q

a−→ q′ for (q, a, q′) ∈ T ; this transition is then said to be enabled in q.
Let us now introduce some important notions and notations that will be used

throughout the paper. A run ρ of a pLTS A is a (finite or infinite) sequence ρ =
q0a0q1 . . . such that for all i, qi ∈ Q, ai ∈ Σ and when qi+1 is defined, qi

ai−→ qi+1.
The notion of run can be generalized, starting from an arbitrary state q. We write
Ω for the set of all infinite runs of A starting from q0, assuming the pLTS is clear
from context. When it is finite, ρ ends in a state q and its length, denoted |ρ|, is
the number of actions occurring in it. Given a finite run ρ = q0a0q1 . . . qn and a
(finite or infinite) run ρ′ = qnanqn+1 . . ., we call concatenation of ρ and ρ′ and
we write ρρ′ for the run q0a0q1 . . . qnanqn+1 . . .; the run ρ is then a prefix of ρρ′,
which we denote ρ � ρρ′. The cylinder generated by a finite run ρ consists of all
infinite runs that extend ρ: Cyl(ρ) = {ρ′ ∈ Ω | ρ � ρ′}. The sequence associated
with ρ = qa0q1 . . . is the word σρ = a0a1 . . ., and we write indifferently q

ρ⇒
or q

σρ⇒ (resp. q
ρ⇒ q′ or q

σρ⇒ q′) for an infinite (resp. finite) run ρ. A state q is
reachable (from q0) if there exists a run such that q0

ρ⇒ q, which we alternatively
write q0 ⇒ q. The language of pLTS A consists of all infinite words that label
runs of A and is formally defined as Lω(A) = {σ ∈ Σω | q0

σ⇒ }.

Forgetting the labels and merging (and summing the probabilities of) the
transitions with same source and target, a pLTS yields a discrete time Markov
chain (DTMC). As usual for DTMC, the set of infinite runs of A is the support
of a probability measure defined by Caratheodory’s extension theorem from the
probabilities of the cylinders:

PA(Cyl(q0a0q1 . . . qn)) = P[q0, a1, q1] · · ·P[qn−1, an−1, qn] .
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When A is fixed, we may omit the subscript. To simplify, for ρ a finite run, we will
sometimes abuse notation and write P(ρ) for P(Cyl(ρ)). If R is a (denumerable)
set of finite runs (such that no run is a prefix of another one), we write P(R) for∑

ρ∈R P(ρ).

2.2 Partial Observation and Ambiguity

Beyond the pLTS model for stochastic discrete event systems, in order to for-
malize problems related to fault diagnosis, we partition Σ into two disjoint sets
Σo and Σu, the sets of observable and of unobservable events, respectively. More-
over, we distinguish a special fault event f ∈ Σu. Let σ be a finite word over Σ;
its length is denoted |σ|. The projection of words onto Σo is defined inductively
by: π(ε) = ε; for a ∈ Σo, π(σa) = π(σ)a; and π(σa) = π(σ) for a /∈ Σo. We
write |σ|o for |π(σ)|. When σ is an infinite word, its projection is the limit of the
projections of its finite prefixes. As usual the projection mapping is extended to
languages: for L ⊆ Σ∗, π(L) = {π(σ) | σ ∈ L}. With respect to the partition
of Σ = Σo 	 Σu, a pLTS A is convergent if, from any reachable state, there
is no infinite sequence of unobservable events: Lω(A) ∩ Σ∗Σω

u = ∅. When A
is convergent, for every σ ∈ Lω(A), π(σ) ∈ Σω

o . In the rest of the paper we
assume that pLTS are convergent. We will use the terminology sequence for a
word σ ∈ Σ∗ ∪ Σω, and an observed sequence for a word σ ∈ Σ∗

o ∪ Σω
o . The

projection of a sequence to Σo is thus an observed sequence.
The observable length of a run ρ denoted |ρ|o ∈ N ∪ {∞}, is the number of

observable events that occur in it: |ρo| = |σρ|o. A signalling run is a finite run
ending with and observable event. Signalling runs are precisely the relevant runs
w.r.t. partial observation issues since each observable event provides an external
observer additional information about the execution. In the sequel, SR denotes
the set of signalling runs, and SRn the set of signalling runs of observable length
n. Since we assume pLTS to be convergent, for every n > 0, SRn is equipped with
a probability distribution defined by assigning measure P(ρ) to each ρ ∈ SRn.
Given ρ a finite or infinite run, and n ≤ |ρ|o, ρ↓n denotes the signalling subrun
of ρ of observable length n. For convenience, we consider the empty run q0 to
be the single signalling run, of null length. For an observed sequence σ ∈ Σ∗

o ,
we define its cylinder Cyl(σ) = σΣ∗

o and the associated probability P(Cyl(σ)) =
P({ρ ∈ SR|σ| | π(ρ) = σ}), often shortened as P(σ).

Let us now partition runs depending on whether they contain a fault or not.
A run ρ is faulty if σρ contains f , otherwise it is correct. For n ∈ N, we write
Fn (resp. Cn) for the set of faulty (resp. correct) signalling runs of length n,
and further define the set of all faulty and correct signalling runs F = ∪n∈NFn

and C = ∪n∈NCn. W.l.o.g., by considering two copies of each state, we assume
that the state space Q is partitioned into correct states and faulty states: Q =
Qf 	 Qc such that faulty (resp. correct) states, i.e. states in Qf (resp. Qc) are
only reachable by faulty (resp. correct) runs. An infinite (resp. finite) observed
sequence σ ∈ Σω

o (resp. Σ∗
o ) is ambiguous if there exists a correct infinite (resp.

signalling) run ρ and a faulty infinite (resp. signalling) run ρ′ such that π(ρ) =
π(ρ′) = σ.
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2.3 Fault Diagnosis

Whatever the considered notion of diagnosis in probabilistic systems, reactivity
requires that when a fault occurs, a diagnoser almost surely will detect it after
a finite delay. We refine this requirement by also considering uniform reactivity
ensuring that given any positive probability threshold α there exists a delay
nα such that the probability to exceed this delay is less or equal than α. Here
uniformity means “independently of the faulty run”.

Similarly, correctness of the diagnosis may be specified in different ways. Since
we focus on approximate diagnosis, a fault can be claimed after an ambiguous
observed sequence. This implies that ambiguity should be quantified in order to
assess the quality of the diagnosis. To formalise this idea, with every observed
sequence σ ∈ Σ∗

o we associate a correctness proportion

CorP(σ) =
P({ρ ∈ C|σ| | π(ρ) = σ})

P({ρ ∈ C|σ| ∪ F|σ| | π(ρ) = σ})
,

which is the conditional probability that a signalling run is correct given
that its observed sequence is σ. Thus approximate diagnosability also denoted
ε-diagnosability allows the diagnoser to claim a fault when the correctness pro-
portion does not exceed ε while accurate approximate diagnosability denoted
AA-diagnosability ensures that ε can be chosen as small as desired but still
positive.

Definition 2 (Diagnosability notions). Let A be a pLTS and ε ≥ 0.

– A is ε-diagnosable if for all faulty run ρ ∈ F and all α > 0 there exists nρ,α

such that for all n ≥ nρ,α:

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ CorP(π(ρ′)) > ε}) ≤ αP(ρ).

A is uniformly ε-diagnosable if nρ,α does not depend on ρ.
– A is (uniformly) AA-diagnosable if it is (uniformly) ε-diagnosable for all ε >

0.

Two variants of diagnosability for stochastic systems were introduced in [12]:
AA-diagnosability and A-diagnosability. A-diagnosability, which corresponds
to exact diagnosis, is nothing else but 0-diagnosability in Definition 2 word-
ing. By definition, A-diagnosability implies AA-diagnosability which implies
ε-diagnosability for all ε > 0. Observe also that since the faulty run ρ (and
so P(ρ)) is fixed, ε-diagnosability can be rewritten:

lim
n→∞P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ CorP(π(ρ′)) > ε}) = 0.

We now provide examples that illustrate these notions. Consider A1, the
pLTS represented on Fig. 1. We claim that A1 is AA-diagnosable but neither
A-diagnosable, nor uniformly AA-diagnosable. We only give here intuitions on
these claims, and refer the reader to the proof of Proposition 3 in [2]. First an
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q0 qfqc
f , 1

2
u, 1

2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

Fig. 1. An AA-diagnosable pLTS A1,
that is neither A-diagnosable, nor uni-
formly AA-diagnosable

q0 qfqc
fu

ab a

Fig. 2. An uniformly AA-diagnosable
pLTS A2, that is not A-diagnosable

q0 qf qf
f b

a ba

Fig. 3. An A-diagnosable pLTS A3

ε-diagnoser will look at the proportion of b occurrences and if the sequence is
“long” enough and the proportion is “close” to 3

4 , it will claim a fault. However,
the delay nα,ρ before claiming a fault cannot be selected independently of the
faulty run. Indeed, given the faulty run ρn = q0fqf (aqf )n, we let pn,m for the
probability of extensions of ρn by m observable events and with correctness
proportion below ε. In order for pn,m to exceed 1 − α, m must depend on n.
So A1 is not uniformly AA-diagnosable. A1 is neither A-diagnosable since all
observed sequences of faulty runs are ambiguous.

Consider now the pLTS A2 depicted in Fig. 2, for which we consider a uniform
distribution on the outgoing edges from q0. First note that every faulty run
(q0a)iq0f(qfa)jqf has a correct run, namely q0(aq0)i+j with the same observed
sequence. So A2 is not A-diagnosable. Yet, we argue that it is uniformly AA-
diagnosable. The correctness proportion of a faulty run (exponentially) decreases
with respect to its length. So the worst run to be considered for the diagnoser
is q0fqfaqf implying uniformity.

Consider the pLTS A3 from Fig. 3, with uniform distributions in q0 and
qf . Viewed as an LTS, it is not diagnosable, since the observed sequence aω is
ambiguous and forbids the diagnosis of faulty runs without any occurrence of b.
On the contrary, let ρ = q0(aq0)xfqf (aqf )y(bq′

f )z be an arbitrary faulty run. If
z > 0 then CorP(π(ρ)) = 0. Otherwise P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ CorP(π(ρ′)) >

0}) = 1
2n P(ρ) and so A3 is A-diagnosable.

Proposition 3 establishes the exact relations between the different spec-
ifications. Observe that uniform AA-diagnosability is strictly stronger than
AA-diagnosability while A-diagnosability and uniform A-diagnosability are
equivalent.

Proposition 3. – A pLTS is A-diagnosable if and only if it is uniformly A-
diagnosable.

– There exists an AA-diagnosable pLTS, not uniformly 1
2 -diagnosable and so

not uniformly AA-diagnosable.
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– There exists a uniformly AA-diagnosable pLTS, not A-diagnosable.

Although we have not explicitely defined diagnosers for diagnosable pLTS,
given a fixed threshold ε > 0, a simple diagnoser would monitor the sequence
of observed events σ, compute the current correctness proportion, and output
“faulty” if CorP(σ) is below ε. However such an ε-diagnoser may need an infinite
memory. This contrasts with the case of A-diagnosability for which finite-memory
diagnosers suffice [12].

Proposition 4. There exists an AA-diagnosable pLTS, thus ε-diagnosable for
every ε > 0, that admits no finite-memory diagnoser when 0 < ε ≤ 1

2 .

Proof. Consider A1 the AA-diagnosable pLTS of Fig. 1 and assume there exists
a diagnoser with m states for some threshold 0 < ε ≤ 1

2 . After any sequence an,
it cannot claim a fault. So there exist 1 ≤ i < j ≤ m+1 such that the diagnoser
is in the same state after observing ai and aj .

Consider the faulty run ρ = q0fqf (aqf )i. Due to the reactivity require-
ment, there must be a run ρρ′ for which the diagnoser claims a fault. This
implies that for all n, the diagnoser claims a fault after ρn = ρ(aqf )n(j−i)ρ′ but
limn→∞ CorP(π(ρn)) = 1, which contradicts the correctness requirement. ��

3 Analysis of Approximate Diagnosability

A-diagnosability was proved to be a PSPACE-complete problem [1]. We now focus
on the other notions of approximate diagnosability introduced in Definition 2,
and study their decidability and complexity.

Reducing the emptiness problem for probabilistic automata [9] (PA), we
obtain the following first result:

Theorem 5. For any rational 0 < ε < 1, the ε-diagnosability and uniform
ε-diagnosability problems are undecidable for pLTS.

We now turn to the decidability status of AA-diagnosability and uniform
AA-diagnosability. We prove that AA-diagnosability can be solved in polynomial
time by establishing a characterization in terms of distance on labelled Markov
chains; this constitutes the most technical contribution of this section.

A labelled Markov chain (LMC) is a pLTS where every event is observable:
Σ = Σo. In order to exploit results of [6] on LMC in our context of pLTS, we
introduce the mapping M that performs in polynomial time the probabilistic
closure of a pLTS w.r.t. the unobservable events and produces an LMC. For
sake of simplicity, we denote by Aq, the pLTS A where the initial state has been
substituted by q.

Definition 6. Given a pLTS A = 〈Q, q0, Σ, T,P〉 with Σ = Σo	Σu, the labelled
Markov chain M(A) = 〈Q, q0, Σo, T

′,P′〉 is defined by:

– T ′ = {(q, a, q′) | ∃ρ ∈ SR1(Aq) ρ = q · · · aq′} (and so a is observable).
– For all (q, a, q′) ∈ T ′,P′(q, a, q′) = P{ρ ∈ SR1(Aq) | ρ = q · · · aq′}.
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Let E be an event of Σω (i.e. a measurable subset of Σω for the standard
measure), we denote by P

M(E) the probability that event E occurs in the LMC
M. Given two LMC M1 and M2, the (probabilistic) distance between M1

and M2 generalizes the concept of distance for distributions. Given an event
E, |PM1(E) − P

M2(E)| expresses the absolute difference between the probabil-
ities that E occurs in M1 and in M1. The distance is obtained by getting the
supremum over the events.

Definition 7. Let M1 and M2 be two LMC over the same alphabet Σ. Then
d(M1,M2) the distance between M1 and M2 is defined by:

d(M1,M2) = sup(PM1(E) − P
M2(E) | E event of Σω).

The distance 1 problem asks, given labelled Markov chains M1 and M2,
whether d(M1,M2) = 1. We summarize in the next proposition, the results by
Chen and Kiefer on LMC that we use later.

Proposition 8 ([6]).

– Given two LMC M1,M2, there exists an event E such that:

d(M1,M2) = P
M1(E) − P

M2(E).

– The distance 1 problem for LMC is decidable in polynomial time.

Towards the decidability of AA-diagnosability, let us first explain how to
solve the problem on a subclass of pLTS called initial-fault pLTS. Informally,
an initial-fault pLTS A consists of two disjoint pLTS Af and Ac and an initial
state q0 with an outgoing unobservable correct transition leading to Ac and a
transition labelled by f leading to Af (see the figure below). Moreover no faulty
transitions occur in Ac. We denote such a pLTS by A = 〈q0,Af ,Ac〉.

q0qc qf

f , 1
2u, 1

2Ac

(Σ \ {f})
Af

(Σ)

The next lemma establishes a strong connection between distance of LMC
and diagnosability of initial-fault pLTS.

Lemma 9. Let A = 〈q0,Af ,Ac〉 be an initial-fault pLTS. Then A is AA-
diagnosable if and only if d(M(Af ),M(Ac)) = 1.

Proof. We write P, Pf and Pc for the probability distributions of pLTS A, Af

and Ac. By construction of M(Af ) and M(Ac), for every observed sequence σ,
P

M(Af )(σ) = Pf (σ) and similarly P
M(Ac)(σ) = Pc(σ). In words, the mapping

M leaves unchanged the probability of occurrence of an observed sequence.
• If A is AA-diagnosable, for every ε > 0 and every faulty run ρ:

lim
n→∞P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ CorP(π(ρ′)) > ε}) = 0. (1)
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Pick some 0 < ε < 1. By applying Eq. (1) on the faulty run ρf = q0fqf with
|π(ρf )| = 0, there exists some n ∈ N such that:

P({ρ ∈ SRn | ρf � ρ ∧ CorP(π(ρ)) > ε}) ≤ ε.

Let S be the set of observed sequences of faulty runs with length n and correct-
ness proportion not exceeding theshold ε:

S = {σ ∈ Σn
o | ∃ρ ∈ SRn, π(ρ) = σ ∧ ρf � ρ ∧ CorP(σ) ≤ ε}.

E = Cyl(S) is the event consisting of the infinite suffixes of those sequences.
Let us show that Pc(E) ≤ ε

1−ε and Pf (E) ≥ 1 − 2ε.

Pf (E) = 1 − 2P({ρ ∈ SRn | ρf � ρ ∧ CorP(π(ρ)) > ε}) ≥ 1 − 2ε.

The factor 2 comes from the probability 1
2 in A to enter Af that Pf does not

take into account contrary to P.
Moreover, for every observed sequence σ ∈ S, there exists a faulty run ρ such

that π(ρ) = σ. Thus, CorP(σ) ≤ ε. Using the definition of CorP:

CorP(σ) =
P({ρ ∈ Cn | π(ρ) = σ})
P({ρ ∈ SRn | π(ρ) = σ})

=
Pc(σ)

Pc(σ) + Pf (σ)
≤ ε.

Thus, Pc(σ) ≤ ε
1−εPf (σ). Hence:

Pc(E) =
∑

σ∈S

Pc(σ) ≤
∑

σ∈S

ε

1 − ε
Pf (σ) =

ε

1 − ε
Pf (E) ≤ ε

1 − ε
.

Therefore d(M(Ac),M(Af )) ≥ Pf (E) − Pc(E) ≥ 1 − ε(2 + 1
1−ε ). Letting ε go

to 0, we obtain d(M(Ac),M(Af )) = 1.
• Conversely assume that d(M(Af ),M(Ac)) = 1. Due to Proposition 8, there
exists an event E ⊆ Σω

o such that Pf (E) = 1 and Pc(E) = 0.
For all n ∈ N, let Sn be the set of prefixes of length n of the observed sequences
of E: Sn = {σ ∈ Σn

o | ∃σ′ ∈ E, σ � σ′}.
For all ε > 0, let Sε

n be the subset of sequences of Sn whose correctness pro-
portion exceeds threshold ε: Sε

n = {σ ∈ Sn | CorP(σ) > ε}.
As

⋂
n∈N

Cyl(Sn) = E, limn→∞ Pc(Sn) = Pc(E) = 0.
So limn→∞ Pc(Sε

n) = 0.
On the other hand for all n ∈ N,

Pc(Sε
n) =

∑

σ∈Sε
n

Pc(σ) >
∑

σ∈Sε
n

ε

1 − ε
Pf (σ) =

ε

1 − ε
Pf (Sε

n).

Therefore we have limn→∞ Pf (Sε
n) = 0.

Let ρ be a faulty run and α > 0. There exists nα ≥ |ρ|o such that for all n ≥ nα,
Pf (Sε

n) ≤ α. Let n ≥ nα, and S̃n be the set of observed sequences of length n
triggered by a run with prefix ρ and whose correctness proportion exceeds ε:

S̃n = {σ ∈ Σn
o | ∃ρ′ ∈ SRn, ρ � ρ′ ∧ π(ρ′) = σ ∧ CorP(σ) > ε}.
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Let us prove that P(S̃n) ≤ α. On the one hand, since Pf (Sn) ≥ Pf (E) = 1,
Pf (S̃n ∩ (Σn

o \Sn)) = 0. On the other hand, since Pf (Sε
n) < α, Pf (S̃n ∩Sn) ≤

Pf (Sε
n) ≤ α. Thus Pf (S̃n) = Pf (S̃n ∩Sn) + Pf (S̃n ∩ (Σn

o \Sn)) ≤ α. Because
α was taken arbitrary, we obtain that limn→∞ Pf (S̃n) = 0.

Observe now that P({ρ′ ∈ SRn | ρ � ρ′ ∧ CorP(π(ρ′)) > ε}) = 1
2Pf (S̃n).

Therefore, limn→∞ P({ρ′ ∈ SRn | ρ � ρ′ ∧ CorP(π(ρ′)) > ε}) = 0. So A is
AA-diagnosable. ��

In order to understand why characterizing AA-diagnosability for general
pLTS is more involved, let us study the pLTS A2 presented in Fig. 2 where outgo-
ing transitions of any state are equidistributed. Recall that A2 is AA-diagnosable
(and even uniformly AA-diagnosable).

Let us look at the distance between pairs of a correct and a faulty states of
A that can be reached by runs with the same observed sequence. On the one
hand, d(M(Aq0),M(Aqf

)) ≤ 1
2 since for any event E either (1) aω ∈ E implying

P
M(Aqf

)(E) = 1 and P
M(Aq0 )(E) ≥ 1

2 or (2) aω /∈ E implying P
M(Aqf

)(E) =
0 and P

M(Aq0 )(E) ≤ 1
2 . On the other hand, d(M(Aqc

),M(Aqf
)) = 1 since

P
M(Aqf

)(aω) = 1 and P
M(Aqc )(aω) = 0.

We claim that the pair (q0, qf ) is irrelevant, since the correct state q0 does
not belong to a bottom strongly connected component (BSCC) of the pLTS,
while (qc, qf ) is relevant since qc belongs to a BSCC triggering a “recurrent”
ambiguity.

The next theorem characterizes AA-diagnosability, establishing the sound-
ness of this intuition. Moreover, it states the complexity of deciding AA-
diagnosability.

Theorem 10. Let A be a pLTS. Then, A is AA-diagnosable if and only if for
every correct state qc belonging to a BSCC and every faulty state qf reachable
by runs with same observed sequence, d(M(Aqc

),M(Aqf
)) = 1.

The AA-diagnosability problem is decidable in polynomial time for pLTS.

The full proof of Theorem 10 is given [2]. Let us sketch the key ideas to
establish the characterization of AA-diagnosability in terms of the distance 1
problem. The left-to-right implication is the easiest one, and is proved by
contraposition. Assume there exist two states in A, qc ∈ Qc belonging to a
BSCC and qf ∈ Qf reachable resp. by ρc and ρf with π(ρc) = π(ρf ), and
with d(M(Aqc

),M(Aqf
)) < 1. Applying Lemma 9 to the initial-fault pLTS

A′ = 〈q′
0,Aqf

,Aqc
〉, one deduces that A′ is not AA-diagnosable. First we relate

the probabilities of runs in A and A′. Then we show that considering the addi-
tional faulty runs with same observed sequence as ρf does not make A AA-
diagnosable.

The right-to-left implication is harder to establish. For ρ0 a faulty run,
α > 0, ε > 0, σ0 = π(ρ0) and n0 = |σ0|, we start by extending the runs with
observed sequences σ0 by nb observable events where nb is chosen in order to get
a high probability that the runs end in a BSCC. For such an observed sequence



Accurate Approximate Diagnosability of Stochastic Systems 559

σ ∈ Σnb
o , we partition the possible runs with observed sequence σ0σ into three

sets: RF
σ is the subset of faulty runs; RC

σ (resp. RT
σ ) is the set of correct runs

ending (resp. not ending) in a BSCC. At first, we do not take into account
the “transient” runs in RT

σ . We apply Lemma 9 to obtain an integer nσ such
that from RF

σ and RC
σ we can diagnose with (appropriate) high probability and

low correctness proportion after nσ observations. Among the runs that trigger
diagnosable observed sequences, some exceed the correctness proportion ε, when
taking into account the runs from RT

σ . Yet, we show that the probability of
such runs is small, when cumulated over all extensions σ, leading to the required
upper bound α.

Using the characterization, one can easily establish the complexity of AA-
diagnosability. Indeed, reachability of a pair of states with the same observed
sequence is decidable in polynomial time by an appropriate “self-synchronized
product” of the pLTS. Since there are at most a quadratic number of pairs to
check, and given that the distance 1 problem can be decided in polynomial time,
the PTIME upper-bound follows.

In constrast, uniform AA-diagnosability is shown to be undecidable by a
reduction from the emptiness problem for probabilistic automata, that is more
involved than the one for Theorem 5.

Theorem 11. The uniform AA-diagnosability problem is undecidable for pLTS.

q0

qu
1 qu

2

bu

u, I[q1]
2

u, I[q2]
2a, Pa[q1,q2]

1+|Σ|

a, Pa[q2,q1]
1+|Σ|

I[q1]
1+|Σ|

I[q2]
1+|Σ|

1
2

1
2

1
1+|Σ|

qf
1 qf

2

bf

f , I[q2]
2

f , I[q1]
2 a, Pa[q1,q2]

1+|Σ|

a, Pa[q2,q1]
1+|Σ|

I[q2]
1+|Σ|

I[q1]
1+|Σ|

1

1
1+|Σ|

The reduction is illustrated above, and we sketch here the undecidability
proof. Assuming there exists a word w ∈ Σ∗ accepted with probability greater
than 1

2 in the probabilistic automaton. We pick arbitrary α < 1 and nα. Then,
one can exhibit a faulty signalling run ρn with π(ρn) = (w	)n for some appro-
priate n, such that for every extension ρn � ρ with |ρ| = |ρn| + nα, one
has CorP(ρ) > 1

2 . This shows that the constructed pLTS is not uniformly 1
2 -

diagnosable.
Assuming now that all words are accepted with probability less than 1

2 . Then
for any observed sequence σ ∈ (Σ ∪{	})∗, CorP(σ) ≤ 1

2 . After reaching a BSCC,
the correctness proportion decreases uniformly, due to the 	-loop on bu. Given
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positive α and ε, one can thus find integers n0 and n1 such that a BSCC is
reached after n0 observable events with probability at least 1 − α, and after n1

more the correctness proportion, which was at most 1
2 , decreases below ε. This

shows the uniform AA-diagnosability.

4 Conclusion

This paper completes our previous work [1] on diagnosability of stochastic sys-
tems, by giving here a full picture on approximate diagnosis. On the one hand,
we performed a semantical study: we have refined the reactivity specification by
introducing a uniform requirement about detection delay w.r.t. faults and stud-
ied its impact on both the exact and approximate case. On the other hand, we
established decidability and complexity of all notions of approximate diagnosis:
we have shown that (uniform) ε-diagnosability and uniform AA-diagnosability
are undecidable while AA-diagnosability can be solved in polynomial time.

There are still interesting issues to be tackled, to continue our work on mon-
itoring of stochastic systems. For example, prediction and prediagnosis, which
are closely related to diagnosis and were analyzed in the exact case in [1], should
be studied in the approximate framework.
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Abstract. We develop various proof techniques for the synthesis of sort-
ing algorithms on binary trees, by extending our previous work on the
synthesis of algorithms on lists. Appropriate induction principles are
designed and various specific prove-solve methods are experimented, mix-
ing rewriting with assumption-based forward reasoning and goal-based
backward reasoning à la Prolog. The proof techniques are implemented
in the Theorema system and are used for the automatic synthesis of sev-
eral algorithms for sorting and for the auxiliary functions, from which
we present few here. Moreover we formalize and check some of the algo-
rithms and some of the properties in the Coq system.

Keywords: Algorithm synthesis · Sorting · Theorem proving

1 Introduction

Program synthesis is currently a very active area of programming language and
verification communities. Generally speaking, the program synthesis problem
consists in finding an algorithm which satisfies a given specification. We focus
on the proof-based synthesis of functional algorithms, starting from their for-
mal specification expressed astwo predicates: the input condition I[X] and the
output condition O[X,T ], where X and T are vectors of universal and existen-
tial variables, respectively.The desired function F must satisfy the correctness
condition (∀X)(I[X] =⇒ O[X,F [X]]).1

We are interested to develop proof-based methods for finding F and to build
formal tools for mechanizing and (partially) automatizing the proof process, by
following constructive theorem proving and program extraction techniques to
deductively synthesize F as a functional program [5]. The way the constructive
proof is built is essential since the definition of F can be extracted as a side effect
1 The square brackets have been used for function and predicate applications instead
of round brackets.
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of the proof. For example, case splits may generate conditional branches and
induction steps may produce recursive definitions. Hence, the use of different case
reasoning techniques and induction principles may output different definitions
of F . The extraction procedure guarantees that F satisfies the specification.

Non-trivial algorithms, as for sorting [14], are generated when X is a
recursively-defined unbounded data structure, as lists and trees. In this paper,
we apply the deductive approach to synthesize binary tree algorithms, extend-
ing similar results for lists [8]. In order to do this, we introduce new induction
principles, proof strategies and inference rules based on properties of binary
trees. Numerous new algorithms have been synthesized. For lack of space, we
fully present the synthesis process for one of these algorithms; the proofs for
the other algorithms are only summarized but can be found in the technical
report [9]. The correctness of the discovered algorithms is ensured by the sound-
ness of the induction principles, the specific inference rules and proof strategies
introduced in this paper.

The implementations of the new prover and extractor, as well as of the case
studies presented in this paper are carried out in the frame of the Theorema
system2 and e.g., [4] which is itself implemented in Mathematica [20]. Theorema
offers significant support for automatizing the algorithm synthesis; in particular,
the new proof strategies and inference rules have been quickly prototyped, tested
and integrated in the system thanks to its extension features. Also, the proofs
are easier to understand since they are presented in a human-oriented style.
Moreover the synthesized algorithms can be directly executed in the system.
The implementation files can be accessed in the technical report [9].

Additionally we have formalized part of the theory presented here and
mechanically checked that some extracted algorithms satisfy the correctness con-
dition in the frame of the Coq system [3].

1.1 Related Work

For an overview of the most common approaches used to tackle the synthesis
problem, the reader may consult [12]. Synthesis methods and techniques similar
to our proof-based approach are extensively presented in [8]. It can be noticed
that most of the proof methods are based on expressive and undecidable logics
that integrate induction principles.

The proof environments underlying deductive synthesis frameworks are usu-
ally supporting both automated and interactive proof methods. Those based on
abstract datatype and computation refinements [2,19] integrate techniques that
are mainly executed manually and implemented by higher-order proof assistants
like Isabelle/HOL [15] or more synthesis-oriented tools as Specware [16]. On
the other hand, automated proof steps can be performed with decision proce-
dures, e.g., for linear arithmetics, or SAT and SMT solvers as those integrated
in Leon [13]. The generated algorithms can be checked for conformity with the
input specification by validating the proof trails for each refinement process,

2 https://www.risc.jku.at/research/theorema/software/.

https://www.risc.jku.at/research/theorema/software/
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for example using the Coq library Fiat [7] to ensure the soundness of the val-
idation step by certification with the Coq kernel. [6] presents a different Coq
library using datatype refinement to verify parameterized algorithms for which
the soundness proof of some version can be deduced from that of a previous
(less efficiently implemented) version. Implementing inference rules directly in
Coq may be of interest if one can prove that every generated synthesized algo-
rithm is sound. In general, this is a rather difficult task, therefore this approach
does not fit for rapid prototyping and testing new ideas.

2 The Proof-Based Synthesis Method

This section introduces the algorithm synthesis problem and presents the proof-
based synthesis techniques that we use, by adapting and improving inference
rules and induction principles from [8].

2.1 Our Approach

Basic notions and notations. According to the Theorema style, we use square
brackets for function and for predicate application (e.g., f[x] instead of f(x) and
P[a] instead of P(a)). Moreover the quantified variables appear under the quan-
tifier: ∀

X
(“for all X”) and ∃

T
(“exists T”). We consider binary trees over a totally

ordered domain. In our formulae there are two kinds of objects: domain objects
which are tree members (usually denoted by lower-case letters – e.g. a, b, n),
and binary trees (usually represented by upper-case letters – e.g. X,T, Y, Z).
However the formulae do not indicate explicitly the types of the objects, but
our specific predicate and function symbols are not overloaded3. Furthermore
the meta–variables are starred (e.g., T ∗, T ∗

1 , Z∗) and the Skolem constants have
integer indices (e.g., X0,X1, a0).

The ordering between tree elements is denoted by the usual ≤, and the order-
ing between a tree and an element is denoted by: � (e.g., T � z states that all
the elements from the tree T are smaller or equal than the element z, z � T
states that z is smaller or equal than all the elements from the tree T ). We use
two constructors for binary trees, namely: ε for the empty tree, and the triplet
〈L, a,R〉 for non-empty trees, where L and R are trees and a is the root element.

A tree is a sorted (or search, or ordered) tree if it is either ε or of the form
〈L, a,R〉 such that i) L � a � R, and ii) L and R are sorted trees.

Functions: RgM,LfM,Concat, Insert,Merge have the following interpretations,
respectively: RgM[〈L, n,R〉] (resp. LfM[〈L, n,R〉]) returns the last (resp. first)
visited element by traversing the tree 〈L, n,R〉 using the in-order (symmetric)
traversal, i.e., the rightmost (resp. leftmost) element; Concat[X,Y ] concatenates
X with Y (namely, when X is of the form 〈L, n,R〉 adds Y as a right subtree of
the element RgM[〈L, n,R〉]); Insert[n,X] inserts an element n in a tree X (if X

3 Each predicate and function symbol applies to a certain combination of types of
argument.
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is sorted, then the result is also sorted); Merge[X,Y ] combines trees X and Y
into a new tree (if X,Y are sorted then the result is also sorted).

Predicates: ≈ and IsSorted have the following interpretations, respectively:
X ≈ Y states that X and Y have the same elements with the same number
of occurrences (but may have different structures), i.e., X is a permutation of
Y ; IsSorted[X] states that X is a sorted tree.

The formal definitions of these functions and predicates are:

Definition 1. ∀
n,m,L,R,S

(
RgM[〈L, n, ε〉] = n

RgM[〈L, n, 〈R,m, S〉〉] = RgM[〈R,m, S〉]
)

Definition 2. ∀
n,m,L,R,S

(
LfM[〈ε, n,R〉] = n

LfM[〈〈L, n,R〉,m, S〉] = LfM[〈L, n,R〉]
)

Definition 3. ∀
n,L,R,S

(
Concat[ε,R] = R

Concat[〈L, n,R〉, S] = 〈L, n,Concat[R,S]〉
)

Definition 4.

∀
L,m,R

(
IsSorted[ε]

(IsSorted[L] ∧ IsSorted[R] ∧ RgM[L] ≤ m ≤ LfM[R]) ⇐⇒ IsSorted[〈L, m, R〉]
)

A formal definition of ≈ is not given, however we use the properties of ≈ as
equivalence implicitly in our inference rules and strategies. In particular, we use
in our prover the fact that equivalent trees have the same multiset of elements,
which translates into equivalent tree–expressions having the same multiset of
constants and variables.

The functions LfM and RgM do not have a definition for the empty tree,
however we assume that: ∀

m

(
RgM[ε] ≤ m ≤ LfM[ε]

)
.

An example of simple property which can be proven inductively from
Definition 3 is the following:

Property 5. ∀
z,T

(
IsSorted[T ] =⇒ (T � z ⇐⇒ RgM[T ] ≤ z)

)

All the statements used at object level in our experiments are formally just
predicate logic formulae, however for this presentation we will call them differ-
ently depending on their role: a definition or an axiom is given as an initial piece
of the theory, considered to hold; a property is a logical consequence of the defi-
nitions and axioms; a proposition is a formula which we sometimes assume, and
sometimes prove, depending of the current experiment scenario; and a conjecture
is something we want to prove.

The synthesis problem. As stated in the introduction, the specification of
the target function F consists of two predicates: the input condition I[X]
and the output condition O[X,T ], and the correctness property for F is
∀
X

(I[X] ⇒ O[X,F [X]]). The synthesis problem is expressed by the conjecture:

∀
X

∃
T
(I[X] ⇒ O[X,T ]). Proof-based synthesis consists in proving this conjecture
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in a constructive way and then extracting the algorithm for the computation of
F from this proof.

In the case of sorting the input condition specifies the type of the input,
therefore it is missing since the type is implicit using the notations presented
above (e.g., X is a tree). The output condition O[X,T ] is X ≈ T ∧ IsSorted[T ]
thus the synthesis conjecture becomes:

Conjecture 6. ∀
X

∃
T
(X ≈ T ∧ IsSorted[T ])

This conjecture can be proved in several ways. Each constructive proof is
different depending on the applied induction principle and the content of the
knowledge base. Hence, different algorithms are extracted from different proofs.

Synthesis scenarios. The simple scenario is when the proof succeeds, because
the properties of the auxiliary functions which are necessary for the implemen-
tation of the algorithm are already present in the knowledge base. An example
of knowledge base is given in [10]. The auxiliary algorithms used for tree sort-
ing are Insert[a,A] (insert element a into sorted tree A, such that the result is
sorted) and Merge[A,B] (merge two sorted trees into a sorted tree). Some of
their necessary properties are:

Proposition 7. ∀
T

(
IsSorted[T ] =⇒ IsSorted[Insert[n, T ]]

)

Proposition 8. ∀
L,R

(
(IsSorted[L] ∧ IsSorted[R]) =⇒ IsSorted[Merge[L,R]]

)

More complex is the scenario where the auxiliary functions are not present in
the knowledge base. In this case the prover fails and on the failing proof situation
we apply cascading: we create a conjecture which would make the proof succeed,
and it also expresses the synthesis problem for the missing auxiliary function. In
this scenario, the functions Insert and Merge are synthesized in separate proofs,
and the main proof is replayed with a larger knowledge base which contains their
properties.

2.2 Induction Principles

The illustration of the induction principles and algorithm extraction in this sub-
section is similar to the one from [8], but the induction principles are adapted
for trees and the extracted algorithms are more complex.

The following induction principles are direct term-based instances of the
Noetherian induction principle [17] and can be represented using induction
schemas. Consider the domain of binary trees with a well-founded ordering <t

and denote by <<t the multiset extension [1] of <t as a well-founded ordering
over vectors of binary trees. An induction schema to be applied to a predicate
∀
x
P [x] defined over a vector of tree variables x is a conjunction of instances of

P [x] called induction conclusions that ‘cover’ ∀
x
P [x], i.e., for any value v from

the domain of x, there is an instance of an induction conclusion P [t] that equals
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P [v], where t is a vector of trees. An induction schema may attach to an induc-
tion conclusion P [t], as induction hypotheses, any instance P [t′] of ∀

x
P [x] as long

as t′ <<t t. The induction conclusions without (resp., with) attached induction
hypotheses are base (resp., step) cases of the induction schema.

In the current presentation we will use the number of elements as the mea-
sure of binary trees. Checking strict ordering E <t E′ between two expressions
E,E′ representing trees reduces to check strict inclusion between the multisets of
symbols (constants and variables except ε) occurring in the expressions. This is
because the expressions representing trees contain only functions which preserve
the number of elements in the tree (Concat, Insert, Merge).

In our experiments we used different induction principles for proving P as
unary predicate over binary trees. A first example is:

Induction-1:
(
P [ε]

∧
∀

n,L,R

(
(P [L] ∧ P [R]) =⇒ P [〈L, n,R〉])

)
=⇒ ∀

X
P [X]

The ‘covering’ property of the two induction conclusions P [ε] and P [〈L, n,R〉]
is satisfied since any binary tree is either ε or of the form 〈L, n,R〉. P [L] and
P [R] are induction hypotheses attached to P [〈L, n,R〉], and it is very easy to
see that their terms are smaller than the one of the induction conclusion.

Induction-2:
(
P [ε]

∧
∀

n,L

(
P [L] =⇒ P [〈L, n, ε〉])

∧
∀

n,L,R

(
(P [〈L, n, ε〉] ∧ P [R]) =⇒ P [〈L, n, R〉])

)
=⇒

∀
X

P [X]

Induction-3:(
P [ε]

∧
∀
n
(P [〈ε, n, ε〉])

∧
∀

n,L
(P [L] =⇒ P [〈L, n, ε〉])

∧
∀

n,R
(P [R] =⇒ P [〈ε, n, R〉])

∧
∀

n,L,R
((P [L] ∧ P [R]) =⇒ P [〈L, n, R〉])

)
=⇒ ∀

X
P [X]

In the formula above, L and R are assumed to be nonempty. In order to
encode this conveniently during the proof, they are replaced by 〈A, a,B〉 and
〈C, b,D〉, respectively.

Induction schema discovery. In some examples (e.g., synthesis of
Merge[X,Y ] [11]), the induction principles are generated in a lazy way, espe-
cially when it is not possible to find a witness term using only the constants and
functions present in the proof situation. In such cases the prover allows the use
of terms containing the function to be synthesized, by assuming that it fulfils the
desired specification. However, the call of this function must apply to arguments
which are strictly smaller (w.r.t. <<t) then the arguments of the main call of the
function which is currently synthesized.
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2.3 Special Inference Rules and Proof Strategies

We summarize here the main inference rules and proof strategies. More details
are given in [9].

Inference rules:

IR-1: Generate Microatoms. Certain atoms can be transformed into a con-
junction of (micro)atoms, depending on the specific properties of our func-
tions and predicates. E.g., IsSorted[〈T1, n, T2〉] is transformed into (IsSorted[T1]∧
IsSorted[T2]∧RgM[T1] ≤ n∧n ≤ LfM[T2]). Similarly, we get x � A ∧x ≤ b∧ x �
C from x � 〈A, b, C〉.
IR-2: Eliminate-Ground-Formulae-from-Goal. The ground formulas from any
goal are deleted if they are assumption instances.

IR-3: Replace-Equivalent-Term-in-Goal. Let t1 ≈ t2 be an assumption and
assume that t1 occurs in a goal as argument of a predicate which is preserved
by equivalence (≈, �). The rule replaces t1 by t2.

IR-4: Generate permutations and expressions. This rule applies combinator-
ial techniques that are widely explained in [11]. Given a goal of the form
Expression ≈ T ∗ ∧ IsSorted[T ∗], it generates all permutations of the list of non-
empty symbols from Expression. Then, for each permutation it generates all pos-
sible witnesses as a tree expressions containing these symbols. E.g., if Expression
is 〈L, x, ε〉, then the generated trees are: 〈L, x, ε〉, 〈ε, x, L〉, and Insert[x,L].

Strategies:

S-1: Quantifier reduction. The strategy organizes the inference rules for quanti-
fiers (see IR-1), in situations where it is clear that several such rules are to be
performed in sequence (e.g., when applying an induction principle).

S-2: Priority-of-Local-Assumptions. The strategy consists in using with prior-
ity the local assumptions, usually ground formulae generated during the current
proof and considered as “true” in the context of the proof, w.r.t. the global
assumptions consisting of definitions and propositions from the database, con-
sidered as being always “true”.

3 Experiments

3.1 Synthesis of Sort-1

In this subsection we present the automatically generated proof of Conjecture 6
in the Theorema system. Note that the statement which has to be proven by
induction is:

P [X] : ∃
T
(X ≈ T ∧ IsSorted[T ]).

Proof. Start to prove Conjecture 6 using the current knowledge base and by
applying Induction-3, then S-1 to eliminate the existential quantifier.
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Base case 1: Prove: ε ≈ T ∗ ∧ IsSorted[T ∗].
One obtains the substitution {T ∗ → ε} and the new goal is IsSorted[ε], which is
true by Definition 4.

Base case 2: Prove: 〈ε, n, ε〉 ≈ T ∗ ∧ IsSorted[T ∗].
One obtains the substitution {T ∗ → 〈ε, n, ε〉}. The new goal is IsSorted[〈ε, n, ε〉]
which is true by Definition 4.

Induction case 1: Assume:

∃
T
(L0 ≈ T ∧ IsSorted[T ]) (1)

and prove:
∃
T
(〈L0, n, ε〉 ≈ T ∧ IsSorted[T ]) (2)

Apply S-1 on (1) and (2) to eliminate the existential quantifiers. The induc-
tion hypotheses are:

L0 ≈ T1, IsSorted[T1] (3)

and the goal is:
〈L0, n, ε〉 ≈ T ∗ ∧ IsSorted[T ∗] (4)

Apply IR-3 and rewrite our goal (4) by using the first conjunct of the assump-
tion (3). The goal becomes:

〈T1, n, ε〉 ≈ T ∗ ∧ IsSorted[T ∗] (5)

Apply IR-4 (to generate permutations of 〈T1, n, ε〉) and prove alternatives:

Alternative-1: One obtains the substitution {T ∗ → 〈T1, n, ε〉} to get:

IsSorted[〈T1, n, ε〉] (6)

Apply IR-1 on (6) and prove:

IsSorted[T1] ∧ RgM[T1] ≤ n (7)

Apply IR-2 using (3) and the new goal is:

RgM[T1] ≤ n (8)

Apply IR-5 and the goal (8) becomes the conditional assumption on this branch.

Alternative-2: One obtains the substitution {T ∗ → 〈ε, n, T1〉}. The proof is
similar and one has to prove:

n ≤ LfM[T1] (9)

which becomes the conditional assumption on this branch.



570 I. Drămnesc et al.

Alternative-3: Since the disjunction of the conditions (8) and (9) is not prov-
able, the prover generates a further alternative. This depends on the synthe-
sis scenario (see the end of Sect. 2.1). If the properties of the function Insert
are present in the knowledge base, then the prover generates the substitution
{T ∗ → Insert[n, T1]} based on these properties.

If the properties of Insert are not present, then the prover generates a failing
branch. A new conjecture is further generated which is used for the synthesis
of Insert. Then we replay the current proof with knowledge about this auxiliary
function and the proof will proceed further.

Induction case 2: Similar to Induction case 1 one obtains:

Alternative-1: {T ∗ → 〈ε, n, T2〉} and the conditional assumption is: n ≤
LfM[T2].

Alternative-2: {T ∗ → 〈T2, n, ε〉} and the conditional assumption is:
RgM[T2] ≤ n.

Alternative-3: Since the auxiliary function Insert is already known, the proof
will succeed with the substitution: {T ∗ → Insert[n, T2]}.

Induction case 3: Assume:

L1 ≈ T3, IsSorted[T3], R1 ≈ T4, IsSorted[T4] (10)

and prove:
〈L1, n,R1〉 ≈ T ∗ ∧ IsSorted[T ∗] (11)

Apply IR-3 and rewrite our goal (11) by using the first and the third conjunct
of the assumption (10) and the new goal is:

〈T3, n, T4〉 ≈ T ∗ ∧ IsSorted[T ∗] (12)

Apply IR-4 and obtain the permutations of the list 〈T3, n, T4〉, for each
permutation a number of possible tree expressions as witness for T ∗, and for
each witness an alternative possibly generating a condition as goal.

If the function Merge is not present, then the branch corresponding to Concat
will be followed by a failing branch which has the same witness. For the pur-
pose of this presentation we use only the alternative branch generated by the
list 〈n, T3, T4〉 with expression Insert[n,Concat[T3, T4]]. This generates the same
conjecture for the synthesis of Merge and also the last branch in the follow-
ing sorting algorithm, knowing that if the proof succeeds to find a witness
T ∗ = [n,L0, R0, T1, T2] (term depending on n,L0, R0, T1 and T2), then a new
branch F [〈L, n,R〉] = [n,L,R, F [L], F [R]] of the synthesized algorithm is gen-
erated (T1 and T2 are replaced by F [L] and F [R], respectively) by using as
conditions the conditional assumptions required by the witness:
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∀
n,L,R

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1[ε] = ε
F1[〈ε, n, ε〉] = 〈ε, n, ε〉

F1[〈L, n, ε〉] =

⎧
⎨

⎩

〈F1[L], n, ε〉, if RgM[F1[L]] ≤ n
〈ε, n, F1[L]〉, if n ≤ LfM[F1[L]]
Insert[n, F1[L]], otherwise

F1[〈ε, n,R〉] =

⎧
⎨

⎩

〈ε, n, F1[R]〉, if n ≤ LfM[F1[R]]
〈F1[R], n, ε〉, if RgM[F1[R]] ≤ n
Insert[n, F1[R]], otherwise

F1[〈L, n,R〉] = Insert[n,Merge[F1[L], F1[R]]]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2 Additional Certification of the Synthesized Algorithm F1

The theoretical basis and the correctness of this proof-based synthesis scheme is
well known – see for instance [5]. However, the implementation of the presented
rules in Theorema is error-prone. To check the soundness of the implementation,
we have mechanically verified that the algorithm F1 satisfies the correctness
condition, by using the Coq proof assistant (https://coq.inria.fr). The Coq for-
malization of the LfM and RfM functions has slightly changed from the partial
definitions given here, as Coq requires that the functions be total. The conver-
sion into total functions is possible if the components of the triplet given as
argument are represented as the new arguments, as below.

Definition 9. ∀
n,m,L,R,S

(
RgM[L, n, ε] = n

RgM[L, n, 〈R,m, S〉] = RgM[R,m, S]

)

Definition 10. ∀
n,m,L,R,S

(
LfM[ε, n,R] = n

LfM[〈L, n,R〉,m, S] = LfM[L, n,R]

)

The proof effort was non-trivial, involving significant user interaction. The
certification proofs used rules and proof strategies completely different from
those generating the synthesized algorithms, requiring additionally 2 induction
schemas and 15 lemmas.4

3.3 Synthesis of Other Sorting Algorithms

Sort-2. The prover generated automatically the proof of Conjecture 6 by
applying Induction-2 and by using the current knowledge base (Definition 4,
Propositions 7, and 8), including the following property:

Proposition 11.
∀

n,L,R,A,B
((〈L, n, ε〉 ≈ A ∧ R ≈ B) =⇒ 〈L, n,R〉 ≈ Merge[A,B])

The proof is similar with the ones presented above and from this proof the
following algorithm is extracted automatically:

4 The full Coq script is available at: http://web.info.uvt.ro/∼idramnesc/LATA2016/
coq.v.

https://coq.inria.fr
http://web.info.uvt.ro/~idramnesc/LATA2016/coq.v
http://web.info.uvt.ro/~idramnesc/LATA2016/coq.v
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∀
n,L,R

⎛

⎜⎜⎜⎜⎝

F2[ε] = ε

F2[〈L, n, ε〉] =

⎧
⎨

⎩

〈F2[L], n, ε〉, if RgM[F2[L]] ≤ n
〈ε, n, F2[L]〉, if n ≤ LfM[F2[L]]
Insert[n, F2[L]], otherwise

F2[〈L, n,R〉]=Merge[F2[〈L, n, ε〉], F2[R]]

⎞

⎟⎟⎟⎟⎠

Sort-3. The proof of Conjecture 6 is generated automatically by applying
Induction-3 and by using properties from the knowledge base (including prop-
erties of Concat).

The corresponding algorithm which is extracted automatically from the proof
is similar to F1 excepting the last branch, which is:

F3[〈L, n,R〉] = Insert[n, F3[Concat[L,R]]]

Sort-4. The prover automatically generates the proof of Conjecture 6 by apply-
ing Induction-3 and by using properties from the knowledge base (including
properties of Insert, Merge) and applies the inference rule IR-4 which generates
permutations.

The automatically extracted algorithm is similar to F1 excepting the last
branch, where F4 has three branches:

F4[〈L, n,R〉] =

⎧
⎨

⎩

〈F4[L], n, F4[R]〉, if (RgM[F4[L]] ≤ n ∧ n ≤ LfM[F4[R]])
〈F4[R], n, F4[L]〉, if (RgM[F4[R]] ≤ n ∧ n ≤ LfM[F4[L]])
Insert[n,Merge[F4[L], F4[R]]], otherwise

Sort-5. The prover generates automatically the proof of Conjecture 6 by apply-
ing Induction-3 and by using properties from the knowledge base (including
properties of Insert, Concat) and applies the inference rule IR-4 which generates
permutations.

The algorithm which is extracted automatically from the proof is similar to
F3 excepting the last branch, where F5 has three branches:

F5[〈L, n,R〉] =

⎧
⎨

⎩

〈F5[L], n, F5[R]〉, if RgM[F5[L]] ≤ n ∧ n ≤ LfM[F5[R]]
〈F5[R], n, F5[L]〉, if RgM[F5[R]] ≤ n ∧ n ≤ LfM[F5[L]]
Insert[n, F5[Concat[L,R]]], otherwise

The automatically generated proofs corresponding to these algorithms, their
extraction process and the computations with the extracted algorithms in The-
orema are fully presented in the technical report [9].

The following table presents the synthesized sorting algorithms. For each of
them Conjecture 6 has been proved using the induction principles from the first
column. The second column specifies the auxiliary function used and the third
column shows whether the rule IR-4 (which generates the permutations and
witnesses) is used or not.
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Induction principle Auxiliary used functions Uses IR-4 Extracted algorithm

Induction-2 LfM, RgM, Insert, Merge No F2

Induction-3 LfM, RgM, Insert, Merge No F1

LfM, RgM, Insert, Merge Yes F4

LfM, RgM, Insert, Concat No F3

LfM, RgM, Insert, Concat Yes F5

4 Conclusions and Further Work

Our results are: a new theory of binary trees, an arsenal of special strategies
and specific inference rules based on properties of binary trees, a new prover
in the Theorema system which generates all the presented synthesis proofs, an
extractor in the Theorema system which is able to extract from a proof the
corresponding algorithms (including if-then-else algorithms), the synthesis
of numerous sorting algorithms and auxiliary algorithms. We have also certified
by Coq the soundness property of F1 with the current implementation of the
auxiliary functions. The certification proof is more complex and its generation
less automatic than for the Theorema proof that helped for extracting F1, by
using different inference rules and additional properties.

The problem of sorting binary trees does not appear to have an important
practical significance, and in fact the algorithms we synthesize are not very
efficient. (For instance it appears to be more efficient to extract the elements of
the tree in a list, to sort it by a fast algorithm, and then to construct the sorted
tree.) However, the problem itself poses interesting algorithmic problems, and
also the proof techniques are more involved than the ones from lists. This is very
relevant for our research, because our primary goal is not to generate the most
efficient algorithms, but to study interesting examples of proving and synthesis,
from which we can discover new proof methods for algorithm synthesis.

Our experiments done in the Theorema system and presented in detail in
the technical report [9] show that by applying different induction principles and
by choosing different alternatives in the proofs one can discover numerous algo-
rithms for the same functions, differing in efficiency and complexity. This case
study illustrates that the automation of the synthesis problem is not a trivial one.

As further work, for a fully automatization of the synthesis process, we want
to use other systems in order to automatically generate the induction principles,
which in the Theorema system are given as inference rules in the prover. For
example, we can apply induction schemas that are issued from recursive data
structures and functions defined in Coq [18]. We also want to use the method
presented in this paper on more complex recursive data structures (e.g. red-black
trees). In the near future, we intend to certify the correctness property for the
other synthesized sorting algorithms, using a similar approach as for F1. One of
our long-term goals is to define procedures for translating the Theorema proofs
directly into Coq scripts, by following similar translation procedures as those
used for implicit induction proofs [18].
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Abstract. The deterministic shrinking two-pushdown automata char-
acterize the deterministic growing context-sensitive languages, known
to be the Church-Rosser languages. Here, we initiate the investiga-
tion of reversible two-pushdown automata, RTPDAs, in particular the
shrinking variant. We show that as with the deterministic version,
shrinking and length-reducing RTPDAs are equivalent. We then give a
separation of the deterministic and reversible shrinking two-pushdown
automata, and prove that these are incomparable with the (determin-
istic) context-free languages. We further show that the properties of
emptiness, (in)finiteness, universality, inclusion, equivalence, regularity,
and context-freeness are not even semi-decidable for shrinking RTPDAs.

Keywords: Unconventional models of computation · Reversible com-
puting · Shrinking two-pushdown automata · Church-Rosser languages

1 Introduction

Reversible variants of universal computation models, e.g., Turing machines,
are usually equal in power to irreversible (deterministic) ones.1 For subuni-
versal models, however, equality is very model-dependent. For example, one-
way reversible (multihead) finite automata, reversible pushdown automata, and
reversible Turing machines with run-times between real-time and linear time,
are not equal to their deterministic variants in expressive power, but two-way
reversible multihead finite automata and reversible linear-bounded automa are.
This motivates further study of various limited reversible automata models in
order to better understand how reversibility affects computational capacity.

In this paper we initiate the study of reversible (shrinking) two-pushdown
automata, RTPDAs for short. Two-pushdown automata have the input placed in
one pushdown, and perform computations by inspecting and rewriting words at

1 At least when considered as language acceptors—for functions the picture is some-
what more complex [1].
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the top of the pushdowns. These automata are of particular interest as the deter-
ministic shrinking two-pushdown automata (s-DTPDAs) are known to character-
ize the class of Church-Rosser languages [6]. The unrestricted RTPDAs are easily
shown to be Turing-complete. We then turn to the shrinking variant, s-RTPDAs,
and show that the s-RTPDAs are strictly weaker than the deterministic ver-
sion. The separation is achieved using the mirror language with a binary regular
language as infix, i.e., words of form w$v$wR, using the idea that a shrinking
reversible computation cannot “pass over” the infix word v enough times to verify
the mirror condition without also compressing it, so a Kolmogorov complexity
argument shows that this language is not accepted reversibly. However, in a
deterministic computation we can erase the infix, so this language separates the
reversible and deterministic models. Further, even though the s-RTPDAs accept
some non-context-free languages, we can exploit the separation to show that
the class of accepted languages is actually incomparable with the deterministic
context-free languages, and the context-free languages. Following this, we use a
reduction from the emptiness problem for linear bounded automata to show that
emptiness is not semi-decidable for s-RTPDAs, by encoding valid computations
of LBAs into words with sufficient character repetitions to enable a shrinking
checking of validity. This result is then further used to show that finiteness,
infiniteness, universality, inclusion, equivalence, regularity, and context-freeness
are not semi-decidable problems for s-RTPDAs.

2 Preliminaries

Throughout the paper we will use λ to denote the empty word. Moreover, L (A)
will denote the class of languages accepted by the automata of type A.

Definition 1. A two-pushdown automaton (TPDA) with pushdown windows of
size k is a nondeterministic automaton with two pushdown stores. Formally, it
is defined by a 7-tuple M = (Q,Σ, Γ,⊥, q0, F, δ), where

– Q is a finite set of internal states,
– Σ is a finite input alphabet,
– Γ is a finite tape alphabet containing Σ such that Γ ∩ Q = ∅,
– ⊥ �∈ Γ is a special symbol used to mark the bottom of the pushdown stores,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of final states, and
– δ : Q × ⊥Γ≤k × Γ≤k

⊥ → Pfin(Q × ⊥Γ ∗ × Γ ∗
⊥) is the partial transition relation,

where ⊥Γ≤k = Γ k ∪ {⊥u | |u| ≤ k − 1 }, Γ≤k
⊥ = Γ k ∪ { v⊥ | |v| ≤ k − 1 },

⊥Γ ∗ = Γ ∗ ∪ ⊥Γ ∗, Γ ∗
⊥ = Γ ∗ ∪ Γ ∗⊥, and Pfin(Q × ⊥Γ ∗ × Γ ∗

⊥) denotes the set
of finite subsets of Q × ⊥Γ ∗ × Γ ∗

⊥.

The automaton M is a deterministic two-pushdown automaton (DTPDA),
if δ is a (partial) function from Q × ⊥Γ≤k × Γ≤k

⊥ to Q × ⊥Γ ∗ × Γ ∗
⊥.

When constructing a two-pushdown automaton of a certain window size k,
we sometimes do not specify the whole content of the windows, in a slight abuse
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of notation. For instance, if k = 3 and we write δ(q0, #a, #) � (qr, #, ##), we take
this to be shorthand notation for the transitions δ(q0, x#a, #y) � (qr, x#, ##y),
for x ∈ ⊥Γ≤1 and y ∈ Γ≤2

⊥ .
A configuration of a (D)TPDA is described as (u, q, v), where q ∈ Q is the

current state, u ∈ ⊥Γ ∗ is the content of the first pushdown store with the first
letter of u at the bottom and the last letter of u at the top, and v ∈ Γ ∗

⊥ is the
content of the second store with the last letter of v at the bottom and the first
letter of v at the top. For an input string w ∈ Σ∗, the corresponding initial
configuration is (⊥, q0, w⊥), that is, the input is given as the initial content of
the second pushdown store, while the other pushdown store just contains the
bottom marker. The (D)TPDA M induces a computation relation �∗

M on the
set of configurations, which is the reflexive transitive closure of the single-step
computation relation �M defined by

(uu1, q1, v1v) �M (uu2, q2, v2v) if δ(q1, u1, v1) � (q2, u2, v2).

Note that the restrictions on δ for a DTPDA make �M a deterministic function
on configurations. A (D)TPDA halts if the transition function is undefined for
the current configuration. An input word w is accepted if the machine halts at
some time in an accepting state, otherwise it is rejected. The language accepted
by M is L(M) = {w ∈ Σ∗ | w is accepted by M }.

Definition 2. 1. A (D)TPDA M is called shrinking if there exists a weight
function ϕ : Q ∪ Γ ∪ {⊥} → N+ such that, for all q ∈ Q, u ∈ ⊥Γ≤k, and
v ∈ Γ≤k

⊥ , the transition (p, u′, v′) ∈ δ(q, u, v) implies ϕ(u′pv′) < ϕ(uqv).2

By s-TPDA and s-DTPDA we denote the corresponding classes of shrinking
automata.

2. A (D)TPDA M is called length-reducing if, for all q ∈ Q, u ∈ ⊥Γ≤k, and
v ∈ Γ≤k

⊥ , the transition (p, u′, v′) ∈ δ(q, u, v) implies |u′v′| < |uv|. We denote
the corresponding classes of length-reducing automata by lr-TPDA and lr-
DTPDA.

The definitions used here are those of Niemann and Otto [6], except that in
their definition of TPDAs the pushdown stores contain preassigned contents. In
the original definition by Buntrock and Otto [2], the automaton only sees the
topmost symbol on each pushdown, but both define the same language classes.

It is well known that TPDAs and DTPDAs characterize the class RE of all
recursively enumerable languages. The weight and length reducing variants of
(D)TPDAs coincide [6], that is L (s-TPDA) = L (lr-TPDA) and L (s-DTPDA) =
L (lr-DTPDA). Moreover, it is known that the s-TPDA characterize the class
GCSL of growing context-sensitive languages, and that the s-DTPDA character-
izes the class CRL of Church-Rosser languages [6].

Now we turn to reversible two-pushdown automata. Basically, reversibility is
meant with respect to the possibility of deterministically stepping the compu-
tation back and forth. So, the DTPDA has to also be backward deterministic.
2 The extension to (Q ∪ Γ ∪ {⊥})∗ is defined by ϕ(xy) = ϕ(x) + ϕ(y) and ϕ(λ) = 0.
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That is, any configuration must have at most one predecessor which, in addi-
tion, is computable by a DTPDA. So, for reversible DTPDAs there must exist
a reverse transition function δ← that maps a configuration to its predecessor
configuration. One step from a configuration to its predecessor configuration is
denoted by �←. We denote the corresponding class of reversible deterministic
automata by RTPDA. Note that a DTPDA is reversible when δ−1 extended to
a transition function fulfills the determinism criteria of Definition 1. Moreover,
we denote the corresponding classes of shrinking and length-reducing reversible
automata by s-RTPDA and lr-RTPDA, respectively. Observe that when a shrink-
ing (length-reducing) reversible automaton is run backward, its backward simu-
lation is growing (length-increasing).

Example 3. We present an s-RTPDA M = (Q,Σ, Γ,⊥, q0, F, δ) for the non-
semilinear language L = { a2n | n ≥ 0 }. The idea for the construction is to
iteratively move the content of one pushdown store to the other, while dividing
the number of a’s by two, until only one single a is left. In order to make this
process reversible in addition a special symbol is placed into one of the push-
downs which indicates that one copying sweep from one pushdown store to the
other was performed. This is realized as follows.

We define M by taking Q = {q0, q1, q�, qr}, Σ = {a}, Γ = Σ ∪ {#}, F =
{q�, qr}, and δ is defined as follows: in order to accept the word a the automaton
uses the transition

(q0,⊥, a⊥) → (q�,⊥#,⊥).

Whenever there is more than one a in the second pushdown, the automaton
starts a loop which divides the number of a’s by two and copies the context
from the second pushdown into the first, accordingly. To become reversible, the
start of this loop is remembered by a special symbol # in the first pushdown.
Thus, the following three transitions take care of this behavior:

(q0,⊥, aa) → (q0,⊥#a, λ)
(q0, #, aa) → (q0, ##a, λ)

and
(q0, a, aa) → (q0, aa, λ).

The copying ends if only one single a is left on the first pushdown, which is
controlled by

(q0, #a,⊥) → (qr, #, #⊥)
(q0, #a, #) → (qr, #, ##)

and leads to acceptance. If this is not the case the copying restarts, now from
left to right and by placing a # in the second pushdown at the very beginning of
this cycle. To this end the transitions

(q0, aa,⊥) → (q1, λ, a#⊥)
(q0, aa, #) → (q1, λ, a##)
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are used. The corresponding rules for state q1 for copying from left to right,
controlling acceptance, and restarting the copying now from right to left are

(q1, aa, a) → (q1, λ, aa)
(q1, #, a#) → (q�, ##, #)

and
(q1, #, aa) → (q0, ##a, λ),

respectively. It is easy to see that the function ϕ : Q ∪ Γ ∪ {⊥} → N+ defined
by ϕ(q) = 1, for q ∈ Q, and ϕ(a) = 2, ϕ(#) = 1, and ϕ(⊥) = 1, makes the
automaton M shrinking (weight reducing).

Consider the example computation on input w = a8, which reads as follows:

(⊥, q0, a
8⊥) �M (⊥#a, q0, a

6⊥)

�M (⊥#a2, q0, a
4⊥)

�M (⊥#a3, q0, a
2⊥)

�M (⊥#a4, q0,⊥)
�M (⊥#aa, q1, a#⊥)

�M (⊥#, q1, a
2#⊥)

�M (⊥##a, q0, #⊥) �M (⊥##, qr, ##⊥).

From this example computation it is easy to see that the constructed DTPDA
is reversible, since with the help of the #-symbols one can reverse the computation
until the input word is produced in the second pushdown store, by undoing the
described forward computation. The exact details are left to the reader.

Moreover, by a slight adaption of the given construction, one can always
enforce that the #-symbols are collected in one pushdown store only. To keep
the presentation simple we did not use this more complicated construction
here. ��

3 On the Accepting Power of RTPDAs

In this section we first investigate the accepting power of RTPDAs, showing that
these machines accept all recursively enumerable languages, and that the shrink-
ing and length-reducing variants are equivalent. Then, lr-RTPDAs are shown to
be strictly less powerful than their deterministic variants. Finally, it is shown
that the class of languages accepted by lr-RTPDAs is incomparable with the
deterministic context-free languages and the context-free languages.

3.1 Basic Results on RTPDAs

By directly simulating a reversible Turing machine we get the following result.

Theorem 4. L (RTPDA) = RE. ��
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Next, we consider shrinking and length-reducing variants of reversible two-
pushdown automata. For ordinary DTPDAs we have the equality L (s-DTPDA) =
L (lr-DTPDA) by [6], and this is equal to the class CRL of Church-Rosser lan-
guages. In fact, the proof given in [6] generalizes to the reversible two-pushdown
automata.

Theorem 5. L (s-RTPDA) = L (lr-RTPDA). ��
This equivalence motivates the following definition: let RevCRL refer to the class
of languages accepted by length-reducing or equivalently shrinking reversible
deterministic two-pushdown automata.

3.2 Separation of DTPDAs and RTPDAs

We now consider whether the languages accepted by shrinking and length-
reducing two-pushdown automata are the same under determinism and
reversibility. Since the reversible automata as defined here are also determin-
istic, the inclusion L (lr-RTPDA) ⊆ L (lr-DTPDA) is immediate. We show that
this inclusion is, in fact, proper. So, the languages classes are different. The basic
idea of the proof is to use the mirror language with a binary regular language
in the center. Irreversible two-pushdown automata can check the infix from the
regular language whereby it is successively deleted. However, if the infix is an
incompressible string, it cannot be deleted by a length-reducing reversible two-
pushdown automaton. So, we will use Kolmogorov complexity and incompress-
ibility arguments. General information on this technique can be found, e.g., in
the textbook [4, Chap. 7]. Let w ∈ {a, b}∗ be an arbitrary binary string. The
Kolmogorov complexity C(w) of w is defined to be the minimal size of a binary
program (Turing machine) describing w. The following key component for using
the incompressibility method is well known: there are binary strings w of any
length such that |w| ≤ C(w).

Theorem 6. RevCRL = L (lr-RTPDA) ⊂ L (lr-DTPDA) = CRL.

Proof. We use the witness language L = {w$v$wR | v, w ∈ {a, b}∗ }. Since L is
deterministic context-free, it is a Church-Rosser language [5] and, thus, accepted
by some lr-DTPDA.

Now we turn to show that L cannot be accepted by any lr-RTPDA. Assume
for the purpose of contradiction that L is accepted by some lr-RTPDA M =
(Q,Σ, Γ,⊥, q0, F, δ) with pushdown window size k. We consider accepting com-
putations on inputs of the form w$v$wR, where |w| = n, |v| = n2, and
C(v) ≥ |v|, that is, v is incompressible.

In the following we will imagine that there may be invisible tokens between
the symbols in the pushdown stores. These tokens are for the sake of easier writ-
ing. The automaton cannot see the tokens and operates as usual. Now assume
that there are tokens {t0, t1, . . . , tm, tm+1} with m = �n2/�log(n)�� which are
initially placed between the symbols of v. More precisely, the tokens are placed as
v = t0v1t1v2t2 · · · tm−1vmtmvm+1tm+1, where |v1| = |v2| = · · · = |vm| = �log(n)�
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and |vm+1| = n2 − m · �log(n)�. We say that M operates on a token whenever
the token appears between symbols accessed by M in a transition. What hap-
pens with the token if M operates on it? If the transition pops symbols from the
pushdown the token moves up by the number of symbols deleted, where it moves
to the opposite pushdown when these positions are not available. Tokens never
pass each other. If there are not enough positions on both pushdown stores the
token remains at the top. For example, if δ(p, x3x2x1, y1y2y3y4) = (q, x′

2x
′
1, y

′
1y

′
2)

and there is a token between y3 and y4, it is placed between y′
1 and y′

2. If the
token appears between y1 and y2, it moves to the opposite pushdown between x′

2

and x′
1. On the other hand, if the transition pushes symbols to the pushdown

store where the token is, the token moves down by the number of symbols addi-
tionally pushed. For example, if δ(p, x3x2x1, y1y2y3y4) = (q, x′

1, y
′
1y

′
2y

′
3y

′
4y

′
5) and

there is a token between y3 and y4, it is placed between y′
4 and y′

5. Finally, if the
number of symbols in the pushdown store is unchanged, the token remains at its
position. For example, if δ(p, x3x2x1, y1y2y3) = (q, x′

2x
′
1, y

′
1y

′
2y

′
3) and there is a

token between y2 and y3, it remains in position, which is now between y′
2 and y′

3.
Next assume that, for n large enough, there is an accepting computation

so that M halts in a configuration where there are more than 2k symbols in
between two neighboring tokens, say, in between ti and ti+1, where 0 ≤ i ≤
m − 1. Since M is length-reducing, this implies in particular that M performs
at most O(log(n)) transitions in which only pushdown symbols in between ti
and ti+1 are accessed. In order to derive an upper bound on the number of
possibilities for these transitions we have to consider the accessible contents of
the pushdown stores, the state, and the position in between ti and ti+1 where the
operation is performed. There are no more than (|Γ | + 1)2k accessible contents
of the pushdown stores, at most |Q| states, and no more than log(n) positions.
Altogether, we derive at most

(
log(n) · (|Γ | + 1)2k · |Q|)O(log(n))

= log(n)O(log(n)) · c
O(log(n))
1

= 2log log(n)·O(log(n)) · 2O(log(n)) = 2O(log log(n)·log(n)) = o(2n)

possibilities for these transitions, where c1 is a constant.
Since there are 2n different words w of length n, for n large enough, there

are two words w �= w′ with |w| = |w′| = n so that the transitions in which
only pushdown symbols in between ti and ti+1 are accessed are the same. But
this implies that w$v$w′R is accepted as well, a contradiction to the assumption
that M halts with more than 2k symbols in between ti and ti+1.

We conclude that M halts in a configuration with at most

O

(
2n + 2k · n2

log(n)

)
= O

(
n2

log(n)

)

symbols in its pushdown stores.
Recall that v is incompressible. We now derive a contradiction by showing

that v can be compressed. The basic idea is to use the halting and accepting con-
figuration of M on input w$v$wR. Since M is reversible, it can be run backward
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RevCRL

CRL

DCFL

CFL

·L

·L ∪ L2

·L ∪ L3

·L1

·L2

·L3

Fig. 1. Graphical representation of the language classifications in Lemma 7

until the initial configuration and, thus, the word v is reconstructed. To this end,
we have to overcome the problem that M might run through several initial con-
figurations. However, this can be handled by using a binary counter that gives
the number of initial configurations passed through by M on input w$v$wR.
When the counter is decreased to zero during the reconstruction, the correct
configuration is reached. Since M is length-reducing, it halts after at most O(n2)
time steps. So, the counter can be represented with size O(log(n2)) = O(log(n)).
Altogether, we have

C(v) ≤ C(M) + O

(
n2

log(n)

)
+ O(log(n)) + |p| = O

(
n2

log(n)

)
= o(n2) = o(|v|)

where |p| is the constant size of the program above reconstructing v. We conclude
C(v) < |v|, for v long enough, contradicting that C(v) ≥ |v|. Therefore, M
cannot accept L. ��

3.3 RevCRL is Incomparable with DCFL and CFL

From Theorem 6 we now know that the shrinking reversible two-pushdown
automata are weaker than shrinking deterministic two-pushdown automata. On
the other hand, we also know from Example 3 that RevCRL contains non-semi-
linear and thus non-context-free languages, so their acceptance power is not
trivial. We here consider further how the class RevCRL compares to the (deter-
ministic) context-free languages (D)CFL, and the Church-Rosser languages CRL.

Lemma 7. The following language memberships hold.

1. L1 = { anbn | n ≥ 0 } ∈ RevCRL ∩ DCFL
2. L2 = { anbnc | n ≥ 0 } ∪ {anb2nd | n ≥ 0} ∈ (RevCRL ∩ CFL) − DCFL
3. L3 = { anbncn | n ≥ 0 } ∈ RevCRL − CFL
4. L = {w$v$wR | v, w ∈ {a, b}∗ } ∈ DCFL − RevCRL
5. L ∪ L2 ∈ (CRL ∩ CFL) − (DCFL ∪ RevCRL)
6. L ∪ L3 ∈ CRL − (CFL ∪ RevCRL) ��
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Corollary 8. RevCRL is incomparable with DCFL and CFL. ��
We note that Lemma 7 shows that all the intersections of interest are in fact

non-empty. Figure 1 provides a graphical representation of the relationships.

4 Decidability Problems

In this section, we study decidability questions for reversible two-pushdown
automata. The undecidability results are obtained by reductions of the empti-
ness problem for deterministic, linearly space bounded, one-tape, one-head Tur-
ing machines, so-called linear bounded automata (LBAs). It is well known that
emptiness for LBAs is not semidecidable. See, for example, [3] where also the
notion of valid computations is used. These are, basically, histories of LBA com-
putations which are encoded into single words. We may safely make the follow-
ing assumptions on LBAs. We suppose that they get their inputs in between two
endmarkers, can halt only after an odd number of moves, accept by halting in a
unique accepting state qf , and make at least three moves.

Let M be an LBA where Q is the state set, q0 is the initial state, T is the
tape alphabet satisfying T ∩ Q = ∅, and Σ ⊂ T is the input alphabet. Then a
configuration of M can be written as a string of the form �T ∗QT ∗� such that the
word t0t1 · · · tiqti+1 · · · tn+1 is used to express that M is in the state q, scanning
tape symbol ti+1, and the string t0t1 · · · tn+1 ∈ �T ∗� is the tape inscription
with t0 being the left endmarker and tn+1 being the right endmarker.

Next, configurations are written more concisely by packing the current state q
and the currently scanned symbol into a new symbol from the set Q′ = Q× (T ∪
{�,�}). Thus, a configuration is a string t0t1 · · · ti[q, ti+1]ti+2 · · · tn+1 of the
form �T ∗Q′T ∗�, if M ’s head scans a symbol from T . If the head scans � or �,
the configurations are of the form [q,�]t1 · · · tn+1 or t0t1 · · · tn[q,�].

Now we consider words of the form

w1$1w3$1 · · · $1w2m−1$2w
R
2m−1$1w

R
2m−3$1 · · · $1wR

1 $3

w2$1w4$1 · · · $1w2m$2w
R
2m$1w

R
2m−2$1 · · · $1wR

2 ,

where $1, $2, $3 /∈ T ∪ Q′, wi ∈ T ∗Q′T ∗ are configurations of M , w1 is an
initial configuration of the form �[q0,�] if the input is empty, or of the form
�[q0, σ1]σ2 · · · σ��, if the input σ1σ2 · · · σ� ∈ Σ+ is non-empty, w2m ∈ {qf}T ∗

is a halting (accepting) configuration, and wi+1 is the successor configuration
of wi.

These configurations are now encoded as follows. Let A be an alphabet and A
be a disjoint copy of A. Furthermore, let Â be a disjoint copy of A∪A. We consider
maps f, fR : A+ → (A ∪ A)+ and g, gR : (A ∪ A)+ → (A ∪ A ∪ Â)+ which are
defined on words of even length such that f(a1a2 · · · a�) = a2

1a
4
2a

8
3a

16
4 · · · a2�+1

�

and fR(a1a2 · · · a�) = a2�+1

1 a2�

2 · · · a4
�−1a

2
� . Similarly, we define the mappings

g(a1a2 · · · a�) = a2
1â

4
2a

8
3â

16
4 · · · â2�+1

� and gR(a1a2 · · · a�) = â2�+1

1 a2�

2 · · · â4
�−1a

2
� .
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Finally, consider h : (A∪A)+ → (A∪A)+ such that h(a1a2 · · · a�) = a4
1a

4
2 · · · a4

� .
Now, let A = T ∪ Q′ ∪ {$1, $2, $3}. Then, the set of encodings

h(g(f(w1$1w3$1 · · · $1w2m−1)$2fR(wR
2m−1$1w

R
2m−3$1 · · · $1wR

1 ))$3
gR(f(w2$1w4$1 · · · $1w2m)$2fR(wR

2m$1w
R
2m−2$1 · · · $1wR

2 )))

is defined to be the set of valid computations of M . We denote it by VALC(M).
It should be noted that the restriction to words of even length is done to keep
the following constructions somewhat simpler. It is straightforward to extend
the definitions and constructions also to words of not necessarily even length.

Our goal is to show that VALC(M) is accepted by some lr-RTPDA. Disre-
garding the maps f , fR, g, gR, and h, the set VALC(M) contains subwords of the
form x1x2 · · · xm$xmxm−1 · · · x1. Thus, in a first step we show how the language
{ f(x)$fR(xR) | x ∈ A+, |x|is even } can be accepted by some lr-RTPDA. This
construction will be used several times in the later construction of an lr-RTPDA
accepting VALC(M).

Lemma 9. Let A be an arbitrary alphabet such that $ �∈ A. An lr-RTPDA accept-
ing { f(x)$fR(xR) | x ∈ A+, |x| is even } can effectively be constructed. ��

The idea of the construction is that the repetition of symbols by f and fR

“pays” for the (linear) number of times we have to move the stacks back and forth
to check the palindrome structure; ending with ⊥x, $xR⊥ in the pushdowns.

Remark 10. The intended construction stores the matched words in both push-
down stores. However, it is easy to modify the construction such that matched
symbols are stored only in the second pushdown store. This is still length-
reducing and reversible, and we use both variants below.

A slight variation of Lemma 9 also proves useful. We again have to check a
palindrome structure, but only for a clearly marked prefix of the input.

Lemma 11. Let A and B be alphabets such that $ �∈ A ∪ B and A ∩ B = ∅.
Then, an lr-RTPDA accepting the language

{ f(xy)$fR(xRz) | x ∈ A+, y, z ∈ B+, |x|, |y|, |z| are even }
can effectively be constructed. ��
Returning to valid computations, our next step is to compute to each (encoded)
configuration its successor configuration and to store this in a second component
by using a suitable alphabet including pairs of symbols.

Lemma 12. An lr-RTPDA can effectively be constructed that constructs the fol-
lowing string in its second pushdown store

g

(
f

(
w1

w2
$1

w3

w4
$1 · · · $1w2m−1

w2m

)
$2fR

(
wR

2m−1

wR
2m

$1
wR

2m−3

wR
2m−2

$1 · · · $1wR
1

wR
2

))
$3

gR

(
f

(
w2

w3
$1

w4

w5
$1 · · · $1 w2m

n|w2m|

)
$2fR

(
wR

2m

n|w2m| $1
wR

2m−2

wR
2m−1

$1 · · · $1 wR
2

wR
3

))
,
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provided with an initial input (with |wi| = |wj | for all wi, wj) of the form

h(g(f(w1$1w3$1 · · · $1w2m−1)$2fR(wR
2m−1$1w

R
2m−3$1 · · · $1wR

1 ))$3
gR(f(w2$1w4$1 · · · $1w2m)$2fR(wR

2m$1w
R
2m−2$1 · · · $1wR

2 ))). ��
Lemma 13. Let M be an LBA. Then an lr-RTPDA accepting VALC(M) can
effectively be constructed.

Proof. The proof is a combination of Lemmata 9, 11, and 12. We assume
that the input is correctly formatted, since this property can easily be tested
by simulating a reversible deterministic finite automaton in the state set and
blocking the computation in case of any error. Then, with the help of encod-
ing map h and Lemma 12, we introduce two components in the pushdown
alphabet, preserve the original input in the upper component, and compute to
each configuration its successor configuration in the lower component. Then,
we utilize Lemma 9 and the encoding mappings g and gR to compare the
lower component of f

(
w1
w2

$1
w3
w4

$1 · · · $1 w2m−1
w2m

)
with the upper component of

fR

(
wR

2m

n|w2m| $1
wR

2m−2

wR
2m−1

$1 · · · $wR
2

wR
3

)
. Subsequently, we utilize Lemma 11 to compare

the upper component of fR

(
wR

2m−1

wR
2m

$1
wR

2m−3

wR
2m−2

$1 · · · $1 wR
3

wR
4
$1

wR
1

wR
2

)
with the lower

component of f
(

w2
w3

$1
w4
w5

$1 · · · $1 w2m−2
w2m−1

$1
w2m

n|w2m|

)
where each last configuration

is ignored, that is, the comparison starts by checking wR
2m−1 in the upper com-

ponent against w2m−1 in the lower component and ends by checking wR
3 in the

upper component against w3 in the lower component. Additionally, note that
w2m is an accepting and halting configuration. Thus, there is no successor con-
figuration, and this is marked by using the special symbol n. Furthermore, it
should be noted that the “ignored” configurations are suitably marked in the
phase where the successor configurations are computed so that Lemma 11 can
be applied. The latter two phases of computations ensure that each successor
configuration from an odd to an even step and from an even to an odd step has
been computed correctly. It remains to be checked that both substrings divided
by $3 have a palindrome structure. To this end, we want to apply Lemma 9
again to the strings in both upper components and observe that the first resp.
second pushdown store contains the following strings:

⊥f

(
w1

w2
$1

w3

w4
$1 · · · $1w2m−1

w2m

)
$2fR

(
wR

2m−1

wR
2m

$1
wR

2m−3

wR
2m−2

$1 · · · $1wR
1

wR
2

)
, resp.

$3fR

(
wR

2m

n|w2m| $1
wR

2m−2

wR
2m−1

$1 · · · $wR
2

wR
3

)
$2f

(
w2

w3
$1

w4

w5
$1 · · · $1 w2m−2

w2m−1
$1

w2m

n|w2m|

)
⊥.

Following Remark 10 we apply the suitably adapted variant of Lemma 9 to the
string in the upper component of the second pushdown store and check its palin-
drome structure. After the check, the given string in the first pushdown store
is still untouched and we apply another suitably adapted variant of Lemma 9
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to the string in the upper component of the first pushdown store to check its
palindrome structure. Finally, the following strings are stored in the first resp.
second pushdown store:

⊥w1

w2
$1

w3

w4
$1 · · · $1w2m−1

w2m
$2, resp.

wR
2m

n|w2m| $1
wR

2m−2

wR
2m−1

$1 · · · $wR
2

wR
3

⊥.

If an error occurs while the computation in still in some phase, the automa-
ton halts in a non-accepting state. If all phases have successfully been ended,
an accepting and halting state is entered. Since all phases are reversible and
length-reducing, it is clear that the overall computation is reversible and length-
reducing. Moreover, each phase can effectively be realized by an lr-RTPDA. Thus,
an lr-RTPDA can effectively be constructed that accepts the set VALC(M) for
a given LBAM . ��
Theorem 14. Emptiness, finiteness, infiniteness, universality, inclusion, equiv-
alence, regularity, and context-freeness are not semidecidable for lr-RTPDA.

Proof. Let M be an LBA. According to Lemma 13, we can effectively construct
an lr-RTPDA M ′ accepting VALC(M). Clearly, L(M ′) = VALC(M) is empty
if and only if L(M) is empty, and emptiness is not semidecidable for LBAs.
Further, an lr-RTPDA that accepts nothing can effectively be constructed, so
non-semidecidability of equivalence and inclusion follows immediately from this.
Also, L(M ′) = VALC(M) is finite if and only if L(M) is finite and finiteness is
not semidecidable for LBAs either.

Like lr-DTPDAs, also lr-RTPDAs always halt, either an accepting or a non-
accepting state. By interchanging accepting and non-accepting states of the
lr-RTPDA from Lemma 13, we constructively obtain an lr-RTPDA that accepts
exactly the complement of the set VALC(M), called INVALC(M), the set of
invalid computations. Using INVALC(M), we obtain that infiniteness and uni-
versality are not semidecidable, since finiteness and emptiness are not semide-
cidable.

For regularity and context-freeness we consider again the set VALC(M). By
a simple application of the pumping lemma for context-free languages [3] it can
be shown that VALC(M) is regular or context free if and only if L(M) is finite.
Thus, also non-semidecidability of regularity and context-freeness follows from
the non-semidecidability of finiteness. ��
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Abstract. Reaction systems, a formalism describing biochemical reac-
tions in terms of sets of reactants, inhibitors, and products, are known to
have a PSPACE-complete configuration reachability problem. We show
that the complexity of the problem remains unchanged even for some
classes of resource-bounded reaction systems, where we disallow either
inhibitors or reactants. We also prove that the complexity decreases to
NP in the specific case of inhibitorless reaction systems using only one
reactant per reaction.

Keywords: Unconventional models of computation · Natural comput-
ing · Reaction systems · Discrete dynamical systems · Reachability

1 Introduction

During the last decades, many new computing models have been introduced.
Each one was meant to more clearly illustrate some features or provide new
settings for developing new computing technologies. In most cases, nature has
been the main source of inspiration. In 2004, Ehrenfeucht and Rozenberg intro-
duced reaction systems (RS in the following) as an abstract model of chemical
reactions in living cells [5,6]. Indeed, in living cells, a biochemical reaction takes
place only whenever reactants are present and inhibitors are missing. Hence, a
reaction can be represented by a triple (R, I, P ) where R is the set of reactants,
I the inhibitor and P is the set of products which are left once the reaction is
finished. Of course, one has to require that R ∩ I = ∅. Informally, a RS is a
(finite) collection of reactions.

The simple definition of the model contrasts with its computing capabilities.
In fact, RS are capable of simulating any space-bounded Turing machine com-
putation (many constructions have been provided, one is also given in Sect. 3).
Moreover, they provide new examples of natural problems in higher levels of the
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 592–602, 2016.
DOI: 10.1007/978-3-319-30000-9 45
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polynomial hierarchy [7,8]. As a third argument in favour of studying RS,
one may advocate that they are a reference model for other finite systems.
Indeed, in [7], it is proved that RS provide lower complexity bounds for Boolean
automata networks (BAN). We remark that in the context of BAN, the com-
plexity of relatively few problems is known (see for instance [14]).

This paper pursues the study of complexity problems for RS in the same
vein as [8] and subsequent papers [3,7,9]. The new focus is on resource-bounded
computation. The idea is to take a classical and important reference problem,
namely the reachability problem, and try to see how its complexity varies accord-
ing to constraints that are put on reactions. The constraints we impose consist in
limiting the maximum number of reactants and inhibitors involved in each reac-
tion; this changes how much of the current state can be “observed” by a single
reaction. In principle, the resulting dynamical behaviours of reaction systems
are less rich than for unrestricted systems, although this does not necessarily
reduce the complexity of the reachability problem.

From [11], it is known that result functions (state transition functions) of
RS can be completely classified into five classes of functions over lattices, which
correspond to specific limitations on the number of reactants and inhibitors
allowed in each reaction of the corresponding RS. Theorems 7 and 9 prove that
the reachability problem is PSPACE-complete for three out of the five classes.
The class of result functions computed by RS with no reactants and no inhibitors
corresponds to constant functions, making the reachability problem very simple.
Concerning the fifth class, we only succeeded in proving that reachability is
in NP (Theorem 12) but we suspect that it is also NP-hard. Indeed, a slight
variant of the reachability problem is NP-complete for this class. The proof of
this last result is also of some interest in its own. Indeed, it uses the Prime
Number Theorem to precisely evaluate the complexity of the reduction.

2 Basic Notions

This section briefly recalls the basic notions about RS as introduced in [6]. We
remark that in this paper the set of reactants and inhibitors of a reaction are
allowed to be empty, unlike what is often required in literature. The reason for
this generalised definition is that, as it will be shown later (Corollary 10), the
reachability problem for “minimal” RS [13], having exactly one reactant and one
inhibitor per reaction, is already PSPACE-complete.

Definition 1. Consider a finite set S, whose elements are called entities.
A reaction a over S is a triple (Ra, Ia, Pa) of subsets of S. The set Ra is the set
of reactants, Ia the set of inhibitors, and Pa is the nonempty set of products.
The set of all reactions over S is denoted by rac(S).

Definition 2. A reaction system (RS) is a pair A = (S,A) where S is a finite
set, called the background set, and A ⊆ rac(S).

Given a state T ⊆ S, a reaction a is said to be enabled in T when Ra ⊆ T
and Ia ∩ T = ∅. The result function resa : 2S → 2S of a, where 2S denotes
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the power set of S, is defined as resa(T ) = Pa if a is enabled in T , and resa(T ) =
∅ otherwise. The definition of resa naturally extends to sets of reactions:
given T ⊆ S and A ⊆ rac(S), define resA(T ) =

⋃
a∈A resa(T ). The result

function resaA of a RS A = (S,A) is resA, i.e., the result function on the whole
set of reactions. In this way, any RS A = (S,A) induces a discrete dynamical
system where the state set is 2S and the next state function is resA. The set of
reactions of A enabled in a state T is denoted by enA(T ).

The orbit or state sequence of a given state T of a RS A is defined as the
sequence of states obtained by iterations of resA starting from T , namely the
sequence (T, resA(T ), res2A(T ), . . .). Being finite systems, RS only admit ulti-
mately periodic orbits, i.e., orbits ending up in a cycle.

We now recall the classification of RS in terms of number of resources
employed per reaction [11].

Definition 3. Let r, i ∈ N. The class RS(r, i) consists of all RS having at
most r reactants and i inhibitors for reaction. We also define the unbounded
classes RS(∞, i) =

⋃∞
r=0 RS(r, i), RS(r,∞) =

⋃∞
i=0 RS(r, i), and RS(∞,∞) =⋃∞

r=0

⋃∞
i=0 RS(r, i).

We remark that this classification does not include the number of products
as a parameter, since RS can always be assumed to be in singleton product
normal form [2]: any reaction (R, I, {p1, . . . , pm}) can be replaced by the set of
reactions (R, I, {p1}, . . . , (R, I, {pm}), since they produce the same result.

Several of the above defined classed have a characterisation in terms of func-
tions over the Boolean lattice 2S [11]. Recall that a function f : 2S → 2S is anti-
tone if X ⊆ Y implies f(X) ⊇ f(Y ), monotone if X ⊆ Y implies f(X) ⊆ f(Y ),
additive (or an upper-semilattice endomorphism) if f(X ∪Y ) = f(X)∪f(Y ). We
say that the RS A = (S,A) computes the function f : 2S → 2S if resA = f . Fur-
thermore, we say that the RS A = (S′, A) computes a function f : 2S → 2S via k-
simulation if S ⊆ S′ and reskA(T )∩S = f (T ) for all T ⊆ S. The (distinct) classes
of functions computed by restricted classes of RS are illustrated in Fig. 1. These
results show that, in a sense, the classes RS(1, 1), RS(0, 1), and RS(2, 0) capture
the expressiveness of the whole classes RS(∞,∞), RS(0,∞), and RS(∞, 0),
respectively (i.e., they simulate the more generic RS with a polynomial
slowdown).

We conclude this section by recalling the formulation of the problem
addressed in this paper.

Class of RS Subclass of 2S → 2S (via k-simulation)

RS(∞,∞) all RS(1, 1)
RS(0,∞) antitone RS(0, 1)
RS(∞, 0) monotone RS(2, 0)
RS(1, 0) additive RS(1, 0)
RS(0, 0) constant RS(0, 0)

Fig. 1. Functions computed by restricted classed of RS.
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Definition 4. The reachability problem for the class RS(i, r), with i and r pos-
sibly infinite, consists of deciding, given A ∈ RS(i, r) and two of its states T,U ,
whether U is reachable from T , i.e., whether restA(T ) = U for some t ≥ 0.

For the notions of complexity theory, such as the definitions of the classes of
problems NP and PSPACE, we refer the reader to any relevant textbook, such
as [12].

3 Inhibitorless Classes RS(∞, 0) and RS(2, 0)

We begin by describing how inhibitorless RS are able to efficiently simulate
Turing machines with bounded tape. A similar simulation was previously pub-
lished [7], but it required both reactants and inhibitors.

In the following, let M be any single-tape deterministic Turing machine
using m tape cells during its computation; let Σ be the tape alphabet, Q the set
of states, and δ : Q × Σ → Q × Σ × {−1, 0,+1} the transition function of M .
We are going to define a RS M = (S,A) ∈ RS(2, 0) simulating M .

Entities. The set of entities of M is

S = {aj : a ∈ Σ, 1 ≤ j ≤ m} ∪ {qj : q ∈ Q, 1 ≤ j ≤ m} ∪ {♠j : 1 ≤ j ≤ m}
that is, it consists of all symbols of the alphabet, states, and the extra item ♠,
each of them indexed by every possible tape position.

In this way, the generic configuration where M is in state q ∈ Q, its tape head
is located on cell i, and its tape contains the string x = x1 · · · xm, is encoded as
the following 2m-entity state:

T = {xj,j : 1 ≤ j ≤ m} ∪ {qi} ∪ {♠j : 1 ≤ j ≤ m, j �= i} ⊆ S

In other terms, T contains each symbol xj of the string x indexed by its position
on the tape as element xj,j , an entity qi storing both the current state and the
head position, and m − 1 entities ♠j , one for each position j �= i on which the
tape head is not located.

Example 5. Consider a Turing machine M working in space m = 4 and the
configuration where M is in state q, its tape head is located on cell 3, and its tape
contains the string abba. The state of the RS M encoding such a configuration
of M is then T = {a1, b2, b3, a4,♠1,♠2, q3,♠4}.

Reactions. Each transition δ(q, a) = (r, b, d) of M , with q, r ∈ Q, a, b ∈ Σ, and
d ∈ {−1, 0,+1}, gives rise to the following two sets of reactions:

({qi, ai}, ∅, {rj+d, bi}) for 1 ≤ i ≤ m (1)
({qi, ai}), ∅, {♠j : 1 ≤ j ≤ m, j �= i + d} for 1 ≤ i ≤ m. (2)

If the tape head of M is located on cell i, then the i-th reaction from (1) produces
the entity encoding both the new state and the new tape head position of M ,
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as well as the symbol written in the position i over the head. The production of
one ♠j for all the tape positions j �= i + d, i.e., those on which the tape head is
not located after the transition of M , is assured by the i-th reaction from (2).

Finally, the following reactions preserve the encoding of the tape cells j where
the head is not located, i.e., those indicated by the presence of ♠j :

({♠j , aj}, ∅, {aj}) for 1 ≤ j ≤ m. (3)

The set A of the reactions of M is defined as the union of the three sets of
reactions from (1), (2), and (3).

It is easy to see that if T ⊆ S is an encoding of a configuration of M using
space m (i.e., it contains, for all 1 ≤ j ≤ m, a single entity aj for some a ∈ Σ,
a single entity qi for some q ∈ Q and some 1 ≤ i ≤ m, and entities ♠j for
all 1 ≤ j ≤ m with j �= i), then the next state resM(T ) encodes the next
configuration of M .

We remark that all reactions of M have exactly two reactants and no
inhibitors, that is M ∈ RS(2, 0). We are now able to prove the following:

Lemma 6. Reachability for RS(2, 0) is PSPACE-hard.

Proof. We reduce reachability of configurations of polynomial-space Turing
machines (one of the canonical PSPACE-complete problems [12]) to this prob-
lem. Given a Turing machine M working in space m and two configurations C1,
C2 of M , it is possible to build the RS M ∈ RS(2, 0) simulating M as described
above; the construction can be done in polynomial time, since the reactions can
be built by iterating over all entries of the transition table of M and the range
of the m possible tape positions. The question then becomes whether in the
RS M the encoding of the configuration C2 is reachable from the encoding of
the configuration C1; the construction of M assures that this happens if and only
if C2 is reachable in M from C1. Therefore, the reduction holds and reachability
for RS(2, 0) is then PSPACE-hard. �

We conclude this section with the complexity result for the inhibitorless
classes.

Theorem 7. Reachability for RS(∞, 0) and for RS(2, 0) is PSPACE-
complete.

Proof. Recall that reachability for RS(∞,∞) can be decided in polynomial
space, by storing the current configuration of the involved RS and applying
the reactions one by one at each time step. The thesis follows as a consequence
of this fact and Lemma 6. �

4 Reactantless Classes RS(0, 1) and RS(0,∞)

It is known [11] that each RS from RS(∞, 0) can be simulated with a linear
slowdown by a RS from RS(0, 1). Since the two classes of RS are equivalent from
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this point of view, it is reasonable to assume that their reachability problems have
the same complexity, with reachability for RS(0, 1) being PSPACE-complete
as well. However, the original simulation does not directly imply this result, since
each state of the simulating RS contains a number of auxiliary entities, and it is
not obvious which auxiliary entities must appear in the target state.

Therefore, in the next Lemma, we provide a construction, with no auxiliary
entities appearing, of an RS from RS(0, 1) simulating a given RS from RS(∞, 0).
In this simulation, the states at even time steps of the former coincide exactly
with the states of the simulated RS.

Lemma 8. Let A = (S,A) ∈ RS(∞, 0) be a RS such that
⋃{Pa : a ∈ A} = S

and resA(S )=S. Then, there exists a RS B = (S′, A′) ∈ RS(0, 1) such that, for
any T ⊆ S, the following condition holds:

∀t ∈ N res2tB (T ) = restA(T ) ∧ S ⊆ res2t+1
B (T ).

Proof. Set S′ = S ∪ {ā : a ∈ A}, that is, S′ is obtained by adding to S one
barred entity for each reaction of A. For each reaction a = (Ra, ∅, Pa) ∈ A, the
set A′ contains the reactions

(∅, {s}, {ā}) for s ∈ Ra (4)

which produce the entity ā if at least one of the reactants of a is missing in
the current state (i.e., if a is not enabled in it). Furthermore, for each a =
(Ra, ∅, Pa) ∈ A the set A′ also contains the reaction

(∅, {ā}, Pa) (5)

which gives the same products as a when ā is missing in the current state, or,
equivalently, when a is enabled.

Thus, for any state T ⊆ S and any state T ′ ⊆ {ā : a ∈ A} it holds
that resB(T ) = {ā : a /∈ enA(T ) ∪ S} and resB(T ′) =

⋃{Pa : a ∈ A, ā /∈ T′}.
Choose now an arbitrary state T ⊆ S. We are going to prove the the-

sis condition by induction on t. Clearly, res2·0
B (T ) = T = res0A(T ). Further-

more, since T contains no entity ā, all reactions of type (5) are enabled, and
so res2·0+1

B (T) ⊇ ⋃{Pa : a ∈ A} = S.
Assume now that the thesis condition holds for t. Then,

res2(t+1)
B (T) = res2B

(
res2tB (T)

)

= res2B
(
restA(T)

)

= resB
({ā : a /∈ enA(resa t

A(T))} ∪ S
)

Since S disables all reactions of type (4), it follows that

res2(t+1)
B (T) = resB

({ā : a /∈ enA(restA(T))})

=
⋃

{Pa : a ∈ enA(restA(T))}
= rest+1

A (T)
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In particular, due to the reactions of type (5), one obtains that S ⊆ res2t+1
B (T)

for all t ∈ N. �
By exploiting Lemma 8 we can finally show the complexity of reachability

for reactantless RS.

Theorem 9. Reachability for RS(0, 1), and thus for RS(0,∞), is PSPACE-
complete.

Proof. It is enough to prove the PSPACE-hardness of the problem for RS(0, 1),
which will be accomplished by reduction from reachability for RS(∞, 0) as fol-
lows. Given a RS A = (S,A) ∈ RS(∞, 0), let A′ = (S′, A′) be the RS with S′ =
S ∪{♠} for some ♠ /∈ A, and A′ = A∪{(S′, ∅, S′)}. Clearly, A′ ∈ RS(∞, 0) and
it has the same behaviour of A as long as its initial state does not contain ♠,
i.e., resA′(T) = resA(T) whenever ♠ /∈ T .

Moreover, A′ satisfies the hypotheses of Lemma 8 as a consequence of the
changes made to build it from A. Let B ∈ RS(0, 1) be then the RS obtained
from A′ using that lemma. Notice that that the mapping A′ �→ B can be com-
puted in polynomial time.

For any two states U, V ⊆ S, it holds that restA(U) = V for some t ∈ N if
and only if res2tB (U) = V. Furthermore, we have res2s+1

B (U) �= V for all s ∈ N,
because ♠ ∈ S′ ⊆ res2s+1

B (U), while ♠ /∈ S and, in particular, ♠ /∈ V . Hence,
the state V is reachable from U in the RS B if and only if the same occurs in A.
Therefore, reachability for RS(∞, 0) is reducible to reachability for RS(0, 1) in
polynomial time and the thesis then follows from Theorem 7. �

As a consequence of Theorem 9, we also obtain the PSPACE-completeness
of the reachability problem for RS(1, 1) and for the class RS(∞,∞) (the latter
having already been proved in a different way [7]).

Corollary 10. Reachability for RS(1, 1), and thus for RS(∞,∞),
is PSPACE-complete. �

5 Single-Reactant Inhibitorless Class RS(1, 0)

We proved that disallowing either reactants or inhibitors does not decrease the
complexity of reachability problems. However, reducing the number of reactants
to 1 in inhibitorless RS makes the evolution of each single entity “context-free”,
i.e., not influenced by the presence or absence of other entities. Indeed, the result
functions of the RS from RS(1, 0) are always upper-semilattice endormorphisms,
that is, resA(U ∪ V) = resA(U) ∪ resA(V) for all A ∈ RS(1, 0) and arbitrary
states U, V [11]. It is thus reasonable to conjecture that reachability for RS(1, 0)
might be easier than for other variants, as the entities of the target configura-
tion can be traced back to a set of originating entities independently one from
another, and the only difficulty is to find a common number of backwards steps.
In this section we show that this is actually the case, under the assumption
that NP �= PSPACE.
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We begin by recalling the notion of influence graph [1], which describes static
causality relations in a RS. Given a RS A = (S,A), the associated influence graph
is the directed graph G = (S,E), where (x, y) ∈ E if and only if there exists
a reaction (Ra, Ia, Pa) ∈ A such that x ∈ Ra ∪ Ia and y ∈ Pa. In other words,
there is an edge (x, y) whenever the presence or absence of x contributes to the
appearance of y.

In particular, if A ∈ RS(1, 0) we have (x, y) ∈ E if and only if y ∈ resA({x}).
An entity y appearing at time t can thus be recursively traced back to a single
entity occurring in the initial state of the RS (or to multiple independent entities,
only one of which needs to occur in order that y appears at time t).

Recall that the powers Gt of the Boolean adjacency matrix of any graph G can
be computed in polynomial time even for exponential values of t, by repeated
squaring; the entry Gt

i,j is 1 if and only if a (not necessarily simple) path of
length t exists between vi and vj .

Let A = (S,A) ∈ RS(1, 0) be a RS with S = {s1, . . . , sn} and let G be its
influence graph. Any state U ⊆ S can be viewed as a column vector in {0, 1}n,
where Ui = 1 if and only if si ∈ U . Then, a state V ⊆ S is reachable from a
state U ⊆ S in A if and only if GtU = V , where GtU is the product of the
matrix Gt and the vector U . This observation allows us to prove the following
result:

Theorem 11. Reachability for RS(1, 0) is in NP.

Proof. Consider a RS A ∈ RS(1, 0) and two states U, V . Let G be the influence
graph of A. Since Gt can be computed in polynomial time, the validity of the
equation GtU = V can be checked in polynomial time for any fixed t, even when
the latter is exponential with respect to the number n of entities. It is enough to
use the guessing power of a nondeterministic Turing machine to choose an n-bit
integer 0 ≤ t < 2n, since state V is either reached within 2n − 1 steps, or it is
never reached. �

It is unknown whether this problem is also NP-hard. The variant where the
target state V consists of a single entity is in NL, being the reachability problem
(with several possible source vertices) for the influence graph in NL too. It is
actually NL-complete, since every graph is the influence graph of a RS (the one
just having the vertex set as background set and reactions ({u}, ∅, {v}), one for
each edge (u, v) of the graph). On the other hand, the variant where we check if
a superset of V is reachable is NP-complete.

Theorem 12. It is NP-complete to decide, given a RS A = (S,A) ∈ RS(1, 0)
and two states U, V ⊆ S, whether V ⊆ restA(U) for some t ∈ N.

Proof. Membership in NP is proved in a similar way to what has been done
in the proof of Theorem 11, i.e., for a RS A = (S,A) ∈ RS(1, 0) and two
states U, V ⊆ S, by guessing 0 ≤ t < 2n and checking whether V ≤ GtU , where
G is the influence graph of A and the comparison is made element-wise.
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The NP-hardness of the problem is proved by reduction from Boolean satis-
fiability of CNF formulae [12]. Let ϕ = ϕ1 ∧ · · · ∧ ϕm be a CNF formula with m
clauses C = {ϕ1, . . . , ϕm} over the n variables X = {x1, . . . , xn}.

Denote by pi the i-th prime number and set Xi = {xi,j : 0 ≤ j < pi}. Define
the RS A = (S,A) ∈ RS(1, 0), where S = X1 ∪ · · · ∪ Xn ∪ C and A consists of
the reactions described in the following.

For each variable xi, we build a cycle of prime length pi iterating across all
elements of Xi by means of the reactions

({xi,j}, ∅, {xi,(j+1) mod pi
)} for 0 ≤ j < pi. (6)

We define a “well-formed” state T of A as a state containing exactly one
entity xi,j for each 1 ≤ i ≤ n. Such a state T is interpreted as the truth assign-
ment v : X → {0, 1} to ϕ defined as

v(xi) =

{
1 if xi,0 ∈ T

0 otherwise

that is, all elements xi,j with j > 0 denote a false value of xi.
Since the lengths of the cycles associated to the variables of ϕ are pair-

wise coprime, all 2n assignments of ϕ will be eventually reached in A, possibly
with several repetitions (since distinct states encode the same truth assignment).
Therefore, if the initial state of A is U = {x1,0, . . . , xn,0}, then a state encoding
the assignment v : X → {0, 1} will be reached at time step

∏n
i=1 p

v(xi)
i .

We are going to introduce the remaining reactions in A. They have the role of
evaluating formula ϕ under the assignment encoded by the xi,j ’s. We map each
entity xi,j to the set of clauses satisfied by v(xi) = 1 (if j = 0) or by v(xi) = 0
(if j > 0) by the following reactions:

({xi,0}, ∅, {ϕk}) if xi implies ϕk (7)
({xi,j}, ∅, {ϕk}) for j > 0 if ¬xi implies ϕk (8)

The influence graph of the resulting RS for a sample Boolean formula is shown
in Fig. 2.

As a consequence of the above construction, given a well-formed assign-
ment Y ⊆ X1 ∪ · · · ∪ Xn, it follows that resA(Y) = D ∪ Y′ where D ⊆ C is
exactly the set of clauses satisfied by Y , and Y ′ is the next truth assignment
in the order given by the reactions of type (6). Since they do not appear as
reactants in any reaction, the entities representing the clauses of ϕ appear only
if the previous state encodes an assignment satisfying them.

Consider now the states U = {x1,0, . . . , xn,0} and V = C. According to the
above reasoning, a superset of V is reachable from U , or, equivalently, V ⊆
restA(U ) for some t ∈ N, if and only if there exists a truth assignment for X
satisfying all clauses, i.e., the entire formula ϕ.

It remains to be proved that the mapping ϕ �→ (A, U, V ) can be computed in
polynomial time. In particular, we need to show that we can find in polynomial
time n primes of polynomially bounded value.
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x1,1

x1,0

x2,0

x2,2 x2,1

x3,4

x3,3 x3,2

x3,1

x3,0

ϕ1 ϕ2 ϕ3 ϕ4

Fig. 2. The influence graph for the RS encoding the formula ϕ ≡ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4,
where ϕ1 ≡ x1 ∨ ¬x2, ϕ2 ≡ x1 ∨ x2, ϕ3 ≡ ¬x1 ∨ ¬x2 ∨ x3, and ϕ4 ≡ x2 ∨ x3. The thick
edges represent the reactions of type (6), the continuous thin ones those of type (7),
and the dashed thin ones those of type (8).

First of all, the Prime Number Theorem [4] implies that pn is asymptoti-
cally n ln n; thus, we only need to check the first O(n ln n) integers. These can
be checked for primality in polynomial time via a brute force algorithm, since
they are polynomial in value with respect to n. The reactions of type (6) are
then simple to compute, while those of types (7) and (8) only require to check
whether variable xi appears as a positive or negated literal in ϕk.

Therefore, Boolean satisfiability of CNF formulae is reducible to the consid-
ered problem in polynomial time and then the thesis follows.

6 Conclusions

We proved that the reachability problem for RS remains PSPACE-complete,
as in the general case, even when inhibitors or reactants are disallowed in each
reaction. The problem only becomes easier (assuming NP �= PSPACE) for
inhibitorless RS using only one reactant per reaction: this variant has been
proved to be in NP. It is left as an open problem to establish whether this
problem is also NP-hard, as it is in the case where we check the reachability a
superset of a given state.

It would also be interesting to examine further problems related to the
dynamics of RS, such as the detection of fixed points, global and local attrac-
tors, and “Gardens of Eden”, in order to check whether these become easier
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for resource-bounded RS. As a simple example, establishing the existence of
fixed points, which is NP-complete for RS(∞,∞) [8], becomes entirely trivial
for RS(∞, 0), since monotonic functions over complete lattices always admit a
fixed point by the Knaster-Tarski theorem [10].
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Abstract. In this paper, we study reversible circuits as cascades of
multi-target Toffoli gates. This new type of gates allows to shift parts
of a gate to the preceding gate within a circuit provided that a cer-
tain independence condition holds. It turns out that shifts decrease the
so-called waiting degree such that shifting as long as possible always ter-
minates and yields shift-reduced circuits. As the main result, we show
that shift-reduced circuits are unique canonical representatives of their
shift equivalence classes. Canonical circuits are optimal with respect to
maximal and as-early-as-possible parallelism of targets within gates.

Keywords: Canonical form · Multi-target Toffoli circuits · Reversible
computation · Shift equivalence

1 Introduction

Reversible computation is an alternative to conventional computing motivated
by the fact that the integration density of circuits reaches physical limits in scale
and power dissipation. Due to the fact that energy dissipation is significantly
reduced or even eliminated in reversible circuits [1], reversible computing is a
very promising research area.

Reversible circuits are cascades of reversible gates that compute invertible
functions on Boolean vectors. To specify reversible circuits, the gate model intro-
duced by Toffoli [9] is frequently used. In the past this model has been general-
ized in different ways. In this paper we want to generalize this model further by
introducing multi-target Toffoli gates.

A (single-target multi-controlled) Toffoli gate consists of a target line and
a set of control lines each of which is different from the target line. The lines
represent Boolean variables. The target line gets negated if and only if all control
lines are carrying the value 1. All other values are kept invariant by the evaluation
of the gate. In particular, a Toffoli gate is reversed by itself. Consider now a set of
Toffoli gates such that the target lines are pairwise different and all control lines
are disjoint from all target lines. Such gates may be called independent because
their evaluation in every sequential order yields the same Boolean function.
Moreover, their evaluation can be done in parallel because the various negations
cannot interfere with each other. This motivates us to introduce such sets of
independent Toffoli gates as a multi-target Toffoli gate.
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 603–616, 2016.
DOI: 10.1007/978-3-319-30000-9 46
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As the parallel as well as each sequential evaluation of independent gates
yield the same result, a multi-target Toffoli gate can be sequentialized with
respect to every partition of the set of target lines. Conversely, two gates can be
parallelized into one gate if their sets of target lines are disjoint and no target
line is control line of the other gate. There is a weaker form of combining two
multi-target Toffoli gates that can be applied much more frequently than the
full parallelization: One of the gates is sequentialized first and then only one of
the parts is parallelized with the other gate if possible. In this case, a part of
a gate is shifted to another gate. The shifts (together with the parallelization)
define a relation on multi-target Toffoli circuits with quite significant properties.
First of all, the shift relation has the local Church-Rosser property meaning that
the circuits resulting from two shifts on a given circuit can be further shifted
into a common result. Secondly, shifts decrease the so-called waiting degree. For
each target line of some gate, there is a number of preceding gates. If evaluation
is done gate by gate, this is the number of steps a negation must wait before
it is executed. The waiting degree sums up all these numbers. As the waiting
degree decreases with each shift, the lengths of shift sequences are bounded by
the maximum waiting degree (which is m(m−1)

2 for the number m of target lines
of a circuit). In particular, the iteration of shifts as long as possible terminates
always with a circuit reduced with respect to shifting. Combining both results,
the shift-reduced circuits turn out to be unique normal forms within the classes
of shift-equivalent circuits. Therefore, it is justified to call shift-reduced multi-
target Toffoli gates canonical. Canonical circuits are optimal with respect to
maximal and as-early-as-possible parallelism of targets within gates.

Shifts, shift equivalence and shift-reduced normal forms as unique canoni-
cal representatives of their shift equivalence classes were studied by the first
author quite some time ago for parallel derivations in graph grammars (see [5–7]).
Although multi-target Toffoli circuits as considered in this paper provide a setting
quite different from parallel graph grammar derivations, the same ideas work.

The paper is organized as follows. Section 2 introduces the characteristics
of reversible functions and circuits. In Sect. 3 multi-target Toffoli circuits are
defined, followed by considering sequentialization, parallelization and shift in
Sect. 4. Section 5 introduces the waiting degree. Section 6 covers our theorem on
canonical circuits. Finally, Sect. 7 contains a conclusion.

2 Reversible Circuits

In this section we introduce the background on reversible functions and their
relation to reversible circuits.

2.1 Reversible Functions

Reversible logic can be used for realizing reversible functions. Reversible func-
tions are special multi-output functions and defined as follows.
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Definition 1. Let B = {0, 1} be the set of truth values with the negations
0 = 1 and 1 = 0 and ID be a set of identifiers serving as a reservoir of Boolean
variables. Let B

X be the set of all mappings a : X → B for some X ⊆ ID where
the elements of BX are called assignments. If the set of variables is ordered, each
assignment corresponds to a Boolean vector. Then a bijective Boolean (multi-
output) function f : BX → B

X is called reversible.

2.2 Reversible Circuits

Reversible circuits are used for representing reversible functions because a
reversible function can be realized by a cascade of reversible gates. Reversible
circuits differ from conventional circuits: while conventional circuits rely on the
basic binary operations and also fanouts are applied in order to use signal values
on several gate inputs, in reversible logic fanouts and feedback are not directly
allowed because they would destroy the reversibility of the computation. Also the
logic operators AND and OR cannot be used since they are irreversible. Instead
a reversible gate library is applied. Since the Boolean operator NOT is inverse,
the NOT-gate is part of this reversible library. To increase the expressiveness
the universal Toffoli gate has been introduced, which is a multi-controlled NOT-
gate. Since the Toffoli gate is universal, all reversible functions can be realized
by cascades of this gate type alone (cf. [9]).

A (multiple-control) Toffoli gate consists of a target line t ∈ ID and a set
C ⊆ ID − {t} of control lines and is denoted by TG(t, C). The gate defines the
function ft,C : BX → B

X for each X ⊆ ID with {t} ∪ C ⊆ X which maps an
assignment a : X → B to ft,C(a) : X → B given by ft,C(a)(t) = a(t) if a(c) = 1
for all c ∈ C. In all other cases, ft,C(a) is equal to a. Hence, ft,C(a) inverts the
value of the target line if and only if all control lines are set to 1. Otherwise
the value of the target line is passed through unchanged. The values of all other
lines always pass through a gate unchanged. Consequently, ft,C is a mapping on
B
X which is inverse to itself and, therefore, reversible in particular. A multiple-

control Toffoli gate can be realized by a sequence of Toffoli gates with two control
lines.

Example 2. The four simplest multi-controlled Toffoli gates are NOT , CNOT ,
CCNOT , and C3NOT .

x1 x1

x2 x2

x3 x3

x4 x4

NOT
(x1, ∅)

CNOT
(x1, {x2})

CCNOT
(x1, {x2, x3})

C3NOT
(x1, {x2, x3, x4})

Fig. 1. The four simplest multi-controlled Toffoli gates
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In the graphical representation, the target line is indicated by ⊕ and the
control lines by • vertically connected with their target line (Fig. 1).

In addition to positive control lines, in the recent past also negative- and
mixed-control Toffoli gates have been considered [8]. This gains smaller circuits
in general. Nevertheless, the expressiveness remains the same, since each negative
control can be replaced by a positive one with a negation before and after the
control. For this reason, in this work we focus on positive control Toffoli gates.

An extended-target Toffoli gate, as proposed in [2], with multiple control lines
and multiple target lines, denoted by the sets C and T , respectively, holding
C ∪ T ⊆ X, T �= ∅ and C ∩ T = ∅, realizes the function f(a)(x) = a(x) if x ∈ T
and a(y) = 1 for all y ∈ C, and a(x) otherwise. This means that the values of
all target lines are negated if the value of each control line is 1. We discuss a
further generalization in the following section.

3 Multi-target Toffoli Circuits

In this section, we introduce the notion of multi-target Toffoli circuits as cascades
of multi-target Toffoli gates. Such a gate has a set of target lines where each
target line is controlled by a set of control lines which is disjoint from the set of
target lines.

Definition 3. 1. A multi-target Toffoli gate over a set X of lines is a pair
mtg = (T, c : T → 2X) with T ⊆ X, T �= ∅ and T ∩ c(T ) = ∅ where
c(T ) =

⋃
t∈T

c(t). T is the set of target lines, and c(t) is the set of control lines

of t for t ∈ T .
2. A multi-target Toffoli gate mtg = (T, c) models the following semantic func-

tion fmtg on B
X :

fmtg(a)(x) =

{
a(x) if x ∈ T and a(y) = 1 for all y ∈ c(x),
a(x) otherwise.

3. A multi-target Toffoli circuit mtc = mtg1 . . .mtgn is a sequence of multi-
target Toffoli gates. Its length n is denoted by |mtc|.

4. Let mtc be a multi-target Toffoli circuit. It models the semantic function
fmtc defined as the sequential composition of the semantic functions of the
gates, i.e.

fmtc = fmtgn ◦ · · · ◦ fmtg1 .

If a multi-target Toffoli gate mtg has the set T of target lines and T ′ is a
subset of T , then mtg can be restricted to T ′ and its complement T ′′ = T − T ′

yielding the multi-target Toffoli gates mtg′ and mtg′′. It turns out that the
sequential composition mtg′mtg′′ is semantically equivalent to mtg.

Proposition 4. Let mtg = (T, c) be a multi-target Toffoli gate, let T ′ ⊆ T with
∅ �= T ′ �= T .
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1. Then mtg′ = (T ′, c′) with c′(t′) = c(t′) for t′ ∈ T ′ is a multi-target Toffoli
gate. This gate may be denoted by mtg|T ′ , called the restriction of mtg to T ′.

2. Accordingly, mtg′′ = (T ′′, c′′) with T ′′ = T−T ′ and c′′(t′′) = c(t′′) for t′′ ∈ T ′′

is also a multi-target Toffoli gate.
3. The sequential composition mtg′mtg′′ is semantically equivalent to mtg, i.e.

fmtg = fmtg′mtg′′ .

Proof. 1. T ′ ∩ c′(T ′) = T ′ ∩ ⋃
t′∈T ′

c′(t′) = T ′ ∩ ⋃
t′∈T ′

c(t′) ⊆ T ∩ ⋃
t∈T

c(t) =

T ∩ c(T ) = ∅.
2. T ′ ⊆ T and ∅ �= T ′ �= T imply T − T ′ ⊆ T and ∅ �= T − T ′ �= T such that

Point 1 applies to T ′′ = T − T ′.
3. By definition, we get the following equations for all a ∈ B

X and x ∈ X:

fmtg′mtg′′(a)(x) = (fmtg′′ ◦ fmtg′)(a)(x) = fmtg′′(fmtg′(a))(x)

=

{
fmtg′(a)(x) if x ∈ T ′′ and fmtg′′(a)(y) = 1 for all y ∈ c′′(x),
fmtg′(a)(x) otherwise,

as well as

fmtg′(a)(x) =

{
a(x) if x ∈ T ′ and a(y) = 1 for all y ∈ c′(x),
a(x) otherwise.

Combining these results and using T ′ ∩ T ′′ = ∅, T ′ ∪ T ′′ = T and the
disjointness of control and target lines, we get:

fmtg′mtg′′(a)(x) =

⎧
⎪⎨

⎪⎩

a(x) if x ∈ T ′′ and a(y) = 1 for all y ∈ c′′(x),
a(x) if x ∈ T ′ and (y) = 1 for all y ∈ c′(x),
a(x) otherwise,

=

{
a(x) if x ∈ T and a(y) = 1 for all y ∈ c(x),
a(x) otherwise,

= fmtg(a)(x).

This proves the statement.

Given the situation of Proposition 4, the circuit mtg′mtg′′ may be seen as a
sequentialization of mtg and mtg as a parallelization of mtg′mtg′′. In the next
section, both operations are considered within arbitrary circuits.

4 Sequentialization, Parallelization and Shift

Sequentialization and parallelization can be done within large circuits inducing
an equivalence relation on multi-target Toffoli circuits. As parallelization, a par-
ticular composition of a sequentialization and a parallelization shifts some target
lines of a gate to the preceding gate.
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Shifts are defined formally as a generalization of parallelization. The shift
operation is quite nondeterministic as there may be many gates within a circuit
that allow shifting. But it turns out that shifting has the local Church-Rosser
property meaning that two circuits obtained by two shifts on a circuit can always
be shifted into a common circuit.

Definition 5. Let mtg = (T, c) be a multi-target Toffoli gate and T ′ ⊆ T with
∅ �= T ′ �= T . Let mtg′ be the restriction of mtg to T ′ and mtg′′ the restriction
of mtg to T ′′ = T − T ′. Then

1. mtg′mtg′′ is called sequentialization of mtg wrt T ′ and mtg parallelization of
mtg′mtg′′. The parallelization is also denoted by mtg′ + mtg′′.

2. Let mtc = mtc′mtgmtc′′ be a multi-target Toffoli circuit and mtg′mtg′′ be
the sequentialization of mtg wrt T ′. Then mtc and mtc = mtc′mtg′mtg′′mtc′′

are in seq-relation wrt T ′ in gate i = |mtc′| + 1, denoted by

mtc −−−−−−→
seq(i,T ′)

mtc

as well as in par -relation after gate i − 1 = |mtc′|, denoted by

mtc −−−−−−→
par(i−1)

mtc.

Let ∼seq be the equivalence relation induced by seq, i.e. the reflexive, sym-
metric, and transitive closure of seq and ∼par the corresponding equivalence
relation induced by par. Then, obviously, ∼seq and ∼par are equal because seq
and par are inverse to each other.

Definition 6. Let mtc and m̃tc be two multi-target Toffoli circuits. Then m̃tc
is a shift of mtc if mtc −−−−−−→

par(i−1)
m̃tc or mtc −−−−−−−→

seq(i+1,T ′)
mtc −−−−−−→

par(i−1)
m̃tc for

some i ≥ 1 and T ′ ⊆ X, denoted by

mtc −−−−−→
sh(i,T ′)

m̃tc

where T ′ is the set of target lines of the gate i + 1 in case that the shift is
just a parallelization. If i and T ′ are clear from the context, then we may write
mtc −→

sh
m̃tc.

Example 7. Consider the mtc over four lines x1 to x4 including the gates mtg1 =
({x3}, c1) with c1(x3) = {x1}, mtg2 = ({x2}, c2) with c2(x2) = {x1}, mtg3 =
({x4}, c3) with c3(x4) = {x3}, mtg4 = ({x4}, c4) with c4(x4) = {x1, x3} and
mtg5 = ({x2}, c5) with c5(x2) = {x3} as depicted in Fig. 2(a).

Obviously, mtg1 and mtg2 can be parallelized because the target line of
the one gate is no target or control line of the other gate. The same holds for
gates mtg4 and mtg5. Hence, we get mtc −−−−→

par(0)
mtc′ −−−−→

par(2)
mtc′′ with mtc′ =

mtg′
1mtg3mtg4mtg5 and mtc′′ = mtg′

1mtg3mtg′
4 where mtg′

1 = ({x2, x3}, c′
1)
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with c′
1(x2) = c′

1(x3) = {x1} and mtg′
4 = ({x2, x4}, c′

4) with c′
4(x2) = {x3} and

c′
4(x4) = {x1, x3}. Afterwards we can apply the shift sh(2, {x2}) to mtc′′ by

sequentializing mtg′
4 wrt {x2} and parallelizing the resulting circuit after mtg′

1.
This yields the circuit depicted in Fig. 2(b) where mtg′

2 = ({x2, x4}, c′
2) with

c′
2(x2) = c′

2(x4) = {x3}.

x1 x1

x2 x2

x3 x3

x4 x4

(a) mtg1mtg2mtg3mtg4mtg5

x1 x1

x2 x2

x3 x3

x4 x4

(b) mtg′
1mtg′

2mtg4

Fig. 2. Shifting a multi-target Toffoli circuit

Proposition 8. The shift relation has the local Church-Rosser property mean-
ing that two shifts on a circuit mtc

mtc
mtc1

sh

mtc2sh

imply mtc
mtc1

sh
∗

mtc2 sh
∗

for some circuit mtc where ∗−→
sh

is the reflexive and transitive closure of the shift

relation sh.

Proof. A shift changes two successive gates of a circuit and keeps the rest invari-
ant. Hence two shifts that change four different gates cannot interfere with each
other so that they can be applied in any order yielding the same result. The situ-
ation becomes more complicated if the two shifts change two or three successive
gates. Then various cases can occur. They are listed in Fig. 3.

Let us start with shifts on the same two gates. Then both shifts may be
proper shifts of different parts of the second gate or one of the shifts is the
parallelization of the two gates. If both shifts are proper, the parts shifted may
be incomparable or one may be a subpart of the other. Hence there are three
cases to be considered. As an abbreviation, we write g for mtg.

Case 1: Let g = (T, c) and g′ = (T ′, c′). Then the given shifts of T̂ and ˆ̂
T in

gate |mtc′| + 2 with T̂ − ˆ̂
T �= ∅ �= ˆ̂

T − T̂ are defined because T̂ ∩ T = ∅ = ˆ̂
T ∩ T

and T ∩ c′(T̂ ) = ∅ = T ∩ c′( ˆ̂
T ). The changed gates after the shifts are:

g + g′|T̂ = (T ∪ T̂ , ĉ), g′|T−T̂ = (T − T̂ , c′|T−T̂ ),

g + g′| ˆ̂
T

= (T ∪ ˆ̂
T, ˆ̂c), g′|

T− ˆ̂
T

= (T − ˆ̂
T, c′|

T− ˆ̂
T
)
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with ĉ(x) = ˆ̂c(x) = c(x) for x ∈ T , ĉ(x) = c′(x) for x ∈ T̂ , ˆ̂c(x) = c′(x) for

x ∈ ˆ̂
T . Moreover, the following holds:

( ˆ̂
T − T̂ ) ∩ (T ∪ T̂ ) = (( ˆ̂

T − T̂ ) ∩ T ) ∪ (( ˆ̂
T − T̂ ) ∩ T̂ ) ⊆ ˆ̂

T ∩ T = ∅,
(T ∪ T̂ ) ∩ c′( ˆ̂

T − T̂ ) = (T ∩ c′( ˆ̂
T − T̂ )) ∪ (T̂ ) ∩ c′( ˆ̂

T − T̂ ) ⊆ T ∩ c′( ˆ̂
T ) = ∅.

Therefore the shift of ˆ̂
T − T̂ in gate g′|T−T̂ to the preceding gate g + g′|T̂ is

defined because ˆ̂
T − T̂ �= ∅. Analogously the shift of T̂ − ˆ̂

T in gate g′|
T− ˆ̂

T
to the

preceding gate g + g′|T̂ is defined because T̂ − ˆ̂
T �= ∅. The changed gates are:

(g + g′|T̂ ) + (g′|T−T̂ )| ˆ̂
T

= g + g′|
T̂∪ ˆ̂

T
, (g′|T−T̂ )|

(T−T̂ )− ˆ̂
T

= g′|
T−(T̂∪ ˆ̂

T )
,

(g + g′| ˆ̂
T
) + (g′|

T− ˆ̂
T
)|T̂ = g + g′|

T̂∪ ˆ̂
T
, (g′|

T− ˆ̂
T
)|
(T− ˆ̂

T )−T̂
= g′|

T−(T̂∪ ˆ̂
T )
.

This proves that the two further shifts yield the same circuit.
Case 2: The situation is similar to Case 1 with the exception that T̂ ⊆ ˆ̂

T

implies T̂ − ˆ̂
T = ∅. But then the shift of ˆ̂

T − T̂ after the shift of T̂ yields the
same result as the shift of ˆ̂

T in the first place using arguments similar to Case 1.
Case 3: Given a shift and a parallelization as in Fig. 3(c), the parallelization

after the shift is defined and yields the same result as the parallelization directly
using arguments similar to Case 1.

Cases 4–7: Now we consider two shifts changing three successive gates. Then
both shifts may be parallelization or one is a parallelization and the other one a
proper shift or both are proper shifts.

The argumentation that the given shifts can be continued by further shifts
into the same result is in all four cases similar to the argumentation in Case 1.
Nevertheless, we go into the details of Case 5 because, in this very case, two fur-
ther shifts are applied after the given proper shift to keep up with the given par-
allelization. The circuit after the shift has the form mtc′g(g′+g′′|T̂ )g′′|T ′′−T̂mtc′′

where the gate |mtc′| + 2 can be sequentialized wrt T ′ yielding the cir-
cuit mtc′gg′g′′|T̂ g′′|T ′′−T̂mtc′′. By assumption g and g′ can be parallelized.
Both together establish the shift of T ′ in gate |mtc′| + 2 yielding the circuit
mtc′(g + g′)g′′|T̂ g′′|T ′′−T̂mtc′′ where g′′|T̂ g′′|T ′′−T̂ is a sequentialization of g′′ so
that the parallelization is defined yielding mtc′(g+g′)g′′mtc′′ as stated. As there
are no cases left, the local Church-Rosser property of shifts is proved.

5 Waiting Degree

Besides the local Church-Rosser property, the shift operation has a second sig-
nificant property: It does not allow infinite shift sequences. In other words, the
lengths of shift sequences starting in some circuit are bounded. Consequently,
shifting as long as possible always terminates in a circuit that is reduced with
respect to shifting. To prove this, we introduce the waiting degree and show that
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mtc′gg′mtc′′

mtc′(g + g′|T̂ )g′|T ′−T̂mtc′′

sh(|mtc′| + 1, T̂ )

mtc′(g + g′| ˆ̂
T
)g′|

T ′− ˆ̂
T
mtc′′sh(|mtc′| + 1,

ˆ̂
T )

mtc′(g + g′|
T̂∪ ˆ̂

T
)g′|

T ′−(T̂∪ ˆ̂
T )
mtc′′

sh(|mtc′| + 1,
ˆ̂
T − T̂ )

sh(|mtc′| + 1, T̂ − ˆ̂
T )

(a) Case 1

mtc′gg′mtc′′

mtc′(g + g′|T̂ )g′|T ′−T̂mtc′′

sh(|mtc′| + 1, T̂ )

mtc′(g + g′| ˆ̂
T
)g′|

T ′− ˆ̂
T
mtc′′sh(|mtc′| + 1,

ˆ̂
T )

sh(|mtc′| + 1,
ˆ̂
T − T̂ )

(b) Case 2

mtc′gg′mtc′′

mtc′(g + g′)mtc′′

par(|mtc′|)

mtc′(g + g′|T̂ )g′|T ′−T̂mtc′′sh(|mtc′| + 1, T̂ )

par(|mtc′|)

(c) Case 3

mtc′gg′g′′mtc′′

mtc′(g + g′)g′′mtc′′

par(|mtc′|)

mtc′g(g′ + g′′)mtc′′par(|mtc′| + 1)

sh(|mtc′| + 1, T ′)

(d) Case 4

mtc′gg′g′′mtc′′

mtc′(g + g′)g′′mtc′′

par(|mtc′|)

mtc′g(g′ + g′′|T̂ )g′′|T ′′−T̂mtc′′sh(|mtc′| + 2, T̂ )

mtc′(g + g′)g′′|T̂ g′′|T ′′−T̂mtc′′
par(|mtc′| + 1)

sh(|mtc′| + 1, T ′)

(e) Case 5

mtc′gg′g′′mtc′′

mtc′(g + g′|T̂ )g′|T ′−T̂ g
′′mtc′′

sh(|mtc′| + 1, T̂ )

mtc′g(g′ + g′′)mtc′′par(|mtc′| + 1)

mtc′(g + g′|T̂ )(g′ + g′′)|(T ′∪T ′′)−T̂mtc′′
par(|mtc′| + 1)

sh(|mtc′| + 1, T̂ )

(f) Case 6

mtc′gg′g′′mtc′′

mtc′(g + g′|T̂ )g′|T ′−T̂ g
′′mtc′′

sh(|mtc′| + 1, T̂ )

mtc′g(g′ + g′′| ˆ̂
T
)g′′|

T ′′− ˆ̂
T
mtc′′sh(|mtc′| + 2,

ˆ̂
T )

mtc′(g + g′|T̂ )(g′ + g′′)|
(T ′∪ ˆ̂

T )−T̂
g′′|

T ′′− ˆ̂
T
mtc′′

sh(|mtc′| + 2,
ˆ̂
T )

sh(|mtc′| + 1, T̂ )

(g) Case 7

Fig. 3. The 7 cases of the shift relation
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it decreases with each shift. The waiting degree of a circuit sums up, for each
target line, the number of gates that precede the gate of the target line.

Definition 9 (Waiting Degree). Let mtc = (T1, c1) . . . (Tn, cn) be a multi-
target Toffoli circuit. Then the waiting degree of mtc is

wait(mtc) =
n∑

j=1

(j − 1) · #Tj

where #Tj denotes the number of elements of Tj .

Example 10. The waiting degree of the circuit in Fig. 2a is 10 and the waiting
degree of the circuit in Fig. 2b is 4.

Proposition 11

1. If mtc −−−−−−→
par(i−1)

m̃tc, then wait(m̃tc) = wait(mtc) −
n∑

j=i+1

#Tj .

2. If mtc −−−−−−−→
seq(i+1,T ′)

mtc −−−−−−→
par(i−1)

m̃tc, then wait(m̃tc) = wait(mtc) − #T ′.

Proof. 1. In this case, m̃tc = (T1, c1) . . . (Ti−1, ci−1)(Ti +Ti+1, c)(Ti+2, ci+2) . . .
(Tn, cn) = (T̃1, c̃1) . . . (T̃n−1, c̃n−1) with c(x) = ci(x) for x ∈ Ti and c(x) =
ci+1(x) for x ∈ Ti+1. Therefore,

wait(m̃tc) =
n−1∑

j=1

(j − 1)#T̃j

=

⎛

⎝
i−1∑

j=1

(j − 1)#T̃j

⎞

⎠ + (i − 1)#T̃i +
n−1∑

j=i+1

(j − 1)#T̃j

=

⎛

⎝
i−1∑

j=1

(j − 1)#Tj

⎞

⎠ + (i − 1)#(Ti + Ti+1) +
n−1∑

j=i+1

(j − 1)#Tj+1

=

⎛

⎝
i−1∑

j=1

(j − 1)#Tj

⎞

⎠ + (i − 1)#Ti + i#Ti+1 − #Ti+1 +
n∑

j=i+2

(j − 2)#Tj

=

⎛

⎝
i+1∑

j=1

(j − 1)#Tj

⎞

⎠ − #Ti+1 +
n∑

j=i+2

((j − 1)#Tj − #Tj)

=

⎛

⎝
n∑

j=1

(j − 1)#Tj

⎞

⎠ −
n∑

j=i+1

#Tj = wait(mtc) −
n∑

j=i+1

#Tj

2. The proof in this case is analogously.
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Proposition 12. Let mtc = (T1, c1) . . . (Tn, cn) be a multi-target Toffoli circuit.

Then wait(mtc) ≤ m(m−1)
2 for m =

n∑
j=1

#Tj .

Proof. Sequentialize mtc as long as possible. Then the result has length m and
waiting degree m(m−1)

2 . But wait(mtc) is not greater because sequentialization
increases the waiting degree.

The two properties imply the following corollary.

Corollary 13. 1. Let mtc
n−→
sh

mtc be a shift sequence of n shifts. Then n ≤
wait(mtc).

2. Let mtc = (T1, c1) . . . (Tn, cn) be a multi-target Toffoli circuit. Let m =
n∑

i=1

#Ti. Then shifting as long as possible terminates with a circuit that is

reduced wrt shifts after at most m(m−1)
2 shifts.

Let ∼ be the equivalence relation generated by the shift relation, called shift
equivalence. Then ∼ is equal to ∼seq = ∼par as par ⊆ shift and shift ⊆
par ∪ par ◦ seq ⊆ par ∪ (par ◦ par−1) ⊆ (par ∪ par−1)∗ = ∼par.

6 Canonical Circuits

Circuits that are reduced wrt shifts are called canonical. They are local optima
wrt the waiting degree. But this result can be tremendously improved by combin-
ing the termination with the local Church-Rosser property. The shifting defines
an equivalence relation on circuits. Each equivalence class contains only circuits
that are semantically equivalent. Moreover, it turns out that each canonical cir-
cuit is a unique representative of its shift equivalence class so that it is a global
optimum within its class. To show this, we prove first that shift equivalence is
confluent meaning that each two equivalent circuits can be shifted into a common
circuit.

Theorem 14. Shift-equivalent canonical circuits are equal.

Proof. Let mtc and mtc be two shift-equivalent canonical circuits. Due to the
following Lemma, there is a circuit m̃tc and there are shift sequences from mtc
and mtc into m̃tc. Because mtc and mtc are canonical and hence shift-reduced,
both shift sequences have length 0 yielding mtc = m̃tc = mtc as stated.

Lemma 15. mtc ∼ mtc implies m̃tc
mtc

sh
∗

mtc sh
∗ for some multi-target Toffoli

circuit m̃tc.
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Proof. mtc ∼ mtc iff there is a sequence zz = mtc0 . . .mtcn such that mtc0 =
mtc,mtcn = mtc,mtci −→

sh
mtci+1 or mtci+1 −→

sh
mtci for all i = 0, . . . , n − 1,

i.e. a zigzag of shifts.
Let MTC(zz) = {mtci | i = 0, . . . , n} and let X be a finite set of multi-

target Toffoli circuits. Let reach(X) = {mtc | mtc
∗−→
sh

mtc,mtc ∈ X}. Note

that reach(X) is finite. Then, mtci
mtci−1

sh
mtci+1sh

is a critical pair of zz if mtci /∈
reach(MTC(zz) − {mtci}), i.e. mtci is a critical element of zz.

Induction on #reach(CE(zz)), where CE(zz) denotes the set of critical ele-
ments of zz.

Base: #reach(CE(zz)) = 0. Then there is no critical element because each
critical element is reachable by itself by 0 shifts and belongs to reach(CE(zz)).
Therefore, zz must contain a multi-target Toffoli circuit mtci0 with mtci −→

sh

mtci+1 for all i < i0 and mtci+1 −→
sh

mtci for all i ≥ i0.

Step: Let #reach(CE(zz)) = k with k > 0. Let mtci be a critical element
of zz i.e. mtci ∈ CE(zz). Then one can replace mtci−1 ←−

sh
mtci −→

sh
mtci+1

in zz by the shifts that make the shift relation locally Church-Rosser due to
Proposition 8 defining a new zz′. The new elements of zz′ are not critical as none
of them has branching shifts. Hence, CE(zz′) ⊆ MTC(zz) ⊆ reach(CE(zz)).
This implies reach(CE(zz′)) ⊆ reach(reach(CE(zz)) = reach(CE(zz)). The
inclusion is proper as mtci /∈ reach(CE(zz′)) because of the following reason.
Assuming mtci ∈ reach(CE(zz′)) then mtcj

∗−→
sh

mtci for some mtcj ∈ CE(zz′).

As mtcj ∈ MTC(zz) − {mtci} we get mtci ∈ reach(MTC(zz) − {mtci}) in
contradiction to the choice of mtci.

Therefore, #reach(CE(zz′)) < k so that by induction hypothesis, the lemma
holds for zz′ and therefore for zz too.

7 Conclusion

In this paper, we have studied a generalized class of Toffoli circuits that are
sequentially composed of multi-target Toffoli gates. Under certain independence
conditions parts of a gate can be shifted to the preceding gate within a circuit.
It has turned out that shift-reduced circuits are unique canonical representatives
of their shift equivalence classes. To shed more light on the significance of these
considerations, further research on the following topics may be helpful.

1. In the case considered in this paper, the negation on a target line takes place
if and only if all control lines are 1. More generally, there may be two types
of control lines where the lines of one type must be 1 as before, but the other
lines must be 0 to trigger the negation (see e.g., [8]). We are confident that
all the results in this paper still hold if one considers this more general kind
of control with positive and negative control lines.
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2. Canonical circuits have minimal waiting degree within their shift equivalence
classes. But they may be the starting point for further optimizations. For
example, it is clear that the sequential composition of a Toffoli gate with
itself yields the identity. Therefore, two identical parts in successive multi-
target Toffoli gates can be removed without changing the semantics. After-
wards another round of shift optimization can be started. And there are other
operations with such a perspective.

3. Drechsler et al. [4] study exclusive sums of products (ESOPs) which are a
special kind of Toffoli circuits where the target lines and the control lines stem
from disjoint sets. Therefore, the independence check for ESOPs concerns only
the disjointness of target lines and shifting may become more efficient.

4. Chen et al. [2] and Wille et al. [10] study a special case of our multi-target
Toffoli gates where all target lines have the same set of control lines. In both
cases, the authors relate the special case with quantum circuits. Hence is may
be interesting whether our more general case may yield further improvements
in this line of research.

5. As mentioned in the introduction, shifts on parallel graph grammar deriva-
tions behave like the shifts on multi-target Toffoli circuits (see, e.g., [3,5]).
Therefore, we wonder whether there is a way to represent Toffoli circuits as
parallel derivations.
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