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To J. Michael Dunn
on (or near) his 75th birthday



Preface

An obvious excuse for the project that resulted in the present collection of papers is
provided by the dedication: J. Michael Dunn turns 75 years old in 2016. This book
celebrates his research and his career as a logician, which already spans more than
half a century.

Another obvious rationale for this book is that we are aware, more than ever
before, of the importance and pervasiveness of information. It is a truism that we
live in an information age. The developments in computer technology in the past
20–30 years—including increased storage, transmission, and search capabilities—
undoubtedly contribute to our perception of the ubiquity of information. A way to
use information is to reason with it. Remarkably, J. M. Dunn was thinking about
logic in terms of information well before everybody jumped onto the (i-)bandwagon
wheeling along the information superhighway. The papers in this volume evidence
that treating logic as an organon for manipulating information is a fruitful approach.

An opportunity to assemble this volume arose because Springer established a
new book series. The Outstanding Contributions to Logic series provides a different
focal point for a collection of papers than some others do. Although the OCL
volumes have the flavor of a Festschrift, they support greater flexibility and a
narrower theme than what could be achieved by cataloging all the works of a
famous logician.

Logic, in general, should interest a wide range of people. The particular
approach to logic that is exemplified by this volume will primarily appeal to readers
who are involved with disciplines such as mathematics, computer science, the
information sciences, and philosophy. Some of the papers include not only new
research results, but draw a chronologically faithful picture of the development of
certain ideas—these sources will be especially useful for historians of science and
philosophers. A reflection on achievements (spanning several decades) motivated
some authors to take stock of the accumulated results; such papers are excellent for
reference purposes too.

It is expected that the present book will be useful to scholars who are interested
in the area that is somewhat vaguely called nonclassical logics. While the papers
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will definitely be invaluable for researchers, most of them should be accessible to
graduate students as well as to researchers working in other fields. Some articles in
this collection are written in a style which ensures that anyone who is willing to
dabble into a subject (outside their expertise) will enjoy reading them.

Acknowledgments. In a volume of this kind, the person whose work and
research results provide the justification for editing the volume is to be thanked first:
I am grateful to J. Michael Dunn for allowing me to take on the (somewhat
complicated) task of editing this volume and for his continuous help in making the
project a success.

I would like to thank the authors of this volume, who not only responded to the
initial invitation to contribute to this volume, but have written a paper for this
collection. The papers were refereed using the “single-blind” type of refereeing.
Thanks to those who refereed a paper, and thereby, contributed to the project.

The series editor, Sven Ove Hansson not only provided a document about how
to edit a book for the Outstanding Contributions to Logic series, but he was helpful
in various other ways from start to finish. I am grateful for his help in the process.

Christi Lue of Springer Science provided forms, guidelines, and advice from the
publisher’s side. I am thankful for her ongoing support to the project.

This book has been typeset using the program TEX (which was originally
designed by D. Knuth) from the source files submitted by the authors. In particular,
the volume uses the LATEX format, a class file provided by Springer as well as
several packages that were developed under the auspices of the American
Mathematical Society.

Edmonton Katalin Bimbó
September 2015
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An Engineer in Philosopher’s Clothing

I am convinced that the act of thinking logically cannot possibly be natural to the human
mind. If it were, then mathematics would be everybody’s easiest course at school and our
species would not have taken several millennia to figure out the scientific method.

—Neil deGrasse Tyson, The Sky is Not the Limit: Adventures of an Urban Astrophysicist

David Brooks, the NY Times columnist, has recently made the distinction between
“résumé virtues” and “obituary virtues,” saying that the résumé virtues are the skills
you bring to the marketplace, whereas the eulogy virtues are the ones that are talked
about at your funeral.1 This autobiography is neither a resume nor an obituary, since
I am at a point in my life when (I hope) neither is appropriate. Also since I am a
Midwesterner, I am supposed to be humble (as fans of Garrison Keillor’s Lake
Wobegon will know). But I will do the best I can to tell an interesting story, which I
confess will mean bragging, at least a little, about my virtues of both kinds. I will
also do a lot of name dropping, because this is my opportunity to in effect thank a
lot of people for their support. I of course will accidentally overlook somebody, and
if that somebody is you, I deeply apologize.

I will also use this “autobio” a bit as a bully pulpit, to share with you my
developing views about logic. The introductory quote from Neil deGrasse Tyson is
very relevant to these views. As I shall reveal further on, I started out to become an
engineer, changed to science, and ended up in philosophy. There is a saying that has
guided me, but which I cannot reference (this is not a criticism of Google).
“Philosophy is the art of the sciences, and the science of the arts.” I want to be clear
that I truly value the arts (which include in this context the humanities). I was
indeed once executive associate dean of the College of Arts and Sciences at Indiana
University. And I have always had a strong inclination toward the sciences—I don’t
think I have published a single paper which doesn’t have a strong sprinkling of

1The Road to Virtue, Random House, New York, 2015.
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mathematical symbols in it.2 But the hidden engineer in me is perhaps my best kept
secret. We will get back to this later.

Growing Up in Ft. Wayne and Then Lafayette, Indiana: On the Banks of the
Wabash. On the Banks of the Wabash, Far Away is the official Indiana state song.
It begins:

Round my Indiana homestead wave the cornfields,
In the distance loom the woodlands clear and cool.
Oftentimes my thoughts revert to scenes of childhood,
Where I first received my lessons, nature’s school.

I was born in Fort Wayne, Indiana, June 19, 1941. Fort Wayne is not really on
the Wabash, although it is close. There were no cornfields or woodlands either in
this city, though I enjoyed these on visits to my grandparents’ farm. My father had
moved off of his family’s farm south of Indianapolis to take a job with John Deere’s
warehouse center in Fort Wayne. Family legend has it that he started as a janitor
during the depression, and I know he worked his way up to become the assistant
director of that center. My mother had been an accountant but gave up her career to
become a “full-time mom” for my two siblings and me. I lived in Ft. Wayne until
my father moved to Lafayette, Indiana, to take up the position of territory manager.

There my mother became active in politics and ended up as chair of the
Democratic Party of Tippecanoe County. My father was a Republican so I was the
product of a mixed marriage. It was also a mixed marriage in the more traditional
sense, in that my mother was a devout Catholic and my father seemed pretty much
irreligious. I had gone to a parochial school (St. Jude’s) in Ft. Wayne, but there was
no parochial school in Lafayette when we moved there, and so I went to the public
high school Lafayette Jefferson. I think this might have been the best combination I
could have had to pursue a career in philosophy, and maybe especially logic.

My first eight years of education, almost entirely with nuns as my teachers, was
somewhat stereotypical (even down to the nun marching up and down the aisles to
catch students who were daydreaming, occasionally me). But I got a first-rate
education, and my philosophical and logical education was largely based in cate-
chism classes. There was lots of room for discussion and argumentation in those
classes, and paradoxically I have to say that the catechism classes probably led to
my atheism.

My childhood dream was to become an aeronautical engineer. I made countless
model planes. My “plan” was to study engineering in college, and then join the Air
Force and learn to be a pilot, even a test pilot. But I was saved from engineering by
science.

2I think the only paper without symbols that I tried to publish was a paper titled “Wittgensteinian
Scepticism” that I sent to Mind while I was in graduate school. I argued that certain arguments
from Wittgenstein and his followers (notably Normal Malcolm) were essentially old sceptical
arguments in new clothing. I got an immediate rejection from then editor Gilbert Ryle, saying that
although my paper contained some admirably pointed barbs, he thought his readers were getting
tired of Wittgenstein.
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I had the good fortune to take a biology course during my first year in high
school from Mr. D.O. Neidigh. He encouraged me to create a Science Fair project,
and I was fortunate enough to not only be a winner, but also to attract the attention
of Henry Koffler, then chair of the Biology Department at Purdue University. He
was a microbiologist and a pioneer in the emerging area of molecular biology—he
ended up as President of the University of Arizona. He hired me to work in various
labs, most of them associated with a project to study how bacteria flagella move.
Henry (I can now call him that) was my mentor and a tremendous influence on my
life. I continued to work in his labs throughout high-school summers and after
school, and then for two summers after I graduated and went off to Oberlin College.
I chose Oberlin at Henry’s advice because of its record in turning out graduates who
went on to graduate schools and scientific careers.

I also want to acknowledge the great help of Mr. R.W. Levering, physics teacher
and academic counsellor, who helped me in various ways on my way to college,
and also encouraged me in Science Fair projects. I was a first-generation college
student, something I think I have not previously mentioned publicly in my career,
and this support and encouragement were very critical. Also my parents’ support
was very important. As one small example, I remember my father driving me over
to Purdue to borrow some equipment for my first Science Fair project.

Going to College: Oberlin, Ohio. When I went to Oberlin I of course took
freshmen chemistry since Henry told me a major in chemistry was appropriate for
someone intending to become a molecular biologist. But also, to meet a general
education requirement, I took an introductory philosophy course.3 I thus took the
first step toward choosing a new career goal, and I took the second step in my
sophomore year when I took a course in symbolic logic from Bruce Aune.
I remember meeting with Henry to tell him that I was going to major in philosophy
and study logic. He suggested to me that Watson and Crick’s work on DNA
suggested there might be a connection between logic and biology, but I politely (I
hope) said that I was interested in pure logic.

I took every course related to logic that Oberlin offered, both in the Philosophy
and Mathematics Departments. One of the most memorable of these was taught by
Robert Stoll. It was based on a draft of his book Set Theory and Logic. The class
had maybe a dozen students, but they included the future logicians Peter Woodruff
and Jonathan Seldin, and my future wife Sally Dunn (a math major). The draft had a
number of errors, as every manuscript does. Ironically, I think we all learned a lot
from trying to catch them all.

I also took a number of “private reading” courses in logic with Daniel Merrill,
and under his supervision wrote my senior honors thesis on “Logical Behaviorism,”
i.e., the question of whether logical connectives can be defined by their role in
inference. I like to tell the story that my interests at Oberlin developed as I was
looking for foundations: biology depends on chemistry, which depends on physics,

3Taught by Roger Buck, later to be my colleague at Indiana University.
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which depends on math, which depends on philosophy, which involves logic.
Something like that is true but I had diversionary interests in political science (with
an eye on the law) and poetry. I almost dropped out in the middle of my first year of
graduate school to write a novel.

Graduate School: University of Pittsburgh. I was fortunate to be a graduate
student in Philosophy at Pitt in the mid-1960s when Pittsburgh was not just the
home to the steel industry, but also to relevance logic. Once upon a time the
strongest tools were built out of stone (Aristotelean logic), then later came iron
(classical logic), and then steel and various substructural alloys (intuitionistic logic,
relevance logic, and various other nonclassical logics).

Bruce Aune, a teacher of mine in philosophy of mind at Oberlin, was an
important influence in my decision to go to the University of Pittsburgh for graduate
study. Bruce went to Pittsburgh as a faculty member in the same year (1963) and he
was passing information on to me and a number of other students at Oberlin.
Through him we heard the news that both Nuel Belnap and Wilfrid Sellars, along
with Jerry Schneewind, were leaving Yale to join the Pitt Philosophy Department
(Kurt Baier, Adolph Grünbaum, and Nicholas Rescher were already there). This fit
my interests really well since I was somewhat undetermined as to whether I would
specialize in logic or philosophy of mind. Philosophy of mind was a strong interest
of mine when I was an undergraduate rebelling against behaviorism both in psy-
chology and philosophy. One of the reasons I chose to go to the University of
Pittsburgh for my graduate studies was I felt they had the right faculty members no
matter which direction I finally chose to go. Not only I, but five other graduates of
Oberlin went to do graduate study in Philosophy at Pitt in the fall of 1963.

I was fortunate to have a Woodrow Wilson Fellowship for that first year, and Pitt
topped in off with a guarantee of graduate support for several years after that. My
interest in logic exploded after I took a course from Nuel Belnap on the logic of
questions in my first semester. At that time Philosophy was located in a building
that was a remodeling of the old Schenley Hotel. I shared an office with fellow
graduate student Tryg Ager, and we had our own bathroom since our office was
once a hotel room. The office was right down the hall from Nuel’s. He would often
stop by, at least several times a week, and ask me to prove something for him.
Also I felt free to look in on him and see what he was working on, and he would
often stop me as I walked by his door.

Nuel Belnap was a huge positive influence when I was a student, and still to this
day. I remember a fellow graduate student Richard Schuldenfrei referring to him as
“Nuel Call-Me-Nuel,” because of Nuel’s practice of wanting students to call him by
his first name. To give credit where credit is due, this was also a practice of Nuel’s
own teacher Alan Ross Anderson. Alan moved from Yale to Pitt in my last year
there, and shortly after his arrival invited me to lunch. He told me during lunch that
there were two things he didn’t like in a student: first, if the student didn’t call him
by his first name, and second, if the student didn’t tell him when he was being
stupid. I said something as we parted like “Thanks for lunch Professor Anderson.”
About a week later he asked me to lunch again, and told me the same thing. I said
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“Which would you prefer Professor Anderson, that I call you Alan or that I call you
stupid.” He replied, “Please call me Alan,” which I did.

Another Pitt faculty member important to my career was Storrs McCall. I took
his logic seminar in my first semester at Pitt and it was in writing a paper for this
course where I was trying to show that the implicational fragment of E was
equivalent to the intersections of that of S4 and that of some other logic. (Nuel
Belnap had already shown that the other logic was not R.) Storrs told me about the
“mingle rule” of Onishi and Matsumoto, and suggested that I add this to E. This
ultimately led to my exploring the system obtained by adding this rule to the
relevance logic R, and ultimately to my paper showing that every normal extension
of R-Mingle had a finite characteristic matrix (Dunn 1970). Bob Meyer and I (1971)
were able to show a similar result concerning the intuitionistic-style logic of
Dummett’s LC.

I was very lucky to have some other excellent fellow students working with
Nuel. Besides Bob Meyer (Robert K. Meyer—he always insisted on being called
“Bob”), there were Louis Goble and Peter Woodruff, among others. Curiously, both
had been students at Oberlin with me.

Another person who clearly helped was Nuel himself. I had a Woodrow Wilson
Dissertation Fellowship for my fourth year at Pitt. Later, when I discuss my
research career, I will discuss some of what was in my dissertation, but perhaps
more important than what my dissertation contained is something that it did not
contain. My plan was for the final chapter to show how the logics E and R are
decidable, and I was looking forward to showing this in my fourth year. But Nuel
told me in my third year that I had done enough. This was a very wise move on his
part, since some 18 years later Alasdair Urquhart (another of Nuel’s students, who
came to Pitt soon after I finished) would show that both E and R (and a wide range
of other logics) were undecidable.

First Academic Position: Wayne State University. In 1966 I received a Ph.D. in
Philosophy (Logic). That is literally the way it reads. This was back in the “old
days,” and I am sure with the help of Nuel I got two job offers before I had even
defended my dissertation, and I accepted the one from Wayne State University.
George Nakhnikian had built a legendary philosophy department there, and I started
my career with colleagues such as Hector Castañeda, Edmund Gettier, Richard
Cartwright, Alvin Plantinga, Robert Sleigh, Larry Powers (and Arthur Danto,
Henry Kyburg, Keith Lehrer, had recently left, I think not because they heard
rumors of my coming). My interview there was scary, as were the questions after
my talk. Richard Cartwright asked a round of questions, and I tried to answer them
one after the other. I wasn’t particularly happy with my final answer, and I thought
he likely wasn’t either. But I was told by someone that in the meeting afterwards he
said that he hadn’t expected anyone to keep up with his questions far as I had, and I
should get the job. Talks at Wayne State were like that, the question period being if
anything more interesting than the talk. Roderick Chisholm used to regularly give
talks at Wayne as a kind of preparation for the final version of his papers. My fellow
junior faculty member Larry Powers was particularly famous for his questions.
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I was very happy at Wayne. Echoing Al Plantinga in his “Profiles” book, life at
Wayne State was one ongoing philosophical discussion, moving from office to
coffee to lunch back to office, etc., interrupted only by teaching. Actually the
teaching there was great too, and I had many excellent students, both graduate and
undergraduate.

But all good things have to end, and the Wayne State philosophers began to
leave, for various individual reasons. Ed Gettier and Bob Sleigh went to University
of Massachusetts—Amherst, George Nakhnikian went to Indiana University to
rebuild its Philosophy Department and took Hector Castañeda and Nino
Cocchiarella with him, Dick Cartwright went to M.I.T. while his wife Helen got a
permanent position at Tufts, etc. As luck would have it Yale showed an interest in
recruiting me and I took a visiting position in Philosophy there, attracted by the fact
that both Nuel and Alan had been at Yale. I guess I thought I was going to sit and
watch to see whether U. Mass or IU was the new Wayne State department.

For various reasons I was not real happy with the Philosophy Department at
Yale. I was treated well enough, in fact far better than the average junior faculty
member. But that was part of the problem. All philosophy faculty were treated as
equals at Wayne State, but at Yale I found a very hierarchical system. There was
much discussion among junior faculty about who went to a dinner at the chair’s
home, who was invited to Mory’s for drinks with a colloquium speaker, etc. And
this was made worse by the fact that almost all of the faculty had their PhDs from
Yale. I remember Fred Fitch, who I think was optimistic about my staying at Yale,
telling me how he had spent his whole time since he was a student at Yale, and how
when he once visited someplace he came to understand that he would never want to
leave. For me it was quite the opposite, and when I ended up getting offers from
both U. Mass and Indiana and I decided (with some difficulty) to accept the Indiana
offer, I never even bothered to try to negotiate with the Philosophy Chair at Yale.
But I made some good friends among my colleagues at Yale, including Fred Fitch,
Bob Fogelin, Rich Thomason, and Bruce Kuklick—who later wrote “Philosophy at
Yale in the Century after Darwin,” History of Philosophy Quarterly, (July 2004), 21
(3): 313–336.

Second (and Last Academic Position): Back Home Again in Indiana. Back
Home Again in Indiana is in effect the unofficial state song, and it certainly char-
acterizes me. I went to Indiana University as an associate professor of philosophy in
August 1969 (and was promoted to full professor in 1976). Having grown up in
Indiana, I never expected to end up living in Indiana again and was pleased to find
that southern Indiana had many more woodlands than cornfields, unlike the
northern Indiana I was used to, and that Bloomington was a kind of oasis, culturally
and politically. The pattern looked like 2 years at Wayne State, 1 year at Yale, etc.
But this is where Sally and I have been ever since, even after our retirements.

When I joined the Philosophy Department at IU I not only found my old col-
leagues from Wayne State there (Castañeda, Cocchiarella, and Nakhnikian), but
also Bob Meyer had been recruited there. As fellow logicians I not only had Bob
and Nino, but soon also in the new Computer Science Department there were
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George Epstein, Dan Friedman, Stu Shapiro, and Mitch Wand, who all had
logic-related aspects to their work. This turned out to be very important to my
development. George was an important figure in the multiple-valued logic com-
munity, Dan and Mitch’s work on programming languages had a strong influence
from the λ-calculus, and Stu was involved with AI and knowledge representation.
And several years later Doug Hofstadter (AI, soon then to publish Gödel, Escher,
Bach) and Ed Robertson (database theorist) joined the Computer Science
Department.

George was the chair for the Fifth International Symposium on Multiple Valued
Logic (1975), and he arranged for me to be program chair. I learned a secret
thereby, which I have shared with a number of faculty involved in organizing a
conference. You know everything that goes wrong, even if everyone else is
ignorant and enjoying themselves immensely. I also should mention George for
introducing me to Paul Erdős. Sally and I had invited George and his wife for
dinner at our house, and at almost the last minute Erdős (I don’t dare refer to him by
his first name) called George and asked if he could give a lecture at IU. George of
course said yes, and Sally and I included Erdős in our dinner. It was a wonderful
evening. Erdős told us that he was funded by the Hungarian NSF to travel and stay
out of Hungary. He clearly was a practiced guest. He had clearly read the local
newspaper and discussed politics in Indiana, did a couple of magic tricks for our
children, and finally would not let Sally and me near the kitchen as he cleaned up
after dinner. I remember mentioning a couple of open problems in relevance logic,
but he didn’t bite. He clearly had larger fish to try. Therefore I missed my chance to
have the Erdős number one, and had to content myself with three (Erdős, Joel H.
Spencer, Belnap, Dunn, or Erdős, Marcel Erné, Mai Gehrke, Dunn).

I have been involved in multidisciplinary activities, possibly because logic is one
of those areas that cannot be neatly pigeonholed into the usual academic depart-
ments. In fact, when I was a visiting assistant professor at Yale, my position was
funded by the Departments of Philosophy, Electrical Engineering, and Linguistics,
and I presented several lectures in a Mathematics seminar led by the famous
logician Abraham Robinson.

When the computer science department installed its first time-sharing computer
system (VAX 11/780—I believe in 1978), I was given a Unix account by Ed
Robertson, a database theorist and then chair of the Computer Science Department.
A few weeks later, when Ed asked how I liked Unix, eyes sparkling, I responded:
“All my career I’ve studied formal systems, and now at last I have one that is truly
responsive.”

I had a number of opportunities to leave IU, but my principle was to pursue them
only if I was prepared to leave. I believe I took only two offers seriously. One
of these occurred in the late 1980s, and the dean of Arts and Sciences said, when I
met with him, “I don’t think I have ever seen one like this before.” Although I was
fully prepared to leave, IU responded in the most generous way possible and I
stayed. This had something to do with the schools, housing, and traffic near the
competing institution, but it is not a coincidence that the year 1989 was particularly
eventful, in titles. I became the Oscar Ewing Professor of Philosophy and a

An Engineer in Philosopher’s Clothing xxiii



Professor of Computer Science. And the generous response allowed me to recruit a
number of excellent logicians to IU including Jon Barwise, Anil Gupta, and Alice
ter Meulen. One good thing leads to another and Jon was able to recruit Larry Moss
and Slawomir Solecki in Mathematics. We already had Bill Wheeler in
Mathematics, Daniel Leivant in Computer Science, and in Philosophy Nino
Cocchiarella, David McCarty, and Raymond Smullyan, not to mention Geoffrey
Hellman (philosophy of mathematics), Ed Martin (Frege), and Paul Spade (me-
dieval logic). So IUB had at that time one of the best programs in logic anywhere.
Jon was the first director of what is now the Program in Pure and Applied Logic
(the director is now Larry Moss).

I somehow have been successful in combining research, teaching, and service.
My research is reflected in more than 100 publications, including five coauthored
books and over 150 talks at conferences and universities. But when I formally
retired from Indiana University in 2007 I was amazed to count back and find that I
had spent over half of my 38 years there as an administrator at the chair level or
above. I was twice chair of the Department of Philosophy, and in the early 1990s
served as the first executive associate dean of the College of Arts and Sciences.
And I ended my official career at IU as the founding dean of the School of
Informatics (now the School of Informatics and Computing), then the first com-
pletely new school at IU in a quarter of a century. I must like to start things since I
was also involved in the creation of the Cognitive Science Program, and also the
Program in Pure and Applied Logic.

Besides my official administrative service, I led or served on numerous faculty
committees at all levels (over 75 campus and university committees alone). In
particular I have been on practically every committee having to do with computing
at IU, from chairing the campus word processing committee 1985 to chairing the
university’s Information Technology Committee, which put together the strategic
plan for IT at IU in 1999.

Perhaps the most frustrating committee I have ever served on was the Campus
Calendar Committee. This was early in my career and it took me a while to figure
out that I was probably the only one on the committee without a vested interest. The
other members represented athletics, student housing, the laboratory sciences,
anything where schedules really mattered. My wife Sally later served on the same
committee and had much the same experience.

My academic service outside of IU included being an editor of the Journal of
Symbolic Logic and the Journal of Philosophical Logic (and on the editorial boards
of a number of other journals). Also, I was president of the Society for Exact
Philosophy and vice chair of the Computing Research Association’s IT Deans
Group. I accepted the Mira Award from TechPoint (the Indiana state IT association)
in 2002 for the School of Informatics. I also received the i-School Caucus’s
“Bookends Award” for “vision and pioneering leadership in the formation of the
i-Schools community.” I have been on external review committees for a number of
universities, and served on academic advisory boards for Carnegie Mellon
University, Spelman College, the University of Cincinnati, and the University of
Dubai.
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I was elected (2010) a fellow of the American Academy of Arts and Sciences.
My other favorite honors include being awarded the IUB Provost’s Medal and
being appointed as a Sagamore of the Wabash by the Governor of Indiana. (From
Wikipedia: “Sagamore was the term used by Algonquian-speaking American
Indian tribes of the northeastern United States for the tribal chiefs.”)

Occasionally campus conversations became confused at the mention of “Dean
Dunn,” a confusion that arises because my wife, Sally Dunn was dean of the
freshman division. The confusion continues with “Jon Dunn” as our son, Jon
William Butcher Dunn, is director of technology and an assistant dean for the IUB
Library. Our daughter, Jennifer Knight Dunn, works as a senior geographic
information specialist, and both of our grandchildren love math—so there must be
something in the genes.

Somewhat ironically, given my interest in technology, my wife and I live in a
100-year old house, and I have been active in historic and neighborhood preser-
vation. I have also been involved in other forms of civic service, for example,
serving on strategic planning task forces of the Indiana Chamber of Commerce and
the Indiana Health Industry Forum. Most recently, I serve on the Board of
HealthLINC (appropriately for my academic interests, the regional health infor-
mation exchange) and was president of the board for 3 years.

I directed 17 Ph.D. dissertations. It is difficult to talk about my graduate students
because I love each and every one of them, just like my children (but of course there
were many more graduate students). Some of these did work not really related to
my own, and I was really just their “supervisor.” Others did work closely related,
even joint with my own. Some of these were invited to contribute to this volume,
and I greatly appreciate their contributions and will let them speak in their own
words. The dissertations I directed were mostly in philosophy but also in computer
science and mathematics. All but three of these were in logic and the other three in
philosophy of mind (reflecting my own ambivalence, as indicated earlier, between
these two subjects). 14 of those now hold permanent positions at universities, two
have equivalent positions in government labs, and 1 is an IT entrepreneur (who also
published a book on philosophy of mind with Oxford University Press). I am very
proud of them all.

Around the World. We have been residents of Indiana since 1969, but this has not
prevented Sally and I from travelling the world together, and with our two children
when they were young. I have been a visitor at a number of different universities. In
1975–1976 I went on a research Fulbright with my family to the Australian
National University. This was my first of a number of visits to Australia, and it was
a tremendous experience. Bob Meyer, Richard Routley (later Sylvan), and Val
Routley (later Plumwood) were there, and Len Goddard and Nuel Belnap also were
visitors (Nuel just for a month). Errol Martin and Michael McRobbie were among
the postgraduate students. Michael now claims to be a Hoosier, and indeed he is
President of Indiana University.

It was an absolutely incredible environment for doing relevance logic. I returned
to Australia in 1983 to teach a seminar at the University of Melbourne, and again
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found an incredible environment for relevance logic, with both Len Goddard and
Michael McRobbie at Uni Melbourne, Ross Brady at LaTrobe Uni, and Lloyd
Humberstone at Monash Uni. In between I spent close to a year (1978) in Oxford
with my family, and courtesy of Dana Scott visited the Mathematical Institute.
Among the Oxford faculty in logic, besides Dana, were Robin Gandy, Michael
Dummett, and Dan Isaacson, and visitors that year included Dov Gabbay, Rob
Goldblatt, Saul Kripke, and Jonathan Seldin. I have also visited the University of
Pittsburgh twice, once as a visiting fellow at the Center for Philosophy of Science
and most recently (after I retired) as a visiting professor. It was a real privilege to
teach in the seminar room that was sadly graced with photographs of many of my
deceased teachers, and to rekindle by friendships with Nuel Belnap, Anil Gupta,
and others.

In 1985, with the support of a fellowship from the American Council of Learned
Societies, I visited the University of Massachusetts—Amherst. It was great to see
my former teacher Bruce Aune, and my former colleagues Ed Gettier and Bob
Sleigh, but the purpose of my visit was to spend time with Gary Hardegree to finish
the book Algebraic Methods in Philosophical Logic which we had begun when
Gary visited Indiana a couple of years earlier.

Since my formal retirement in 2007 I have continued to attend conferences and
speak at universities, often combining this with some tourism. In the first 6 months
of 2015 for example Sally and I travelled to India, England, and Russia.

Research: Pencil, Paper, and a Wastebasket. There is the old joke that mathe-
matics is cheap to fund because all you need is a pencil, paper, and a wastepaper
basket. Only one field is cheaper to fund, namely philosophy. Because there you
can do without the wastepaper basket. Since logic has a part of mathematics and a
part of philosophy in it, I am not sure whether I needed the wastepaper basket. But I
do know that it would have been hard to combine my research and administrative
careers (teaching too) if I had to manage a laboratory, visit distant archives, etc.
Being able to do my work with pencil and paper (and more lately a computer,
which fortunately has a delete key) was a huge plus. Also it helped with my
multitasking—I could be in a meeting, seeming to take scrupulous notes, when in
fact I was trying to prove a new theorem.

I had some early publication problems. The first was that Nuel Belnap suggested
that I submit my dissertation to the North-Holland series: Studies in Logic and the
Foundations of Mathematics. This was very famous at the time, and so I did so
quite willingly. After considering it a year or two they replied that they were no
longer publishing dissertations. I think this policy changed again a year or two later.
Murphy’s Law! In the meantime I had not done the usual thing of submitting
various chapters (rewritten of course) as articles to journals. Instead, I accepted the
opportunity to have some of these chapters published as a “contributing author” to
Anderson and Belnap’s Entailment: The Logic of Relevance and Necessity, vol. 1.
This was a great opportunity, but I am afraid that it meant that many of my original
contributions got a bit lost in the literature. I was more than paid back when I
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became a “first class” author of Anderson, Belnap, and Dunn’s Entailment: The
Logic of Relevance and Necessity, vol. 2.

My dissertation (Dunn 1966), The Algebra of Intensional Logics, was about the
algebraic treatment of relevance logics. The name itself was a marketing error (the
word “intensional” had not yet become proprietary to modal logic). It would have
been better to call it simply “The Algebra of Relevance Logics.” The two major
themes in the dissertation were algebraic foundations for the algebras of the rele-
vance logics E and R, and in particular their first-degree entailments (entailments
between truth-functional formulas). The first rested on viewing implication as
residuation on an underlying monoid (in the case of R what I labeled as a De
Morgan monoid) and anticipated algebraic treatments by others of various so-called
substructural logics. Ultimately this led to my super-generalization called gener-
alized Galois logics (or Gaggles). More on these later.

The second theme came from viewing first-degree entailments as corresponding
to quasi-Boolean algebras (Białynicki-Birula and Rasiowa) or equivalently De
Morgan lattices (Monteiro). Białynicki-Birula and Rasiowa (1957)4 gave an
interesting representation of these lattices, and I gave an equivalent representation
together with an interpretation of that representation. These, and other representa-
tions, were published by me only as an abstract (Dunn 1967b). As it turns out the
representation of Białynicki-Birula and Rasiowa was in effect published by Richard
and Valerie Routley in 1972 as a semantics for first-degree entailments (with no
reference to Białynicki-Birula, Rasiowa, or myself).5

The story of my own representation is more complicated. In my dissertation
(1966) I had a result where each element of a De Morgan lattice was to be viewed
as a pair of sets (X+, X−), and thus indirectly this was an assignment to a sentence.
X+ was the “topics” that the sentence gave positive information about, and X− was
the set of “topics” that the sentence gave negative information about. You can see
from this the beginnings of my interest in informational semantics for logics.

I pointed out that a sentence could give both positive and negative information
about the same topic, as well as giving neither. But I did not have the nerve, though
it crossed my mind, to speak publicly of a sentence being both true and false (or
neither, though this was less controversial because of the Łukasiewicz 3-valued
logic). I finally took this public position in my talk in a joint symposium of the
American Philosophical Association in 1969 and the Association for Symbolic
Logic on “Natural Language vs. Formal Language.” Because of the nature of the
symposium, I gave this talk and wrote the accompanying paper (unpublished,
available online at www.philosophy.indiana.edu/people/papers/natvsformal.pdf) in
a very philosophical style—almost no symbols and certainly no mention of the
4-valued lattice that was so much a centerpiece of my dissertation. I thought this
was a good way to help “sell” the ideas, but perversely it got in the way of

4Białynicki-Birula, A. and Rasiowa H. (1957). On the representation of quasi-Boolean algebras,
Bulletin de l’Académie Polonaise des Sciences 5: 259–261.
5Routley, R. and Routley, V. (1972). The semantics of first degree entailment, Noûs 6: 335–359.
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connecting those ideas to the algebraic way of looking at things to be made popular
by Nuel Belnap.

For no sooner had I done this than Nuel Belnap published his own version of the
4-valued semantics in two separate venues (“How a Computer Should Think,” and
“A Useful Four-valued Logic”). In each of these he carefully cited my work, but
almost no one seemed to notice and there was much talk of Belnap’s 4-valued logic.
Over the years this has changed, and now I often see mention of the “Belnap–Dunn
logic,” or even the “Dunn–Belnap logic.” I do not mean to suggest that the name
Belnap not be linked to this logic. Nuel did many interesting things in his two
papers on the 4-valued logic, both technically and promotionally, e.g., his con-
necting it to bilattices and his emphasizing its usefulness to computer applications.
Years later, when Yaroslav Shramko and Tatsutoshi Takenaka were visitors at IU,
we worked on 8- and 16-valued trilattices.

I had of course hoped that the 4-valued semantics could be extended beyond
first-degree entailments to encompass the whole of the systems R and E. I even
managed to do a 3-valued version of this for the logic R-mingle allowing a sentence
to take both truth values, but not neither), essentially modifying the
Kripke/Grzegorczyk semantics for the intuitionistic sentential calculus, so as to
allow that a sentence might be both affirmed and denied in a given “evidential
situation.” The binary accessibility relation was interpreted as one evidential situ-
ation extending another.

I think it was the 4-valued approach, and the Białynicki-Birula and
Rasiowa/Routleys approach to first-degree entailments that led me to be a bit
obsessed with negation. I just did a search and found that the word “negation”
occurs 16 times in my CV, including talks as well as publications. Besides the work
I did in my dissertation and early on regarding negation as De Morgan complement,
I discovered that the Routleys’ * operator can be replaced with a binary relation of
“incompatibility” (much as in the modeling of quantum logic), and that a* can be
viewed as the weakest information state compatible with a. Various properties can
be put upon the incompatibility relation to get various logics. I also learned that
when negation is viewed this way, the representation of both negation and impli-
cation can be viewed as falling under a common abstraction. This gives an algebraic
approach to these, and other connectives and their semantics via representations
of their underlying algebraic structure. This can be viewed as growing out of the
work relating representations and semantics begun in my dissertation, but vastly
generalized. It was also motivated as a generalization of Jónsson and Tarski’s
(1951–1952) work on “Boolean algebras with operators” so as to apply to relevance
logic and other substructural logics.

Thus I began in Dunn, 1991, to publish on what I called generalized Galois
logics, or GGLs, which I insisted should be pronounced “Gaggles,” not “Giggles.”
(You are encouraged though to giggle here. :) This is probably the abstraction I
created/discovered of which I am the most proud and it resulted in perhaps my
longest thread of publications, some joint with Gerry Allwein, Kata Bimbó, Mai
Gehrke, Gary Hardegree, Alessandra Palmigiano, and Chunlai Zhou.
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One of the most exciting, and also frustrating, of my achievements was pro-
viding a Gentzen system for the positive fragment of the logic R of relevant
implication. I had the idea of modifying the usual Gentzen sequents so as to allow
for two kinds of “commas” (actually using a semi-colon for one of these), so as to
mimic the two kinds of conjunctions available in R (intensional as well as the usual
extensional). Anyone who has ever proved a cut elimination theorem knows the
difficulty in getting every case to work, and the excitement when they all click.6 I
thought I was only another day (and maybe a night) away from adding negation,
and then another day or so away from proving decidability. (Again this was before
Alasdair Urquhart obtained his undecidability result.) Regarding negation, a
number of other researchers worked on extending the Gentzen system for R+ so as
to include it, and certainly the most persistent of these was Ross Brady. Nuel
Belnap ultimately came up with his Display Logic, which allowed for adding De
Morgan negation to R+, but there was a price to pay for this—he also had Boolean
negation as part of his basic structure.

Perhaps the single publication that pleased me the most was a joint publication
with Bob Meyer (Meyer and Dunn 1969) proving the admissibility of Ackermann’s
rule γ for the systems R and E. In his paper in this volume Alasdair Urquhart shares
some things I told him, so I will not tell the stories again about how Bob and I
produced the proof (working first independently and then together). Bob and I were
once students together, later colleagues, and always friends, at least until his
regrettable death. I think I do not reveal any secrets if I say that Bob was somewhat
of a character, albeit a loving and much loved one. After Bob moved to Australia he
would often visit the US, driving a rental car to see his son and his family who lived
near Bloomington. Usually Bob would call us ahead of time with an hour or two’s
notice, and then he would drop by our house all set to do logic. Bob and I, working
with Hugues Leblanc extended the admissibility of γ to first-order versions of
R and E.

Writing this autobio has led me to reflect on my CV, searching for patterns. One
thing I noticed is that I have done almost no work on first-order logic, classical or
nonclassical. The exceptions are Dunn and Belnap (1968b), Meyer et al. (1974),
Dunn (1976c), and my papers on relevant predication (Dunn 1987b, 1990a, b, c).
This was at least partly a conscious decision on my part. There are so many
different choices to make, e.g., constant domain, expanding domain, individuals or
individual concepts, infinite meets/joins, cylindric, polyadic algebras, etc., I wanted
to stick with the basics.

One of my most cited papers was a survey of relevance logic (Dunn 1986),
updated in (Dunn and Restall 2002).

I have to confess that this search for patterns in my CV confirms my antecedent
view that I had no grand research program. I have followed where the paths have

6I must mention that Grigori Mints did the same thing at roughly the same time, and when we met
each other for the first time many years later he agreed with me about both the excitement and the
frustration.
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led me. I was very fortunate to have had the teachers, colleagues, and students I
have had. It is only with reflection, when asked what the title should be for this
volume, that I suggested “Information Based Logics.” Information has been a
common theme throughout much of my research, but it was never intended as a
programmatic theme. That the concept of information turned out to be so useful in
itself proves its importance, at least to me.

I have also worked on quantum logic (Dunn 1981, 1988), and particularly in
recent years on the relationship of quantum logic to quantum computation (Dunn
et al. 2005; Dunn et al. 2013). Representations play an important role again in these
last two. Zhenghan Wang was a faculty member in the IU Mathematics
Department, who is now a lead researcher in Microsoft Research’s “Station Q”
project to build a topological quantum computer.

I have done a little to advance the actual application of relevance logics (you
would think they would be “relevant” to something :)), particularly the system
R. Perhaps my most sustained attempt (four papers around 1990) was to use rel-
evance logic as a means of defining relevant predication and then using that to
define intrinsic properties, essential properties, and internal relations. I also got
involved in the idea, pushed by Bob Meyer, of basing mathematics, particularly
arithmetic, on relevance logic (Dunn 1979b, c). But despite many interesting results
by Bob Meyer, Ross Brady, Chris Mortensen, Zach Weber, myself, and others, it
still seems to me to be a not very well-developed area.

My dream application would be to have some version of relevance logic
undergirding searches on the Web (where notoriously one can find any side of a
question that one wishes). I have written about this in my recent paper (Dunn 2010)
“Contradictory Information: Too Much of a Good Thing,” and offered my own
preliminary thoughts about how this might be done.

Another small theme in my work has to do with relation algebras. In Dunn
(1982b) I showed how De Morgan lattices (I called them “quasi-Boolean algebras”
following Białynicki-Birula and Rasiowa) could be represented as relations closed
under intersection, union, and complement of converse. In Dunn (2001b) I in effect
extended this using the idea of the Routley–Meyer ternary accessibility relation to
show how the relation algebras that satisfy Tarski’s equations for relation algebras
can be represented using this relation. The representation ends up showing that
relation algebras can be represented as sets of relations, not as relations themselves,
since a well-known result of Lyndon showed that relation algebras cannot be
represented in the natural way as relations. In Dunn (2014b) I related this to work
by Johan van Benthem and Yde Venema on what they dubbed as “Arrow Logics.” I
had the nice occasion to work with Kata Bimbó and Roger Maddux on a paper
(Bimbó et al. 2009) that contains a series of results relating relation algebras and
relevance logic.

I was fortunate to have Katalin Bimbó as a student and later as a research
associate at Indiana University when she and I wrote Generalized Galois Logics:
Relational Semantics of Nonclassical Logical Calculi (2008), using a draft as a text
for a graduate seminar we co-taught. Kata and I have published a number of things
together. I want to thank Kata for including me as a collaborator on a couple of
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grants she has received. She and I have been working on several projects together,
and developed some novel Gentzen systems. Using these we were able to solve the
problem of the decidability of the implicational fragment of the logic of Ticket
Entailment T→ (a problem that had been open since circa 1960), and hence by the
Curry–Howard Isomorphism, the decidability of the inhabitation problem for
simple types by the corresponding set of combinators. Another use of them has
been to show a certain logic decidable that had been thought to have been proved
undecidable. Our paper is still in the refereeing process so I should not say anything
more.

Our most recent project is to work on a conceptual history of the development
of the ternary relational semantics for relevance logic and some other logics. This is
often referred to as the “Routley–Meyer semantics.” In the context of that project I
have been working on various intuitive interpretations of the ternary accessibility
relation. I was up to an even dozen on the last talk I gave on the subject. Among
these interpretations are of course the informational interpretations due to Urquhart
and Kit Fine: the information a when combined with the information b equals (or is
included in) the information c. But two are “dynamic” informational interpretations
based on von Neumann’s idea of a “stored program,” where one or both of the
information states a and b can be thought of as standing for an action (binary
relation). (Dunn 2001a, c, 2003). Dunn and Meyer (1997) show how this can be
applied so as to give a semantics of various combinatory logics (the combinators
replacing the structural rules), and Bimbó and Dunn (2005) show how to apply it to
Kleene Logic and other “action logics.”

The latest to appear on my list was something that should have been there for a
long time, but wasn’t. Dunn (2015) actually gives an interpretation of the ternary
relation in terms of (contextual) relevance: information state b is relevant to
information state c in the context of information state a.

Another way I have been spending my time since I “retired” is as an affiliate (and
member of the advisory board) of the Info-Metrics Institute of American University.
Its founding director Amos Golan defines “info-metrics” as “the science and
practice of inference and quantitative information processing.” What could be
nicer? The first time I participated in an Info-Metrics workshop I seemed to hear
John Denver singing, “Coming home to a place he had never been before.” Amos
and I are involved in a joint project to understand, perhaps define, the value of
information.

Ruminations. I was first drawn to logic as an undergraduate because of its cer-
tainty. I was interested in deductive logic, and not probability and statistics, because
they were tools for dealing with uncertainty. Classical logic was the one true logic.
Already as an undergraduate I had inklings that there were matters of choice in
logic. What set theory did one use, how are numbers to be represented, why not
limit proofs to the constructive ones, etc. And when I went to graduate school and
was exposed to relevance logic I never truly accepted the system E of entailment as
the one true logic, as Alan Anderson is supposed to have done. I quickly came to
notice that there were various systems of relevance logic to choose from, and that
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they could not do everything, and in particular it seemed that they could not do their
own metatheory.

Arthur Prior in his Past, Present and Future (1967) said: “The logician must be
like a lawyer … in the sense that he is there to provide the metaphysician, perhaps
even the physicist, the tense-logic he wants, provided that it be consistent.” I only
came across this quote recently, but I once had the privilege of being introduced by
Timothy Smiley when I gave a lecture at Cambridge, and Tim said that I was a
“lawyer of logics.” Just as a lawyer might draw up various legal documents for you
according to your specs, so I might draw up various logics. Do you want excluded
middle, do you want distribution, etc.? Here are several logics to choose from. I was
somewhat surprised at his description of me, but quickly came to accept its main
point. Except I wouldn’t describe myself so much as a lawyer of logics, but more as
an engineer of logics—a maker of tools. As the inventor of the World Wide Web
Tim Berners-Lee said: “We are not analyzing a world, we are building it. We are
not experimental philosophers, we are philosophical engineers.” See https://www.
academia.edu/5222185/An_interview_with_Tim_Berners-Lee.

Man has been defined in the Aristotelean tradition as a “rational animal.”
Benjamin Franklin defined man as “a tool making animal.” Both of these definitions
seem to deny contemporary evidence that rationality and tool making, in various
degrees, extend to other animals (and I add that they are not always found in
humans). But there is no doubt that these are important characteristics of humans.
Primitive man had primitive tools, and primitive man also had primitive rationality.
As humanity developed, it developed more sophisticated tools, and these included
tools, even specialized tools, for reasoning. Now, as we turn more and more of our
reasoning over to “the machines,” it is important that we outfit them with not just a
general-purpose logic, but also the appropriate specialized logics that they will need
to solve more and more of our intellectual problems.

Let me close these ramblings with a related observation about definitions, and in
particular about the definition of “information.” Although I have written much
about information, I have never really defined what it was. Perhaps the closest I
came was when I said in (Dunn 2008, p. 581):

I like to think of information, at least as a first approximation, as what is left from
knowledge when you subtract, justification, truth, belief, and any other ingredients such as
reliability that relate to justification. Information is, as it were, a mere “idle thought.” Oh,
one other thing, I want to subtract the thinker.

Or, to put it dually, I have used a number of different definitions as I have
discussed information from both the classical Shannon, Carnap, Bar-Hillel frame-
work and the nonclassical 4-valued framework. This is the way I think it should be.
Our language typically has all the precision of a hunk of rock. But if it is a
potentially useful rock then it is important to shape it and sharpen it for the purpose
at hand. There are analogies in physics. A hunk of matter can be assigned either a
weight or a mass—its weight becoming meaningless without gravity. The rate of its
movement can either be speed or velocity (the latter adding a vector for direction).
Its momentum can be…. The definition depends upon the purpose. Oops, I just
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revealed that against all of my platonic instincts when I first entered philosophy, I
have somewhere along the way become a pragmatist. I now worship the trinity of
Charles Sanders Peirce, William James, and John Dewey.

I close by emphasizing something very important. The fact that I take a prag-
matic attitude toward both logics and definitions does not mean that all is con-
ventional or arbitrary. I believe strongly in an underlying reality. Rocks have
underlying properties, and that it is because of these that flint can be shaped into a
useful knife for say cutting flesh, whereas pumice makes a useful tool to remove
dead or dry skin without cutting. This is not a mere matter of convention—try to
reverse these if you don’t believe me. This was nicely stated by Frank Herbert in his
Book three of Dune: “Deep in the human unconscious is a pervasive need for a
logical universe that makes sense. But the real universe is always one step beyond
logic.”

OK—sounds like I need to stop writing and get back to work. :) However I do
want to mention one new thing that is relevant to the title of my autobio. The
Indiana University School of Informatics and Computing is adding a program in
Intelligent Systems Engineering in 2015–2016. I stepped down as dean too soon. :)

J. Michael Dunn
Indiana University

e-mail: dunn@indiana.edu
URLs: www.philosophy.indiana.edu/people/dunn.shtml

and www.soic.indiana.edu/all-people/profile.html?profile_id=194
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Introduction: From Information at Large
to Semantics of Logics

Katalin Bimbó

Abstract We take stock of various views and approaches to information, in general.
Then we explicate some relationships between logics and information—to provide
an explanation (even a justification) for the title of the volume. The multifaceted
character of information based logics leads to a bewildering assortment of linkages
between the papers in this volume.We highlight touching points between consecutive
papers in the rest of the volume.

Keywords Gaggle theory · Information theories ·Relational semantics ·Relevance
logic · Situation
1 Information on Information

This introduction has several aims. First, it connects logic and various approaches
to information. Second, we delineate information based logics and how they feature
in J. Michael Dunn’s research. Lastly, the order in which the papers appear in this
volume is explained via the connections between the papers in this collection as well
as between the papers and Dunn’s work.

“Information” is a fashionable term, even a buzz-word nowadays. But perhaps
we have to ask first: What is information? This section offers some answers to this
question with the intention to situate the connection between logic and information
within the landscape of various approaches to information. Then, in the next section,
we elaborate on the fundamental relationship between information and logic, that is,
we answer the question: Which logics are information based?

The New Oxford American Dictionary defines one of the meanings of “informa-
tion” as “what is conveyed or represented by a particular arrangement or sequence of
things.” Of course, the usage of a natural language term is rarely (if ever) unambigu-
ous. “Information” is no exception. The NOAD provides a second sense, in which
“facts” are mentioned, which may be thought of to be correct descriptions. Some
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further exploration, this timewithin theOxford American Writer’s Thesaurus, reveals
that “[i]nformation may be no more than a collection of data or facts … gathered
through observation, reading, or hearsay, with no guarantee of their validity….” The
absolution from the burden of establishing truth is a welcome ramification, because
it is notoriously difficult to determine what is true and what is not. Moreover, the
latter task, most of the time, might go well beyond what is covered by a logician’s
job description.

There are situations where it is reasonable to expect that the information received
is true, at least to a certain extent. At a public transit station, we might expect to
obtain information about the arrival and departure times of buses or trains. In the
summer, it is part of our expectation that the scheduled buses ran on schedule earlier
in the day, and they will continue to run on schedule for the rest of the day. On the
other hand, after the first big snow fall, it is also part of our expectation that there
might be delays. In other words, the degree of expected truthfulness varies depending
on pragmatic considerations such as the season of the year or the weather. A whole
philosophical debate could ensue about how precise a schedule of trains or a GPS
map should or could be. Barring clarification on such questions, the problem of the
truth of information in any practical situations would not make much sense, because
almost all the information almost all the time will turn out to be false, if we can
demand greater and greater precision.

Dunn in his (2001) and (2008) describes a somewhat similar sense of “informa-
tion” which does not include the requirement of truthfulness; nor does it include
other characteristics that are usually associated to a concept of knowledge. Every
philosopher heard the adage that knowledge is justified true belief. Given that, we
could say that information is what remains when the three listed features are sub-
tracted from knowledge. First it may appear that nothing remains from knowledge
once it is neither justified nor true, and may not be believed by anybody. However,
unjustified unbelievable falsehoods can be communicated, without anybody believ-
ing them.Malicious gossip that is spread with the intent to harm is an example where
perhaps not even the speaker, and we hope not the listener, believes the information
being conveyed.

In order to get a grasp of various aspects of information that emerge when we
start to think about it, let us start with a concrete example.

Example 1.1 The following 21-character sequence of letters is nothing more—at
first glance—than 21 letters from the English (or a similar) alphabet.

bpqajmkiumqvnwzuibqwv (1)

On the other hand, if I am in the middle of a lecture on (simple) substitution ciphers
while I write the above sequence of letters on the white board, and perhaps even
mention “shift +9,” then the string (with some segmentation) suddenly conveys
information. The string now can be seen as:

thisbecameinformation. (2)
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Some might contend that the gibberish in (1) contains the same information as
(2) does, independently of the situation in which it appears. The information could
be recovered from the string in (1) by a statistical attack relying on the frequencies
by which various letters occur in English texts. Alternatively, a brute-force attack
will work too, and it will require checking 25 shifts in the worst case. Even then, the
situation could matter of course, since there are other languages (beyond English)
that use the Latin alphabet.

The example hints toward two areas that also deal with information in some
sense, however, they will not concern us at all in this book. Pragmatics (as part of
linguistics) deals with the use of language in context. The broader context such as
a lecture during which the string in (1) is written would be subject to pragmatical
analysis. (Other disciplines that incorporate considerations of pragmatics or take
interpretations of signs above and beyond spoken languages are anthropology and
semiotics. In these areas the notion of a “language” is expanded and attempts are
made to extract meaning or information from a wide variety of contextualized signs.)

Another area hinted at by Example 1.1 is where the goal is to measure informa-
tion. A quantitative approach to information was initiated by Claude Shannon. The
information conveyed by a string turns out to bemeasurable, eventually, by the length
of the string. We could continue with our example to explain how the correlation
between information and the length of a string can be derived, but first we glance
at binary strings. Digital information is often stored and manipulated in the form of
bits (i.e., 0’s and 1’s), and considering binary strings affords certain simplifications.

Example 1.2 Let us assume that we consider a binary string w = 0101101 of 7 bits.
It is easy to see that there are 27 possible binary strings of length 7. Our concrete
string w is one among all those strings, and this can be expressed using probabilistic
terminology by saying that p(w) = 1

128 , that is, w has probability 1
128 with respect

to the collection of similar strings (i.e., binary strings of length 7). The “inverse
probability” of w is the total pool of strings of length 7, that is, 128. Taking the
base-2 logarithm of the inverse probability of w is simply 7, and that is defined to be
the amount of information carried by w.

It is easy to see that for the string s in (1),we could proceedwith a similar reasoning
in the context of strings over a 26-letter alphabet. log26(

1
p(s) ) = log26(21

26) = 21,

which is the length of the string s. However, log26(21
26) = log2(21

26)/ log2 26which
means that we could use log2 to measure the information carried by strings over the
English alphabet too. The information carried by a string of 28 characters viewed
as log26(28

26) is proportional to log2(28
26) by a constant factor c (in particular, c is

1
log2 26

).
An alternative way to measure the information in a string is to look at its internal

complexity. It might appear that the string 1111111 is simpler than 1101101. Algo-
rithmic complexity theory measures the information in a string by its Kolmogorov
complexity, and as the label “algorithmic” suggests, complexity is characterized via
algorithms or programs. The Kolmogorov complexity of a string is the length of the
shortest program plus the length of the input that will produce the string. We may
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expect that to print 7 1’s, we can specify a program that prints 1’s, and a counter that
goes to 0 in 7 steps. On the other hand, to print our second sample string, a program
should count to 2 while printing 1’s, then print a 0, repeat this block of steps (or this
subroutine) once, and finish with a 1. Another example may be constructed using the
widely known fact that there is a Turing machine that duplicates a string of 1’s. That
is, the size of the duplication program does not depend on the length of the input
string. Then we can expect that a string comprising 256 1’s is simpler than a string
having one fewer 1’s (i.e., 255 1’s) or one more 1’s (i.e., 257 1’s).

The cryptographic example above and the quantitative theories of information
presuppose a very fine-grained anatomy of information carriers: their units are bite-
sized or even bit-sized. For our purposes larger components such as sentences are
important.

In everyday situations the primary way to convey information is by sentences—
whether spoken or written. Although many languages may be written using letters
and utterances may be analyzed into syllables, letters are usually not considered to
be capable of conveying information by themselves. It seems sensible to concentrate
on sentences when we are interested in how information is used in reasoning.

The definition quoted above from theNOADdescribes information as represented
and as conveyed. In a similar vein, we can view sentences as static or as dynamic
carriers of information. Admittedly, analyzing objects (of any kind) without their
interactions is likely to pose a less challenging problem. Most logical systems do
not deal with dynamic aspects of reasoning. For example, while we might talk about
“drawing a conclusion from a set of premises” in an introductory logic course, we
are likely to move on quickly to the notion of logical consequence, where the set
of premises and the conclusion are already given. Perhaps a more dynamic part of
classical logic is a proof system, where even if there is a target formula that is to
be proved, some intermediate formulas have to be derived (as conclusions) from the
axioms or premises. On the semantic side, we could think of building models via
games as discovering the information that is contained in formulas. The intuitive
connection between logical consequence and information is nicely formulated by
Barwise (1993, pp. 6–7):

The intuition is that the notionof logical consequencehas to dowith information containment,
and that inference has to do with the extraction of logically implicit information.

The syntactic and semantic processes by which we to tease out some implicit
information as described above belong to the practice of logic, rather than the logical
systems themselves. Yes, we may use a sequent or natural deduction calculus to
prove a theorem, but a formula is provable (or it isn’t) in an eternal (or atemporal)
sense—even if we haven’t found a proof, and perhaps we can’t or we won’t, because
of a shortage in our supply of pens and paper, or time. Similarly, when we build a
model, we may gain insight and understanding of the meaning of the formulas, but
that activity is auxiliary to logic (as a theory).

We talked about bits as carriers of information and the quoted definition from
NOAD emphasized that information is communicated or conveyed; both stress the
dynamic aspects of information. The problem of change is an ancient philosophical
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problem, and from time to time, logicians pitched in to provide a formal framework
to describe change. In connection to information specifically, we have to mention at
least four approaches, even though not all of them are represented in this volume.

In the first approach known as dynamic semantics, it is assumed that the basic
information carriers are formulas which are usual entities in a logic, and the change
that is brought about by a formula can be represented by an ordered pair. In the form
of a slogan, the meaning of a sentence is the modification it causes to the hypothetical
situation. In the area of natural language semantics a prototypical dynamic phenom-
enon is an anaphoric pronoun. The effect of linking a pronoun to its antecedent is
an update in the current information state.1 There are certain similarities between
updating states and switching to other possible worlds as a result of applications of
modal operators. However, anaphoric updates to a situation are more restricted than
those that result from considerations about possibilities and necessities.

The semantic properties of modalities in a natural language can be captured at
the level of the meaning of sentences. However, some linguistic phenomena emerge
only when multiple sentences are considered at once. In particular, (short) sequences
of declarative sentences crystallize into manageable and interesting constituents of
texts; these are called discourses. The dynamics within a discourse are not limited to
building up an information state by a sequence of sentences, but it includes connec-
tions between sentences that could not exist outside a discourse. Certain particles of
a natural language, for instance, pronouns hold much less meaning than others do.
The thin meaning of a pronoun can be filled out by tracing connections that arise
in a sequence of sentences: pronouns that gain meaning via links to other parts of
a discourse are called anaphoric (when they are backward looking) and cataphoric
(when they are forward looking). In English, for instance, pronouns are predomi-
nantly anaphoric (when they are not deictic). Pronouns have a variable denotation
in an obvious way, however, other syntactic elements of a natural language sentence
can behave alike. Definite noun phrases and tenses also can function as if they would
include a hidden parameter the meaning of which is determined as a discourse pro-
ceeds. Languages differ a lot not only in their vocabulary but also in their syntax.
Thus the role of logic in the description of a discourse is to provide a sufficiently rich
formalism, which inevitably has to be complemented with empirical considerations
for each concrete natural language.

The second approach that we mention takes into consideration that there can be
other actions than uttering sentences one after another. Some of the actions that
can be described formally are programs, and some of the states (or certain aspects
thereof) that can be characterized by formulas being true or false (or unknown) are
states of a computer. Dynamic logic incorporates programs as labels for modalities
together with operations on programs such as program composition. Preconditions
and postconditions can be expressed by formulas, which leads to straightforward
applications in computer science, because it is possible to state what will hold after
the termination of a possibly complex program.

1See, for instance, Groenendijk and Stokhof (1991).
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Epistemic logics were developed independently from dynamic logic as an appli-
cation of some of the well-known normal modal logics. The S1, …, S5 systems
were invented by Clarence I. Lewis with some sort of necessity being part of his
strict implication, but soon other interpretations of the non-truth functional compo-
nents were suggested, for example, provability instead of necessity, by Kurt Gödel.
It is not difficult to see that some of the most often used axioms can be interpreted
in terms of belief and knowledge too. For example, �ϕ ⊃ ¬�¬ϕ can be rendered
as “If ϕ is necessary, then not-ϕ is not necessary.” Then if we change � to Ki , then
Kiϕ ⊃ ¬Ki¬ϕ can be read as “If agent i knows that ϕ, then i does not know that
not-ϕ.” Depending of which properties of knowledge and belief are deemed to be
desirable (or even plausible), it is possible to formulate a range of epistemic logics
using the machinery of normal modal logics.

To reiterate the connection between logic and information on one hand, and the
differences between knowledge and information, on the other, let us quote Barwise
again (1989, p. 203):

Information travels at the speed of logic, genuine knowledge travels only at the speed of
cognition and inference. Put another way, I would argue that much of the work in logic of
knowledge is best understood in terms of the logic of information.

We may interpret what is said here to mean that logic, including epistemic logic,
is primarily about information or the transfer of information. While an agent (surely)
does not know all the logical consequences of what he or she already knows (i.e.,
he or she is not logically omniscient), it is plausible to say that an agent has all the
information (including implied information) that is contained in what she or he has
been informed about.

Dynamic logic and epistemic logics are naturally multi-modal logics, that is,
they contain several modal operators, which are not definable from each other. How-
ever, the various modalities encompass orthogonal dimensions so to speak. Although
agents can be grouped, and indeed, for the investigations of commonknowledge some
agents are considered together, agents are not subject to the same sort of operations
that can be performed on programs. We will surely reach a point when we will want
to reason about the mental (or epistemic) states of robots and the consequences of
their actions in light of their epistemic states, but at the moment, a more straightfor-
ward combination of the latter two approaches is what is called dynamic epistemic
logic. The agents remain (idealized) people, and the actions are limited to those that
are capable of changing the epistemic state of an agent. Moreover, the changes in
the beliefs or knowledge of an agent can be expected to be systematic with respect
to their previous epistemic state and the action.

The third and slightly different approach we mention here focuses on ways in
which beliefs in a belief set (or in a belief base) change when new information is
received. An easy operation is expansion, which adds new beliefs to the stock of
already believed sentences. Contraction and revision are less straightforward oper-
ations, because they require the exclusion of some beliefs from the belief set. The
whole approach gets its name “belief revision” from the revision operation, which
is perhaps the most complicated among the three belief change operations that we
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listed.2 The removal of certain beliefs would be unproblematic if all the beliefs would
be mutually independent, however, when they are not—as they are in any interesting
belief set—the exclusion of certain beliefs must respect the logic that serves as the
inference engine in the belief set.

Lastly, the fourth approach we mention is about communicating information. The
flow of a river has been a metaphor for change since Heraclitus, which bestows
the impression of elusiveness on the changing object. Thus the term “information
flow” seems a particularlywell-chosen phrasewhen information is perceived as being
shaped by communication. It would be possible to select a concrete device or method
that aids the transmission of information and investigate its characteristics. Although
we do not consider any of those here, we rush to say that such considerations are
practically important. From a more abstract point of view, information flows through
channels between sites, which may support certain types (i.e., formulas). Channels
may be typed by constraints, which are compound formulas, and channels themselves
may have operations performed on them (not completely unlike how programs can be
manipulated). The regularities that sites, channels, types and constraints must obey
can be described in a formal theory called channel theory, that is somewhat similar
to a typed natural deduction system.3

In this section we have already seen certain connections between logic and infor-
mation. Now we proceed to explicate the more specific relationship that is behind
information based logics.

2 Information in Logic

According to an old sentiment tautologies do not say anything about the world. This
idea goes back (at least) to Wittgenstein’s Tractatus (1999, p. 29, 1–1.2). Roughly
speaking, if the world is the sum of some facts, and a tautology such as A ∨ ¬A (“A
or not A”) is always true nomatter what the facts are, then A ∨ ¬A cannot distinguish
between those states of the world in which certain facts are present and those states
in which the same facts are absent. This is contrasted with other sentences (or sets
thereof), let us say, { B,¬C ∧ (D ∨ E) }. If the latter set of sentences is satisfied by
the current state of the world, then a fact that supports B must be the case in the
world. Similarly, there is a fact that ¬C , and a fact that D ∨ E . (We tacitly assumed
that the letters stand for different independent propositions, and the whole set is not
contradictory.) Were a set contradictory, it could not be considered to be satisfied
by any state of the world, because there can be no fact or facts that support both F
and ¬F .

The idea that the world is a collection of facts may be a good first approximation
to describe a situation using classical propositional logic, but such a description
hardly seems plausible outside an informal explanation of a completeness proof for

2See for example Gärdenfors and Rott (1995) for a survey.
3See for example Barwise (1993).
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some proof system. Both logic and physics made enormous steps forward since the
early part of the 20th century, and the idea that the structure of reality adheres to
theories which can be presented in classical (propositional) logic looks completely
untenable now. Indeed, it is difficult to see why logic (of any kind) would be suitable
to emulate the structure of the world, rather than to function merely as a framework
for descriptions of the world.

The connection between completeness proofs and facts about the world can be
depicted as a historical development. Rudolf Carnap loosened the tight connection
between factual statements and the world by talking about state-descriptions, which
can be thought to be complete, that is, they can provide full descriptions of how
the world is or could be. (Of course, the fullness of the description is modulated
by the choice of the language.) Through the work of several logicians, including
A. Lindenbaum, Leon Henkin, Stig Kanger, Jaakko Hintikka and Saul Kripke, maxi-
mally consistent sets of sentences became a staple of canonical models that in model
theory and in the semantics of modal, intuitionistic and other intensional logics are
frequently called possible worlds. Carnap’s experience with the completeness of the
system S5 shows that it is useful to consider state-descriptions or possible worlds
without much metaphysical weight.

Once logic has been successfully freed from the looming confusion stemming
from so-called metaphysical commitments, we can see that formal semantics for
logics are a suitable tool to make explicit the information that is contained in a
sentence and what can be conveyed when the sentence is communicated.

Defining a semantics for a logic can start with algebraizing a logic, that is, with
the Lindenbaum algebra of the logic. This process is lossy, because certain elements
of the information about formulas are discarded, and it is an abstraction in a philo-
sophical sense of the word. Metaphorically speaking, algebraization sharpens our
picture of a logic. Some logics can be given various semantics, for instance, alge-
braic semantics, a semantics utilizing finitely many truth values, a semantics built
from elements of proofs, or a category-theoretic semantics. A sort of semantics that
proved to be very fruitful since the pioneeringwork of Tarski on the semantics of clas-
sical logic, is a semantics that comprises sets together with relations and functions.
For decades, a semantics that was couched in anything else than in terms of sets, was
not considered “truly mathematical.” In this sense, the so-called term semantics for
λ-calculus and for combinatory logic were unsatisfactory compared to Dana Scott’s
work where functions are interpreted as continuous functions in a topology defined
on a complete lattice.

In a set-theoretic semantics a formula is interpreted—roughly speaking—as a
set of situations, which is the information content of the sentence. If a logic cannot
distinguish between its theorems, on one hand, and between its contradictions, on
the other, then theorems are maximally informative, whereas contradictions are void
of information. (Alternatively, theorems are empty of information and contradictions
provide overabundant information, if we size up information by the converse of ⊆.)

For non-classical logics, these kinds of semantics are often labeled by Kripke’s
name, and for relevance logics in particular, by those of Meyer and Routley. Dunn’s
gaggle theory both encompasses and generalizes the standard Kripke-style and
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Routley–Meyer-style semantics for a whole range of non-classical logics. Gaggle
theory ties together the starting point for the definition of a semantics and the set-
theoretic semantics: gaggles are various algebras motivated by logics and gaggle
theory constructs set-theoretic representations of gaggles. The soundness and com-
pleteness theorems for logics become special instances of mathematical representa-
tion theorems.

Finding a suitable semantics for various non-classical logics was a formidable
challenge in the 1960s, especially so for relevance logics. Dunn had the idea that
expanding the concept of possible worlds might alleviate the difficulties. He first
considered pairs of sets in a semantics for FDE which has no nested implications; he
called these pairs proposition surrogates. The first element of the pair can be viewed
as the set of situations that carry positive information about a formula, whereas the
second element of the pair adds negative information. Dunn then was able to extend
a slight modification of this semantics to allow for implications in the context of the
logic R-mingle (or RM, that is, R with the mingle axiom added). He stipulated that
the set of situations is linearly ordered and he required that each situation provide
either positive or negative information for a given proposition surrogate. (A linear
order is simpler than the partial order in Kripke’s semantics for intuitionistic logic;
in the semantics for FDE, a situation may provide neither positive nor negative
information.) Thus, Dunn defined the first set-theoretic semantics for a relevance
logic, but this semantics turned out not to be completely general in the sense of
gaggle theory, because the implication ofRM ismodeled froma binary relation rather
than from a ternary one. Having created the general framework—gaggle theory—to
provide set-theoretic semantics for non-classical logics, Dunn gave semantics for
several other non-classical logics including the Lambek calculi, negation-free modal
logics, linear logic and structurally free logics. He has also given information based
interpretations of the ternary relation in the Routley–Meyer semantics.

Syntactic calculi are usually provided with sound and complete semantics, which
suggests that proof systems also encompass the information that can be manipulated
in a logic. It is perhaps less clear how the various components of axiomatic or
natural deduction systems contribute to all the information that can be used in the
process of proving theorems in a calculus. However, it should be mentioned that
Dunn invented not only tableaux for FDE, but he also introduced a new type of
sequent calculi, originally for the negation-free fragment of the relevance logic R.
These sequent calculi turned out to be very successful in formalizing positive logics
with distributive conjunction and disjunction (and later on were further developed
by Belnap into display logics). Instead of going into speculations as to how we
should think about the two kinds of structures in these sequent calculi in terms of
information, we simply point out that Dunn’s research yielded powerful new results
and influential ideas not only in the area of information based logics but also in proof
theory and in algebraic studies of logic.
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3 Threads of Ideas

What follows after this introduction is a series of papers together with a response
to them. The papers are connected to the work of Dunn in various ways, and there
are other thematic links between the papers. In a collection, papers are inevitably
linearly ordered, and in the case of this particular volume it seemed that splitting
the whole set of the papers into groups would not be helpful for the reader. Instead,
the papers are arranged so that the adjacent papers have some connections between
them, thereby, creating a path in the landscape of ideas, so to speak.

The paper by Avron deals with the logic RM (R-mingle), which grew out of some
early research of Dunn (with S. McCall). Relevance logics, including the logic called
entailment, are often motivated by the desire to have a connective (e.g.,→), which is
better aligned with a relevant consequence relation (that mandates the use of all the
premises) than the conditional connective of two-valued logic. Avron proves several
metatheorems about RM (including some earlier results) and gives rigorous criteria
to position RM as a member of the family of relevance logics.

The usefulness of RM, more precisely of RM3, the 3-valued version of RM, is
shown in the next paper. Mortensen considers descriptions of mathematical struc-
tures that result from identifying elements of two (distinct) structures. The prevalent
mathematical approach is to form a quotient structure with a congruence relation,
that is, to “typelift” the whole combined structure. A typical example is modular
arithmetic, where numbers with the same remainder (mod n) are the elements of an
equivalence class. Mortensen uses a topological example, in which the disjoint union
of two spaces is formed save a pair of points, which are identified. RM3 allows for
theories which include both a formula and its negation—without the theory becom-
ing trivial. Mortensen argues that merging the (consistent) theories of the component
structures into a inconsistent RM3 theory is the natural counterpart of the operation
that combines the mathematical structures themselves.

Ulrich’s paper continues the theme of considering RM, however, from an
axiomatic point of view. The economy of an axiom system may be measured along
different lines: the number of axioms, the (total) length of the axioms, the number
of rules or perhaps even the length of the proofs of select theorems. This paper is
concerned with implicational fragments of logics; hence, comparisons by length and
by the number of axioms are forthright. Ulrich shows that RM→ can be axiomatized
by two axioms, and even by a single one. Additionally, he provides numerous small
axiomatic systems for implicational fragments of other logics—from strict impli-
cation, entailment, BCK, BCI to the implicational fragments of intuitionistic and
classical logics.

RM is the starting point of Maksimova’s paper too. RM itself is not a finitely-
valued logic, however, by a result of Dunn, all its proper extensions are, that is,RM is
pretabular. Maksimova considers similar logics—except that they are extensions of
intuitionistic logic. Then she turns to the positive fragment of intuitionistic logic and
minimal logic, as well as to modal and relevance logics. Maksimova also notes the
complexity of questions such as the tabularity problem of superintuitionistic logics.
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Most of these problems turn out to be computationally intractable. Intuitionistic,
minimal and certain normal modal logics have a handful of pretabular extensions,
whereas RM is only one of infinitely many pretabular extensions of R (the logic of
relevant implication).

Urquhart’s paper is about proofs of the admissibility of the γ rule for E andR. The
result was first proved byDunn andMeyer. Urquhart uncovers—with some help from
Dunn—that the original proof had a strong connection to the completeness theorem
of RM, because a key trick in the proof of the admissibility of γ is to duplicate
elements in the algebra of R (or E, respectively) on which negation has a fixed point.
Urquhart outlines two further proofs, both of which rely (eventually) on the ternary
relational semantics of relevance logics.

Mares interprets the ternary relation in the semantics of logics in terms of agents
manipulating sources of information. It might seem that there is no need to interpret
a semantics, however, formal semantics sometimes benefit from informal interpreta-
tions, especially, when it comes to their wider acceptance. Mares’s interpretations—
the productive interpretation and the functional interpretation—are adequate for
multiplicative–additive linear logic (MALL) and contraction-free relevance logic
(RW), and for the logics of lattice-R (LR) and relevant implication (R), respectively.
Sources of information are typed, and rules govern how combinations of sources of
information result in changes in their types.

Sequoiah-Grayson’s paper is also about interpreting the ternary accessibility rela-
tion R. He develops a theme from some recent work by Dunn. Sequoiah-Grayson
takes the relevance interpretation of R to mean epistemic relevance for an agent.
Then the ternary relation connects information states. R is decomposed into an epis-
temic action and a binary relation between information states. Several epistemic
actions can be imagined, and accordingly, Sequoiah-Grayson considers which prop-
erties of an epistemic action appear to be plausible when the action combines pieces
of data, a pair of programs, or applies a program to data. Although contemporary
computer science treats programs as data on purpose, a careful analysis of these three
kinds of epistemic operations may reveal differences in the logics that are motivated
by the different epistemic operations.

Brady in his paper connects the semantics of relevance logics with information
differently than the previous two authors. Brady reserves the term “information” for
true information and focuses on content (whichmeans herewhat is called information
elsewhere in the volume). He considers the logic of meaning containment (MC),
which is a contraction- and distribution-free logic. In the interpretation, situations
are taken to be pieces of content with certain operations on them, whereas the ternary
accessibility relation is replaced by a combination of a binary relation and a unary
operation. Brady also discusses the connections between his semantic approach and
the work of Dunn and Mares who draw distinctions in the semantics of relevance
logics, for instance, between prime and non-prime information, and true and non-true
information.

Wansing’s paper focuses on how positive and negative information may be used
in the interpretation of substructural logics. Negation applied to a formula creates
negative information, and various kinds of negation create various kinds of negative
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information. Dunn investigated different negations, especially, in the framework of
gaggle theory. Wansing scrutinizes split negations (i.e., Galois negations) in the case
where they are defined from a falsity constant by implications, similarly to how nega-
tion is definable in intuitionistic logic. It is often thought that facts support certain
statements, but the justification of negative statements may require more than the
mere lack of support for their positive counterparts. Similarly, in certain interpreta-
tions of intuitionistic logic, there is an asymmetry between what is true and what is
not true. Wansing argues that it is possible to view positive and negative informa-
tion in a symmetric fashion by appeal to direct verification and direct falsification,
or by considering the four-valued logic FDE and the logic of the sixteen-element
tri-lattice.

TheAmerican Plan occurring in the title of Shramko’s paper, refers to the idea that
the four truth values that can be used in an interpretation ofFDEmaybe reconstructed
as subsets of the set of “usual truth values,” that is, { T, F }. Dunn worked out several
interpretations ofFDE, each rooted in this idea, and he defined a version of truth trees
as well as a sieve for FDE; the latter are syntactic implementations of the semantic
insights. Shramko considers the bi-lattice 4 in which the two orders are the truth and
the information orders. A natural step is to consider a tri-lattice with sixteen elements
where falsity becomes the third order of the tri-lattice. Shramko presents a further
generalization in which a multi-lattice is considered with multiple order relations
that in turn allow several consequence relations to be defined.

Zhou shows in his paper how to combineFDE, and in general,De Morgan lattices
with belief functions. Belief functions—compared to multiple truth values—can be
seen as a different aspect of the relation between a sentence and reality,which involves
(tacitly) an agent too. The paper also mentions the complexity of validity and satisfi-
ability: they turn out to be the same as those for two-valued propositional logic. That
is, the replacement of orthonegation (of two-valued logic) and the addition of belief
functions does not increase the complexity of the resulting logics. Zhou also proves a
representation theorem for finite De Morgan lattices using join-irreducible elements
with an order-inverting operation of period two defined on sets of join-irreducible
elements.

Czelakowski deals with probabilities per se, without (explicitly) stipulating an
agent or even beliefs held by an agent. He considers probabilistic interpretations
of predicates: an n-place predicate may hold of an n-tuple of objects with proba-
bility p, where p ∈ [0,1] (rather than simply 0 or 1). The characteristic functions
of predicates are cumulative distribution functions, which give rise to a De Morgan
lattice. Czelakowski shows that further operations are definable in a natural way, for
instance, convolution, bounded addition and strong conjunction. These operations
may be added to the De Morgan lattice and the augmented algebra can be bounded
(by a 0 and a 1). The operations are analogs of Łukasiewicz’s logic (with uncountably
many values) in the sense that the consequence relation on the algebra of cumulative
distribution functions (without convolution) coincides with the consequence relation
in Łukasiewicz’s logic.

De Morgan lattices are distributive lattices in which the negation operation obeys
the so-called De Morgan laws. Hartonas investigates representations of negation
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operations fromDunn’s kite of negationswhen they are added to a lattice (which is not
stipulated to be distributive). A difficulty in a set-theoretic representation of a lattice
is that there is no obvious operation on sets for ∨ once ∩ (or ∪) has been chosen to
stand for∧ (or vice versa). Hartonas’s representation of lattices uses a neighborhood
of information sites, where the neighborhood is understood in a similar sense as in the
semantics of certain non-normal modal logics: the neighborhood of an information
site is a set of information sites. Hartonas also considers the addition of a possibility
operator to the language, which together with negation allows for impossibility to
be expressed; impossibility implies more than the lack of evidence of possibility at
an information site. Both negation and possibility are unary operations and they are
represented using binary relations along the lines of the generalized Galois logics
approach of Dunn.

The paper by Goldblatt and Grice proves a categorial duality theorem between
Boolean contact algebras and mereotopological spaces. A special feature of this
representation result is that a Boolean contact algebra is a BA with a binary relation
which can be viewed as extensive connection between regions. In the context of logic,
the typical representations are those of Lindenbaum algebraswhich usually have only
an order relation (perhaps tacitly). On the topological side, a mereotopological space
has a subalgebra of the closed regular sets of the topology which is a BA. Moreover,
the sets thatmake up the selected subalgebra constitute a closed basis for the topology.
The authors define morphisms between Boolean contact algebras, on one hand, and
between mereotopological spaces, on the other, and they prove full duality between
the respective categories.

The paper by Allwein and Harrison deals with distributed modal logics, the
components of which are normal modal logics that have a BA reduct in their alge-
bra. Multi-modal logics typically intertwine several modalities within one logic—
possibly including axioms characterizing the interactions between different modali-
ties. Distributed logics do notmerge the separatemodal logics, rather the connections
between the logics are regulated by modalities. A motivation for distributed logic is
the aim to model information access in systems, where certain parts of information
contained in one component have to be shielded when another component attempts
to access the information. Allwein and Harrison provide a set of axiom schemas,
and algebraize distributed modal logic using heterogenous algebras. A semantics for
the logic is defined based on neighborhood frames. The authors also investigate the
properties of implication operations that are definable. Non-interference in a com-
pound system means that a user with restricted access cannot distinguish filtered
output from an unrestricted source from unfiltered output from the same source. The
paper shows how non-interference can be modeled in distributed logic by a special
simulation relation.

Van Benthem’s paper continues the idea of handling information on different
levels, though here the levels are thought be models that have fewer or more details.
The level chosen in this paper is propositional epistemic logic enrichedwith operators
that go beyond the standard K (knowledge) and B (belief) operators. Announcement
and radical update are epistemic actions, which can be viewed as restrictions on the
model (as a set of possible worlds). Having investigated the relationship between
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epistemic and plausibility models, van Benthem turns to evidence models, in which
an evidence set is a set of possible worlds. He shows axiomatizability for conditional
addition of evidence and conditional belief with evidence addition. An operator f
can be traced on the level of evidence models by g when f and g commute with
the transformation that turns an evidence model into a plausibility model. The paper
shows that deletion of evidence cannot be traced, which supports the claim of the
paper that information can be used and modeled in several ways at various levels
in logic.

The paper by Moss shows another way how a logic allows us to manipulate
information about a situation without having comprehensive information about all
aspects of a situation. He extends a syllogistic logic with (generalized) quantifiers
“at least as many as” and “(strictly) more than” (assuming finite sets of objects).
The logic allows straightforward formalizations of English sentences that contain
these expressions or the traditional “all” and “some” quantifiers. Moss provides two
axiom systems—onewith and the other without negation. These syllogistic logics are
decidable, and the author wrote a program that generates a proof or a counterexample
for a given inference. The interpretation of the quantifiers is unproblematic, so is the
soundness of the axiom system. However, the language of syllogistic logic does not
allow us to talk about individuals, which means that a Henkin-style completeness
proof that relies on amodel constructed from pieces of the language cannot be carried
out. The bulk of the paper is the completeness proof itself, which shows that it is not
an easy task to recover in a different form the information that can be reasoned with
in these syllogistic logics.

While the above descriptions aim at providing a path, I should emphasize that the
connections between these papers and Dunn’s work as well as between the papers
themselves are much richer than what could be squeezed into this section. I hope
that the reading of these papers will be an enjoyable and worthwhile experience.
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RM and its Nice Properties

Arnon Avron

Abstract Dunn–McCall logic RM is by far the best understood and the most
well-behaved logic in the family of logics developed by the school of Anderson
and Belnap. However, it is not considered to be a relevant logic by the relevant logi-
cians, since it fails to have the variable-sharing property. Instead, RM is usually
characterized as being “semi-relevant,” without explaining what this notion means.
In this paper we suggest a plausible definition of semi-relevance, and show that
according to it, RM is a strongly maximal semi-relevant logic having a conjunction,
a disjunction, and an implication. We also review and prove the most important nice
properties of RM, especially strong completeness results about it (the full proofs of
which are difficult to find in the literature).

Keywords Degrees of truth ·Fuzzy logics ·Paraconsistent logics ·Relevant logics ·
Semi-relevance

1 Introduction

The central idea behind the design of R→, the basic, purely implicational fragment
of the relevant logic R, is that ϕ → ψ should relevantly follow from T iff there is
a proof of ψ from T , ϕ in which ϕ is actually used.1 But what exactly is meant by
‘T , ϕ’ in this formulation? In textbooks on logics, this is usually just an abbreviation
for T ∪ {ϕ}, where T is a set of formulas. However, this interpretation is problematic
from the point of view of R→. To see why, consider the question whether ϕ → ϕ

should relevantly follow from the assumption ϕ. According to the above criterion,
this is the case iff there is a proof of ϕ from ϕ, ϕ that actually uses ϕ. By the standard
interpretation, this means that there is a proof of ϕ from {ϕ} ∪ {ϕ} that uses ϕ, i.e.,
there is a proof of ϕ from {ϕ} that uses ϕ. This is certainly the case, and so we should

1This principle is practically abandoned in the full system R.
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conclude that indeed ϕ → ϕ relevantly follows from ϕ, implying that ϕ → (ϕ → ϕ)

should be provable. Unfortunately, this formula is not provable in R→. The reason
is that the above criterion leads to R→ only if the term ‘T , ϕ’ in its formulation is
understood as themultiset which is obtained by adding (a copy of)ϕ to themultiset T .

It somewhat looks strange to take relevant entailment as a relation between multi-
sets of formulas and formulas, rather than between sets of formulas and formulas (as
consequence relations are usually and most naturally taken to be). This observation
motivated J.M. Dunn and S. McCall in investigating the results of adding to R and its
fragments themingle axiom ϕ → (ϕ → ϕ) considered above. In the case ofR→, this
addition yields RM0→, which is the minimal system in which the above criterion for
relevant entailment is met, with the latter taken as a relation between sets of formulas
and formulas. In the case of the full system R, it yields a very interesting system
called RM (“R-mingle”). As noted in Dunn and Restall (2002), Dunn–McCall logic
RM “is by far the best understood of the Anderson–Belnap style systems.” However,
it is not considered to be a relevant logic by the relevant logicians, since it fails to
have the variable-sharing property. Instead, RM is usually characterized as being
“semi-relevant,” without explaining what this notion means. In this paper we sug-
gest a plausible definition of semi-relevance, and show that according to it, RM is
a strongly maximal semi-relevant logic having a conjunction, a disjunction, and an
implication.We also review and prove known important properties ofRM, especially
strong completeness results whose full proofs are difficult to find in the literature.

2 Preliminaries

2.1 Propositional Logics

In the sequel, L denotes a propositional language. The set of well-formed formulas
ofL is denoted byW(L), and ϕ,ψ, σ vary over its elements. T ,S vary over theories
of L (where by a ‘theory’ we simply mean here a subset of W(L)), and Γ,Δ vary
over finite sets of formulas. We denote by Atoms(ϕ) (Atoms(T )) the set of atomic
formulas that appear in ϕ (in formulas of T ).

Definition 2.1 A (Tarskian) consequence relation (tcr) for a language L is a binary
relation� between theories inW(L) and formulas inW(L), satisfying the following
three conditions.

[R] Reflexivity: ψ � ψ (i.e., {ψ} � ψ).

[M] Monotonicity: If T � ψ and T ⊆ T ′, then T ′ � ψ .

[C] Cut (Transitivity): If T � ψ and T ′, ψ � ϕ, then T ∪ T ′ � ϕ
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Definition 2.2 Let � be a Tarskian consequence relation for L.

• � is structural, if for every L-substitution θ and every T and ψ , if T � ψ , then
θ(T ) � θ(ψ).

• � is non-trivial, if p � q for distinct atoms p, q ∈ Atoms(L).
• � is finitary, if for every theory T and every formula ψ such that T � ψ , there is
a finite theory Γ ⊆ T such that Γ � ψ .

Note 2.1 The condition of non-triviality is strictly stronger than the more familiar
condition of consistency used by Dunn in Sect. 29.4 of Anderson and Belnap (1975),
which says that � q for q ∈ Atoms(L). Thus the tcr � for which T � ϕ iff T 	= ∅
is structural, finitary, and consistent, but not non-trivial.

Definition 2.3

• A (propositional) logic is a pair L = 〈L,�L〉, whereL is a propositional language,
and �L is a structural and non-trivial tcr for L.2

• A logic 〈L,�L〉 is finitary if �L is finitary.

Definition 2.4 Let L1 = 〈L1,�L1〉 and L2 = 〈L2,�L2〉 be propositional logics.
• L1 is an extension of L2, if L2 ⊆ L1 and �L2 ⊆ �L1 .
• L1 is a simple extension of L2, if L2 = L1 and �L2 ⊆ �L1 .
• L1 is a proper extension of L2, if L2 ⊆ L1 and �L2 � �L1 .
• L1 is a strongly proper extension of L2, if L2 ⊆ L1, and there is a sentence ϕ of
L2 such that �L1 ϕ but �L2 ϕ.

• L1 is a conservative extension of L2, ifL2 ⊆ L1, and T �L1 ψ iff T �L2 ψ when-
ever T ∪ {ψ} ∈ 2W(L2).

• L1 is a weakly conservative extension of L2, if L2 ⊆ L1, and �L1 ψ iff �L2 ψ

whenever ψ ∈ W(L2).
• L1 is an axiomatic extension of L2, if L2 ⊆ L1, and there is a set S of sentences in
L1 such that�L1 is the minimal structural tcr� onL1 which satisfies the following
conditions: �L2 ⊆ �, and � ϕ for every ϕ ∈ S.

Definition 2.5 Let L = 〈L,�L〉 be a propositional logic.
• A binary connective⊃ ofL is called an implication for L if the classical deduction
theorem holds for ⊃ and �L. That is,

T , ϕ �L ψ iff T �L ϕ ⊃ ψ.

• A binary connective∧ ofL is called a conjunction for L if it satisfies the following
condition:

T �L ψ ∧ ϕ iff T �L ψ and T �L ϕ.

2The condition of non-triviality is not always explicitly demanded, but we have found it (here and
elsewhere) convenient to include it in order to avoid uninteresting pathological cases.
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• A binary connective ∨ ofL is called a disjunction for L if it satisfies the following
condition:

T , ψ ∨ ϕ �L σ iff T , ψ �L σ and T , ϕ �L σ.

Definition 2.6 We call a logic normal if it has all the basic connectives above (con-
junction, disjunction, implication).3

Definition 2.7 Let L be a propositional language.

• A matrix for L is a tripleM = 〈V,D,O〉, where
(1) V is a non-empty set of truth values;
(2) D is a non-empty proper subset of V (the designated elements of V);
(3) O is a function that associates an n-ary function �̃M : Vn → V with every

n-ary connective � of L.
We say that M is (in)finite, if so is V .

• Let M = 〈V,D,O〉 be a matrix for L. An M-valuation for L is a function
ν : W(L) → V such that ν(�(ψ1, . . . , ψn)) = �̃M(ν(ψ1), . . . , ν(ψn)) for every
n-ary connective � of L and every ψ1, . . . , ψn inW(L).

• AnM-valuation ν is an M-model of a formula ψ , or ν M-satisfies ψ (notation:
ν �M ψ), if ν(ψ) ∈ D. We say that ν is an M-model of a theory T (notation:
ν �M T ), if it is an M-model of every element of T .

• Let M be a matrix for M. �M, the consequence relation that is induced by M,
is defined by: T �M ψ if every M-model of T is an M-model of ψ . We shall
denote by LM the logic 〈L,�M〉 which is induced byM.

Definition 2.8 Let L = 〈L,�L〉 be a propositional logic, and let M be a matrix
for L.
• If LM is an extension of L, we say that L is sound for M.
• If L is an extension of LM, we say that L is complete forM.
• M is a characteristic matrix for L, if L = LM (that is, if L is both sound and
complete for LM).

• LM is weakly sound for L, if for every ψ ∈ W(L), �M ψ implies that �L ψ .
LM is weakly complete for L, if �L ψ implies that �M ψ .

• M is a weakly characteristic matrix for L, if L is both weakly sound and weakly
complete for LM (that is, �M ψ iff �L ψ).

2.2 Some Basic Relevant Logics

In this section, we shortly review some basic relevant logics, together with their
properties that will be used later in our study of RM. (RM itself will be introduced
in Sect. 4.) We start with the central relevant logic R.

3Our notion of normality should not be confused with the notion of normality used in modal logics,
or the notion of normal theory used in Anderson and Belnap (1975).
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Definition 2.9 Let LR = { ∧,∨,→,¬ }.
Definition 2.10 R is the logic in LR which is induced by the system HR that is
presented in Fig. 1.

For our purposes, the most important property of R is the following theorem, an
(implicit) proof of which can be found, e.g., in Anderson and Belnap (1975, p. 301).

Theorem 2.11 ∨ is a disjunction for any axiomatic extension of R.

A particularly important fragment of R is its intensional fragment.

Definition 2.12 Let HR¬→ be the Hilbert-type systems in { ¬,→ }whose axioms and
rule are those axioms and rule of HR which do not mention ∧ or ∨ (i.e., [Id], [Tr],
[Pe], [Ct], [N1], [N2], and [MP]). R¬→ is the logic in { ¬,→ } which is induced by
HR¬→.

The following theorem has been proved by Meyer (see Anderson and Belnap
1975).

Proposition 2.13 R is a conservative extension of R¬→. In other words, HR¬→ axiom-
atizes the { ¬,→ }-fragment of R.

The most significant property of R¬→ is that very natural relevant deduction theo-
rems obtain for it. The simplest one is the following proposition from Avron (2014)
(originally due to Church).

Fig. 1 The proof system HR
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Proposition 2.14 Let L be an axiomatic extension of R¬→. Then L satisfies the fol-
lowing relevant deduction theorem:

T , ϕ �L ψ iff T �L ψ or T �L ϕ → ψ.

Another important property of R¬→ (see Anderson and Belnap 1975; Dunn and
Restall 2002) is the fact that it has a corresponding cut-free Gentzen-type calculus,
which can be used for a decision procedure. That system can also be used for an easy
proof of the next lemma.

Definition 2.15

• ϕ + ψ =D f ¬ϕ → ψ

• ϕ ⊗ ψ =D f ¬(ϕ → ¬ψ)

• ϕ ↔ ψ =D f (ϕ → ψ) ⊗ (ψ → ϕ)

Lemma 2.16 All instances of the following formulas are provable in HR¬→:

1. (ϕ ↔ ψ) → (ϕ → ψ) and (ϕ ↔ ψ) → (ψ → ϕ)

2. (ϕ + ψ) ↔ (ψ + ϕ) and ((ϕ + ψ) + σ) ↔ (ϕ + (ψ + σ))

3. (ϕ + ϕ) → ϕ

4. (ϕ1 → ψ1) → ((ϕ2 → ψ2) → ((ϕ1 + ϕ2) → (ψ1 + ψ2)))

5. (ϕ → σ) → ((ψ → σ) → ((ϕ + ψ) → σ))

6. ¬ϕ + ϕ

7. ¬¬ϕ ↔ ϕ

8. (¬ψ → σ) → ((ψ → σ) → σ)

9. (ψ → ¬σ) → ((ψ → σ) → ¬ψ)

10. (ϕ → (ϕ + ϕ)) ↔ (¬ϕ → (¬ϕ → ¬ϕ))

11. ((ϕ → ϕ) + (ψ → ψ)) ↔ (ϕ → (ψ → (ϕ + ψ))) ↔ ((ϕ → ψ) +
(ψ → ϕ))

With the help of [DisI1] and [DisI2], item 5 of Lemma 2.16 entails

Lemma 2.17 �R (ϕ + ψ) → ϕ ∨ ψ .

One more important property of R and R¬→ that we will need is given in the next
proposition.

Proposition 2.18 Every simple extension L of either R or R¬→ has the replacement
property, that is, if �L ψ ↔ ϕ, then �L σ {ϕ/p} ↔ σ {ψ/p} for every sentence σ

and atom p.

Another central purely intensional relevant logic is the following logic, which can
easily be seen to be a simple axiomatic extension of R¬→.
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Definition 2.19 Let HRMI¬→ be the Hilbert-type system in { ¬,→ } that is obtained
from HR¬→ by replacing the identity axiom [Id] by the mingle axiom:

[Mi] ϕ → (ϕ → ϕ)

RMI¬→ is the logic in { ¬,→ } which is induced by HRMI¬→.

RMI¬→ has been investigated in Avron (1984). It is shown there that it has the
following properties.

• the variable-sharing property4;
• a weakly characteristic infinite matrix that provides a decision procedure;
• Scroggs’ property (which RM has as well—see Theorem 6.9);
• an associated cut-free Gentzen-type system GRMI¬→ which provides a decision
procedure too.

GRMI¬→ can be used for verifying the next lemma. Alternatively, the lemma can
easily be proved with the help of Lemma 2.16, the definition of +, and the mingle
axiom.

Lemma 2.20 All instances of the following formulas are theorems of RMI¬→.

1. ψ + ψ ↔ ψ (and so ψ ↔ (¬ψ → ψ))
2. (ψ → σ) → (σ → (ψ → σ))

3. (ψ → σ) → (¬ψ → (ψ → σ))

4. ¬((ϕ → ψ) → (ϕ → ψ)) → ψ

5. ¬(ψ → σ) → ((ψ → σ) → σ)

6. ¬(ψ → σ) → ((ψ → σ) → ¬ψ)

7. (¬ψ → σ) → (¬ψ → (ψ → σ))

8. (σ → ¬ψ) → (σ → (ψ → σ))

3 Semi-relevance

In Avron (2014) we have tried to characterize the notion of a relevant logic. A central
part in that characterization was the presence of an implication → with certain
properties, including the famous variable-sharing property of Anderson and Belnap
(see Anderson and Belnap 1975). Now we turn to the problem of characterizing
“semi-relevance.” Naturally, this should be a weaker notion, for which the notion of
relevance is still relevant. Our idea is to look for general conditions, not depending on
the properties of any particular connective, which seem relevant. One such condition
that seems absolutely necessary was already given in Avron (2014):

4This was observed already in Parks (1972). See also (Anderson and Belnap 1975, p. 148).
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Definition 3.1 A logic L = 〈L,�L〉 satisfies the basic relevance criterion if for
every two theories T1, T2 and formulaψ , we have that T1 �L ψ whenever T1 ∪ T2 �L

ψ and T2 has no atomic formulas in common with T1 ∪ {ψ}.
Note 3.1 As explained in Avron (2014), the idea behind the basic relevance criterion
is that if a theory T2 shares no content with T1 ∪ {ψ} then it should not be relevant to
the question whether T1 � ψ or not. These idea and criterion were already implicit in
the claim denoted by RM87, on p. 418 of Anderson and Belnap (1975), and almost
explicit in the discussion that follows it. It is argued there that this criterion is in fact
stronger than the usual relevance criterion (i.e., the variable-sharing property). RM87
(actually, the discussion that follows it) claims thatRM andR satisfy it. Though these
claims are correct, their proofs in Anderson and Belnap (1975) are not: they use a
false deduction theorem for those logics.5 Below we provide a correct proof in the
case of RM (see Proposition 6.5).

The following proposition is an immediate consequence of Definition 3.1.

Proposition 3.2 Suppose L = 〈L,�L〉 is a logic that satisfies the basic relevance
criterion. Then:

1. if T �L ψ , then either �L ψ , or T and ψ share an atomic formula;
2. T �L q whenever q is an atom that does not occur in any formula of T ;
3. L is paraconsistent with respect to any (primitive or defined) unary connective ¬

of L, i.e., ¬p, p �L q in case p and q are distinct atoms.

Example 3.2 1. Since q follows from { p,¬p } in classical logic and in intuitionis-
tic logic, these logics do not satisfy the basic relevance criterion. However, their
positive fragments are easily seen to satisfy it.

2. LetM = 〈{ t,�, f }, { t,�},O〉 be a three-valued logic. Assume that all oper-
ations of O are {� }-closed (i.e., that �̃(�,�, . . . ,�) = � for every connec-
tive � of the language). Then LM satisfies the basic relevance criterion. That
is, if Atoms(T2) ∩ Atoms(T1 ∪ {ψ}) = ∅, then by assigning � to any p in
Atoms(T2) we can turn any countermodel of T1 �M ψ into a countermodel
of T1, T2 �M ψ .

Proposition 3.3 Suppose L = 〈L,�L〉 is a finitary logic that satisfies the basic rel-
evance criterion. Then L has a characteristic matrix.

Proof A logic which satisfies the basic relevance criterion is by definition uniform
(Urquhart 2001), while according to Łoś–Suszko’s Theorem (see Łoś and Suszko
1958; Urquhart 2001), a uniform finitary propositional logic has a single character-
istic matrix. �

5Thus if T is {p}, andψ is p ∧ (q → q), thenψ follows from T in RM, but there is no ‘appropriate
form of the deduction theorem’ for either R or RM that would justify the argument outlined in those
proofs.
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Example 3.2 shows that we cannot be satisfied with the basic relevance criterion.
Thus both of the positive logics mentioned in its first item have q ⊃ (p ⊃ q) as
a valid formula, while the rejection of this “paradox of material implication” has
been one of the main motivations for developing relevant logics. Proposition 3.3
suggests a natural direction for going beyond the basic relevance criterion: to impose
appropriate constraints on the characteristic matrices of the logics which satisfy it
(whose existence is guaranteed by that proposition). Next is an analysis which leads
to a reasonable constraint of this sort.

Let L be one of the three-valued logics mentioned in Example 3.2. Then any
two paradoxical formulas are necessarily indistinguishable in L. (Formally, this is
reflected by the fact that p,¬p, q,¬q, ψ[p/r ] �L ψ[q/r ] for every p, q, r andψ .)
Intuitively, this state of affairs is in a direct conflict with principles of relevance.
More generally, if a logic is induced by a finite matrix with n elements, then in any
state of affairs any set of n + 1 formulas necessarily includes two different formulas
which are absolutely indistinguishable in that state of affairs. (Formally, if ν is a
valuation, and ψ1, . . . , ψn+1 are formulas, then there are 1 ≤ i < j ≤ n + 1 such
that for any formula ϕ and any atom p, ν(ϕ[ψi/p]) = ν(ϕ[ψ j/p]).) This again is in
conflict with the idea of relevance. It seems counterintuitive that there is an a priori,
logically dictated, fixed finite bound on the number of distinct propositions (or even
just distinct paradoxical propositions). According to this intuition, any characteristic
matrix for a relevant logic should necessarily be infinite.Actually, it seems reasonable
to make a little bit stronger demand.

Definition 3.4 (Minimal semantic relevance criterion) A logic L satisfies the min-
imal semantic relevance criterion if it does not have a finite weakly characteristic
matrix.

Note 3.3 The main reason that the minimal semantic relevance criterion forbids a
relevant logic L to have even a finite weakly characteristic matrix is that the existence
of finite weakly characteristic matrix is often reflected in the validity of counter-
intuitive (from a relevance point of view) formulas. Thus, the existence of a 3-valued
weakly characteristic matrix is frequently reflected by a formula of the form

(p1 ↔ p2) ∨ (p1 ↔ p3) ∨ (p1 ↔ p4) ∨ (p2 ↔ p3) ∨ (p2 ↔ p4) ∨ (p3 ↔ p4),

where ↔ and ∨ are appropriate equivalence and disjunction connectives, respec-
tively, available in the logic.

Note 3.4 To the best of our knowledge, our minimal semantic relevance criterion has
never been suggested before as a criterion for relevance (not even in Avron (2014)).
Nevertheless, all the main systems that have been designed to be relevant logics do
satisfy it (see Anderson and Belnap 1975).

The two criteria suggested above do not seem sufficient for characterizing relevant
logics. However, we believe that they do suffice for characterizing semi-relevance.

Definition 3.5 A logic L which satisfies both the basic relevance criterion and the
minimal semantic relevance criterion is called semi-relevant.
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4 Introducing RM and RM¬
→

Now we turn at last to the subject of this paper, the logic RM.

Definition 4.1

1. HRM is the Hilbert-type system which is obtained from HR by replacing the
identity axiom ϕ → ϕ by the mingle axiom [Mi] (Definition 2.19).

2. RM is the logic in LR which is induced by HRM.
3. RM¬→ is the { ¬,→ }-fragment of RM.

The next proposition lists some of the most characteristic properties of RM.

Proposition 4.2

1. �RM ϕ + ϕ ↔ ϕ

2. �RM ϕ ∧ ψ → ϕ + ψ

3. If �RM ϕ, and �RM ψ , then �RM ϕ + ψ .
4. Each of the three equivalent formulas in the last item of Lemma 2.16 is provable

in RM.

Proof 1. Immediate from item 1 of Lemma 2.20.
2. First substitute in item 4 of Lemma 2.16 ϕ ∧ ψ for ϕ1 and ϕ2, ϕ for ψ1, and

ψ for ψ2. Then by using the conjunction axioms of HRM, we get that �RM

(ϕ ∧ ψ + ϕ ∧ ψ) → ϕ + ψ . Hence the claim follows from the first part.
3. Immediate from item 2 and the adjunction rule [Ad].
4. From item 3 it follows that �RM (ϕ → ϕ) + (ψ → ψ). Now apply item 11 of

Lemma 2.16. �

It was observed by Parks (1972) (see also Anderson and Belnap 1975, p. 148) that
RM¬→ is not identical withRMI¬→. Indeed, item 3 (or 4) of Proposition 4.2 implies that
unlikeRMI¬→,RM¬→ does not have the variable-sharing property for→. Accordingly,
our first task is to provide an axiomatization of RM¬→. This is what we do next.

Definition 4.3 1. HRM¬→ is the Hilbert-type system that is obtained from HR¬→ by
replacing the identity axiom ϕ → ϕ by axiom [++] below.

[++] (ϕ → ϕ) + (ψ → ψ)

2. LHRM¬→
is the logic induced by HRM¬→.

Proposition 4.4 RMI¬→ ⊆ LHRM¬→
.

Proof By substituting ϕ forψ in [++] and in the last item of Lemma 2.16, we get that
�HRM¬→

ϕ → (ϕ → ϕ + ϕ). Using contraction, it follows that �HRM¬→
ϕ → ϕ + ϕ.

By item 10 of Lemma 2.16 (using item 7 of that lemma), this implies that the mingle
axiom [Mi] is provable in HRM¬→. �
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Proposition 4.5 If T ∪ {ϕ} is in the language { ¬,→ }, and T �HRM¬→
ϕ, then

T �RM¬→
ϕ.

Proof Immediate from the last item of Proposition 4.2. �

That the converse of Proposition 4.5 also holds (and so RM¬→ = LHRM¬→
) will be

shown in Theorem 5.11.

5 Semantics of RM

In this section, we introduce a semantics forRM (andRM¬→) for which it is (strongly)
complete.

Definition 5.1 (Sugihara chains) A Sugihara chain is a triple 〈V,≤,−〉 such that
V has at least two elements, ≤ is a linear order on V , and − is an involution for ≤
on V (i.e., for every a, b ∈ V , − − a = a, and −b ≤ −a whenever a ≤ b).

Example 5.1 There are plenty of examples of Sugihara chains in all areas of math-
ematics. The most important for our needs are the following.

• SR = 〈R,≤,−〉, SZ = 〈Z,≤,−〉, SZ∗ = 〈Z − {0},≤,−〉, SQ = 〈Q,≤,−〉, and
SQ∗ = 〈Q − {0},≤,−〉, whereR is the set of real numbers,Z is the set of integers,
Q is the set of rationals, ≤ is the usual order relation on R, and −a is the usual
additive inverse of a.

• The finite substructures SZn = 〈Zn,≤,−〉 and SZ∗
n
= 〈Z∗

n,≤,−〉 of SZ, where for
n > 0 Zn = { z ∈ Z : − n ≤ z ≤ n }, and Z

∗
n = Zn − {0}.

• S[0,1] = 〈[0, 1],≤, λx . 1 − x〉, where≤ is again the usual order relation. Note that
here the underlying ordered set is bounded and complete.

The next two lemmas about ordered sets will be useful in the sequel.

Lemma 5.2 Let n > 0 be a natural number. Every finite Sugihara chain which has
2n + 1 elements is isomorphic to SZn , and every finite Sugihara chain which has 2n
elements is isomorphic to SZ∗

n
.

Proof By an easy induction on n. �

Lemma 5.3 Every countable Sugihara chain can be embedded in S[0,1].

Proof It is well known that every countable linearly ordered set can be embedded in
any closed interval [a, b] of R, so that a is assigned to the minimal element of the set
(if such exists), and b is assigned to the maximal element of the set (if such exists).
Now let 〈V,≤,−〉 be a countable Sugihara chain, and let D = {a ∈ V : − a ≤ a}.
First, suppose that there is a ∈ V such that −a = a. It is easy to prove that in such
a case a is unique, and it is the minimal element of D. Let f be an embedding of
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D into [1/2, 1] such that f (a) = 1/2, and extend f to the whole of V by letting
f (x) = − f (−x) in case x /∈ D. (Note that if x /∈ D then −x ∈ D, because ≤ is
linear, and − − x = x .) If there is no a ∈ V such that −a = a, then we let f be
any embedding of D into [2/3, 1] (say), and we again extend f to the whole of V
by letting f (x) = − f (−x) in case x /∈ D. In both cases, f is easily seen to be an
embedding of 〈V,≤,−〉 into [0, 1]. �

Definition 5.4 Let S = 〈V,≤,−〉 be a Sugihara chain, and let a, b ∈ V .
• a < b if a ≤ b and a 	= b.
• |a| = max(−a, a).
• a �+ b iff either |a| < |b|, or |a| = |b| and a < b.

The following lemma is easily verified.

Lemma 5.5 If 〈V,≤,−〉 is a Sugihara chain, then �+ linearly orders V .

Definition 5.6 (Sugihara matrix) Let S = 〈V,≤,−〉 be a Sugihara chain.
• The multiplicative Sugihara matrix based on S is the matrixMm(S) = 〈V,D,O〉
for { ¬,→ } in whichD = { a ∈ V : − a ≤ a } (equivalently,D = { a ∈ V : |a| =
a }), ¬̃a = −a, and a →̃ b = max�+(−a, b).

• The Sugihara matrix M(S) based on S is the extension ofMm(S) to LR in which
a ∧̃ b = min(a, b) and a ∨̃ b = max(a, b).

• AmatrixM forLR (for { ¬,→ }) is a (multiplicative) Sugihara matrix if for some
Sugihara chain S,M is the (multiplicative) Sugihara matrix which is based on S.

Note 5.2 Obviously, we have that in a (multiplicative) Sugihara matrix a +̃ b =
max�+(a, b). It is also easy to see that the above definition of →̃ in Sugihara matrices
is equivalent to the following original definition from Sugihara (1955):

a →̃ b =
{
max(−a, b) if a ≤ b,

min(−a, b) if a > b.

It easily follows that a →̃ b ∈ D iff a ≤ b.

Note 5.3 It is easy to see that the set D is upward closed in a Sugihara matrix M.
That is, if a ∈ D and a ≤ b (where ≤ is the order relation of the Sugihara chain
which underlies M), then b ∈ D.

The following observation will be useful in the sequel.

Proposition 5.7 Let S = 〈V,≤,−〉 be a Sugihara chain, and suppose that V ′ is
a subset of V which is closed under −, and has at least two elements. Then
S′ = 〈V ′,≤,−〉 is also a Sugihara chain, and M(S′) (Mm(S′)) is a submatrix
of M(S) (Mm(S)).
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Proof The definitions of the operations immediately imply that if V ′ is closed under
−, then it is closed under →̃, ∧̃, and ∨̃ as well. The proposition easily follows
from this fact and the definition of the set D of designated elements in Sugihara
matrices. �

Notation For A ∈ { R, Z, Z
∗, Q, Q

∗, [0, 1], Zn, Z
∗
n } we shall henceforth write just

M(A) instead of M(SA), and Mm(A) instead of Mm(SA).

Next we prove a strong soundness and completeness theorem for HRM¬→.

Theorem 5.8 (Strong soundness and completeness of HRM¬→)

1. HRM¬→ is strongly sound and complete for the class of multiplicative Sugihara
matrices.

2. HRM¬→ is strongly sound and complete for Mm([0, 1]).
Proof 1. For the soundness part we need to prove that the axioms and rule ofHRM¬→

are all valid in any Sugihara matrix. We leave the straightforward but tedious
details of this to the reader.

For completeness, assume T �HRM¬→
ϕ. Extend T to a maximal theory T ∗

such that T ∗
�HRM¬→

ϕ. Then the relevant deduction theorem of HRM¬→
(Proposition 2.14) implies that for every sentence ψ , ψ /∈ T ∗ iff ψ → ϕ ∈ T ∗.
By item 5 of Lemma 2.16, this in turn implies:

(1) If ψ + σ ∈ T ∗, then either ψ ∈ T ∗ or σ ∈ T ∗.

(1) together with [++] and items 11 and 6 of Lemma 2.16 imply:

(2) For every ψ, σ , either ψ → σ ∈ T ∗ or σ → ψ ∈ T ∗.
(3) For every sentence ψ , either ψ ∈ T ∗ or ¬ψ ∈ T ∗.

• Now construct the Lindenbaum Algebra MT ∗ of T ∗ in the usual way. We define
thatψ ≡ σ iffψ ↔ σ ∈ T ∗ (and so bothψ → σ ∈ T ∗ andσ → ψ ∈ T ∗, by item
1 of Lemma 2.16). By Proposition 2.18, this is obviously a congruence relation.
Let V be the set of equivalence classes, and let D = { [ψ] : ψ ∈ T ∗ }. Define the
operations ¬ and → on V as [ψ] → [σ ] = [ψ → σ ] and ¬[ψ] = [¬ψ]. To show
that the resulting matrix is a multiplicative Sugihara matrix, we let [ψ] ≤ [σ ]
iff ψ → σ ∈ T ∗. These are all legitimate definitions because ≡ is a congruence
relation. It is a standard matter to show that ≤ is a partial order on V and that
the negation axioms of R¬→ ensure that ¬ is an involution on 〈V,≤〉. (2) above
implies that ≤ is also linear. It follows that S = 〈V,≤,¬〉 is a Sugihara chain.
Next we show thatMT ∗ = Mm(S). That [ψ] ∈ D iff ¬[ψ] ≤ [ψ] easily follows
from the definitions of D and ≤, and the fact that both ψ → (¬ψ → ψ) and
(¬ψ → ψ) → ψ are theorems of RMI¬→ (Lemma 2.20, 1). It remains to show
that the operation → of MT ∗ is identical to that of Mm(S). We use for that the
characterization ofMm(S) given in Note 5.2.
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• Suppose [ψ] ≤ [σ ]. Then ψ → σ ∈ T ∗. By items 3 and 2 of Lemma 2.20,
it follows that both ¬ψ → (ψ → σ) and σ → (ψ → σ) are in T ∗. Hence
[ψ] → [σ ] ≥ max(¬[ψ], [σ ]). To prove the converse, note that since ≤ is lin-
ear, max(¬[ψ], [σ ]) is either [σ ] or [¬ψ]. In the first case ¬[ψ] ≤ [σ ], and so
¬ψ → σ ∈ T ∗. By item8of Lemma2.16,we get that in this case [ψ → σ ] ≤ [σ ].
In the second case, [σ ] ≤ ¬[ψ], and so [ψ] ≤ ¬[σ ], implying thatψ → ¬σ ∈ T ∗.
By item 9 of Lemma 2.16, we get that in this case [ψ → σ ] ≤ ¬[ψ]. In both cases,
we have that [ψ] → [σ ] = [ψ → σ ] ≤ max(¬[ψ], [σ ]).

• Suppose [ψ] � [σ ]. Thenψ → σ /∈ T ∗. Hence (3) implies that¬(ψ → σ) ∈ T ∗.
By items 5 and 6 of Lemma 2.20, it follows that both (ψ → σ) → σ and
(ψ → σ) → ¬ψ are in T ∗. Hence [ψ] → [σ ] ≤ min(¬[ψ], [σ ]). To prove the
converse, note that since ≤ is linear, min(¬[ψ], [σ ]) is either [σ ] or [¬ψ]. In
the first case, ¬[ψ] ≤ [σ ], and so ¬ψ → σ ∈ T ∗. By item 7 of Lemma 2.20, we
get that ¬[ψ] ≤ [ψ → σ ] in this case. In the second case, [σ ] ≤ ¬[ψ], and so
σ → ¬ψ ∈ T ∗. By item 8 of Lemma 2.20, we get that [σ ] ≤ [ψ → σ ] in this
case. In both cases, we have that [ψ] → [σ ] = [ψ → σ ] ≥ min(¬[ψ], [σ ]).

The end of the proof is now standard. Let ν(ψ) = [ψ]. This is easily seen to be
a legitimate valuation (the canonical one) in MT ∗ . Obviously, ν is a model of ψ

iff ψ ∈ T ∗. Hence ν is a model of T in the Sugihara matrix MT ∗ which is not a
model of ϕ.

2. The multiplicative Sugihara matrix constructed in the proof of the first part
is countable. Hence the second part follows from the first (and its proof) by
Lemma 5.3 and Proposition 5.7. �

Proposition 5.9 Mm(Z1) is weakly characteristic for LHRM¬→
, but it is not strongly

characteristic for it.

Proof From the first part of Theorem 5.8 it follows that if �HRM¬→
ϕ, then �Mm (Z1)

ϕ. For the converse, assume that �HRM¬→
ϕ. By the second part of Theorem 5.8,

it follows that there is an assignment ν in Mm([0, 1]) such that ν(ϕ) < 1/2. Let
ν(ϕ) = a. Without loss of generality, we may assume that ν(p) ∈ [a, 1 − a] for
every p /∈ Atoms(ϕ), while the definitions of the operations inMm([0, 1]) imply that
necessarily ν(p) ∈ [a, 1 − a] also for every p ∈ Atoms(ϕ). Hence ν(ψ) ∈ [a, 1 −
a] for every ψ . Define f : [a, 1 − a] → { −1, 0, 1 } as

f (x) =

⎧⎪⎨
⎪⎩
1 if x = 1 − a,

0 if a < x < 1 − a,

−1 if x = a.

It is easy to verify that ν∗ = f ◦ ν is an assignment in Mm(Z1) such that ν∗(ψ) =
f (ν(ψ)) for every formula ψ . In particular, ν∗(ϕ) = −1, and so �Mm (Z1) ϕ.
To see that Mm(Z1) is not strongly characteristic for LHRM¬→

, it suffices to note

that ϕ ⊗ ψ �Mm (Z1) ϕ, but ϕ ⊗ ψ �Mm ([0,1] ϕ. �
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Note 5.4 That Mm(Z1) is weakly characteristic for LHRM¬→
and RM¬→ was (essen-

tially) shown in Parks (1972). The fact that it is not strongly characteristic for them
was (to my best knowledge) first shown in Avron (1997).

Our next goal is to prove a counterpart of Theorem 5.8 for the whole of RM. The
main obstacle in doing that is that the relevant deduction theorem, which was used
in the proof of Theorem 5.8 for showing the crucial property that was denoted by (1)
in that proof, fails for RM. Therefore, we shall use instead for that purpose the fact
that ∨ is a disjunction for RM.

Theorem 5.10 (Strong soundness and completeness of RM)

1. RM is strongly sound and complete for the class of Sugihara matrices.
2. RM is strongly sound and complete for M([0, 1]).
Proof

1. Given the strong soundness of HRM¬→ for multiplicative Sugihara matrices
(Theorem 5.8), the proof of the strong soundness of RM for Sugihara matrices is
straightforward, and is left to the reader.
For completeness, assume T �RM ϕ. Extend T to a maximal theory T ∗ such
that T ∗

�RM ϕ. Then ψ /∈ T ∗ iff T ∗, ψ �RM ϕ. Hence Theorem 2.11 implies
that T ∗ is prime, i.e., if ψ ∨ σ ∈ T ∗, then either ψ ∈ T ∗ or σ ∈ T ∗. Therefore,
it follows from Lemma 2.17 that (1) from the proof of Theorem 5.8 holds for
T ∗. From this point on, the proof is almost identical to the proof of the first part
of Theorem 5.8, except that we show that MT ∗ = M(S) (where S is defined
like in that proof), rather than that MT ∗ = Mm(S). For this, all we have to
add to the proof of Theorem 5.8 is that [ψ ∧ σ ] = min([ψ], [σ ]) and [ψ ∨ σ ] =
max([ψ], [σ ]). This is obvious from the axioms concerning ∧ and ∨ of RM, and
the linearity of ≤.

2. The proof is identical to that of the second part of Theorem 5.8. �

Note 5.5 Theorem 5.10 is essentially due to Dunn (1970). However, Dunn used the
countable matrixM(Q) for strongly characterizing RM, rather than the uncountable
M([0, 1] used by us here.6

Now we can at last prove the following theorem.

Theorem 5.11 RM¬→ = LHRM¬→
.

Proof Immediate from Proposition 4.5, and the second parts of Theorems 5.8 and
5.10. �

6An advantage of choosing M([0, 1]) is that its use allows us to view RM as a fuzzy logic. (See
Sect. 7.) Another advantage is that it can be expanded very naturally to provide semantics for
first-order RM, as well as for the logic that is obtained from RM by adding to its language the
propositional constants T and F, together with the axioms F → ϕ and ϕ → T.
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Next we show that for weak completeness the set of finite Sugihara matrices and
each of the countable Sugihara matricesM(Z) and M(Z∗) suffice.

Definition 5.12 (The matrices RMn) For k = 1, 2, . . . , we let RM2k = M(Z∗
k)

and RM2k+1 = M(Zk).

Proposition 5.13 Every finite Sugihara matrix which has n elements is isomorphic
to RMn. Hence every such matrix is isomorphic to some finite submatrix of M(Z).

Proof This is an easy corollary of Lemma 5.2 and Proposition 5.7. �

Theorem 5.14 Suppose that Atoms(T ∪ {ϕ}) is finite.

1. Let n be the number of atomic variables which occur in T ∪ {ϕ}. Then T �RM ϕ

iff T �RMk ϕ for every 2 ≤ k ≤ 2n.
2. T �RM ϕ iff T �M(Z) ϕ.

Proof From the soundness of RM for Sugihara matrices, it follows that if T �RM ϕ,
then T �M(Z) ϕ, and T �RMk ϕ for every k ≥ 2. For the converse, assume T �RM

ϕ. By Theorem 5.10, there is a Sugihara chain S = 〈V,≤,−〉 and a valuation ν in
M(S)which is amodel ofT but not ofϕ. SupposeAtoms(T ∪ {ϕ}) = {p1, . . . , pn},
and let V ′ = {ν(p1),−ν(p1), . . . , ν(pn),−ν(pn)}. An easy induction on the com-
plexity of a sentence ψ shows that ν(ψ) ∈ V ′ for every ψ such that Atoms(ψ) ⊆
{p1, . . . , pn}. Since ν is not amodel ofϕ, this implies thatV ′ has at least two elements
(and of course not more than 2n). Hence Proposition 5.7 implies that S′ = 〈V ′,≤,−〉
is also a Sugihara chain, andM(S′) is a submatrix ofM(S). Let ν ′ be any valuation
in M(S′) such that ν ′(pi ) = ν(pi ) for 1 ≤ i ≤ n. Then ν ′(ψ) = ν(ψ) for every ψ

such that Atoms(ψ) ⊆ {p1, . . . , pn}. It follows that ν ′ is a model of T in M(S′)
which is not a model of ϕ. Hence T �M(S′) ϕ. By Proposition 5.13, this implies that
T �RMk ϕ for some 2 ≤ k ≤ 2n, and that T �M(Z) ϕ. �

Corollary 5.15 If T is a finite theory, then T �RM ϕ iff T �M(Z) ϕ. In particular,
M(Z) is weakly characteristic for RM.

In contrast we have the following.

Proposition 5.16 M(Z) is not strongly characteristic for RM.

Proof Let T = {pi : i ≥ 1} ∪ {(pi → pi+1) → p0 : i ≥ 1}, and let S = 〈V,≤,−〉
be a Sugihara chain. It is not difficult to check that a valuation ν in M(S) can be
a model of T which is not a model of p0 iff ν(p0) < −ν(p0), while for i > 0,
ν(pi ) ≥ −ν(pi ) and ν(pi ) > ν(pi+1). Such ν does not exist inM(Z), but it does in
M([0, 1]). Hence T �M(Z) p0, while T �RM p0. �

The characterization of RM in terms of finite matrices that is given in
Theorem 5.14 can in fact be improved using the next proposition.
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Proposition 5.17 For every n ≥ 2, if �RMn+1 ϕ, then also �RMn ϕ.

Proof The claim is obvious in case n is even, sinceRM2k is a submatrix ofRM2k+1

for every k ≥ 1.
Now suppose that n = 2k + 1 for some k ≥ 1, and that �RM2k+1 ϕ. We show

that also �RM2k+2 ϕ. Let ν be a valuation in RM2k+1 such that ν(ϕ) < 0. Define a
valuation ν∗ inRM2k+2 by letting ν∗(p) = ν(p) + 1 in case ν(p) ≥ 0, and ν∗(p) =
ν(p) − 1 in case ν(p) < 0. By induction on the complexity of ψ , it is not difficult
to show that for every sentence ψ we have the following.

• If ν(ψ) > 0, then ν∗(ψ) = ν(ψ) + 1.
• If ν(ψ) = 0, then ν∗(ψ) ∈ {−1, 1}.
• If ν(ψ) < 0, then ν∗(ψ) = ν(ψ) − 1.

It follows in particular that ν∗(ϕ) < 0. Hence �RM2k+2 ϕ. �

Corollary 5.18 If n ≥ 2 and �RMn ϕ, then �RMm ϕ for every 2 ≤ m ≤ n.

Proposition 5.19 Suppose |Atoms(ϕ)| = n. Then �RM ϕ iff �RM2n ϕ.

Proof Immediate from Part 1 of Theorem 5.14 and Corollary 5.18. �

Proposition 5.20 M(Z∗) is weakly characteristic for RM.

Proof That if�RM ϕ then�M(Z∗) ϕ follows from the soundness of RM for Sugihara
matrices. For the converse, assume �RM ϕ. Then by Proposition 5.19, there is n such
that �RM2n ϕ. SinceRM2n is a submatrix ofM(Z∗), this implies that �M(Z∗) ϕ. �

Note 5.6 The second part of Corollary 5.15, and Propositions 5.16, 5.19, and 5.20
are due to Meyer (see Anderson and Belnap (1975, Sect. 29.3)). Corollary 5.18 and
Proposition 5.19 are due to Dunn (see Anderson and Belnap (1975, Sect. 29.4)).

Corollary 5.21 If γ is a finite set of sentences, and γ �M(Z∗) ϕ, then the rule γ /ϕ

is admissible in RM.

Proof Let θ be a substitution such that �RM θ(ψ) for every ψ ∈ γ . By Proposi-
tion 5.20, �M(Z∗) θ(ψ) for every ψ ∈ γ . Since γ �M(Z∗) ϕ, it follows that �M(Z∗)
θ(ϕ) as well. Hence �RM θ(ϕ), by Proposition 5.20 again. �

Note 5.7 Since ¬p, p ∨ q �M(Z∗) q, Corollary 5.21 entails that the disjunctive syl-
logism is admissible in RM. That is, if �RM ¬ϕ, and �RM ϕ ∨ ψ , then �RM ψ .7

On the other hand, it is easy to see that ¬p, p ∨ q �M(Z) q. By Theorem 5.14, this
implies that ¬p, p ∨ q �RM q. It follows that the analogue of Theorem 5.14 does
not hold for M(Z∗).

7This is another famous result of Meyer and Dunn. See Meyer and Dunn (1969) and Sect. 25 of
Anderson and Belnap (1975). In the latter, two different proofs of this theorem (for themain relevant
and semi-relevant logics) are presented.
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6 The Nice Properties of RM

RM has several nice properties. The first we present in this section is one that
according to a famous theorem of Urquhart (1984), the main logics developed by
Anderson and Belnap’s school lack.8

Theorem 6.1 RM is decidable.9

Proof Immediate from Theorem 5.14. (See also Proposition 5.19 for the special case
of theoremhood in RM.) �

Our next goal is to show that RM is normal.

Definition 6.2 ϕ ⊃ ψ =D f (ϕ → ψ) ∨ ψ

Note 6.1 It is easy to see that in any Sugihara matrix we have that

a ⊃̃ b =
{

−a if a ≤ b ≤ −a,

b otherwise.

Proposition 6.3 ⊃ is an implication for RM.

Proof By Theorem 2.11, ∨ is a disjunction for RM. Given the definition of ⊃,
this easily implies that ϕ, ϕ ⊃ ψ �RM ψ . It follows that if T �RM ϕ ⊃ ψ , then
T , ϕ �RM ψ .

For the converse, assume T �RM ϕ ⊃ ψ . By Theorem 5.10, this implies that there
is a valuation ν in M([0, 1]) such that ν(σ ) ≥ 1/2 for every σ ∈ T , while ν(ϕ ⊃
ψ) < 1/2. The latter means that ν(ψ) < 1/2 and ν(ϕ) > ν(ψ). If ν(ϕ) ≥ 1/2, then
ν is a model inM([0, 1]) of T ∪ {ϕ}which is not a model ofψ , and so T , ϕ �RM ψ .
So assume 1/2 > ν(ϕ) > ν(ψ). Define a new valuation ν∗ inM([0, 1]) as follows.

ν∗(σ ) =
{
1/2 if ν(ϕ) ≤ ν(σ ) ≤ 1 − ν(ϕ),

ν(σ ) otherwise.

It is easy to verify that ν∗ is indeed a legitimate valuation. Now ν∗(σ ) ∈ {ν(σ ), 1/2}
for every σ ∈ T , ν∗(ϕ) = 1/2, while ν∗(ψ) = ν(ψ) < 1/2. Since ν(σ ) ≥ 1/2 for
every σ ∈ T , this implies that ν∗ is a model inM([0, 1]) of T ∪ {ϕ} which is not a
model of ψ , and so again T , ϕ �RM ψ . �

8Here it should be noted that there are many contraction-free logics which are closely related
to Anderson and Belnap’s relevant logics, and are decidable (like RW (Brady 1990) or the
multiplicative-additive fragment of Girard’s linear logic). However, logics without contraction are
not relevant logics according to our understanding of this notion (see Avron 2014).
9This result too is due to Meyer. See Anderson and Belnap (1975, Sect. 29.3).
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Note 6.2 It is also possible to prove Proposition 6.3 purely syntactically using the
standard inductive method of converting a proof in RM of ψ from T ∪ {ϕ} into a
proof inRM ofϕ ⊃ ψ fromT . In addition to the validity of [MP] for⊃ inRM (which
was shown above purely syntactically), one should only provide derivations of the
following four formulas in RM: ϕ ⊃ ϕ, ϕ ⊃ (ψ ⊃ ϕ), (ϕ ⊃ (ψ → σ)) ⊃ ((ϕ ⊃
ψ) ⊃ (ϕ ⊃ σ)), and (ϕ ⊃ ψ) ∧ (ϕ ⊃ σ) ⊃ (ϕ ⊃ ψ ∧ σ). None of these tasks is
difficult.

Note 6.3 The above formulation of Definition 6.2 and Proposition 6.3 are due to
Avron (1986). An equivalent definition and proposition have already been given
in Dunn and Meyer (1971). However, they were given there only for RMt, a con-
servative extension of RM which is obtained from RM by adding to its language
the propositional constant t together with the axioms t and t → (ϕ → ϕ). In RMt

ϕ ⊃ ψ is equivalent to ϕ ∧ t → ψ , and this was the definition used in Dunn and
Meyer (1971).

Proposition 6.4 RM is normal.

Proof The axioms [ConE1], [ConE2], and the adjunction rule [Ad] ensure that∧ is a
conjunction for every extension of R, including RM. Hence the proposition follows
from Theorem 2.11 and Proposition 6.3. �
Proposition 6.5 RM satisfies the basic relevance criterion.10

Proof Suppose T1, T2 �RM ψ and T2 has no atomic formulas in common with T1 ∪
{ψ}. We show that T1 �RM ψ . Suppose otherwise. Then, by Theorem 5.10, there is a
valuation ν inM([0, 1]) such that ν(ϕ) ≥ 1/2 for every ϕ ∈ T1, while ν(ψ) < 1/2.
Since T2 has no atomic formulas in common with T1 ∪ {ψ}, we may assume without
loss of generality that ν(p) = 1/2 for every atom p which occurs in T2. But then
ν(ϕ) = 1/2 for every ϕ ∈ T2, and so ν is a model in M([0, 1]) of T1 ∪ T2 that
is not model of ψ . By Theorem 5.10 again, this contradicts our assumption that
T1, T2 �RM ψ . �

Next we show that RM is a semi-relevant logic (Definition 3.5). For this we need
to show that it does not have a weakly characteristic matrix. Actually, we prove
something significantly stronger.

Proposition 6.6 RM has no finite weakly characteristic non-deterministic matrix
(Nmatrix).11 In particular, it satisfies the minimal semantic criterion.

Proof Assume for contradiction that RM has a weakly characteristic Nmatrix
M = 〈V,D,O〉, where the number of elements in V is a natural number n > 1.
Let p1, . . . , pn+1 be n + 1 distinct atomic formulas. Define

10As pointed out in Note 3.1, this was first claimed by Meyer, but with a wrong proof, in Anderson
and Belnap (1975).
11See Avron and Zamansky (2011) about this generalization of the notion of a matrix for a logic,
including a lot of examples of logics which do not have a finite weakly characteristic matrix, but
do have a finite weakly characteristic Nmatrix.
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ϕn =D f (p1 → p2) ∨ (p2 → p3) ∨ · · · ∨ (pn → pn+1).

By assigning−i to pi , we see that ϕn is not valid inM(Z). Hence �RM ϕn , and so ϕn

is not valid inM. It follows that there is a valuation ν inM such that ν(ϕ) /∈ D. Now
by the pigeonhole principle, there are 1 ≤ i < j ≤ n + 1 such that ν(pi ) = ν(p j ).
Obtain ψn from ϕn by replacing the first occurrence of p j in ϕn by pi , and define a
valuation ν ′ in M by letting ν ′(σ ) = ν(σ ′), where σ ′ is the formula obtained from
σ by replacing in σ each subformula of the form p j−1 → pi by p j−1 → p j . Since
ν(pi ) = ν(p j ), ν ′ is easily seen to be a legitimate valuation in M. Now ν ′(ψn) =
ν(ϕn). Hence ψn is not valid in M, and so �RM ψn . On the other hand, ψn is valid
inM(Z) (since (pi → pi+1) ∨ · · · ∨ (p j−2 → p j−1) ∨ (p j−1 → pi ) is easily seen
to be valid inM(Z)), and so �RM ψn . A contradiction. �

Note 6.4 That RM has no finite weakly characteristic deterministic (i.e., ordinary)
matrix was first observed by Dunn in (1970).

Theorem 6.7 RM is a normal semi-relevant logic.

Proof This follows from Propositions 6.4–6.6. �

Here is another well-known way in which the logic RM is “semi-relevant.”

Proposition 6.8 1. RM does not have the variable-sharing property.
2. If �RM ϕ → ψ then either ϕ and ψ share an atomic formula, or both ¬ϕ and

ψ are theorems of RM.

Proof 1. ¬(p → p) → (q → q) is a theorem of HRM¬→, and so also of RM.
2. Suppose that �RM ϕ → ψ , but ϕ and ψ share no atomic formula. We show that
both ¬ϕ and ψ are theorems of RM. Suppose, for example, that ¬ϕ is not a theorem
of RM. (The argument in the case where ψ is not a theorem of RM is similar.)
Then, by Theorem 5.14, there is valuation ν in M(Z) such that ν(¬ϕ) < 0, and so
ν(ϕ) > 0.Without a loss of generality, wemay assume that ν(q) = 0, for every atom
q /∈ Atoms(ϕ). Since ϕ and ψ share no atomic formula, this implies that ν(q) = 0
for every atom q ∈ Atoms(ψ). But then ν(ψ) = 0. Since ν(ϕ) > 0 this implies that
ν(ϕ → ψ) < 0, contradicting the assumption that �RM ϕ → ψ . �

Note 6.5 Relevant logics like R have the variable-sharing property. This means that
if ϕ → ψ is a tautology, then ϕ and ψ share an atomic formula. On the other hand,
in classical logic there are two other possibilities in such a case: first, that ¬ϕ is
a tautology, and second, that ψ is a tautology. Proposition 6.8 shows that RM is
intermediate in this respect between relevant logics and classical logic. Intuitively,
this provides an additional justification for seeing RM as a “semi-relevant” logic.
Another one is provided by the following strong, “semi-relevant” version of the
Craig interpolation theorem that was shown in Avron (1986) for RM: if �RM ϕ ⊃ ψ

(where ⊃ is the implication for RM given in Definition 6.2), then either �RM ψ , or
there is an interpolant σ such that Atoms(σ ) ⊆ Atoms(ϕ) ∩ Atoms(ψ), and both
ϕ ⊃ σ and σ ⊃ ψ are theorems of RM. (In classical logic there is a third possibility:
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that � ¬ϕ.) In connection to this, it is worth mentioning that Meyer has presented
in Anderson and Belnap (1975, Sect. 29.3) an example of a case in which the Craig
interpolation theorem fails in RM for →.

Our next goal is to study the set of simple extensions of RM.
Notation Let L be a logic. T h(L) =D f { ϕ : �L ϕ }.
Theorem 6.9 Let L be a simple strongly proper extension of RM. Then there is a
natural number n ≥ 2 such that T h(L) = T h(RMn), i.e., RMn is weakly charac-
teristic for L.

Proof First we prove that all theorems of L are valid in RM2. Suppose for contra-
diction that there is a theorem ϕ of L which is not valid in RM2. Then there is a
valuation ν0 inRM2 such that ν0(ϕ) = −1. By substituting p0 → p0 for every atom
p such that ν0(p) = 1, and ¬(p0 → p0) for every atom p such that ν0(p) = −1, we
obtain from ϕ a theorem ψ of L such that Atoms(ψ) = {p0}, and ν(ψ) = −1 for
any valuation ν in RM2. It follows that ¬ψ is valid in RM2. Therefore, Proposi-
tion 5.19 implies that�RM ¬ψ . Hence bothψ and¬ψ are theorems ofL. But because
Atoms(ψ) = {p0}, the first part of Theorem 5.14 implies that¬ψ,ψ �RM p0. It fol-
lows that �L p0, contradicting the condition of non-triviality in our definition of a
logic.

Now let A be the set of all natural numbers n such that all theorems of L are valid
in RMn . By what we have just proved, 2 ∈ A, and so A is not empty. On the other
hand, the fact thatL is a simple strongly proper extension ofRMmeans that there is a
sentence ϕ0 of LR such that �L ϕ0, but �RM ϕ0. Therefore, Proposition 5.19 implies
that there is n0 ≥ 2 such that ϕ0 is not valid inRMn0 , and so n0 /∈ A. It follows, by
Corollary 5.18, that A has a maximal element k ≥ 2. Then by Corollary 5.18 again,
every theorem of L is valid in RM j for every 2 ≤ j ≤ k, and there is a theorem of
L which is not valid inRM j for j > k. We end the proof by showing thatRMk is
weakly characteristic for L. Since k ∈ A, it suffices to show that if �L ϕ, then ϕ is
not valid inRMk .

So suppose that �L ϕ, and let Atoms(ϕ) = {p1, . . . , pn}. Define

T = { σ : Atoms(σ ) ⊆ {p1, . . . , pn } and �L σ }

Since �L ϕ, also T �RM ϕ. Therefore, Theorem 5.14 and its proof imply that there
is an l and a valuation ν0 inRMl such that ν0 is a model of T inRMl which is not
a model of ϕ, and for every element a of RMl there is 1 ≤ i ≤ n such that either
a = ν0(pi ) or a = −ν0(pi ) = ν0(¬pi ). We show that l ∈ A. So let σ be a theorem
of L, and let ν be a valuation in RMl . Let θ be a substitution that assigns to any
atomic formula q an element τ of { p1,¬p1, . . . , pn,¬pn } such that ν(q) = ν0(τ ).
Then for any atomic formula q, ν(q) = ν0 ◦ θ(q). This easily implies that ν = ν0 ◦ θ ,
and so ν(σ ) = ν0(θ(σ )). But since L is a logic, θ(σ ) is also a theorem of L, and
by definition of θ , this implies that θ(σ ) ∈ T . Since ν0 is a model of T , ν0(θ(σ ))

is designated, and so ν(σ ) is designated. This was shown for every valuation ν in
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RMl and any theorem σ of L, and so it follows that indeed l ∈ A. Hence l ≤ k.
Since ϕ is not valid inRMl (because ν0(ϕ) is not designated), ϕ is not valid inRMk

either. �

Theorem 6.10 RM has the Scroggs’ property, that is, it does not have a finite weakly
characteristic matrix, but every strongly proper extension of it does.

Proof This follows from Proposition 6.6 and Theorem 6.9. �

Note 6.6 Theorems 6.9 and 6.10 are due to Dunn (see Dunn (1970) and Anderson
and Belnap (1975, Sect. 29.4)).

By Theorem 6.9, if L is a simple extension of RM, then T h(L) belongs to
the sequence { T h(RMn) }∞n=2. Next we axiomatize each of the elements in this
sequence, and show that they are all different from each other.

Definition 6.11 HRMn is the simple axiomatic extension of RM which is obtained
by adding ϕn (from the proof of Proposition 6.6) to HRM as an extra axiom schema
(i.e., by adding to HRM all instances of ϕn as new axioms).

Theorem 6.12

1. For every n ≥ 2 and ϕ ∈ LR, ϕ is valid in RMn iff �HRMn ϕ. (In other words,
T h(RMn) = T h(HRMn) for every n ≥ 2.)

2. The sequence { T h(RMn) }∞n=2 is strictly decreasing, and includes T h(L) when-
ever L is a simple strongly proper extension of RM.

Proof Let ϕn be like in the proof of Proposition 6.6. It is straightforward to check
that for every n ≥ 2, ϕn is valid inRMn , but not inRMn+1. Hence n is the maximal
number k such that ϕn is valid inRMk . Hence the first part follows from the proof of
Theorem 6.9. That theorem implies also that the sequence { T h(RMn) }∞n=2 includes
every set of the form T h(L) such that L is a simple strongly proper extension of
RM. That this sequence is decreasing follows from Proposition 5.17. That it is
strictly decreasing again follows from the fact that ϕn is valid in RMn , but not in
RMn+1. �

Nowwe turn to what is perhaps the most important property of RM (and certainly
the main new result in this paper).

Theorem 6.13 RM is a maximal finitary logic which is both normal and semi-
relevant. In other words, every proper simple finitary extension of RM is either not
normal or not semi-relevant.

Proof Let L be a simple finitary extension of RM which is both normal and semi-
relevant. We show that L = RM. Now by Theorem 6.9, no strongly proper extension
of RM can be semi-relevant. It follows that T h(L) = T h(RM). Let ⇒ be a defined
connective of LR which is an implication for L. Then T , ϕ �L ψ iff T �L ϕ ⇒ ψ ,
for every T , ϕ and ψ .
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In the sequel, we denote by ¬̃, ∨̃, ∧̃, →̃, and ⇒̃ the interpretations in M(Z) of
¬, ∨, ∧, →, and ⇒, respectively; and we extensively use the following property of
these operations:

(*) If f : Z
n → Z is obtained from ¬̃, ∨̃, ∧̃, →̃, and ⇒̃ using compositions,

then f (a1, . . . , an) ∈ {a1,−a1, a2,−a2, . . . , an,−an} for every a1, . . . , an ∈ Z.
Next we prove some properties of ⇒̃.

1. For every n ≥ 0, n ⇒̃ n = −n ⇒̃ n = −n ⇒̃ −n = n, while n ⇒̃ −n = −n.

Proof Since p �L p, �L p ⇒ p. Hence �RM p ⇒ p, and so a ⇒̃ a ≥ 0 for every
a ∈ Z. By (*) this implies that n ⇒̃ n = −n ⇒̃ −n = n for every n ≥ 0. Now the
fact that �L p ⇒ p implies that p �L p ⇒ p, and so �L p ⇒ (p ⇒ p). It follows
that �RM p ⇒ (p ⇒ p). Hence for every n ≥ 0, −n ⇒̃ (−n ⇒̃ −n) ≥ 0, and so
−n ⇒̃ n ≥ 0. By (*), this implies that −n ⇒̃ n = n. Next we note that since L is
a logic (i.e., non-trivial), the fact that �L p ⇒ p implies that p ⇒ p �L p, and so
�L (p ⇒ p) ⇒ p. It follows that there is some a ∈ Z such that (a ⇒̃ a) ⇒̃ a <

0. By what we have already shown, if a ≥ 0 then (a ⇒̃ a) ⇒̃ a = a ≥ 0. Hence
necessarily a < 0. So let a = −k for some k > 0. Then (−k ⇒̃ −k) ⇒̃ −k < 0,
and so k ⇒̃ −k < 0. By (*), this implies that k ⇒̃ −k = −k. Now by Lemma 5.2,
for every n > 0 the submatrix of M(Z) induced by {−n, n} is isomorphic to the
submatrix of M(Z) induced by {−k, k}. It follows that n ⇒̃ −n = −n for every
n > 0, and (*) implies that n ⇒̃ −n = −n also when n = 0. �

2. a ⇒̃ k ∈ {|a|, k} for every a ∈ Z and k ≥ 0.

Proof Since �L p ⇒ p, also q �L p ⇒ p. Hence �L q ⇒ (p ⇒ p), and so �RM

q ⇒ (p ⇒ p). Hence a ⇒̃ (k ⇒̃ k) ≥ 0 for every a ∈ Z and k ≥ 0. By item 1
above, this means that a ⇒̃ k ≥ 0 for every a ∈ Z and k ≥ 0. Hence (*) implies that
a ⇒̃ k ∈ {|a|, k} for every a ∈ Z and k ≥ 0. �

3. For every a ∈ Z and k ≥ 0, if |a| ≤ k, then −k ⇒̃ a ∈ {|a|, k}.
Proof Using RM4 it is easy to see that �RM ¬((p → q) → (p → q)) → p.
This entails that ¬((p → q) → (p → q)) �L p. Hence �L ¬((p → q) → (p →
q)) ⇒ p, and so �RM ¬((p → q) → (p → q)) ⇒ p. It follows that if a ∈ Z and
k ≥ 0, then −((a →̃ k) →̃ (a →̃ k)) ⇒̃ a ≥ 0. Now if |a| ≤ k, then −((a →̃ k)

→̃ (a →̃ k)) = −k, and so we get that −k ⇒̃ a ≥ 0 in such a case. By (*), this
is equivalent to −k ⇒̃ a ∈ {|a|, k}. �

4. If 0 ≤ k ≤ n, then k ⇒̃ −n = −n.

Proof Since L is semi-relevant, ¬(p → p), (p → p) �L q. Hence ¬(p → p) �L

(p → p) ⇒ q, and so ¬(p → p) �RM (p → p) ⇒ q as well. By Corollary 5.15,
this implies that there is a valuation ν inM(Z) which is a model of ¬(p → p), but
not of (p → p) ⇒ q. The first fact implies that ν(p) = 0, and so the second one
implies that 0 ⇒̃ ν(q) < 0. By item 2, this is possible only if ν(q) = −n for some
n > 0. But in such a case it easily follows from Proposition 5.13 that 0 ⇒̃ −n < 0
for every n > 0. By (*) and item 1, it follows that 0 ⇒̃ −n = −n for every n.
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From the fact shown above that ¬(p → p) �L (p → p) ⇒ q, it follows that �L

¬(p → p) ⇒ ((p → p) ⇒ q).Hence�RM ¬(p → p) ⇒ ((p → p) ⇒ q). There-
fore, Proposition 5.19 implies that there is a valuation ν inRM4 such that ν(¬(p →
p) ⇒ ((p → p) ⇒ q)) < 0. By item 3, it cannot be the case that ν(¬(p → p)) =
−2. Hence |ν(p)| = 1, and we get that −1 ⇒̃ (1 ⇒̃ ν(q)) < 0. By items 1 and
2, this is impossible if ν(q) ∈ {−1, 1, 2}. It follows that ν(q) = −2, and so −1 ⇒̃
(1 ⇒̃ −2) < 0. This in turn implies (by items 1 and 2 again) that 1 ⇒̃ −2 = −2.
As usual, by Proposition 5.13 this means that k ⇒̃ −n = −n in case 0 < k < n. By
item 1 and what we have shown above about 0 ⇒̃ −n, this equation holds also in
the cases where k = n or k = 0. Hence k ⇒̃ −n = −n whenever 0 ≤ k ≤ n. �

5. If 0 < n < k, then k ⇒̃ −n < 0.

Proof (p ∧ ¬p) ∨ (p ∧ ¬p → q) is not a tautology of RM in case p 	= q. (Take
ν(p) = 1 and ν(q) = −2 inM(Z).) Hence it is not provable in L either, and so also
q → q �L (p ∧ ¬p) ∨ (p ∧ ¬p → q). It follows that �L (q → q) ⇒ (p ∧ ¬p) ∨
(p ∧ ¬p → q), and so �RM (q → q) ⇒ (p ∧ ¬p) ∨ (p ∧ ¬p → q). Therefore,
Proposition 5.19 implies that there is a valuation ν inRM4 such that ν((q → q) ⇒
(p ∧ ¬p) ∨ (p ∧ ¬p → q)) < 0. By item 2, this is possible only if ν((p ∧ ¬p) ∨
(p ∧ ¬p → q)) < 0. An easy check shows that this is the case only if ν(q) = −2
and |ν(p)| = 1. Hence the fact that ν((q → q) ⇒ (p ∧ ¬p) ∨ (p ∧ ¬p → q)) < 0
means that 2 ⇒̃ −1 < 0. By Proposition 5.13 again, it follows that k ⇒̃ −n < 0
whenever 0 < n < k.

Next we show that [M P] for ⇒ is valid in RM, i.e., ϕ, ϕ ⇒ ψ �RM ψ for every
ϕ and ψ . Suppose otherwise. Then from Corollary 5.15 it follows that there is a
valuation ν inM(Z) such that ν(ϕ) ≥ 0, ν(ψ) < 0, and ν(ϕ ⇒ ψ) ≥ 0. But this is
impossible, by items 4 and 5 of the above list of properties of ⇒̃.

Finally, we prove thatL = RM. SinceL is an extension ofRM, it suffices to show
that if T �L ϕ, then T �RM ϕ. So assume that T �L ϕ. Since L is finitary, there
are ψ1, . . . , ψn ∈ T such that {ψ1, . . . , ψn} �L ϕ. It follows that �L ψ1 ⇒ (ψ2 ⇒
· · · (ψn ⇒ ϕ) · · · ). This in turn implies that �RM ψ1 ⇒ (ψ2 ⇒ · · · (ψn ⇒ ϕ) · · · ).
Butwehave shown that [M P] for ⇒̃ is valid inRM. Therefore {ψ1, . . . , ψn} �RM ϕ,
and so T �RM ϕ. �

Note 6.7 The fact that L is semi-relevant was used in the last proof only for deriving
4. Since¬p, p �RM ¬(p → p), while¬(p → p) �RM p and¬(p → p) �RM ¬p,
an almost identical proof shows that if L is a finitary proper simple extension of RM
which is both normal and paraconsistent, then L has a finite weakly characteristic
matrix. In other words, RM is a maximal normal paraconsistent logic that satisfies
the minimal semantic relevance criterion.

Note 6.8 It is worth noting that in addition to its nice semantic properties and maxi-
mality properties as described in this section,RM is nice also froma proof-theoretical
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point of view, since it has a corresponding cut-free Gentzen-type system G RM
with the subformula property. G RM employs hypersequents, rather than ordinary
sequents, and its logical rules are identical to those used in classical logic (with cau-
tion about the chosen form of each rule, namely, whether the rule is multiplicative
or additive). See Avron (1987) for details.

7 RM as a fuzzy logic

Fuzzy logics are logics that are designed to deal with propositions that involve impre-
cise concepts, like “tall” or “old.” Their semantics is based on the idea of degrees of
truth, according to which the truth-value assigned to a proposition of this sort might
not be one of the two classical values 0 and 1, but any real number between them.
Now, in all the standard fuzzy logics investigated in the literature (see Cintula et al.
(2011) for an extensive survey), the consequence relation is based on preserving
absolute truth, i.e., 1 is taken as the only designated value. This choice implies that
none of these logics is paraconsistent. Therefore, the obvious way to develop useful
paraconsistent fuzzy logics is to use a more comprehensive set of designated values.
This is precisely what is done in the semantics of RM as given in the second part
of Theorem 5.10 (i.e., the matrix M([0, 1])). Hence RM can serve as an excellent
candidate for paraconsistent fuzzy logic.12 However, to view and use RM as a fuzzy
logic it would be better to take ⊃ (rather than →) as a primitive connective. This
is possible, since by the next proposition this choice does not affect the expressive
power of the language.

Proposition 7.1 The connective → of RM is definable in { ¬,⊃,∧,∨ }.
Proof By using M([0, 1]), it is easy to check that ϕ → ψ is equivalent in RM to
(ϕ ⊃ ψ) ∧ (¬ψ ⊃ ¬ϕ).13 �

Next we show that not only is RM a fuzzy logic according to the above char-
acterization of this notion, but it (more exactly, its natural conservative extension
RMF defined below) is in fact a conservative extension of one of the three most
basic standard fuzzy logics (Cintula et al. 2011), namely, of the Gödel–Dummett
logic G∞.

Definition 7.2 Let LF
R = LR ∪ { F }. HRMF is the extension of HRM by the axiom

F → ϕ. RMF is the logic in LF
R that is induced by HRMF.

12Slaney’s logic F (Slaney 2010) is another recent work on substructural fuzzy logics.
13In Avron (1986), it is noted that ϕ → ψ is equivalent in RM also to ¬(ϕ ⊃ ψ) ⊃ ¬(ψ ⊃ ϕ), so
it is definable in terms of just ¬ and ⊃.
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Definition 7.3

• A Sugihara chain 〈V,≤,−〉 is bounded if 〈V,≤〉 has a minimal element.14

• A bounded Sugihara matrix for LF
R is a Sugihara matrix which is based on a

bounded Sugihara chain 〈V,≤,−〉, and in which the interpretation F̃ of F is the
minimal element of 〈V,≤〉.
Here is a particularly important example of a bounded Sugihara matrix.

Definition 7.4 MF([0, 1]) is the extension of M([0, 1]) to LF
R that is obtained by

letting F̃ (the interpretation of F) be 0.

Theorem 7.5

1. RMF is strongly sound and complete for bounded Sugihara matrices.
2. RMF is strongly sound and complete for MF([0, 1]).
Proof A straightforward extension of the proof of Theorem 5.10. �

Corollary 7.6 RMF is a conservative extension of RM.

Definition 7.7 (Gödel–Dummett logic G∞) Let IL = { ⊃,∧,∨, F }, and let H I L
be some standard Hilbert-type system in IL for intuitionistic logic. H G∞ is the
extension of H I L by the following linearity axiom.

[Li] (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ)

G∞ is the logic in ILwhich is induced by H G∞, and G+∞ is its positive (i.e., F-free)
fragment.

Theorem 7.8 RMF is a conservative extension of G∞, and RM is a conservative
extension of G+∞.

Proof We show the first part. The proof of the second part is almost identical.
Using Proposition 6.3 (and the fact that ∧ and ∨ are, respectively, conjunction

and disjunction for RM), it is easy to show that H I L is included in RMF. It is also
easy to verify that the extra axiom [Li] of H G∞ is a theorem of RMF too. Hence
RMF is an extension of G∞.

To show that RMF conservatively extends G∞, assume that T �H G∞ ψ , where
both T and ψ are in IL. Like in the proof of Theorem 5.10, we get an extension T ∗
of T such that

1. T ∗
�H G∞ ψ ;

2. for every ϕ and τ , T ∗ �H G∞ ϕ ∧ τ iff both T ∗ �H ϕ and T ∗ �H G∞ τ ;
3. for every ϕ and τ , T ∗ �H G∞ ϕ ∨ τ iff either T ∗ �H G∞ ϕ or T ∗ �H G∞ τ .

14Obviously, if a is aminimal element then−a is amaximal one. Hence a Sugihara chain is bounded
according to Definition 7.3 iff it is bounded in the usual sense of having both a minimal element
and a maximal one.
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Now define ψ ≡ σ iff both �H G∞ ψ ⊃ σ and �H G∞ σ ⊃ ψ . Since H G∞ is an
(axiomatic simple) extension of H I L , ≡ is an equivalence relation (indeed, a con-
gruence relation). Let V be the set of equivalence classes, and define ≤ on V by
letting [τ ] ≤ [σ ] iff �H G∞ τ ⊃ σ . The fact that H G∞ is an extension of H I L easily
implies this time that ≤ is well defined, and is a partial order on V . In addition, the
∨-primeness of T ∗ (item 3 above) and the special axiom [Li] of H G∞ entail that ≤
is a linear order. Obviously, [F] is the minimal element of V according to this lin-
ear order, while axiom [⊃ 1] of H I L ensures that {ϕ : T ∗ �H G∞ ϕ} is its maximal
element. Since V is countable, these facts imply (see the beginning of the proof of
Lemma 5.3) that there is a function e : V → [0, 1/2] such that e is order preserving,
e([F]) = 0, and e({ϕ : T ∗ �H G∞ ϕ}) = 1/2. Define a valuation ν in M([0, 1]) by
letting ν(p) = e([p]) for every atom p. We show that the following is true for every
formula ϕ of IL:

(a) If T ∗ �H G∞ ϕ, then ν(ϕ) ≥ 1/2.
(b) If T ∗

�H G∞ ϕ, then ν(ϕ) = e([ϕ]) (and so ν(ϕ) < 1/2).

Since T ⊆ T ∗ and T ∗
�H G∞ ψ , these two facts imply that ν is a model of T in

M([0, 1]) that is not a model of ψ . Hence Theorem 7.5 entails that T ∗
�RMF ψ ,

which is what we wanted to prove.
We prove (a) and (b) by induction on the complexity of ϕ.

• The case where ϕ is an atomic variable or the constant F easily follows from the
definition of ν, and the properties of e mentioned above.

• Suppose that ϕ = τ ⊃ σ .
(a) SupposeT ∗ �H G∞ ϕ. Then [τ ] ≤ [σ ], and so e([τ ]) ≤ e([σ ]). If ν(σ ) ≥ 1/2,
then ν(ϕ) ≥ 1/2 (see Note 6.1). If not, then T ∗

�H G∞ σ by (a) of the induction
hypothesis, and so T ∗

�H G∞ τ . Hence (b) of the induction hypothesis implies that
ν(τ) = e([τ ]) and ν(σ ) = e([σ ]). Therefore ν(τ) ≤ ν(σ ), and so ν(ϕ) ≥ 1/2.
(b) Suppose T ∗

�H G∞ ϕ. Because of Axiom [⊃ 1], this implies that also
T ∗

�H G∞ σ , and so ν(σ ) = e([σ ]) < 1/2 by (a). The assumption also implies
that [τ ] � [σ ], and so e([σ ]) < e([τ ]). Since by (a) and (b) ν(τ) ≥ 1/2 or
ν(τ) = e([τ ]), it follows that ν(σ ) < ν(τ), and so (see Note 6.1) ν(ϕ) = ν(σ ) =
e([σ ]). It remains to show that e([ϕ]) = e([σ ]) in this case, i.e., that ϕ ≡ σ .
That T ∗ �H G∞ σ ⊃ ϕ is immediate from Axiom [⊃ 1]. For the converse impli-
cation, note that since τ ⊃ (τ ⊃ σ) �H I L τ ⊃ σ (immediate from the deduction
theorem of H I L), our assumption implies that T ∗

�H G∞ τ ⊃ (τ ⊃ σ). Hence
Axiom [Li] and the ∨-primeness of T ∗ entail that T ∗ �H G∞ (τ ⊃ σ) ⊃ τ . But
�H I L ((τ ⊃ σ) ⊃ τ) ⊃ ((τ ⊃ σ) ⊃ σ). It follows that T ∗ �H G∞ (τ ⊃ σ) ⊃ σ ,
i.e., T ∗ �H G∞ ϕ ⊃ σ .

• Suppose that ϕ = τ ∨ σ .
(a) Suppose T ∗ �H G∞ ϕ. Then the ∨-primeness of T ∗ implies that either
T ∗ �H G∞ τ or T ∗ �H G∞ σ . It follows by (a) of the induction hypothesis that
either ν(τ) ≥ 1/2 or ν(σ ) ≥ 1/2. In both cases, also ν(ϕ) ≥ 1/2.
(b) Suppose that T ∗

�H G∞ ϕ. Then property 3 of T ∗ implies that T ∗
�H G∞ τ

and T ∗
�H G∞ σ . It follows by (b) of the induction hypothesis that ν(τ) = e([τ ])
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and ν(σ ) = e([σ ]). Assume, without loss of generality, that [σ ] ≤ [τ ]. Then
T ∗ �H G∞ σ ⊃ τ , and e([σ ]) ≤ e([τ ]). The former fact implies (with the help
of the Axioms [⊃ ∨] and [∨ ⊃]) that ϕ ≡ τ , and so e([ϕ]) = e([τ ]). The latter
fact implies that ν(ϕ) = e([τ ]), hence ν(ϕ) = e([ϕ]).

• We leave the case where ϕ = τ ∧ σ to the reader.

This ends the proof of (a) and (b), and so of the theorem. �

Note 7.1 The connection between RM and G∞ was first observed by Dunn and
Meyer in (1971),where itwas proved thatRMt (seeNote 6.3) is aweakly conservative
extension of the positive fragment of G∞.

Note 7.2 The standard semantics of Gödel–Dummett logic G∞, as described in
the literature on fuzzy logics, is provided by the matrix 〈[0, 1], 1,O〉, where the
interpretations in O of ∨, ∧, and F are like inM([0, 1]) (the strongly characteristic
matrix for RMF), while a ⊃̃ b is 1 if a ≤ b, and b otherwise. However, the last
theorem shows that when we use G∞, it is not essential at all to take 1 as the
only designated value. It is also interesting to note that the interpretation of ¬ in
M([0, 1]) is identical to that used in the most famous fuzzy logic (except perhaps
G∞): Łukasiewicz’s logic. (In G∞ itself ¬ϕ is usually taken as an abbreviation for
ϕ ⊃ F.)

Note 7.3 AHilbert-type systemHRM⊃ in { ¬,∨,∧,⊃}which is strongly sound and
complete for RM has been given in Avron (1986). HRM⊃ is obtained from H G∞,
by adding to it axioms connected with ¬. By adding F ⊃ ϕ and ϕ ⊃ ¬F as axioms
to HRM⊃, we get a Hilbert-type system in IL ∪ { ¬ } that is strongly sound and
complete for RMF.
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Wedge Sum, Merge and Inconsistency

Chris Mortensen

Abstract This paper investigates the topological construction of Wedge Sum, with
the aim of showing that it can be done mathematically, via a quotient construction, or
logically, viaMerge. Consistent and Inconsistent versions are given, while noting that
the natural outcome of Merging is an inconsistent theory. Finally it is observed that
algebraic constructions can also be treated via Merge, where the extra functionality
makes for various triviality and non-triviality results.

Keywords Inconsistent theory · Leibniz law · Logical theories · Merge · Wedge
sum

1 Wedge Sum

The outstanding work on three-valued paraconsistent model theory by J. M. Dunn
(1979), and preceding him R. K. Meyer (1976), proved an inspiration to the present
author to construct inconsistent mathematical theories (e.g., Mortensen 1995). In
particular, these two authors studied and applied the logicRM3. This is a three-valued
logic which lends itself naturally to an informational interpretation in virtue of the
inconsistency-tolerance of the logic. In this paper these model-theoretic methods
are applied to study various inconsistent topological and algebraic theories. It is
noted that other simple paraconsistent logics, such as LP and P3, allow for similar
results, since results on inconsistent theories tend to be invariant over large classes
of background logics. Even so, we will be working with RM3 in honour of Meyer
and Dunn’s brilliant example.

Mathematics and logic approach identification in characteristically differentways.
A typical mathematical construction involves equivalence classes which preserve
structure, for example topological structure or algebraic structure. The equivalence
classes, which “identify” those things in the same equivalence classes, are then the
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elements of the collapsed space. This construction can then be turned naturally into
consistent and inconsistent logical theories, as wewill see. By contrast, logic does the
work utilizing logical techniques. This technique begins with consistent theories and
applies logical operations (specifically Merge, see below) to produce inconsistent
theories. The differences of approach are instructive for comparison of inconsistent
mathematical structures.

We begin with mathematics. A useful topological construction is Wedge Sum.

Definition 1.1 Let X, Y , be topological spaces, with points x ∈ X, y ∈ Y . Form the
disjoint union of X and Y , X � Y , and let a, b be two points with a ∈ X, b ∈ Y . Let
∼ be the equivalence relation determined by membership of {a, b}, that is x ∼ y iff
either x = y or both x and y are members of {a, b}. Then the wedge sum of X and Y ,
written X ∨ Y , is defined as the quotient X � Y� ∼.

This amounts to saying that the wedge sum of two spaces is their union, except
for having just one pair of overlapping points identified. So for example for the
circle S1, the wedge sum S1 ∨ S1 is homeomorphic to the numeral 8, while S2 ∨ S2

is homeomorphic to a pair of spheres joined at a single point (see e.g., Hatcher 2002,
p. 10).

Clearly, this definition can be extended to more than two spaces, and more than
one pair of overlapping points, but we do not need that here. In this paper, we directly
construct consistent logical theories which describe wedge sums, and inconsistent
theories which extend them. Then we utilize the technique Merge to show how to
obtain inconsistent theories of the wedge sum in a different way. Finally, it is seen
that this technique can be used to study inconsistent structures other than topological
spaces.

2 Consistent and Inconsistent Theories

There is a natural way to produce consistent theories, and extensions to inconsistent
theories, which take into account the construction above, (followingMortensen 1995,
pp. 93–95). This is necessary for comparison between the mathematical approach
above, and the logical approach.

We take a language L with:

(i) terms for members of X � Y , with metalinguistic variables t, t1, t2, . . . rang-
ing over these terms; terms for subsets of X � Y , with metalinguistic variables
S, S1, S2, . . . ranging over them; and a constant termO for the set of open sets of
X � Y . For convenience we can take members of X � Y as naming themselves.

(ii) For binary relations we take identity = and set membership ∈.
(iii) Atomic sentences are of the form t1 = t2, S1 = S2, t ∈ S and S ∈ O.

An interpretation I can now be defined, which interprets terms in the wedge sum
of X and Y , and sentences in the values {T , F} of 2-valued Boolean logic:
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(1) I(t) = P(t) = [t],
where P is the projection operator taking t to its equivalence class, and [t] is the
equivalence class of t;

(2) I(S) = P(S) = {[t] : t ∈ S};
(3) I(O) = {P(S) : S ∈ O};
(4) I(t1 = t2) = T if I(t1) = I(t2), else I(t1 = t2) = F;
(5) I(t ∈ S) = T if I(t) is in I(S), else I(t ∈ S) = F;
(6) I(S1 = S2) = T if I(S1) = I(S2), else I(S1 = S2) = F;
(7) I(S ∈ O) = T if I(S) is in I(O), else I(S ∈ O) = F.

This induces an interpretation on non-atomic sentences in accordance with 2-
valued Boolean logic. The resulting interpretation determines a theory Th by the
definition Th := {A : I(A) = T}.
Definition 2.1 A theory is inconsistent if it contains some sentence and its negation,
else consistent; and trivial if it contains every sentence, else non-trivial. A theory is
incomplete if it lacks some sentence (of its language) and its negation, else complete.

Hence we may observe that the theory generated by the above interpretation (1)–
(7) is consistent and complete, since sentences take exactly one of the two truth
values, T or F. Note also that I(a = b) = T , that is a = b holds but ¬(a = b) does
not hold.

Of interest are theories determined by assigning sentences one of the three values
(T , B, F) of the paraconsistent logic RM3 (see e.g., Dunn 1979).

Definition 2.2 A sentence is said to hold in an RM3 interpretation if it takes the
value T or the value B. Given an RM3 interpretation, an associated theory Th can
be then defined as being the set of sentences that hold in the interpretation, Th :=
{A : I(A) = T or I(A) = B}.

It is straightforward to modify the interpretation above to produce an inconsistent
theory: simply change T to B in (4)–(7) above. This implies that I(a = b) = B =
I(¬a = b) . Call the associatedRM3-theoryTh(X ∨ Y). Both a = b and¬a = b hold
in Th(X ∨ Y). The theory is non-trivial, since for any pair of points c, d other than
a, b, where c is in one of the original two spaces and d is in the other, then c = d
does not hold. The theory is complete, since if any sentence is assigned F then its
negation is assigned T .

Definition 2.3 A theory is functional if, whenever any equation t1 = t2 holds, then
Ft1 holds iff Ft2 holds, where Ft1 is any atomic sentence containing t1 and Ft2 is like
Ft1 except for replacing t1 by t2 in one or more places. A theory is transparent if the
same conditions hold except that Ft1 and Ft2 can be any sentence (not restricted to
atomic).

We now observe:

Theorem 2.4 The inconsistent theory Th(X ∨ Y) is functional, and indeed trans-
parent.
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Proof For functionality, we just have to check all the atomic contexts. If t1 = t2
holds then I(t1) = I(t2). Hence t1 = t3 holds iff I(t1) = I(t3) iff I(t2) = I(t3) iff
t2 = t3 holds. Similarly, t1 ∈ S holds iff I(t1) ∈ I(S) iff I(t2) ∈ I(S) iff t2 ∈ S holds.
If S1 = S2 then by similar arguments t ∈ S1 holds iff t ∈ S2 holds, and S1 ∈ O holds
iff S2 ∈ O holds.

Transparency is proved by a straightforward induction on the logical complexity
of sentences, of which functionality is the base clause. �

We also note that there are other ways that a model and an associated inconsistent
theory can be constructed. For example, define I by (1)–(3) plus:

(4′) I(t1 = t2) = T if t1 = t2, else I(t1 = t2) = B if I(t1) = I(t2); otherwise I(t1 =
t2) = F.

(5′) I(t ∈ S) = T if t is in S, else I(t ∈ S) = B if I(t) is in I(S); otherwise I(t ∈
S) = F.

(6′) I(S1 = S2) = T if S1 = S2, else I(S1 = S2) = B if I(S1) = I(S2); otherwise
I(S1 = S2) = F.

(7′) I(S ∈ O) = T if I(S) is in I(O), else I(S ∈ O) = F.

This theory is inconsistent, since again both a = b and ¬(a = b) hold. Note that
here in (7′) the concept of openness is treated consistently. Note that this consistency
is optional, but it illustrates the point that inconsistency can be isolated in various
ways.

It is easily seen that this theory is functional, by an argument similar to that for
Th(X ∨ Y) above. It is, however, not transparent: since both a = b and ¬(a = b)

hold, then if it were transparent, so would ¬(a = a) hold, contradicting (4′). Failure
of transparency is not such a burden, it is an epiphenomenon of logic rather than
mathematics, though Dunn and Meyer both liked transparency. (On transparency
and functionality, see Mortensen 1995, Chap.2.)

It is convenient to refer to this theory asWedge. The point of having inconsistency
in such theories, especially Wedge, is that the inconsistency “keeps track of” the
difference in origin of the identified items, by preserving their original disidentity
while still registering the identification where the mathematical (functional) work is
done.

3 Merge

There is another way to approach the construction of an inconsistent theory of wedge
sum, a proof-theoretic or logical way.

Definition 3.1 If Th1, Th2 are two theories (of the same logic �), then Merge
(Th1, Th2) = (Th1 ∪ Th2)

�&.

That is, the Merge of two theories is the theory which is the deductive and con-
junctive closure of their union (see Mortensen 2011, Sect. 4). In the present case, the
logic in question is RM3.
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The Merge operation can be used to produce an alternative inconsistent theory of
the wedge sum, as follows.

Begin by constructing a consistent and complete theory of one of the topological
spaces X. First form the usual Boolean interpretation I by:

I(t1 = t2) = T iff both t1 and t2 are in X, and t1 = t2, else I(t1 = t2) = F.
I(t ∈ S) = T iff t is in S, else I(t ∈ S) = F.
I(S1 = S2) = T iff S1 = S2, else I(S1 = S2) = F.
I(S ∈ O) = T iff S is in O, else I(S ∈ O) = F.
This interpretation forms a consistent and complete theory. Extend I to an inter-

pretation Iω by adding an additional “dummy” constant ω and setting Iω(ω) =
Iω(a) = a. This ensures that Iω(a = ω) = T . Call the generated theory Thω(X), that
is Thω(X) = {A : Iω(A) = T}. Note that Thω(X) remains consistent and complete,
and that a = ω and ¬(a = b) are in it, and that ¬(a = ω) and a = b are not.

Now do the same for Y , save that ω is interpreted to be the same as b. Call this
theory Thω(Y). Note that Thω(Y) is consistent and complete, and that b = ω and
¬(a = b) are in it, but that ¬(b = ω) and a = b are not.

Finally, Merge these two theories, obtaining Merge(Thω(X), Thω(Y)), or Merge
for short.

Note that Merging requires a background logic, whose deductive rules are com-
mon to the two theories being merged. As above we take RM3. It is required here to
make one further assumption, specifically that the background logic is closed under
Leibniz Law as one of its rules. It suffices to assume a weak form of Leibniz Law,
namely the substitutivity of identicals in all atomic contexts. That is, if t1 = t2 holds,
then Ft1 holds iff Ft2 holds where F is atomic. This gives:

Theorem 3.2 Merge is inconsistent, but non-trivial.

Proof Since a = ω holds and b = ω holds, then substituting b for the ω in the first
equation gives by Leibniz Law that a = b holds. However, ¬(a = b) also holds
since it holds in (both) the Thω theories. Also both ω = ω and¬(ω = ω) hold. Many
sentences continue not to hold, however, such as any identity between points of X
other than a, and points of Y other than b; so the theory is non-trivial. �

Theorem 3.3 Merge is complete and functional.

Proof If the Merged theory were incomplete then for some A, neither A nor ¬A
would be consequences of the union of the two Thω theories. But this is impossible
since these two theories, in the same language, are complete. The requirement of
closure under Leibniz Law is the same as functionality. �

We now see that:

Theorem 3.4 Wedge and Merge have identical atomic sentences in their common
language.

Proof First, every atomic sentence that holds inWedge, holds in Merge. Any atomic
sentence taking the value T in Wedge is true in one of the Boolean theories from
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which Merge is constructed, and so holds in Merge. Thus we must consider those
atomic sentences which are B in Wedge, and show that they all hold in the Merge
theory. These are:

(i) t1 	= t2 but I(t1) = I(t2).
(ii) t /∈ S but I(t) ∈ I(S).
(iii) S1 	= S2 but I(S1) = I(S2).
On (i), one of the t must be a and the other must be b, since otherwise either

t1 = t2 or I(t1) 	= I(t2). But then, in the Merged theory, a = b holds.
On (ii), two cases. First case: t is a and S contains b but not a. Thus, S = S′ ∪ {b}

whereS′ does not includeb. By constructionofMerge,S = S′ ∪ {b}holds.ByLeibniz
Law, S = S′ ∪ {a} holds, so that t ∈ S holds. Second case: t is b and S contains a but
not b. Similar argument.

On (iii), two cases. First case: S1 = S ∪ {a} and S2 = S ∪ {b} where S contains
neither a nor b. By construction, both hold. By Leibniz Law, S1 = S ∪ {b} holds.
Hence S1 = S2 holds. Second case: S1 and S2 are reversed. Similar argument.

Second, every atomic sentence that holds in Merge, holds in Wedge. Both the
Boolean theories to be Merged are classically true, so all their sentences take the
value T in Wedge. Similarly a = b which holds in Merge, holds by construction in
Wedge. So we just have to assure ourselves that the deductive rules of Merge are
preserved in Wedge. But the rules of Merge are the rules of RM3 and are certainly
preserved in Wedge which is an RM3 model. In particular, Leibniz Law is preserved
in Wedge, since as observed above, Wedge is functional. �

In short, we see that the same effects on the functionality of theories can be
obtained by a typicallymathematical approach, as in the quotient constructionWedge
Sum, or by a more logical approach, as in Merge.

4 Merging Algebras

The technique of Merge is applicable to theories other than those of topological
spaces. For instance, we can consider finite additive groups such as the integers with
varying moduli. These generate consistent theories, and also inconsistent theories
(see Meyer and Mortensen 1984). Bringing in algebraic operations allows for a
richer range of properties, and suggests a natural mathematical generalization of
Wedge Sum.

For example, consistent Z mod 6 can be merged with consistent Z mod 9. The
additive structure provides for zero as a surrogate for the dummy constant ω. Thus
we can write 0 = 6 in mod 6, and 0 = 9 in mod 9. Closing under Leibniz Law
gives 9 = 6. Now Leibniz Law must respect the additional functional (arithmetic)
structure. Hence, from 0 − 0 = 9 − 6,we get 0 = 3. The number 3 is the highest
common factor of 6 and 9. This theory is inconsistent as either (both) theories also
contain ¬(0 = 3). Leibniz Law does not afford further arithmetical reduction, so we
have a non-triviality result for Merge: merging integer arithmetics mod 6 and mod 9
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does not allow the deduction of 0 = 1. Merging of higher numbers of theories also
resist trivialization as long as the moduli all have a common factor.

Contrast with the case where the two moduli are relatively prime, where repeated
applications of Leibniz Law give 0 = 1. Thus, we cannot automatically expect that
Merging will result in a non-trivial theory: it depends on the functional properties of
the operators in the theories.
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Single Axioms and Axiom-Pairs for the
Implicational Fragments of R, R-Mingle,
and Some Related Systems

Dolph Ulrich

Abstract Various axiom sets for the implicational fragments R→ and RM→ of R
and of R-Mingle have appeared in the literature over the last six-and-a-half decades,
some of them in other guises well before the full systems with∼, &, and∨were even
introduced. Most such sets are comprised of three or four axioms. For other logics
of pure implication, the historical progression has typically been from longer axiom
sets to the discovery of deductively equivalent two- and one-axiom bases. This paper
continues in that pattern, presenting such bases for R→ and RM→. Along the way,
new axiom pairs and new single axioms are given for a number of other implicational
logics as well, some in the paper itself and many in the Appendix attached to it.
Prominent among these is C.A. Meredith’s system BCI. Though single axioms for
BCI are of independent interest, one of them in particular also plays an invaluable
role in the construction of those provided here for implicational R and R-Mingle.

Keywords Axiom-pairs · BCI · Implicational fragment · R · R-Mingle · Single
axioms

1 Implicational Logics: Early Work

Our main concern is with the development of axiom sets for systems of pure
implication, that is, sentential logics with a single binary connective and the rules
modus ponens (equivalently, detachment) and uniform substitution of formulas for
sentence letters. Formulas are displayed throughout using standard infix notation
with → as the implication connective, though many of the publications cited herein
instead use C and the parentheses-free prefix notation of Łukasiewicz.

The first sustained work on axiomatizing implicational logics began in Poland.
In 1921, Tarski axiomatized the implicational fragment IF of the classical senten-
tial calculus using the axioms (p → q) → ((q → r) → (p → r)), p → (q → p),
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and ((p → q) → r) → ((p → r) → r) (Łukasiewicz and Tarski 1930). In 1928,
Bernays (ibid.) shortened the third one, replacing it with Peirce’s ((p → q) → p) →
p,1 and the resulting set below has come to be known as the Tarski–Bernays axioms.

(p → q) → ((q → r) → (p → r)) B’/Syll/Syl
p → (q → p) K/Simp
((p → q) → p) → p Peirce

(The single letters B’ and K used here to label the axioms are taken from the
names of the combinators for which they are the principle types, a common modern
practice. The others—Syll, Simp, and so on—are from the older tradition; they were
the “nicknames” given those formulas by the early researchers, starting in the 1920s
and 1930s.)

As alternate axiomatizations of IF emerged, concerns with the lengths of individ-
ual axioms became accompanied by interest in reducing the total number of axioms
in the set. Wajsberg (1932) (but circa 1925–1926; cf. Prior (1962, p. 302)), pro-
duced the first two-bases. Each is twenty-two symbols in total length (not counting
parentheses—there were none in the notation he was using), with ten occurrences of
the implication connective as in the Tarski–Bernays set.

(a) p → (q → (r → p)), ((p → q) → r) → ((s → r) → ((p → r) → r))
(b) (p → q) → p) → p, (((p → q) → r) → s) → ((q → r) → (p → s))

Discovery of shorter, 20-symbol pairs, using just nine occurrences of the connec-
tive, soon followed. Łukasiewicz (cf. Prior 1961) found

(c) p → (q → p), (((p → q) → r) → s) → ((q → s) → (p → s)),

and (Wajsberg 1939) has two more of the same total length.

(d) ((p → q) → p) → p, (p → q) → (s → ((q → r) → (p → r)))
(e) ((p → q) → p) → (r → p), (p → q) → ((q → r) → (p → r))

Looking at such pairs some years later, Prior observed that the distribution of
occurrences of the connective between the two axioms in (e) is 4/5, in others—cf.
(d)—is 3/6, and in (c) is 2/7. Prior (1961) reports asking his colleague C.A. Meredith
if there exists also a nine-connective pair in which the distribution is 1/8, that is, if
there is a formula containing eight occurrences of the connective which, with p → p,
provides an independent two-base for IF. Meredith did not answer that question, but
in 1960 he did find an even shorter, 18-symbol pair with the distribution 1/7.

(f) p → p, ((p → q) → r) → ((r → p) → (s → (t → p)))

1This formula appeared originally in Peirce (1885), alongside (p → q) → ((q → r) → (p → r)),
(p → (q → r)) → (q → (p → r)), and p → p. It turns out that those four together also suffice to
axiomatize IF.
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Beyond (short) two-bases of course lies the ultimate goal of discovering equivalent
single axioms. Tarski himself devised methods for producing such axioms by the
(carefully considered) placement of one or more theorems inside certain others, and
was consequently able to construct the first single axioms for IF (Leśniewski 1929).
Those first axioms were quite long, so Łukasiewicz and Tarski (1930) display instead
two such axioms of length 25 found later by others, one fromWajsberg and one from
Łukasiewicz.

((p → q) → ((r → s) → t)) → ((u → ((r → s) → t)) → ((p → u) → (s → t)))

((p → (q → p)) → (((((r → s) → t) → u) → ((s → u) → (r → u))) → v)) → v

Wajsberg’s contains no theoremsof IF as proper parts and so, followingLeśniewski
(1929), is said to be organic. Łukasiewicz’s is clearly inorganic containing, as it does,
p → (q → p). In fact, it is “doubly” inorganic, because it contains ((((r → s) →
t) → u) → ((s → u) → (r → u))) as well.

Indeed, p → (q → p) and (((r → s) → t) → u) → ((s → u) → (r → u))
together are an alphabetic variant of Łukasiewicz’s two-base (c) above. Since (((r →
s) → t) → u) → ((s → u) → (r → u)) is an IF thesis, then so also is ((((r →
s) → t) → u) → ((s → u) → (r → u)) → v) → v, and Łukasiewicz’s axiom thus
illustrates the Tarski-style approach to constructing single axioms by inserting one
inside another.

Łukasiewicz went on thereafter to produce even shorter single axioms, culminat-
ing finally (Łukasiewicz 1948) in the 13-symbol

((p → q) → r) → ((r → p) → (s → p)).

He showed as well that no shorter theorem of IF is a single axiom for it, so that his
axiom is shortest possible for that system. Later, Tursman (1968), with an assist from
Thomas (1970) for one troublesome candidate, went on to prove that Łukasiewicz’s
axiom is unique among the 13-symbol formulas in this respect: no other IF theorem
of equal length can do the job either.

With Łukasiewicz’s axiom at hand, we can take up Prior’s question about the
existence of an eight-arrow IF thesis which, with p → p, axiomatizes IF. He himself
retained interest in it, concluding Prior (1961) by saying that as far as he knows “the
problem of axiomatizing [classical implication] in the way indicated has not yet been
either solved or shown to have no solution.”

For any sentence letter L, p → p and (L → L) → ((p → (q → r)) → ((r →
p) → (s → p))) would provide a trivial solution: the two are independent, each
alone having as consequences only its own substitution instances, but detaching the
first from the second immediately delivers Łukasiewicz’s axiom. Since it is unlikely
that either Meredith or Prior overlooked this simple example, it seems reasonable to
suppose that what Prior sought was an organic pair (as with all those above).

With that understanding, consider then the pair

(g) p → p, ((p → q) → r) → (((q → s) → t) → ((t → q) → r)).
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These two are also independent. As before, p → p alone gives only instances of
itself. For the other, ((p → q) → r) → (((q → s) → t) → ((t → q) → r)) takes,
according to the following matrix, the value 1, for every assignment of values of the
matrix to the letters occurring in it,

M1 =

→ 1 2 3
∗1 1 2 3

2 1 3 1

3 1 1 2 ,

and thus is a tautology of M1. Modus ponens and uniform substitution preserve this
feature, leading from tautologies of the matrix only to other such tautologies. But
p → p is not an M1 tautology: it takes the value 3 when p is assigned the value 2.

Together, however, these two also immediately yield Łukasiewicz’s single axiom
for IF. When presenting proofs from axioms in this paper, we will employ the rule
of condensed detachment invented by Meredith in the 1950s (its first appearance
in the literature was in Prior 1956), and will annotate our proofs as he does his.
Meredith writes “Dx.y” as short for the most general formula obtainable (when such
exists) by using formula x, or some substitution instance of it, as major premise
for an application of detachment—that is, modus ponens—and formula y, or some
substitution instance of it, as minor premise. (When such a formula does exist, it is
unique up to the renaming of sentence letters.)

In the present case, for example, substituting s → p for p in p → p gives
(s → p) → (s → p). Then putting s for p, p for q, s → p for r, q for s, and
r for t throughout the longer axiom produces ((s → p) → (s → p)) → (((p →
q) → r) → ((r → p) → (s → p))). Detaching the former from the latter delivers
Łukasiewicz’s ((p → q) → r) → ((r → p) → (s → p)).

Meredith’s annotation method suppresses explicit display of the substitutions
involved (one can work them out for oneself, though not always easily). He would
simply write, as shall we, the following.

1. ((p → q) → r) → (((q → s) → t) → ((t → q) → r))
2. p → p

D1.2 = 3. ((p → q) → r) → ((r → p) → (s → p))

The pair (g) of axioms appearing here as the first two lines of our proof is not
the only solution to Prior’s problem. The 8-arrow formula can be replaced at least
with any of (p → q) → (((p → r) → s) → ((s → q) → (t → q))), (p → q) →
(((q → r) → s) → ((s → p) → (t → q))), (p → q) → (((r → s) → p)→ ((r →
p) → (t → q))), and (p → q) → (((r → s)→ q)→ ((r → p)→ (t → q))), though
the last two lead to Łukasiewicz’s axiom much more slowly.

With Meredith’s entry into the game, shorter bases and short single axioms for
other implicational logics besides IF were sought and found. In the 1950s and 1960s,
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he himself discovered single axioms and short two-bases for a variety of such calculi.
For the implicational fragment H→ of the intuitionistic sentential calculus, for exam-
ple, Meredith (1953) presented ((p → q) → r) → (s → ((q → (r → t)) → (q →
t))) andMeredith andPrior (1963) addp → ((q → r) → (((s → q) → (r → t)) →
(q → t))). For the strict-implicational fragmentC5 of themodal logicS5,Meredith’s
((((p → p) → q) → r) → (s → t)) → ((t → q) → (u → (s → q))) is in Lem-
mon et al. (1969) alongwith a couple of two-bases, and Prior also had one of the latter,
p → p with (((p → q) → r) → s) → ((s → p) → (u → (r → p))). For his own
pure implicational calculus BCI, whose axioms are B = (p → q) → ((r → p) →
(r → q)), C = (p → (q → r)) → (q → (p → r)), and I = p → p, Meredith pro-
vided (p → (q → r))→ (((s → s) → (t → q)) → (t → (p → r))) and Prior gave
((p → p) → (q → r)) → ((s → (r → t)) → (q → (s → t))), while for his BCK,
in which the axiom I is replaced with K, Meredith produced ((p → q) → r) →
((s → (r → t)) → (q → (s → t)))—seeMeredith and Prior (1963) again for these
last four.

In more recent times, others have taken up and expanded the project. Most of
Meredith’s single axioms have been shown to be shortest possible, and additional
such axioms have been added to his. For example, in Ernst et al. (2002), Ernst,
Fitelson, Harris and Wos present six more axioms for C5 of the same length as
Meredith’s and report that they are shortest possible. But they also found an even
shorter two-base, p → p and (p → q) → (((q → r) → s) → r) → (p → r), just
18 symbols and proved minimal in total length among all bases for this system. In
addition, they found the first single axiom for the strict-implicational fragment C4
of S4, (p → ((q → (r → r)) → (p → q))) → ((s → t) → (u → (p → t))), and
showed that no other theorem of C4 of lesser or even of the same length will do.

Meredith and Prior’s two single axioms for H→ have been extended to twelve,
and a proof that these are shortest possible is nearly complete with only four shorter
theorems of undetermined status remaining (seeUlrich (1999, 2001), and theAppen-
dix to the present paper). For BCK and BCI, the author has shown that Meredith’s
single axioms for each are the shortest possible. The list of those for BCK cur-
rently stands at thirteen, and for BCI—perhaps now of renewed interest since the
latter system has re-emerged as the implicational fragment of Girard’s linear logic
(Girard 1987)—has grown to eighty single axioms. All of these and more are listed
in the Appendix below, and one of the new single axioms for BCI to be found
there, ((p → p) → (q → (r → s))) → ((t → q) → (r → (t → s))), will be espe-
cially useful when we turn, as we now do, to the system R→ of relevant implication,
and to RM→, the implicational fragment of Dunn’s own R-Mingle, later on.

2 Compact Bases and a Single Axiom for R→,
the Implicational Fragment of R

Anderson and Belnap (1975, p. 89) ask, among other related questions, whether there
exists a single axiom for R→, the implicational fragment of the relevance logic R.
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They themselves list a number of four-axiom bases for R→, including (p. 20)

(p → q) → ((q → r) → (p → r)) B’
(p → (q → r)) → (q → (p → r)) C
p → p I
(p → (q → r)) → ((p → q) → (p → r)) S/Frege,

and their axiom set R→ 3 (p. 88)

(p → q) → ((q → r) → (p → r)) B’
(p → (q → r)) → (q → (p → r)) C
p → p I
(p → (p → q)) → (p → q) W.

They include also two equivalent sets that appeared in the literature well before
full R was formulated. The earliest was Moh (1950)’s

(p → q) → ((q → r) → (p → r)) B’
p → ((p → q) → q) Pon
p → p I
(p → (p → q)) → (p → q) W,

but only a year later Church (1951) independently introduced what has now become,
perhaps, the most widely known set and the one that has given rise to the alternate
name “BCIW” for R→:

(p → q) → ((r → p) → (r → q)) B
(p → (q → r)) → (q → (p → r)) C
p → p I
(p → (p → q)) → (p → q) W

Newbases using fewer axioms are, of course, possible. Rezus (1982), for example,
gives the following 27-symbol three-base, as short as any the author knows of forR→:

(p → (q → r)) → ((s → p) → (q → (s → r)))
p → p I
(p → (p → q)) → (p → q) W

And here’s another of the same length:

(((p → q) → q) → r) → ((r → s) → (p → s))
p → p I
(p → (p → q)) → (p → q) W
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The odd first member of this base can be gotten from three familiar R→ theorems
as follows:

1. (p → q) → ((r → p) → (r → q)) B
2. (p → q) → ((q → r) → (p → r)) B’
3. p → ((p → q) → q) Pon

D1.2 = 4. (p → (q → r)) → (p → ((r → s) → (q → s)))
D2.3 = 5. (((p → q) → r) → r) → (p → r)
D4.5 === 6. ((((((((( p →→→ q))) →→→ q))) →→→ r))) →→→ ((((((r →→→ s))) →→→ ((( p →→→ s))))))

To see that this axiom does give full R→ with I and W, note that it suffices all
by itself for getting B, B’, and C (it, and its permuted variant, (p → q) → ((((r →
s) → s) → p) → (r → q)), are the shortest theorems of R→—indeed, of IF—that
do so).

1. (((p → q) → q) → r) → ((r → s) → (p → s))
D1.1 = 2. (((p → q) → (r → q)) → s) → ((r → p) → s)
D2.1 = 3. (p → (q → r)) → (((p → r) → s) → (q → s))
D1.2 = 4. (((p → q) → (p → r)) → s) → ((q → r) → s)
D3.1 = 5. (((((p → q) → q) → r) → (p → s)) → t) → ((r → s) → t)
D1.3 = 6. (((((p → (q → r)) → r) → s) → (q → s)) → t) → (p → t)
D3.2 = 7. (((((p → q) → (r → q)) → s) → s) → t) → ((r → p) → t)
D3.4 = 8. (((((p → q) → (p → r)) → s) → s) → t) → ((q → r) → t)
D5.2 = 9. ((p → q) → r) → ((p → (s → q)) → (s → r))
D6.6 = 10. (p → (q → (r → s))) → (p → (r → (q → s)))
D6.7 === 11. ((( p →→→ q))) →→→ ((((((r →→→ p))) →→→ (((r →→→ q)))))) B
D6.8 === 12. ((( p →→→ q))) →→→ ((((((q →→→ r))) →→→ ((( p →→→ r)))))) B’
D1.9 = 13. (((p → (q → r)) → (q → r)) → s) → (p → s)
D13.13 = 14. (p → (q → r)) → (p → (q → r))
D10.14 === 15.((( p →→→ (((q →→→ r)))))) →→→ (((q →→→ ((( p →→→ r)))))) C

Two-bases can be obtained by adding W to any 19-symbol single axiom for BCI,
but those are 28 symbols long.

Anderson and Belnap’s question about the existence of a single axiom for R→
was answered by Rezus (1982), who devised a method (which he attributes to Tarski)
involving the insertion of certain bases for R→ into a general template. The axioms
produced tend to be quite long and he does not actually display any of them but only
gives instructions for their construction. The shortest such single axiom the author
has found is 93 symbols long. To aid readability a bit, the members of the three-base
used, also due to Rezus, are underlined below. Notice that alphabetic variants of two
of them appear twice each:
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((p → (((q → q) → ((r → r) → ((s → s) → ((t → t) → (p → u))))) → u)) →
(((((v → w) → ((w → x) → (v → x))) → (((((y → (y → z)) → (y → z)) →
(((a → b) → ((b → c) → (a → c))) → d)) → d) → e)) → e) →
((f → (((g → g) → ((h → h) → ((i → i) → ((j → j) → (f → k))))) → k))

→ l))) → l

On the way to a shorter single axiom, it will be helpful to employ some of the
derived rules of inference that all bases for R→ provide: prefixing, which allows
the inference of (C → A) → (C → B) from A → B, transitivity, which lets one
move from A → B and B → C to A → C, and R→’s distinctive deduction theorem,
which assures the provability of A → B whenever there exists a deduction of B from
A in which A is actually used. With their help, a proof for the following result is
straightforward.

Theorem 2.1 For each theorem T of R→, (T → ((s → s) → (t → (u → v)))) →
((w → t) → (u → (w → v))) is a theorem of R→.

Proof (Asterisks indicate dependence on the hypothesis.)

1. T → ((s → s) → (t → (u → v))) * hyp

2. T theorem of R→
3. (s → s) → (t → (u → v)) * 1, 2 modus ponens
4. s → s theorem of R→
5. t → (u → v) * 3, 4 modus ponens
6. (w → t) → (w → (u → v)) * 5 prefixing
7. (w → (u → v)) → (u → (w → v)) theorem of R→
8. (w → t) → (u → (w → v)) * 6, 7 transitivity
9. (T → ((s → s) → (t → (u → v)))) → 1–8, deduction theorem

((w → t) → (u → (w → v)))

Now take T to be the formula ((p → q) → (r → p)) → ((p → q) → (r → q)),
which is certainly a theorem of R→: it is the result of using Frege to distribute the
antecedent, p → q, of B over its consequent. With that choice, Theorem 2.1 provides
uswith a single 35-symbol theorem fromwhich, it turns out, all ofR→’s theses follow.

Theorem 2.2 ((((p → q) → (r → p)) → ((p → q) → (r → q))) → ((s → s) →
(t → (u → v)))) → ((w → t) → (u → (w → v))) is a single axiom for R→.

Proof By Theorem 2.1, and the fact that (((p → q) → (r → p)) → ((p → q) →
(r → q))) is provable in R→, the formula of our present Theorem is also provable.
To show that it is in fact a single axiom for that system, we derive Moh’s base, B’,
Pon, I, and W, from it.
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1. ((((p → q) → (r → p)) → ((p → q) → (r → q))) →
((s → s) → (t → (u → v)))) → ((w → t) → (u → (w → v)))

D1.1 = 2. (p → q) → ((q → q) → (p → q))
D1.2 = 3. (p → ((q → r) → (s → q))) → ((q → r) → (p → (s → r)))
D1.3 = 4. (p → ((q → q) → (r → q))) → (r → (p → q))
D4.2 === 5. p →→→ (((((( p →→→ q))) →→→ q))) Pon
D2.5 = 6. (((p → q) → q) → ((p → q) → q)) → (p → ((p → q) → q))
D5.6 = 7. (((((p → q) → q) → ((p → q) → q)) →

(p → ((p → q) → q))) → r) → r
D1.7 === 8. ((( p →→→ q))) →→→ ((((((q →→→ r))) →→→ ((( p →→→ r)))))) B’
D1.4 = 9. (p → (((q → r) → (q → r)) → ((s → s) →

(q → r)))) → (q → (p → r))
D9.2 = 10. p → (((q → q) → (p → r)) → r)
D10.5 = 11. ((p → p) → ((q → ((q → r) → r)) → s)) → s

D11.10 === 12. p →→→ p I
D8.6 = 13. ((p → ((p → q) → q)) → r) → ((((p → q) → q) →

((p → q) → q)) → r)
D8.8 = 14. (((p → q) → (r → q)) → s) → ((r → p) → s)
D1.13 = 15. (p → (q → r)) → (((q → r) → q) → (p → r))
D15.5 = 16. (((p → q) → q) → (p → q)) → (p → q)

D14.16 === 17. (((p →→→ ((( p →→→ q)))))) →→→ ((( p →→→ q))) W

3 RM→, the Implicational Fragment of R-Mingle

Sobociński (1952) introduced a 3-valued logic designed to avoid most of the para-
doxes of material implication.

M2 =

→ 1 2 3 ∼
∗1 1 3 3 3
∗2 1 2 3 2

3 1 1 1 1

The tautologies of M2 are of course the formulas in → and ∼ that take only
values designated here with asterisks regardless of how values of the matrix are
assigned to the letters occurring in them, and Sobociński axiomatized the set of all
M2-tautologies with the following five formulas.

(p → q) → ((q → r) → (p → r)) B’
p → ((p → q) → q) Pon
(p → (p → q)) → (p → q) W
p → (q → (∼ q → p))
(∼ p →∼ q) → (q → p)
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He asked explicitly if the implicational fragment of his system could be axioma-
tized as well, and that question was first answered in Rose (1956) using twenty-one
different axioms (some of which were over 100 symbols in length).

Shortly after the introduction of R-Mingle in Dunn (1970), Parks (1972) showed
that the theorems of its implication–negation fragment were exactly the theorems of
Sobociński’s system (noting that this result was obtained independently by Robert
K. Meyer as well) so that the implicational fragment of R-Mingle, RM→, is also
characterized by the (implicational part of the) matrix M2. Meyer and Parks (1972)
then provided an elegant set of axioms answering Sobociński’s question, and simul-
taneously axiomatizing RM→ as follows.

(p → q) → ((q → r) → (p → r)) B’
p → ((p → q) → q) Pon
(p → (p → q)) → (p → q) W
((((p → q) → q) → p) → r) → (((((q → p) → p) → q) → r) → r)

In the tradition of moving to reduce the number of axioms in the base for any
logic of interest, Ernst et al. (2001) presented a pair of three-bases for RM→. Each
includes B’and Pon together with either RM1 or RM2:

(p → q) → ((q → r) → (p → r)) B’
p → ((p → q) → q) Pon
((p → (((q → p) → r) → q)) → r) → r RM1
((((p → q) → r) → (q → p)) → r) → r RM2

An additional three-base can be obtained by replacing the third axiom in either
set with the following slightly longer theorem, which will prove useful shortly:

((((p → q) → r) → (q → p)) → (s → r)) → (s → r) RM3

RM3 is readily shown to be a tautology of M2 so it is a theorem of RM→. To
see that it can replace the third axiom in either of the three-bases above, observe that
DRM3.Pon = RM2: substitute the antecedent, (((p → q) → r) → (q → p)) →
r, of RM2 for each occurrence of s in RM3, put that same formula for p, and put r
for q in Pon; then, detach the latter from the former.

After the three-bases were discovered, Wos and Pieper (2003) posed two open
questions:

OQ29.RM. Does there exist a 2-basis for RM→?
OQ30.RM. Does there exist a single axiom for RM→?

To answer the first of these questions, a two-base 28 symbols in length results
(cf. Ulrich 2009) frompairing the powerful first axiom from the 27-symbol three-base
for R→ above with either RM1 or RM2 from Ernst et al. (2001).
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(((p → q) → q) → r) → ((r → s) → (p → s))
((p → (((q → p) → r) → q)) → r) → r RM1
((((p → q) → r) → (q → p)) → r) → r RM2

The first axiom, as shown above when considering the three-base for R→, is
provable in R→ and so in RM→, and gives B’, B, and C. Taking RM1 as the second
axiom (with no loss since the two are interdeducible in this setting), it suffices then
to derive the remaining member of Ernst et al. (2001)s three-base, Pon, and that
can be done quickly when the two-base is supplemented with those three known
consequences of the first axiom.

1. (((p → q) → q) → r) → ((r → s) → (p → s)) 1st member of 2-base
2. ((p → (((q → p) → r) → q)) → r) → r RM1
3. (p → q) → ((q → r) → (p → r)) B’
4. (p → q) → ((r → p) → (r → q)) B
5. (p → (q → r)) → (q → (p → r)) C

D3.1 = 6. (((p → q) → (r → q)) → s) → ((((r → t) → t) → p) → s)
D1.4 = 7. (((p → (q → r)) → (p → r)) → s) → (q → s)
D6.5 = 8. (((p → q) → q) → r) → (p → ((r → s) → s))
D7.2 = 9. ((p → q) → (q → p)) → (q → p)

D9.8 === 10. p →→→ (((((( p →→→ q))) →→→ q))) Pon

Turning finally to the search for a single axiom for RM→, Theorem 2.1 above
suggests a place to look. That result provides for the construction of theorems of
R→ by inserting various theorems of that system into the antecedent of the formula
((p → p) → (q → (r → s))) → ((t → q) → (r → (t → s))). This formula itself
is a theorem of both R→ and RM→. In fact, it is one of the many single axioms for
Meredith’s system BCI listed in the Appendix, where it is shown as BCI-22.

BCI-22. ((p → p) → (q → (r → s))) → ((t → q) → (r → (t → s)))

B, C, and I can be seen to give BCI-22 (on line 13) as follows.

1. (p → q) → ((r → p) → (r → q)) B
2. (p → (q → r)) → (q → (p → r)) C
3. p → p I

D1.2 = 4. (p → (q → (r → s))) → (p → (r → (q → s)))
D2.1 = 5. (p → q) → ((q → r) → (p → r))
D2.3 = 6. p → ((p → q) → q)
D5.2 = 7. ((p → (q → r)) → s) → ((q → (p → r)) → s)
D5.5 = 8. (((p → q) → (r → q)) → s) → ((r → p) → s)
D6.3 = 9. ((p → p) → q) → q

D5.9 = 10. (p → q) → (((r → r) → p) → q)
D7.10 = 11. (p → (q → r)) → (((s → s) → q) → (p → r))
D8.4 = 12. (p → q) → ((q → (r → s)) → (r → (p → s)))

D11.12 === 13. (((((( p →→→ p))) →→→ (((q →→→ (((r →→→ s))))))))) →→→ ((((((t →→→ q))) →→→ (((r →→→ (((t →→→ s)))))))))
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That BCI-22 (line 13 above), in turn, gives B, C, and I takes a bit longer.

1. ((p → p) → (q → (r → s))) → ((t → q) → (r → (t → s)))
D1.1 = 2. (p → (q → (r → s))) → (r → (p → (q → s)))
D2.1 = 3. p → (((q → q) → (r → (p → s))) → ((t → r) → (t → s)))
D1.2 = 4. (p → q) → ((r → (q → s)) → (p → (r → s)))
D1.3 = 5. (p → ((q → q) → (r → ((s → s) → t)))) →

((u → r) → (p → (u → t)))
D5.1 = 6. (p → q) → (((r → r) → ((s → s) → (q → t))) → (p → t))
D5.3 = 7. (p → ((q → q) → (r → s))) → (r → (p → s))
D5.4 = 8. (p → q) → ((q → r) → (p → r))
D7.3 === 9. ((( p →→→ (((q →→→ r)))))) →→→ (((q →→→ ((( p →→→ r)))))) C
D7.6 = 10. p → ((p → q) → q)
D9.9 = 11. p → ((q → (p → r)) → (q → r))
D7.9 = 12. p → ((p → ((q → q) → r)) → r)

D11.10 = 13. (p → ((q → ((q → r) → r)) → s)) → (p → s)
D9.8 === 14. ((( p →→→ q))) →→→ ((((((r →→→ p))) →→→ (((r →→→ q)))))) B

D13.12 === 15. p →→→ p I

Unfortunately, taking T in Theorem 2.1 to be eitherRM1 orRM2 is unproductive,
because the resulting theorems of RM→ turn out to have no consequences whatever
(apart from their own substitution instances). But with RM3 (cf. Ulrich 2009), the
results are different.

Theorem 3.1 ((((((p → q) → r) → (q → p)) → (s → r)) → (s → r)) → ((t →
t)→ (u → (v → w))))→ ((x → u) → (v → (x → w))) is a single axiom for RM→.

Proof Since RM3 is a theorem of RM→, it follows by Theorem 2.1 that the formula
here is a theorem as well. It remains only to show that a known base for RM→ can
be inferred from it. The Ernst et al. (2002) base, but with RM3 in place of either of
their third axioms, is a convenient choice.

1. ((((((p → q) → r) → (q → p)) → (s → r)) → (s → r)) →
((t → t) → (u → (v → w)))) → ((x → u) → (v → (x → w)))

D1.1 === 2. ((( p →→→ q))) →→→ ((((((q →→→ r))) →→→ ((( p →→→ r)))))) B’
D1.2 = 3. (p → ((((q → r) → s) → (r → q)) → (t → s))) → (t → (p → s))
D2.2 = 4. (((p → q) → (r → q)) → s) → ((r → p) → s)
D3.2 = 5. p → ((p → ((q → r) → (r → q))) → (r → q))
D5.4 = 6. (((((p → q) → (r → q)) → s) → ((r → p) → s)) →

((t → u) → (u → t))) → (u → t)
D1.6 === 7. ((( p →→→ (((q →→→ r)))))) →→→ (((q →→→ ((( p →→→ r)))))) C
D2.7 = 8. ((p → (q → r)) → s) → ((q → (p → r)) → s)
D3.7 = 9. p → ((p → ((((q → r) → s) → (r → q)) → s)) → s)

D7.9 = 10. (p → ((((q → r) → s) → (r → q)) → s)) → (p → s)
D8.10 === 11. (((((((((((( p →→→ q))) →→→ r))) →→→ (((q →→→ p)))))) →→→ (((s →→→ r)))))) →→→ (((s →→→ r))) RM3
D6.11 === 12. p →→→ p I
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This is already enough since B’, C, I, and RM3 is also a base for RM→, but Pon
is just a step away.
D7.12 === 13. p →→→ (((((( p →→→ q))) →→→ q))) Pon
Other bases are also within easy reach. RM1 is D10.8, for example, and RM2 is

DD4.6D3.3.2

The existence of the 28-symbol two-bases for RM→ and R→ encourages the
conjectures that shorter single axioms of length 29 or less exist for both. But the
author closes on a cautionary note by quoting a remark once made by Dunn himself:
“Conjectures, it should be remembered, are cheap.”

Appendix: Axiom Sets for Some Implicational Logics

Modus ponens (i.e., detachment) and uniform substitution of formulas for sentence
letters are the rules of inference throughout all sections.Names for axiomsare handled
as follows. When an axiom involved in any of the systems below first appears, what
the author takes to be the most commonly used name for it (if such exists) is listed
first, with alternate names appended thereafter. When such an axiom is also used
in axiom sets farther down the list, he is occasionally inconsistent: usually only the
name taken to be most common is used, but sometimes, when a reminder seems to
be in order, the formula it names is repeated.

Axiom sets discovered before 1961 for several of the logics appearing here are
given in the Appendix to Prior’s Formal Logic (Prior 1962). There is some overlap,
but the author has tried to minimize the duplication whence readers interested in
seeing more axiomatizations are encouraged to consult Prior. Several of the early
results, especially those from Tarski, Łukasiewicz, Wajsberg, and C.A. Meredith,
were obtained considerably earlier than the date of the reference cited below in
which they first appeared in the literature. Prior’s Appendix gives approximate years
in several such cases.

Results not attributed below to others are, barring accidental omissions, believed
by the author to be new.

A.1 IF: The implicational fragment of the classical sentential calculus

Four-base: B’/Syll/Syl = (p → q) → ((q → r) → (p → r)), C/Com = (p →
(q → r)) → (q → (p → r)), I/Id = p → p, Peirce = ((p → q) → p) → p
[in Peirce (1885)]

2The author has found that the axiom shown in the Appendix as BCI-33 = ((p → p) → (q →
r)) → (q → ((s → (r → t)) → (s → t))) can play the role played in Sects. 2 and 3 above by BCI-
22. An analog for BCI-33 of Theorem 2.1 is easily established, whence ((((p → q) → (r → p))
→ ((p → q) → (r → q))) → ((s → s) → (t → u))) → (t → ((v → (u → w)) → (v → w)))
is another single axiom for R→, as is ((((((p → q) → r) → (q → p)) → (s → r)) → (s →
r)) → ((t → t) → (u → v))) → (u → ((w → (v → x)) → (w → x))) for RM→. However, his
best current proofs that these axiomatize the systems in question currently run over fifty steps each.
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Three-bases: B’, K/Simp = p → (q → p), Tarski = ((p → q) → r) → ((p → r)
→ r) [Tarski, Bernays circa 1921; cf. Łukasiewicz and Tarski (1930)]
B’, K, Peirce [circa 1926; ibid.]

Two-bases: p → (q → (r → p)), ((p→q)→r) → ((s → r) → ((p → r)→r))
[Wajsberg (1932) but circa 1925–1926; cf. Prior (1962, p. 302)]
Peirce, (((p → q) → r) → s) → ((q → r) → (p → s)) [Wajsberg circa 1925–
1926; ibid.]
K, (((p → q) → r) → s) → ((q → s) → (p → s)) [Łukasiewicz circa 1926;
cf. Łukasiewicz and Tarski (1930)]
Peirce, (p → q) → (s → ((q → r) → (p → r))) [Wajsberg (1939)]
((p → q) → p) → (r → p), B’ [Wajsberg (1939)]
K, ((p → q)→ r)→ ((r → p) → (s → (t → p))) [Meredith circa 1956, in
Lemmon et al. (1969)]
K, M2 = (((p → q) → r) → q) → ((q → s) → (p → s)) [Prior circa 1960; cf.
Prior (1961)]
I, ((p → q) → r) → (((q → s) → t) → ((t → q) → r))

Iwith any one of (p → q) → (((p → r) → s) → ((s → q) → (t → q))), (p →
q)→ (((q → r) → s) → ((s → p) → (t → q))), (p → q) → (((r → s) → p) →
((r → p) → (t → q))), or (p → q) → (((r → s) → q) → ((r → p)→ (t → q))),
and probably others, will also do.
I, ((p → q) → r) → ((r → p) → (s → (t → p))) [Meredith; see Prior (1961).]

One-bases: ((p → q) → ((r → s) → t)) → ((u → ((r → s) → t)) → ((p → u)
→ (s → t))) [Wajsberg circa 1926; cf. Łukasiewicz and Tarski (1930).]
((p → (q → p))→ (((((r → s) → t) → u) → ((s → u) → (r → u))) → v)) → v
[Łukasiewicz; ibid.]
((p → q) → (r → s)) → (t → ((s → p) → (r → p))) [in Łukasiewicz (1948),
but discovered earlier.]
((p → q)→ (r → s))→ ((s → p)→ (t → (r → p))) [also in Łukasiewicz (1948),
and also discovered earlier.]
(p → (q → r)) → ((r → p) → (s → p)) [Łukasiewicz (1948), but discovered
in 1936.]

A.2 BCI

Three-bases: B = (p → q) → ((r → p) → (r → q)), C = (p → (q → r)) → (q
→ (p → r)), I [Meredith; cf. Prior (1962, p. 302). BCI turns out to be the impli-
cational fragment of linear logic from Girard (1987).]
B’, C, I [An obvious variant of the preceding base.]
B’, Pon/Assertion/T = p → ((p → q) → q), I [Another variant.]

Two-bases: BB’C-1 = (((p → q) → q) → r) → ((r → s) → (p → s)), I
BB’C-2 = (p → q) → ((((r → s) → s) → p) → (r → q)), I
(p → q) → ((((q → r) → r) → s) → (p → s)), I
(p → (q → r)) → ((t → q) → (t → (p → r))), I
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BB’C-1 and BB’C-2 are the only theorems of BCI (or even of IF) of length 15
or less that give all of B, B’, and C. Each is a single axiom for the system (also new)
whose axioms are B and either (((p → q) → q) → r) → ((r → s) → (p → s)) or
(((p → q) → q) → r) → (p → ((r → s) → s)) (equivalently,B’and either;C and
either).

One-bases: BCI-1 = (p → (q → r))→ (((s → s) → (t → q)) → (t → (p → r)))
BCI-2 = ((p → p) → (q → r)) → ((s → (r → t)) → (q → (s → t)))

BCI-1 is Meredith’s circa 1956, and BCI-2 is Prior’s; see Meredith and Prior
(1963). The 78 additional single axioms for BCI below are new.
BCI-3. (p → q) → (((r → r) → (((q → s) → s) → t)) → (p → t))
BCI-4. (p → q) → ((q → ((r → r) → (s → t))) → (s → (p → t)))
BCI-5. ((((p → p) → (q → r)) → r) → s) → ((s → t) → (q → t))
BCI-6. (((p → q) → q) → r) → (((s → s) → (r → t)) → (p → t))
BCI-7. (p → (q → r)) → (((((s → s) → p) → r) → t) → (q → t))
BCI-8. (p → (q → r)) → (((s → s) → (r → t)) → (q → (p → t)))
BCI-9. ((p → p) → (((q → r) → r) → s)) → ((s → t) → (q → t))
BCI-10. ((p → p) → (q → r)) → (s → ((r → (s → t)) → (q → t)))
BCI-11. ((p → p) → (q → r)) → ((((r → s) → s) → t) → (q → t))
BCI-12. ((p → p) → (q → r)) → ((r → (s → t)) → (s → (q → t)))
BCI-13. (p → ((q → q) → (r → s))) → ((s → t) → (r → (p → t)))
BCI-14. (p → ((q → q) → r)) → (s → ((r → (s → t)) → (p → t)))
BCI-15. (p → q) → (((r → r) → (q → (s → t))) → (s → (p → t)))
BCI-16. (p → (q → r)) → (q → (((s → s) → (r → t)) → (p → t)))
BCI-17. p → (((q → q) → (r → s)) → ((s → (p → t)) → (r → t)))
BCI-18. p → ((q → (p → r)) → (((s → s) → (r → t)) → (q → t)))
BCI-19. (p → q) → (r → (((s → s) → (q → (r → t))) → (p → t)))
BCI-20. ((p → p) → (q → r)) → ((((s → t) → t) → q) → (s → r))
BCI-21. p → (((q → q) → (r → (p → s))) → ((t → r) → (t → s)))
BCI-22. ((p → p) → (q → (r → s))) → ((t → q) → (r → (t → s)))
BCI-23. (p → q) → (((r → r) → (((s → p) → q) → t)) → (s → t))
BCI-24. (p → ((q → q) → (r → s))) → ((t → p) → (r → (t → s)))
BCI-25. ((p → p) → (q → r)) → ((((s → q) → r) → t) → (s → t))
BCI-26. ((p → p) → (q → r)) → ((s → (t → q)) → (t → (s → r)))
BCI-27. (p → ((q → q) → r)) → ((r → (s → t)) → (s → (p → t)))
BCI-28. (p → (q → r)) → (((s → s) → (t → p)) → (q → (t → r)))
BCI-29. ((p → p) → (q → (r → s))) → ((s → t) → (r → (q → t)))
BCI-30. ((p → p) → (q → (r → s))) → ((t → r) → (t → (q → s)))
BCI-31. ((p → p) → (q → (r → s))) → (r → ((s → t) → (q → t)))
BCI-32. ((p → p) → (q → (r → s))) → (r → ((t → q) → (t → s)))
BCI-33. ((p → p) → (q → r)) → (q → ((s → (r → t)) → (s → t)))
BCI-34. (p → ((q → q) → (r → s))) → ((t → r) → (t → (p → s)))
BCI-35. (p → (q → r)) → ((s → ((t → t) → p)) → (q → (s → r)))
BCI-36. (p → (q → r)) → (q → (((s → s) → (t → p)) → (t → r)))
BCI-37. (p → q) → (((((r → r) → (s → t)) → t) → p) → (s → q))
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BCI-38. (p → q) → (((r → r) → (s → (q → t))) → (p → (s → t)))
BCI-39. (p → q) → (((r → r) → (s → (t → p))) → (t → (s → q)))
BCI-40. (p → q) → ((r → ((s → s) → (q → t))) → (p → (r → t)))
BCI-41. (p → q) → (r → (((s → s) → (t → (r → p))) → (t → q)))
BCI-42. p → ((q → ((r → r) → (p → s))) → ((s → t) → (q → t)))
BCI-43. p → (((q → q) → (r → s)) → ((t → (p → r)) → (t → s)))
BCI-44. p → ((q → ((r → r) → (p → s))) → ((t → q) → (t → s)))
BCI-45. p → ((q → ((r → r) → s)) → ((s → (p → t)) → (q → t)))
BCI-46. (p → (q → r)) → (s → (((t → t) → (s → q)) → (p → r)))
BCI-47. (p → q) → ((r → ((s → s) → (t → p))) → (t → (r → q)))
BCI-48. p → ((q → (r → s)) → (((t → t) → (p → r)) → (q → s)))
BCI-49. p → ((q → r) → (((s → s) → (r → (p → t))) → (q → t)))
BCI-50. ((((p → q) → q) → r) → s) → ((q → (t → r)) → (t → s))
BCI-51. (((p → q) → q) → r) → (((s → s) → (t → p)) → (t → r))
BCI-52. (((p → q) → r) → s) → (((t → t) → (q → r)) → (p → s))
BCI-53. ((p → p) → (((q → r) → r) → s)) → ((t → q) → (t → s))
BCI-54. ((p → p) → (((q → r) → s) → t)) → ((r → s) → (q → t))
BCI-55. (p → q) → (p → (((r → r) → (s → (q → t))) → (s → t)))
BCI-56. p → ((q → (p → r)) → (((s → s) → (t → q)) → (t → r)))
BCI-57. p → ((p → q) → (((r → r) → (s → (q → t))) → (s → t)))
BCI-58. p → ((q → r) → ((r → ((s → s) → (p → t))) → (q → t)))
BCI-59. ((((p → p) → (q → r)) → r) → s) → ((t → q) → (t → s))
BCI-60. (((p → (q → r)) → r) → s) → (((t → t) → p) → (q → s))
BCI-61. ((p → p) → q) → ((((q → (r → s)) → s) → t) → (r → t))
BCI-62. (p → (q → r)) → (q → ((s → ((t → t) → p)) → (s → r)))
BCI-63. ((p → p) → (q → (r → s))) → (t → ((t → r) → (q → s)))
BCI-64. ((p → p) → (((q → r) → ((s → q) → r)) → t)) → (s → t)
BCI-65. (p → q) → ((((q → r) → r) → ((s → s) → t)) → (p → t))
BCI-66. (p → q) → ((((r → p) → q) → ((s → s) → t)) → (r → t))
BCI-67. p → (((q → q) → (r → (p → s))) → ((s → t) → (r → t)))
BCI-68. p → (((q → q) → (r → (s → t))) → ((p → s) → (r → t)))
BCI-69. p → ((q → ((r → r) → (s → t))) → ((p → s) → (q → t)))
BCI-70. p → ((q → (p → r)) → ((s → ((t → t) → q)) → (s → r)))
BCI-71. p → ((q → r) → ((s → ((t → t) → (p → q))) → (s → r)))
BCI-72. p → ((p → q) → ((r → ((s → s) → (q → t))) → (r → t)))
BCI-73. ((p → p) → (q → r)) → (s → ((t → (s → q)) → (t → r)))
BCI-74. (p → q) → (((((r → r) → (q → s)) → s) → t) → (p → t))
BCI-75. (p → q) → ((((r → s) → s) → ((t → t) → p)) → (r → q))
BCI-76. (((p → q) → ((r → p) → q)) → ((s → s) → t)) → (r → t)
BCI-77. ((((p → p) → (q → r)) → ((s → q) → r)) → t) → (s → t)
BCI-78. p → ((q → r) → (((s → s) → (t → (p → q))) → (t → r)))
BCI-79. ((((p → p) → (q → r)) → s) → t) → ((r → s) → (q → t))
BCI-80. (p → q) → (((((r → r) → (s → p)) → q) → t) → (s → t))

Working from a list of BCI candidates circulated by the author starting in 2007,
John Halleck and Larry Wos found the first proof for BCI-29. Halleck also provided
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the first proofs for BCI-73 and BCI-74, Wos gave proofs for BCI-75, BCI-76, and
BCI-77, and Mark Stickel discovered proofs for BCI-78 through BCI-80.

It is well known that every theorem of any substitution-detachment system is a
substitution instance of at least one formula derivable from the axioms by condensed
detachment. Axiom sets fromwhich every theorem can be derived by that method are
said to be D-complete. None of the bases for BCI shown above is D-complete. Each
of them has Belnap’s two-property (Belnap 1976), that is, each axiom appearing in
any of them contains each sentence letter occurring in it exactly twice, and Hindley
(1993) shows that, consequently, each theorem derivable from any such set of axioms
by condensed detachment alone will have the two-property as well. So, for example,
though p → p is obtainable in all of the systems above when condensed detachment
is used, instances of it such as (p → p) → (p → p) that lack the two-property cannot
be so derived.

An example of a D-complete axiom set for BCI—in fact, a single axiom—is
given in Ulrich (2005a): ((((((p → (q → r)) → (((s → s) → (t → q)) → (t →
(p → r)))) → s) → s) → s) → s).

There are fifteen length-19 theorems of BCI whose status remains an open ques-
tion, having been neither ruled out nor confirmed as being single axioms:
BCI-Q1. (p → ((q → q) → r)) → ((((s → t) → t) → p) → (s → r))
BCI-Q2. (((p → q) → q) → ((r → r) → s)) → ((s → t) → (p → t))
BCI-Q3. (((p → q) → q) → ((r → r) → s)) → ((t → p) → (t → s))
BCI-Q4. (((p → q) → r) → ((s → s) → t)) → ((q → r) → (p → t))
BCI-Q5. (((p → q) → q) → r) → ((r → ((s → s) → t)) → (p → t))
BCI-Q6. (((p → q) → q)) → r) → ((r → ((s → s) → s)) → (p → s)
BCI-Q7. (p → ((q → q) → (q → r))) → ((s → p) → (q → (s → r)))
BCI-Q9. (p → (q → r)) → (((s → s) → (r → s)) → (q → (p → s)))
BCI-Q10. (p → (q → r)) → (((s → s) → (s → p)) → (q → (s → r)))
BCI-Q11. (p → (q → r)) → (q → (((s → s) → (r → s)) → (p → s)))
BCI-Q13. (p → q) → ((((r → p) → q) → ((s → s) → s)) → (r → s))
BCI-Q16. p → (((q → q) → (q → r)) → ((r → (p → s)) → (q → s)))
BCI-Q17. p → (((q → q) → (r → q)) → ((s → (p → r)) → (s → q)))
BCI-Q18. p → ((q → ((p → p) → (p → r))) → ((s → q) → (s → r)))
BCI-Q20. p → ((q → r) → ((r → ((p → p) → (p → s))) → (q → s)))

The formula which appeared as BCI-Q14 when the author originally sent out the
list was ruled out by John Halleck. Those formerly appearing as BCI-Q8, BCI-Q12,
BCI-Q15, and BCI-Q19 were ruled out by Petr Pudlak.

A.3 Some relatives of BCI

Restricted versions of C can be gotten by replacing one or more of its variables with
distinct elementary implications.
C000. (p → (q → r)) → (q → (p → r))
C100. ((p → s) → (q → r)) → (q → ((p → s) → r))
C010. (p → ((q → t) → r)) → ((q → t) → (p → r))
C001. (p → (q → (r → u))) → (q → (p → (r → u)))
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C110. ((p → s) → ((q → t) → r)) → ((q → t) → ((p → s) → r))
C101. ((p → s) → (q → (r → u))) → (q → ((p → s) → (r → u)))
C011. (p → ((q → t) → (r → u))) → ((q → t) → (p → (r → u)))
C111. ((p → s) → ((q → t) → (r → u)))→ ((q → t) → ((p → s) → (r → u)))

Kashima and Kamide (1999), using Gentzen-type sequent calculi, initiated inves-
tigation of the variants of BCI that can be obtained by adding to B and I vary-
ing combinations of those eight formulas. Exactly five nonequivalent logics result:
BC011I, it’s two proper extensions, BC010I and BC001I, their common proper exten-
sion BC010C001I, and its proper extension BC000I, which is of course BCI itself.
These four proper subsystems of BCI can be axiomatized with single axioms as
well.

BC011I.

Three-base: B, C011 = (p → ((q → t) → (r → u))) → ((q → t) → (p → (r →
u))), I [Kashima and Kamide (1999)]

Two-base: B, ((p → p) → (q → r)) → (q → r)

One-base: (p → q) → (((r → r) → (q → s)) → (p → s)) [Ulrich (2006)]
This axiom, which results from the insertion of a copy of I into B’at a critical

point, is the shortest possible, and no others of its length will suffice [(Ulrich 2011).]

BC010I.

Three-base: B, C010 = (p → ((q → t) → r)) → ((q → t) → (p → r)), I
[Kashima and Kamide (1999)]

Two-base: B, Specialized Assertion = ((p → p) → q) → q, I [Meredith]

One-bases: (p → q) → (((((r → r) → s) → s) → (q → t)) → (p → t))
[Meredith]
((p → p) → (q → r)) → ((r → s) → (((q → s) → t) → t))
(((p → q) → (((r → r) → (q → s)) → (p → s))) → t) → t
(p → q) → (((r → r) → (q → s)) → (((p → s) → t) → t))
(p → q) → (((((r → r) → (q → s)) → (p → s)) → t) → t)

Anderson and Belnap (1975) report that the first of these single axioms, which
results from the insertion of a copy of Specialized Assertion into B’, was given by
Meredith as a single axiom uniting the two. The others are in Ulrich (2011); the list
is exhaustive, and these one-bases are shortest possible.

BC001I.

Three-base: B, C001 = (p → (q → (r → u))) → (q → (p → (r → u))), I
[Kashima and Kamide (1999)]

Two-base: B’, p → ((q → r) → ((p → (r → t)) → (q → t)))

One-bases: p → ((q → r) → ((p → ((s → s) → (r → t))) → (q → t)))
p → ((p → (q → r)) → (((s → s) → (r → t)) → (q → t)))
((p → p) → (q → r)) → (s → ((s → (r → t)) → (q → t)))
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Ulrich (2011); no shorter theorems of BC001I are single axioms for it, nor are any
others of equal length.

BC010C001I.

Four-base: B, C010 = (p → ((q → t) → r)) → ((q → t) → (p → r)), C001 =
(p → (q → (r → u))) → (q → (p → (r → u))), I [KashimaandKamide (1999)]

Two-base: B’, p → ((p → ((q → q) → r)) → r)

One-bases: (((p → q) → ((r → (q → s)) → (p → s))) → ((t → t) → u)) →
(r → u)
((p → ((p → (q → r)) → (s → r))) → ((t → t) → u))) → ((s → q) → u)
(((p → (q → r)) → ((s → q) → (s → r))) → ((t → t) → u)) → (p → u)
(((p → (q → r)) → (s → r)) → ((t → t) → u)) → ((s → q) → (p → u))
((p → p) → (q → r)) → (s → ((((s → (r → t)) → (q → t)) → u) → u))
(p → q) → ((((r → (q → s)) → (p → s)) → ((t → t) → u)) → (r → u))
p → ((((p → (q → r)) → (s → r)) → ((t → t) → u)) → ((s → q) → u))

Ulrich (2011); no shorter single axioms for BC001C010I can be found, but the
author assumes that there exist additional hitherto undiscovered single axioms of
this same length.

BCI’.

Three-base: B, C, I’= (p → q) → (p → q)

Two-base: B’, Pon = p → ((p → q) → q)

One-base: (p → q) → (((r → ((r → s) → s) → (q → t)) → (p → t))
[Ulrich (2005b)]

The author has been unable to locate references to this system in the literature.

BCI∗/Monothetic BCI.

Three-base: B, C, I∗ = (p → p) → (q → q) [Bunder (1983)]

Two-bases: BB’C-1 = (((p → q) → q) → r) → ((r → s) → (p → s)), I∗ =
(p → p) → (q → q)

BB’C-2= (p → q) → ((((r → s) → s) → p) → (r → q)), I∗
One-bases: (((p → p) → q) → r) → ((s → (r → t)) → (q → (s → t)))
[Ulrich (2007)]

(p → (q → r)) → ((((s → s) → t) → q) → (t → (p → r))) [ibid.]
(p → q) → ((((r → r) → (s → s)) → (q → t)) → (p → t)) is a single axiom

forBC011I∗,where, as above,C011 = (p → ((q → t) → (r → u))) → ((q → t) →
(p → (r → u))).

A.4 Entailment: E→, the implicational fragment of E

Three-base: B, Specialized Assertion = ((p → p) → q) → q, W
[Anderson et al. (1960)]
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Two-base: BC010 I-1, W = (p → (p → q)) → (p → q) [Meredith; cf. Anderson
and Belnap (1975). Of course, adding W to any of the other single axioms forBC010I
would do as well.]

One-base: Rezus (1982) gives instructions for constructing one, but it would be quite
long. Perhaps the most outstanding current open problem involving constructing
single axioms for implicational logics is that of finding one of reasonable length
for E→.

A.5 Relevant implication: R→, the implicational fragment of R

Four-bases: B’, Pon, I, W = (p → (p → q)) → (p → q) [Moh (1950); called
R→2 in Anderson and Belnap (1975).]
B, C, I, W [Church (1951); axiom set R→1 in Anderson and Belnap (1975,
p. 88).]
B’, C, I, S/Frege = (p → (q → r)) → ((p → q) → (p → r)) [Anderson and
Belnap (1975, p. 20)]
B’, C, I, W [Anderson and Belnap’s set R→3.]
B, Pon, I, W [Anderson and Belnap’s set R→4.]
B’, C, I, ((p → q) → (r → p)) → ((p → q) → (r → q))

Three-bases: (p → (q → r)) → ((s → p) → (q → (s → r))), I, W
[Rezus (1982)]
BB’C-1 = (((p → q) → q) → r) → ((r → s) → (p → s)), I, W
BB’C-2 = (p → q) → ((((r → s) → s) → p) → (r → q)), I, W

These are the shortest bases for R→ of any kind that are known to the author.

Two-bases: BB’C-1, (p → (p → q)) → (((r → r) → p) → q)
BB’C-2, (p → (p → q)) → (((r → r) → p) → q

The commuted version of the shorter axiom, ((r → r) → p) → ((p → (p →
q)) → q), can be used instead. And of course pairing W with any of the single
axioms above for BCI will also provide a length-28 two-base.

One-bases: ((p → (((q → q) → (p → r)) → r)) → (((((s → t) → ((t → u) →
(s → u))) → (((((v → (v → u)) → (v → u)) → ((y → z) → (x → z))) → a))
→ a) → b)) → b) → ((z → (((c → c) → (z → d)) → d)) → e))) → e
[Rezus (1982)]
((((p → q) → (r → p)) → ((p → q) → (r → q))) → ((s → s) → (t → (u →
v)))) → ((w → t) → (u → (w → v))) [Ulrich (2012)]
(((p → q) → (r → p)) → ((p → q) → (r → q))) → ((s → s) → (t → u))) →
(t → ((v → (u → w)) → (v → w)))

The author conjectures that there exists a single axiom of length at most 29.

A.6 RM→: The implicational fragment of R-Mingle

Four-base: B’, Pon, W, ((((p → q) → q) → p) → r) → (((((q → p) → p) →
q) → r) → r) [Meyer and Parks (1972)]
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Three-bases: B’, Pon, RM1 = ((p → (((q → p) → r) → q)) → r) → r [Ernst
et al. (2001)]
B’, Pon, RM2 = ((((p → q) → r) → (q → p)) → r) → r [Ernst et al. (2001)]
B’, Pon, RM3 = ((((p → q) → r) → (q → p)) → (s → r)) → (s → r)

Two-bases: Either BB’C-1 or BB’C-2 together with one of RM1, RM2, or RM3.
Either BB’C-1 or BB’C-2 with (p → (p → q)) → (((r → r) → p) → q).

One-bases: ((((((p → q) → r) → (q → p)) → (s → r)) → (s→r)) → ((t→t)
→ (u → (v → w)))) → ((x → u) → (v → (x → w))) [Ulrich (2009)]
((((((p → q) → r) → (q → p)) → (s → r)) → (s → r)) → ((t → t) →
(u → v))) → (u → ((w → (v → x)) → (w → x)))

Again, the author conjectures there exists a single axiom of length at most 29.
The very first base offered in the literature as a set of axioms for a three-valued

logic in Sobociński (1952), whichmuch later proved to be (Parks 1972) characteristic
forRM→, was that of Rose (1956). Not shown here, it consists of twenty-one axioms,
some of them quite long.

A.7 BCK

Three-base: B, C, K/Simp = p → (q → p) [Meredith and Prior (1963)]

Two-base: B’, ((p → (q → p)) → r) → r

One-bases: BCK-1. ((p → q) → r) → ((s → (r → t)) → (q → (s → t)))
BCK-2. (p → (q → r)) → (((p → t) → q) → (t → (s → r)))
BCK-3. p → ((q → (r → s)) → (((t → p) → r) → (q → s)))
BCK-4. ((p → q) → r) → (q → ((s → (r → t)) → (s → t)))
BCK-5. p → (((q → p) → r) → ((s → (r → t)) → (s → t)))
BCK-6. p → (((q → r) → s) → ((s → (p → t)) → (r → t)))
BCK-7. ((p → q) → r) → (s → ((r → (s → t)) → (q → t)))
BCK-8. (p → (q → r)) → (s → (((t → s) → q) → (p → r)))
BCK-9. (p → q) → ((q → ((r → s) → t)) → ((s → (p → t)))
BCK-10. (p → ((q → r) → s)) → (r → ((t → p) → (t → s)))
BCK-11. p → ((q → ((r → p) → s)) → ((t → q) → (t → s)))
BCK-12. (p → (q → r)) → (q → (((s → t) → p) → (t → r)))
BCK-13. p → ((q → (p → r)) → (((s → t) → q) → (t → r)))

BCK-1 isMeredith’s (Meredith and Prior 1963). The others are new. JohnHalleck
provided a proof for BCK-9. Proofs for BCK-10 through BCK-13 were supplied
by Mark Stickel.

None of these axiom sets or single axioms for BCK are D-complete: in none of
them is there a letter occurring more than twice, and by a result of Hindley (1993),
each theorem derivable in any of them will have this feature as well. A D-complete
single axiom for BCK is (((((((p → q) → r) → ((s → (r → t)) → (q → (s →
t)))) → s) → s) → s) → s) from Ulrich (2005a).

The author has completed a proof that no shorter single axioms forBCK exist, but
there are twenty-seven 17-symbol theorems ofBCK whose status remains unknown.
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Numbering below is taken from a list of open questions for single BCK axioms that
he has been circulating for several years.
BCK-Q1. ((p → q) → (r → s)) → ((t → r) → (t → (q → s)))
BCK-Q2. (p → q) → r) → ((((r → s) → s) → t) → (q → t))
BCK-Q4. (p → (q → r)) → (((s → t) → p) → (q → (t → r)))
BCK-Q5. (p → q) → (((r → s) → (q → t)) → (p → (s → t)))
BCK-Q6. ((((p → q) → r) → r) → s) → ((s → t) → (q → t))
BCK-Q9. ((p → q) → r) → ((((r → s) → (q → s)) → t) → t)
BCK-Q10. ((p → q) → r) → ((r → (s → t)) → (s → (q → t)))
BCK-Q11. ((p → q) → r) → ((r → s) → (((q → s) → t) → t))
BCK-Q14. (p → q) → (p → (((r → s) → (q → t)) → (s → t)))
BCK-Q15. ((((p → q) → r) → ((r → s) → (q → s))) → t) → t
BCK-Q16. p → ((p → q) → (((r → s) → (q → t)) → (s → t)))
BCK-Q17. ((p → q) → r) → ((p → (r → s)) → (q → (p → s)))
BCK-Q18. ((p → q) → r) → ((r → (p → s)) → (p → (q → s)))
BCK-Q19. ((p → q) → (r → s)) → ((p → r) → (p → (q → s)))
BCK-Q20. ((p → q) → r) → (p → ((r → (p → s)) → (q → s)))
BCK-Q21. ((p → q) → r) → (q → ((p → (r → s)) → (p → s)))
BCK-Q22. (p → ((q → r) → s)) → (r → ((q → p) → (q → s)))
BCK-Q23. (p → (q → r)) → (((p → s) → q) → (s → (p → r)))
BCK-Q24. (p → (q → r)) → (q → (((q → s) → p) → (s → r)))
BCK-Q25. (p → (q → r)) → (s → (((p → s) → q) → (p → r)))
BCK-Q26. (p → q) → (((p → r) → (q → s)) → (p → (r → s)))
BCK-Q27. (p → q) → (((q → r) → (p → s)) → (p → (r → s)))
BCK-Q28. (p → q) → ((q → ((p → r) → s)) → (r → (p → s)))
BCK-Q30. (p → q) → (p → (((p → r) → (q → s)) → (r → s)))
BCK-Q31. p → (((p → q) → r) → ((r → (p → s)) → (q → s)))
BCK-Q32. p → (((q → p) → r) → ((q → (r → s)) → (q → s)))
BCK-Q33. p → ((p → q) → (((p → r) → (q → s)) → (r → s)))

Candidates 3, 7, 8, 12, and 13 formerly on this list were the ones Halleck and
Stickel showed to be single axioms. The formula that originally appeared on the list
as BCK-Q29 was shown by Halleck not to be a single axiom for BCK.

A.8 H→: The implicational fragment of Heyting’s intuitionistic calculus

Three-base: B’, K, W [Hilbert’s 1930 set, according to Prior (1962, p. 316).]

Two-bases: ((p → q) → r) → ((q → (r → s)) → (q → s)), I
(p → q) → ((q → (q → r)) → (p → r)), K

One-bases:

HI-1. ((p → q) → r) → (s → ((q → (r → t)) → (q → t)))
[Meredith (1953)]
HI-2. p → ((q → r) → (((s → q) → (r → t)) → (q → t)))
[Meredith and Prior (1963)]
HI-3. (p → (q → r)) → (s → (((t → p) → q) → (p → r)))
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HI-4. p → ((q → (r → s)) → (((t → q) → r) → (q → s)))
HI-5. ((p → q) → r) → ((q → (r → s)) → (t → (q → s)))
HI-6. (p → (q → r)) → (((s → p) → q) → (t → (p → r)))
HI-7. p → (((q → r) → s) → ((r → (s → t)) → (r → t)))
HI-8. (p → q) → (((r → (s → p)) → (q → t)) → (p → t))
HI-9. (p → q) → ((q → ((r → p) → s)) → (t → (p → s)))
HI-10. (p → q) → (r → (((s → p) → (q → t)) → (p → t)))
HI-11. p → (((q → r) → s) → ((s → (s → t)) → (r → t)))
HI-12. ((p → q) → r) → (s → ((r → (r → t)) → (q → t)))

HI-3 through HI-7 are from Ulrich (1999). As noted there, they come from
Meredith’s HI-1 by permuting its first three antecedents, that is, (p → q) → r, s and
q → (r → t), in all possible ways. HI-8 through HI-12 are new.

These are almost certainly shortest possible single axioms for H→, but (cf. Ulrich
(2001)) there are four shorter theorems of H→ whose status is unknown, namely,
C1 = ((p → q) → r) → ((q → (r → s)) → (q → s)), C2 = ((p → q) → r) →
((r → (r → s)) → (q → s)), C3 = (p → (q → r)) → (((s → p) → q) → (p →
r)), and C4 = (p → q) → (((r → p) → (q → s)) → (p → s)).

Among the 17-symbol theorems of H→, there remain thirty-one whose status is
unknown. Notice that only the first nine have (as do all of the single axioms listed
above) five distinct sentence letters occurring in them. The rest contain occurrences
of just four distinct letters, and the author conjectures that none of them can serve
as a single axiom for H→. Once more, the numbers for the remaining candidates are
from a list of such circulated by the author.
HI-Q1. ((p → q) → (r → s)) → (((t → q) → r) → (q → s))
HI-Q2. ((p → q) → (r → s)) → ((q → r) → (t → (q → s)))
HI-Q3. ((p → q) → r) → (((s → q) → (r → t)) → (q → t))
HI-Q4. ((p → q) → r) → (((s → r) → (r → t)) → (q → t))
HI-Q5. ((p → q) → r) → ((r → (r → s)) → (t → (q → s)))
HI-Q6. (p → (q → r)) → (((s → (t → p)) → q) → (p → r))
HI-Q7. (((p → q) → r) → s) → ((s → (s → t)) → (r → t))
HI-Q8. ((p → (q → r)) → (s → t)) → ((r → s) → (r → t))
HI-Q9. ((p → q) → (r → s)) → (t → ((q → r) → (q → s)))
HI-Q10. ((p → q) → r) → (((p → q) → (r → s)) → (q → s))
HI-Q11. ((p → q) → r) → (((p → r) → (r → s)) → (q → s))
HI-Q12. ((p → q) → r) → ((q → (r → (r → s))) → (q → s))
HI-Q15. ((p → q) → r) → ((q → (r → s)) → (p → (q → s)))
HI-Q16. ((p → q) → r) → ((r → (r → s)) → (p → (p → s)))
HI-Q17. (((p → q) → r) → s) → ((s → (s → p)) → (r → p))
HI-Q18. (((p → q) → r) → s) → ((s → (s → q)) → (r → q))
HI-Q19. ((p → q) → (r → s)) → ((q → r) → (p → (q → s)))
HI-Q20. ((p → q) → (r → s)) → (p → ((q → r) → (p → s)))
HI-Q21. ((p → q) → (r → s)) → (((p → q) → r) → (q → s))
HI-Q22. ((p → q) → r) → (p → ((q → (r → s)) → (q → s)))
HI-Q23. ((p → q) → r) → (p → ((r → (r → s)) → (q → s)))
HI-Q24. (p → (q → r)) → (((s → (s → p)) → q) → (p → r))
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HI-Q25. (p → (q → r)) → (((s → p) → (p → q)) → (p → r))
HI-Q26. (p → (q → r)) → (((s → p) → q) → (s → (p → r)))
HI-Q27. (p → (q → r)) → (s → (((s → p) → q) → (p → r)))
HI-Q28. (p → q) → (((r → (r → p)) → (q → s)) → (p → s))
HI-Q30. (p → q) → (((r → p) → (q → (p → s))) → (p → s))
HI-Q31. (p → q) → (((r → p) → (q → (q → s))) → (p → s))
HI-Q33. (p → q) → ((q → ((r → p) → s)) → (r → (p → s)))
HI-Q34. (p → q) → (r → (((r → p) → (q → s)) → (p → s)))
HI-Q35. p → (((p → q) → r) → ((r → (r → s)) → (q → s)))

CandidatesHI-Q13,HI-Q14,HI-Q29, and HI-Q32 from the list as originally cir-
culated were shown by John Halleck to be incapable of being single axioms for H→.

A.9 The implicational fragment of Dummett’s LC

Four-bases: Add Dummett = ((p → q) → r) → (((q → p) → r) → r) to any
three-base for H→ [(Bull 1962)].

Of course three- and two-bases result if Dummett is added to a smaller base
for H→.

One-base: (((p → (q → p)) → ((((((r → s) → t) → (((s → r) → t) → r)) →
(u → (u → v))) → (w → v)) → x)) → ((w → u) → x))

Shorter single axioms no doubt exist. The author has not, for example, exper-
imented with inserting Dummett into various spots in any of the single axioms
for H→.

A.10 The implicational fragment of Łukasiewicz’s infinite-valued sentential
calculus Lℵ0 , et relata

Implicational Lℵ0 .

Four-base: B’, K, Inversion = ((p → q) → q) → ((q → p) → p), Linearity
= ((p → q) → (q → p)) → (q → p) [Meyer (1966)]

One-bases: The methods of Rezus (1982) ensure the existence of single axioms for
all logics whose theorems include the first two of these axioms, albeit typically those
methods produce long axioms.

In the presence of B and K, Inversion and Linearity can be replaced with the
single formula ((p → q) → q) → (((p → q) → (q → p)) → p). As a result, we
have (Ulrich 2008) the following 37-symbol single axiom for Lℵ0→.
((p → (q → p)) → ((((((r → s) → s) → (((r → s) → (s → r)) → r)) → (t →
u))) → (v → u)) → w) → ((v → t) → w)

Again, shorter single axioms surely exist.

BCK + Inversion.

Four-base: B, C, K/Simp, Inversion

One-base: ((p → (q → p)) → ((((r → s) → s) → ((s → r) → r)) → (t → u)))
→ ((u → v) → (t → v)) [Of length 29, the author doubts that it is shortest possi-
ble.]
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BCK + Linearity.

Four-base: B, C, K/Simp, Linearity

One-base: ((((p → (q → p)) → r) → r) → (((s → t) → (((u → t) → (t → u)
→ (s → u))) → v)) → (w → v)

37 symbols long, one would think shorter axioms surely exist.

A.11 Some systems of strict implication

C3, the strict-implicational fragment of S3.

Three-base: B’, W, Weak Irrelevance = (p → q) → (r → r)
[Anderson and Belnap (1962)]

An equivalent base can be obtained by adding the axiom I∗ = (p → p) → (q →
q), used forMonotheticBCI above, to any base forE→;C3 is thus “MonotheticE→.”

One-base: (((p → (p → q)) → ((r → s) → (p → q))) → (((t→u) → ((v→w)
→ (((x → x) → (w → y))) → (v → y))) → z)) → z [Ulrich (2005a),where it is
also shown that every finitely axiomatizable extension of C3 can be axiomatized by
a single axiom. Shorter axioms no doubt await discovery.]

C4, the strict-implicational fragment of S4.

Three-base: Frege, Weak Irrelevance = (p → q) → (r → (p → q)), I
[Anderson and Belnap (1962)]

The strict-implicational fragments of all extensions of S4 between it and S4.3 are
identical (Ulrich 1981).

Two-base: (p → (q → r)) → ((p → q) → (s → (p → r))), Irrelevance = p →
(q → q) [Ernst et al. (2002)]

The authors show that this 20-symbol two-base is a shortest such base for C4;
they also found five additional two-bases of that same length, and have shown that
no others exist.

One-base: (p → ((q → (r → r)) → (p → q)) → ((s → t) → (u → (p → t)))
[Ernst et al. (2002)]

The authors show that this 21-symbol axiom is not only a shortest possible axiom
for C4, but that it is the shortest possible axiom for that system: no shorter formula
nor even another of the same length will do. Note that C4 is thus one more example
(cf. BCI etc., above) of a system whose shortest possible two-bases are one symbol
shorter than their shortest possible single axioms.

C5, the strict-implicational fragment of S5.

Three-bases: B’, (((p → q) → r) → (p → q)) → (p → q), Irrelevance = p →
(q → q) [Meredith, in Lemmon et al. (1969).]

Two-bases: Irrelevance, M2 = (((p → q) → r) → q) → ((q → s) → (p → s))
[Meredith circa 1956; ibid.]
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Irrelevance, (((p → q) → r) → s) → ((q → s) → (p → s)) [Prior (1961)]
(p → q) → (((q → r) → s) → r) → (p → r), I [Ernst et al. (2002)]

One-bases: (((p → p) → q) → r)) → (s → t)) → ((t → q) → (u → (s → q)))
(((p → q) → r) → ((s → s) → q)) → ((q → t) → (u → (p → t)))
(((p → q) → r) → ((s → s) → q)) → (t → ((q → u) → (p → u))
(((p → q) → r) → ((s → s) → t)) → (u → ((q → t) → (p → t)))
(((p → p) → q) → r) → (s → q)) → ((q → t) → ((u → (s → t)))
(((p → p) → q) → r) → (s → q)) → ((t → s) → (u → (t → q)))
((((p → p) → (q → r)) → s) → r) → ((r → t) → (u → (q → t)))

The first single axiom above is Meredith’s circa 1956 in Lemmon et al. (1969).
The others are from Ernst et al. (2002). The authors of the latter show that these
21-symbol single axioms for C5 are shortest possible, and that the list above is
exhaustive.

Their two-base, however, is just 18 symbols in length and is the most severe
example known to the author of a system being axiomatizable by a two-base shorter
than its shortest possible single axioms. They also show it is the shortest possible
base for C5: no other base of any kind can match its length.
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LC and Its Pretabular Relatives

Larisa Maksimova

Abstract In 1970, J.M. Dunn published a paper on a logic called RM extending
the logic R of relevance. He proved that the logic RM is pretabular, i.e., it has no
finite characteristic matrix, but every proper extension of it has such a matrix. In
1971, J.M. Dunn and R.K. Meyer obtained a similar result for Dummett’s logic LC.
This is a brief survey of pretabular logics. We consider pretabularity and tabularity
problems over the intuitionistic and minimal logics, and also in families of positive,
modal and relevant logics.

Keywords Minimal logic · Modal logic · Pretabular logic · Superintuitionistic
logic · Tabularity problem

1 Introduction

In this paper, we present a brief survey of pretabular logics. By a logic we mean
any set of formulas closed under substitutions. A logic L is tabular if it can be
characterized by a finite model, i.e., there is a finite model such that L is the set of
all formulas valid in this model. A logic is pretabular if it is not tabular, but any of
its extensions is tabular. These terms were introduced in Kuznetsov (1971).

In 1951, J. Scroggs proved that the modal logic S5 is pretabular and described all
the extensions of S5 (Scroggs 1951). In 1970, J.M. Dunn published a paper (Dunn
1970) on a logic called RM extending the logic R of relevance. He proved that the
logic RM is pretabular, i.e., it has no finite characteristic matrix, but every proper
extension of it has such a matrix. In 1971, J.M. Dunn and R.K. Meyer obtained a
similar result for Dummett’s logic LC (Dunn and Meyer 1971).

The logic LC, introduced by Dummett (1959), is one of the superintuitionistic
logics (SIL), i.e., extensions of the intuitionistic logic Int. The study of the family
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of superintuitionistic logics started from a paper by Umezawa (1959) and was rather
popular. Another two pretabular SILs were found by Hosoi and Ono (1970).

It turned out that there are exactly three pretabular SILs. It was stated in Mak-
simova (1971) that there are exactly three pretabular SILs having the finite model
property (FMP). At the same conference, an abstract by Kuznetsov (1971) was pub-
lished, which stated that every pretabular SIL has the finite model property.

In more detail, A.V.Kuznetsov had proved that every tabular SIL has finitely many
immediate predecessors (with respect to inclusion), and all of them are tabular. In
addition, every non-tabular SIL is contained in a pretabular one. At the conference,
we explained our proofs to each other. It was stated in Maksimova (1971) that every
non-tabular SIL with FMP is included in some of the three pretabular SILs, which
were already known. The full proof of this statement was published in Maksimova
(1972), where the duality theory between Heyting algebras and partially ordered
frames was developed.

The description of all pretabular SILs made it possible to solve the tabularity
problem over Int, the intuitionistic logic: there is an algorithm which, given a finite
set Ax of additional axiom schemas, decides if the logic Int + Ax is tabular.

In this paper, we consider pretabularity and tabularity problems over the intu-
itionistic and minimal logics, and also in families of positive, modal and relevant
logics.

In all families under consideration, any extension of a tabular logic is tabular, and
every tabular logic is finitely axiomatizable. By Zorn’s lemma, for these families we
have the following.

Proposition 1 Every non-tabular logic is contained in a pretabular one.

2 Pretabular Superintuitionistic Logics and Their
Extensions

In this section, we describe pretabular SILs in detail.
We define πi as follows.

π0 = p0, πn+1 = pn+1 ∨ (pn+1 → πn).

The following theorem was proved in Maksimova (1972) with the use of
Kuznetsov’s theorem on finite approximability of all pretabular SILs (Kuznetsov
1971).

Theorem 2.1 (Maksimova 1972)
There are exactly three pretabular superintuitionistic logics, namely,

1. LC = Int + ((p → q) ∨ (q → p)),
2. LP2 = Int + π2,
3. LQ3 = Int + π3 + (¬p ∨ ¬¬p).
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Algebraic completeness for LC and its extensions was proved byDunn andMeyer
(1971). Decidability of LC was proved by Dummett (1959). Two other pretabular
SILs and their extensions were described by Hosoi and Ono (1970).

Every proper extension of LC is of the form LC + πn , for some n. All the exten-
sions of LP2 and LQ3 are also finitely axiomatizable.

Any SIL is complete under algebraic semantics. The logic LC is characterized
by any infinite linearly ordered Heyting algebra, LP2 by any Heyting algebra built
from an infinite Boolean algebra by adding a new greatest element, and LQ3 by any
Heyting algebra built from an infinite Boolean algebra by adding new greatest and
new least elements.

All the three pretabular logics are complete with respect to suitable classes of
Kripke frames.

Recall that a frame is a pairW = (W, R),whereW is a set and R is a binary relation
on W . An intuitionistic model M = (W, R,�) satisfies the following conditions.

(i) R is a partial ordering of W ;
(ii) (x � p and x Ry) ⇒ y � p, for any variable p;
(iii) x � (A → B) ⇐⇒ ∀y (x Ry ⇒ (y � A ⇒ y � B));
(iv) x � ¬A ⇐⇒ ∀y (x Ry ⇒ y � A).

A formula A is (intuitionistically) valid in a partially ordered frame W = (W, R), if
for any intuitionistic model (W, R,�), we have x � A, for any x ∈ W .

The logic LC is characterized by the class of all intuitionistic models based on
linearly ordered frames, LP2 by partially ordered frames with no 3-element chain,
and LQ3 by partially ordered frames having a greatest element and no 4-element
chain.

Define the frames Vn , Un+1 and Zn as follows.

1. Vn = (Vn, R), where Vn = { 0, 1, . . . , n }, and x Ry ⇐⇒ (x = 0 or x = y);
2. Un+1 = (Un+1, R), where Un+1 = { 0, 1, . . . , n, n + 1 }, and x Ry ⇐⇒ (x = 0

or y = n + 1 or 1 ≤ x = y ≤ n);
3. Zn = (Zn, R), where Zn = { 1, . . . , n }, and x Ry ⇐⇒ x ≤ y.

For each of the pretabular SILs, its proper extensions form a countable descending
chain. Every consistent proper extension of LC is characterized by a frame Zn ,
for some n, every extension of LP2 is characterized by Vn , for some n, and every
extension of LQ3 by Z1 or by Un , for some n. The logic LC is complete under the
class of all frames Zn , the logic LP2 under the class of all Vn frames, and LQ3 under
the class of all Un frames.

Let L be a finitely axiomatizable SIL. Its recognition problem over Int is defined
as follows.

For any finite system Ax of axiom schemas, decide if the logic Int + Ax coincides
with L .

A finitely axiomatizable logic L is recognizable over Int if there is an algorithm for
deciding its recognition problem.We have the following criterion for recognizability
from Maksimova and Yun (2015).
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Lemma 2.2 A finitely axiomatizableSIL, L is recognizable over Int iff it is decidable
and the inclusion problem Int + Ax ⊇ L is decidable.

All the pretabular logics over Int are decidable. Applying Lemma 2.2 and Propo-
sition 2.6 below we conclude that they are recognizable over Int. The complexity
bounds are given in the next Theorem.

Theorem 2.3 (Maksimova and Voronkov 2003) For every pretabular SIL, its deci-
sion problem is coNP-complete and its recognition problem over Int is DP-complete.

Recall from Papadimitriou (1994) that X is in DP if X = Y ∩ Z where Y is in NP
and Z in coNP.

Until now, we considered SIL defined by additional axiom schemas. Let us turn to
the case where a logic is defined by additional axiom schemas and rules of inference.
We consider only rules invariant under substitution.

A logic L is strongly recognizable over Int if there is an algorithm which, for
every finite system Rul of axiom schemas and rules of inference, decides if the logic
Int + Rul coincides with L .

It is proved inMaksimova (2000) that the logic LC, and also every SIL containing
the formula πn , for some n, is strongly recognizable over Int. It follows that

Theorem 2.4 Every pretabular SIL is strongly recognizable over Int.

This result essentially uses the theory of admissibility of inference rules developed
by Rybakov (1997).

One can restrict himself to rules with one premise since several premises can be
replaced by their conjunction.

A rule A(p1, . . . , pn)/B(p1, . . . , pn) is said to be admissible in a logic L if
for any formulas ψ1, . . . , ψn , the formula B(ψ1, . . . , ψn) is valid in L whenever
A(ψ1, . . . , ψn) is valid in L .

In order to prove Theorem 2.4, we used the following sufficient condition.

Lemma 2.5 (Maksimova 2000) Let L be a finitely axiomatizable SIL. If its admissi-
bility problem is decidable and, moreover, there is an algorithm which, given a finite
set Rul of axiom schemas and rules of inference, decides whether L is included in
Int + Rul, then L is strongly recognizable over Int.

It is proved in Rybakov (1997) that the admissibility problem is decidable in all
pretabular SILs. Consider the inclusion problem.

A rule A/B is valid in a partially ordered frame W = (W, R) if, for any intuition-
istic model (W, R,�),

(∀x ∈ W ) x � A ⇒ (∀x ∈ W ) x � B,

and refutable in W otherwise. A system Rul of formulas and rules is refutable in W
if some formula or rule of Rul is refutable in W .

In Maksimova (2000), we established the following.
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Proposition 2.6 Let L = Int + Rul. Then,

1. L ⊇ LC iff Rul is refutable in both the frame V2 and the frame U3;
2. L ⊇ LP2 iff Rul is refutable in Z3;
3. L ⊇ LQ3 iff Rul is refutable in both the frame V2 and the frame Z4.

Thus all the three pretabular SIL are strongly recognizable over Int.

3 Modal Logics Over S4

In this section, we consider only normal extensions of S4, i.e., logics closed under
the necessitation rule A/�A.

As we already mentioned, Scroggs (1951) proved that the logic S5 is pretabular
and he described all its extensions. Other pretabular logics over S4 were listed much
later.

It is well known that the intuitionistic logic Int is embeddable into the modal
S4 logic via the Gödel–Tarski translation T : a formula A is valid in Int iff T (A) is
valid in S4 (McKinsey and Tarski 1948). With every SIL L , one can associate the set
of its modal companions. A modal logic M over S4 is a modal companion of L if
A ∈ L ⇐⇒ T (A) ∈ M , for anynon-modal formula A. The greatestmodal compan-
ion of Int is the Grzegorczyk logic Grz = S4 + (�(�(p → �p) → p) → p), the
greatest modal companion of LC is Grz.3 = Grz + (�(�p → q) ∨ �(�q → p))

(Blok 1976).
Inter-relations of superintuitionistic logics and extensions of S4were developed in

Maksimova and Rybakov (1974), which allowed us to describe all pretabular logics
over S4 (Maksimova 1975).

Theorem 3.1 (Maksimova 1975)
There are exactly five pretabular logics over S4.

PM1 = Grz.3 = Grz + (�(�p → q) ∨ �(�q → p))

PM2 = Grz + σ2, where σ2 = �p ∨ �(�p → �q ∨ �♦¬q),
PM3 = Grz + (�r ∨ �(�r → σ2)) + (�♦p ↔ ♦�p),
PM4 = S4 + σ2 + (�♦p ↔ ♦�p),
PM5 = S5 = S4 + (p → �♦p).

The same resultwas also announcedbyMeskhi andEsakia (1974) andpublished in
Esakia and Meskhi (1977). Also it was independently proved by Rautenberg (1977).

The logics PM1–PM3 are the greatest modal companions of pretabular SILs. The
logic PM1 = Grz.3 is complete for the class of models based on the frames Zn , PM2
is characterized by all Vn , and PM3 by Un . The logic PM4 is complete under the
class of Yn , and PM5 = S5 is characterized by Xn , where Xn and Yn are as follows.

Xn = (Xn, R), where Xn = { 1, . . . , n } and x Ry for all x, y;
Yn = (Yn, R), where Yn = { 1, . . . , n } and x Ry ⇐⇒ (x ≤ n − 1 or y = n).
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For each of PM1–PM5 its proper extensions form a countable descending chain.
Further results are similar to those of the previous section. All the pretabular

extensions of S4 are decidable and recognizable over S4.

Theorem 3.2 (Maksimova and Voronkov 2003)
For every pretabular extension of S4, its decision problem is coNP-complete and its
recognition problem over S4 is DP-complete.

Theorem 3.3 (Maksimova 2000)
The logics PM1–PM5 are strongly recognizable over S4.

4 Tabularity Problem

The description of all pretabular logics over Int plays a central role in the solution of
the tabularity problem over Int, which is the following problem.

For any finitely axiomatizable SIL L , determine if L is tabular.

We know that any non-tabular logic is contained in a pretabular one. So we have the
following criterion.

Theorem 4.1 A SIL is tabular iff it is contained in no pretabular SIL.

As there are only finitely many pretabular SILs and each of them is decidable, the
tabularity problem over Int is decidable. Its complexity is given in the next theorem.

Theorem 4.2 (Maksimova and Voronkov 2003)
The tabularity problem over Int is NP-complete.

Algorithms for automatically recognition of tabularity and pretabularity over Int
are presented in Maksimova and Schreiner (2006).

The tabularity problem is also decidable (NP-complete) in the family of positive
logics extending the positive fragment of Int (Verhozina 1978; Maksimova 2002). A
similar statement holds for modal logics over S4.

Theorem 4.3 (Maksimova and Voronkov 2003)
The tabularity problem over S4 is NP-complete.

For thewhole family of normalmodal logics, the tabularity problem is undecidable
(Chagrov 1989).

The tabularity problem is decidable over the provability logic GL (Chagrov 1989;
Chagrov and Zakharyaschev 1997), and over D4 = K4 + (�p → ♦p) (Chagrov
1989). Note that the set of pretabular extensions of the provability logic GL is count-
able (Blok1980). The tabularity problem is undecidable overK; also, it is undecidable
over the class of all (not only normal) extensions of K4, and is open for the class of
normal extensions of K4 (Chagrov 1994; Chagrov and Zakharyaschev 1997).
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It is unknown if tabularity is strongly decidable over Int or S4. A property is said
to be strongly decidable over Int if there is an algorithm which, for any finite set
Rul of axiom schemas and rules of inference, decides if the logic Int + Rul has this
property. For strong decidability of tabularity, it would be sufficient to establish the
strong decidability of the inclusion in each of the pretabular logics. It is shown in
Maksimova (2000) that some inclusions in pretabular logics are strongly decidable.

Theorem 4.4 (Maksimova 2000)

1. The inclusion in LC is strongly decidable over Int.
2. The inclusions in the pretabular logics PM1, PM4, PM5 are strongly decidable

over S4.

5 Modal and Relevant Logics

In this paper, we have considered so far only classical normal modal logics, i.e.,
logics containing the modal logic K and closed under necessitation rule A/�A. By
analogy with Proposition 1, we have that every non-tabular logic is contained in a
pretabular one.

J. Scroggs, in 1951, proved that the modal logic S5 is pretabular and described
all the extensions of S5 (Scroggs 1951). All the five pretabular logics over S4 are
described in the Sect. 3. For each of these logics, its proper extensions form a count-
able descending chain. This does not hold for the logic K4.

The logic K4 has a continuum of pretabular extensions (Blok 1980). There are
countably many pretabular logics over the provability logic GL (Blok 1980), and
finitely many over D4 (Chagrov and Zakharyaschev 1997).

Blok (1980) proved that over K4, every immediate predecessor of a tabular logic
is tabular. This implies the following.

Theorem 5.1 Every pretabular logic over K4 has the finite model property.

Let us turn to relevant logics. The first pretabular extension of the logic R of
relevance was found by Dunn (1970). It was the logic RM (R-Mingle) characterized
by a matrix based on the set of integers.

Swirydowicz (2008) has proved that the logic R has a continuum of pretabular
extensions. He has constructed an uncountable set of pretabular extensions of the
relevant logic R, where each logic of this set is generated by a variety of finite height.

6 Positive Logics and Extensions of Johansson’s
Minimal Logic

In this section, we consider positive logics extending the positive fragment Int+ of the
intuitionistic logic and extensions of Johansson’s minimal logic J. By analogy with
Proposition 1, we have that every non-tabular logic is contained in a pretabular one.
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Pretabular positive logics were described by Verhozina (1978). They are posi-
tive fragments of the pretabular SIL LC and LP2. The positive fragment of LQ3 is
contained in LP+

2 .

Theorem 6.1 (Verhozina 1978)
There are exactly two pretabular logics over Int+ :
1. LC+ = Int+ + ((p → q) ∨ (q → p));
2. LP+

2 = Int+ + π2.

Every proper extension of LC+ is characterized by a frame Zn for some n, and
LC+ itself by the class of all Zn . The logic LP

+
2 is characterized by the class of all

Vn , and every proper extension of it is characterized by a Vn for some n. Remember
that we defined Vn and Zn as follows.

Vn = (Vn, R), where Vn = { 0, 1, . . . , n }, and x Ry ⇐⇒ (x = 0 or x = y),
Zn = (Zn, R), where Zn = { 1, . . . , n }, and x Ry ⇐⇒ x ≤ y.

Just as for SILs, we have the following result.

Theorem 6.2 (Maksimova 2002, 2003)

1. The tabularity problem over Int+ is NP-complete.
2. For every pretabular positive logic, its recognition problem over Int+ is DP-

complete.

Now we turn to the J-logics, i.e., to extensions of Johansson’s minimal logic J
(Johansson 1937). This logic can be axiomatized by the same axiom schemas and
rules as Int+, but its language contains a propositional constant ⊥, ¬A = A → ⊥.
We have

Int = J + (⊥ → p).

J-logics were studied in Rautenberg (1979) and in Odintsov (2008). A J-logic is
negative if it contains ⊥. The least negative logic is Neg = J + ⊥.

Any negative logic is—in some sense—equivalent to its positive fragment (Raut-
enberg 1979), because ⊥ is equivalent in Neg to (p → p). As an immediate conse-
quence of Theorem 6.1 we obtain the next proposition.

Proposition 6.3 There are exactly two pretabular logics over Neg:
1. NC = Neg + ((p → q) ∨ (q → p));
2. NP2 = Neg + π2.

Now we turn to the pretabular extensions of the logic J. In his book (Rautenberg
1979), p. 295, W. Rautenberg states that the logic J has exactly seven pretabular
extensions. He gives this statement as an exercise, without any information about
these logics. But the proof seems not to be too easy. We give an axiomatization of
these logics and ideas of our proof.
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Theorem 6.4 There are exactly seven pretabular logics over J. They are

• three pretabular logics over Int,
• two pretabular logics over Neg,
• PJ6 = J + π2 + (⊥ → π1) + (p ∨ ¬p),
• PJ7 = J + π2 + (⊥ → π1) + ¬¬(⊥ → p) + (¬p ∨ ¬¬p).

First of all, it is easily seen that any non-tabular logic over J is contained in a
pretabular one.

Further, Theorem 6.4 can be proved by the same method as in Maksimova (1972)
with the use of the modified Kripke semantics introduced in Maksimova (2007).
We develop a duality between J-algebras and modified frames similar to the duality
theory for Heyting algebras introduced in Maksimova (1972); see also Gabbay and
Maksimova (2005). It makes it possible to describe all pretabular logics together
with proving the following.

Theorem 6.5 Every pretabular logic over J has the finite model property.

The full proof will be presented in a separate paper. Here we find a semantical
description of pretabular logics using Segerberg’s semantics (Segerberg 1968). A
model is a quadruple M = (W, R, Q,�), where (W, R,�) is an intuitionistic model
for positive formulas, Q ⊆ W , and for any x ∈ W ,

x ∈ Q ⇒ ∀y (x Ry ⇒ y ∈ Q), x � ⊥ ⇐⇒ x ∈ Q.

We define a series of frames.

V0
n = (Vn, R, Q),whereVn = { 0, 1, . . . , n }, x Ry ⇐⇒ (x = 0 or x = y), and

Q = Vn ,
V1

n = (Vn, R, Q), where Q = Vn − { 0 },
V2

n = (Vn, R, Q), where n > 0, Q = Vn − { 0, 1 },
Vt

n = (Vn, R, Q), where Q = ∅;
Ut

n+1 = (Un+1, R, Q), where Un+1 = { 0, 1, . . . , n, n + 1 }, x Ry ⇐⇒ (x = 0
or y = n + 1 or 1 ≤ x = y ≤ n), and Q = ∅;

Z0
n = (Zn, R, Q), where Zn = { 1, . . . , n }, x Ry ⇐⇒ x ≤ y, and Q = Zn ,

Zt
n = (Zn, R, Q), where Q = ∅.
The SILs LC, LP2 and LQ3 are characterized by the classes of all Zt

n , Vt
n and

Ut
n+1, respectively. The negative logics NC and NP2 are characterized by the classes

of all Z0
n and V0

n , respectively. The logic PJ6 is characterized by the class of all V1
n ,

and PJ7 by V2
n .

Recall that for each of the pretabular logics over Int or Neg, its proper extensions
form a countable descending chain. This does not hold for PJ6 and PJ7. Every non-
trivial proper extension of PJ6 is characterized by the frame Z0

1 or V1
n , for some n,

or by the set { Z0
1, V1

0 }. The logics of Z0
1 and V1

0 are incomparable.
Every non-trivial and proper extension of PJ7 is characterized by the frame Z0

1,
or Zt

1, or V2
n for some n > 0, or by the set { Z0

1, Zt
1 } or { Z0

1, V2
1 }. The logics of Z0

1
and Zt

1 are incomparable, so are also the logics of Z0
1 and V2

1.
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Using this description, by analogywith Theorem 4.2, one can prove the following.

Proposition 6.6 The tabularity problem over J is NP-complete.

We turn to the recognition problem. The logics Int and Neg are recognizable over
J and their pretabular extensions are recognizable over them. Therefore all pretabular
superintuitionistic and negative logics are recognizable over J. One can show that
so are the logics PJ6 and PJ7. One can prove that, for each of the seven logics, its
recognition problem over J is DP-complete, and the tabularity problem over J is
NP-complete.

The strong recognition problems over J and Int+ have not been investigated.
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The Story of γ

Alasdair Urquhart

Abstract This paper recounts the history and solution of the problem of admissi-
bility of the rule γ in the context of E and other relevance logics.

Keywords Admissibility of γ · Algebraic semantics · Metavaluation · Relational
semantics · Relevance logic

1 The Origins of the Problem

The problem of the admissibility of the rule γ in the system E of entailment may
appear to be a purely technical problem; but as we shall see, it is an intriguing and
challenging problem thatmakes contactwith a remarkable variety of other, seemingly
distant, problems of logical interest.

The problem arose from Anderson and Belnap’s early investigations into Wil-
helmAckermann’s system (Ackermann 1956) of “Strenge Implikation.” Ackermann
includes four rules of inference labeled α, β, γ and δ. The rule γ is as follows: From
� ¬A ∨ B and � A to infer � B. This can be described as modus ponens for the
material conditional.

Anderson and Belnap defined the system E by excising the third rule, γ . Their
reasons for the excision are described by Anderson in his paper of 1962 as follows:

Candor compels me to admit, again in the interests of historical accuracy, that one of the
principal reasons for dropping this rule (which I shall hereafter refer to as “the disjunctive
syllogism”) was that in the presence of this primitive rule, almost none of the arguments
in the papers of Belnap and myself, cited above, can be carried through; or so it seems.
(Anderson 1963, p. 10)
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Thus the initial reason for the removal of Ackermann’s primitive rule was purely
pragmatic—it was hard to prove results about the system in the presence of this rule.
However, Anderson offers a second, more philosophically respectable reason:

Moreover, since (A ∨ B) A → B is obviously not a valid entailment (it leads by distribution
to (AA ∨ B A) → B, thence by the valid entailment AA → (AA ∨ B A), with the help of
transitivity, to AA → B), dropping the disjunctive syllogism as a primitive rule lends a
certain coherence to Ackermann’s system which it otherwise lacks. (ibid.)

This leads Anderson to the first of the open problems listed in his paper of 1962:

So the first problem I would like to pose is the following: is it true in E that whenever � A
and � A ∨ B, we also have � B (where � stands for provability in the system E, here and
in what follows)?

He goes on to give an example where there are proofs in E of both A and ¬A ∨ B;
although there is in fact a proof of B, it is not related in any obvious way to the first
two proofs. With characteristic humour, Anderson remarks that

If you tell us (truly) that A and A ∨ B are provable, then most likely Belnap or I can go off
and find you a proof of B; but what principle is involved? (Belnap has suggested that the
principle is “hard work and a clean life”; but this must be laid to his Protestant upbringing.)

This problem of the admissibility of γ remained open until the breakthrough
of Meyer and Dunn described in Sect. 2. We give the solution for the system E,
as this was the problem as originally posed. In the following sections, we discuss
the problem in the context of the system R, the setting for most of the later work.
However, it should be pointed out that these techniques are applicable to a much
larger family of systems. Our concern here, though, is with the basic techniques; the
reader can refer to the work ofMeyer, Dunn and others to get an idea of the generality
of these constructions.

The algebras corresponding to the logicR are theDeMorganmonoids; their theory
was first expounded in Dunn’s thesis (Dunn 1966). DeMorgan monoids play exactly
the same role in the logic R as Boolean algebras in classical logic. For background
in these algebras, the reader can consult (Anderson and Belnap 1975) or (Dunn and
Restall 2002).

2 The First Solution by Meyer and Dunn

I have a vivid recollection of the arrival of the news at the Philosophy Department in
Pittsburgh that Meyer and Dunn had solved the problem. Anderson and Belnap were
understandably excited that the first of the open problems had finally been solved!
(Both Meyer and Dunn had left Pittsburgh when I arrived there as a graduate student
in 1967, but I was able to count them among my friends a few years later.)

The heart of the Meyer–Dunn solution of 1968 (Meyer and Dunn 1969) is an
algebraic construction, sketched below. Before we describe this, though, we need
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some preliminary remarks and results. We take the system E to be formulated as
in Anderson and Belnap (1975), with the primitive connectives ∧,∨,¬ and →. An
E-theory is a collection of formulas of E containing all the axioms of E and closed
under its rules (adjunction and modus ponens). If T is an E-theory, we write �T A
if A ∈ T . An E-theory is prime if whenever �T A ∨ B, either �T A or �T B. It is
consistent if there is no formula A such that �T A and �T ¬A, and normal if it is
both prime and consistent.

Lemma 2.1 For every nontheorem B of E, there is a prime E-theory T such that
not �T B.

The proof of this lemma is by a standard inductive construction (Meyer and Dunn
1969, p. 462).

Let us see if we can use this lemma to prove γ admissible. So, assume that �E A,
�E ¬A ∨ B, but not �E B. Then according to the lemma, there is a prime E-theory
T so that �T A, �T ¬A ∨ B but not �T B. Since T is prime, either �T ¬A or �T B.
Now if we could be sure that the first disjunct is false, then a contradiction ensues
immediately, proving γ . But there is no guarantee that �T ¬A, since the logic E
allows of the possibility of non-trivial inconsistent theories (one of the sources of
paraconsistent logic!). This is where the real hard work begins; we have to improve
Lemma 2.1 by replacing “prime” by “normal.”

Meyer andDunn’s strategy proceeds by an algebraic construction. First, they show
how to construct an E-algebra from an E-theory T ; the elements of the algebra are
the formulas of T , the designated elements of the algebra are the theorems of T .
This is essentially the familiar Lindenbaum construction, where we can think of the
E-algebra as a big multi-valued truth-table, designed to validate all the theorems
of E.

An E-algebra is prime if whenever a ∨ b is designated, then one of a or b is
designated. If we start from a prime E-theory, then the resulting E-algebra is prime.
Thus Lemma 2.1 can be rephrased as follows: A formula is provable in E if and only
if it is valid in all prime E-algebras (that is to say, it takes a designated value for any
assignment of values in a prime E-algebra).

We now approach the heart of the construction. Meyer and Dunn start from an
arbitrary prime E-algebra M ; their aim is to “normalize” the algebra M so that
the resulting normal E-algebra M∗ can be used to invalidate any formula that is
invalidated by M . The construction is fairly involved—rather than describe it in
detail, I shall show how it works in a special case.

Our E-algebra M is a De Morgan monoid with four elements; the distribu-
tive lattice structure involving ∧ and ∨ is represented in the left-hand diagram
of Fig. 1. The reader will find other pictures of the construction in the paper by
Meyer et al. (1974, p. 107). The operation of → in M is given in the accompanying
table of the operations of M∗; the → of M is simply that of M∗, restricted to the
elements of M .
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Fig. 1 The Meyer–Dunn
construction
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Negation in M is defined by the stipulation that T and F are each other’s negations,
as are t and f . The designated elements are those ≥t . Thus M is a prime algebra
that validates all theorems of R, but is not normal, since t and f = ¬t are both
designated. It is these elements, dubbed neuter elements by Meyer and Dunn, that
form the obstacle to normality; let us designate this set of neuter elements by N . Their
solution to defining a normal algebra M∗, starting from M , is to split the elements
in N . That is to say, for each such neuter element a in the original algebra M , we
add a new element −a.

We shall not describe the somewhat complicated prescription that defines the
operations on M∗; for our example, they are given in the accompanying table. The
designated elements remain as before; clearly the new algebra is normal, thanks to
the splitting procedure. Since the new algebra M∗ invalidates any formula invalidated
by M , the admissibility of γ follows.

3 The History of the Meyer–Dunn Proof

The splitting construction defined in the preceding section is subtle and complicated,
and one may well wonder how Dunn and Meyer discovered it. In this section, we
give an outline of the road that they followed. The path of discovery illustrates the
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methodologicalmaxim that to solve a difficult problem, it helps to start from a simpler
case.

The simpler context here is the logic R-mingle, which results from R by adding
the axiom schema A → (A → A). Certain matrices, the Sugihara matrices play an
important role in the model theory of R-mingle. Following (Dunn 1970), we define
a Sugihara matrix as a matrix defined on a chain with a bijective order-inverting
mapping a 	→ a defined on it; the operations are defined by a ∧ b = min(a, b),
a ∨ b = max(a, b) and a → b = a ∨ b if a ≤ b, and otherwise a → b = a ∧ b. The
designated elements are those satisfying the inequality a ≤ a.

The notion just defined is a generalization of thematrix from Sugihara (1955); this
is the special case where the chain consists of all the non-zero integers. Certain finite
matrices are particularly important in the model theory of R-mingle. The matrices
Sn are the Sugihara matrices where the underlying chain consists of the non-zero
integers from −n to n; the matrices Sn + 0 are the Sugihara matrices defined on all
the integers from −n to n. Note that in the matrix Sn + 0, 0 = 0, so that 0 is a neuter
element, in the terminology of the preceding section.

Robert K. Meyer proved a completeness result (Meyer 1971b) for R-mingle with
respect to the matrices Sn; specifically, he proved that if a formula contains at most
n propositional variables, then it is a theorem of R-mingle if and only if it is valid
in Sn . He remarked that since the matrices Sn are normal, this completeness result
shows that γ holds for R-mingle.

The paper (Dunn 1970) gives a simpler proof of Meyer’s completeness result by
showing that if a formula is invalid in Sn + 0, then it is invalid in Sn+1 by splitting the
zero element. This is the first appearance of the splitting construction. Dunn remarks
that

Since Meyer had to do some hard, honest work to restrict his completeness result to the
consistent Sugihara matrices Sn , it seems remarkable that we were able to get the same
restriction by the simple expedient of “splitting” the “inconsistent” element 0 via our The-
orem 4 into a “true half” and a “false half.” Meyer has recently seen a way of generalizing
this technique, and he and I use it in [7] [= Meyer and Dunn (1968)], [8] [= Meyer and Dunn
(1969)] to show that γ is admissible for a number of relevant sentential calculi, including
Anderson and Belnap’s systems E and R. (Dunn 1970, pp. 8–9).

In an email of 23March 2015 tome,Dunn provided somedelightful reminiscences
of the discovery of the first proof of the admissibility of γ .

(1) Bob saw how his completeness theorem showed the admissibility of γ for R-mingle.
The key thing here is that it is relative to the Sugiharamatrices Sn , which do not contain 0.
This is somewhat tricky since the natural completeness proof leads to Sugihara matrices
which may contain 0, which is its own negation.

(2) I saw a way to make this tricky step easier by the technique of “zero-splitting.”

(3) Meyer saw how to generalize this to the case where the matrix has more than one
“inconsistent” element, where there is more than one element where both it and its
negation are designated.

I remember Bob calling early one evening when I was visiting at Yale and he was at Bryn
Mawr, saying he had this insight and that he would drive up and be at our apartment in a few
hours. He came and of course we stayed up late into the night pinning down the details of the
construction of the expanded matrix containing the “splits” of all the inconsistent elements.
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Bob never published anything but the abstract (Meyer 1971b) of his completeness of
R-mingle until Sect. 29.3 of Entailment I.

It should be mentioned in conclusion that the logic R-mingle, a crucial testing
ground for the splitting construction, was devised by Storrs McCall and J.M. Dunn
when they were experimenting with the mingle rule of Ohnishi andMatsumoto in the
context of a sequent calculus. A great deal of detailed information on this interesting
system is to be found in Anderson and Belnap (1975).

4 The Second Solution by Routley and Meyer

The second solution was a spinoff of the relational semantics developed in the early
1970s by Routley and Meyer. We give a sketch of their solution for the case of R
here. In spite of initial appearances, it is closely linked to the Meyer–Dunn solution
described above, as we explain in the latter half of this section.

Routley and Meyer (1973) define a relevant model structure, or r.m.s. for short,
as a quadruple 〈0, K , R, ∗〉 where K is a set, 0 ∈ K , R is a ternary relation on K ,
and ∗ is a one-place operation on K , satisfying the postulates:

1. R0aa,
2. Raaa,
3. ∃x (Rabx ∧ Rxcd) ⇒ ∃y (Racy ∧ Rybd),
4. (R0da ∧ Rabc) ⇒ Rdbc,
5. Rabc ⇒ Rac∗b∗,
6. a∗∗ = a,

for a, b, c, d ∈ K .
If we define a ≤ b as R0ab, then it is not hard to show that the relation ≤

is reflexive and transitive—in fact, we can assume in addition that it is a partial
ordering, though this is not necessary for soundness. A subset S of K is increasing
if it satisfies the condition: (a ∈ S ∧ a ≤ b) ⇒ b ∈ S.

A valuation in an r.m.s. assigns an increasing subset Φ(P) ⊆ K to each proposi-
tional variable P . Given a valuation in an r.m.s., the forcing relation � for elements
of K and formulas of R is defined by:

1. a � P ⇔ a ∈ Φ(P),
2. a � A ∧ B ⇔ a � A and a � B,
3. a � A ∨ B ⇔ a � A or a � B,
4. a � A → B ⇔ ∀bc ((b � A ∧ Rabc) ⇒ c � B),
5. a � ¬A ⇔ a∗

� A.

A formula A is valid in an r.m.s. if 0 � A for all valuations in the r.m.s. The main
result of the 1973 paper (Routley and Meyer 1973) is a completeness proof for R
relative to this semantics, proved by a canonical model construction.
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Theorem 4.1 A formula is a theorem of R if and only if it is valid in all relevant
model structures.

Our interest here, though, is in the simple proof of the admissibility of γ that the
model theory permits. We define an r.m.s. to be normal if it satisfies the condition
0 = 0∗. In a normal r.m.s., given a valuation, there can be no formula A so that 0 � A
and 0 � ¬A; thus the theory { A : 0 � A } is normal. It follows that we can show γ

admissible, provided we can strengthen Theorem 4.1 to completeness with respect
to all normal relevant model structures.

The strategy of Routley and Meyer (1973, Sect. 8) is very similar to that of the
first solution: starting from a non-normal model, we enlarge it to a normal model
that continues to invalidate a given formula. If M = 〈0, K , R, ∗〉 is an r.m.s., then
its normalization is M′ = 〈0′, K ′, R′, ∗′ 〉, where K ′ = K ∪ { 0′ },∗′

is the extension
of ∗ defined by adding 0′∗′ = 0′, and R′ is given by the definition:

1. R′0′0′0′,
2. R′0′0′a ⇔ R00a,
3. (R′0′a0′ ∧ R′a0′0′) ⇔ R0a0∗,
4. R′ab0′ ⇔ Rab0∗,
5. (R′0′ab ∧ R′a0′b) ⇔ R0ab,
6. R′abc ⇔ Rabc,

where a, b, c ∈ K .
As an example of the construction, we show here an r.m.s. M′ = 〈0′, K ′, R′, ∗′ 〉

in tabular form. The table is to be read as follows: given elements a, b, c ∈ K ′, Rabc
holds if and only if c is in the set appearing in the a, b entry in the table (with the a
elements on the left, the b elements along the top). We can also read the table as a
multi-algebra, as explained in my paper (Urquhart 1996).

◦ 2 1 0 0′ ∗

2 { 0, 0′, 1, 2 } { 0, 0′, 1, 2 } { 0, 0′, 1, 2 } { 0, 0′, 1, 2 } 0

1 { 0, 0′, 1, 2 } { 0, 0′, 1, 2 } { 0, 1 } { 0, 1 } 1

0 { 0, 0′, 1, 2 } { 0, 1 } { 0 } { 0 } 2

0′ { 0, 0′, 1, 2 } { 0, 1 } { 0 } { 0, 0′ } 0′

The original r.m.s. from which M′ was derived can be recovered from the table
by the following process: first, delete the second-to-last column (headed by 0′) and
the bottom row of the table, second, delete 0′ from all of the entries in the table.

It is fairly straightforward to verify that the normalized structure is in fact an r.m.s.
Furthermore, if a formula A is invalidated by a valuation Φ in 〈0, K , R, ∗〉, then Φ

can be extended to a valuation Φ ′ on 〈0′, K ′, R′, ∗′ 〉 by setting Φ ′(0′) = Φ(0), so
that A is invalidated there as well. This shows the admissibility of γ .

Although this proof looks quite different from the proof in Sect. 2, it is in
essence the same proof, viewed through the lens of an algebraic duality theory.
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LetM = 〈0, K , R, ∗〉 be an r.m.s. Then, starting fromM, we can define an algebra
A(M) by the following prescription:

1. The universe of A(M) is the set of all increasing subsets of K ,
2. A ∧ B = A ∩ B,
3. A ∨ B = A ∪ B,
4. A ◦ B = { c : ∃ab (Rabc ∧ a ∈ A ∧ b ∈ B) },
5. e = { a : R00a }
6. A → B = { a : ∀bc ((Rabc ∧ b ∈ A) ⇒ c ∈ B) },
7. ¬A = K \ { a : a∗ ∈ A }.
This definition is of course just an algebraic reformulation of the definition of the
forcing relation in an r.m.s. given above. It is fairly easy to check that the resulting
algebra is a De Morgan monoid—in fact, this is just the usual soundness argument
for R relative to an r.m.s. The element e is the identity with respect to the monoid
operation ◦, and serves to interpret the propositional constant t .

IfM = 〈0, K , R, ∗〉 is an r.m.s., then starting from theDeMorganmonoidA(M),
we can define the De Morgan monoidA(M)∗ following the construction of Sect. 2.
We can also form the r.m.s. M′ = 〈0′, K ′, R′, ∗′ 〉 following the Routley–Meyer
method above. The following theorem shows that these are essentially the same
construction.

Theorem 4.2 Let M be an r.m.s. and M′ the r.m.s. defined from it by the method
of Routley and Meyer. Then the De Morgan monoids A(M)∗ and A(M′) are iso-
morphic.

Proof Define a mapping ϕ on A(M)∗ to A(M′) as follows: If A ∈ A(M), then
ϕ(A) = A ∪ { 0′ } if 0 ∈ A; otherwise, ϕ(A) = A. Recall from Sect. 2 that the set
of neuter elements in A(M) is denoted by N , while the set of added new elements
in A(M)∗ is written as −N . If −A ∈ −N , then ϕ(−A) = A. The proof that ϕ is
an isomorphism from A(M)∗ onto A(M′) is a rather lengthy case analysis and is
omitted here. �

The r.m.s. described above in tabular form provides an illustration of Theorem 4.2.
The reader is invited to check that if we compute the algebras A(M) and A(M′),
then they are isomorphic to the algebras used as an example in Sect. 2.

The theory of De Morgan monoids admits an algebraic duality theory. A brief
exposition of this theory is given in Urquhart (1996); for more extensive expositions,
the reader is referred to the monographs Dunn and Hardegree (2001) and Bimbó
and Dunn (2008). An upshot of this duality theory is that for every construction and
theorem about De Morgan monoids, there are corresponding dual constructions and
theorems about relevant model structures. Theorem 4.2 shows that the Meyer–Dunn
construction and the later Routley–Meyer construction are each other’s duals.

This last remark should be qualified—the earlier algebraic construction of Meyer
andDunn is somewhatmore general, since it applies to arbitraryDeMorganmonoids,
whereas the algebras arising from model structures by the construction above are
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rather special, being complete De Morgan monoids (Routley and Meyer 1973, Sect.
12). However, this difference is not too significant in this context, since any De
Morgan monoid can be embedded in a complete De Morgan monoid (Routley and
Meyer 1973, Corollary 9.2).

5 Third Solution: Metavaluations

Our third and last proof of the admissibility of γ is the simplest and easiest of the
three. It is due to Meyer (1976a), and has its origins in his work on metavaluations
and metacompleteness (Meyer 1976b). Here, however, we shall present it as derived
from the proof of the previous section.

Our goal, as before, is to prove the improved version of Lemma 2.1 where the
adjective “prime” is replaced by “normal.” As in Sect. 2, we start from a prime
R-theory T that fails to contain a given formula B. Then by the basic model con-
struction of Routley and Meyer (1973, Sect. 7), there is an r.m.s. M = 〈0, K , R, ∗〉
and a valuation Φ in M so that T = { A : 0 � A }. We can now form the normal-
ization M′ as in Sect. 4, and extend the valuation Φ to a valuation Φ ′ on M′, thus
obtaining a normal subtheory of T .

The formulas that are forced by the new zero element 0′ inM′ are characterized in
terms of T in the following lemma.We shall employ the notation T | A as a synonym
for 0′ � A.

Lemma 5.1 The relation T | A is characterized by the following conditions.

1. T | P if and only if T � P, for P atomic;
2. T | A ∧ B if and only if T | A and T | B;
3. T | A ∨ B if and only if T | A or T | B;
4. T | A → B if and only if T � A → B and (T � A or T | B);
5. T | ¬A if and only if T � ¬A and T � A.

Proof The first condition holds by definition, and the second and third are easy to
verify.

For the fourth condition, if 0′ � A → B, then since 0′ ≤′ 0, 0 � A → B, and since
R′0′0′0′, either 0′

� A, or 0′ � B. For the converse, assume that 0 � A → B, and
either 0′

� A, or 0′ � B. In addition, assume that R′0′xy and x � A; we aim to show
that y � B. Four cases arise. If x = y = 0′, then y � B, by the second condition.
If x = 0′ and y ∈ K , then R00y; since 0′ ≤′ 0, 0 � A, hence y � B. If x ∈ K and
y = 0′, such that R′0′x0′, then R0x0∗, hence 0∗ � B and y = 0′ � B, since 0∗ ≤′ 0′.
Finally, if x, y ∈ K , then R0xy, so that y � B.

For the fifth condition, assume first that 0′ � ¬A. Then 0 � ¬A, since 0′ ≤′ 0,
and 0′

� A, since 0′∗ = 0′. Conversely, if 0′
� A, then 0′ � ¬A, since 0′∗ = 0′. �

In Lemma 5.1, we have presented the characterization of the relation T | A as a
consequence of the Routley–Meyer construction of Sect. 4. However, we can just
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as well consider the relation as a primitive concept, defined by the conditions of the
lemma. Viewed in this light, the relation corresponds exactly to the concept of a
canonical quasi-valuation defined by Meyer (1976b, pp. 505–506).

Theorem 5.2 Let T be a prime R-theory, and T | A be a relation satisfying the
conditions of Lemma 5.1. Define T | as { A : T | A }. Then T | is an R-theory that is
a normal subtheory of T .

Proof First, we establish by induction on the complexity of the formula A that if
T | A, then T � A, and if T � A, then T � ¬A. (The second implication is only
required for theorems of R that are not intuitionistically valid; the first alone is
sufficient for theorems of intuitionistic logic.)

The proof that T | is an R-theory is a straightforward exercise; for some details, the
reader can consult Dunn and Restall’s survey (Dunn and Restall 2002, Sect. 2.4). �

Theorem 5.2 provides us with our third proof of the admissibility of γ . We have
presented it as derived from the proof of Sect. 4, but this is not in fact theway inwhich
Meyer discovered the basic ideas. They arose from the philosophical ideas of coher-
ence and metacompleteness, beginning in the early 1970s (Meyer 1971a, 1976b).
The methodological problem that he was originally addressing in these papers was
that of interpreting a logic in its own metatheory. It was only later that he realized
that these technical developments could be used to provide a new proof of the admis-
sibility of γ , as he reported in the addendum to his paper Metacompleteness, written
in 1971, but only published in 1976 (Meyer 1976b, pp. 514–515).

Readers who are familiar with the metatheory of intuitionistic logic may have
already recognized the relation T | A characterized in Lemma 5.1—it is formally
identical with the relation defined by Peter Aczel in his well-known 1968 paper
(Aczel 1968), a relation now dubbed the “Aczel slash.” Aczel employed it to prove
the disjunction and existence properties for intuitionistic theories. He derived it from
amodel-theoretic proof of these properties that involves adding a newbottomelement
to a Kripkemodel for intuitionistic predicate calculus; our proof of Lemma 5.1 above
mimics Aczel’s proof.

Meyer was in fact aware of these connections with intuitionistic logic (Meyer,
1976b, p. 501); he specifically mentions the work of Harrop (1956, 1960), Rasiowa
and Kleene (1962), that Saul Kripke brought to his attention. The Aczel slash is
similar to “Kleene’s slash” defined in Kleene (1962), but is not identical with it.

This brings to a close our survey of the various proofs of the admissibility of γ ,
and the evolution of ideas about the problem. Not only are the various solutions more
closely related than appears at first sight, but they also make interesting contacts with
neighbouring areas such as the metatheory of intuitionistic logic. In conclusion, we
should mention that Dunn and Meyer (1989) have described a fourth solution due to
Saul Kripke in 1978, using the ideas of the usual semantical proofs of cut elimination.
This proof does not seem to have appeared in print.
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6 Cut Elimination and an Open Problem

Kripke’s proof, mentioned at the end of the last section, provides a hint that the
problem of the admissibility of γ may have a close connection with classical proofs
of cut elimination. Dunn andMeyer were the first to spell out this connection in their
paper of 1989 (Dunn and Meyer 1989). They showed how the coherence techniques
used to prove the admissibility of γ could be adapted directly to demonstrate cut
elimination for a formulation of classical quantificational logic due to Schütte. This
result is foreshadowed in the remark of Meyer et al. (1974, p. 120) that “the cut
theorem … is for classical theories simply γ in peculiar notation.” Meyer went on
in a paper of 1976 (Meyer 1976a) to extend these methods to higher-order logics.

I recall that as a graduate student in Pittsburgh, in conversation with Nuel Belnap,
I raised an objection to the proof of Meyer and Dunn by saying that it was non-
constructive. Nuel, in his usual sweetly reasonablemanner, replied that it was nothing
of the kind. If we have proofs of A and ¬A ∨ B in E, he remarked, then all we have
to do is to enumerate all the proofs in the system; we know, thanks to the work of
Meyer and Dunn, that we shall eventually hit on a proof of B!

This reply to my objection, is of course impeccable. Nevertheless, there is still a
question that underlies my original dissatisfaction with the Meyer–Dunn proof. As
Anderson observed in his original article on open problems, the proof of B in E or
R may not seem to have any obvious relation to the proofs of ¬A ∨ B or A. We can
perhaps gain some understanding of this situation if we look at the classical proofs
of cut elimination.

The original constructions by Gentzen showing that the cut rule is unnecessary in
classical logic are not simple transformations of the original proof that make a few
local modifications. Rather, after the cut elimination procedure terminates, the entire
proof has been reworked and reorganized in a radical manner. This fact is dramatized
in the speedup phenomenon in classical quantification theory; elimination of the cut
rule may result in a huge, and unavoidable, increase in the size of the proof. Define

2(0) = 1; 2(n+1) = 22
(n)

.

Then we have the following speedup phenomenon for proofs with cut in classical
logic over proofs without cut; the original speedup theorem was proved by Statman
(1978).

Theorem 6.1 There is a sequence of valid sentences of classical predicate logic
ψ1, ψ2, . . . such that ψn has a proof of size p(n), n = 1, 2, . . . , where p is a fixed
polynomial, but there is no cut-free proof of ψn with less than 2(n) proof lines for
n = 1, 2, . . . .

Proof A very clear proof of this result can be found in Pudlák (1998). �

This result, together with the earlier observations of Dunn and Meyer about the
relation between γ and cut elimination, suggests an interesting open problem.
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Probelm 6.1 Canwe prove a speedup theorem for the relevant quantificational logic
RQ with γ , over RQ without γ , with respect to theorems of classical logic?

If we could prove a speedup comparable to that for classical logic, this would con-
firm the remarks I made earlier that the elimination of γ requires a radical reworking
of proofs.
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Abstract Relevance Logics are interpreted in terms of agents’ comprehending and
constructing sources of information. The rules governing these constructions are
formulated in a natural deduction system. Two different sorts of interpretation are
developed. On the productive interpretation, implications keep track of the number
of times sources are to be applied to one another to produce a particular result. On
the functional interpretation, only what is doable in principle (with whatever number
of applications) is represented. The productive interpretation is used to understand
the contraction-free logics, linear logic and RW. The functional approach is used to
understand the logics LR and R.
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1 Introduction

One theme that is very clear in the work of J.M. Dunn is the idea that logic can be
treated as a subtle epistemological tool (Dunn 1968, 1976, 2010). We use logic to
reason about the information and misinformation that is presented to us. In thinking
about logic, we can distinguish between the informational approach to logic from
the approach that takes logic to represent certain structural characteristics of the
world. This latter take on logic is the mainstream in philosophy and mathematics.
Mathematicians use logic primarily to formulate theories, such as arithmetic and set
theory. Philosophers such as Bertrand Russell and David Lewis use logic in which
to formulate a metaphysics. W.V. Quine thinks that the main purpose of logic is to
have a standard language in which to formulate theories and which we can use to
evaluate those theories in terms of their ontological commitments. Dunn himself
uses relevance logic as a tool to formulate a metaphysics in his theory of relevant
predication (Dunn 1987, 1990a, b). There is no reason, however, why the informa-
tional approach and this structural/metaphysical approach cannot coexist. There is
also no obvious reason why the logical systems used to formulate mathematical or
metaphysical theories need to be the same as those that are used as tools with which
to understand and manipulate information.

In this paper, I take up a version of the informational approach to logic in order to
give an interpretation of relevance and linear logic. This interpretation is a descendant
of Alasdair Urquhart’s interpretation of his semi-lattice semantics (Urquhart 1972).
Urquhart takes formulas to be true or false of “pieces of information.” Pieces of
information can be combined with one another to create new pieces of information.
The combination operator is used to give a semantics for implication and properties
imposed on this operator give us different systems of relevance logic. In the present
paper, I develop Urquhart’s ideas to give a semantics for four relevance and linear
logics: the logic R of relevant implication, RW which is a strong contraction-free
logic, LR which is R without the distribution of conjunction over disjunction, and
the classical linear logic MALL (mulitiplicative-additive linear logic without expo-
nentials).

The central ideas in this paper are that of an information source and the concept of
the construction of information sources. An agent accepts some information sources
as being veridical—as telling us the way the world really is. From those sources the
agent constructs other sources. For example, like most other people in academic or
office work, I am often sent emails about meetings that are to happen in the near
future. Each of these emails is an information source and I accept them as veridical.
If I wish to attend the meeting, I click a button that enters its date and time in my
calendar, which is another information source constructed from a collection of such
emails. I suggest that we construct sources of information all the time, and that
studying such constructions is one fruitful way of understanding how people deal
with and manipulate the information available to them.

One virtue, I suggest, of the present interpretation is that it extends to both to R and
to the contraction-free logics RW andMALL and to the distribution-free systems LR
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and MALL. Contraction-free and distribution-free systems of relevance logic have
received a lot of attention in the literature. They are decidable, which R is not, and
MALL can be used as the basis of a naïve set theory and a naïve truth theory. While I
amnot sure that the interpretation I give here is appropriate for a logic of set theory (or
any other mathematical theory), it is clear that contraction-free and distribution-free
systems need more of a philosophical foundation than they currently have. Perhaps
the present attempt will lead to a firmer philosophical foundation for these systems.

In other places, I have constructed an interpretation of the relevance logic R that
has it represent the way in which we infer from the information available to us in the
situations in which we find ourselves. I do not see these two interpretations as being
in conflict, and I think that many different models of the way in which we reason
are needed to capture all of the nuances of actual human behaviour and of the norms
that we appeal to when reasoning or evaluating the reasoning of others.

The plan of the paper is as follows: In the first few sections of the paper, I engage
in a philosophical discussion of informational semantics and introduce the notion
of a source of information. I then develop a formal theory of information sources
and a variation of Anderson and Belnap’s natural deduction system for relevance
logics that replaces relevance subscripts with terms that represent sources. I use
this natural deduction system in Sects. 5 and 6 to distinguish between the functional
and productive versions of the source interpretation of the logics. The functional
interpretation corresponds to the two logics that contain the thesis of contraction
((A → (A → B)) → (A → B)) and the productive interpretation is used to
understand the two that do not contain it. I then look at three traditional semanti-
cal projects—proof theoretic semantics, and model theoretic semantics—and give a
broad outline of how each can be given a reading in terms of information sources.

This paper is programmatic. It does not spell out the theory in great detail. Rather
it gives a broad outline of a philosophical understanding of relevance logic.

2 Information and Truth

Most classical and non-classical logicians understand a logical system as a theory
that is supposed to capture the “laws of truth.” Frege, for example, famously said
“the word “true” indicates the aim of logic as does “beautiful” that of aesthetics or
“good” that of ethics” (Frege 1984). In their version of logical pluralism, Beall and
Restall (2006) think of a logical system as capturing truth preservation over a class
of “cases.” Where logical systems differ from one another has to do with what sorts
of cases they allow into their models. On Beall and Restall’s view, relevance logic
is committed to there being cases in which the principle of bivalence fails and cases
in which the principle of consistency fails. Read this way, relevance logic, and other
non-classical logics, are committed to a non-classical theory of truth.

If we think of information as something that is intermediary between our minds
and the world, however, we can retain the classical notion of truth, for all of the
extensional connectives (which I will specify later) and treat a logical system as a
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way of understanding and manipulating information. In other places (Mares 2009,
2010), I have understood logical consequence as information preservation, but here
I take a more constructive approach. I discuss this new approach to information
in Sects. 5 and 6. Right now I explore certain consequences of the separation of
information and truth.

One of the problems with understanding the semantics for non-classical logics
is that they sometimes lack homomorphic truth conditions for the connectives. For
example, in the Routley–Meyer semantics for relevance logic, the clause for nega-
tion is

a � ¬A iff a∗
� A.

Dunn (1993) explains that a∗ is the index in the model that is maximally compatible
with a. Two indices in a model are compatible if they do not say conflicting things.
The star of an index is one that is maximally compatible with regard to that index.

Ifwe see indices inmodels asworlds and the clause above as a truth condition, then
there seems to be something deficient about the semantics. In classical semantics, the
connectives are interpreted in a straightforward way in terms of the corresponding
connectives of our metalanguage. To take the most straightforward example, the
truth condition for conjunction in an indexed semantics for classical logic is usually
given as

a � A ∧ B iff a � A and a � B.

Conjunction in the object language is understood straightforwardly in terms of con-
junction in the metalanguage. Applying this idea to negation, it would seem that we
obtain

a � ¬A iff not a � A.

When talking about truth, the truth of negations in themetalanguage should determine
the truth of the corresponding negative statements in the object language.

When discussing information, however, the relationship between truth of met-
alinguistic statements and their corresponding object language statements is quite
different. In other places, I have treated the indices of the Routley–Meyer seman-
tics as situations that capture partial information about worlds. For example, I am
currently sitting in my lounge. It is not the case that the information in this room
allows me to discern where my dog Lola is. It does not tell me whether she is in
a bedroom. But it does not contain the information that she is not in a bedroom.
Whereas the truth of negative statements corresponds to the failure of the truth of
closely connected positive statements, what negative information is in a situation
does not always amount to the failure of the salient positive information in that
situation. Dunn’s analysis of negative information in terms of what information is
incompatible with the information contained in a situation (or state, as Dunn calls
them) is much more reasonable. I have the information that my coffee table is not
green because I have the information it is brown all over, and so on. Thus, we can
see that the move to understanding relevance logic in terms of information has the
advantage of liberating us from the need to provide homomorphic truth conditions.
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Although the informational approach to logic eschews truth preservation as the
sole criterion of logical consequence, it must be that inferences judged valid on the
informational approach do preserve truth. It seems a reasonable requirement of a
system being classified as a deductive logic that truth preservation be a necessary
condition for validity, even if it is not a sufficient condition.

A semantical interpretation of a logic is not only a justification for that logic,
it also places constraints on the logic. Truth conditional semantics justifies the use
of connectives by virtue of the truth conditions that they express. The fact that any
complete formulation of classical logic is truth-functionally complete justifies the
logic—it allows us to express whichever truth-functions we wish. But the need to
provide a coherent truth function to correspond to any connective restricts the logic.
Informational semantics justifies a logic in that it showshow it helps us to comprehend
and manipulate information, but it also requires of the connectives of the logic that
they each have an informational role. Their use in understanding and manipulating
information must be made evident by their interpretation. In what follows, I develop
an informational interpretation of relevance and linear logic to justify those logics
and to provide an interpretation of their connectives.

3 Sources of Information

My interpretation requires a set of sources of information, an agent, and those sources
that he or she takes to be veridical. As I said in the introduction above, sources of
information are common sense objects such as news casts, signs, rumours, statements,
an agent’s perceptual input, memories, and so on. The theory, however, requires both
actual and possible sources of information. It does not require that there be impossible
sources of information. It does allow sources that carry contradictory information, but
it is possible (and sometimes actual) that sources of information dohave contradictory
information.

Those sources that an agent thinks are veridical are the ones that he or she takes
to be true. For example, right now I take my current visual perceptions of my living
room to be accurate and they tell me that my dog is asleep on a rug. Thus, I believe
that my dog is asleep on a rug.

When an agent takes a set of sources to be veridical, he or she is entitled to construct
other sources from them. We often do this. We often apply sources of information to
one another. Suppose that you are sitting watching television with someone else. The
newsreader says that there is flooding in Ohakune. You don’t know where Ohakune
is so you ask the person sitting next to you. She tells you that Ohakune is in the
central North Island of New Zealand at the foot of Mount Ruapehu. Now you apply
the information that your friend has given you to what the newsreader has said to
produce a new information source that tells you that there is flooding in the Central
North Island at the foot of Mt. Ruapehu.
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One difference between Urquhart’s approach and my own is that I distinguish
between the contents of a source of information and the source itself. For him, a
piece of information is just a set of sentences:

A piece of information is a set of basic sentences concerning a subject or subjects aboutwhich
reasoning is being carried out. In physics the basic sentences might consist of statements of
experimental results, inmathematics elementary facts about numbers, and so forth. (Urquhart
1972, p. 159)

The reason that I distinguish between a source and the set of statements that they
make is that more than one source may tell us the same thing but we might have
reasons to trust one source more than another that has the same content. I might
trust the BBC News more than Fox News but they might both tell me the exact same
information on a given occasion. Thus, if we wish to add an analysis of how agents
assess risk with regard to information it will be useful to distinguish between what
a source says and what it is. This idea is expressed very clearly by Dunn, who says:

One source tells me A, another source tells me not A. What am I to believe? What am I to
infer? How am I to act? Perhaps I trust the source that tells me A and I do not trust the source
that tells me not A. Perhaps I trust the first source just a little bit more than the second, or
perhaps a whole lot. And maybe there are many sources who tell me one thing, and just a
few who say the opposite. But perhaps those few are regarded as experts. Etc. This is more
nuanced than the simple 4-valued Logic and suggests strategies of “weighting.” (Dunn 2010,
p. 429)

I do not attempt to provide an analysis of how to weight sources and of the difficult
task of determining how the weighting of sources affects degrees of rational belief in
propositions on the part of agents. But it seems clear that in order to have an adequate
theory of uncertainty and risk one needs to distinguish sharply between sources and
their contents.1

Another difference between the current approach and Urquhart’s is that I follow
Slaney (1990) and Read (1988) in distinguishing between two ways in which we can
construct a new source from two existing sources of information. (This distinction
is an adaptation of the distinction between extensional and intensional context in
Dunn’s consecution calculus for R+ in Anderson and Belnap (1975, Sect. 28.5).)
The first sort of construction is application. This is the construction in which you
take conditional information from one source and then use it to draw conclusions
from the information in another source. Application was first described in this way
by Fine (1974) and named “fusion.” Suppose that you have accepted as veridical
an automotive website that tells you that if there is blue smoke coming out of your
car’s exhaust pipe, then the car is burning oil. And your perception of your car tells
you that blue smoke is coming out of your car’s exhaust. Then you are entitled to
construct a source that tells you that your car is burning oil.

1Perhaps the “opinion tetrahedron” that Dunn (2010) sets out can be extended to treat the full
vocabulary of relevance logic, including the intensional connectives. At any rate, I do not know
how to do that at this time. My only point here is to support a strong distinction between sources
and their contents and the topic of uncertainty and risk helps to do that.



Manipulating Sources of Information … 113

The second sort of constructionmerely collects together all the information in two
sources. Let’s call this sort of construction “collection.” I get a phone call telling me
that a chair we have ordered is ready and is in a shop across town and my calendar
tells me that I have two hours free tomorrow afternoon. I put those two sources
together to construct a single source that I will use to plan my activities tomorrow.
When I do collect together all the information in these two sources what the sources
tell me in conjunction, I know that I have two hours free and that I have a chair ready
for me to retrieve.

Where α and β are sources of information, I use ‘α ◦ β’ to denote the application
of α and β and ‘α � β’ to denote the collecting together of α and β. Note that
α � β and α ◦ β may not denote unique entities. There may be more than one result
of collecting together the information from two sources or applying one source to
another. Consider, for example, my collecting the information from emails that tell
me about my meetings for tomorrow. There is more than one way of constructing
such a collection. I can click on a button inmy email program and it can automatically
put the meeting and time into my calendar. I can write the meetings and times down
inmy diary. These twomethods might be importantly different. I might, for example,
attribute a lower level of reliability to my writing in my diary than to the action of
the email program. If I have left my computer glasses at home or am tired, I might
write down the wrong time for a meeting. Thus, I suggest that source terms be taken
to refer to a collection rather than to individual sources.2

To describe the construction of sources of information, I adopt a variant of Ander-
son and Belnap’s natural deduction system for relevance logics (Anderson and Bel-
nap 1975). I do not use their Fitch-style representation of natural deduction. Rather, I
adopt a Prawitz/Martin-Löf style presentation that takes judgments to be the elements
of an inference. A judgment is a string of symbols of the form α : A, where α is a
term that denotes sources of information and A is a logical formula. A judgement
α : A is read as saying that α tells us A.

In this paper, I do not use β-reduction to reduce lambda terms. For example, I do
not assume that (λx . (a ◦ x)) ◦ b reduces to a ◦ b. If I were interested in constructing
a logic to represent a sort of computer program (and a notion of computational
efficiency), then reducing terms to normal forms would be extremely important. But
I want to allow for the possibility that these sorts of terms actually represent different
information sources.

3.1 Source Terms

Aproof in the source interpretation is a tree of judgments.A judgment is an expression
of the form α : A, where α is a term that refers to a source of information—a source
term—and A is a formula. I borrow this notation from Martin-Löf. The Martin-Löf

2See Sect. 12 formore discussion of the denotation of sources. The issue is similar to the relationship
between relevance subscripts in the Anderson–Belnap natural deduction system and indices in the
Routley–Meyer semantics. A set of numerals α picks out a collection of indices that are related to
those denoted by the numerals in α.
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type theory is used to derive the types of lambda terms, appealing to the Curry–
Howard Isomorphism between proofs and computer programs. I use it for a very
different purpose, to have terms for information sources that keep track of the way
in which they are constructed.

I use a1, a2, a3, . . . as source parameters, with a, b, c, . . . asmetavariables ranging
over source parameters. The set of source terms is the smallest set that satisfies the
following clauses.

• If a is a source parameter, then a is a source term;
• if α and β are source terms, then (α ◦ β) and (α � β) are source terms;
• if α(a) is a source term and α(x) results from the replacement of one or more
occurrences of a in pure fusion contexts with x , then (λx . α(x)) is a source term.

An occurrence of a parameter a is in a pure fusion context in a term α if and only if it
does not occur within the scope of an occurrence of �. For example, the expression
(λx . (a ◦ x)) � b is a source term, but (λx . ((a ◦ x) � b)) is not a source term.

Before I leave the topic of rules governing source construction, I wish to note
that the link between relevance logics and the lambda calculus has a long history.
Glen Helman’s Sect. 71 in Anderson et al. (1992) shows that the pure implicational
theorems of R are the same as the derivable type schemes in the λ-I calculus (the
lambda calculus with the restriction that lambda abstracts can only bind variables that
really occur in the term in their scope). Dunn and Bob Meyer—especially together
with combinatorial logicians such as Mariangiola Dezani-Ciancaglini—developed
a view of the relationship between relevance logic and combinatorial logic (which
is very closely related to lambda calculus) relates fusion to application in much the
same way as I am doing it here. Meyer came to refer to this relationship, and the
correspondence between combinators and axiom schemes in relevance logic and
their relationship to the postulates governing the ternary relation of the Routley–
Meyer semantics as the “key to the universe” (see, e.g., Dunn and Meyer (1997);
Dezani-Ciancaglini et al. (2002)). Baker-Finch (1992) uses this relationship between
relevance logic and theλ-I calculus to give a formal analysis of strict computation and
Neil Leslie and I (Leslie and Mares 2004) develop Baker Finch’s ideas to produce a
Martin-Löf style presentation of LR. Bunder (2003) shows relationships between the
implication-conjunction fragment of variousweak relevance logics and typed lambda
calculus with intersection types. Katalin Bimbó has done work on the relationship
between proof theory for substructural logics and combinatory logic and the lambda
calculus (see, e.g., Bimbó (1999, 2004)).

4 Implication and Conjunction

The nature of the two sorts of construction immediately justify the following rules
of inference.

α : A → B β : A
α ◦ β : B

α : A β : B
α � β : A ∧ B
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The rule on the left is the rule of implication elimination (→ E) and the rule on the
right is conjunction introduction (∧I ).

For the logics R and LR, we have the following implication introduction rule
(→ I ).

[a : A]
...

β(a) : B
λx . β(x) : A → B

In order to accord with relevance logic, we need to constrain this rule in two ways.
First, we need to restrict the use of the rule to cases in which a really occurs in β(a).
This is Anderson andBelnap’s real use requirement. The real use requirement itself is
not justified by the source interpretation. Rather, it seems to be a reasonable constraint
that people do in fact place on their own construction of information sources. Second,
we need to place a condition on the rule that allows the abstraction to take place
on when a does not occur in the scope of any � . It needs to be in pure application
contexts. This constraint makes sense because application is the operation on sources
that is paired with implication. Collection has to do with conjunction. Conjunction
is an extensional connective and implication is an intensional connective.

For the logicsMALLandRW, the implication introduction rule is slightly different
(→ I p).

[a : A]
...

β(a) : B
λx . β(x) : A →n B

where A →n B is defined inductively by: A →1 B = A → B and A →i+1 B =
A → (A →i B). In the rule, n is the number of occurrences of a that are replaced
by x in β and n ≥ 1. The restrictions for the rule → I apply to → I p as well. The
superscript ‘p’ stands for ‘productive’. The reason I call MALL and RW productive
is explained in Sect. 5.

The conjunction elimination rule is straightforward.

α : A ∧ B
α : A

α : A ∧ B
α : B

The source meaning of conjunction is that A ∧ B is in a source if and only if both
A and B are in that source. This meaning justifies this conjunction elimination rule
directly.

In order to make the present treatment of conjunction reasonable, I need to add
the following rule.

β(α � α) : A
β(α) : A
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I need this rule to prove that A → (A ∧ A).

[a : A] [a : A]
a � a : A ∧ A

a : A ∧ A

λx . x : A → (A ∧ A)

The rule makes sense given the interpretation of � . α � α contains exactly the same
information as α so in combinations with other sources α and α � α should be able
to be interchanged producing sources with the same information.

I also add the intensional conjunction ◦ (called fusion), because it is the conjunc-
tion that is paired with implication and because it more directly represents fusion in
source terms. The fusion introduction rule (◦I ) is straightforward.

α : A β : B
α ◦ β : A ◦ B

The fusion elimination rule, ◦E , displays the relationship between fusion and impli-
cation.

α : A ◦ B β : A → (B → C)

β ◦ α : C

5 The Functional Interpretation and the Productive
Interpretation

The key idea in the source interpretation is that in manipulating sources of informa-
tion, we construct new sources of information. I am watching on the news at this
moment a story about a huge snowfall in Boston. I check an app on my tablet and
find that there is forecast another snowfall tomorrow. I apply the information from
the app to the news story and construct a source (the weather in Boston according to
me) which says that the streets and footpaths in Boston will be completely clogged
with snow for the next two days and that the subway will be slow, and may have to
shut down.

The manner in which one constructs sources is captured by proofs. I discuss the
status of the rules of proof at length in Sect. 6. For now, let us think of the rules of
proof as norms that govern how we are permitted to construct sources. The meaning
of the intensional connectives (implication and fusion) is given in terms of their
relationship to these sorts of constructions. For example, the judgment α : A → B,
is taken to mean that we can apply any source that tells us that A to obtain a source
that tells us that B. But this reading is ambiguous. It is ambiguous in several ways,
but the one that concerns me now is that it is ambiguous between telling us that this
application is a single application and telling us that after one or more applications
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we are entitled to obtain a source that says that B. This ambiguity is allowed to stand
in what I call the functional interpretation of the source semantics, but it is rejected
by the productive interpretation.

According to the source semantics, a source can act as a function or as the argument
of a function. As I have said, we apply sources to one another to construct other
sources. In number theory and algebra, functions are often constructed so that the
argument fits into more than one position in the function expression, as in x x . If we
think of a source in this way—as a function that may havemore than one position that
is to be filled with an argument—the implicative judgment above is read as saying
that when we apply α to a source that tells us A as many times as required for us to
construct a source of type B.

On the productive interpretation, on the other hand, the way in which a source is
produced is tracked in a more fine grained manner. One level of fine-graining—the
level I am treating in this paper—is one that keeps track of the number of times in
which we have to apply a source that contains the information that A to produce one
that contains B. In the next section, I explain why this fine-graining is of importance.

6 Idealization in Semantics

In a recent paper (Yap 2014), Audrey Yap argues that we should not view epistemic
logics as normative theories, i.e., as theories about how we should reason. Rather,
we should look at them as idealized descriptive theories. On her view, a system of
epistemic logic should be viewed in the same way as we think of idealized scientific
models. She thinks that various criticisms of epistemic logic can be met if we think
of it as a way of describing what people, or agents in a computer program, do
rather than a theory of what we should do. Idealizations in science, for example,
neglect certain features of the actual world that make the application of mathematics
or other conceptual structures too complicated. Similarly, simplifying assumptions,
like assuming that agents have perfect memories or enough time (and interest) to do
lengthy derivations are employed in constructing epistemic logics. Yap says:

The previous examples have given a picture of some ongoing research programs in epistemic
logic that showcase ways in which the field uses idealizing assumptions. While many of
these projects do seek to describe the behavior of real agents, it is acknowledged that some
simplifying assumptions will be required for the sake of tractability. The appropriateness
of using formal models to study epistemological issues generally is a further issue, but,
if this paper is right, then that appropriateness does not stand or fall with the presence of
some idealizing assumptions. The question is whether, despite the inevitable idealization,
the formal models can still give us insight into actual phenomena. (Yap 2014, p. 3365)

I suggest that we useYap’s view of logic as an idealization of human inferential think-
ing and behaviour in order to interpret the productive view of logic. I am ambivalent
as to whether we should abandon the normative treatment of epistemic and rele-
vance logic, but I do think that even if we take a normative view of logic we need to
think of logic as an idealization of our actual inferential abilities. In what follows,
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I consider the productive interpretation given both a descriptive and a normative
view of logic taking into account the idealized relationship between logic and actual
human inference.

The productive view differentiates between proofs according to the number of
times in which sources are applied to one another. In human agents, these differences
track differences in cognitive effort. If we differentiate between sources in terms of
how much effort it takes an agent to produce, then we can represent in our theory a
decline in expectation that the agent will produce sources that take more effort. I call
this decline expectation fade.

On the functional view, the judgment

α : A → B

is read as

If α is applied to any source that contains the information that A then it will produce a source
that contains the information that B.

On the productive view, the same judgement is read as

If one accepts α and any source β : A, then he or she is expected to create a source α ◦β : B.

What is interesting about the productive view, is that we can interpret implications
differently depending on how deeply nested they are within other implications. In a
judgement γ : A → (B → C), even if the agent accepts sources δ : A and σ : B,
our expectation that he or she will produce a source (γ ◦ δ) ◦ σ : C is lower than our
expectation that he or she will produce γ ◦ δ : B → C . Thus, the productive reading
understands the types of sources differently from the functional approach. Onemight
object that the source terms themselves represent the number of applications of
sources that is necessary to produce sources of particular types and so there would
seem to be double counting of applications on the productive reading, so to speak.
This objection would have weight if this particular natural deduction system were
our only way (or even the preferred way) of representing the logics. What I am
trying to do is to give an interpretation to the formulas of the logics and to everyday
applications of logical reasoning, not just to the natural deduction system that I set
out here. Natural language and other representations of the logic do not have source
terms. Applied to these representations, the double counting disappears.

One way of understanding the productive view of logic is by contrasting it to
the resource interpretation of linear logic. On the resource interpretation, the rule of
contraction, which allows the inference of Γ (A) � B from Γ (A; A) � B, is rejected
because it treats premises in a sequent as representing resources and the conclusion
as representing an action or a further resource that can be obtained. Just because an
action can be obtained using two lots of some resource does not mean that it can be
obtained using just one lot. On the productive interpretation, it is not resources but
effort that is being tracked. The difference between a source that can be produced
by one application of two sources is different in nature according to the productive
interpretation from one that requires two applications of those sources to one another.
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If we decide to adopt a normative reading of the logics, then an analogous decline
that takes place with regard to sources that are more complicated to produce. Accord-
ing to the normative reading, an agent is committed to the veridicality of any source
that is constructed from those sources that he or she has accepted by means of the
rules of proof of the logical system. Norms are usually governed by the rule that
what an agent is committed to is only what he or she can do—the principle of “ought
implies can.” An agent’s actual abilities can be determined in various ways, taking
into account or ignoring physical abilities, time constraints, opportunity costs, and
so on. If we take into account all of these constraints, what an agent can do is quite
limited.When we relax those constraints, we consider an agent to be able to do much
more. The norms are more firmly binding that govern what an agent should do when
we include more constraints. As we relax constraints, the norms in place are much
weaker. Thus, we can see that there is a form of commitment fade that is analogous
to expectation fade.

Marking out the differences between sources in terms of the number of implica-
tions involved in the production of those sources tracks these fades and indicates the
level of expectation or commitment we should place on them for a given agent.

The functional interpretation idealizes away differences between the effort and
time needed on behalf of an agent to do proofs of different lengths. This idealization
is useful as well. If we are only interested in the commitments an agent has to non-
implicational statements, then the productive approach imposes complications that
may be completely irrelevant to the project at hand.

7 Disjunction

The introduction rules for disjunction (∨I ) are straightforward.

α : A
α : A ∨ B

α : B
α : A ∨ B

Clearly, if a source tells us that A it also tells us that A ∨ B.
The elimination rule is much more difficult to justify. The standard rule for rele-

vance logic is (∨E):

α : A ∨ B

[a : A]
...

β(a) : C

[b : B]
...

β(b) : C
β(α) : C

where a and b really occur in β(a) and β(b), respectively, and do not occur within the
scope of a� . But this rule, together with the conjunction rules, does not entail the dis-
tribution of conjunction over disjunction. We can modify the disjunction elimination
rule in the following way to yield distribution:
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α : A ∨ B α : D

[a : A ∧ D]
...

β(a) : C

[b : B ∧ D]
...

β(b) : C
β(α) : C

where a and b are new and really occur in β(a) and β(b), respectively. This modified
rule is called (∨Ed). The use of the metavariable D in (∨Ed) allows us to prove
distribution.

[a : (A ∨ B) ∧ C]
a : A ∨ B

[a : (A ∨ B) ∧ C]
a : C

[b : A ∧ C]
b : (A ∧ C) ∨ (B ∧ C)

[c : B ∧ C]
c : (A ∧ C) ∨ (B ∧ C)

a : (A ∧ C) ∨ (B ∧ C)

λx . x : ((A ∨ B) ∧ C) → ((A ∧ C) ∨ (B ∧ C))

It is possible to derive a version of (∨E) from (∨Ed).

α : A ∨ B

[a : A]
...

β(a) : C
λx . β(x) : A → C

[b : A ∧ (A ∨ B)]
b : A

λx . β(x) ◦ b : C

[c : B]
...

β(c) : C
λx . β(x) : B → C

[d : B ∧ (A ∨ B)]
d : B

λx . β(x) ◦ d : C
λx . β(x) ◦ α : C

The difference between this version of the rule and the original version concerns
the source term in the conclusion. Differences of this sort between source terms are
discussed in Sect. 9. As we shall see there, the differences between the versions of
the rule have no serious consequences for the logics that they characterize.3

7.1 Distribution

Should a logic of information sources include the principle of the distribution? This
is a difficult question to answer and I do not give a real answer to that question
here. Rather I only show why the question is so difficult. Let us say that the truths
of the actual world are closed under distribution. Even if this is the case, and even

3There are other ways of generating the distribution rule than this. Anderson and Belnap add
a primitive rule. Ross Brady adopts a structural connective that corresponds in some sense to
extensional disjunction. Dunn incorporates the mechanism that is found in his and Mints’ sequent
systems of having conjunctive hypotheses (Dunn and Restall 2002, Sect. 1.5). Dunn’s proposal is
particularly interesting and it might be illuminating to provide a source of information reading of it.
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if the truths at any possible world are closed under disjunction, it need not be that
distribution is a logical truth. As I explain in Sect. 9, a logical truth is a truth that we
can derive a priori and one that an agent is entitled to use at any time in a derivation.
We could justify distribution if we could find a good reason why it should be able to
be brought into an inference at any time. But I cannot think of any such reason.

Omitting distribution, or (∨Ed), from our logic does have some good formal
effects. As Girard (1998) shows, a naïve set theory can be constructed on the basis
of Linear Logic. Moreover, Bob Meyer shows that LR is decidable (Thistlewaite
et al. 1987), whereas, as Urquhart proved, R is undecidable. But it is neither clear
that set theory should be understood in terms of information sources nor that an
informational logic should be decidable. Hence the links between these facts about
the formalism and the present interpretation have yet to be made.

On the other hand, Belnap (1993, p. 36) gives the following argument to show that
from a semantic perspective it makes sense to include distribution in one’s logic. He
points out that the following three conditions force a semantics to include distribution.

1. The semantics evaluates sentences as being true or false at a point.
2. The semantics treats conjunction and disjunction extensionally.
3. The semantics takes logical consequence to be truth preservation at every point

in a model.

If we have a two-valued semantics that gives an extensional treatment of conjunc-
tion and disjunction, then there is only one reasonable truth condition for disjunction
and only one reasonable truth condition for conjunction, and these lead directly to
points being closed under distribution. If logical consequence just is a theory of the
closure of truths at points in models (as is stated in condition 3), then distribution is
unavoidable.

The source interpretation, however, is not compatible with Belnap’s first and
second conditions. As we have said, an informational semantics talks about the
information that we have (in some sense of ‘have’). What is true or false often
goes beyond the information that one has at hand. Moreover, disjunctive information
should probably not be treated extensionally. We can have the information that a
disjunction obtains without the information about which disjunct is true. I used to
have two dogs. If I came home to find that their food bowl was empty, I would know
that at least one of them ate the food, but not which of them had eaten it.

Belnap’s argument does show that a certain sort of semantical approach is com-
mitted to distribution, but not that the source interpretation is.

8 Negation

In the natural deduction system, I use a falsum in order to formulate the negation
rules. This is more a matter of choice than anything that is forced on me by the
source interpretation. The falsum f , tells us that we are accepting or are committed
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to something impossible. The negation elimination rule for functional logics (¬E)

can also be read as a falsum introduction rule.

α : ¬A β : A
α ◦ β : f

If an agent accepts two sources that have conflicting information, then she is com-
mitted to the falsum or, in other words, she is entitled to construct a source that tells
us that the falsum is true.

The negation introduction rule (¬I ) is quite standard.

[a : A]
...

α(a) : f
λx . α(x) : ¬A

where a really occurs in α(a). This rule indicates that negative statements in this
system are really implications of a sort. For the productive interoperation, I restrict
the rule to say that only one occurrence of a is to be replaced with x in α(a).

The two rules above give us only a sub-intuitionist negation. Missing from the
negations of R, RW, LR and MALL are the double negation elimination rule, the
intuitionistically illegitimate form of reductio, and excluded middle. These can be
derived by adding the following form of Prawitz’s classical reductio rule from (Red)

(Prawitz 2006). [a : ¬A]
...

α(a) : f
λx . α(x) : A

where a actually occurs in α(a). In the productive logics (MALL and RW), we need
to place the constraint that exactly one occurrence of a is replaced by x to obtain
λx . α(x). The rule with this constraint is called (Red p).

The inclusion of (Red) in the functional logics (R and LR) allows the proof of
excluded middle.

[a : ¬(A ∨ ¬A)]

[a : ¬(A ∨ ¬A)]
[b : A]

b : A ∨ ¬A
a ◦ b : f

λx . (a ◦ x) : ¬A
λx . (a ◦ x) : A ∨ ¬A

a ◦ λx . (a ◦ x) : f

λy. (y ◦ λx . (y ◦ x)) : A ∨ ¬A

In the last step of the proof, in discharging the assumption [a : ¬(A∨¬A)], I abstract
on two occurrences of a in a ◦ λx . (a ◦ x). This is not allowed in productive proofs.
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9 The Nature of Theorems

A theorem in the present systems is a formula A that can be proven in a judgment
of the form α : A, where α does not contain any source parameters. The source term
shows that the judgement can be derived a priori in the sense that all it requires for
its production are sources that can be constructed by anyone with the aid of the proof
system.

In truth conditional semantics, a theorem of a logic is interpreted as a formula
that is true in every context (as in Kripke semantics for normal modal logics) or as a
formula that is true in all designated contexts (as in Kripke semantics for non-normal
modal logics or Routley–Meyer semantics for relevance and substructural logics). In
the information source interpretation of relevance logic, any agent is entitled to use
a theorem source (one that does not contain any source parameters) in any context.

In informational semantics, the link between a theorem and always being true is
partially broken. Theorems are always true, but not all statements that are true in all
possibleworlds need be theorems. Consider the law of excludedmiddle. It is provable
in R and LR but not in MALL or RW. The latter two logics lack are productive and
lack the contracted form of implication introduction. This, however, does not mean
that an advocate ofMALLorRWmust reject the view that the law of excludedmiddle
is a universal truth. It commits her only to holding that one is not always entitled to
use instances of the law of excluded middle when constructing sources. The truth
of the law of excluded middle is a semantic or perhaps metaphysical issue. One’s
entitlement to use it is an informational and epistemological issue (that I discuss
further in Sect. 11).

10 The Logics

As I have said, the rules stated here are used to characterize four logics. All of the
logics contain the rules (∧I ), (∧E), (→ E), (∨I ), (◦I ), (◦E), and (¬E). MALL
also contains (→ I p), (∨E), (¬I p) and (Red p). RW is just like MALL except that
(∨E) is replaced by (∨Ed). R contains all of the non-productive rules and (∨Ed).
LR is just like R except that it has (∨E) instead of (∨Ed).

In this section, I present the Hilbert systems for the logics and briefly indicate
how they are to be proven equivalent to their natural deduction formulations. To
formulate Hilbert-style systems in a reasonably efficient manner, I begin with a
smaller language, one that includes only implication, a falsum, and conjunction. The
other connectives are defined as usual: ¬A =d f A → f , A ◦ B =d f ¬(A → ¬B),
A ↔ B =d f (A → B) ∧ (B → A), A ∨ B =d f ¬(¬A ∧ ¬B), and t =d f ¬ f .

In this section, in order to keep track of whether I am discussing the natural
deduction system or the Hilbert system, I refer to the natural deduction system for a
logic L as SL (for ‘source system for L’) and the Hilbert style system as HL.

I take the list of axioms for HMALL from Troelstra (1992, p. 67).
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Axioms of HMALL

1. A → A
2. (A → B) → ((B → C) → (A → C))

3. (A → (B → C)) → (B → (A → C))

4. ((A → f ) → f ) → A
5. A → (B → (A ◦ B))

6. ((A ◦ B) → C) → (A → (B → C))

7. t
8. t → (A → A)

9. (A ∧ B) → A, (A ∧ B) → B
10. ((A → B) ∧ (A → C)) → (A → (B ∧ C))

11. A → (A ∨ B), B → (A ∨ B)

12. ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

Rules

� A → B
� A

� B

� A
� B

� A ∧ B

To obtain HRW, the distribution axiom (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

is added to HMALL. To obtain HLR, the contraction axiom (A → (A → B)) →
(A → B) is added to HMALL. To obtain HR, the contraction axiom is added to
HRW or the distribution axiom is added to HLR.

The following is easily shown.

Lemma 10.1 The following are provable inMALL: (i) (A◦(B◦C)) ↔ ((A◦B)◦C);
(ii) (A ◦ B) → (B ◦ A).

The following theorem is proven merely by proving the axioms and the admissi-
bility of the rules of each logic HL in the corresponding SL:

Theorem 10.2 If A is provable in HL, then α : A is provable in SL, for some
parameter-free source term α, for all L ∈ {MALL,LR,RW,R }.

In order to prove the converse, I define a translation function between source terms
and formulas in the context of proofs.

• a∗ = A, where a : A is an assumption in the proof;
• x∗ = t for free occurrences of x ;
• (α � β)∗ = α∗ ∧ β∗;
• (α ◦ β)∗ = α∗ ◦ β∗;
• (λx . α(x))∗ = α∗(t).

Now I prove that the source natural deduction system can only prove theorems of
the Hilbert system for MALL.
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Theorem 10.3 If α : A is provable in SMALL, then α∗ → A is provable in
HMALL.

The proof is by induction on the length of proofs in SMALL. The method is fairly
straightforward, and I only prove the implication cases to illustrate how the proof
works.

First, I prove that implication elimination can be mimicked in HMALL. I show
that from � α∗ → (A → B) and � β∗ → A, we can derive � (α∗ ◦ β∗) → B in
HMALL.

1. � α∗ → (A → B) assumption
2. � β∗ → A assumption
3. � A → (α∗ → B) 1, axiom 3, Modus Ponens (MP)
4. � β∗ → (α∗ → B) 2, 3, axiom 2, MP
5. � α∗ → (β∗ → B) 4, axiom 3, MP
6. � (α∗ ◦ β∗) → B axiom 6, 5, axiom 2, MP

I turn now to implication introduction. Where α(c) : B is derived in a subproof from
a : A,

1. � (α(a))∗ → B assumption
2. � α∗(A) → B 1, def. ∗
3. � (α∗ ◦ A) → B 2, Lemma 10.1, MP
4. � α∗ → (A → B) 3, axiom 6, MP

Extending the proofs of Theorems 10.2 and 10.3 to the other three logics is quite
easy. So I merely state them.

Theorem 10.4 For L ∈ {MALL,LR,RW,R }, if α : A is provable in SL, then
α∗ → A is provable in HL.

Theorem 10.5 For L ∈ {MALL,LR,RW,R }, for any formula A, if A is provable
in HL, then α : A is provable in SL, for some parameter-free α.

11 Information Sources and Proof Theoretic Semantics

The informational reading of the proof theory can be taken in two ways. First, it can
be taken as a way of introducing another semantics of some sort for the proof theory.
This semantics will be a collection of models of some sort (Kripke models, algebraic
models, or whatever). The models, moreover, are meant both to characterize the
logic mathematically and to capture the philosophical (here, informational) reading.
On this approach, the meanings of the connectives are understood in terms of the
relationship between the formulas of the language and the elements of the models.
Second, the informational semantics may be seen as a way of understanding the
proof theory directly and showing that the proof theory itself can be taken as a
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semantics. The meanings of the connectives on the proof theoretic approach are
understood in terms of their roles in proofs. I explore this proof theoretic approach
to the semantics first.

Proof theoretic semantics treats proofs as having a role in the norms of inference
for a given linguistic or epistemic community. On the information source theory,
these norms govern what an agent ought to infer and what he or she is permitted to
infer. An agent’s inferential obligations are called his or her commitments and what
he or she is permitted to infer are his or her entitlements. As I have said, on the
information source view, an agent accepts some sources as being veridical. Let’s call
the set of sources that some agent accepts, Γ .

The theory of information sources gives rise to a theory of entitlement and commit-
ment. Agents are committed to collecting and applying the sources that they accept.
For themoment, I set aside the topic of commitment fade and explain a simple theory.
On this simple theory, there are some simple closure principles.

• If α ∈ Γ , then the agent is committed to α;
• if the agent is committed to α and β then he or she is committed to some α � β

and some α ◦ β;
• if the agent is committed to α, then he or she is committed to some λx . (α ◦ x) and
some λx . (x ◦ α).

The last clause is supposed to commit agents to accepting those implications that
are implicit in the sources that they accept or to which they are otherwise committed.
For example, suppose that α : A and the agent accepts α. Here is a little proof to
show that an agent who is committed to a source that contains A is also committed
to a source that contains (A → B) → B:

[a : A → B] α : A
a ◦ α : B

λx . (x ◦ α) : (A → B) → B

By the closure principles, the agent is committed to λx . (x ◦ α) and hence is
committed to a source that says that (A → B) → B.

If we do take risk and reliability into account, the notions of commitment and
entitlement may have to change somewhat. Some sorts of constructions of sources
are unreliable (writing down the contents of other sources when one is very tired or
when one does not have his reading glasses, for example). Thus, there may need to
be restriction on what sort of commitments agents have. The possibility of creating
sources that are as reliable as the ones that one has already accepted may be limited,
and so this could be a source of commitment fade. Similarly combining or applying
sources of uneven levels of reliability may lead to a form of commitment fade. Thus,
a final theory of commitment and entitlement requires some deep thinking about the
effect of agents’ judgments concerning the reliability of sources and the transmission
of that reliability through constructions of new sources, but here are a few ideas along
these lines.
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A theory of commitment fade would seem most plausibly based on features of
human inferential competence. In other words, commitments would fade as our
abilities to make inferences also fade. If an agent is committed to a source α : B
only after he or she makes a long chain of difficult inferences, then the level of her
commitment should be quite low. This suggests a continuum of different levels of
commitment between 0 and 1. Every time a collection or application is necessary,
the level of commitment drops. How much it drops should depend on context and
the agent.

In addition to commitments, there are entitlements. The agent’s entitlements reach
beyond his or her commitments.

• If the agent is (weakly) committed to α then he or she is entitled to α;
• if the agent is entitled to α and β then he or she is entitled to collect them together
into some α � β and apply one to the other in some α ◦ β;

• if the agent is entitled to α then he or she is entitled to some λx . (α ◦ x) and some
λx . (x ◦ α);

• if γ is a source term that contains no source parameters then the agent is entitled
to γ .

The last condition tells us that the agent is entitled to any source that tells us just
theorems of the logic. Thus, the agent’s entitlements are closed under the implications
of the logic and contain every theorem (and they are closed under conjunction).

Not every agent is committed to every theorem all the time. Yet theorems do have
a universal nature. Every agent is entitled to appeal to any theorem at any time.

The justification of these norms and the theories of deduction might come from
two different sources. One might take the theory to be a description of actual norms
of reasoning in particular epistemic communities. It seems to me that the source
interpretation of the logic does describe actual social practices, but a real justification
of this sort requires serious empirical investigation. It also might be that the source
interpretation fits well with some more general epistemological project.

What does not have to be justified is the fact that the source interpretation allows
or leads one to accept deviant logical rules like Prior’s tonk. The source semantics
lives happily alongside a truth-conditional semantics (at least for the conjunction,
disjunction and negation fragment of the language). Thus I can appeal to the fact that
the logical rules are truth preserving in order to prove that they are safe. There is no
need to appeal to anything like a notion of harmony to prove that the system does
not lead us astray in this way.

12 Information Sources and Model-Theoretic Semantics

If one does not want to understand source meaning in purely proof-theoretic terms,
then it seems possible to constructmodels that are based on collections of information
sources. The best known andmost widely discussed model theory for relevance logic
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is Routley and Meyer’s semantics. Their semantics treats formulas as being true or
false at points and relates these points to one another by accessibility relations that
are used to formulate truth conditions for the intensional connectives of the language.

The Routley–Meyer semantics, in its traditional form, is unacceptable as a formal-
ization of source semantics.Adisjunction A∨B holds at a point x in aRoutley–Meyer
model if and only if at least one of A or B hold at x . Points in standard Routley–
Meyer models, thus, cannot be taken to be sources. There are, however, variations
of the Routley–Meyer semantics that may help in this regard.

Perhaps the best candidate for a source interpretation is HiroakiraOno’s semantics
for substructural logics (Ono 1993). Ono includes an intersection operator, �, to treat
disjunction. For any point in an Ono model, x , x � A ∨ B if and only if there are y
and z such that y � A and z � B and y�z ≤ x . If we read the intersection operator as
producing a source that containswhatever information is common to y and z, then this
is an intuitive semantics for disjunction in the source context. Ono does not have the
dual, �, to treat conjunction, but it would seem that we could add it to his semantics
without difficulty. Together with Ono’s clause for conjunction—x � A ∧ B if and
only if x � A and x � B—the logics characterized do not contain the distribution
of conjunction over disjunction. There is a natural fit between this semantics and
MALL and LR. But the condition for disjunction can easily be modified to obtain
distribution. Merely set x � A ∨ B if and only if there are y � A and z � B such
that x = y � z.

Ono also employs the fusion operator to handle implication. Thus, there is a fairly
good fit between the source interpretation and Ono’s model theory. The problem
with Ono’s theory, however, is that it has no theory of negation. Whether an intuitive
semantics of negation can be added to Ono’s view I do not know, but it might be a
worthwhile project to see whether it can be done.

Fine’s semantics (Fine 1974; Anderson et al. 1992) does have a treatment of
negation, and a non-standard treatment of disjunction. In Fine’s theory, there is a
distinguished set of points in each model that he calls “saturated.” A saturated point
is one at which the standard condition for disjunction holds. For other points x , a
disjunction A ∨ B obtains if and only if for every saturated point that is greater than
x either A or B obtains. It would seem possible to interpret Fine’s semantics in terms
of sources. A saturated point is one that accurately represents a part of a possible (or
impossible) world called a “situation.” This notion of a situation is due to Barwise
and Perry (1983). (I have interpreted relevance logic in terms of situations elsewhere
Mares (2004).) Negation is handled by the Routley-star operator, ∗. For all saturated
points x , x � ¬A if and only if x∗

� A.4

Perhaps a better fit for the source interpretation than Kripke semantics is an alge-
braic semantics. We can treat the sources of information as an algebra. Collecting
two sources, a and b, together (using �) is a lot like taking their algebraic meet,
a ∧ b. Similarly, as in Ono’s semantics, we can think of the intersection of a and b
as a source that contains only the content that occurs in both a and b. We can repre-

4The semantics for linear logic created by Allwein and Dunn (1993) might also be a candidate for
a source reading, but I do not have the room here to discuss its complexities.
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sent this intersection as a join, a ∨ b. There are well-known algebraic semantics for
MALL—classical linear algebras and the theory of quantales. There is also a well-
known algebraic semantics for R, namely, Dunn’s theory of De Morgan monoids
(Dunn 1966; Anderson and Belnap 1975, Sect. 28.2).

In De Morgan monoids and other algebraic structures used to interpret relevance
logics, fusion obeys certain postulates, such as commutativity x ◦ y = y ◦ x and
associativity x ◦ (y ◦ z) = (x ◦ y) ◦ z. The proof theory captures something like
commutativity by its use of lambda abstraction. Consider the following proof.

[c : A ◦ B]

[a : A] [b : B]
b ◦ a : B ◦ A

λx . (b ◦ x) : B → (B ◦ A)

λyλx . (y ◦ x) : A → (B → (B ◦ A))

λyλx . (y ◦ x) ◦ c : (B ◦ A)

λzλyλx . (y ◦ x) ◦ z : (A ◦ B) → (B ◦ A)

In this proof, there is no need to commute source terms. The effect of commutativity
is captured by the order in which source variables are bound by lambda abstracts.

The fact that commutativity along with associativity and other other postulates
of the algebra are not incorporated into the proof theory might cause some prob-
lems for a source interpretation of the algebra, but I think these problems can be
avoided. As a base for an algebraic semantics, let us take a set S of sources and a
congruence relation ≈, which means ‘contains the same information as’. Then we
can take S modulo ≈ as the carrier set of the algebra. The use of ≈ has another good
consequence. As I said in Sect. 3, there may not be unique collections or fusions
of sources. Taking the points of an algebra to be congruence classes of sources all
of which contain the same information would seem to get around the difficulty of
thinking of the meet, join and fusion of the algebra as operators. (This same tactic
might be used with regard to a Kripke semantics for the same reason.)

13 Conclusion

In this paper I have set out a programme for the interpretation of four relevance logics.
The interpretation is constructive in the sense that it is supposed to describe the way
in which people understand and build sources of information. On the productive
interpretation, relevant implication is understood as a device that keeps track of how
many steps are taken in the construction of sources. On the functional interpretation,
the number or steps is ignored—what is doable in principle (in whatever number of
steps) is what is of interest. The productive interpretation is used to understand the
contraction-free logics MALL and RW and the functional interpretation is used to
understand LR and R.
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Interpreting relevance logic in terms of the construction of sources of information
removes relevance logic from the metaphysically extravagant realm of true contra-
dictions and impossible worlds, and locates it as an epistemological tool.
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Epistemic Relevance and Epistemic Actions

Sebastian Sequoiah-Grayson

Abstract An operational and informational semantics for the ternary relation R
is explored as a framework for modeling informational relevance. We extend this
framework into robustly epistemic terrain. We take a new perspective on the problem
of logical omniscience, using informationalised operational semantics to model the
properties of the epistemic actions that underpin the epistemic relevance of certain
explicit epistemic states of an epistemic agent as that agent executes said actions.

Keywords Epistemic actions · Logical omniscience · Informativeness · Relevance
logics · Structural rules

1 Introduction

The problem of logical omniscience is the problem faced by epistemic modeling
given that basic epistemic logics assume that the epistemic agents are logically omni-
scient, but we are not. This is a hard problem. The scandal of deduction is the failure
of philosophy to give a sensible account of how it could be that deductive reasoning
can be informative for us given that such inferences deliver zero information. The
scandal of deduction has a straightforward answer, and this answer illustrates a way
in which the problem of logical omniscience might be overcome. The answer to the
scandal is best illustrated via a walk-through on general (non-logical) omniscience,
and the information that we get from our empirical environment.

We get information from our environment either distally via direct observation, or
indirectly via announcements. Examples are familiar from the philosophical canon.
Consider grass is green, snow is white, or there are one hundred and one dormice
in the room next door. In order to get information from our environment, we need
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to perform certain epistemic actions. These are actions such as the aforementioned
observations or announcements.1 Weneed to perform epistemic actions of these types
on account of our not being omniscient. If we were omniscient, then we would not
need to perform such actions because we would have automatic, effortless access to
all information in our environment simply by definition. This is just what it means to
be omniscient. We may, with a little poetic license, think of omniscience as the limit
of the epistemic action of observation. Omniscience is the epistemic state achieved
when further observation could not add anymore information to our information base.

Just as we are not omniscient, neither are we logically omniscient. In order to
use the information that we get from our environment, we need to reason with it.
Such reasoning is an epistemic action of a cognitive sort, insofar as it is an action
of the mind. We need to carry out such epistemic actions in order to bring the infor-
mation corresponding to both logical theorems, as well as the logical consequences
of our environmentally acquired information, into our information base. Analogous
with the point made about omniscience and observations above, if we were logically
omniscient, then we would not need to carry out reasoning-style epistemic actions
because we would have automatic, effortless access to all logical theorems as well as
all logical consequences of the information gotten from our environment. This is just
what it means to be logically omniscient. Again, with a little poetic license, we may
think of logical omniscience as the limit of the epistemic action of deductive rea-
soning. Logical omniscience is the epistemic state achieved when further deduction
could not add any more information to our information base.

To be sure, when we speak of an epistemic agent being omniscient in the general
sense, we often take this to imply that the agent is logically omniscient also. Nonethe-
less, these two types of omniscience remain conceptually distinct. There is, to be sure
again, a commonly recognized priority of sorts between the two omniscience types. It
is not particularly useful to think about an omniscient, but non-logically-omniscient
agent. Such an agent might not be able to do all that much with the information
that it got from its environment, if that agent lacked suitable logical acumen.2 Being
omniscient entails being in possession of a great deal of information, hence some
heavy duty logical acumen would be required to handle it.

When it comes to modeling epistemic actions of the observation sort, the agents
being modeled are assumed often to be logically omniscient for just this reason
(see van Ditmarsh et al. 2008). By abstracting away from the cognitive epistemic
actions which underpin logical information handling, such frameworks—standard

1Announcements and observations may be run together as a single type of epistemic action if
you assume that announcements are always truthful, always believed, and always non-noisy, van
Ditmarsh et al. (2008).
2This point is similar to the onemade by Frege in his letter to Jourdain. Frege entertains an agent who
is able, in principle, to comprehend every atomic sentence, but does not have the ability to execute
any semantic composition. Given language’s essential productivity, such an ability is, according
to Frege, of little general interest. I am indebted to an anonymous referee for bringing this to my
attention.
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dynamic epistemic logic (DEL) for example—may concentrate on the properties of
the information-updates resulting from observation-type epistemic actions. In such
frameworks, the epistemic agent is assumed to be logically omniscient, or ideally
rational, and the cognitive epistemic actions executedby the agent get “blackboxed.”3

This essay is an attempt to say something philosophically substantial about the
nature of the epistemic actions which underpin logical information handling—to
shine some light inside the black box.4

2 Epistemic Relevance and Relevance Logics

Both information itself as well as epistemic actions may be epistemically relevant.
Some information is epistemically relevant for an agent if it is relevant to the agent’s
epistemology, where by this we mean the agent’s knowledge or beliefs. For example,
if you need to know how many bottles of wine you might need for your dinner
party, then the number of guests is epistemically relevant. Similarly, if you have the
information that the terrorist cell will attack either the Sydney Harbour Bridge or the
Sydney Opera House, then the information that the terrorist cell will not attack the
Sydney Harbour Bridge is epistemically relevant to your counter-terrorist plans.

An epistemic action will be epistemically relevant for an agent if the execution of
the action gets information for the agent such that this information is epistemically
relevant in the manner described above. For example, the announcement from each
of your dinner party’s invitees that they are able to attend the party will be a collection
of epistemically relevant epistemic actions. Similarly, an observation of the terrorist
cell’s moving their personnel away from the Sydney Harbour Bridge is epistemically
relevant. Both the dinner party and terrorist cell examples assume that you are able
to reason with, or integrate, or logically handle the information that you got from
the announcement and observation actions. As we noted in the previous section,
this handling of information in a logical manner is an epistemic action of an internal,
cognitive sort. Logically handling or reasoningwith informationwill be epistemically
relevant for an agent if the execution of such reasoning gets information for the agent
such that this information is epistemically relevant.

Both the nature of epistemic relevance and the nature of the cognitive epistemic
actions which underpin deductive reasoning could do with clarification and elabo-
ration. We can find both of these with some help from relevance logics (see Mares
2004 for a canonical introduction).

3Assuming logical omniscience for the epistemic agents in one’s model makes perfect sense insofar
as one wants to idealize away from variables.
4The motivation here is similar to that of (Duc 1997). The difference is that Duc has models for
what the agent knows after she has executed some rule of inference or other, whereas here we will
be modelling the properties of the epistemic actions which underpin the execution of such rules.
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That relevance logics provide a logical framework for epistemic relevance and
epistemic actions is at the very least not obvious. Such logics are neither thought of
as particularly epistemic, nor as dynamic (and actions, epistemic or otherwise, are
dynamic if anything is). To see how it is that we might be justified in thinking of
relevance logics as being both, we will skip the detailed nomenclature of the logics’
syntactic/proof theoretic properties andmotivations, and go directly to the semantics.

In relevance logics, a relevance frame F is a pair 〈S, R〉 consisting of a set
x, y, z, . . . ∈ S of points of evaluation, and a ternary relation R on this set. A rele-
vance model M is a pair 〈F,�〉 consisting of a relevance frame F and an evaluation
relation�which holds between the points of evaluation in S and formulas φ,ψ, . . . .

We may now state the evaluation conditions given by relevance logic for the
conditional φ → ψ as follows.

x � φ → ψ iff ∀y, z : Rxyz, if y � φ, then z � ψ. (1)

Equation (1) is still slightly opaque. What are the points of evaluation x, y, z, . . . ,
and what does R mean?

The points of evaluation work just like possible worlds, except that in the present
case they may be both inconsistent and incomplete. It is common practice to speak
of the points of evaluation as information states, since there is no obvious constraint
on a body of information that it be complete or consistent. Making sense of such
information states insofar as we want them to correspond to something in the real
world is the task of Sect. 3.

How to make sense of Rxyz is an infamous issue. We might understand Rxyz
as something like “if you combine the things which are true at x with the things
which are true at y then you get the things which are true at z.” This is a good
start, but does x � φ mean that φ is true at x? It does not, not quite. Given
that inconsistent propositions may hold at points, that is, given that we may have
x � φ ∧ ¬φ, understanding � as “true at” is a little too crude.

Instead, we may understand x � φ as “x carries/stores the information that φ.”
In this case, Rxyz comes out as “if you combine the information carried by/stored
at x with the information which is carried by/stored at y then you get the infor-
mation which is carried by/stored at z.” This is an improvement over a “true of”
understanding, and it puts us in a position to use relevance frames (and their cor-
responding models) in order to understand both epistemic relevance and cognitive
epistemic actions.5

5See Mares (1996) and Restall (1996) for the fine-grained details involved in “informationalising”
the ternary relation R. See also Dunn and Hardegree (2001).



Epistemic Relevance and Epistemic Actions 137

3 Epistemic Relevance and Epistemic Actions

Following Dunn (2015), we will take the partial order of information inclusion,
�, to indicate information relevance.6 In this case, x � y, “the information at x
is included in the information at y,” means that the information at x is relevant to
information at y.

This does not seem to be too much of a stretch. If the information at x is included
in the information at y, then the information at the former seems relevant to the
information at the latter on account of the inclusion itself. The information at y takes
the information at x to be relevant because the information at y just is an informational
extension of the information at x .

The informational relevance indicated by x � y is non-contextual relevance inso-
far as the relevance of x to y does not depend on any further information (or further
informational context, as we might say). Suppose that x � A and y � A, B. In this
case we might have it that x � y.7 However, suppose instead that y � A and z � B.
Is it the case that we might have it that y � z? Not as things stand, which is to say
not without some further informational context.

Such further informational context may be given as follows. Suppose that we
have x � A → B. In the context of x (and given that y � A and z � B as speci-
fied in the paragraph above), it is the case that y � z. This is just to say that if we
take the information in state x together with the information in state y, then these
two information states, when taken together, carry information which is relevant to
the information in state z. We may represent this taking together of, or combina-
tion of, two information states with a binary composition operation on information
states, •. Given that x � A → B, y � A and z � B, we have it that x • y � z. In
other words, given the information carried by states x and y, their combination is
relevant to the information carried by state z. Moreover, the very act of combining
x and y is itself informationally relevant to z. This is because it is the operation of
combining x and y which bring the information at both states together. Sans such
an operation, the information at x and y are separate informational entities, neither
of which, either considered independently or non-contextually, are informationally
relevant to z.

Wemay nowgive amore thoroughgoing explanation of Rxyz.Wemay understand
Rxyz as x • y � z. In this case, our relevance frame becomes an information frame
I, which is a triple 〈S,�, •〉. Our relevance model becomes an information model
MI . Given this much, (1) comes out as:

6The role of a partial or pre-order in the Routley–Meyer semantics for relevance logic is well-known
and explored in some detail in (Bimbó and Dunn 2008, Chap.2).
7This is not guaranteed, since there is no sensible requirement on an epistemic state that the state
in question be itself epistemically relevant to another epistemic state that subsumes the information
carried by the original state. For example, my knowing that grass is green at some point in time does
not have to be an epistemically relevant episode to every future epistemic state or action involving
the information that grass is green. That is, our epistemic states are not totally ordered.
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x � φ → ψ iff ∀y, z : x • y � z, if y � φ, then z � ψ. (2)

With the full informational relevance interpretation of the relevance semantic condi-
tions for the conditional in hand, we are in a position to see how it is that relevance
frames have a role to play with regard to understanding our target phenomena—
epistemic relevance and cognitive epistemic actions.

We stated above that making sense of the information states insofar as we want
them to correspond to something in the real world was the present task. By making
such sense, we will be on our way to addressing the issue posed at the end of the
previous paragraph. Here is the suggestion:

We may understand the information states x, y, z, . . . to be states of explicit knowl-
edge/belief of an epistemic agent, in other words, as explicit epistemic states.

By understanding the information states to correspond to explicit epistemic states
of an agent, we have a direct link between information relevance, on the one hand, and
our target phenomena of epistemic relevance, on the other. Suppose again that x � A
and y � A ∧ B. Now the former states that some agent α knows/believes explicitly
that A, with the latter now stating that α knows/believes explicitly that A ∧ B.8 In
this case, x � y states that the agent’s explicit epistemic state x is non-contextually
epistemically relevant to their explicit epistemic state y.9 But it is with contextual
epistemic relevance that things get interesting.

Suppose that α is in the states x � A → B, and y � A. This alone is insufficient
for α to be in the state z such that z � B. For α to be in a state z such that z � B, α
needs to combine the information in her states x and y. This is just to say that having
explicit knowledge/belief of/in premises is insufficient for explicit knowledge/belief
of/in conclusions. In order for α to get to z, she has to think about things in the
right way. To think about things in the right way just is to combine the information
encoded by the premises in such a manner that the result of this combination will
make the information encoded by the conclusion explicit to α. The act of combining
explicit epistemic states is just that, an act, or action. And it is such epistemic actions
that underpin logical information handling, or the process of deductive reasoning
itself.

At the end of the introduction we said that we were working towards saying
something philosophically substantial about the nature of these epistemic actions.
Information frames allow us to now do so.

x • y is a representation of the very epistemic action that we are looking for. Given
that x � A → B and y � A, then given that z � B, it will be the case that x • y � z.
Given our understanding of information states as explicit epistemic states, and of �
as epistemic relevance, and of • as the epistemic action of combining such states,
x • y � z says something significant. It says that α’s being in the explicit epistemic

8Of course, we could write “α knows/believes explicitly that A” as x �α A or some such, but
typographical rigour has a tendency to get in the way of readability.
9As well might be the case, given that both x and y carry A.
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states x and y, and the execution by α of the epistemic action of combining these
states, are both epistemically relevant for α’s being in the epistemic state z.10

This is exactly what we are after. Given that we have a sensible framework for
representing the cognitive epistemic actions which underpin deductive reasoning, the
task now is to use this framework to say something philosophically substantial about
such actions. In particular, what properties might such epistemic actions possess
which preserve epistemic relevance? In otherwords, what propertiesmight an agent’s
cognitive epistemic actions possess such that the properties guarantee that the agent
will arrive in the correct epistemic state?

4 Preserving Epistemic Relevance

The properties that an agent’s cognitive epistemic actions will need to possess such
that these properties guarantee that the agent will arrive in the correct epistemic state
will vary. Their variance will depend upon the logical form of the information that
is being handled by the epistemic action itself. We can capture the nature of these
form-contingent action properties with structural rules.

A structural rule tells us what structural changes may be made to the body of
information being processed, whilst preserving the given output of that same act of
processing. Let’s start with four basic structural rules, Association, Commutation,
Contraction and Weakening. Where =⇒ is if-then in the metalanguage,

w • (x • y) � z ⇐⇒ (w • x) • y � z (Association)

x • y � z =⇒ y • x � z (Commutation)

x • x � x (Contraction)

x • y � z =⇒ x � z (Weakening)

Association tells us that, given a sequence of information states, the order of pairwise
composition within that sequence makes no difference to informational output.11

Commutation tells us that given a pairwise composition of information states, the
order of the information states in the pair being composed makes no difference to

10Although cognitive epistemic actions may, and often do, involve the combination more that two
premises, the treatment of the two-premise case is privileged on several fronts. Firstly, it is the
simplest possible case. Given this, any model of cognitive epistemic actions needs to be shown to
handle such cases before being applied to more complex cases. Secondly, it seems to be at least
plausible that themajority of deductive episodes do proceed via two-premise combinations.Witness
the standard natural deduction rules and classical syllogisms as examples. A third reason is simply
that the two-premise case is hard enough.
11Note thatAssociation is givenhere in its readable, abbreviated form.The full formofAssociation is
∃u((x • y � u) ∧ (w • u � z)) ⇐⇒ ∃t ((w • x � t) ∧ (t • y � z)). This makes sense if you think
about it. In the abbreviated form above, we are merely cutting out explicit reference to the states
u and t , which are the results of composing w and x on the one hand, and x and y on the other,
respectively.



140 S. Sequoiah-Grayson

informational output. Contraction tells us that the composition of two information
states that carry the same informational payloadoutputs nomore information than that
carried by one of the states.Weakening tells us that we can get the same informational
output if we weaken the epistemically relevant information states.

Given that we are understanding the information states as explicit epistemic states,
the composition operation as the epistemic action of combining such states, and the
partial order of informational inclusion as epistemic relevance, then the epistemic
action contexts in which the structural rules hold or fail become salient. They become
salient because they specify the properties that said epistemic actions need to possess
with regard to guaranteeing epistemic success.

We may begin by considering cases at the level of abstraction where the agent’s
epistemic states carry information of either atomic or conditional form. In this case,
α’s explicit epistemic state x may be such that either x � p, or x � p → q. In
other words, α knows/believes explicitly some information which may be of either
two forms. In this case, we have three possible scenarios given α’s epistemic action
x • y, or, with a bit of a push, three types of epistemic actions. Both epistemic
states may carry atomic information, or one epistemic state may carry information
of atomic form and the other of conditional form, or both epistemic states may
carry information of conditional form. Following Dunn (2015), we will call the first
scenario the Data Combining (DC) interpretation, the second scenario the Program
Applied to Data (PD) interpretation, and the third scenario the Program Combining
(PC) interpretation.12 So we have things as follows (reading “ : ” as such that, and
“z � p, q” as shorthand for “z � p and z � q”).

If x � p and y � q, then x • y � z : z � p, q (DC)

If x � p → q and y � p, then x • y � z : z � q (PD)

If x � p → q and y � q → r, then x • y � z : z � p → r (PC)

The consequences for the structural rules given these three epistemic action scenarios
are interesting insofar as we are using the structural rules to specify the epistemically
salient properties of the epistemic actions themselves.

Let’s start with Association.

w • (x • y) � z ⇐⇒ (w • x) • y � z (Association)

Association fails for some epistemic actions in PD scenarios. Consider the following
explicit epistemic states w, x, y, z of α.

12Dunn uses “data” to refer to static information p, q, etc., and “programs” to refer to dynamic
information, or conditionals, p → q, etc. As we will see in Sect. 5, agents may treat programs as
data.
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w � q → r (3)

x � p

y � p → q

z � q

In its left to right hand direction, Association fails for (3). This is just to say that
although the epistemic action w • (x • y) is epistemically relevant for α with respect
to α’s being in state z in a PD type epistemic action, that is to say, although we
have it that w • (x • y) � z, we do not have it that (w • x) • y � z. Composing the
information carried by w and x (q → r and p respectively) with PD type epistemic
actions is an illegitimate epistemic action insofar as it will not get the agent anywhere,
epistemically speaking. The result will not be anything whichmay be composed with
the information carried by the α’s state y (p → q) such that is may be used to get α
into state z. Via similar reasoning, we can see that Association will fail in its right
to left hand direction where we have it that w � p → q, x � p, y � q → r and
z � r .13

However, there is no failure for Association for epistemic actions involving PC
scenarios. Consider any three epistemic states w, x , and y, such that each state
carries information of composable conditional form. In this case, any output state
z such that the epistemic action is epistemically relevant for α with respect to z
(i.e., (w • x) • y � z) will be preserved under Association. Consider the following
explicit epistemic states of α.

w � p → q (4)

x � q → r

y � r → s

z � p → s

Association holds for (4), as it will for any PC scenario where the information states
carry information with composable conditional form.14

In contrast with Association, however, Commutation holds for epistemic actions
consisting of PD scenarios, but fails for those consisting of PC scenarios.

x • y � z =⇒ y • x � z (Commutation)

13There is a lot to say here about dynamic negation and negative information. One way to go
is to say that there is a null object 0 such that x � 0 for no x . The way is then clear to define a
dynamic negation A0 in terms of A → 0, which will type information of the type that can never
be combined with information of type A. Classical and other static negations rule out truth, whilst
dynamic negations rule out certain operations or combinatorial procedures. See Dunn (1993, 1996)
and Sequoiah-Grayson (2009).
14Since, as the category theory folks are fond of saying, “Arrows associate!”.
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Consider again the epistemic states specified by (3). A thoroughgoing application of
Commutation to (3) would give us the following.

w • (x • y) � z =⇒ (y • x) • w � z (5)

Given the epistemic states of α specified by (3) and (5) holds (as is checked eas-
ily). In fact, Commutation will hold for any PD type collection of epistemic states
whatsoever. This is because for any arbitrary pairwise composition of two pieces
of information such that one piece is the input of the other piece, the composition
will be order invariant. This is just a slick way of saying that for any two pieces of
information such that one is of form A and the other is of form A → B, the order of
their composition is irrelevant insofar as deriving B is concerned, and similarly of
course for the order of the epistemic states being composed by the relevant epistemic
action.

However, Commutation fails for epistemic actions consisting of PC scenarios.
Consider a simplified version of the scenario specified by (6).

x � p → q (6)

y � q → r

z � p → r

We have it that x • y � z. If Commutation held here, then we should have it that
y • x � z, but this is not the case. This latter epistemic action is not epistemically
relevant for α’s being in the epistemic state z at all (since (q → r) ◦ (p → q) is the
wrong order insofar as combining dynamic information is concerned).

The following related example emphasizes this point.

x � p → q (7)

y � q → p

z � p → p

With (7), we have it that x • y � z also. But we do not have it that y • x � z. y • x
results in a state w � q → q, and p → p = q → q!15

Consider Contraction.
x • x � x (Contraction)

Contraction fails for epistemic actions of PC types in general, although it does hold
for some special restricted cases. These cases are those where the antecedent and
consequent of the relevant conditional encode the same information, as carried by
the following explicit epistemic state.

15Although both formulas are classically (and non-classically in certain logics) equivalent, recall
that our epistemic agent α is not logically omniscient.



Epistemic Relevance and Epistemic Actions 143

x � p → p (8)

Contraction is preserved by epistemic actions that combine information of the type
specified by (8), since the epistemic action in question is epistemically relevant to
α’s knowing explicitly that p → p. Of course the epistemic action might well be
redundant, but that is neither here nor there.

However, consider the following explicit epistemic state.

x � p → q (9)

Contraction fails for epistemic actions of the sort composed with epistemic states
of the type specified by (9). Here, the situation is not that the epistemic action in
question is redundant, but that it is epistemically irrelevant. The PC type epistemic
action (p → q) ◦ (p → q) does not result in p → q.

Contraction does not apply at all to PD type epistemic actions, on account of the
epistemic states composing contracted epistemic actions carrying the same explicit
informational payload (by definition), whilst the epistemic states composing PD type
epistemic actions must be of different types (again by definition).

Consider Weakening.
x • y � z =⇒ x � z (Weakening)

Weakening fails outrightly for both PD and PC scenarios. To see this, consider
the following PD scenario.

x � p → q (10)

y � p

z � q

Given the explicit epistemic states specified by (10), we have it that x • y � z. α’s
epistemic action combining α’s explicit knowledge/belief of p → q and p is, along
with the relevant epistemic states themselves (x and y) epistemically relevant to α’s
knowing explicitly that q. In other words, it is epistemically relevant to α being in the
epistemic state z. However, x � z states that α’s being in the epistemic state x , that
is, their explicit knowledge that p → q, is non-contextually epistemically relevant
to their being in the epistemic state z, that is, their explicit knowledge that q. This it
most certainly is not.

Now consider again the PC type epistemic actions specified by (6).

x � p → q (6)

y � q → r

z � p → r

Reasoning directly analogous to that entertained with respect to (10) demonstrates
that Weakening fails for PC scenarios such as (6) also.
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The failure of Weakening and Contraction for epistemic action scenarios is
not entirely surprising insofar as brute considerations with regard to informational
resources are concerned. The curious behaviour of Association and Commutation in
our epistemic context is however, rather surprising indeed. There is, we should hope,
a great deal more to say here with respect to structural rules, epistemic relevance,
and epistemic actions.

5 Treating Programs as Data

But what of DC scenarios? When α is reasoning from a state x such that x � p → q
(or any other piece of conditional information), it does not have to be the case that
α’s epistemic action is an attempt to combine this state with one carrying input-
information, y � p for example. Neither must it be the case that α is attempting to
merge the information carried by this state with another state carrying information
in conditional form as with scenario (6). This is just to say that α does not always
have to treat dynamic information dynamically, so to speak. Instead, α may treat a
program as data of a complex, non-atomic sort.

This will be the situation with many of α’s epistemic actions. Consider those
actions underpinning the merging of p → q with (p → q) → r for example. In the
context of this epistemic action, the dynamic information p → q is being treated byα

as static data, input into the dynamic (p → q) → r . DC type epistemic actions build
on this idea. Suppose thatα is in the explicit epistemic state x � ((p → q) ∧ r) → s.
Suppose also that α enters into two distinct sequences of reasoning, one of which
brings α to state y such that y � p → q, and another of which brings α to a state
z such that z � r . In this case, for α to get to state w such that w � (p → q) ∧ r ,
α will need to combine her states y and z in such a way that y • z � w, such that
w � p → q, r .

Importantly however, the “way” in which α combines y and z will be a way that
treats the information carried by y as data to be combined with the data carried by
z. This ensures that the result of the epistemic action y • z is w such that w � p →
q, r , as opposed to some failed attempt to input the information carried by z to the
information carried by y. In other words, α knows that the epistemic action that she
is executing with y • z is a DC scenario and not a PD one. A PD type epistemic
action will in this case not be epistemically relevant to w at all, hence we would not
have it that y • z � w.

The exact status of Boolean connectives ∧,∨, is something of a delicate matter.
Although an agent may be reasoning with complex bodies of information which
contain Boolean connectives, it is unlikely that the agent’s epistemic states inherit
all of the properties of these connectives. Consider the following under our epistemic
state interpretation.

x � p ∧ q iff x � p and x � q. (11)

x � p ∨ q iff x � p or x � q. (12)
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In its left to right direction, (11) is true straightforwardly. If α knows/believes explic-
itly that p ∧ q, then α knows/believes explicitly that p and knows/believes explicitly
that q. The right to left hand direction is slightly trickier however. Equation (11)
is true in its right to left hand direction, given the restricted case that it specifies.
This is a consequence of it being the case that if α is in an explicit epistemic state x ,
which carries the information that p, and that very same explicit epistemic state x
of α’s carries the information that q, then x will carry p ∧ q. But this is not true of
explicit epistemic states in general. It can be the case that α knows/believes explicitly
that p, and that α knows/believes explicitly that q, without it being the case that α

knows/believes explicitly that p ∧ q. Suppose that p and q are carried by explicit,
but distinct epistemic states of α (x and y say). In this case there is no guarantee that
α will have, or even so much as ever get to, some explicit epistemic state z � p ∧ q.
For α to reach such a state z, α needs to execute a DC type epistemic action such
that x • y � z.16

Equation (12) is even less well behaved in a robustly epistemic context than is
(11). In its right to left direction, (12) is well behaved epistemically. In its left to
right direction however, (12) fails for even the restricted case that it captures. It
might well be true that α knows/believes explicitly that p ∨ q, that is, α may be in
state x � p ∨ q, without it being the case that α knows/believes explicitly that p, or
knows/believes explicitly that q. Consider an example fromDunn (2015), where you
remember or believe that you left your keys either on the upstairs dresser, or on the
basement workbench.17 You could well be in the explicit epistemic state, without it
being in that case that either of the disjuncts (considered independently) fall within
the scope of that same epistemic state. Interestingly, there does not seem to be any
obvious cognitive, or a priori executable epistemic action, DC type or otherwise,
which would bring α to p or to q in this case. Rather, it would be an observation-type
epistemic action.

This is to only touch on the issue of the DC type epistemic actions with regard to
Boolean connectives. That there is more to say is obvious, but what to say is less so.

6 Conclusion

We have made a distinction between different types of omniscience, as well as differ-
ent types of epistemic actions. Hopefully, a strong case has been made for a central
role of such actions when it comes to a priori reasoning. Hopefully, a strong case
has been made for the use of the structural rule architecture of relevance and related
logics when it comes to modeling the properties of such actions for non-ideal, or
non-logically omniscient agents also.

16For an investigation into the epistemic role of explicit conjunctions, especially with respect to the
closure axiom and related modal-epistemic phenomena, see Sequoiah-Grayson (2013).
17Although Dunn’s remarks are not framed in explicitly epistemic terms, all of his examples con-
cerning disjunction are epistemic/doxastic in nature. This is presumably no mere coincidence!
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There has been a slow, but reassuringly steady interest in the applicability of
relevant and related substructural logics to epistemic phenomena. See for example
Majer and Pelis (2009) and their followup paper Bilkova et al. (2010). Relatedly,
Sedlar (2012) makes explicit connections between universal modal operators and
the ternary relation R. Given the role that such modal operators have played in
traditional epistemic logic, the future along this route is promising. Relatedly, Sedlar
(2014) and Roy and Hjortland (2014) explore epistemicised substructural modal
logics to explore various epistemic phenomena of the epistemic action and epistemic
update variety. There is hopefully much more to come.18
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Comparing Contents with Information

Ross T. Brady

Abstract I first introduced my notion of logical content in 1988 and 1989. This
was a broad concept providing the backbone for a style of algebraic semantics,
called “content semantics”, and covering a wide range of logics from the weak
relevant logic BBQ right through to the classical predicate calculus. This concept
was subsequently specialized in 1996, in such a way as to help conceptualize a
particular logic DJd. This specialized concept was extended to quantifiers in 2006,
and was modified, jointly with Meinander in 2013, to form the logic MCQ. In this
paper, we contend that contents are best represented as analytic closures, with the
appropriate entailments captured by this logic MC of meaning containment. On the
other hand, the term “information” has been widely used in logical work, usually as
a means of underpinning or understanding a semantics of a logic or logics. Floridi
in his book of 2011, contends: “semantic information is well-formed, meaningful
and truthful data”. We pick up on this, by essentially adding the concept truth to
that of contents to form information, appropriately chosen for its logical usage. We
also divide information into two types: prime and non-prime information, and also
determine their respective impacts on the proof theory and semantics of logical
systems, with special interest in those of the relevant logics. We especially refer to
the works of Carnap, Dunn and his former student, Mares.

Keywords Analytic closure · Contents · Information · Priming property · Veridi-
cality thesis

1 Introduction

We propose to compare the two semantic concepts: contents and information, in spe-
cial recognition of the work of Prof. Michael Dunn. I am most pleased to be asked
to write such a contribution in honour of a logician I have always admired and with
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whom I’ve had a close friendship and academic association over many years. His
interest in the study of the concept of information stems from his lifetime’s work in
relevant logics and computation.1 So, we will focus on the use of the concepts, con-
tents and information, especially in the study of relevant logics, with some mention
of computer databases.

Nevertheless, we will take as our starting point, Carnap’s introduction of the
two concepts from a classical perspective, before moving on to the two concepts
separately, covering a wider range of logics. For contents, we focus on the author’s
work on logical contents within a content semantics, first introduced in Brady (1988,
1989), for relevant and other logics, and subsequently specialized in Brady (1996,
2006), in such a way as to help conceptualize a particular logic DJd (see Sect. 3 for
its axiomatization). For information, though widely used as a means of underpinning
or understanding a semantics of a logic or logics, we focus on the works of Dunn
and his former student Mares, especially, in relation to the Routley–Meyer style of
semantics of relevant logics, but also in relation to their natural deduction systems.

We then single out what appears to be the distinguishing differential features
between contents and information. We will see that contents do not need to embody
truth; they are just the static semantic content of a sentence or set of sentences. In
comparison, we will argue that information does presuppose the truth of the sentence
or sentences involved, this issue being discussed in Dunn (2013) with reference
to Floridi (2011), the latter claiming that “semantic information is well-formed,
meaningful and truthful data”.

Further, information is very often studied in the context of informational inference
where information is expected to be able to flow from one piece of information to
another. In such a case, the truth is “assumed truth”, assumed for the sake of a logical
deduction formalizing such a flow of information. This will then relate information,
not only to truth-theoretic semantics such as the Routley–Meyer semantics, but also
to natural deduction systems, as can be seen in Mares (2010). However, there are
two strands of information, depending on whether the Priming Property (if A ∨ B is
included, then so is either A or B) is satisfied or not, a point made by Dunn (2015).
Contents, on the other hand, relate closely to content semantics, that is an algebraic
style of semantics, which in turn relates closely to Hilbert-style axiomatization.

So, we will finally distinguish contents, which are indifferent to truth and falsity,
information with truth, whether satisfying the Priming Property or not, and informa-
tion with assumed truth, for the purpose of capturing informational inference. We
will see that information which includes truth is most likely to satisfy priming, whilst
information including assumed truth may well not be prime. However, we stop short
at taking the further step of quantifying information by talking about its amount in
mathematical terms, as introduced in Carnap and Bar-Hillel (1964).

1I should have said ‘relevance logic’, using the American terminology, especially, in the light of
Dunn’s recent work “The relevance of relevance to relevance logic” (2015). However, I will stick
to the current Australian terminology, in keeping with my earlier work in this area.
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2 Carnap on Contents and Information

In Sect. 18 of his book (1942), Carnap introduces an L-state and an L-range thus:

A possible state of affairs of all objects dealt with in a system S with respect to all properties
and relations dealt with in S is called an L-state with respect to S. A sentence or sentential
class designating an L-state is called a state-description. A given L-state leaves no question
in S open; every sentence in S either admits or excludes that L-state. The class of the L-states
admitted by A is called the L-range of A (LrA). Two postulates for L-ranges are laid down
(P1 and 2). L-states are propositions.

[We replace his German letter by A, as this ismore customary for ameta-linguistic
variable over sentences.]

S is a semantical system (obviously classical), and an L-property is one that
is logical, as opposed to factual. As we will see, L-ranges are introduced prior to
L-contents as their definition is more immediate. The two postulates for L-ranges
are:

P1. If A L-implies B (in S), then LrA ⊆ LrB.
P2. If LrA ⊆ LrB (in S), then A L-implies B.

Just considering sentential logic with the truth-table semantics, an L-state is given
by a row of a truth-table and an L-range of the sentence A is the class of rows of the
truth-table with A true. So, given P1 and P2, A ⊃ B is a tautology iff the set of rows
of the truth-table that make A true will also make B true, since Carnap’s “L-implies”
is a material implication tautology.

Carnap then goes on to introduce an L-content, LcA of a sentence A, as a concept
that satisfies the following postulates C1 and C2:

C1. If A L-implies B (in S), then LcB ⊆ LcA.
C2. If LcB ⊆ LcA (in S), then A L-implies B.

Thus, the concept of an L-content is the dual of that of an L-range, where the
content of the antecedent contains more than that of the consequent, rather than the
converse as for ranges, assuming that A and B are not logically equivalent. In order
to make this work for L-states, and hence, rows of a truth-table, Carnap, in Sect. 23
of (1942), goes on to properly define an L-content of A as the class of L-states that
make A false. This L-content became, in the sentential logic, the class of rows of
the truth-table making A false. Further, obviously, A ⊃ B is a tautology iff the set
of rows of the truth-table that make B false will also make A false, i.e., iff the set
of rows of the truth-table that make A true will also make B true, since the logic is
classical. One can also see from P1, P2, C1 and C2 that L-contents are conjunctive
whilst L-ranges are disjunctive, in the sense that the following hold: LcA&B ⊇ LcA,
LcA&B ⊇ LcB, LrA ∨ B ⊇ LrA and LrA ∨ B ⊇ LrB. More inclusive contents are
built up by conjunction of formulae, whilst more inclusive ranges are built up by
disjunction.
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Two key properties of L-contents that follow from the classicality of the logic are:

C3. LcB ⊆ LcA&∼A, for every B.
C4. LcA ∨ ∼A ⊆ LcB, for every B.

Here, C3 says that the content LcA&∼A is the universal set or, sententially, the
set of all rows of the truth table, whilst C4 says that LcA ∨ ∼A is the null set, or
the set of no rows. That is, the content of a contradiction consists of every sentence,
whilst the content of a tautology consists of no sentence.

Carnap and Bar-Hillel (1964), do introduce information and its amount but, as
stated above, we will not be covering the amount. They first introduce information as
satisfying a certain basic requirement: In(A) includes In(B) iff A L-implies B, where
In(A) is the information carried by the sentence A. Thus, A ⊃ B is a tautology iff
In(B) ⊆ In(A), which indeed takes the same shape as that for the properties, C1 and
C2, for contents. They then introduce contents, defined as above, as the preferred of
three given explications of information, all three of which satisfy this requirement.
So, contents have a specific definition in terms of L-states, whilst information is a
broader concept that just satisfies this basic requirement.

However, it is worth noting, for future reference, what the other two explications
of information are. The first one, In1(A), is defined as the class of all sentences which
are L-implied by A and not L-true. The second, In2(A), is the class of all sentences
which are L-implied by A. Note that the firstmaintains some negativitywhich is char-
acteristic of Carnap’s definition of contents, whilst the second is the purely positive
tautological implication, which is essentially strict implication when incorporating
the necessity of the tautology. Note also that In2 shows that the additional conjunct
‘and not L-true’ is redundant, this being because every A L-implies all L-truths.

3 Logical Contents Within a Content Semantics

An algebraic-style semantics, called content semantics, was introduced in Brady
(1988) for the weak quantified relevant logics BBQ and BBdQ (see below for BB
and BBd), and further in (1989) covering a wide range of quantified relevant logics
and other logics extending BBQ and BBdQ, right up to the classical predicate logic.
As in semantics generally, the concepts are introduced in a structure, satisfying cer-
tain semantic postulates. Contents, in particular, would then be anything satisfying
the postulates within the semantics and it is then left open to come to some under-
standing as to what they might be, especially in this case where a large range of
logics are covered. We are able to show, however, that the correlate of Carnap and
Bar-Hillel’s property for information, viz. I (A → B) ∈ T iff I (A) ≤ I (B), holds
generally for contents, where I is an interpretation within a model structure of the
content semantics taking formulae A to their contents, T is the set of true contents
and ‘≤’ satisfies enough properties for it to be construed as a containment, the ‘≤’
only being used due to standard algebraic practice. Indeed, the ‘≤’ would have been
more appropriately symbolized as a ‘≥’ or a ‘⊇’.
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The problem here is that the semantics is too broad to capture contents with an
ideal level of specification; the logic needs to be more specialized. Indeed, Routley,
on p. 935 in Sect. 11 of (1980), gives the following reasonable criterion for contents:

A condition of adequacy on any account of logical content, or information, is that it leads
to the results that A entails B iff (the meaning of) B is included in the meaning of A, and
(the meaning of) B is included in the meaning of A iff the content of A includes the content
of B.

This would require a logic of entailment which captures the concept of meaning
containment, which, as the work of Brady (1996, 2006, 2013) (with Meinander)
shows, can be well determined as a specific logic MC, after some tweaking in (2013)
of the earlier candidate DJd of (1996, 2006). (The tweaking consisted of dropping
the distribution axiom, but leaving it in rule-form via the use of the strengthened
meta-rule MR1 below.) Stronger systems with an axiom such as contraction, (A →
.A → B) → .A → B, would not be appropriate here, as the meaning of A → B
being contained in that of A is hard to comprehend. This is even more so when it
follows that both As contract to a single A, such contraction being more appropriate
for truth-preservation than for MC.

We set out the logicMCas follows, focusing on the sentential logic to keepmatters
simple, and using the bracketing conventions of Anderson and Belnap (1975).
MC.
Primitives: ∼,&,∨,→.
Axioms:

1. A → A
2. A&B → A
3. A&B → B
4. (A → B)&(A → C) → .A → B&C
5. A → A ∨ B
6. B → A ∨ B
7. (A → C)&(B → C) → .A ∨ B → C
8. ∼∼A → A
9. A → ∼B → .B → ∼A
10. (A → B)&(B → C) → .A → C

Rules:

1. A, A → B ⇒ B
2. A, B ⇒ A&B
3. A → B, C → D ⇒ B → C → .A → D

Meta-rule:

1. If A, B ⇒ C , then D ∨ A, D ∨ B ⇒ D ∨ C .

We add in the logics DJd, BB and BBd, mentioned earlier.
DJd = MC + the distribution axiom:

11. A&(B ∨ C) → (A&B) ∨ (A&C)
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BB = DJd − A4 − A7 − A9 − A10 − MR1 + the following 3 rules:

4. A → B, A → C ⇒ A → B&C
5. A → C, B → C ⇒ A ∨ B → C
6. A → ∼B ⇒ B → ∼A

BBd = BB + MR1.
The content semantics for the logic MC is set out as follows, as in Brady (2006),

but taking into account the tweaking of the logic occurring in (2013). A content model
structure (c.m.s.) consists of the following 5 concepts: T,C,∪, ∗, c, where C is a set
of sets (called contents), T �= ∅, T ⊆ C (the non-empty set of all true contents), ∪ is
a 2-place function on C (the closed union of contents), ∗ is a 1-place function on C
(the ∗-function on contents), and c is a 1-place function from containment sentences,
c1 ⊇ c2 between contents c1 and c2 of C , to members of C , subject to the semantic
postulates p1–p15, below.2 The concepts∩,= and⊇, are taken from the background
set theory, ∩ being a 2-place function on C (the intersection of contents), = being
a 2-place relation on C (identity), and ⊇ being a 2-place relation on C (content
containment).
The semantic postulates are:

p1. c1 ∪ c2 ⊇ c1, c1 ∪ c2 ⊇ c2
p2. If c1 ⊇ c2 and c1 ⊇ c3, then c1 ⊇ c2 ∪ c3.
p3. c1 ⊇ c1 ∩ c2, c2 ⊇ c1 ∩ c2
p4. If c1 ⊇ c3 and c2 ⊇ c3, then c1 ∩ c2 ⊇ c3.
p5. c∗∗

1 = c1
p6. If c1 ⊇ c2, then c∗

2 ⊇ c∗
1.

p7. If c1 ⊇ c2 and c1 ∈ T , then c2 ∈ T .
p8. If c1 ∈ T and c2 ∈ T , then c1 ∪ c2 ∈ T .
p9. If c1 ∩ c2 ∈ T , then c1 ∈ T or c2 ∈ T .
p10. c(c1 ⊇ c2) ∪ c(c2 ⊇ c3) ⊇ c(c1 ⊇ c3)
p11. c(c1 ⊇ c2) ∪ c(c1 ⊇ c3) ⊇ c(c1 ⊇ c2 ∪ c3)
p12. c(c1 ⊇ c3) ∪ c(c2 ⊇ c3) ⊇ c(c1 ∩ c2 ⊇ c3)
p13. c(c1 ⊇ c2) ⊇ c(c∗

2 ⊇ c∗
1)

p14. c(c1 ⊇ c2) ∈ T iff c1 ⊇ c2.
p15. If c1 ⊇ c2, then c(c3 ⊇ c1) ⊇ c(c3 ⊇ c2) and c(c2 ⊇ c3) ⊇ c(c1 ⊇ c3).

An interpretation I on a c.m.s. is an assignment, to each sentential variable, of an
element of C . An interpretation I is extended to all formulae, inductively as follows:

(i) I (∼A) = I (A)∗
(ii) I (A&B) = I (A) ∪ I (B)
(iii) I (A ∨ B) = I (A) ∩ I (B)
(iv) I (A → B) = c(I (A) ⊇ I (B))

2Note that the bar over the ∪, used in previous work to distinguish the closed union from the union,
has been removed for convenience in this account. However, I do like the representation of closed
union as c(c1 ∪ c2) in Mares (2004), where ∪ is the simple set-theoretic union.
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A formula A is true under an interpretation I on a c.m.s. M iff I (A) ∈ T .
A formula A is valid in a c.m.s. M iff A is true under all interpretations I on M .
A formula A is valid in the content semantics iff A is valid in all c.m.s.

Soundness (if A is a theorem of MC then A is valid in the content semantics)
follows readily and completeness (if A is valid in the content semantics then A
is a theorem of MC) follows by the usual Lindenbaum method for algebraic-style
semantics, but here there is a slight difference. In constructing the canonical models,
instead of taking equivalence classes of formulae as the contents, we put the content
[ A] of A as { C : A → C ∈ T ′ }, where T ′ is constructed as a prime extension of
the set of theorems which does not include a non-theorem B. This essentially means
that these canonical contents are closed under entailment, i.e., they are analytic
closures of the sentence (or sentences) involved, since the set T of theorems is
already prime, due to the logic MC being metacomplete.3 Since entailments here
are understood as meaning containments, closure under entailment is closure under
meaning containment andhence closure under the analysis of themeanings ofwords.4

Whilst T ′ satisfies primeness to verify postulate p9, this extension of the set of
theorems to T ′ is only neededwhen extending or applying the logic to a systemwhich
is not prime, e.g., a system that is notmetacomplete. This answers the question ofwhat
contents are, in more specific terms than just the satisfaction of the correspondent,
I (A → B) ∈ T iff I (A) ⊇ I (B), of Carnap and Bar-Hillel’s general property for
information, which can be easily seen to hold, due to semantic postulate p14. Brady
(2006) also introduces the dual concept of ranges.

To finish, we need to compare Carnap’s definition of content with this definition.
Before we do, we note that this definition turns out to be logically similar to Car-
nap and Bar-Hillel’s second explication of information, In2(A), as the class of all
sentences which are L-implied by A, or strictly implied by A. However, Routley in
Sect. 11 of (1980) is critical of the use of strict implication here, as seen from Car-
nap’s C3 and C4, which says that “some assertions, namely necessarily true ones,
have no content, whereas others, the negations of necessary assertions, have total
content.” Routley contends that the transmission of necessary truths does send some
information, e.g., as occurs in logic text-books. Routley further adds “despite the
Carnap-Bar-Hillel strict theory of information, contradictions are commonly not so
vastly informative.” In particular, a contradiction A&∼A should not inform us about
a totally irrelevant sentence B, nor such a B inform us about A ∨ ∼A. Floridi (2011),
also makes a similar point in response to Routley’s concern, which he calls the Bar-
Hillel CarnapParadox, but takes it further by giving the information of a contradiction
a measure of 0, as with tautologies. The problem lies in the choice of logic as these
problems disappear when the (classical) logic is replaced by a good entailment logic
like MC, which is a weak relevant logic. Such a logic does not include A →B∨∼B

3For the definition of metacompleteness and the proof of metacompleteness of MC, see Slaney
(1984, 1987) and Sect. 4.2 of Brady (2006), noting that the dropping of the distribution axiom and
the retaining of its rule-form to obtain MC from DJd has little effect on the proof.
4For a fuller description of analytic closure, see Sect. 1.5 of Brady (2006).
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and A&∼A → B as theorems and so Carnap’s C3 and C4 above are not derivable.
Indeed, Routley (1980) lists the following desirable principles.

Every formula has some content; thus every tautology has some content.
No formula has total content; so no contradiction has total content.
If A and B are disjoint formulae, then they have distinct [non-inclusive] contents. In partic-
ular, then, any two tautologies with distinct variables have distinct contents, and similarly
[for] distinct contradictions.

These principles are appropriate for relevant logics, given the shape of the
Routley–Meyer semantics where tautologies can be falsified in a world and con-
tradictions can be true in a world. Indeed, Routley takes this further on p. 936 in
Sect. 11 of (1980), where he defines the content c(A) as { a : A does not hold in a },
where a is a world of a Routley–Meyer semantics, called there a “set-up.”

So,we are leftwith comparing contents as analytic closures not onlywithCarnap’s
class of L-states that make A false, but nowwith Routley’s definition using worlds of
a Routley–Meyer semantics. However, the problemwith Carnap’s definition is that it
still leads to C3 andC4 being derivable, which is subject to Routley’s above concerns.
And, this applies to all three of Carnap and Bar-Hillel’s explications of information,
as they all satisfy C3 andC4.Aswith Carnap’s definition though, Routley’s definition
of the content of A as the set of worlds in which A is false is still oddly negative. One
is still determining a content of a sentence by where it fails rather than where it holds.
However, Routley’s definition and analytic closure have the same key property for
contents, for relevant logics like DJd which include the distribution axiom and the
disjunctive meta-rule, as can be seen from the following four equivalences.5

(1) { C : A → C is provable } ⊇ { C : B → C is provable }. (using analytic closure)
(2) A → B is provable.
(3) { a : I (A, a) = T } ⊆ { a : I (B, a) = T }, for all interpretations I , for all

Routley–Meyer reduced model structures.6 (This requires soundness and com-
pleteness.)

(4) { a : I (A, a) = F } ⊇ { a : I (B, a) = F }, for all I , for all reduced model struc-
tures. (using Routley’s definition)

So, analytic closure is the last content concept standing, but this definition does
make sense, especially when the entailment logic is a logic of meaning containment,
which is appropriate to the notion of entailment, and when contents are but meanings
in a logical context. (See Routley’s above condition of adequacy for contents.) Thus,
we use the term ‘logical content’. And, meanings can be understood in accordance
with the ‘meaning as use’ approach, which translates into entailments in a deductive
setting, as in our definition of contents.

5The following disjunctive meta-rule suffices here: If A ⇒ B then C ∨ A ⇒ C ∨ B.
6Routley–Meyer reduced model structures satisfy: I (A → B, T ) = T iff, for all worlds a, if
I (A, a) = T , then I (B, a) = T , for all interpretations I . This can be seen from Lemma 4.2(3)
on p. 302 of Routley et al. (1982). However, by Lemma 4.2(5) (ibid.), we can also work with unre-
duced modellings, though the reduced modellings better suit the sort of logics we are interested in
using to capture the concept of meaning containment.
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We now need to look into information by itself and, in passing, consider the
adequacy of Carnap’s account of it.

4 Dunn and Mares on Information

We will start by noting Floridi’s definition of information in his book from (2011)
setting out his philosophy of information, “Semantic information is well-formed,
meaningful and truthful data,” and considering Dunn’s discussion of Floridi’s book
in (2013). Then, we move on to Mares’ introduction of situated information, pre-
sented in his (2004, 2009), and with more depth in (2010). We conclude with Dunn’s
information states and his distinction between information with the Priming Property
and information without it, discussed in his (2015).

Dunn seems to disagree with Floridi in his review essay (2013) saying “I feel
that Floridi’s ‘veridicality thesis’ for semantic information is merely a matter of
‘semantics’ .” This would mean that it is all a matter of the interpretation of the
words “true” and “information” as to whether semantic information has to be true.
However, Dunn (2010) does not go so far as to consider information as contradictory
saying, as per the title, that contradictory information is too much of a good thing.
Here, Dunn regards information in itself as being a good thing.7

What I propose to do is to simplify the matter by focusing on a normative interpre-
tation of information that is useful for logical purposes. So, we are not going down
the path of considering the variety of interpretations of information used in natural
language, interesting as that might be. What we are going to do is use the natural
language readings to find features of information that are useful to us in our logical
endeavours, just as has happened in the case of contents, which too has a variety
of natural language readings. If the concept of information in natural language is
somewhat vague, it is not of much use to logic; we need to focus on relatively sharp
interpretations. The standout interpretation is that of truth, in conjunction with the
meaning of an informative sentence, largely in agreement with Floridi, but without
the semantic analysis. We can take the contents, discussed above, as representing
such meanings, noting the preference for analytic closure as its interpretation. Truth
is, of course, the other key semantic concept, i.e., other than meaning, and is used in
every semantics of logical systems to define validity.

Further, information ought to be true, since otherwise it does not inform. Never-
theless, despite one’s good intention, information can turn out to be false, leaving
a co-operative informee neither impressed nor informed. (The word ‘inform’ has a
slightly broader usage than ‘information’.) Moreover, information sometimes has to
be taken for granted, as in a computer database or as background information, for
the purposes of a mechanized or human deduction.8 Further, as such arguments are

7Dunn (2001), also provides an informative history of the usage of information in logic, down
through the ages, providing a useful background for our endeavours.
8See Dunn (2008) for a detailed account of information in computer science.
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generally considered in schematic rule-form (or through the use of variables in com-
puter languages), it is the true substitutions into such forms that matter for determin-
ing validity, but there can also be false substitutions into premises, with the argument
still being valid as a result of its form. So, though information should be true, false
information could still be put as premises that are part of the rounding out of valid
argumentation. In particular, in the case of informational inference, one takes the
initial information for granted before determining further information that this may
flow on to. However, we cannot go to the extreme of assuming information to be
false. We compare all this with contents of a sentence or set of sentences, which are
just logically focused meanings, without regard to truth or falsity, where there is no
intention to inform built into such sentences.

Mares (2004) introduces situations as providing an understanding of set-ups (or
worlds, as they are currently called) in the Routley–Meyer-style of semantics for rele-
vant logics. The term ‘situation’ comes fromBarwise and Perry’s situation semantics,
developed in their book (1983), and Mares uses it for partial information to distin-
guish it from the full information needed for Kripke-style worlds, which of course
are negation-complete, as well as being simply consistent. Mares’ situations are said
to hold at worlds, which are Kripke-style possible worlds, but nevertheless situations
can still be inconsistent, with negation being captured using Dunn’s compatibil-
ity relation or by an intuitionistic definition A → f , for some false constant f , in
accordancewithMares (2010).9 This is a departure from the standardRoutley–Meyer
semantics, which uses theRoutley ∗ with semantic postulates to capture the axiomatic
negation properties. Section2 of Mares (2009) provides further clarification:

Situations carry information. … A situation may accurately describe a possible world or
may fail to do so. In accurately describing a world, a situation need not describe everything
that is true of the world, but rather all the information carried by the situation must be true of
that world. A situation which accurately describes a possible world is said to be a possible
situation and a situation which does not accurately represent any possible world is said to
be impossible.

Mares (2009) distinguishes truth conditions from information conditions in a
semantics for relevant logics. Mares takes truth as classical propositional truth and
truth conditions as the standard ones from classical logic. This contrasts with infor-
mation conditions which apply to situations and follow the Routley–Meyer pattern,
with some changes to negation, as above. Moreover, disjunction is also varied in
(2010) along the lines of the natural deduction introduction and elimination rules.
This allows disjunction not to be prime, i.e., a formula A ∨ B can hold in a situation,
without either A or B holding. This is because A ∨ B can be a hypothesis, without
A or B being in its subproof. (See Brady (2010) for what is called a free semantics

9Mares in Sect. 5.2 of (2004) presents Dunn’s compatibility relation Cst, which says of situations s
and t that they are compatible with one another. Goldblatt (1974) uses an incompatibility relation
⊥, which is called orthogonality. He then gives the following truth condition for negation: ∼A
is true at a iff all outcomes which make A true are precluded by a. This compares with Dunn’s
truth condition: ∼A is true at s iff ∀x (Csx ⊃ ∼(A is true at x)), i.e., ∼A is true iff every situation
compatible with it fails to make A true.
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for the logic LDW, which is set up using natural deduction in a similar way to this.
Note that LDW is MC − A10 − MR1.)

This leads us to Dunn’s discussion of the Priming Property in his (2015), which
is included in a section on information states, which we first examine. He uses the
term ‘information states’ for what Routley and Meyer initially call ‘set-ups’ in their
semantics of relevant logics. Dunn uses the storage system of a computer to give a
concrete representation of them, regarding an information state as a finite sequence
of bits, either 1 or 0, this being similar to Carnap’s state descriptions. He goes on to
say that propositions can be thought of as sets of information states, each proposition
P being true or false in a given information state a according to whether a is in P
or not, i.e., what has previously been called a UCLA-proposition. Dunn goes on to
say that the Routley–Meyer valuation-clause, I (A ∨ B, x) = T iff I (A, x) = T or
I (B, x) = T , for information states x , makes perfect sense in this setting. [I have
used original symbolism here.]

Dunn goes on to point out that “For a more ordinary conception of an information
state the left-to-right direction is problematic.” He goes on to give an example,
“Suppose I am about to throw a coin. I have the information that it will turn up heads
or tails, but I do not have the information as to which.” He suggests that we “also let
the notation N (for neither) sometimes occur to indicate that the information state is
not complete,” i.e., in addition to the 1s and 0s above. He also says “there are also
circumstances where we might have conflicting information,” for which “we might
use the notation B (for both).” The inclusion of N and B would bring information
states into line with Dunn’s 4-valued information states, as described in his (2008).

What we need to do next is to try to determine under what circumstances the
Priming Property should hold or not. The cases where priming holds tend to be set
within a semantical system, as above, and the key element of such a semantics is that
disjunction is introduced inductively from one of its disjuncts, and that this is the only
way disjunction is obtained. Hence, we have the Routley–Meyer valuation clause or
such like, which contains the left-to-right Priming Property. The right-to-left is clear
cut, regardless of the type of system. The key feature is the inductive determination
of the connectives in setting up the semantics, that is, it is truth-functional, at least
with respect to disjunction. However, one must avoid semantics such as the free
semantics of Brady (2010) and the semantics in Sect. 10 of Mares (2010), both of
which are based on natural deduction, that is, the meta-logic of the semantics itself
is explicitly set up using natural deduction and this logic gets embedded into the
valuation conditions, notably for disjunction.

This brings us to the cases where priming does not hold. The essence of this is
natural reasoning or, as Dunn says, “a more ordinary conception of an information
state,” explained with true-to-life examples. Formally, we have considered natural
deduction as an appropriate logical formalization into which to place Dunn’s exam-
ples, but Hilbert-style deduction is also relevant. Indeed, any proof-theoretic system
will do, except that metacomplete or intuitionist systems satisfy the Priming Prop-
erty for theorems: If A ∨ B is a theorem, so is either A or B. This priming does not
generally extend to subproofs of their natural deduction systems, as A ∨ B can be
introduced as a hypothesis, without A or B being in its subproof. This is the case



158 R.T. Brady

with Dunn’s coin example, where the information that it will turn up heads or tails is
regarded as a premise or hypothesis of the natural deduction system. So, basically,
priming holds for standard semantical systems and fails for proof-theoretic systems,
with the exceptions noted above.

5 Informational Concepts and Their Logical Usage

In conclusion, we briefly recap and compare the various concepts of contents and
information, and then determine, for each of these concepts, where in logical study
they best fit.

Carnap and Bar-Hillel’s concept of information in (1964) is far too broad, in that
it is any concept In satisfying the property, In(A) includes In(B) iff A L-implies B,
for formulae A and B. It needs more detailed spelling out to narrow it down. Indeed,
three content interpretations were proposed, all of which were discussed in Sect. 2,
leading to the final preference for analytic closure in a logic of meaning containment.

As already presented, our preferred contents are placedwithin a content semantics,
which is algebraic in style. Now, algebraic semantic postulates follow the Hilbert-
style axioms and rules very closely, as can be seen in the case of MC and its content
semantics. So, though true contents play the usual role in defining validity and the
rules of MC preserve truth, contents of sentences, by themselves, are static and can
be either true or false. Thus, they relate most closely with algebraic semantics and
Hilbert-style axiomatization.

Information, on the other hand, is more complex. There are two distinctions that
have to be drawn regarding truth and information, one from Mares’ work and one
from Dunn’s work. Mares distinguishes truth conditions from information condi-
tions, but we disregard the former which regards classical truth because of our inter-
est in relevant logic. The latter gives rise to his situated information, which fits into
a semantics for relevant logic, taking the role of formulae evaluated as true in a
Routley–Meyer semantics, but modified to treat negation and possibly disjunction
differently. This brings us to Dunn’s distinction between prime information and non-
prime information. Dunn gives examples of non-prime information, which best fits
into formal natural deduction systems, as these can have disjunctive hypotheses,
without a disjunct appearing in the subproof generated by the hypothesis. As argued
above, non-prime information best fits proof-theoretic systems whilst prime infor-
mation best fits truth-functional semantics. Whilst this is the case, any analysis of
information can be uniformly carried out, firstly by examination of logical content
then by determining its truth or assumed truth, but in the latter case one should bear
in mind that priming may not hold. One final point is that MC, without distribution,
does not have a truth-functional semantics, but with prime information for truth due
to metacompleteness.
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On Split Negation, Strong Negation,
Information, Falsification, and Verification

Heinrich Wansing

Abstract This paper deals with some criticism that has been put forward against
strong, constructive negation in comparison to a certain example of Galois connected
negations. The general background to this discussion is the informational interpreta-
tion of substructural logics, and the key issue is whether there exists an asymmetry or
not between positive and negative information and between verification and falsifica-
tion. The present paper confirms the view that a symmetrical conception is adequate
for both direct and indirect variants of verification and falsification.

Keywords Falsification · Information · Split negation · Strong negation ·
Verification

1 Introduction

In a series of papers (Dunn1993, 1996, 1999;Dunn andZhou2005), J.MichaelDunn
has presented a very influential in-depth investigation of negation as impossibility
or “unnecessity.” The basic setting Dunn starts with has room for what he calls
Galois connected negations or, following Chrysafis Hartonas (Hartonas and Dunn
1993), split negations. A pair of negations ∼1 and ∼2 is a pair of Galois connected
or split negations iff for all formulas A and B of the language under consideration it
holds that A � ∼1B iff B � ∼2A. Let us call this the split negation property. Dunn’s
work on negation in the algebraic framework of his gaggle theory (see Dunn 1991,
1993, 1995; Dunn and Hardegree 2001; Bimbó and Dunn 2008) and in the context
of frame semantics continues earlier work on ortho-negation in quantum logic by
Garrett Birkhoff and John von Neumann (1936) and Robert Goldblatt (1974, 1975),
and work by Dimiter Vakarelov (1977, 1989), and Kosta Došen (1984, 1986, 1999),
who treat negation as a modal operator defined with respect to a binary relation on
a non-empty set of states, see also (Shramko 2005; Horn and Wansing 2015; Berto
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2015). Negation as a modal operator of impossibility or unnecessity has given rise
to interesting arrays of negation operations, starting form Dunn’s “kite of negations”
(Dunn 1993), and leading from Yaroslav Shramko’s “lopsided kite” and his dual
version of it (Shramko 2005), to the so-called “united kite of negations” (Dunn
and Zhou 2005), a combination developed upon a suggestion by Shramko, see also
(Horn andWansing 2015; Onishi 2015). Among these negations there is intuitionistic
negation, a negation usually understood as “implies falsity,” and minimal negation,
usually understood as “implies some designated atomic proposition.”

Dunn is also one of the main contributors to an informational interpretation of
substructural logics, and, together with Nuel Belnap, he developed what is now often
called Belnap and Dunn’s useful four-valued logic, also known as first-degree entail-
ment logic, FDE, see (Belnap 1977a, b; Dunn 1976, 2000). The system FDE is the
implication-free fragment ofDavidNelson’s constructive, paraconsistent four-valued
logic N4. Strong negation in the three-valued variant N3 of N4 has been proposed
by Gurevich (1977) as a means to express direct falsification, and substructural sub-
systems of N4 have been advocated as logics of information processing for instance
in Wansing (1993a, b), see also (Kamide and Wansing 2012, 2015). As a result of
combining constructive implication with FDE, strong negation in Nelson’s systems
N3 and N4 does not satisfy contraposition as an inference rule. Strong negation in
N3 and N4, therefore, is not captured by Dunn’s perp semantics (cf. Sect. 2.1), but it
is treated in Dunn’s seminal paper on consequence relations in the context of a four-
valued semantics (Dunn 2000), where he carefully explains that the contraposition
rule is an admissible rule of FDE.

Sebastian Sequoiah-Grayson (2009) criticizes Gurevich andmyself for arguing in
favour of direct falsification and for having available a strong negation. The plea for
strong negation is based on the assumption that it is desirable to have an information-
based semantics inwhich positive and negative information are taken as independent,
primitive notions that receive a symmetrical, or perhaps better analogical, analysis.
Sequoiah-Grayson (2009, p. 233) claims “that a strong asymmetry between positive
and negative information is in fact the case.” I will scrutinize Sequoiah-Grayson’s
critique and explain why and where it goes astray. This discussion will then give
me an opportunity to make some remarks on symmetry between verification and
falsification in the setting of both the logic of generalized truth values and constructive
logic.

2 Michael Dunn on Negation and Information

2.1 Negation

Central notions for this paper are the notions of negation and information. In (Gabbay
and Wansing 1999) the question What is negation? was raised. Concerning that
question, Michael Dunn (1999, p. 48) explains:
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‘What is truth?’ asked Pontius Pilate. ‘What is negation?’ ask Dov Gabbay and Heinrich
Wansing. Pilate never got an answer, and I do not answer Dov’s and Heinrich’s question
either, unless a variety of answers can count as the answer. I instead show how many of the
structural properties of negation can be obtained by various model-theoretic devices. The
most powerful of these devices is perhaps the use of perp structures, since by various fine
tunings of their properties one can get many of the well-known properties of negation.

This kind of fine-tuning is familiar from modal correspondence theory. A perp
model is a structure M = (S,⊥, v), where S is a non-empty set of information
states, ⊥ (“perp”) is a binary relation on S, and v is a valuation function. Dunn
views ⊥ as a relation of incompatibility or orthogonality between states. Nega-
tion as impossibility, ∼, is then semantically defined by postulating that ∼A is
true at a state x ∈ S iff x is incompatible with all states y ∈ S at which A is true:
M, x � ∼A iff ∀y (M, y � A implies x⊥y). Instead of an orthogonality relation one
may use a relation of compatibility between states, denoted by C, and M, x � ∼A is
then defined by requiring that ∀y (xCy implies M, y � A). The negation ∼ is thus a
universally quantifying “necessity” operator with respect to the relation C, whereas
negation as unnecessity,¬, is an existentially quantifying “possibility” operator with
respect to C: M, x � ¬A iff ∃y (xCy and M, y � A).

If the relationC is not required to be symmetric, then onemay distinguish between
two negation operations ∼1 and ∼2 that are defined as follows:

M, x � ∼1A iff ∀y (xCy implies M, y � A);
M, x � ∼2A iff ∀y (yCx implies M, y � A).

These negations satisfy the split negation property and the following interaction
principles: A � ∼1∼2A; A � ∼2∼1A.

Every negation as impossibility, ∼, and every negation as unnecessity, ¬, is, in
Dunn’s terminology, preminimal, i.e., they satisfy the following contraposition rules:

A � B implies ∼B � ∼A; A � B implies ¬B � ¬A.

Notions of negation stronger than preminimal negation are obtained semantically by
imposing conditions on the compatibility relation C. Certain such conditions corre-
spondwith well-known and important negation principles in the sense thatC satisfies
the condition in question just in case the negation principle under consideration is
validity preserving. In this way, a plurality of negation concepts emerges, see (Dunn
1993, 1996, 1999; Dunn and Zhou 2005; Restall 1999, 2000; Shramko 2005; Horn
and Wansing 2015; Onishi 2015; Berto 2015).

However, Dunn does not completely leave it at that kind of pluralism with respect
to negation and in Dunn (1999, p. 49) he writes:

But I must say that my own favourite is the 4-valued semantics. I am persuaded that ‘¬ϕ is
true iff ϕ is false’, and that ‘¬ϕ is false iff ϕ is true’. And now to paraphrase Pontius Pilate,
we need to know more about ‘What are truth and falsity?’ It is of course the common view
that they divide up the states into two exclusive kingdoms. But there are lots of reasons,
motivated by applications, for thinking that this is too simple-minded.
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From a constructive point of view, giving up the classical understanding of nega-
tion as Boolean complementation is only natural since classical negation permits,
for example, non-constructive existence proofs. Moreover, reasoning with partial
and contradictory information suggests the use of a paracomplete and paraconsistent
logic, and Dunn’s favoured four-valued semantics is indeed a natural candidate for
modelling paracomplete and paraconsistent reasoning. Nelson’s N4 combines the
four-valued FDE with a constructive implication.

Intuitionistic negation fails to be a paraconsistent negation, at least with respect
to provability. I will draw a distinction between direct falsification as expressed by
strong negation and weak falsification as expressed by intuitionistic negation. I will,
however, also distinguish between provability and a certain notion of dual provability.
In that framework, intuitionistic negation is a paraconsistent negation with respect to
dual provability, whereas another negation, co-negation, is a paraconsistent negation
with respect to provability.

2.2 Information

The other ‘what is’-question, i.e., What is information?, is addressed by Dunn (2001,
2008), see also (Dunn 2010). I cannot adequately discuss or even answer this funda-
mental question here, but I would like to emphasize that I agree with Dunn’s general
conception of information. InDunn (2001, p. 423) hewrites that “information is what
is left of knowledge when one takes away belief, justification, and truth. … Infor-
mation is … a kind of semantic content—the kind of thing that can be expressed by
language,” and in Dunn (2008, p. 582) he says that information is something like
a Fregean thought. Although this characterization of information is quite broad, it
excludes the factivity (truthfulness) of information and, therefore, it excludes so-
called “semantic information” as considered by, for example, Luciano Floridi, see
the surveys (Adriaans 2013; Floridi 2015).1

What is important for the present paper is that Dunn distinguishes between defi-
nitely positive and definitely negative information and that he admits both incomplete
and inconsistent information states, i.e., states that provide neither positive nor nega-
tive information concerning a given proposition and states that provide both positive
and negative informationwith respect to a given proposition. In his dissertation (Dunn
1966), Dunn introduced the notion of a “proposition surrogate” as a pair (A+, A−),
where A+, A− are subsets of a universe of discourse U (a non-empty set of informa-
tion states), and A+ (A−) is a set of topics the proposition gives definitely positive
(negative) information about. Negation ∼ is interpreted as the exchange of positive

1The association with Fregean thoughts may prompt further discussion. In his famous paper on
sense and reference (Frege 1892), Frege considers an example of a fictional sentence that has no
truth value but nevertheless expresses a thought. In the later paper “Compound Thoughts” (Frege
1923), however, he characterizes a thought as “something which must be either true or false, tertium
non datur.”
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and negative information: ∼(A+, A−) := (A−, A+). Moreover, it is not required that
(A+ ∩ A−) = ∅ or (A+ ∪ A−) = U.

Such an understanding of information and information states is suitable for an
interpretation of the logical operations within a paraconsistent and paracomplete
logic.

3 Split Negation and Information Models

Another aspect of information reflected inDunn’swork on relevance logic and gaggle
theory is that information is a resource that comes in pieces. Logics of information
processing are substructural logics; the contraction, the dilution, and the exchange
of premises is not supported by applications in which inference is viewed as the
processing of information pieces, see, for example, (Wansing 1993a, b; Restall 2000;
Paoli 2002).

3.1 Split Negation

One way of obtaining a pair of split negations arises from a language, say L, with
a falsity constant, 0, two directional implications, → and ←, that are left and
right residuals of a non-commutative (intensional, multiplicative) conjunction, ⊗,
also known as fusion, if the right-searching and the left-searching negation of an
L-formula A are defined as “A implies falsity”2:

¬rA :≡ 0 ← A, ¬lA :≡ A → 0.

One should also keep in mind Dunn’s (1991, p. 42) warning that “there is no con-
sistency in the literature about which is the “left” residual and which is the “right”.
We follow Birkhoff.” Calling → and ← the left and right residual of multiplicative
conjunction follows, e.g., (Paoli and Tsinakis 2012).

As a semantics for L, Sequoiah-Grayson (2009) introduces information frames
and models as follows:

Definition 3.1 An information frame is a triple 〈S,�, •〉, where 〈S,�〉 is a partial
order and • is a non-commutative binary operation on S. An information model is a
pair 〈F,�〉, where F is an information frame and � is an evaluation relation between
elements of S and L-formulas that satisfies the following conditions for all formulas
A, B, and every x ∈ S:

2Sequoiah-Grayson uses ‘¬’ instead of ‘¬r’ and ‘∼’ instead of ‘¬l’. The superscripts have the
advantage of reminding one of the directionality of the implication that is involved.
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(1) For every y, z ∈ S, if y � A and y � z, then z � A (persistency);
(2) x � (A ⊗ B) iff there exist y, z ∈ S with y • z � x, y � A and z � B;
(3) x � (A → B) iff for all y, z ∈ S, if y • x � z and y � A, then z � B;
(4) x � (B ← A) iff for all y, z ∈ S, if x • y � z and y � A, then z � B;
(5) not x � 0.

Note that I have rephrased Sequoiah-Grayson’s clauses (3) and (4) in such a way that
x � A ⊗ (A → B) implies x � B and x � (B ← A) ⊗ A implies x � B. With these
clauses we obtain the residuation principles that are stated in (Sequoiah-Grayson
2009, p. 337) as:

(6) A ⊗ B � C iff B � A → C;
(7) A ⊗ B � C iff A � C ← B,

if we interpret A � B as coinciding with a semantical consequence relation � such
that A � B holds iff for every information model 〈S,�, •,�〉 and every x ∈ S, x � A
implies x � B.3

In the rest of this subsection I will critically discuss the presentation of split
negation in Sequoiah-Grayson (2009); this discussion is not a critique of split nega-
tion as such. As will become clear later, there is nothing wrong with split negation.
It expresses a weak, indirect notion of falsification with respect to provability and
can be supplemented by a weak, indirect notion of verification with respect to dual
provability.

Sequoiah-Grayson (2009) does not give references for the above semantics but
points out that clauses (2)–(4) amount to a particular, informational reading of the
ternary relational frame semantics for ⊗, →, and ←. The ternary frame semantics is
due to Routley and Meyer (1972, 1973), and the informational reading is explained,
for example, in Dunn’s article on relevance logic and entailment in the Handbook
of Philosophical Logic, (Dunn 1986), where one also can find more information
on the semantics of relevance logic and its history. Sequoiah-Grayson suggests to
understand x � A following (Mares 2009) tomean that state x carries the information
that A or that x supports the information that A.4 He emphasizes (Sequoiah-Grayson

3We may assume that there is a typing error in the versions of (3) and (4) in Sequoiah-Grayson
(2009). With these versions:

(3)SG x � A → B iff for all y, z ∈ S, if x • y � z and y � A, then z � B
(4)SG x � A ← B iff for all y, z ∈ S, if y • x � z and y � A, then z � B

x � (A → B) ⊗ A implies x � B and x � A ⊗ (A ← B) implies x � B, and, as a result, we do not
obtain (6) and (7).
4He writes (Sequoiah-Grayson 2009, p. 236):

One might wish to understand ‘supports’ as ‘makes true’ if one holds to a dialethic para-
consistentism whereby at least some contradictions are taken to be true. However, we will
sidestep this particular debate and stay with the interpretation of ‘supports’ that takes it
to be the subtler relative of ‘makes true’ in a manner aligned with Mares’ informational
interpretation.

.
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2009, p. 235) that he “want[s] to allow for the information at x being incomplete
and/or inconsistent” and explains that “x may support A where A is ‘p and not p’.”
But this ‘not p’ cannot be ∼p or ¬p, i.e., ¬lp or ¬rp because, for example:

x � p ⊗ (p → 0)

iff there are y, z with y • z � x, y � p and z � p → 0
iff there are y, z with y • z � x, y � p and

for all u, v, if u • z � v and u � p, then v � 0.

But y • z � y • z, y � p and not y • z � 0.
Doubtlessly, it is a desideratum of any logic of information processing to ade-

quately account for the processing of partial and contradictory information, in par-
ticular, to the effect that contradictory information does not allow one to derive any
statement whatsoever. However, I do not see that Sequoiah-Grayson’s semantics
satisfies the latter desideratum. The split negations under consideration fail to be
paraconsistent negations at least insofar as no state supports the information that
A ⊗ ¬lA and no state supports the information that ¬rA ⊗ A, so that if entailment is
understood as preservation of support of information (or support of truth) in any state
from anymodel, bothA ⊗ ¬lA and¬rA ⊗ A entail arbitrary formulas. Unfortunately,
Sequoiah-Grayson offers no definition of A � B but merely explains that

[i]n deductive information processing, we understand the premises as databases and the
consequence relation ‘�’ as the information processingmechanism, amore brutally syntactic
operation that the information carrying/supporting of�. In informational terms, wemay read
A � B as information of type B follows from information of type A, or the information in
B follows from the information in A, and so forth. We can think of typing as encoding, in
which case we might also read A � B as the information encoded by B follows from the
information encoded by A. (Sequoiah-Grayson 2009, p. 237).

One thing to note here is that although � is explained only in informal, though
informational terms and formally remains undefined, it seems that � is taken to be a
relation between single formulas, so that expressions of the form � A with an empty
antecedent appear to be excluded.5

Do we, under the suggested reading of �, get A ⊗ ¬lA � B and ¬rA ⊗ A � B for
any formulas A, B? Here is what Sequoiah-Grayson (2009, p. 238) says:

[T]he suggestion is that we interpret ∼A as the body of information that cannot be applied
to bodies of information of type A, and that we interpret ¬A as the body of information that
cannot have bodies of information of type A applied to it. The interpretation is supported by
the model theory; by the information states supporting ∼A, ¬A, and A. If x supports ∼A and
y supports A, x cannot be applied to y. Similarly, if x supports ¬A and y supports A, then y
cannot be applied to x. This is not because such an application will cause an explosion of
information, but because it does not generate any information.

There are at least two things that are peculiar here. First, it is suggested to read
x • y as “x applied to y” and it is emphasized that “ ‘[a]pplying’ is an order-sensitive

5Note that in this paper I do not pay close attention to the mention/use distinction when there is no
risk of confusion.
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notion.” (Sequoiah-Grayson 2009, p. 236). Whereas it is quite natural to view the
relation � as a relation of information containment or information development, in
my opinion the reading of • in terms of application of bodies of information is unfor-
tunate because “application” reminds one of functional application, and an operation
that interprets non-commutative conjunction is a kind of composition different from
the application of a function to its arguments, for example if we think of atomic
bodies of information x and y. This peculiarity transmits to the understanding of the
two negation operations. Sequoiah-Grayson argues that the particular form of split
negation under consideration may be understood as the “prohibition” of information
processing procedures. It is said that a state that supports ∼A cannot be applied to
a state that supports A, and that a state that supports A cannot be applied to a state
supporting ¬A. We have the analogous asymmetry between ∼A and ¬A under the
“bodies of information” reading of these formulas. But that’s strange. Both negations
are implications, and under a suitable formulas-as-types notion of construction, ∼A
and¬A bothwould be interpreted on a par as types of lambda-abstracted terms, terms
that are both applicable to terms of type A, whereas A ⊗ B is the type of ordered
pairs of terms of types A and B (cf. Wansing 1993a, b).

Secondly, it is said that a state y that supports A cannot be applied to a state
x that supports ¬A “not because such an application will cause an explosion of
information, but because it does not generate any information.” For the undefined
derivability relation � this seems to imply that nothing can be derived from A ⊗
¬lA and nothing can be derived form ¬rA ⊗ A, and Sequoiah-Grayson (Sequoiah-
Grayson 2009, pp. 239, 240) is explicitly talking about “get[ting] nothing, namely 0.”
But then � cannot be reflexive because otherwise A ⊗ ¬lA � A ⊗ ¬lA and ¬rA ⊗
A � ¬rA ⊗ A. If � is the syntactic counterpart of a relation that preserves support-
of-information-that, however, then � is reflexive.

3.2 The Syntactic Characterization of Information Models

A considerable part of Sequoiah-Grayson (2009) consists of an elaboration of the
above support-of-information-that conditions and their application in order to justify
various inference patterns. To simplify the discussion, it is helpful to formally recon-
struct what he does by characterizing the informational semantics syntactically. We
also have to supplement the definition of a semantic consequence relation.

Depending on whether • is associative or not, information models are models
for the associative or non-associative Lambek calculus, see Lambek (1958, 1961),
extended by a falsity constant. Sequoiah-Grayson is indifferent with respect to
whether • should be taken to be associative or not. Let us for definiteness agree
on nonassociativity and briefly present the characterization.

We inductively define the set of all Gentzen terms. Every L-formula is a Gentzen
term. If Δ and Γ are Gentzen terms, then (Δ, Γ ) is a Gentzen term as well. Noth-
ing else is a Gentzen term. We use capital Greek letters Δ,Γ,Θ etc. to denote
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Gentzen terms. A sequent is an expression of the form Δ ⇒ A, so that sequents
always have a non-void antecedent. The set st(Δ) of sub-terms of a Gentzen
term Δ is inductively defined as one would expect: st(A) = { A }; st((Δ, Γ )) =
st(Δ) ∪ st(Γ ) ∪ { (Δ, Γ ) }. We write Δ[A] to highlight a certain occurrence of A
as a sub-term inΔ. IfΔ[A] appears in a premise of a sequent rule, then in the conclu-
sion of that sequent rule Δ[Γ ] is the result of replacing the highlighted occurrence
of A in Δ by Γ .

Definition 3.2 The nonassociative Lambek calculus with falsity in the language L,
NL0, consists of the following rules:

(id) � A ⇒ A

(cut) Γ ⇒ A, Δ[A] ⇒ B � Δ[Γ ] ⇒ B

(→ ⇒) Δ ⇒ A, Γ [B] ⇒ C � Γ [(Δ, (A → B))] ⇒ C

(⇒ →) (A,Δ) ⇒ B � Δ ⇒ (A → B)

(← ⇒) Δ ⇒ A, Γ [B] ⇒ C � Γ [((B ← A),Δ)] ⇒ C

(⇒ ←) (Δ, A) ⇒ B � Δ ⇒ (B ← A)

(⊗ ⇒) Δ[(A1, A2)] ⇒ B � Δ[(A1 ⊗ A2)] ⇒ B

(⇒ ⊗) Δ ⇒ A, Γ ⇒ B � (Δ, Γ ) ⇒ (A ⊗ B)

(0 ⇒) � Δ[0] ⇒ A

The non-associative Lambek calculus, NL, is given by the rules (id)–(⇒ ⊗).

A sequent Δ ⇒ A is provable in NL0 (� Δ ⇒ A) iff it is derivable in NL0
from axiomatic sequents of the form A ⇒ A or Δ[0] ⇒ A. We will thus under-
stand Sequoiah-Grayson’s A � B as � A ⇒ B. NL has the cut-elimination property,
and the additional rule (0 ⇒) does not destroy that property. The rule (cut) is thus
an admissible rule of NL0, i.e., a sequent is provable in NL0 iff it is provable in NL0
without (cut). For the semantical characterization we will make use of a very simple
syntactical property of cut-free derivations in NL0.

Observation 3.3 In NL0 without (cut), every application of a right introduction
rule can be permuted downwards over any application of a left introduction rule.

Proof We consider the three right introduction rules.
(⇒ →):

• Permutation over (→ ⇒):

.

.

.

Δ ⇒ A

.

.

.

(A′, Γ [B]) ⇒ B′
Γ [B] ⇒ (A′ → B′)

(⇒ →)

Γ [(Δ, (A → B))] ⇒ (A′ → B′)
(→ ⇒) �

.

.

.

Δ ⇒ A

.

.

.

(A′, Γ [B]) ⇒ B′
(A′, Γ [(Δ, (A → B))]) ⇒ B′ (→ ⇒)

Γ [(Δ, (A → B))] ⇒ (A′ → B′)
(⇒ →)

• Permutation over (← ⇒): Analogous to the previous subcase.
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• Permutation over (⊗ ⇒):
.
.
.

(A′,Δ[(A1, A2)]) ⇒ B′
Δ[(A1, A2)] ⇒ (A′ → B′)

(⇒ →)

Δ[(A1 ⊗ A2)] ⇒ (A′ → B′)
(⊗⇒) �

.

.

.

(A′,Δ[(A1, A2)]) ⇒ B′
(A′,Δ[(A1 ⊗ A2)]) ⇒ B′ (⊗⇒)

Δ[(A1 ⊗ A2)] ⇒ (A′ → B′)
(⇒ →)

(⇒ ←): Analogous to the previous case.
(⇒ ⊗):

• Permutation over (← ⇒):

.

.

.

Θ ⇒ A

.

.

.

Δ ⇒ A′

.

.

.

Γ [B] ⇒ B′
(Δ, Γ [B]) ⇒ (A′ ⊗ B′)

(⇒ ⊗)

(Δ, Γ [((B ← A),Θ)]) ⇒ (A′ ⊗ B′)
(← ⇒) �

.

.

.

Δ ⇒ A′

.

.

.

Θ ⇒ A

.

.

.

Γ [B] ⇒ B′
Γ [((B ← A),Θ)] ⇒ B′ (← ⇒)

(Δ, Γ [((B ← A),Θ)]) ⇒ (A′ ⊗ B′)
(⇒⊗)

• Permutation over (→ ⇒): Analogous to the previous subcase.
• Permutation over (⊗ ⇒):

.

.

.

Δ[(A, B)] ⇒ A′

.

.

.

Γ ⇒ B′
(Δ[(A, B)], Γ ) ⇒ (A′ ⊗ B′)

(⇒ ⊗)

(Δ[(A ⊗ B)], Γ ) ⇒ (A′ ⊗ B′)
(⊗⇒) �

.

.

.

Δ[(A, B)] ⇒ A′
Δ[(A ⊗ B)] ⇒ A′ (⊗⇒)

.

.

.

Γ ⇒ B′
(Δ[(A ⊗ B)], Γ ) ⇒ (A′ ⊗ B′)

(⇒ ⊗) �

Let ⊗Δ be the result of replacing every occurrence of the comma in Δ by an
occurrence of ⊗. Clearly, � Δ ⇒ A iff � ⊗Δ ⇒ A. The left-to-right direction is
obvious from rule (⊗ ⇒), for the right-to-left direction we use (cut):

A ⇒ A B ⇒ B

(A, B) ⇒ (A ⊗ B)

...

Δ[(A ⊗ B)] ⇒ C
Δ[(A, B)] ⇒ C

(cut)

A sequentΔ ⇒ A is valid in an informationmodelM = 〈S,�, •,�〉 (M � Δ ⇒
A) iff for every x ∈ S, x � ⊗Δ implies x � B; Δ ⇒ A is valid (� Δ ⇒ A) iff it is
valid in every information model. Soundness of NL0 with respect to the class of all
information models follows by induction on proofs in NL0. For completeness we
may consider a characterizing model.6

Definition 3.4 The structure Mc = 〈G,�c, •c,�c〉 is defined as follows: G is the
set of all Gentzen terms Δ such that Δ ⇒ A is not provable in NL0 for at least one
L-formula A, �c is the syntactic identity relation ≡ between Gentzen terms, and
•c is the bracketing (·, ·) of Gentzen terms. The valuation relation �c is defined by
stipulating that for every L-formula A and Gentzen term Δ, Δ �c A iff � Δ ⇒ A.

6An anonymous reviewer raised the question whether there are other ways of defining a seman-
tics in order to obtain a formal reconstruction of the presentation in (Sequoiah-Grayson 2009).
I have nothing else to offer than the preservation of support-of-information-that, which captures
derivability in NL0.
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Observation 3.5 Mc is an information model.

Proof The above persistency condition (1) is trivially satisfied. We consider condi-
tions (2)–(5).
(2) By definition, Δ �c (A ⊗ B) iff � Δ ⇒ (A ⊗ B) iff (by Observation 3.3) there
exist Γ,Θ ∈ G with Δ ≡ (Γ,Θ), � Γ ⇒ A and � Θ ⇒ B iff (by definition) there
exist Γ,Θ ∈ G with Γ •c Θ �c Δ, Γ �c A and Θ �c B.
(3) By definition, Δ �c (A → B) iff � Δ ⇒ (A → B) iff (by Observation 3.3) �
(A,Δ) ⇒ B iff (by admissibility of (cut)) for all Γ,Θ ∈ G, if (Γ,Δ) ≡ Θ and �
Γ ⇒ A, then � Θ ⇒ B iff (by definition) for all Γ,Θ ∈ G, if Γ •c Δ �c Θ and
Γ �c A, then Θ �c B.
(4) Analogous to (3).
(5) By the definition of G and admissibility of (cut), for no Δ ∈ G it holds that
� Δ ⇒ 0. �

Observation 3.6 (Completeness) If � Δ ⇒ A, then � Δ ⇒ A.

Proof If it is not the case that � Δ ⇒ A, then in Mc it is not the case that Δ �c A.
But in Mc it holds that Δ �c A iff ⊗Δ �c A. Therefore, Δ ⇒ A is not valid. �

We may now use this characterization and consider the inference patterns that in
(Sequoiah-Grayson 2009) are elaborated in terms of information models. The infer-
ence patterns (12)–(18) are easily provable, in particular the split negation property
is easily verified:

...

A ⇒ B → 0
B ⇒ B 0 ⇒ 0
(B, B → 0) ⇒ 0

(B, A) ⇒ 0
B ⇒ 0 ← A

(cut)

...

B ⇒ 0 ← A

A ⇒ A 0 ⇒ 0
(0 ← A, A) ⇒ 0

(B, A) ⇒ 0
A ⇒ B → 0

(cut)

The pattern

(19) A ⇒ ¬B � B ⇒ ∼A

however, of which Sequoiah-Grayson (2009, p. 240) says that it “makes procedural
sense,” fails to be (cut-free) provable, as can be seen from the failure of bottom-up
proof search7:

B ⇒ A (A, (0 ← B)) ⇒ 0
(A, (B, (A → (0 ← B)))) ⇒ 0
(B, (A → (0 ← B))) ⇒ A → 0
A → (0 ← B) ⇒ B → (A → 0)

B ⇒ A

(A, (0 ← B)) ⇒ 0

0 ← B ⇒ A → 0

(B, (A → (0 ← B))) ⇒ A → 0
A → (0 ← B) ⇒ B → (A → 0)

Sequoiah-Grayson writes that (19) “prohibits the complex procedure”

7Assuming sequent rules that capture Sequoiah-Grayson’s (3)SG and (4)SG instead of (3) and (4)
would not help.
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(20) A ⊗ (B ⊗ (A → ¬B)).

By “prohibition” of A ⊗ (B ⊗ (A → ¬B)) he means that A ⊗ (B ⊗ (A → ¬B)) � 0,
which is, however, not the case8:

(A, (B, (A → (0 ← B)))) ⇒ 0
(A, (B ⊗ (A → (0 ← B)))) ⇒ 0

A ⊗ (B ⊗ (A → ¬B)) ⇒ 0

4 Symmetry and All that

Iwill nowgradually come to amore constructive part of the present paper and return to
information, verification, and falsification. A reply to Sequoiah-Grayson’s criticism
of strong negation will bring us to considering symmetry between verification and
falsification. These considerations are independent from using a substructural logic
with a non-commutative conjunction and a pair of directional implications since
both intuitionistic logic and constructive logic with strong negation already have an
informational interpretation in terms of Kripke models of a certain kind.

4.1 On an Alleged Asymmetry Between Positive and Negative
Information

Negation understood as “implies falsity” is an important and interesting notion. It is
not at all inadequate as such, however, as claimed in (Gurevich 1977) and (Wansing
1993a, b), it is inadequate to express negative information to the effect that a certain
statement is definitely false. Moreover, if a state x supports the truth of the negation
of A just in case for all states y and z, if y supports the truth of A and z extends the
“fusion” of x and y (y • x or x • y), then z supports the truth of 0, such a “negation as
inconsistency” is a rather non-constructive notion of negation. David Nelson (1959)
emphasized that intuitionistic negation, which is a negation as inconsistency in a non-
substructural setting, is inadequate to represent the constructive meaning of negated
formulas in intuitionistic arithmetic: “Under the recursive interpretation of a formal
system for intuitionistic arithmetic, the provable implications of the form A ⊃ 1 = 0
receive a trivial interpretation.”

8Analogous remarks apply to the inference pattern (21) and the “prohibited procedure” (22). Also
the endorsed inference patterns

(23) A → ¬B � ∼A ← B, and
(24) A → ∼B � ¬A ← B

are not provable, so that they are not underpinned by the formulas numbered (25) and (26) in
(Sequoiah-Grayson 2009).
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Sequoiah-Grayson (2009, p. 244) presents the reasoning in favour of strong nega-
tion in (Gurevich 1977) and (Wansing 1993a, b) as follows:

So far we have the following (translating from intuitionistic to ternary terminology):

(a) Any adequate theory of information processingwill allow for representing both positive
and negative information.

(b) The definition of split negation in a model M has the result that positive and negative
information are treated asymmetrically; A may be verified “on the spot,” while ∼A and
¬A may not.

(c) Therefore, any theory of information processing based upon M will not be an adequate
theory of information processing.

Sequoiah-Grayson notes that (c) does not follow from (a) and (b) because (a) does not
say that representations of positive and negative information need to be in symmetry.
According to him, the reasoning is incomplete and there are two candidates for a
suitable missing premise:

(a′) The representation of positive information must be in symmetry with the representation
of negative information in order for a theory of information processing to be adequate.

(a′′) Bodies of either positive or negative information must be directly verifiable in order for
a theory of information processing to be adequate.

(a′′) is the stronger claim, since if we have satisfied it then we have ipso facto satisfied (a′).
We could, in principle at least, have a verification condition on A that was just as “off the
spot” as are the present verification conditions on ∼A and ¬A, in which case symmetry
would be satisfied. Similarly, refuting (a′) refutes (a′′), but not vice versa. Which of either
(a′) and (a′′) are the intended premise? Gurevich seems to be arguing for the weaker (a′)
when he states that “[i]n many cases the falsehood of a simple scientific sentence can be
ascertained as directly (or indirectly) as its truth” Gurevich (1977, p. 49) (my emphasis).
Wansing sometimes seems to be arguing for (a′′) when he states “Gurevich’s remark amounts
to the complaint that there is no possibility of direct falsification of [A] on the spot,”Wansing
(1993, p. 14). However, other comments such as “… the idea of taking negative information
seriously and putting it on par with positive information leads Gurevich to intuitionistic logic
with strong negation …,” Wansing (1993, p. 14), are much more in line with (a′). We take
it then, that the more flexible (a′) is the missing premise. In this case, the full form of the
argument is (a), (a′), (b), therefore (c). This argument is valid.

Sequoiah-Grayson then explains that he rejects (a′).
The first thing to ask is whether the above reconstruction is faithful to the

sources and correct. Remarkably, the reasoning attributed to Gurevich and me is first
reconstructed as enthymematic and is then supplemented by an additional premise
that is traced back to (Gurevich 1977) and (Wansing 1993a, b). Gurevich takes up
Andrzej Grzegorczyk’s “philosophically plausible formal interpretation of intuition-
istic logic” (Grzegorczyk 1964), in which Grzegorczyk holds that whereas atomic
sentences are verified experimentally, compound sentences, including negated sen-
tences “arise from reasoning.” Gurevich (1977, p. 49) objects to this view by observ-
ing that often “the falsehood of a simple scientific sentence can be ascertained as
directly (or indirectly) as its truth.” In intuitionistic Kripke models, a state x may
verify or fail to verify an atomic formula. Gurevich takes the verification of an atomic
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formula to be an evaluation as “true” and the failure of verification to be an eval-
uation as “uncertain.” To overcome the limitations of intuitionistic Kripke models,
he considers three-valued functions such that the value of an atomic formula at a
state “can be equal to “false,” “uncertain” or “true.” That gives rise to a conservative
extension of the intuitionistic logic which is nicer at least in one aspect: it is more
symmetric, it satisfies very natural duality laws” (Gurevich 1977, p. 49). Although
Gurevich emphasizes the symmetry of the resulting logic with strong negation, he
does not explicitly endorse (a′), but it seems fair to read his comments on ascertaining
the falsehood of simple scientific sentences “as directly (or indirectly) as its truth”
as an endorsement of (a′). However, when we highlight that Gurevich wants to make
room for directly ascertaining falsehoods, then this remark may also be seen as a
plea for being able to model the direct falsification of atomic sentences besides their
direct verification. I agree with Sequoiah-Grayson in that (a′) does not entail (a′′)
provided negative information is not associated with falsity but with the failure of
verification in the sense of “implies falsity.” The indirect falsification that comes
with a proof that a statement implies falsity can indeed be supplemented by a notion
of indirect verification. But then it is natural to require symmetry twice, namely in
addition to being able to represent both direct verifications and direct falsifications
(i.e., proofs and disproofs), also to represent both indirect verifications and indirect
falsifications, see also (Wansing 2010) and Sect. 4.4.

Whether one, as Sequoiah-Grayson does, reads (a′′) as entailing (a′) or not, there
is some textual evidence that Gurevich (1977) and Wansing (1993a, b) endorse both
(a′) and (a′′), so that in any case their reasoning is reconstructed as valid. How does
Sequoiah-Grayson then come to the conclusion that “a strong asymmetry between
positive and negative information is in fact the case”? He offers three arguments.

First argumentThefirst argument goes as follows (Sequoiah-Grayson 2009, p. 245):

Gurevich’s example of scientific sentences that have their falsehood directly ascertained
is “The solution is acid” with regards to a litmus paper test. However, falsification can
happen just as well as a result of positive information as negative information. In fact, contra
Gurevich, the litmus paper example is an instance of just this.

Suppose that we are testing for acid, and that the paper remains blue (blue litmus paper turns
red in an acid, red litmus paper turns blue in a base). In this case, we have falsified “The
solution is acid.” But on the basis of what? The falsification proceeds via the positive infor-
mation that the paper is still blue. The negative information concerning the falsification of
“The solution is acid” is derivative upon the positive information concerning the blueness of
the paper. Even in the restricted context of scientific reasoning, it is certainly not straightfor-
ward that negative information should be granted the status of an “informational primitive,”
on par with positive information. Adapting Grzegorczyk’s point from the paragraph above,
we see that the paper is blue, we do not see that it is not red. We do not “see that it is not red”
any more than we “see that it is not a cat.” We acquire the negative information it is not the
case that the solution is acid on the basis of the positive information the paper is blue that
is incompatible with the positive information the solution is acid. We ascertain that it is not
red because we see that it is blue.

It is important to note here that direct falsification in the context of the conser-
vative extension of intuitionistic logic considered by Gurevich, namely Nelson’s
constructive logic with strong negation N3, leads to contrary pairs. The adjectives
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‘red’ and ‘blue’ give rise to contrary pairs of sentences, and so do, for example the
pairs ‘basic’ versus ‘acid’, ‘happy’ versus ‘unhappy’, and ‘polite’ versus ‘impolite’.
Metaphysically speaking, a given person cannot be both happy and unhappy (at a
given moment of time in one and the same respect), but she or he may well be neither
happy nor unhappy. The situation is more complicated in a four-valued semantics.9

The sentence ‘Arthur is happy’ may be told true and told false, so that a state x may
support both the truth and the falsity of ‘Arthur is happy’, and if x supports the falsity
of ‘Arthur is happy’ just in case x supports the truth of ‘Arthur is unhappy’, then x
may support the truth of both ‘Arthur is happy’ and ‘Arthur is unhappy’. Whereas
prefixes such as ‘un’, ‘im’, and ‘dis’ suggest that a negation operation is used, pairs
such as ‘acid’ versus ‘basic’ fail to suggest that the semantic opposition between
‘acid’ and ‘basic’ involves negation. What it certainly does not involve is classical
negation (expressing falsity understood as absence of truth) or intuitionistic negation
(expressing falsity as “implies falsity”).

The symmetry argued for in (Gurevich 1977) and (Wansing 1993a, b) is the sym-
metry obtained by accounting for both direct verification and direct falsification as
distinct types of reasoning procedures. One way of obtaining such a symmetry is to
internalize support of falsity into the logical object language by means of a strong
negation connective. The sentence ‘Arthur is unhappy’ is then analyzed as the strong
negation of ‘Arthur is happy’, and semantically the strong negation∼A of A switches
between support of truth, �+, and support of falsity, �−.10 A state x supports the truth
of∼A iff it supports the falsity of A and it supports the falsity of∼A iff it supports the
truth of A: x �+ ∼A iff x �− A; x �− ∼A iff x �+ A. As a result, from the point of
view of verification, the information that Arthur is unhappy is negative information;
from the point of view of falsification, the information that Arthur is unhappy is
positive information.

Sequoiah-Grayson tries to show that “a strong asymmetry between positive and
negative information is in fact the case” by denying that there is a notion of direct
falsification. According to him there is only direct verification based on positive
information; “[t]he negative information concerning the falsification of “The solution
is acid” is derivative upon the positive information concerning the blueness of the
paper.” Suppose that we are working with neutral litmus paper, so that by a change
of colour we may test for both acids and bases. What is positive information from the
point of view of verification is then negative information in the context of falsification
(and vice versa). If we see that the violet litmus paper turns blue, then this observation
verifies that the solution in question is basic and at the same time falsifies that the
solution is acid (and it not merely shows that the solution is not acid, where “not”
here and elsewhere in the metalanguage stands for classical negation). Moreover,
the fact that the solution is basic is typically not ascertained by deriving a falsehood
(an “absurdity”) from the assumption that the solution is acid but by performing a
litmus test. In order to show that at a given state a solution is basic, what we do

9It is complicated in the constructive setting of intuitionistic logic and N3 already, cf. (Wansing
2006).
10Note that the strong negation ∼ is different from Sequoiah-Grayson’s ∼, i.e., A → 0.
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is precisely not to convince ourselves that in every future state the solution fails to
be acid. One might object that observing the violet or red litmus paper turning blue
falsifies the assumption that the solution is acid only against the background of a
certain theory about acids and bases, call it T , so that what the litmus paper turning
blue really shows is that the assumption that the solution is not basic together with
T implies a falsehood. But then we obtain a notion of verification that is in conflict
with Sequoiah-Grayson’s claim that there is a strong asymmetry between positive
and negative information because the litmus paper turning blue would verify ‘The
solution is basic’ also only indirectly, namely against the background of T .

Sequoiah-Grayson considers the blue litmus paper as providing only positive
information. Indeed, Nelson’s N3 can be faithfully embedded into intuitionistic logic
and Nelson’s N4 can be faithfully embedded into positive intuitionistic logic by
replacing every strongly negated atom∼p by a fresh sentence letter p′, see (Gurevich
1977) and, for example, (Wansing 2001), (Kamide andWansing 2012). But this does
not mean that definitely negative information and direct falsification are not in fact
represented in Nelson’s logics. Since direct falsification in N3 and N4 is internalized
into the object language by means of strong negation, reasoning from support of
falsity to support of falsity, however, need not be defined as a separate entailment
relation in addition to the conception of entailment as preservation of support of
truth, cf. Sect. 4.4.

Second argument Another consideration in Sequoiah-Grayson (2009, p. 246)makes
use of the assumption that “facts ground information,” so that “an asymmetry between
positive facts and negative facts will carry over into an asymmetry between posi-
tive and negative information.” The assumption is certainly contentious. Sequoiah-
Grayson emphasizes that it is more likely if information is taken to be veridical. We
have embraced Dunn’s conception of information according to which the proposi-
tional content of information may be untrue and therefore information is not always
grounded on facts.

Third argument A third argument makes use of the notion of ruling out (Sequoiah-
Grayson 2009, p. 246):

We have a natural asymmetry with the very context of procedural interpretation of split
negation that we are considering. In a system of procedural information processing, it is
completely natural to interpret ∼/¬ as the ruling out of a procedure. The procedure ruled
out by∼/¬A is just any procedure that involves combining∼/¬A with A itself. In summary,
insofar as general concerns regarding the indirectness of such a definition of negation in
informational terms is concerned, it isworth considering the observation that an interpretation
of negation in terms of ruling something out is about as direct as we could want. “Ruling
out” is a direct notion. But to rule something out requires a “universal checking.” This kind
of indirectness is required in order that something be truly ruled out. To put this another way,
how can we rule something out without first considering all the possible cases?

The idea here seems to be that if∼/¬A is true, then A is ruled out, and that ruling out
is direct, although it involves a “universal checking.” If it is assumed that verification
based on positive information is direct and that split negation understood as ruling out
is a direct notion, one may wonder how this consideration may then demonstrate that
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“a strong asymmetry between positive and negative information in fact is the case.”
In the case of the split negation of A the universal checking consists of checking
whether it holds for all states y and z that if y supports the truth of A and z extends
y • x or x • y, then z supports the truth of 0. This is a kind of indirectness and it seems
completely natural to accompany this indirect falsification of A by an analogous
way of verification, namely ruling in. But this is then again leading to a symmetry
between indirect ways of verification and falsification instead of an asymmetry, and
that’s what I will turn to in the next section.

4.2 Symmetry Between Verification and Falsification

So far I have argued, with Gurevich, that we may directly falsify elementary, atomic
empirical statements. We may, for example, directly falsify that Arthur is polite by
pointing to his impolite behaviour. This does not mean that direct falsification is
the only kind of falsification. But if we recognize the dichotomy between direct
verification and direct falsification, then it is natural to associate the former with
definitely positive information that a certain proposition is true and the latter with
definitely negative information that a certain proposition is false. This amounts to
consideringBelnap’s (1977a, b) told false and told truevalues. InNelson’s logicswith
strong negation, definite falsity is expressed by means of strong negation, henceforth
∼, and in intuitionistic logic (and N3) indirect falsification is internalized into the
logical object language bymeans of intuitionistic negation, henceforth¬. Note that in
Nelson’s logics N3, N4, and inOdintsov’s (2005, 2008) extensionN4⊥ of N4, there is
not a total and perfect symmetry between the direct verification anddirect falsification
of all kinds of formulas. In these logics, atomic formulas are treated completely on a
par with respect to verification and falsification. The verification and the falsification
of atomic formulas is static insofar as only the state of evaluation is involved. The
verification and falsification clauses for conjunctions and disjunctions are also static.
However, whilst the verification conditions for constructive implication are dynamic,
their falsification conditions are static:

x �− A → B iff (x �+ A and x �− B).

Additional symmetry with respect to dynamic versus static verification and falsifica-
tion clauses for compound formulas is obtained by adopting a connexive understand-
ing of negated implications, cf. (Wansing 2005, 2008, 2014; Kamide and Wansing
2011):

x �− A → B iff x �+ (A → ∼B).

In the remainder of this section and this paper, I will consider two other ways of
separating reasoning about truth from reasoning about falsity.
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4.3 Truth and Falsity Entailment

A separate treatment of truth and falsity with respect to entailment can, for example,
be found in the theory of generalized truth values. The theory is rooted in Belnap
and Dunn’s semantics for FDE and, in particular, in Dunn’s representation of the
four truth values of the FDE semantics as the elements of the powerset P({ T , F })
of the set of classical truth values { T , F }, see (Shramko and Wansing 2005, 2011).
If one goes one step further and considers 16 = P(P({ T , F })), one can define an
information ordering ≤i, a truth ordering ≤t , and a falsity ordering ≤f on the set of
generalized truth values from 16 as follows:

Definition 4.1 For every x and y in 16,

1. x ≤i y iff x ⊆ y;
2. x ≤t y iff xt ⊆ yt and y−t ⊆ x−t , where xt := { y ∈ x : T ∈ y } and

x−t := { y ∈ x : T /∈ y };
3. x ≤f y iff xf ⊆ yf and y−f ⊆ x−f , where xf := { y ∈ x : F ∈ y } and

x−f := { y ∈ x : F /∈ y }.
The partial orders ≤t and ≤f may be seen as logical orderings. Clearly, meets and
joins exist in 16 for ≤i, ≤t , and ≤f . If we use � and � with the appropriate subscripts
for these operations under the corresponding ordering relations, we obtain the trilat-
tice SIXTEEN3 = 〈16,�i,�i,�t,�t,�f ,�f 〉. Moreover, one can define unary oper-
ations −t , −f , and −i which invert the respective lattice ordering, preserve the other
orderings and satisfy x = −i −i x, x = −t −t x, x = −f −f x.

The languages Lt , Lf , and Ltf are defined in Backus–Naur form as follows:

Lt A: := p | ∼tA | (A ∧t A) | (A ∨t A)

Lf A: := p | ∼f A | (A ∧f A) | (A ∨f A)

Ltf A: := p | ∼tA | ∼f A | (A ∧t A) | (A ∧f A) | (A ∨t A) | (A ∨f A),

where p is a propositional variable from some fixed infinite set.
In (Shramko and Wansing 2005) valuation functions v16 from the set Prop of

propositional variables into 16 are extended to the set of allLtf -formulas by requiring
that for any A and B ∈ Ltf :

1. v16(A ∧t B) = v16(A) �t v16(B); 4. v16(A ∧f B) = v16(A) �f v16(B);
2. v16(A ∨t B) = v16(A) �t v16(B); 5. v16(A ∨f B) = v16(A) �f v16(B);
3. v16(∼tA) = −tv16(A); 6. v16(∼f A) = −f v16(A)

Definition 4.2 Relations of truth and falsity entailment between sentences A, B ∈
Ltf are defined as follows:

A �16
t B iff ∀v16 (v16(A) ≤t v16(B)); A �16

f B iff ∀v16 (v16(B) ≤f v16(A)).
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The reason given in (Shramko and Wansing 2005) for defining falsity entailment
as shown is that for defining entailment, the authors were interested in decreasing
falsehood. We obtain a uniform definition of the two entailment relations if we
denote by ≤f the relation inverse to the relation which is denoted by ≤f in (Shramko
and Wansing 2005). As a consequence of this change, the operations �f and �f are
interchanged. A 16-valuation v : Prop −→ 16 can then be extended to the set of all
Ltf -formulas in a homomorphic way:

1. v(A ∧t B) = v(A) �t v(B); 4. v(A ∧f B) = v(A) �f v(B);
2. v(A ∨t B) = v(A) �t v(B); 5. v(A ∨f B) = v(A) �f v(B);
3. v(∼tA) = −tv(A); 6. v(∼f A) = −f v(A),

and the relations �t and �f are defined in a uniform way.

Definition 4.3 A �t B iff ∀v (v(A) ≤t v(B)); A �f B iff ∀v (v(A) ≤f v(B)).

In (Shramko and Wansing 2005), it is shown that the restrictions of the conse-
quence relation �16

t to the language Lt and of �16
f to the language Lf both coincide

with FDE-entailment. The problem of axiomatizing the consequence relations �16
t

and�16
f in the full languageLtf remained open for awhile. It has finally been solved in

(Odintsov andWansing 2015), where truth and falsity entailment are axiomatized by
means of a first-degree bicalculus. Moreover, it is shown that the logic of SIXTEEN3

in the propositional language Ltf is the logic of commutative distributive bilattices.
As far as symmetry versus asymmetry between verification and falsification is

concerned, we may note that the truth and falsity orderings of SIXTEEN3 are defined
in a completely symmetrical way with regard to the presence and absence of the
classical truth value T , respectively F. The two distinct relations of truth and falsity
entailment treat truth and falsity as mutually independent dimensions of reasoning.
As remarked in (Odintsov and Wansing 2015), we may think of �t , �f , and the
analogously defined relation �i as colouring reasoning in terms of truth, falsity, and
information.

4.4 Ruling Out and Ruling In

In this section, it is shown that intuitionistic negation, expressing a notion of indirect
falsification, can be symmetrically supplemented with a notion of indirect verifica-
tion.

As we have seen, Sequoiah-Grayson suggests thinking of intuitionistic negation
and its substructural variants as ways of representing the idea of ruling out. If A
implies ⊥ (in Sequoiah-Grayson’s notation 0), then A is ruled out. In semantical
terms, a state supports the truth of ¬A iff every possible expansion of that state
supports the truth of ⊥. Since no state supports the truth of ⊥, this amounts to
requiring that a state x supports the truth of¬A iff no possible expansion of x supports
the truth of A. If that gives one a notion of ruling out, what is ruling in? The idea is
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to have a negation, −, such that a state supports the falsity of −A iff every possible
expansion of that state supports the falsity of the constantly true zero-place connective
�. Since no state supports the falsity of �, this amounts to requiring that a state x
supports the falsity of −A iff no possible expansion of x supports the falsity of A.
In other words, A is ruled in at state x iff the assumption that A is false leads to the
falsity of �. In that way the state x makes allowance for A.

A logic that allows one to represent on the one hand ruling out and ruling in and
on the other hand direct and indirect falsification is the bi-intuitionistic logic 2Int
introduced in (Wansing 2013). The language L2Int of 2Int is defined in Backus–Naur
form as follows:

A: := p | ⊥ | � | (A ∧ A) | (A ∨ A) | (A → A) | (A −<<< A).

In 2int, the co-implication connective A −<<< B is in a sense dual to intuitionistic impli-
cation, it internalizes a relation of dual derivability into the logical object language.
Dual derivability leads from counterassumptions (premises assumed to be false) to
false conclusions. The co-negation−A ofA is defined as� −<<< A, and the intuitionistic
negation ¬A of A is defined as A → ⊥.

Definition 4.4 A model for 2Int is a structure M = 〈I,≤, v+, v−〉, where 〈I,≤〉 is
a pre-order and v+, v− are functions from the set of atomic formulas to subsets of the
non-empty set of states I . For x ∈ I the relations M, x �+ A (“x supports the truth
of A in M”) and M, x �− A (“x supports the falsity of A in M”) are inductively
defined as shown in Table1. Moreover, support of truth and support of falsity are
required to be persistent. For every atomic formula p, and all states x, x′: if x′ ≥ x
and M, x �+ p, then M, x′ �+ p and if x′ ≥ x and M, x �− p, then M, x′ �− p.

Definition 4.5 An L2Int-formula A is said to be valid in a model for 2Int M =
〈I,≤,v+, v−〉 iff for every x ∈ I , M, x �+ A (iff for every x ∈ I , M, x �− ¬A); A is
valid in 2Int (�2Int A) iff A is valid in every model for 2Int.

An L2Int-formula A is dually valid in a model for 2Int M = 〈I,≤, v+, v−〉 iff for
every x ∈ I , M, x �− A (iff for every x ∈ I , M, x �+ −A); A is dually valid in 2Int
(�d

2Int A) iff A is dually valid in every model for 2Int.

Definition 4.6 Let Δ ∪ { A } be a set of L2Int-formulas. Δ entails A (Δ � A) iff for
every model for 2Int M = 〈I,≤, v+, v−〉 and every x ∈ I , it holds that if the truth of
every element of Δ is supported by x, then the truth of A is supported by x.

Let Δ ∪ { A } be a set of L2Int-formulas. Δ dually entails A (Δ �d A) iff for every
model for 2IntM = 〈I,≤, v+, v−〉 and every x ∈ I , it holds that if the falsity of every
element of Δ is supported by x, then the falsity of A is supported by x.

If truth and falsity do not divide up the totality of all states into two exclusive
and exhaustive domains, then it is only natural to distinguish between support of
truth, �+, and support of falsity, �− and, moreover, to distinguish between truth
preservation and falsity preservation, i.e., between the relations � and �d .
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Table 1 Support of truth and support of falsity conditions for 2Int

M, x �+ p iff x ∈ v+(p)

M, x �− p iff x ∈ v−(p)

M, x �+ � M, x �
− � M, x �

+ ⊥ M, x �− ⊥
M, x �+ (A ∧ B) iff M, x �+ A and M, x �+ B

M, x �− (A ∧ B) iff M, x �− A or M, x �− B

M, x �+ (A ∨ B) iff M, x �+ A or M, x �+ B

M, x �− (A ∨ B) iff M, x �− A and M, x �− B

M, x �+ (A → B) iff for every x′ ≥ x : M, x′
�

+ A or M, x′ �+ B

M, x �− (A → B) iff M, x �+ A and M, x �− B

M, x �+ ¬A iff for every x′ ≥ x : M, x′
�

+ A

M, x �− ¬A iff M, x �+ A

M, x �+ −A iff M, x �− A

M, x �− −A iff for every x′ ≥ x : M, x′
�

− A

M, x �+ (A −<<< B) iff M, x �+ A and M, x �− B

M, x �− (A −<<< B) iff for every x′ ≥ x : M, x′
�

− B or M, x′ �− A.

A sound and complete natural deduction proof system N2Int for 2Int is presented
in (Wansing 2013). The system uses single-line rules for proofs and double-line
rules for dual proofs. Derivations in N2Int combine proofs and dual proofs, so that a
proof, in which the conclusion appears under a single line, may contain dual proofs
as subderivations, and a dual proof, in which the conclusion appears under a double
line, may contain proofs as subderivations. The conclusions of proofs and dual proofs
depend on ordered pairs (Δ;Γ ) of finite sets of premises, a setΔ of assumptions that
are taken to be true, and a set Γ of “counterassumptions” that are taken to be false.
Single square brackets [ ] are used to indicate that assumptions may be cancelled,
and double-square brackets [[ ]] are used to indicate that counterassumptions may be

cancelled. We write [A] instead of [ A ] and [[A]] instead of [[ A ]].
The proof rules for the connectives�,⊥,∧,∨, and→ are basically those of intu-

itionistic logic; the rules for introducing (eliminating) the connectives of intuitionistic
logic into (from) dual proofs are obtained by a dualization of their introduction and
elimination rules for proofs. In 2Int the rules for introducing (eliminating) implica-
tions into (from) dual proofs are chosen in accordance with the usual understanding
of the falsification conditions of implications, i.e., an implication A → B is false iff
A is true and B is false. The rules for introducing (eliminating) co-implications into
(from) proofs are such that the provability of A −<<< B amounts to the dual provability

of A → B. We will consider A as a proof of A from ({ A }; ∅) and A as a dual proof of
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Table 2 Introduction and elimination rules of N2Int w.r.t. proofs

(Δ; Γ )

.

.

.

⊥
A

(⊥Ep)

(Δ; Γ )

.

.

.

A

(Δ′; Γ ′)
.
.
.

B
A ∧ B

(∧ Ip)

(Δ; Γ )

.

.

.

A ∧ B
A

(∧ Ep)

(Δ; Γ )

.

.

.

A ∧ B
B

(∧ Ep)

(Δ; Γ )

.

.

.

A
A ∨ B

(∨ Ip)

(Δ; Γ )

.

.

.

B
A ∨ B

(∨ Ip)

(Δ; Γ )

.

.

.

A ∨ B

([A],Δ′; Γ ′)
.
.
.

C

([B],Δ′′; Γ ′′)
.
.
.

C
C

(∨ Ep)

([A],Δ; Γ )

.

.

.

B
A → B

(→ Ip)

(Δ; Γ )

.

.

.

A

(Δ′; Γ ′)
.
.
.

A → B
B

(→ Ep)

(Δ; Γ )

.

.

.

A

(Δ′; Γ ′)
.
.
.

B
A −<<< B

(−<<< Ip)

(Δ; Γ )

.

.

.

A −<<< B
A

(−<<< Ep)

(Δ; Γ )

.

.

.

A −<<< B

B
(−<<< Ep)

A from (∅; { A }).11 Moreover � is a proof of � from (∅; ∅) and ⊥ is a dual proof
of ⊥ from (∅; ∅). In addition to these stipulations, the system N2Int comprises the
introduction and elimination rules listed in Tables2 and 3.12 We write (Δ;Γ ) � A if
there is a proof of A from (Δ;Γ ); and we write (Δ;Γ ) �d A if there is a dual proof
of A from (Δ;Γ ). Moreover, we assume that if (Δ;Γ ) � A, Δ ⊆ Δ′ and Γ ⊆ Γ ′
for finite sets of L2Int-formulas Δ′ and Γ ′, then (Δ′;Γ ′) � A. Similarly, we assume
that if (Δ;Γ ) �d A, Δ ⊆ Δ′ and Γ ⊆ Γ ′ for finite sets of L2Int-formulas Δ′ and Γ ′,
then (Δ′;Γ ′) �d A.

How is ruling in related to ruling out? Note first that the intuitionistic negation ¬
allows one to switch from provability to dual provability, whereas the dual negation
allows one to switch from dual provability to provability.

11Since in ordinary natural deduction a formula A is a proof of A from { A }, the cancellation of
formulas amounts to the cancellation of proofs.
12In these tables, Ep stands for “elimination from proofs,” Ip for “introduction into proofs,” Edp
for “elimination from dual proofs,” and Idp for “introduction into dual proofs.”
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Table 3 Introduction and elimination rules of N2Int w.r.t. dual proofs

(Δ ;Γ )
...
�
A

(�Ed p)

(Δ ; )
...
A

(Δ ′;ΓΓ ′)
...
B

A∨B
(∨ Id p)

(Δ ;Γ )
...

A∨B
A

(∨Ed p)

(Δ ;Γ )
...

A∨B
B

(∨Ed p)

(Δ ;Γ )
...
A

A∧B
(∧ Id p)

(Δ ;Γ )
...
B

A∧B
(∧ Id p)

(Δ ;Γ )
...

A∧B

(Δ ′;Γ ′, [[A]])
...
C

(Δ ′′;Γ ′′, [[B]])
...
C

C
(∧Ed p)

(Δ ;Γ , [[A]])
...
B

B−<<< A
(−<<< Id p)

(Δ ′;Γ ′)
...

B−<<< A

(Δ ;Γ )
...
A

B
(−<<<Ed p)

(Δ ;Γ )
...
A

(Δ ′;Γ ′)
...
B

A → B
(→ Id p)

(Δ ;Γ )
...

A → B
A

(→Ed p)

(Δ ;Γ )
...

A → B
B

(→Ed p)

Observation 4.7 (Δ;Γ ) � A iff (Δ;Γ ) �d ¬A; (Δ;Γ ) �d A iff (Δ;Γ ) � −A.

Proof

(Δ;Γ )

...

A ⊥
A → ⊥ (→ Idp)

(Δ;Γ )

...

A → ⊥
A

(→ Edp)
�

(Δ;Γ )

...

A
� −<<< A

(−<<< Ip)

(Δ;Γ )

...

� −<<< A

A
(−<<< Ep)

�
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As a corollary to Observation 4.7 we may note that due to the presence of the
two negations, the distinction between assumptions and counterassumptions could
be dispensed with in 2Int.

Observation 4.8 Let ¬Θ := { ¬A : A ∈ Θ } and −Θ := { −A : A ∈ Γ } for a set
of formulas Θ . Then (Δ;Γ ) � A iff (Δ ∪ −Γ ; ∅) � A, and (Δ;Γ ) �d A iff
(∅;Γ ∪ ¬Δ) �d A.

Observation 4.9 In the system N2Int the negations ¬ and − and the two notions of
derivability � and �d are related as follows:

1. (Δ;Γ ) � ¬A iff (Δ;Γ ) �d −¬A.
2. (Δ;Γ ) �d ¬A iff (Δ;Γ ) � −¬A.
3. (Δ;Γ ) � −A iff (Δ;Γ ) �d ¬ − A.
4. (Δ;Γ ) �d −A iff (Δ;Γ ) � ¬ − A.

Proof 1. and 2. are just instantiations of the equivalences from Observation 4.7. As
to 3. and 4. we have:

�

(Δ;Γ )

...

(� −<<< A) → ⊥
� −<<< A

A
� −<<< A

(Δ;Γ )

...

� −<<< A ⊥
(� −<<< A) → ⊥

(Δ;Γ )

...

� −<<< A

[� −<<< A]
A

�
⊥ → C

⊥
(� −<<< A) → ⊥

� [[A]]
� −<<< A

(Δ;Γ )

...

(� −<<< A) → ⊥
⊥

C −<<< �
�
� −<<< A

�

In (Wansing 2013), N2Int is shown to be weakly sound and complete with respect
to 2Int: �2Int A iff (∅; ∅) � A and �d

2Int A iff (∅; ∅) �d A. The proof uses a faith-
ful embedding of 2Int into intuitionistic logic with respect to entailment.13 Strong
soundness and completeness can easily be shown.

Observation 4.10 Let A be an L2Int-formula and let { A1, . . . , Ak }, { B1, . . . , Bm }
be finite, possibly empty sets of L2Int-formulas. If both sets are empty, then let A ≡
(A1 → (A2 → (. . . (−B1 → (. . . (−Bm → A) . . .)) . . .))) and A ≡ (((. . . ((. . . (A −<<<

Bm) . . .) −<<< B1) . . .) −<<< ¬A2) −<<< ¬A1).

1. ({ A1, . . . , Ak }; {B1, . . . , Bm }) � A iff { A1, . . . , Ak,−B1, . . . ,−Bm } � A;
2. ({ A1, . . . , Ak }; { B1, . . . , Bm }) �d A iff { ¬A1, . . . ,¬Ak, B1, . . . , Bm } �d A.

13Another translation presented in (Wansing 2013) gives one a faithful embedding of 2Int into dual
intuitionistic logic with respect to dual entailment.
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Proof

({ A1, . . . , Ak }; { B1, . . . , Bm }) � A
iff ({ A1, . . . , Ak,−B1, . . . ,−Bm }; ∅) � A by Obs. 4.8
iff (∅; ∅) � (A1 → (A2 → (. . . (−B1 → (. . . (−Bm → A) . . .)) . . .)))

iff � (A1 → (A2 → (. . . (−B1 → (. . . (−Bm → A) . . .)) . . .)))

iff { A1, . . . , Ak,−B1, . . . ,−Bm } � A

({ A1, . . . , Ak }; { B1, . . . , Bm }) �d A
iff (∅; { ¬A1, . . . ,¬Ak, B1, . . . , Bm }) �d A by Obs. 4.8
iff (∅; ∅) �d (((. . . ((. . . (A −<<< Bm) . . .) −<<< B1) . . .) −<<< ¬A2) −<<< ¬A1)

iff �d (((. . . ((. . . (A −<<< Bm) . . .) −<<< B1) . . .) −<<< ¬A2) −<<< ¬A1)

iff { ¬A1, . . . ,¬Ak, B1, . . . , Bm } �d A �

The language of Nelson’s N4 contains the connectives ∧, ∨, →, and ∼. There is
thus only one negation, namely the strong negation ∼. The relational semantics for
N4 also comes with a distinction between support of truth and support of falsity.

Definition 4.11 A model for N4 is defined exactly as a model for 2Int, except that
the relations M, x �+ A (“x supports the truth of A in M”) and M, x �− A (“x
supports the falsity of A in M”) are inductively defined as shown in Table4.

The proof theory of N4 and closely related systems is comprehensively dealt with
in (Kamide and Wansing 2012), see also (Kamide and Wansing 2015). If we denote
provability in N4 by �N4, we could define a notion of disprovability in N4, �dis

N4, by
setting14

�dis
N4 A iff �N4 ∼A.

We would then have �dis
N4 ∼A iff �N4 ∼∼A iff �N4 A, whereas in 2Int we have �d

¬A iff � A and �d A iff � −A.
In Sect. 4 I argued that what is positive information in the context of verification

may be negative information in the context of falsification, and vice versa. This idea
is realized in different ways in the systems N4 and 2Int. In N4, the falsification of A
(in the sense of support of falsity) amounts to the verification of ∼A (in the sense of
support of truth). If an information state x directly falsifies A, then x directly verifies
∼A, and if x directly verifies A, then x directly falsifies ∼A. In 2In, an information
state x verifies (in the sense of support of truth) a formula A iff it falsifies (in the
sense of support of falsity) its intuitionistic negation ¬A, whereas x falsifies A iff x
verifies its co-negation −A.

14Cf. (Wansing 2010), where I consider extensions of Heyting–Brouwer logic (Rauszer 1980) by
strong negation and refer to reductions to non-truth as dual proofs.
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Table 4 Support of truth and support of falsity conditions for N4

M, x �+ p iff x ∈ v+(p)

M, x �− p iff x ∈ v−(p)

M, x �+ (A ∧ B) iff M, x �+ A and M, x �+ B

M, x �− (A ∧ B) iff M, x �− A or M, x �− B

M, x �+ (A ∨ B) iff M, x �+ A or M, x �+ B

M, x �− (A ∨ B) iff M, x �− A and M, x �− B

M, x �+ (A → B) iff for every x′ ≥ x : M, x′
�

+ A or M, x′ �+ B

M, x �− (A → B) iff M, x �+ A and M, x �− B

M, x �+ ∼A iff M, x �− A

M, x �− ∼A iff M, x �+ A

5 Summary

We have seen that in accordance with Gurevich (1977) and Wansing (1993a, b), it
makes sense to treat definitely positive and definitely negative information on an
equal footing. In particular, in the system N4 a sentence letter p may be directly
falsified (verified) by directly verifying (falsifying) its strong negation ∼p. In the
system 2Int, p may be directly falsified by a direct verification of its co-negation −p,
and p may be directly verified by a direct falsification of its intuitionistic negation
¬p. There is thus again a symmetry, though a more complex symmetry than in N4,
between direct verification and direct falsification and between definitely positive
and definitely negative information. Intuitionistic negation internalizes a notion of
indirect falsification with respect to provability, �. In the system 2Int we have both
intuitionistic negation and co-negation, and the latter internalizes a notion of indirect
verification with respect to dual provability, �d . If indirect falsification makes sense,
and it does, indirect verification makes sense as well. Again we have symmetry
instead of asymmetry.15

Ifwe comeback to the above central ‘what is’-question,What is negation?,wemay
say that what strong negation, intuitionistic negation, and co-negation have in com-
mon is that they permit a passage from provability to its dual, or vice versa. Michael
Dunn’s favourite 4-valued semantics models strong negation, which expresses a
symmetry between direct verification and direct falsification.

Acknowledgments I would like to thank Katalin Bimbó, Yaroslav Shramko, Stanislav Speranski
and two anonymous referees for their very helpful comments.

15In (Kapsner 2014), a detailed analysis is presented ofMichael Dummett’s views on the interaction
between verification and falsification in an inferentialist theory of meaning. In that context Kapsner
argues for “the superiority of theNelson account over the intuitionistic one,” (Kapsner 2014, p. 198).
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Truth, Falsehood, Information and Beyond:
The American Plan Generalized

Yaroslav Shramko

Abstract This paper highlights the importance of a strategy for semantic analysis
initiated by J. Michael Dunn, known in the literature as the “American Plan.” The
key insight of the plan relies on allowing under-determined and over-determined
logical valuations, which prove to be essential for a logical analysis of information
structures. The main directions in the development of this fundamental idea are
explained, and an implementation of the possible generalization thereof is briefly
reviewed, culminating in the notion of a multi-consequence logic.

Keywords American plan · Bilattice · Multi-consequence logic · Multilattice ·
Over-determined valuations · Trilattice · Under-determined valuations

1 Introducing Semantics on the American Plan:
Four Versions

1.1 Preliminaries

Among the many important achievements of J. Michael Dunn in various areas of
modern non-classical logic is his fundamental contribution, essential for the general
development of the entire field, namely, introducing and thoroughly elaborating a
revolutionary strategy for semantic analysis, whereby a sentence can rationally be
considered to be not only just true or just false (Fregean das Wahre and das Falsche),
but also neither true nor false, as well as simultaneously both true and false. The
strategy implies abandoning some core principles of classical logic, including the
principles of bi-valence (every sentence is true or false), and unique-valence (no
sentence can be true and false simultaneously), cf. (Dunn 2000, p. 5). Since these
principles seem to be rather restrictive for certain purposes of scientific inquiry,
under- and over-determined logical valuations are allowed.
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This idea was initially proposed and developed in Dunn (1966) doctoral thesis,
presented and discussed thereafter in a number of conference talks, seminars and
abstracts such as (Dunn1967, 1971), andfinally exposed in detail in his seminal paper
(Dunn 1976), see also a comprehensive discussion (and generalization) of the subject
in (Dunn 1999, 2000).1 At first, Dunn’s idea of expanding logical valuations emerged
in the context of investigations into relevant logic and the problem of entailment,
conceived as an effective way of eliminating the so-called “paradoxes of classical
entailment and material implication.” But, as time passed, it became clear that it
could find fruitful applications in many other fields, especially in a logical analysis
of information structures, see, e.g., the comprehensive study by Wansing (1993).

Robert K. Meyer in (1978) wittily dubbed this strategy the “American Plan” to
contrast the approach ofAmericansDunn andNuelBelnapwith the semantic analysis
of the Australians Richard Routley (later Sylvan) and himself.2 The burden of the
plan can be roughly defined as set out below.

LetL be some language (a set of sentences), and 2 = { F, T } be the set of classical
truth-values. A standard classical valuation v2 (a 2-valuation) is then a function from
L to 2. Since this is a total function, every sentence is allocated one and only one
element from 2, i.e., either true or false. Now, to allow the non-standard, to wit,
under-determined and over-determined valuations mentioned above, the classical
truth-value function must be replaced with some other valuation procedure. Such a
procedure can be constructed in several ways, thereby forming particular versions
of a concrete implementation of the American Plan.

In this section four such versions are delineated, all of which are due to Dunn,
except for the last one, which was elaborated by Belnap (although initiated also
by Dunn). These versions are all formally equivalent and inter-definable, differing
mainly in their philosophical background and informal motivations. Section2 shows
how Dunn’s ideas can be grasped algebraically using a suitable notion of a bilattice,
and presents an adequate logical formalism of this structure. In Sect. 3 a method for
generalizing the American Plan through the notion of a trilattice and corresponding
bi-consequence system is described. Section4 completes the generalization, culmi-
nating in the notion of a multilattice which finds its deductive representation in a
multi-consequence logical system. Section5 presents another system for reasoning
with logical multilattices.

In summary, the contributions of this paper are as follows: (1) a brief survey
of the work by Dunn (and others) on four-valued semantics in accordance with
the American Plan; (2) an exposition of some key results concerning a possible

1It should be pointed out that classical principles of bi-valence and unique-valencewere occasionally
criticized long before Dunn’s work, see e.g., (Łukasiewicz 1920, 1993). However, it was in fact
Dunn, who not only challenged particular principles, but also initiated a ground-breaking research
program (paradigm) on semantic analysis, in which abandoning certain classical principles turned
out to be not a starting point, but rather the effect of more general philosophical considerations.
2Meyer and Routley (Sylvan) are inseparably associated with Australia owing to their long and
fruitful service at the Australian National University, even though Meyer originally came from the
United States and Routley from New Zealand.
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generalization thereof, as developed and summarized most notably in (Shramko and
Wansing 2011); and (3) a method for implementing a complete generalization of the
American Plan.

1.2 Version 1: Aboutness Valuation

In (Dunn 1966, pp. 121–132), driven by the idea of content containment for state-
ments of relevant entailment, Dunn proposed replacing the classical truth-value func-
tion by a so-called “aboutness valuation”—a function that ascribes to each proposi-
tional variable p a pair of sets (X1, X2). These sets are subsets of some more general
“set of topics” X called “the universe of discourse.” X1 is conceived as the set of
topics about which the proposition gives definite positive information, while X2 is
the set of topics about which the proposition gives definite negative information, cf.
(Dunn 1986, p. 191). The pair (X1, X2) is called a “proposition surrogate,” since
“such a pair when assigned to a formula gives a partial representation of the meaning
of the formula” (Dunn 1966, p. 126).

The aboutness valuation is extendable to all sentences in our language by the
following natural definition3 of logical connectives:

Definition 1.1

(X1, X2) ∧ (Y1, Y2) = (X1 ∪ Y1, X2 ∩ Y2);
(X1, X2) ∨ (Y1, Y2) = (X1 ∩ Y1, X2 ∪ Y2);

∼(X1, X2) = (X2, X1).

Note, that proposition surrogates need be neither disjoint (X1 ∩ X2 = ∅) nor
exhaustive (X1 ∪ X2 = X ), and thus, topics can contradict each other, or—on some
issue—we can have no topic at all. If the universe of discourse consist of a single
topic x , then aboutness valuation gives to every sentence one of the following four
assignments: (∅, { x }), ({ x }, ∅), ({ ∅ }, { ∅ }), and ({ x }, { x }). In effect, the first
two assignments correspond to classical falsity and truth, whereas the next two pairs
represent under-determined and over-determined valuations respectively.

It is worth noting that in his thesis Dunn formulated the semantics without explicit
reference to the terminology of truth-values, employing instead such euphemisms
as “topics,” “definite information about,” and “aboutness valuation” among others.4

There were both philosophical and social-psychological reasons for this. Philosoph-
ically a strong distinction should be made between ontological and epistemological

3This definition shows that X1 represents the “falsity domain” of the corresponding propositional
surrogate, while X2 is its “truth domain.” If one were to interpret the pair (X1, X2) as a “possible
world semantics,” then X1 and X2 would be the sets of “worlds” in which the corresponding
proposition are false and true respectively.
4On truth-values and their importance for logic and philosophy see, e.g., (Shramko and Wansing
2014).
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(informational) interpretations of truth-values. Without such a distinction, not many
in the logical community in the 1960s, and even nowadays, were and are ready to
talk about sentences as being both true and false, or neither true nor false. As Dunn
remarked in (1976, Footnote 10), in his dissertation he “lacked the philosophical
nerve to embrace this as a serious way of talking.” However, he immediately admit-
ted use of these phrases “in conversation.”

1.3 Version 2: Valuation as a Relation

In (Dunn 1976) the American Plan is presented in full detail as the “intuitive seman-
tics” for a so-called “first-degree relevant entailment,” see also in (Anderson et al.
1992, Sect. 50). Dunn develops here a certain generalization of a possible-world
semantics. Instead of the notion of a “possible world” Dunn employs the notion of a
“situation,” stressing in particular that “there are plenty of situations where we sup-
pose, assert, believe, etc., contradictory sentences to be true” (Dunn 1976, p. 157).
Hence, situations acquire an explicitly epistemic (informational) characterization,
and as such they may well be inconsistent and/or incomplete.

Within the framework of a possible world semantics a proposition can be realized
as a function from a set of possible worlds to the set of truth-values, see (Dunn 1976,
p. 154). This is just another representation of a classical truth-value function with
respect to possible worlds. In contrast, replacing possible worlds with (abstract epis-
temic) situations allows one to construe of a proposition “as relational but not nec-
essarily functional in character.” In other words, instead of the classical truth-value
function Dunn introduces a valuation, which is a “three-placed relation ϕ relating
sentences, situations, and truth-values.” For the sake of further simplification “we can
forget situations and deal just with two-placed relations simply relating sentences
to truth-values” (Dunn 1976, p. 155). Thus, we obtain a valuation v that relates
sentences in our language to elements from 2.

The main idea of the American Plan can be implemented by generalizing the
notion of valuation, defining it as a binary relation between setsL and 2, which need
not be total and functional in all cases. Given an atomic proposition p, this valuation
either assigns to it one of the two classical truth-values (in this case the valuation
behaves exactly like the classical truth-value function), and we then state that p is
T or p is F , or fails to relate any of the values (partial function), and we say that
p is neither T nor F , or assigns to it both values simultaneously (non-functional
relation), and we say that p is both T and F .

Valuation v, being defined for atomic propositions, can be extended to compound
sentences in a routine way, with the specificity that truth conditions need to be intro-
duced alongside the falsity conditions. Then, falsity as an autonomous, independent
notion is no longer equal to non-truth:
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Definition 1.2 For any A and B,

A ∧ B is T iff A is T and B is T, A ∧ B is F iff A is F or B is F;
A ∨ B is T iff A is T or B is T, A ∨ B is F iff A is F and B is F;
∼A is T iff A is F, ∼A is F iff A is T .

1.4 Version 3: Generalized Truth-Value Function

Another way of generalizing the classical truth-value function with the same effect
as abandoning the principles of bi-valence and unique-valence with respect to clas-
sical truth and falsity, but by maintaining the functional character of the valuation
procedure is also given in (Dunn 1976). For a given valuation relation v defined as
above, Dunn defines v∗(A) as “the image of A under v (i.e., the set of truth-values
to which A is related by v)” (Dunn 1976, p. 156, notation adjusted). That is, v∗ is a
function from L to the power-set of 2.

In (Shramko et al. 2001, p. 762) this kind of valuation is called multivaluation,
while in (Shramko and Wansing 2005, p. 122) a truth-value function conceived in
this way is called a generalized truth-value function. A generalized truth-value func-
tion defined on 2, and applied to some proposition, produces exactly four possible
assignments: ∅, { F }, { T }, { F, T }. These assignments are analogous to those of
the aboutness valuation given above.

1.5 Version 4: Generalized Truth-Values

The idea of a generalized truth-value function not only implies a far-reaching general-
ization of the notion of a classical truth-value function, but also leads to an important
generalization of the notion of the truth-value itself, obtained by hypostatizing the
assignments of the generalized truth-value function given above.

Belnap (1977a, b) developed the generalization suggested by Dunn, and imple-
mented it in the form of a “useful four-valued logic” for “how a computer should
think,” by devising a highly heuristic “computerized” interpretation of the situations
considered in (Dunn 1976). Indeed, computers often have to workwith incomplete or
inconsistent information.Nevertheless, it is desirable that evenwhendealingwith this
kind of information a computer remains functional and more or less reliable, “with-
out letting minor inconsistencies in its data lead to terrible consequences” (Dunn
1986, p. 193).

Think of the truth-value of some sentence as the information that “is told” to a
computer about the sentence. Then, alongside the standard (“normal” or classical)
situations when a computer is told that the sentence is true or false, we have to take
into account situations in which the computer does not receive any information about
the sentence, or is told that the sentence is both true and false, i.e., it receives (possibly



196 Y. Shramko

N

T

B

F

F

B

T

N

Fig. 1 Logical lattice L4 and approximation lattice A4

from different sources or implicitly) inconsistent information about the sentence. In
this way we obtain the set of four “told values” 4 = P(2), which correspond to the
set of above assignments of a generalized truth-value function:

N = { }—none (“told neither falsity nor truth”);
F = { F }—plain falsehood (“told only falsity”);
T = { T }—plain truth (“told only truth”);
B = { F, T }—both falsehood and truth (“told both falsity and truth”).

In (Shramko et al. 2001, p. 763) these “told values” are called “generalized truth-
values.” In other words, the application of a generalized truth-value function to some
basic set of (initial) truth-values produces generalized truth-values, each of which is
a subset of the basic set (including, of course, the empty set).

Belnap shows how the elements of 4 can be organized into two distinct lattices, a
“logical lattice” L4, and an “approximation lattice” A4, as presented in Fig. 1. L4 is
“logical” because the ordering on it is in effect a logical order with the usual truth-
functional conjunction and disjunction as meet and join respectively, and negation
as the operation that inverts this order. Moreover, the relation of logical entailment
can be defined through a conformity with the logical order. The ordering of A4 can
be naturally explicated as “approximates the information in.” The idea of this lattice
can be traced back to Dana Scott, see, e.g., (Scott 1973), who considers various
examples of an approximation order. Belnap remarks that N is at the bottom of A4
because it gives no information at all, whereas B is at the top because it gives too
much (inconsistent) information.

2 Truth-Value Bilattices and First-Degree
Consequence System

Ginsberg (1986, 1988) noticed the possibility of uniting a logical lattice and an
approximation lattice into one algebraic structure, which he called the bilattice.
Bilattices have found fruitful applications in algebraic logic, logic programming,
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theory of deductive databases, and some other areas; they were studied by many
authors, see, e.g., (Arieli and Avron 1996; Bou and Rivieccio 2011; Fitting 2006)
and references therein.

Consider definitions of some important notions suitable for further generalization.

Definition 2.1

1. A bilattice is a structure B2 = (S,�1,�2) in which S is a non-empty set, and �1

and �2 are partial orderings each giving S the structure of a lattice, determining
thus for each of the two lattices the corresponding operations of meet and join
denoted by 	1, 
1 and 	2, 
2.

2. A bilattice is called complete iff all meets and joins exist, with respect to both
orderings.

3. A bilattice is called interlaced iff each of the operations	1,
1,	2,
2 ismonotone
with respect to both orderings.

4. A bilattice is called distributive iff all the twelve distributive laws hold:
x ◦ (y • z) = (x ◦ y) • (x ◦ z), where ◦, • ∈ { 	1,
1,	2,
2 }, ◦ = •.
A bilattice may be equipped with inversion operations, the main feature of which

is to invert one of the bilattice orderings leaving the other unchanged:

Definition 2.2 Let (S,�1,�2) be a bilattice. Then a unary operation −1 is called
1-inversion iff it satisfies the following conditions for any x, y ∈ S:

(anti) x �1 y ⇒ −1y �1 −1x;
(iso) x �2 y ⇒ −1x �2 −1y;

(per2) −1 −1 x = x .

Operation of 2-inversion is defined analogously.

That is, 1-inversion (2-inversion) is an operation of period two (involution), anti-
tonewith respect to�1 (�2), and isotonewith respect to�2 (�1). If operation−1 (−2)
exists for a given bilattice, then it is called a bilattice with 1-inversion (2-inversion).5

If the carrier set of a bilattice is a set of truth-values, then we obtain a truth-value
bilattice. It turns out that the set of Belnapian generalized truth-values constitutes
the smallest non-trivial truth-value bilattice 〈4,�i ,�t 〉 known in the literature as
FOUR2, and presented in Fig. 2. It is equipped with an information order and a truth
order. These orderings represent an increase in information and truth respectively,
i.e., x �i y means that y is “at least as informative” as x , and x �t y means that
y is “at least as true” as x . FOUR2 is complete, interlaced and distributive. The
inversion operations exist for both orderings, t-inversion is usually called negation,
and i-inversion is known as conflation, see (Fitting 2006).

5By Definitions 2.1 and 2.2, I try in a way to systematize and regularize the bilattice-terminology
which is sometimes incoordinate [or “not uniform,” see (Mobasher et al. 2000, p. 111)] in works
by different authors. Moreover, these definitions are formulated in such a way as to enable further
generalizations when it comes to trilattices and multilattices, see subsequent sections.
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Fig. 2 Bilattice FOUR2
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Truth ordering can also be viewed as a “logical order,” because it determines the
central logical notions: of logical connectives and the relation of entailment. LetProp
be a set of propositional variables, and let p ∈ Prop. Consider language L defined
as follows:

L : A ::= p | ∼A | A ∧ A | A ∨ A.

Let a valuation v4 (4-valuation) be defined as a map from Prop into 4. We have
then the following definition of the truth conditions for propositional connectives:

Definition 2.3 For any A and B from L,

1. v4(A ∧ B) = v4(A) 	t v4(B);
2. v4(A ∨ B) = v4(A) 
t v4(B);
3. v4(∼A) = −tv

4(A).

Entailment relation between any A, B ∈ L can be defined as follows.

Definition 2.4 A �4 B iff ∀v4 (v4(A) �t v4(B)).

This relation is axiomatized by a system of “tautological entailments” from
(Anderson and Belnap 1975, Sect. 15.2) called also First Degree Entailment. It is
a so-called (single premiss–single conclusion) consequence system, the expressions
of which are of the form A � B to be read as “A has B as a consequence,” see,
e.g., (Dunn 1995, p. 302). This system is often denoted as FDE, and consists of the
following axiom schemata and rules of inference6:

System FDE:

a1. A ∧ B � A
a2. A ∧ B � B

6Note again that in the first degree entailment systems, a consequence is standardly considered to
be a relation between (single) formulas, with a usual generalization in mind to a relation between
sets of formulas (so that { A1, . . . , Am } � { B1, . . . , Bn } can be represented by A1 ∧ · · · ∧ Am �
B1 ∨ · · · ∨ Bn).
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a3. A � A ∨ B
a4. B � A ∨ B
a5. A ∧ (B ∨ C) � (A ∧ B) ∨ C
a6. A � ∼∼A
a7. ∼∼A � A
r1. A � B, B � C / A � C
r2. A � B, A � C / A � B ∧ C
r3. B � A, C � A / B ∨ C � A
r4. A � B / ∼B � ∼A.

3 One Step Further: From Bilattices to Trilattices
and a Bi-consequence System

In (Shramko andWansing 2005) a “powerset formation procedure” was continued as
applied to the set of Belnap’s truth-values 4. In this way we obtain the next member
among the sets of generalized truth-values, 16 = P(4):

1. N = ∅ 9. FT = { { F }, { T } }
2. N = { ∅ } 10. FB = { { F }, { F, T } }
3. F = { { F } } 11. TB = { { T }, { F, T } }
4. T = { { T } } 12. NFT = { ∅, { F }, { T } }
5. B = { { F, T } } 13. NFB = { ∅, { F }, { F, T } }
6. NF = { ∅, { F } } 14. NTB = { ∅, { T }, { F, T } }
7. NT = { ∅, { T } } 15. FTB = { { F }, { T }, { F, T } }
8. NB = { ∅, { F, T } } 16. A = { ∅, { T }, { F }, { F, T } }.

The transition from 4 to 16 can be motivated and justified very naturally by a
transition from single computers to computer networks, see (Shramko and Wansing
2005) for details. It also turns out that an adequate algebraic framework for16 requires
a transition from bilattices to trilattices.

Definition 3.1

1. A trilattice is a structure T3 = (S,�1,�2,�3) in which S is a non-empty set,
and �1, �2, �3 are partial orderings each giving S the structure of a lattice,
determining thus for each of the three lattices the corresponding pairs of meet
and join operations denoted by 〈	1,
1〉, 〈	2,
2〉, 〈	3,
3〉.

2. A trilattice is called complete iff all meets and joins exist, with respect to all three
orderings.

3. A trilattice is called interlaced iff each of the operations 	1, 
1, 	2, 
2, 	3,
3 is
monotone with respect to all three orderings.

4. A trilattice is called distributive iff all 30 distributive laws hold:
x ◦ (y • z) = (x ◦ y) • (x ◦ z), where ◦, • ∈ { 	1,
1,	2,
2,	3,
3 }, ◦ = •.
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Fig. 3 Trilattice SIXTEEN3 TB
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As to inversion operations, we have the following natural extension of Defini-
tion 2.2:

Definition 3.2 Let (S,�1,�2,�3) be a trilattice. Then a unary operation −1 is
called 1-inversion iff it satisfies the following conditions for any x, y ∈ S:

(anti) x �1 y ⇒ −1y �1 −1x;
(iso) x �2 y ⇒ −1x �2 −1y;
(iso) x �3 y ⇒ −1x �3 −1y;

(per2) −1 −1 x = x .

Operations of 2-inversion and 3-inversion are defined analogously.

The notion of a trilattice was introduced in (Shramko et al. 2001) in the context
of a generalized truth-value space of constructive logic, with three partial orderings
that represented respectively an increase in information, truth and constructivity.

In its turn, the elements of 16 above also constitute a trilattice SIXTEEN3 as
presented on Fig. 3. As explained in (Shramko and Wansing 2005), the truth order
in bilattice FOUR2 is in fact a truth-and-falsity order, since an increase in truth
means here a simultaneous decrease in falsity. In contrast to this SIXTEEN3 allows
to define a pure falsity order side by side with pure truth order as totally independent
of each other (for formal definitions see (Shramko and Wansing 2005, p. 128) with
the necessary modifications in definition of the (non-)falsity ordering).7

7Following a suggestion by Odintsov in (2009) I reverse here the falsity ordering as compared to
its definition in (Shramko and Wansing 2005). As Odintsov remarks, such a reversion allows us to
define logical connectives and entailment relations for the “truth-language” and “falsity-language”
in a homomorphic and uniform way.
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Thus, whereas in FOUR2 truth and falsity orders are merged into one logical
order, SIXTEEN3 effectively discriminates between truth and falsity, and an increase
in truth does not necessarily mean here a decrease in falsehood (and vice versa).
Hence, within SIXTEEN3 we have in fact two distinct logical orders: a truth order�t

representing an increase in truth, and a non-falsity order � f representing a decrease
in falsity.

As noted in (Shramko and Wansing 2005, p. 134), operations 	t , 
t , and −t in
SIXTEEN3 are not the only algebraic operations that naturally correspond to logical
conjunction, disjunction, and negation; 	 f , 
 f , and − f may play this role as well.
And taking into account the fact that x 	t y = x 	 f y, x 
t y = x 
 f y and −t x =
− f x , we can state that both logical orders bring into existence “parallel” and, in fact,
distinct logical connectives.

Consider languages Lt , L f , and Lt f defined as follows:

Lt : A ::= p | ∼t A | A ∧t A | A ∨t A;
L f : A ::= p | ∼ f A | A ∧ f A | A ∨ f A;
Lt f : A ::= p | ∼t A | ∼ f A | A ∧t A | A ∨t A | A ∧ f A | A ∨ f A.

Then a valuation function v16 (a 16-valuation) can be defined as a map from Prop
into 16 extended to all formulas of Lt f as follows:

Definition 3.3 For any A and B from Lt f :

1. v16(A ∧t B) = v16(A) 	t v16(B); 4. v16(A ∧ f B) = v16(A) 	 f v16(B);
2. v16(A ∨t B) = v16(A) 
t v16(B); 5. v16(A ∨ f B) = v16(A) 
 f v16(B);
3. v16(∼t A) = −tv

16(A); 6. v16(∼ f A) = − f v
16(A).

Thus, SIXTEEN3 allows a nontrivial coexistence of pairs of different (although
analogous) logical connectives without collapsing them into each other. As observed
in (Shramko and Wansing 2005, p. 135), it might be helpful to think of ∧t , ∨t , ∼t

in terms of the presence of truth and to treat ∧ f , ∨ f , ∼ f as essentially highlighting
the absence of falsity.

Each logical order determines now independent entailment relation between any
sentences A, B ∈ Lt f :

Definition 3.4 A �16
t B iff ∀v16 (v16(A) �t v16(B)).

Definition 3.5 A �16
f B iff ∀v16 (v16(A) � f v16(B)).

Certain important fragments of these logics were investigated in (Shramko and
Wansing 2005). In particular, it was shown that the logics generated separately by
the algebraic operations under the truth order and under the non-falsity order in
SIXTEEN3 coincide with the logic of FOUR2, namely it remains First Degree Entail-
ment.8

8In (Shramko and Wansing 2006) this result was extended to the infinite case, showing that Bel-
nap’s strategy of generalizing the set 2 = { T, F } of classical truth-values not only is coherent but
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The corresponding systems can be denoted by FDEt
t for the pure logic of truth

order, and FDE f
f for the pure logic of non-falsity order. The superscript indicates

the type of language used, and the subscript explicates the kind of consequence. The
system FDEt

t is thus a pair (Lt ,�t ), where �t is a binary relation (consequence) on
the language Lt satisfying the axiom schemes and rules of inference for FDE above
with the suitable subscripts, and analogously for FDE f

f .
Taking into account that trilattice SIXTEEN3 comes with two natural definitions

of (non-equivalent) entailment relations reflecting increase of truth and decrease of
falsity, we put forward in (Shramko and Wansing 2005) an idea of a natural unified
logic of SIXTEEN3 as a bi-consequence system comprising two kinds of entailment
relations. This idea finds its expression in the the following definition:

Definition 3.6 The bi-consequence logic (Lt f ,�16
t ,�16

f ) is the set of all valid state-
ments A �16

x B, where A, B ∈ Lt f , and x = t or x = f , (cf. Definitions3.4 and 3.5,
respectively).

In accordance with this definition, one obtains an idea of a bi-consequence sys-
tem FDEt f

t f = (Lt f ,�t ,� f ). A peaceful co-existence of two entailment and two
deductibility relations in one and the same logic is useful, because—as we have
seen—it may well make a difference whether we move along the truth order or the
non-falsity order.

In (Shramko and Wansing 2005) we axiomatized some important fragments of
(Lt f ,�16

t ,�16
f ), but the problem of finding a complete formulation of the whole

FDEt f
t f remained there open. This problem was solved by Odintsov and Wansing

in (2015), where they constructed a so-called bi-calculus, which is exactly the bi-
consequence system FDEt f

t f as defined in (Shramko and Wansing 2005, p. 144).9 It
is determined by the following axiom schemata and rules of inference:

FDE axioms for �t : FDE axioms for � f :
a1t . A ∧t B �t A a1 f . A ∧ f B � f A
a2t . A ∧t B �t B a2 f . A ∧ f B � f B
a3t . A �t A ∨t B a3 f . A � f A ∨ f B
a4t . B �t A ∨t B a4 f . B � f A ∨ f B
a5t . A �t∼t∼t A a5 f . A � f ∼ f ∼ f A
a6t . ∼t∼t A �t A a6 f . ∼ f ∼ f A � f A

Distributivity axioms:
a7t . A ◦ (B • C) �t (A ◦ B) • C , where ◦, • ∈ { ∧t ,∨t ,∧ f ,∨ f }, ◦ = •

(Footnote 8 continued)
stabilizes. At any stage, no matter how far it goes, the logic of the truth (non-falsity) order is again
First Degree Entailment.
9Odintsov and Wansing denote their system BiCalc, but I prefer to retain the original label as more
instructive. I also slightly modify the formulation from (Odintsov and Wansing 2015) to minimize
the set of axioms and rules, and to visualize its further generalization.
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Commutativity axiom:
a8t . ∼ f ∼t A �t∼t∼ f A

FDE rules for �t : FDE rules for � f :
r1t . A �t B, B �t C / A �t C r1 f . A � f B, B � f C / A � f C
r2t . A �t B, A �t C / A �t B ∧t C r2 f . A � f B, A � f C / A � f B ∧ f C
r3t . B �t A, C �t A / B ∨t C �t A r3 f . B � f A, C � f A / B ∨ f C � f A
r4t . A �t B / ∼t B �t∼t A r4 f . A � f B / ∼ f B � f ∼ f A

Monotonicity rules:
r5t . A �t B / ∼ f A �t∼ f B r5 f . A � f B / ∼t A � f ∼t B

Interconnection rules:
r6t f . A �t B, B �t A / A � f B r6 f t . A � f B, B � f A / A �t B.

Note, that the converse of a8t is provable in the system. Namely, by a5 f , a6 f and
using r6 f t we have A �t ∼ f ∼ f A. From this by r4t we get ∼t∼ f ∼ f A �t ∼t A, and
then by a8t ∼ f ∼t∼ f A �t ∼t A. Using r5t we obtain∼ f ∼ f ∼t∼ f A �t ∼ f ∼t A, and
finally, ∼t∼ f A �t ∼ f ∼t A.

FDEt f
t f adequately axiomatizes the bi-consequence logic (Lt f ,�16

t ,�16
f ), as the

following soundness and completeness theorem states, see (Odintsov and Wansing
2015, Theorem 4.1):

Theorem 3.7 For any A, B ∈ Lt f :

1. A �16
t B iff A �t B;

2. A �16
f B iff A � f B.

It is also possible to extract two important mono-consequence subsystems:

(1) FDEt f
t = (Lt f ,�t ), obtained from FDEt f

t f by omitting FDE axiom schemata
and rules for � f , as well as monotonicity rule r5 f , and interconnection rules
r6t f , r6 f t ;

(2) FDEt f
f = (Lt f ,� f ), obtained from FDEt f

t f by omitting FDE axiom schemata
and rules for�t , as well as monotonicity rule r5t , and interconnection rules r6t f ,
r6 f t , and also changing axiom schemata a7t and a8t to their counterparts a7 f

and a8 f .

4 Generalization Completed: Truth-Value Multilattices
and a Multi-consequence System

Bilattices and trilattices present particular cases of more general algebraic structures
called in (Shramko andWansing 2005, p. 126)multilattices. The idea of amultilattice
can be systematized and generalized in the following definitions:
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Definition 4.1

1. An n-dimensional multilattice (or just n-lattice) is a structure Mn = (S,

�1, . . . ,�n) in which S is a non-empty set, and �1, . . . ,�n are partial order-
ings each giving S the structure of a lattice, determining thus for each of
n lattices the corresponding pairs of meet and join operations denoted by
〈	1,
1〉, . . . , 〈	n,
n〉.

2. An n-lattice is called complete iff all meets and joins exist, with respect to all n
orderings.

3. An n-lattice is called interlaced iff each of the operations 	1, 
1, . . . ,	n,
n is
monotone with respect to all n orderings.

4. An n-lattice is called distributive iff all 2(2n2 − n) distributive laws hold:
x ◦ (y • z) = (x ◦ y) • (x ◦ z), where ◦, • ∈ { 	1,
1, . . . ,	n,
n }, ◦ = •.
One can omit an explicit indication of a dimension if it is inessential or clear from a

context, and speak simply of a multilattice. The inversion operations on multilattices
can now be defined in full generality, cf. (Shramko and Wansing 2006, p. 411).

Definition 4.2 Let Mn = (S,�1, . . . ,�n) be a multilattice. Then for any j ≤ n an
unary operation − j on S is said to be a (pure) j-inversion iff for any k ≤ n, k = j
the following conditions are satisfied:

(anti) x � j y ⇒ − j y � j − j x;
(iso) x �k y ⇒ − j x �k − j y;

(per2) − j − j x = x .

Thus, in a multilattice-framework any inversion defined relative to some partial
order is an involution operation antitone with respect to this particular order and
isotone with respect to all the remaining orderings.10

Multilattices present a natural algebraic framework for dealing with generalized
truth-values, so that if the set S in a multilattice Mn consists of (generalized) truth-
values, we can speak of a generalized truth-value multilattice.

We can define most abstractly the notions of a generalized truth-value and a
generalized truth-value function, according to the method initially developed by
Dunn and Belnap as applied to classical truth-values, cf. (Zaitsev and Shramko 2013,
p. 1300):

Definition 4.3 Let X be a (basic) set of initial truth-values, and P(X) be the power-
set of X . Then the elements of P(X) are called generalized truth-values defined on
the basis of X .

Definition 4.4 Let X be a (basic) set of initial truth-values, P(X) be the set of
generalized truth-values defined on the basis of X , and L be a given language. Then
a generalized truth-value function (defined on the basis of X ) is a function from the
set of sentences of L to P(X).

10Moreover, for certain orderings it could be useful to consider combined inversion operations, so
that, e.g., 23-inversion would invert simultaneously both�2 and�3, leaving the other partial orders
untouched, but I skip this subject here, cf. (Shramko and Wansing 2006, p. 411).
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By Definition 4.3, generalized truth-values are constructed on the basis of some
set of primitive truth-values of an underlying “low-level logic” (or several such logics
with their truth-values “lumped together”). Definition 4.4 explains, in what sense a
sentence can simultaneously “possess” several truth-values from an underlying logic,
or fail to possess some (maybe all) of them.11

The carrier set of a generalized truth-value multilattice constitutes a natural
domain for a generalized truth-value function. At the same time, this domain is
structured by specific logical orders for determining sets of logical connectives and
possible entailment relations in agreement with the acceptable patterns of logical
reasoning. Should we, in advance, rule out the possibility of the simultaneous coex-
istence of several such patterns? The construction of the bi-consequence system
FDEt f

t f above, which explicitly deals with two equal consequence relations, clearly
demonstrates the impropriety of such a restriction.

Moreover, Arieli and Avron (1996) explicated FOUR2 as a logical bilattice—an
algebraic basis for a proof system, involving operations not only from a truth order,
but also from an information order. As observed in (Shramko and Wansing 2005,
p. 146), SIXTEEN3 can also be construed as a logical bilattice if we discard, say,
the information order, and consider just the structure (16,�t ,� f ) with two natural
logical orders—for truth and non-falsity. In fact, Arieli and Avron conclusively show
that the information order can play a logical role as well, being incorporated in the
structure of a logical bilattice. But what can prevent us from considering logical
trilattices, tetralattices, or most generally, logical multilattices? In the next section a
method for generalizing the approach by Arieli and Avron towards an overall theory
of logical multilattices is briefly outlined.

For now, it is important to stress that by a logical reasoning we can be interested
not only in informational content, truth content, or falsity content, but also in some
other possible characterizations of the given truth-values, such as constructivity, cf.
(Shramko et al. 2001), (un)certainty, cf. (Zaitsev 2009), modality, cf. (Rescher 1965),
or other kinds of “adverbial qualifications,” cf. (MacIntosh 1991), by which truth-
values can naturally be ordered. Thismotivates the possibility of amulti-consequence
logic that comprises several entailment relations based on the partial orderings of a
given truth-value multilattice viewed as logical orders.12

Consider language Ln defined as follows:

Ln : A ::= p | ∼1 A | . . . | ∼n A | A ∧1 A | . . . | A ∧n A | A ∨1 A | . . . | A ∨n A.

11Precisely in the sense in which a generalized truth value of a “higher degree” may contain several
truth values of a “lower degree” or fail to contain some (maybe all) of them.
12Interestingly, Arieli andAvron also admit the possibility that “more than one consequence relation
is relevant,” thereby enabling “the use of corresponding implication connectives,” that “allow us
also to express higher-order connections among those relations” (Arieli and Avron 1996, p. 44).
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Let Mn = (S,�1, . . . ,�n) be a generalized distributive truth-value n-lattice, with
pairs of meet and join operations 〈	1,
1〉, . . . , 〈	n,
n〉, and operations of j-in-
versions defined for every � j ( j ≤ n). Define valuation (generalized truth-value
function) vs as a map from Prop into S. Then, for any j ≤ n, we have:

Definition 4.5 For any A, B ∈ Ln ,

1. vs(A ∧ j B) = vs(A) 	 j vs(B);
2. vs(A ∨ j B) = vs(A) 
 j vs(B);
3. vs(∼ j A) = − jv

s(A).

Consider the set of all generalized distributive truth-value n-lattices.We can define
for every j ≤ n the entailment relation between any A, B ∈ Ln:

Definition 4.6 A � j B iff ∀Mn ∀vs defined on Mn : vs(A) � j vs(B).

Now, for any n we can define a general notion of a multi-consequence logic with
respect to the set of generalized distributive truth-value multilattices Mn:

Definition 4.7 A multi-consequence logic (Ln,�1, . . . ,�n) is the set of all valid
statements A � j B, where A, B ∈ Ln , and j ≤ n.

To grasp the multi-consequence logic deductively, I formulate a multi-conse-
quence system FDEn

n = (Ln,�1, . . . ,�n), which is a straightforward generalization
of FDEt f

t f . In axiom schemata and rules of inference below j, k ≤ n and j = k.
System FDEn

n:

a1 j . A ∧ j B � j A
a2 j . A ∧ j B � j B
a3 j . A � j A ∨ j B
a4 j . B � j A ∨ j B
a5 j . A � j ∼ j∼ j A
a6 j . ∼ j∼ j A � j A
a7 j . A ◦ (B • C) � j (A ◦ B) • C , where ◦, • ∈ { ∧1,∨1, . . . ,∧n,∨n }, ◦ = •
a8 j . ∼k∼ j A � j ∼ j∼k A
r1 j . A � j B, B � j C / A � j C
r2 j . A � j B, A � j C / A � j B ∧ j C
r3 j . B � j A, C � j A / B ∨ j C � j A
r4 j . A � j B / ∼ j B � j ∼ j A
r5 j . A � j B / ∼k A � j ∼k B
r6 jk . A � j B, B � j A / A �k B.

Soundness and completeness can be proved by a generalization of the correspond-
ing theorem from (Odintsov and Wansing 2015) (see Theorem3.7).

Theorem 4.8 For any A, B ∈ Ln, for any j ≤ n: A � j B iff A � j B.
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Clearly, for any n the set of generalized distributive truth-value n-lattices forms
a variety. An interesting problem consist in finding for any n a natural multilattice
Mn = (S,�1, . . . ,�n) which generates the given variety. Then entailment relation
� j for the given variety could be identified with the relation �s

j defined with respect
to this very multilattice only: A �s

j B iff ∀vs (vs(A) � j vs(B)).

5 On Reasoning with Logical Multilattices

Arieli andAvron developed in (1996) a theory of logical bilattices and formulated the
corresponding proof systems for reasoning in accordance with this theory. Having a
bilattice, they introduce the notions of prime bifilter and ultrabifilter each determined
by both bilattice orderings, and then define logical bilattice (ultralogical bilattice)
as a pair (B,F), where B is a bilattice (bilattice with conflation) and F is a prime
bifilter (ultrabifilter) on B. They use then logical bilattices “for defining logics in a
way which is completely analogous to the way Boolean algebras and prime filters
are used in classical logic” (Arieli and Avron 1996, pp. 30–31).

The logics for (ultra)logical bilattices are mono-consequence systems which
involve operations with respect to both bilattice-orderings. The basic system for
capturing the bilattice meets, joins and inversions is presented in (Arieli and Avron
1996, p. 37–40) in a form of a Gentzen-type sequent calculus G BL . In what follows
some central notions of a theory of (ultra)logical multillatices in spirit of Arieli and
Avron are briefly sketched, and the corresponding logical system for reasoning with
(ultra)logical multilattices is formulated.

Definition 5.1 Let Mn = (S,�1, . . . ,�n) be an n-lattice, with pairs of meet and
join operations 〈	1,
1〉, . . . , 〈	n,
n〉. An n-filter (multifilter) onMn is a nonempty
proper subset Fn ⊂ S, such that for every j ≤ n:

x 	 j y ∈ Fn ⇔ x ∈ Fn and y ∈ Fn.

A multifilter Fn is said to be prime iff it satisfies for every j ≤ n:

x 
 j y ∈ Fn ⇔ x ∈ Fn or y ∈ F .

A pair (Mn,Fn) is called a logical n-lattice (logical multilattice) iff Mn is a multi-
lattice, and Fn is a prime multifilter on Mn .

Moreover, since we are interested in n-lattices with inversions defined for every
j ≤ n, we need stronger notions of an ultramultifilter and ultralogical mulitlattice.

Definition 5.2 LetMn = (S,�1, . . . ,�n)be ann-lattice,with j-inversions defined
with respect to every � j ( j ≤ n). Then Fn is an n-ultrafilter (ultramultifilter) on
Mn if and only if it is a prime multifilter, such that for every j, k ≤ n, j = k: x ∈
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Fn ⇔ − j −k x /∈ Fn . A pair (Mn,Fn) is called anultralogical n-lattice (ultralogical
multilattice) iff Mn is a multilattice, and Fn is an ultramultifilter on Mn .

Consider language Ln defined as above. We can define entailment relations
between any sets of formulas from Ln as follows:

Definition 5.3 Let (Mn,Fn) be an (ultra)logical n-lattice, and let a valuation func-
tion vs map. Atomic formulas from Ln to elements of S in Mn and be extended to
compound formulas by Definition 4.5. Let Γ,Δ be finite sets of formulas from Ln .
Then:

1. Γ �M L(Mn ,F) Δ iff for every valuation vs , such that vs(A) ∈ Fn for each A ∈ Γ ,
there exists some B ∈ Δ with vs(B) ∈ Fn .

2. Γ �M Ln Δ iff for every multilattice (Mn,Fn), Γ �M L(Mn ,Fn) Δ.

Theorem 5.4 Let A1, . . . , Al , B1, . . . , Bm be finite sets of formulas from Ln.
Then, for every j ≤ n: A1, . . . , Al �M Ln B1, . . . , Bm iff A1 ∧ j . . . ∧ j Al � j B1 ∨ j

. . . ∨ j Bm.

Proof Consider an arbitrary j ≤ n. Let for every (ultra)logicalmultilattice (Mn,Fn),
for every valuation vs , if vs(A1), . . . , v

s(Al) ∈ Fn , then vs(Bi ) ∈ Fn for some
i ≤ m. By generalizing to multilattices claim (∗) and case (2) in the proof of
Lemma 4.3 from (Shramko and Wansing 2005), and reformulating them in a
multifilters-terminology, we get for any vs : vs(A1 ∧ j . . . ∧ j Al) � j vs(Bi ), and
hence vs(A1 ∧ j . . . ∧ j Al) � j vs(B1 ∨ j . . . ∨ j Bm). For the converse, consider an
arbitrary n-lattice; assume that for any vs , vs(A1 ∧ j . . . ∧ j Al) � j vs(B1 ∨ j . . . ∨ j

Bm). Let vs(A1), . . . , v
s(Al) ∈ Fn . Then vs(A1 ∧ j . . . ∧ j Al) ∈ Fn . By a standard

property of lattice filters, we get vs(B1 ∨ j . . . ∨ j Bm) ∈ Fn , and hence, vs(Bi ) ∈ Fn

for some i ≤ m.

A Gentzen-type sequent calculus for reasoning with ultralogical multilattices of
an arbitrary dimension n, analogous to the system for (ultra)logical bilattices from
(Arieli and Avron 1996), can be formulated as follows:

System GMLn:

Axiom: Γ, A → A,Δ

Rules:
Exchange, Contraction, and the following logical rules (for any j, k ≤ n; j = k):

(∧ j →)
Γ, A, B → Δ

Γ, A ∧ j B → Δ

Γ → Δ, A Γ → Δ, B

Γ → Δ, A ∧ j B
(→∧ j )

(∨ j →)
Γ, A → Δ Γ, B → Δ

Γ, A ∨ j B → Δ

Γ → Δ, A, B

Γ → Δ, A ∨ j B
(→∨ j )

(∼ j ∧ j →)
Γ,∼ j A → Δ Γ,∼ j B → Δ

Γ,∼ j (A ∧ j B) → Δ

Γ → Δ,∼ j A,∼ j B

Γ → Δ,∼ j (A ∧ j B)
(→∼ j ∧ j )
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(∼ j ∨ j →)
Γ,∼ j A,∼ j B → Δ

Γ,∼ j (A ∨ j B) → Δ

Γ → Δ,∼ j A Γ → Δ,∼ j B

Γ → Δ,∼ j (A ∨ j B)
(→∼ j ∨ j )

(∼ j ∼ j →)
Γ, A → Δ

Γ,∼ j∼ j A → Δ

Γ → Δ, A

Γ → Δ,∼ j∼ j A
(→∼ j ∼ j )

(∼k∧ j →)
Γ,∼k A,∼k B → Δ

Γ,∼k(A ∧ j B) → Δ

Γ → Δ,∼k A Γ → Δ,∼k B

Γ → Δ,∼k(A ∧ j B)
(→∼k∧ j )

(∼k∨ j →)
Γ,∼k A → Δ Γ,∼k B → Δ

Γ,∼k(A ∨ j B) → Δ

Γ → Δ,∼k A,∼k B

Γ → Δ,∼k(A ∨ j B)
(→∼k∨ j )

(∼k∼ j →)
Γ → Δ, A

Γ,∼k∼ j A → Δ

Γ, A → Δ

Γ → Δ,∼k∼ j A
(→∼k∼ j )

We have an analogue of Theorem3.7 from (Arieli and Avron 1996) (soundness,
completeness and cut elimination), which can be proved along similar lines (with
�M Ln defined with respect to ultralogical multilattices):

Theorem 5.5

(1) Γ �M Ln Δ iff Γ �G M Ln Δ;
(2) If Γ1 �G M Ln Δ1, A and Γ2, A �G M Ln Δ2, then Γ1, Γ2 �G M Ln Δ1,Δ2.

A subsystem of GMLn for reasoning with pure logical multilattices deals only
with one inversion operator ∼ j taken for an arbitrary (fixed) j ≤ n. It is obtained
from GMLn by omitting the rules (∼k∼ j→) and (→∼k∼ j ), and changing ∼k to
∼ j , ∧ j to ∧k , as well as ∨ j to ∨k in the rules (∼k∧ j →)–(→∼k ∨ j ).

6 Concluding Remark: Dunn Faces Suszko

Introducing multi-consequence logics (and the corresponding multi-consequence
systems) means a significant generalization of the very notion of a logical system.
FDEn

n is a particular (single premiss–single conclusion) case ofwhat in (Wansing and
Shramko 2008b, p. 422) more abstractly was called a Tarskian k-dimensional logic
(Tarskian k-logic). The latter was defined there as a k + 1-tupleΛ = (L,�1, . . . ,�k)

such that (i) L is a language in a denumerable set of sentence letters and a finite non-
empty set C of finitary connectives, (ii) for every i ≤ k, �i⊆ P(L) × L, and (iii)
every relation�i satisfies the standardTarskian conditions for a consequence relation,
known as Reflexivity, Monotonicity, and Cut, see e.g., (Wansing and Shramko 2008b,
p. 408).13

13For a single premiss–single conclusion case these conditions can be reformulated as follows:
B ∧ A � A; B � A ⇒ B ∧ C � A; B � A and C ∧ A � D ⇒ B ∧ C � D, which obviously hold
for every � j of FDEn

n .
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The next notion is the one of an n-valued k-dimensionalmatrix (k-matrix), defined
in (Wansing and Shramko 2008b, p. 422) as a structureM = 〈V,D1, . . . ,Dk, { fc : c
∈ C }〉, where C is a finite non-empty set of finitary connectives inL,V is a non-empty
set (of values) of cardinality n (2 ≤ n), 2 ≤ k, every Di (1 ≤ i ≤ k) is a non-empty
proper subset of V , the sets Di are pairwise distinct, and every fc is a function on V
with the same arity as c. The sets Di are called distinguished sets. A function from
L to V is called a valuation in M, and a pair M = 〈M, v〉 is called an n-valued
k-model based on M.

EveryDi can be used for defining its own consequence relation in a standard way,
as a relation that ensures preservation of the elements from Di in a course of reason-
ing.14 Then n-valued k-models based onM can be used for semantic characterization
of the corresponding Tarskian k-logics.

The notion of a Tarskian k-logic was used in (Wansing and Shramko 2008b) as
a case against a much-debated thesis advanced by Roman Suszko to the effect that
“every logic is (logically) two-valued” (Suszko 1977, p. 378), or “there are but two
logical values, true and false” (Caleiro et al. 2005, p. 169). Suszko justifies his thesis
by a special reduction procedure that enables a characterization of every Tarskian
consequence relationby abivalent semantics.Yet, if a given logic necessarily contains
more than one distinct consequence relations, then it is impossible to do only with
two logical values (one logical ordering), and “logically n-valued logics” naturally
arise, see (Wansing and Shramko 2008b, p. 422).

In this way the strategy of semantic analysis according to Dunn and Belnap’s
American Plan and its generalizations provides a reliable shield against Suszko’s
bold attack on the very idea of logical many-valuedeness.
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Logical Foundations of Evidential
Reasoning with Contradictory
Information

Chunlai Zhou

Abstract Inconsistent or contradictory information is quite common in mod-
ern information technology such as the Web or unstructured databases. In this
paper, we employ two levels of epistemic logics to provide logical foundations for
evidential reasoning with this kind of information. The first-level logic is the
well-known Belnap–Dunn four-valued logic. This logic provides a formalism for
reasoning about both incomplete and contradictory information. In addition to the
two standard Boolean truth values T and F, there are two new values: N and B.
They are used to designate incomplete and contradictory information, respectively.
The four-valued logic is externally epistemic in the sense that the truth values are
intended to reflect what the agents may have been informed about and are passed over
to the agents from the external environment. By using the semantics for this logic, we
enrich Carnap’s universe for consistent information by replacing standard possible
worlds with states, set-ups or situations where a proposition may be both true and
false. We shall call such a universe a Belnap–Dunn universe. The second-level logic
is epistemic logic S5. When the information is uncertain and imprecise, it usually
fails to provide probability values for every subset of the Belnap–Dunn universe.
Probabilities are defined only on those subsets which are known with certainty. We
employ epistemic logic S5 to distinguish those known subsets and to characterize the
notion that such known part of the information improves our knowledge by reduc-
ing the scope of possible valid states. S5 is internally epistemic in the sense that the
knowledge is determined by the agents. Probabilistic reasoning with the combination
of the four-valued logic and epistemic logic S5 is nothing but evidential reasoning
over bilattices or de Morgan lattices.
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1 Introduction

Dealing with uncertainty is a fundamental issue for Artificial Intelligence
(Halpern 2005). Numerous approaches have been proposed, including Dempster–
Shafer theory of belief functions (also called Dempster–Shafer theory of evidence).
Ever since the pioneering works by Dempster (1967) and Shafer (1976), belief func-
tions were brought into a practically usable form by Smets and Kennes (1994) and
have become a standard tool in Artificial Intelligence for knowledge representation
and decision-making.

Dempster–Shafer belief functions on a finite frame of discernment S are defined
on the power set of S, which is a Boolean algebra. They have an attractive math-
ematical theory and many intuitively appealing properties. Belief functions satisfy
the three axioms which generalize the Kolmogorov axioms for probability func-
tions. Interestingly enough, they can also be characterized in terms of mass functions
m. Intuitively, for a subset event A, m(A) measures the belief that an agent com-
mits exactly to A, not the total belief that an agent commits to A. Shafer (1976)
showed that a belief in A is the sum of the masses assigned to all the subsets of A.
This characterization of belief functions through mass functions is simply an exam-
ple of the well-known Inclusion-Exclusion principle in Enumerative Combinatorics
(Stanley 1997) and hence has a strong combinatorial flavor. In this theory, mass
functions are recognized as Möbius transforms of belief functions.

The Dempster–Shafer theory of belief functions is closely related to other
approaches dealing with uncertainty. It includes the Bayesian theory (Savage 1972)
as a special case. The first three rules of the Bayesian theory are simply those three
axioms for probability functions. It is shown in Shafer (1976) that a belief function
on S is Bayesian (also a probability function) if and only if its corresponding mass
function assigns positive weights only to singletons. So a Bayesian belief function
μ is more like a point function than a set function in its level of complexity in the
sense that μ is determined by its values at singletons rather by its values at all events
(its values at other non-singletons are 0).

The first investigation of mathematical properties of belief functions on more
general lattices was initiated by Barthélemy (2000) with the combinatorial theory
on lattices by Rota (1964), which was motivated by possible applications of belief
functions for non-standard representation of knowledge. Grabisch (2009) continued
along this direction and showed that such properties as Dempster’s rule of combi-
nation and Smets’s canonical decomposition (Smets 1995) in the case of Boolean
algebras can be transposed in general lattice setting. This generalized theory has been
applied to many objects in real world problems that may not form a Boolean alge-
bra. An optimal balance between utility and elegance of a theory of belief functions
is achieved for distributive lattices. We have developed a general theory for belief
functions on distributive lattices (Zhou 2012, 2013). Not only does our approach for
distributive lattices yield a mathematical theory as appealing as Dempster–Shafer
theory, but also its applications extend to many non-classical formalisms of struc-
tures in Artificial Intelligence. After establishing the mathematical theory for belief
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functions on distributive lattices, we used this more general theory to provide a
framework for reasoning about belief functions in a deductive approach on non-
classical formalisms which assume a distributive lattice.

The integration of belief functions and non-classical formalisms is intended to
master two sources of ignorance. While belief functions take care of the limitation of
the information that the agents have at their disposal, non-classical formalisms usu-
ally take care of the imprecision, uncertainty or inconsistency in the knowledge-base
due to imperfect data. As an illustration of this deductive approach, we dealt with
belief functions on two particular classes of distributive lattices: bilattices and de
Morgan lattices, which are actually mathematical objects in reasoning under incom-
plete and inconsistent information. A well-known simple non-Boolean epistemic
logic the first-degree-entailment fragment Rfde of relevance logic R (Anderson and
Belnap 1975) provides a complete deductive system for this type of non-classical
information, which is used to deal with the famous logical-omniscience problem in
the foundations of Knowledge Representation (Fagin et al. 1995; Levesque 1984),
and used for reasoning in the presence of inconsistency in knowledge base systems
(Lin 1996). A sound and complete axiomatization is provided for the integration of
belief functions and the non-classical logic Rfde, and finally the complexity of the
satisfiability problem of a belief formula with respect to the class of the correspond-
ing Dempster–Shafer structures is shown to beNP-complete. For the detailed proofs,
one may consult (Zhou 2012, 2013).

The present research work is motivated by the need to improve the understanding
of issues in the analysis and interpretation of evidence. In the context of this paper, the
term evidence is used to describe information, which is usually imprecise, uncertain
or inconsistent (contradictory). Here we employ the Belnap–Dunn four-valued logic
(Belnap 1977; Dunn 1976a) and epistemic logic to provide logical foundations for
evidential reasoning with contradictory (or inconsistent) information. Our approach
is strongly based on Carnap’s methodology (Carnap 1962) for the development of the
logical foundations of probability theory and Ruspini’s ideas (Ruspini 1987) of the
logical foundations for evidential reasoning. In his formulation, Carnap developed
a universe of possible worlds that encompasses all possible states of a real-world
system. Information about that system, if precise and certain, identifies its actual
state. If imprecise but certain, this information identifies a subset of possible system
states. Such kind of subsets are called truth sets. If uncertain, then the information
induces a probability distribution over system states which is defined on all subsets
of the universe.

Ruspini (1987) noted that Carnap’s characterization does not distinguish degrees
of precision when the information is uncertain and Carnap’s logical approach, while
enabling a clearer understanding of the relations between logical and probabilistic
concepts, suffers from a major handicap: it assumes that observations of the real
world always determine unambiguously probability values for every subset in the
universe. But uncertain information generates a probability function for all subsets
of the universe only if it is precise. When information is imprecise, this probability
function is defined on some subsets of possible states, which is not discussed in
Carnap’s methodology. This type of information, which provides some knowledge
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about the underlying probability distributions but not all values of the distributions,
is quite common in practical applications and motivated Dempster’s original formu-
lation of evidential reasoning (Dempster 1967). In order to distinguish the degrees
of precision, Ruspini employed epistemic logics—a form of modal logics developed
to deal with problems of representation and manipulation of the states of knowledge
of rational agents—to generalize Carnap’s space of possible worlds, or universe.
This generalization is obtained by considering the combination of representations of
both the state of the possible world and the knowledge of rational agents, which is
called the epistemic universe. Uncertain evidence is represented as a conventional
probability function on the sigma-algebra of epistemic sets in the epistemic universe.
Epistemic sets are interpreted as truth sets which are known with certainty and prob-
ability function is defined only on those sets that the agents know for sure. Such a
probability function defined on epistemic sets can be regarded as a kind of constraint
on possible probability functions defined on all subsets of the universe and hence is
equivalent to a belief function in the Dempster–Shafer theory. So the combination
of epistemic logic and probability theory provides an analysis of logical foundations
of evidential reasoning.

However, Ruspini failed to consider the case that sometimes information is
inconsistent. Both Carnap and Ruspini considered only consistent information. But
inconsistent or contradictory information is quite common in modern information
technology such as the Web and unstructured databases. In contrast to the conven-
tional databases, unstructured databases allow for negative as well as positive infor-
mation. In other words, they use the Open-world Assumption, which is different
from the Closed-World Assumption in structured databases where negation is inter-
preted as absence. Belnap–Dunn four-valued logic (Belnap 1977; Dunn 1976a) is a
well-knownmachinery to provide a deductive reasoning for this kind of information.
In this logic, each proposition is assigned one of the four possible epistemic values:
T , F, B and N . The meaning of such epistemic truth values highly differs from the
meaning of standard Boolean truth values since they are not intrinsic to propositions
but are intended to reflect what an agent may have been informed about (regarding
these propositions). Thus, interpreting a proposition φ as F (resp., T ) does not mean
that φ is false (resp., true) but that the agent under consideration has some reasons
to consider that φ is false (resp., true) or is told that φ is “false” (resp., “true”). The
agent may have some reasons to consider that φ is false and other reasons to consider
that φ is true, and the epistemic truth value B reflects this situation. Similarly, the
agent may have no reasons to consider φ as true and no reasons to consider it as
false; in this situation, φ is given the epistemic truth value N . So B reflects a situation
of inconsistency and N of ignorance. (See also Dunn 2010.) By using the semantics
for this logic, we enrich Carnap’s universe by incorporating inconsistent information
and by replacing standard possible worlds with worlds, set-ups or situations where
a proposition may be both true and false. Such a universe is called a Belnap–Dunn
universe. The epistemic nature of the Belnap–Dunn universe is external in the sense
that the truth values are passed over to the agent from the external environment.

But deductive reasoning is a limited form of reasoning. In a world of certainty,
the deductive information is capable of identifying only a subset of possibilities
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and is unable to distinguish degrees of uncertainty. In contrast, a weighting
calculus, probabilistic reasoning is more applicable in real life. It is desirable to inte-
grate the four-valued logic with probabilistic reasoning. Just as in Ruspini’s analysis
(Ruspini 1987), probability functions are not necessarily defined over all subsets of
the Belnap–Dunn universe. So we follow Ruspini’s idea to employ the framework
of epistemic logic S5 to distinguish those defined subsets, which are known with
certainty. S5 is internally epistemic in the sense that the knowledge is determined by
the agent himself. So the epistemic nature of S5 at this level is different from that of
the Belnap–Dunn universe. Probabilistic reasoning over such (internally) epistemic
structure on the Belnap–Dunn universe provides logical foundations of evidential
reasoning with contradictory information.

The rest of the paper is organized as follows. In Sect. 2, we provide a background
on lattice theory and belief functions on (distributive) lattices. Section3 is the main
part of the paper. There we employ both four-valued logic and epistemic logic S5 to
present the semantical framework for belief functions on both distributive bilattices
and deMorgan lattices. In Sect. 4, we provide a sound and complete deductive system
for reasoning about belief functions for the first-degree-entailment fragment ofR and
show that the complexity of the satisfiability problem of belief formulas with respect
to the class of the corresponding Dempster–Shafer structures isNP-complete. And in
the final section, we discuss some related work. The Appendix provides the duality
theorem for finite de Morgan lattices which is parallel to Birkhoff’s representation
theorem for finite distributive lattices and is hence of independent interest.

2 Belief Functions on Distributive Lattices

We will first recall some basic definitions about lattices. Next Dempster–Shafer the-
ory of belief functions on Boolean algebras will be generalized to this more general
setting. All posets and lattices occurring in this paper are supposed
to be finite. All lattice-theoretical notation and terminology in this paper
follows Stanley (1997).

2.1 Lattices

Let P be a poset. A subset I of P is called an order ideal (co-cone, or semi-ideal
or down-set or decreasing subset) if, for any x, y ∈ L, x ∈ I provided that x ≤ y
and y ∈ I . I is called a principal order ideal if I = { y ∈ L : y ≤ x } for some x ∈ I .
Otherwise, it is called a non-principal order ideal. Dually, a subset F of L is called
a dual order ideal (cone or up-set or increasing subset or filter) if, for any x, y ∈ L,
y ∈ F provided that x ≤ y and x ∈ F. F is called a prime filter if it satisfies the
following additional condition: for any a, b ∈ F,a ∈ F orb ∈ F whenevera ∨ b ∈ F.
A strict partial ordering < is defined from ≤ as x < y if x ≤ y and x �= y.
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A latticeL isdistributive if (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)holds for all x, y, z ∈ L.
For any x ∈ L, we say that x has a complement in L if there exists x′ ∈ L such
that x ∧ x′ = ⊥ and x ∨ x′ = 	. L is said to be complemented if every element
has a complement. Boolean lattices (algebras) are distributive and complemented
lattices. In a Boolean lattice, every element has a unique complement. According
to the famous Stone representation theorem, every Boolean lattice is isomorphic to
a subalgebra of the concrete Boolean lattice 〈2S,⊆〉 for some set S. For the lattice
〈2S,⊆〉, we have ∨ = ∪,∧ = ∩,	 = S and ⊥ = ∅.

A de Morgan lattice D is a bounded distributive lattice 〈D,∨,∧,	,⊥〉 with an
involution ¬ which satisfies the following de Morgan’s laws:

¬(x ∧ y) = ¬x ∨ ¬y and ¬¬x = x, for all x, y ∈ D.

It follows immediately that ¬(x ∨ y) = ¬x ∧ ¬y, ¬	 = ⊥ and ¬⊥ = 	. So ¬ is
a dual automorphism. Note that in a de Morgan lattice, the following laws may not
hold:

¬x ∨ x = 	 and x ∧ ¬x = ⊥.

DeMorgan lattices are important for the studyof themathematical aspects of fuzzy
logic (Zadeh 1988). The standard fuzzy algebra F = 〈[0, 1],max(x, y),min(x, y),
0, 1, 1− x〉 is an example of a de Morgan lattice. Moreover, de Morgan monoids are
an algebraic semantics for a non-classical formalism, namely, for the relevance logic
Rt (Dunn 1986).

2.2 Belief Functions

There are two equivalent approaches to belief functions on lattices: one is mass
functions and the other totally monotone capacities. The equivalence is characterized
by Möbius functions. Let (L,≤) be a poset having a bottom element ⊥ and a top
one 	 and R be the real field. Without further notice, every function in this paper
is meant to be a real-valued map. The Möbius function μ : L2 → R of L is defined
recursively by

μ(x, y) =
⎧⎨
⎩
1 if x = y,
−∑

x≤t<y μ(x, t) if x < y,
0 otherwise.

Note that μ solely depends on L.

Proposition 2.1 (Möbius inversion formula, Proposition 3.7.1 in Stanley 1997)
Let P be a poset. Let f and g be two functions. Then

g(t) =
∑
s≤t

f (s) for all t ∈ P (1)
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if and only if

f (t) =
∑
s≤t

g(s)μ(s, t) for all t ∈ L, (2)

where μ is the Möbius function of P.

The function g in the above proposition is called the Möbius transform of f .

Definition 2.2 Given a lattice 〈L,≤〉, a function f on L is called a capacity if it
satisfies the following three conditions:

1. f (⊥) = 0;
2. f (	) = 1;
3. x ≤ y implies f (x) ≤ f (y).

A function bel : L → [0, 1] is called a belief function if bel(	) = 1, bel(⊥) = 0 and
its Möbius transform m is non-negative. m is also called the mass function or mass
assignment of f . For each element a ∈ L, the quantity m(a) is intended to measure
the belief that one commits exactly to a, not the total belief that one commits to a.
To obtain the measure of the total belief committed to a, one must add to m(a) the
quantities m(b) for all elements that are strictly smaller than a:

bel(a) =
∑
b≤a

m(a).

An element a ∈ L is called a focal element of L if m(a) > 0.

Note that any belief function is a monotonic function by non-negativity of m, and
hence a capacity.

Example 2.1 In the above definition, if L is a Boolean algebra, then bel on L is
defined in the same way as in the Dempster–Shafer theory (Shafer 1976). Let Ω be
a finite space. In this case, a function m : 2Ω → [0, 1] is a mass allocation function
if m(∅) = 0 and

∑
A⊆Ω m(A) = 1. A belief function on Ω is a function bel : 2Ω →

[0, 1] generated by a mass allocation function as follows. For A ⊆ Ω ,

bel(A) :=
∑
B⊆A

m(B).

Note that bel(∅) = 0 and bel(Ω) = 1. The Möbius function μ : 2Ω × 2Ω → [0, 1]
is

μ(A, B) =
{

(−1)|B\A| if A ⊆ B,

0 otherwise.

m is the Möbius transform of bel and is expressed as the following formula:
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m(A) =
∑
B⊆A

(−1)|A\B|bel(B).

Belief functions on Boolean algebras are a generalization of probability func-
tions in the sense that a belief function is a probability function iff its focal ele-
ments are singletons. Now consider a simple example how to assign beliefs in
terms of mass functions. A murder has been committed. There are three suspects
Ω = { John, Mary, Peter }. A witness saw the murderer going away in the darkness
and he can only assert that it was a man. However, we know that the witness is drunk
20% of the time. When he is drunk, he cannot distinguish among the three suspects.
So a mass of 0.2 is assigned to the whole Ω . When he is sober 80% of the time, he
asserts that the murderer is a man. But he does not know which man. So a mass 0.8
is assigned to the subset { John, Peter } of the two men. This piece of evidence can
be represented by the following mass function:

m({ John, Peter }) = 0.8, and m(Ω) = 0.2.

Definition 2.3 Let K denote the set { 1, 2, . . . , k }. Given a lattice 〈L,≤〉, a function
f on L is called a k-monotone whenever for each (x1, . . . , xk) ∈ Lk , the k-product of
lattice L, we have

f (
∨

1≤i≤k

xi) ≥
∑

J⊆K,J �=∅
(−1)|J|+1f (

∧
j∈J

xj) (3)

A capacity is totally monotone if it is k-monotone for every k ≥ 2. A k-monotone
function f is called a k-valuation if the above inequality degenerates into the following
equality:

f (
∨

1≤i≤k

xi) =
∑

J⊆K,J �=∅
(−1)|J|+1f (

∧
j∈J

xj) (4)

It is an∞-valuation if it is a k-valuation for each integer k. f is called a probability
function if it is both a capacity and an∞-valuation.

Lemma 2.4 If L is distributive, then the following equality is sufficient for an ∞-
valuation f :

f (a ∧ b)+ f (a ∨ b) = f (a)+ f (b), for all a, b ∈ L. (5)

The following proposition in Barthélemy (2000) tells us that every belief function
is totally monotone.

Proposition 2.5 Let f : L → [0, 1] be a capacity and m be its Möbius transform. If
f is a belief function, then it is totally monotone.

Shafer proved that the converse is also true for any belief function on Boolean
algebras (Theorem 2.1. in Shafer 1976). We have shown (Zhou 2013, 2012) that it
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actually holds generally for any lattice, which answers an open question raised in
Grabisch (2009).

Theorem 2.6 Let L be a lattice and f : L → [0, 1] be a capacity on L and m be its
Möbius transform. The following two statements are equivalent:

• m is non-negative;
• f is totally monotone.

Given a poset P, J(P) (F(P)) denotes the lattice of order ideals (filters) of P
with the ordinary union and intersection (on subsets of P). So J(P) (F(P)) is dis-
tributive. Conversely, from Birkhoff’s fundamental theorem for finite distributive
lattices (Stanley 1997), we know that for any finite distributive lattice L, there is a
unique (up to isomorphism) finite poset P for which L ∼= J(P) (F(P)). Usually P is
chosen to be the poset of join-irreducibles (meet-irreducibles) in L. The following
two propositions provide formulas for Möbius functions and Möbius transforms in
distributive lattices.

Proposition 2.7 (Example 3.9.6 in Stanley 1997)
The Möbius function of the distributive lattice L = J(P), where P is a poset, is
definable as follows. For any I, I ′ ∈ J(P),

μ(I, I ′) =
{

(−1)|I ′\I| if [I, I ′] is a Boolean algebra,

0 otherwise.

where [I, I ′] denotes the interval {K ∈ J(P) : I ⊆ K ⊆ I ′ }.
From this proposition, we immediately obtain a nice formula for Möbius trans-

forms.

Theorem 2.8 Let L = J(P) be a distributive lattice for some poset P. Suppose
Bel : L → [0, 1] is the belief function given by the mass assignment m : L → [0, 1].
Then, for all A ∈ J(P),

m(A) =
∑

[B,A] is a
Boolean algebra

(−1)|A\B|Bel(B).

Definition 2.9 Given a distributive lattice L = 〈L,≤〉, a belief function Bel : L →
[0, 1] is called Bayesian if,

Bel(a ∨ b)+ Bel(a ∧ b) = Bel(a)+ Bel(b) whenever a, b ∈ L. (6)

From Lemma 2.4, for any distributive lattice L = 〈L,≤〉, a belief function
Bel : L → [0, 1] is Bayesian if and only if it is a probability function. The following
proposition generalizes the natural analogy in lattice theory that join-irreducibles to
distributive lattices are the same as singletons to Boolean algebras.
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Proposition 2.10 A belief function Bel on a distributive lattice D is Bayesian (or a
probability function) iff all its focal elements are join-irreducibles.

Most important properties of belief functions on Boolean algebras can be trans-
posed naturally to the more general setting of distributive lattices (Zhou 2013).

3 Belief Functions on Non-classical Formalisms

The integration of belief functions and non-classical formalisms is intended to mas-
ter two sources of ignorance. Non-classical formalisms usually take care of the
incompleteness or inconsistency in the knowledge-base due to imperfect data while
belief functions take care of the limitation of the information that the agents have
at their disposal. In artificial intelligence especially in Knowledge Representation,
non-classical formalisms play an important role in handling imperfect information in
different forms. Most of these non-classical formalisms assume a mathematical set-
ting of distributive lattices. (Quantum logic is probably one of the very few important
exceptions (Birkhoff and von Neumann 1936; Ying 2010), with linear logic being
another one (Girard 1987).) Each of these formalisms was intended for reasoning
about some specific form of information.

For example, Kleene’s three-valued logic has been used to take into account
“undefined” as a third truth value, which is useful to model the situation in computer
science when a computation does not return any result (Fitting 1994). Paraconsistent
logics have been used to deal with contradictory knowledge bases (Arieli et al. 2011;
Priest 1979), and relevance logic is used to deal with the famous logical omniscience
problem in the foundation of knowledge representation, and used for reasoning in
the presence of inconsistency in knowledge base systems (Levesque 1984; Lin 1996;
Fagin et al. 1990).

Belief functions in the Dempster–Shafer theory are defined on Boolean alge-
bras (Shafer 1976). One essential difference of non-classical formalisms from the
Boolean setting is their specific treatments of negation. Negation is closely related
to the treatment of bipolarity in information (Dubois and Prade 2008), which means
that there is an intrinsic positive and negative affect in dealing with information.
In the classical Dempster–Shafer theory, negation is assumed to be Boolean, i.e.,
every element has a complement (for any element a, there is an element a′ such
that a ∨ a′ is the top element and a ∧ a′ is the bottom), which is used to represent
complete information. A distributive lattice with a Boolean negation is a Boolean
algebra and any Boolean algebra can be represented as a power set with the usual
set operations (Example 2.1). In Kleene’s three-valued logic, there are three truth
values: true, false and undetermined. Logically, the treatment of negation considers
some formulas to be neither true nor false (undetermined) but forbids any formula to
be both true and false. In other words, positive and negative sides don’t exhaust all
possibilities. So this logic is used to represent incompleteness in information. There
is an implicit intuitionistic negation in any finite distributive lattice. Since any finite
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distributive lattice D = J(P) for some poset P is also a Heyting algebra, max{ I ′ ∈
J(P) : I ′ ∩ I = ∅ } exists for any I ∈ J(P), and is defined to be the negation of I
(denoted by∼I), which is in J(P). One may also reason about belief functions in this
case by replacing the classical proposition logic by intuitionistic propositional logic.
(See the discussion in Sect. 5).

Kleene’s three-valued logic finds a natural generalization in the Belnap–Dunn
four-valued logic (Belnap 1977; Dunn 1976a), which can be naturally extended to
distributive bilattices. A distributive bilattice is a distributive lattice with a second
ordering which interacts with the original one in a certain way. In addition to their
applications in logic programming (Fitting 1994), distributive bilattices are also used
to represent the inconsistency in knowledge base systems. In these structures, another
form of negation called de Morgan negation is employed. The most important aspect
of deMorgan negations is their intrinsic ability to model inconsistency in knowledge
base systems. In this paper, we will consider this type of negation and integrate belief
functions with de Morgan lattices, which are distributive lattices with de Morgan
negations.Wewill provide an axiomatization of reasoning about belief functions over
such non-classical structures and discuss the computational complexity of different
problems in this setting. More importantly, this approach to reasoning about belief
functions on de Morgan lattices also provides a framework to reason about belief
functions on other non-classical structures. For a comprehensive algebraic treatment
of other negations in non-classical formalisms, one may refer to Dunn (1999) and
Dunn and Zhou (2005).

A well-known slogan in algebraic methods for non-classical logics (Sect. 18 of
Anderson and Belnap 1975; Dunn 1966) tells us that the algebraist and the logician
are dual to each other in the sense that algebra and logic are dual to each other.
Given a non-classical logicL, the Lindenbaum algebraAL of this logic is in the class
of algebras which characterize the logic but also the possible-world-like structure
derived from the Lindenbaum algebra AL through the Duality theorem for this class
of algebras is the canonical structure for this logic. On the other hand, given any
possible-world-like structure for the logic L, the interpretations of the formulas is
an algebra that characterizes L. So, in the following section, before we reason about
belief functions on specific classes of algebras, we elaborate on this kind of duality
between logics and their corresponding algebraic structures (and possible-world-like
semantics) and won’t distinguish belief functions on algebras and for their logics.

In addition to this duality, algebra and logic are dual to each other in the sense that
(order) ideals to algebra are the same as filters to logic. If we replace all posets 〈P,≤〉
with its dual 〈P,≤∂〉 (where x ≤∂ y iff y ≤ x) and all≤-order-ideals by≤∂ -filters, the
dual forms of all propositions there remain valid. So, in order to apply the algebraic
propositions to non-classical logics, we have to keep this duality in mind.
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3.1 Reasoning About Bilattices

Bilattices are algebras with two separate lattice structures. Ginsberg (1988) sug-
gested using bilattices as the underlying framework for various AI inference systems
including those based on default logics, truthmaintenance systems, probabilistic log-
ics, and others. These ideas were later pursued in the context of logic programming
semantics (Fitting 1991). Moreover, bilattices and their extensions have been used
in the literature to model a variety of reasoning mechanisms about uncertainty in
the presence of incomplete or contradictory information (Kifer and Lozinskii 1992;
Arieli et al. 2011). Also they have been employed to represent bipolar information
(Konieczny 2008). In the following, we first present a well-known algebraic result
about the representation of bilattices.We employ the Belnap–Dunn four-valued logic
to decouple the interpretation of each formulaφ into the set of states whereφ is “true”
and that of states where it is “false” (Dunn 1976a). In this way, the interpretations of
all formulas form a distributive bilattice with two partial orderings: the truth ordering
and the knowledge ordering.

One may refer to Mobasher et al. (2000), Fitting (1994) for the technical
details about the duality theorem of bilattices which is presented below. For similar
duality results, one may also consult (Jung and Rivieccio 2012) and
(Jung and Rivieccio 2013). Recall that all lattices are assumed to be finite.

Definition 3.1 A bilattice is an algebra B = 〈B,∧1,∨1,⊥1,	1,∧2,∨2,⊥2,	2〉
such that B1 = 〈B,∧1,∨1,⊥1,	1〉 and B2 = 〈B,∧2,∨2,⊥2,	2〉 are lattices. By a
negation on B we mean a unary operation ¬ on B satisfying the conditions:

1. ¬¬x = x;
2. ¬(x ∨1 y) = ¬x ∧1 ¬y, ¬(x ∧1 y) = ¬x ∨1 ¬y;
3. ¬(x ∨2 y) = ¬x ∨2 ¬y, ¬(x ∧2 y) = ¬x ∧2 ¬y.

B is called distributive if, for every ♦,� ∈ {∧1,∨1,∧2,∨2 } and for all x, y, z ∈ B,
x ♦ (y � z) = (x ♦ y) � (x ♦ z).

The lattice ordering corresponding to the lattice B1 will be denoted by≤1 and the
lattice ordering corresponding to B2 by≤2; often the bilattice B is written in the form
〈B,≤1,≤2〉. Alternatively, ≤1 and ≤2 are often denoted by ≤t and ≤k , respectively,
reflecting the fact that they represent the “truth” and “knowledge” orderings, which
will become clear in the following definition of four-valued model.

Definition 3.2 Let L = 〈L,∧,∨,⊥,	〉 and L′ = 〈L′,∧′,∨′,⊥′,	′〉 be lattices.
Define B(L, L′) = 〈L × L′,�1,�1,⊥1,	1,�2,�2,⊥2,	2〉 as follows. For all
(x, x′), (y, y′) ∈ L × L′,

• (x, x′) �1 (y, y′) = (x ∧ y, x′ ∨′ y′), (x, x′) �1 (y, y′) = (x ∨ y, x′ ∧′ y′);
• (x, x′) �2 (y, y′) = (x ∧ y, x′ ∧′ y′), (x, x′) �2 (y, y′) = (x ∨ y, x′ ∨′ y′);
• ⊥1 = (⊥,	′), 	1 = (	,⊥′), ⊥2 = (⊥,⊥′), 	2 = (	,	′).
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B(L, L′) is called the product bilattice associated with L and L′. If L = L′, then
we define

∼(x, x′) = (x′, x).

B(L, L) is called the square bilattice with negation associated with L. Usually we
write B(L) for B(L, L).

Theorem 3.3 (Corollary 9 in Mobasher et al. 2000)
B is a distributive bilattice with negation if and only if there exists a distributive
lattice L such that B ∼= B(L).

LetB = 〈B,≤1,≤2〉 be a distributive bilattice. An element x ∈ B is called positive
if, for every y ∈ B, x ≤1 y implies x ≤2 y. It is called negative if, for every y ∈ B,
y ≤1 x implies x ≤2 y. Intuitively, an element x is positive (negative) if it should
increase in the knowledge ordering whenever it increases (decreases) in the truth
order. Denote by POS(B) and NEG(B) the set of positive and negative elements
[they are called t-grounded and f -grounded in Ginsberg (1988)], respectively, of
B. An element x ∈ B is called positive (resp., negative) ≤2-join-irreducible if it is
positive (resp., negative) and join-irreducible with respect to≤2-ordering.We denote
by �+2 (B) (resp., �−2 (B)) the set of non-bottom positive (resp., negative) ≤2-join-
irreducible elements of B. Moreover, �2(B) denotes the set of all≤2-join-irreducible
elements of B. If a bilattice B is distributive and is represented as a square bilattice,
then it is easy to recognize those positive and negative elements, as shown in the
following proposition.

Proposition 3.4 (Corollary 8 in Mobasher et al. 2000)
Let L be a distributive lattice and let 0 be the least element. An element x of B(L) is
positive iff x = (y, 0) for some y ∈ L, and is negative iff x = (0, y) for some y ∈ L.

Let P = 〈P,�〉 and Q = 〈Q,�〉 be two disjoint partially ordered sets. Define the
lift of P, denoted by P⊥ = 〈P ∪ { 0 },≤〉, where 0 /∈ P and x ≤ y in P⊥ iff x = 0 or
x � y in P. Define the disjoint union P � Q = 〈P ∪ Q,≤〉 to be the partially ordered
set with x ≤ y iff either x, y ∈ P and x � y or x, y ∈ Q and x � y.

Given two partially ordered sets P and Q, define the separated sum of P and Q,
denoted P ⊕⊥ Q, to be the poset P ⊕⊥ Q = (P � Q)⊥.

Theorem 3.5 (Corollary 23 in Mobasher et al. 2000)
Let B be a distributive bilattice with negation. Then �2(B) ∼= �+2 (B)⊕⊥ �−2 (B) and
�+2 (B) ∼= �−2 (B). Conversely, for any finite poset P, there is a finite distributive
bilattice B such that �2(B) ∼= P ⊕⊥ P. So there is a one-to-one correspondence
between finite distributive bilattices and finite posets.

Let J2(�2(B)) denote ≤2-order ideals in �2(B). It is easy to check that it is the
same as the Cartesian product of the set of order ideals inP with itself. In other words,
J2(�2(B)) ≈ J(P)× J(P). For any two elements (I1, I2), (I ′1, I ′2) ∈ J2(�2(B)),
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Fig. 1 Lattice FOUR
interpreted by subsets of
{ 0, 1 }

• (I1, I2) ≤1 (I ′1, I ′2) if I1 ⊆ I2 and I ′1 ⊇ I ′2;• (I1, I2) ≤2 (I ′1, I ′2) if I1 ⊆ I2 and I ′1 ⊆ I ′2
FOUR, the structure that corresponds to the Belnap–Dunn four-valued logic

(Belnap 1977; Dunn 1976a), is the minimal bilattice, exactly as the structure
2 = { true, false } or { 0, 1 } that is based on the classical two valued logic is the
minimal Boolean algebra. It plays an important role in bilattice-based multi-valued
logics. The Hasse diagram of the lattice FOUR is illustrated in Fig. 1.

Following Dunn (1976a; 2000), we interpret the lattice FOUR in terms of the
power set of { 0, 1 }. The meaning of the capital letters attached to the elements of
FOUR in the above figure is obvious from this type of interpretation. For example,
B informally means “both” and can be translated as both “true” (1) and “false” (0).
The truth ordering ≤t can be formalized as follows: for any two elements x, y ∈
{T , F, B, N },

x ≤t y if both 1 ∈ x implies 1 ∈ y, and 0 ∈ y implies 0 ∈ x.

The lattice FOUR is the tuple 〈{T , F, N, B },∨,∧,∼〉 where ∧ and ∨ are the
lattice operations associated with the above truth ordering. Also we define ∼ as an
order inverting operation that leaves N and B as fixed points, i.e.,∼N = N ,∼B = B,
∼T = F,∼F = T . The meaning of this negation∼ will be clear from the following
semantical meaning of formulas.

It is interesting to note that there is a natural knowledge ordering implicit in the
above lattice FOUR. The knowledge ordering ≤k is defined as follows: for any two
elements x, y ∈ {T , F, N, B },

x ≤k y if both 1 ∈ x implies 1 ∈ y, and 0 ∈ x implies 0 ∈ y.

So the lattice operations � and � associated with≤k are simply the usual set oper-
ations ∩ and ∪. It is easy to check that 〈{T , F, N, F },∨,∧,�,�,∼〉 is a distributive
bilattice. It is actually the smallest distributive bilattice. 2 denotes the sublattice
〈{T , F },∧,∨〉 of the reduct 〈{T , F, N, B },∧,∨〉.



Logical Foundations of Evidential Reasoning with Contradictory Information 227

The interpretations of standard propositional formulas in FOUR form exactly a
distributive bilattice. Moreover, it was shown in Arieli and Avron (1998) that all
the natural bilattice-valued logics that we had introduced for various purposes can
be characterized using only the four basic “epistemic truth values.” The meaning
of such epistemic truth values highly differs from the meaning of standard Boolean
truth values since they are not intrinsic to propositions but are intended to reflect
what an agent may have been informed about (regarding these propositions). Thus,
interpreting a proposition φ as 0 (resp., 1) does not mean that φ is false (resp., true)
but that the agent under consideration has some reasons to consider that φ is false
(resp., true) or is told that φ is “false” (resp., “true”). The agent may have some
reasons to consider that φ is false and other reasons to consider that φ is true, and
the epistemic truth value B reflects this situation. Similarly, the agent may have no
reasons to consider φ as true and no reasons to consider it as false; in this situation, φ
is given the epistemic truth value N (or ∅). So B reflects a situation of inconsistency
and N of ignorance. The epistemic nature in the interpretations into FOUR agrees
well with Shafer’s emphasis of the epistemic nature of the set of possibilities on the
frame of discernment in his theory (Shafer 1976, p. 36), but under incomplete or
inconsistent information.

In order to reason about belief functions for the four-valued logic, we expand
Φ0 in the last section to Φ by adding the connective negation ∼. In other words, a
formula in Φ is formed by the following syntax:

φ := p | ∼φ | φ1 ∧ φ2 | φ1 ∨ φ2,

where p is a propositional letter.
A valuation v into the lattice FOUR is a function from the set P of propositional

letters into FOUR. It is easy to see that v can be extended to the set of formulas
naturally as follows:

• v(∼φ) = ∼v(φ);
• v(φ ∧ ψ) = v(φ) ∧ v(ψ);
• v(φ ∨ ψ) = v(φ) ∨ v(ψ).

Following Belnap (1977), we simply say “φ is at least true” if 1 ∈ v(φ); “φ is at
least false” if 0 ∈ v(φ). It follows immediately that

• 1 ∈ v(φ) iff 0 ∈ v(∼φ), 0 ∈ v(φ) iff 1 ∈ v(∼φ);
• 1 ∈ v(φ ∨ ψ) iff 1 ∈ v(φ) or 1 ∈ v(ψ),
0 ∈ v(φ ∨ ψ) iff 0 ∈ v(φ) and 0 ∈ v(ψ);

• 1 ∈ v(φ ∧ ψ) iff 1 ∈ v(φ) and 1 ∈ v(ψ),
0 ∈ v(φ ∧ ψ) iff 0 ∈ v(φ) or 0 ∈ v(ψ).

In order to introduce the bilattice into our setting,we simulate theKripke semantics
for intuitionistic logic (Kripke 1965; van Dalen 2004) to define a semantics for
four-valued logic (Definition 3.7). In this semantics, a four-valued model is a tuple
S = 〈S, v〉, where
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• S is a non-empty set of states, which are like possible worlds except that they are
not required to be either consistent or complete;

• v is a valuation which is a function at each state such that v(s)(p) ⊆ { 1, 0 } for all
propositional letters p. In other words, v(s)(p) ∈ {T , N, B, F }.
Two support relations between states and formulas are defined inductively as

follows:

• S, s �T p if 1 ∈ v(s)(p),
S, s �F p if 0 ∈ v(s)(p);

• S, s �T φ1 ∧ φ2 if S, s �T φ1 and S, s �T φ2;
S, s �F φ1 ∧ φ2 if S, s �F φ1 or S, s �F φ2;

• S, s �T φ1 ∨ φ2 if S, s �T φ1 or S, s �T φ2;
S, s �F φ1 ∨ φ2 if S, s �F φ1 and S, s �F φ2;

• S, s �T ∼φ if S, s �F φ;
S, s �F ∼φ if S, s �T φ;

Note that, for any s ∈ S and for any formula φ, 1 ∈ v(s)(φ) iff S, s �T φ and
0 ∈ v(s)(φ) iff S, s �F φ.

We may group all the states according to the following equivalence relation:

s1 ≈Φ s2 if, for all formulas φ ∈ Φ, S, s1 �X φ ⇔ S, s2 �X φ for X ∈ {T , F }.
[s]Φ denotes the equivalence class including s. A partial relation ≤Φ on SΦ =
{ [s]Φ : s ∈ S } can be defined as follows:

[s1]Φ ≤Φ [s2]Φ if, for any formula φ,

S, s1 �T φ implies S, s2 �T φ and S, s1 �F φ implies S, s2 �F φ.

Moreover, a corresponding valuation vΦ is defined on SΦ as follows. For any s ∈ S
and propositional letter p,

vΦ([s]Φ)(p) = v(s)(p).

A satisfaction relation between states in SΦ and formulas can be defined inductively
as usual.

Proposition 3.6 〈S, v〉 and 〈SΦ,≤Φ, vΦ〉 are equivalent in the sense that, for any
s ∈ S and any φ ∈ Φ,

• S, s �T φ if and only if SΦ, [s]Φ �T φ;
• S, s �F φ if and only if SΦ, [s]Φ �F φ.

Proof We prove this by induction on the complexity of φ. Here we only show the
non-trivial case when φ = ∼φ′.

SΦ, [s]Φ �T ∼φ′ ⇔ SΦ, [s]Φ �F φ′ ⇔ S, s �F φ′ ⇔ S, s �T ∼φ′
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Note that the second equivalence is based on induction hypothesis and the other
two on semantical clause for ∼. �

Let [[φ]]T denote the set of all states where φ is “told true” { [s]Φ
∈ SΦ : SΦ, [s]Φ �T φ } and [[φ]]F = { [s]Φ ∈ SΦ : SΦ, [s]Φ �F φ }, for all formulas
φ. It is easy to check that both of them are filters in (SΦ,≤Φ). Denote

BΦ = { ([[φ]]T , [[φ]]F) : φ ∈ Φ }.

We can define two partial orders on BΦ .

• ([[φ1]]T , [[φ1]]F) ≤1
Φ ([[φ2]]T , [[φ2]]F) if [[φ1]]T ⊆ [[φ2]]T and [[φ1]]F ⊇ [[φ2]]F ;

• ([[φ1]]T , [[φ1]]F) ≤2
Φ ([[φ2]]T , [[φ2]]F) if [[φ1]]T ⊆ [[φ2]]T and [[φ1]]F ⊆ [[φ2]]F ;

Remark 3.1 The four-valued semantics is equivalent to Dunn’s semantics of propo-
sition surrogates from Dunn (1966). Moreover, the four valued logic is employed
to decouple the bipolar information in the semantics. And the interpretation of each
formula φ is decomposed into two parts: the part for the epistemic truth and the other
part for the epistemic falsity, as explained in Dunn (1976a, 1986). For the partial
ordering ≤1

Φ , the agent has more reasons to consider φ2 as true than φ1 and more
reasons to consider φ1 as false than φ2. In other words, φ2 is considered at least as
true as and at most as false as φ1. The agent is more confident in considering that
overall φ2 is at least as true as φ1. This is the reason why ≤1

Φ is also called the truth
ordering. For the other ordering ≤2

Φ , the agent has both more reasons to consider φ2

as true than φ1 and more reasons to consider φ2 as false than φ1. So the agent is more
informative (in reasons) about φ2 than about φ1. This is the reason why ≤2

Φ is called
the information or knowledge ordering.

It is easy to check that the associated structure BΦ := 〈BΦ,≤1
Φ,≤2

Φ〉 is a distrib-
utive bilattice with the following negation:

∼Φ([[φ]]T , [[φ]]F) = ([[φ]]F, [[φ]]T ) = ([[∼φ]]T , [[∼φ]]F).

According to a dual form of Theorem 3.5, we have that

M2(BΦ) ∼= SΦ ⊕⊥ SΦ,

where M2(BΦ) is the set of ≤2
Φ-meet-irreducibles in BΦ and SΦ is the state space

with the partial ordering ≤Φ .
So each four-valuedmodel can be regarded as a poset with a valuation intoFOUR.

In order to simulate Kripke semantics for intuitionistic logic, we choose to define
belief structures in a more abstract form.
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Definition 3.7 A Belnap–Dunn structure is a tuple S = 〈S,≤, v〉 where
• 〈S,≤〉 is a poset;
• v is a valuation intoFOURon the set of propositional letters satisfying the following

persistency condition: for any s1, s2 ∈ S and propositional letter p,

if s1 ≤ s2, then 1 ∈ v(s1)(p) implies 1 ∈ v(s2)(p), and
0 ∈ v(s1)(p) implies 0 ∈ v(s2)(p).

It is a Boolean structure if ≤ is the identity relation and v is a valuation into 2.

Two support relations �T and �F between states and formulas can be defined
exactly as in the above four-valued-structures. Actually the persistency condition for
the valuation is satisfied by all formulas, as shown by the following lemma.

Lemma 3.8 Let 〈S,≤, v〉 be a Belnap–Dunn structure. If s1, s2 ∈ S and s1 ≤ s2,
then, for any formula φ,

1. S, s1 �T φ implies S, s2 �T φ;
2. S, s1 �F φ implies S, s2 �F φ.

Proof Let 〈S,≤, v〉 be a Belnap–Dunn structure and s1, s2 ∈ S and s1 ≤ s2.We prove
by induction on the complexity of φ. Here we only prove the case that φ = ∼φ′. The
proof of the other cases is straightforward.

We reason as follows:

S, s1 �T φ ⇒ S, s1 �F φ′

⇒ S, s2 �F φ′ (Induction hypothesis)

⇒ S, s2 �T ∼φ′

and

S, s1 �F φ ⇒ S, s1 �T φ′

⇒ S, s1 �T φ′ (Induction hypothesis)

⇒ S, s1 �F ∼φ′ �

Remark 3.2 The persistency condition in a Belnap–Dunn structure is quite similar to
that in Kripke’s semantics for intuitionistic logic (Kripke 1965; van Dalen 2004) and
in Dunn’s semantics for R-mingle (Dunn 1976b). Each state s can be seen as a pair
of knowledge bases. The set of formulas that are at least true at s is the knowledge
base of true facts and the set of formulas which are at least false at s constitutes the
knowledge base for the false facts. This pair of knowledge evolves in the course of
time. Both the knowledge base of true facts and that of false facts expand at every
later stage. They are considered to be independent of each other and both take the
open-world assumption, which also explains the incompleteness in the information
in another way. So the essential difference from that in intuitionistic logic is that the
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persistency condition here concerns not only the knowledge of true facts but also
that of false facts.

Definition 3.9 A formula ψ is a logical consequence of a formula φ (φ logically
implies ψ) with respect to the class B of Belnap–Dunn structures (denoted φ �B ψ)
if, for any Belnap–Dunn structure S = 〈S,≤, v〉 and any s ∈ S, S, s �T φ implies
S, s �T ψ and S, s �F ψ implies S, s �F φ.

Now we investigate a deductive system for this logical implication with respect
to the class of Belnap–Dunn structures. The following is the deductive system Rfde

which is the well-known first-degree-entailment fragment of the relevance logic R
(Anderson and Belnap 1975; Dunn 1986). Without further notice, � denotes �Rfde

and φ  � ψ is short for both φ � ψ and ψ � φ.
Axioms:

φ � φ Self-implication
φ ∧ ψ � φ, φ ∧ ψ � ψ (∧-elimination)
φ � φ ∨ ψ, ψ � φ ∨ ψ (∨-introduction)

φ ∧ (ψ ∨ γ ) � (φ ∨ ψ) ∧ (ψ ∨ γ ) (Distribution)
φ  � ∼∼φ (Double Negation)

∼(φ ∧ ψ)  � ∼φ ∨ ∼ψ ∼(φ ∨ ψ)  � ∼φ ∧ ∼ψ (de Morgan laws)

Rules:

• From φ � ψ and ψ � γ , infer φ � γ . (Transitivity)
• From φ � ψ and φ � γ , infer φ � ψ ∧ γ . (∧-introduction)
• From φ � γ and ψ � γ , infer φ ∨ ψ � γ . (∨-elimination)
• From φ � ψ , infer ∼ψ � ∼φ. (Contraposition)

Actually the logical implication relation in the class of Belnap–Dunn structures
coincides with the above consequence relation �Rfde .

Theorem 3.10 (Theorem 7 in Dunn 2000)
For any two formulas φ and ψ in Φ,

φ � ψ iff φ �B ψ.

3.2 Reasoning About de Morgan Lattices

De Morgan lattices are important for the study of the mathematical aspects of fuzzy
logic (Zadeh 1988). The standard fuzzy algebra F = 〈[0, 1],max(x, y),min(x, y),
0, 1, 1− x〉 is an example of a de Morgan lattice. Moreover, de Morgan monoids
are an algebraic semantics for the relevance logic Rt , as was shown by Dunn
in his (1966) and in Anderson and Belnap (1975, Sect. 28.2). In this part, we
investigate belief functions on de Morgan lattices which covers those for fuzzy
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events (Zadeh 1979; Smets 1981; Yen 1990). It is interesting to note that the first
degree entailment Rfde also provides a calculus for reasoning about de Morgan lat-
tices. In the following, we will give a presentation of the semantics in terms of de
Morgan lattices which is in parallel to that for bilattices. For simplicity, we will not
repeat those proofs which are similar to those in last part about bilattices but sim-
ply present the main ideas. Note that the ∧1-∨1-¬-reduct of a distributive bilattice
B = 〈B,∧1,∨1,∧′1,∨′2,¬〉 is a de Morgan lattice.

We need the following duality theorem for finite de Morgan lattices which is
based on Białynicki-Birula and Rasiowa (1957), Dunn (1986), Urquhart (1979) and
Priestley (1970).

Theorem 3.11 Any finite de Morgan lattice D can be represented as the lattice
J(PD) of order ideals in the sub-poset PD of join-irreducibles with an order-reversing
involution g. There is a one-to-one correspondence between de Morgan lattices and
posets with order-reversing involutions.

The interested reader may find a detailed proof of this theorem in the Appendix,
which is of independent interest. AnRfde-structure (Routley and Routley 1972; Dunn
1986, 1966) is a tuple S = 〈S, ∗, v〉, where
• S is a non-empty set of states, which are like possible worlds except that they are
not required to be either consistent or complete;

• ∗ is an involution on S and is usually called Routley star;
• v is a valuation which is a function at each state such that v(s)(p) ∈ { true, false }
for all propositional letters p.

A satisfaction relation between states and formulas is defined inductively as:

• S, s � p if v(s)(p) = true;
• S, s � φ1 ∧ φ2 if S, s � φ1 and S, s � φ2;
• S, s � φ1 ∨ φ2 if S, s � φ1 or S, s � φ2;
• S, s � ∼φ if S, s∗ � φ.

The truth value of the negation of a formula φ at a state s is determined by that
of φ at its adjunct state s∗. We may group all the states according to the following
equivalence relation:

s1 ≈Φ s2 if, for all formulas φ ∈ Φ, S, s1 � φ ⇔ S, s2 � φ.

[s]Φ denotes the equivalence class including s. A partial relation ≤Φ on SΦ =
{ [s]Φ : s ∈ S } can be defined as follows:

[s1]Φ ≤Φ [s2]Φ if, for any formula φ, S, s1 � φ implies S, s2 � φ.

Further we define the unary operation gΦ :

gΦ([s]Φ) = [s∗]Φ for each s ∈ S.
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It is easy to check that gΦ is well-defined and is an order-reversing involution on SΦ .
Moreover, a corresponding valuation vΦ is defined on SΦ as follows: for any s ∈ S
and propositional letter p,

vΦ([s]Φ)(p) = true iff v(s)(p) = true.

A satisfaction relation between states in SΦ and formulas can be defined inductively
as usual.

Proposition 3.12 〈S, ∗, v〉 and 〈SΦ,≤Φ, gΦ, vΦ〉 are equivalent in the sense that,
for any s ∈ S and any φ ∈ Φ,

S, s � φ if and only if SΦ, [s]Φ � φ.

So each Rfde-structure can be regarded as a poset with an order-reversing involu-
tion. In order to reason about belief functions on de Morgan lattices, we choose to
define structures for Rfde by simulating Kripke semantics for intuitionistic logic.

Definition 3.13 A Routley structure is a tuple S = 〈S,≤, g, v〉, where
• 〈S,≤, g〉 is a poset with an order-reversing involution g;
• v is a valuation on the set of propositional letters satisfying the following persis-

tency condition: for any s1, s2 ∈ S and propositional letter p,

if s1 ≤ s2 and v(s1)(p) = true, then v(s2)(p) = true.

S is a Boolean structure when≤ is the identity relation and g is the identity function.
From the persistency condition, we may immediately derive a “reverse” persis-

tency condition as follows: for any s1, s2 ∈ S and propositional letter p,

if s1 ≤ s2 and v(g(s2))(p) = true, then v(g(s1))(p) = true.

A satisfaction relation between states and formulas can be defined exactly as in the
above Rfde-structure. Actually the persistency condition for the valuation is satisfied
by all formulas, as shown in the following proposition.

Lemma 3.14 Let 〈S,≤, g, v〉 be a Routley structure. If s1, s2 ∈ S and s1 ≤ s2, then
for any formula φ,

1. S, s1 � φ implies S, s2 � φ;
2. S, g(s2) � φ implies S, g(s1) � φ.

Remark 3.3 The persistency condition in a Routley structure is quite similar to that
in the Kripke semantics for intuitionistic logic (van Dalen 2004). Each pair (s, g(s))
of a state s and its adjunct can be seen as a pair of knowledge bases. s is the knowledge
base consisting of true facts and g(s) is the knowledge base for the false facts. Here
we take the closed-world assumption (Reiter 1978) for g(s) in the sense that, if a
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proposition is not implied in g(s), then the negation of this proposition is implied
at s. This pair of knowledge evolves in the course of time. The knowledge base
of true facts expands at every later stage while the knowledge base for false facts
decreases. So the essential difference from those in Belnap–Dunn structures is that
the knowledge of true facts and that of false facts are dual to each other, rather than
independent of each other as in Belnap–Dunn structures.

If the second (reverse) persistency condition is replaced by a new adjunct but
independent valuation v∗ which is defined as v∗(s) = v(g(s)), then we may also
define a Routley structure as a poset 〈S,≤, g〉 with an order-reversing involution g
and two “independent” but adjunct-to-each-other valuations v and v∗ satisfying the
following two persistency conditions: for all propositional letters p,

• if s1 ≤ s2, then v(s1)(p) = true implies v(s2)(p) = true;
• if s1 ≤ s2, then v∗(s2)(p) = true implies v∗(s1)(p) = true.

The new valuation v∗ is for false facts. So the semantics with this new type of
Routley structures is the same as the above except that for the negated formulas:

(S, v), s � ∼φ if (S, v∗), s � φ.

The adjunct valuation is used to decouple the semantics to interpret negation. Since
there is a straightforward interpretation between this semantics and the above one,
they are equivalent. So each possibility in the epistemic frame for belief functions on
Routley structures consists of a pair of valuations. It would be interesting to compare
this pair with the valuation for the four-valued logic.

The following proposition tells us that the notion of satisfiability in both Routley
semantics and Belnap–Dunn semantics are equivalent (Proposition 9.1 in Fagin et al.
1995).

Proposition 3.15 For each Routley structure M = 〈S, g, v〉 and state s in M, there is
a Belnap–Dunn structure M ′ = 〈S′, v′〉 and state s′ ∈ S′ such that for each formula φ,

M, s � φ iff M ′, s′ �T φ (7)

M, s � ∼φ iff M ′, s′ �F φ (8)

Conversely, for any Belnap–Dunn structure M ′ = 〈S′, v′〉 and state s′ ∈ S′, there is
a Routley structure M = 〈S, g, v〉 and state s in M such that the above equivalences
(7) and (8) hold.

Proof For eachRoutley structureM = 〈S, g, v〉 and state s inM, we define aBelnap–
Dunn structure as follows:

• S′ = S;
• 1 ∈ v′(s)(p) iff v(s)(p) = true;
• 0 ∈ v′(s)(p) iff v(s∗)(p) = false.
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It is easy to check that the following equivalences hold: for all φ ∈ Φ,

M, s � φ iff M ′, s �T φ (9)

M, s � ∼φ iff M ′, s �F φ (10)

Conversely, for any Belnap–Dunn structure M ′ = 〈S′, v′〉, we define a Routley
structure as follows:

• S = S′ ∪ S′∗ where S′∗ = { s∗ : s ∈ S′ } and for each s ∈ S′, s∗ is a new state;
• For each s ∈ S,
– v(s)(p) = true iff 1 ∈ v′(s)(p);
– v(s∗)(p) = false iff 0 ∈ v′(s)(p).

It is easy to check that the equivalences (7) and (8) hold. �
Remark 3.4 Define an equivalence relation " on Φ,

φ1 " φ2 iff φ1 � φ2 and φ2 � φ1.

LetΦ/" denote the set of"-equivalence classes [φ]". Nowwe define the operations
on this set as follows:

• [φ1]" ∧" [φ2]" = [φ1 ∧ φ2]";
• [φ1]" ∨" [φ2]" = [φ1 ∨ φ2]";
• ∼"[φ]" = [∼φ]".

It is easy to check that these operations are well-defined. Such a defined algebra
〈Φ/",∧",∨",∼"〉 is the Lindenbaum algebra on Φ/" and is actually a de Morgan
lattice.

With respect to Φ, we define the canonical Routley structure as follows.

• SΦ is the set of all prime filters in Φ/";
• gΦ : SΦ → SΦ is defined: for each F ∈ SΦ , gΦ(F) = Φ/" \ ∼"F where ∼"F =
{∼"[φ]" : [φ]" ∈ F }, which is a prime filer;

• vΦ(F)(p) = true if [p]" ∈ F for any F ∈ SΦ .

It is easy to check that 〈SΦ,≤Φ, gΦ〉 is a poset with the order-reversing involu-
tion gΦ where ≤Φ is the subset relation. If Φ is finite, according to the dual form
of the representation theorem for finite de Morgan lattices, the Lindenbaum alge-
bra 〈Φ/",∧",∨",∼"〉 is isomorphic to the concrete lattice of filters in the poset
〈SΦ,≤Φ, gΦ〉 which underlies the canonical Routley structure.

Definition 3.16 A formula φ logically implies a formula ψ with respect to the class
of Routley structures (denoted as φ �R ψ) if, for any Routley structure S = 〈S, g, v〉,
S, s � φ implies S, s � ψ .

The difference of this definition from that for Belnap–Dunn structures
(Definition 3.9) is that we don’t need to consider the “negative side.” Actually the
logical implication relation in the class of Routley structures coincideswith the above
consequence relation �Rfde .
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Theorem 3.17 (Theorem 7 in Dunn 2000)
For any two formulas φ and ψ in Φ,

φ � ψ iff φ �R ψ.

Theorem 3.18 The complexity of deciding logical implication with respect to the
class of Routley structures (Belnap–Dunn structures) is co-NP-complete.

Proof The proof can be easily adapted from that of the similar problem in Sect. 8 in
Fagin et al. (1995) (see also Urquhart 1990; Levesque 1984). �

3.3 Reasoning About Epistemic Structures

In order to accommodate internal epistemic considerations, we expand the syntax of
the four-valued logic to include the S5-operator K and denote the expanded syntax
as ΦK .

Definition 3.19 An epistemic Belnap–Dunn structure is a tuple S = 〈(S,≤, v), K+,

K−〉, where
• (S,≤, v) is a Belnap–Dunn structure;
• K+ and K− are two equivalence relations on S such that (≤ ◦ K+) ⊆ (K+◦ ≤)

and (≤ ◦ K−) ⊇ (K−◦ ≤) where ◦ is the composition of relations.

In addition to those defined for the Belnap–Dunn structure, the two support rela-
tions between states and formulas of the form Kφ are defined as follows:

• S, s �T Kφ if S, t �T φ for all t such that sK+t;
• S, s �F Kφ if S, t �F φ for some t such that sK−t.

Lemma 3.20 Let S = 〈(S,≤, v), K+, K−〉 be an epistemic Belnap–Dunn structure.
If s1, s2 ∈ S and s1 ≤ s2, then, for any formula φ ∈ ΦK ,

1. S, s1 �T φ implies S, s2 �T φ;
2. S, s1 �F φ implies S, s2 �F φ.

Proof We only need to prove the case when φ = Kφ′. We reason as follows. Assume
that S, s1 �T Kφ′. That is to say, S, t �T φ′ for all t such that sK+t. We need to show
that, for any t2 such that s2K+t2, S, t2 �T φ′. It is easy to see that (s1, t2) ∈ (≤ ◦ K+).
Since S satisfies the constraint that (≤ ◦ K+) ⊆ (K+◦ ≤), (s1, t2) ∈ (K+◦ ≤). In
other words, there is a world s′1 ∈ S such that s1K+s′1 and s′1 ≤ t2. According to the
assumption that S, s1 �T Kφ′, S, s′1 �T φ′. It follows from hypothetical assumption
that S, t2 �T φ′. So we have that S, s2 �T Kφ′.

Assume that s1 ≤ s2 and S, s1 �F Kφ′. It follows that there is a state t1 such that
s1K−t1 and S, t1 �F φ′. So (t1, s2) ∈ (K−◦ ≤). Since S is an epistemic Belnap–Dunn
structure, (K−◦ ≤) ⊆ (≤ ◦ K−) and hence (t1, s2) ∈ (≤ ◦ K−). This implies that
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there is a state t′1 such that t1 ≤ t′1 and t′1K−s2. According to hypothetical induction,
S, t′1 �F φ′. It follows from the fact that t′1K−s2 that S, s2 �F Kφ′. �

Definition 3.21 An epistemic Routley structure is a tuple S = 〈(S,≤, g, v), K〉,
where

• (S,≤, g, v) is a Routley structure;
• K is an equivalence relation on S such that (≤ ◦ K) ⊆ (K◦ ≤).

For formulas of the form Kφ, the satisfaction relation is defined as follows.

S, s � Kφ iff S, t � φ, for all t ∈ S such that sKt.

It is easy to check that the following lemma holds.

Lemma 3.22 Let 〈(S,≤, g, v), K〉 be an epistemic Routley structure. If s1 ≤ s2,
then, for any formula φ ∈ ΦK ,

1. S, s1 � φ implies S, s2 � φ;
2. S, g(s2) � φ implies S, g(s1) � φ.

The above two epistemic structures are equivalent in the sense of the following
proposition.

Proposition 3.23 For any epistemic Routley structure S and world s in S, there is
an epistemic Belnap–Dunn structure S′ and world s′ in S′ such that for any formula
φ ∈ ΦK ,

S, s � φ iff S′, s′ �T φ (11)

S, s � ∼φ iff S′, s′ �F φ (12)

Conversely, for each epistemic Belnap–Dunn structure S′ and world s′ ∈ S′, there is
an epistemic Routley structure S and world s such that (11) and (12) hold for each
formula φ ∈ ΦK .

Proof The interested reader may refer to the proof of a similar proposition
Proposition 9.1. in Fagin et al. (1995). �

Nowwe consider probabilistic reasoning over an epistemic Routley structure S =
〈(S,≤, g, v), K〉. SinceK is an equivalence relation on S, it induces a partitionΠ on S
and {Π(s) : s ∈ S } forms a basis for an algebraA. It is easy to check thatA is simply
the set of subsets of the form KE = { s ∈ S : Π(s) ⊆ E }. Those subsets are called
epistemic sets of S. Probabilistic reasoning is performed on A according to a given
probability functionPr : A→ [0, 1]. ADempster–Shafer structure (DS structure for
short) M on the epistemic Routley structure is the tuple M = 〈(S,≤, g, v), K, Pr〉.
Let F(S) = { I : I is a filter in S } denote the set of all filters in S. Note that F(S) is a
de Morgan lattice. Evidential reasoning is performed on the DS structure M through
the following defined function: for any E ∈ F(S),
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Bel(E) := Pr(K(E)).

Note that such defined Bel is defined on F(S) and is indeed a belief function on
F(S). Bel is called a belief function on the epistemic Routely structure S. If we want
to make belief functions primary, we “hide” the epistemic part K and simply write
the above DS structure M as B = 〈S,≤, g, v, Bel〉.

4 Reasoning About Belief Functions for First Degree
Entailments

In this section, we provide a sound and complete deductive system for reasoning
about belief functions for first degree entailments and show that the satisfiability
problem of a belief formula with respect to the corresponding class of Dempster–
Shafer structures is NP-complete.

In this part, we adapt the deductive machinery from Fagin et al. (1990), Fagin and
Halpern (1991) to provide a sound and complete axiomatization for reasoning about
belief functions over Routley structures (Belnap–Dunn structures).

Definition 4.1 For the above given set Φ of formulas, a term is an expression of
the form a1bel(φ1)+ a2bel(φ2)+ · · · + akbel(φk), where a1, a2, . . . , ak are inte-
gers, bel is the belief function symbol and φ1, φ2, . . . , φk are formulas in Φ. A basic
belief formula is one of the form t ≥ b, where t is a term and b is an integer. A
belief formula is a Boolean combination of basic belief formulas. We can always
allow rational numbers in our formulas as abbreviations for the formula that would
be obtained by clearing the dominator. Other derived relations such as =,≤,< and
> can be defined as usual.

Definition 4.2 Given a DS-structure B = 〈S,≤, g, v, Bel〉 on a Routley structure
S := 〈S,≤, g, v〉 and a basic belief formula f := a1bel(φ1)+ a2bel(φ2)+ · · · +
akbel(φk) ≥ b, B satisfies f (denoted as B � f ) if

a1Bel([[φ1]]S)+ a2Bel([[φ2]]S)+ · · · + akBel([[φk]]S) ≥ b.

We then extend the above � in the obvious way to all belief formulas. Let B be a
class of Dempster–Shafer structures. A belief formula f ′ is satisfiable with respect to
B if it is satisfied in some B ∈ B. It is valid with respect to B if B � f , for all B ∈ B.

The axiomatization Bfde of reasoning about belief functions for first degree entail-
ments consists of three parts: the first degree entailments, reasoning about linear
inequalities and reasoning about belief functions.
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1. First degree entailments

• The complete system �Rfde of first degree entailment is provided in last section.

2. Reasoning about linear inequalities

(a) a1bel(φ1)+ a2bel(φ2)+ · · · + akbel(φk) ≥ b iff a1bel(φ1)+ a2bel(φ2)+
· · · + akbel(φk)+ abel(φk+1) ≥ b;

(b) a1bel(φ1)+ a2bel(φ2)+ · · · + akbel(φk) ≥ b iff aj1bel(φ1)+ aj2bel(φ2)+
· · · + ajk bel(φk) ≥ b, where j1, j2, . . . , jk is a permutation of 1, 2, . . . , k;

(c) a1bel(φ1)+ a2bel(φ2)+ · · · + akbel(φk) ≥ b iff ca1bel(φ1)+ ca2bel(φ2)+
· · · + cakbel(φk) ≥ cb, where c > 0;

(d) (a1 + a′1)bel(φ1)+ (a2 + a′2)bel(φ2)+ · · · + (ak + a′k)bel(φk) ≥ b+ b′ if
a1bel(φ1)+ a2bel(φ2)+ · · · + akbel(φk) ≥ b and a′1bel(φ1)+ a′2bel(φ2)+
· · · + a′kbel(φk) ≥ b′;

(e) either t ≥ b or t ≤ b, where t is a term;
(f) t ≥ b implies t > b′, where t is a term and b′ < b.

Let AXIq denote this deductive reasoning system about linear inequalities, which is
shown to be complete (Fagin et al. 1990).
3. Reasoning about belief functions

(a) bel(φ) ≥ 0, for all formulas φ ∈ Φ;
(b) bel(	) = 1;
(c) bel(⊥) = 0;
(d) bel(φ1 ∨ φ2 ∨ · · · ∨ φn) ≥ ∑

I⊆{ 1,2,...,n }(−1)|I|+1bel(∧i∈Iφi);
(e) bel(φ) ≤ bel(ψ) if φ �Rfde ψ .

Note that principle 3(e) is the connection of reasoning about belief functions to first
degree entailments.

Theorem 4.3 Bfde is a sound and complete axiomatization of belief formulas with
respect to the class of DS-structures.

Theorem 4.4 The time complexity of deciding whether a belief formula is satisfiable
with respect to the class of DS-structures is NP-complete.

Proof One may refer to Zhou (2013) for the detailed proof. �

Wemay define logical implication for belief formulas as usual. The above theorem
tells us that the complexity of the logical implication problem with respect to the
class of DS-structures on Routley structures is the same as that with respect to the
class of Routley structures (Theorem 3.18) and hence is not affected by the expansion
of the propositional language with belief functions.
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5 Related Work

This kind of integration of uncertainty measures such as belief functions and logics
for knowledge representation is an important approach in reasoning under uncertain
and imperfect knowledge in artificial intelligence (Parsons 1996). Logics including
many non-classical logics play a central role in the task of knowledge representation
in artificial intelligence (Nilsson 1991), and each of these logics was intended for
some particular focus. On the other hand, uncertainty measures are usually employed
to dealwith uncertainty in information (Halpern 2005).However, non-classical logics
are not expressive enough to capture uncertainty in a gradual way, and uncertainty
measures such as belief functions are not enough to handling imperfect information.
This is anothermotivation to combine uncertaintymeasures with non-classical logics
in addition to that mentioned at the beginning of Sect. 3. Besnard and Lang applied
possibility theory to non-classical logics especially paraconsistent logics and showed
how to reasonunder uncertain and inconsistent information (Besnard andLang1994).
Saffiotti proposed a formal framework to integrate logics for knowledge including
first order logic and belief functions (Saffiotti 1990a, b, 1992).

However, none of these papers has touched any issue about the mathematical
foundation and computational complexity behind the theory of belief functions, just
as we have done in this paper. Here, we provided a sound and complete deductive
system for reasoning about belief functions for a simple epistemic logic the first-
degree-entailment fragment of relevance logic R through different duality theorems
between algebraic semantics and logic. This axiomatization can be used to show how
to deduce one belief of some events from beliefs of others. Moreover, we have given
the complexity result of the satisfiability problem of belief formulas in this kind of
non-classical settings. The deductive approach for belief functions for first degree
entailments can be applied to other non-classical formalisms L that assume a setting
of distributive lattices. The axiomatization BL for reasoning about belief functions
on L is simply obtained from the axiomatization Bfde by replacing Part 1 of first
degree entailments by L and the implication φ �Rfde ψ in principle 3(e) in Part 3 by
φ �L ψ . In particular, our deductive approach also covers the formalism developed
by Besnard and Lang (1994).
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improve this paper. Also I want to thank Katalin Bimbó for her patience with my asking for deadline
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Appendix A: Duality Theorem of de Morgan Lattices

In this part, we show that any finite de Morgan lattice can be represented as the
concrete lattice of order ideals in some poset with an order-reversing involution and
there is a one-to-one correspondence between de Morgan lattices and posets with
order-reversing involutions. The following propositions are based on similar results
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in Białynicki-Birula and Rasiowa (1957), Dunn (1986), Urquhart (1979), Priestley
(1970). Białynicki-Birula and Rasiowa (1957) and Dunn (1986) did not give a whole
duality theory for de Morgan lattices; rather they proved representation theorems.
Urquhart (1979) provided a duality theory for distributive lattices with a dual homo-
morphism operator instead for deMorgan lattices, which are distributive lattices with
a dual homomorphism operator that is additionally an involution. Priestley (1970)
presented a duality theory for distributive lattices by means of ordered Stone spaces,
which is quite different from the form that we need to show the main theorems in this
paper. So, according to our knowledge, our presentation of the duality theorem for
finite de Morgan lattices here, which combines different techniques from the above
mentioned papers, is the first one to represent de Morgan lattices in the same way as
in Birkhoff (1967) and Stanley (1997) for distributive lattices. In this sense, this part
of our paper is of independent interest.

Let (P,≤, g) be a poset with an order-reversing involution g, i.e., g is a function
from P to P satisfying the following conditions: for any x and y in P,

1. x ≤ y implies g(y) ≤ g(x);
2. g(g(x)) = x.

It is easy to see that g is also one-to-one. J(P) is defined to be the lattice of order
ideals in P with the usual set operations ∩ and ∪. It is easy to check that J(P) is a
distributive lattice. According to g, we define ∼ as follows:

∼I := P \ g(I) for any order ideal I ∈ J(P).

It is easy to check that∼I is also an order ideal in J(P). So∼ is a unary operation on
J(P). We further show that J(P) with this unary operation ∼ is a de Morgan lattice.

Theorem A.1 The above defined J(P) with the unary operation ∼ is a de Morgan
lattice.

Proof It suffices to show that g is an order-reversing involution on the set of order
ideals of P.

1. Firstwe show that it is order-reversing.Assume that I1 ⊆ I2 and x ∈ ∼I2. It follows
that g(x) /∈ I2 and hence g(x) /∈ I1. So we have that I1 ⊆ I2 implies ∼I2 ⊆ ∼I1.

2. Next we show that ∼ is an involution by the following chain of equivalences.

x∈∼∼I ⇔ x∈P \ g(P \ g(I)) ⇔ g(x) /∈ P \ g(I) ⇔ g(x)∈g(I) ⇔ x∈ I

So I = ∼∼I for any order ideal in J(P). �

Next we show the converse to the above theorem: any de Morgan lattice can
be represented as the lattice of order ideals in some poset with an order-reversing
involution. Given a de Morgan lattice (D,∧,∨,∼), PD is defined as the sub-poset
of join-irreducibles in D. In addition, we define, for any a ∈ PD,

g(a) =
∧
{ x ∈ D : x ∈ D \ ∼[a) }, where ∼[a) = {∼x : x ∈ [a) }
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We won’t distinguish the unary operation on D and the derived unary operation
on PD. The context will decide which we use. Similarly we have used the same
notation ∼ for the unary operation on distributive lattices D and for the derived
unary operation on J(P).

Proposition A.2 Let L be a finite distributive lattice. There is a one-to-one corre-
spondence between join-irreducibles and prime filters in L in the following sense:

1. for any join-irreducible a in L, [a) is a prime filter;
2. for any prime filter F,

∧
F is a join-irreducible in L.

Proof For the first part, assume that a is join-irreducible in L and a ≤ b ∨ c. It
follows that a ≤ b or a ≤ c. For the second part, assume that F is a prime filter and
aF := ∧

F = b ∨ c. It follows that b ≤ a and c ≤ a and b ∨ c ∈ F. Since F is a
prime filter, b ∈ F or c ∈ F, i.e., aF ≤ b or aF ≤ c. So aF = b or aF = c. That is to
say, aF is join-irreducible. �

Lemma A.3 For any join-irreducible a ∈ PD, g(a) ∈ PD, i.e., g(a) is also join-
irreducible.

Proof Let a be join-irreducible inD. Assume that g(a) = b ∨ c.We need to show that
g(a) = b or g(a) = c. Since a is join-irreducible inD. [a) is a primefilter inD.We can
further show thatD \ ∼[a) is also a primefilter. So g(a) = ∧{ x ∈ D : x ∈ D \ ∼[a) }
is a join-irreducible element in D. �

So the above defined g is a unary operation on PD.

Theorem A.4 g is an order-reversing involution on PD.

Proof First we show that g is order-reversing. Let a and b be two join-irreducibles
in PD such that a ≤ b. The next series of implications holds.

a ≤ b ⇒ [b)⊆ [a) ⇒ ∼[b)⊆∼[a) ⇒ D \ ∼[a) ⊆ D \ ∼[b) ⇒ g(b) ≤ g(a)

Next we show that g is an involution. It suffices to show, by the following equiva-
lences, that for any a ∈ PD, [a) = D \ ∼[g(a)).

x ∈ [a) ⇔ ∼x ∈ ∼[a) ⇔ ∼x /∈ D \ ∼[a) ⇔ g(a) � ∼x ⇔
∼x /∈ [g(a)) ⇔ x /∈ ∼[g(a)) ⇔ x ∈ D \ ∼[g(a)) �

Theorem A.5 Let P be a poset with an order-reversing involution g. Then P is
isomorphic to the sub-poset PJ(P) of join-irreducibles in J(P) which is the lattice of
order ideals in P.

Proof LetP be a posetwith an order-reversing involution g. A function h : P → J(P)

is defined as follows:
h(a) = (a] for any a ∈ P.
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First we show that h is actually a function from P to PJ(P), i.e., h(a) is join-
irreducible in J(P) for any a ∈ P. Assume that a ∈ P and (a] = I1 ∪ I2, where I1 ∈
J(P) and I2 ∈ J(P). It follows that a ∈ I1 or a ∈ I2. Either case implies that I1 = (a]
or I2 = (a]. So indeed h(a) is join-irreducible in J(P).

Next we show that h is one-to-one between P and PJ(P). From the above, we only
need to show that h is onto. Assume that I ∈ PJ(P), i.e., I is join-irreducible in J(P).
Now we need to show that I is actually a principal order ideal in P. We prove this
by contraposition. Suppose that I is not a principal order ideal in P. Let Imax = { x ∈
I: x ismaximal in I in the sense that there are no other elements y in I such that y≥x }.
It follows that |Imax| ≥ 2. So Imax = M1 ∪M2 for some non-empty subsets M1 and
M2. We define:

I1={ x∈ I : x ≤ y for some y∈ M1 }, I2 = { x ∈ I : x ≤ y for some y ∈ M2 }.

It is easy to check that I = I1 ∪ I2 but I1 �= I and I �= I2. So I is not join-irreducible
in J(P).

It remains to show that h preserves the order and the operation g. It is easy to see
that it does for the order. Now we show that it preserves g. For any a ∈ P,

g(h(a)) = x ∈
⋂
{ I ∈ J(P) : I ∈ J(P) \ ∼[h(a)) }

=
⋂
{ I ∈ J(P) : I ∈ J(P) \ ∼{ I ∈ J(P) : a ∈ I }}

=
⋂
{ I ∈ J(P) : I ∈ J(P) \ {P \ g(I) : I ∈ J(P), a ∈ I } }

=
⋂
{ I ∈ J(P) : I ∈ J(P) \ { J : a ∈ g(P \ J) } }

=
⋂
{ I ∈ J(P) : a /∈ g(P \ I) }

=
⋂
{ I ∈ J(P) : g(a) /∈ P \ I }

=
⋂
{ I ∈ J(P) : g(a) ∈ I }

= (g(a)]

That is to say, h(g(a)) = g(h(a)). �

Theorem A.6 Any finite de Morgan lattice D can be represented as the lattice J(PD)

of order ideals in the sub-poset PD of join-irreducibles with an order-reversing
involution g.

Proof Let D be a finite deMorgan lattice and PD be its sub-poset of join-irreducibles
with the order-reversing involution g. Now we need to show that D is isomorphic to
the concrete deMorgan lattice J(PD).Defineh : D → J(PD) ash(x) = { y ∈ PD : y ≤
x } for any x ∈ D. From the proof of Theorem 3.4.1 in Stanley (1997), we only need
to show that h preserves negation. In order to prove this, it suffices to show that, for
any a ∈ D, h(∼x) = PD \ g(h(a)). For any x ∈ PD,
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x ∈ h(∼a) ⇔ x ≤ ∼a ⇔ ∼a ∈ [x) ⇔ a ∈ ∼[x) ⇔ a /∈ D \ ∼[x) ⇔
g(x)�a ⇔ g(x) /∈ h(a) ⇔ x /∈ g(h(a)) ⇔ x∈P \ g(h(a)) ⇔ x∈∼h(a)

Note that the ∼ in the last line is the unary operation on J(PD). �

Corollary A.7 There is a one-to-one correspondence between the class of de Mor-
gan lattices and that of posets with order-reversing involutions.

Proof This proposition follows from the above two theorems. This kind of corre-
spondence is illustrated in the following diagram:

�
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Probabilistic Interpretations of Predicates

Janusz Czelakowski

Abstract In classical logic, any m-ary predicate is interpreted as an m-argument
two-valued relation defined on a non-empty universe. In probability theory, m-ary
predicates are interpreted as probability measures on the mth power of a probability
space. m-ary probabilistic predicates are equivalently semantically characterized as
m-dimensional cumulative distribution functions defined onRm. The paper is mainly
concerned with probabilistic interpretations of unary predicates in the algebra of
cumulative distribution functions defined on R. This algebra, enriched with two
constants, forms a bounded De Morgan algebra. Two logical systems based on the
algebra of cumulative distributions are defined and their basic properties are isolated.
Comparisonswith the infinitely-valuedŁukasiewicz logic andopenproblems are also
discussed.

Keywords Consequence operation ·Cumulative distribution function ·DeMorgan
algebra · Predicate · Probability space · Random variable

1 Introduction

The reasons for writing this paper are multifold. Certainly, one of them is probability
theory itself and its relationship with many-valued logics. But there is another rea-
son, namely, the theory of distributoids and gaggles developed by J. Michael Dunn,
originally in Dunn (1991, 1993). The seminal monograph (Dunn and Hardegree
2001) provides a uniform semantical approach to “a variety of non-classical logics.”
Professor Dunn’s strategy is to adopt the framework of the Kripke-style semantics,
using accessibility relations, to give truth-conditions for the connectives of many
non-classical logics. This paper is concerned with the algebraic approach to prob-
ability based on the algebra of cumulative distribution functions, denoted as CDF.
This algebra, being the main semantic tool in our metalogical considerations, has a
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rather complicated intrinsic structure. However, it is not difficult to notice thatCDF is
a tonoid in the sense of Dunn (1993), Dunn and Hardegree (2001). Moreover, if one
disregards the convolution operation, this algebra becomes a distributoid. Various
subtle issues pertinent to the structure of CDF are not discussed at length here. This
is a task for future work. But we remark that the methods worked out in Dunn and
Hardegree (2001) enable one to develop Kripke-style semantics for various logical
systems based on the algebra CDF.

The author dedicates this paper to Professor Jon Michael Dunn with the hope that
he finds it interesting.

From the perspective of classical logic, any m-ary predicate P is interpreted as an
m-argument relation defined on a non-empty set A. The set A is called the universe of
the pertinent model. Equivalently, an interpretation of P is an m-argument zero-one
function FP defined on A, that is, FP : Am → { 0, 1 }. If FP(a1, . . . , am) = 1, we say
that FP holds for the sequence 〈a1, . . . , am〉; otherwise, when FP(a1, . . . , am) = 0,
we say that FP does not hold for 〈a1, . . . , am〉.

The fuzzy interpretation goes farther—truth-values range in degree between
0 and 1. Accordingly, each m-ary predicate P is evaluated as an m-argument function
FP from a universe A to the unit interval [0, 1]. A systematic elaboration of this idea
leads to various many-valued interpretations of the predicate calculus.

At the foundations of frameworks classified as fuzzy and related logics
(fuzzy logics, rough sets, etc.) lies the assumption that predicates (often taken from
everyday language practice) display some blurry or fuzzy character; the dividing line
between what irrefutably belongs to the range of a predicate’s meaning and what is
absent from it is unstable and vague.

In sentences like:

(1) Mike is a better mathematician than Andrew.
(2) John is a good writer.

there appear, respectively, the binary predicate x is a better mathematician than y
and the unary predicate x is a good writer. Further examples of such vague formulas
can be easily found.

We can (or even should) utter grammatically correct sentences of type (1) or (2),
yet in fact, it is difficult to assign any logical value to such sentences (or utterances),
that is, truth or falsity. We can positively or negatively justify (or refute) these sen-
tences, but from justifying to assigning a logical value to them there is a long way.
A pragmatic solution consists in adopting certain criteria of acceptance or rejection
of sentences. These criteria may refer to (certain) populations of adult users of the
English language and their opinions. In the case of type (2) sentences, the community
of literary critics forms such a natural population and their opinions are treated as
binding.

The mentioned pragmatic criteria may be distant from the classical definition of
truth. It is easy to point in this context to various manipulative techniques (techniques
of influence) shaping views of users of the language.
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For general accounts of the theory of attributes see e.g., (Ganter et al. 2005) and
(Hájek 1998).

The fuzzy logic approach “acts” with reference to certain fragments of the
language used. It has turned out, however, to be convincing and has resulted in
substantial applications of a purely practical nature.

According to the probabilistic interpretation, universes as well as their Cartesian
powers A2, A3 etc., are treated as statistical populations, that is, collections of uni-
form objects which have some properties in common but these properties are not
individuated. (Statistics distinguishes between quantitative and qualitative proper-
ties. The former are divided in turn into ratio and interval features, while the latter
are divided into ordinal and nominal features.) In the simplest case, unary predicates
are viewed as random variables, that is, certain real-valued functions defined for
each element of the population. (The height of the inhabitants of New York City or
their sex are examples of unary predicates.) But from the probabilistic perspective,
each m-ary predicate over a statistical population is interpreted as an m-dimensional
cumulative distribution function (CDF). Accordingly, if one is interested in the prob-
abilistic description of the height of the inhabitants of New York City, one assigns
to this predicate a suitably selected normal cumulative distribution function. The
probabilistic interpretation does not treat predicates as ‘place holders for individual
variables’ (because there are no individual variableswhich are quantified), butmerely
marks the arity of each predicate and assigns to each m-ary quantitative predicate an
m-dimensional cumulative distribution function (CDF). Thus, from the probabilistic
perspective, the m-dimensional cumulative distribution assigned to an m-ary pred-
icate P fully encodes the quantitative characteristic of P in the population. In this
way the probabilistic interpretation of predicates is established. In this paper, we are
mainly concerned with unary predicates and, consequently, with unary CDFs.

From a more abstract perspective, we may disregard populations and isolate the
set of unary predicates as an absolutely free algebra endowed with a finite set of
operations (to be defined later on) and freely generated by a countably infinite set of
unary predicate variables. The latter are viewed as sentential variables and the entire
algebra of unary predicates is an example of a sentential language in the sense of
formal logic. Unary probabilistic predicates are identified with sentential formulas
belonging to this language. Interpretations of formulas are defined in terms of homo-
morphisms of the formula algebra in the algebra of unary cumulative distribution
functions. This idea is elaborated in detail in Sect. 4.

More generally, for each positive integer m, one builds the absolutely free algebra
of m-ary probabilistic predicates that is freely generated by the countably infinite set
of m-ary probabilistic variables by way of emulating the above definition for unary
predicates. One then arrives at the sentential language of m-ary predicate variables.
By analogy, interpretations of this language are defined in terms of m-dimensional
cumulative distribution functions.

The set CDF of unary cumulative distribution functions exhibits a definite alge-
braic structure, viz. the structure of a distributive lattice. However, this lattice is more
complex. Extending the set CDF by means of two constants 0 and 1, one arrives at
the De Morgan algebra CDF of unary CDFs. (The constants 0 and 1 are not CDFs;
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they are generalized functions.) The paper is mainly concerned with the structure of
the algebra CDF and its interrelations with logic.

Let us first present the following simple case. Let P be a unary predicate and A
a universe. A will be called a temporary population. The standard first-order logic
interpretation assigns to P a unary zero-one function R defined on A. R partitions the
universe A into two disjoint sets: A1—consisting of the elements of A that possess
the property R and A0—comprising those which do not exhibit R.

On the other hand, the simplest probabilistic interpretation assigns to P a cumu-
lative distribution function FP that takes only two values 0 and 1. FP determines a
number p from the unit interval [0, 1]. p is the probability that P takes value 1 and
1 − p is the probability that P takes value 0.

From the point of view of a probabilistic interpretation, one does not define the
satisfiability of m-argument relations as holding on m-tuples of elements of the
population, becausem-tuples are not individuated.While in fuzzy set theory it makes
sense to assign a numerical value to each m-tuple 〈a1, . . . , am〉 of elements of A as
a degree of a relation R ‘holding’ on 〈a1, . . . , am〉, the probabilistic interpretation
does not do this. It merely provides a global probability distribution for the set Am.
In particular, in a probabilistic interpretation, one abandons the notation adopted for
m-ary predicates, that is, P(x1, . . . , xm), where x1, . . . , xm are individual variables,
because within the probabilistic framework one does not isolate the category of
variables ranging over elements of populations. Nevertheless, the arity of predicates
is preserved. As a result, there are no quantifiers binding individual variables. The
equality predicate interpreted as the identity relation between pairs of elements of
the population is no longer needed either.

The algebra that is defined below plays (to an extent) in the probabilistic approach
the role analogous to the two-element Boolean algebra in classical predicate calcu-
lus or the infinitely valued Łukasiewicz algebra in fuzzy set theory (see Davey and
Priestley 2002).1 We are talking here about the classical probability theory. In quan-
tum probability theory, one defines other models, originating from finite or infinite
dimensional Hilbert spaces.

Returning to the above example, the predicate¬P is interpreted as the cumulative
distribution function that is dual to FP and denoted by Fd

P. The distribution Fd
P

reverses the probabilities defined by FP. Accordingly, ¬P takes the value 1 with
probability 1 − p and the value 0 with probability p.

Generally, we will be concerned with probability distributions on the setR of real
numbers defining, for any numbers a < b, the probability

PrA(a < R � b)

of acquiring numerical values from the half-open interval (a, b] by P.

1A full analogy is obtained through introduction of the probabilistic interpretation of predicates of
arbitrary finite arity.
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We will develop the above ideas in subsequent paragraphs. These ideas were
outlined in a sketchy way in the article (Czelakowski 2012), published in Polish. The
present paper is an extended and improved version of the above work.

2 Cumulative Distributions

I := [0, 1] = { x ∈ R : 0 � x � 1 } is the unit interval.
Letm be a positive integer.A functionF : Rm → I is anm-dimensional cumulative

distribution if and only if it determines a probabilitymeasureμF on theσ -fieldB(Rm)

of Borel subsets of Rm such that

μF((a1, b1] × · · · × (am, bm]) = F(b1, . . . , bm) − F(a1, . . . , am),

for any two m-tuples a1, . . . , am and b1, . . . , bm of real numbers such that ai < bi

for i = 1, . . . , m. (Here (a, b] is a half-open interval with a and b being its endpoints
and (a1, b1] × · · · × (am, bm] is the Cartesian product of the indicated intervals.)

Intuitively, for any m-tuple r = 〈r1, . . . , rm〉 of real numbers,

(1) F(r1, . . . , rm) is the probability that the numerical value of the m-ary predicate
P belongs to the Cartesian product (−∞, r1] × . . . × (−∞, rm].

In order that a function F : Rm → I be an n-dimensional cumulative distribution,
F must validate some conditions. They provide an intrinsic characterization of m-
dimensional cumulative distributions. We shall not present them here in the general
case. But it is relatively easy to formulate them in the one-dimensional case. The
general case is much more intricate.

Let P be an m-ary predicate symbol. According to the probabilistic interpre-
tation, one assigns to the predicate P an m-dimensional cumulative distribution
FP : Rm → I . FP is called an interpretation of P in the set of m-dimensional cumu-
lative distribution functions.

In probability theory, one-dimensional cumulative distributions are defined as
functions F : R → I that satisfy the following conditions:

(2a) F is non-decreasing;
(2b) F is right-continuous;
(2c) limx→−∞ F(x) = 0 and limx→+∞ F(x) = 1.

F is therefore a càdlàg function which means that for every real r, the left limit
F(r−) exists; further, the right limit F(r+) exists and equals F(r).

One of the main theorems in probability theory states that every CDF F, defined
as above, determines a probability measure μF on the σ -field B(R) of Borel subsets
of R such that μF((a, b]) = F(b) − F(a) for any real numbers a, b, where a < b.
(If a = b, then μF({ a }) = F(a) − F(a−), where F(a−) is the left limit of F at a. If
F is continuous at a, then μF({ a }) = 0.)
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Moreover, every probability measure on B(R) is determined by a unique CDF
(see e.g., Billingsley 1995).

IfF is a continuous CDF, the measureμF takes value zero on one-element subsets
ofR. Consequently, for any numbers a, b with a < b, it is the case that μF((a, b)) =
μF((a, b]) = μF([a, b)) = μF([a, b]).

In what follows we shall mainly confine the discussion to unary predicates
(i.e., attributes). Their probabilistic interpretations are formed by one-dimensional
cumulative distribution functions.

3 The Algebra of Probabilistic Attributes

Let μ be a probability measure on the σ -field B(R) of Borel subsets of R. μd is the
measure dual to μ. Thus

μd(X) := μ(−X), (1)

for any setX ∈ B(R), where−X := { −x : x ∈ X }. (IfX is a Borel set, then so is−X.)
μd is a probability measure on B(R). This directly follows from the equivalence

that A ∩ B = ∅ if and only if −A ∩ −B = ∅, for any sets A, B ⊆ R, and the fact that
μ is a measure. μd agrees with μ on Borel sets A for which A = −A. Such sets A are
called symmetric. It is also clear that (μd)d = μ.

Let F : R → [0, 1] be a CDF. The cumulative distribution function dual to F is
the function Fd : R → [0, 1] defined as follows. Let μF be the probability measure
onB(R) corresponding toF.Fd is, by definition, the cumulative distribution function
that determines the dual measure μd . Fd is unambiguously defined. In fact,

Fd(x) := μd
F((−∞, x]), (2)

for every x ∈ R. Thus
Fd(x) = μF([−x,+∞)), (3)

for every x ∈ R. Since μF([−x,+∞)) = 1 − μF((−∞,−x)), we have that

Fd(x) = 1 − F((−x)−), (4)

where F((−x)−) is the left limit of F at −x, for every x ∈ R.

Lemma 3.1 (Fd)d = F.

Proof Let μ be the measure corresponding to F and let μd be the dual measure.
μd is the measure corresponding to Fd . Then (Fd)d(x) = (by (3)) μd([−x,+∞)) =
μ(−[−x,+∞)) = μ((−∞, x]) = F(x), for all x ∈ R. �
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F is continuous at a point a if and only if the left limit of F at a is equal to F(a).
It follows from (4) that if F is continuous at −x, then Fd(x) = 1 − F(−x). We thus
obtain

Corollary 3.2 If F is a continuous CDF, then Fd is a continuous CDF as well.
Moreover,

Fd(x) = 1 − F(−x),

for every x ∈ R.

The corollary follows from the above remarks.

Suppose that F is a continuous CDF and it has density, i.e., there exists a measur-
able non-negative function f : R → R such that

F(x) =
x∫

−∞
f (t) dt, (5)

for all x ∈ R. The function g : R → R given by g(x) := f (−x), x ∈ R, is the density
function of Fd . The graph of g is obtained by the reflection of the graph of f with
respect to the y-axis.

CDF is the set of (unary) cumulative distribution functions. The order relation���
on CDF is defined pointwise as follows.

F ��� G ⇔df F(x) � G(x) for every real number x. (6)

Thus, in accordance to the meaning attached to cumulative distributions, F ��� G
states that for every real number x, the probability that the numerical value of the
probabilistic attribute F belongs to the interval (−∞, x] is smaller or equal to the
probability that a numerical value of G belongs to (−∞, x].

Other operations are also performable in the set CDF. Suppose F and G are
cumulative distribution functions, not necessarily continuous.Wedefine the functions
F ∧∧∧ G and F ∨∨∨ G as the minimum and the maximum of F and G, that is,

(F ∧∧∧ G)(x) := min(F(x), G(x)),

(F ∨∨∨ G)(x) := max(F(x), G(x)),

for all x ∈ R. The operations∧∧∧ and∨∨∨ are called the conjunction and the disjunction,
respectively.

Lemma 3.3 If F and G are cumulative distributions, then so are the functions F ∧∧∧ G
and F ∨∨∨ G. The set CDF of cumulative distributions equipped with the operations
∧∧∧ and ∨∨∨ forms a distributive lattice.

Moreover, if F and G are continuous, then so are F ∧∧∧ G and F ∨∨∨ G.

The proof is easy and omitted.
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The order relation ��� defined in (6) is thus the order relation of the distributive
lattice 〈CDF,∧∧∧,∨∨∨〉.

A slightly less obvious fact is that the above distributive lattice together with the
operation of dualization d satisfies De Morgan’s laws.

Lemma 3.4 For any cumulative distribution functions F and G,

(F ∧∧∧ G)d = Fd ∨∨∨ Gd and (F ∨∨∨ G)d = Fd ∧∧∧ Gd.

Proof We shall show the first equality. The proof is restricted here to continuous
CDFs. (The proof in the general case is a bit more involved.) Let x be a real number.
In view of Corollary 3.2 we have:

(F ∧∧∧ G)d(x) = 1 − (F ∧∧∧ G)(−x) = 1 − min(F(−x), G(−x)) =
max(1 − F(−x), 1 − G(−x)) = max(Fd(x), Gd(x)) = (Fd ∨∨∨ Gd)(x). �

Thus d is an involution operation satisfying De Morgan’s laws.
The algebra

CDF = 〈CDF,∧∧∧,∨∨∨, d〉

satisfies the axioms of De Morgan algebras with one exception: it is not bounded as
a distributive lattice; that is, it does not possess a bottom or a top element. We shall
use, however, the suggestive term the De Morgan algebra of cumulative distribution
functions as a proper name.

The distributive lattice 〈CDF,∧∧∧,∨∨∨〉 is not complete because it lacks a top and a
bottom element.

As we shall show later, one may extend in the standard way the universe CDF by
augmenting it with two additional elements 0 and 1 so that one obtains a bounded
distributive lattice (with zero 0 and unit 1) satisfying all conditions imposed on De
Morgan algebras. The constants 0 and 1 are not functions defined on R—they are
distributions (or generalized functions) in the sense of Sobolev–Schwartz. Neverthe-
less, the lattice 〈CDF,∧∧∧,∨∨∨, 0, 1〉 extended in such a way is not complete. To this
end we define the following sequence Fn, n = 1, 2, . . . of continuous cumulative
distribution functions:

Fn(x) :=

⎧⎪⎨
⎪⎩
0 if x � 0;
x1/n if 0 < x � 1;
1 if 1 < x.

The sequence { Fn } is pointwise convergent to the functionF, whereF(x) = 0 for
x � 0, and F(x) = 1 for x > 0. F is not right-continuous at x = 0. Hence, F is not
a CDF. On the other hand, we have that { Fn } is monotone, that is, F1 ��� F2 ��� · · ·
in the lattice 〈CDF,∧∧∧,∨∨∨〉. It is then easy to see that sup{ Fn : n � 1 } does not exist
in 〈CDF,∧∧∧,∨∨∨〉.
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CCDF is the set of continuous cumulative distribution functions onR. The system

CCDF = 〈CCDF,∧∧∧,∨∨∨, d〉

is a subalgebra of CDF. CCDF is called the De Morgan algebra of continuous
cumulative distributions. The structureCCDF is also called the algebra of continuous
probabilistic attributes.

Continuous cumulative distributions F such that F = Fd determine symmetric
probability measures with respect to the ordinate Oy. This means thatμF([−r, 0]) =
μF([0, r]) for all real numbers r. (μF is the probability measure on the σ -field B(R)

corresponding to F.) If F possesses a density function f , we see that f is an even
function, that is f (x) = f (−x) for all x, whenever F = Fd .

The algebraic structure of the set CDF of cumulative distribution functions is
much richer. This set is endowed with the operation of convolution

(F ∗∗∗ G)(x) :=
+∞∫

−∞
F(t)G(x − t) dt, (7)

for all x ∈ R. The convolution of cumulative distributions is a CDF. The convolu-
tion operation preserves continuity of CDFs. As it is known, ∗∗∗ is associative and
commutative. It is also distributive: (F + G) ∗∗∗ H = (F ∗∗∗ H) + (G ∗∗∗ H). (But the
sum F + G is not a CDF.) If F and G are cumulative distributions corresponding
to independent random variables X and Y defined on a probabilistic space, then the
convolution F ∗∗∗ G is the cumulative distribution of the sum X + Y of these random
variables.

The bounded addition of CDFs is the binary operation⊕⊕⊕ defined as follows:

(F ⊕⊕⊕ G)(x) := min(1, F(x) + G(x)),

for all x ∈ R. The bounded sum F ⊕⊕⊕ G of CDFs F and G is a CDF. By an analogy
to Łukasiewicz logics, the sum F ⊕⊕⊕ G is called the weak disjunction of cumulative
distributions F and G. Furthermore, if F and G are continuous CDFs, F ⊕⊕⊕ G is
continuous as well.

By the strong conjunction (also in an analogy to Łukasiewicz logics) we shall
understand the binary operation ⊗⊗⊗ defined as

(F ⊗⊗⊗ G)(x) := max(0, F(x) + G(x) − 1),

for all x ∈ R. The strong conjunction F ⊗⊗⊗ G of CDFs F and G is a cumulative
distribution. If F and G are continuous CDFs, F ⊗⊗⊗ G is continuous too.

Lemma 3.5 For any F, G, H ∈ CDF,

(1) F ⊕⊕⊕ G = G ⊕⊕⊕ F,
(2) F ⊕⊕⊕ (G ⊕⊕⊕ H) = (F ⊕⊕⊕ G) ⊕⊕⊕ H,
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(3) F ⊗⊗⊗ G = (Fd ⊕⊕⊕ Gd)d and F ⊕⊕⊕ G = (Fd ⊗⊗⊗ Gd)d,
(4) F ⊗⊗⊗ G ��� F ∧∧∧ G ��� F ∨∨∨ G ��� F ⊕⊕⊕ G.

Proof The proofs of (1)–(3) are straightforward. We shall give a proof for (4).

Claim 1 max(0, F(x) + G(x) − 1) � min(F(x), G(x)), for all x ∈ R.

The above inequality holds ifmax(0, F(x) + G(x) − 1) = 0.We consider the case
whenmax(0, F(x) + G(x) − 1) = F(x) + G(x) − 1. But for any x ∈ Rwe have that
F(x) + G(x) − 1 � F(x) and F(x) + G(x) − 1 � G(x), because cumulative distri-
bution functions are bounded from above by 1. Hence max(0, F(x) + G(x) − 1) =
F(x) + G(x) − 1 � min(F(x), G(x)). This proves the claim. �

Claim 2 max(F(x), G(x)) � min(1, F(x) + G(x)), for all x ∈ R.

The above inequality holds if min(1, F(x) + G(x)) = 1. In the other case when
min(1, F(x) + G(x)) = F(x) + G(x), it suffices to notice that F(x) � F(x) + G(x)
andG(x) � F(x) + G(x) for all x, because cumulative distributions are non-negative
functions. Hence max(F(x), G(x)) � F(x) + G(x) = min(1, F(x) + G(x)). �

(4) follows from the above claims. �
The algebra 〈CDF,∧∧∧,∨∨∨, d,∗∗∗,⊕⊕⊕,⊗⊗⊗〉 is called the extended De Morgan algebra

of cumulative distributions. A similar name applies to the algebra 〈CCDF,∧∧∧,∨∨∨, d,

∗∗∗,⊕⊕⊕,⊗⊗⊗〉.
The list of operationswhich are performable on the setCDF is longer.Wemention

here convex combinations of finite sequences of cumulative distributions as well as
translations along the x-axis. These operations have not been included in the list of
primitive operations of 〈CDF,∧∧∧,∨∨∨, d,∗∗∗,⊕⊕⊕,⊗⊗⊗〉.

Let F be a cumulative distribution. For each real number r, we define the function
Fr by the following condition:

Fr(x) := F(x + r), for all x ∈ R.

Fr is a cumulative distribution. If r > 0, the graph of Fr is obtained from the graph
of F by means of the translation r units to the left. Obviously, F0 = F. We have:

Lemma 3.6 For any a, b ∈ R, a � b if and only if Fa ��� Fb.

Proof The implication “⇒” is obvious.
“⇐.” We assume that Fa ��� Fb. So F(x + a) � F(x + b) for all x ∈ R. Suppose

that b < a. Then x + b � x + a, and consequently F(x + b) � F(x + a) for all x ∈
R, by the fact that F is monotone. It follows that

F(x + b) = F(x + a), for all x ∈ R. (a)

Let Δ := a − b. So a = b + Δ, Δ is a positive number and by (a),

F(b + x) = F(b + Δ + x), for all x ∈ R. (b)
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Putting x := 0, we obtain that

F(b) = F(b + Δ). (c)

As F is monotone, it follows that F is a constant function throughout the interval
[b, b + Δ] taking the value F(b).

Claim 1 For any natural n, F(b) = F(b + nΔ).

Proof (of the claim) Induction on n. The case n = 0 is trivial. The case n = 1 holds in
virtue of (c). Assume F(b) = F(b + nΔ). Then substituting x = nΔ in (b), we have
that F(b + nΔ) = F(b + (n + 1)Δ). So F(b) = F(b + (n + 1)Δ). This proves the
claim. �

Claim 2 For any natural n, F(b) = F(b − nΔ).

The proof is similar.

Claims 1–2 imply that F, being a non-decreasing function, takes the constant
value F(b) throughout the real line. This is excluded, because limits of F at−∞ and
+∞ are 0 and 1. The obtained inconsistency proves the lemma. �

It follows from the lemma that the family of cumulative distributions { Fr : r ∈ R }
forms a chain in the poset 〈CDF,���〉 and the order type of this chain is equal to λ,
the order type of the set R. One may then say that the poset 〈CDF,���〉 has a rather
complicated order structure, also due to the fact that R is unbounded. For example,
the poset 〈CDF,���〉 contains neither maximal nor minimal elements.

4 The Logic of Unary Predicates

Let L be an absolutely free algebra built from a countably infinite set of sen-
tential variables V ar = { Pn : n = 1, 2, . . . } and endowed with binary connectives
∧,∨, ∗,⊕,⊗ and one unary connective d . Thus the universe L of L consists of all
sentential formulas formed from V ar and the above connectives in the well-known
manner. L is called the language of unary probabilistic predicates.

The variables of V ar range over one-dimensional cumulative distributions. We
therefore define the notion of a valuation. A valuation of the language L in the
extended algebra CDF is an arbitrary homomorphism h : L → CDF. h is unambigu-
ously determined by its values on the set V ar. If α(P1, . . . , Pn) is a formula (and all
its variables are displayed) and h is a valuation such that Fi = h(Pi) for i = 1, . . . , n,
then the cumulative distribution h(α) is denoted as α(P1/F1, . . . , Pn/Fn), or shortly
α(F1, . . . , Fn).
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Both the values of the arguments of formulas, that is, the values of variables occur-
ring in a formula as well as the values of formulas themselves are one-dimensional
cumulative distributions. The language L thus represents the syntax of unary prob-
abilistic predicates. The more general case of probabilistic predicates of arbitrary
arity, although theoretically important, is only incidentally mentioned in the final
paragraph.

A model for the language L of unary probabilistic predicates is a pair

M = (V ar, h),

where h is a mapping defined on the set of variables V ar assigning to each predicate
variableP ∈ V ar a unary cumulative distribution h(P).When h is clear from context,
the cumulative distribution h(P)will be denoted byFP. h is then recursively extended
to a homomorphism (valuation) from L to CDF in the well-known way.

We define the relation of probabilistic entailment � on L. For any n � 1 and any
formulas α1, . . . , αn, β of L we define:

α1, . . . , αn � β ⇔df (∀h : L → CDF) h(α1) ∧∧∧ . . . ∧∧∧ h(αn) ��� h(β).

If X is an infinite set of formulas, we assume that

X � β ⇔df α1, . . . , αn � β for some n � 1 and some formulas α1, . . . , αn ∈ X.

Moreover, it is assumed that ∅ � β for no formula β. Thus the above probabilistic
logic does not possess tautologies.

For each set of formulas X define:

C(X) := { β ∈ L : X � β }.

C is an operation defined on the power set ℘(L), assigning to each subset X ⊆ L
the set C(X).

Theorem 4.1 C is a finitary and structural consequence operation, that is, for all
X ⊆ L:

(C1) X ⊆ C(X) (reflexivity)
(C2) X ⊆ Y implies C(X) ⊆ C(Y) (monotonicity)
(C3) C(C(X)) ⊆ C(X) (idempotency)
(C4) C(X) = ⋃{ C(Xf ) : Xf is a finite subset of X } (finitariness)
(C5) eC(X) ⊆ C(eX) for every endomorphism e : L → L. (structurality)

Moreover,

(C6) C(∅) = ∅.

(The above conditions are not logically independent—(C2) follows from (C4).)
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Proof Averification of (C1)–(C3) is straightforward.We shall check (C5). It suffices
to prove (C5) for arbitrary finite sets X = { α1, . . . , αn }.

We assume that α1, . . . , αn � β. Let e : L → L be an endomorphism. We claim
that eα1, . . . , eαn � eβ.

Let h : L → CDF be an arbitrary but fixed homomorphism. The composition h ◦ e
is also a homomorphism from L to CDF. As α1, . . . , αn � β, we therefore obtain
that

(h ◦ e)(α1) ∧∧∧ · · · ∧∧∧ (h ◦ e)(αn) ��� (h ◦ e)(β) (8)

in the algebra CDF, by the definition of �. But (8) means that

h(eα1) ∧∧∧ · · · ∧∧∧ h(eαn) ��� h(eβ). (9)

Thus eα1, . . . , eαn � eβ, because h is an arbitrary homomorphism. So (C5)
holds. �

The monograph (Wójcicki 1988) contains a good exposition of the theory of
consequence operations.

As C is a purely inferential consequence operation (there are no tautologies), it
follows that C can be adequately characterized in terms of standard proper rules of
inference. However, no inferential base for C is known thus far.

Problems. Give an adequate inferential base for C. Give a description of C-filters
on the algebra CDF.

We may also define (in a fully analogous way) the consequence operation Ccon

on the power set ℘(L) in terms of valuations in the extended algebra CCDF of
continuous cumulative distributions. As CCDF is a subalgebra of CDF, it follows
that Ccon is stronger than C, that is, C(X) ⊆ Ccon(X) for any set X ⊆ L. A problem
is whether these two consequences coincide on finite sets X.

5 Further Remarks

In a standard way, the lattice 〈CDF,∧∧∧,∨∨∨〉 can be augmented with 0 (being the least
element) and 1 (the greatest element). 〈CDF,∧∧∧,∨∨∨〉 is thereby extended to a bounded
distributive lattice. 0 and 1 are not cumulative distributions; they may be regarded
as generalized functions in the sense of Sobolev–Schwartz. One may say that 1 is
a “cumulative distribution” on the real line which is everywhere equal to 1, but
limx→−∞ 1(x) = 0. Analogously, 0 is a “function” on R everywhere equal to 0, but
limx→+∞ 0(x) = 1.

(Yet another option is to add two points at infinity, viz., −∞ and +∞, to R and
define R

∞ := R ∪ { −∞,+∞}. Each cumulative distribution F is extended onto
R

∞ by adopting that F(−∞) = 0 and F(+∞) = 1. 0 and 1 are then treated as
functions defined throughout R∞ according to the formulas:
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0(x) = 0 for all x ∈ R ∪ { −∞}, and 0(+∞) = 1,

1(−∞) = 0, and 1(x) = 1 for all x ∈ R ∪ { +∞}.

One may alternatively define CDF to be the algebra of such extended functions
defined on R

∞.)
The operations d, ⊕⊕⊕, ⊗⊗⊗ on the set CDF are also extended on the universe

CDFb := CDF ∪ { 0, 1 }:
1d := 0 and 0d := 1.

Furthermore, we assume that

1 ⊕⊕⊕ a = a ⊕⊕⊕ 1 = 1 and 0 ⊕⊕⊕ a = a ⊕⊕⊕ 0 = a

and
1 ⊗⊗⊗ a = a ⊗⊗⊗ 1 = a and 0 ⊗⊗⊗ a = a ⊗⊗⊗ 0 = 0

for all a ∈ CDF ∪ { 0, 1 }.
It is unclear how to meaningfully combine the constants 0 and 1 with the convo-

lution operation ∗∗∗. In the technical sense, one may assume that 1 is the two-sided
unit (that is, the neutral element) for the convolution operation ∗∗∗ and 0 is the zero
for ∗∗∗, i.e.,

1 ∗∗∗ a = a ∗∗∗ 1 = a and 0 ∗∗∗ a = a ∗∗∗ 0 = 0

hold for all a ∈ CCDF ∪ { 0, 1 }. (But formula (7) does not apply to the above exten-
sion of ∗∗∗.)

As a result we obtain a (bounded) De Morgan algebra

CDFb := 〈CDFb,∧∧∧,∨∨∨, d,∗∗∗,⊕⊕⊕,⊗⊗⊗, 0, 1〉,

with the additional operations ∗∗∗,⊕⊕⊕,⊗⊗⊗ and the constants 0, 1.
CDFb is called the extended De Morgan algebra of cumulative distributions.
In a fully analogous way, one defines the algebra

CCDFb := 〈CCDFb,∧∧∧,∨∨∨, d,∗∗∗,⊕⊕⊕,⊗⊗⊗, 0, 1〉,

the extended De Morgan algebra of continuous cumulative distribution functions.

6 Another System of Logic

The set of connectives of L is extended by adding two constants 0 and 1 (interpreted
as 0 and 1 in CDFb, respectively). We denote the new language by Lb.
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The algebra CDFb may be treated as a logical matrix for Lb with 1 being the des-
ignated element. One may then define yet another notion of probabilistic entailment
�b on Lb. For a set of formulas X of Lb and a formula β of Lb, we stipulate that

X �b β ⇔ (∀h : L → CCDFb) (h(β) = 1 whenever h(α) = 1 for all α ∈ X).

For a set of formulas X of Lb, we define:

Cb(X) := { β ∈ L : X �b β }.

Cb is a structural consequence operation, i.e., it satisfies the above conditions
(C1)–(C3), (C5)–(C6) for all sets of formulas X, Y .

Formula 1 is a tautology in the sense of Cb. There are more tautologies of Cb

but each tautology necessarily involves constants 0 or 1 as subformulas. Indeed,
for any formula α(P1, . . . , Pn) of L (which does not contain 0 or 1), where n � 1,
and any cumulative distribution functions F1, . . . , Fn, the element α(F1, . . . , Fn) is
also a cumulative distribution; therefore it is not equal to the generalized function 1.
Consequently, the formula α(P1, . . . , Pn) is not a tautology of the logic Cb.

It follows from the above remarks that Cb does not possess a (definable) impli-
cation connective which would determine the rule of detachment together with the
law of identity, so that both rules should be valid in Cb. Thus Cb, together with the
previously defined logics, is not protoalgebraic. It is also clear that the logic Cb is
stronger than C on L, that is for any set X ⊆ L and any α ∈ L, α ∈ C(X) implies that
α ∈ Cb(X). (Note that every formula γ of L acquires neither the value 1 nor 0.)

No adequate set of (possibly infinitistic) rules of inference adequate for Cb is
available thus far.

The algebra CDF is endowed with the operation→→→, where

(F →→→ G) := Fd ⊕⊕⊕ G,

for all F, G ∈ CDF. It is clear that F →→→ G is a cumulative distribution, that is, F →→→
G ∈ CDF whenever F, G ∈ CDF. Moreover F →→→ G is a continuous cumulative
distribution whenever F, G ∈ CCDF.

We obviously have that

(F →→→ G)(x) = min(1, Fd(x) + G(x)) = min(1, 1 − F(−x) + G(x)),

for any real number x. Moreover,

F →→→ G = Gd →→→ Fd, and (10)

G ��� F →→→ G (11)

for all F, G ∈ CDF.
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Equation (10) directly follows from the definitions of the operations→→→ and d . As
to (11), suppose a contrario that G(x) > (F →→→ G)(x) for some x ∈ R, that is,

G(x) > min(1, 1 − F(−x) + G(x)). (∗)

We consider two cases.
Case 1. 1 = min(1, 1 − F(−x) + G(x)). Then, by (∗), G(x) > 1, which is excluded.
Case 2. 1 − F(−x) + G(x)) = min(1, 1 − F(−x) + G(x)). Hence, by (∗), G(x) >

1 − F(−x) + G(x), which gives that F(−x) > 1. This is also excluded.
So (11) follows.

Proposition 6.1 Suppose F, G ∈ CDF and x ∈ R. Then the conditions F(−x) = 1
and (F →→→ G)(x) = 1 imply G(x) = 1.

Proof Weassume thatF(−x) = 1and (F →→→ G)(x) = 1.Wehave1 = (F →→→ G)(x) =
min(1, 1 − F(−x) + G(x)), which gives that 1 − F(−x) + G(x) � 1. Hence
F(−x) � G(x). As F(−x) = 1, we infer that G(x) = 1. �

The property of the operation →→→ expressed in Proposition 6.1 may be regarded
as the validity of a version of the detachment rule.

Although the implication symbol is used to denote the above operation, it would be
rather unnatural to attach the name ‘implication’ to the above function. The reason
is in the fact that the operation →→→ fails to satisfy the law of identity, relevant in
metalogical consequences, that is, it is not the case that (F →→→ F)(x) = 1 for all
x ∈ R. But we have:

(F →→→ F)(x) =
{
1 if 0 � x,

1 − F(−x) + F(x) otherwise,

as one can easily check.

7 A Connection with Łukasiewicz Logics

We define:
ΔΔΔ := { F ∈ CDF : F(0) = 1 }.

Thus, if F ∈ ΔΔΔ, then F(x) = 1, for all x � 0.

Theorem 7.1 ΔΔΔ satisfies the following conditions, for all F, G ∈ CDF:

(a) F →→→ F ∈ ΔΔΔ;
(b) if F ∈ ΔΔΔ and F ��� G, then G ∈ ΔΔΔ;
(c) if F ∈ ΔΔΔ and G ∈ ΔΔΔ, then F ⊗⊗⊗ G ∈ ΔΔΔ;
(d) if F ∈ ΔΔΔ and G ∈ ΔΔΔ, then F ∧∧∧ G ∈ ΔΔΔ;
(e) if F ∈ ΔΔΔ and F →→→ G ∈ ΔΔΔ, then G ∈ ΔΔΔ.
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Conditions (b) and (c) state thatΔΔΔ is a filter in the strong sense. According to (b)
and (d),ΔΔΔ is also a “standard” lattice-theoretic filter. In turn, (a) and (e) state thatΔΔΔ
validates the identity axiom and the detachment rule corresponding to→→→.

Proof Suppose F, G ∈ CDF.
(a) (F →→→ F)(0) = min(1, 1 − F(−0) + F(0)) = min(1, 1 − F(0) + F(0)) =

min(1, 1) = 1.
(b) is immediate.
(c) Assume F(0) = G(0) = 1. Then F ⊗⊗⊗ G(0) = max(0, F(0) + G(0) − 1) =

max(0, 1 + 1 − 1) = max(0, 1) = 1.
(d) We have that F ⊗⊗⊗ G ��� F ∧∧∧ G. Hence if F, G ∈ ΔΔΔ, then F ∧∧∧ G ∈ ΔΔΔ, by (b)

and (c).
(e) Suppose F ∈ ΔΔΔ and F →→→ G ∈ ΔΔΔ. Then F(0) = 1 and min(1, 1 − F(0) +

G(0)) = 1. Hence min(1, 1 − 1 + G(0)) = 1, that is, min(1, G(0)) = 1. This gives
that G(0) = 1. �

On the unit interval I = [0, 1], we define the operations →,∧,∨,⊗,⊕,¬ by

(→)Ł a → b := min(1, 1 − a + b),
(∧)Ł a ∧ b := min(a, b),
(∨)Ł a ∨ b := max(a, b),
(⊗)Ł a ⊗ b := max(0, a + b − 1),
(⊕)Ł a ⊕ b := min(1, a + b),
(¬)Ł ¬a := 1 − a.

They are called the Łukasiewicz operations. (To simplify the notation, the Łuka-
siewicz strong conjunction ⊗ and the weak disjunction ⊕ are denoted by the same
symbols as in the algebra of cumulative distributions.)

Ac := 〈I,→,∧,∨,⊕,⊗,¬〉 is the infinite Łukasiewicz algebra.All the displayed
operations are treated here as primitive operations of Ac but they are definable in
terms of the operations → and ¬ in the well-known manner. (One may also take ⊕
and ¬ as primitive operations, because a → b = ¬a ⊕ b, a ∨ b = ¬(¬a ⊕ b) ⊕ b,
a ∧ b = ¬(a ∨ ¬b), and a ⊗ b = ¬(a ⊕ ¬b), for all a, b ∈ I .)

The pair 〈Ac, { 1 }〉 is called the infinite Łukasiewicz matrix.
We now consider the extended algebra 〈CDF,→→→,∧∧∧,∨∨∨,⊕⊕⊕,⊗⊗⊗, d〉 of cumula-

tive distribution functions augmented with the operation →→→ defined as in Sect. 5.
(But the convolution operation is discarded.) To simplify the notation, we refer to this
algebra by the same symbol CDF0. The algebra CDF0 = 〈CDF,→→→,∧∧∧,∨∨∨,⊕⊕⊕,⊗⊗⊗, d〉
is similar to Ac.

The following theorem is an immediate consequence of the definitions of the
above two algebras:

Theorem 7.2 The mapping h : CDF → I given by h(F) := F(0) is a homomor-
phism from the algebra CDF0 onto the Łukasiewicz algebra Ac.

Moreover, the filter ΔΔΔ is the pre-image of { 1 } with respect to h, that is,ΔΔΔ = { F ∈
CDF : h(F) = 1 }.
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Proof h is well defined. h is surjective, because for every number r ∈ I there exists
a cumulative distribution function F such that F(0) = r.

Let F, G ∈ CDF. We set a := F(0) and b := G(0). Then we have h(F →→→ G)=
(F →→→ G)(0)=min(1, 1 − F(−0) + G(0))=min(1, 1 − a + b)=a → b=F(0) →
G(0) = h(F) → h(G).

In a similar manner, one checks the remaining conditions imposed on h to be a
homomorphism.

The second statement is immediate. �

Let L0 be the propositional language endowed with the binary connectives
→,∧,∨,⊕,⊗ and the unary d . L0 differs from the language L we have defined
by deleting the connective of convolution and, on the other hand, by adjoining the
binary connective →. L0 is thus the (full) language of Łukasiewicz logics.

We shall treat the filter ΔΔΔ as a designated subset of the algebra CDF0 and define
the matrix M = 〈CDF0,ΔΔΔ〉. Let CM be the consequence operation determined in the
language L0 by M in the standard way.

Theorem 7.3 The consequence operation CM coincides with the consequence oper-
ation determined by the Łukasiewicz matrix 〈Ac, { 1 }〉.
Proof The consequence determined by a matrix and the consequence defined
by any strict surjective homomorphic image of this matrix coincide—see
e.g., (Wójcicki 1988, Lemma 3.1.8). (A strict homomorphism betweenmatrices does
not paste together designated elements with undesignated ones.) The above mapping
h is a surjective, strict homomorphism from the matrix M onto 〈Ac, { 1 }〉. �

The above theorem thus establishes the relationship between the infinitely-valued
Łukasiewicz logic and the above consequence operations determined by the algebra
of cumulative distribution functions.

In particular we obtain:

Corollary 7.4 Let F, G, H ∈ CDF.

(f) F →→→ (G →→→ F) ∈ ΔΔΔ,
(g) (F →→→ G) →→→ ((G →→→ H) →→→ (F →→→ H)) ∈ ΔΔΔ.
(h) More generally, if φ(P1, . . . , Pn) is a formula from the language L0 and

φ(P1, . . . , Pn) is valid in the infinite Łukasiewicz matrix, then φ(F1, . . . , Fn) ∈
ΔΔΔ, for all F1, . . . , Fn ∈ CDF. Moreover, ΔΔΔ consists exactly of cumulative distri-
bution functions of the form φ(F1, . . . , Fn), where φ(P1, . . . , Pn) is a tautology
of the infinitely-valued Łukasiewicz logic. �

8 Is There a Probability Logic?

The set CDF is endowed with a bunch of binary operations and the unary d . It is
appropriate to look at the structure 〈CDF,→→→,∧∧∧,∨∨∨,⊕⊕⊕,⊗⊗⊗,∗∗∗, d〉 (with the convolution
operation ∗∗∗ included) from a more general universal algebraic perspective. We shall
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apply the terminology and notation adopted in Dunn and Hardegree (2001, p. 398).
A tonoid is a structure 〈A,�, { oi }i∈I〉 such that 〈A,�〉 is a poset, 〈A, { oi }i∈I〉

is an algebra with the property that each operation f ∈ { oi }i∈I is either isotonic or
antitonic, in each of its argument positions.

Theorem 8.1 The structure 〈CDF,���,→→→,∧∧∧,∨∨∨,⊕⊕⊕,⊗⊗⊗,∗∗∗, d〉 is a tonoid. More pre-
cisely, if F, G, H ∈ CDF, then

(i) for any operation • from the list ⊕⊕⊕,⊗⊗⊗,∗∗∗, if F ��� G, then F • H ��� G • H and
H • F ��� H • G;

(ii) if F ��� G, then H →→→ F ��� H →→→ G and G →→→ H ��� F →→→ H,
(iii) if F ��� G, then Gd ��� Fd.

Proof (i) directly follows from the definitions and the commutativity of the opera-
tions⊕⊕⊕,⊗⊗⊗ and ∗∗∗. (iii) follows from Lemma 3.4. We shall check (ii).

Assume F ��� G and let r be a real number. We compute

(H→→→F)(r) = min(1, 1 − H(−r) + F(r)) � min(1, 1 − H(−r) + G(r)) = (H→→→G)(r),

because F(r) � G(r) and hence 1 − H(−r) + F(r) � 1 − H(−r) + G(r).
Similarly,

(G→→→H)(r) = min(1, 1 − G(−r) + H(r)) � min(1, 1 − F(−r) + G(r)) = (F→→→H)(r),

because 1 − G(−r) � 1 − F(−r). �

An abstract algebra 〈A,∧,∨, { oi }i∈I〉 is called a distributoid (see Dunn andHard-
egree 2001, p. 398) if 〈A,∧,∨〉 is a distributive lattice, and each f ∈ { oi }i∈I is a
(finitary) operation on A that “distributes” in each of its argument places over ∧ or
∨, leaving the lattice operation unchanged or switching it with its dual.

If we delete the convolution operation ∗∗∗ from the above list, we obtain the fol-
lowing stronger result.

Theorem 8.2 The algebra 〈CDF,∧∧∧,∨∨∨,→→→,⊕⊕⊕,⊗⊗⊗, d〉 is a distributoid. More exactly,
if F, G, H ∈ CDF, then

(i) (F ∨∨∨ G) ⊕⊕⊕ H = (F ⊕⊕⊕ H) ∨∨∨ (G ⊕⊕⊕ H),
(ii) (F ∧∧∧ G) ⊗⊗⊗ H = (F ⊗⊗⊗ H) ∧∧∧ (G ⊗⊗⊗ H),
(iii) (F ∨∨∨ G) →→→ H = (F →→→ H) ∧∧∧ (G →→→ H),
(iv) H →→→ (F ∧∧∧ G) = (H →→→ F) ∨∨∨ (H →→→ G),
(v) (F ∨∨∨ G)d = Fd ∧∧∧ Gd and (F ∧∧∧ G)d = Fd ∨∨∨ Gd.

(We do not know if the convolution ∗∗∗ distributes in each argument.)

Proof We recall the following well-known facts.
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Claim If a, b, c are real numbers, then

(a) a + max(b, c) = max(a + b, a + c);
(b) a + min(b, c) = min(a + b, a + c);
(c) a − max(b, c) = min(a − b, a − c).

Fix a real number r. We then have:

(i) ((F ∨∨∨ G) ⊕⊕⊕ H)(r) = min(1, (F ∨∨∨ G)(r)+H(r))
= min(1, H(r)+max(F(r), G(r)))
= min(1,max(H(r) + F(r), H(r) + G(r))) (by Claim (a))
= max(min(1, H(r) + F(r)),min(1, H(r) + G(r)))

(by distributivity of the chain 〈R,�〉)
= ((F ⊕⊕⊕ H) ∨∨∨ (G ⊕⊕⊕ H))(r)

(ii) ((F ∧∧∧ G) ⊗⊗⊗ H)(r) = max(0, (F ∧∧∧ G)(r) + H(r) − 1)
= max(0,min(F(r), G(r)) + H(r) − 1) (by Claim (b))
= max(0,min(F(r) + H(r) − 1, G(r) + H(r) − 1))
= min(max(0, F(r)+H(r) − 1),max(0, G(r)+H(r)−1))

(by distributivity of the chain 〈R,�〉)
= min((F ⊗⊗⊗ H)(r), (G ⊗⊗⊗ H)(r))
= ((F ⊗⊗⊗ H) ∧∧∧ (G ⊗⊗⊗ H))(r)

(iii) ((F ∨∨∨ G) →→→ H)(r) = min(1, 1 − (F ∨∨∨ G)(−r) + H(r))
= min(1, 1 − max(F(−r), G(−r)) + H(r))
= min(1, 1 + H(r) − max(F(−r), G(−r)))
= min(1,min(1 + H(r) − F(−r), 1 + H(r) − G(−r)))

(by Claim (c))
= min(1,min(1 − F(−r) + H(r), 1 − G(−r) + H(r)))
= min(1,min((F →→→ H)(r), (G →→→ H)(r)))
= min((F →→→ H)(r), (G →→→ H)(r))
= ((F →→→ H) ∧∧∧ (G →→→ H))(r)

(iv) (H →→→ (F ∧∧∧ G))(r) = min(1, 1 − H(−r) + min(F(r), G(r)))
= min(1,min(1 − H(−r) + F(r), 1 − H(−r) + G(r)))

(by Claim (b))
= min(1,min((H →→→ F)(r), (H →→→ G)(r)))
= min((H →→→ F)(r), (H →→→ G)(r))
= ((H →→→ F) ∧∧∧ (H →→→ G))(r)

(v) This is established in Lemma 3.4. �
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Note. The reduct 〈CDF,∧∧∧,∨∨∨,⊕⊕⊕,⊗⊗⊗〉 of the full algebra CDF is a subalgebra of
the R-power of the reduct 〈I,∧,∨,⊕,⊗〉 of the infinite Łukasiewicz algebra Ac.
Therefore every identity valid in 〈I,∧,∨,⊕,⊗〉 also holds in 〈CDF,∧∧∧,∨∨∨,⊕⊕⊕,⊗⊗⊗〉.
Conditions (1)–(2) and (4) of Lemma 3.5 as well as conditions (i)–(ii) of Theorem 8.2
can be also deduced from this fact.

Not much more can be said about the algebraic structure of the set CDF. This is
the topic which requires further scrutiny.

The sentential languages L, Lb and L0 enable one to express in a uniform way
the simplest logical interrelations holding between cumulative distribution func-
tions. The system 〈CDF,→→→,∧∧∧,∨∨∨,⊕⊕⊕,⊗⊗⊗,∗∗∗, d〉 and its fragments provide an alge-
braic semantics for these languages. This semantics determines the underlying
consequence operations. The fact that the algebra 〈CDF,→→→,∧∧∧,∨∨∨,⊕⊕⊕,⊗⊗⊗, d〉 is a
distributoid makes it possible to define truth-conditions for the pertinent connectives
by means of applying the general approach to relational semantics elaborated by
J.M. Dunn in Dunn (1991, 1993), Dunn and Hardegree (2001). Loosely speaking,
a relational semantics for probability is available in a way which parallels the stan-
dard Kripke semantics for normal modal systems. This is due to the fact that every
distributoid can be represented in terms of frames (see Definition 12.4.1 and Theo-
rems 12.4.3 and 12.4.5 in Dunn and Hardegree 2001). It is however an open question
how such truth-conditions are to be explicitly defined. The crucial problem consists
then in providing the definition that a unary probabilistic variable (predicate) P is
true at some world u.

The next question concerns the role of the mean value and the variance of a CDF
F (provided that they exist). The expected value (or the mean value) of F is defined
as the Riemann–Stjeltjes integral

E(F) =
∞∫

−∞
x dF(x).

(The Cauchy distribution is an example of a CDF which has no mean and variance
defined.) Can we use the mean values to attach meanings, and hence truth-values,
to phrases such as e.g., “Men are taller than women” or “The Americans are richer
than the Russians” in a consistent, uniform and precise way? How to combine the
rules of assigning truth-values with inferential statistical analysis?

The general question that arises is: Can one make sense of a probabilistic logic
whose natural algebraic semantics is constituted by the algebraCDF (or its expansion
CDFb)? There are more questions here than answers in the affirmative. Below we
shall discuss some other delicate issues that should be resolved beforehand.

The above definitions do not refer to the notions of a probabilistic space and of
a random variable. The approach we presented is based on the notions of a proba-
bilistic attribute and of a cumulative distribution function. Random variables are not
even mentioned in the above definitions. However, such an approach simplifies mat-
ters, because it omits problems which are of vital importance to probability theory
and statistics. It seems that the issues of stochastic independence and correlation are
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central in this context. More precisely, the well-known definition of stochastic inde-
pendence is restricted to random variables and, as such, it requires prior introduction
of probability spaces. (Random variables are defined on these spaces.) One may, of
course, attempt to reformulate the classical notion of stochastic independence and
redefine it uniformly in terms of cumulative distributions, thus disregarding random
variables. The problem is that if one wants to base the notion of stochastic inde-
pendence on cumulative distributions, the notion of probabilistic space cannot be
eliminated from the discourse altogether, as we shall show. This and other issues
are discussed in the final section, where we shall try to understand logical nuances
involved in the problem of independence.

9 Binary Probabilistic Predicates

A mapping F : R2 → I is a two-dimensional cumulative distribution function if it
satisfies:

1. ∀x∈R lim
y→−∞ F(x, y) = 0, ∀y∈R lim

x→−∞ F(x, y) = 0

2. lim
y→∞, x→∞ F(x, y) = 1

3. F is both non-decreasing and right-continuous with respect to both x and y.

Two-dimensional cumulative distribution functions are also called binary cumu-
lative distributions.

Any two-dimensional cumulative distribution F determines a unique probability
measure μF on B(R2). μF is defined on the infinite sets (−∞, x] × (−∞, y] by
means of the formula: μF((−∞, x] × (−∞, y]) := F(x, y). It follows that for any
half-closed rectangle (x1, x2] × (y1, y2], it is the case that μF((x1, x2] × (y1, y2]) =
F(x2, y2) − F(x2, y1) − F(x1, y2) + F(x1, y1).

Conversely, any probability measure μ on B(R2) is unambiguously defined by
some two-dimensional cumulative distribution F, namely, by the function given by
F(x, y) := μ((−∞, x] × (−∞, y]) for all x, y ∈ R.

CDF2 is the set of two-dimensional cumulative distribution functions. CDF2 is
partially ordered by���, where F ��� G means that F(x, y) � G(x, y) for all x, y ∈ R.
In fact, the poset 〈CDF2,���〉 is a distributive lattice with max(F, G) and min(F, G)

being the lattice operation of join and meet.
The problem arises: how to define the algebra CDF2 of binary cumulative distrib-

ution functionsF : R2 → I and,more generally, the algebraCDFm ofm-dimensional
cumulative distribution functions, for any positive integer m? CDF2 is a distributive
lattice. But there are more options concerning dualization operations. These options
are determined by a group of symmetries attached to the system of Cartesian coordi-
nates of the planeR2. Let g1, . . . , g5 be the following transformations of the plane: g1
is the reflection (of any subset ofR2) against the y-axis, g2 is the reflection against the
x-axis, g3 is the reflection in the origin of the coordinate system, g4 is the reflection
against the line y = x, and g5 is the reflection against the line y = −x. (The identity
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transformation is omitted.) For example, g1 determines the following operation on
the power set of R2: given a set A ⊆ R

2,

g1A := { (−a, b) : (a, b) ∈ A }.

In an analogous way we define the remaining operations. Thus

g2A := { (a,−b) : (a, b) ∈ A },
g3A := { (−a,−b) : (a, b) ∈ A },
g4A := { (b, a) : (a, b) ∈ A },
g5A := { (−b,−a) : (a, b) ∈ A },

for any set A ⊆ R
2.

g3 is the composition g2 ◦ g1 of the group operations g1 and g2. (This composition
commutes.) In turn, g5 is equal to the composition g4 ◦ (g2 ◦ g1). The operations
g1, . . . , g5 together with the identity transformation form a 6-element Abelian group,
in which all elements are idempotent.

Let μ be a probability measure on the σ -field B(R2) of Borel subsets of the plane
R

2. For each gi, i = 1, . . . , 5, we define the probability measure μ ◦ gi on B(R2):

(μ ◦ gi)(A) := μ(giA),

for any set A ∈ B(R2). Let F be the two-dimensional cumulative distribution func-
tion that determines μ. The two-dimensional cumulative distribution function corre-
sponding to the measure μ ◦ gi is marked as F ◦ gi. Thus e.g., (F ◦ g1)((−∞, x] ×
(−∞, y]) = F([−x,+∞) × (−∞, y])(= 1 − F((−∞,−x) × (−∞, y])), for all
x, y ∈ R.

It follows from the above remarks that the setCDF2 is not only a distributive lattice,
but it also becomes a (unbounded) De Morgan lattice with respect of each operation
gi : CDF2 → CDF2, where gi(F) := F ◦ gi, for all F ∈ CDF2 for i = 1, . . . , 5. We
thus arrive here at a new type of algebraic structures 〈D,∧,∨, d1,. . . , dk〉, viz., dis-
tributive lattices endowed with a finite number of unary operations d1, . . . , dk such
that for every i, 〈D,∧,∨, di〉 is a DeMorgan algebra. Moreover, d1, . . . , dk , together
with the identity operation on D, form an Abelian idempotent group with respect to
composition. The operations d1, . . . , dk are the actions of the above group on CDF2.

The set CDF2 is also equipped with the two-dimensional convolution operation:

(F ∗∗∗ G)(x, y) :=
+∞∫

−∞

+∞∫
−∞

F(u, v)G(x − u, y − v) dudv, (12)

for all x, y ∈ R. The convolution F ∗∗∗ G of any two-dimensional cumulative distrib-
utions F and G belongs to CDF2.
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As in the case of unary CDFs we define the bounded addition ⊕⊕⊕ of binary CDFs:

(F ⊕⊕⊕ G)(x, y) := min(1, F(x, y) + G(x, y)),

for all x, y ∈ R. The bounded sum F ⊕⊕⊕ G of binary CDFs F and G is a binary CDF.
The sum F ⊕⊕⊕ G is also called the weak disjunction of cumulative distributions F
and G. Furthermore, if F and G are continuous binary CDFs, F ⊕⊕⊕ G is continuous
as well.

By the strong conjunction (also in an analogy to Łukasiewicz logics) we shall
understand the binary operation ⊗⊗⊗ defined as:

(F ⊗⊗⊗ G)(x, y) := max(0, F(x, y) + G(x, y) − 1),

for all x, y ∈ R. As in the one-dimensional case, the strong conjunction F ⊗⊗⊗ G of
binary CDFs F and G is a binary cumulative distribution, too. If F and G are con-
tinuous CDFs, so is F ⊗⊗⊗ G.

The algebra CDF2 = 〈CDF2,∧∧∧,∨∨∨, g1, . . . , g5,∗∗∗,⊕⊕⊕,⊗⊗⊗〉 is called the extended
De Morgan algebra of binary cumulative distribution functions. (Thus CDF2 is a De
Morgan algebra with respect to each unary operation gi, i = 1, . . . , 5, separately.)
A similar name applies to the algebra 〈CCDF2,∧∧∧,∨∨∨, g1, . . . , g5,∗∗∗,⊕⊕⊕,⊗⊗⊗〉 of con-
tinuous binary cumulative distributions.

The algebra CDF2 and the defined earlier algebra CDF of unary cumulative dis-
tribution functions are not altogether separated notions. They are linked by two oper-
ators assigning to eachF ∈ CDF2 the boundary cumulative distributionsF1 : R → I
and F2 : R → I corresponding to F, respectively. More specifically, let F : R2 → I
be a two-dimensional cumulative distribution. One can assign to F two mappings
F1 : R → I and F2 : R → I defined for any x, y ∈ R as follows:

F1(x) := lim
y→+∞ F(x, y) and F2(y) := lim

x→+∞ F(x, y).

F1 and F2 are one-dimensional cumulative distributions. They are called boundary
cumulative distributions corresponding to F. If F is continuous on R

2, F1 and F2

are continuous on R.
The following observation is immediate.

Lemma 9.1 Suppose F, G ∈ CDF2. If F ��� G, then F1 ��� G1 and F2 ��� G2, for the
boundary distributions corresponding to F and G.

On the other hand, let F1 : R → I and F2 : R → I be arbitrary one-dimensional
cumulative distributions (they may be identical). To the ordered pair 〈F1, F2〉, one
can assign the mapping

F1 × F2 : R2 → I

defined as follows:
(F1 × F2)(x, y) := F1(x) · F2(y),
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for all pairs (x, y) ∈ R
2.F1 × F2 is a two-dimensional cumulative distribution called

the product of F1 and F2. Thus × is a binary operation from CDF to CDF2.
Let L2 be the absolutely free algebra built from a countably infinite set of pred-

icate variables V ar2 = { P2
n : n = 1, 2, . . . } and endowed with binary connectives

∧,∨, ∗,⊕,⊗ and five unary connectives g1, . . . , g5. The universe L2 of L2 consists
of all sentential formulas formed from V ar2 by means of the above connectives in
the well-known manner. (The elements of V ar2 are therefore treated as sentential
variables of L2.) L2 is called the language of two-dimensional probabilistic predi-
cates.

The variables of V ar2 range over 2-dimensional cumulative distributions.
A valuation of the language L2 in the algebra CDF2 is an arbitrary homomorphism
h : L2 → CDF2. h is unambiguously determined by its values on the set V ar2.

By an analogy to the one-dimensional case, we define amodel for L2 to be the pair

M = (V ar2, h),

where h is a mapping defined on the set V ar2 of variables of L2 and assigning to each
binary predicate variable P ∈ V ar2 a 2-dimensional cumulative distribution h(P) on
R

2. When h is clear from a context, the cumulative distribution h(P) will be denoted
by FP. h is then recursively extended to a homomorphism from L to CDF2 in the
standard way.

The relation of probabilistic entailment �2 on L2 is defined in a similar way as in
the one-dimensional case. For n � 1 and formulas α1, . . . , αn, β of L2, we define

α1, . . . , αn �2 β ⇔df (∀h : L2 → CDF2) h(α1) ∧∧∧ · · · ∧∧∧ h(αn) ��� h(β),

where��� is the above partial order on CDF2.
If X is an infinite set of formulas of L2, we assume that

X �2 β ⇔df α1, . . . , αn �2 β for some n � 1 and some formulas α1, . . . , αn ∈ X.

Moreover, it is assumed that∅ �2 β for no formulaβ. Thus the above probabilistic
logic does not possess tautologies.

For each set of formulas X of L2, we define:

C2(X) := { β ∈ L : X �2 β }.

C2 is an operation defined on the the power set ℘(L2), assigning the set C2(X) to
each subset X ⊆ L2.

In analogy with Theorem 4.1, it can be shown:

Theorem 9.2 C2 is a finitary and structural consequence operation.

C2 is called the logic of binary probabilistic predicates.C2 is semantically defined
in terms of models for L2.
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10 Stochastic Independence and Related Issues

We recall that a probability space is a triple (Ω, F, μ) consisting of:

• the sample space Ω being an arbitrary non-empty set,
• the σ -field F of subsets of Ω; the elements of F are called events,
• the probability measure μ : F → [0, 1]; μ is a σ -additive measure such that

μ(Ω) = 1.

Predicates are linguistic objects. Randomvariablesmay be regarded as interpreted
predicates (and interpreted in a certain way). According to the classical theory of
probability, each 1-dimensional random variable is a real valued function defined
on a probability space (Ω, F, μ). (We shall however not change the terminology
adopted here and we shall interchangeably speak of populations and sample spaces.)
To each random variable X defined on Ω (and a fortiori—on the probability space
(Ω, F, μ)) the cumulative distribution FX : R → [0, 1] is assigned according to the
formula: FX(x) := μ({ a ∈ Ω : X(a) � x }), for all x ∈ R. (It is assumed that X is
a measurable function in the sense of the σ -field F, that is, for every Borel subset
A ⊆ R, the pre-image X−1[A] belongs to F.)

In the approach presented here the situation is simpler. Probabilistic predicates are
directly evaluated as cumulative distributions. In other words, to each unary predicate
P a cumulative distribution FP : R → [0, 1] is assigned. The number FP(x) gives
the probability that P takes values from the infinite interval (−∞, x].

The use of probability spaces as an intermediary notion is unnecessary in the
definition of the logic C (or Cb). The burden of the approach presented so far rests
on uniform interpretations h of predicate letters as cumulative distribution functions.
What is lost here? We recall that a model for the language L of unary probabilistic
predicates is the pair

M = (V ar, h),

where h is a mapping defined on the set of variables assigning to each predicate
variable P ∈ V ar a unary cumulative distribution h(P).

By a standard model for L we shall mean a model M = (V ar, h) defined in terms
of cumulative distributions functions of random variables. More specifically, given
a probability space (Ω, F, μ), a sequence Xn, n ∈ ω, of arbitrary random variables
in the sense of (Ω, F, μ) is selected. Let Fn be the cumulative distribution of Xn,
n ∈ ω. Putting h(Pn) := Fn, n ∈ ω, we obtain a model (V ar, h) for the language
of probabilistic predicates. Thus any standard model is identified with an infinite
sequence of the cumulative distributions corresponding to random variables (the
latter being defined on a classical probability space).

Every standardmodel is obviously amodel. But the converse also holds. The class
of standard models is thus adequate for the systems C and Cb because
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Lemma 10.1 Every model is standard.

In otherwords, we claim that for every infinite sequence { Fn } of unary cumulative
distribution functions there exists a probability space (Ω, F, μ) and a sequence of
F-measurable random variables Xn, n ∈ ω, defined on Ω , such that Fn is the cumu-
lative distribution of Xn, for all n.

Proof (of the lemma) We proceed as follows. Let μn be the probability measure
on the σ -field B(R) of Borel subsets of R determined by Fn. (Thus μn((a, b]) =
Fn(b) − Fn(a) for any interval (a, b].) The triple (R, B(R), μn) is a probability space,
for all n ∈ ω. We then define (Ω, F, μ) to be the product of the countably infinite
family (R, B(R), μn), n ∈ ω. (The product of a family of probability spaces is a
well-known construction applied in probability theory; see Billingsley (1995) for
details.) Thus Ω is the Cartesian power Πn∈ωR of the real line, F is a σ -field of
subsets of Ω , and μ is the probability measure on F. F is defined in a certain way
and called a power of the σ -field B(R). The measure μ is called the product of the
family μn, n ∈ ω. For each n ∈ ω, the random variable Xn : Ω → R is defined as
follows. For every sequence x = 〈xk : k ∈ ω〉 ∈ Ω , we set Xn(x) := Fn(xn). Xn is a
well-defined mapping. Moreover, Xn is F-measurable, because Xn is the composition
of the projection of Ω onto the nth axis and of the distribution Fn. Xn is therefore
a random variable in the sense of (Ω, F). It is easy to see that the random variables
Xn, n ∈ ω, are stochastically independent in the sense of (Ω, F, μ).

Claim Fn is the cumulative distribution function of Xn, for all n ∈ ω.

Proof (of the claim) Fix r ∈ R and n. Let πn be the projection of Ω onto the nth
axis. We have:

μ({ x ∈ Ω : Xn(x) � r }) = μ({ x ∈ Ω : Fn(xn) � r })
= μ({ x ∈ Ω : Fn(πn(x)) � r })
= μ({ x ∈ Ω : πn(x) ∈ F−1

n ((−∞, r]) }
= μn({ x ∈ R : x ∈ F−1

n ((−∞, r]) }
(by def. of the product of measures)

= μn({ x ∈ R : Fn(x) � r })
= Fn(r)

This proves the claim and the lemma. �

It therefore follows from the above considerations that the logic C is also deter-
mined by standard models.

In order to present the theory of stochastic independence of unary predicates in
an undistorted way, it is necessary to take into account probabilistic predicates of
higher arities as well as many-dimensional cumulative distributions. Here we shall
restrict the discussion to the binary case.

One may attempt to reformulate the classical notion of stochastic independence
and define it uniformly in terms of the corresponding cumulative distributions, thus
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disregarding random variables. The problem is that the notion of a probabilistic space
cannot be eliminated from such a discourse altogether.

Let (Ω, F, μ) be a probability space and X, Y : Ω → R random variables (in the
sense of this space). Let F and G be the (one-dimensional) cumulative distributions
corresponding to X and Y . In the standard way one defines the product space

(Ω × Ω, F × F, μ × μ).

We define the two-dimensional random variable X × Y : Ω × Ω → R × R as fol-
lows: (X × Y)(a, b) := 〈X(a), Y(b)〉, for every pair (a, b) ∈ Ω × Ω . We then put:

H(x, y) := (μ × μ)({ (a, b) ∈ Ω × Ω : X(a) � x and Y(b) � y })
= (μ × μ)({ (a, b) ∈ Ω × Ω : (X × Y)(a, b) ∈ (−∞, x] × (−∞, y] })

H is a two-dimensional cumulative distribution. H is called the product of the cumu-
lative distributions F and G in the sense of the probability space (Ω, F, μ) and
denoted by F ×μ G.

Eachprobability space (Ω, F, μ) thus determines a binary, partial operation×μ on
the set of cumulative distributions. The operation×μ is commutative and associative.
(One may also define arbitrary finite as well as infinite μ-products of cumulative
distributions; this aspect is omitted here.)

We recall that random variables X and Y are stochastically independent (in the
space (Ω, F, μ)), if for all x, y ∈ R,

(μ × μ)({ (a, b) ∈ Ω × Ω : X(a) � x and Y(b) � y })
= μ({ a ∈ Ω : X(a) � x }) · μ({ b ∈ Ω : X(a) � y }).

We may reformulate the above definition in the terms of cumulative distributions
and say that two cumulative distributions F and G are independent in the sense of
×μ if

(F ×μ G)(x, y) = F(x) · G(y),

for all x, y ∈ R. Note, however, that the definition of F ×μ G makes sense only for
cumulative distributions F and G of random variables over (Ω, F, μ), and not for
arbitrary cumulative distributions. For instance, if Ω is countable, no continuous
CDF F is determined by a random variable over (Ω, F). In this case, the product
F ×μ G is undefined whenever F and G are continuous CDFs.

The above definition of ×μ thus explicitly refers to the space (Ω, F, μ). It is not
clear how to formulate an “intrinsic” definition of ×μ, that is, how to characterize
the partial operation ×μ entirely in terms of properties of the set CDF of cumulative
distributions without resorting to probability spaces.

We thus see that in order to adequately capture various probabilistic phenomena,
as e.g., the stochastic independence, the algebra CDF must be supplemented with a
bunch of binary partial operations of type ×μ defined as above.
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11 Convergence

Yet another aspect of probability theory that comes to light is that of convergence of
cumulative distribution functions. The mapping assigning to each random variable
X over (Ω, F, μ) its cumulative distribution FX is not one-to-one. One identifies
random variables X and Y relative μ according to the formula:

X =μ Y ⇔df μ({ a ∈ Ω : X(a) = Y(a) }) = 1.

=μ is an equivalence relation on the set of random variables over (Ω, F, μ) com-
patible with some arithmetic operations as, e.g., the sum and the product of random
variables. One can prove that if X =μ Y , then the cumulative distributions FX and
FY coincide.

The part of probability theory which is preoccupied by pointwise convergence of
(independent) randomvariables cannot be adequately rendered in termsof cumulative
distribution functions—the presence of probability spaces is a necessary additional
ingredient that enables us to express pertinent properties of cumulative distributions
as, e.g., stochastic independence or convergence. For example, the central limit the-
orem (CLT) in its common form states that under some conditions, the mean of a
sufficiently large number of iterates of independent and identically distributed (say,
by F) random variables with finite expected values and variance will be approx-
imately normally distributed, regardless of the underlying cumulative distribution
F. More precisely, this theorem (in a bit restricted form) states that if Xn, n ∈ ω,
is a sequence of independent random variables over a probability space (Ω, F, μ)

with the same cumulative distribution F with variance 1 and expected value 0, then
the sequence (X0 + X1 + · · · + Xn−1)/

√
n approaches a random variable with the

standard normal distribution.
An infinite sequence Fn, n ∈ ω, of unary cumulative distribution functions is con-

vergent to a distribution F if F(x) = limn→∞ Fn(x), for all x ∈ R. The phrase “to a
distribution” is essential in this definition, because an infinite sequence of CDFs may
turn out to be pointwise convergent to a functionF : R → [0, 1]which is not a cumu-
lative distribution (see the example following Lemma 3.4). It is known, however, that
every sequence of cumulative distributions convergent to a continuous cumulative
distribution F is uniformly convergent to F. It follows that the pointwise limit of a
uniformly convergent sequence of uniformly continuous cumulative distributions is
a uniformly continuous CDF. This type of convergence is expressible in terms of the
topological properties of the set CCDF without the need of introducing probability
spaces. However, probability theory makes use of other forms of convergence of
random variables. These forms of convergence of random variables are not captured
in terms of convergence of cumulative distributions.

One defines yet another form of convergence of cumulative distributions, called
weak convergence. An infinite sequence of cumulative distributions Fn, n ∈ ω, is
weakly convergent to a CDF F if and only if F(x) = limn→∞ Fn(x), for all points
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x ∈ R at which F is continuous. The weak convergence plays a significant role in
the formulation of the above central limit theorem.

Let Xn, n ∈ ω, be a sequence of random variables defined on the same probability
space (Ω, F, μ). Let Fn be the cumulative distribution of Xn, n ∈ ω, and let X be a
random variable on (Ω, F, μ), whose distribution is F.

IfFn, n ∈ ω, is weakly convergent toF, then according to the terminology adopted
in probability theory, the variables Xn, n ∈ ω, are also said to be convergent in dis-
tribution to the variable X and we write Xn ⇒ X. This type of convergence basically
refers to properties of cumulative distributions and not to those of random variables.

However, there are other, stronger forms of convergence such as convergence in
probability or almost sure convergence. These forms are defined in termsof sequences
Xn, n ∈ ω, of random variables over a space (Ω, F, μ).

It does not seem that these forms of convergence could be equivalently defined in
terms of cumulative distributive functions without resorting to the space (Ω, F, μ).
There is an even more basic point, though. Random variables X and Y can have
the same distribution, yet X �= Y everywhere (or almost everywhere, if they are
continuous). Clearly there is more information in X than in its CDF.

This supports the thesis that random variables cannot be eliminated from the
probabilistic discourse and entirely replaced by cumulative distribution functions.

12 The General Case

Let m be a positive integer. The above definitions give clues to the characterization of
m-dimensional cumulative distribution functions F : Rm → I . In a fully analogous
way to the two-dimensional case, wemay define the algebraCDFm ofm-dimensional
cumulative distribution functions. CDFm is a distributive lattice furnished with some
additional operations. The only difficulty is in isolating the group of symmetries of
the n-dimensional Cartesian system of coordinates and the corresponding actions of
the group on the set CDFm. (We shall omit the details. We merely assume that CDFm

is a well-defined mathematical object.)
Letm be a positive integer. LetLm be the absolutely free algebra built from a count-

ably infinite set of predicate variables V arm = { Pm
n : n = 1, 2, . . . } and endowed

with the set of connectives corresponding to the operations of the algebra CDFm.
Thus the universe Lm of Lm consists of all sentential formulas formed from V arm

and the above connectives in the well-known manner. Lm is called the language of
m-ary probabilistic predicates.

The variables of V arm range over m-dimensional cumulative distributions.
A valuation of the language L in the algebra CDFm is an arbitrary homomorphism
h : L → CDFm. h is unambiguously determined by its values on the set V arm.

By an analogy to the one-dimensional case, a model for Lm is the pair

M = (V arm, h),
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where h is a mapping defined on the set V arm of variables of Lm and assigning to
each m-ary predicate variable P ∈ V arm an m-dimensional cumulative distribution
h(P) on R

m. When h is clear from context, the cumulative distribution h(P) will be
denoted by FP. h is then recursively extended to a homomorphism from L to CDFm

in the well-known way.
We return to the question of interpreting m-ary predicates as m-dimensional ran-

dom variables.
Let (Ω, F, μ) be a probability space. By the mth power of (Ω, F, μ) we shall

mean the probability space (Ωm, Fm, μm), where Ωm := Ω × · · · × Ω (Ω occurs
m-times), Fm is a σ -field of subsets of Ω defined in a certain way and called the mth
power of the σ -field F (Fm is σ -generated by m-dimensional cuboids formed from
the sets of F), and μm is the probability measure on Fm. The measure μm is called
the mth power of μ and also denoted as μ × · · · × μ. For a more technical aspects
of the above definitions, the reader is advised to consult (Billingsley 1995).

Let μ be a probability measure on B(R). The mth power of the probability space
(R, B(R), μ) is usually identified with the space (Rm, B(Rm), μm).

AnymappingX : Ωm → R
m, which isFm-measurable is called anm-dimensional

random variable over the probability space (Ω, F, μ). The assumption that X is Fm-
measurablemeans that for anyBorel setA ∈ B(Rm), the pre-imageX−1[A] belongs to
Fm. But trivially, everym-dimensional randomvariable over (Ω, F, μ) is represented
as an m-tuple 〈X1, . . . , Xm〉 composed of m unary random variables over (Ω, F, μ).
Such an m-tuple 〈X1, . . . , Xm〉 is called a random vector consisting of m random
variables over (Ω, F, μ). Following the common practice adopted in probability
theory, one simply identifies m-dimensional random variables with random vectors
of length m.

By a standard m-dimensional model (over a probability space (Ω, F, μ)) we shall
mean the pair

M = (V arm, h),

where h is a mapping defined on the set V arm and assigning to each m-ary predicate
variable P ∈ V arm an m-dimensional cumulative distribution h(P) on R

m corre-
sponding to some random vector 〈X1, . . . , Xm〉 over (Ω, F, μ). In other words, the
values of h are not arbitrary m-dimensional cumulative distributions but only those
determined by random vectors of length m over (Ω, F, μ).

Suitably modifying the proof of Lemma 10.1, one can prove that

Every model M = (V arm, h) for Lm is a standard m-dimensional model (over
some probability space (Ω, F, μ)).

In other words, for every infinite sequence { Fn } of m-dimensional cumulative
distribution functions there exists a probability space (Ω, F, μ) and a sequence
Xn = 〈X1,n, . . . , Xm,n〉 of random vectors over (Ω, F, μ) (each vector of length m)
such that Fn is the m-dimensional cumulative distribution of the random vector Xn,
for n = 1, 2, . . . .
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The conclusion which can be drawn from the above remarks is that the standard
interpretation of m-ary probabilistic predicates as vectors (of length m) of random
variables m over probability spaces is fully legitimate and it gives all the models we
have defined.
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Reasoning with Incomplete Information
in Generalized Galois Logics Without
Distribution: The Case of Negation
and Modal Operators

Chrysafis Hartonas

Abstract We extend Dunn’s treatment of various forms of negation developed in
the context of his theory of generalized Galois logics (known as gaggle theory), by
dropping the assumption of distribution.We also studymodal operators of possibility
and impossibility in a non-distributive context and in standardKripke semantics, thus
improving significantly over existing approaches developed in the last decade or so
on the semantics of modalities when distribution of conjunction over disjunction
and conversely is dropped. We prove representation and completeness theorems for
the related logical calculi in appropriate Kripke frames. Without distribution, the
points of the frame (we call them information sites) appear as possessing incomplete
only information, supporting the truth of a disjunction ϕ ∨ ψ without necessarily
supporting the truth of either ϕ or ψ . Our approach is based on and extends past
results we have obtained on the (topological) representation (and Stone type duality)
of non-distributive lattices with additional operators.

Keywords Impossibility · Modal lattice logic · Negation · Negation as
impossibility · Non-distributive lattice logic · Possibility · Star and perp

1 Preliminaries

1.1 Generalized Galois Logics

Dunn’s theory of Generalized Galois Logics (gaggles), motivated by the relational
semantics for Relevance Logic of Routley andMeyer (1973) and the semantic analy-
sis of orthologic of Goldblatt (1974), Goldblatt (1993) has been developed as an
extension of the classical Jónsson andTarski (1952) results onBooleanAlgebraswith
Operators, where the latter is itself an extension of the topological representation of
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Boolean Algebras of Stone (1938). The theory is well-developed when distribution is
assumed and, in fact, Dunn’s original project presented in Dunn (1991) was restricted
to the case of logical calculi whose Lindenbaum algebra is a distributive lattice, aim-
ing at extending the Stone (1937–38), or Priestley (1970) topological representation
of distributive lattices. A further generalization of gaggle theory introduced in Dunn
(1991) is to extend the class of lattice operators from Jónsson and Tarski’s additive
operators (distributing over joins at each argument place) to the class of operators
that either distribute or codistribute at each argument place over joins (turning them
to meets, in the latter case), or over meets, and returning the same type of operator
(a meet, or a join). For example, implication is not additive but it does fall within the
class of operators treated by gaggle theory (it codistributes over joins in the first argu-
ment place, while it distributes over meets in the second argument place returning, in
both cases, a meet). Each n-ary operator having a well-behaved distribution type, in
the sense explained above, is then interpreted in a Kripke frame using an (n + 1)-ary
relation that is canonically associated to it, generalizing on the Jónsson–Tarski idea
of representing additive operators as the image operators of associated relations on
their dual Stone space. The name of the theory derives from Dunn’s observation that
logical operators often come in adjoint pairs, forming either a Galois connection, or a
residuated pair (the classical example being conjunction and implication), an obser-
vation that has been subsequently turned to a guiding principle, seeking to discover
and explore the semantics of adjoint pairs of logical operators. Adjointness of oper-
ators is of course directly related to the (co)distribution properties of the operators,
by well-known general facts in Category Theory. Dunn has developed the theory
of generalized, distributive Galois logics in a series of papers, though Dunn (1991)
remains the central reference.

Negation is but one example of a unary operator having awell-behaveddistribution
type (it codistributes over joins). Dunn (1999) runs through the history of formal
negation and compares its variousmodel-theoretic treatments, classifying the various
types in what has been called Dunn’s kite of negations, first introduced in Dunn
(1996). The kite got subsequently slightlymodified, in Dunn and Zhou (2005), where
a thorough study of negation in the context of the theory of distributive generalized
Galois logics is presented.

Distribution of meets over joins, and conversely, is natural in logic and a signif-
icant convenience, but not at all a necessity, explicitly rejected in the Full Lambek
Calculus, Linear Logic, Orthologic and Quantum Logic. Dunn, having originally
built distribution into the definition of a generalized Galois logic (a gaggle), has
subsequently had a change of heart in the matter.

One way around non-distributivity is to ignore the lattice structure and focus only
on the partial order generated by the consequence relation and this approach has been
followed in Dunn (1993, 1996). But it is of course best to avoid this simplification
and deal directly with non-distribution. The success of such an approach depends
largely on expanding on an appropriate representation theorem for general lattices.
By now, a number of related results have appeared in the literature: Urquhart (1978),
Hartung (1992), Allwein and Hartonas (1993), Hartonas and Dunn (1997), Hartonas
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(1997), Gerhke and Harding (2001), Gerhke and van Gool (2014), Moshier and
Jipsen (2014a, b).

Our own approach in Hartonas and Dunn (1997) and Hartonas (1997) has been
developed with the aim of making it possible to extend Dunn’s gaggle theory to
the case of non-distributive lattices. In particular, Hartonas (1997) explicitly extends
the Jónsson–Tarski results on Boolean algebras with operators and Dunn’s gaggle-
theoretic results on Distributive Lattices with operators with well-behaved distrib-
ution types to the case of lattices with what we called in Hartonas (1997) normal
operators (just another name for Dunn’s family of operators with well-behaved dis-
tribution types).

The objective of this paper is to contribute to the study of non-distributive logical
calculi, though restricting the scope and focusing only on non-distributive calculi
with various notions of negation, as captured in Dunn’s kite, and complementing in
this respect the treatment of negation in distributive gaggle theory of Dunn and Zhou
(2005). We also complement our study of negation as impossibility by introducing
and studying a possibility operator, where we provide standard relational seman-
tics, despite the lack of distribution, thus significantly improving over the results of
Conradie and Palmigiano (2015), which follows the approach of Gehrke (2006) of
so-called generalized Kripke frames, or of Suzuki (2010, 2012, 2014), as well as of
Järvinen and Orlowska (2005). The systems we study are based on non-distributive
lattice logic, variously extending it with negation operators (minimal negation, De
Morgan or intuitionistic negation, negation as impossibility, etc.) and proving com-
pleteness theorems in related Kripke frames.

Dropping distribution may present a number of new technical difficulties in the
semantic treatment of the related calculi, but it does also present itself as the natural
approach to reasoningwith incomplete information. Information sites (worlds, points
of the underlying set of the Kripke frame) possess only partial knowledge of the
world. It can happen that a site u supports the truth of a disjunction ϕ ∨ ψ , without
being in a position to distinguish which of the two is true. The various representation
theorems for non-distributive lattices allow for two different understandings of the
meaning of disjunction. Nearly all introduce a binary relation connecting information
sites (Alasdair Urquhart’s approach in Urquhart (1978) is slightly more complicated,
introducing two relations), used to interpret disjunction, but they differ inwhether this
relation is to be understood as a relation of information extension, or of information
incompatibility. The relation introduced generates a Galois connection on sets of
information sites and, therefore, a closure operator (the composition of the Galois
maps). Propositions in the frame, interpreting sentences, are then taken to be not just
any sets of sites but only the stable ones (remaining unchanged under an application
of the closure operator).

In this paper we shall follow the approach of Hartonas (1997), appropriately
extending it for the needs of the task at hand. To interpret disjunction, we introduce
information neighborhood frames (X, ν)whereν(x) is the informationneighborhood
of x , which can be thought of either negatively (the set of information sites with
information incompatible with the site x), or positively (the set of informational
expansions of x). A disjunction ϕ ∨ ψ is true at the information site x iff x is in the
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neighborhood of every site y whose neighborhood includes all sites z where at least
one of ϕ,ψ is true.

According to Dunn (1999) the general gaggle-theoretic semantic treatment of
negation is in terms of a binary (perp) relation, using perp-frames (W,⊥), with the
semantic clause

u � ∼ϕ iff ∀v (v � ϕ implies u ⊥ v) (1)

first used by Goldblatt (1974) in his semantic analysis of Orthologic (the origin of the
idea is perhaps to be found in Birkhoff and von Neumann 1936). The intuition here is
that a world (information site) u satisfies∼ϕ iff it is “orthogonal” to every world that
satisfies ϕ, where “orthogonality” is to be thought of as some sort of incompatibility
of worlds. The meaning and properties of this notion of orthogonality are of course
bound to be different, depending on the logical properties of the negation operator.

1.2 Topological Representation of Bounded Lattices

To get an insight on the semantics of disjunction for non-distributive lattice logic we
briefly review in this section the results that have appeared in the literature on lattice
representation and duality.

The first representation theorem for a class of non-distributive lattices is due
to Goldblatt (1974), though the approach applies only to lattices equipped with
an orthocomplementation operator ¬ in which case joins are definable as a ∨ b =
¬(¬a ∧ ¬b) and the task essentially reduces to representing themeet-semilattice, but
also and in addition, representing appropriately the orthocomplementation operator.
The carrier set of the dual space of the ortholattice is the set X of its filters and an
irreflexive, symmetric binary relation⊥ of orthogonality is defined on X by x ⊥ y iff
∃a ∈ x ¬a ∈ y, inducing an antitone operation (in fact, a duality) on sets of filters
U⊥ = { x : ∀u ∈ U u ⊥ x }. The set X is appropriately topologized and Goldblatt
identifies the lattice of closed (in the topology) regular subsets of X , i.e., sets A ⊆ X
such that A⊥⊥ = A, as an isomorphic copy of the original lattice, with joins definable
by

A ∨ B = (A ∪ B)⊥⊥ = {x : ∀y (∀z (z ∈ A ∪ B =⇒ z ⊥ y) =⇒ x ⊥ y)} (2)

Urquhart (1978) was the first to produce a topological representation and an
objects-only duality for bounded lattices that may drop the distribution law. The
carrier set X of the dual space of a lattice is the set of maximal disjoint filter-ideal
pairs, i.e., pairs x = (u, v)where u is a filter and v is an ideal, u ∩ v = ∅, u is maximal
amongst the filters disjoint from v and similarly for v. Existence of maximal disjoint
filter-ideal pairs is established by a use of Zorn’s lemma, hence the proof is carried
out in ZFC (Zermelo–Fraenkel set theory with the axiom of choice). An advantage
of Urquhart’s representation is that it specializes to the representation of Priestley
(1970) when the lattice is distributive. The set of maximal disjoint filter-ideal pairs
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is doubly-ordered, (X,≤1,≤2), with the coordinate-wise inclusion relations. The
two relations induce a Galois connection from the family X1 (actually, a lattice) of
≤1-increasing subsets of X to the family X2 (a lattice) of ≤2-increasing subsets of
X , defined on subsets U ∈ X1, V ∈ X2 by

λU = {x ∈ X : ∀y ∈ X (y ∈ U =⇒ x �1 y)} and (3)

ρV = {x ∈ X : ∀y ∈ X (y ∈ V =⇒ x �2 y)}.

He then topologizes X and identifies an isomorphic copy of the original lattice
consisting of the sets A ⊆ X that are doubly closed (both A and ρ A are closed sets
in the topology) and stable (λρ A = A), with joins definable by

A ∨ B = λρ(A ∪ B) = { x : ∀y (∀z (z ∈ A ∪ B =⇒ y �2 z) =⇒ x �1 y) } (4)

Allwein and Hartonas (1993) build on Urquhart’s representation and, considering
the set of all disjoint filter-ideal pairs, work in ZF and establish a full categorical
duality. Joins of the dual lattice are again definable as in Eq. (4).

Hartung (1992) also builds on Urquhart’s representation, considering as the dual
space of a lattice L the triple (F0, I0,⊥), where F0 is the set of filters that are
maximal disjoint with respect to some ideal y (not necessarily in I0) and, similarly,
I0 is the set of ideals that are maximal disjoint with respect to some filter x , while
⊥⊆ F0 × I0 is the relation x ⊥ y iff x ∩ y �= ∅. Letting λ � ρ be the induced Galois
connection and after imposing an appropriate topology on both sets F0, I0, Hartung
identifies the collection of stable subsets of F0 enjoying some additional topological
properties as an isomorphic copy of the original lattice. Because of use ofmaximality,
after Urquhart (1978), Hartung works in ZFC, while also modeling his construction
as an instance of the notion of a concept lattice, building on ideas fromWille (1987).
However, as far as our interest in this paper is concerned, we note that joins are
defined in a way analogous to Eq. (2)

A ∨ B = λρ(A ∪ B) (5)

= { x ∈ F0 : ∀y ∈ I0 (∀z ∈ F0 (z ∈ A ∪ B =⇒ y ⊥ z) =⇒ x ⊥ y) }

Hartonas (1996) and Hartonas and Dunn (1997) work in ZF and build on the idea
that even when a dualizing map, such as orthocomplementation, is not available on
the lattice, the fact of order-duality of meets and joins should suffice to sustain a
representation of the lattice. Indeed, they start with the observation that the identity
map ı is a dual isomorphism of L with Lop (its opposite lattice): L

ı

ı
� (Lop)op. They

view this as a diagram of meet-semilattices connected with a duality and represent
both semilattices using their sets of filters (except that the filters of Lop are really
the ideals of L). They also represent the duality the same way as orthonegation is
represented by a perp relation. Thus the dual frames of lattices are triples (X, Y,⊥)

where X is the set of filters and Y is the set of ideals of L and ⊥ is defined by x ⊥ y
iff ∃a ∈ x ı(a) ∈ y iff x ∩ y �= ∅. The Galois connection λ � ρ generated by the
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relation induces a closure operator and, after topologizing, a certain subclass of the
family of stable sets of filters (to wit, the stable compact-opens) is recognized as an
isomorphic copy of the original lattice. Joins are defined by a condition essentially
identical to that in Eq. (5).

A ∨ B = λρ(A ∪ B) (6)

= { x ∈ X : ∀y ∈ Y (∀z ∈ X (z ∈ A ∪ B =⇒ y ⊥ z) =⇒ x ⊥ y) }

Hartonas (1997) also works in ZF, he regards the requirement that there should exist
a duality induced isomorphism of the lattice L (with itself, or another (semi)lattice)
as superfluous and uses order-duality to represent separately themeet L∧ and join L∨
semilattices making up the lattice L . Subsequently, based on order-duality, Hartonas
(1997) establishes a dual isomorphism of the image of L∧ with the image of L∨ at
the representation level. More specifically, the concrete semilattices are the families
of sets of filters Xa = { x : xa ≤ x } and Xa = { x : x ≤ xa }, where x is a filter, xa is
the principal filter generated by the element a ∈ L and ≤ is inclusion of filters. The
ordering relation ≤ on the set X of filters generates a Galois connection

λU = { x ∈ X : U ≤ x } ρV = { y ∈ X : y ≤ V }

where U ≤ x means that x is an upper bound of the elements of U and y ≤ V that y
is a lower bound of the elements of V . After topologizing, a certain family of stable
sets A = λρ A (the stable compact-opens) is identified as an isomorphic copy of the
original lattice and joins are defined by

A ∨ B = λρ(A ∪ B) = { x : ∀y (∀z (z ∈ A ∪ B =⇒ y ≤ z) =⇒ y ≤ x) } (7)

Gerhke and Harding (2001), motivated by Hartung (1992), independently arrive
at the same idea for a dual frame as in Hartonas and Dunn (1997), considering triples
(X, Y,⊥) where X , Y are the sets of filters and ideals, respectively, of X and the
relation x ⊥ y is again defined by the condition x ∩ y �= ∅. Their representation
of joins then is precisely that given in Eq. (6). Other than investigating a number
of interesting properties of their representation, Gerhke and Harding (2001) also
address the issue of representing unary functions on the lattice L , a problem not
raised in Hartonas and Dunn (1997).

Gerhke and vanGool (2014) revisit the lattice duality problem and they investigate
a number of properties of interest. For our present concerns, however, we only need
to note that the dual objects are of the form (X, Y,⊥) where X, Y are the sets of
filters and ideals of the lattice and x ⊥ y is defined by x ∩ y �= ∅, hence no new
insights on the definition of joins result.

Moshier and Jipsen (2014a, b) observe that all dualities for bounded lattices have
proceeded by building, in one way or another, on the Priestley (1970) duality for
distributive lattices, making use of spaces with an additional binary relation on them,
in some cases explicitly an ordering relation, and they set out to prove a duality that is
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based instead on the original Stone (1937–38) representation of distributive lattices.
They report a number of interesting facts relating to lattice duality and, as far as
representing joins is concerned, they introduce directly a closure operatorΓ (they call
it fsat and define fsat(U ) = ⋂{ F ∈ OF(X) : U ⊆ F }, where OF(X) is the set
of subsets of X that are filters and open in the topology defined on X ) andmodel joins
accordingly, as closures of unions. They achieve their main objective on generalizing
the Stone representation result for the case of bounded lattices, however, as far as
our present task is concerned we note that it follows from general facts of category
theory that a closure operator is induced by a Galois connection (though not a unique
one). On the other hand, it is also known that any Galois connection on a powerset
is induced by a binary relation on that set (by setting x Ry iff y ∈ λ({ x })) and so it
seems that a binary relation on the points of X is involved again in representing joins
and, though we have not sorted out details, this relation is based on the ordering of
X , hence their interpretation of joins falls within one of the above patterns.

Remark 1.1 (Notational Convention) In the sequel, we overload the use of≤, leaving
it to the context to disambiguate its use. More specifically,

1. we systematically use x, y, z, u, v, w for filters of a lattice and xa etc. for a prin-
cipal filter xa = { b : a ≤ b };

2. for filters x, y of a lattice L , we write x ≤ y for their set-theoretic inclusion
(x ⊆ y);

3. for a set U of filters and a filter x , we write U ≤ x as an abbreviation for ∀u ∈
U u ≤ x (x is an upper bound of the elements of U );

4. similarly, for a set of filters V and a filter x , we write x ≤ V as an abbreviation
for ∀v ∈ V x ≤ v (x is a lower bound of the elements in V );

5. we also write a ≤ x , for an element a ∈ L of the lattice and a filter x as an
abbreviation for ∀e ∈ x a ≤ e (a is a lower bound of the elements of x). Note
that a ≤ x iff x ≤ xa (the filter x is contained in the principal filter xa).

2 Lattice Logic

2.1 Motivation, Syntactic and Proof-Theoretic Preliminaries

In this section we isolate the basic, minimal system of Lattice Logic, whose language
includes no more than the connectives of conjunction and disjunction. The interest
in this system lies with the semantics of disjunction in the absence of the distribution
law (and of an orthonegation operator). In later sections we present extensions of
the system, first with various notions of negation (Sect. 3), as presented in Dunn and
Zhou (2005), and then we introduce Modal Lattice Logic (Sect. 4), with possibility
and impossibility operators, with the study of the latter, in the context of distributive
logic, originating in Došen (1986, 1999) and Vakarelov (1977, 1989) and, more
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recently, in Dunn and Zhou (2005). The presentation is based on this author’s results
on lattice representation and Stone type duality in Hartonas (1997).

The sentences of the language of lattice logic are generated from a set At S of
atomic sentences p, q, etc., using the connectives ∧ and ∨.

ϕ := p (p ∈ At S) | � | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ

As in Dunn and Zhou (2005) we present its proof theory by means of a symmetric
consequence relation (a single sentence to the left and right of the turnstile), with the
following axioms and rules:

1. ϕ � ϕ ϕ � � ⊥ � ϕ

2.
ϕ � ψ ψ � ϑ

ϕ � ϑ

3–4. ϕ ∧ ψ � ϕ and ϕ ∧ ψ � ψ ϕ � ϕ ∨ ψ and ψ � ϕ ∨ ψ

5–6.
ϕ � ψ ϕ � ϑ

ϕ � ψ ∧ ϑ

ϕ � ϑ ψ � ϑ

ϕ ∨ ψ � ϑ

Naturally, we omit the distribution axiom and we refer to this system as PLL, for
Positive Lattice Logic. As usual we write [ϕ] for the equivalence class of ϕ, under
provability. We list the following immediate result, merely for reasons of complete-
ness.

Lemma 2.1 The Lindenbaum algebra of Lattice Logic is a bounded lattice.

2.2 The Semantics of Non-distributive Lattice Logic

Dropping distribution may present a number of new technical difficulties in the
semantic treatment of the related calculi [witness the difficulties in the semantics
of necessity and possibility in any of Kamide (2002), Gehrke (2006), Conradie and
Palmigiano (2015), Suzuki (2010, 2012, 2014), Järvinen and Orlowska (2005)],
but it does also present itself as the natural approach to reasoning with incomplete
information. Information sites (worlds, points of the underlying set of the Kripke
frame) possess only partial knowledgeof theworld. It canhappen that a siteu supports
the truth of a disjunction ϕ ∨ ψ , without being in a position to distinguish which of
the two is true. Thereby, the familiar semantic clause w � ϕ ∨ ψ iff w � ϕ, or w � ψ

must be abandoned, as it directly relates to representing disjunction (lattice join)
as a set-theoretic union. The various representation theorems for non-distributive
lattices allow for two different accounts of the meaning of disjunction. Nearly all
introduce a binary relation connecting information sites [the approach in Urquhart
(1978) is slightly more complicated, introducing two relations], used to interpret
disjunction, but they differ in whether this relation is to be understood as a relation of
information extension, or of information incompatibility. In either case, the relation
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introduced generates a Galois connection on sets of information sites and, therefore,
a closure operator (the composition of the Galois maps) is obtained. Propositions
in the frame, interpreting sentences, are then taken to be not just any sets of sites
but only the stable ones (remaining unchanged under an application of the closure
operator). To provide an intuitive (though unfamiliar) semantics for disjunction in
the non-distributive setting, we introduce information neighborhood frames.

Definition 2.2 (Neighborhood frames) Information Neighborhood Frames are struc-
tures (X, ν) where ν : X −→ P(X) is the neighborhood function and X is a non-
empty set of points, to be called information sites.

• If R is the relation generated by x Ry iff y ∈ ν(x) and Γ = λρ is the closure
operator generated by the Galois connection λ � ρ on the powerset of X , where

λU = { x : ∀u ∈ U u Rx } ρV = { y : ∀v ∈ V y Rv },

then the neighborhood function is recoverable by ν(x) = Γ ({ x }).
• The stable subsets A of X , A = Γ A, are closures of single points A = Γ x A,
where for simplicity of notation wewriteΓ x forΓ ({ x }) (hence the neighborhood
function assigns a stable neighborhood to each point x ∈ X ).

• There exists a subset X0 ⊆ X such that the stable sets generated by the points of
X0 form a bounded sublattice of the complete lattice of stable sets. We will refer
to this sublattice as the regular sublattice, to its members as the regular subsets of
X and to the points (information sites) of X0 generating them as the regular points
of X .

• The bounds 0, 1 of the lattice of regular subsets are the whole space X = 1, and a
special singleton regular subset 0 = { ω }.

• The neighborhood function imposes a partial order on the carrier set of a frame
by letting x ≤ y iff ν(y) ⊆ ν(x), which we refer to as the information ordering of
the frame.

We note that the information ordering on the points of the frame induced by the
neighborhood function (equivalently, by the closure operator) has a largest element,
the inconsistent information site ω, and a least informative site, the trivial information
site to be denoted by 1.

Definition 2.3 A neighborhood model is a frame (X, ν) together with an interpre-
tation function ı assigning to each atomic proposition p a regular subset ı(p) of the
carrier set of the frame. The satisfaction relation is then defined on all sentences by
the clauses

x � p iff x ∈ ı(p)

x � � iff x ∈ X
x � ⊥ iff x = ω

ω � ϕ (for any ϕ)
x � ϕ ∧ ψ iff x � ϕ and x � ψ

x � ϕ ∨ ψ iff ∀y [(∀z (z � ϕ or z � ψ) =⇒ z ∈ ν(y)) =⇒ x ∈ ν(y)]
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In words:

ϕ ∨ ψ is true at the information site x iff x is in the neighborhood of every site whose
neighborhood includes the sites where at least one of ϕ,ψ is true.

Lemma 2.4 Letting [[ϕ]] = { x : x � ϕ }, the sets [[ϕ]] are regular subsets of X.

Proof By induction on ϕ. The claim is true for the base cases (atomic sentence p
and the special sentences �,⊥) because of the requirements imposed on frames
and interpretations. The rest follows from the fact that [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]] and
[[ϕ ∨ ψ]] = [[ϕ]] ∨ [[ψ]], where the latter is the join in the regular sublattice, defined
by [[ϕ]] ∨ [[ψ]] = Γ ([[ϕ]] ∪ [[ψ]]) = λρ([[ϕ]] ∪ [[ψ]]), given the definition of λ, ρ in
Definition 2.2 and given the requirement that ν(x) = Γ x (which is an abbreviation
for Γ ({ x })) in neighborhood frames. �

For completeness, we first briefly present the representation theorem from
Hartonas (1997).

Theorem 2.5 (Representation theorem)For every lattice L, there is a neighborhood
frame (X L , νL) such that L is isomorphic to the regular sublattice of the frame.

Proof For details we refer the reader to our proof in Hartonas (1997). Suffice it to
indicate here that X L is the space of filters of X , including the improper filter ω, νL

delivers the upper closure under set-theoretic inclusion of a filter x , νL(x) = { z : x ≤
z }, the isomorphism is the representation map H(a) = { x : a ∈ x } = { x : xa ≤ x }
(where xa is the principal filter generated by the lattice element a). Endowing X
with the topology generated by the subbasis { H(a) : a ∈ L } ∪ { −H(a) : a ∈ L },
the regular sublattice is identified in Hartonas (1997) as the lattice of stable compact-
open subsets of X . Then the set X0 ⊆ X of regular points of X consists of the points
generating the stable compact-opens, which are identified in Hartonas (1997) to be
precisely the sets H(a), with a ∈ L , and their generators are the principal filters
xa, a ∈ L . �

For the sake of thoroughness we list the following theorem.

Theorem 2.6 (Soundness and completeness) Lattice logic is sound and complete in
information neighborhood frames.

Proof Soundness follows from Lemma 2.4. For completeness, represent the Lin-
denbaum algebra of the logic (a bounded lattice) in its filter space X following
the approach of Hartonas (1997), as explained in Theorem 2.5, letting H(a) =
{ x : x is a filter and a ∈ x } and define the neighborhood of a filter x to be its upper
closure ν(x) = { u ∈ X : x ≤ u } (where≤ is inclusion of filters). The binary relation
associated to the neighborhood function is the relation≤ of filter inclusion and it gen-
erates a Galois connection λ � ρ fromwhich a closure operator Γ = λρ is extracted.
For simplicity of notation, we write Γ x for an application of Γ to singletons, rather
than Γ ({ x }). Note that Γ x = { y : x ≤ y } = ν(x). Joins are represented by Eq. (7),
which we simply rewrite using the neighborhood function:

A ∨ B = λρ(A ∪ B) = {x : ∀y (if ∀z (z ∈ A ∪ B implies z ∈ ν(y)), then x ∈ ν(y))}
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By the results of Hartonas (1997), (X, ν) is an information neighborhood frame.
The regular sublattice of the frame is the set of stable compact-opens of X , where
the topology is generated by the subbasis { H(a) : a ∈ L } ∪ { −H(a) : a ∈ L }. The
satisfaction relation �, defined by x � ϕ iff x ∈ { x : [ϕ] ∈ x } satisfies the required
clauses for information neighborhood frames, as described above.

By the representation results of Hartonas (1997), the lattice is isomorphic to the
lattice of stable compact-open sets of filters, i.e., the lattice of regular subsets of X .
It then easily follows that ϕ � ψ iff [ϕ] ≤ [ψ] iff { x : [ϕ] ∈ x } ⊆ { x : [ψ] ∈ x },
where [ϕ] is the equivalence class of the sentence ϕ under the provability relation. �

3 Lattice Logic with Negation Operators

Classical Propositional Logic interprets negation in a simple and straightforward
way, w � ¬ϕ iff w � ϕ, a semantic clause based on the fact that boolean negation is
interpreted (represented) as set-theoretic complement. In Intuitionistic Logic, with
sentences interpreted as open subsets of a topological space and negation defined in
terms of implication, ¬ϕ is interpreted as true at all points in the topological interior
of the complement of the interpretation of ϕ. Staying within the bounds of logics
adopting the distribution law, Relevance Logic interprets negation using either an
operator ∗, with x∗ = { ϕ : ¬ϕ /∈ x } (and where x is a prime theory (filter)), or a
relation⊥ on worlds, two approaches that have been shown to be equivalent in Dunn
(1993). Weak notions of negation in the context of distributive logics have been also
interpreted using ⊥-semantics, witness Dunn and Zhou (2005).

With the axiom of distribution abandoned, perhaps the most significant case that
has been studied in the literature is orthonegation Goldblatt (1974), using a notion
of orthogonality, or perpendicularity, of worlds (x ⊥ y iff ∃a ∈ x ¬a ∈ y), probably
inspired by the semantic treatment of negation in Quantum Logic (see Birkhoff
and von Neumann 1936; Dalla Chiara and Giuntini 2002, 2001; Dunn et al. 2013).
Quantum Logic is originally interpreted in the lattice of closed linear subspaces of
Hilbert spaces where points of the space are orthogonal when their inner product
equals zero, x ⊥ y iff x · y = 0, a relation then inducing an orthogonality relation on
closed linear subspaces in the obvious way.

This section is devoted to providing semantics and proving completeness theorems
for a family of logical systems that drop the distribution law and come equipped with
notions of negation of various strength, from pre-minimal negation to orthonegation,
as classified by Dunn, thus doing for non-distributive logics what Dunn and Zhou
(2005) do for the distributive case. In Fig. 1, we have annotated each system with an
acronym, with LL standing for Lattice Logic and with the third letter of the acronym
pointing to Dunn’s minimal negation (system LLD), or Galois negation (system
LLG) and similarly for each of LLJ (Lattice Logic with Johansson’s minimal nega-
tion), LLM (Lattice Logic with a De Morgan negation), LLI (Lattice Logic with
an intuitionistic negation) and LLO, standing for Lattice Logic with an Orthonega-
tion, commonly referred to as Orthologic. We write LL? to refer to any of the above
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Fig. 1 Dunn’s Kite of
negations

(LLO) Orthonegation

(LLI) Intuitionistic
a∧∼a ≤ 0

(LLM) De Morgan
∼∼a ≤ a

(LLJ) Johansson’s Minimal
a∧b ≤ c

a∧∼c ≤ ∼b

(LLG) Galois Negation
a ≤ ∼b iff b ≤ ∼a

(LLD) Dunn’s Minimal
a ≤ b

∼b ≤ ∼a

∼a∧∼b ≤ ∼(a∨b)
1 ≤ ∼0

systems. For the syntax and axiomatization of the systems we refer the reader to
Dunn and Zhou (2005), though the axiomatization, besides the axioms for lattice
logic (without distribution) that can be found in Sect. 2, can be easily also read off
from Dunn’s kite of negations in Fig. 1.

Remark 3.1 (Orthologic with Constructive Contraposition) Referring to Fig. 1, it
should be noted that for the derivation of Johansson’s constructive contraposition
rule the assumption of an orthonegation is insufficient in itself. In fact, distribution is
also required (see alsoRemark4.1).Hence, in a non-distributive settingorthonegation
as classically defined (satisfying antitonicity, double negation and the intuitionistic
absurdity principle a ∧ ∼a = 0) isweaker than ifwe explicitly postulate constructive
contraposition, as well. In other words, Orthologic in Goldblatt (1974) is weaker than
Orthologic with Constructive Contraposition.

3.1 LL?-Algebras and Representation

Definition 3.1 An LL?-algebra 〈L ,∧,∨, 0, 1,∼〉 is a non-distributive bounded lat-
tice with an antitone unary operator ∼: L −→ Lop. We speak of LLD, LLG, LLJ,
etc. algebras accordingly as the corresponding properties in Fig. 1 hold.

A concrete LL?-algebra is an LL?-algebrawhose elements are sets, equippedwith
an antitone operator _�_A defined on elements (sets) of the algebra and satisfying the
corresponding properties in Fig. 1.
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Note that theLLO-algebras are exactly theOrtholattices. For the sakeof completeness
we list the obvious result.

Lemma 3.2 The Lindenbaum algebra of a logic system LL? is an LL?-algebra
(where ? is, correspondingly, any of D, G, M, J, I or O).

Theorem 3.3 (Representation theorem)Every LL?-algebra is isomorphic to an LL?-
algebra of sets.

Proof The proof is an extension of our Lattice Representation Theorem 2.5, origi-
nally reported in Hartonas (1997). The negation operator,∼: L −→ Lop, is a normal
operator in the sense of Hartonas (1997) (it distributes over joins of L and delivers
“joins” in Lop) and hence applying the technique we developed in Hartonas (1997)
we define an operator ∗ on filters, then extend it to an operator _�_ on stable sets,
recalling that stable sets are the closures of single points:

x∗ = { b : ∃a (x ≤ xa and ∼a ≤ b) } _�_Γ x = Γ x∗ (8)

We leave it to the interested reader to verify that x∗ is indeed a filter. Letting xa be the
principal filter generated by a and H(a) be the representation map H(a) = { x : a ∈
x } = { x : xa ≤ x } = Γ xa , we first list some basic facts.

Lemma 3.4 The following hold.

1. The dual filter of xa is x∼a: (xa)
∗ = x∼a.

2. The operator ∗ is antitone on filters: x ≤ y implies y∗ ≤ x∗.
3. The operator _�_ has the following properties:

(a) _�_ H(a) = H(∼a);
(b) H(a) ≤ H(b) implies _�_ H(b) ≤ _�_ H(a);
(c) _�_(H(a) ∨ H(b)) = _�_ H(a) ∩ _�_ H(b).

Proof The first follows by a simple calculation.

(xa)
∗ = { b : ∃e ≤ xa ∼e ≤ b } = { b : ∃e ≤ a ∼e ≤ b } = { b : ∼a ≤ b } = x∼a

For the second, assume x ≤ y. Let b ∈ y∗. Then there exists some element e with
e ≤ y such that ∼e ≤ b. However, since x ≤ y, a lower bound e of y is necessarily
one of x , hence there exists e ≤ x such that ∼e ≤ b and this shows b ∈ x∗. This
shows that if x ≤ y, then y∗ ≤ x∗.

The proof of 3(a) is trivial, as it is a consequence of the first and of the definition
of _�_ in Eq. (8), given that H(a) = Γ xa .

For 3(b), the assumption is equivalent toΓ xa ≤ Γ xb, hence anyfilter z with xa ≤ z
will also satisfy xb ≤ z. In particular, xb ≤ xa follows. Then b ∈ xa and so a ≤ b
and thereby ∼b ≤ ∼a, from which we get H(∼b) ≤ H(∼a). This is equivalent to
Γ (xb)

∗ ≤ Γ (xa)
∗, which is by definition equivalent to _�_Γ xb ≤ _�_Γ xa , hence also

_�_H(b) ≤ _�_H(a).
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For 3(c), using the fact that _�_H(a) = H(∼a) = Γ x∼a and observing that
Γ xa∨b = Γ xa ∨ Γ xb we obtain
_�_H(a) ∩ _�_H(b) = Γ x∼a ∩ Γ x∼b = { z : ∼a ∈ z and ∼b ∈ z }

= { z : ∼a ∧ ∼b ∈ z } = { z : ∼(a ∨ b) ∈ z }
= { z : x∼(a∨b) ≤ z } = Γ x∼(a∨b)

= _�_Γ xa∨b = _�_(Γ xa ∨ Γ xb)

= _�_(H(a) ∨ H(b))

This completes the argument for LLD-algebras. In the sequel we verify that the
algebra of stable compact-opens of the filter space is an LLG, or an LLJ, etc. algebra,
accordingly as the original Lindenbaum algebra 〈L ,∧,∨,∼〉 is such an algebra,
as well.

LLG In addition to the minimal negation properties, negation now forms a Galois
connection with itself (in which case codistribution over joins is in fact derivable).
By an elementary calculation, we show H(a) ≤ _�_H(b) iff H(b) ≤ _�_H(a),
using the fact that a ≤ ∼b iff b ≤ ∼a holds in the Lindenbaum algebra.

H(a) ≤ _�_H(b) iff Γ xa ≤ Γ x∼b iff xa ∈ Γ x∼b

iff x∼b ≤ xa iff a ≤ ∼b
iff b ≤ ∼a iff x∼a ≤ xb

iff xb ∈ Γ x∼a iff Γ xb ≤ Γ x∼a

iff H(b) ≤ _�_H(a)

With the Galois property in place it easily follows that for any lattice elements
a, b we have x∗

b ≤ xa iff x∗
a ≤ xb.

LLM Given the Galois connection property, the identity ∼∼a = a holds in the
system LLM. The proof that _�__�_H(a) = H(a) is elementary since the left side
is identical to Γ x∼∼a .

LLJ Having antitonicity and the Galois property, assume further that H(a) ∩
H(b) ≤ H(c). Showing that H(a) ∩ _�_H(c) ≤ _�_H(b) is trivial since thehypoth-
esis is equivalent to H(a ∧ b) ≤ H(c), which is equivalent to a ∧ b ≤ c while
the desired conclusion is equivalent to a ∧ ∼c ≤ ∼b.

LLI, LLO Similar, by trivial calculations, based on the property of the representa-
tion that a ≤ b holds in the Lindenbaum algebra iff H(a) ≤ H(b) and the fact
already proven that _�_H(a) = H(∼a). �
In the next two subsections, we explore two semantic approaches, namely, star

semantics, familiar from the Routley and Routley (1972) semantic treatment of nega-
tion in Relevance Logic, and perp semantics, originating with Goldblatt’s seman-
tic treatment of Orthologic in Goldblatt (1974) and which is the standard gaggle-
theoretic approach for distributive logics. The modal interpretation of negation (as
impossibility), an approach initiated by Došen (1986, 1999) and Vakarelov (1977,
1989), and followed up in Dunn and Zhou (2005) will be explored in the next section
for logics dropping the distribution law and equipped with both a possibility and an
impossibility operator.
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3.2 Kripke Semantics for Negation Operators in ∗-Frames

Star semantics for negation seems to have been first proposed in Białynicki-Birula
and Rasiowa (1957), while Routley and Routley (1972) introduced star semantics for
negation in Relevance Logic. The Routley approach amounts to defining an operator
∗ on prime filters x , delivering a prime filter x∗ = { a : ¬a /∈ x } so that ¬a ∈ x iff
a /∈ x∗, thereby interpreting relevant negation by the clause x � ¬ϕ iff x∗

� ϕ.
In the non-distributive case the semantics by means of a lattice representation

result cannot use prime filters (else disjunction is interpreted as union), but uses all
filters, in which case the Routley star cannot be shown to return a filter x∗, since the
proof relies both on primality of the filter x and on the fact that relevant negation
is a De Morgan negation. Consequently, a novel star operator needs to be invented,
returning a filter, when applied to one. We will provide details in the course of the
completeness proof, but first we introduce ∗-frames.

Definition 3.5 (Star frames) A star frame is a tripleF = (X, ν, ∗)where (X, ν) is a
neighborhood frame in the sense of Definition 2.2 and ∗: X −→ Xop is an antitone
map on X (where the order on X is defined by x ≤ y iff ν(y) ⊆ ν(x)). For x ∈ X ,
we will refer to x∗ ∈ X as the dual of x . F is a minimal, or an LLD-frame, provided
that

• the dual of a regular point is regular;
• for all regular points x, y, z, if ν(z) is the least upper bound (in the regular sub-
lattice of the frame) of ν(x) and ν(y), then ν(z∗) is the greatest lower bound of
ν(x∗), ν(y∗);

• ω∗ generates X (in the sense that X = ν(ω∗) = Γ ω∗).

The following conditions classify LL?-frames:
LLG frames: LLD + for all regular points x and y, x∗ ≤ y iff y∗ ≤ x ;
LLM frames: LLG + ∗ is an involution on regular points: x∗∗ = x ;
LLJ frames: LLG + for all regular points x, y, z if the neighborhood of z

contains the intersection ν(x) ∩ ν(y), then the neighborhood of its
dual contains the intersection ν(x) ∩ ν(y∗);

LLI frames: LLJ + the neighborhoods of a regular point and its dual are disjoint:
ν(x) ∩ ν(x∗) = ∅ ;

LLO frames: are the frames that are both LLM and LLI frames. �

Remark 3.2 (Representation and completion) A question of interest, given an LL?-
algebra is whether it can be shown to be isomorphic to an LL?-subalgebra of a
concrete and complete LL?-algebra. The question is both of an algebraic and of a
semantic interest. As far as semantics is concerned, if the LL?-algebra cannot be
embedded in a concrete and complete LL?-algebra, then the need for distinguishing
in the frame a special set of stable subsets, or points that generate them, arises.
Dealing with a variety of negation operators and lacking concrete completion results
makes it necessary to resort to frames with a distinguished subfamily of stable sets,
to serve as the propositions of the frame.
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Lemma 3.6 Let (X, ν, ∗) be a frame. Define an operator _�_ on stable sets by setting
_�_Γ x = Γ x∗. Then _�_ restricts to an operation on the regular subsets so that the
algebra of regular subsets with the _�_ operator is a concrete LL?-algebra, accord-
ingly as the frame is an LL?-frame.

Proof If x is a regular point, which is the same as saying that Γ x = A is a regular
subset of X , then since for LLD-frames it is already required that the dual of regular
points are regular, it follows from the definition _�_Γ x = Γ x∗ that _�_ takes regular
subsets to regular subsets of X . Furthermore, antitonicity of ∗ implies antitonicity of
_�_ on regular subsets.

Recall now that ν(x) = Γ x , where the latter is an abbreviation of Γ ({ x }). Given
the second defining condition of LLD-frames and given the previous reminder and
the definition of _�_ we immediately obtain that for all regular points x, y, z we have
_�_(Γ x ∨ Γ y) = _�_Γ z = _�_Γ x ∩ _�_Γ y, where Γ z is assumed to be the least upper
bound Γ x ∨ Γ y, hence _�_ codistributes over joins of regular subsets of X . The last
requirement for an LLD-algebra, namely that 1 ≤ ∼0 is guaranteed by the fact that
in LLD-frames we assume that X = Γ ω∗.

Next assume that the frame is an LLG-frame, which is to say that for regular
points x, y, x∗ ≤ y iff y∗ ≤ x . But the assumption x∗ ≤ y, is equivalent to ν(y) =
Γ y ≤ Γ x∗ = ν(x∗) = _�_Γ x . Hence the frame condition translates to Γ y ≤ _�_Γ x
iff Γ x ≤ _�_Γ y, which is precisely the Galois condition for the operator _�_.

If the frame is an LLM-frame then the involution property of ∗ on regular points
and the definition of _�_ by _�_Γ x = Γ x∗ guarantees that _�__�_Γ x = Γ x and therefore
the algebra of regular subsets is a concrete LLM-algebra.

For LLJ-frames and given the definition ν(x) = Γ x the condition for LLJ-
algebras is that if Γ x ∩ Γ y ⊆ Γ z, then Γ x ∩ _�_Γ y ⊆ _�_Γ z, which is a direct trans-
lation of the frame condition.

Similarly for LLI-algebras, since the relevant condition Γ x ∩ _�_Γ x is again a
direct translation of the frame condition ν(x) ∩ ν(x∗) = ∅.

For LLO-frames, there is nothing further to prove. �

The truth of the following claim has been demonstrated in the course of the proof
of the previous lemma.

Corollary 3.7 Let (X, ν) be a neighborhood frame. The following are equivalent:

1. There is a ∗ operator on the points of x such that the frame is an LL? frame (where
? is D, G, M, J, I or O).

2. There is an operator _�_ on stable sets such that _�_ preserves regular sets and
the algebra of regular sets with the _�_ operator is an LL? algebra (where ? is,
correspondingly, D, G, M, J, I or O). �

Definition 3.8 An LL?-model is an LL?-frame together with an interpretation func-
tion ı such that ı(p), for an atomic sentence p, is a regular subset of X . The satisfaction
relation is required to satisfy the following clause for the negation operator

x � ∼ϕ iff x ∈ _�_{ y : y � ϕ } (9)
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in addition to the clauses for lattice logic. The model is an LLD, LLG, etc. model,
accordingly as the frame is an LLD, LLG, etc. frame.

The following is an obvious consequence of the above.

Corollary 3.9 If [[ϕ]] = { x : x � ϕ }, then [[ϕ]] is a regular subset of the carrier set
X of the frame.

We may now proceed to prove a soundness and completeness theorem.

Theorem 3.10 (Soundness and completeness in ∗-frames) Each of the LL? logic
systems is sound and complete for the respective LL? ∗-frames.

Proof For soundness, every sentence is interpreted as a regular subset of the carrier
set of the frame (Corollary 3.9) and the algebra of regular subsets is an LL? algebra
accordingly as the frame is an LL? frame (Lemma 3.6). Hence every theorem of an
LL? logical system is sound in the corresponding class of LL? frames.

Completeness is immediate from our representation theorem (Theorem 3.3). �

Remark 3.3 (A comparison with the Routley star) We have defined the satisfaction
relation for negation by the clause

x � ∼ϕ iff x ∈ _�_{ y : y � ϕ }.

Given the definition of the _�_ operator on stable sets, this can be easily seen to be
equivalent to the following definition

x � ∼ϕ iff ∀y (y � ϕ =⇒ y∗ ≤ x). (10)

In Dunn (1993), it is shown that the star and perp treatments of relevant negation are
equivalent. In fact, they are related by the condition

∀x, y (x ⊥ y iff y � x∗).

Using, as in Dunn (1993), the complement C of the perp relation the condition
becomes

∀x, y (xCy iff y ≤ x∗).

Reading xCy as “x is compatible with y,” the site x∗ is seen to be a maximal
site compatible with x . Therefore, whereas the Routley star can be thought of as
delivering a maximal information site compatible with x , so that x � ¬ϕ just in case
its maximal compatible site x∗ fails to satisfy ϕ, in the case of non-distributive logics
an information site x satisfies ∼ϕ just in case it contains the dual y∗ of every site y
where ϕ holds.
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3.3 Kripke Semantics for Negation Operators In ⊥-Frames

The semantics of negation using an incompatibility relation follows the pattern

x � ∼ϕ iff ∀y (y � ϕ implies y ⊥ x)

Inwords,∼ϕ holds at x just in case every information site satisfyingϕ is incompatible
with x .

From Remark 3.3 comparing the Routley star with the star operator we have
defined for the case of non-distributive logics and in particular fromEq. (10) it follows
that the appropriate definition for non-distributive logics is u ⊥ v iff u∗ ≤ v. Inwords,
u is incompatible with v just in case v contains the dual of u. Hence u is always
incompatible with its dual, u ⊥ u∗, and to any extension of it v ≥ u∗. With this
observation in hand, we can easily proceed to provide perp-semantics for Lattice
Logic with various negation operators.

Definition 3.11 An information neighborhood ⊥-frame is a structure (X, ν,⊥)

where (X, ν) is an information neighborhood frame in the sense of Definition 2.2
and ⊥ is a binary relation on X . Moreover, writing x ⊥ U for x ⊥ u, ∀u ∈ U , if
U is regular, then so must be _�_U = { x : x ⊥ U } and we may let u∗ be the regular
point that generates it, assuming u is the regular point that generates U . This gives
rise to an associated ∗-frame and we may then classify ⊥-frames as LLD, LLG. etc.
frames accordingly as their associated ∗-frames are LLD, LLG. etc. frames.

A model is a frame with an interpretation ı , assigning a regular subset of X to
each atomic sentence p of the language. The satisfaction relation � from information
sites to sentences is required to satisfy, in addition to the conditions for Lattice Logic,
the following condition, familiar from the ⊥-semantics of negation in distributive
gaggles.

x � ∼ϕ iff ∀y (y � ϕ implies y ⊥ x)

It is an immediate consequence of the requirements in the above definition and
by a straightforward inductive argument that { x : x � ∼ϕ } is regular, since x � ∼ϕ

iff x ⊥ { z : z � ϕ } iff x ∈ _�_{ y : y � ϕ }.
Theorem 3.12 (Soundness and completeness in ⊥-frames) Each of the LL? logic
systems is sound and complete for the respective LL? ⊥-frames.

Proof We may let _�_A = { x : x ⊥ A }, for regular sets A. If A = Γ z, for a regular
point z, then using the associated ∗-frame we get _�_Γ z = Γ z∗. Then soundness
follows by the same argument as for ∗-frames (Theorem 3.10).

For completeness, we turn the canonical ∗-frame of Theorem 3.10 (obtained from
our representation result, Theorem 3.3) to a ⊥ frame by defining x ⊥ z iff x∗ ≤ z,
where x∗ was defined by the equation x∗ = { b : ∃a ≤ x ∼a ≤ b }. The following
lemma is needed.

Lemma 3.13 For any element a (of the Lindenbaum algebra of the logic) and filter
w we have ∼a ∈ w iff ∀x (a ∈ x =⇒ x ⊥ w).
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Proof From left to right, assume ∼a ∈ w. It follows that w ∈ Γ x∼a = _�_Γ xa , by
Lemma 3.4. Assume now a ∈ x , for an arbitrary filter x . Then xa ≤ x , hence Γ x ≤
Γ xa , by antitonicity of Γ on singletons. Then _�_Γ xa ≤ _�_Γ x , by antitonicity of _�_
(Lemma 3.4). Hence w ∈ _�_Γ xa ≤ _�_Γ x = Γ x∗. This shows that x∗ ≤ w, hence
by definition, x ⊥ w.

For the converse, assuming ∀x (a ∈ x =⇒ x ⊥ w) we have in particular xa ⊥ w,
i.e., (xa)

∗ ≤ w, which is equivalent to x∼a ≤ w, i.e., ∼a ∈ w. �

Hence _�_Γ xa = H(∼ a) = { w : ∀x (x ∈ H(a) implies x ⊥ w) } and the
canonical frame is a ⊥-frame.

Since the interpretation of sentences in the canonical ⊥-frame coincides with that
in the associated ∗-frame, the rest follows by the proof of Theorem 3.10. �

Remark 3.4 (A comparison with Goldblatt’s orthogonality relation) If¬ is an ortho-
complementation operator, then the definition of the ∗ operator on filters becomes
x∗ = { a : ¬a ≤ x } (which is the same as { a : x ≤ x¬a }). The star operator can
be shown to be a Galois connection on X , x ≤ y∗ iff y ≤ x∗, and an involu-
tion on principal filters. Goldblatt (1974) defines a ⊥ relation on filters by x ⊥ y
iff ∃a ∈ x ¬a ∈ y, an irreflexive and symmetric relation on proper filters. The
orthogonality relation generates a Galois connection on subsets where, due to sym-
metry of ⊥, the two Galois maps coincide and for a set of filters U we obtain
U⊥ = { x : U ⊥ x } = { x : ∀u ∈ U u ⊥ x }. In particular, it can be verified that for
a regular point x (a principal filter in the canonical frame) { x }⊥ = Γ x∗ where
x∗ = { a : ¬a ≤ x } is the star operator we introduced. Defining x ⊥H y iff y∗ ≤ x
it can be verified that the two perp relations coincide on regular points (principal
filters in the canonical frame). In this paper, we do not pursue this any further. We
have done so, however, in a recent technical report Hartonas (2015), yet unpub-
lished, where we demonstrate that, though in light of Goldblatt (1984) the subclass
of Goldblatt’s orthomodular orthoframes is not elementary, nevertheless, there does
exist an elementary subclass of the orthoframes of Goldblatt (1974) for which a first-
order condition can be specified to further characterize the subclass of orthomodular
(quantum) frames.

4 Modal Lattice Logic: Possibility and Impossibility
Operators

4.1 Axioms and Rules for Possibility and Impossibility

In Dunn and Zhou (2005) the authors address the issue of treating modal negation
operators, previously introduced and studied by Došen (1986, 1999) and Vakarelov
(1977, 1989). Negation, in this context, appears as an impossibility, or as an unneces-
sity operator. From the proof-theoretic point of view, the axiomatization of negation
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as impossibility can be given by any of the systems LL?, but the intended semantics
is given in frames (X, ν,�∗).

x � ∼ϕ iff ∀y (x �∗ y =⇒ y � ϕ) (11)

where (X, ν) is an information neighborhood frame and �∗ ⊆ X × X is an accessi-
bility relation on the set of points of the frame.

In this section, we introduce Modal Lattice Logic, an extension of Lattice Logic
with possibility and impossibility operators.WhereasDošen (1986, 1999),Vakarelov
(1977, 1989), Dunn and Zhou (2005) focus on the study of a modal interpretation
of negation as impossibility, we think that the interaction of possibility and impos-
sibility operators deserves its own attention. The language of Modal Lattice Logic
is generated by the following grammar, where At S is a nonempty set of atomic
sentences.

ϕ := p (p ∈ At S) | � | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∼ϕ | ♦ϕ

We assume the axioms and rules for Lattice Logic, as presented in Sect. 2. The
negation operator is interpreted by the semantic clause (11). The minimal system
with the possibility operator will be denoted by MLL? and it includes the familiar
axioms and rules for the possibility operator, shown in Eq. (12), and the respective
axioms and rules for impossibility, accordingly as ? is D, G, M, J, I or O. The issue
of interest now lies with proposing an axiomatization of the interaction between
possibility and impossibility. For a minimal system we propose two axioms, a form
of excluded middle and a contradiction principle, as shown in Eq. (13), amounting
to the acknowledgement that nothing can be both possible and impossible and that
it is always the case of anything that it is either possible, or impossible.

ϕ � ψ

♦ϕ � ♦ψ
♦(ϕ ∨ ψ) � ♦ϕ ∨ ♦ψ ♦⊥ � ⊥ (12)

� � ∼ϕ ∨ ♦ϕ ♦ϕ ∧ ∼ϕ � ⊥ (13)

Additional axioms can be imposed to strengthen the interaction and we first con-
sider two weak forms of a T-like axiom, as follows:

(T ∼) If it is impossible that ϕ is possible, then ϕ is in fact impossible.
(T ♦) If it is impossible that ϕ is impossible, then ϕ is indeed possible.

Both are shown below, in (14). The reader can perhaps justify their naturalness by
thinking of impossibility ∼ as necessary falsity �¬ .

∼♦ϕ � ∼ϕ (T ∼) ∼∼ϕ � ♦ϕ (T ♦) (14)
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We will also consider the converse of the principles in (14).

(S4∼) If ϕ is impossible, then it is impossible that it is possible.
(S5♦) If ϕ is possible, then it is impossible that it is impossible.

These are shown in (15) below.

∼ϕ � ∼♦ϕ (S4∼) ♦ϕ � ∼∼ϕ (S5♦) (15)

The first has the flavor of the S4 axiom and the second has the air of S5. Figure2
presents the possible combinations, startingwith theminimal systemofModalLattice
Logic (MLLD), extending LLD. In Fig. 2, we have not included combinations with
either the T or the S4 axiom for possibility,

ϕ � ♦ϕ (T ) ♦♦ϕ � ♦ϕ (S4) (16)

which we discuss in the context of Theorem 4.1. We have also left out the combi-
nations that include both the T ♦ and the S5♦ axioms, since in that case possibility
becomes definable as double impossibility ♦a = ∼∼a. This is indicated in Fig. 2 by
enclosing this combination in a pair of large parentheses. Furthermore, the base sys-
tem for negation is taken in Fig. 2 to be the weakest system LLD (Lattice Logic with
Dunn’sminimal negation). The case of stronger systems is discussed in Theorem 4.1.
Note that, as it follows from Theorem 4.1, if the base system for negation is taken to
be LLG (Lattice Logic where negation forms a Galois connection with itself), then

T ♦

S4∼,T ∼

∼a= ∼♦a

S4∼,T ∼

S5♦

∼a= ∼♦a

T ♦,S4∼ T ♦,T ∼
(

T ♦,S5♦

♦a= ∼∼a

)
T ∼,S4∼

∼a= ∼♦a T ∼,S5♦ S4∼,S5♦

∼∼a ≤♦a
(T ♦)

∼♦a ≤ ∼a
(T ∼)

∼a ≤ ∼♦a
(S4∼)

♦a ≤ ∼∼a
(S5♦)

MLLD = LLD +
∼a∨♦a= 1
∼a∧♦a= 0

♦0= 0
♦(a∨b) = ♦a∨♦b

a ≤ b
♦a ≤ ♦b

Fig. 2 LLD logics of possibility and impossibility
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S4∼ and S5♦ are equivalent, hence some more of the combinations in Fig. 2 become
uninteresting as negation becomes definable again in systems assuming both T ♦ and
S4∼ in that case. In the statement of the theorem and where A, B are logic systems,
we write B < A to indicate that A subsumes B.

Theorem 4.1 The following hold:

(1) MLL? + T ∼ < MLL? + T : If the T axiom ϕ � ♦ϕ is assumed for the possibility
operator, then the axiom (T ∼) in Eq. (14) becomes derivable.

(2) MLLG + T ∼ < MLLG + T < MLLG + T ♦: If negation is Galois and the T ♦

axiom in Eq. (14) is assumed, then the T axiom for possibility becomes derivable.
(3) MLLM + T ∼ = MLLM + T = MLLM + T ♦: If negation is De Morgan (hence

also if it is an orthonegation), then T , T ∼ and T ♦ are equivalent.
(4) MLLG + S4∼ = MLLG + S5♦: If negation is Galois, then S4∼ and S5♦ are

equivalent.
(5) MLLM = MLLM + S4∼ + T = MLLM + S5♦ + T : If negation is De Morgan,

then S4∼ and S5♦ are equivalent, by the previous case, and in addition if the T
axiom is assumed, then the possibility operator is completely trivialized.

(6) In MLL? + T ♦ + S5♦ possibility is identified with double negation (ϕ is possible
iff it is impossible that it is impossible).

(7) In MLLM + S4∼ the intuitionistic principle ϕ ∧ ∼ϕ � ⊥ is derivable.
(8) In MLLM + T ♦ (= MLLM + T = MLLM + T ∼) the excluded middle principle

� � ∼ϕ ∨ ϕ is derivable.
(9) MLLD + T + S5♦ = MLLG + T + S5♦: If both the T and the S5♦ are assumed,

then negation is Galois, T ∼ is derivable and S4∼ is equivalent to S5♦, by pre-
vious case of the Proposition.

Proof
For (1), using the antitonicity rule

ϕ � ♦ϕ

∼♦ϕ � ∼ϕ of MLLD we obtain T ∼ from T .
For (2), we get ϕ ≤ ∼∼ϕ from the Galois property and then T is obtained using

T ♦ and Cut.
For (3), since ϕ ≡ ∼∼ϕ we obtain directly that T ♦ and T are equivalent. By (1),

T ∼ is derivable from T . By the Galois property we get from T ∼ that ϕ � ∼∼♦ϕ and
since we assume that negation is De Morgan the T axiom is derived.

(4) is obvious, it follows directly from the Galois property.
For (5), by S5♦ we have ♦ϕ � ∼∼ϕ and if negation is De Morgan, then using

Cut we obtain ♦ϕ � ϕ and if the T axiom is also assumed then ♦ϕ ≡ ϕ.
(6) is obvious since T ♦ and S5♦ are converses of each other.
For (7), using S4∼ we get ∼ϕ ∧ ϕ � ∼♦ϕ ∧ ϕ. When negation is De Morgan

and using the excluded middle principle � � ♦ϕ ∨ ∼ϕ we further get ∼ϕ ∧ ϕ �
∼∼ϕ ∧ ∼♦ϕ ≡ ∼(∼ϕ ∨ ♦ϕ). But also ∼(∼ϕ ∨ ♦ϕ) � ∼�. Since � ≡ ∼⊥, we
get ∼ϕ ∧ ϕ � ∼∼⊥ and since negation is De Morgan the conclusion ∼ϕ ∧ ϕ � ⊥
follows.

For (8), use � ≡ ∼⊥ and then from ∼ϕ ∧ ♦ϕ � ⊥ we obtain that � ≡ ∼(∼ϕ ∧
♦ϕ) ≡ ∼∼ϕ ∨ ∼♦ϕ. Eliminate the double negation and use T ∼, i.e., ∼♦ϕ � ∼ϕ to
finally obtain � � ϕ ∨ ∼ϕ.



Reasoning with Incomplete Information in Generalized Galois Logics … 301

For (9), T with S5♦ and Cut immediately give ϕ � ∼∼ϕ from which the Galois
property can be obtained. The rest has been proven in previous cases. �

The following is now an immediate consequence.

Corollary 4.2 In either of MLLM + S4∼ or MLLM + T (= MLLM + T ∼ =
MLLM + T ♦) negation satisfies the usual conditions by which orthonegation is

defined, namely antitonicity
a ≤ b

∼b ≤ ∼a
, the double negation principle a = ∼∼a and

the intuitionistic principle a ∧ ∼a = 0.

Proof For MLLM + S4∼, the claim was proven in Theorem 4.1, case 7. For
MLLM + T the claim follows directly from case 8 of Theorem 4.1, given that a De
Morgan negation also satisfies codistribution over conjunction and disjunction. �

Remark 4.1 (Constructive orthonegation) In Remark 3.1, we pointed out that the
derivation of Johansson’s rule in a system with an orthonegation requires, in addi-
tion, an assumption of distribution. Indeed, assuming a ∧ b ≤ c we get by antitonic-
ity and codistribution ∼c ≤ ∼a ∨ ∼b. Hence a ∧ ∼c ≤ a ∧ (∼a ∨ ∼b). Assuming
distribution and using the intuitionistic principle a ∧ ∼a = 0, one gets from this that
a ∧ ∼c ≤ (a ∧ ∼a) ∨ (a ∧ ∼b) = a ∧ ∼b ≤ ∼b. This completes the derivation of
the rule. However, without the assumption of distribution it is impossible to derive
Johansson’s rule from the hypotheses.

Orthologic (and therefore also Quantum Logic) as treated by Goldblatt (1974),
assumes the usual definition of orthonegation and therefore fails to satisfy Johans-
son’s constructive contraposition principle. There is then room in non-distributive
logics for a stronger, constructive orthonegation notion, obtained by explicitly adding

the rule
a ∧ b ≤ c

a ∧ ∼c ≤ ∼b
.

4.2 Modal Algebras and Frames

Definition 4.3 A structure 〈L ,∧,∨, 0, 1,∼,♦〉 is a Modal Lattice Algebra MLA?
if 〈L ,∧,∨, 0, 1,∼〉 is an LL?-algebra in the sense of Definition 3.1, with ? being
one of D, G, etc., accordingly as the corresponding conditions for ∼ are assumed
in the axiomatization. In addition, the ♦ operator is subject to the axioms and rules
shown in Fig. 2 for the MLLD system. The algebra is a T ∼-algebra if the T ∼ axiom
in Eq. (14) is assumed and similarly for T ♦, T, S4, S4∼ or S5♦ algebras.

The proof of the following lemma is by a standard argument.

Lemma 4.4 The Lindenbaum Algebra of Modal Lattice Logic is a Modal Lattice
Algebra MLA? where ? is D, G, etc., accordingly as the logic is the system MLLD,
MLLG, etc. Similarly when the logic assumes any combination of the axioms T ∼,
T ♦, T , S4, S4∼ or S5♦.
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Turning now to Kripke semantics, we will always have u � ∼ϕ ∨ ♦ϕ, since � �
∼ϕ ∨ ♦ϕ is an axiom of the minimal system, as discussed above. In the minimal
system we also expect it to be the case that u � ∼ϕ =⇒ u � ♦ϕ (unless u = ω is
the inconsistent information site), which is equivalent to u � ♦ϕ =⇒ u � ∼ϕ. What
is dubious, at least in a non-distributive context, is that if u � ♦ϕ, then it should
be the case that u � ∼ϕ. In a distributive setting and given that we always have
u � ∼ϕ ∨ ♦ϕ one is forced to accept that if u � ♦ϕ, then it should be the case that
u � ∼ϕ (because u is a prime filter in that case). However, lack of information at u
that ϕ is possible does not automatically count as informational evidence at u that ϕ
is, in fact, impossible. In a non-distributive setting, as we have discussed in Sect. 2
on Lattice Logic, it may well be that an information site u satisfies a disjunction,
for example, ∼ϕ ∨ ♦ϕ, without satisfying any of the two disjuncts. This is already
true of course of ∼ϕ ∨ ϕ in the non-modal system and does not specifically relate
to the possibility and impossibility operators. The issue is important when it comes
to considering whether a single relation can and should be used to interpret both
possibility and impossibility. If we assume that a single relation R is to be used to
interpret the two operators, with the natural semantic clauses

u � ♦ϕ iff ∃v (u Rv and v � ϕ)

u � ∼ϕ iff ∀v (u Rv implies v � ϕ)

then it follows that u � ∼ϕ iff u � ♦ϕ. One half of this biconditional is unproblem-
atic, as we discussed above, namely, we surely expect u � ∼ϕ =⇒ u � ♦ϕ (equiva-
lently, u � ♦ϕ =⇒ u � ∼ϕ), with the inconsistent site ω being the single exception
to this rule. The other half, by our above discussion, is quite dubious in a non-
distributive setting. In a sense, then, the decision to interpret both operators by the
same relation seems to be based on a hidden distributivity assumption.

Consequently, we assume that information neighborhood frames (X, ν) come
equipped with two relations �♦ and �∗ to interpret the possibility and the impossi-
bility operators, respectively. Restrictions on the relation between �♦ and �∗ will
need to be imposed, however, depending on the axiomatization of the considered
system.

The reader may recall from Definition 2.2 that the neighborhood function ν

returns a stable set A = Γ A and that stable sets are the closures of single points
A = Γ ({ x A }) = ν(x A). She may also recall Definition 3.11 of⊥-frames. An acces-
sibility frame for negation (X, ν,�∗) corresponds to a ⊥-frame by interdefining the
relations using the condition x �∗ y iff y �⊥ x . Thus, avoiding a straightforward but
unnecessarily repetitive rephrasing we may define accessibility frames for negation
by reducing the definition to that of ⊥-frames, which in turn is reduced to that of
∗-frames for negation, as the reader may recall fromDefinition 3.11. The new feature
for modal lattice frames (X, ν,�∗ ,�♦) is the relation�♦ ⊆ X × X , which induces
an operation on all subsets of X definable by Eq. (17).

V ♦ = { u : ∃v (u �♦ v and v ∈ V ) } (17)
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We further require that if V is stable then so must be V ♦. Since stable sets in
neighborhood frames are the closures of single points this further induces an operator
♦ on information sites, where x♦ is the unique point generating the stable set A♦

defined by Eq. (17), assuming A = Γ x is itself stable. Hence if A = Γ x , then A♦ =
(Γ x)♦ = Γ x♦, where the latter abbreviates Γ ({ x♦ }).

Conversely, assuming an operator ♦ on points, and recalling that the points of an
information neighborhood frame are partially ordered by the induced ordering x ≤ y
iff Γ ({ y }) = ν(y) ≤ ν(x) = Γ ({ x }) a relation �♦ can be defined on X by setting
u �♦ v iff ν(u) ≤ ν(v♦) iff u ∈ Γ v♦ iff v♦ ≤ u.

We then have the option of defining frames in alternate ways and, for consistency
with our treatment of the accessibility relation �∗ , we shall prefer to base the def-
inition on frames with a point operator ♦, though both the relation and the point
and stable sets ♦ operators will be used in the sequel, since in many occasions this
simplifies the presentation of conditions on frames.

Definition 4.5 (Pre-frames) A structure (X, ν,�∗ ,�♦) is a modal neighborhood
pre-frame (MLF?) iff (X, ν) is an information neighborhood frame in the sense of
Definition 2.2, �∗,�♦ ⊆ X × X , and

1. defining y ⊥ x iff x ��∗ y, the structure (X, ν,⊥) is a perp-frame in the sense of
Definition 3.11;

2. there is a monotone operator ♦ on points of the pre-frame such that u �♦ v
iff ν(u) ≤ ν(v♦). The ♦ operator induces an operation on stable sets where, if
A = Γ x , then A♦ = Γ x♦ (= Γ ({ x♦ })). In addition,

(a) the set of regular points of the pre-frame is closed under the ♦ operation
and ω♦ = ω;
(b) if x, y are regular points then Γ z is the least upper bound of Γ x, Γ y, iff
Γ z♦ is the least upper bound of Γ x♦, Γ y♦.

3. TheMLF? pre-frame is anMLFD,MLFG, etc. pre-frame accordingly as its reduct
(X, ν,⊥) is an LLD, LLG, etc. frame in the sense of Definitions 3.5 and 3.11.

A modal neighborhood pre-model is a pre-frame in the sense of this definition
together with an interpretation function ı such that (X, ν, ı) is a neighborhood model
in the sense of Definition 2.3 and the satisfaction relation is subject to the following
requirements:

u � ♦ϕ iff ∃v (u �♦ v and v � ϕ)

u � ∼ϕ iff ∀v (u �∗ v implies v � ϕ)

in addition to those for neighborhood models.
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The following result is now immediate.

Corollary 4.6 The algebra of regular subsets of a pre-frame is an LL?-algebra in
the sense of Definition 3.1 with a monotone operator ♦ which distributes over joins
of regular sets and satisfies {ᵀ}♦ = { ᵀ }, where ᵀ is the least informative site in the
information ordering of the frame. �

Lemma 4.7 The following are equivalent for a pre-frame and its algebra of regu-
lar sets:

1. (frame condition) For all regular x, all y and any regular set A, if _�_ A, A♦ are
both contained in the neighborhood ν(y) of y, then x ∈ ν(y).

2. (algebraic condition) In the algebra of regular subsets of the pre-frame the identity
_�_ A ∨ A♦ = X holds.

If either of these equivalent conditions holds, then the frame validates the axiom
� � ∼ϕ ∨ ♦ϕ.

Proof Trivial, by definition of the semantics for disjunction in Lattice Logic. �

Lemma 4.8 The following are equivalent for a pre-frame and its algebra of regu-
lar sets:

1. (frame condition) For all sites x and all regular sites y, if x �♦ y and y ⊥ x,
then x is the inconsistent site ω.

2. (algebraic condition) In the algebra of regular subsets of the pre-frame the identity
_�_ A ∩ A♦ = { ω } holds (where ω is the inconsistent site).

If either of these equivalent conditions holds, then the axiom ∼ϕ ∧ ♦ϕ � ⊥ is valid.

Proof Assume the frame condition and let x ∈ _�_A ∩ A♦ where A = Γ y is a regular
set (so that, by definition, y is regular, too). Since x ∈ A♦ = (Γ y)♦ = Γ y♦ weobtain
y♦ ≤ x , hence x �♦ y holds. But also x ∈ _�_A = _�_Γ y = Γ y∗ so that y∗ ≤ x ,
which is equivalent to y ⊥ x . By the frame condition x = ω is the inconsistent site,
hence _�_A ∩ A♦ = { ω }. Conversely, assuming the algebraic condition, if x �♦ y

and y ⊥ x , letting A = Γ y we obtain x ∈ _�_A ∩ A♦, hence x = ω, by the algebraic
condition. Validation of the axiom ∼ϕ ∧ ♦ϕ � ⊥ is immediate. �

Definition 4.9 (Neighborhood frames and models) A pre-frame is a frame if either
of the equivalent conditions in Lemmas 4.7 and 4.8 holds. A pre-model is a model
if its pre-frame is a frame.

Lemma 4.10 The following are equivalent for a frame and its algebra of regu-
lar sets:

1. (frame condition) For all sites u and all regular sites x, if x♦ ⊥ u, then x ⊥ u.
2. (algebraic condition) In the algebra of regular subsets of the frame the inclusion

_�_(A♦) ⊆ _�_ A holds.

If either of the equivalent conditions holds, then the T ∼ axiom ∼♦ϕ � ∼ϕ is valid.
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Proof Assume the frame condition and let A = Γ x be regular. Then we have

_�_(A♦) = { u : A♦ ⊥ u } ⊆ { u : A ⊥ u } = _�_A, or equivalently,

∀u (Γ x♦ ⊥ u =⇒ Γ x ⊥ u).

Note that Γ x ⊥ u iff x ⊥ u (because x ≤ y implies y∗ ≤ x∗ ≤ u) and so the desired
conclusion follows, given the frame identity. The converse is by essentially the same
argument and validation of the T ∼ axiom if any of the equivalent conditions holds
is immediate. �

Lemma 4.11 The following are equivalent for a frame and its algebra of regu-
lar sets:

1. (frame condition) For all sites u and all regular sites x, if x ⊥ u, then x♦ ⊥ u.
2. (algebraic condition) In the algebra of regular subsets of the frame the inclusion

_�_ A ⊆ _�_(A♦) holds.

If either of the equivalent conditions holds, then the S4∼ axiom ∼ϕ � ∼♦ϕ is valid.

Proof Similar to the proof of Lemma 4.10. �

Lemma 4.12 The following are equivalent for a frame and its algebra of regu-
lar sets:

1. (frame condition) For all sites u and all regular sites x, if for all y, u �∗ y =⇒
x �∗ y, then there exists an informational extension v ≥ x such that u �♦ v.

2. (algebraic condition) In the algebra of regular subsets of the frame the inclusion
_�__�_ A ⊆ A♦ holds.

If either of the equivalent conditions holds, then the T ♦ axiom ∼∼ϕ � ♦ϕ is valid.

Proof Assume the frame condition and let A = Γ x . The required inclusion, using
definitions, is

_�__�_A = { u : _�_A ⊥ u }={ u : Γ x∗ ⊥ u } ⊆ { u : ∃v (x ≤ v and u �♦ v) } = A♦

Since Γ x∗ ⊥ u is equivalent to ∀y (x∗ ≤ y =⇒ y∗ ≤ u) or, contraposing and using
the accessibility relation�∗ ,∀y (u �∗ y =⇒ x �∗ y) the frame condition allows us
to conclude that there exists v ≥ x , i.e., v ∈ Γ x = A such that u �♦ v and therefore
the inclusion holds. The converse, from the algebraic to the frame condition is along
the same lines. It is also clear that if either of the equivalent conditions holds, then
the frame validates the T ♦ axiom ∼∼ϕ � ♦ϕ. �

Lemma 4.13 The following are equivalent for a frame and its algebra of regu-
lar sets:

1. (frame condition) For all sites u and all regular sites x, if there exists an infor-
mational extension v ≥ x such that u �♦ v, then for all y, u �∗ y =⇒ x �∗ y.
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2. (algebraic condition) In the algebra of regular subsets of the frame the inclusion
A♦ ⊆ _�__�_ A holds.

If either of the equivalent conditions holds, then the S5♦ axiom ♦ϕ � ∼∼ϕ is valid.

Proof Similar to the proof of Lemma 4.12. �

Lemma 4.14 The following hold.

1. The �♦ relation is reflexive on regular points of the frame iff the inclusion A ⊆ A♦

holds in the algebra of regular sets of the frame. If either condition holds, then
the T axiom ϕ � ♦ϕ is valid in the frame.

2. The condition ∀y (y �♦ x =⇒ y♦ �♦ x) holds in the frame for regular points
x iff the inclusion A♦♦ ⊆ A♦ holds in the algebra of regular sets of the frame. If
either condition holds, then the S4 axiom ♦♦ϕ � ♦ϕ is valid in the frame.

Proof The first is immediate by just recalling that regular sets A are closures of
single points, A = Γ x , and given the definition of A♦ and that x �♦ x is equivalent
to x♦ ≤ x .

For the second, the inclusion A♦♦ ⊆ A♦, where A = Γ x , is equivalent to x♦ ≤
x♦♦, i.e., to x♦♦ �♦ x . The latter can be easily seen by the reader to be equivalent
to the frame condition ∀y (y �♦ x =⇒ y♦ �♦ x).

The validity of the axioms T and S4 in the respective cases above is then imme-
diate. �

An immediate consequence of Corollary 4.6 and Lemmas 4.7–4.14 is a soundness
result.

Theorem 4.15 (Soundness) Every system MLL? of Modal Lattice Logic, perhaps
with the addition of a combination of the axioms T , S4, T ∼, T ♦, S4∼, S5♦, is sound
in the respective Modal Neighborhood Frames.

4.3 Canonical Kripke Model and Completeness

Theorem 4.16 (Representation) Every MLA? algebra is isomorphic to a concrete
MLA? algebra.

Proof The proof of a more general case has been given in Hartonas (1997). Here
we only do the part that relates to modal lattice algebras. The construction extends
the ones given for Lattice Logic and for the ∗ and ⊥ interpretation of negation, as
detailed in previous sections. The operators ∗ and ♦ are defined on filters as follows:

x♦ = { b : ∀a ≤ x ♦a ≤ b } x∗ = { b : ∃a ≤ x ∼a ≤ b }

In Theorem 3.3 we have verified that the canonical frame is a ⊥-frame in the sense
of Definition 3.11, hence the appropriate conditions for a frame with an accessibility
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�∗ hold, given our definition of this relation in terms of ⊥ (hence in terms of ∗). We
now complete the argument for the representation of modal algebras.

To show that H(a) ⊆ H(b) implies H(♦a) ⊆ H(♦b), notice first that the hypoth-
esis is equivalent to a ≤ b, hence we obtain ♦a ≤ ♦b. Hence, if ♦a ∈ x , for a filter
x , we get ♦b ∈ x , i.e., H(♦a) ⊆ H(♦b).

To show that H(♦(a ∨ b)) = H(♦a) ∨ H(♦b), recall that H(♦(a ∨ b)) =
Γ x♦(a∨b) = (since ♦(a ∨ b) = ♦a ∨ ♦b holds in the lattice) = Γ x♦a∨♦b = [by
the lattice representation theorem (Theorem 2.5) based on Hartonas (1997)] =
Γ x♦a ∨ Γ x♦b = H(♦a) ∨ H(♦b).

Observe also that H(♦0) = Γ x♦0 = (since♦0 = 0 holds in the lattice)= Γ x0 =
H(0). A similar proof applies to showing that H(∼a ∨ ♦a) = H(1), since 1 =
∼a ∨ ♦a holds in the MLA?-algebra.

Next, assume that H(∼a) ⊆ H(♦b), which implies that ∼a ≤ ♦b. We have that
H(∼a ∧ ∼b) = Γ x∼a∧∼b. Since ∼a ≤ ♦b it follows by properties of the MLA?-
algebra that ∼a ∧ ∼b = 0. Hence H(∼a ∧ ∼b) = Γ x0 = H(0). Similarly, assum-
ing that H(♦a) ⊆ H(∼b), we obtain that H(♦a ∧ ♦b) = H(0).

By a similar argument, if the MLA?-algebra includes in its axiomatization any of
the axioms in Eqs. (13)–(15), then the corresponding identity holds for the represen-
tation map. �

The following corollary is an immediate consequence of the representation
Theorem 4.16 defining a diamond operator on stable sets as follows.

(Γ x)♦ = Γ x♦ (where x♦ = { b : ∀a ≤ x ♦a ≤ b }) (18)

Corollary 4.17 The algebra of stable compact opens of the filter space with the
operators _�_ and ♦ defined on stable compact opens by Eqs. (8), (18) is an MLA?-
algebra in the sense of Definition 4.3.

In the sequel we construct the canonical Kripke frame, based on the representation
Theorem 4.16.

Define a structure (X, ν,�♦ ,�∗) letting X be the set of filters of L and λ � ρ the
Galois connection detailed in the completeness Theorem 2.6 for Lattice Logic and
setting Γ = λρ and ν(x) = Γ ({ x }), as in Theorem 2.6. The relation �∗ is defined
using ⊥ and the ∗ operator, as in Sect. 3, and �♦ is defined by (20).

x �∗ y iff y∗
� x (where y∗ = { a : ∃c ≤ y ∼c ≤ a }) iff y �⊥ x (19)

x �♦ y iff for all a, if ∀e (y ≤ xe implies a ∈ x♦e), then a ∈ x (20)

Recall that the operator ♦ on filters is defined by setting x♦ = { b : ∀a ≤ x ♦a ≤ b }
and the reader can easily verify that x♦ is indeed a filter. Recall that y ⊥ x iff y∗ ≤ x
iff x ��∗ y and note that x �♦ y iff y♦ ≤ x .
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Lemma 4.18 If a ∈ y, then ♦a ∈ y♦ and if x �♦ y and a ∈ y, then ♦a ∈ x.

Proof Notice that x �♦ y iff y♦ ≤ x and that ♦ is a monotone operator on filters
such that x♦

a = x♦a (just like x∗
a = x∼a). Hence, if a ∈ y, i.e., ya ≤ y, then y♦

a =
y♦a ≤ y♦. Therefore, a ∈ y =⇒ ♦a ∈ y♦. �

Define an operation ♦ on all stable sets by letting ♦Γ x = Γ x♦ (which is an abbre-
viation for Γ ({ x♦})). The representation map is H(a) = { x : a ∈ x } = Γ xa . As we
observed above, x♦

a = x♦a , hence ♦ H(a) = ♦Γ xa = Γ x♦
a = Γ x♦a = H(♦a).

Lemma 4.19 The following hold:

1. ∼a ∈ x iff ∀y (x �∗ y implies a /∈ y);
2. ♦a ∈ x iff ∃y (x �♦ y and a ∈ y).

Proof The proof of the first follows from Lemma 3.13, given our definition of⊥ and
�∗ , using the ∗ operator. For the proof of the second claim of the lemma, if ♦a ∈ x ,
let y = xa . Then the hypothesis is equivalent to x♦

a = x♦a ≤ x , i.e., x �♦ xa holds
and of course a ∈ xa . Conversely, If such a y with a ∈ y and y♦ ≤ x exists, we have
xa ≤ y and thereby x♦

a = x♦a ≤ y♦ ≤ x which implies ♦a ∈ x . �

It follows that

H(♦a) = { x : ∃y (x �♦ y and a ∈ y) }
H(∼a) = { x : ∀y (x �∗ y implies a /∈ y) }

and therefore the satisfaction relation x � ϕ iff x ∈ H([ϕ]) satisfies the respective
clauses for the connectives ∼ (as verified in Sect. 3) and ♦.

By the representation Theorem 4.16 the algebra of stable compact open sets of
the space, which we define to be the algebra of regular subsets of the frame, is an
MLA?-algebra such that if the logic satisfies any of the additional axioms T , S4, T ∼,
T ♦, S4∼, S5♦, then so does the algebra of regular sets (stable compact opens). By
Corollary 4.6 and Lemmas 4.7–4.14, this is equivalent to the corresponding frame
condition and thereby the canonical frame satisfies the conditions corresponding to
the additional axioms, if assumed. The reader can easily verify them directly, bearing
inmind that the regular points of the canonical frame are precisely the principal filters.

We may then conclude by stating the completeness theorem, whose proof is con-
tained in the above discussion and the results previously obtained that have been
mentioned.

Theorem 4.20 (Completeness)Every system MLL? of Modal Lattice Logic, perhaps
including a combination of the additional axioms T , S4, T ∼, T ♦, S4∼, S5♦ is (sound,
by Theorem 4.15, and) complete in modal neighborhood frames.

Remark 4.2 (Generalized Kripke frames and bi-approximation semantics) The
approaches to the semantics of modal extensions of non-distributive logics devel-
oped over the last decade or so Kamide (2002), Gehrke (2006), Suzuki (2010, 2012,
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2014), Conradie and Palmigiano (2015), Düntsch et al. (2004), invariably depart
from the standard Kripke semantics for the modal operators in important ways. First
and because of lack of distribution distinct accessibility relations for each of the
necessity and possibility operators seem to be forced. More importantly, however,
even for a single modal operator (box, or diamond), the familiar semantic clauses
for boxes and diamonds are abandoned in favor of some notion or other of general-
ized semantics. This typically involves a pair of accessibility relations for the same
modal operator and therefore a non-standard semantic clause for the interpretation of
modal sentences, violating well established intuitions and resulting in an awkward
and rather obscure interpretation.

For example, proposed frames in Conradie and Palmigiano (2015) are structures
(X, Y, R, R�, R♦), where (X, Y, R) is the polarity arising from the underlying lattice
representation approach and the accessibility relations connect (in converse direction)
worlds (in X ) and co-worlds (in Y ): R� ⊆ X × Y , R♦ ⊆ Y × X . Furthermore, the
semantic clauses for the modal operators mark a clear departure from the standard
ones, which are shown in (21) and (22) below.

x � �ϕ iff ∀x ′ (R�xx ′ =⇒ x ′ � ϕ) (21)

x � ♦ϕ iff ∃x ′ (R♦xx ′ and x ′ � ϕ) (22)

while the intuitions behind the new clauses remain rather obscure, to this author at
least. The underlying technical necessity, of course, is that modal sentences, too,
are to be modeled by stable sets (remaining unchanged under an application of the
closure operator involved in the underlying lattice representation). For example, in
Conradie and Palmigiano (2015), the following is the proposed satisfaction clause
for the possibility operator

X � x � ♦ϕ iff ∀y ∈ Y
(∀z ∈ X (z � ϕ =⇒ y R♦z) =⇒ x ≤ y

)
where x ≤ y is defined after Gehrke’s (2006) using the polarity relation R ⊆ X × Y .
Aside from the satisfaction relation �, a relation of co-satisfaction �, or refutation,
is defined

Y � y � ♦ϕ iff ∀z ∈ X (z � ϕ =⇒ y R♦z)

The idea of the two relations � and � originates in Gehrke’s contribution on Gener-
alized Kripke Frames Gehrke (2006).

Despite differences, themain ideas in Suzuki (2010, 2012, 2014) for the semantics
of possibility and necessity are quite similar to those in Conradie and Palmigiano
(2015) and Suzuki’s bi-approximation semantics and Gehrke’s generalized Kripke
frames seem to be variants of each other. Suzuki, overloading the use of �, uses it
for both relations of satisfaction of sentences at worlds and refutation of sentences
at co-worlds. The semantics for possibility proposed is the following:
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X � x � ♦ϕ iff ∀y ∈ Y (y � ♦ϕ =⇒ x ≤ y)

Y � y � ♦ϕ iff ∀x ∈ X (x � ϕ =⇒ x Ry)

Regarding the obvious divergence from the standard semantics, Suzuki (2010) explic-
itly acknowledges that “this is because it is essential to set up our interpretation to
return Galois stable sets.”

In Düntsch et al. (2004) the authors study monomodal systems, hence separately
each of � and ♦. They base their approach on Urquhart’s representation theorem for
bounded lattices Urquhart (1978). Therefore, the points on the frames are maximal
disjoint filter-ideal pairs (x, y), with a double-order≤1,≤2 on the points of the frame
and this forces again two accessibility relations R� and S� (and similarly R♦, S♦
for the diamond operator) on the frame and thereby the familiar semantics for modal
operators is lost.

By contrast to the approaches briefly discussed above we have presented in this
paper a solution that is in keeping with the familiar semantic clause for possibility.
In recent research we have extended our approach to systems with both a necessity
and a possibility operator, maintaining the familiar semantic clauses in Eqs. (21)
and (22), while dropping the assumption of distribution. Moreover, it is evident that
the approaches briefly discussed above arrive at a complete impasse when consid-
ering temporal logics, where evidently a single time-flow relation must interpret all
modal (temporal) operators. In our opinion, the difficulties encountered by these
authors have their source in their choice of representation theorem for lattices that
underlies their semantic approach. By contrast, in our recent research, extending
our representation results for lattices with operators in Hartonas (1997) we have
extended our work to Tense Logic on a non-distributive propositional basis, without
being forced to resort to some awkward interpretation of time-flows.

5 Conclusions

Non-distributive logics are better suited for reasoning with incomplete information.
This is particularly clear when the interpretation of disjunction is considered, but it
affects the semantics of other logical operators, as well. This paper is an extension
to the non-distributive setting of results produced in Dunn and Zhou (2005), while
also introducing a standard semantic treatment of modal operators in logics over a
non-distributive propositional basis. In particular, we first studied Lattice Logic with
various notions of negation of increasing strength, from Dunn’s minimal negation to
orthonegation.We have pointed out that in the non-distributive setting orthonegation,
as usually defined, does not satisfy Johansson’s rule of constructive contraposition
and there are therefore two variants of it in the non-distributive setting. Furthermore,
extending to the non-distributive setting the study of negation as impossibility of
Došen (1986), Vakarelov (1977, 1989) and Dunn and Zhou (2005) we initiated the
study ofModal Lattice Logic, with possibility and impossibility operators, exploring
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natural choices for their axiomatization. Interpreting the two operators by the same
relation has a hidden semantic assumption of distributivity, hence the natural venue
in the non-distributive setting is to use distinct relations and impose conditions on
their connection, depending on the axiomatization of the logic that we adopt.

We expect that our results will prove useful in studying variants and extensions
of non-distributive logics, such as Quantum Logic, and they can be further extended,
enriching the study of non-distributive logical calculi.
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Mereocompactness and Duality
for Mereotopological Spaces

Robert Goldblatt and Matt Grice

Abstract Mereotopology studies relations between regions of space, including the
contact relation. It leads to an abstract notion of Boolean contact algebra which has
been shown to be representable as an algebra of regular closed subsets of a compact
topological space. Here we define mereotopological spaces and their mereomor-
phisms, and construct a dual equivalence between the category of Boolean contact
algebras and a category of mereotopological spaces that have a property we call
mereocompactness, strictly stronger than ordinary compactness. This is a further
illustration of the kind of duality that has been widely used in the semantic analysis
of propositional logics, and which has been a significant theme in the research of
J. Michael Dunn.

Keywords Boolean algebra · Clan · Compact · Contact relation · Duality · Mere-
ocompact · Mereotopology · Regular closed · Ultrafilter

1 Introduction

Duality in the semantic analysis of propositional logics has been a significant theme
in the research of J. Michael Dunn. It is involved in his gaggle theory, whose devel-
opment motivated the construction of a new topological duality for general lattices
(Hartonas and Dunn 1997). It underlies the framework of a number of topics he has
worked on, including: the representation of quasi-Boolean algebras (Dunn 1982)
and positive modal algebras (Dunn 1995); the modelling of negation using informa-
tion states (Dunn 1993); the representation of relation algebras over Routley–Meyer
structural models for relevant logics (Dunn 2001); the relational semantics for linear
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logic and other substructural logics (Allwein and Dunn 1993; Dunn et al. 2005).
There are chapters on duality in his two most recent books (Dunn and Hardegree
2001; Bimbó and Dunn 2008).

This notion of duality is a certain relationship between two kinds of model:
algebraic and structural. In an algebraic model, propositional formulas denote ele-
ments of an algebra whose fundamental operations interpret logical connectives. In
a structural model, formulas denote subsets of some background set that carries rela-
tional and/or topological structure. The elements of the set are viewed as possible
worlds/situations/information states/temporal instants etc., and certain of its sub-
sets are taken to be propositions. The structure gives rise to connective-interpreting
operations on propositions, so a structural model S has an associated algebra S+ of
propositions. S+ is the dual of S.

In the opposite direction, representation theorems are applied to show that an
algebra A has a dual structure A+ such that A is isomorphic to the algebra (A+)+ of
propositions of A+. Topological properties may be used to characterise the propo-
sitions of A+ and to identify which structures are (isomorphic to) the duals of alge-
bras, or equivalently which structures S are isomorphic to their double dual structure
(S+)+. For example, the duals of Boolean algebras are the Stone spaces, and the
propositions of such spaces are the clopen (closed-and-open) subsets. The duals of
distributive lattices can be described as the spectral spaces, with their propositions
being the compact open subsets; or as the Priestley spaces, with clopen down-sets as
propositions.

Ultimately, duality is a category-theoretic notion, taking the form of a pair of con-
travariant functors that constitute a dual equivalence between a category of algebras
and a category of structures.1

The purpose of the present paper is to add another brick to the pyramid of ideas on
duality, in the context ofmereotopology. This is an approach to the abstract geometry
of space, based on regions rather than points, in which there is a primitive relation of
contact between regions. It originates in philosophical work in the early 20th century
by de Laguna (1922) on postulates for a “can connect” relation between “solids,”
and by Whitehead (1929) on an “extensive connection” relation between regions.
Its name derives from the word “mereology,” devised by Leśniewski in the 1920s
to refer to his theory of the part-whole relation. In more recent times the study of
such theories has received impetus from theoretical computer science, since they
provide a framework for qualitative spatial reasoning, as embodied in the Region
Connection Calculus (Randell and Cohn 1989; Randell et al. 1992) that was built on
an axiomatisation of Whitehead’s theory by Clarke (1981).2

1For categories A of algebras and S of structures, if the assignments A �→ A+ and S �→ S+ extend
to contravariant functors from A to S and vice versa, then this constitutes a dual equivalence when
the composition of these functors in either order gives functors that are naturally isomorphic to the
identity functors on A and S, respectively. This perspective on models of propositional logic was
introduced (for modal algebras and Kripke frames) in the first author’s thesis (Goldblatt 1974). The
concept of natural isomorphism is explained in the present article at the end of Sect. 4.
2Further work on the Region Connection Calculus is surveyed in (Cohn et al. 1997).
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In a topological interpretation, regions can be taken to be regular closed subsets
of a topological space, with such sets being in contact if they have a non-empty
intersection. Alternatively, regions may be regular open sets, in contact when their
closures intersect. These two kinds of regular sets form Boolean algebras that have
distinct operations but are isomorphic.

Düntsch and Winter (2005) studied an axiomatic notion of Boolean contact alge-
bra and showed that such an algebra could be represented by embedding it into
the regular-closed-subset algebra of a T1 topological space. Dimov and Vakarelov
(2006a) extended this by dropping an extensionality requirement on the contact
relation and representing the resulting algebras in spaces that are T0, compact and
semi-regular (the latter meaning that the regular closed sets form a closed basis for
the topology).3 They gave an example in (Dimov and Vakarelov 2006b) to show that
those three topological conditions do not suffice to characterise the dual spaces of
contact algebras.

Our aim here is to lift these results to a full categorical duality, making Boolean
contact algebras into a category and identifying a suitable dual category of “mereo-
topological” spaceswith “mereomorphisms” between them. To characterise the duals
of contact algebras we define a new notion of mereocompactness (see Sect. 5) which
is strictly stronger than ordinary topological compactness.

We will work through the details of this programme according to the following
steps, which serve as a summary of the paper.

• Define the category BCA of Boolean contact algebras whose morphisms are
the Boolean homomorphisms that reflect contact (or equivalently, preserve non-
tangential inclusion).

• Define a mereotopological space S as an ordinary topological space with a distin-
guished Boolean sub-algebra of its regular-closed-set algebra that is a closed basis
for the topology, and which forms the dual contact algebra S+ of S.

• Define the category MS of mereotopological spaces, whose mereomorphisms
θ : S1 → S2 are functionswhosepullback actionprovides aBoolean algebra homo-
morphism S+

2 → S+
1 .• Construct a contravariant functor Φ : MS → BCA having Φ(S) = S+.

• Adapt the representation theoryof (Düntsch andWinter 2005;DimovandVakarelov
2006a) to associate with each contact algebra A a T0 mereotopological space A+
such that A is isomorphic in BCA to (A+)+.

• Define mereocompactness for a mereotopological space. Show that the dual space
A+ of any contact algebra is mereocompact, and that an arbitrary space S is
isomorphic in MS to its double dual (S+)+ iff it is mereocompact and T0.

• Construct a contravariant functor Θ : BCA → MS* having Θ(A) = A+, where
MS* is the category of mereocompact T0 spaces.

3See the Introductions of papers (Düntsch and Winter 2005; Dimov and Vakarelov 2006a) for an
overview of the background literature on region-based theories of space.
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• Show that the categories BCA and MS* are dually equivalent, by showing that
Φ* ◦ Θ is naturally isomorphic to the identity functor on BCA, while Θ ◦ Φ* is
naturally isomorphic to the identity functor on MS*, where Φ* : MS* → BCA is
the restriction of Φ to MS*.

In the final section we explore alternative versions and consequences of the notion
of mereocompactness.

2 Contact Algebras

We use the notation (B,+, ·,−, 0, 1) for an abstract Boolean algebra on a set B, with
operations+ of join, · of meet and− of complement; and least element 0 and greatest
element 1 under the partial ordering ≤ that has x ≤ y iff x + y = y iff x · y = x .
We may denote this algebra by its underlying set B.

A contact relation on a Boolean algebra is a binary relation C on B satisfying the
following axioms.

C1. xCy implies x, y �= 0.
C2. xCy implies yCx .
C3. xC(y + z) iff xCy or xCz.
C4. x �= 0 implies xCx .

Such a C is always monotonic in each variable: if xCy, x ≤ x ′ and y ≤ y′, then
x ′Cy′. Each Boolean algebra has a smallest contact relation { (a, b) : a · b �= 0 } and
a largest one { (a, b) : a �= 0 �= b }.

A Boolean contact algebra, or BCA, is a pair A = (BA, CA) with CA a contact
relation on Boolean algebra BA. We may also denote such an algebra in the form
Ai = (Bi , Ci ) where i is some suitable label, or as A′ = (B ′, C ′) etc.

We define a homomorphism f : A → A′ of contact algebras, or BCA-morphism,
to be a homomorphism f : B → B ′ of Boolean algebras such that, for all x, y ∈ B,

f (x)C ′ f (y) implies xCy.

Thus a BCA-morphism reflects contact. Equivalently it preserves separation in the
sense that if elements are not in contact in A, then their f -images are not in contact
in A′.

A relation 
 of non-tangential inclusion is defined on any contact algebra by
putting x 
 y iff not xC(−y). A BCA-morphism can then be characterised as a
Boolean algebra homomorphism that preserves non-tangential inclusion in the sense
that

x 
 y implies f (x) 
′ f (y).

The axioms (C1)–(C4) for a contact relation can be equivalently formulated entirely
as properties of the relation 
 (Dimov and Vakarelov 2006a, p. 214).
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It is readily seen that the functional composition of twoBCA-morphisms is aBCA-
morphism, and that the identity function on a contact algebra is a BCA-morphism.
Thus the Boolean contact algebras and their morphisms are the objects and arrows
of a concrete category, which we denote BCA.

Category theory gives us a definition of an isomorphism of contact algebras: a
BCA-morphism f : A → A′ is an isomorphism when there exists a BCA-morphism
g : A′ → A, the inverse of f , such that each of the compositions g ◦ f and f ◦ g is
the identity morphism on its domain.

Theorem 2.1 A BCA-morphism f : A → A′ is an isomorphism if, and only if, it is
bijective and preserves contact in the sense that xCy implies f (x)C ′ f (y).

Proof Let f : A → A′ be an isomorphism, with inverse BCA-morphism g : A′ → A
as above. Since g ◦ f and f ◦ g are identity functions it follows that f is bijective.
If xCy, then since x = g( f (x)) and y = g( f (y)), it follows that f (x)C ′ f (y) as g
reflects contact.

Conversely, suppose f : A → A′ is a bijective BCA-morphism preserving con-
tact. As a bijection, f has an inverse g : BA′ → BA. It is a fact of universal alge-
bra that the inverse of a bijective homomorphism of algebras is itself a homomor-
phism.4 So in this case g is a Boolean algebra homomorphism. If g(x)CAg(y), then
f (g(x))CA′ f (g(y)) as f preserves contact, hence xCA′ y. This shows that g reflects
contact and so is a BCA-morphism A′ → A, providing the inverse in BCA that
ensures f is an isomorphism. �

3 Mereotopological Spaces

Let (X, τ ) be a topological space, comprising a topology τ on set X . We typically
denote the space just as X . Let clX and intX be the closure and interior operators
induced on subsets of X by its topology. A subset a of X is regular closed if it is equal
to the closure of its interior: a = clX (intX (a)). The set RC(X) of all regular closed
subsets of X forms a Boolean algebra in which a + b = a ∪ b, a · b = clX (intX (a ∩
b)), −a = clX (X\a), 0 = ∅ and 1 = X .

There is a contact relation CX on RC(X) defined by putting aCX b iff a ∩ b �= ∅.5
Thus (RC(X), CX ) is a Boolean contact algebra in which ‘in contact’ means to have
a non-empty intersection. The non-tangential inclusion relation on this algebra has
a 
 b iff a ⊆ int(b).

By a mereotopological space we mean a pair S = (X S, MS) where X S is a topo-
logical space and MS is a subalgebra of theBoolean algebraRC(X S) of regular closed
subsets of X S , such that MS is a closed basis for X S . This last condition on MS means
that every closed subset of X S is an intersection of a collection of members of MS .

4Henkin et al. 1971, 0.2.9.
5Note that a · b ⊆ a ∩ b for regular closed a and b, so a ∩ b �= ∅ is a weaker assertion here than
a · b �= 0.
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That MS is a subalgebra of RC(X S)means that it is closed under the Boolean algebra
operations of RC(X S), and hence is itself a Boolean algebra under these operations.
Kontchakov et al. (2008) call such a pair S a closed mereotopology.

Remark 3.1 Mereotopology can equivalently be approached from the point of view
of sets a that are regular open in the sense that a = int(cl(a)). A set is regular
open iff its complement X\a is regular closed. The set RO(X) of regular open
subsets of X is a Boolean algebra in which a + b = int(cl(a ∪ b)), a · b = a ∩ b
and −a = int(X\a). Its natural contact relation DX has aDX b iff cl(a) ∩ cl(b) �= ∅
iff there is a point that is close to both a and b. The map a �→ cl(a) is a BCA-
isomorphism from (RO(X), DX ) onto (RC(X), CX ) (Dimov and Vakarelov 2006a,
Example 2.1). Pratt-Hartmann (2007, Definition 2.5) defines a mereotopology over
a topological space X as a Boolean sub-algebra of RO(X) that is a basis for the
topology.

A semiregular topological space is one that has a basis of regular open sets, or
equivalently has a closed basis of regular closed sets. For instance, the real line R

with its standard topology is semi-regular since its intervals (x, y) are regular open
and form a basis. If a space X is semiregular, then (X,RC(X)) is a mereotopological
space as defined here.

Contact algebras, especially those of the form (RC(X), CX ), can be used tomodel
logics basedonpropositional languageswith a binary connectiveC andpossibly other
connectives, including modalities. Work in this direction can be found in (Lutz and
Wolter 2006; Kontchakov et al. 2008; Nenov and Vakarelov 2008; Vakarelov 2007)
as well as in some chapters of the Handbook of Spatial Logic (Aiello et al. 2007).

Now we define mereomorphisms. If S1 = (X1, M1) and S2 = (X2, M2) are
mereo-topological spaces, a mereomorphism θ : S1 → S2 is a function θ : X1 → X2

whose pullback action on members of M2 is a Boolean algebra homomorphism from
M2 to M1. This means that for each subset a ⊆ X2 with a ∈ M2, the pre-image
θ−1(a) = { x ∈ X1 : θ(x) ∈ a } belongs to M1, and the map M2 → M1 acting by
a �→ θ−1(a) is a Boolean algebra homomorphism.

Lemma 3.1 Every mereomorphism is continuous.

Proof Let θ be a mereomorphism as above, and b a closed subset of X2. Then
b = ⋂

i∈I ai for some ai ∈ M2, since M2 is a closed basis for the space X2. So
θ−1b = ⋂

i∈I θ−1ai , with each θ−1ai belonging to M1 and hence being (regular)
closed in X1. Therefore θ−1b is closed.

This shows that under θ : X1 → X2, pre-images of closed sets are closed, implying
that θ is continuous. �

Remark 3.2 The map a �→ θ−1(a) always preserves Boolean joins (=unions), so for
it to be a Boolean homomorphism it is sufficient that it preserve Boolean comple-
ments: θ−1(−a) = −θ−1(a). But for θ : X1 → X2 to be a mereomorphism, it is not
sufficient in general that it be continuous and pull back members of M2 to members
of M1, as we show next.
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Example 3.3 Let S be the mereotopological space (R,RC(R)), where R is the real
line with its standard topology. Let θ be the constant function having θ(x) = 0 for
all x ∈ R. Then θ : R → R is continuous, and if a ∈ RC(R) then θ−1(a) is either R

or ∅ accordingly as 0 ∈ a or not, so θ−1(a) ∈ RC(R).
However θ is not a mereomorphism, because the map a �→ θ−1(a) does not pre-

serve the Boolean complement operation on RC(R). For example, let a be the regular
closed interval [0,∞). Then−a = (−∞, 0], so θ−1(−a) = R. But also θ−1(a) = R,
so −θ−1(a) = ∅ �= θ−1(−a).

Observe also that themapa �→ θ−1(a)does not preserveBooleanmeets.Witha =
[0,∞) as above we have θ−1(a · −a) = θ−1(∅) = ∅, whereas θ−1(a) · θ−1(−a) =
R · R = R.

The identity function on a mereotopological space is a mereomorphism, and the
functional composition of two mereomorphisms is a mereomorphism. Thus we have
a category MS of mereotopological spaces and mereomorphisms.

In the next result we use the notation θ [a] for the direct image { θ(x) : x ∈ a } of
a subset a of the domain of θ . If θ is a bijection with inverse σ , then θ [a] = σ−1(a).

Theorem 3.2 A mereomorphism θ : S1 → S2 is an isomorphism in the category MS
if, and only if, it is a bijection that has θ [a] ∈ M2 for all a ∈ M1.

Proof Let θ be an isomorphism. This means that there is an inverse mereomorphism
σ : S2 → S1 such that each of the compositions σ ◦ θ and θ ◦ σ is the identity mor-
phism on its domain. The existence of σ ensures that θ is a bijection. For each a ∈ M1

we have θ [a] = σ−1(a) ∈ M2 as σ is a mereomorphism.
Conversely, assume θ is a bijective mereomorphism having θ [a] ∈ M2 for all

a ∈ M1. As a bijection, θ has an inverse function σ : X2 → X1. For each a ∈ M1

we have σ−1(a) = θ [a] ∈ M2, showing that the map a �→ σ−1(a) pulls members of
M1 back to members of M2. Since θ is a mereomorphism, the map b �→ θ−1(b) is
a Boolean algebra homomorphism from M2 to M1. But this map is bijective, with
inverse a �→ σ−1(a), since σ−1(θ−1(b)) = b and θ−1(σ−1(a)) = a. As the inverse
of a bijective homomorphism of algebras is itself a homomorphism, it follows that
a �→ σ−1(a) is a Boolean algebra homomorphism.

This shows that σ is a mereomorphism S2 → S1 and provides the inverse in MS
that ensures θ is an isomorphism. �

An isomorphism inMSmightwell be called amereo-isomorphism. ByLemma3.1
such a map is a homeomorphism, i.e., is a continuous bijection with a continuous
inverse. However, a mereomorphism that is a homeomorphism need not be a mereo-
isomorphism:

Example 3.4 LetQ be the set of rational numbers, and for each p, q ∈ Qwith p < q,
let apq be the regular closed subset (−∞, p] ∪ [q,∞) of R. Put M0 = { apq : p,

q ∈ Q }, and let M be the Boolean subalgebra of RC(R) generated by M0. Since M0

is countable, so too is M , and therefore M is a proper subset of RC(R).
Now every open subset of R is a union of open intervals (p, q) with rational

endpoints, so every closed subset is an intersection of members of M0. Thus M is
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a closed basis for the standard topology on R. Hence (R,RC(R)) and (R, M) are
distinct mereotopological spaces based on the same topological space R.

Let θ be the identity function on R. Then θ is a homeomorphism, and is a mere-
omorphism because the map a �→ θ−1(a) is the inclusion homomorphism of M
into RC(R). However θ is not a mereo-isomorphism, by Theorem3.2, as there are
(uncountably many) elements a ∈ RC(R)) such that θ [a] = a /∈ M .

We now define the dual of a mereotopological space S by putting S+ = (MS, CS)

whereCS is the intersect relation on theBoolean algebra MS , i.e., aCSb iff a ∩ b �= ∅,
for all a, b ∈ MS . Then S+ is a Boolean contact algebra.

For eachmereomorphism θ : S1 → S2, define θ+ : M2 → M1 by putting θ+(a) =
θ−1(a). The definition of mereomorphism ensures that θ+(a) ∈ M1 for all a ∈ M2,
and that θ+ is a Boolean algebra homomorphism. Moreover, if θ+(a)CS1θ

+(b), then
θ−1(a) ∩ θ−1(b) �= ∅, hence a ∩ b �= ∅ and so aCS2b. Thus θ+ reflects contact as
well, making it a BCA-morphism S+

2 → S+
1 .

Now given a pair of composable mereomorphisms

S1
θ1−→ S2

θ2−→ S3,

we obtain the composable BCA-morphisms

S+
1

θ+
1←− S+

2

θ+
2←− S+

3 ,

for which it can be shown that θ+
1 ◦ θ+

2 = (θ2 ◦ θ1)
+ (because θ−1

1 ◦ θ−1
2 = (θ2 ◦

θ1)
−1). Also, if θ is the identity mereomorphism on S, i.e., the identity function on

X S , then θ+ is the identity function on MS , hence is the identity BCA-morphism
on S+.

Thus the assignments Φ(S) = S+ and Φ(θ) = θ+ form a contravariant functor
Φ : MS → BCA from the category of mereotopological spaces to the category of
Boolean contact algebras.

Our next task is to construct a functor in the opposite direction.

4 Representation by Clans

If A = (BA, CA) is a Boolean contact algebra, then a clan of A is a non-empty subset
Γ of BA such that:

K1. 0 /∈ Γ .
K2. x ∈ Γ and x ≤ y implies y ∈ Γ .
K3. x + y ∈ Γ implies x ∈ Γ or y ∈ Γ .
K4. x, y ∈ Γ implies xCy.
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A non-empty Γ satisfying K1–K3 is called a grill.6 So a clan is a grill for which
any two members are in contact. It is readily seen that any ultrafilter of BA is a clan
(Dimov and Vakarelov 2006a). For, it is standard that an ultrafilter satisfies K1–K3,
so is a grill. For K4, if x and y belong to an ultrafilter, then x · y �= 0, so x · y CA x · y
by C4. Since x · y ≤ x, y andCA is monotonic in each variable, it follows that xCA y.

Let X A be the set of all clans of A. For each x ∈ BA let f A(x) = { Γ ∈ X A : x ∈
Γ }. The function f A is injective, for if x �= y, then say x � y, so there is an ultrafilter
U of BA that contains x but not y. ThenU is a clan belonging to f A(x) but not f A(y),
showing that f A(x) �= f A(y).

Let MA = { f A(x) : x ∈ BA }. Now as Lemma 5.1(i) of (Dimov and Vakarelov
2006a) states, f A has the properties f A(0) = ∅, f A(1) = X A, f A(x + y) = f A(x) +
f A(y). So MA contains ∅ and X A and is closed under finite unions. This is enough to
ensure that MA is a closed basis for a topology on X A whose closed subsets of X A

are the intersections of collections of members of MA. We now view X A as a space
under this topology.

It is proved in (Dimov and Vakarelov 2006a) that X A is compact and T0. We
will show in Sect. 5 that compactness follows from our stronger mereocompactness
property (see Theorem5.2). The T0 separation property is that for any pair of distinct
points there is an open neighbourhood of one that excludes the other. To show this for
X A, let Γ and Δ be distinct clans of A. Then there is an element of one that does not
belong to the other, say x ∈ Γ and x /∈ Δ. Then X A\ f A(x) is an open neighbourhood
of Δ that excludes Γ .

By Lemma5.3(ii) of (Dimov and Vakarelov 2006a), each set f A(x) is regu-
lar closed in the space X A, so f A maps BA into the Boolean algebra RC(X A).
Moreover, Lemma5.3(i) of (Dimov and Vakarelov 2006a) shows that f A(−x) =
clX A(X A\ f A(x)) = − f A(x) in RC(X A). So together with its above listed properties,
we see that f A is a Boolean algebra homomorphism into RC(X A), making its image
MA a subalgebra of RC(X A).

Thus the structure A+ = (X A, MA) is a mereotopological space. This is the dual
space of the algebra A.

Theorem 4.1 A is isomorphic to the contact algebra (A+)+ in the category BCA.

Proof By definition, (A+)+ = (MA, CA+), where CA+ is the intersect relation on the
Boolean set algebra MA. We have already observed that f A is an injective Boolean
algebra homomorphism, and it maps BA onto MA. By (Dimov and Vakarelov 2006a,
Proposition3.3(i)) we have that xCA y iff there is a clan Γ of A with x, y ∈ Γ , which
is equivalent to f A(x) ∩ f A(y) �= ∅, i.e., to f A(x) CA+ f A(y). Hence f A preserves
and reflects contact.

Altogether this shows that f A : BA → MA is a bijective BCA-morphism preserv-
ing contact, so is an isomorphism from A to (A+)+ by Theorem2.1. �

Now for any BCA-morphism f : A → A′, define a function f+ on X A′ by putting,
for each clan Γ of A′, f+(Γ ) = f −1(Γ ) = { x ∈ BA : f (x) ∈ Γ }.

6Grills originate with Choquet (1947) and clans with Thron (1973).
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Theorem 4.2 f+ is a mereomorphism from A′+ to A+.

Proof First we need that f+ is a function from X A′ to X A, i.e., that f −1(Γ ) is a clan
of A when Γ is a clan of A′. First, f −1Γ is non-empty because f (1A) = 1A′ ∈ Γ

and so 1A ∈ f −1Γ . Next, the grill properties K1–K3 lift from Γ to f −1Γ because
f preserves least elements, the partial orders ≤, and joins. For K4, if x, y ∈ f −1Γ ,
then f (x)C ′ f (y) as Γ has K4, hence xCy as f reflects contact. Thus f −1(Γ ) is
indeed a clan.

Also we require that pulling back along f+ gives a Boolean homomorphism from
MA to MA′ . For an arbitrary element f A(x) of MA, we have, for any Γ ∈ X A′ ,
that Γ ∈ ( f+)−1( f A(x)) iff x ∈ f −1(Γ ) iff Γ ∈ f A′( f (x)). This shows that for any
x ∈ BA,

( f+)−1( f A(x)) = f A′( f (x)), (1)

confirming that ( f+)−1 maps MA into MA′ . Then Eq. (1) and the fact that f , f A and
f A′ are all Boolean homomorphisms allow us to infer that ( f+)−1 preserves Boolean
complements, because

( f+)−1(− f A(x)) = ( f+)−1( f A(−x)) = f A′( f (−x)) = − f A′( f (x)) = −( f+)−1( f A(x)).

As already noted in Remark3.2, that suffices to ensure that ( f+)−1 is a Boolean
homomorphism. �

Now given a pair of composable BCA-morphisms

A1
f1−→ A2

f2−→ A3,

we obtain the composable mereomorphisms

A1+
f1+←−− A2+

f2+←−− A3+,

for which it can be shown that f1+ ◦ f2+ = ( f2 ◦ f1)+. Also, if f is the identity
BCA-morphism on A, then f+ is the identity mereomorphism on A+.

Thus the assignments Θ(A) = A+ and Θ( f ) = f+ form a contravariant func-
tor Θ : BCA → MS. For any BCA-morphism f : A → A′, Eq. (1) implies that the
following diagram commutes.

A

f

��

f A �� (A+)+ = Φ(Θ(A))

( f+)+=Φ(Θ( f ))

��
A′ f A′ �� (A′+)+ = Φ(Θ(A′))

This means, by definition, that the assignment A �→ f A for all BCA’s A consti-
tutes a natural transformation from the identity functor on BCA to the functor
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Φ ◦ Θ : BCA → BCA that assigns to each contact algebra A its “double dual”
(A+)+. The morphisms f A are the components of this natural transformation. In
general, a natural transformation is called a natural isomorphism if its components
are isomorphisms (i.e., invertible morphisms) in their ambient category. Thus in our
present situation, as the components f A are all mereo-isomorphisms (Theorem4.1),
it follows that Φ ◦ Θ is naturally isomorphic to the identity functor.7

5 Mereocompactness

The functor Θ ◦ Φ : MS → MS is not naturally isomorphic to the identity functor
on MS, because a mereotopological space S need not be isomorphic to its double
dual (S+)+. For instance, (S+)+ can be of higher cardinality that S. As an example,
let S = (X,RC(X)) where X is a discrete space of any infinite cardinality κ . Then
RC(X) is the powerset algebra of X , of cardinality 2κ , having 22

κ

ultrafilters. Since
ultrafilters are clans, it follows that (S+)+ is of cardinality 22

κ

.
Note that the question of whether S is isomorphic to its double dual is equivalent

to the question of whether it is isomorphic to the dual of something. For if S ∼= A+,
then S+ ∼= (A+)+ ∼= A (Theorem4.1), and so (S+)+ ∼= A+ ∼= S.

We now explore conditions under which a space S = (X S, MS) is isomorphic to
(S+)+. For each x ∈ X S , define ρS(x) = { a ∈ MS : x ∈ a }.
Theorem 5.1 (1) ρS(x) is a clan of the algebra S+ = (MS, CS), hence a point of

the space X S+ .
(2) ρS : X S → X S+ is a mereomorphism S → (S+)+.
(3) ρS is injective if, and only if, X S is T0.
(4) For any mereomorphism θ : S → S′, the following diagram commutes:

(2)

S

θ

��

ρS �� (S+)+

(θ+)+
��

S′ ρS′ �� (S′+)+

Proof (1) ThatρS(x) satisfiesK1–K3 is routine. ForK4 recall thatCS is the intersect
relation, and note that if a1, a2 ∈ ρS(x), then x ∈ a1 ∩ a2, so a1CSa2.

(2) First we need to have ρ−1
S pulling back members of MS+ = { fS+(a) : a ∈ MS }

to members of MS . But for any a ∈ MS we have

ρ−1
S ( fS+(a)) = a, (3)

hence ρ−1
S ( fS+(a)) ∈ MS as required. Equation (3) holds since x ∈ ρ−1

S ( fS+(a))

iff ρS(x) ∈ fS+(a) iff a ∈ ρS(x) iff x ∈ a.

7See (Mac Lane 1998, I.4) for the theory of natural transformations and isomorphisms.
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With the help of (3) for −a and for a we reason that

ρ−1
S (− fS+(a)) = ρ−1

S ( fS+(−a)) = −a = −ρ−1
S ( fS+(a))

so ρ−1
S preserves Boolean complements. That is enough to make it a Boolean

homomorphism (Remark3.2), completing the proof that ρS is amereomorphism.
(3) Suppose X S is T0. Then if x, y ∈ X S with x �= y, there is an open set containing

one but not the other, hence its complement is a closed set containing one but
not the other. Since MS is a closed basis for X S there must then be a member a
of MS containing one but not the other, so a belongs either to ρS(x)\ρS(y) or to
ρS(y)\ρS(x). In either case ρS(x) �= ρS(y), showing ρS is injective.
For the converse, let ρS be injective. If x �= y, there is some a ∈ MS such that
a belongs either to ρS(x)\ρS(y) or to ρS(y)\ρS(x). Then the complement of
a is an open set containing one of x and y but not the other. This shows that
distinct points of X S do not have the same open neighbourhoods, which is the
T0 property.

(4) For each x ∈ X S we have ρS′(θ(x)) = { a ∈ MS′ : θ(x) ∈ a }, while

(θ+)+(ρS(x)) = (θ+)−1(ρS(x)) = { a ∈ MS′ : θ+(a) ∈ ρS(x) }.

But θ+(a) = θ−1(a) ∈ ρS(x) iff x ∈ θ−1(a) iff θ(x) ∈ a. So ρS′(θ(x)) = (θ+)+
(ρS(x)) as required for the diagram to commute. �

Now define a mereocompact space to be a mereotopological space S satisfying
the following property:

For every Γ,Δ ⊆ MS with Γ a clan of S+, if
⋂

Γ ⊆ ⋃
Δ then Γ ∩ Δ �= ∅.

Theorem 5.2 (1) S is mereocompact iff ρS : X S → X S+ is surjective.
(2) Every mereocompact space is compact.
(3) If A is any Boolean contact algebra, then A+ is mereocompact.

Proof (1) Let S bemereocompact. Take anyΓ ∈ X S+ , i.e.,Γ is a clan of the algebra
S+. Put Δ = MS\Γ . Then Γ ∩ Δ = ∅ so by mereocompactness

⋂
Γ �

⋃
Δ.

Hence there is some x ∈ ⋂
Γ \⋃

Δ. Then ρS(x) = Γ . This shows ρS is surjec-
tive.
Conversely, suppose ρS is surjective. Let Γ,Δ ⊆ MS with Γ a clan, and⋂

Γ ⊆ ⋃
Δ. Then Γ = ρS(x) for some x ∈ S, hence x ∈ ⋂

Γ . Thus there
is some δ ∈ Δ with x ∈ δ. Hence δ ∈ ρS(x), so δ ∈ Γ ∩ Δ �= ∅. This shows S
is mereocompact.

(2) Let S be mereocompact. For compactness of X S it suffices to show that any
collection of closed sets with the finite intersection property has non-empty
intersection. (Recall that collection M has the finite intersection property if each
finite subcollection of M has non-empty intersection.) But since MS is a closed
basis for X S , it is enough to prove this for subcollections of MS . So take any
M ⊆ MS with the finite intersection property. Then M extends to an ultrafilter
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U of the powerset algebra P(X S) of all subsets of X S . Let Γ = U ∩ MS . Then
Γ is a clan of S+: the fact that U is a grill of P(X S) ensures that Γ is a grill of
MS , and if a, b ∈ Γ , then a, b ∈ U and so a ∩ b �= ∅, i.e., aCSb.
Now put Δ = ∅ in the definition of mereocompactness of S. Since Γ is a clan
and Γ ∩ ∅ = ∅, it follows that

⋂
Γ �= ⋃ ∅ = ∅. Since M ⊆ Γ , this implies⋂

M �= ∅ as required.
(3) Recall that A+ = (X A, MA)with X A the set of clans of A and MA = { f A(x) : x ∈

BA }. Take subsets Γ,Δ of MA with Γ a clan of (A+)+ = (MA, CA+). Put
J = f −1

A Γ = { x ∈ BA : f A(x) ∈ Γ }. Then J is a clan of A by the proof of
Theorem4.2, so J ∈ X A.
Now for any f A(x) ∈ Γ we have x ∈ J and so J ∈ f A(x). Thus J ∈ ⋂

Γ . So if⋂
Γ ⊆ ⋃

Δ then there is some f A(y) ∈ Δ such that J ∈ f A(y). But then y ∈ J ,
implying f A(y) ∈ Γ . Hence f A(y) ∈ Γ ∩ Δ, showing thatΓ ∩ Δ is non-empty.
This proves mereocompactness of A+. �

Mereocompactness is a strictly stronger property than compactness:

Example 5.1 A topological space is said to be strongly compact (Rasiowa and Siko-
rski 1963, p. 101) if it is not covered by open proper subsets, i.e., if every open cover
of the space must include the space itself as a member. Equivalently, this means
that the intersection of any set of non-empty closed subsets is non-empty, which is a
much stronger condition than compactness. Any topological space X has a one-point
strong compactification (Rasiowa and Sikorski 1963, p. 102) obtained by adding a
new point π to X and declaring that the open subsets of X ∪ { π } are X ∪ { π } itself
and all the open subsets of X . Then the closed subsets of X ∪ { π } are ∅ and all sets
of the form b ∪ { π }with b a closed subset of X . Thus π belongs to every non-empty
closed set in X ∪ { π }, ensuring strong compactness. The regular closed subsets of
X ∪ { π } are ∅ and all sets b ∪ { π } with b a non-empty regular closed subset of X .

Now let X be the three-element set 3 = { 0, 1, 2 } with the discrete topology, and
put S = (X S, MS) with X S = X ∪ { π } and

MS = RC(X ∪ { π }) = { ∅ } ∪ { b ∪ { π } : ∅ �= b ⊆ 3 }.

S+ = (MS, CS) is an eight-element Boolean contact algebra (see Fig. 1) in which
any two non-empty members are CS-related, i.e., intersect, since they contain π . For
each x ∈ 3, the point-clan ρS(x) = { a ∈ MS : x ∈ a } is the principal ultrafilter of
S+ generated by the atom { x, π }, and contains the four elements { x, π }, { x, y, π },
{ x, z, π }, { x, y, z, π }, where y, z are the two elements of 3 other than x . ρS(π) is
the seven-element set { b ∪ { π } : ∅ �= b ⊆ 3 }.

Let Γ = ρS(0) ∪ ρS(1). Then Γ is a clan of S+ and is in fact the six-element set
MS\{{ 2, π },∅ }. Thus Γ �= ρS(w) for all w ∈ 3 ∪ { π }, so the function ρS : X S →
X S+ is not surjective. Hence while X S is strongly compact, S is not mereocompact
by Theorem5.2(1).

The idea of this counter-example was prompted by Example4.2 of (Dimov and
Vakarelov 2006b), which exhibited a compact semiregular T0 space X whose RC-
algebra has a clan that is not equal to any point-clan by taking X = R ∪ { π } (with
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Fig. 1 The algebra
RC(X ∪ { π }) with
X = { 0, 1, 2}

{0,1,2,π }

{0,1,π } {0,2,π } {1,2,π }

{0,π } {1,π } {2,π }

/0

a different description of its topology and without the discussion of strong compact-
ness). We make use of the finiteness of our example in the final section below.

Althoughmereocompactness implies compactness of the underlying topology, it is
independent of strong compactness. To see this, let S1 be anymereotopological space
containingnon-empty regular closed setsa, b that are disjoint. E.g., S1 = (R,RC(R))

with a, b any two disjoint closed intervals. Let A = S+
1 . Then a and b are not in

contact in A, so A+ is a mereocompact space in which f A(a) and f A(b) are non-
empty closed subsets of X A that are disjoint. Thus A+ is not strongly compact.

We now establish the conditions under which a space is isomorphic to its double
dual:

Theorem 5.3 The mereomorphism ρS : S → (S+)+ is a mereo-isomorphism if, and
only if, S is mereocompact and T0.

Proof By Theorems5.1 (3) and 5.2(1), ρS is a bijection from X S onto X S+ , the set
of all clans of S+, iff S is mereocompact and T0.

Now let S be mereocompact and T0. To prove that the bijection ρS is a mereo-
isomorphism, it suffices by Theorem3.2 to prove that for each a ∈ MS , the direct
image ρS[a] belongs to MS+ .

But by Theorem4.1 with A = S+, the BCA-isomorphism fS+ between S+ and
its double dual maps MS onto MS+ , with fS+(a) being the set of all clans of S+ that
contain a. Since ρS is surjective, any clan of S+ is equal to ρS(x) for some x ∈ X S .
Thus

fS+(a) = { ρS(x) : x ∈ X S and a ∈ ρS(x) } = { ρS(x) : x ∈ a } = ρS[a].

So ρS[a] = fS+(a) ∈ MS+ as required. �

Now let MS* be the full subcategory of MS whose objects are the mereocom-
pact T0 spaces. For each Boolean contact algebra A, the dual space Θ(A) = A+ is
mereocompact and T0, so we can view Θ as a functor from BCA into MS*. In the
opposite direction, let Φ* : MS* → BCA be the restriction of functor Φ to MS*.
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From our earlier analysis, Φ* ◦ Θ : BCA → BCA is naturally isomorphic to the
identity functor on BCA.

The commuting diagram (2) in Theorem5.1 shows that the mereo-isomorphisms
ρS for all MS*-objects S form the components of a natural isomorphism between
the identity functor on MS* and the functor Θ ◦ Φ* : MS* → MS* that assigns to
each mereocompact T0 space S its double dual (S+)+. These properties of Θ and
Φ* establish that the category of Boolean contact algebras is dually equivalent to
the category of mereocompact T0 spaces. That is the principal result of this paper.

There are further results in the topological representation of BCA’s, for instance
concerning the notion of an extensional contact algebra (ECA) as a BCA satisfying

∀z (xCz iff yCz) implies x = y.

By restricting the points of the representing space to bemaximal clans, itwas shown in
(Düntsch andWinter 2005;DimovandVakarelov2006a) that anyECA is embeddable
into the RC-algebra of a space that is compact, T1 and weakly regular, the later
meaning that the space is semi-regular and any non-empty open set a has a non-
empty open subset b with cl(b) ⊆ a. It is left to the interested reader to extend this
result to a full duality for ECA’s, and to do likewise for other classes of BCA’s
discussed in the literature.

6 Variations on Mereocompactness

We conclude by giving an alternative formulation of mereocompactness, and explor-
ing some consequences that have been used in other duality theories to characterise
dual spaces of algebras.

Let the notationΓ ⊆f Γ ′ mean thatΓ is afinite subset ofΓ ′. Consider the property

(μ0) For every Γ,Δ ⊆ MS with Γ a clan of S+, if
⋂

Γ ⊆ ⋃
Δ then there exists a

γ ∈ Γ and a Δ0 ⊆f Δ such that γ ⊆ ⋃
Δ0.

(μ0) is equivalent tomereocompactness. For if γ ∈ Γ andΔ0 ⊆f Δwith γ ⊆ ⋃
Δ0,

then
⋃

Δ0 ∈ Γ by K2 for Γ , and so by K3 there is some δ ∈ Δ0 with δ ∈ Γ ,
hence δ ∈ Γ ∩ Δ �= ∅. Conversely, if there is a γ ∈ Γ ∩ Δ, then γ ⊆ ⋃{ γ } and
{ γ } ⊆f Δ.

Next consider

(μ1) For everyΓ,Δ ⊆ MS with
⋂

Γ ⊆ ⋃
Δ, there exist setsΓ0 ⊆f Γ andΔ0 ⊆f Δ

such that
⋂

Γ0 ⊆ ⋃
Δ0.

This property holds when MS is the dual algebra of clopen subsets of the Stone space
of a Boolean algebra, and is a consequence of, indeed equivalent to, the compactness
of that Stone space.μ1 also holds when MS is the algebra of compact open subsets of
the dual space of a distributive lattice, and has been used as one of the characterising
properties of such spaces (Balbes and Dwinger 1974, Chap. IV).
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In our mereotopological setting, μ1 follows from mereocompactness of S. To
see why, suppose that

⋂
Γ0 �

⋃
Δ0 for all sets Γ0 ⊆f Γ and Δ0 ⊆f Δ. Then Γ ∪

{ X S\δ : δ ∈ Δ } has the finite intersection property and so extends to an ultrafilter
U of the powerset algebra P(X S) that includes Γ and is disjoint from Δ. Then
Γ ′ = U ∩ MS is a clan of S+ that includes Γ . But if

⋂
Γ ⊆ ⋃

Δ, then
⋂

Γ ′ ⊆⋂
Γ ⊆ ⋃

Δ, so from mereocompactness of S we infer Γ ′ ∩ Δ �= ∅, contradicting
U ∩ Δ = ∅. Hence ⋂

Γ �
⋃

Δ, confirming that μ1 holds for S.
μ1 is in fact weaker than mereocompactness. It holds trivially whenever MS is

finite, so it holds in the finite space S of Example5.1, which is not mereocompact.
Now we modify μ1 to the statement

(μ2) For everyΓ,Δ ⊆ MS with
⋂

Γ ⊆ ⋃
Δ, there exist setsΓ0 ⊆f Γ andΔ0 ⊆f Δ

such that
∧

Γ0 ⊆ ⋃
Δ0,

where
∧

Γ0 = cl(int(
⋂

Γ0)) is the Boolean meet of Γ0 in S+. Since
∧

Γ0 ⊆ ⋂
Γ0,

it is evident that (μ2) follows from (μ1).
Property μ2 is itself equivalent to requiring that

(μ3) for all ultrafilters Γ of S+, for all Δ ⊆ MS ,
⋂

Γ ⊆ ⋃
Δ implies Γ ∩ Δ �= ∅.

Proof Assume μ2 and take any Γ,Δ ⊆ MS such that Γ is an ultrafilter and
⋂

Γ ⊆⋃
Δ. Then there exist sets Γ0 ⊆f Γ and Δ0 ⊆f Δ such that

∧
Γ0 ⊆ ⋃

Δ0. As a
filter, Γ is closed under finite meets and closed upwards under⊆, so then

⋃
Δ0 ∈ Γ .

Since Γ satisfies K3 it follows that δ ∈ Γ for some δ ∈ Δ0. Hence δ ∈ Γ ∩ Δ �= ∅,
proving μ3.

Conversely assume μ3, take any Γ,Δ ⊆ MS and suppose that
∧

Γ0 �
⋃

Δ0 for
all Γ0 ⊆f Γ and Δ0 ⊆f Δ. Then Γ ∪ { −δ : δ ∈ Δ } has the finite meet property, i.e.,
each of its finite subsets has non-zero meet in S+—which means non-empty meet.
Hence Γ ∪ { −δ : δ ∈ Δ } extends to an ultrafilter Γ ′ of S+ that is disjoint from Δ.
By μ3, since Γ ′ ∩ Δ = ∅ we immediately get

⋂
Γ ′

�
⋃

Δ. But
⋂

Γ ′ ⊆ ⋂
Γ , so

then
⋂

Γ �
⋃

Δ. This proves μ2. �

μ3 is in turn equivalent to the condition

(μ4) Each ultrafilter of S+ is equal to ρS(x) for some x ∈ X .

The equivalence of μ3 and μ4 follows by the same reasoning that shows that mere-
ocompactness is equivalent to the surjectivity of ρS (Theorem5.2).

μ4 has the immediate consequence that every ultrafilter of S+ has non-empty
intersection. This consequence is weaker than μ4, because it is also implied by
topological compactness whereas μ4 is not. In fact μ4 is not even implied by strong
compactness.

Example 6.1 We show that μ4 fails in S = (X,RC(X)) where X is the strong com-
pactification R ∪ { π } of R (see Example5.1). Hence μ0 − μ3 also fail in this space.
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For each real number r , let ar = [r,∞) ∪ { π } ∈ RC(X). Put Γ = { ar : r ∈ R }.
Then ar ⊆ as iff s ≤ r , so if ∅ �= Γ0 ⊆f Γ , then

∧
Γ0 = ar �= ∅ where ar is the

⊆-least member of Γ0. Hence Γ has the finite meet property and so extends to an
ultrafilter U of S+.

Now
⋂

Γ = { π }, since s /∈ ar for any real s < r . Hence
⋂

U = { π }. If we had
U = ρS(x) for some x , then x ∈ ⋂

U and so x = π and U = ρS(π). But this is
impossible as ρS(π) is RC(X)\{ ∅ } and is not an ultrafilter. Indeed it is not even a
filter since it contains both ar and its complement −ar = (−∞, r ] ∪ {π } but does
not contain their meet ar ∧ −ar = ∅. So U violates μ4.

We can also see directly that U violates μ3: since π belongs to every non-empty
member of RC(X) we have

⋂
U ⊆ ⋃

(RC(X)\U ) while U ∩ (RCy(X)\U ) = ∅.
It seems possible that μ2 could be weaker than μ1. To show this it would suffice

to exhibit a mereotopological space S that satisfies any of μ2–μ4 and has a subset of
MS with the finite intersection property but empty intersection.
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Distributed Modal Logic

Gerard Allwein and William L. Harrison

Abstract Modal logics typically have only one domain of discourse—i.e., the col-
lection of worlds or states. For distributed computing systems, however, it makes
sense to have several collections of worlds and to relate one domain’s local worlds to
another’s using either relations or special maps. To this end, we introduce distributed
modal logics. Distributed modal logics lift the distribution structure of a distributed
system directly into the logic, thereby parameterizing the logic by the distribution
structure itself. Each domain supports a “local logic” (which can itself be a modal
logic). The connections between local logics are realized as “distributed modal con-
nectives” where these connectives take propositions in one logic to propositions in
another. Weak distributed logic systems require neighborhood semantics and, hence,
the connection between domains becomes a neighborhoodmap linking each world in
one domain to a collection of neighborhoods in another domain. In sufficiently strong
distributed logic systems, the maps may be Kripke relations linking worlds from two
different domains. We briefly illustrate distributed modal logics with the outline of
a security verification for a hardware distributed system (i.e., a system-on-a-chip)
with components that must be woven into proofs of security statements. Distributed
modal logics also support probabilistic systems using stochastic relations.
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1 Introduction

Logic in 20th century had many parents. It settled upon a very linguistic base and
many logical investigations concern exploring logical notions as represented via this
linguistic base. The reasoning that we can perform using logic in this manner is
filtered through this linguistic base. This has the tendency to force some notions
to be expressed (if even possible) in higher abstract formal machinery and more
complicated semantics than is desired if we intend for logics to be used by humans
for reasoning, as opposed to machines. The problems encountered are not to be
considered as artificially imposed via the linguistic base, but rather there is much
more that could be represented directly of the world about which we use logic to
reason. It is in this sense that we present distributed logics, i.e., as an attempt to
capture more of the work of reasoning that we need logic to support. The received
linguistic syntactic structure should not be seen as paradigmatic for logic but rather
a first attempt at coming to terms with logical reasoning. Distributed systems are
commonplace in computing and engineering, yet they have been rather less so in the
philosophical world. Distributed logic extends the notion of what is to be considered
as logical, and yet we still rely heavily on the hard work of our predecessors in logic.

Much of the background in distributed logic owes a debt to J. Michael Dunn
for his work in Gaggle Theory (Dunn 1991; Dunn and Hardegree 2001)—Gaggle
Theory’s notion of residuation is essentially a notion of distribution, for example.
Gaggle theory can be used to relate two different algebraic systems and it is but
a short step to view logics through algebraic eyes as do most algebraic logicians
(of which the first author considers himself). Another precursor to distributed logics
is Barwise and Seligman (1997). The colloquial term used is channel theory and
channel theory is billed as the logic of distributed systems. We have done work in
channel theory (Allwein 2005) and, indeed, spent quite a bit of time learning how its
notion of distribution is used in a logical setting. The notion of a local logic stems
from channel theory. Channel theory itself relies heavily on classical logic.

The direct precursor to distributed logic is partially ordered modalities
(Allwein et al. 2010). The partial order among modalities is generally sparse in
any application and is modeled via a partial order on relations. Of course, there is,
at least, a complete lattice of relations on a set. However, there are few relations in
most applications and, consequently, the entire complete lattice is mostly noise, i.e.,
most of the relations have no realistic counterpart in an application. It was our desire
to generalize partially ordered modalities that led directly to distributed logics. We
concentrated on modal logics because we were attempting to generalize a modal
base. In subsequent work, we will modify the modal distributed logics to intensional
distributed logics in an analogous sense to how relevance logic modifies modal logic.

A traditional approach to distributed systems is Markov transition systems.
Here, the notion of measurement is prominent. There has been some recent work
(see Doberkat 2010 and his references) showing how stochastic relations (in place of
Kripke relations) can be used in measuring Kripke systems expressed as coalgebras.
We only present the notion here to show how distributedmodal logics are appropriate
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logic systems for Markov transition systems. Modal systems as coalgebras require a
single local logic, and, hence, do not really provide an adequate logical framework
for Markov transition systems and stochastic relations. Our work in distributed logic
did not arise from stochastic relations. However, in retrospect, the match is very
tight and we can view the work on stochastic relations as giving us a continuous
mathematics interpretation for distributed modal logic.

A distributed modal logic is a collection of local modal logics linked together by
distributed modal connectives, each of which takes formulas in one logic and returns
formulas in a different logic. Semantically, each local logic is interpreted over a
collection of worlds. Let this collection be called the local collection for this local
logic. A local neighborhood (nbd) map takes each world to a set of neighborhoods
taken from the local collection and is used to interpret the modal connectives of the
local logic. The distributed modal connectives are also interpreted using nbd maps;
here, the nbd maps take worlds from a local collection of worlds to nbds of worlds
from a different local collection.

Extra properties, via logical axioms and rules, can be imposed on the interpreting
nbd maps. This is precisely analogous to imposing conditions on Kripke relations or
nbd maps in traditional modal logic. Many of the usual conditions (e.g., normality or
functionality) can be generalized from their traditional counterparts. The selection
of axioms reflects the model theory one needs for an application. If one adds enough
axioms to force the distributed modal connectives to be normal modal connectives
(even though they map from one logic to another), the interpreting nbd maps can be
defined to be Kripke relations that, here, span between local collections.

There are other approaches to locality in logic: we have already mentioned chan-
nel theory (Barwise and Seligman 1997; Allwein 2005). Institutions (Goguen and
Burstall 1985) and Chu spaces (van Benthem 2000) are others. There are also multi-
agent logic systems (Fagin et al. 1995). What distinguishes distributed logics from
these are that the morphisms—i.e., the nbd maps—have been lifted into the logic
and hence are given properties via logical axioms and rules.

The methods of fusion, fibring and algebraic fibring (Thomason 1984; Gabbay
1999; Sernadas et al. 1999) are mainly concerned with gluing logics together while
preserving the logics or constructing a minimal combination of the logics. These
methods sometimes introduce new logical properties, but these are a by-product of
ironing out technical details to make the methods work. They are not primarily con-
cerned with making modal logic more expressive and certainly are very far removed
from engineering applications. The motivation for distributed modal logic was to lift
model theoretic notions into modal connectives and to provide a more expressive
way of reasoning about distributed engineered systems. Combining logics by means
of multi-graphs (Rasga et al. 2010) comes somewhat closer in that new connectives
are introduced to manage importing of one logic into another. However, the goal
there is to map one logic into another while the goal here is not that one modal logic
is expressed within another but rather the two can be connected in such a way as to
produce a new logic without necessarily any sort of embedding. One could conceive
of the distributed connectives as providing an embedding but only if the underlying
semantics has enough properties to force the distributed connectives to have such
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Fig. 1 The bus master
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power. Also, that embedding in distributedmodal logic would be controlled or better,
specified, by logic axioms.

A planned companion paper to the current paper will use Grothendieck fibrations
(see Jacobs 1999 and his sources). The notion of distribution matches well with the
notion of distribution in these fibrations, namely through the eyes of a total category
over a base category. The stalk over an object of the base category represents a local
logic. The pullback and other associated functors become distributed modal opera-
tors. Some of the conditions such as Beck-Chevalley and Frobenius are expressed as
modal axioms.

An Application to Computer Security. The obvious practical question is “What
are distributed logics good for?” Consider Fig. 1; this is a simplified view of an actual
system.

The cpu issues a request to the bus master to read from the bus. The mux either
connects line u to the bus or leaves it undefined as a “tri-state value,” ⊥, which will
be used as a predicate in the security specification below. The control line tells the
mux when to make the connection. The formulas are distributed logic statements that
hold of the bus master:

(control = 0) ⊃ [c](⊥(u)), (control = 1) ⊃ [c](bus = u)

Note that without the modality [c], the statement bus = u would mean the mux was
not mediating the connection between u and bus.

This simplified view of a hardware bus system illustrates how reasoning in
distributed logic supports formal verification of distributed computing systems.
The bus master does not have access to the line u and, hence, u cannot be part
of the bus master’s state. The two statements hold of any state in the bus master
since the control line is either 0 or 1. Every state in the bus master is related to
at least one state of the cpu-mux via the control line; this co-occurrence relation,
which will be called C, is used in interpreting the (necessity) distributed modal
connective [c].
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Let σ be a state in the bus master’s worlds where control = 0. The evaluation of
the first statement is then

σ �bus master (control = 0) ⊃ [c](⊥(u))

∴ σ �bus master [c](⊥(u))

∴ for all τ ∈ cpu-mux (Cστ implies τ �cpu-mux ⊥(u))

Note how the appellation of the semantic turnstile changes from bus master to cpu-
mux as the formula is evaluated.

More abstractly, some security properties of distributed systems can be expressed
using these forms of logic statements. Distribution prevents the necessity of taking
large cross products of states which tend to degrade the performance of model check-
ing algorithms beyond reasonable levels. Intuitively, although space prevents us from
explicating it here, distributed logic statements can be paired with a process algebra
where the terms yield something like a tensor product of states of the components.

There is another use for distributed logics in testing systems. The situation fre-
quently arises where one is tasked with producing a distributed system for a system-
on-a-chip where what is known as “foreign IP (intellectual property)” must be used.
While in one state of a known component, tests are made to a foreign IP component.
The tests generate neighborhoods which are not neighborhoods of the state in the
known component but rather neighborhoods of the foreign IP component. In suf-
ficiently weak (undistributed) modal systems, neighborhoods need not contain the
point of which they are neighborhoods. A distributed logic is merely an extreme
example where the neighborhoods are not even in the same state space as the state
of the known component. The situation is similar to the non-normal diagram in the
next section. The worlds are the states and the R neighborhood map indicates tests
for each state (world).

2 The Logic

A distributed logic starts with a directed graph where every node constitutes a local
logic. Each node is a (possibly null) extension of a classical propositional logic with
a set of modal connectives, and any axioms and rules to govern behavior. The graph
makes apparent the structure of the collection of the local logics. Using an arc for
every modal connective can get a bit “noisy” due to classical negation and defining
possibility from necessity or vice versa. Instead, arcs specify semantic maps that
must exist in any interpretation. Each arc is then a bit of abstract syntax which, in an
interpretation, will be turned in for a nbd map.

The collection of distributed modal connectives is specified in the axioms. These
axioms can be mixed and matched depending upon the properties desired for the
domain of discourse being modeled. (Recall that we use the expression “domain of
discourse” in a general sense of the term, not in its technical sense as it is used in first-
order logic.) One should look at one’s axiom set as a control panel of switches and
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knobswhich select the properties of the underlying nbdmaps orKripke relations. The
distributed structure is typically lifted from the universe of discourse and is generally
small. It is certainly possible to define meta-linguistically a very large graph of local
logics and distributed modal connectives. We do not do so in this paper to keep the
level of abstraction to a minimum.

2.1 Conventions

The intuitive picture for models of two local logics h and k semantically connected
by either a nbd map R or a relation R is in Fig. 2.

As depicted in the diagrams, the arrows labeled R are morphisms in a category,
not functions. The 〈r〉 and [r] are forward looking modal connectives in that their
interpretation by the neighborhood map R looks forward along R from head to tail.
The 〈·r ·〉 and [·r ·] are backwards looking modal connectives. Let x be a world for
h and y be a world for k, then in the first diagram, Hx , Rx , and Ky are each a
collection of neighborhoods.

One can add axioms for the distributed modal connectives to force the nbd maps
to be simulation relations in the normal case and to respect a simulation condition for
neighborhoods in the non-normal case. Other axioms can require that the relations
be functions. Using both simulation and function axioms requires that the relations
be p-morphisms, and the resulting logic is simulation logic (Allwein et al. 2014).
We simplify a bit and allow the indices h and k to refer to a local logic as well as
indexing the local logic’s modal connectives, and we also assume there are only the
modal connectives [k], 〈k〉 in the logic for k and similarly for h. There are no prob-
lems adding more modal connectives and axioms and rules to govern their behav-
ior. In particular, one can add conditions expressing the interaction between local
modal connectives and distributed modal connectives. We use the simulation axiom

Nbds for local
logic at h

Nbds for local
logic at k

Worlds for
local logic at h

Worlds for
local logic at k

H K
R

〈r〉, [r]

〈h〉

[h]

〈k〉

[k]

Non-Normal

Nbds for local
logic at h

Nbds for local
logic at k

Worlds for
local logic at h

Worlds for
local logic at k

H K

R

〈r〉, [r]

〈·r·〉, [·r·]

〈h〉

[h]

〈k〉

[k]

Normal

Fig. 2 Intuitive picture of distributed modal logics
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(see axiom F1 below) to illustrate this. There are a wealth of choices that are driven
by the particular distributed system about which a distributed logic is desired.

As mentioned previously, in sufficiently weak modal systems, it is not necessary
that a point be a member of its neighborhoods. Here, it is almost a requirement or
the notion of distribution is not present. Model theoretically, R relates two different
neighborhood systems. These neighborhoodmaps, asmorphisms, compose and there
is an identity for each domain of worlds. In the normal case, the morphisms can be
represented as relations with suitable modifications of the definitions.

The notation dom(r) refers to the domain or source of the arc r in a graph and
cod(r) refers to the codomain or target of the arc, r : dom(r) � cod(r). We use
the locution 〈h〉 ∈ dom(r) to refer to a modal connective in the logic associated
with the node which is the source for the arc r : h � k. The symbol ≡ is used for
bi-implication, i.e., P ≡ Q stands for (P ⊃ Q) ∧ (Q ⊃ P). We use the following
letter conventions:

Entity Description
h, k, l Nodes and endo-arcs in a graph G
〈h〉, [h], 〈k〉, [k] Local modal connectives at nodes h and k
r, s Arcs in a graph G

〈r〉, [r], 〈s〉, [s] Forward-looking modal connectives for arcs r and s
〈·r ·〉, [·r ·] Backward-looking modal connectives for arc r
H, K , L Sets of worlds in interpretations for logics at h, k
H,K,L Sets of sets of worlds for interpretations at h, k, and l
H,K,L Interpret modal connectives for endo-arcs at h, k
(H,H,H), (K ,K,K), Neighborhood frames for the logics at h, k, and l
(L ,L,L)

R,S Relations to interpret modal connectives for arcs r and s

We will assume, without loss of generality, that the modal connectives of local
logic can be interpreted with a single neighborhood map. Hence, the node and its
endo-arc can share the same label with use disambiguating meaning. This allows us
to equate a node usually labeled h or k with the modal logic at that node.

2.2 Axioms and Rules

A local logic is “local” in that it is associated with one node in the graph. In this
paper, the accompanying notion of a global logic does not entail formulas “span-
ning” two local logics in the sense of P in one logic implying Q in another where
implying is reified as an implication connective (and similarly with other two place
connectives). Each formula is entirely within a single local logic although it may
contain subformulas from others.

The distributed logic graphs we use have endo-diagrams, each of which is a
labeled node and a single endo-arc (self-arc). Each endo-arc will be translated into
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an endo-morphism. Each node is required to have at least one endo-diagram whose
arc will be translated in an interpretation into an identity morphism. This is necessary
since the models for the logic will be a category. The graph specifies which local
logics there are to be, whichmorphisms are to appear in anymodel, and force identity
morphisms to exist. Each local logic may have its own propositional atoms and local
modal connectives. The S specification and A and B axioms are not optional.

Graph Specification S:

S1. A graph G of nodes and arcs
A setD of endo-diagrams

S2. An endo-diagram with an
arc i for each node in G

Axiom Schemes A: For each node in G,

A1. all (two-valued) truth functional
theorems of propositional logic

A2. Modal axioms for a logic at
this node

Each node h must contain an endo-diagram for each class of modal connectives
in its local logic. A class is a subset of the collection { [h], 〈h〉 } if the local logic is
non-normal and a subset of { [h], 〈h〉, [·h·], 〈·h·〉 } if the local logic is normal.

Axiom Schemes B: These axioms force arcs to be interpreted as morphisms in a
category. For arcs r : h � k and s : k � l,

B1. P ≡ [i] P B2. [r] [s] P ≡ [s ◦ r] P

Axiom Schemes C: Taken all together these axioms would force the distributed
modal connectives to be normal. Each may be optionally added.

C1. [r] P ∧ [r] Q ⊃ [r](P ∧ Q)

C3. 
 ⊃ [r] 

C2. [r](P ∧ Q) ⊃ [r] P ∧ [r] Q

TheAxiomSchemesC should bepresent to specify simulation logic (Allwein et al.
2014); they also allow the specification of backward looking connectives residuated
with their forward looking counterparts (see Dunn and Hardegree 2001). Simulation
logic could also be built on a non-normal basis using the same main simulation
axiom. However, the semantic conditions then involve neighborhoods, not relations.

Definition of Possibility: 〈m〉 P
def= ¬ [m] ¬P, m ∈ { k, r }

Rules A: For each local logic k,

�k P �k P ⊃ Q

�k Q

�k (P1 ∧ · · · ∧ Pn) ≡ P

�k ([k] P1 ∧ · · · ∧ [k] Pn) ≡ [k] P

where the appellation of � indicates the local logic to which the proof sign attaches.

Rule B: For each r : h � k arc in G,

�k (P1 ∧ · · · ∧ Pn) ≡ P

�h ([r] P1 ∧ · · · ∧ [r] Pn) ≡ [r] P
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Note in Rule B, the appellation of the � changes from premise to conclusion against
the direction of arc r : h � k.

We will only be concerned with the forward versions of necessity and possibility
connectives since the backwards versions are so similar and can easily be added in
when necessary for a particular application. The backward versions are only present
for normal systems.

2.3 Options

Axiom Schemes D: The D axioms are examples of extra properties to be enforced on
the interpreting morphisms. Other axioms can be added as well. A further example
is in Sect. 7. We use Axioms D as paradigm examples:

D1. [r] P ⊃ 〈r〉 P D2. 〈r〉 P ⊃ [r] P

In non-normal systems, the axiom D1 specifies consistency and the axiom D2
specifies maximality, both with respect to the collection of neighborhoods about any
world when the world is in the source of the nbd map used in interpreting [r] and
〈r〉. In normal systems, the first specifies that the interpreting relation be total on its
domain and the second that it act functionally.

Axiom Schemes E: The axiom E1 is only necessary if you wish the classical
propositional logic at dom(r) to be included in the logic at cod(r). This condition
is part of the definition of simulation in Blackburn et al. (2000) although it is not
strictly necessary in that it can be removed without damaging the logic.

For all propositional letters p,

E1. p ⊃ [r] p

From now on, a distributed logic contains at least the specification S and axiom
schemes A and B, and the Definition of Possibility, and the rules A and B. Normal
distributed logics include the non-normal axioms and rules as well as the axiom
schemes C. The latter can also be added individually rather than en masse if only a
subset of the properties of normality are desired. The axiom schemesD are of interest
and we have modeling conditions for them. The axiom scheme E must be handled
quite separately in the semantics. Other axioms can be added, we stop with the list
chosen for the purposes of this presentation.

Axiom Scheme F: Simulation logic in Allwein et al. (2014) requires for an arc
r : h � k in G, and modal connectives [h] ∈ dom(r), [k] ∈ cod(r),

F1. 〈r〉 [k] P ⊃ [h] 〈r〉 P

In normal distributed logics, the axiom F1 forces the arcs in the graph to be
interpreted as simulation relations and B2 forces composition of relations to hold,
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where a simulation relation is one “half” of a bisimulation in Sangiorgi (2012). One
common use of the simulation relation is when the interpretation of 〈r〉 via a relation
R is a p-morphism. To force this, add the Axiom Schemes C and D to the simulation
axiom.

3 Frames and Algebras

In keepingwith our simplifications, assume there is only one localmodality per frame,
including both a� and ♦ since they are inter-definable. More modal connectives can
be added if needed by the particular distributed system under consideration.

3.1 Frames

Definition 3.1 A neighborhood frame is a structure H = (H,H, H) such that H is
a collection of worlds. H : H → PH is a nbd map taking every world of H into a
collection of neighborhoods. We use the same symbol for the frame and its nbd map,
and let use disambiguate what is meant. H is a collection of neighborhoods which
are subsets of H and the entire collection is closed under the Boolean operations and
under the operations [h], 〈h〉 : H → H given by:

[h] C
def= { x ∈ H : C ∈ Hx }, 〈h〉 C

def= { x ∈ H : − C /∈ Hx },

where −C is the set complement of C in H .

Each node in a distributed logic’s graph has a local logic associated with it. That
local logic, in turn, must have a neighborhood frame associated with it.

Definition 3.2 Let H and K be neighborhood frames. A nbd map R : H → K is a
map (also using the symbol R) R : H → PK such that for any C ∈ K,

[r] C
def= { x ∈ H : C ∈ Rx } ∈ H, 〈r〉 C

def= { x ∈ H : − C /∈ Rx } ∈ H.

Let R : H → K and S : K → L be morphisms. The identity morphism I : H → H
and the composition S ◦ R : H → L are defined with (x ∈ H )

I x
def= { C ∈ H : x ∈ C }, (S ◦ R)x

de f= { C ∈ L : { y : C ∈ S y } ∈ Rx }.

Each arc r : h � k of the graph must be associated with a semantic morphism in
the interpretation. The semantic morphisms are neighborhood maps R : H → PK

where K is the collection of neighborhoods, i.e., the K in (K ,K, K). In the normal
case, the neighborhood maps can be replaced with relations. These relations are
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derivable in the usual way (Chellas 1980), i.e., Rxy iff y ∈ ⋂
Rx ; that is, take

intersection of all the neighborhoods at x under R.
Note that the definition for composition can be rewritten as

(S ◦ R)x
de f= { C ∈ L : [s] C ∈ Rx }

using the Definition 3.2 for [s] C . The definition is found in Manes (1976) for the
Kleisli category of the double power setmonad.Ourmodels are always in the category
of neighborhood frames.

Each node representing a distinct local logic must be mapped to a distinct frame
object in any interpretation. This informal way of restricting interpretations is the
result of treating the graph, G as not defining everything in a distributed logic, but
the alternative would make the logic impenetrable.

The corresponding Kripke frame conditions for the logical axioms are

Frame Conditions S:

FS1. A category, with underlying
graph G, of local neighborhood
frames and neighborhood maps

FS2. An identity morphism for
each i arc in G

Frame Conditions A: For each node in G,

FA1. A set of classical worlds FA2. Frame conditions for a
local logic at this node

Frame Conditions B: For I : H → H, R : H → K and S : K → L

FB1. Ix = { C ∈ H : x ∈ C } FB2. (S ◦ R)x =
{ C ∈ L : [s] C ∈ Rx }

Frame Conditions C:

FC1. B, C ∈ Rx implies B ∩ C ∈ Rx

FC3. 
 ∈ Rx

FC2. B ∈ Rx and B ⊆ C implies
C ∈ Rx

Frame Conditions D:

FD1. C ∈ Rx implies − C /∈ Rx FD2. C /∈ Rx implies − C ∈ Rx

Frame Condition F:

FF1. −{ y : C ∈ Ky } /∈ Rx implies { z : − C /∈ Rz } ∈ Hx

with the convention that the nbd maps that use upper case script relation letters will
interpret modal connectives that use the corresponding lower case Roman letters.
Each distributed frame category interpreting a distributed logic will have the condi-
tions matching the axioms. The frame conditions S, A, and B are always assumed,
the others are required if the corresponding axioms are present in the modeled local
logic.
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Slightly different frames are used for the axiom E1; the local frames will contain
functions to interpret constants, one for every atomic proposition of the local logic
for which the local frame provides a model.

The following proposition allows for the use of one neighborhood frame per local
logic.

Proposition 3.3 There are no provable instances of formulas of the form P • Q for
• ∈ { ⊃,∧,∨ } with P in one local logic and Q in different local logic.

The proof is an easy induction on the axiom schemes and rules. The consequence
is that no formula in the logic has a binary connective between formulas in two
different local logics.

Note that we stated the above proposition in terms of formula “instances” rather
than formulas because it is possible to attach a local logic to more than one node in
the graph. In effect, this would give more than one instance of the logic in the entire
distributed logic.

Using the semantic conditions, it is easy to show that

x �H ¬ [r] ¬P iff x �H 〈r〉 P,

hence the definition of 〈r〉 in terms of [r] makes sense. A distributed category model
has neighborhood frames for every node with a valuation for each node. The mor-
phisms are neighborhood maps.

Definition 3.4 A distributed category model is a neighborhood frame category with
a valuation and a local frame for each local logic. The local frame and its valuation
are called a local model. A valuation specifies a collection of points in the local frame
where the atomic propositions are true.

3.2 Algebras

We rely on heterogeneous (multisorted) algebras from Birkhoff and Lipson (1968)
for the free algebra construction. The categorical version is most easily accessible in
Adámek and Rosický (1994) who attribute the multisorted (non-categorical) case to
Birkhoff and Lipson (1968).

Definition 3.5 (Birkhoff and Lipson 1968) A heterogeneous algebra is a system
A = [L, F] in which
1. L = { Si } is a family of non-void sets Si of different types of elements, each

called a phylum of the algebra A. The phyla Si are indexed by some set I ; i.e.,
Si ∈ L for i ∈ I (or are called by appropriate names).

2. F = { fα } is a set of finitary operations, where each fα is a mapping

fα : Si(1,α) × Si(2,α) × · · · × Si(n(α),α) → Sp(α)
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for some non-negative integer n(α), function iα : j → i( j, α) from n(α) =
{ 1, 2, . . . , n(α) } to I , and p(α) ∈ I . The operations fα are indexed by some set
Ω; i.e., fα ∈ F for α ∈ Ω (or are called by appropriate names).

Definition 3.6 A distributed algebra appropriate for a distributed logic is a hetero-
geneous algebra with a modal algebra, called a local modal algebra, for each node
of a graph, identity modal operators for each node, and distributed operators 〈r〉 and
[r] for every arc r of the graph. For r : h � k in the graph,

• [r] [s] a = [s ◦ r] a;
• [i] a = a, for the i arc in an endo-diagram;
• if the Axiom Schemes C are used

– [r] a ∧ [r] b ≤ [r](a ∧ b);
– [r](a ∧ b) ≤ [r] a ∧ [r] b;
– 
H = [r] 
K, for 
 the top of a Boolean lattice;

• if Axiom Schemes D are used

– [r] a ≤ 〈r〉 a;
– 〈r〉 a ≤ [r] a;

• 〈r〉 [k] a ≤ [h] 〈r〉 a, if Axiom Scheme F is used.

The axiom E1 will be handled in the next subsection where we must add constant
operations and functions to help interpret the propositional atoms.

Appropriate distributed algebras give a “localization” view of heterogeneous alge-
bras which is isomorphic to the definition given above. Each phylum Si with oper-
ators defined only upon Si is a local modal algebra. The operations associated with
r : h � k of the graph map from a local modal algebra to a local modal algebra. This
stratifies the heterogeneous distributed algebra and treats every local modal algebra
as an object in the surrounding distributed algebra.

Algebraic versions of soundness and completeness depend on the Lindenbaum–
Tarski (LT) algebra. We must first show that the operators all respect the congruence
of bi-implication induced on the local word algebras by the local logics. The only
operators not already covered in previous modal algebraic work are the distributed
operators.

Lemma 3.7 The distributed operators respect bi-equivalence.

The connective [r] respects bi-equivalence because of the Rule B. Using Boolean
negation, it is easy to show that 〈r〉 does as well.

Next, we must show that the LT algebra is actually a distributed algebra. The only
operators that are at issue are the distributed operators.

Lemma 3.8 The LT distributed operators satisfy the required properties for a dis-
tributed algebra.
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The equivalence classes for the LT algebras are defined (as usual) with [[[P]]] =
{ Q : �H P ≡ Q }. The operators are defined inductively, e.g., [[[P]]] ∧ [[[Q]]] =
[[[P ∧ Q]]], [r][[[P]]] = [[[[r] P]]], etc.
Corollary 3.9 The LT heterogeneous algebra is a distributed algebra.

Proof (Proof Outline) The free heterogeneous algebra is the usual algebra of equiva-
lence classes of terms in the variables as generators. One runs the induction procedure
to get the word algebras over all the local logics simultaneously (Birkhoff and Lipson
1968), then divide out by the equalities in each algebra. Proposition 3.3 shows that
no additional sorts over and above the local modal algebra carrier sets are necessary.
Lemma 3.7 shows that the replacement property for the bi-implication congruence
holds for each operator. Finally, Lemma 3.8 shows each of LT operators satisfy the
distributed algebra axioms. �

Theorem 3.10 Distributed Logic is sound with respect to the algebraic and distrib-
uted frame category models.

Proof (Proof Outline) Soundness over the algebraic models is an induction starting
with a valuation into a distributed algebra and then using the fact that the LT algebra
is a free algebra for the heterogeneous class of distributed algebras. From this, it
is easy to see that ⊃ interprets to ≤ in the algebra. The axioms of the LT algebra
clearly interpret to the axioms of the logic, and the rules of the logic preserve truth in
the algebra. The free heterogeneous algebras are then used to generate the universal
morphism for any interpretation into a heterogeneous modal algebra thus validating
the axioms and rules.

The FrameConditions FS1, FS2, FB1 andFB2, given thework inManes (1976) on
the double power set monad restricted to neighborhoods, show that the neighborhood
maps are the Kleisli morphisms and hence form a category, so the identity and
associative laws of categories are met. In the presence of the normal axioms, the
previous prescription for manufacturing relations from neighborhood maps shows
these frame conditions ensure the maps act like Kleisli morphisms for the power set
monad restricted to neighborhoods.

The rest of the axioms and rules are easily checked. �

The canonical frame is generated by the LT algebra; the frame’s neighborhoods
are the output of a representation function for the LT algebra. The representation
function β is defined by

βa = { x : a ∈ x and x is a maximal filter }.

Let MA(h),MA(k) stand for the local modal algebras and CF(h),CF(k) stand for
the canonical frames at h and k, respectively. To get a frame category from the
LT modal algebra requires that one take the (dual) Stone space containing all the
maximal filters of each local algebra and define the local neighborhood maps with:

βa ∈ Hx iff [h] a ∈ x .
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Since [h] and 〈h〉 are De Morgan duals of each other and β is a homomorphism,

−βa /∈ Hx iff β¬a /∈ Hx iff [h] ¬a /∈ x iff ¬ [h] ¬a ∈ x iff 〈h〉 a ∈ x .

These same definitions work for the canonical relation R for r : h � k where now
a ∈ MA(k), [r] a, 〈r〉 a ∈ MA(h), x ∈ CF(h), andRx ⊆ K forK the neighborhoods
of CF(k).

It is not hard to show that β [h] a = [h] βa and β 〈h〉 a = 〈h〉 βa. Set union,
intersection, and set complement interpret the classical logic connectives ∨, ∧, and
¬. The only question is the status of 〈r〉, [r] for r : h � k.

Lemma 3.11 For a ∈ MA(k) and 〈r〉 a ∈ MA(h),

β [r] a = [r] βa and β 〈r〉 a = 〈r〉βa.

Proof x ∈ β [r] a iff [r] a ∈ x iff βa ∈ Rx iff x ∈ [r] βa. The proof for 〈r〉 is
similar. �

The modal completeness argument is the usual algebraic argument (Dunn and
Hardegree 2001) using contraposition and the frame argument uses the canonical
frame derived from a representation theorem (Allwein and Dunn 1993; Dunn and
Hardegree 2001). Themodal representation theorem represents amodal algebra as an
algebra of sets using the canonical frame (Stone space) of the algebra. One defines
the 1–1 homomorphism β on the distributed algebra for each carrier set and the
operations using the above prescriptions.

Theorem 3.12 Distributed Logic is complete with respect to the distributed algebras
and the distributed category models.

Proof FromProposition3.3,weneedonly concernourselveswith formula (instances)
which sit entirely within a single local logic. So one presents the formula instance
at issue and then picks the local logic for which it must be determined whether it is
a theorem. The argument is a contraposition argument using the LT heterogeneous
algebra and its canonical frame category.

Note that any theoremwithout an implication as themain connective can be outfit-
ted with one because � P iff � T ⊃ P where T is the truth constant in a local logic.
Hence we need only to check implications. Suppose � P ⊃ Q, then [[[P]]] � [[[Q]]]
in the LT algebra where [[[P]]], [[[Q]]] are the bi-implicational equivalence classes.
This along with Corollary 3.9 is enough for algebraic completeness.

For frame completeness, there is a maximal separating filter x such that [[[P]]] ∈ x
and [[[Q]]] /∈ x , i.e., x ∈ β[[[P]]] and x /∈ β[[[Q]]], so x � P and x � Q. Therefore
there is a local model falsifying the non-theorem, and hence a distributed category
model falsifying the non-theorem.

Taking the contrapositive in the algebraic and frame cases yields the required
result. �
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3.3 The Axiom Schemes E

The Axiom E1 requires some special treatment. The algebra will now have a collec-
tion of constant operators, one for each propositional atom in the language. The axiom
does not merely necessitate a finite collection of operators but rather requires one for
each propositional atom. This is in contradistinction to the usual prescription that a
Hilbert-style axiom imposes on an algebraic interpretation. The usual prescription
imposes a finite collection of operators and a finite number of properties.

Definition 3.13 An E local modal algebra is a local modal algebra with a collection
of (local) constant operations. In symbols, if p is a propositional atom, then its
constant, nullary operation, σp, is such that σp = p in the word algebra of the logic
and σp = [[[p]]] in the LT algebra. In addition to any axioms necessary for the local
modal logic, we add the axiom

σp ≤ [r] σp

for an arc r in the diagram to another node. We also require the logic at cod(r) to
contain at least the same propositional atoms as those at dom(r).

Note that two constant operations, being functions, can point to the same element
of the local modal algebra. The Lindenbaum–Tarski E local modal algebra has each
constant operation pointing out the equivalence class of the propositional atom to
which it is attached.

Definition 3.14 AnE neighborhood frame is a neighborhood framewith a collection
of constant functions, f p, one for each propositional atom.A constant function selects
an element of the set algebra, i.e., a local neighborhood.

Fix adistributed algebrawith anydesiredE localmodal algebras.Modal valuations
vary over what gets assigned to the propositional atoms. Here, the valuations must
be consistent with the nullary operations associated with each atom. We get the
variation necessary for valuations by choosing different algebras which agree on
everything except the nullary operations. So the variation gets satisfied at a slightly
higher level. A similar statement holds for E neighborhood frames. The inductive
definition generating interpretations from valuations remains the same and hence the
restriction on valuations gets transferred to interpretations.

Definition 3.15 An E local algebra valuation, [[−]], must take every propositional
atom to an element of the carrier set pointed to by the nullary operation for that
atom, i.e., if σp = a, then [[p]] = a. Similarly, for an E local neighborhood frame
and valuations [[−]], we demand [[p]] = C if f p = C . Also, we demand that for
r : h � k, the r interpreting relation R must respect the constant functions in the
sense that x ∈ f p at the neighborhood frame for h and f p ∈ Rx at the neighborhood
frame for k.

The axiom σp ≤ [r] σp effectively forces [[p]] ≤ [r][[p]] for any interpreta-
tion [[−]]. For the LT algebra, σp = p in the word algebra forces σp = [[[p]]] in
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the LT algebra. The result is that we get the same LT algebra as we would have
without the nullary constants. The universal property of the free algebra with respect
to unique maps to the other E local modal algebras are unaffected since the restric-
tion on interpretations will force the unique maps to choose the same elements of the
algebras to which the nullary operations point for the respective propositional atoms.
In the freeness diagram below, p indicates some propositional atom in the language,
F Ah is the carrier set of the local modal logic for h inside of the free algebra A.
The algebra B is some other appropriate distributed algebra, and γ is an induced
interpretation from the freeness property of A, UA is the forgetful functor U (from
algebras to sets) applied to the algebra A and returns the carrier sets (or sorts) of A,
and similarly for UB. Ug is the underlying set function of the homomorphism g. SL
is the set of atoms of the source language, and η maps (injects) them into the proper
elements of the object UA.

SL(h,k ∈G) UA A((F Ah,F Ak ∈{ Si }),σ F Ah
p ,σ F Ak

p ∈ OpsA)

UB B((Bh, Bk ∈{ Ti }), σ Bh
p , σ Bk

p ∈ OpsB)

η

γ
Ug g

The algebra B has no notion of propositional atoms. The σp, being operations, are
preserved by g. Hence, η(p) = σ F Ah

p and g(η(p)) = g(σ F Ah
p ) = σ F Bh

p . Since the
diagram commutes, γ (p) = σ F Bh

p .
The extension to distributed algebras and distributed category models are called

E distributed algebras and E distributed category models.

Theorem 3.16 Distributed logics with the E axioms are sound and complete with
respect to E distributed algebras and E distributed category models.

4 Cheap Entailment Arrows

We use the word “cheap” because we embed the entailment arrow into a distributed
modal logic. This is in contradistinction to treating the entailment arrows asmore like
relevance logic’s entailment. In later work, we will show how to distribute relevance
logic’s entailment arrow; for now we stick to modal logic due to its simplicity and
that its models are relatively free of auxiliary partial orders such as is necessary for
relevance logic.

Gödel’s embedding of intuitionistic entailment into S4 leaves open the possibility
that an intuitionistic entailment might have a distributed counterpart. Barwise and
Seligman (1993) used a similar encoding but into S5 for an entailment. In their
setup, worlds are essentially three-valued; they use a partial function from a world
and a proposition into { +,−}. S4 and S5 suffer from the problem that the Kripke
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relations used in an interpretation are required to be reflexive and transitive which
would cause too much of the distributed structure of the interpreting category to
collapse. However, one can still use the general idea of modal embedding.

We take the property of residuation to be the primary feature of an entailment
arrow. The residuation partner of an entailmentwewill term (followingDunn) fusion,
which is an intensional conjunction. The care and feeding of fusion dictates the
distributed nature of the entailments.

In the sequel, we sometimes use superscripts over connectives to indicate to which

logic they belong, i.e.,
h⊃ is classical implication for the local logic at node h in

the graph of a distributed logic. The general rule of thumb is that classical logical
connectives take their arguments and return their result entirely within a single logic
whereas distributed intensional and modal connectives each may take an argument
from a local logic and may return their result in a different local logic.

In the sequel, we use a notion from Barwise and Seligman (1997) (although it
is not original with them) of a classification containing two sets, a set containing
the logic over a set containing the models or worlds. They are connected with a
satisfaction relation �. We use the terminology classification of h to refer to the
classification at a node h in a distributed logic’s graph and �h is the satisfaction
relation at h.

4.1 Gödel Entailment and Fusion

Gödel entailment and fusion connectives arise from insisting that the interpretation of
the intuitionistic entailment retain the form of its first order logic evaluation, although
dropping the restrictions of S4 on the interpreting relation. Referring to Fig. 3, we use
⇒ and⇐ for the entailment connectives. Later it will turn out these are identical, but
for now we will leave them as separate connectives. The � and �′ connectives are

Local Logic h Local Logic kU,V,
Q ⇐ P
P ⇒ Q

P,Q,
P,′ Q′,
P�U,
U �′ P

H K

�h �k

⇒,⇐

[r]

〈·r·〉

R

Fig. 3 Gödel entailment and fusion
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distributed intensional conjunctions. The following diagram shows the logic (top)
layer for two logics h and k and the model (bottom) layer of their respective sets of
worlds H and K . The arrows between the logics are logical connectives. As before,
[r] is the forward looking necessity interpreted with the relation R and 〈·r ·〉 is the
backwards looking possibility connective interpreted with R.

The evaluation condition for � is

y �k P � U iff ∃x (Rxy and x �h U and y �k P).

The evaluation condition for ⇒ is

x �h P ⇒ Q iff ∀y (Rxy and y �k P implies y �k Q).

Note that these modeling conditions are precisely the modeling conditions for the
coding

P ⇒ Q
def= [r](P ⊃ Q).

and the conditions for � generate the encoding

P � U
def= P ∧ 〈·r ·〉 U.

Theorem 4.1 The two residuation axioms

U
h⊃ (

P ⇒ (P � U )
)
,

(
P � (P ⇒ Q)

) k⊃ Q,

which dictate into which logics the formulas fall, are valid.

One adds the following monotonicity rules:

U �h V P �k Q

P � U �k Q � V
�−monotonicty

P �k Q P ′ �k Q′

Q ⇒ P ′ �h P ⇒ Q′ ⇒-monotonicty

From the axioms and rules, the usual (bidirectional) form of residuation is derivable:

U
h⊃ (P ⇒ Q)

(P � U )
k⊃ Q

residuation

There is a second fusion connective with the evaluation condition

y �k U �′ P iff ∃x (Rxy and x �h U and y �k P),

One might conjecture there is a second entailment ⇐ connective with the evaluation
condition
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x �h Q ⇐ P iff ∀y (Rxy and y �k P implies y �k Q).

However, ⇐ is the same as ⇒ simply because there is no additional freedom to
alter it given the Gödel evaluation form we are following and where the formulas
must fall in the distribution. This is not true of the �′ connective because one of the
subformulas is evaluated using the same position in the relation as the result of the
connective.

The ⇐ and �′ have the following two residuation properties

U
h⊃ (

(U �′ P) ⇐ P
)
,

(
(Q ⇐ P) �′ P

) k⊃ Q,

which again dictate into which logics the formulas fall. Residuation in the following
form holds:

U
h⊃ (Q ⇐ P)

(U �′ P)
k⊃ Q

residuation

It is then easy to show that P � U ≡ U �′ P .
If one were to treat the two entailment and two fusion connectives as native rather

than defined, then one needs to add the axioms

(P � U )
k⊃ (U �′ P) (U �′ P)

k⊃ (P � U )

and

(P ⇒ Q)
h⊃ (Q ⇐ P) (Q ⇐ P)

h⊃ (P ⇒ Q).

Syntactically, ⇒ and ⇐ are the same connective because the arguments come from
the same local logic.� and�′ cannot be the same because the arguments come from
different local logics.

It is necessary to have an intensional conjunction, �, rather than an extensional
conjunction,∧, because in the statement of residuation, (rewritten) the lower premise

P ∧ U
k⊃ Q would require that P and U be in the same classification for ∧ to make

sense and also that Q be in that same classification for
k⊃ to make sense.

4.2 Simple Entailment and Fusion

A simple version of relevant-like entailment is definable. Let there be the set up in
Fig. 4.
It turns out that there is no distinction between −��� and ���− mainly because ◦ must be
commutative (Fig. 4). This latter is so because the evaluation condition is
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Local Logic h Local Logic kP,Q,
P,′ Q′,
U ���−P
P−���U

U,V,
P◦Q

H K

�h �k

−���, ���−

[s]

〈·s·〉

S

Fig. 4 Simple entailment and fusion

y �k P ◦ Q iff ∃x (Sxy and x �h P and x �h Q).

The −��� connective has the following evaluation condition:

x �h P −��� U iff ∀y (Sxy and x �h P implies y �k U ).

Since x is a free variable and x �h P does not rely on the ∀y quantifier, we can
rewrite this as

x �h P −��� U iff x �h P implies ∀y (Sxy implies y �k U ).

The two evaluation conditions show the following definitions can be made

P −��� U
def= P

h⊃ [s] U, P ◦ Q
def= 〈·s·〉(P ∧ Q).

The following monotonicity rules must be added:

P �h P ′ Q �h Q′

P ◦ P ′ �k Q ◦ Q′ ◦-monotonicty
P �h Q U �k V

Q −��� U �h P −��� V
−���-monotonicty

Theorem 4.2 The two residuation properties

Q
h⊃ (

P −��� (P ◦ Q)
)
,

(
P ◦ (P −��� U )

) k⊃ U,

which dictate into which logics the formulas fall, are valid.
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Residuation holds in this distributed setting with the bidirectional rule:

Q
h⊃ (P −��� U )

(P ◦ Q)
k⊃ U

residuation

It is clear there can be only one fusion connective and not a second ◦′ given the
symmetry of the semantics. Due to the symmetry and residuation, there can be only
a single entailment connective and so −��� and ���− collapse into a single entailment.
Also, if these connectives are treated as native, one also needs

(P ◦ Q)
k⊃ (Q ◦′ P) (Q ◦′ P)

k⊃ (P ◦ Q)

and

(P −��� U )
h⊃ (U ���− P) (U ���− P)

h⊃ (P −��� U )

since the semantics will identify the respective connectives.

4.3 Preservation Conditions

Wework first with Gödel Entailment. Assume the confluent diagram of Fig. 5 appro-
priating the categorical notation of Freyd and Scedrov (1990) (although the diagram
is not category theoretic) where one reads from left to right the Simulation Property,

for all x, y, u such that Rxu and Hxy, there exists a z such that Kuz and Ryz.

The relation R is the Simulation Relation. The schema G in Chellas (1980) for
i = j = m = n = 1 is also known as the Geach axiom (left):

♦i� j P ⊃ �m♦n P, 〈r〉 [k] P ⊃ [h] 〈r〉 P.

where the i, j, m, n refer to repetitions of their respective connectives, i.e., ♦i stand
for i instances of ♦ concatenated together, and so on for the rest. From Simulation
Logic in Allwein et al. (2014), the condition is the first-order Simulation Property
for modal logics. The axiom on the right is the Simulation Axiom. The Simulation
Property validates the axiom. The modal connectives 〈r〉, [k], and [h] are interpreted
by the relations R, K, and H respectively in the Simulation Property. Again, we
allow the indices h and k to refer to a local logic as well as indexing the local logic’s
modal connectives, and we also assume there are only the modal connectives [k], 〈k〉
in the logic at k and similarly at h. The intuitive picture of two local logics h and k
semantically connected by a simulation R is Fig. 6.
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The two entailments,
h=⇒ and

k=⇒ are similar to the Gödel entailments of the
previous section but result in formulas in the same local logics as their arguments.
The labels are meant as a reminder of this fact and that they are not to be confused
with the previous distributed Gödel entailments.

The confluent condition underwrites theGödel entailment preservation in the form
of the following axiom replacing the Simulation Logic axiom:

〈r〉(P
k=⇒ Q)

h⊃ ( [r] P
h=⇒ 〈r〉 Q

)
The following is a derived rule by virtue of residuation and the fact that the 〈r〉

connective is monotone:

〈r〉(P
k=⇒ Q)

h⊃ ( [r] P
h=⇒ 〈r〉 Q

)
( [r] U

h
� 〈r〉 V

) h⊃ 〈r〉(U k
� V )

where
h
� and

k
� are similar to the previousGödel fusion connective� except restricted

to a single local logic.
One can also use residuation to take the conclusion of this derived rule as an axiom

and derive the premise.

Now for the simple entailment preservation of
h−���. In the Freyd–Scedrov diagram

of Fig. 7, H˘ and K˘ refer to the converse of H and K, and are used because ◦ is a
backwards looking connective. This condition validates

〈·h·〉 [r] P ≤ [r] 〈·k·〉 P.

The confluent condition also underwrites the simple fusion preservation in the form
of the following axiom:

( [r] P
h◦ [r] Q

) h⊃ [r](P
k◦ Q)

The following is a derived rule by virtue of residuation and the fact that the [r]
connective is monotone:

Fig. 5 Simulation property
for Gödel entailment

∀ ∃ z

y u y u

x x
RH RH

R K
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Local Logic h Local Logic k[r]P h=⇒ 〈r〉Q

〈r〉(P k=⇒ Q)

P,Q,

P
k=⇒ Q,

H K

�h �k

[r]

〈r〉

R

Fig. 6 Preserving Gödel entailment

Fig. 7 Simulation property
for simple entailment

∀ ∃ u

x z x z

y y
RH˘ RH˘

R K˘

( [r] P
h◦ [r] Q

) h⊃ [r](P
k◦ Q)

[r](P
k−−��� Q)

h⊃ ([r] P
h−−��� [r] Q)

As before, one can also use residuation to take the conclusion of this derived rule as
an axiom and derive the premise.

5 Noninterference as a Simulation

High level security properties are generally expressed informally using distributed
notions. However, when coerced into formal models, they frequently lose their dis-
tribution and the notion of a cross-product of system states replaces the notion
of distribution. This has the effect of making the analysis complicated because
then the distribution structure has to be disentangled from the combined system.
Distributed logic cuts through the encode-the-distribution and subsequent decode-
the-distribution steps. Noninterference (Goguen and Meseguer 1982) is a security
property that is frequently imposed on state-based systems that process a combina-
tion of high security and low security data. Note that we refer to data here and not
information. Information requires a more sophisticated typing scheme beyond mere
values. To go one step further, knowledge requires a certain relationship between
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an agent and information. So we are concerned here with the most basic form of
processing. In this section, we show how to view noninterference in a distributed
setting.

A covert channel is a stream of data that rides atop an actual stream of data. An
example is a message where the number of “a”s relative to the number of “e”s
in a sentence could indicate a 0 or 1. Taken over the entire message, the covert
channel is a sequence of 0s and 1s while the actual channel is the contents of the
message. One cannot simply use the overt flow of data from high to low using
Shannon communication theory. All the covert channels must be taken into account.
It is hard to account for all of them because there is no way to predict their existence.
Also, it is possible through the measurement process to pass as much data as you
like through a channel of capacity zero (Moskowitz et al. 2002). This occurs because
capacity is defined via a mathematical limiting process.

A high security process (one that processes high security data) influences or inter-
feres with a low security process just when the behavior of the low security process
changes in the presence of the high security process. The high and low processes
are run together and compared against running the low process with high’s output
deleted. The reason for running the high and low processes together for the compar-
ison is to account for any covert channels from high to low that are not accounted
for merely by looking at high’s output. The output will contain the overt channel’s
data as well as any covert channels residing therein. We need to look at low’s output
while running with high and then again while running low by itself. Noninterference
is then expressed using a particular simulation relation which formulates what low
can see in terms of the deletion of high’s outputs. So in effect, we are choosing a
canonical simulation relation for the combined high-low system; this is a simulation
relation intimately tied to noninterference.

Let there be a High and Low system k which is the combination h + l of the
high and low system running together as a single system and a Low system l. If h
noninterferes with l then there is a simulation relation so that every move that k can
make is simulated by l. However, this is not enough. It could be that l is simply
reading h’s output and that would be interfering. So it is not enough to claim that
noninterference means the existence of a simulation relation. The simulation relation
must have some other properties.

Goguen and Meseguer (1982) state that noninterference exists when a particular
equation holds. We let v be a user, and b be an executable instruction. The pair
is denoted by (b, v), and is called a command. A finite sequence w of commands
may be issued by both High and Low users. Assuming a start state, [[w]] represents
executing the commands in w. This results in a state that contains both High and
Low data. Let A be a collection of commands. A function SG,A strips out or purges
commands from A in w which contain a user in G. Stripping is denoted by SG,A(w).
We will let G be the collection of High users. Let out be an output function, then

out
(
[[w]], v, b

)
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is read “the output of the command b executed by user v after commands in w are
run.” Similarly,

out
(
[[SG,A(w)]], v, b

)
is read “the output of the command b executed by user v after the commands in the
stripped w are run.”

Let v be a Low user, b a command that can be issued by v, and A a collection of
commands which we deem to be security critical. High noninterferes with Low just
when the following equation holds for all w, v, and b:

out
(
[[w]], v, b

)
= out

(
[[SG,A(w)]], v, b

)
.

5.1 Derivation of the Simulation Relation

Let K be the next state relation on the combination High and Low system k and L be
the next state relation on the low system l. The next state relation is a collection of
state pairs derived from all the commands a particular system can produce. Since we
are abstracting over all commands, it is sufficient for the effect of a set of commands
to be represented by a relation, i.e., we do not care about any one particular command.

The simulation axiom is
〈r〉 [l] Q ⊃ [k] 〈r〉 Q

for all properties Q of l. (Note the [k] is now in a different position than the previous
use of this axiom due to nomenclature issues.)

Satisfaction in k for the left hand side is

x �k 〈r〉 [l] Q iff ∃y ∈ l (Rxy and ∀z ∈ l (Lyz implies z �l Q))

and for the right hand side is

x �k [k] 〈r〉 Q iff ∀u ∈ k (Kxu implies ∃z ∈ l (Ruz and z �l Q)).

Wewill useR to stand for stripping out High’s state data since it relates k states with
l states. If x is a state in k, then it must contain both High and Low data. y is a state
in l and hence can contain only Low’s data.

Now we attempt to rewrite Goguen andMeseguer’s definition of noninterference.
Recall

out
(
[[w]], v, b

)
= out

(
[[SG,A(w)]], v, b

)
,

Here, v is more or less a useless parameter, we assume the user is some v. So we
can drop v. Every command must have start and stop states. Note that [[w]] relates
start and stop states. Hence we can rewrite with [[w]] standing for a relation in infix
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notation:

x [[w]] u and out(b(u)) iff y [[SG,A(w)]] z and out(b(z)).

where b reads the state and out produces some output value. The left side involves
the states x and u of k and the right side involves the states y and z of l. So we will
need to restructure the statement.

To restructure the statement, note that we are only interested in properties of l.
The expression out(b(u)) can be rewritten in terms of a property of l if we relate u
to some state z′ in the l system. A stripper function will do precisely what we want
so we use the relation R to represent stripping a k state of its high component and
returning its low component. Hence, we rewrite the statement to be

x [[w]] u and Ruz′ and out(b(z′)) iff y [[SG,A(w)]] z and out(b(z)).

The out(b(z′)) expression is awkward and represents a property evaluated at the
state z′. The fact that the read instruction b is used is merely parametric at this point.
We abstract the output value into some predicate, Q, and assume the predicate is
being held true or false of an l state. Hence out(b(z′)) will be represented as Q(z′).
Rewriting, we get

x [[w]] u and Ruz′ and Q(z′) iff y [[SG,A(w)]] z and Q(z).

Both computations should start out in the same state, and they would were they both
in the same state space. However, they are not, and we use R again to strip out h’s
data from x :

x [[w]] u and Ruz′ and Q(z′) iff Rxy and y [[SG,A(w)]] z and Q(z).

All the commands in k together can be abstracted into a next state relation K and
similarly for l usingL (note, SG,A need not be a surjective function from k command
sequences to l command sequences):

Kxu and Ruz′ and Q(z′) iff Rxy and Lyz and Q(z).

If z �= z′ then l would be interfered with, so we make them equal:

Kxu and Ruz and Q(z) iff Rxy and Lyz and Q(z).

Since Q(z) is parametric and appears on both sides of the iff, we can remove it:

Kxu and Ruz iff Rxy and Lyz.

This statement expresses the confluent diagram of Fig. 8
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Fig. 8 Noninterference
confluent diagram

z

u y

x
K R

LR

We have ignored quantification over states. Certainly the confluent diagram does not
hold for any u, x , y, and z, only the states in the proper relations. u is restricted by
K and y by R. z is determined by L and R. The first is of the form “for any x and u
such that Kxu,” and the latter by “for any x and y such that Rxy,” even if R appears
as a stripper function. z is determined by an existential which is hidden by using a
function, namely being a state determined by a stripper function but satisfying Lyz.

Now we must motivate the reformulation in terms of a simulation. We need only
be concerned with whether k can make a move that l possibly cannot mimic. There
are two parts, k must make a move recorded by Kxu and the beginning state for
the move, x , must be strippable into a state y of l. If k can make no such move or
the beginning state is not strippable into a state for l, then we have “do not care”
situation. The equality is really masking the fact that the statement should read

Were k to execute the sequence of commands w, then l could not detect the
difference from executing the sequence of w with k commands stripped out.

This situation is neatly handled by using a conditional

Kxu and Rxy implies ∃z (Lyz and Ruz).

which is the Simulation Property. Nowwe can bring back the parametric Q(z). Since
z is a world, and the worlds are being abstracted away in modal logic, what is left
over is just the proposition Q. Here there is a choice. In order to be a logic, Q should
be a metalinguistic variable and range over all propositions. However, there is no
need to go this far, Q can be restricted to range only over propositions that are critical
to a particular implementation. Either way, the axiom

〈r〉 [l] Q ⊃ [k] 〈r〉 Q

is certainly apropos in the analysis since the Simulation Property is necessary to
validate this axiom. The situation can be diagrammed as illustrated in Fig. 9.
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Fig. 9 Noninterference
simulation

High + Low k Low l

Models of
the theory of k

Models of
the theory l

〈r〉

� �

R

[k] [l]

K
L

6 Stochastic Relations

Distributed logics lend themselves to being measured. This is important because
many security properties will never hold either entirely or not at all of any particular
system. By measuring the system over which noninterference is desired, the goal is
to measure the security via noninterference.

The relationR as a set-valued map returns a set of all the points y to which an x is
related. If instead there is some ambiguity about whether y is in Rx , then the notion
of map must be relaxed much in the same way as that presented with neighborhood
maps. The prescription is then

R(x)(Q) ∈ [0, 1]

where Q is a neighborhood at k and [0, 1] is the continuum from 0 to 1.
From Doberkat (2010), the following, with nomenclature changes to match this

paper, defines stochastic relations. The models are now promoted to measurable
spaces. In particular, the clopen sets of the Stone topology are now measurable and
that topology is promoted to a σ -algebra. H = (H, H) and K = (K , K) are now
measurable spaces and H and K are promoted to measurable relations as below:

Definition 6.1 A stochastic relation R : H → K is a measurable map H → G(K)

where G(K) is the collection of subprobability measures and the initial σ -algebra on
the subprobability measures.

The following proposition from Doberkat (2010) characterizes stochastic rela-
tions:

Proposition 6.2 Given measurable spaces H and K, the following are equivalent:

(i) R : H → K is a stochastic relation.
(ii) R(x) is a subprobability measure on K for each x ∈ H such that the map

x �→ R(x)(Q) is H measurable for each measurable set Q ∈ K.
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Stochastic relations also compose, Doberkat (2010). Stochastic relations give the
means for measuring the possibility operator 〈r〉 as

(μ 〈r〉)(Q) =
∫

x∈H
R(x)(Q)dμ(x).

7 Conclusions and Future Work

Distributed logic is best viewed as a logical toolbox for integrating many different
logics which are themselves configured by axioms. One specifies the “connectivity”
of local logics as a graph structure and then configures these “connections” with
axioms and rules based upon a particular application. Many of the common modal
axioms can be altered to fit distributed modal connectives. The simulation axiom
shows this. As a further example, consider the Euclidean axiom (in a normal modal
logic) 〈h〉 P ⊃ [h] 〈h〉 P and its validating condition Hxy and Hxz implies Hyz.
In distributed form for r : h � k in Fig. 10, this becomes 〈r〉 P ⊃ [r] 〈k〉 P and the
condition becomes (Rxy and Rxz) implies Kyz.

Figure10 represents a common situation: the relation R between domain h and
k is an artifact of the model and as such, deserves to be represented in a logic over
the model. This is the sense in which distributed logic could be considered a model
theoretic logic (Barwise and Feferman 1985). Onemustmake choices up front before
parts of the toolbox come together for a logic; the choices are made because models
of a particular kind are needed for an application.

More philosophically speaking, modal logics come with a model theory which
includes morphisms between models. The logic is abstracted over the model theory
giving valid axioms and rules for reasoning about the models. Since morphisms
are used in the model theory to describe critical aspects of the model, the obvious
question is why these aspects are not formalized in the logics? The work in this paper
(and its predecessor Allwein et al. 2014) represents the first steps in this direction.

Part of the challenge of including morphisms in a logic is deciding which mor-
phisms to include and how the included morphisms should be structured. Category
theory presents us with the theory of morphisms, and considering modal logic, one

Fig. 10 Distributed
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could have started with p-morphisms. The approach we have taken is to general-
ize the notion of what should be considered a model theoretic morphism and then
use logical axioms to give the morphisms the properties desired. In effect, we are
choosing logical morphisms that preserve only some desired structure (but not all
structure). The axiom system is then used as an array of control switches to config-
ure distributed logics. In addition, the morphisms can be fine-tuned between some
local logics but not imposed between all local logics within a distributed logic. This
accords well with the notion that distributed logics should be useful for representing
reasoning about distributed computing systems where there is much variation and
nuance that must be represented formally.

Space prevents us from also covering two-place intensional connectives such as
entailment in relevance logic. That, too, has a pleasant reconstruction in distributed
logic, although the three place relations require an extended notion of categorical
morphism. Distributed logic was originally formulated with relations and consid-
eration of testing for externally defined components in system-on-a-chip designs
required the use of neighborhood systems. The ease of modification of distributed
logic forced by twoplace intensional connectives andweakmodal connectives requir-
ing a neighborhood semantics is part of a larger theme for distributed logic: many
model theoretic notions are “orthogonal” to distribution in that they do not seem
to cause any significant hurdles to their re-expression in a distributed logic. Some
model theoretic notions, such as morphism, are inherently distributed. Some, such
as, Kripke relations, can be re-expressed as distributed notions. The bounds of what
is possible seems to be related to the question of what is modality.

A good source of applications which require distributed reasoning are the secu-
rity guarantees necessary for system-on-a-chip (SoC) architectures. In on-going and
future work, we are expanding the use of distributed logics to provide a programming
logic for a hardware specification language called ReWire in Procter et al. (2015).
Formal logic for SoCs almost demands a distributed logic. The sub-components are
scattered across the chip and each is a small universe of internal states or worlds.
One sub-component’s connections with other sub-components can be either tight or
very loose. Distributed Kripke relations provide the right kind of flexibility in this
environment for interpreting logical properties of the SoC.

Most systems in the engineering world have some kind of distribution, whether
it is concretely in space or abstractly as a mathematical distribution of modeling
conditions. As is typical of the real world, many properties are not binary (i.e., that
either the system or component has the property or it does not) but, rather, only
admit to a probability of holding. Much of the goal of engineering is to have systems
perform to a certain tolerance. Chip companies recognize this and have produced
designs with error correction circuitry although, even then, they realize that they
cannot achieve perfection. The advantage distributed logic holds, given the structural
similarity with stochastic relations and Markov modeling, is that these mathematical
modeling techniques can now be seen as a direct weakening of logical properties.
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Tracking Information

Johan van Benthem

Abstract Depending on a relevant task at hand, information can be represented at
different levels, less or more detailed, each supporting its own appropriate logical
languages. We discuss a few of these levels and their connections, and investigate
when and how information growth at one level can be tracked at another. The resulting
view has two intertwined forms of logical dynamics for informational agents: one
of update and one of representation. Mike Dunn has been a lifelong pioneer in the
study of logic and information, with seminal contributions to relevant and resource
logics, including their semantic, algebraic and proof-theoretic dimensions. I offer
the thoughts to follow as an academic fellow-traveler.

Keywords Information · Logic · Level · Update · Tracking

1 Introduction: Information and Logic

Connections between logic and information have been a lifelong interest of Michael
Dunn, witness his seminal contributions that will be highlighted in this volume. I
have long been intrigued by this interface and its many dimensions, but my offering
in this volume in Mike’s honor concerns just one special topic: the dynamics of
information-driven agency over time.1

A first major issue in this setting is one that every logician studying the area
encounters sooner or later: information is not one single notion, but a content that can
be represented atdifferent levelsof detail, rougher or finer (vanBenthemandMartinez
2008). Each level supports natural “attitudes” that agents can have, not in any concrete
psychological sense, but in the sense of different attunements to information. In this
paper, I will start from perhaps the roughest level, that of semantic information as a

1More specific points of contact between our interests will be found at the end of this paper.
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range of possibilities, and then discuss richer views that are prominent in the recent
literature: plausibility order and belief, evidence, and eventually also some levels
higher up, such as prioritized evidence or probability.

A second major issue is the pervasive phenomenon of information dynamics (van
Benthem 2011). Agents do not have fixed information once and for all: it changes
all the time when receiving new informational signals, hard or soft. Moreover, their
attitudes tag along in a systematic manner, leading to dynamic knowledge update,
belief revision, or whatever term fits the current representation level. This second
issue is not unrelated to the first, since in any serious study of information, the choice
of a representation level cannot be made in isolation from the dynamic actions that
one wants to understand (Adriaans and van Benthem 2008).

However, my main aim in this paper is not to propose new representation levels
or new dynamic update actions. Rather, I want to investigate how the two themes
interact, resulting in the problem of “tracking” information dynamics at different
levels. I will state a few new results, and on that basis, raise some general problems
for the logical analysis of information in its proper generality. I will not develop a
fully general theory, but Sects. 10 and 11 will contain some thoughts on that further
step, including links with Mike Dunn’s work on abstract information structure.2

2 Semantic Information

2.1 Basic Epistemic Logic

Perhaps the roughest form of representing information is the common-sense picture
of a set of still live possible candidates for the actual world, an “epistemic range” that
shrinks when new information comes in. These sets are models for the language of
epistemic logic whose key operator Kiϕ says that ϕ holds in all accessible alternative
worlds for agent i , or in other terminology: the agent has the “semantic information”
that ϕ is true.3

When such models are used to describe some informational scenario taking place
in reality, one assumes there is a unique true state of affairs, that can be marked as the
“actual world” in the model—even though no agent needs to know which possibility
is in fact the actual one.

The valid principles of reasoning with semantic information are those of the
well-known modal logic S5 for each separate agent i . Note that this setting has no
non-trivial valid laws that relate the information of different agents: any significant

2In this paper, reviews of standard material will be brief, making reference to the literature. New
notions and new observations are marked as definitions, facts, or theorems. Also, I will be thinking
mostly of finite models in what follows, not as a point of principle, but to avoid standard complexities
in lifting simple intuitions to more complex infinite settings.
3Each agent i gets an equivalence relation ∼i whose clusters encode its information ranges.
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dependencies must come from information channels or other forms of alignment that
can hold between agents.

It is easy to criticize this setting for its extreme simplicity, but a bare range of
options represents a well-chosen mathematical abstraction that occurs across the
sciences and even philosophy.

We make even further simplifications. In this paper, we will consider just one
agent, and hence indices i will be dropped—although many paradigmatic informa-
tional scenarios essentially involve many agents.4 Another issue that we will leave
aside in this paper is the connection between semantic information in the sense of
epistemic logic and the usual philosophical notions of knowledge: see (Holliday
2012) for a sophisticated modern treatment.

2.2 Dynamics of Hard Information

The simplest informational events in this setting are “hard announcements” or obser-
vations !ϕ of the fact that the proposition ϕ is true in the actual world. What this new
information does is it retains those worlds in the current epistemic model that satisfy
ϕ, while it eliminates those worlds that do not currently satisfy ϕ. This is arguably the
simplest common-sense picture of obtaining new information, and it can be modeled
technically as transforming the current model M, s into the new restricted model
M | ϕ, s.

Updates of this sort can be tricky if the new information ϕ is not just factual (being
just a Boolean combination of atomic facts), but contains epistemic modalities.5

However, there is a complete logic for this dynamics of semantic information, which
can be brought out in a suitable two-tiered syntax. We introduce announcement
actions !ϕ for each formula: one can also think of these as public observations, or
other ways of receiving hard information. In constructing formulas, we then allow
Boolean operations, the K -modality, but now also a new dynamic modality [!ϕ]ψ
saying that after a truthful update with ϕ, ψ is the case in the updated model.

Theorem 2.1 The dynamic epistemic logic of update with hard information is com-
pletely axiomatizable.

Proof This result is easy to prove. The heart of the axiomatization is a “recursion
law” describing what new knowledge obtains after new hard information has been
received:

[!ϕ]Kψ ↔ (ϕ → K [!ϕ]ψ)

4In this simple case, we essentially identify the K -operator with the “universal modality” that ranges
over all worlds in the model.
5A well-known example are so-called “Moore sentences.” If an agent lacks information if p, but p
is the case (that is, ¬K p ∧ p is true), then announcing this fact will make ¬K p ∧ p false, as K p
has become true in the updated model given its restriction to p-worlds.
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Such recursion laws, here and in other systems to follow, are the basic principles
describing the stepwise dynamics of information change. �

This may suffice as a first level of representing information. Knowledge grows as
agents receive successive new inputs and make matching updates. In some scenarios,
this may zoom in to just the actual world, representing a state of common knowledge
for the agents about what the world is like. However, one can also study infinite
processes of endless learning. For further information on this dynamic-epistemic
methodology, including delicate private informational actions with more complex
updates, one can consult (van Ditmarsch et al. 2007) or (van Benthem 2011).

3 Plausibility and Belief

3.1 Plausibility Ordering

Mere semantic ranges ignore the fact that often, not all candidates for the actual world
are on a par. Say, in planning my upcoming trip, I may consider some possibilities
more plausible than others, and may well confine attention to the most plausible
cases. This can be modeled in an enrichment of the earlier models with additional
structure. We now expand the earlier epistemic models (W,∼, V ) to epistemic plau-
sibility models (W,∼,≤, V ), where ≤ is an ordering of “relative plausibility.” For
the purposes of this paper, we will assume that ≤ is a reflexive transitive order (i.e.,
a “pre-order”), not necessarily connected, leaving room for genuinely incomparable
worlds. Moreover, to avoid technicalities that are not germane to our main theme,
we assume that the plausibility order is the same at each world. I.e., in the sense of
semantic information, the agent knows her own plausibility ordering, and the beliefs
that she has, based on it.

This fine-structure of information at once suggests a richer repertoire of attitudes
for agents. In particular, it makes sense to look only at the most plausible worlds in
the current range, and define belief Bϕ as truth of ϕ in all of these. This is a sort
of less-demanding semantic information “to the best of one’s knowledge.” As for a
logic of belief construed in this way, it is better to also introduce a further notion of
conditional belief Bψϕ, that is, a belief in ϕ conditional on already being in the set
of ψ-worlds. Conditional belief satisfies exactly the principles of conditional logic
over Lewis-style models, with the proviso that the order need not be connected.

Plausibility order may look like a technical device, but there are interesting issues
in interpreting it. At the start of a process of inquiry, a plausibility order may be
viewed as a “prior,” a set of expectations, including conditional beliefs that state
what we would believe were certain new information to arrive.6 But over time, the
plausibility order can be modified by informational events (see below), and hence

6In other settings, this prior ordering amounts to a “learning method” telling the agent how to
respond to new information (Baltag et al. 2011).
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we can also think of the current order as a sort of rough record of past experience.
Finally, it is this order we tend to use for deciding on new actions, so plausibility
models are at the same time a record of the past and a guide to the future.

3.2 Plausibility Dynamics

What sort of informational events can affect epistemic plausibility models? Public
announcements still make sense, and validate a complete logic.

Theorem 3.1 The dynamic logic of belief change under hard information is com-
pletely axiomatizable.

Proof In particular, the key recursion laws for announcement are as follows:

[!ϕ]Bψ ↔ (ϕ → Bϕ[!ϕ]ψ)

[!ϕ]Bαψ ↔ (ϕ → Bϕ∧[!ϕ]α[!ϕ]ψ)

Note howconditional beliefs after announcementmodalities serve here to describe
beliefs formed after receiving new information. �

Events of hard information can interact with beliefs in surprising ways.

Example Misleading with a truth.

Consider a model with an actual world 1 plus two more possible worlds 2, 3, ordered
as follows qua plausibility: 1 ≤ 2 ≤ 3. Let the atomic proposition p be true in 1 and
3, but not in 2, and let q be true at 3 only. In this model, the agent believes that p,
because p is true in the most plausible world 3. Now announce the true fact that ¬q.
This will eliminate world 3, leaving an ordering 1 ≤ 2, where the agent now falsely
believes that not p. Despite this potentially surprising feature of update, a logic with
the above laws will keep reasoning about such scenarios straight.

However,whenwehavemore structure, there is often a richer repertoire of relevant
actions. In particular, in addition to the “hard information” in events !ϕ, there is “soft
information” that does not rule out any possibility, but changes the plausibility order
for the existing possibilities.

A well-known example is radical upgrade ⇑ϕ, with the following effect. We put
all ϕ-worlds above all ¬ϕ-worlds, on top in the ordering—while inside these two
zones, the old plausibility order is retained. Reasoning gets more complex than with
public announcement, but yields to techniques like before.

Theorem 3.2 The dynamic logic of belief change under radical upgrade is com-
pletely axiomatizable.
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Proof This time, the key recursion laws aremore involved. Perhaps themost complex
principle is the valid equivalence for the new conditional beliefs formed under radical
upgrade. It reads as follows:

[⇑ϕ]Bαψ ↔ (♦(ϕ ∧ [⇑ϕ]α) ∧ Bϕ∧[⇑ϕ]α[⇑ϕ]ψ)

∨ (¬♦(ϕ ∧ [⇑ϕ]α) ∧ B[⇑ϕ]α[⇑ϕ]ψ))

with ♦ an existential modality “somewhere in the current epistemic range.” �

But softness comes in different kinds.A less radicalway of taking new information
is the suggestion #ϕ, whose effect is merely to remove any links that run from a ϕ-
world to some more plausible ¬ϕ-world. This forces us to take best worlds inside
the ϕ-zone seriously in our beliefs, though formerly best ¬ϕ-worlds are still in play,
too. Again, the dynamic logic of belief change is completely axiomatizable, but we
will not state its key recursion law here.

There is a wide spectrum of order-changing operations behind these three specific
examples of update actions, that can be found in many places: not just as plausibil-
ity change, but also as operations that change preferences (Liu 2011) or relevance
(van Benthem 2015).7 Indeed, there exist general methods for defining updates and
deriving recursion laws in all these cases, for which we refer the reader to Baltag and
Smets (2006), van Benthem and Liu (2007), Girard et al. (2012), and van Benthem
and Smets (2015).

Remark Factual or epistemic-doxastic propositions.

One reason why the above recursion laws get complex syntactically is having to
deal with knowledge and belief operators inside incoming new information, which
can lead to surprising truth value changes under update. While this “higher infor-
mation” is realistic in actual communication, it is also something of a technical side
issue in this paper. Therefore, we make a sweeping simplification, namely, we will
restrict attention to factual propositions only. Or stated differently, we decontextu-
alize propositions denoted by our epistemic-doxastic syntax, by thinking of them
merely as absolute subsets of the model. This huge simplification will play every-
where in what follows, and the reader should remain aware of it. Of course, a final
version of our account should, and can, deal with the more sophisticated full version.

3.3 Interplay of Statics and Dynamics

It may look as if dynamic events of information flow and their matching update acts
are just additions to a given static base logic of attitudes, that is usually on the shelf

7Even hard information can be taken as an order change operation, witness so-called “link cutting”
versions of public announcement where the ϕ- and ¬ϕ-zones are made disjoint.
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already in philosophical logic. But the dynamic component can also affect the design
of the static base. Here are two examples.

Our earlier examples of misleading with the truth suggests a notion of robust or
safe belief SBϕ that remains stable under whatever true new information comes in.
It is easy to see that this amounts to the following notion, at least in models with
connected plausibility orders8:

M, s � SBϕ iff for all t with s ≤ t, M, t � ϕ

Onconnectedplausibility orders, safe belief is a newattitude for agents, in between
ordinary belief and knowledge qua informational strength.

In addition to its intuitive attraction, safe belief also has the technical advantage of
allowing us to define absolute and conditional belief. This is shown in the following
two valid equivalences, that also work on arbitrary pre-orders, where K is the earlier
knowledge modality over the whole epistemic range, and 〈SB〉 is the existential dual
modality of SB:

Fact 3.1 The following laws hold for knowledge, belief, and safe belief:

Bϕ ↔ K 〈SB〉SBϕ

Bψϕ ↔ K (ψ → 〈SB〉(ψ ∧ SB(ψ → ϕ)))

Given these definitions, it is often easier to state recursion laws for informational
actions and safe belief, since others will be derivable. As an illustration, here are
laws for the three operations that we discussed in the above:

Fact 3.2 The following recursion laws hold for factual propositions:

[!ϕ]SBψ ↔ (ϕ → SB(ϕ → ψ))

[⇑ϕ]SBψ ↔ (¬♦ϕ ∧ SBψ) ∨ (ϕ ∧ SB(ϕ → ψ)) ∨
(¬ϕ ∧ ♦ϕ ∧ SB(¬ϕ → ψ) ∧ K (ϕ → ψ))

[#ϕ]SBψ ↔ (ϕ ∧ SB(ϕ → ψ)) ∨ (¬ϕ ∧ SBψ)

Another example of how the dynamic component can influence the static base
language of attitudes is the notion of a conditional, so central in much of Mike
Dunn’s work on logic and information (Dunn 1971, 1976).

When we say that “if ϕ, then ψ ,” there is an issue about the force of the “if.” How
are we to imagine the hypothetical situation that is introduced? The standard view
of making a hypothesis fits a public announcement !ϕ: we restrict attention to the
ϕ-worlds and work inside that restricted space. But sensitized to the above dynamic
distinctions, we can also make the hypothesizer “if” weaker in force, letting it just
promote the ϕ-worlds to top positions (as in radical upgrade ⇑ϕ), or even making
all of them relevant cases for inspection, as in the above operation of suggestion #ϕ.

8This is just the standard universal modality over a binary order. However, on pre-orders that allow
incomparable worlds, safe belief in our dynamic sense refers to all worlds that do not strictly precede
the current world in the ordering (van Benthem and Pacuit 2011). We will ignore this technicality
in this paper, as it does not affect our main concerns.
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This gives us three conditionals that we will read as saying that after the relevant
way of assuming ϕ, the agent believes that the conclusion ψ is true:

ϕ →! ψ ϕ →⇑ ψ ϕ →# ψ

These three notions give us more refined ways of thinking about conditional
reasoning, and more generally, of generalized notions of consequence. It is not our
aim to develop this line in depth here, but a few observations may help illustrate the
attraction of this richer perspective.9

Fact 3.3 The three conditionals validate different laws.

Proof Wehave ϕ →! Kϕ, but not for the other two conditionals.We have ϕ →⇑ Bϕ,
but the latter does not hold for the suggestion conditional. �

Next, consider structural rules as in standard proof theory (Bimbó 2015).

Fact 3.4 The given three conditionals validate the same structural rules.

Proof It is easy to see that the first two conditionals refer to the same worlds, since
the maximal worlds within the ϕ-zone are the same as the maximal worlds overall
when the ϕ-zone lies at the top in the model. Thus, their structural rules refer to the
same zones in models.

To see that the third conditional complies with the same structural rules, note
that ϕ →# ψ refers to maximal worlds that can be of two kinds: maximal within the
ϕ-zone, or maximal worlds overall that are¬ϕ. It says that all of these satisfyψ . But
this can be stated equivalently as follows:

(ϕ →! ψ) ∧ (T →! ψ)

Now it is easy to check that the notion defined by this conjunction satisfies the
structural laws of the basic conditional logic. �

4 Connecting the Two Levels

Epistemic models as mere semantic ranges and plausibility models are two different
ways of representing information, one richer than the other. Although this extension
is intuitively clear, we give a brief discussion of some general issues that will return
later on in this paper.

First, there are systematic connections between the two levels. Moving from
poorer to richer, we can embed epistemicmodels into the realm of plausibilitymodels
as special cases where all worlds are equiplausible, or equivalently for our present
purpose: incomparable qua plausibility. Let us call this the functor equi(M) that takes

9In what follows, again, we only consider factual propositions to avoid some complexities.
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epistemic models to plausibility models.10 Going in the opposite direction, there is
also a natural notion of projection, by a functor forg(M) that forgets the plausibility
ordering and just returns the bare epistemic domain.

The embedding and projection functors have this obvious connection:

forg(equi(M)) = M

What does not hold is, for plausibility models N is the equality stating that
equi(forg(N)) = N. Structure that has been lost cannot be retrieved faithfully by
some uniform stipulation.

Corresponding to these structural maps, there are also translations between the
languages of the two levels for representing information. These satisfy the typical
“adjointness” scheme for translations in logic:

M � trans(ϕ) iff F(M) � ϕ, for all models M and formulas ϕ

Here themap F is amodel transformation, and trans is amatching translationbetween
languages. In our specific case, the language translation corresponding to the functor
equi is as follows:

we leave atomic propositions, Boolean operations, and the epistemic modality K
the same, and replace the doxastic modality B by K .

It is easy to show that this yields the above equivalence, since all worlds in
plausibility models of the form equi(M) are maximal. But what this really says
of course is that belief does not mean anything new in such special models. The
same trivialization extends to safe belief: it, too, collapses into knowledge when the
ordering is uniform equiplausibility.

The extra richness of the plausibility level shows, as we have seen earlier, in the
dynamics. It is possible to also translate informational actions from the epistemic to
the plausibility level, since we can use public announcements on plausibility models
just as on epistemic models, as we have seen. Thus, the translation also extends to
modalities [!ϕ].

Things are more complex on the other side: not every natural transformation on
plausibility models has an exact counterpart on bare epistemic models. Operations
like ⇑ϕ, #ϕ will normally turn models of the form equi(M) into models that are not
of this form. Stated in other terms, we cannot faithfully translate formulas [⇑ϕ]ψ
into purely epistemic formulas.

Next consider projection from the richer to the poorer level.What translation takes
the epistemic language into the doxastic one according to the above scheme? As fits
a case of straightforward extension of models, this translation is just the identity of
formulas in the dynamic-epistemic language of public announcement. However, this
cannot be extended further.

10Here we use category-theoretic terminology such as “functor” in a loose sense, though a precise
formal development in category-theoretic terms is outside the scope of this paper.
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Fact 4.1 There is no translation for belief via the projection functor forg.

Proof Consider the same world in two plausibility models that have the same worlds
and atomic valuation but differ in their plausibility structure, making Bp true in one
model and false in the other. The functor forg will take these models to the same
epistemic model, and so, the translations of Bp and¬Bp cannot differ in truth value,
whereas they should. �

Next consider dynamics at the level of plausibilitymodels, say, a soft informational
change such as a radical upgrade ⇑ϕ. It is easy to see that, this time, there is a
matching transformation at the epistemic level, namely, just the identity map on
models. But this trivial harmony shows precisely what is going on: the epistemic
level cannot detect mere plausibility changes. Thus, the latter reordering acts are
genuine “internal” operations in the doxastic realm, leaving no significant “external”
traces that can be tracked epistemically.

None of the preceding observations are deep, but they set the scene for the more
interesting comparisons across informational levels to be made later.

5 Evidence

Plausibility order between worlds does not record which reasons determined these
relative differences among the available candidates. Amore fine-structured approach
is that of van Benthem and Pacuit (2011), where evidence is modeled as a family
of subsets of the domain, viewed as information obtained from various sources that
may be consistent, but could also contradict each other. Such an array of evidence
allows agents to form beliefs, but it also gives themmore structure to work with when
they have to supply reasons, or give up beliefs. In this section, we survey evidence
modeling as our third richer level for representing information.

5.1 Evidence Models

An evidence model is a set of possible worlds, viewed as an epistemic range for
a K -modality as before, but now with an added family E of non-empty subsets.11

We assume for simplicity that evidence sets are uniformly available in the model,
not depending on particular worlds. This may be considered a very special case of
“neighborhood models” for modal logic. The most straightforward modality in this
setting is then interpreted as follows:

M, s � �ϕ iff there exists a set E ∈ E with M, t � ϕ for all t ∈ E .

11It would also make sense to model sources of evidence, but we ignore this aspect here.
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The modality �ϕ expresses the existence of evidence available to the agent that
supports the proposition ϕ. As we make no special assumptions on the available
evidence, it is easy to see that this modality is only upward monotonic, while it
distributes neither over conjunctions nor over disjunctions. For instance, having
(�ϕ ∧ �ψ) → �(ϕ ∧ ψ) validwould assume that all available evidence has already
been “processed” to include combinations.

One notion that assumes such processing is belief, viewed as what we can safely
conclude by combining our evidence to the utmost. Let a maximal body of evidence
X be a family of sets in E for which all finite intersections are non-empty, and that
cannot be extended with further evidence to retain this property. In finite models, we
then look at the intersection of the whole family X as what follows on the basis of
this body of evidence. Let us define

M, s � Bϕ iff M, t � ϕ for all worlds t in all intersections
of maximal bodies of evidence.12

This can be generalized to conditional belief Bψϕ in a fitting manner using max-
imally consistent sets with respect to including the set [[ψ]]. Further attitudes make
sense as well, such as “entertaining ϕ” in the sense of ϕ being true throughout the
intersection of at least one maximal body of evidence.13 Yet other evidence-based
attitudes will be mentioned below.

Belief as defined here satisfies the axioms of a normal modality, and in particular,
we do have the validity of (Bϕ ∧ Bψ) → B(ϕ ∧ ψ). It is not trivial to axiomatize
the resulting logic that combines both normal and non-normal monotonic attitudes,
witness the completeness proof in van Benthem et al. (2012). Such technical details
will not concern us here.

5.2 Evidence Dynamics

As with earlier levels for representing information structure, evidence supports a
natural dynamics of change. To explore this, we start with public announcements !ϕ
restricting a current model to the subset of all ϕ-worlds.

Theorem 5.1 The dynamic logic of public announcement over evidence models is
completely axiomatizable.

Proof The key recursion law for the belief modality is straightforward, though it
requires also dealing with conditional belief, as we did on plausibility models. More-
over, the recursion law for [!ϕ]�ψ needs a newnotion of “conditional evidence”�ϕψ

that we do not spell out here. �

12In infinite models with infinite sets E , this stipulation must and can be modified.
13This is not the existential dual ¬B¬ϕ of belief as defined above. Note also that, in models with
conflicting evidence, we can “entertain” contradictory propositions at the same time.
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Of greater interest are new operations that are typical for an evidence setting.
One striking pilot example is evidence addition +ϕ. What this model transformation
does is it adds the set [[ϕ]] = { t ∈ W : M, t � ϕ } as a new set to the current evidence
family E to obtain a new model M+ϕ.

Theorem 5.2 The dynamic logic of evidence and conditional belief under evidence
addition is completely axiomatizable.

Proof This time we give a bit more detail, since more is involved here than in the
dynamics of simpler structures such as plausibilitymodels.We startwith the evidence
modality:

[+ϕ]�ψ ↔ (�ψ ∨ K (ϕ → ψ))

The rationale for this will be clear, though this particularly simple form only holds
for factual propositions. For the belief modality, things get more complex. After we
have added [[ϕ]] as a new piece of evidence, there are two sorts of maximal bodies
of evidence. The first consists of a family of evidence sets in the old model that
is maximally consistent with respect to adding [[ϕ]], which is exactly the basis for
conditional belief. The second sort is maximal bodies of evidence in the old model
that also satisfy the condition that their intersection is disjoint from [[ϕ]]. Now we
get the following recursion law, again modulo our restriction to factual propositions:

[+ϕ]Bψ ↔ (Bϕψ ∧ B(¬ϕ → ψ))

It is easy to see that this reduces, much as in our discussion of static suggestion-
conditionals ϕ →# ψ , to the following equivalence:

[+ϕ]Bψ ↔ (Bϕψ ∧ Bψ)14

The analogy of this formula with the behavior of suggestion update on plausibility
models is no coincidence, and it will return below. �

But there are many further natural and appealing operations that affect our current
evidence. Indeed, in the present setting, what used to be the basic notion of public
announcement !ϕ can be deconstructed into two intuitively independent operations:
(a) adding evidence thatϕ is the case, and (b) removing all old evidence that supported
¬ϕ. The latter notion can be defined by itself as the following natural operation on
evidence.

Deleting evidence −ϕ transforms the current model as follows: all old evidence
sets E ∈ E that are included in the set [[¬ϕ]]will be removed. Of course, there can be
many reasons for such a removal: one can think of “retraction” as in belief revision

14The recursion laws stated in van Benthem and Pacuit (2011) for these and the following operations
in this section are more complex syntactically because they are meant to hold also for non-factual
propositions. They have to deal with maximal sets of old evidence that are consistent with some
given propositions while excluding others. In a full treatment of our themes, we would work in this
more complex framework.



Tracking Information 375

theory (vanBenthemandSmets 2015), or of “forgetting” in someother sense, perhaps
like cognitive decay.

For a final example of a natural operation on evidence, consider the K -axiom for
conjunction that failed for the evidencemodality.Onemight say that, given consistent
evidence for ϕ and evidence for ψ , we have implicit evidence for ϕ ∧ ψ , that we
can make explicit just by combining the two pieces of evidence. Now there are a few
technical difficulties in making this work, but clearly, there is a natural operation ∩
of intersecting all mutually consistent evidence sets to form new evidence sets.

Of interest to our later discussion of tracking is that intersection is a sort of internal
processing or re-arrangement of evidence, unlike addition or deletion. We will give
a more precise sense to this notion later on. Intuitively, internal operations are one
more illustration of what can be done at a richer level that need not show up at coarser
levels of information structure.

5.3 Dynamic-Static Interactions Once More

As with plausibility models, the dynamics of evidence suggests new notions at the
level of static attitudes as well. Van Benthem and Pacuit (2011) have several new
notions of evidence-based conditional belief, for which axiomatizing the resulting
richer doxastic base language is still an open problem.15

6 Representation and Translation

Again there are connections between our levels for representing information, one
running from finer to coarser, and one from coarser to finer.

6.1 Projection

Evidence structure induces plausibility structure via a natural stipulation that can be
found in many areas, from topology to Chu spaces (van Benthem 2000). We simply
require that more plausible worlds satisfy all available evidence that is satisfied by
less plausible ones:

s ≤ t iff for all E ∈ E, if s ∈ E , then t ∈ E .16

15New modal logics for such generalized conditional evidence have recently been proposed and
developed in van Benthem et al. (2015).
16It is instructive to see this work in concrete cases. The reader, when following the proofs to come,
might draw some set diagrams and their induced plausibility orders.
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We will call this the map ord(M) taking evidence models to plausibility models,
where we do not change domains or propositional valuations.

There is a natural matching translation here for logical languages. As before, it
runs in the opposite direction, from the language of plausibility models to that of
evidence models. Actually, the main clauses are simple:

Knowledge K goes to knowledge K ,
Belief B goes to belief B, and the same is true for conditional belief.

Onemay find the latter clause unsurprising, as our notion of evidence-based belief
mirrored standard maximality notions in relational models. Indeed, any projection
map allows us to “retract” notions from the plausibility level to the evidence level
in a systematic manner.

For another case of such retraction or borrowing of notions, what about the earlier
notion of safe belief? This now gets related to a natural notion of what may be called
“reliable evidence” in the following sense. For any world s, let Es be the family of
sets { E ∈ E : s ∈ E }. This is a consistent family with a non-empty intersection. We
now define evidence-based safe beliefs ϕ at s as the propositions ϕ true at each world
in the intersection of { E ∈ E : s ∈ E }. Of course, agents need not know the world
they are in, so what is reliable in this objective local sense may be unknown to them.

Now we can look at notions at the evidence level and see if they have plausibility
counterparts. For the most obvious example, this fails.

Fact 6.1 The evidence modality has no plausibility match via the map ord.

Proof Consider a universe W = { 1, 2, 3 } with two evidence sets { 1, 2 }, { 2, 3 },
where only the world 2 satisfies the proposition p. In this model, the formula �p
does not hold. Now consider the same model with one evidence set added, viz.
{ 2 }. This additional intersection of earlier evidence does not change the induced
plausibility order. However, in the new model, �p is true, and so cannot have been
definable in the plausibility language. �

6.2 Embedding

There is also a natural map evi(M) running in the opposite direction, sending plau-
sibility models to evidence models. A moment’s reflection will show that it should
work as follows (onemight compare this stipulationwith the structure of propositions
in the semantics of intuitionistic logic):

the evidence sets are all upward closed in the plausibility ordering ≤.

This embeds plausibility models as special evidence models. In particular, the
intersection of any two upward closed sets is upward closed, so the evidence sets are
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automatically closed under intersections.17 This also shows in what happens when
we repeat the level maps:

ord(evi(M)) = M, but not evi(ord(M)) = M.

Still, evi(ord(M)) is just the closure of M under non-empty intersections.
Again there is a syntactic translation matching the embedding evi. It is correct

for the identity translation of K and B from the language of evidence models to
that of plausibility models. Given these translations, there is a natural issue whether
they extend to dynamic modalities for changing the plausibility order or the evidence
structure. This kind of correlation will be the topic of our next section, albeit with a
slightly different emphasis.

7 Tracking Evidence via Plausibility

One particular interest we stated at the beginning was how the dynamics of infor-
mation flow at one level might be tracked at another level. We will look a bit more
closely into this now, finding both positive and negative results in our richer realm,
and we will discuss what these findings mean.

7.1 Tracking Diagrams

Let us start with a case of harmony between operations.18 Here, ord(M) | ϕ refers to
the model transformation associated with public announcement.

Fact 7.1 For all evidence models M and factual propositions ϕ, we have that
ord(M | ϕ) = ord(M) | ϕ.

Proof This follows immediately from the natural definition of public announcement
on evidence models: we restrict the domain to the worlds that satisfy ϕ, and we
restrict all evidence sets to this subdomain (though dropping the empty set if it arises
in this manner). �

We can picture this situation in the following “tracking diagram.”19

ord(M) !ϕ ord(N)

↑ ↑
M !ϕ N

17In this section, we sidestep a few technicalities with the empty set.
18The first two harmony results to follow were stated for preference order in Liu (2011).
19Again we assume for simplicity that propositions are subsets of models here, disregarding techni-
cal issues of translation between complex formulas. In amore detailed treatment, wewould compare
correlated updates of the form !ϕ and !translation(ϕ).



378 J. van Benthem

In a diagram like this, we say that the update map at the poorer upper level tracks
the lower one at the richer level.20

One might think that this harmony holds here only because public announcement
works inmuch the sameway at both levels. But here is a less straightforward example.
Evidence addition is tracked by our earlier operation of “suggestion” on plausibility
models. Again, inwhat follows, operator notations refer to themodel transformations
introduced earlier for plausibility orders and evidence models.

Fact 7.2 For all evidence models M and factual propositions ϕ, we have that
ord(M + ϕ) = ord(M)#ϕ.

Proof The essential observation is that, given our definition of the induced order,
adding the denotation ofϕ as an evidence set, the order changes precisely as described
in the operation #ϕ. Points where ϕ holds now satisfy evidence that is not shared by
any ¬ϕ-point. �

To add one more example, sometimes there is harmony, but to see it, we need
operations that are new in the literature. For instance, we will now give an evidence
counterpart tracked by our earlier plausibility transformation of radical upgrade ⇑ϕ,
again with ϕ viewed as a subset. Define the following map up(ϕ, M) on evidence
models M with a subset ϕ:

(i) if E ∈ E has E − ϕ non-empty, then replace it by E ∪ ϕ,
(ii) if E ∈ E has E ∩ ϕ non-empty, then add E ∩ ϕ.

Fact 7.3 For all evidence models M and factual propositions ϕ, we have that
ord(up(ϕ, M)) = ord(M)⇑ϕ.

Proof There are four cases for two points x, y: they can satisfy (a) ϕ ϕ, (b) ϕ ¬ϕ,
(c) ¬ϕ ϕ or (d) ¬ϕ ¬ϕ. In case (a), if x ≤ y initially, then all new evidence satisfied
by x holds for y, as the modifications do not affect what happened inside the ϕ-
area. If not x ≤ y initially, then new evidence of type (i) no longer distinguishes,
but new evidence of type (ii) will. In case (b), the new evidence of type (ii) rules
out more plausible ¬ϕ-worlds. In case (c), all new evidence true for ¬ϕ-worlds also
holds for all ϕ-worlds. Finally, in case (d), the order stays the same among the ¬ϕ-
worlds: only new evidence of type (i) is relevant, and this has not changed within this
zone. �

In the background of these three individual tracking diagrams lie a number of
more general observations.

Fact 7.4 For every map f between plausibility models, there exists a map g between
evidence models that is tracked by f . In particular, one can define g on models M
as follows: evi( f (ord(M))).

20If we think of updates just as generic maps, tracking really applies to families of maps on a whole
current level of models. We will leave this matter of uniformity in diagrams implicit, but it is the
way one should really think of our discussion in this section.
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The choice of g is not unique here, any value g(M) that induces the same plau-
sibility order will do. If we want to enforce uniqueness, we need to sharpen up the
definition of our levels and mappings between them, say, in a category-theoretic
framework.

Our observations are no coincidence: there is a general construction behind the
preceding fact. Consider operations on plausibility models defined in the “flat PDL
program format” of van Benthem and Liu (2007), being unions of simple relational
expressions of the forms

?(¬)ϕ;≤; ?(¬)ϕ, ?(¬)ϕ; T ; ?(¬)ϕ

Fact 7.5 There is an algorithm that takes any plausibility transformation in flat
program format and returns an evidence transformation tracked by it.

The proof of this result involves some tedious combinatorics which we omit.
One reason why tracking is so appealing is that we can consider the coarser-level

update as giving a sort of “best approximate content” for the information provided by
the finer-level update. For instance, think of the visible observable content of some
partly hidden higher-order operation.

Another perspective on tracking diagrams is in terms of translation. They allow
us to extend the earlier translation from a static evidence language for agent attitudes
to the matching plausibility language with dynamic modalities for definable update
operations. However, this technical perspective is not our main concern here, and we
continue with tracking per se.

7.2 Non-trackable Operations

Perhaps the more interesting question runs in the opposite direction from the preced-
ing one. Given a map g between two evidence models, is it “trackable,” in the sense
that there exists a map f that tracks their plausibility projections? It is not obvious
that such a companion map always exists, so let us first state a precise criterion.

Fact 7.6 A map g is trackable iff it has this property: on evidence models with the
same ord projection, it yields values with the same ord projections.

Proof First consider necessity of the criterion. If g is tracked by some map f , then,
ord(g(M)) = f (ord(M)). Now let ord(N) = ord(M). Then ord(g(N)) = f (ord
(N)) = f (ord(M)) = ord(g(M)). Conversely, if the stated invariance holds, it is
easy to see that it is well-defined to let a tracking function f (M) on plausibility
models just output the model ord(g(evi(M)). �

Using this criterion we show that some natural dynamic update operations on
evidence models are not trackable.

Fact 7.7 The deletion operator −ϕ as defined earlier is not trackable.
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Proof Let the domain ofM be { 1, 2, 3, 4 }, with evidence sets { 1, 2 }, { 2, 3 }, { 3, 4 },
{ 4, 1 }, andϕ holding only at 1 and 2. The induced plausibilitymodel ord(M) consists
of four incomparable points. The operation −ϕ turns M into an evidence model
with only the evidence sets { 2, 3 }, { 3, 4 }, { 4, 1 }. In its induced plausibility model
ord(M − ϕ), the points 2 and 4 remain incomparable, but now 1 ≤ 4 and 2 ≤ 3.
Now let the evidence model M+ have the same domain and valuation as M, but with
additional evidence sets { 1, 3 }, { 2, 4 }. This induces the same plausibility model
as M. However, when we apply −ϕ to M+, deleting { 1, 2 }, due to the additional
evidence sets remaining, the induced plausibility model ord(M+) still consists of
four incomparable points. This refutes trackability by the above criterion. �

Here is another example. Consider the above evidence operation tracked by radical
upgrade. Now consider only one half, namely the following map:

shift(ϕ, M) sends E ∈ E with E − ϕ non-empty to E ∪ ϕ.

Fact 7.8 The operator shift(ϕ, M) is not trackable.

Proof Let M consist of { 1, 2, 3 }, with evidence sets { 1, 2 }, { 2 }, { 1, 3 }, and ϕ only
true at 1 and 2. The plausibility model ord(M) has 1 and 2 incomparable, while
3 ≤ 1. The map shift(ϕ,−) turns M into a new evidence model with evidence sets
{ 1, 2 }, { 2 } and { 1, 2, 3 }. Its induced plausibility model has 1 ≤ 2, 3 ≤ 1, 3 ≤ 2.
Let M+ have the same domain and valuation, but with one more evidence set { 1 }.
This induces the same plausibility model as M. However, applying −ϕ to M+ yields
evidence sets { 1, 2 }, { 1 }, { 2 }, { 1, 2, 3 }, and the induced plausibility model has 1
and 2 incomparable. �

The preceding results suggest that deletion of evidence is a delicate operation
lacking an obvious plausibility counterpart, essentially, sincewe have lost the specific
sets generating the ordering.

Still things depend on how we perform the deletion exactly. Here is one more
interesting option, showing the richness of natural operations on evidence that come
to light in the realm of our models.

Excursion One more version of deletion.

Instead of, as before, removing all evidence E implying the proposition ϕ, we now
make a weaker move:

∼ϕ “dilutes” such evidence E by replacing it with E ∪ ¬ϕ.

This time, the effect can be described faithfully in terms of plausibility order. If a
point x does not satisfy ϕ, then its evidence is not affected by while seeing a more
plausible world with ¬ϕ, then it satisfies no pure ϕ-evidence, and nothing changes
for it.21

21Another test on a natural deletion operator ∼ϕ is that its dynamic logic can be axiomatized
completely by means of recursion laws for evidence and belief in the style of van Benthem and
Pacuit (2011). Here is one such law for deletion: [∼ϕ]�ψ ↔ �¬ϕψ , where �αψ says that there
is evidence for ψ that is consistent with α.
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One can see non-trackability as a problem, but in our view the opposite is the
case. Absence of tracking shows that the richer world of evidence models suggests
natural operations that are sui generis.

7.3 Internal Operations

Next, trackability is not the same as having externally measurable effects. Consider
the earlier “internal” operations on evidence models that did not change the induced
plausibility model. Our prime example was intersection of evidence sets. Its tracking
map is extremely simple.

Fact 7.9 Evidence combination is tracked by identity of plausibility models.

This may be considered a disappointment, but we can also view this trackability
by the identity map as a defining feature of what we mean by internal operations in
the first place.

What this still leaves open is the issue of what internal operations are good for.
We can view them partly as inferences (the combination rule is a sort of conjunction
inference), and in that sense, their value may become apparent only at yet higher
syntactic levels of representing information where acts of inference can be modeled
explicitly (van Benthem and Martinez 2008) and (van Benthem and Quesada 2010).

But we can also think of internal operations as ways of rearranging or streamlining
the current evidence without disturbing the plausibility order. For instance, in finite
models, we can prune a given evidence family to a smallest one inducing the same
order. Or, we can choose new evidence sets by combination that induce the same
order in more perspicuous ways.

8 Logical Aspects I: Languages and Invariance Relations

In this paper so far, the term “levels” has been used quite loosely. But really, a
level of structure does not just arise by specifying a similarity type of models, but
also by giving transformations or invariance relations between what one takes to
be “the same” structures (van Benthem 1996, 2011). This standard methodology of
mathematics also applies to logic, and it has several interesting consequences for any
systematic theory that aims at incorporating our earlier observations.

8.1 Invariance Relations

As for invariances between evidence models, (van Benthem and Pacuit 2011) study
a standard brand of neighborhood bisimulations, close to topo-bisimulations (van
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Benthem and Bezhanishvili 2007). But they also point out that richer languages
of evidence models need more discriminating structural bisimulations. One recent
example of the latter are the two-way bisimulations of van Benthem et al. (2015),
which have a strengthened symmetric clause where the cross-model relation has to
be total between the two neighborhoods compared in the back-and-forth step.

The same variety in defining notions of bisimulation can be foundwith plausibility
models. See van Benthem (2011) and Andersen et al. (2013) for some examples,
depending on how much structure one wants to preserve at this coarser level of
doxastic representation.

8.2 Languages

Next, it is well-known that there is another side to this same coin. Invariance relations
suggest introducing languages that can define the properties appropriate to a given
invariance level. The model theory of modal logic or first-order logic provides key
instances of this harmony: cf. van Benthem (2002) and van Benthem and Bonnay
(2008) for general discussion.

Thus, there is also an issue of which languages we have in mind when discussing
evidence models or plausibility models. In the latter realm, candidates considered
included modalities for absolute and conditional belief, but also for safe belief, and
so on. On evidence models, we had the basic evidence modality �ϕ, but also others
suggested by the dynamics. A recent stronger candidate is the “instantial modality”
(van Benthem et al. 2015):

[](ϕ1, . . . , ϕn;ψ): there exists an evidence set all of whose points satisfyψ , while
that set also contains ϕi -points for each i with 1 ≤ i ≤ n.

8.3 Invariance and Dynamics

The choice of an invariance relation also has consequences for the dynamic update
actions that are appropriate to the models for a given structure level. This issue has
been studied extensively in the literature on process algebra (Bergstra et al. 2001),
dynamic-epistemic logic (van Benthem 2011), or logics of games (van Benthem
2014). Generally speaking, model transformations need to respect a given structural
invariance in the following sense: invariant input models lead to invariant output
models.22

In a general treatment of our notion of tracking, all these issues will have to find
their place. We conclude with one comment on this.23

22We can make this requirement even stricter in terms of definability (Hollenberg 1998).
23Caveat. One might think that by choosing the right invariance, one can also cross between levels,
thereby undermining the whole intuitive picture of different levels that we started with. For instance,
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Remark Category theory.

Our discussion of levels and tracking in this paper has been progressively more
sketchy and programmatic. A full logical treatment of the landscape of information
levels should probably involve a category-theoretic setting, perhaps of a sort already
used for dynamic-epistemic logics (Baltag and Moss 2004). For a first attempt at
such an uniform presentation, we refer to the follow-up study (Baltag et al. 2015).

9 Logical Aspects II: Looking Across Levels

We conclude our exploration with two aspects of logics and languages that occur
when we compare different levels of the sort we had so far.

9.1 Tracking and Translation

Tracking diagrams naturally complement earlier translations between static lan-
guages for models at different levels. For instance, what the commuting diagrams
of Sect. 7 said in linguistic terms is that the given translation t from the language of
plausibility models to that of evidence models can be extended with clauses such as
the following:

[#ϕ]ψ matches [+t (ϕ)]t (ψ)

The earlier issue of updates respecting notions of bisimulation then returns con-
cretely in the inductive proof of the invariance of dynamic formulas for bisimulation.
The upshot of such an analysis is this:

Fact 9.1 The earlier translation results between levels for the static language of
knowledge, belief and evidence extend to the extended dynamic languages, at least,
for pairs of operators that track each other.

9.2 Logics for Translation, Representation, and Change

Our final theme adds a bit of speculation. We can go yet further than the preceding
dynamics. The perspective on information in this paper has two dimensions. In a

(Footnote 23 continued)
one could take “inducing the same plausibility order” as a strong notion of behavioral equivalence
between evidence models. See the formal representation results in van Benthem et al. (2014) for
some concrete examples, in the spirit of Andréka et al. (2002). While such a rough simulation may
indeed blur our level distinctions, we believe that our earlier intuitions will stand up.
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“horizontal” sense, we had update actions along models at the same level. But there
is also a natural “vertical” dynamics, that of moving back and forth between different
levels of representing information.

Perhaps a bit outrageously, this suggests a two-level dynamic logic combining
updates at one level with acts of level change.24 Its language would have the ear-
lier syntax of dynamic logics of attitudes and updates at various levels, say two for
simplicity. But to connect these, we add explicit notation for level-connecting oper-
ations, both up and down. The resulting dynamic logic for the new level-crossing
modalities will revolve around recursion laws, as earlier in this paper for definable
transformations, but now these laws will reflect the recursive clauses of the above
translations.

Additional principles of such a two-dimensional logic of update and level change
can be found as reflections of our earlier tracking diagrams in Sect. 7, that will
now return in the form of commutation axioms. The resulting system can be seen as
formalizing some of the elementary meta-theory of intra-level update and cross-level
switching, just as dynamic-epistemic logics formalized basic properties of model-
changing operations.

As a final example of this way of thinking, here is an issue of complexity. Commu-
tative diagrams with tracking are what logicians like, and in a more general setting,
what category theorists love.25 On the other hand, we also know from modal logic
(Blackburn et al. 2000) that complete logics of frames with commuting relations
tend to be of high complexity, as their grid structure can encode complex geomet-
rical tiling problems. Which force wins out in two-dimensional logics of the sort
considered here?

10 Further Information Levels

A question that often come up when the preceding ideas are presented to audi-
ences is the grand view of the total reprsesentation system for information. There is
much more to information than the above three levels of epistemics, plausibility, and
evidence—and there are several major directions to go.

Ordered Evidence. A good test on the issues raised so far is how evidence models
fare with an obvious next level of structure, with a binary ordering that can stand for
entrenchment, trust, or probabilistic weight. There is some concrete logical theory
of such models: cf. Girard (2008) and Liu (2011), based on the “priority graphs”
of Andréka et al. (2002). One can define new modalities of knowledge and belief
based on ordered evidence, depending on how we view the order intuitively. This
then leads to an extended theory of representation results and translation between the

24For a static perspective on level shifts in the concrete case of time, see (Montanari 1996).
25Tracking diagrams are not exactly commuting diagrams, but we ignore this finesse.
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enriched logics, as well as a richer dynamics on priority graphs, including tracking
and non-tracking results extending our earlier analysis.

Probability. One view is that our preceding levels represent relative plausibil-
ity as a form of qualitative probability, comparable to what was pursued by De
Finetti and other pioneers in the 1930s. Finding precise connections here would
involve a fresh look at logics for probability (Holliday and Icard 2013), while
doing justice to the very different intuitions underlying plausibility models and
probability models where many low scorers can team up to form a high-score area
(vanBenthem2013). Also relevant in this comparative setting isKelly andLin (2012)
on the impossibility of tracking quantitative Bayesian update in qualitative plausi-
bility terms. Mierzewski (2015) proposes a new approach fixing the recent Leitgeb
acceptance rule plus Bayesian conditioning to derive a tracking belief revision rule
that can be studied in the spirit of nonmonotonic logics.

Syntax and Proof. One can also strike out in a different direction and think of
evidence sets as reasons put forward to ground beliefs, or even knowledge, as
in reason-based epistemology. Then the earlier “internal operations” become cru-
cial, and they suggest a richer habitat with matching more fine-grained notions of
information where, for instance, acts of inference have real update effects. In this
case, the appropriate setting would seem to be real syntactic proof structure, where
detailed formulation can be crucial to information flow consuming coded resources
(van Benthem and Martinez 2008).26 While there are some dynamic-epistemic log-
ics at this level (van Benthem andVelazquez-Quesada 2010), the connection between
syntactic and semantic approaches to information remains far from clear.

Interpolating Levels. Once we have the general picture, new questions of their
own will arise. E.g., our semantic models and pure syntax seem very far apart. But
then, the question is what natural intermediate levels of information structure exist
in between the two. One such level is that of algebraic logic, where structures range
widely, from rather syntactic ones like free algebras to algebras directly associated
with set-theoretic models. In particular, we believe that the representation theory of
modal algebras in terms of possible-worlds models (Blackburn et al. 2000; Andréka
et al. 2014) may have a natural connection with the above uses of plausibility models
and evidence models.

We conclude this picture of information levels with a caveat. It goes without
saying that we are not claiming that there is a linear hierarchy of information levels.
There can well be a more graph-like family with many forks.

26For a concrete illustration, in science, one well-chosen syntactic notation may be much more
informative than a semantically equivalent one.
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11 Further Issues and Directions

Expansion and Compression. Many further actions make sense in our two-dimen-
sional perspective of levels and zooming in on richer levels, or zooming out to coarser
ones. At the level of evidence, or reasons or proofs, these include giving reasons to
others, say, when answering doubts.

But perhaps the major issue in our grand picture is the interplay of storing a lot
of information about the past versus compressing information. The latter may be
thought of as a necessity due to memory limitations, or intelligent resource con-
straints in solving tasks. It can also be viewed as forgetting, perhaps a human defect,
but also a basic feature of civilization.

Cognitive Agency. The preceding topics also raise an issue of cognitive realism for
our picture. We can think of all our information levels as mathematical structures
with eternal connections, waiting to be used by human agents, but equally serene if
no one ever comes to visit. But it is also tempting to think of this paper as exploring a
world where human cognition takes place, and many of our topics make sense from
the viewpoint of agents solving informational tasks. This involves at least two further
features:

(a) the computational nature of agents (say, in an automata hierarchy),
(b) the nature of the specific issues or tasks that trigger level change.

In particular, on a task-and agent-oriented view, we may be making local excur-
sions in our landscape of information levels to answer specific questions, rather than
engage in dramatic migrations from one level to another.27

The Temporal Long-Term. The dynamics in this paper consisted of local steps,
whether horizontal as update at one level of information, or as a vertical step toward
a richer or poorer level. But informational inquiry also involves global patterns over
time, witness the protocols that regulate learning (Hoshi 2009; van Benthem 2011;
Kelly 1996; Gierasimczuk 2010). Our style of analyzing information structure is not
in conflict with this long-term view: but it still needs to be added to our picture.

Mathematical Frameworks. What would be a best framework for placing the con-
siderations and observations of this paper? One option are Chu spaces for abstract
information, whose general treatment can be found in Barwise and Seligman (1995).
Another option would be a general category-theoretic framework, for which a first
attempt is found in Baltag et al. (2015).

However, there is yet another alternative, namely, to work at a suitable algebraic
abstraction level, and explore the laws of information change there. While writing
this paper, I increasingly felt that Mike Dunn’s Gaggle Theory (Dunn 1991) may

27The point about local issues was made by Fenrong Liu (p.c.). For logicians, a concrete technical
illustration of its utility is thewidespread use of filtration inmodal logic wheremodels get coarsened
using just a small finite set of “relevant formulas”.
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well be an ideal stance from which to study the themes explored in this paper, for its
austerity, elegance and broad sweep.28

12 Conclusion

We have argued that information is a multi-faceted notion that is best studied at a
variety of levels, each supporting their own intuitions of invariance and their own best
languages for bringing out structure. In doing so, we found many new notions and
distinctions, such as the contrast between internal operations that merely rearrange or
elucidate, and update operations that are visible, and non-trivially trackable at other
levels. We have also emphasized the further cross-level dimension of a “dynamics
of zoom,” with both information expansion and information reduction.

In all this, we have shown how logical notions and methods apply, making our
approach a conscious extension of the logical approach to information in earlier
traditions such as relevance logic, resource logics, or situation theory (van Benthem
and Martinez 2008). But we are acutely aware that our current presentation is not
the end stage, since we need more general mathematical perspectives to do justice
to our landscape. And as we have stated in the preceding section, one great source
for doing that is Mike Dunn’s work.29
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Abstract This paper enlarges classical syllogistic logic with assertions having to
do with comparisons between the sizes of sets. So in addition to assertions like All x
are y and Some x are y, we also have There are at least as many x as y, and
There are more x than y. Our work also allows all nouns to be complemented. We
thus obtain sentences equivalent to No x are y and At least half of the universe
are x . We work on finite models exclusively. We formulate a syllogistic logic for
our language. The main result is a soundness/completeness theorem. The logic has
a rule of ex falso quodlibet, and reductio ad absurdum is admissible. There are
efficient algorithms for proof search and model construction, and the logic has been
implemented.
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I would no longer describe myself so much as a lawyer of logics, but more as an engineer
of logics – a maker of tools. Man has been defined in the Aristotelean tradition as a rational
animal. Benjamin Franklin defined man as a tool making animal. . . . Primitive man had
primitive tools, and primitive man also had primitive rationality. As humanity developed, it
developed more sophisticated tools, and these included more sophisticated tools for reason-
ing. That logical reasoning is far from an inherent skill is obvious to anyone who has taught
elementary logic. It often starts with learning to use simple tools (informal reasoning, fal-
lacies, syllogisms) and builds to the use of more sophisticated tools (propositional calculus,
then first-order logic). And this progression shows itself not just in the use of these tools but
in their actual construction over the history of logic. It was only in the twentieth century that
non-classical logics came into their own. This, at least originally, had nothing to do with the
invention of computers. But their connection with computing has become more and more
established. — Dunn (2015)

This offers some insight into his own philosophy of logic and computation. The
line of work in this paper, natural logic, could be described as an “engineering”
approach to logic. It is strongly connected to computational issues. And it builds
tools. Those tools are supposed to have something to do with human reasoning.
Where natural logic deviates from the quote is that it is not connected to the main
“progression” in the history of logic. In fact, the topic of this paper is more connected
to syllogistic logic than to propositional and first-order logic.

1 Introduction

Syllogistic logic is one of the most historically important logical systems. For fifteen
hundred years Aristotle was themagister, and his writings nourished syllogistic logic
as a living tree. But with the advent of first-order logic, the tree of syllogistic logic
withered. The general topic of this paper is a recent resuscitation of the tree. One
aims for logical systems which are “big enough” to cover interesting phenomena,
and yet “small enough” to be decidable, or even efficiently so. This is rather close
to what the logic engineer is doing. Perhaps the difference is that I want to describe
logical tools that seem to be implicit in the human reasoning facility. It is much less
important to me to connect to the mainstream of the post-Frege logical tradition.
Put another way, human reasoning makes use of “simple tools” which we aim to
formalize. They are buds on the branches of the tree. This paper is about one of those
buds.

The main logical issue in this paper is reasoning about the sizes of discrete sets.
To get to the issues quickly, consider the following argument:

There are more students than professors at the party
There are more professors than deans at the party
There are more students than deans at the party

(1)

I take it as clear that the conclusion follows from the premises. More controversially,
my intuition is that the transitivity of more . . . than . . . is a basic feature of human
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reasoning, on a par with the transitivity of all . . . are . . . that we see in the syllogistic
rule (barbara). One should not formalize the argument in (1) by translating it into
another logic (for example, logical systems which incorporate natural numbers);
the point is that the general logical principles of the target systems are likely to be
much more complicated than necessary for that task. So my aim in this paper is to
ask what the syllogistic would look like if we re-engineered it to look as close as
possible to the original syllogistic (or to modern reconstructions such as Łukasiewicz
1957; Corcoran 1972; Martin 1997), but also with additional sentences expressing
cardinality comparison. In addition to the syllogistic rules of All, Some, and No
what other rules would be needed?

Before discussing the actual content of the paper, let us widen the discussion a
little. In addition tomore . . . than . . . ,we also find in language the weaker assertion
there are at least as many . . . as . . . . Here is another argument which we take to
be valid:

There are at least as many rabbits as deer
There are more deer than goats
There are more rabbits than goats

(2)

Here is an argument of a different character:

All violas are stringed instruments
There are at least as many violas as stringed instruments
All stringed instruments are violas

(3)

A moment’s thought will convince the reader that this is valid, provided that we
are speaking of finite situations. We shall restrict attention to finite universes, in
order to obtain a logical system that we think if of greater “human interest” than the
weaker logic that would result if we allowed infinite structures and thus denied the
validity of (3).

We are aiming at a logic which is capable of representing (1)–(3). In addition, we
shall make our logical language more expressive yet by allowing complementation
of nouns. Here are some examples:

There are at least as many x as y
There are at least as many non-y as non-x

There are at least as many x as non-x
There are at least as many y as non-y
There are at least as many x as non-y

(4)

The first example just above shows an inference whose soundness depends on the
fact that we are looking at a finite universe. The second uses a property of “half”:
if the universe has N objects, the premises tell us that the xs are at least N

2 in
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number. The y’s number at least N
2 , and so the non-y’s number at most N

2 . Thus the
x’s number at least as much as the non-y’s. The fact that we can do all of this with
cardinality comparison and complement makes this work interesting and non-trivial.
But there is no real combinatorial component to the work, unlike other papers in the
area (Endrullis and Moss to appear; Lai et al. to appear).

Contents. The main result in this paper is a sound and complete logical system
whose sentences are of the form All x are y, Some x are y, There are at least as
many x as y, and There are more x than y. Our logic does not involve translating
the cardinality assertions into any other language. The proof system is sound and
strongly complete: for a finite set Γ ∪ { ϕ } of sentences, ϕ is true in every model of
Γ if and only if there is a derivation of ϕ from Γ . The language and proof system are
discussed in Sect. 2, and the remaining sections discuss aspects of the completeness
proof.

Implementation. Our quote fromDunn’s (2015) remarks on the connection between
non-classical logics and computing. My sense that he could be thinking of logics
motivated by computational practice, such as logics motivated by his own work
in relevance logic, quantum logic, or many-valued logic. The point of connection
between computing and the work of this paper is somewhat different. The point is
that much of the practice in fields like artificial intelligence, cognitive science, and
linguistics, one finds a stated or unstated constraint that theories and proposals of
all types be computational. If a proposal calls for computational or logical systems
that are “Turing complete,” then this is evidence against it. Conversely, the more
feasible, the better. The logic in this paper is about as computationally “light” as one
can get. I do not wish to discuss its computational complexity in this paper, or even
the specific algorithm that comes from the work we do. But I do want to advertise
the fact that syllogistic logic with cardinality comparisons has been implemented in
the Sage programming language, and the implementation is currently available on
https://cloud.sagemath.com. (That is, this author can share it.) For example, one may
enter

assumptions= [’All non-a are b’,

’There are more c than non-b’,

’There are more non-c than non-b’,

’There are at least as many non-d as d’,

’There are at least as many c as non-c’,

’There are at least as many non-d as non-a’]

conclusion = ’All a are non-c’

follows(assumptions,conclusion)

The last line indicates that we are asking if a given conclusion follows from a given
list of six assumptions. Then the program returns, telling us that the conclusion
does not follow. Additionally, it produces a counter-model, a model where all of the
assumptions are true and the conclusion false.

https://cloud.sagemath.com
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Here is a counter-model.

We take the universe of the model to be {0, 1, 2, 3, 4, 5}

noun semantics complement

+------+--------------+--------------------+

a {2, 3} {0, 1, 4, 5}

b {0, 1, 4, 5} {2, 3}

c {0, 2, 3} {1, 4, 5}

d {} {0, 1, 2, 3, 4, 5}

So it gives the semantics of a, b, c, and d as subsets of { 0, . . . , 5 }. Notice that the
assumptions are true in themodel, but the conclusion is false. In the cases that the con-
clusion did follow, the system would output a proof in our system. See Example 2.4
for an illustration of a formal proof found by a computer.

The reader should also try to construct a counter-model by hand in order to get
a feeling for the issues in this paper. Queries which feature negation are especially
difficult for people to work with.

Remark 1.1 One reviewer noticed that it is possible to get a counter-model with just
two elements and asked “why the size of the model [produced by a program] is so
‘large.’ ” Here is a quick answer. Suppose one is building a first-order model of a
finite sequence ϕ1, . . . , ϕn of sentences in first-order logic, and suppose that ϕ1 is
(∃x)R(x) and that ϕ2 is (∃x)S(x). It is natural to build amodel by taking new objects,
say c and d, and declaring that R(c) and S(d). When one does this, it is natural to
make d different than c, because ϕ3 might be (∀x)(R(x) → ¬S(x)). The point is
that in building a model step-by-step, the natural steps will not result in a minimal
model. The same thing happens with the logic in this paper.

The advantage of working with a syllogistic system formulated using ex falso
quodlibet rather than reductio ad absurdum is that proof search and counter-model
generation are closely related. In a sense, they are both results of the same algorithm.
Moreover, the algorithm is efficient. That is, the question of whether a sentence fol-
lows from a list of assumptions is in polynomial time. I am not going to discuss the
algorithmic aspects of the logic in this paper, except to mention examples and some
of the general issues.

Related Work. There is a large body of work on generalized quantifiers in logic,
including quantifiers coming from natural language. Two papers to mention are
Mostowski (1957) and Lindström (1966). The logical systems in this paper would
constitute a small fragment of what we find in those papers. This is because tradi-
tionally, logical systems extend first-order logic. A fortiori, their decision problems
would be undecidable. For more on such logics, see (Herre et al. 1991). Closer to
our topic would be generalized quantifiers on finite structures, as in Kolaitis and
Väänänen (1995). But I am not aware of any work that studies logical complete-
ness and decidability theorems. This is again related to the issue of the base logic.
In what I am calling “natural logic,” one does not begin with first-order logic or
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even propositional logic, and this is what enables the results in this paper. For work
on natural logic more broadly, see (Moss 2015; Pratt-Hartmann and Moss 2009;
van Benthem 2008). However, this paper stands on its own in the sense that all of
the work is self-contained (and elementary). Work on the numerical syllogistic is
close to what we are doing; see (Pratt-Hartmann 2009) for a negative result which
contrasts with the positive results here.

2 Syntax and Semantics

The logic S†(card) of this paper starts with a set of raw variables P0 which we denote
by p, q, . . . . It also has complement variables p, q, . . . which correspond to these.
Our set P of nouns is the disjoint union of two copies of P0:

P = P0 ∪ { p : p ∈ P0 }.

However, we shall use the same letters p, q, . . . to denote nouns which might be
complemented, and we also extend the complement notation “classically,” so that p
is always identified with p.

S†(card) has sentences of the form ∀(p, q) and ∃(p, q), ∃≥(p, q), ∃>(p, q). We
read “∃≥(p, q)” as “there are at least as many p as q,” and we read “∃>(p, q)” as
“there are more p than q.” There are no connectives.

Our raw variables are denoted with letters like p and q. But in examples and in
proofs we frequently use x , y, and z. We hope that this is not confusing. Late in the
paper we also see other letters, chosen to make various arguments easier to follow.
Throughout the paper, lower case Roman letters will be used for raw variables.

We interpret this language S†(card) on finite modelsMwhich are sets M together
with interpretations [[p]] for all nouns p. The set M is sometimes called the universe
of the model M. We require that the complement operation work classically in the
semantics: [[p]] = M \ [[p]], for all p. The sentences ∃≥(p, q) and ∃>(p, q) have the
following semantics:

M � ∀(p, q) iff [[p]] ⊆ [[q]]
M � ∃(p, q) iff [[p]] ∩ [[q]] �= ∅
M � ∃≥(p, q) iff card([[p]]) ≥ card([[q]])
M � ∃>(p, q) iff card([[p]]) > card([[q]])

(5)

On the right in (5), the symbol card(S) stands for the cardinality (number of elements)
of a given set S.

We allow the empty model. Nothing much hinges on this. We could have disal-
lowed the empty model and only small changes would result in what we do.

It should be noted that in (5), the letters p and q range over all nouns, not just
over the raw variables. In other words, we have saved a lot of needless repetition by
allowing p and q to be either raw variables or complemented variables.
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Special attention should be given to sentences where q = p. So ∃≥(p, p) says
that there are at least as many p’s as non-p’s. This sentence ∃≥(p, p)might therefore
be read as “the p’s are at least half of the objects in the universe.” Similarly, ∃≥(p, p)

might be read as “the p’s are at most half of the objects in the universe.” We can
also read ∃>(p, p) as “the p’s are more than half of the objects in the universe,” and
∃>(p, p) as “the p’s are less than half of the objects in the universe.”

Remark 2.1 As we mentioned, the logical language S†(card) does not have boolean
connectives, and it also does not have a negation symbol. It does have a semantic
negation: for every sentence ϕ, there is a sentence ϕ such that M � ϕ iff M � ϕ.
Here is how this works:

ϕ ϕ

∀(p, q) ∃(p, q)

∃(p, q) ∀(p, q)

∃≥(p, q) ∃>(q, p)

∃>(p, q) ∃≥(q, p)

We are interested in working with this semantics only on finite universes. This is
because the logic is stronger this way. That is, some of the rules which we shall see
shortly are not sound for infinite universes.

2.1 S(card) and S†(card)

We are mainly interested in S†(card) in this paper. But we are also interested in
a smaller language which we call S(card). This language S(card) is the same as
S†(card), but it lacks complemented variables. The semantics is the same.

Incidentally, the notations S and S† come from Pratt-Hartmann and Moss (2009).
S was used there for the classical syllogistic, and so it seems appropriate to use the
notation S(card) for the logical system that extends S with cardinality assertions. In
Pratt-Hartmann and Moss (2009), the dagger notation was used in connection with
logics with full complementation on all nouns. So the difference between S and S†

is that the latter system allows sentences ∀(p, q) and ∃(p, q); in S one cannot even
say ∀(p, q). It turns out that allowing complementation on all nouns has a significant
effect on the logical system.

2.2 Proof System

Let Γ be a set of sentences in S†(card). A proof tree over Γ is a finite tree T whose
nodes are labeled with sentences, and each node is either a leaf node labeled with an
element of Γ , or else matches one of the rules in the proof system in Fig. 1. Γ  ϕ

means that there is a proof tree T for over Γ whose root is labeled ϕ. See Sect. 2.3
for examples.
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Recall that we are also working with the smaller language S(card) which does
not have complemented variables. The proof rules for S(card) are the rules in Fig. 1
above the line. One rule in this logic for S(card) is derivable in the bigger logic for
S†(card). This is (more-right). So in the larger logic for S†(card), this rule could be
dropped. (Actually, (more-right) and (more-left) are inter-derivable. So we only
need one of these.) But we need it to get a complete system for S(card).

One rule which uses the finiteness assertion is (card mix). It says that if all y
are x , and there are at least as many elements in the bigger set y as in x , then the sets
have to be the same.

We turn to the rules at the bottom of Fig. 1, since they show the interaction of the
different sentence types and also involve the “half” interpretation from above.

The logic has an Ex falso quodlibet rule, listed with an (x) at the bottom of the
top half of Fig. 1. In addition, there is a second Ex falso rule which is derivable from
the first. See Example 2.5 for this.

We next mention the soundness of the systems for S(card) and S†(card).
Proposition 2.1 is stated for S†(card), but the same work holds for S(card), mutatis
mutandis. We write Γ � ϕ to mean that every model of all sentences in Γ is a model
of ϕ.

Proposition 2.1 (Soundness) If Γ  ϕ, then Γ � ϕ.

Proof The proof is by induction on the heights of proof trees. The proof reduces to
showing that all of the rules are individually sound.

The rules without ∃≥ and ∃> are well-known syllogistic rules, and they are eas-
ily seen to be sound. We discussed (card-mix) in the Introduction; its soundness
depends on the fact that we restrict to finite universes. The soundness of (subset-
size) does not need this restriction; it just says that if [[p]] ⊆ [[q]], then the size of
[[q]] is at least as large as the size of [[p]]. The (x) rule just says that if in a given
model M there are at least as many q’s as p’s, and if in that same model M there
are more p’s than q’s, thenM satisfies every sentence. Of course, this is because the
assumptions cannot both hold in one and the same model.

Turning to the rules below the line in Fig. 1, (zero) and (one) are from Moss
(2010). (In fact, using the purely syllogistic rules above the line and the ex falso
quodlibet rule that we present in Example 2.5, we have a complete logic for the
language S† that lacks cardinality assertions.) The finiteness assumption is needed
in the soundness of (more-anti): if there are more q’s than p’s, then there are more
non-p’s than non-q’s. The rule (int) says that if there is some p (so that the universe
is not empty), and the q’s constitute at least half of the universe, then there is at least
one q. This is because the size of the universe must be an integer ≥ 1.

The rules (half), (strict half), and (maj) are the least obvious and hence the
most interesting rules in the system. If there are at least as many p as non-p, then the
p’s number at least half the size of the universe. If in addition the non-q’s number at
least half the size of the universe, there must be at least as many p’s as q’s. (This is
because “half the size of the universe” is a well-defined number. It does not depend
on p or q.) The justification of (strict half) is similar.
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Fig. 1 Rules for S†(card), above and below the line. The rules for the smaller system S(card) are
found above the line

Turning to the (maj) rule, assume about a modelM that there are at least as many
p as non-p, and there are at least as many q as non-q. Then the p’s and q’s have
at least half of the elements of M . Also assume towards a contradiction that the
p’s and q’s are disjoint. Then they must be complement sets, each with exactly half
of the elements of M . From this, it follows that [[p]] = [[q]], and [[q]] = [[p]]. Also,
[[p]] ∩ [[q]] = [[q]] ∩ [[p]] = ∅. This contradicts the third premise.
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2.3 Examples

This section contains a few examples of derivations.

Example 2.2 Here is an argument in English:

There are more p than non-p
There are at least as many q as non-q
Some p is a q

The conclusion does follow. The p’s are a strict majority, and the q’s are either a strict
majority or have exactly half of the objects in the universe. Some p must also be a
q, for if not, all p’s would be non-q’s, and the p’s would number at most half of the
universe. Our logic does not have proofs by reductio ad absurdum, but nevertheless
we do have a derivation that the conclusion follows from the premises:

∃>(p, p) ∃≥(q, q)

∃>(p, q)

∃(p, q)
(more−some)

(strict half)

Example 2.3 All x are non-y follows from the list of assumptions below:

1. There are at least as many non-y as y
2. There are at least as many non-z as z
3. All x are z
4. All non-y are z

Here is a formal proof in our system:

∀(x, z)
∀(y, z)

∃≥(y, y) ∃≥(z, z)

∃≥(y, z)
(half)

∀(z, y)
(card mix)

∀(x, y)
(barbara)

Example 2.4 Here is an example of a derivation found by our implementation. We
ask whether the putative conclusion below really follows:

All non-x are x
Some non-y are z
There are more x than y
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The program returns:

Here is a formal proof in our system:

1 All non-x are x Assumption

2 All y are x One 1

3 All non-x are x Assumption

4 All non-y are x One 3

5 Some non-y are z Assumption

6 Some non-y are non-y Some 5

7 Some non-y are x Darii 4 6

8 Some x are non-y Conversion 7

9 There are more x than y More 2 8

Note that the proof is displayed as a list rather than a tree. But this is merely a
cosmetic difference.

Example 2.5 The ex falso quodlibet rule of syllogistic logic (Pratt-Hartmann and
Moss 2009) allows one to derive an arbitrary sentence from No p are q and Some
p are q. This rule is derivable in S†(card):

∀(p, p)
(axiom)

∃≥(p, p)
(subset−size)

∀(p, p)
(axiom)

∃(p, q)

∀(p, q)

∀(q, p)
(anti)

∃(p, p)
(darii)

∃>(p, p)
(more)

ϕ
(x)

Remark 2.6 Reductio ad absurdum (raa) turns out to be admissible in the system:
If Γ ∪ { ϕ }  ψ and Γ ∪ { ϕ }  ψ , then Γ  ϕ. But this admissibility fact is not
obvious, and indeed the only argument which we know for it follows from the com-
pleteness of the system without reductio. That is, it seems difficult to establish the
admissibility proof-theoretically.

As it happens, much of the technical work in this paper is needed simply because
the proof systemdoes not have (raa). Ifwewere to replace the (x) rulewith (raa), the
set of rules would bemuch smaller and the completeness proof would bemuch easier.
The point is that completeness would reduce to showing that if Γ is consistent in the
logic, then it has a model. We are going to show this as a lemma in our completeness
proof. But in order to show completeness, wemust show that ifΓ � ϕ, thenΓ ∪ { ϕ }
has a model. And we need to do this without knowing that this last set Γ ∪ { ϕ } is
consistent in the logic.

In connectionwith (raa) and the (x) rules, we also shouldmention that our system
is much more algorithmically manageable because it does not have (raa). This is
because (raa) complicates the proof search in the logic.

Remark 2.7 In the remainder of this paper, Γ denotes a finite set of sentences. The
reason for this restriction is that the logic is not compact.
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3 Notation and Preliminaries

The main results in this paper are the completeness of S(card) and S†(card). The
method of proof is model-construction, so this section contains some preliminary
work that will be useful in building models.

A set of sentences Γ in either S(card) or S†(card) is consistent if it is not the case
that Γ  ϕ for all ϕ. Equivalently, there are no derivations from Γ which use (x).

In both completeness proofs, we are going to fix a consistent set Γ and show that
if Γ � ϕ, then there is a model of Γ where ϕ is false.

In building this model, Γ is fixed throughout, and so it is convenient to suppress
Γ from the notation. We also will adopt suggestive notation for various assertions in
the logic.

Definition 3.1 Let Γ be a (finite) set of sentences. We write x ≤ y for Γ  ∀(x, y).
Note that Γ is left off the notation. We write x ≡ y for x ≤ y ≤ x .

We write x ≤c y for Γ  ∃≥(y, x). We also write x ≡c y for x ≤c y ≤c x , and
x <c y for x ≤c y but x �≡c y.

Finally, we write x <more y if Γ  ∃>(y, x).

Proposition 3.2 Let V be the set of variables in a set Γ .

1. If x ≤ y, then x ≤c y.
2. (V,≤c) is a preorder: a reflexive and transitive relation.
3. (V,<c) is a strict preorder.
4. If x ≤c y ≤ x, then x ≤ y.
5. If x ≤c y, x ≡ x ′, and y ≡ y′, then x ′ ≤c y′.
6. If w ≤c x <more y ≤c z, then w ≤more z.

Proof Part (1) uses the (subset-size) rule. In part (2), the reflexivity of ≤c comes
from that of≤ and part (1); the transitivity is by (card-Trans). Part (3) follows from
the previous part. Part (4) is by (card-mix). Part (5) uses part (1) and transitivity.
Part (6) uses (more-left) and (more-right).

Remark 3.1 Let us emphasize that there is a difference between<c and<more.When
we write p <c q, we mean that

Γ  ∃≥(q, p) and Γ � ∃≥(p, q).

This isweaker than p <more q; recall that this last assertionmeans thatΓ  ∃>(q, p).
For example, ifΓ contains just the sentence ∃≥(q, p) (and nothing else), then p <c q
but not p <more q.

3.1 Preliminary: Listings of Finite Transitive Relations

A listing of a set X is a sequence x1, . . . , xn from X so that if i �= j , then xi �= x j .
Let (T,<) be a finite set with a transitive, irreflexive relation. A proper listing of
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(T,<) is a listing of the set T with the property that if ti < t j , then i < j . In words,
the <-predecessors of each point are listed before it. This is also called a topological
sort.

Lemma 3.3 Let (T,<) be a finite set with a transitive, irreflexive relation. Then
(T,<) has a proper listing.

Proof By induction on the size of T . If T has 0 or 1 element, the result is trivial.
Assume the result when T has size n, and let (T,≤) be of size n + 1. Let x be such
that there is no y < x . Such x must exist since T is finite. (Here is the argument in
more detail: Suppose towards a contradiction that for every z there were somew < z,
we would have an infinite sequence z0 > z1 > · · · > zn > · · · . By finiteness there
is m < n so that zm = zn . But by transitivity we have zm > zn . This contradicts the
irreflexivity of <.) Let T ′ = T \ { x }, and consider T ′ with the restriction <′ of <.
This order (T ′,<′) is again transitive and irreflexive, and T ′ has size n. By induction
hypothesis, there exists a listing of T ′, say t1, t2, . . . , tn . Then we take for the listing
of T the list x, t1, t2, . . . , tn .

We also need to refine Lemma 3.3.

Lemma 3.4 Let (T,<) be a finite set with a transitive, irreflexive relation. Let
y ∈ T . Then there is a proper listing of (T,<) in which every x such that y � x
comes before y in the listing.

Proof Start with a proper listing of T as in Lemma 3.3. Let X be the set of points x
which come after T in the listing and such that y � x . Note that X might be empty,
and y /∈ X . Move all points in X to immediately before y in the listing, in their order.
We check that this new listing is proper. The only way this could fail is that there
are some x ∈ X and some z < x such that z comes after x in the new listing. In this
case, we have z /∈ X , for if z were in X , we would have moved it to before x in the
new listing. Thus y ≤ z. And since z < x , we have y < x . This contradicts x ∈ X .

4 S(card) and the Construction Lemma

The Completeness Theorem for S†(card) takes a fair amount of work, and it makes
sense to study the smaller system first. (Recall that S(card) is the same as S†(card),
but it lacks complemented variables.) We work with S(card) as a stepping stone
towards results for S†(card).

Definition 4.1 Let Γ be a finite consistent set in S(card). Let V be a finite set of
variables which include all the variables occurring in Γ . Let V/ ≡c be the set of
equivalence classes of variables in Γ under ≡c. Let [u0], [u2], . . . , [uk] be a proper
listing of (V/ ≡c,<c). We write x ≺ y to mean that for some i < j , x ∈ [ui ] and
y ∈ [u j ]. We call ≺ the construction preorder.
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Definition 4.2 We define sets Kv for v ∈ V as follows:

Kv = { ϕ ∈ Γ : ϕ is either ∃(w, u) or ∃(u, w), for some u and some w ≡ v } (6)

Lemma 4.3 Concerning the sets Kv:

1. If v1 ≡ v2, then Kv1 = Kv2 .
2. If Kv �= ∅, then Γ  ∃(v, v).
3. If Ku ∩ Kv �= ∅, then Γ  ∃(u, v).

Lemma 4.4 Let Γ be a finite consistent set in S(card). Let ≺ be the construction
preorder from Definition 4.1, and let the sets Kv be from Definition 4.2. Then there
is a model M = MΓ such that for all a, b ∈ V and 0 ≤ i, j ≤ k,

Kv ⊆ [[v]]. (7)

If a ≤ b, then [[a]] ⊆ [[b]]. (8)

If a ≤ b, then card([[a]]) ≤ card([[b]]). (9)

If i < j and ∃≥(u j , ui ), then card([[ui ]]) ≤ card([[u j ]]). (10)

If i < j and ∃>(u j , ui ), then card([[ui ]]) < card([[u j ]]). (11)

If [[v]] �= ∅, then Γ  ∃(v, v). (12)

If [[u]] ∩ [[v]] �= ∅, then Γ  ∃(u, v). (13)

We construct the sets [[u]] in a step-by-step fashion. Moreover suppose that in the
course of the construction, we add extra fresh points to the interpretations of some
or all of the variables. Suppose that we do this in such a way that if u ≡ y, then the
same additional points are added to [[u]] and [[v]]. Then parts (8)–(11) continue to
hold. Suppose that in addition, whenever we add a point to [[v]], then Γ  ∃(v, v).
Then the parts (12) and (13) also hold.

Proof We define by recursion on i ≤ k the interpretation [[v]] of all v ∈ [ui ]. Suppose
that for all j < i and all w ≡c u j , we have an interpretation [[w]]. Recall that [ui ] is
the equivalence class of ui under ≡c. We work on the elements of [ui ] according to
their class under the finer equivalence relation ≡. (That is, we insure that if a ≡ b,
then [[a]] and [[b]] are the same set.) So at this point we take representatives of the
≡-classes inside of [ui ].
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For v ∈ [ui ], let

Bv =
⋃

{ [[x]] : x ≤ v and x ≺ v } and Cv = Kv ∪ Bv (14)

We start by setting [[v]] to be Cv, but we might need to add more points in order to
satisfy some of the requirements. Let

n = max{ card(Cv) : v ∈ [ui ] }.

For each v, add fresh points to [[v]] in order that they all have the same size. That is,
add n − card(Cv) points to [[v]]. Finally, if there is some i < j such that ∃>(u j , ui ),
and yet card([[u j ]]) = card([[ui ]]), then add one fresh point to [[v]] for all v ∈ [ui ].

It is not hard to see that (8)–(11) hold. Here is the proof of (9): Let [ui ] and
[u j ] be such that x ∈ [ui ] and y ∈ [u j ]. Either x ≡c y, or else y <c x . In the first
case, [ui ] = [u j ] and thus card([[ui ]]) = card(]]u j ]]). In the second case, we have
[ui ] < [u j ], and so in the proper listing, [u j ] comes before [ui ]. Thus, j < i . And
so by (10), we see that inM, card([[u j ]]) = card([[ui ]]).

For (11), note that if ui <more u j , then ui <c u j . (This is where we use (x) in the
logic, and also the assumption that Γ is consistent.) [ui ]must come before [u j ] in the
listing.And so themodel construction indeed arranges that card([[ui ]]) < card([[u j ]]),
as desired.

The proof of (12) is by induction on ≺. Fix v, and assume (12) for all u ≺ v.
Assume that [[v]] �= ∅. If Kv �= ∅, we are done by Lemma 4.3, part (2). So we assume
that Kv = ∅. Suppose that Bv �= ∅. Then there is some x ≺ v such that x ≤ v and
[[x]] �= ∅. By induction hypothesis,Γ  ∃(x, x). By (darii),Γ  ∃(v, v). We are left
with the case that Bv = ∅, and thus [[v]] consists entirely of the points added to it in
the construction, points not in Kv ∪ Bv. Then for some a ≺ v such that [[a]] �= ∅, we
have Γ  ∃(a, a) (by induction hypothesis), and also ∃≥(ui , a). So using (card-∃)
and other rules of the logic, we see that ∃(v, v).

Equation (13) is a generalization of part (12), and the proof is also a generalization.
We show by induction on ≺ that for all v and all u � v, that if [[u]] ∩ [[v]] �= ∅, then
also Γ  ∃(u, v). Assume that [[u]] ∩ [[v]] �= ∅. If u = v, or even if u ≡ v, then we
are done by the result in (12). Otherwise, we have u ≺ v. If Ku ∩ Kv �= ∅, we are
done by Lemma 4.3, part (3). So we may assume that Ku ∩ Kv = ∅. Thus, [[v]] is the
union of some sets [[w]] (where w ≤ v and w ≺ v), together with some fresh points.
Those fresh points are not in [[u]], by construction. So since [[u]] ∩ [[v]] �= ∅, there is
some w ≺ v such that w ≤ v and [[u]] ∩ [[w]] �= ∅. We apply our induction hypothesis
to u or to w, whichever came later in construction preorder. We see that Γ  ∃(u, w).
Since u ≤ v, we also have Γ  ∃(u, v), as desired.

Lemma 4.5 Every set Γ which is consistent in the logic for S(card) has a model.

Proof Let M be the model from Lemma 4.4. If the sentence ∃(u, v) belongs to Γ ,
this sentence itself belongs to Ku ∩ Kv, hence to [[u]] ∩ [[v]] inM. HenceM satisfies
all ∃ sentences in Γ . Parts (8)–(11) in Lemma 4.4 insure that the rest of the sentences
in Γ also hold.
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5 The Completeness Theorem for S(card)

Theorem 5.1 The logic for S(card) found at the top of Fig.1 is complete: for all
sentences ϕ, if Γ � ϕ, then Γ  ϕ.

Proof We may assume that Γ is consistent, that is, no derivation from Γ uses (x).
For if Γ were inconsistent, then for all ϕ, Γ  ϕ. For consistent Γ , we prove that if
Γ � ϕ, then there is a model of Γ where ϕ fails. We break into cases according to
the shape of ϕ.

The first case: ϕ is of the form ∃(x, y).We use themodelM ofΓ from theConstruc-
tion Lemma 4.4. InM, [[x]] ∩ [[y]] = ∅. So by part (13) in the lemma, Γ  ∃(x, y).

The next case: ϕ is of the form ∃≥(x, y). Assuming that Γ � ϕ, we see that y �c x .
We use Lemma 3.4 to start off with a listing ofV/ ≡c which puts [x] before [y].When
wedefine [[y]]weaddadditional fresh elements to insure that card([[y]]) > card([[x]]).
(We also add the same fresh elements to [[z]] whenever z ≡ y.) Incidentally, the
hypothesis at the very end of Lemma 4.4 might not hold for this model, since it
might be the case that Γ � ∃(y, y). But this is not a problem because we do not need
to know (13) for this model.

The next case: ϕ is of the form ∀(x, y). We build our model of Γ using Lemma 4.4,
taking any listing ofV/ ≡c. In addition to all of the steps in the Construction Lemma,
we add a fresh point ∗ to Ku whenever u ≡ x . The point ∗ never gets into Ky : an
easy induction shows that ∗ ∈ Kz iff x ≤ z.

The final case: ϕ is of the form ∃>(x, y). We use Lemma 3.4 to start with a proper
listing of (V/ ≡c,<c)which puts before [y] all [z] such that [y] �c [z]. If [x] is one of
those [z]’s, then in the listing, [x] comes before [y]. We can use use the Construction
Lemma (with a modification) to arrange that [[y]] be at least as large as [[x]]. We do
this simply by adding more points to [[y]]. In the resulting model ∃>(x, y) will fail.
So we assume that y ≤c x . Then we use the proof of Lemma 3.3 again, but in dual
form, to further modify the listing so that all [z] with [z] �c [x] come after [x]. The
upshot is that [y] comes before [x], and all [z] which come in between [y] and [x]
in the listing satisfy [y] ≤c [z] ≤c [x].

Build the model as in the Construction Lemma, up until [y]. Change [[y]] to

[[y]] =
⋃

v

Kv ∪
⋃

{ [[x]] : x ≺ y }

So [[y]] includes the union of everything already defined, and also all ∃ sentences in
Γ . By adding one point (if need be), we also may arrange that card([[y]]) is strictly
larger than card([[a]]) whenever a ≺ y. We can also arrange that whenever y ≡ y′,
[[y]] = [[y′]].
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We shall modify the construction to insure that [[x]] = [[y]]. Suppose that z is
such that y ≺ z � x , and that for w such that y � w ≺ z, we have arranged that
[[w]] = [[y]]. Then Kz ∪ Bz from (14) is a subset of [[y]]. For Kz , this is by definition
of [[y]]. For Bz , we have some cases. Let w ≤ z and w ≺ z. Ifw ≺ y, then [[w]] ⊆ [[y]]
by definition of [[y]] again. And if y ≺ w, then [[w]] ⊆ [[y]] by our assumption on z.
So at this point we know that Kz ∪ Bz ⊆ [[y]]. We thus need only consider the two
ways that fresh points are added to [[z]].

No fresh points are needed in order to make card([[u]]) ≤ card([[z]]) for any u
such that u ≺ z and ∃≥(z, u). This is because whenever u ≺ z, we have [[u]] ⊆ [[y]].

Let us check that no fresh points are needed in order to make card([[u]]) <

card([[z]]) for any u such that u ≺ z and ∃>(z, u). If u ≺ y, then we already have
card([[u]]) < card([[y]]), and we can arrange that card([[u]]) < card([[z]]) by tak-
ing [[z]] = [[y]]. Further, if y � u, then the main feature of our listing tells us
that [y] ≤c [u] ≤c [x]. So we do not have ∃>(z, u). For if we did, then together
with ∃≥(x, z) and ∃>(u, y), we would have ∃>(x, y). This would contradict our
statement of this final case in our theorem. In this way, we build a model where
card([[x]]) = card([[y]]). This concludes the proof of Theorem 5.1.

6 The Completeness Theorem for S†(card)

This section proves the following result, the last in our paper.

Theorem 6.1 The logic of Fig.1 is complete for S†(card).

Let us first motivate the work in Sect. 6.1. At this point in the paper we have
completeness for the logical system in this paper provided that no complemented
variables are used. We want to use this as a preliminary result in dealing with the
complemented variables in the syntax and additional rules in the logic.

As before, we first show how to build models of consistent sets Γ , but this time in
the full logic, and then we prove completeness by showing that if Γ � ϕ, then there
is a model where ϕ fails. The basic idea is to start out by saying which variables must
denote sets which are half the size of the universe. We call the set of such variables
half. These are the variables p such that Γ  ∃≥(p, p) and also Γ  ∃≥(p, p). For
the remaining ones, we somehow will partition them into two groups: those which
are going to be interpreted by sets smaller than half the size of the universe, and those
interpreted by larger sets. Naturally we call these sets of atoms small and large. We
are going to use Γ to help with this division, but it is not uniquely determined. For
example, if p does not appear in Γ , then we could take p ∈ small and p ∈ large.
Or, we could take p ∈ small and p ∈ large. (The way we do things, we will never
put both p and p into half.)

Sections6.1 and 6.2 have results on partitions of our nouns. Once we make such
a partition, the idea is to focus on the small nouns. These include no noun and
its complement. Temporarily forget the complement symbols, or rather forget that
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[[x]] and [[x]] must be interpreted as complementary sets, and build a model of Γ

that “otherwise” was a model of Γ . (We could hope to get such a model using the
techniques which we have already seen.) Then to rectify matters, we would like to
be sure that the atoms in half denote sets which are half the size of the universe, and
also that [[x]] and [[x]] must be complements. The work on this is done in Sect. 6.3.

6.1 Small, Large, and Half

Lemma 6.2 Let Γ be consistent in S†(card). There is a partition of the nouns into
three classes, small, half, and large, with the following properties:

(i) p ∈ half iff (p ≤c p and p ≤c p).
(ii) p ∈ large iff p ∈ small.
(iii) If p ∈ small and q ≤c p, then q ∈ small.

Moreover, we get two additional properties:

(iv) If p ≤c p, then either p ∈ small or p ∈ half.
(v) If p ∈ half and q ≤c p, then either q ∈ small or q ∈ half.

Proof Wefirst check that (i)–(iii) imply (iv) and (v). Suppose towards a contradiction
in (iv) that p ≤c p but p ∈ large. The p ∈ small by (ii), and so p ∈ small by (iii).
This contradicts the pairwise disjointness, and so proves (iv). For (v), suppose that
p ∈ half, q ∈ large, and q ≤c p. Then by (card-Anti), p ≤c q . By (ii), q ∈ small.
We have just proved (iv), and from this it follows that p ∈ small as well. This again
contradicts the pairwise disjointness.

Recall that our nouns are either raw variables p or complemented variables p. We
have been working all along in this paper with the simplified notation that allows us
to use p to denote a noun, in particular a complemented variable. But in the current
discussion, we need to drop this convention. So for the rest of this proof, p denotes
a raw variable, and p its associated complemented variable.

The existence of small, half, and large is proved by induction on the number of
raw variables in the language. For n = 0, the result is trivial.

Assume our result for n, and let the raw variables be p0, . . . , pn, q. Let small,
half, and large be the sets for p0, . . . , pn . We need to see where q and q belong.

(a) If q ≤c q ≤c q, then put both q and q in half.
(b) Otherwise, if q ≤c q but ¬(q ≤c q), put q ∈ small and q in large.
(c) Otherwise, if q ≤c q but ¬(q ≤c q), put q ∈ large and q ∈ small.
(d) Otherwise, if neither q ≤c q nor q ≤c q, but there is some p ∈ small such that

q ≤c p, then put q ∈ small and q ∈ large.
(e) In all other cases, put q ∈ small and q ∈ large.
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We must check that (iii) holds. There are cases depending on which of (a)–(e) is
responsible for putting q and q into one of our sets. In case (a), there is nothing to
show, since the hypothesis of (iii) will not apply. For (b), suppose that q ≤c q but
not conversely, so that q ∈ small. Suppose also that pi ≤c q. We must check that
pi ∈ small as well. If pi ∈ large, then since pi ≤c q, we also have q ≤c pi . Thus
pi ≤c q ≤c q ≤c pi . We thus have a contradiction, using (iv). And if pi ∈ half, then
pi ≤ pi . Since q ≤c pi , we have q ≤c pi ≤ pi ≤ q. This contradicts the hypothesis
of case (b). So we are left with pi ∈ small, as desired.

We omit the details on case (c). Next, suppose that we put q ∈ small due to (d).
So there is some p ∈ small and q ≤c p; and also that pi ≤c q. We need to see that
pi ∈ small as well. This is due to pi ≤c p and the assumption that our partition of
p0, . . . , pn satisfies the conditions of our lemma.

The last case is when q ∈ small due to (e): there is no p such that both p ∈ small
and q ≤c p; and also pi is such that pi ≤c q . Again we must verify that pi ∈ small.
If pi ∈ large, then pi ∈ small. Hence pi ≤c pi . And so q ≤c pi , a contradiction.
If pi ∈ half, then also pi ∈ half. By the rule (half), pi ≡c pi . And so q ≤c pi ≡c

pi ≤c q . This contradicts the assumption that we are in case (e).

6.2 Refinements

We are going to need several refinements to Lemma 6.2. Recall that the proof of
Lemma 6.2 was by induction on the number of raw variables in the language. The
proof shows that if we have a partition of a subset of nouns which is closed under
complement, and if that partition satisfied the conditions (1)–(3) in Lemma 6.2, then
this partition extends to a partition of all the of the nouns in the language. This
observation makes the construction in the lemma quite flexible, as the results below
show.

We say that the small class is smaller than the half class, and both of these are
smaller than the large class.

Lemma 6.3 Suppose that Γ � ∃≥(p, q). Then there are sets small, half, and large
as in Lemma 6.2 such that one of the following holds:

1. p and q are both in small.
2. p and q are both in small.
3. p and q are in different classes, and the class of p is smaller than the class of q.

Proof By the remark just above, we need only show that { p, p, q, q } may be parti-
tioned into classes small, half, and large satisfying (1)–(3) in Lemma 6.2 and also
one of the conditions (1)–(3) in the present lemma.

If p ≡c p, then we put p ∈ half. In this case, we cannot have q ≤c q , by (half).
Indeed, we put q ∈ large, and then we handle the rest to insure that (1)–(3) in
Lemma 6.2 hold. If p <c p, put p ∈ small. If p <c p, then put p ∈ large. In this
case, we cannot have have q ≤c q . So we may put q ∈ large as well.
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We say that the small class is smaller than the half class, and both of these are
smaller than the large class.

Lemma 6.4 Suppose that Γ � ∃>(p, q). Then there are sets small, half, and large
as in Lemma 6.2 such that one of the following holds:

1. p and q are both in small.
2. p and q are both in small.
3. p and q are both in half.
4. p and q are in different classes, and the class of p is smaller than the class of q.

Proof This is similar to the proof of Lemma 6.3. The only thing that changes is that
now it is possible to have p and q both in half.

Lemma 6.5 Suppose that Γ � ∃(p, q). Then there is a partition of the nouns as in
Lemma 6.2 such that (a) either p or q does not belong to large, and (b) if one of
them does belong to large, then the other belongs to small.

Proof By the remark just above, we need only show that { p, p, q, q } may be parti-
tioned into classes small, half, and large satisfying (1)–(3) in Lemma 6.2 and also
the assertions in the present lemma.

If p <c p, thenwe are forced to put p ∈ large. In all other cases, it will be possible
to put p in either small or half (following what we did in Lemma 6.2). Let us check
that if we are forced to put p ∈ large, then we cannot also be forced to put q ∈ large
(by having q <c q) or even q ∈ half (q ≤c q): we must be able to put q in small.

For this, suppose towards a contradiction that p <c p and q ≤c q. Looking back
at Example 2.2, we see that Γ  ∃(p, q). This contradicts the consistency of Γ .

This also covers a related point: if we are forced to put p ∈ large, we cannot be
forced to have q ∈ large by having p ≤c q. The reason is that in this case, q ≤c

p <c p ≤c q.
The conclusion here is that if we are forced to put p ∈ large, then we cannot also

be forced to put q ∈ large. The same argument works when we interchange p and q,
of course, since ∃(p, q) and ∃(q, p) are equivalent in the logic, due to (conversion).
The argument also shows that if we are forced to put one of these in large, we cannot
be forced to put the other in half.

6.3 Building a Model of a Consistent Set Γ of S†(card)

Lemma 6.6 Every consistent set Γ has a model.

We prove this lemma in stages in this section. Fix a consistent set Γ .

The preliminary model P. Our set Γ is consistent in the logic for S†(card), hence
it is consistent in the smaller logic for S(card). However, the smaller language does
not have complemented variables, and so we have to change our way of thinking.
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Note 6.1 The language S(card) may be formulated on top of any set of “raw vari-
ables.” When we originally discussed it, we had in mind that it would be formulated
on top of the set P0 of raw variables. It might suggest things to write S†(P0). At this
point, we want to consider S†(P). That is, we want to formulate S(card) on top of
all of the variables, including the complemented ones. Thus, we temporarily regard
p and p as completely unrelated variables, and then we consider the language of
S(card) formulated over this set. Γ is consistent in this language.

By the Construction Lemma 4.4, Γ has a model, say P. This model will almost
be a model of the kind we seek, an S†(card)-model of Γ . But there is a problem:
for each p, [[p]] ∪ [[p]] will probably not equal the universe P . It will be true that
[[p]] ∩ [[p]] = ∅, by (13) in the Construction Lemma. It even will be true that if
p ∈ half, then [[p]] and [[p]] will be sets of the same size. (This follows from the
proof of the Construction Lemma 4.4, when we use Kv as in (6). That is, since the
construction will not demand that one of the two sets [[p]] and [[p]] is strictly larger
than the other, the two sets will come out with the same cardinality.) But again, there
is no reason to think that [[p]] = [[p]]. Thus, we need a fewmore steps to arrange this.

Add a point, if necessary. If the size of the universe P of P is an odd number, add
a point ∗ so that the size is even. This point ∗ does not get added to the interpreta-
tion of any atom. Call the resulting model O. (If card(P) is even, set O = P.) The
construction arranges that O � Γ .

Make the half variables have size half the universe, and the large variables be
the complements of the small ones. For each p ∈ half, let Sp = P \ ([[p]] ∪ [[p]]).
The cardinality of Sp is even. Take half the points in this set and add them to [[p]],
and then add the other half to [[p]]. We need to do this carefully, so that if p ≤ q
belong to half, then the same points are added to these sets. (In other words, we must
carry out this step for successive variables in half.)

Also, if p ∈ small, then change [[p]] to be [[p]]. That is, replace [[p]] by the
complement of [[p]]. Doing this makes for a larger set.

We call this model N. Now we would like it to be the case that N still satisfies
Γ . We can verify that N � ϕ for all ϕ ∈ Γ except those of the form ∃≥(l, h) and
∃>(l, h)with l ∈ large and h ∈ half. The most interesting verification has to do with
sentences ∀(p, p) for p ∈ half. Suppose such a sentence belongs to Γ . If N = ∅,
then N � ∀(p, p). If N �= ∅, then Γ  ∃(q, q) for some q, by (13). (In more detail,
if Γ � ∃(p, q) for any p and q, then P is empty. We check this by induction on
the construction in Lemma 4.4. So O is also empty, and so is N.) Fix q so that
Γ  ∃(q, q). By (Int), Γ  ∃(p, p). Since Γ contains ∀(p, p), we get a contradic-
tion, using (darii). This contradicts the assumption that Γ is consistent.

Make the large variables have a larger size than the half variables. If need be,
add some number of fresh points to [[l]] for all large l, so that whenever l ∈ large
and h ∈ half, ∃>(l, h) holds in the resulting model, which we call M.

Doing this preserves all of the good things about N and in addition makes M
satisfy whichever of the sentences in Γ which do not hold in N. SoM � Γ .

This completes the proof of Lemma 6.6.
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6.4 The Completeness Theorem for S†(card)

The rest of this section completes the proof of Theorem 6.1. As with Theorem 5.1,
we argue the contrapositive, showing that if Γ � ϕ, then there is a model of Γ where
ϕ fails. Again, we split into cases according to ϕ.

The first case: ϕ is of the form ∃≥(x, y).We invokeLemma6.3 to obtain small,half,
and large with one of the three options stated in the lemma. If x and y both belong to
small, then by Theorem 5.1 we may assume that in P, card([[x]]) < card([[y]]). This
fact persists to the other models, and so we get a model ofΓ where it holds. If x and y
both belong to large, thenwe consider x and y and applywhatwe just saw. If the class
of y is larger than the class of x , then inM we again have card([[x]]) < card([[y]]).
The next case: ϕ is of the form ∃>(x, y). This is similar to the first case, except
that we call on Lemma 6.4 instead of Lemma 6.3. If our partition has x and y both
in half, then in the models N and M, [[x]] and [[y]] will have the same size.

The next case: ϕ is of the form ∀(x, y). Note that we cannot have Γ  ∀(x, x),
by (zero). And using (one), we cannot have Γ  ∀(y, y). Fix a partition of the
variables as in Lemma 6.2. Let ∗ be any object. We use the Construction Lemma 4.4,
taking a new point ∗ and putting it into [[x]] and also [[y]]. This point is the only
additional point added, beyond what is in Lemma 4.4. We check that the resulting
model P has [[z]] ∩ [[z]] = ∅ for all z. (We need to do this in order to build N.) To
begin, an induction on the construction shows that ∗ ∈ [[z]] iff x ≤ z or y ≤ z. This
applies to z, of course. Assume towards a contradiction that ∗ ∈ [[z]] ∩ [[z]]. We get
four cases, and all of them contradict Γ � ϕ. We use (Anti), (Zero), and (One)
from the logic. This shows that ∗ /∈ [[z]] ∩ [[z]]. We also need to consider points ∗∗
which the Construction Lemma added to P after ∗. Let ∗∗ be such a point. Then
{ w : ∗ ∗ ∈ [[w]] } is of the form { v : w ≤ v }, where w is a ≺-minimal atom whose
interpretation contains ∗∗. (Indeed, w is the “first” atom in the construction whose
interpretation contains ∗∗.) Suppose towards a contradiction that w ≤ z and also
w ≤ z. By our logic, w ≤ w. A final induction shows that every w with w ≤ w has
[[w]] = ∅, and this is our contradiction. So we now know that P has the required
disjointness property. We define O, N, and M as before, and we indeed obtain a
model of Γ where [[x]] ∩ [[y]] contains ∗ and is thus not empty.

The final case: ϕ is of the form ∃(x, y). In this case, we appeal to Lemma 6.5. We
may assume that one of the following holds:

(i) x ∈ small, y ∈ small or y ∈ half.
(ii) x ∈ small, y ∈ large.
(iii) x, y ∈ half.

In (i), Theorem 5.1 gives P � Γ where [[x]] ∩ [[y]] = ∅. As we build M and the
models leading up to it, we add no points to [[x]], and all of the points added to [[y]]
are out of P . Thus, inM we also have [[x]] ∩ [[y]] = ∅.
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In (ii), we cannot have Γ  ∃>(x, y), due to the rule (more-Some). By what we
already know, there is a model of Γ where card([[x]]) ≤ card([[y]]). Thus there is a
listingwhere [x] comes before or equal to [y].Moreover, we either haveΓ � ∀(x, y),
or else Γ � ∃(x, x). (For if we could derive both ∀(x, y) and ∃(x, x), then by (darii)
we would have ∃(x, y).) If Γ � ∃(x, x), then we already know that that there is a
model of Γ where [[x]] = ∅. In this model, ∃(x, y) is of course false. So we may
assume that Γ  ∃(x, x) and Γ � ∀(x, y).

We form the model by the Construction Lemma, except that when we define [[y]],
we also throw in [[x]]. This arranges that [[x]] ⊆ [[y]].

When we do this, it is important that for all w ∈ half, [[w]] and [[w]] are disjoint.
The only way that this could fail is if x ≤ w and also y ≤ w. But then we would have
x ≤ y, contrary to what we saw above. It is also important that all of the sentences
∃(a, b) in Γ hold in P. The only way that one of these could fail is if a ≤ x , y ≤ b.
(That is, the sentence ∃(a, b)would be put into [[a]] ∩ [[b]].) But in this case, we have
Γ  ∃(x, y), contrary to this case. The upshot is that indeed P � Γ , and in P, each
half atom has [[w]] ∩ [[w]] = ∅.

We thus can continue to build themodelsO,N and (especially)M, the construction
still has arranged that [[x]] ∩ [[y]] = ∅.

Finally, we turn to (iii). We assume that Γ � ∃(x, y), and x, y ∈ half. Consider
the definition of N. When we define [[h]] for h ∈ half, we first note that for our x
and y, [[x]] ∩ [[y]] = ∅. This is by (13) and the assumption that Γ � ∃(x, y). But
this assumption also implies that Γ � ∃(x, y): this is the one and only place in
the proof where we use (maj). Thus we also have [[x]] ∩ [[y]] = ∅. It follows that
([[x]] ∪ [[y]]) ∩ ([[x]] ∪ [[y]]) = ∅. Before we carry out the definition ofN, set [[u]] =
[[x]] ∪ [[y]] whenever u ≡ x or u ≡ y. Also, set [[u]] = [[x]] ∪ [[y]] whenever u ≡ x
or u ≡ y. (We cannot have both conditions, lest Γ  ∀(x, x).) Then defineN andM
as before. We may arrange that [[x]] = [[y]] inN. The passage fromN toM does not
change [[x]] or [[y]]. So M is as desired.

This concludes the proof of Theorem 6.1.

Additional Remarks. As mentioned, the completeness of the logic implies that
reductio ad absurdum is admissible in the logic. Adding reductio makes the logic
more useable by people. For computers, it complicates the proof search.

A final point about the system concerns the (maj) rule. This is the only rule with
three premises. It can be shown that this rule cannot be eliminated from the system.
That is, the (maj) rule does not follow from the other rules in the system. At the
same time, every valid two-premise rule is derivable in the system. Unfortunately,
one verifies these points by exhaustive search rather than by an insightful argument.
And so we conclude that this logic S†(card) is not axiomatizable with only two-
premise rules.
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7 Conclusion

Wehave presented a sound and complete logic extending syllogistic logicwith There
are at least as many x as y, and There are more x than y. The completeness
proof ismore intricate than in otherwork in the area,mostly because the constructions
are not “canonical”: one has lots of flexibility in building models with tools like
Lemmas 4.4 and 6.2, but this flexibility comes with a cost in terms of extra details
to track in the proofs. As with all proofs in this area, there are many details to check.

We did not discuss details of the implementation. Here is a very brief explanation.
One takes a set Γ and a sentence ϕ and wants to know whether Γ  ϕ or not. Since
reductio is admissible, one can instead ask if Δ = Γ ∪ { ϕ } is consistent or not. To
tell, generate all possible proofs in our system. This can be done in polynomial time.
If Δ is inconsistent, then we already know that Γ  ϕ. And if Δ is consistent, one
wants to build a model. Here one has to take all the work done in this paper and make
it algorithmic.

The model-building part of the paper does not provide models of minimal size.
(See Remark 1.1 for a related discussion.) It is open to build minimal models of
satisfiable sets of sentences in polynomial time.

I did want to comment that work on the implementation was both helpful and
not helpful to work on this topic. While working on the implementation I discovered
several of the rules of the system, including (maj). I also found that some rules which
were originally part of the system were derivable from others. Further, some of the
steps in the completeness proof were suggested by work on the algorithm. On the
other hand, no amount of testing can actually prove the completeness of any logical
system. (It might have helped to have a proof assistant for that.) I found myself
debating which I believed more: a thousand randomly generated examples of proofs
and counter-models, or a long proof that involves numerous similarly-looking cases
that are never written out in full.

The next steps in this line of work would be to expand the logical system. The two
papers that come closest to this one are Endrullis and Moss (to appear) and Lai et
al. (to appear). Endrullis and Moss (to appear) studies the logic with All, Some, and
Most x are y. But it lacks the syntactic constructions in this paper: There are at
least as many x as y, and There are more x than y. It also lacks complemented
variables. It is open to merge the two systems, or to show that this is impossible.
Similar remarks apply to Lai et al. (to appear). That paper studies Most x are y and
All x are y on top of propositional logic.

Acknowledgments I thank anonymous reviewers for their comments and corrections to this paper.
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A “Reply” to My “Critics”

J. Michael Dunn

Abstract Despite the joking title, this is not really a reply to my critics. Rather it is
a response to my fellow researchers in acknowledgment of their expert contributions
to this volume on information based logics. Their papers extend my work or their
own, in a good way. In my responses, I try to say something interesting, maybe just
to set a context, to suggest future work, to clarify something, or to make further
connections to my own work.

This is really not an appropriate title, at least without the scare quotes, since the
wonderful contributors to this volume are too nice to really criticize me, at least
directly. Rather they have found excuses to say nice things about me and my work,
and at the same time extend my work, and/or theirs, in a good way. The description
of the series Outstanding Contributions to Logic says that a typical volume contains
a response to the contributions by the logician to whom the volume is devoted. This
is that response. But it is not always a “reply” in any strict sense. Do not expect this to
be a series of public referee reports. It is too late anyway since I understand that the
contributions have already been put through a scrupulous referee process. Moreover
there simply is not enough space for a detailed reaction to each and every paper. But
I try to say something interesting, maybe just to set a context, sometimes to suggest
future work. And occasionally to try to clarify something. Anyone who knows me
knows I like things to be clear—this is just me.

I might explain and/or apologize for something in advance. You will often findme
citing and explaining my own work. I try to think that I wasn’t just being “moi,” but
was rather just being me. I was trying to establish reasons why these contributions
would appear in this volume and make bridges to my own work.
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I of course want to thank the various authors who have contributed to this volume,
many of whom are close friends and colleagues and former students (the classes are
far from exclusive). Most of all I want to thank the editor of this volume, Katalin
Bimbó, one of my former students, and now a friend and colleague. I of course also
want to thank the editor of the series Sven Ove Hansson, and also the editorial board,
for choosing to do a volume about me and information based logics. And I want to
thank Heinrich Wansing (a member of the editorial board) who first approached me
with the idea.

Arnon Avron: RM and its Nice Properties. Arnon always says, and proves, nice
things about RM (R-Mingle). In his abstract he says (p. 41):

Dunn–McCall logic RM is by far the best understood and the most well-behaved logic
in the family of logics developed by the school of Anderson and Belnap. However, it is
not considered to be a relevant logic by the relevant logicians, since it fails to have the
variable-sharing property. Instead RM is usually characterized as being a “semi-relevant”
logic without explaining what this notion means.

I do not entirely agreewithArnon on this last. I amnot surewhofirst started calling
RM a “semi-relevant logic,” but I think it was likely BobMeyer. Bobwas the onewho
first showed that in RM the negation of a theorem implies any theorem whatsoever,
so we get provable implications without the standard requirement for relevance of
the Variable Sharing Property, e.g., (p ∧ ∼p) → (q ∨ ∼q), or∼(p → p) → (q →
q).1 Bob was the contributing author of Sect. 2.3 in Anderson and Belnap’s (1975),
and on p. 427 it is proved thatRM satisfies the principle of “weak relevance,” namely
“that A → B is a theorem only if either A and B share a sentential variable or both
∼A and B are theorems. I think that someone referring to RM as “semi-relevant”
mightwell be saying this because it only satisfies “weak relevance.”However, putting
this aside, Arnon’s definition of “semi-relevant” turns out to be stronger than this,
and in an interesting way.

There is no doubt thatRM was, as the saying goes, the red-headed stepchild of the
relevance logic family. This was always a disappointment to me, and I feel sure also
to its other parent Storrs McCall. I always felt it was similar to the situation of S5
in the modal logic family—too simple and elegant to be appreciated. But of course
I have to be fair and acknowledge that like S5, RM collapses a lot of formulas into
logical equivalents that do not always allow it to make important distinctions. But for
many purposes, say as the logic for some paraconsistent theories, it is a good enough
tool.2 So I really appreciate Arnon’s contribution to this volume that gives an inter-
esting formal characterization of “semi-relevance.” This can be viewed as showing

1It is interesting that the original formulations of implication and negation for RM did have the
variable sharing property, but adding conjunction or disjunction (they are interdefinable using De
Morgan negation) led to the first of the implications, and the second can then be derived. Arnon has
done a lot of interesting work on these implication-negation versions of RM without conjunction
and disjunction.
2The reader who wonders about the qualification “some” is referred to Dunn (1979a), where it is
shown that Robinson’s Arithmetic blows up, whether with R or RM, if it has 0 as primitive (but
not if its numbers start with 1).
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thatRM is at last, and at least, a semi-legitimatemember of the relevance logic family.

Chris Mortensen: Wedge Sum, Merge and Inconsistency. Chris says in the first
sentence of his article, that Bob Meyer’s and my work on 3-valued model theory
proved an inspiration to him to construct inconsistent mathematical theories. Maybe
I should take this occasion to apologize to Chris for leading him down the wrong
path, but I don’t think so. Chris’s work on Inconsistent Mathematics (the title of
his well-known book) has been an inspiration to many of us, and not just for his
technical results but also because of his connecting inconsistent mathematics to the
inconsistent art of Escher, Penrose, Reutersvärd, and others.

I was glad to obtain in Dunn (1979b) a quite general way of constructing
3-valued models from homomorphic images of classical models. Bob Meyer (1976)
had already constructed 3-valued finite models for his relevant arithmetic and used
them to show that his system was absolutely consistent (not every sentence is prov-
able), a result sitting on the edge of Gödel’s Second Incompleteness Theorem. His
models were based on modular arithmetic, and in particular the natural numbers
modulo 2 consists of just two “numbers,” 0 (representing the even numbers) and 1
(representing the odd numbers). Bob defined his model so that 0 = 1 had the value
Both. The semi-relevant logicR-mingle makes an appearance again, and particularly
its 3-valued extension RM3 determined by the 3-element Sugihara algebra which
can be intuitively understood as the set of values, True, False, and Both.3 My gener-
alization of Bob’s somewhat ad hoc construction was to make it more elegant, since
the natural numbers mod n are all homomorphic images of the natural numbers. The
idea was that an equation [i ] = [ j ]would receive the value True if for every i ′ ∈ [i ]
and j ′ ∈ [ j ], h(i) = h( j). And it would receive the value False if for every i ′ ∈ [i ]
and j ′ ∈ [ j ], i ′ �= j ′. h(i) �= h( j), and of course it would take the value Both if
sometimes its images were the same and other times they were distinct. I used the
metaphor of a blurred image. I never really pursued it but I also had a 4-valued
account where the value Neither could arise when we had a submodel of a model, a
kind of incomplete image. I think mentioning these images is very appropriate given
Chris’s work on Escher, etc.

But in Chris’s contribution to this volume, is going the other direction. He isn’t
looking at homomorphic images (or submodels), he is rather taking two models and
combining them. If I can use some Photoshop metaphors, a homomorphic image is
obtained by use of the Blur tool, a submodel is obtained by Cropping, and Chris’s
Merge is analogous to Photomerge. Chris begins his paper by defining a topological
notion: the wedge sum. I skip over the technical definition to Chris’s saying that the
definition “amounts to saying that the wedge sum of two spaces is their union, except
for having just one pair of overlapping points identified.” As an example Chris asks
us to think of the wedge sum of a circle with itself as topologically equivalent to the
numeral 8. Chris adds (p. 70):

3I don’t know why but I used N to denote this third value, even though I clearly explain that it is
to be understood as Both. Incidentally these three values function similarly to the three values for
Graham Priest’s “Logic of Paradox” LP except that implication is defined differently.
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Clearly, this definition can be extended to more than two spaces, and more than one pair of
overlapping points, butwe donot need that here. In this paper,we directly construct consistent
logical theories which describe wedge sums, and inconsistent theories which extend them.
Then we utilize the technique Merge to show how to obtain inconsistent theories of the
wedge sum in a different way. Finally, it is seen that this technique can be used to study
inconsistent structures other than topological spaces.

The merge of two theories is the theory which is the deductive and conjunctive
closure of their union, i.e., it is the smallest “theory” that includes their union. Chris
uses the logic RM3 to determine these theories, i.e., sets of sentences closed under
deduction (A ∈ T and A → B ∈ T implies B ∈ T ) and conjunction (A ∈ T and
B ∈ T implies A ∧ B ∈ T ).

Chris compares the wedge sum, which operates at the level of semantics, and the
merge, which operates at the level syntax.

Dolph E. Ulrich: Single Axioms and Axiom-Pairs for the Implicational Frag-
ments of R, R-Mingle, and Some Related Systems. I have known Ted (he goes by
the nickname of his middle name Edward) in several roles. Ted and I were actually
undergraduate philosophy students together at Oberlin. And then I met him again
when he was an advanced graduate student at Wayne State looking for a dissertation
advisor in logic, and I was a first year faculty member, lucky to have a graduate stu-
dent of Ted’s quality to work with. I learned at least as much from Ted as he did from
me. His dissertation Characteristic Matrices for Sentential Calculi was completed I
think about a year after my own.

Ted’s dissertation contained an appendix translating Jerzy Łoś’s O Matrycach
Logicznych (On Logical Matrices). I do not believe Ted knew any Polish but he
figured it out word by word so to speak. He told me that once he had figured out
what the theorem was he would then proceed to try to figure out its proof, going back
and forth between his thoughts and Łoś’s, as it were, and trying to construct another
proof if they didn’t match. Wikipedia tells me that in 1970, 70% of Hamtramck’s
population was of Polish origin, and of course many of the younger people came to
Wayne State as students and took our logic classes. Ted, was teaching one of these
classes at the time and he told me that he thought of announcing at the first class
something like, “If I mispronounced any of your names please come up and see me
after class—I have a project you might help me with.”

Perhaps Ted has been channeling Łoś or some other Pole, but for a long time Ted
has been the “go-to guy” for questions regarding shortest axiomatizations of senten-
tial calculi, shortest single axioms, and such as if he is simultaneously channeling
Łukasiewicz, Meredith, Prior, Wos, etc. Ted has applied his talents to the logic R and
R-Mingle among many others (even classical logic) over the years. It is very nice to
see his contribution to this volume reviewing his and others’ work, and showing the
existence of one and two axiom bases for both the implicational fragments of R and
R-Mingle.

Larisa Maksimova: LC and its Pretabular Relatives. Larisa Maksimova was
working on relevance logic in the late 1960s and early 1970s when relevance log-
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ics were just being formulated by Anderson and Belnap. But instead of being in
Pittsburgh, close to the action as I was, she was working on her Ph.D. in Novosi-
birsk. This was before the Internet! One of my earliest published papers connecting
algebra and logic was Dunn (1970), where I showed RM is “pretabular” (that is,
every normal extension closed under its rules has a finite characteristic algebraic
model—a “Sugihara algebra”). Shortly thereafter BobMeyer and I showed the same
for Dummett’s superintuitionistic logic LC. Larisa shortly thereafter (Maksimova
1972) greatly improved on this result showing that there are only 3 pretabular exten-
sions of the intuitionistic propositional logic, and then (Maksimova 1975) showed
similarly that there are exactly 5 pretabular extensions of the modal logic S4, one of
which is S5. S5 was the first logic ever to be shown to be pretabular, by Schiller Joe
Scroggs in 1951. It was very nice to see Larisa summarizing her work and adding
to it by considering related logics and also adding the dimension of complexity. I
might finish my thoughts about Larisa’s paper by saying how disappointed I was to
learn from her paper that K. Swirydowicz in 2008 proved that the logic R has an
uncountable number of pretabular extensions. R should be better behaved than that.

Alasdair Urquhart: The Story of γ . I appreciate Alasdair’s contribution about the
admissibility of Ackermann’s rule γ . This rule was central to Ackermann’s systems
which were a stimulus to Anderson and Belnap’s systems, but they did not want it as
a primitive rule. It is a kind of metatheoretic version of modus ponens for thematerial
conditional and not only I am sure did they think it was ugly, but it got in the way
of proving relevant versions of the deduction theorem. Alasdair describes how it has
been proved to be “admissible” (redundant) in Anderson and Belnap’s systems, in
a number of different ways. It is funny how an open problem can sit unsolved for
quite a while, then be solved, and then be solved in a different way, etc. Often the
solutions do notmerely get easier and easier, but they involve connections tomore and
different results and methods. Alasdair can be seen as documenting this in the case of
γ , with the first algebraic proof byMeyer and myself in 1969, followed by a proof by
Routley and Meyer in 1973 using their Kripke-style ternary semantics, and thirdly
the simplest proof of Meyer (1976) using his ingenious notions of metavaluation
and metacompleteness. Alasdair points out there is actually a fourth proof by Saul
Kripke that has never been published and is based on analogy with proving cut-
elimination for a Gentzen system using semantical methods. In Alasdair’s story the
logic R-Mingle again makes a brief but important appearance in that the first proof
of γ derives from a certain algebraic method first used in the context of R-Mingle
(Dunn 1970). R-Mingle might be viewed as the proving ground for relevance logic.

What does the admissibility of γ have to do with information based logics? I
might answer this with the following syllogism. The admissibility of γ is important
for relevance logics. Relevance logics are information based logics. Therefore, the
admissibility of γ is important for (some) information based logics. But this is a bit
glib. To probe a bit deeper we might look at a � A ∧ (∼A ∨ B) therefore a � B. Let
us suppose that A is supported by the information state a and so is ∼A ∨ B but not
because B is but because∼A is (a is an inconsistent information state). So there is no
reason to believe that a � B. But wait! We were not supposed to be considering the
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derivability of γ , but rather its admissibility, i.e., the preservation of theoremhood.
Let us assume that theoremhood is equivalent to being supported by all consistent and
complete information states (“possible worlds”). It is straightforward to show that if
A ∧ (∼A ∨ B) is supported by all consistent and complete information states a, then
so is B. So the admissibility of γ is strongly linked to the thought that theoremhood
is equivalent to not just validity in all information states, but particularly to validity in
all consistent and complete information states. Clearly this last equivalence implies
the admissibility of γ. And in the other direction, the second proof of the admissibil-
ity of γ recalled by Alasdair, which uses the Routley–Meyer semantics, involves in
effect replacing the complete information state 0 rejecting the non-theorem B with
a consistent and complete counterpart 0′ that continues to reject B.

Edwin Mares: Manipulating Sources of Information: Towards an Interpretation
of Linear Logic and Strong Relevance Logic. Ed was an early advocate for some
kind of information based interpretation of relevance logic. He correctly points out
that first such semantics based on the idea of combining pieces of information stems
from Alasdair Urquhart’s 1972 paper. It is nice to see in his contribution to this
volume that he seems to subscribe to my “logics as tools” approach to logic, even
though I do not remember ever directly teaching that to himwhen he was my student.
This actually makes it all the nicer since it means it is not just my view. Thus in
the final sentence of the substance of his paper is: “Interpreting relevance logic in
terms of the construction of sources of information removes relevance logic from
the metaphysically extravagant realm of true contradictions and impossible worlds,
and locates it as an epistemological tool.” I could not have put it better myself. This
was my original intention in creating a 4-valued semantics for relevant first-degree
entailments, and I have now upgraded the characteristic 4-valued De Morgan lattice
to the “Opinion Tetrahedron” (Dunn 2010).

Ed has given in Mares (2004) a 4-valued semantics for various relevance logics,
includingR, but with “the catch” (his words not mine) that the Routley–Meyer frame
semantics is enriched to be a neighborhood semantics. Ed in his contribution empha-
sizes the construction of sources of information fromone another, something that I am
in complete sympathy with (see Dunn 2014). The particular ways that Ed considers
give a useful framework, as he shows, for understanding the contraction-free logics
MALL (Multiplicative–Additive Linear Logic) and RW (R minus contraction), and
the relevance logics R (Relevant Implication) and LR (R minus distribution).

Sebastian Sequoiah-Grayson: Epistemic Relevance and Epistemic Actions.
Sebastian’s contribution pairs nicely with Ed Mares’. Sebastian examines the inter-
pretationof the ternary relation R onaRoutley–Meyer frames in termsof information,
and particularly in terms of what we might call “epistemic information.” Sebastian
says (p. 164):

Both epistemic states may carry atomic information, or one epistemic state may carry infor-
mation of atomic form and the other of conditional form, or both epistemic states may carry
information of conditional form. Following Dunn (2015), we will call the first scenario the
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Data Combining (DC) interpretation, the second scenario the Program Applied to Data (PD)
interpretation, and the third scenario the Program Combining (PC) interpretation.

Sebastian cites Dunn (2015), which is a good and intuitive place to look, but I want
to call attention to the fact that I first described these three varieties of interpretation
in Dunn (2001a, c), and that in effect they were used in Dunn and Meyer (1997) and
Dunn (2001b).

Sebastian says “Given that inconsistent propositions may hold at points, that is,
given that we may have x � φ ∧ ¬φ, understanding as ‘true at’ is a little too crude.
Instead, we may understand x � φ as ‘x carries/stores the information that φ.’ ”

His point is that φ ∧ ¬φ, being a contradiction, cannot be true. As an “adialethist”
I certainly agree with that. Ed Mares and Ross Brady make similar points. Out of
respect I will go along with them, though the picky logician in me cannot help
but question whether there is a significant distinction between “x carries/stores the
information that φ” and say “φ is true according to the information x .”

Anyway getting back from “semantical quibbling,” Sebastian then goes on to
given an informational interpretation of the ternary relation, that is the kingpin of the
Routley–Meyer semantics for relevant implication, saying: “In this case, Rxyz comes
out as ‘if you combine the information carried by/stored at x with the information
which is carried by/stored at y then you get the informationwhich is carried by/stored
at z.’ ” I see that Sebastian had already read my most recent piece on the ternary
relation (Dunn 2015) and that he cites it as he goes on to say: “In other words,
given the information carried by states x and y, their combination is relevant to the
information carried by state z.” I actually spelled this out in terms of “contextual
relevance”: in the context of information x , information y is relevant to information
z. But it comes down to the same since, as Sebastian makes clear, I first introduced
the idea of interpreting Routley–Meyer’s a 	 b (R0ab) as absolute (Sebastian’s non-
contextual) relevance, and then the idea of contextual relevance as combining x with
y is absolutely relevant to z (x • y 	 z).

The interesting new feature of Sebastian’s analysis is his saying (p. 161):

Moreover, the very act of combining x and y is itself informationally relevant to z. This
is because it is the operation of combining x and y which bring the information at both
states together. Sans such an operation, the information at x and y are separate informa-
tional entities, neither of which, either considered independently or non-contextually, are
informationally relevant to z.

This is what allows him to build a bridge from epistemology to information, from
epistemic states to information states. As he says (p. 159):

That relevance logics provide a logical framework for epistemic relevance and epistemic
actions is at the very least not obvious. Such logics are neither thought of as particularly
epistemic, nor as dynamic (and actions, epistemic or otherwise, are dynamic if anything is).

Sebastian (p. 163) relates the properties of the active combining of information
to Gentzen’s structural rules (Commutation, Weakening, Contraction—and one that
Gentzen implicitly assumed, Association).
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Given that we are understanding the information states as explicit epistemic states, the
composition operation as the epistemic action of combining such states, and the partial order
of informational inclusion as epistemic relevance, then the epistemic action contexts inwhich
the structural rules hold or fail become salient. They become salient because they specify the
properties that said epistemic actions need to possess with regard to guaranteeing epistemic
success.

I will stop here so as to not spoil the interesting ending of his paper.

Ross T. Brady: Comparing Contents with Information. Ross is an early and
frequent contributor to relevance logic, even if he does pronounce it in his Aussie
way as “relevant logic.” I do appreciate his contribution to this volume, since in
particular Ross has contributed towards an information based understanding of some
of the weaker relevance logics. But Ross prefers to talk of “content” rather than
“information.” He has been motivated in his work on “content algebras” I believe
in large part by his efforts to formulate a naive set theory based on relevance logic,
which demands weaker logics than the “gold standard” relevance logic R. This need
was shown in Meyer et al. (1979).

Ross starts out the body of his present article with “Sect. 2. Carnap on contents
and information.” And while he goes to some length in presenting Carnap’s notion
of “content” resulting in the definition of the content of A as the class of state
descriptions that make A false, he somehow skips Carnap’s notion of the information
of A as the class of state descriptions that make A true.4 Note that for Carnap, content
and information are just duals, as Brady recognizes, and it should be more or less
arbitrary which one you prefer.

But when we get to Sect. 4, we find that Ross seems to want use the term “infor-
mation” in such a way that it implies truth, whereas “content” does not require truth.
Now in a way this is just a matter of words. Ross is correct in saying that I believe
that “it is all a matter of the interpretation of the words ‘true’ and ‘information’ as
to whether semantic information has to be true.” But that does not mean I think it
is entirely arbitrary whether one builds “truth” into the definition of “information.”
Like many a technical definition in science, say that of the mass of an object, it
depends on the role it plays in constructing a good theory. Building weight into the
concept of mass would not be conducive to theory building, and I think the same
holds of “truth” with respect to “information.” I argued this in my 2013 review of
Luciano Floridi’s book The Philosophy of Information. Ross cites this book, so I am
not going to go through that again. I obviously didn’t convince him. So I will end
with the following “argument from authority.”

Rudolf Carnap and Yehoshua Bar-Hillel in Carnap and Bar-Hillel (1964) say
(p. 229):

It should, however, be emphasized that semantic information is here not meant as implying
truth. A false sentence which happens to saymuch is thereby highly informative in our sense.
Whether the information it carries is true or false, scientifically valuable or not, and so forth,

4Though Ross does talk of the “range” of A, and that is just a definition away fromCarnap’s concept
of “information.” The information in A is the same as the range of A.

http://dx.doi.org/10.1007/978-3-319-29300-4_9
http://dx.doi.org/10.1007/978-3-319-29300-4_9
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does not concern us. A self-contradictory sentence asserts too much; it is too informative to
be true.

I also want to take the opportunity to make clear that I do think that contradictions
contain information, but unlike Carnap and Bar-Hillel I do not think that the amount
of information is in essence infinite. In relevance logic an arbitrary contradiction does
not imply every sentence whatsoever. This can be captured semantically using infor-
mation states that unlike possible worlds, can be inconsistent and also incomplete.
This allows distinctions even among contradictions.

So I end my quibbling over mere words. As my late colleague Hector Casteñeda
might have put it: Information, Schminformation, who cares? After all Ross does say
(p. 179) “What I propose to do is to simplify the matter by focusing on a normative
interpretation of information.” I am not quite sure what he means by this but it could
be similar to my recognizing in Dunn (2008) that there is pragmatic implication that
information is true.

The main logical content in Ross’s paper is his Logic of Meaning Containment
MC with its algebraic semantics, and I surely will not quibble with that. The logic
MC and its extensions that Ross presents are quite natural, though they do avoid
axioms for nested implications such as we have in the logic of relevant implication
R. Let me end though with a substantive question about Ross’s algebraic semantics.
Is there a nice way to represent these content algebras, say using a ternary accessi-
bility relation along the lines of the Routley–Meyer semantics for relevance logic?

Heinrich Wansing: On Split Negation, Strong Negation, Information, Falsifica-
tion, and Verification. It is nice to seeHeinrich usingmyGalois connected negations,
even if he switches to calling them “split negations” using the better metaphor of
Chrysafis Hartonas. Questions about the nature of information and questions about
the nature of negation go hand in hand together. If a sentence A carries a certain
amount of information, what amount does its negation ∼A contain? (Shannon). If
the information contained in A is understood in such-and-such a way, how is the
information in ∼A to be understood (Carnap and Bar-Hillel). What is the informa-
tion, if any, conveyed by a tautology? A contradiction? (Floridi). Wansing addresses
the important question as to whether there are two kinds of information, negative as
well as positive. In my dissertation I introduced “proposition surrogates” as pairs of
positive information, and negative information. I viewed these as sets of “topics,”
later upgraded to situations and now information states.

Heinrich, and also another friend Yuri Gurevich, have defended the idea that
positive and negative information are in fact different, and they should be treated
symmetrically. This leads to a kind of “strong negation” of the Nelson variety. A
third friend of mine, Sebastian Sequoiah-Grayson, has claimed that there is a strong
asymmetry between positive and negative information.Which side do I choose? This
is obviously not the best occasion to take a side, so of course the answer is: none
of the above. While a proposition surrogate consists of a set of positive information
together with a set of negative information, it is important to note that for me the
items (let’s call them information states) in the sets do not differ in kind. In that sense
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there is no intrinsic distinction between positive and negative information. Positive
and negative are context relative terms. The same information that provides positive
support for the statement “Florida is Democratic” provides negative support with
respect to the statement “Florida is not Democratic.” The negation of the proposition
surrogate (X+, X−) is simply (X−, X+).

Heinrich seems to agree with this for he says (p. 199): “Suppose that we are
working with neutral litmus paper, so that by a change of colour we may test for both
acids and bases. What is positive information from the point of view of verification
is then negative information in the context of falsification (and vice versa).”

Yaroslav Shramko: Truth, Falsehood, Information and Beyond: The American
Plan Generalized. I really appreciate Yaroslav’s informed and informative account
of the development of what is sometimes called the “Belnap–Dunn 4-valued logic”—
and other times called by those brave enough to not follow alphabetical order the
“Dunn–Belnap 4-valued logic.” I note thatYaroslavwas politic enough to avoid either
of these labels. The closest he comes is to refer to “Dunn and Belnap’s American
Plan.” As he points out the label “American Plan” was introduced by Bob Meyer,
who contrasted the 4-valued approach with what he called the “Australian Plan”
approach of Richard and Val Routley (1972) which used a “point-shift” in the evalu-
ation of negation: a 
 ∼A iff a∗

� A. (This evaluation is reminiscent of the earlier
Białynicki-Birula and Rasiowa representation of De Morgan lattices that defined De
Morgan complement—they called it “quasi-complement”—in an analogous way.)

Yaroslav recounts with great precision 4 different versions of the American Plan,
with Version 1 starting in my 1966 dissertation where I did not yet have the nerve
to speak of truth values and a sentence being both true and false, but instead spoke
of “topics” and how a sentence could give both positive and negative information
about a given topic. As Yaroslav next points out with his Versions 2 and 3, I finally
got the courage to speak of a sentence being both true and false (also neither) in a
given “situation.” Situations replaced “topics,” and a valuation v became a relation
that could relate a given sentence to both True and False in a given situation, with
the difference between versions 2 and 3 being whether one just left v as a relation
or instead looked at its image, i.e., the set of truth values it relates the sentence to
in the given situation. I eventually began talking of “information states” rather than
“situations,” having converted to “computer scientology.”5

Finally in Version 4 these sets of truth values are promoted to “generalized truth
values,” which is just what Belnap didwith his famous True, False, Both, andNeither.
Belnap also introduced the idea that there can be two different orders on the values,
which Shramko refers to as the truth order and the information order. And of course
it doesn’t stop there. As Shramko carefully explains this, “bilattice” can be extended
to a 16 element “trilattice,” based on generalized truth values corresponding to all

5It might be worth pointing out that Jon Barwise and John Perry developed their “situation seman-
tics”much later (seeBarwise and Perry 1983) andwhile their “real” situations cannot be inconsistent
although they can be partial, their “abstract” situations can be both. Also the relevantist Ed Mares
still talks of situations.
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the subsets of the 4 generalized truth values, and of course, ad infinitum.

Chunlai Zhou: Logical Foundations of Evidential Reasoning with Contradic-
tory Information. Chunlai and I did some interesting work together on negation,
extendingmy original “kite of negations” to a “lopsided kite” (Dunn and Zhou 2005).
Chunlai has continued to work on negation and the problems of inconsistent infor-
mation and has developed a theory of “belief functions on distributive lattices.” He
intends this as a generalization of the widely accepted Dempster–Shafer belief func-
tions which are defined on a Boolean algebra (the powerset of a finite “frame of
discernment”). These belief functions when defined on a De Morgan lattice can deal
with inconsistent (and incomplete) information in a way that does not fall prey to the
classical problems of “Explosion” an inconsistency implying everything.

In Dunn (2010) I myself have recently been trying to extend the original Belnap–
Dunn framework for the 4-valued Logic so as to have more subtlety for degrees of
belief, or subjective probability, than merely “True, False, Both, Neither.” Chunlai
cites this paper but makes no comparison of this approach to his. I am not sure there
is a direct comparison, but it is an idea to explore.

Chunlai several times speaks of expanding the Carnap universe for consistent
information of possible worlds to the what he calls the Belnap–Dunn universe of
states where a proposition may be both true and false. He then goes on to precisify
this in terms of the Belnap–Dunn 4-valued logic, where the values are “True, False,
Both, Neither.” This suggests to me that in the Belnap–Dunn universe there may well
be incomplete as well as inconsistent states, and Chunlai was just emphasizing the
inconsistent states because of their “weirdness.”

Chunlai says (p. 239):

Carnap developed a universe of possible worlds that encompasses all possible states of a real-
world system. Information about that system, if precise and certain, identifies its actual state.
If imprecise but certain, this information identifies a subset of possible system states. Such
kind of subsets are called truth sets. If uncertain, then the information induces a probability
distribution over system states which is defined on all subsets of the universe.

Truth sets are sets of possible worlds, i.e., sets of complete and consistent infor-
mation states, and are in effect “U.C.L.A. propositions” as Alan Anderson called
them.6 Thus the probability distribution in effects assigns probabilities to the vari-
ous propositions. Dempster–Shafer use a probability function on sets of information
states.

Chunlai gracefully combines the Belnap–Dunn ideas with ideas from Ruspini
(1987). As Chunlai explains (p. 239):

Ruspini (1987) noted that Carnap’s characterization does not distinguish degrees of precision
when the information is uncertain and Carnap’s logical approach, while enabling a clearer
understanding of the relations between logical and probabilistic concepts, suffers from a

6Carnap who avoided abstractions, actually used the syntactic device of “state descriptions” rather
than possible worlds, where a state description can be viewed as a set containing every atomic
sentence or its negation, but not both.
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major handicap: it assumes that observations of the real world always determine unambigu-
ously probability values for every subset in the universe. But uncertain information generates
a probability function for all subsets of the universe only if it is precise. When information
is imprecise, this probability function is defined on some subsets of possible states, which
is not discussed in Carnap’s methodology.

Janusz Czelakowski: Probabilistic Interpretations of Predicates. Gary Harde-
gree’s and my book (2001) Algebraic Methods in Philosophical Logic benefited
from Janusz’s work in the 1980s on asymmetric (“single sided”) and symmetric
consequence relations. Janusz is an acknowledged expert on generalizations and
abstractions of Tarski’s consequence operator, so it was very nice to see his subse-
quent positive review of our work (Czelakowski 2003).

I was pleased to see that Janusz’s contribution to this volume focuses on proba-
bilistic predicates. As I said in my “autobio” in the early part of my career I eschewed
anything having to do with probability. But now I believe that probability, statistics,
machine learning, etc., and deductive logics of various forms, all belong together in
a kit of tools for reasoning by humans and/or machines. I of course was also pleased
to see the relation to De Morgan lattices and to gaggles and their weaker versions
distributoids.

Janusz’s idea, put quickly, is to interpret vague predicates, such as “good” in the
sentence “John is a good writer,” in terms of probabilities. He focuses on unary
predicates, but does consider the general case of n-ary predicates. These cover his
other example: “Mike is a better mathematician than Andrew.” (While I appreciate
Janusz saying this of me, I feel sorry for poor Andrew, whoever he is. :) ). Janusz
does not do this in the simplistic “fuzzy logic” way of assigning a degree of “truth”
between 0 and 1. This I was glad to see because I have always been concerned about
fuzzy logic being overly precise about “fuzziness.” As Janusz explains (p. 274):

While in fuzzy set theory it makes sense to assign a numerical value to each m-tuple
〈a1, . . . , am〉 of elements of A as a degree of a relation R ‘holding’ on 〈a1, . . . , am〉, the prob-
abilistic interpretation does not do this. It merely provides a global probability distribution
for the set Am .

I would like to make a wild suggestion. Audung Jøsang has created another mul-
tivalued approach to uncertainty, using what he calls an “opinion triangle” to locate
degrees of belief (truth), degrees of disbelief (falsehood), and degrees of uncer-
tainty.7 I wonder whether Janusz’s definitions and theorems can be modified so as to
use Jøsang’s approach. In Dunn (2010) I made an extension of the Jøsang’s opinion
triangle to the “opinion tetrahedron,” introducing two kinds of degrees of uncertainty,
one kind having to do with uncertainty in the sense of ignorance (Neither) and the
other kind having to do with uncertainty in the sense of conflict (Both). The values
Neither and Both of course come from the Belnap–Dunn 4-valued logic. It seems
to me that the first might correspond to vagueness, and the second to ambiguity. Or
something like that. :)

7Jøsang first presented this at a conference in 1997, but a more accessible source is Jøsang (2001).
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Chrysafis Hartonas: Reasoning with Incomplete Information in Generalized
Galois Logics Without Distribution: The Case of Negation and Modal Oper-
ators. Chrysafis is widely known as “Takis,” and this is how I shall refer to him
here. In Hartonas and Dunn (1997) Takis and I gave what I believe to be the most
natural representation of general lattices, using ideas that combine older ideas from
Birkhoff and Goldblatt. My first development of gaggle theory (Dunn 1991) required
an underlying distributive lattice. But I soon regretted this decision since general-
ized Galois connections can be found on non-distributive lattices, semilattices, and
even mere partially ordered sets. In Dunn (1993) I looked at some of these and in
particular considered “partial gaggles” built upon posets, and on semilattices, and
showed how these could be represented. In my original paper on distributive gaggles
I had already generalized how one could give a representation of a pair of Galois
connections using a binary accessibility relation ⊥, but in my 1993 paper I showed
how this could be done with partial gaggles and semilattice ordered gaggles.

In particular I looked at the casewhere theGalois operatorswere really the original
motivating Galois connections, defined though not just on a partial order, but on a
semilattices. The representation theorem said: Let (S,≤,∧) be a semilattice with
a Galois connection (∼,¬). Then there is some set U with a binary relation ⊥ on
U so if we define for X ⊆ U , ⊥ X = { x : ∀a(a ∈ X ⇒ x⊥a) }, X⊥ = { x : ∀a(a ∈
X ⇒ a⊥x) }, then not only do we get a Galois connection on the subsets of S, but
in fact the given semilattice with its Galois connection is isomorphic to a collection
of subsets of S closed under the two “perp” operations above.

So where is the representation of lattices? Well, a lattice is a semi-lattice when
viewed from top to bottom, and also a semi-lattice when viewed from bottom to
top (with the two semi-lattices “glued together” by the Absorption Laws). Here is
the weird part, the identity map ι is the Galois connection. If a ≤ b then of course
ιb ≥ ιa. Things get a little more complicated after that, but I hope you get the picture.
I believe Takis and I had this revelation at almost the same time. I remember sitting
in my office waiting for him to arrive so I could tell him, and his rushing over to my
office with the same thought freshly in mind.

It unfortunately seemed difficult to add algebraic operations to this picture so as to
accommodate lattice-ordered algebras. So it was never used as the basis for “lattice-
ordered gaggles.” But Takis in Hartonas (1997) showed how to do this with a mod-
ified representation of lattices, and his contribution to this volume nicely presents
and extends those results.

Robert Goldblatt and Matt Grice: Mereocompactness and Duality for
Mereotopological Spaces. Rob and Matt say: “Duality in the semantic analysis
of propositional logics has been a significant theme in the research of J. Michael
Dunn.” I have often somewhat humorously explained my recurring interest in dual-
ity by the fact that I am very ambidextrous, which means that I cannot always tell
my left hand from my right. I think I can though tell a part from a whole, and mere-
ology, as I am sure every reader knows, or can google, is essentially the study of the
part-whole relationship. As a fan of duality it was fascinating for me to read Rob and
Matt’s application of duality to the preexisting notion of a Boolean contact algebra
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which had been shown to be representable as an algebra of regular closed subsets of a
compact topological space. They construct a dual equivalence between the category
of Boolean contact algebras and a category of mereotopological spaces that have a
property what they call mereocompactness, which is strictly stronger than ordinary
compactness.

Rob’s semantics for orthologic, using a binary “orthogonality relation”⊥, was one
of my inspirations for studying various properties of negations defined using such a
binary relation. More generally it was one of my inspirations for gaggle theory. Gag-
gles were also inspired by Jónsson and Tarski’s representation of Boolean algebras
with operators. It is worth mentioning that Rob extended Jónsson and Tarski’s repre-
sentation by replacing Boolean algebras with the more general distributive lattices,
providing a Priestly-style duality theorem for them; he also relaxed the requirement
that the operators distribute over join in each of their places to allow distribution
over meet. My notion of a “distributoid” generalizes that even further so as to allow
operators sometimes to “co-distribute,” i.e., change join to meet and vice versa. So
Rob and I have sometimes been “picking in the same berry patch.”

Gerard Allwein and William L. Harrison: Distributed Modal Logic. Gerry’s
and William’s contribution on distributive modal logic relates directly to my gaggle
theory, and it is also related to my view of logics as tools. This last is perhaps the
main theme of my “autobio” in this volume, but I never made it a public theme of
my research. This is why it is all the more pleasing to see it pop up in Gerry’s and
William’s paper, and in some in the other contributed papers.

Gerry is one of three students of mine who have ended up working in computer
security, so it is not surprising to see that the first application mentioned in the paper
is to computer security. That is Gerry’s “day job,” and he is in effect a “logician in
engineer’s clothing.” Gerry and William give another possible application in terms
of testing of systems. I cannot help but mention that it has been fun during my career
to see modal logic lifted up from the gutter, so to speak, where it was, according to
Willard Van Orman Quine, conceived in the sin of confusing use and mention. Now
it is a well accepted tool not just in philosophy, but even in computer science.8

According to Gerry and William (p. 357), “a distributed modal logic is a collec-
tion of local modal logics linked together by distributed modal connectives, each of
which takes formulas in one logic and returns formulas in a different logic.” They
later say (p. 359) “A distributed logic starts with a directed graph where every node
constitutes a local logic. Each node is a (possibly null) extension of a classical propo-
sitional logic with a set of modal connectives, and any axioms and rules to govern
behavior.” So we have in effect a meta-Kripke model for distributed modal logic,
where the nodes correspond not to sets of truths (as do “possible worlds”), but to

8Edmund Clarke won the 2007 Turing Award for his pioneering work in using temporal modal logic
in model checking. And while I have this footnote as my podium, let me use it to recommend to
the reader who wants to read more on “Sinn” (not a typo but Deutsch) Alasdair Urquhart’s recent
paper (Urquhart 2010).
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whole logics.

Johan van Benthem: Tracking Information. Johan is of course one of the pioneer-
ing leaders in looking at logic from both dynamic and informational points of view,
and so it is very appropriate that his contribution combine the best of both and be on
“the dynamics of information-driven agency over time.”

Johan and Yde Venema’s “Arrow Logic” is an interesting example of a dynamic
approach to logic, and it is not just about arrows on a whiteboard, but is a blueprint
for creating logics of transitions. In Dunn (2014) I discussed its relationships to
the Routley–Meyer semantics for relevance logics, and also the work I did in Dunn
(2001b) in representing relation algebras using Routley–Meyer type frames. Johan
starts his paper as follows (p. 387):

Depending on a relevant task at hand, information can be represented at different levels, less
or more detailed, each supporting its own appropriate logical languages. We discuss a few
of these levels and their connections, and investigate when and how information growth at
one level can be tracked at another. The resulting view has two intertwined forms of logical
dynamics for informational agents: one of update and one of representation.

Johan’s present paper discusses epistemic logic, which of course involves infor-
mation (the “proposition” that we know or believe). He points out that information
can be represented at various levels of detail. I very much like this approach since it
fits well with my “logics as tools” view, recognizing that different and more detailed
representationsmaybe appropriate for different purposes,much like architect’s draw-
ings, plans or blueprints.9 He does not mention the crudest (classical logic’s True
vs. False), but jumps right in with the standard (static) epistemic logic based on the
modal logic S5. A proposition may be thought of as a set of possible worlds. He
then introduces (dynamic) epistemic logic with “hard” updates (meaning learning
something certain, say by direct observation). This allows for growth of logic through
“announcements.” After proving that both of these logics are axiomatizable, Johan
retreats from axiomatizing the logic of knowledge, turning to the logic of belief
and plausibility, and after characterizing these model-theoretically, shows that the
dynamic logic of belief change under hard information is completely axiomatizable.
I will stop here, since I do not want to spoil the dynamic nature of Johan’s story. But
the general picture is that Johan considers finer and finer levels of representation,
and to each he then adds the apparatus of dynamic updates. I should add that beside
looking at the various level of detail in the modelings of belief, Johan also wants to
include a way of tracking, or comparing one level with another. The general idea
is that the simpler model might be embedded into the more complex model, and
vice versa the more complex model might be homomorphically mapped onto the
simpler one.

9I am reminded of the novel Kandelman’s Krim by the mathematical physicist J. L. Synge. Nuel
Belnap called my attention to this novel many years ago. It involves a philosophical discussion
between a goddess, a kea, an orc, a unicorn and a plumber. The Plumber says: “I am of course
perfectly well aware of the irrationality of π , but on the job, π is 3 1/7, or 3 if I am in a hurry.”
Maybe Nuel is to be blamed for my “logics as tools” view.
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That is a bit rough, but it should intrigue you to look more closely. I cannot
help but mention that Johan’s representations do not seem to include models for
inconsistent beliefs. This is not at all unusual. As a proponent of paraconsistent logic
I have gotten used to it. But let me throw out an idea. In my comments on Chris
Mortensen’s contribution I mention homomorphic images and submodels as ways
of generating inconsistent and incomplete models. Maybe something is lying there
in wait.

As I got near the end of Johan’s article, I of course found particularly pleasing
Johan’s statement (p. 410) “While writing this paper, I increasingly felt that Mike
Dunn’s Gaggle Theory (Dunn 1991) may well be an ideal stance fromwhich to study
the themes explored in this paper, for its austerity, elegance and broad sweep.” I hope
someone can follow through on that as well.

Lawrence S. Moss: Syllogistic Logic with Cardinality Comparisons. I welcome
the contribution frommy colleague LarryMoss. He has been the fearless leader of the
Program in Pure and Applied Logic at Indiana University for many years. I am sure
that it can be argued that the syllogistic logic of Aristotle was the first information
based logic since many introductory logic classes motivate a valid syllogism as one
where the information of the conclusion is included in the information from the
premises. And it certainly fits my views of a logic as a tool. Associated with Indiana
University Bloomington we have the wonderful Stone Age Institute, and it actually
experiments in making stone tools for various purposes. Larry’s paper fits my idea
about how a tool can be extended for new purposes. In this case the Aristotelean logic
of All, Some, and No is extended to include the dyadic quantifiers “there are more”
and “at least as many.”10 Larry’s is concerned with what he calls “Natural Logic,”
and that I might call “Post Stone Age Logic.” I support the idea of this research
because I do think it gets at a more natural (dare I say primitive?) logic than what has
been produced by Boole, Frege, Russell andWhitehead, etc. (Dare I add C. I. Lewis,
Łukasiewicz, Anderson, Belnap, Girard and others to this list?) And while we are
talking of tools, I want to point out that Larry adds computational complexity results
which are useful in gauging how efficient or “green” a logic is. This last will become
increasingly important as computers do more and more of our reasoning for us.

In the words of Blaise Pascal, “I made this very long, because I did not have the
leisure to make it shorter.” In the words of Frank Herbert, “There is no real ending.
It’s just the place where you stop the story.” Most importantly, in the words of Porky
Pig, “That’s all folks!”

10Since we all frequently travel by plane, I cannot resist mentioning that I have suggested to Larry,
mostly as a joke, that he find a way to formalize “Many bags look alike.” How many of us, as we
have stood waiting for our bags to arrive on the airport carousel, have wondered how to formalize
this statement?
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