
Christian Urban
Xingyuan Zhang (Eds.)

 123

LN
CS

 9
23

6

6th International Conference, ITP 2015
Nanjing, China, August 24–27, 2015
Proceedings

Interactive
Theorem Proving

Lecture Notes in Computer Science 9236

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Christian Urban • Xingyuan Zhang (Eds.)

Interactive
Theorem Proving
6th International Conference, ITP 2015
Nanjing, China, August 24–27, 2015
Proceedings

123

Editors
Christian Urban
Department of Informatics
King’s College London
London
UK

Xingyuan Zhang
PLA University of Science and Technology
Nanjing
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22101-4 ISBN 978-3-319-22102-1 (eBook)
DOI 10.1007/978-3-319-22102-1

Library of Congress Control Number: 2015944507

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at ITP 2015, the 6th International Con-
ference on Interactive Theorem Proving held during August 24–27, 2015, in Nanjing,
China.

ITP brings together researchers working in interactive theorem proving and related
areas, ranging from theoretical foundations to implementation aspects and applications
in program verification, security and formalisation of mathematics. The ITP conference
series originated in the TPHOLs conferences and the ACL2 workshops, the former
starting in 1991 and the latter in 1999. The first ITP conference was held in Edinburgh
in 2010, and after that in Nijmegen, Princeton, Rennes and Vienna. This is the first time
that ITP and its predecessor conferences have been hosted in Asia.

This year there were 54 submissions. Each submission was reviewed by at least
three Programme Committee members. The committee decided to accept 30 papers,
three of which are Rough Diamonds. The programme also includes invited talks and
there were two three day tutorials on Isabelle/HOL and Coq. As is the tradition, half a
day of ITP is dedicated to an excursion, which this year took the participants to
Yangzhou and the Slender West Lake.

We are very grateful for the support received from the PLA University of Science and
Technology. We also thank the local support team, especially Chunhan Wu and
Jinshang Wang, for their help in staging ITP 2015. Finally we are very grateful to the
Programme Committee for their hard work of reviewing and discussing the submissions.

We are also looking forward to the next ITP in 2016 that will be held in Nancy,
France, organised by Jasmin Blanchette and Stephan Merz.

June 2015 Christian Urban
Xingyuan Zhang

Organisation

Programme Committee

Andrea Asperti University of Bologna, Italy
Jesper Bengtson IT University of Copenhagen, Denmark
Stefan Berghofer Secunet Security Networks AG, Germany
Yves Bertot Inria, France
Lars Birkedal Aarhus University, Denmark
Sandrine Blazy University of Rennes, France
Bob Constable Cornell University, USA
Thierry Coquand University of Gothenburg, Sweden
Xinyu Feng University of Science and Technology, China
Ruben Gamboa University of Wyoming, USA
Herman Geuvers Radboud University Nijmegen, The Netherlands
Mike Gordon Cambridge University, UK
Elsa Gunter University of Illinois, Urbana-Champaign, USA
John Harrison Intel Corporation, USA
Hugo Herbelin Inria, France
Matt Kaufmann University of Texas at Austin, USA
Gerwin Klein NICTA, Australia
Cesar Munoz NASA Langley Research Center, USA
Tobias Nipkow TU Munich, Germany
Michael Norrish NICTA, Australia
Scott Owens University of Kent, UK
Randy Pollack Harvard University, USA
Carsten Schuermann IT University of Copenhagen, Denmark
Konrad Slind Rockwell Collins, USA
Alwen Tiu Nanyang Technological University, Singapore
Christian Urban King’s College London, UK
Dimitrios Vytiniotis Microsoft Research Cambridge, UK
Xingyuan Zhang PLA University of Science and Technology, China

Contents

Verified Over-Approximation of the Diameter of Propositionally Factored
Transition Systems . 1

Mohammad Abdulaziz, Charles Gretton, and Michael Norrish

Formalization of Error-Correcting Codes: From Hamming to Modern
Coding Theory . 17

Reynald Affeldt and Jacques Garrigue

ROSCoq: Robots Powered by Constructive Reals . 34
Abhishek Anand and Ross Knepper

Asynchronous Processing of Coq Documents: From the Kernel
up to the User Interface . 51

Bruno Barras, Carst Tankink, and Enrico Tassi

A Concrete Memory Model for CompCert . 67
Frédéric Besson, Sandrine Blazy, and Pierre Wilke

Validating Dominator Trees for a Fast, Verified Dominance Test 84
Sandrine Blazy, Delphine Demange, and David Pichardie

Refinement to Certify Abstract Interpretations, Illustrated on Linearization
for Polyhedra . 100

Sylvain Boulmé and Alexandre Maréchal

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 117
Hing-Lun Chan and Michael Norrish

Machine-Checked Verification of the Correctness and Amortized
Complexity of an Efficient Union-Find Implementation 137

Arthur Charguéraud and François Pottier

Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof
Checker . 154

Luís Cruz-Filipe and Peter Schneider-Kamp

Proof-Producing Reflection for HOL: With an Application to Model
Polymorphism . 170

Benja Fallenstein and Ramana Kumar

Improved Tool Support for Machine-Code Decompilation in HOL4 187
Anthony Fox

http://dx.doi.org/10.1007/978-3-319-22102-1_1
http://dx.doi.org/10.1007/978-3-319-22102-1_1
http://dx.doi.org/10.1007/978-3-319-22102-1_2
http://dx.doi.org/10.1007/978-3-319-22102-1_2
http://dx.doi.org/10.1007/978-3-319-22102-1_3
http://dx.doi.org/10.1007/978-3-319-22102-1_4
http://dx.doi.org/10.1007/978-3-319-22102-1_4
http://dx.doi.org/10.1007/978-3-319-22102-1_5
http://dx.doi.org/10.1007/978-3-319-22102-1_6
http://dx.doi.org/10.1007/978-3-319-22102-1_7
http://dx.doi.org/10.1007/978-3-319-22102-1_7
http://dx.doi.org/10.1007/978-3-319-22102-1_8
http://dx.doi.org/10.1007/978-3-319-22102-1_9
http://dx.doi.org/10.1007/978-3-319-22102-1_9
http://dx.doi.org/10.1007/978-3-319-22102-1_10
http://dx.doi.org/10.1007/978-3-319-22102-1_10
http://dx.doi.org/10.1007/978-3-319-22102-1_11
http://dx.doi.org/10.1007/978-3-319-22102-1_11
http://dx.doi.org/10.1007/978-3-319-22102-1_12

A Formalized Hierarchy of Probabilistic System Types: Proof Pearl 203
Johannes Hölzl, Andreas Lochbihler, and Dmitriy Traytel

A Verified Enclosure for the Lorenz Attractor (Rough Diamond) 221
Fabian Immler

Learning to Parse on Aligned Corpora (Rough Diamond). 227
Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil

A Consistent Foundation for Isabelle/HOL . 234
Ondřej Kunčar and Andrei Popescu

Refinement to Imperative/HOL . 253
Peter Lammich

Stream Fusion for Isabelle’s Code Generator: Rough Diamond 270
Andreas Lochbihler and Alexandra Maximova

HOCore in Coq . 278
Petar Maksimović and Alan Schmitt

Affine Arithmetic and Applications to Real-Number Proving 294
Mariano M. Moscato, César A. Muñoz, and Andrew P. Smith

Amortized Complexity Verified . 310
Tobias Nipkow

Foundational Property-Based Testing . 325
Zoe Paraskevopoulou, Cătălin Hriţcu, Maxime Dénès,
Leonidas Lampropoulos, and Benjamin C. Pierce

A Linear First-Order Functional Intermediate Language for Verified
Compilers . 344

Sigurd Schneider, Gert Smolka, and Sebastian Hack

Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions. 359
Steven Schäfer, Tobias Tebbi, and Gert Smolka

ModuRes: A Coq Library for Modular Reasoning About Concurrent
Higher-Order Imperative Programming Languages 375

Filip Sieczkowski, Aleš Bizjak, and Lars Birkedal

Transfinite Constructions in Classical Type Theory 391
Gert Smolka, Steven Schäfer, and Christian Doczkal

A Mechanized Theory of Regular Trees in Dependent Type Theory 405
Régis Spadotti

X Contents

http://dx.doi.org/10.1007/978-3-319-22102-1_13
http://dx.doi.org/10.1007/978-3-319-22102-1_14
http://dx.doi.org/10.1007/978-3-319-22102-1_15
http://dx.doi.org/10.1007/978-3-319-22102-1_16
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-319-22102-1_18
http://dx.doi.org/10.1007/978-3-319-22102-1_19
http://dx.doi.org/10.1007/978-3-319-22102-1_20
http://dx.doi.org/10.1007/978-3-319-22102-1_21
http://dx.doi.org/10.1007/978-3-319-22102-1_22
http://dx.doi.org/10.1007/978-3-319-22102-1_23
http://dx.doi.org/10.1007/978-3-319-22102-1_23
http://dx.doi.org/10.1007/978-3-319-22102-1_24
http://dx.doi.org/10.1007/978-3-319-22102-1_25
http://dx.doi.org/10.1007/978-3-319-22102-1_25
http://dx.doi.org/10.1007/978-3-319-22102-1_26
http://dx.doi.org/10.1007/978-3-319-22102-1_27

Deriving Comparators and Show Functions in Isabelle/HOL. 421
Christian Sternagel and René Thiemann

Formalising Knot Theory in Isabelle/HOL . 438
T.V.H. Prathamesh

Pattern Matches in HOL: A New Representation and Improved Code
Generation . 453

Thomas Tuerk, Magnus O. Myreen, and Ramana Kumar

Author Index . 469

Contents XI

http://dx.doi.org/10.1007/978-3-319-22102-1_28
http://dx.doi.org/10.1007/978-3-319-22102-1_29
http://dx.doi.org/10.1007/978-3-319-22102-1_30
http://dx.doi.org/10.1007/978-3-319-22102-1_30

Verified Over-Approximation of the Diameter
of Propositionally Factored Transition Systems

Mohammad Abdulaziz1,2(B), Charles Gretton1,3, and Michael Norrish1

1 Canberra Research Laboratory, NICTA, Canberra, Australia
mohammad.abdulaziz8@gmail.com

2 Australian National University, Canberra, Australia
3 Griffith University, Brisbane, Australia

Abstract. To guarantee the completeness of bounded model checking
(BMC) we require a completeness threshold. The diameter of the Kripke
model of the transition system is a valid completeness threshold for BMC
of safety properties. The recurrence diameter gives us an upper bound on
the diameter for use in practice. Transition systems are usually described
using (propositionally) factored representations. Bounds for such lifted
representations are calculated in a compositional way, by first identify-
ing and bounding atomic subsystems, and then composing those results
according to subsystem dependencies to arrive at a bound for the con-
crete system. Compositional approaches are invalid when using the diam-
eter to bound atomic subsystems, and valid when using the recurrence
diameter. We provide a novel overapproximation of the diameter, called
the sublist diameter, that is tighter than the recurrence diameter. We
prove that compositional approaches are valid using it to bound atomic
subsystems. Those proofs are mechanised in HOL4. We also describe a
novel verified compositional bounding technique which provides tighter
overall bounds compared to existing bottom-up approaches.

1 Introduction

Problems in model checking and automated planning are typically formalised in
terms of transition systems. For model checking safety formulae—i.e., globally
true formulae of the form Gp—one asks: Does every sequence of transitions from
the initial state include only states satisfying p? In planning one asks the converse
question: Is there a sequence of transitions from a given initial state to a state
satisfying a goal condition? In other words, model checking poses a classical
planning problem with a goal condition “p is false”. For bounded versions of
those questions we have an upper bound on the number of transitions that can
be taken—i.e., Can the goal be achieved using N transitions? The diameter
of a system is the length of the longest minimum-length sequence of transitions
between any pair of states. Taking “N = diameter” we have that bounded model

M. Abdulaziz, C. Gretton and M. Norrish—NICTA is funded by the Australian Gov-
ernment through the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 1–16, 2015.
DOI: 10.1007/978-3-319-22102-1 1

2 M. Abdulaziz et al.

checking of safety formulae is complete (Biere et al. [3]). In other words, if the
goal condition cannot be reached in N transitions, then it cannot be reached
irrespective of the number of transitions taken. In this sense, the diameter is
equal to a completeness threshold for bounded model checking of safety (Kroening
and Strichman [11]).

A variety of uses for bounds providing the completeness of bounded model
checking have been proposed. If the bound N is small, problems reduce in prac-
tice to fixed-horizon variants—i.e., is there a sequence of transitions of length
less-than-or-equal-to N whose final state satisfies a desired property? That fixed-
horizon problem can be posed as a Boolean SAT(isfiability) problem and solved
efficiently (Biere et al. [3], Kautz and Selman [10]). Also, SAT-based approaches
which implement query strategies to focus search effort at important horizon
lengths, as discussed in Rintanen [14], and Streeter and Smith [19], can also
benefit from knowing a small bound. Finally, where system models are given
by factored propositional representations and the search goal is to prove that
no state satisfying a large conjunct is reachable, by additionally considering the
cones of influence of variable sets one can use such bounds to identify a small
subset of goal propositions which can be easily proved unreachable (see, for
example, Rintanen and Gretton [15]).

Despite the important applications above, obtaining useful bounds in prac-
tice is not a simple matter. Computing the system diameter is intractable. An
encoding of the required formula in quantified Boolean logic to test whether
the diameter is N is provided in [3], and is not known to be practically use-
ful. Indeed, for practice the proposal in [3] is to use an overapproximation of
the system diameter, namely the recurrence diameter. The recurrence diameter
corresponds to the length of the longest non-looping path in the Kripke model,
thus its computation poses the NP-hard longest path problem. A difficulty in
practice is that such structures are described using a compact factored prob-
lem description. The Kripke structure corresponding to such a description is
much (sometimes exponentially) larger than the description itself, and is rarely
explicitly represented. Proposals in this setting employ decompositional bound-
ing procedures which exploit independence between sets of state-characterising
variables. Bounds for atomic subsystems are first computed in isolation, which
gives the advantage of a potential exponential reduction in the cost of comput-
ing the bound on the diameter (e.g., if the recurrence diameter is to be com-
puted). Then the bounds on subsystems are combined either multiplicatively
or additively depending on subsystem dependencies. Intuitively, the resulting
overapproximation is given by an additive expression whose terms correspond to
bounds for independent abstract subproblems. The decompositional approach
from Baumgartner et al. [1] treats design netlists, and in [15] the decomposi-
tion treats the dependency graph (causal graph) associated with a STRIPS-style
description. Importantly, decompositional approaches calculate invalid bounds
when using the system diameter to bound atomic subproblems. One workaround,
as per Baumgartner et al. is to use the recurrence diameter instead.

Treating the dependency graph of STRIPS-style descriptions, we have three
primary contributions. First, we develop the concept of sublist diameter which

Verified Over-Approximation of the Diameter 3

is a tighter over-approximation of diameter compared to the recurrence diam-
eter. Second, we develop a novel approach to combining the bounds of atomic
subproblems, and show that it can provide relatively tight bounds compared to
bottom-up approaches, such as those given in [1,15]. Third, we have proved the
correctness of both our sublist diameter, and our approach to exploiting it in
problem decompositions. Importantly, our proofs are mechanised in the HOL
interactive theorem proving system [18].

2 Definitions

Definition 1 (States and Actions). A transition system is defined in terms
of states and actions: (i) States are finite maps from variables—i.e., state-
characterizing propositions—to Booleans, abbreviated as α state. We write D(s)
for the domain of s. (ii) An action π is a pair of finite maps over subsets of
those variables. The first component of the pair, pre(π), is the precondition and
the second component of the pair, eff(π), is the effect.

We give examples of states and actions using sets of literals. For example,
{x,¬y, z} is the state where state variables x and z are (map to) true, and y is false.

Definition 2 (Factored Transition System). A factored transition system
Π contains two components, (i)Π. I, a finite map, whose domain is the domain of
the system; and (ii) Π.A a set of actions, as above. We write transition-system
Π when the domains of the system’s actions’ preconditions and effects are all
subsets of the system’s domain. We also write D(Π) for the domain of a system
Π, and will often take complements of variable sets with respect to it, so that vs
is the set of variables D(Π) \ vs. The set of valid states, U(Π), for a factored
transition system is {s | D(s) = D(Π)}. The set of valid action sequences, A(Π),
for a factored transition system is {π̇ | set π̇ ⊆ Π.A}.
Definition 3 (Action Execution). When an action π (= (p, e)) is executed
at state s, written e(s, π), it produces a successor state s′. If p is not a submap
of s then s′ = s.1 Otherwise s′ is a valid state where e � s′ and s(x) = s′(x)
∀x ∈ D(s) \ D(e). This operation, state-succ, has the following formal definition
in HOL:

state-succ s (p, e) = if p � s then e � s else s

We lift e to sequences of executions, taking an action sequence π̇ as the second
argument. So e(s, π̇) denotes the state resulting from successively applying each
action from π̇ in turn, starting from s.

A Key concept in formalising compositional reasoning about transition sys-
tems is projection.
1 Allowing any action to execute in any state is a deviation from standard practice.

By using total functions in our formalism, much of the resulting mathematics is
relatively simple.

4 M. Abdulaziz et al.

Definition 4 (Projection). Projecting an object (a state s, an action π, a
sequence of actions π̇ or a factored transition system Π) on a set of variables
vs refers to restricting the domain of the object or its constituents to vs. We
denote these operations as s�vs , π�vs , π̇�vs and Π�vs for a state, action, action
sequence and transition system respectively. HOL provides domain restriction
for finite maps in its standard library; projections on composite objects use this
operation on the constituents. The one (minor) exception is projection on action
sequences, where a projected action is dropped entirely if it has an empty effect:

[]�vs = []
((p, e): : π̇)�vs = if D(e�vs) �= ∅ then (p�vs, e�vs) : : π̇�vs else π̇�vs

3 Upper Bounding the Diameter with Decomposition

We define the diameter of a transition system in terms of its factored represen-
tation as2

Definition 5 (Diameter).

d(Π) = MAX {MIN (Πd (s, π̇, Π)) | s ∈ U(Π) ∧ π̇ ∈ A(Π)}
where Πd is defined as

Πd (s, π̇, Π) = { |π̇′| | e (s, π̇′) = e (s, π̇) ∧ π̇′ ∈ A(Π)}
If the transition system under consideration exhibits a modular or hierarchi-

cal structure, upper bounding its diameter compositionally would be of great
utility in terms of computational cost; i.e., if the whole system’s diameter is
bounded by a function of its components’ diameters. One source of structure
in transition systems, especially hierarchical structure, is dependency between
state variables.

Definition 6 (Dependency). A variable v2 is dependent on v1 in a factored
transition system Π iff one of the following statements holds:3 (i) v1 is the same
as v2, (ii) For some action π in A such that v1 is a precondition of π and v2 is
an effect of π, or (iii) There is an action π in A such that both v1 and v2 are
effects of π. We write v1 → v2 if v1 is dependent on v2 in Π. Formally in HOL
we define this as4:

v1 → v2 ⇐⇒
(∃ p e.

(p, e) ∈ Π.A ∧
(v1 ∈ D(p) ∧ v2 ∈ D(e) ∨ v1 ∈ D(e) ∧ v2 ∈ D(e))) ∨

v1 = v2

2 With this definition the diameter will be one less than how it was defined in [2].
3 We are using the standard definition of dependency described in [5,20].
4 → has a Π parameter, but we use it with HOL’s ad hoc overloading ability.

Verified Over-Approximation of the Diameter 5

z

x y

(a)

0

2 4

6

1 3 5 7

(b)

Fig. 1. (a) the dependency and (b) the state transition graphs of the system in
Example 1.

We also lift the concept of dependency to sets of variables. A set of variables
vs2 is dependent on vs1 in a factored transition system Π (written vs1 → vs2)
iff all of the following conditions hold: (i) vs1 is disjoint from vs2 and (ii) There
exist variables v1 ∈ vs1 and v2 ∈ vs2 such that v1 → v2. We define this relation
in HOL as4:

vs1→ vs2 ⇐⇒
∃ v1 v2. v1 ∈ vs1 ∧ v2 ∈ vs2 ∧ DISJOINT vs1 vs2 ∧ v1 → v2

One tool used in analysing dependency structures is the dependency graph.
The dependency graph of a factored transition system Π is a directed graph,
written G, describing variable dependencies. We use it to analyse hierarchical
structures in transition systems. This graph was conceived under different guises
in [5,20], and is also commonly referred to as a causal graph.

Definition 7 (The Dependency Graph). The dependency graph has one ver-
tex for each variable in D. An edge from v1 to v2 records that v1 → v2. When
we illustrate a dependency graph we do not draw arcs from a variable to itself
although it is dependent on itself.

We also lift the concept of dependency graphs and refer to lifted dependency
graphs (written Gvs). Each node in Gvs , for a factored transition system Π,
represents a member of a partition of D(Π), i.e. all vertices in Gvs represent
disjoint sets of variables.

The structures we aim to exploit are found via dependency graph analysis,
where, for example, the lifted dependency graph exhibits a parent-child structure,
defined as follows:

Definition 8 (Parent-Child Structure). A system Π has a parent-child
structure if D(Π) is comprised of two disjoint sets of variables vs1 and vs2 sat-
isfying vs2 �→ vs1. In HOL we model this as follows:

child-parent-rel (Π, vs) ⇐⇒ vs �→ vs

It is intuitive to seek an expression that is no worse than multiplication to com-
bine subsystem diameters, or an upper bound for it, into a bound for the entire
system’s diameter. For instance, for systems with the parent-child structure,

6 M. Abdulaziz et al.

previous work in the literature suggests that (b(Π�vs) + 1)(b(Π�vs) + 1) should
bound b(Π), for some upper bound on the diameter b : Π → N to be considered
decomposable for parent-child structures. The following example shows that the
diameter is not a decomposable bound for parent-child structures.

Example 1. Consider a factored transition system Π with the following set of
actions

A =

⎧
⎨

⎩

a = ({¬x,¬y}, {x}), b = ({x,¬y}, {¬x, y}), c = ({¬x, y}, {x}),
z1 = ({¬z}, {x, y}), z2 = ({¬z}, {¬x, y}), z3 = ({¬z}, {x,¬y}),
z4 = ({¬z}, {¬x,¬y})

⎫
⎬

⎭
.

The dependency graph of Π is shown in Fig. 1a. D(Π) is comprised of two sets
of variables P = {z}, and the set C = {x, y}, where C �→ P holds. d(Π) = 3,
as this is the length of the longest shortest transition sequence in Π. Specifically,
that sequence is [a; b; c] from {¬x,¬y, z} to {x, y, z}. d(Π�P) = 0 because in
Π�P the state cannot be changed, and d(Π�C) = 1 because any state in Π�C
is reachable from any other state via one transition with one of the actions
{z1�C , z2�C , z3�C , z4�C}. Accordingly, d is not decomposable.

3.1 Decomposable Diameters

Baumgartner et al. [1] show that the recurrence diameter gives a decomposable
upper bound on diameter.

Definition 9 (Recurrence Diameter). Following Biere et al. [2], the recur-
rence diameter is formally defined as follows:

rd(Π) = MAX { |p| | valid path Π p ∧ ALL DISTINCT p }
where

valid path Π [] ⇐⇒ T
valid path Π [s] ⇐⇒ s ∈ U(Π)
valid path Π (s1 : : s2 : : rest) ⇐⇒

s1 ∈ U(Π) ∧ (∃ π. π ∈ Π.A ∧ e (s1, [π]) = s2) ∧
valid path Π (s2 : : rest)

We provide a tighter and decomposable diameter: the sublist diameter, �.

Definition 10 (Sublist Diameter). List l1 is a scattered sublist of l2 (written
l1 �· l2) if all the members of l1 occur in the same order in l2. This is defined in
HOL as:

[] �· �1 ⇐⇒ T
h : : t �· [] ⇐⇒ F
x : : �1 �· y : : �2 ⇐⇒ x = y ∧ �1 �· �2 ∨ x : : �1 �· �2

Based on that the sublist diameter is defined as:

�(Π) = MAX {MIN Π�·(s, π̇) | s ∈ U(Π) ∧ π̇ ∈ A(Π)}

Verified Over-Approximation of the Diameter 7

Fig. 2. (a) The definition of the stitching function (H), and (b) is the dependency graph

of the system in Example 4.

where Π�· is defined as

Π�·(s, π̇) = { |π̇′| | e (s, π̇′) = e (s, π̇) ∧ π̇′ �· π̇ }
It should be clear that �(Π) is an upper bound on d(Π) and that it is also a
lower bound on rd(Π), as demonstrated in the following theorem.

� transition-system Π ⇒ d(Π) ≤ �(Π) ∧ �(Π) ≤ rd(Π)

The sublist diameter is tighter than the recurrence diameter because it exploits
the factored representation of transitions as actions, as shown in the next
example.

Example 2. Consider a factored transition system Π with the following set of
actions

A =
{

a1 = (∅, {x, y}), a2 = (∅, {¬x, y}), a3 = (∅, {x,¬y}), a4 = (∅, {¬x,¬y})
}

.

For this system d(Π) = 1 because any state is reachable from any state with one
action. rd(Π) = 3 because there are many paths with length 3 with no repeated
states, but not any longer than that. Lastly, �(Π) = 1 because for any non empty
action sequence π̇ ∈ A(Π) the last transition π in π̇ can reach the same destina-
tion as π̇, and [π] is a sublist of π̇.

The other important property of � is that it is decomposable as demonstrated
in the following example.

Example 3. Consider the factored transition system Π in Example 1. The val-
ues of �(Π) and �(Π�P) are the same as those of d(Π) and d(Π�P), respectively.
However, �(Π�C) = 3 because, although any state in Π�C is reachable from any
other state via one transition, there is no shorter sublist of the transition sequence
[a�C ; b�C ; c�C] that starts at {¬x,¬y} and results in {x, y}.
Now we prove that � is decomposable.

Theorem 1. If the domain of Π is comprised of two disjoint sets of variables
vs1 and vs2 satisfying vs2 �→ vs1, we have:

�(Π) < (�(Π�vs1) + 1)(�(Π�vs2) + 1)

8 M. Abdulaziz et al.

� transition-system Π ∧ child-parent-rel a(Π, vs) ⇒
�(Π) < (�(Π�vs) + 1) × (�(Π�vs) + 1)

Proof. To prove Theorem 1 we use a construction which, given any action
sequence π̇ ∈ A(Π) violating the stated bound and a state s ∈ U(Π), pro-
duces a sublist, π̇′, of π̇ satisfying that bound and e(s, π̇) = e(s, π̇′). The premise
vs2 �→ vs1 implies that actions with variables from vs2 in their effects never
include vs1 variables in their effects. Hereupon, if for an action π, eff(π) ⊆ s is
true, we call it a s-action. Because vs1 and vs2 capture all variables, the effects of
vs2-actions after projection to the set vs2 are unchanged. Our construction first
considers the abstract action sequence π̇�vs2 . Definition 10 of � provides a scat-
tered sublist π̇′

vs2 �· π̇�vs2 satisfying |π̇′
vs2 | ≤ �(Π�vs2). Moreover, the definition

of � can guarantee that π̇′
vs2 is equivalent, in terms of the execution outcome,

to π̇�vs2 . The stitching function described in Fig. 2a is then used to remove the
vs2-actions in π̇ whose projections on vs2 are not in π̇′

vs2 . Thus our construction
arrives at the action sequence π̇′′ = π̇′

vs2 H
vs2

π̇ with at most �(Π�vs2) vs2-actions.

We are left to address the continuous lists of vs1-actions in π̇′′, to ensure that in
the constructed action sequence any such list satisfies the bound �(Π�vs1). The
method by which we obtain π̇′′ guarantees that there are at most �(Π�vs2) + 1
such lists to address. The definition of � provides that for any abstract list of
actions π̇�vs1 in Π�vs1 , there is a list that achieves the same outcome of length
at most �(Π�vs1). Our construction is completed by replacing each continuous
sequence of vs1-actions in π̇′′ with witnesses of appropriate length (�(Π�vs1)). �
The above construction can be illustrated using the following example.

Example 4. Consider a factored transition system with the set of actions

A =
{

a = (∅, {x}), b = ({x}, {y}), c = ({x}, {¬v}), d = ({x}, {w}),
e = ({y}, {v}), f = ({w, y}, {z}), g = ({¬x}, {y, z})

}

whose dependency graph is shown in Fig. 2b. The domain of Π is com-
prised of the two sets vs2 = {v, y, z} and vs1 = {w, x}, where vs2 �→
vs1. In Π, the actions b, c, e, f, g are vs2-actions, and a, d are vs1-actions.
An action sequence π̇ ∈ A(Π) is [a; a; b; c; d; d; e; f] that reaches the state
{v, w, x, y, z} from {v,¬w,¬x,¬y,¬z}. When π̇ is projected on vs2 it becomes
[b�vs2 ; c�vs2 ; e�vs2 ; f�vs2], which is in A(Π�vs2). A shorter action sequence, π̇c,
achieving the same result as π̇�vs2 is [b�vs2 ; f�vs2]. Since π̇c is a scattered sublist
of π̇�vs2 , we can use the stitching function to obtain a shorter action sequence in
A(Π) that reaches the same state as π̇. In this case, π̇c H

vs2
π̇ is [a; a; b; d; d; f]. The

second step is to contract the pure vs1 segments which are [a; a] and [d; d], which
are contracted to [a] and [d] respectively. The final constructed action sequence
is [a; b; d; f], which achieves the same state as π̇.

4 Decomposition for Tighter Bounds

So far we have seen how to reason about bounds on underlying transition system
sublist diameters by treating sublist diameters of subsystems separately in an

Verified Over-Approximation of the Diameter 9

example structure (i.e. the parent child structure). We now discuss how to exploit
a more general dependency structure to compute an upper bound on the sublist
diameter of a system, after separately computing subsystems’ sublist diameters.
We exploit branching one-way variable dependency structures. An example of
that type of dependency structure is exhibited in Fig. 3a, where Si are sets of
variables each of which forms a node in the lifted dependency graph. Recall that
an edge in this graph from a node Si to a node Sj means Si → Sj , which means
that there is at least one edge from a variable in Si to one in Sj . Also, an absence
of an edge from a node Si to a node Sj means that Si �→ Sj , and which means
that is not a variable in Sj that depends on a variable in Si.

In this section we present a general theorem about the decompositional prop-
erties of the sublist diameter to treat the more general structures. Then we pro-
vide a verified upper bounding algorithm based on it. Consider the following
more general form of the parent child structure:

Definition 11 (Generalised Parent-Child Structure). For a factored tran-
sition system Π and two sets of variables vs1 and vs2, the generalised parent-child
relation holds between vs1 and vs2 iff (i) vs2 �→ vs1, (ii) vs1 �→ (vs1 ∪ vs2),
and (iii) no bidirectional dependencies exist between any variable in vs2 and
(vs1 ∪ vs2). Formally, we define this relation in HOL as follows:

gen-parent-child (Π, vs, vs′) ⇐⇒
DISJOINT vs vs′ ∧ vs′ �→ vs ∧ vs �→ vs ∪ vs′ ∧
∀ v v ′.v ∈ vs′ ∧ v ′ ∈ vs ∪ vs′ ⇒ v �→ v ′ ∨ v ′ �→ v

To prove the more general theorem we need the following lemma:

Lemma 1. Let n(vs, π̇) be the number of vs-actions contained within π̇. Con-
sider Π, in which the generalised parent-child relation holds between sets of vari-
ables p and c. Then, any action sequence π̇ has a sublist π̇′ that reaches the same
state as π̇ starting from any state such that: n(p, π̇′) ≤ �(Π�p)(n(c, π̇′) + 1) and
n(p, π̇′) ≤ n(p, π̇).

� transition-system Π ∧ s ∈ U(Π) ∧ π̇ ∈ A(Π) ∧
gen-parent-child (Π, p, c) ⇒

∃ π̇′.
n (p, π̇′) ≤ �(Π�p) × (n (c, π̇′) + 1) ∧ π̇′ �· π̇ ∧
n (p, π̇′) ≤ n (p, π̇) ∧ e (s, π̇) = e (s, π̇′)

Proof. The proof of Lemma 1 is a constructive proof. Let π̇C be a contiguous
fragment of π̇ that has no c-actions in it. Then perform the following steps:

– By the definition of �, there must be an action sequence π̇p such that e(s, π̇p) =
e(s, π̇C�p), and satisfies |π̇p| ≤ �(Π�p) and π̇p �· π̇C�p.

– Because p �→ D(Π)\p\c holds and using the same argument used in the proof
of Theorem 1, π̇′

C(= π̇pH
p
π̇C�D\c) achieves the same D\c assignment as π̇C (i.e.,

e(s, π̇′
C)�D\c = e(s, π̇C)�D\c), and it is a sublist of π̇C . Also, n(p, π̇′

C) ≤ �(Π�p)
holds.

10 M. Abdulaziz et al.

– Finally, because π̇C has no c-actions, no c variables change along the execution
of π̇C and accordingly any c variables in preconditions of actions in π̇C always
have the same assignment. This means that π̇′

C H
D\c

π̇C will achieve the same

result as π̇C , but with at most �(Π�p) p-actions.

Repeating the previous steps for each π̇C fragment in π̇ yields an action sequence
π̇′ that has at most �(Π�p)(n(c, π̇) + 1) p-actions. Because π̇′ is the result of
consecutive applications of the stitching function, it is a scattered sublist of
π̇. Lastly, because during the previous steps, only p-actions were removed as
necessary, the count of the remaining actions in π̇′ is the same as their number
in π̇. �

Corollary 1. Let F (p, c, π̇) be the witness action sequence of Lemma 1. We
know then that:

– e(s, F (p, c, π̇)) = e(s, π̇),
– n(p, F (p, c, π̇)) ≤ �(Π�p)(n(c, π̇) + 1).
– F (p, c, π̇) �· π̇, and
– n(p, F (p, c, π̇)) ≤ n(p, π̇).

Branching one-way variable dependencies are captured when Gvs is a directed
acyclic graph (DAG).

Definition 12 (DAG Lifted Dependency Graphs). In HOL we model a
Gvs that is a DAG with the predicate top-sorted that means that Gvs is a list of
nodes of a lifted dependency graph topologically sorted w.r.t. dependency. This
predicate is defined as follows in HOL:

top-sorted [] ⇐⇒ T
top-sorted (vs: : Gvs) ⇐⇒

(∀ vs ′. vs ′ ∈ set Gvs ⇒ vs ′ �→ vs) ∧ top-sorted Gvs

We also define the concept of children for a node vs in Gvs , written as C(vs) to
denote the set {vs0 | vs0 ∈ Gvs ∧ vs → vs0}, which are the children of vs in Gvs .
In HOL this is modelled as the list:5

C(vs) = FILTER (λ vs ′. vs → vs ′) Gvs

We now use Corollary 1 to prove the following theorem:

Theorem 2. For a factored transition system Π, and a lifted dependency graph
Gvs that is a DAG, the sublist diameter �(Π) satisfies the following inequality:

�(Π) ≤ Σvs∈Gvs
N(vs) (1)

where N(vs) = �(Π�vs)(ΣC∈C(vs)N(C) + 1).

5 top-sorted has a Π parameter and C has Π and Gvs as parameters hidden with
overloading.

Verified Over-Approximation of the Diameter 11

Alternatively, in the HOL presentation:

� ALL DISTINCT Gvs ∧ ALL DISJOINT Gvs⇒
∀Π.

transition-system Π ∧ D(Π.I) =
⋃

(set Gvs) ∧
top-sorted Gvs ⇒

�(Π) < SUM (MAP N Gvs) + 1

where N is defined as6

transition-system Π ∧ top-sorted Gvs ⇒
N(vs) = �(Π�vs) × (SUM (MAP N C(vs)) + 1)

Proof. Again, our proof of this theorem follows a constructive approach where we
begin by assuming we have an action sequence π̇ ∈ A(Π) and a state s ∈ U(Π).
The goal of the proof is to find a witness sublist, π̇′, of π̇ such that ∀ vs ∈
Gvs . n(vs, π̇′) ≤ N(vs) and e(s, π̇) = e(s, π̇′). We proceed by induction on lvs , a
topologically sorted list of nodes in Gvs . The base case is the empty list [], in
which case D(Π) = ∅ and accordingly �(Π) = 0.

In the step case, we assume the result holds for any system for which lvs is
a topologically sorted node list of one of its lifted dependency graphs. We then
show that it also holds for Π, a system whose node list is vs :: lvs , where vs
has no parents (hence its position at the start of the sorted list). Since lvs is a
topologically sorted node list of a lifted dependency graph of Π�vs, the induction
hypothesis applies. Accordingly, there is a π̇vs for Π�vs such that e(s, π̇vs) =
e(s, π̇�vs), π̇vs �· π̇�vs, and ∀ K ∈ lvs . n(K, π̇′) ≤ N(K). Since vs :: lvs is
topologically sorted, (vs) �→ vs holds. Let π̇′

vs ≡ π̇vs H
vs

π̇. Therefore e(s, π̇′
vs) =

e(s, π̇) (using the same argument used in the proof of Theorem 1). Furthermore,
∀K ∈ lvs . n(K, π̇′

vs) ≤ N(K) and π̇′
vs �· π̇. The last step in this proof is to show

that F (vs,
⋃ C(vs), π̇′

vs) is the required witness, which is justified because the
generalised parent-child relation holds for Π, vs and

⋃ C(vs). From Corollary 1
and because the relations =, ≤ and �· are transitive, we know that

– e(s, π̇) = e(s, F (vs,
⋃ C(vs), π̇′

vs)),
– n(vs, F (vs,

⋃ C(vs), π̇′
vs)) ≤ �(Π�vs)(ΣC∈C(vs)n(C, π̇′

vs) + 1),
– F (vs,

⋃ C(vs), π̇′
vs) �· π̇, and

– n(D(Π) \ vs, F (vs,
⋃ C(vs), π̇′

vs)) ≤ n(D(Π) \ vs, π̇′
vs).

Since ΣK∈lvsn(K, π̇′
vs) = n(D(Π)\vs , π̇′

vs) is true, ∀ K ∈ lvs . n(K, π̇′
vs) ≤ N(K) is

true, and n(vs, F (vs,
⋃ C(vs), π̇′

vs)) ≤ �(Π�vs)(ΣC∈C(vs)N(C)) is true, therefore
F (vs,

⋃ C(vs), π̇′
vs) is an action sequence demonstrating the needed bound. �

4.1 A Bounding Algorithm

We now discuss an upper bounding algorithm that we prove is valid. Consider
the function Nb, defined over the nodes of a lifted dependency DAG as:

Nb(vs) = b(Π�vs)(ΣC∈C(vs)Nb(C) + 1)
6 N has Π and Gvs as parameters hidden with overloading.

12 M. Abdulaziz et al.

Note that Nb is a general form of the function N defined in Theorem 2, parame-
terised over a base case function b : Π → N. Viewing Nb = Σvs∈Gvs

Nb(vs) as an
algorithm, the following theorem shows that it calculates a valid upper bound
for a factored transition system’s sublist diameter if the base case calculation is
a valid bound.

Theorem 3. For a base case function b : Π → N, if ∀Π.�(Π) ≤ b(Π) then
�(Π) ≤ Nb(vs).

� (∀Π′. transition-system Π′ ⇒ �(Π′) ≤ b(Π′)) ⇒
∀ Gvs.

ALL DISTINCT Gvs ∧ ALL DISJOINT Gvs ⇒
∀Π.

transition-system Π ∧ D(Π.I) =
⋃

(set Gvs) ∧
top-sorted Gvs ⇒

�(Π) < SUM (MAP Nb Gvs) + 1

where Nb is characterised by the following theorem7 as

(∀Π′. b(Π′�∅) = 0) ⇒
∀Π vs Gvs.

transition-system Π ∧ top-sorted Gvs ⇒
Nb(vs) = b(Π�vs) × (SUM (MAP Nb C(vs)) + 1)

Without any detailed analysis we are able to take b(Π) = 2|D(Π)| −1. In other
words, an admissible base case is one less than the number of states representable
by the set of state variables of the system being evaluated. That is a valid upper
bound for both the recurrence and sublist diameters.

5 Bounds in Practice

In this section we provide an evaluation of the upper bounds produced by the
algorithm from Sect. 4.1. We first compare it to previously suggested composi-
tional bounding approaches in planning benchmarks. We also evaluate its per-
formance on a practical model checking problem.

5.1 Evaluating in Benchmarks from Automated Planning

In this section we compare the bounds computed by Nb with the ones com-
puted using the algorithm suggested by Baumgartner et al. [1] for treating design
netlists. This algorithm, and that in Rintanen and Gretton [15], both traverse the
structure of the factored transition system in a bottom-up way. By way of con-
trast, our algorithm traverses the same structure top-down. Before we model the
bottom-up calculation, we need to define the concepts of ancestors and leaves.

7 Nb has Π and Gvs as parameters hidden with overloading.

Verified Over-Approximation of the Diameter 13

Fig. 3. (a) A lifted dependency graph, and (b) The bounds computed by Nb versus
Mb with 2|D(π)| − 1 as a base function.

Definition 13 (Leaves and Ancestors). We define the set of leaves L(Gvs)
to contain those vertices of Gvs from which there are no outgoing edges. We also
write A(vs) to denote the set of ancestors of vs in Gvs i.e. the set {vs0 | vs0 ∈
G ∧ vs0 → vs+}, where →+ is the transitive closure of →.

To model bottom-up calculation, consider the function

Mb(vs) = b(Π�vs) + (1 + b(Π�vs))ΣA∈A(vs)Mb(Π�A)

The bottom-up approach, Mb, can be described as Mb = Σvs∈L(Gvs)Mb(vs),
where b is a base case function.

Consider the lifted dependency DAG in Fig. 3a. Given a base a function b, and
letting b(Π�Si

) be bi, the values of Nb(S2) and Nb(S3) are b2 and b3, respectively.
The value of Nb(S1) is b1 +b1b2 +b1b3. Accordingly the value of Nb = b1 +b1b2 +
b1b3 + b2 + b3.

On the other hand, Mb(S1) = b1, Mb(S2) = b1 + b1b2 + b2 and Mb(S3) =
b1 + b1b3 + b1. Accordingly Mb = 2b1 + b1b2 + b1b3 + b2 + b3. The value of Mb has
an extra b1 term over that of Nb. This extra term is because Mb counts every
ancestor node in the lifted dependency graph as many times as the size of its
posterity, which is a consequence of the bottom-up traversal of the dependency
graph. Figure 3b shows the computed bounds of Nb versus Mb with the func-
tion 2|D(Π)| − 1 as the base function for a 1030 different International Planning
Competition benchmarks. That figure shows that Mb computes looser bounds
as it repeats counting the ancestor nodes unnecessarily.

5.2 Hotel Key Protocol

We consider the verification of a safety property of the hotel key distribution
protocol introduced by Jackson [9] and further discussed in [4,13]. To our knowl-
edge this domain has not previously been explored along with decompositional
bounding techniques. We model the problem in the Planning Domain Description
Language [12]. There are three actions schemas representing the three categories
of change in the system’s state which are: (i) entering a room with a new key

14 M. Abdulaziz et al.

(enter-new-key), (ii) checking in the hotel (check-in), and (iii) checking out
(check-out). Note that we omit the fourth action which is entering the room
with its current key, because it has no effect on the system’s state. We have a
predicate safe, that is true of a room while the safety property of that room is
maintained. All rooms are initially safe, and then the value of “safe” is set in
the effect of enter-new-key, and reset in the effect of check-in. The goal is to
have at least one room that is entered by a guest who does not occupy it and
for which “safe” is true.

Table 1. A table showing the bounds computed by Nb for the hotel key example.
Rows 1–3 show the bounds with keeping two of the parameters constant (= 5) and the
third ranging from 1–10.

r = g = 5 190 662 1397 2532 4067 6002 8337 11072 14207 17742
k = g = 5 859 1661 2463 3265 4067 4869 5671 6473 7275 8077
r = k = 5 803 1619 2435 3251 4067 4883 5699 6515 7331 8147

In our experiment, we parameterised instances of this problem by the number
of: guests (g), rooms (r) and keys per room (k). The initial state of an instance
asserts: (i) the types of the guests, the rooms and the keys, (ii) which key is
owned by which rooms, and (iii) an ordering of the keys such that the keys
owned by a room form a series. Table 1 shows the output of Nb on different
instances, with an unverified base case function based on invariants analysis.8

We computed the sets of variables that satisfy the invariance condition with
Fast Downward [8]. Each row shows the computed bounds keeping two of the
parameters constant and equal to 5, while the third parameter ranges from 1–10.
The computed upper bound increases linearly with the r and with g.

6 Related Work

The notions of diameter and recurrence diameter were introduced in Biere
et al. [2,3]. In this work they describe how to test whether k is the recurrence
diameter using a SAT formula of size O(k2). It was later shown by Kroening and
Strichman [11] that this test can be done using a SAT formula of size O(k log k).
An inductive algorithm for computing the recurrence diameter was introduced
by Sheeran et al. [17].

Other work exploits the structure or the type of system being verified for effi-
cient computation of the diameter as well as for obtaining tighter bounds on it. For
example, Ganai et al. [7] show that an upper bound on the completeness threshold
for checking the safety of some software errors—such as array bound violations—
can be computed using a SAT formula of size O(k). Also Konnov et al. [16] show
8 The point of this experiment is to show how the computed upper bound grows with

different parameters, regardless of the base case function used.

Verified Over-Approximation of the Diameter 15

how some components in threshold-based distributed algorithms have diameters
quadratic in the number of transitions in the component. Most relevant to our
work, Baumgartner et al. [1,6] show that the recurrence diameter can be used to
calculate a bound for the diameter in a decompositional way using design netlists.
In 2013, Rintanen and Gretton [15] described a similar method for calculating a
transition system’s diameter in the context of planning. The algorithms for calcu-
lating a bound in both of those works operate in a bottom-up way.

7 Conclusion

We considered computing admissible completeness thresholds for model checking
safety properties in transition models with factored representations. We devel-
oped the concept of sublist diameter, a novel, tighter overapproximation of diam-
eter for the factored case. We also developed a novel procedure for computing
tighter bounds for factored systems by exploiting compositionality, and have
formally verified dominance and correctness results associated with these.

The insights which led us to develop the sublist diameter followed from
attempting to formalise the results in [15]. That effort helped us find a bug
in their formal justification of their approach, where they incorrectly theorise
that the diameter can be used directly to bound atomic components for com-
positional algorithms. Errors such as those make a strong case for the utility of
mechanical verification.

In future, we hope to find efficient procedures for efficiently computing/tightly-
approximating sublist diameters for the atomic subsystems in our compositional
approach.

HOL4 Notation and Availability. All statements appearing with a turnstile (�)
are HOL4 theorems, automatically pretty-printed to LATEX. All our HOL scripts,
experimental code and data are available from https://MohammadAbdulaziz@
bitbucket.org/MohammadAbdulaziz/planning.git.

Acknowledgements. We thank Daniel Jackson for suggesting applying diameter
upper bounding on the hotel key protocol verification.

References

1. Baumgartner, J., Kuehlmann, A., Abraham, J.: Property checking via structural
analysis. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
151–165. Springer, Heidelberg (2002)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

16 M. Abdulaziz et al.

4. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

5. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artif. Intell. 69(1–2), 165–204 (1994)

6. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification
by temporal decomposition. In: Proceedings of 9th International Conference on
Formal Methods in Computer-Aided Design, FMCAD 2009, 15–18 November 2009,
Austin, Texas, USA, pp. 17–24 (2009)

7. Ganai, M.K., Gupta, A.: Completeness in smt-based BMC for software programs.
In: Design, Automation and Test in Europe, DATE 2008, Munich, Germany, 10–14
March 2008, pp. 831–836 (2008)

8. Helmert, M.: The Fast Downward planning system. J. Artif. Intell. Res. 26, 191–
246 (2006)

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

10. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI, pp. 359–363 (1992)
11. Kroning, D., Strichman, O.: Efficient computation of recurrence diameters. In:

Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 298–309. Springer, Heidelberg (2002)

12. Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL: The planning domain definition language. Technical report,
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control
(1998)

13. Nipkow, T.: Verifying a hotel key card system. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 1–14. Springer, Heidelberg
(2006)

14. Rintanen, J.: Evaluation strategies for planning as satisfiability. In: Proceedings of
the 16th European Conference on Artificial Intelligence, pp. 682–687. IOS Press
(2004)

15. Rintanen, J., Gretton, C.O.: Computing upper bounds on lengths of transition
sequences. In: International Joint Conference on Artificial Intelligence (2013)

16. Sastry, S., Widder, J.: Solvability-based comparison of failure detectors. In: 2014
IEEE 13th International Symposium on Network Computing and Applications,
NCA 2014, 21–23 August 2014, Cambridge, MA, USA, pp. 269–276 (2014)

17. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

18. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

19. Streeter, M.J., Smith, S.F.: Using decision procedures efficiently for optimization.
In: Proceedings of the 17th International Conference on Automated Planning and
Scheduling, pp. 312–319. AAAI Press (2007)

20. Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In:
International Joint Conference on Artificial Intelligence, pp. 1178–1185. Morgan
Kaufmann Publishers (1997)

Formalization of Error-Correcting Codes:
From Hamming to Modern Coding Theory

Reynald Affeldt1(B) and Jacques Garrigue2

1 National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
reynald.affeldt@aist.go.jp

2 Nagoya University, Nagoya, Japan
garrigue@math.nagoya-u.ac.jp

Abstract. By adding redundancy to transmitted data, error-correcting
codes (ECCs) make it possible to communicate reliably over noisy chan-
nels. Minimizing redundancy and (de)coding time has driven much
research, culminating with Low-Density Parity-Check (LDPC) codes. At
first sight, ECCs may be considered as a trustful piece of computer sys-
tems because classical results are well-understood. But ECCs are also
performance-critical so that new hardware calls for new implementa-
tions whose testing is always an issue. Moreover, research about ECCs is
still flourishing with papers of ever-growing complexity. In order to pro-
vide means for implementers to perform verification and for researchers
to firmly assess recent advances, we have been developing a formaliza-
tion of ECCs using the SSReflect extension of the Coq proof-assistant.
We report on the formalization of linear ECCs, duly illustrated with a
theory about the celebrated Hamming codes and the verification of the
sum-product algorithm for decoding LDPC codes.

1 Introduction

Error-correcting codes (ECCs) add redundancy to transmitted data to ensure
reliable communication over noisy channels. Low-Density Parity-Check (LDPC)
codes are ECCs discovered in 1960 by Gallager; they were not thoroughly studied
until they were shown in the nineties to deliver good performance in practice.
Since then, LDPC codes have found their way into modern devices such as hard-
disk storage, wifi communications, etc. and have motivated a new body of works
known as modern coding theory.

Implementations of ECCs cannot be crystallized as a generic library that can
be deemed correct because extensively tested. Because ECCs are performance-
critical, new implementations are required to take advantage of the latest hard-
ware, so that testing is always an issue. Also, research (in particular about LDPC
codes) is so active that correctness guarantees for cutting-edge ECCs are scat-
tered in scientific publications of ever-growing complexity.

A formalization of ECCs could help implementers and researchers. First, it
would make possible verification of concrete implementations. Today, an imple-
menter willing to perform formal verification should first provide a formal spec-
ification of what ECCs are supposed to achieve. In comparison, this is more
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 17–33, 2015.
DOI: 10.1007/978-3-319-22102-1 2

18 R. Affeldt and J. Garrigue

difficult than verification of cryptographic functions whose specification requires
little infrastructure when they rely on number theory (e.g., [1]).

However, the formalization of ECCs is a difficult undertaking. They rely on
a vast body of mathematics: probabilities, graphs, linear algebra, etc. Teaching
material is rarely (if ever) structured as algebra textbooks: prose definitions
that look incomplete without the accompanying examples, algorithms written
in prose, hypotheses about the model that appear during the course of proofs,
etc. Monographs and research papers do not provide details for the non-expert
reader. It is therefore no wonder that researchers are seeking for means to firmly
assess the correctness of their pencil-and-paper proofs: our work is part of such
a project.

Still, there is previous work that we can take advantage of to formalize ECCs.
The SSReflect/MathComp library [8] provides big operators to formalize
combinatorial results, a substantial formalization of linear algebra, and tools to
reason about graphs. The formalization of the foundational theorems of infor-
mation theory [2] provides us with basic definitions about channels and proba-
bilities. Last, we are fortunate enough to have colleagues, expert in ECCs, who
provided us with details about linear ECCs and LDPC codes [9, Chaps. 7 and 9].

To the best of our knowledge, our effort is the first attempt at a system-
atic formalization of ECCs inside a proof-assistant. In Sect. 3, we formalize basic
results about linear ECCs. Already at this point, some effort was spent in aug-
menting textbook definitions with their implicit assumptions. In Sect. 4, we for-
malize Hamming codes. In particular, we provide a concrete encoder and decoder
and express the error rate in terms of a closed formula. In Sect. 5, we formalize
the key properties of the sum-product algorithm, the standard algorithm for
efficient decoding of LDPC codes. Finally, in Sect. 6, we apply our formalization
to the verification of a concrete implementation of the sum-product algorithm,
making our work the first formal verification of a decoding algorithm for an
advanced class of ECCs.

2 Premises on Information Theory and Probabilities

2.1 Channels and Codes in Information Theory

We first recall basic definitions from [2].
The most generic definition of a code is as a channel code: a pair of

encoder/decoder functions with a finite type M for the message pieces to be
encoded. Encoded message pieces (codewords) are represented by row vectors
over a finite alphabet A (denoted by ’rV[A]_n in MathComp). The decoder (that
may fail) is fed with the outputs of a noisy channel that are also represented by
row vectors (possibly over a different1 alphabet B):

Definition encT := {ffun M → ’ rV [A] _n } .
Definition decT := {ffun ’ rV [B] _n → option M } .
Record code := mkCode { enc : encT ; dec : decT } .

1 A and B are different for example in the case of the binary erasure channel that
replaces some bits with an erasure.

Formalization of Error-Correcting Codes 19

A (discrete) noisy channel is modeled as a stochastic matrix that we formal-
ized as a function from the input alphabet A to probability distributions over
the output alphabet B:

Notation ” CH1 (A, B) ” := (A → dist B) .

dist is the type of probability distributions. They are essentially functions from
some finite type to non-negative reals whose outputs sum to 1 (the big operator
∑

_(x in P) f x comes from MathComp):

Record dist (A : finType) := mkDist {
pmf :> A → R+ ; (* "→ R+" is a notation *)

pmf1 :
∑
_ (a in A) pmf a = 1 } .

Given a distribution P, the probability of an event (represented by a finite
set of elements: type {set A} in MathComp) is formalized as follows:

Definition Pr P (E : {set A}) :=
∑
_ (a in E) P a .

Communication of n characters is thought of as happening over the nth exten-
sion of the channel, defined as a function from input vectors to distributions of
output vectors ({dist T} is a notation for the type of distributions; it hides a
function that checks whether T is a finite type):

Notation ” CHn(A, B) ” := (’ rV [A] _n → {dist ’ rV [B] _n }) .

In this paper, we deal with discrete memoryless channels (DMCs). It means
that the output probability of a character does not depend on preceding inputs.
In this case, the definition of the nth extension of a channel W boils down to
a probability mass function that associates to an input vector x the following
distribution of output vectors:

Definition f (y : ’ rV_n) :=
∏
_ (i < n) W (x /_ i) (y /_ i) .

where x /_ i represents the ith element of the vector x. The notation
W ˆ n (y | x) (Wn(y|x) in pencil-and-paper proofs) is the probability for the
DMC of W that an input x (of length n) is output as y.

Finally, the quality of a code c for a given channel W is measured by its error
rate (notation: ēcha(W, c)), that is defined by the average probability of errors:

Definition ErrRateCond (W : CH1 (A , B)) c m :=
Pr (W ˆ n (| enc c m)) [set y | dec c y �= Some m] .

Definition CodeErrRate (W : CH1 (A , B)) c :=
1 / INR #| M | ∗ ∑_ (m in M) ErrRateCond W c m .

W ˆ n (| enc c m) is the distribution of outputs corresponding to the codeword
enc c m of a message m sent other the DMC of W. [set y | dec c y �=Some m] is the
set of outputs that do not decode to m. INR injects naturals into reals.

2.2 Aposteriori Probability

Probabilities are used to specify the correctness of probabilistic decoders such
as the sum-product algorithm (see Sect. 5).

20 R. Affeldt and J. Garrigue

We first formalize the notion of aposteriori probability: the probability that
an input was sent knowing that some output was received. It is defined via the
Bayes rule from the probability that an output was received knowing that some
input was sent. For an input distribution P and a channel W , the aposteriori
probability of an input x given the output y is:

PW (x|y) :=
P (x)Wn(y|x)

∑
x′∈An P (x′)Wn(y|x′)

We formalize aposteriori probabilities with the following probability mass
function:

Definition den :=
∑
_ (x in ’ rV_n) P x ∗ W ˆ n (y | x) .

Definition f x := P x ∗ W ˆ n (y | x) / den .

This probability is well-defined when the denominator is not zero. This is
more than a technical hindrance: it expresses the natural condition that,
since y was received, then necessarily a suitable x (i.e., such that P x �=0 and
W ˆ n (y | x) �=0) was sent beforehand. The denominator being non-zero is thus
equivalent to the receivable condition:

Definition receivable y := [∃ x , (P x �= 0) ∧ (W ˆ n (y | x) �=
0)] .

In Coq, we denote aposteriori probabilities by P ‘ˆˆ W, H (x | y) where H is a
proof that y is receivable.

Finally, the probability that the nth
0 bit of the input is set to b (0 or 1) given

the output y is defined by the marginal aposteriori probability (K is chosen so
that it is indeed a probability):

PW
n0

(b|y) := K
∑

x∈F
n
2 xn0=b

PW (x|y)

In Coq, we will denote this probability by P’_ n0 ‘ˆˆ W, H (b | y) where H is
the proof that y is receivable. See [3] for complete formal definitions.

3 A Formal Setting for Linear ECCs

Linear ECCs are about bit-vectors, i.e., vectors over F2 (we use the nota-
tion ’F_2 from MathComp). Their properties are mostly discussed in terms
of Hamming weight (the number of 1 bits) or of Hamming distance (the
number of bits that are different). In Coq, we provide a function wH

for the Hamming weight, from which we derive the Hamming distance:
Definition dH n (x y : ’rV_n) := wH (x − y).

3.1 Linear ECCs as Sets of Codewords

The simplest definition of a linear ECC is as a set of codewords closed by addition
(n is called the length of the code):

Formalization of Error-Correcting Codes 21

Fig. 1. The setting of error-correcting codes

Record lcode0 n := mkLcode0 {
codewords :> {set ’ rV [’ F_2] _n} ;
lclosed : addr_closed codewords } .

In practice, a linear ECC is defined as the kernel of a parity check matrix (PCM),
i.e., the matrix whose rows correspond to the checksum equations that codewords
fulfill (∗m is multiplication and ˆT is transposition of matrices):

Definition syndrome (H : ’ M [’ F_2] _ (m , n)) (y : ’ rV_n) := H ∗m yˆT .

Definition kernel H := [set c | syndrome H c = 0] .

Since the kernel of the PCM is closed by addition, it defines a linear ECC:

Lemma kernel_add H : addr_closed (kernel H) . Proof Qed .
Definition lcode0_kernel H := mkLcode0 (kernel_add H) .

When H is a m × n matrix, k = n − m is called the dimension of the code.
A code is trivial when it is reduced to the singleton with the null vector:

Definition not_trivial := ∃ cw , (cw ∈ C) ∧ (cw �= 0) .

When a linear ECC C is not trivial (proof C_not_trivial below), one can define
the minimum distance between any two codewords, or, equivalently, the min-
imum weight of non-zero codewords, using SSReflect’s xchoose and arg_min

functions:

Definition non_0_codeword := xchoose C_not_trivial .
Definition min_wH_codeword :=

arg_min non_0_codeword [pred cw in C | wH cw �= O] wH .
Definition d_min := wH min_wH_codeword .

The minimum distance dmin defines in particular the number of errors �dmin−1
2 �

that one can correct using minimum distance decoding (see Sect. 3.3):

Definition mdd_err_cor := (d_min . − 1) /2 .

3.2 Linear ECCs with Coding and Decoding Functions

In practice, a linear ECC is not only a set of codewords but also a pair of coding
and decoding functions to be used in conjunction with a channel (see Fig. 1
[5, p. 16]). We combine the definition of a linear ECC as a set of codewords
(Sect. 3.1) and as a pair of encoding and decoding functions (i.e., a channel
code—Sect. 2.1) with the hypotheses that (1) the encoder is injective and (2) its
image is a subset of the codewords:

22 R. Affeldt and J. Garrigue

Record lcode n k : Type := mkLcode {
lcode0_of :> lcode0 n ;
enc_dec :> code ’ F_2 ’ F_2 ’ rV [’ F_2] _k n ;
enc_inj : injective (enc enc_dec) ;
enc_img : enc_img_in_code lcode0_of (enc enc_dec) } .

enc_img_in_code is the hypothesis that the image of the messages (here,
’rV [’F_2]_k) by the encoder (enc enc_dec) is included in the set of codewords
(here, lcode0_of). Note that k ≤n can be derived from the injectivity of the
encoder.

As indicated by Fig. 1, the decoder is decomposed into (1) a function that
repairs the received output and (2) a function that discards the redundancy bits:

Record lcode1 n k := mkLcode1 {
lcode_of :> lcode n k ;

repair : repairT n ; (*’rV[’F_2]_n → option (’rV[’F_2]_n) *)

discard : discardT n k ; (*’rV[’F_2]_n →’rV[’F_2]_k *)

dec_is_repair_discard :

dec lcode_of = [ffun y ⇒ omap discard (repair y)] ;

enc_discard_is_id : cancel_on lcode_of (enc lcode_of) discard } .

enc_discard_is_id is a proof that discard followed by encoding enc is the identity
over the domain lcode_of.

Example. The r-repetition code encodes one bit by replicating it r times. It has
therefore two codewords: 00 · · · 0 and 11 · · · 1 (r times). The PCM can be defined
as H = A || 1 where A is a column vector of r − 1 1’s, and the corresponding
encoder is the matrix multiplication by G = 1 || (−A)T . More generally, let A be
a (n − k) × k matrix, H = A || 1 and G = 1 || (−A)T . Then H is the PCM of a
(n, k)-code with the (injective) encoding function x �→ x×G. Such a linear ECC
is said to be in systematic form (details in [3]).

3.3 The Variety of Decoding Procedures

There are various strategies to decode the channel output. Minimum distance
decoding chooses the closest codeword in terms of Hamming distance. When such
a decoder decodes an output y to a message m, then there is no other message m’

whose encoding is closer to y:

Definition minimum_distance_decoding :=
∀ y m , (dec c) y = Some m →

∀ m ’ , dH ((enc c) m) y ≤ dH ((enc c) m ’) y .

We can now formalize the first interesting theorem about linear ECCs [11,
p. 10] that shows that a minimum distance decoder can correct mdd_err_cor

(see Sect. 3.1) errors:

Lemma encode_decode m y : (dec C) y �= None →
dH ((enc C) m) y ≤ mdd_err_cor C_not_trivial →
(dec C) y = Some m .

Formalization of Error-Correcting Codes 23

For example, a repetition code can decode (r − 1)/2 errors (with r odd) since
minimum distance decoding can be performed by majority vote (see [3] for formal
proofs):

Definition majority_vote r (s : seq ’ F_2) : option ’ F_2 :=
let cnt := num_occ 1\ ,s in

if r/2 < cnt then Some 1
else if (r/2 = cnt) ∧ ~~ odd r then None

else Some 0 .

Maximum Likelihood (ML) Decoding decodes to the message that is the
most likely to have been encoded according to the definition of the channel.
More precisely, for an encoder f , a ML decoder φ is such that Wn(y|f(φ(y)) =
maxm∈M Wn(y|f(m)):

Definition maximum_likelihood_decoding :=
support (enc c) → ∀ y , receivable W P y →
∃ m , (dec c) y = Some m ∧

W ˆ n (y | (enc c) m) = \rmax_ (m ’ in M) W ˆ
n (y | (enc c) m ’) .

The assumption receivable W P y says that we consider outputs with non-zero
probability (see Sect. 2.2). The assumption support (enc c) says that only code-
words can be input. Textbooks do not make these assumptions explicit but they
are essential to complete formal proofs.

ML decoding is desirable because it achieves the smallest error rate among
all the possible decoders [3, Lemma ML_smallest_err_rate]. Still, it is possible to
achieve ML decoding via minimum distance decoding. This is for example the
case with a binary symmetric channel (that inputs and outputs bits) with error
probability p < 1

2 . Formally, for a code c with at least one codeword:

Lemma MD_implies_ML : p < 1/2 → minimum_distance_decoding c →
(∀ y , (dec c) y �= None) → maximum_likelihood_decoding W c P .

Maximum aposteriori probability (MAP) decoding decodes to messages that
maximize the aposteriori probability (see Sect. 2.2). MAP decoding is desirable
because it achieves ML decoding [3, lemma MAP_implies_ML]. Maximum posterior
marginal (MPM) decoding is similar to MAP decoding: it decodes to messages
such that each bit maximizes the marginal aposteriori probability. The sum-
product algorithm of Sect. 5 achieves MPM decoding.

4 Formalization of Hamming Codes and Their Properties

We formalize Hamming codes. In particular, we show that the well-known decod-
ing procedure for Hamming code is actually a minimum distance decoding and
that the error rate can be stated as a closed formula.

Formal Definition. Hamming codes are (n = 2m − 1, k = 2m − m − 1) linear
ECCs, i.e., one adds m extra bits for error checking. The codewords are defined

24 R. Affeldt and J. Garrigue

by the PCM whose columns are the binary representations of the 2m − 1 non-
null words of length m. For a concrete illustration, here follows the PCM of the
(7, 4)-Hamming code:

hamH 7,4 =

⎛

⎝
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞

⎠

Formally, for any m, we define the PCM using a function nat2bin_cV that builds
column vectors with the binary representation of natural numbers (e.g., for the
matrix H above, nat2bin_cV 3 1 returns the first column vector, nat2bin_cV 3 2

the second, etc.):

Definition hamH := \matrix_ (i < m , j < n) (nat2bin_cV m j+1 i 0) .

Definition hamC : lcode0 n := lcode0_kernel hamH .

Minimum Distance. The minimum distance of Hamming codes is 3, and there-
fore, by minimum distance decoding, Hamming codes can correct 1-bit errors (by
the lemma encode_decode of Sect. 3.3). The fact that the minimum distance is 3
is proved by showing that there are no codewords of weights 1 and 2 (by analysis
of H) while there is a codeword of weight 3 (7×2n−3 = (1110 · · · 0)2). Hamming
codes are therefore not trivial and their minimum distance is 3:

Lemma hamming_not_trivial : not_trivial hamC .
Lemma minimum_distance_is_3 : d_min hamming_not_trivial = 3 .

Minimum Distance Decoding. The procedure of decoding for Hamming
codes is well-known. To decode the output y, compute its syndrome: if it is
non-zero, then it is the binary representation of the index of the bit to flip back.
The function ham_detect computes the index i of the bit to correct and prepare
a vector to repair the error. The function ham_repair fixes the error by adding
this vector:

Definition ham_detect y :=
let i := bin2nat_cV (syndrome hamH y) in

if i is O then 0 else nat2bin_rV n (2 ˆ (n − i)) .
Definition ham_repair : decT _ _ m := [ffun y ⇒

let ret := y + ham_detect y in

if syndrome hamH ret = 0 then Some ret else None] .

Let ham_scode be a linear ECC using the ham_repair function. We can show that
it implements minimum distance decoding:

Lemma hamming_MD : minimum_distance_decoding ham_scode .

It is therefore an ML decoding (by the Lemma MD_implies_ML from Sect. 3.3).

The Encoding and Discard Functions. We now complete the formalization
of Hamming codes by providing the encoding and discard functions (as in Fig. 1).
Modulo permutation of the columns, the PCM of Hamming codes can be trans-
formed into systematic form sysH = sysA || 1 (as explained in the example
about repetition codes in Sect. 3.2). This provides us with a generating matrix
sysG = 1 || (−sysA)T . For illustration in the case of the (7, 4)-Hamming code:

Formalization of Error-Correcting Codes 25

sysH7,4 =

⎛

⎝
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

⎞

⎠ sysG7,4 =

⎛

⎜
⎜
⎝

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞

⎟
⎟
⎠

Let sysH_perm be the column permutation that turns H into sysH. The parity
check and generating matrices in systematic form are formalized as follows:

Definition sysH : ’ M [’ F_2] _ (m , n) := col_perm sysH_perm hamH .
Definition sysG :=

castmx (erefl , subnK (m_len m ’)) (row_mx 1%:M (−sysA)ˆT) .

(castmx is a cast that deals with dependent types.) The discard function in
systematic form is obvious:

Definition sysDiscard : ’ M [’ F_2] _ (n − m , n) :=
castmx (erefl , subnK (m_len m ’)) (row_mx 1%:M 0) .

Using the column permutation sysH_perm the other way around, we can produce
the discard function and the generating matrix corresponding to the original
hamH :

Definition ham_discard := col_perm sysH_permˆ−1 sysDiscard .
Definition hamG := col_perm sysH_permˆ−1 sysG .

Coupled with the ham_repair function above, hamG and ham_discard provides us
with a complete definition of Hamming encoders and decoders:

Definition ham_channel_code := mkCode

[ffun t ⇒ t ∗m hamG] [ffun x ⇒
omap ham_discard (ham_repair _ x)] .

Error Rate. Finally, we show, in the case of a binary symmetric channel W,
that the error rate (see Sect. 2.1) of Hamming codes can be expressed as a closed
formula:

Lemma hamming_error_rate : p < 1/2 →
ēcha (W , ham_channel_code) =
1 − ((1 − p) ˆ n) − INR n ∗ p ∗ ((1 − p) ˆ (n − 1)) .

The existence of codes with arbitrary small error rates is the main result of
Shannon’s theorems. But Shannon’s proofs are not constructive. Our formaliza-
tion of Hamming codes with a closed formula for their error rate provides us
with a concrete candidate.

5 Formalization of the Properties of Sum-Product
Decoding

The sum-product algorithm provides efficient decoding for LDPC codes. It com-
putes for each bit its marginal aposteriori probability by propagating probabili-
ties in a graph corresponding to the PCM. We explain those graphs in Sect. 5.1,
the summary operator used to specify the sum-product algorithm in Sect. 5.2,
and the main properties of the sum-product algorithm in Sect. 5.3.

26 R. Affeldt and J. Garrigue

5.1 Parity Check Matrix as Tanner Graphs

The vertices of a Tanner graph correspond to the rows and columns of a parity-
check matrix H with an edge between m and n when Hm,n = 1. Rows are called
function nodes and columns are called variable nodes. By construction, a Tanner
graph is bipartite.

Sets of successor nodes and subgraphs of Tanner graphs appear as indices of
big operators in the definitions and proofs of the sum-product algorithm.

Let g be a graph (formalized by a binary relation) and m and n be two
connected vertices. The subgraph rooted at the edge m–n is the set of vertices
reachable from m without passing through n:

Variables (V : finType) (g : rel V) .
Definition except n := [rel x y | g x y ∧ (x �= n) ∧ (y �= n)] .
Definition subgraph m n :=
[set v | g n m ∧ connect (except n) m v] .

For Tanner graphs, we distinguish successors and subgraphs of variable nodes
and of function nodes. We denote the successors of the function (resp. variable)
node m0 (resp. n0) by ‘V m0 (resp. ‘F n0). We denote the function nodes of the
subgraph rooted at edge m0–n0 by ‘F(m0, n0). Similarly, we denote the variable
nodes of the subgraph rooted at edge m0–n0 (to which we add n0) by ‘V(m0, n0).
Figure 2 provides an explanatory illustration, see [3] for complete definitions.

Fig. 2. Successors and subtrees in an acyclic Tanner graph

It will be important to distinguish acyclic Tanner graphs:

Definition acyclic g := ∀ l , 2 < size l → ~ path . ucycle g l .

Technically, we will need to establish partition properties when proving the
properties of the sum-product decoding algorithm (see Sect. 5.3 for a concrete
example).

5.2 The Summary Operator

Pencil-and-paper proofs in modern coding theory [12] make use of a special
summation called the summary operator [10]. It is denoted by

∑
∼s and indicates

Formalization of Error-Correcting Codes 27

the variables not being summed over. This operator saves the practitioner “from
a flood of notation” [12, p. 49], for example by writing steps such as:

∏

m0∈F (n0)

∑

∼{n0}
· · · =

∑

∼{n0}

∏

m0∈F (n0)

· · · , (1)

the reader being trusted to understand that both operators sum over different
sets.

We formalize the summary operator as a sum over vectors x such that x /_ i

is fixed using a default vector d when i �∈ s and write
∑

_(x # s, d) instead
of

∑
∼s:

Definition summary (s : {set ’ I_n }) (d x : ’ rV [A] _n) :=
[∀ i , (i ∈ ~ : s) ⇒ (x /_ i = d /_ i)] .

Notation ”
∑

(x ’# ’ s ’ , ’ d) e” := (
∑
_ (x | summary s d x) e)

Indeed,
∑

∼s can be understood as a sum over vectors [x0;x1; ...;xn−1] such
that xi is fixed when i ∈ s. We found it difficult to recover the terseness of
the pencil-and-paper summary operator in a proof-assistant. First, the precise
set of varying xj is implicit; it can be inferred by looking at the xj appearing
below the summation sign but this is difficult to achieve unless one reflects most
syntax. Second, it suggests working with vectors x of varying sizes, which can
be an issue when the size of vectors appears in dependent types (tuples or row
vectors in MathComp). Last, it is not clear about the values of xi when i ∈ s.

In contrast, our formalization makes clear, for example, that in Eq. (1) the
first summary operator sums over V (m0, n0)\{n0} while the second one sums
over [1, . . . , n]\{n0} (see Sect. 5.3 for the formalization). More importantly, we
can benefit from MathComp lemmas about big operators to prove the properties
of the sum-product decoding thanks to our encoding (see Sect. 5.3).

Alternatively, our summary operator
∑

_(x # s , d) e x can also be thought
as

∑
x1∈F2

· · · ∑x|s|∈F2
e d[s1 := x1] · · · [s|s| := x|s|] where d[i := b] represents

the vector d where index i is updated with b. Put formally (enum s below is the
list [s1; s2; · · · ; s|s|]):

Definition summary_fold (s : {set ’ I_n }) d e :=

foldr (fun n0 F t ⇒∑_ (b in ’ F_2) F (t ‘ [n0 := b])) e (enum s) d .

This is equivalent (
∑

_(x # s, d) e x = summary_fold s d e) but we found it easier
to use summary_fold to prove our implementation of the sum-product algorithm
in Sect. 6.

5.3 Properties of the Sum-Product Decoding

Correctness of the Estimation. Let us consider a channel W and a chan-
nel output y. With sum-product decoding, we are concerned with evaluating
PW
n0

(b|y) where b is the value of the nth
0 bit of the input codeword (see Sect. 2.2).

In the following, we show that it is proportional to the following quantity:

PW
n0

(b|y) ∝ W (yn0 |b)
∏

m0∈F (n0)

αm0,n0(b).

28 R. Affeldt and J. Garrigue

αm0,n0(b) (formal definition below) is the contribution to the marginal aposte-
riori probability of the nth

0 bit coming from a subtree of the Tanner graph (we
assume that the Tanner graph is acyclic).

We now provide the formal statement. Let W be a channel. Let H be a
m × n PCM such that the corresponding Tanner graph is acyclic (hypothesis
acyclic_graph (tanner_rel H), where tanner_rel turns a PCM into the corre-
sponding Tanner graph). Let y be the channel output to decode. We assume
that it is receivable (hypothesis Hy below, see Sect. 2.2). Finally, let d be the
vector used in the summary operator. Then the aposteriori probability PW

n0
(b|y)

can be evaluated by a closed formula:

Lemma estimation_correctness (d : ’ rV_n) n0 :

let b := d /_ n0 in let P := ‘ U C_not_empty in

P ’ _ n0 ‘ˆˆ W , Hy (b | y) =

Kmpp Hy ∗ Kpp W H y ∗ W b (y /_ n0) ∗ ∏_ (m0 in ‘ F n0) α m0 n0 d .

Kmpp and Kpp are normalization constants (see [3]). P is a uniform distribution.
The distribution ‘U C_not_empty of codewords has the following probability mass
function: cw �→ 1/|C| if cw ∈ C and 0 otherwise. α is the marginal aposteriori
probability of the nth

0 bit of the input codeword in the modified Tanner graph
that includes only function nodes from the subgraph rooted at edge m0–n0 and
in which the received bit y /_ n0 has been erased. The formal definition relies on
the summary operator:

Definition α m0 n0 d :=
∑
_ (x # ‘ V (m0 , n0) :\ n0 , d)

W ˆ _ (y # ‘V (m0 , n0) :\ n0 | x # ‘V (m0 , n0) :\ n0) ∗∏
_ (m1 in ‘F (m0 , n0)) INR (δ (‘ V m1) x) .

δ s x is an indicator function that performs checksum checks:

Definition δ n (s : {set ’ I_n }) (x : ’ rV [’ F_2] _n) :=
(\ big[+%R/Zp0] _ (n0 in s) x /_ n0) = Zp0 .

Let us comment about two technical aspects of the proof of
estimation_correctness. The first one is the need to instrument Tanner graphs
with partition lemmas to be able to decompose big sums/prods. See the next
paragraph on lemma recursive_computation for a concrete example. The second
one is the main motivation for using the summary operator. We need to make
big sums commute with big prods in equalities like:
∏
_ (m0 in ‘ F n0)

∑
_ (x # ‘ V (m0 , n0) :\ n0 , d) . . . =∑

_ (x # setT :\ n0 , d)
∏
_ (m0 in ‘ F n0) . . .

Such steps amount to apply the MathComp lemma big_distr_big_dep together
with technical reindexing. This is one of our contributions to provide lemmas for
such steps.

Recursive Computation of α’s. The property above provides a way to evalu-
ate PW

n0
(b|y) but not an efficient algorithm because the computation of αm0,n0(b)

is about the whole subgraph rooted at the edge m0–n0. The second property that
we formalize introduces β probabilities such that α’s (resp. β’s) can be computed
from neighboring β’s (resp. α’s). This is illustrated by Fig. 3 whose meaning will
be made clearer in Sect. 6. We define β using α as follows:

Formalization of Error-Correcting Codes 29

Definition β n0 m0 (d : ’ rV_n) :=
W (d /_ n0) (y /_ n0) ∗ ∏_ (m1 in ‘ F n0 :\ m0) α m1 n0 d .

We prove that α’s can be computed using β’s by the following formula (we
assume the same setting as for the Lemma estimation_correctness):

Lemma recursive_computation m0 n0 d : n0 ∈ ‘V m0 →
α m0 n0 d =

∑
_ (x # ‘ V m0 :\ n0 , d)

INR (δ (‘ V m0) x) ∗ ∏_ (n1 in ‘V m0 :\ n0) β n1 m0 x .

This proof is technically more involved than the lemma estimation_correctness

but relies on similar ideas: partitions of Tanner graphs to split big sums/prods
and commutations of big sums and big prods using the summary operator. Let
us perform the first proof step for illustration. It consists in turning the inner
product of α messages

∏
_(m1 in ‘F(m0, n0) :\ m0) INR (δ (‘V m1) x) into:

∏
_ (n1 in ‘V m0 :\ n0)

∏
_ (m1 in ‘F n1 :\ m0)∏

_ (m2 in ‘F (m1 , n1)) INR (δ (‘ V m2) x)

This is a consequence of the fact that ‘F(m0, n0) :\ m0 can be partitioned (when
H is acyclic) into smaller ‘F(m1, n1) where n1 is a successor of m0 and m1 is a
successor of n1, i.e., according to the following partition:

Definition Fgraph_part_Fgraph m0 n0 : {set {set ’ I_m}} :=

(fun n1 ⇒ ⋃
_ (m1 in ‘ F n1 :\ m0) ‘ F (m1 , n1)) @ : ((‘ V m0) :\ n0) .

Once Fgraph_part_Fgraph m0 n0 has been shown to cover ‘F(m0, n0) :\ n0 with
pairwise disjoint sets, this step essentially amounts to use the lemmas
big_trivIset and big_imset from MathComp. See [3, tanner_partition.v] for
related lemmas.

Fig. 3. Illustrations for sumprod_up and sumprod_down. Left: sumprod_up computes
the up links from the leaves to the root. Right: sumprod_down computes the down link
of edge m0–n2 using the β’s of edges m0–ni (i �= 2).

6 Implementation and Verification of Sum-Product
Decoding

An implementation of sum-product decoding takes as input a Tanner graph and
an output y, and computes for all variable nodes, each representing a bit of the

30 R. Affeldt and J. Garrigue

decoded codeword, its marginal aposteriori probability. One chooses to decode
the nth

0 bit either as 0 if PW
n0

(0|y) ≥ PW
n0

(1|y) or as 1 otherwise, so as to perform
MPM decoding.

The algorithm we implement is known in the literature as the forward/back-
ward algorithm and has many applications [10]. It uses the tree view of an acyclic
Tanner graph to structure recursive computations. In a first phase it computes
α’s and β’s (see Sect. 5.3) from the leaves towards the root of the tree, and then
computes α’s and β’s in the opposite direction (starting from the root that time).
Figure 3 illustrates this.

Concretely, we provide Coq functions to build the tree, compute α’s and β’s,
and extract the estimations, and prove formally that the results indeed agree
with the definitions from Sect. 5.3.

Definition of the Tree. Function nodes and variable nodes share the same
data structure, and are just distinguished by their kind.

Definition R2 := (R ∗ R)%type .
Inductive kind : Set := kf | kv .
Fixpoint negk k := match k with kf ⇒ kv | kv ⇒ kf end .
Inductive tag : kind → Set := Func : tag kf | Var : R2 →
tag kv .
Inductive tn_tree (k : kind) (U D : Type) : Type :=

Node { node_id : id ; node_tag : tag k ;
children : seq (tn_tree (negk k) U D) ;
up : U ; down : D } .

This tree is statically bipartite, thanks to the switching of the kind for the
children. Additionally, in each variable node, node_tag is expected to contain the
channel probabilities for this bit to be 0 or 1, i.e., the pair (W (yn0 |0),W (yn0 |1)).
The up and down fields are to be filled with the values of α and β (according to
the kind), going to the parent node for up, and coming from it for down. Here
again we will use pairs of the 0 and 1 cases. Note that the values of α’s and β’s
need not be normalized.

Computation of α and β. The function α_β takes as input the tag of the source
node, and the α’s and β’s from neighboring nodes, excluding the destination,
and computes either α or β, according to the tag. Thanks to this function,
the remainder of the algorithm keeps a perfect symmetry between variable and
function nodes.

Definition α_op (out inp : R2) :=
let (o , o ’) := out in let (i , i ’) := inp in

(o∗i + o ’∗ i ’ , o∗i ’ + o ’∗ i) .
Definition β_op (out inp : R2) :=

let (o , o ’) := out in let (i , i ’) := inp in (o∗i , o ’∗ i ’) .
Definition α_β k (t : tag k) : seq R2 → R2 :=

match t with

| Func ⇒ foldr α_op (1 , 0)
| Var v ⇒ foldl β_op v

end .

Formalization of Error-Correcting Codes 31

The definition for β is clear enough: assuming that v contains the channel proba-
bilities for the corresponding bit, it suffices to compute the product of these prob-
abilities with the incoming α’s. For α, starting from the recursive_computation

lemma, we remark that assuming a bit to be 0 leaves the parity unchanged, while
assuming it to be 1 switches the parities. This way, the sum-of-products can be
computed as an iterated product, using α_op. This optimization is described
in [10, Sect. 5-E]. We will of course need to prove that these definitions compute
the same α’s and β’s as in Sect. 5.3.

Propagation of α and β. sumprod_up and sumprod_down compute respectively
the contents of the up and down fields.

Fixpoint sumprod_up {k} (n : tn_tree k unit unit)
: tn_tree k R2 unit :=
let children ’ := map sumprod_up (children n) in

let up ’ := α_β (node_tag n) (map up children ’) in

Node (node_id n) (node_tag n) children ’ up ’ tt .
Fixpoint seqs_but1 (a b : seq R2) :=

if b is h::t then (a++t) ::seqs_but1 (rcons a h) t else [::] .
Fixpoint sumprod_down {k} (n : tn_tree k R2 unit)

(from_above : option R2) : tn_tree k R2 R2 :=
let (arg0 , down ’) :=

if from_above is Some p then ([::p] , p) else ([::] , (1 , 1)) in

let args := seqs_but1 arg0 (map up (children n)) in

let funs := map

(fun n ’ l ⇒ sumprod_down n ’ (Some (α_β (node_tag n) l)))
(children n) in

let children ’ := apply_seq funs args in

Node (node_id n) (node_tag n) children ’ (up n) down ’ .
Definition sumprod {k} n := sumprod_down (@sumprod_up k n) None .

The from_above argument is None for the root of the tree, or the β coming from the
parent node otherwise. apply_seq applies a list of functions to a list of arguments.
This is a workaround to allow defining sumprod_down as a Fixpoint.

Building the Tree. A parity-check matrix H and the probability distribution
rW for each bit (computed from the output y and the channel W) is turned into a
tn_tree, using the function build_tree, and fed to the above sumprod algorithm:

Variables (W : CH1 (’ F_2 , B)) (y : ’ rV [B] _n) .
Let rW n0 := (W 0 (y /_ n0) , W 1 (y /_ n0)) .
Let computed_tree := sumprod (build_tree H rW (k := kv) ord0) .

Extraction of Estimations. We finally recover normalized estimations from
the tree:

Definition normalize (p : R2) :=
let (p0 , p1) := p in (p0 / (p0 + p1) , p1 / (p0 + p1)) .

Fixpoint estimation {k} (n : tn_tree k R2 R2) :=
let l := flatten (map estimation (children n)) in

if node_tag n is Var _ then

32 R. Affeldt and J. Garrigue

(node_id n , normalize (β_op (up n) (down n))) :: l

else l (* node_tag n is Func *) .

Correctness. The correctness of the algorithm above consists in showing that
the estimations computed are the intended aposteriori probabilities:

Let estimations := estimation computed_tree .
Definition esti_spec n0 (x : ’ rV_n) :=

(‘ U C_not_empty) ’_ n0 ‘ˆˆ W , Hy (x /_ n0 | y) .
Definition estimation_spec := uniq (unzip1 estimations) ∧

∀ n0 , (inr n0 , p01 (esti_spec n0) n0) ∈ estimations .

where p01 f n0 applies f, to a vector whose nth
0 bit is set to 0 and 1.

Theorem estimation_ok in [3, ldpc_algo_proof.v] provides a proof of
this fact. As key steps, it uses the lemmas recursive_computation and
estimation_correctness from Sect. 5.3.

Concrete Codes. All proofs of probabilistic sum-product decoding assume
the Tanner graph to be acyclic [10]. In practice codes based on acyclic graphs
are rare and not very efficient [7]. We tested our implementation with one of
them [3, sumprod_test.ml].

In the general case where the Tanner graph contains cycles, one would use
an alternative algorithm that computes the α’s and β’s repeatedly, propagating
them in the graph until the corrected word satisfies the parity checks, failing if
the result is not reached within a fixed number of iterations [10, Sect. 5]. This
works well in practice but there is no proof of correctness, even informal. In place
of this iterative approach, one could also build a tree approximating the graph,
by unfolding it to a finite depth, and apply our functional algorithm.

7 Related Work

Coding theory has been considered as an application of the interface between
the Isabelle proof-assistant and the Sumit computer algebra system [4]. In order
to take advantage of the computer algebra system, proofs are restricted to a cer-
tain code length. Though the mathematical background about polynomials has
been formally verified, results about coding theory are only asserted. In com-
parison, we formally verify much more (generic) lemmas. Yet, for example when
proving that certain bitstrings are codewords, we found ourselves performing
formal proofs close to symbolic computation. With this respect, we may be able
in a near future to take advantage of extensions of the MathComp library that
provide computation [6].

8 Conclusion

In this paper, we have proved the main properties of Hamming codes and sum-
product decoding. It is interesting to contrast the two approaches, respectively
known as classical and modern coding theory.

Formalization of Error-Correcting Codes 33

For Hamming codes, we could provide an implementation of minimal-distance
decoding, and prove that it indeed realizes maximum likelihood decoding, i.e.,
the best possible form of decoding.

For sum-product decoding, which provides the basis for LDPC codes, one can
only prove that the sum-product algorithm allows to implement MPM decoding.
However, this is two steps away from maximum likelihood: the proof is only valid
for acyclic Tanner graphs, while interesting codes contain cycles, and MPM is an
approximation of MAP decoding, with only the latter providing maximum like-
lihood. Yet, this “extrapolation” methodology does work: sum-product decoding
of LDPC codes is empirically close to maximum likelihood, and performs very
well in practice.

Acknowledgments. T. Asai, T. Saikawa, K. Sakaguchi, and Y. Takahashi con-
tributed to the formalization. The formalization of modern coding theory is a collabo-
ration with M. Hagiwara, K. Kasai, S. Kuzuoka, and R. Obi. The authors are grateful
to the anonymous reviewers for their comments. This work is partially supported by a
JSPS Grant-in-Aid for Scientific Research (Project Number: 25289118).

References

1. Affeldt, R., Nowak, D., Yamada, K.: Certifying assembly with formal security
proofs: the case of BBS. Sci. Comput. Program. 77(10–11), 1058–1074 (2012)

2. Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of Shannon’s theorems.
J. Autom. Reason. 53(1), 63–103 (2014)

3. Affeldt, R., Garrigue, J.: Formalization of error-correcting codes: from Hamming
to modern coding theory. Coq scripts. https://staff.aist.go.jp/reynald.affeldt/ecc

4. Ballarin, C., Paulson, L.C.: A pragmatic approach to extending provers by com-
puter algebra–with applications to coding theory. Fundamenta Informaticae 34(1–
2), 1–20 (1999)

5. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann,
A.: Error-Correcting Linear Codes-Classification by Isometry and Applications.
Springer, Heidelberg (2006)

6. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational
algebra in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
83–98. Springer, Heidelberg (2012)

7. Etzion, T., Trachtenberg, A., Vardy, A.: Which codes have cycle-free Tanner
graphs? IEEE Trans. Inf. Theory 45(6), 2173–2181 (1999)

8. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Technical report RR-6455, INRIA (2008). Version 14, March 2014

9. Hagiwara, M.: Coding theory: mathematics for digital communication. Nippon
Hyoron Sha (2012) (in Japanese)

10. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland, Amsterdam (1977). 7th impression (1992)

12. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press,
Cambridge (2008)

https://staff.aist.go.jp/reynald.affeldt/ecc

ROSCoq: Robots Powered by Constructive Reals

Abhishek Anand(B) and Ross Knepper

Cornell University, Ithaca, NY 14850, USA
abhishek.anand.iitg@gmail.com

Abstract. WepresentROSCoq, a framework for developing certifiedCoq
programs for robots. ROSCoq subsystems communicate using messages,
as they do in the Robot Operating System (ROS). We extend the logic of
events to enable holistic reasoning about the cyber-physical behavior of
robotic systems. The behavior of the physical world (e.g. Newton’s laws)
and associated devices (e.g. sensors, actuators) are specified axiomatically.
For reasoning about physics we use and extend CoRN’s theory of construc-
tive real analysis. Instead of floating points, our Coq programs use CoRN’s
exact, yet fast computations on reals, thus enabling accurate reasoning
about such computations.

As an application, we specify the behavior of an iRobot Create. Our
specification captures many real world imperfections. We write a Coq
program which receives requests to navigate to specific positions and com-
putes appropriate commands for the robot. We prove correctness proper-
ties about this system. Using the ROSCoq shim, we ran the program on
the robot and provide even experimental evidence of correctness.

1 Introduction

Cyber-Physical Systems (CPS) such as ensembles of robots can be thought of
as distributed systems where agents might have sensing and/or actuation capa-
bilities. In fact the Robot Operating System (ROS) [15] presents a unified inter-
face to robots where subcomponents of even a single robot are represented as
nodes (e.g. sensor, actuator, controller software) that communicate with other
nodes using asynchronous message passing. The Logic of Events (LoE) [3] frame-
work has already been successfully used to develop certified functional programs
which implement important distributed systems like fault-tolerant replicated
databases [19]. Events capture interactions between components and observa-
tions rather than internal state. This enables specification and reasoning at
higher-levels while integrating easily with more detailed information [22]. CPSs
are arguably harder to get right, because of the additional complexity of rea-
soning about physics and how it interacts with the cyber components. In this
work, we show that an event-based semantics is appropriate for reasoning about
CPSs too. We extend the LoE framework to enable development of certified Coq
programs for CPSs.

There are several challenges in extending LoE to provide a semantic founda-
tion for CPSs, and thus enable holistic reasoning about such systems: (1) One

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 34–50, 2015.
DOI: 10.1007/978-3-319-22102-1 3

ROSCoq: Robots Powered by Constructive Reals 35

has to model the physical quantities, e.g. the position, direction and velocity
of each robot and also the physical laws relating them. (2) Time is often a key
component of safety proofs of a CPS. For example, the software controller of a
robot needs to send correct messages (commands) to the motors before it col-
lides with something. (3) The software controller of a robot interacts with devices
such as sensors and actuators which measure or influence the physical quanti-
ties. The specification of these devices typically involve both cyber and physical
aspects. (4) Robotic programs often need to compute with real numbers, which
are challenging to reason about accurately.

Our Coq framework addresses each of these challenges. Our running example
is that of a robotic system consisting of an iRobot Create1 and its controller-
software. This setup can be represented as a distributed system with 3 agents
(a.k.a. nodes in ROS) : (a) the hardware agent which represents the robot along
with its ROS drivers/firmware. It receives messages containing angular and lin-
ear velocities and adjusts the motors accordingly to achieve those velocities.
(b) the software agent which sends appropriate velocity messages to the hard-
ware agent (c) the external agent which sends messages to the software agent
telling where the robot should go. The message sequence diagram below shows
a sample interaction between the agents. Click here for the corresponding video.

hardware
agent

software agent
(robot controller)

external
agent

go to (1,1)

start turning @ .1 rad/s

stop

start moving @ 1m/s

stop

To define a CPS in ROSCoq, one has
to first define its physical model and then
define each agent independently. The phys-
ical model specifies how the relevant phys-
ical quantities evolve over time. These are
represented as continuous real-valued func-
tions over time, where time is represented
as a non-negative real number. In our exam-
ple, the relevant physical quantities are the
position, orientation and velocities (angular
and linear) of the robot. Thanks to depen-
dent types of Coq, it is easy to express physical constraints such as the fact that
the velocity is the derivative of the position w.r.t. time. We extensively used
CoRN’s [8] rich library of definitions and theorems about derivatives, integrals,
continuity, trigonometry etc. to represent and reason about physical compo-
nents. The assumption of continuity allows us to get around many decidability
issues related to constructive reals. During the course of this project, we con-
tributed some generic lemmas about constructive real analysis to CoRN, such as
a stronger constructive version of Intermediate Value Theorem which we found
more useful while reasoning about CPSs2.

Events have time-stamps and one can specify assumptions on the time needed
by activities like message delivery, sensing, actuation, computation etc. to hap-
pen. These will have to be empirically validated; currently one cannot statically
reason about the running time of Coq programs.

1 http://www.irobot.com/About-iRobot/STEM/Create-2.aspx.
2 https://github.com/c-corn/corn/pull/13.

http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/vid3.html
http://www.irobot.com/About-iRobot/STEM/Create-2.aspx
https://github.com/c-corn/corn/pull/13

36 A. Anand and R. Knepper

Agents of a CPS are represented as a relation between the physical model
(how physical quantities evolve over time) and the trace of observable events
(sending and receiving of messages) generated by the agent. This representation
allows incomplete and non-deterministic specifications. For hardware devices
such as sensors and actuators, this relation is specified axiomatically. For exam-
ple, the relation for the hardware agent mentioned above asserts that whenever it
receives a message requesting a velocity v, within some time δ the robot attains
some velocity close to v. The semantics of software agents (e.g. the middle one
in the above figure) can be specified indirectly by providing “message handlers”
written as Coq functions. Because Coq is a pure functional language and has
no IO facilities, we provide a ROS shim which handles sending and receiving of
messages for such Coq programs. Given a received message as input, message
handlers compute messages that are supposed to be sent by the shim in response.
They can also request the shim to send some messages at a later time. For exam-
ple, to get a robot to turn by a right angle, one can send a message requesting
a positive angular velocity (say 1 rad/s) and send another message requesting
an angular velocity of 0 after time π

2 s. While reasoning about the behavior of
the system, we assume that the actual time a message is sent is not too different
from the requested time.

Clearly robotics programs need to compute with real numbers. In CoRN, real
numbers (e.g. π) are represented as Coq’s functional programs that can be used
to compute arbitrarily close rational (Q) approximations to the represented real
number. Most operations on such reals are exact, e.g. Field operations, trigono-
metric functions, integral, etc. Some operations such as equality test are unde-
cidable, hence only approximate. However, the error in such approximations can
be made arbitrarily small (see Sect. 4.2). We prove a parametric upper bound
on how far the robot will be from the position requested by the external agent.
The parameters are bounds on physical imperfections, above mentioned compu-
tational errors, variations in message-delivery timings, etc. Using our shim, we
ran our Coq program on an actual robot. We provide measurements over several
runs and videos of the system in action.

Section 2 describes how to specify a physical model in ROSCoq. Section 3
describes the semantics of events and message delivery. Section 4 describes the
semantics of agents. Section 5 describes some proof techniques for holistic rea-
soning about a CPS and the properties proven about our running example. It
ends with a description of our experiments. Finally, we discuss related work
and conclude. ROSCoq sources and more details are available at the companion
website [17].

2 Physics

One of the first steps in developing a CPS using ROSCoq is to accurately specify
its physical model. It describes how all of the relevant physical quantities in the
system evolve over time. In our running example, these include the position and
orientation of the robot and their derivatives. Using dependent types, one can

http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.abstract_algebra.html#Field

ROSCoq: Robots Powered by Constructive Reals 37

also include the constraints between the physical quantities, e.g. the constraint
that velocity is the derivative of position w.r.t. time. Other examples include
physical laws such as Newton’s laws of motion, laws of thermodynamics. We use
2 of the 3 versions of constructive reals implemented in CoRN. In our programs
which are supposed to be executed, we use the faster implementation (CR), while
we use the slower (IR) for reasoning. CoRN provides field and order isomorphisms
between these 2 versions. To avoid confusion, we use the notation R for both
versions. However, clicking at colored text often jumps to its definition, either
in this document or in external web pages.

Time is defined as non-negative reals, where 0 denotes the time when the
system starts. For each relevant physical quantity, the physical model determines
how it evolves over time. This can be represented as a member (say f) of the
function type Time → R. The intended meaning is that for time t, f t denotes
the value of the physical quantity at time t. However, physical processes are
usually continuous, at least at the scale where classical physics is applicable. For
example, a car does not suddenly disappear at some time and appear miles apart
at the exact same time. See [9] for a detailed discussion of the importance of
continuity in physics. So, we choose to represent evolution of physical quantities
as continuous functions. The type TContR is similar to the function type Time →
R, except that it additionally requires that its members be continuous functions.
We have proved that TContR is an instance of the Ring typeclass [20], where ring
operations on TContR are pointwise versions of the corresponding operations on
real numbers. Apart from the proofs of the ring laws, this instance also involves
proving that those ring operations result in continuous functions. As a result of
this proof, one can use notations like +, ∗ on members of TContR, and the ring
tactic of Coq can automate equational reasoning (about TContR expressions)
that follows just from ring laws.

Using records, which are just syntactic sugars for dependent pairs, one can
model multiple physical quantities and also the associated physical laws. The
record type below defines the physical model in our running example. It repre-
sents how the physical state of an iCreate robot evolves over time.

Record iCreate : Type := {
position : Cart2D TContR;
theta : TContR; linVel : TContR; omega : TContR;

derivRot : isDerivativeOf omega theta;
derivX : isDerivativeOf (linVel ∗ (FCos theta)) (X position);
derivY : isDerivativeOf (linVel ∗ (FSin theta)) (Y position);

init1: ({X position} 0) ≡ 0 ∧ ({Y position} 0) ≡ 0;
init2: ({theta} 0) ≡ 0 ∧ ({linVel} 0) ≡ 0 ∧ ({omega} 0) ≡ 0

}.

For any type, A, the type Cart2D A is isomorphic to the product type A ×
A. X and Y are the corresponding projection functions. The type Polar2D A is
similar, except that rad and θ are the projection functions. So, the first field
(position) of the record type (iCreate) above is essentially a pair of continuous

http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/CR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/IR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/IR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCoq.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/IR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/IR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.abstract_algebra.html#Ring
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#plus
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#mult
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
https://coq.inria.fr/refman/Reference-Manual027.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#isDerivativeOf
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#isDerivativeOf
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#mult
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FCos
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#X
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#isDerivativeOf
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#mult
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FSin
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Y
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#X
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Y
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad

38 A. Anand and R. Knepper

functions, modeling the evolution of X and Y coordinates over time, respectively.
The next line defines 3 fields which respectively model the orientation, linear
velocity and angular velocity. The types of remaining fields depend on one or
more of the first 4 fields. This dependence is used to capture constraints on the
first four fields. The last 2 fields specify the initial conditions. The 3 fields in
the middle characterize the derivatives of position and orientation of the robot.
The first of those (derivRot) is a constructive proof/evidence that omega is
the derivative of theta. The definition of the relation isDerivativeOf is based
on CoRN’s constructive notion of a derivative, which in turn is based on [4].
The next two are slightly more complicated and involve some trigonometry.
FCos denotes the pointwise cosine function of type TContR → TContR. So,
FCos theta is a function describing how the cosine of the robot’s orientation
(theta) evolves over time. Recall that here ∗ represents pointwise multiplication
of functions. derivX and derivY imply that the linear motion of the robot is
constrained to be along the instantaneous orientation of the robot (as defined
by theta).

Our definition of a CPS is parametrized by an arbitrary type which is sup-
posed to represent the physical model of the system. In the case of our running
example, that type is (iCreate) (defined above). In the future, we plan to con-
sider applications of our framework to systems of multiple robots. For a system
of 2 iCreate robots, one could use the type (iCreate) × (iCreate) to represent the
physical model. In Sect. 4, we will see that the semantics of hardware agents of
a CPS is specified partly in terms of the physical model of the CPS.

3 Events and Message Delivery

As mentioned in Sect. 1, CPSs such as ensembles of robots can be thought of as
distributed systems where agents might have sensing and/or actuation capabili-
ties. The Logic of Events (LoE) framework has already been successfully used to
reason about complicated distributed systems like fault-tolerant replicated data-
bases [19]. It is based on seminal work by Lamport and formalizes the notion of
message sequence diagrams which are often used in reasoning about the behavior
of distributed systems. A distributed system (also a CPS) can be thought of as
a collection of agents (components) that communicate via message passing. This
is true at several levels of abstraction. In a collection of robots collaborating
on a task (e.g. [5]), each robot can be considered as an agent. Moreover, when
one looks inside one of those robots, one sees another CPS where the agents
are components like software controllers, sensors and actuators. As mentioned
before, the Robot Operating System (ROS) [15] presents a unified interface to
robots where the subcomponents of even a single robot (e.g. sensors, actuators,
controller) are represented as agents (a.k.a. nodes in ROS) that communicate
with other agents using message passing. In a message sequence diagram such
as the one in Sect. 1, agents are usually represented as vertical lines where the
downward direction denotes passing of time. In ROSCoq, one specifies the col-
lection of agents by an arbitrary type (say Loc) with decidable equality.

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#isDerivativeOf
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FCos
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FCos
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#mult
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod

ROSCoq: Robots Powered by Constructive Reals 39

The next and perhaps most central concept in LoE is that of an event. In a
message sequence diagram, these are points in the vertical lines usually denoting
receipt or sending of messages by an agent. The slant arrows denote flight of
messages. We model events by defining an abstract type Event which has a
bunch of operations, such as:

eLoc : Event → Loc; eMesg : Event → Message;
causedBy : Event → Event → Prop; causalWf : well founded causedBy

For any event ev , eLoc ev denotes the agent associated with the event. For
receive-events, this is the agent who received the message. For send-events, this
is the agent who sent the message. eMesg ev is the associated Message. The
relation causedBy captures the causal ordering on events. causalWf formalizes
the assumption that causal order is well-founded [10]. It allows one to prove
properties by induction on causal order.

So far, our definition of an event is a straightforward translation (to Coq)
of the corresponding Nuprl definition [19]. For CPSs, we need to associate more
information with events. Perhaps the most important of those is a physical (as
opposed to logical) notion of time when events happen. For example, the software
agent needs to send appropriate messages to the hardware agent before the robot
collides with something. One needs to reason about the time needed for activities
like sensing, message delivery, computation to happen. So, we add the following
operation:

eTime : Event → QTime;
globalCausal : ∀ (e1 e2 : Event), causedBy e1 e2 → (eTime e1 < eTime e2)

For any event ev , eTime ev denotes the physical (Newtonian) time when it
happened. QTime is a type of non-negative rational numbers where 0 represents
the time when the system was started3. Note that this value of time is merely
used for reasoning about the behavior of the system. As we will see later, a
software controller cannot use it. This is because there is no way to know the
exact time when an event, e.g. receipt of a message happened. For that, one would
have to exactly synchronize clocks, which is impossible in general. One could
implement provably correct approximate time-synchronization in our framework
and then let the software controllers access an approximately correct value of
the time when an event happened.

3.1 Message Delivery

Our message delivery semantics formalizes the publish-subscribe pattern used in
ROS. The Coq definition of each agent includes a list of topics to which the agent
publishes and a list of topics to which it subscribes. In ROSCoq, one can specify
the collection of topics by an arbitrary type (sayTopic) with decidable equality. In
addition, one has to specify a function (say topicType) of type Topic → Type, that
specifies the payload type of each topic. The type of messages can then be defined
as follows:
3 Section 4.1 explains the difference between Time and QTime.

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#eLoc
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x'<' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCoq.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime

40 A. Anand and R. Knepper

Definition Message : Type := {tp : Topic × (topicType tp)} × Header .

A message is essentially a 3-tuple containing a topic (tp), a payload correspond-
ing to tp, and a header. Currently the header of a message only has one field
(delay) which can be used by software agents (Sect. 4.2) to request the shim to
send a message at a later time. For our running example, we use 2 topics:

Definition topicType (t : Topic)

: Type := match t with
| VELOCITY ⇒ Polar2D Q
| TARGETPOS ⇒ Cart2D Q
end.

The topic TARGETPOS is used by the
external agent (see Figure in Sect. 1) to send
the cartesian coordinates of the target posi-
tion (relative to the robot’s current position)
to the software agent. The topic VELOCITY
is used by the software agent to send the lin-
ear and angular velocity commands to the

robot hardware agent. One also provides a ternary relation to specify accept-
able message delivery times between any two locations. Finally, we assume that
message delivery is ordered.

4 Semantics of Agents

For verification of distributed systems [19], one assumes that each agent is run-
ning a functional reactive program. These programs indirectly specify a prop-
erty about the sequence of events at an agent, namely it should be one that
the program could generate. In a CPS, there usually are agents which represent
hardware components (along with their ROS drivers) like sensors and actuators.
Often, informal specifications about their behavior is available, not their inter-
nal design or firmware. Hence, one needs to axiomatically specify the observable
behavior (sequence of events) of such devices. Moreover, these hardware devices
often depend on (e.g. sensors), or influence (e.g. actuators) the evolution of some
physical quantities. A specification of their behavior needs to talk about how
the associated physical quantities evolve over time. Hence, an appropriate way
of specifying the behavior of agents is to specify them as a relation between the
physical model (how the physical quantities evolve over time) and the sequence
of messages associated with the agent. As we will see below, for hardware agents
one can directly specify that relation. For software agents, this relation would
only have a vacuous dependence on the physical model and can be specified
indirectly as a Coq program, which is often more succinct (Sect. 4.2).

4.1 Hardware Agents

For our running example, the physical model is specified by the type (iCreate)
(Sect. 2). The type N → (option Event) can be used to represent a possibly finite
sequence of events. So, the specification of the behavior of the hardware agent is
a relation (HwAgent) of the following type: (iCreate) → (N → option Event) →
Prop.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.roscore.html#Header
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.roscore.html#delay
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Topic
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#TARGETPOS
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#TARGETPOS
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/library/Coq.Init.Datatypes.html#option

ROSCoq: Robots Powered by Constructive Reals 41

Time

linVel ic

tm tr

a εv a b
We will first explain it pictorially

and then show the actual Coq defini-
tion. iCreate is primarily an actuation
device and this relation asserts how
the angular and linear velocity (see
omega and linVel in the definition of
(iCreate) above) of the robot changes
in response to the received messages.
It is quite close to informal manu-
als4. The iCreate hardware driver only
receives messages on the topic VELOCITY. It reacts to such messages by adjust-
ing the speed of the two motors (one on each side) so the robot’s linear and
angular velocities are close to the requested values. The figure above illustrates
how the linear velocity of an iCreate is supposed to change in response to a mes-
sage requesting a linear velocity a and angular velocity b. tm denotes the time
when the message was received. HwAgent asserts that there must exist a time
tr by which the linear velocity of the robot becomes close to a. The parameter
reacTime is an upper bound on tr - tm. εv and εω are parameters modeling
the actuation accuracy. After time tr, the linear velocity of the robot remains
at least εv a b close to the a. Similarly (not shown in the figure) the angular
velocity remains at least εω a b close to b. The only assumption we make about
the ε is that εv 0 0 and εω 0 0 are 0, i.e. the robot complies exactly (after
a certain amount of reaction time) when asked to both stop turning and stop
moving forward. In particular, we don’t assume that εω a 0 is 0. When the robot
is asked to move forward at a m/s and not turn at all, it may actually turn a
bit. For a robot to move in a perfect straight line, one will likely have to make
sure that the size of the two wheels are exactly the same, the two motors are
getting exactly the same amount of current and so on. A consequence of our
realistic assumptions is that some integrals become more complicated to reason
about. For example, unlike in the case for perfect linear motion, the angle in the
derivative of position cannot be treated as a constant. Here is the definition of
HwAgent (mentioned above), which captures the above pictorial intuition:

Definition HwAgent (ic: iCreate) (evs : nat → option Event): Prop :=
onlyRecvEvts evs ∧ ∀ t : QTime,

let (lastCmd , tm) := latestVelPayloadAndTime evs t in
let a : Q := rad (lastCmd) in
let b : Q := θ (lastCmd) in ∃ tr : QTime, (tm ≤ tr ≤ tm + reacTime)

∧ (∀ t’ : QTime, (tm ≤ t’ ≤ tr)
→ (Min ({linVel ic} tm) (a - εv a b)

≤ {linVel ic} t’ ≤ Max ({linVel ic} tm) (a+ εv a b)))
∧ (∀ t’ : QTime, (tr ≤ t’ ≤ t) → |{linVel ic} t’ - a | ≤ εv a b)

The function latestVelPayloadAndTime searches the sequence of events evs
to find the latest message of VELOCITY topic received before time t . We assume
4 http://pharos.ece.utexas.edu/wiki/index.php/Writing A Simple Node that

Moves the iRobot Create Robot\#Talking on Topic cmd vel.

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://coq.inria.fr/library/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/library/Coq.Init.Datatypes.html#option
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#onlyRecvEvts
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x'..' x',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x'..' x',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#latestVelPayloadAndTime
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x83' x'..' x',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x83' x'..' x',' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x'..' x',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x'..' x',' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x86x92' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/CoRN.reals.Max_AbsIR.html#Min
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/CoRN.reals.Max_AbsIR.html#Max
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x'..' x',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x'..' x',' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x86x92' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x'xE2x88xA7' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#latestVelPayloadAndTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://pharos.ece.utexas.edu/wiki/index.php/Writing_A_Simple_Node_that_Moves_the_iRobot_Create_Robot#Talking_on_Topic_cmd_vel
http://pharos.ece.utexas.edu/wiki/index.php/Writing_A_Simple_Node_that_Moves_the_iRobot_Create_Robot#Talking_on_Topic_cmd_vel

42 A. Anand and R. Knepper

that there is a positive lower-bound on the time-gap between any two events
at an agent. Hence, one only needs to search a finite prefix of the sequence evs
to find that event. It returns the payload of that message and the time the
corresponding event occurred (e.g. tm in the figure). If there is no such message,
it returns the default payload with 0 as the velocities and 0 as the event time.
The last conjunct above captures the part in the above figure after time tr. The
2nd last conjunct captures the part before tr where the motors are transitioning
to the new velocity. There are 2 more conjuncts not shown above. These express
similar properties about angular velocity (omega ic), b and εω a b.

Because the semantics of a hardware agent is specified as a relation between
the physical model and the sequence of events at the agent, it is equally easy to
express the specification of sensing devices where typically the physical model
determines the sequence of events. [17] contains a specification of a proximity
sensor. Although the external agent in our running example is not exactly a
hardware agent, we specify its behavior axiomatically. We assume that there
is only one event in its sequence, and that event is a send event on the topic
TARGETPOS.

We conclude this subsection with an explanation of some differences between
Time and QTime. The former represents non-negative real numbers, while the
latter represents non-negative rational numbers. Clearly, there is an injection
from QTime to Time. We have declared this injection as an implicit coercion,
so one can use a QTime where a Time is expected. Because CoRN’s theory of
differential calculus is defined for functions over real numbers, we can directly
use them for functions over real-valued time (i.e. TContR). However, QTime
is often easier to use because comparison relations (equality, less than etc.) on
rationals are decidable, unlike on real numbers. For example, if the time of
events (eTime) were represented by Time, one could not implement the function
latestVelPayloadAndTime mentioned above. Because members of TContR are
continuous functions over real-valued time, they are totally defined merely by
their value on rational numbers, i.e. QTime. For example, the specification above
only bounds velocities of the robot at rational values of time. However, it is easy
to derive the same bound for all other values of time.

4.2 Software Agents

As mentioned before in this section, the behavior of software agents can be
specified indirectly by just specifying the Coq program that is being run by
the agent. Following [23], these programs are message handlers which can also
maintain some state of an arbitrary type. A software agent which maintains
state of type S can be specified as a Coq function of the following type: S →
Message → (S × list Message). Given the current state and a received message, a
message handler computes the next state and a list of messages that are supposed
to be sent in response. We provide a ROSJava5 shim which handles sending and
receiving of messages for the above pure functions. It communicates with the Coq

5 http://wiki.ros.org/rosjava.

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#TARGETPOS
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCoq.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCoq.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCoq.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCoq.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#latestVelPayloadAndTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
http://wiki.ros.org/rosjava

ROSCoq: Robots Powered by Constructive Reals 43

toplevel (coqtop) to invoke message handlers. It also converts received messages
to Coq format and converts the messages to be sent to ROSJava format. However,
the state is entirely maintained in Coq, i.e. never converted to Java. We define
SwSemantics, a specification of how the shim is supposed to respond to received
messages. For a message handler, it defines the behavior of the corresponding
software (Sw) agent, essentially as a property of the sequence of (send/receive)
events at the agent. As mentioned before, the semantic relation of a software
agent has vacuous dependence on the physical model. A software agent does not
directly depend on or influence physical quantities of a CPS. It does so indirectly
by communicating with hardware agents like the one described in the previous
subsection.

The definition of our shim (in Java) and SwSemantics (in Coq) can be found
at [17]. Here, we explain some key aspects. SwSemantics asserts that whenever a
message m is received (at a receive event), the message handler (in Coq) is used
to compute the list of messages (say l) that are supposed to be sent. There will
be |l | send events which correspond to sending these messages one by one. Let si

be the time the ith of these send events happened. Recall from Sect. 3.1 that the
header of messages contain a delay field. Let di be the value of the delay field of
the ith message in the list l . Let t be the time the computation of l finished. The
shim ensures that s0 is close to t + d0. It also ensures that ∀ appropriate i, si+1

is close to di+1 + si. The current state is updated with the new state computed
along with l . SwSemantics also asserts that there are no other send events; each
send event must be associated to a receive event in the manner explained above.

In our running example, the software agent receives a target position for
the robot on the topic TARGETPOS and sends velocity-control messages to the
motor on the topic VELOCITY. Recall from Sect. 3.1 that the payload type for
the former and latter topics are Cart2D Q and Polar2D Q respectively. So the
software agent reacts to data of the former type and produces data of the latter
type. Its program can be represented as the following pure function:

Definition robotPureProgam (target : Cart2D Q) : list (Q × Polar2D Q) :=
let polarTarget : Polar2D R := Cart2Polar target in
let rotDuration : R := | θ polarTarget | / rotspeed in
let translDuration : R := (rad polarTarget) / speed in
[(0,{| rad:= 0 ; θ := (polarθSign target) * rotspeed |})

; (tapprox rotDuration delRes delEps , {| rad := 0 ; θ := 0 |})
; (delay , {| rad := speed ; θ := 0 |})
; (tapprox translDuration delRes delEps , {| rad := 0 ; θ := 0 |})].

For any type A and a and b of type A, {| X := a ; Y := b |} denotes a
member of type Cart2D A. {| rad := a ; θ := b |} denotes a member of type
Polar2D A. The program produces a list of 4 pairs, each corresponding to one
of the 4 messages that the software agent will send to the hardware agent (see
Figure in Sect. 1). One can compose this program with ROSCoq utility functions
to lift it to a message handler. The first component of each pair denotes the delay
field of the message’s header. The second component corresponds to the payload
of the message. Recall that a payload {| rad := a ; θ := b |} represents a request

https://coq.inria.fr/refman/Reference-Manual016.html#sec567
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#SwSemantics
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#SwSemantics
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#SwSemantics
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#SwSemantics
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#TARGETPOS
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/library/Coq.QArith.QArith_base
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://coq.inria.fr/library/Coq.QArith.QArith_base
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://coq.inria.fr/library/Coq.Init.Datatypes.html#list
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#Cart2Polar
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x';''..'';' x']'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#polarTheta
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x';''..'';' x']'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CRMisc.IRLemmasAsCR.html#tapprox
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x';''..'';' x']'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x';''..'';' x']'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CRMisc.IRLemmasAsCR.html#tapprox
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x',' x',''..'',' x')'
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x';''..'';' x']'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#X
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Y
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad

44 A. Anand and R. Knepper

to set the linear velocity to a and the angular velocity to b. In the above program,
polarTarget represents the result of converting the input to polar coordinates.
Note that even though the coordinates in target are rational numbers, those in
polarTarget are real numbers. For example, converting {| X := 1 ; Y := 1 |}
corresponds to irrational polar coordinates: {| rad :=

√
2 ; θ := π

4 |}.
The program first instructs the robot to turn so that its orientation is close

to θ polarTarget , i.e., in the direction of target . speed , rotspeed , delEps, delRes,
delay are parameters in the program. These are arbitrary positive rationals. The
robot will turn at speed rotspeed , but it can turn in either direction : clockwise
or counter-clockwise, depending on the sign of θ polarTarget . However, the prob-
lem of finding the sign of a real number is undecidable in general. Fortunately,
because θ polarTarget was computed from rational coordinates (target), one can
look at target and indirectly determine what the sign of θ polarTarget would
be. We have proved that polarθSign does exactly that. polarθSign target will
either be +1 or −1 (in the first message).

The 2nd message which requests the robot to stop (turning) should ideally
be sent after a delay of rotDuration, which is defined above as | θ polarTarget |
/ rotspeed . It is a real number because θ polarTarget is so. However our Java
shim currently uses java.util.Timer6 and only accepts delay requests of integral
number of milliseconds7. It might be possible to use a better hardware/shim to
accept delay requests of integral number of microseconds or nanoseconds. So we
use an arbitrary parameter delRes which is a positive integer such that 1

delRes
represents the resolution of delay provided by the shim. For our current shim, one
will instantiate delRes to 1000. So, we should approximate rotDuration by the
closest rational number whose denominator is delRes. In classical mathematics,
one can prove that there “exists” a rational number that is at most 1

2∗delRes away
from rotDuration. However, finding such a rational number is an undecidable
problem in general. Fortunately, one can arbitrarily minimize the suboptimality
in this step. We have proved that for any positive rational number delEps,
tapprox rotDuration delRes delEps is a rational number whose denominator is
delEps and is at most 1+2∗delEps

2∗delRes (denoted as R2QPrec) away from rotDuration.
tapprox was easy to define because CoRN’s real numbers of the type CR are

functional programs which approximate the represented real number to arbitrar-
ily close rationals. Note however that cartesian to polar conversion was exact.
Unlike with floating points, most operations on real numbers are exact : field
operations, trigonometric functions, integrals, etc. One does not have to worry
about errors at each step of computation. Instead, one can directly specify the
desired accuracy for the final discrete result. So we think constructive reals are
ideal for robotic programs written with the intent of rigorous verification.

The 3rd message sets linear velocity to speed . The parameter delay is the
delay value for this message. We assume delay is large enough (w.r.t other para-
meters, e.g. reacTime) to ensure that motors have fully stopped in response to
the previous message by the time this message arrives. The final message asks
the robot to stop. Again it is sent after a nearly right amount of delay.

6 http://docs.oracle.com/javase/7/docs/api/java/util/Timer.html.
7 Also, recall that the shim is only required to approximately respect these requests.

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#X
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Y
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#polarTheta
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#polarTheta
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CRMisc.IRLemmasAsCR.html#tapprox
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#R2QPrec
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CRMisc.IRLemmasAsCR.html#tapprox
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/CR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.delayLargeEnough
http://docs.oracle.com/javase/7/docs/api/java/util/Timer.html

ROSCoq: Robots Powered by Constructive Reals 45

5 Reasoning About the System

After all the agents of a CPS have been specified, one can reason about how the
overall system will behave. For local reasoning about an agent’s behavior, one
can use natural induction on its sequence of events. For global behavior, one can
use induction on the causal order of messages. In our running example, we are
interested in how close the robot will be to the target position. In the previous
section we already saw that there might be some error in approximating real
numbers to certain rational values of time which the shim can deal with. How-
ever, that was just one source among myriad other sources of errors : messages
cannot be delivered at exact times, actuation devices are not perfect (infinitely
precise), and so on. Our goal is to derive parametric bounds on how far the
robot can be from the ideal target position, in terms of bounds on the above
error sources. Below, we consider an arbitrary run of the system. The external
agent asks the robot to go to some position target of type Cart2D Q. ic of type
(iCreate) denotes how the physical quantities evolve in this run.

The first step is to prove that the sequence of events at each agent looks
exactly like the figure in Sect. 1. In particular, we prove that there are exactly
4 events at the hardware agent and those events correspond to the four mes-
sages (in order) computed by the program described in the previous section.
These proofs mostly involve using the properties about topic-subscriptions and
guarantees provided by the messaging layer, such as guaranteed and ordered
delivery of messages. We use mt0, . . ., mt3 to refer respectively to the time of
occurrences of those 4 events. The remaining proofs mostly involve using the
specification of motor to characterize the position, orientation and velocities of
the robot at each of those times. The specification of motor provides us bounds
on velocities. We then use CoRN’s lemmas on differential calculus, such as the
FTC to characterize the position and orientation of the robots.

Because we assumed that εv 0 0 and εω 0 0 are both 0 (Sect. 4.1), and
initial velocities (linear and angular) are 0, the velocities will remain exactly 0
till mt0. So the position and orientation of the robot at mt0 is exactly the same
as that in the initial state (initial conditions are specified in the definition of
iCreate). At mt0, the robot receives a message requesting a non-zero angular
velocity (say w). Recall that w is either rotspeed or - rotspeed . Between mt0 and
mt1, the robot turns towards the target position. At mt1, it receives a message
to stop, however it might take some time to totally stop. At mt2, it receives
a message to start moving forward. Ideally, it should be oriented towards the
target position by mt2. However, that might not be the case because of several
sources of imperfections. The following lemma characterizes how imperfect the
orientation of the robot can be at mt2.

Definition idealθ : R := θ (Cart2Polar target).
Definition θErrTurn : R := rotspeed ∗ (timeErr + 2 ∗ reacTime)

+ (εω 0 w) ∗ (timeErr + reacTime) +((εω 0 w) / rotspeed) ∗ | idealθ | .
Lemma ThetaAtEV2 : | {theta ic} mt2 - idealθ | ≤ θErrTurn.

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.target
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt1
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt1
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#Cart2Polar
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.target
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#timeErr
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '+' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '+' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#timeErr
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '+' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '/' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '/' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '/' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR

46 A. Anand and R. Knepper

Because Sin and Cos are periodic, there are several ways to define θ (Cart2Polar
target). Our choice enabled us to prove that it is in the range [−π, π]. It minimizes
the turning that the robot has to do (vs., e.g. [0, 2π]). It also enables us to replace
| idealθ | by π in the above upper bound. The three terms in the definition
θErrTurn correspond to errors that are respectively proportional, independent
and inversely proportional to rotspeed . Recall (Sect. 4.1) that reacTime is the
upper bound on the amount of time the robot takes to attain the requested
velocity. timeErr has been proved to be an upper bound on the error of the
value mt1 - mt0 w.r.t. its ideal value. It is an addition of terms bounding the
inaccuracy of sending times, variance of message delivery times, R2QPrec which
bounds the inaccuracy introduced when we approximated the ideal real-valued
delay by a rational value (Sect. 4.2). A higher value of rotspeed means that the
error in the duration of turn will lead to more errors in the final angle. A lower
value of rotspeed increases the duration for which the robot has to turn, thus
accumulating more errors because of imperfect actuation of angular velocity (as
modeled by εw 0 w). However, if εw 0 w is directly proportional to the absolute
value of w, which is rotspeed , the division in the last term will cancel out. In
such a case, a lower value of rotspeed will always result in a lower upper bound
on turn error.

X

Y

Y’

X’

idealθ

From mt2 to mt3, the robot will move towards the
target. To analyse this motion, we find it convenient
to rotate the axis so that the new X axis (X’) points
towards the target position (shown as a circle in the
RHS figure). We characterize the derivative of the posi-
tion of the robot in the rotated coordinate frame:

Definition Y’Deriv : TContR :=
(linVel ic) ∗ (FSin (theta ic - FConst idealθ)).

Definition X’Deriv := (linVel ic) ∗ (FCos (theta ic - FConst idealθ)).

The advantage of rotating axes is that unlike theta ic which could be any value
(depending on target), (theta ic - FConst idealθ) is a small angle: ∀ t , mt2 ≤
t ≤ mt3 → |{theta ic} t - idealθ| ≤ θErrTrans + θErrTurn.

As explained above, θErrTurn is a bound on the error (w.r.t. idealθ), at mt2.
Even though the robot is supposed to move straight towards the goal from time
mt2 to mt3, it might turn a little bit due to imperfect actuation (as discussed in
Sect. 4.1). We proved that θErrTrans is an upper bound on that. θErrTrans
is proportional to mt3 - mt2, which in turn is proportional to the distance
of the target position from the origin. For the remaining proofs, we assume
θErrTrans + θErrTurn ≤ π

2 , which is a reasonable assumption unless the
target position is too far away or the actuation is very imprecise. In other words,
we are assuming that there cannot be more than a difference of 90 degrees
between the direction the robot thinks it is going and the actual direction. For
robots that are supposed to move for prolonged periods of time, one usually
needs a localization mechanism such as a GPS and/or a compass. In the future,
we plan to consider such closed-loop setups by adding another hardware agent

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#Cart2Polar
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.target
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#timeErr
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt1
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#R2QPrec
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FSin
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FConst
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FCos
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FConst
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FConst
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB

ROSCoq: Robots Powered by Constructive Reals 47

in our CPS which will periodically send much more accurate estimates of the
robot’s position and orientation as messages to the software agent.

Using the above assumption, it is easy to bound the derivatives of the robot’s
position in the rotated coordinate frame. For example, between times mt2 and
mt3, the value of (FSin (theta ic - FConst idealθ)) will be bounded above by
the constant Sin (θErrTrans + θErrTurn). We prove that at mt3, the robot
will be inside a rectangle which is aligned to the rotated axes. In the above
figure, such a rectangle is shown in gray. Recall that mt3 is the final event in the
system, where the robot receives a message requesting it to stop. The following
defines the upper bound we proved on the distance of the X’ aligned sides of the
rectangle from the X’ axis. In other words, it is a bound on the Y’ coordinate
of the robot in the rotated coordinate frame. Ideally, this value should be zero.

Definition ErrY’: R := (εv 0 w) * (reacTime + Ev01TimeGapUB)
+ (Sin (θErrTrans + θErrTurn)) * (| target | + speed*timeErr

+ Ev23TimeGapUB * (εv speed 0)) .

The first line of the above definition corresponds to the error accrued in the
position while turning (between mt0 and a little after mt1 when turning totally
stops). The second and third lines denotes the error accrued after mt2 when the
robot moves towards the target position. Similarly, we proved bounds on the
distance of the Y’ aligned sides from the Y’ axis (see [17]).

We also considered the case of a hypothetical train traveling back and forth
repeatedly between two stations. This CPS has 3 hardware agents : a proximity
sensor at each end of the train and a motor at the base for 1D motion. The
software controller uses messages generated by the proximity sensor to reverse
the direction of motion when it comes close to an endpoint. We proved that it
will never collide with an endpoint [17]. We haven’t physically implemented it.

5.1 Experiments

Target Actual Video link
X Y X Y

−1 1 −1.06 0.94 vid1
−1 −1 −1.02 −0.99 vid2

1 1 1.05 0.94 vid3

Using our shim, we were able to use the
Coq program in Sect. 4.2 to actually drive
an iCreate robot to the position requested
by a human via a GUI. While a detailed
estimation of parameters in the model of
hardware, message delivery, etc. is beyond
the scope of this paper, we did some
experiments to make sure that the robot is in the right ball park. The table
above shows some measurements (in meters) from the experiments.

6 Related Work

Hybrid automata [2] is one of the earliest formalisms to simultaneously model
and reason about both the cyber (usually discrete dynamics) and physical (usu-
ally continuous dynamics) components of a CPS. Several tools have been devel-
oped for approximate reachability analysis, especially for certain sub-classes of

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FSin
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FConst
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/CoRN.transc.PowerSeries.html#Sin
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev01TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#NormSpace_instance_Cart2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.target
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#NormSpace_instance_Cart2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#timeErr
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt1
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/vid1.html
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/vid2.html
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/vid3.html

48 A. Anand and R. Knepper

hybrid automata (see [1] for a survey). However, hybrid automata provide little
structure to implement complicated CPSs in a modular way. Also for CPSs with
several communicating agents, it is rather non-trivial to come up with a hybrid
automata model which accounts for all possible interactions in such distributed
systems. In ROSCoq, we independently specify the agents of a distributed CPS
and explicitly reason about all possible interactions.

The KeYmaera [14] tool takes a step towards more structural descriptions
of CPSs. It has a non-deterministic imperative language to specify hybrid pro-
grams. It also comes with a dynamic-logic style proof theory for reasoning about
such programs [13]. Unlike ROSCoq, the semantics of KeYmaera’s program-
ming language pretends that one can exactly compare two real numbers, which
is impossible in general. When one uses floating point numbers to implement
such programs, the numerical errors can add up and cause the system to violate
the formally proven properties [11]. In contrast, the use of constructive reals
forces us to explicitly account for inexactness of certain operations (like com-
parison) on real numbers and hence there is one less potential cause of runtime
errors. In [21], they consider 2D dynamics similar to ours. They don’t consider
the possibility of the robot turning a little when asked to go straight. Finally,
the semantics of their system assumes that all the robots are executing a syn-
chronized control loop. Our asynchronous message passing based model is more
realistic for distributed robotic systems.

Unlike the above tools, our focus is on correct-by-construction, i.e. we intend
to prove properties of the actual software controller and not a simplified model of
it. Some tools [16,18] automatically synthesize robot-controllers from high-level
LTL specifications. However, these fully automatic approaches do not yet scale
up to complicated robotic systems. Also, the specifications of these controllers
are at a very high level (they discretize the continuous space) and do not yet
account for imperfections in sensing, actuation, message delivery, etc.

Unlike the above formalisms, in ROSCoq one uses Coq’s rich programming
language to specify their hybrid programs and its powerful higher order logic to
succinctly express the desirable properties. Coq’s dependent types allow one to
reuse code and enforce modularity by building interfaces that seamlessly specify
not only the supported operations but also the logical properties of the opera-
tions. To trust our proofs, one only needs to trust Coq’s type checker. Typical
reasoning in KeYmaera relies on quantifier elimination procedures implemented
using Mathematica, a huge tool with several known inconsistencies [6]. Our
framework did not require adding any axiom to Coq’s core theory. This is mainly
because CoRN’s real numbers are actual computable functions of Coq, unlike the
axiomatic theory of reals in Coq’s standard library. Interactive theorem provers
have been previously used to verify certain aspects of hybrid systems [7,12]. Like
ROSCoq, [7] uses constructive reals and accounts for numerical errors. However,
it only supports reasoning about hybrid systems expressed as hybrid automata.
[12] is primarily concerned about checking absence of collisions in completely
specified flight trajectories.

ROSCoq: Robots Powered by Constructive Reals 49

7 Conclusion and Future Work

We presented a Coq framework for developing certified robotic systems. It extends
the LoE framework to enable holistic reasoning about both the cyber and phys-
ical aspects of such systems. We showed that the constructive theory of analysis
originally developed by Bishop and later made efficient in the CoRN project
is powerful enough for reasoning about physical aspects of practical systems.
Constructivity is a significant advantage here because the real numbers in this
theory have a well defined computational meaning, which we exploit in our robot
programs. Our reasoning is very detailed as it considers physical imperfections
and computational imperfections while computing with real numbers.

We plan to use our framework to certify more complicated systems involving
collaboration between several robots [5]. Also, we plan to develop tactics to
automate as much of the reasoning as possible. We thank Jean-Baptiste Jeannin,
Mark Bickford, Vincent Rahli, David Bindel and Gunjan Aggarwal for helpful
discussions, Bas Spitters and Robbert Krebbers for help with CoRN, and Liran
Gazit for providing the robot used in the experiments.

References

1. Alur, R.: Formal verification of hybrid systems. In: EMSOFT, pp. 273–278. IEEE
(2011)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1993. LNCS, vol.
736, pp. 209–229. Springer, Heidelberg (1993)

3. Bickford, M., Constable, R.L., Eaton, R., Guaspari, D., Rahli V.: Introduction to
EventML (2012). www.nuprl.org/software/eventml/IntroductionToEventML.pdf

4. Bishop, E., Bridges, D.: Constructive Analysis, p. 490. Springer Science and Busi-
ness Media, New york (1985)

5. Dogar, M., Knepper, R.A., Spielberg, A., Choi, C., Christensen, H.I., Rus, D.:
Towards coordinated precision assembly with robot teams. In: ISER (2014)

6. Duráan, A.J., Péerez, M., Varona, J.L.: the misfortunes of a trio of mathematicians
using computer algebra systems. Can we trust in them? In: AMS Notices 61.10, p.
1249, November 1 2014

7. Geuvers, H., Koprowski, A., Synek, D., van der Weegen, E.: Automated machine-
checked hybrid system safety proofs. In: Kaufmann, M., Paulson, L.C. (eds.) ITP
2010. LNCS, vol. 6172, pp. 259–274. Springer, Heidelberg (2010)

8. Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq.
In: LMCS 9.1, February 14 2013

9. Lamport, L.: Buridan’s principle. In: Foundations of Physics 42.8, pp. 1056–1066,
August 1 2012

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

11. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-
physical system models. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 199–214. Springer, Heidelberg (2014)

www.nuprl.org/software/eventml/IntroductionToEventML.pdf

50 A. Anand and R. Knepper

12. Narkawicz, A., Munoz, C.A.: Formal verification of con ict detection algorithms
for arbitrary trajectories. In: Reliable Computing, this issue (2012)

13. Platzer, A.: Logics of dynamical systems. In: LICS 2012, pp. 13–24 (2012)
14. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems

(system description). In: AR, pp. 171–178. Springer (2008)
15. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,

Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on
Open Source Software. vol. 3, p. 5 (2009)

16. Raman, V. Kress-Gazit, H.: Synthesis for multi-robot controllers with inter- leaved
motion. In: ICRA, pp. 4316–4321, May 2014

17. ROSCoq online reference. http://www.cs.cornell.edu/∼aa755/ROSCoq
18. Sarid, S., Xu, B., Kress-Gazit, H.: Guaranteeing high-level behaviors while explor-

ing partially known maps. In: RSS, p. 377, Sydney July 2012
19. Schiper, N., Rahli, V., Renesse, R.V., Bickford, M., Constable, R.L.: Developing

correctly replicated databases using formal tools. In: DSN, pp. 395–406. IEEE
(2014)

20. Spitters, B., Van Der Weegen, E.: Type classes for mathematics in type theory.
MSCS 21(4), 795–825 (2011)

21. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for
autonomous robotic ground vehicles. In: RSS (2013)

22. Talcott, C.: Cyber-physical systems and events. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Soft-Ware Intensive Systems. LNCS, vol. 5380,
pp. 101–115. Springer, Heidelberg (2008)

23. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D.,
Anderson, T.: Verdi: a framework for implementing and formally verifying dis-
tributed systems. In: PLDI, ACM (2015)

http://www.cs.cornell.edu/~aa755/ROSCoq

Asynchronous Processing of Coq Documents:
From the Kernel up to the User Interface

Bruno Barras, Carst Tankink, and Enrico Tassi(B)

Inria, Paris, France
{bruno.barras,carst.tankink,enrico.tassi}@inria.fr

Abstract. The work described in this paper improves the reactivity of
the Coq system by completely redesigning the way it processes a formal
document. By subdividing such work into independent tasks the system
can give precedence to the ones of immediate interest for the user and
postpone the others. On the user side, a modern interface based on the
PIDE middleware aggregates and presents in a consistent way the output
of the prover. Finally postponed tasks are processed exploiting modern,
parallel, hardware to offer better scalability.

1 Introduction

In recent years Interactive Theorem Provers (ITPs) have been successfully used
to give an ultimate degree of reliability to both complex software systems, like
the L4 micro kernel [7] and the CompCert C compiler [8], and mathematical
theorems, like the Odd Order Theorem [5]. These large formalization projects
have pushed interactive provers to their limits, making their deficiencies appar-
ent. The one we deal with in this work is reactivity : how long it takes for the
system to react to a user change and give her feedback on her point of interest.
For example if one takes the full proof of the Odd Order Theorem, makes a
change in the first file and asks the Coq prover for any kind of feedback on the
last file she has to wait approximately two hours before receiving any feedback.

To find a solution to this problem it is important to understand how formal
documents are edited by the user and checked by the prover. Historically ITPs
have come with a simple text based Read Eval Print Loop (REPL) interface: the
user inputs a command, the system runs it and prints a report. It is up to the
user to stock the right sequence of commands, called script, in a file. The natural
evolution of REPL user interfaces adds a very basic form of script management
on top of a text editor: the user writes his commands inside a text buffer and tells
the User Interface (UI) to send them one by one to the same REPL interface.
This design is so cheap, in terms of coding work required on the prover side,
and so generic that its best incarnation, Proof General [2], has served as the
reference UI for many provers, Coq included, for over a decade.

The simplicity of REPL comes at a price: commands must be executed in
a linear way, one after the other. For example the prover must tell the UI if

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 51–66, 2015.
DOI: 10.1007/978-3-319-22102-1 4

52 B. Barras et al.

a command fails or succeeds before the following command can be sent to the
system. Under such constraint to achieve better reactivity one needs to speed
up the execution of each and every command composing the formal document.
Today one would probably do that by taking advantage of modern, parallel
hardware. Unfortunately it is very hard to take an existing system coded in
a imperative style and parallelize its code at the fine grained level of single
commands. Even more if the programming language it is written in does not
provide light weight execution threads. Both conditions apply to Coq.

If we drop the constraint imposed by the REPL, a different, complementary,
way to achieve better reactivity becomes an option: process the formal document
out-of-order,1 giving precedence to the parts the user is really interested in and
postpone the others. In this view, even if commands do not execute faster, the
system needs to execute fewer of them in order to give feedback to the user. In
addition to that, when the parts the document is split in happen to be indepen-
dent, the system can even process them in parallel.

Three ingredients are crucial to process a formal document out-of-order.
First, the UI must not impose to the prover to run commands linearly. A solu-

tion to this problem has been studied by Wenzel in [13] for the Isabelle system.
His approach consists in replacing the REPL with an asynchronous interaction
loop: each command is marked with a unique identifier and each report gener-
ated by the prover carries the identifier of the command to which it applies. The
user interface sends the whole document to the prover and uses these unique
identifiers to present the prover outputs coherently to the user. The asynchro-
nous interaction loop developed by Wenzel is part of a generic middleware called
PIDE (for Prover IDE) that we extend with a Coq specific back end.

Second, the prover must be able to perform a static analysis of the document
in order to organize it into coarse grained tasks and take scheduling decisions
driven by the user’s point of interest. Typically a task is composed of many
consecutive commands. In the case of Coq a task corresponds to the sequence
of tactics, proof commands, that builds an entire proof. In other words the text
between the Proof and Qed keywords.

Third, the system must feature an execution model that allows the reordering
of tasks. In particular we model tasks as pure computations and we analyze the
role their output plays in the checking of the document. Finally we implement
the machinery required in order to execute them in parallel by using the coarse
grained concurrency provided by operating system processes.

In this work we completely redesigned from the ground up the way Coq
processes a formal document in order to obtain the three ingredients above. The
result is a more reactive system that also performs better at checking documents
in batch mode. Benchmarks show that the obtained system is ten times more
reactive when processing the full proof of the Odd Order Theorem and that it
scales better when used on parallel hardware. In particular fully checking such
proof on a twelve core machine is now four times faster than before. Finally,
1 In analogy with the “out-of-order execution” paradigm used in most high-

performance microprocessors.

Asynchronous Processing of Coq Documents 53

by plugging Coq in the PIDE middleware we get a modern user interface based
on the jEdit editor that follows the “spell checker paradigm” made popular by
tools like Eclipse or Visual Studio: the user freely edits the document and the
prover constantly annotates it with its reports, like underlining in red prob-
lematic sentences. The work of Wenzel [11–14] on the Isabelle system has laid
the foundations for our design, and has been a great inspiration for this work.
The design and implementation work spanned over three years and the results
are part of version 8.5 of the Coq system. All authors were supported by the
Paral-ITP ANR-11-INSE-001 project.

The paper is organized as follows. Section 2 describes the main data structure
used by the prover in order to statically analyze the document and represent the
resulting tasks. Section 3 describes how asynchronous, parallel, computations
are modeled in the logical kernel of the system and how they are implemented
in the OCaml programming language. Section 4 describes how the document is
represented on the UI side, how data is aggregated and presented to the user.
Section 5 presents a reactivity benchmark of the redesigned system on the full
proof of the Odd Order Theorem. Section 6 concludes.

2 Processing the Formal Document Out-of-Order

Unlike REPL in the asynchronously interaction model promoted by PIDE [13]
the prover is made aware of the whole document and it is expected to process it
giving precedence to the portion of the text the user is looking at. To do so the
system must identify the parts of the document that are not relevant to the user
and postpone their processing. The most favorable case is when large portions
of the document are completely independent from each other, and hence one
has complete freedom on the order in which they must be processed. In the
specific case of Coq, opaque proofs have this property. Opaque proofs are the
part of the document where the user builds a proof evidence (a proof term in
Coq’s terminology) by writing a sequence of tactics and that ends with the Qed
keyword (lines four to seven in Fig. 1). The generated proof term is said to be
opaque because it is verified by the kernel of the system and stored on disk, but
the term is never used, only its corresponding statement (its type) is. The user
can ask the system to print such term or to translate it to OCaml code, but
from the viewpoint of the logic of Coq (type theory) the system commits not to
use the proof term while checking other proofs.2

The notion of proof opacity was introduced a long ago in Coq version 5.10.5
(released in May 1994) and is crucial for us: given that the proof term is not
used, we can postpone the processing of the piece of the document that builds it
as much as we want. All we need is its type, that is the statement that is spelled
out explicitly by the user. Proofs are also lengthy and usually the time spent in
processing them dominates the overall time needed in order to check the entire
document. For example in the case of the Odd Order Theorem proofs amount
2 In the Curry-Howard correspondence Coq builds upon lemmas and definitions are

the same: a term of a given type. An opaque lemma is a definition one cannot unfold.

54 B. Barras et al.

1 (* global *) Definition decidable (P : Prop) := P \/ ~ P.

2

3 (* branch *) Theorem dec_False : decidable False.

4 (* tactic *) Proof.

5 (* tactic *) unfold decidable, not.

6 (* tactic *) auto.

7 (* merge *) Qed.

Fig. 1. Coq document and its internal representation

to 60 % of the non-blanks (3.175 KB over 5.262 KB) and Coq spends 90 % of
its time on them. This means that, by properly scheduling the processing of
opaque proofs, we can increase the reactivity of the system of a factor of ten.
In addition to that, the independence of each proof from the others makes it
possible to process many proofs at the same time, in parallel, giving a pretty
good occasion to exploit modern parallel hardware.

In the light of that, it is crucial to build an internal representation for the
document that makes it easy to identify opaque proofs. Prior to this work Coq
had no internal representation of the document at all. To implement the Undo
facility, Coq has a notion of system state that can can be saved and restored on
demand. But the system used to keep no trace of how a particular system state
was obtained; which sequence of commands results in a particular system state.

The most natural data structure for keeping track of how a system state is
obtained is a Directed Acyclic Graph (DAG), where nodes are system states and
edges are labeled with commands. The general idea is that in order to obtain a
system state from another one, one has to process all the commands on the edges
linking the two states. The software component in charge of building and main-
taining such data structure is called State Transaction Machine (STM), where
the word transaction is chosen to stress that commands need to be executed
atomically: there is no representation for a partially executed command.

2.1 The STM and the Static Analysis of the Document

The goal of the static analysis of the document is to build a DAG in which proofs
are explicitly separated from the rest of the document. We first parse each sen-
tence obtaining the abstract syntax tree of the corresponding command in order
to classify it. Each command belongs to only one of the following categories:
commands that start a proof (branch), commands that end a proof (merge),
proof commands (tactic), and commands that have a global effect (global). The

Asynchronous Processing of Coq Documents 55

DAG is built in the very same way one builds the history of a software project in
a version control system. One starts with an initial state and a default branch,
called master, and proceeds by adding new commits for each command. A com-
mit is a new node and an edge pointing to the previous node. Global commands
add the commit on the main branch; branching commands start a new branch;
tactic commands add a commit to the current branch; merging commands close
the current branch by merging it into master. If we apply these simple rules to
the document in Fig. 1 we obtain a DAG where the commands composing the
proof of dec_False have been isolated. Each node is equipped with a unique
identifier, here positive numbers. The edge from the state six to state five has
no label, it plays the role of making the end of the proof easily accessible but
has not to be “followed” when generating state six.

Indeed to compute state six, or anything that follows it, Coq starts from the
initial state, zero, and then executes the labeled transactions until it reaches state
six, namely “Definition. . . ”, “Theorem. . . ” and Qed. The nodes in gray (1, 2
and 6) are the ones whose corresponding system state has been computed. The
nodes and transactions in the dotted region compose the proof that is processed
asynchronously. As a consequence of that the implementation of the merging
command has to be able to accommodate the situation where the proof term
has not been produced yet. This is the subject of Sect. 3. For now the only rele-
vant characteristic of the asynchronous processing of opaque proofs is that such
process is a pure computation. The result of a pure computation does depend
only on its input. It does not matter when it is run nor in which environment
and it has no visible global effect. If we are not immediately interested in its
result we can execute it lazily, in parallel or even remotely via the network.

Tactic commands are not allowed to appear outside a proof; on the con-
trary global commands can, an in practice do, appear in the middle of proofs,
as in Fig. 2. Mixing tactics with global commands is not a recommend style for
finished proof scripts, but it is a extremely common practice while one writes
the script and it must be supported by the system. The current semantics of
Coq documents makes the effect of global commands appearing in the middle of
proofs persist outside proof blocks (hence the very similar documents in Figs. 1
and 2 have a different semantics). This is what naturally happens if the sys-
tem has a single, global, imperative state that is updated by the execution of
commands. In our scenario the commands belonging to opaque proofs may even
be executed remotely, hence a global side effect is lost. To preserve the cur-
rent semantics of documents, when a global command is found in the middle of
a proof its corresponding transaction is placed in the DAG twice: once in the
proof branch at its original position, and another time on the master branch.
This duplication is truly necessary: only the transaction belonging to the master
branch will retain its global effect; the one in the proof branch, begin part of a
pure computation, will have a local effect only. In other words the effect of the
“Hint. . . ” transaction from state 3 to 4 is limited to states 4 and 5.

Branches identifying opaque proofs also define compartments from which
errors do not escape. If a proof contains an error one can replace such proof by

56 B. Barras et al.

1 (* global *) Definition decidable (P : Prop) := P \/ ~ P.

2

3 (* branch *) Theorem dec_False : decidable False.

4 (* tactic *) Proof.

5 (* global *) Hint Extern 1 => unfold decidable, not.

6 (* tactic *) auto.

7 (* merge *) Qed.

Fig. 2. Coq document and its internal representation

another one, possibly a correct one, without impacting the rest of the document.
As long as the statement of an opaque proof does not change, altering the proof
does not require re-checking what follows it in the document.

3 Modelling Asynchronously Computed Proofs

The logical environment of a prover contains the statements of the theorems
which proof has already been checked. In some provers, like Coq, it also contains
the proof evidence, a proof term. A theorem enters the logical environment only
if its proof evidence has been checked. In our scenario the proof evidences may
be produced asynchronously, hence this condition has to be relaxed, allowing
a theorem to be part of the environment before its proof is checked. Wenzel
introduced the very general concept of proof promise [11] in the core logic of
Isabelle for this precise purpose.

3.1 Proof Promises in Coq

Given that only opaque proofs are processed asynchronously we can avoid intro-
ducing in the theory of Coq the generic notion of a sub-term asynchronously
produced. The special status of opaque proofs spares us to change the syntax of
the terms and lets us just act on the logical environment and the Well Founded
(WF) judgement. The relevant rules for the WF judgements, in the presentation
style of [1], are the following ones. We took the freedom to omit some details,
like T being a well formed type, that play no role in the current discussion.

E � WF E � b : T d fresh in E

E ∪ (definition d : T := b) � WF
E � WF E � b : T d fresh in E

E ∪ (opaque d : T | b) � WF

Asynchronous Processing of Coq Documents 57

Note that the proof evidence b for opaque proofs is checked but not stored in
the environment as the body of non-opaque definitions. After an opaque proof
enters the environment, it shall behave exactly like an axiom.

E � WF d fresh in E

E ∪ (axiom d : T) � WF

We rephrase the WF judgement as the combination of two new judgements:
Asynchronous and Synchronous Well Founded (AWF and SWF respectively).
The former is used while the user interacts with the system. The latter comple-
ments the former when the complete checking of the document is required.

E � AWF E � b : T d fresh in E

E ∪ (definition d : T := b) � AWF
E � AWF d fresh in E

E ∪ (opaque d : T | [f]E) � AWF

E � SWF
E ∪ (definition d :T := b) � SWF

E � SWF b = run f in E E � b :T
E ∪ (opaque d :T | [f]E) � SWF

E � AWF E � SWF
E � WF

The notation [f]E represents a pure computation in the environment E that
eventually produces a proof evidence b. The implementation of the two new
judgements amounts to replace the type of opaque proofs (term) with a func-
tion type (environment -> term) and impose that such computation is pure.
In practice the commitment of Coq to not use the proof terms of theorems ter-
minated with Qed makes it possible to run these computations when it is more
profitable. In our implementation this typically happens in the background.

As anticipated the Coq system is coded using the imperative features pro-
vided by the OCaml language quite pervasively. As a result we cannot simply
rely on the regular function type (environment -> term) to model pure com-
putations, since the code producing proof terms is not necessarily pure. Luckily
the Undo facility lets one backup the state of the system and restore it, and we
can use this feature to craft our own, heavyweight, type of pure computations.
A pure computation c0 pairs a function f with the system state it should run
in s0 (that includes the logical environment). When c0 is executed, the current
system state sc is saved, then s0 in installed and f is run. Finally the resulting
value v and resulting state s1 are paired in the resulting computation c1, and the
original state sc is restored. We need to save s1 only if the computation c1 needs
to be chained with additional impure code. A computation producing a proof is
the result of chaining few impure functions with a final call to the kernel’s type
checker that is a purely functional piece of code. Hence the final system state is
always discarded, only the associated value (a proof term) is retained.

The changes described in this section enlarged the size of the trusted code
base of Coq by less than 300 lines (circa 2 % of its previous size).

58 B. Barras et al.

3.2 Parallelism in OCaml

The OCaml runtime has no support for shared memory and parallel thread
execution, but provides inter process communication facilities like sockets and
data marshaling. Hence the most natural way to exploit parallel hardware is to
split the work among different worker processes.

While this approach imposes a clean message passing discipline, it may clash
with the way the state of the system is represented and stocked. Coq’s global
state is unstructured and fragmented: each software module can hold some pri-
vate data and must register a pair of functions to take a snapshot and restore
an old backup to a central facility implementing the Undo command. Getting a
snapshot of the system state is hence possible, but marshalling it and sending
it to a worker process is still troublesome. In particular the system state can
contain a lot of unnecessary data, or worse data that cannot be sent trough a
channel (like a file descriptor) or even data one does not want to send to a precise
worker, like the description of the tasks he is not supposed to perform.

Our solution to this problem is to extrude from the system state the unwanted
data, put a unique key in place of it and finally associate via a separate table
the data to the keys. When a system state is sent to a worker process the
keys it contains lose validity, hence preventing the worker process to access the
unwanted data.

The only remaining problem is that, while when a system state becomes
unreferenced it is collected by the OCaml runtime, the key-value table still holds
references to a part of that system state. Of course we want the OCaml runtime
to also collect such data. This can be achieved by making the table “key-weak”,
in the sense that the references it holds to its keys do not prevent the garbage
collector from collecting them and that when this happens the corresponding
data has also to be collected. Even if the OCaml runtime does not provide
such notion of weak table natively, one can easily code an equivalent finalization
mechanism known as ephemeron (key-value) pairs [6] by attaching to the keys a
custom finalization function (Fig. 3).

Fig. 3. Reorganization of the prover state

3.3 The Asynchronous Task Queue and the Quick
Compilation chain

The STM maintains a structured representation of the document the prover is
processing, identifies independent tasks and delegates them to worker processes.
Here we focus on the interaction between Coq and the pool of worker processes.

Asynchronous Processing of Coq Documents 59

The main kind of tasks identified by the STM is the one of opaque proofs we
discussed before, but two other tasks are also supported. The first one is queries:
commands having no effect but for producing a human readable output. The
other one is tactics terminating a goal applied to a set of goals via the “par:”
goal selector.3 In all cases the programming API for handling a pool of worker
processes is the AsyncTaskQueue, depicted Fig. 4. Such data structure, generic
enough to accommodate the three aforementioned kind of tasks, provides a prior-
ity queue in which tasks of the same kind can be enqueued. Tasks will eventually
be picked up by a worker manager (a cooperative thread in charge of a specific
worker process), turned into requests and sent to the corresponding worker.

module type Task = sig

type task

type request

type response

val request_of_task : [‘Fresh | ‘Old] -> task -> request option

val use_response : task -> response -> [‘Stay | ‘Reset]

val perform : request -> response

end

module MakeQueue(T : Task) : sig

val init : max_workers:int -> unit

val priority_rel : (T.task -> T.task -> int) -> unit

val enqueue_task : T.task -> cancel_switch:bool ref -> unit

val dump : unit -> request list

end

module MakeWorker(T : Task) : sig

val main_loop : unit -> unit

end

Fig. 4. Programming API for asynchronous task queues

By providing a description of the task, i.e. a module implementing the Task
interface, one can obtain at once the corresponding queue and the main function
for the corresponding workers. While the task datatype can, in principle, be any-
thing, request and response must be marshalable since they will be exchanged
between the master and a worker processes. request_of_task translates a task
into a request for a given worker. If the worker is an ‘Old one, the represen-
tation of the request can be lightweight, since the worker can save the context
in which the tasks take place and reuse it (for example the proof context is the
same for each goal to which the par: goal selector applies). Also a task, while
waiting in the queue, can become obsolete, hence the option type. The worker
manager calls use_response when a response is received, and decides whether
the worker has to be reset or not. The perform function is the code that is run in
the worker. Note that when a task is enqueued a handle to cancel the execution
if it becomes outdated is given. The STM will flip that bit eventually, and the
worker manager will stop the corresponding worker.
3 The “par:” goal selector is a new feature of Coq 8.5 made possible by this work.

60 B. Barras et al.

This abstraction is not only valuable because it hides to the programmer all
the communication code (socket, marshalling, error handling) for the three kinds
of tasks. But also because it enables a new form of separate quick compilation
(batch document checking) that splits such job into two steps. A first and quick
one that essentially amounts at checking everything but the opaque proofs and
generates an (incomplete) compiled file, and a second one that completes such
file. An incomplete file, extension .vio, can already be used: as we pointed
out before the logic of Coq commits not to use opaque proofs, no matter if
they belong to the current file or to another one. Incomplete .vio files can be
completed into the usual .vo files later on, by resuming the list of requests also
saved in the .vio file.

The trick is to set the number of workers to zero when the queue is initialized.
This means that no task is processed at all when the document is checked. One
can then dump the contents of the queue in terms of a list of requests (a mar-
shalable piece of data) and stock it in the .vio files. Such lists represents all the
tasks still to be performed in order to check the opaque proofs of the document.
The performances of the quick compilation chain are assessed in Sect. 5.

4 The User Side

A prover can execute commands out-of-order only if the user can interact with it
asynchronously. We need an interface that systematically gives to the prover the
document the user is working on and declares where the user is looking at to help
the system take scheduling decisions. This way the UI also frees the user from
the burden of explicitly sending a portion of its text buffer to the prover. Finally
this interface needs to be able to interpret the reports the prover generates in
no predictable order, and display them to the user.

An UI like this one makes the user experience in editing a formal document
way closer to the one he has when editing a regular document using a main-
stream word processor: he freely edits the text while the system performs “spell
checking” in the background, highlighting in red misspelled words. In our case
it will mark in red illegal proof steps. Contextual information, like the current
goal being proved, is displayed according to the position of the cursor. It is also
natural to have the UI aggregate diverse kinds of feedbacks on the same piece of
text. The emblematic example is the full names of identifiers that are displayed
as an hyperlink pointing to the place where the identifier is bound.

4.1 PIDE and Its Document Model

To integrate user interfaces with asynchronous provers in a uniform way, Wenzel
developed the PIDE middleware [13]. This middleware consists of a number of
API functions in a frontend written in the Scala programming language, that
have an effect on a prover backend. The front-, and backend together maintain a
shared data structured, PIDE’s notion of a document. Figure 5 depicts how the
front and backend collaborate on the document, and its various incarnations. The

Asynchronous Processing of Coq Documents 61

Fig. 5. PIDE sitting between the prover and the UI (Color figure online)

portions of the figure in dark red represent parts of PIDE that were implemented
to integrate Coq into the PIDE middleware.

This document has a very simple, prover-independent, structure: it is a flat
list of spans. A span is the smallest portion of text in which the document is
chopped by a prover specific piece of code. In the case of Coq it corresponds to a
full command. The frontend exposes an update method on the document, which
allows an interface to notify the prover of changes. The second functionality
of the document on the frontend is the ability to query the document for any
markup attached to the command spans. This markup is provided by the prover,
and is the basis for the rich feedback we describe in Sect. 4.4.

The simple structure of the document keeps the frontend “dumb”, which
makes it easy to integrate a new prover in PIDE: for Coq, this only required
implementing a parser that can recognize, chop, command spans (around 120
lines of Scala code) and a way to start the prover and exchange data with it
(10 more lines). The prover side of this communication is further described in
Sect. 4.2, which also describes the representation of the document text in the
PIDE backend for Coq.

The way an interface uses the PIDE document model is by updating it with
new text, and then reacting to new data coming from the prover, transforming
it in an appropriate way. For example, Coq can report the abstract syntax tree
(AST) of each command in the proof document, which the interface can use to
provide syntax highlighting which is not based on error-prone regular expres-
sions. Beyond the regular interface services, the information can also be used to
support novel interactions with a proof document. In the case of an AST, for
example, the tree can be used to support refactoring operations robustly.

4.2 Pidetop

Pidetop is the toplevel loop that runs on the Coq side and translates PIDE’s
protocol messages into instructions for the STM. Pidetop maintains an internal
representation of the shared document. When its update function is invoked, the
toplevel updates the internal document representation, inserting and deleting
command phrases where appropriate. The commands that are considered as

62 B. Barras et al.

new by pidetop are not only those that have changed but also those that follow:
because the client is dumb, it does not know what the impact of a change is.
Instead it relies on the statical analysis the STM performs to determine this.

Finally PIDE instructs the STM to start checking the updated document.
This instruction can include a perspective: the set of spans that frontend is
currently showing to the user. This perspective is used by the STM to prioritize
processing certain portions of the document.

Processing the document produces messages to update PIDE of new infor-
mation. During the computation, PIDE can interrupt the STM at any moment,
to update the document following the user’s changes.

4.3 Metadata Collection

The information Coq needs to report to the UI can be classified according to
its nature: persistent or volatile. Persistent information is part of the system
state, and can be immediately accessed. For this kind of information we follow
the model of asynchronous prints introduced by Wenzel in [14]. When a system
state is ready it is reported to (any number of) asynchronous printers, which
process the state, reporting some information from it as marked up messages for
the frontend. Some of these printers, like those reporting the goal state at each
span, are always executed, while others can be printed on-demand. An example
of the latter are Coq’s queries, which are scheduled for execution whenever the
user requests it. Volatile information can only be reported during the execution
of a command, since it is not retained in the system state. An example is the
resolution of an identifier resulting in an hyper link: the relation between the
input text and the resulting term is not stored, hence localized reports con-
cerning sub terms can only be generated while processing a command. Volatile
information can also be produced optionally and on demand by processing com-
mands a second time, for example in response to the user request of more details
about a term. From the UI perspective both kind of reports are asynchronously
generated and handled homogeneously.

4.4 Rich Feedback

A user interface building on PIDE’s frontend can use the marked up metadata
produced by the prover to provide a much richer editing experience than was
previously possible: the accessible information is no longer restricted to the out-
put of the last executed command. For example jEdit, the reference frontend
based on PIDE, uses the spell checker idiom to report problems in the entire
proof document: instead of refusing to proceed beyond a line containing an error
the interface underlines all the offending parts in red, and the user can inspect
each of them.

This modeless interaction model also allows the interface to take different
directions than the write-and-execute one imposed by REPL based UI. For
example it is now easy to decorrelate the user’s point of observation and the
place where she is editing the document. A paradigmatic example concerns the

Asynchronous Processing of Coq Documents 63

Fig. 6. jEdit using PIDE

linguistic construct of postfix bookkeeping of variables and hypotheses (the as
intro pattern in Coq). The user is encouraged to decorate commands like the one
that starts an induction with the names of the new variables and hypotheses that
are available in each subgoal. This decoration is usually done in a sloppy way:
when the user starts to work on the third subgoal she goes back to the induction
command in order to write the intro pattern part concerning the third goal. In
the REPL model she would lose the display of the goal she is actually working
on because the only goal displayed would be the one immediately before the
induction command. By using a PIDE based interface to Coq the user can now
leave the observation point on the third goal and see how it changes while she
is editing the intro pattern (note the “Do not follow caret” check box in Fig. 6).

These new ways of interaction are the first experiments with the PIDE model
for Coq, and we believe that even more drastically different interaction idioms
can be provided, for example allowing the user to write more structured proofs,
where the cases of a proof are gradually refined, possibly in a different order
than the one in which they appear in the finished document.

The PIDE/jEdit based interface for Coq 8.5 is distributed at the following
URL: http://coqpide.bitbucket.org/.

5 Assessment of the Quick Compilation Chain

As described in Sect. 3.3 our design enables Coq to postpone the processing of
opaque proofs even when used as a batch compiler. To have a picture of the

http://coqpide.bitbucket.org/

64 B. Barras et al.

Fig. 7. Benchmarks

improvement in the reactivity of the system we consider the time that one needs
to wait (we call that latency) in order to be able to use (Require in Coq’s
terminology) the last file of the proof of the Odd Order Theorem after a change
in the first file of such proof. With Coq 8.4 there is nothing one can do but
to wait for the full compilation of the whole formalization. This takes a bit less
than two and a half hours on a fairly recent Xeon 2.3 GHz machine using a single
core (first column). Using two cores, and compiling at most two files at a time,
one can cut that time to ninety minutes (second column). Unfortunately batch
compilation has to honour the dependency among files and follow a topological
order, hence by adding extra 10 cores one can cut only twelve minutes (third
column). Hence, in Coq 8.4 the best latency is of the order of one hour.

Thanks to the static analysis of the document described in Sect. 2.1, the
work of checking definitions and statements (in blue) can be separated by the
checking of opaque proofs (in red), and one can use a (partially) compiled Coq
file even if its opaque proofs are not checked yet. In this scenario, the same
hardware gives a latency of twelve minutes using a single core (fourth column),
eight minutes using two cores (fifth column) and seven minutes using twelve cores
(sixth column). After that time one can use the entire formalization. When one
then decides to complete the compilation he can exploit the fact that each proof

Asynchronous Processing of Coq Documents 65

is independent to obtain a good degree of parallelism. For example checking all
proofs using twelve cores requires thirteen extra minutes after the initial analysis,
for a total of twenty minutes. This is 166 % of the theoretical optimum one could
get (seventh column). Still with 12 cores the latency is only six minutes, on par
with the theoretical optimum for 24 cores (Fig. 7).

The reader may notice that the quick compilation chain using 1 core (4th
column) is slightly faster than the standard compilation chain. This phenomenon
concerns only the largest and most complicated files of the development. To
process these files Coq requires a few gigabytes of memory and it stresses the
OCaml garbage collector quite a bit (where it spends more than 20 % of the
time). The separation of the two compilation phases passes trough marshalling
to (a fast) disk and un-marshaling to an empty process space. This operation
trades (non blocking, since the size of files fits the memory of the computer)
disk I/O for a more compact and less fragmented memory layout that makes the
OCaml runtime slightly faster.

6 Concluding Remarks and Future Directions

This paper describes the redesign Coq underwent in order to provide a better
user experience, especially when used to edit large formal developments. The
system is now able to better exploit parallel hardware when used in batch mode,
and is more reactive when used interactively. In particular it can now talk with
user interfaces that use the PIDE middleware, among which we find the one of
Isabelle [9] that is based on jEdit and the Coqoon [3,4] one based on Eclipse.

There are many ways this work can be improved. The most interesting paths
seem to be the following ones.

First, one could make the prover generate, on demand, more metadata for
the user consumption. A typical example is the type of sub expressions to ease
the reading of the document. Another example is the precise list of theorems
or local assumptions used by automatic tactics like auto. This extra metadata
could be at the base of assisted refactoring functionalities the UI could provide.

Another interesting direction is to refine the static analysis of the document
to split proofs into smaller, independent, parts. In a complementary way one
could make such structure easier to detect in the proof languages supported by
the system. The extra structure could be used in at least two ways. First, one
could give more accurate feedback on broken proofs. Today the system stops
at the first error it encounters, but a more precise structure would enable the
system to backup by considering the error confined to the sub-proof in which it
occurs. Second, one could increase the degree of parallelism we can exploit.

Finally one could take full profit of the PIDE middleware by adapting to
Coq interesting user interfaces based on it. For example clide [10] builds on top
of PIDE and provides a web based, collaborative, user interface for the Isabelle
prover. The cost of adapting it to work with Coq seems now affordable.

66 B. Barras et al.

References

1. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: A compact kernel for the
calculus of inductive constructions. Sadhana 34(1), 71–144 (2009)

2. Aspinall, D.: Proof general: a generic tool for proof development. In: Graf, S. (ed.)
TACAS 2000. LNCS, vol. 1785, pp. 38–42. Springer, Heidelberg (2000)

3. Bengtson, J., Mehnert, H., Faithfull, A.: Coqoon: eclipse plugin providing a feature-
complete development environment for Coq (2015). Homepage: https://itu.dk/
research/tomeso/coqoon/

4. Faithfull, A., Tankink, C., Bengtson, J.: Coqoon - an IDE for interactive proof
development in Coq. Submitted to CAV 2015

5. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013)

6. Hayes, B.: Ephemerons: a new finalization mechanism. In: Proceedings of OOP-
SLA, pp. 176–183. ACM (1997)

7. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

8. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

9. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, Heidelberg (2002)

10. Ring, M., Lüth, C.: Collaborative interactive theorem proving with clide. In:
Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 467–482. Springer,
Heidelberg (2014)

11. Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: Proceedings of PLMMS,
pp. 13–21 (2009)

12. Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol.
6824, pp. 244–259. Springer, Heidelberg (2011)

13. Wenzel, M.: READ-EVAL-PRINT in parallel and asynchronous proof-checking. In:
Proceedings of UITP. EPTCS, vol. 118, pp. 57–71 (2013)

14. Wenzel, M.: Asynchronous user interaction and tool integration in Isabelle/PIDE.
In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 515–530. Springer,
Heidelberg (2014)

https://itu.dk/research/tomeso/coqoon/
https://itu.dk/research/tomeso/coqoon/

A Concrete Memory Model for CompCert

Frédéric Besson1, Sandrine Blazy2, and Pierre Wilke2(B)

1 Inria, Rennes, France
2 Université Rennes 1 - IRISA, Rennes, France

pierre.wilke@irisa.fr

Abstract. Semantics preserving compilation of low-level C programs is
challenging because their semantics is implementation defined accord-
ing to the C standard. This paper presents the proof of an enhanced
and more concrete memory model for the CompCert C compiler which
assigns a definite meaning to more C programs. In our new formally
verified memory model, pointers are still abstract but are nonetheless
mapped to concrete 32-bit integers. Hence, the memory is finite and it is
possible to reason about the binary encoding of pointers. We prove that
the existing memory model is an abstraction of our more concrete model
thus validating formally the soundness of CompCert’s abstract semantics
of pointers. We also show how to adapt the front-end of CompCert thus
demonstrating that it should be feasible to port the whole compiler to
our novel memory model.

1 Introduction

Formal verification of programs is usually performed at source level. Yet, a the-
orem about the source code of a safety critical software is not sufficient. Even-
tually, what we really value is a guarantee about the run-time behaviour of the
compiled program running on a physical machine. The CompCert compiler [17]
fills this verification gap: its semantics preservation theorem ensures that when
the source program has a defined semantics, program invariants proved at source
level still hold for the compiled code. For the C language the rules governing so
called undefined behaviours are subtle and the absence of undefined behaviours
is in general undecidable. As a corollary, for a given C program, it is undecidable
whether the semantic preservation applies or not.

To alleviate the problem, the semantics of CompCert C is executable and
it is therefore possible to check that a given program execution has a defined
semantics. Jourdan et al. [12] propose a more comprehensive and ambitious
approach: they formalise and verify a precise C static analyser for CompCert
capable of ruling out undefined behaviours for a wide range of programs. Yet,
these approaches are, by essence, limited by the formal semantics of CompCert
C: programs exhibiting undefined behaviours cannot benefit from any semantic
preservation guarantee. This is unfortunate as real programs do have behaviours

This work was partially supported by the French ANR-14-CE28-0014 AnaStaSec.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 67–83, 2015.
DOI: 10.1007/978-3-319-22102-1 5

68 F. Besson et al.

that are undefined according to the formal semantics of CompCert C1. This can
be a programming mistake but sometimes this is a design feature. In the past,
serious security flaws have been introduced by optimising compilers aggressively
exploiting the latitude provided by undefined behaviours [6,22]. The existing
workaround is not satisfactory and consists in disabling optimisations known to
be triggered by undefined behaviours.

In previous work [3], we proposed a more concrete and defined semantics
for CompCert C able to give a semantics to low-level C idioms. This semantics
relies on symbolic expressions stored in memory that are normalised into genuine
values when needed by the semantics. It handles low-level C idioms that exploit
the concrete encoding of pointers (e.g. alignment constraints) or access partially
undefined data structures (e.g. bit-fields). Such properties cannot be reasoned
about using the existing CompCert memory model [18,19].

The memory model of CompCert consists of two parts: standard operations
on memory (e.g. alloc, store) that are used in the semantics of the languages of
CompCert and their properties (that are required to prove the semantic preser-
vation of the compiler), together with generic transformations operating over
memory. Indeed, certain passes of the compiler perform non-trivial transforma-
tions on memory allocations and accesses: for instance, in the front-end, C local
variables initially mapped to individually-allocated memory blocks are later on
mapped to sub-blocks of a single stack-allocated activation record. Proving the
semantic preservation of these transformations requires extensive reasoning over
memory states, using memory invariants relating memory states during program
execution, that are also defined in the memory model.

In this paper, we extend the memory model of CompCert with symbolic
expressions [3] and tackle the challenge of porting memory transformations and
CompCert’s proofs to our memory model with symbolic expressions. The com-
plete Coq development is available online [1]. Among others, a difficulty is that
we drop the implicit assumption of an infinite memory. This has the consequence
that allocation can fail. Hence, the compiler has to ensure that the compiled pro-
gram is using less memory than the source program.

This paper presents a milestone towards a CompCert compiler adapted with
our semantics; it makes the following contributions.

– We present a formal verification of our memory model within CompCert.
– We prove that the existing memory model of CompCert is an abstraction of

our model thus validating the soundness of the existing semantics.
– We extend the notion of memory injection, the main generic notion of memory

transformation.
– We adapt the proof of CompCert’s front-end passes, from CompCert C until

Cminor, thus demonstrating the feasibility of our endeavour.

The paper is organised as follows. Section 2 recalls the main features of
the existing CompCert memory model and our proposed extension. Section 3
explains how to adapt the operations of the existing CompCert memory model
1 The official C standard is in general even stricter.

A Concrete Memory Model for CompCert 69

to comply with the new requirements of our memory model. Section 4 shows
that the existing memory model is, in a provable way, an abstraction of our
new memory model. Section 5 presents our re-design of the notion of memory
injection that is the cornerstone of compiler passes modifying the memory lay-
out. Section 6 details the modifications for the proofs for the compiler front-end
passes. Related work is presented in Sect. 7; Sect. 8 concludes.

2 A More Concrete Memory Model for CompCert

In previous work [3], we propose an enhanced memory model (with symbolic
expressions) for CompCert. The model is implemented and evaluated over a rep-
resentative set of C programs. We empirically verify, using the reference inter-
preter of CompCert, that our extension is sound with respect to the existing
semantics and that it captures low-level C idioms out of reach of the exist-
ing memory model. This section first recalls the main features of the current
CompCert memory model and then explains our extension to this memory
model.

2.1 CompCert’s Memory Model

Leroy et al. [18] give a thorough presentation of the existing memory model of
CompCert, that is shared by all the languages of the compiler. We give a brief
overview of its design in order to highlight the differences with our own model.

Abstract values used in the semantics of the CompCert languages (see [19])
are the disjoint union of 32-bit integers (written as int(i)), 32-bit floating-
point numbers (written as float(f)), locations (written as ptr(l)), and the
special value undef representing an arbitrary bit pattern, such as the value of an
uninitialised variable. The abstract memory is viewed as a collection of separated
blocks. A location l is a pair (b,i) where b is a block identifier (i.e. an abstract
address) and i is an integer offset within this block. Pointer arithmetic modifies
the offset part of a location, keeping its block identifier part unchanged. A pointer
ptr(b,i) is valid for a memory M (written valid pointer(M,b,i)) if the offset
i is within the two bounds of the block b.

Abstract values are loaded from (resp. stored into) memory using the load
(resp. store) memory operation. Memory chunks appear in these operations, to
describe concisely the size, type and signedness of the value being stored. These
operations return option types: we write ∅ for failure and �x� for a successful
return of a value x. The free operation may also fail (e.g. when the locations
to be freed have been freed already). The memory operation alloc never fails,
as the size of the memory is unbounded.

In the memory model, the byte-level, in-memory representation of integers
and floats is exposed, while pointers are kept abstract [18]. The concrete memory
is modelled as a map associating to each location a concrete value cv that is a
byte-sized quantity describing the current content of a memory cell. It can be
either a concrete 8-bit integer (written as bytev(b)) representing a part of an

70 F. Besson et al.

struct {
int a0 : 1; int a1 : 1;

} bf ;

int main() {
bf . a1 = 1; return bf . a1;}

(a) Bitfield in C

1 struct { unsigned char bf1 ;} bf ;
2

3 int main(){
4 bf . bf1 = (bf . bf1 & ˜0x2U) |
5 ((unsigned int) 1 << 1U & 0x2U) ;
6 return (int) (bf . bf1 << 30) >> 31;}

(b) Bitfield in CompCert C

Fig. 1. Emulation of bitfields in CompCert

integer or a float, ptrv(l, i) to represent the i-th byte (i ∈ {1, 2, 3, 4}) of the
location l, or undefv to model uninitialised memory.

2.2 Motivation for an Enhanced Memory Model

Our memory model with symbolic expressions [3] gives a precise semantics to
low-level C idioms which cannot be modelled by the existing memory model. The
reason is that those idioms either exploit the binary representation of pointers as
integers or reason about partially uninitialised data. For instance, it is common
for system calls, e.g. mmap or sbrk, to return -1 (instead of a pointer) to indicate
that there is no memory available. Intuitively, -1 refers to the last memory
address 0xFFFFFFFF and this cannot be a valid address because mmap returns
pointers that are aligned – their trailing bits are necessarily 0s. Other examples
are robust implementations of malloc: for the sake of checking the integrity
of pointers, their trailing bits store a checksum. This is possible because those
pointers are also aligned and therefore the trailing bits are necessarily 0s.

Another motivation is illustrated by the current handling of bitfields in
CompCert: they are emulated in terms of bit-level operations by an elabora-
tion pass preceding the formally verified front-end. Figure 1 gives an example of
such a transformation. The program defines a bitfield bf such that a0 and a1 are
1 bit long. The main function sets the field a1 of bf to 1 and then returns this
value. The expected semantics is therefore that the program returns 1. The trans-
formed code (Fig. 1b) is not very readable but the gist of it is that field accesses
are encoded using bitwise and shift operators. The transformation is correct and
the target code generated by CompCert correctly returns 1. However, using the
existing memory model, the semantics is undefined. Indeed, the program starts
by reading the field bf1 of the uninitialised structure bf. The value is therefore
undef. Moreover, shift and bitwise operators are strict in undef and therefore
return undef. As a result, the program returns undef. As we show in the next
section, our semantics is able to model partially undefined values and therefore
gives a semantics to bitfields. Even though this case could be easily solved by
modifying the pre-processing step, C programmers might themselves write such
low-level code with reads of undefined memory and expect it to behave correctly.

A Concrete Memory Model for CompCert 71

Record compat(cm, m) : Prop := {
addr_space : ∀ b o, [o] ∈ bound(m, b)→ 0 < [cm(b)+o] < Int.max_unsigned;
overlap : ∀ b b’ o o’,

b �= b’ → [o] ∈ bound(m,b) → [o’] ∈ bound(m, b’) → [cm(b)+o] �= [cm(b’)+o’];
alignment: ∀ b, cm(b) & alignt(m, b) = cm(b) }.

Fig. 2. Compatibility relation betw. a memory mapping and an abstract memory

2.3 A Memory Model with Symbolic Expressions

To give a semantics to the previous idioms, a direct approach is to have a fully
concrete memory model where a pointer is a genuine integer and the memory is
an array of bytes. However, this model lacks an essential property of CompCert’s
semantics: determinism. For instance, with a fully concrete memory model, allo-
cating a memory chunk returns a non-deterministic pointer – one of the many
that does not overlap with an already allocated chunk. In CompCert, the allo-
cation returns a block that is computed in a deterministic fashion. Determinism
is instrumental for the simulation proofs of the compiler passes and its absence
is a show stopper.

Our approach to increase the semantics coverage of CompCert consists in
delaying the evaluation of expressions which, for the time being, may have a
non-deterministic evaluation. In memory, we therefore consider side-effect free
symbolic expressions of the following form: sv ::= v | opτ

1 sv | sv τop2τ sv , where
v is a value and opτ

1 (resp. τopτ
2) is a unary (resp. binary) arithmetic operator.

Our memory model is still made of a collection of blocks with the dif-
ference that (1) each block possesses an explicit alignment, and (2) memory
blocks contain symbolic byte expressions. The alignment of a block b (written
alignt(m,b)) states that the address of b has a binary encoding such that
its trailing alignt(m,b) bits are zeros. Memory loads and stores cannot be
performed on symbolic expressions which therefore need to be normalised before-
hand to a genuine pointer value. Another place where normalisation is needed
is before a conditional jump to ensure determinism of the jump target. The
normalisation gives a semantics to expressions in terms of a concrete mapping
from blocks to addresses. Formally, we define in Fig. 2 a compatibility relation
stating that:2

– a valid location is in the range [0x00000001; 0xFFFFFFFE] (see addr space);
– valid locations from distinct blocks do not overlap (see overlap);
– a block is mapped to an address abiding to the alignment constraints.

The normalisation is such that normalise m e τ returns a value v of type τ if and
only if the side-effect free expression e evaluates to v for every concrete mapping
cm: block → B32 of blocks to concrete 32 bits addresses which are compatible
with the block-based memory m (written compat(cm,m)).

2 The notation [i] denotes the machine integer i when interpreted as unsigned.

72 F. Besson et al.

We define the evaluation of expressions as the function [[·]]cm, parametrised
by the concrete mapping cm. Pointers are turned into their concrete value, as
dictated by cm. For example, the evaluation of ptr(b, o) results in cm (b)+o.
Then, symbolic operations are mapped to the corresponding value operations.

Consider the code of Fig. 1b. Unlike the existing semantics, operators are
not strict in undef but construct symbolic expressions. Hence, in line 4, we
store in bf. bf1 the symbolic expression e defined by (undef &∼0x2U)|(1 << 1
U&0x2U) and therefore return the normalisation of the expression (e << 30) >>
31. The value of the expression is 1 whatever the value of undef and therefore
the normalisation succeeds and returns, as expected, the value 1.

3 Proving the Operations of the Memory Model

CompCert’s memory model exports an interface summarising all the properties
of the memory operations necessary to prove the compiler passes. This section
details how the properties and the proofs need to be adapted to accommodate for
symbolic expressions. First, we have to refine our handling of undefined values.
Second, we introduce an equivalence relation between symbolic expressions.

3.1 Precise Handling of Undefined Values

Symbolic expressions (as presented in Sect. 2.3) feature a unique undef token.
This is a shortcoming that we have identified during the proof. With a single
undef, we do not capture the fact that different occurrences of undef may rep-
resent the same unknown value, or different ones. For instance, consider two
uninitialised char variables x and y. Expressions x - x and x - y both con-
struct the symbolic expression undef - undef, which does not normalise. How-
ever we would like x - x to normalise to 0, since whatever the value stored in
memory for x, say v, the result of v − v should always be 0. To overcome this
problem, each byte of a newly allocated memory chunk is initialised with a fresh
undef value. After the allocation of block b, the value stored at location (b, o) is
undef(b, o). This value is fresh because block identifiers are never reused. Hence,
x - x constructs the symbolic expression undef(b, o) - undef(b, o) for some b
and o which obviously normalises to 0, because undef(b, o) now represents a
unique value rather than the set of all values. Our symbolic expressions do not
use the existing CompCert’s values but the following type sval ::= undef(l) |
int(i) | float(f) | ptr(l).

3.2 Memory Allocation

CompCert’s alloc operation always allocates a memory chunk of the requested
size and returns a fresh block to the newly allocated memory (i.e. it models an
infinite memory). In our model, memory consumption needs to be precisely mon-
itored and a memory m is a dependent record which, in addition to a CompCert

A Concrete Memory Model for CompCert 73

block-based memory, provides guarantees about the concrete memories com-
patible (see Fig. 2) with the CompCert block-based memory. Hence, our alloc
operation is partial and returns ∅ if it fails to construct a memory object.

The first guarantee is that for every memory m there exists at least a concrete
memory compatible with the abstract CompCert block-based memory.

Lemma mem_compat : ∀ m, ∃ cm, compat(cm, m).

To get this property, the alloc function runs a greedy algorithm constructing
a compatible cm mapping. Given a memory m, size mem(m) returns the size of
the constructed memory (i.e. the first fresh address as computed by the alloca-
tion). The algorithm makes the pessimistic assumption that the allocated blocks
are maximally aligned – for CompCert, this maximum is 3 bits (addresses are
divisible by 23). It places the allocated block at the first concrete address that is
free and compliant with a 3-bit alignment. Allocation fails if no such address can
be found. The rationale for the pessimistic alignment assumption is discussed in
Sect. 5: it is essential to ensure that certain memory re-arrangements are always
feasible (i.e. would not exhaust memory).

Without the mem compat property, a symbolic expression e could have a nor-
malisation v before allocation and be undefined after allocation. The existence
of a concrete compatible memory ensures that the normalisation of expressions
is strictly more defined after allocation.

Lemma normalise_alloc : ∀ m lo hi m’ b e τ v,
alloc m lo hi = �(m’, b)� ∧ normalise m e τ = v ∧ v �= undef →
normalise m’ e τ = v.

3.3 Good Variable Properties

In CompCert, the so-called good variable properties axiomatise the behaviour
of the memory operations. For example, the property load store same states
that, starting from memory m1, if we store value v at location l with some chunk
κ, then when we read at l with κ, we get back the value v. During a store, a
symbolic expression is split into symbolic bytes using the function extr(sv,i)
which extracts the ith byte of a symbolic expression sv. The reverse operation is
the concatenation of a symbolic expression sv1 with a symbolic expression sv2
representing a byte. These operations can be defined as extr(sv,i) = (sv shr
(8*i)) & 0xFF and concat(sv1, sv2) = sv1shl 8 + sv2.

As a result, the axiom load store same needs to be generalised because the
stored value v is not syntactically equal to the loaded value v1 but is equal modulo
normalisation (written v1 ≡ v2). This equivalence relation is a key insight for
generalising the properties and the proofs of the memory model.

Axiom load_store_same : ∀ κ m1 b ofs v m2, store κ m1 b ofs v = � m2 � →
∃ v1, load chunk m2 b ofs = � v1 � ∧ v1 ≡ Val.load_result κ v.

We have generalised and proved the axioms of the memory model using the same
principle. The proof effort is non-negligible as the memory model exports more

74 F. Besson et al.

than 150 lemmas. Moreover, if the structure of the proofs is similar, our proofs
are complicated by the fact that we reason modulo normalisation of expressions.

4 Cross-Validation of Memory Models

The semantics of the CompCert C language is part of the trusted computing
base of the compiler. Any modelling error can be responsible for a buggy, though
formally verified, compiler. To detect a glitch in the semantics, a first approach
consists in running tests and verifying that the CompCert C interpreter computes
the expected value. With this respect, the CompCert C semantics successfully
run hundreds of random test programs generated by CSmith [23]. Another indi-
rect but original approach consists in relating formally different semantics for
the same language. For instance, when designing the CompCert C semantics,
several equivalences between alternate semantics were proved to validate this
semantics [4]. Our memory model is a new and interesting opportunity to apply
this methodology and perform a cross-validation of the C operators which are
the building blocks of the semantics.

Our memory model aims at giving a semantics to more operations (e.g.
low-level pointer operations). However, when for instance a C binary operation
v1 op v2 evaluates to a defined value v′, using the existing memory model, the
symbolic expression v1 op v2 should normalise to the same value v′. For pointer
values, this property is given in Fig. 3, where sem binary operation expr is our
extension to symbolic expressions of the function sem binary operation.

During the proof, we have uncovered several issues. The first issue is that
our normalisation only returns a location within the bounds of the block. This
is not the case for CompCert C that allows, for instance, to increment a pointer
with an arbitrary offset. If the resulting offset is outside the bounds, our nor-
malisation returns undef. For us, this is a natural requirement because we only
apply normalisation when valid pointers are needed (i.e. before a memory read
or write). To cope with this discrepancy, we add in lemma expr binop ok ptr
the precondition valid pointer(m,b,o). Another issue was a mistake in our
syntactic construction of symbolic expressions: a particular cast operator was
mapped to the wrong syntactic constructor. After the easy fix, we found two
interesting semantics discrepancies with the current semantics of CompCert C.

One issue is related to weakly valid pointers [16] which model a subtlety of
C stating that pointers one past the end of an array object can be compared.
As a result, in CompCert C, if (b, o) is a valid location, then (b, o)<(b, o+1)
always returns true. In our model, if (b, o+1) wraps around (because of an inte-
ger overflow) it may return 0 and therefore the property does not hold. To
avoid this corner situation, we state that a valid address of our model excludes
Int.max unsigned (see Fig. 2). This is sufficient to prevent the offset from wrap-
ping around and to be compatible with the semantics of CompCert C.

The last issue is related to the comparison with the null pointer. In CompCert,
this is the only pointer which is not represented by a location (b, i) but by the
integer 0. The semantics therefore assumes that a genuine location can never be

A Concrete Memory Model for CompCert 75

equal to the null pointer. In our semantics, a location (b, i) can evaluate to 0
in case of wrap around. This is a glitch in the CompCert semantics that is illus-
trated by the code snippet of Fig. 4. This program initialises a pointer p to the
address of the variable i. In the loop, p is incremented until it equals 0 in which
case the loop exits and the program returns 1. With this program, the executable
semantics of CompCert C returns 0 because p==0 is always false whatever the
value of p. However, when running the compiled program, the pointer is a mere
integer, the integer eventually overflows; wraps around and becomes 0. Hence,
the test holds and the program returns 1. We might wonder how the CompCert
semantic preservation can hold in the presence of such a contradiction. Actually,
the pointers are kept logical all the way through to the assembly level, and the
comparison with the null pointer is treated the same during all the compilation
process, thus even the assembly program in CompCert returns 0. The inconsis-
tency only appears when the assembly program is compiled into binary and run
on a physical machine.

The fix consists in defining the semantics of the comparison with the null
pointer only if the pointer is weakly valid. This causes the program to have
undefined semantics at the C level as soon as we increment the pointer beyond
its bounds. The issue was reported and the fix was incorporated in the trunk
release of CompCert. After adjusting both memory models, we are able to prove
that both semantics agree when the existing CompCert C semantics is defined
thus cross-validating the semantics of operators.

5 Redesign of Memory Injections

Memory injections are instrumental for proving the correctness of several com-
piler passes of CompCert. A memory injection defines a mapping between mem-
ories; it is a versatile tool to explain how passes reorganise the memory (e.g.
construct an activation record from local variables). This section explains how
to generalise this concept for symbolic expressions. It requires a careful handling
of undefined values undef(l) which are absent from the existing memory model.

5.1 Memory Injections in CompCert

In CompCert, a memory injection is a relation between two memories m1 and m2

parameterised by an injection function f:block → option location mapping
blocks in m1 to locations in m2. The injection relation is defined over values

Lemma expr_binop_ok_ptr : ∀ op v1 t1 v2 t2 m b o,
sem_binary_operation op v1 t1 v2 t2 m = �ptr(b,o)� → valid_ptr(m, b, o) →
∃ v’, sem_binary_operation_expr op v1 t1 v2 t2 m = �v’� ∧

normalise m v’ Ptr = ptr(b, o).

Fig. 3. Example of cross-validation of binary C operators.

76 F. Besson et al.

int main(){ int i=0, ∗p = &i ;
for (i=0; i < INTMAX; i++) i f (p++ == 0) return 1;
return 0; }

Fig. 4. A null pointer comparison glitch

(and called val inject) and then lifted to memories (and called inject). The
val inject relation distinguishes three cases:

1. For concrete values (i.e. integers or floating-point numbers), the relation is
reflexive: e.g. int(i) is in relation with int(i);

2. ptr(b, i) is in relation with ptr(b′, i + δ) when f(b) = �(b′, δ)�;
3. undef is in relation with any value (including undef).

The purpose of the injection is twofold: it establishes a relation between pointers
using the function f but it can also specialise undef by a defined value.

In CompCert, so-called generic memory injections state that every valid loca-
tion in memory m1 is mapped by function f into a valid location in memory
m2; the corresponding location in m2 must be properly aligned with respect
to the size of the block; and the values stored at corresponding locations must
be in injection. Among other conditions, we have that if several blocks in m1

are mapped to the same block in m2, the mapping ensures the absence of
overlapping.

5.2 Memory Injection with Symbolic Expressions

The Injection of Symbolic Expressions demands a generalisation because
undef is now parameterised by a location l. The function f is still present and
serves the same purpose. However, the injection must also be applied to unde-
fined values. Moreover, our generalised injection requires an explicit special-
isation function spe: location → option byte. Our injection expr inject
is therefore defined as the composition of the function apply spe spe which
specialises undef(l) into concrete bytes, and the function apply inj f which
injects locations. Both spe and f are partial functions. If spe(l)=∅, the unde-
fined location is not specialised. If f(b)=∅ and b appears in the expression, it
cannot be injected.
Definition expr_inject spe f e1 e2 := apply_inj f (apply_spe spe e1) = �e2 �.

Example 1. Consider the injection f and the specialisation functions spe and
spe’ defined by: f(b1) = �(b0, 1)�, spe(b1, 0) = �0� and spe’(b1, 0) = �1�. The
val inject relation (left column) between values becomes in our memory model
the following expr inject relation (right column).

val_inject f undef undef | expr_inject spe f undef(b1,1) undef(b0,2)
val_inject f undef int(0) | expr_inject spe f undef(b1,0) int(0)
val_inject f undef int(1) | expr_inject spe’ f undef(b1,0) int(1)
val_inject f ptr(b1,1) ptr(b0,2) | expr_inject spe f ptr(b1,1) ptr(b0,2)

A Concrete Memory Model for CompCert 77

Record inject spe f m1 m2 : Prop := { ...
mi_align: ∀ b b’ z, f b = �(b’, z)� →

alignt(m1, b) ≤ alignt(m2, b’) ∧ 2[alignt(m1,b)] | z;
mi_size_mem : size_mem m2 ≤ size_mem m1; }

Fig. 5. Memory injection: extra constraints

Injections of Memories. Like in the existing CompCert, the injection of values
is then lifted to memories. With our memory model, the properties of injections
need to be adapted to accommodate for symbolic expressions.

Alignment constraints are modelled in the existing CompCert as a property of
offsets. Roughly speaking, a value of size s bytes can be stored at a location (b, o)
such that the offset o is a multiple of s. For instance, an integer int(i) could be
stored at offsets 0, 4, 8, and so on. This model makes the implicit assumption
that memory blocks are always sufficiently aligned. In our model, blocks are
given an explicit alignment. As a result, we can precisely state that an injection
preserves alignement and is given by the mi align property of Fig. 5. Note that
the weaker formulation 2alignt(m1,b)|2alignt(m2,b′)+z is sound. However, the chosen
formulation has the advantage of being backward compatible with the existing
properties of offsets in CompCert.

The size constraint is evaluated using the size mem function that is the algo-
rithm used by the allocation function (see Sect. 3.2). This constraint ensures that
an injection is compatible with allocation as stated by the following lemma. The
hypothesis size mem m2 ≤ size mem m1 (called mi size mem in Fig. 5) ensures
that the block b2 can be allocated in memory m2.

Theorem alloc_parallel_inject : ∀ spe f m1 m2 lo hi m1’ b1,
0 ≤ lo ≤ hi → inject spe f m1 m2 → alloc m1 lo hi = �(m1’, b1)� →
∃ m2’, ∃ b2, alloc m2 lo hi=�(m2’,b2)� ∧ inject spe f[b1 → �(b2,0)�] m1’ m2’.

Absence of offset overflows. The existing formalisation of inject has a property
mi representable which states that the offset o+δ obtained after injection does
not overflow. With our concrete memory model, this property is not necessary
anymore as it can be proved for any injection.

5.3 Memory Injection and Normalisation

Our normalisation is defined w.r.t. all the concrete memories compatible with
the CompCert block-based memory (see Sect. 2.3). Theorem norm inject shows
that under the condition that all blocks are injected, if e and e′ are in injection,
then their normalisations are in injection too. Thus, the normalisation can only
get more defined after injection. This is expected as the injection can merge
blocks and therefore makes pointer arithmetic more defined. The condition that

78 F. Besson et al.

all blocks need to be injected is necessary. Without it, there could exist a concrete
memory cm’ in m’ without counterpart in m. The normalisation could therefore
fail when the expression would evaluate differently in cm’. A consequence of this
theorem is that the compiler is not allowed to reduce the memory usage.

Theorem norm_inject : ∀ spe f m m’ e e’ τ ,
all_blocks_injected f m → inject spe f m m’ → expr_inject spe f e e’ →
val_inject f (normalise m e τ) (normalise m’ e’ τ).

6 Proving the Front-End of the CompCert Compiler

The architecture of the front-end of CompCert is given in Fig. 6. The front-
end compiles CompCert C programs down to Cminor programs. Later compiler
passes are architecture dependent and are therefore part of the back-end. This
section explains how to adapt the semantics preservation proofs of the front-end
to our memory model with symbolic expressions.

CompCert C Clight C�minor Cminor
Side-effect

removal

Type

elimination

Stack frame

allocation

Fig. 6. Architecture of CompCert’s front-end

6.1 CompCert Front-End with Symbolic Expressions

The semantics of all intermediate languages need to be modified in order to
account for symbolic expressions. In principle, the transformation consists in
replacing values by symbolic expressions everywhere and introducing the normal-
isation function when accessing memory. In reality, the transformation is more
subtle because, for instance, certain intermediate semantic functions explicitly
require locations represented as pairs (b, o). In such situations, a naive solu-
tion consists in introducing a normalisation. This solution proves wrong and
breaks semantics preservation proofs because introduced normalisations may be
absent in subsequent intermediate languages. The right approach consists in
delaying normalisation as much as possible. Normalisations are therefore intro-
duced before memory accesses. They are also introduced when evaluating the
condition of if statements and to model the lazy evaluation of && and || opera-
tors. Using this strategy we have adapted the semantics (with built-in functions
as only external functions) of the 4 languages of the front-end.

In our experience, the difficulty of the original semantics preservation proofs
is not correlated with the difficulty of adapting the proofs to our memory with
symbolic expressions. For instance, the compilation pass from CompCert C to
Clight is arguably the most complex pass to prove; the proof is almost identical
with symbolic expressions. In the following, we focus on the two other passes
which stress different features of our memory model.

A Concrete Memory Model for CompCert 79

m1 m2

inject p f

m′
2

1
inject p f

m1

m′
2

inject p f

m′
1 ∃f ′, inject p f ′

2

1. allocation of stack frame
2. allocation of local variables

Fig. 7. Structure of match callstack alloc variables’s proof in CompCert

6.2 From Clight to C�minor

The compilation from Clight to C�minor translates loops and switch statements
into simpler control structures. This pass does not transform the memory and
therefore the existing proof can be reused. The pass also performs type-directed
transformations and removes redundant casts. For example, it translates the
expression p + 1 with p of type int * into the expression p + sizeof(int).
For the existing memory model, both expressions compute exactly the same
value. However, with symbolic expressions, syntactic equality is a too strong
requirement that needs to be relaxed to a weaker equivalence relation. A natural
candidate is the equality of the normalisation. However, this relation is too weak
and fails to pass the induction step. Indeed, when expressions e1 and e2 have the
same normalisation (v1 ≡ v2), it is not the case that opτ

1(v) ≡ opτ
1(v

′) when the
normalisations are undef. A stronger relation is the equality of the evaluation
of symbolic expressions in any concrete memory (compatible or not).

We lift the equivalence relation to memories in the obvious way. To carry
out the proof, we also extend the interface of the memory model and prove that
the memory operations are morphisms for the equivalence relation. With these
modifications, the compiler pass can be proved semantics preserving using the
existing proof structure.

6.3 From C�minor to Cminor

The compilation from C�minor to Cminor allocates the stack frame, thus trans-
forming significantly the memory. The stack frame is a single block and local
variables are accessed via offsets in this block. The proof introduces a mem-
ory injection stating how the blocks representing local variables in C�minor are
mapped into the single block representing the stack frame in Cminor.

The existing proof can be adapted with our generalised notion of injection
(see Sect. 5) with the notable exceptions of two intermediate lemmas whose
proofs need to be completely re-engineered. The problem is related with the
preservation of the memory injection when allocating and de-allocating the vari-
ables in C�minor and the stack frame in Cminor. The structure of the original

80 F. Besson et al.

Fig. 8. Variables on the left; stack frame on the right.

proof is depicted in Fig. 7 where plain arrows represent hypotheses and the dot-
ted arrow the conclusion. The existing proof first allocates the stack frame in
memory m2 to obtain the memory m′

2. It then establishes that the existing injec-
tion between the intial memories m1 and m2 still holds with the memory m′

2.
In a second step, the memory m′

1 is obtained by allocating variables in memory
m1 and the proof constructs an injection thus concluding the proof.

With our memory model, memory injections need to reduce the memory
usage – this is needed to ensure that allocations cannot fail. Here, this is obvi-
ously not the case because the memory m′

2 contains a stack frame whereas
the corresponding variables are not yet allocated in m1. Our modified proof is
directly by induction over the number of allocated variables. In this case, we
prove that if the variables do fit into memory, then so does the stack frame.
Note that to accommodate for alignment and padding the stack frame might
allocate more bytes than the variables. However, our allocation algorithm makes
a worst-case assumption about alignment and padding and therefore ensures
that there is enough room for allocating the stack frame. We therefore conclude
that the memories m′

1 and m′
2 are in injection.

At function exit, the variables and the stack frame are freed from memory.
As before, the arguments of the original proof do not hold with our memory
model. Once again, we adapt the two-step proof with a direct induction over the
number of variables. To carry out this proof and establish an injection we have
to reason about the relative sizes of the memories. We already discussed how the
allocation algorithm rules out the possibility for the stack frame not to fit into
the memory. Here, we have to deal with the opposite situation where the stack
frame could use less memory than the variables.

To avoid this situation, and facilitate the proof, our stack frame currently allo-
cates all the padding introduced when allocating the variables. This pessimistic
construction is depicted in Fig. 8 where thick lines identify block boundaries
and padding is identified by grey rectangles. It shows our injection of two 8-bits
character variables and a 32-bit integer variable into a stack frame.

We are currently investigating on how to give a finer account of the necessary
padding to avoid allocating too much memory for the stack frame. Yet, using
the strategy described above, we are able to complete the proof of the front-end
while reusing as much as possible the architecture of the existing proof.

7 Related Work

Examples of low-level memory models include Norrish’s HOL semantics for C [20]
and the work of Tuch et al. [21]. There, memory is essentially a mapping from

A Concrete Memory Model for CompCert 81

addresses to bytes, and memory operations are axiomatised in these terms. Rea-
soning about program transformations is more difficult than with a block-based
model; Tuch et al. use separation logic to alleviate these difficulties.

Memory models have been proposed to ease the reasoning about low-level
code. VCC [7] generates verification conditions using an abstract typed memory
model [8] where the memory is a mapping from typed pointers to structured
C values. This memory model is not formally verified. Using Isabelle/HOL,
Autocorres [10,11] constructs provably correct abstractions of C programs. The
memory models of VCC [8] and Autocorres [11] ensure separation properties
of pointers for high-level code and are complete w.r.t. the concrete memory
model. For the CompCert model [18], separation properties of pointers are for
free because pointers are modelled as abstract locations. For our symbolic exten-
sion, the completeness (and correctness) of the normalisation is defined w.r.t.
a concrete memory model and therefore allows for reasoning about low-level
idioms.

Several formal semantics of C are defined over a block-based memory model
(e.g. [9,15,17]). The different models differ upon their precise interpretation of
the ISO C standard. The CompCert C semantics [5] provides the specification
for the correctness of the CompCert compiler [17]. CompCert is used to compile
safety critical embedded systems [2] and the semantics departs from the ISO
C standard to capture existing practices. Our semantics extends the existing
CompCert semantics and benefits from its infrastructure.

Krebbers et al. also extend the CompCert semantics but aim at being as
close as possible to the C standard [16]; he formalises sequence points in non-
deterministic programs [15] and strict aliasing restrictions in union types of
C11 [14]. This is orthogonal to the focus of our semantics which gives a meaning
to implementation defined low-level pointer arithmetic and models bit-fields.
Most recently, Kang et al. [13] propose a formal memory model for a C-like
language which allows optimisations in the presence of integer-pointer casts.
Pointers are kept logical until they are cast to integers, then a concrete address
is non-deterministically assigned to the block of the pointer. Their semantics of
C features non-determinism while determinism is a crucial feature of our model.

8 Conclusion

This work is a milestone towards a CompCert compiler proved correct with
respect to a more concrete memory model. Our formal development adds about
10000 lines of Coq to the existing CompCert memory model. A side-product of
our work is that we have uncovered and fixed a problem in the existing semantics
of the comparison with the null pointer. We are very confident that this is the
very last remaining bug that can be found at this semantics level. We also prove
that the front-end of CompCert can be adapted to our refined memory model.
The proof effort is non-negligible: the proof script for our new memory model is
twice as big as the existing proof script. The modifications of the front-end are
less invasive because the proof of compiler passes heavily rely on the interface of
the memory model.

82 F. Besson et al.

As future work, we shall study how to adapt the back-end of CompCert. We
are confident that program optimisations based on static analyses will not be
problematic. We expect the transformations to still be sound with the caveat
that static analyses might require minor adjustments to accommodate for our
more defined semantics. A remaining challenge is register allocation which may
allocate additional memory during the spilling phase. An approach to solve this
issue is to use the extra-memory that is available due to our pessimistic construc-
tion of stack frames. Withstanding the remaining difficulties, we believe that the
full CompCert compiler can be ported to our novel memory model. This would
improve further the confidence in the generated code.

References

1. Companion website. URL: http://www.irisa.fr/celtique/ext/new-mem
2. França, R.B., Blazy, S., Favre-Felix, D., Leroy, X., Pantel, M., Souyris, J.: Formally

verified optimizing compilation in ACG-based flight control software. In: ERTS2
(2012)

3. Besson, F., Blazy, S., Wilke, P.: A precise and abstract memory model for C using
symbolic values. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 449–468.
Springer, Heidelberg (2014)

4. Blazy, S.: Experiments in validating formal semantics for C. In: C/C++ Verifica-
tion Workshop. Raboud University Nijmegen report ICIS-R07015 (2007)

5. Blazy, S., Leroy, X.: Mechanized Semantics for the Clight Subset of the C Language.
J. Autom. Reasoning, 43(3), 263–288 (2009)

6. Clements, A.T., Kaashoek, M.F., Zeldovich, N., Morris, R.T., Kohler, E.: The
scalable commutativity rule: designing scalable software for multicore processors.
In: SOSP. ACM (2013)

7. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

8. Cohen, E., Moskal, M., Tobies, S., Schulte, W.: A precise yet efficient memory
model for C. ENTCS 254, 85–103 (2009)

9. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
POPL. ACM (2012)

10. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: automatic verified
abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 99–115. Springer, Heidelberg (2012)

11. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff:
formal verification of C code without the pain. In: PLDI. ACM (2014)

12. Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified C
static analyzer. In: POPL (2015)

13. Kang, J., Hur, C.-K., Mansky, W., Garbuzov, D., Zdancewic, S., Vafeiadis, V.: A
formal C memory model supporting integer-pointer casts. In: PLDI. ACM (2015)

14. Krebbers, R.: Aliasing restrictions of C11 formalized in Coq. In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 50–65. Springer, Heidelberg
(2013)

15. Krebbers, R.: An operational and axiomatic semantics for non-determinism and
sequence points in C. In: POPL. ACM (2014)

http://www.irisa.fr/celtique/ext/new-mem

A Concrete Memory Model for CompCert 83

16. Krebbers, R., Leroy, X., Wiedijk, F.: Formal C semantics: CompCert and the C
standard. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 543–548.
Springer, Heidelberg (2014)

17. Leroy, X.: Formal verification of a realistic compiler. C. ACM 52(7), 107–115 (2009)
18. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model. In:

Program Logics for Certified Compilers. Cambridge University Press (2014)
19. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for

verifying program transformations. J. Autom. Reasoning 41(1), 1–31 (2008)
20. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
21. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: POPL.

ACM (2007)
22. Wang, X., Chen, H., Cheung, A., Jia, Z., Zeldovich, N., Kaashoek, M.: Undefined

behavior: What happened to my code? In: APSYS 2012 (2012)
23. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C

compilers. In: PLDI. ACM (2011)

Validating Dominator Trees for a Fast, Verified
Dominance Test

Sandrine Blazy1(B), Delphine Demange1(B), and David Pichardie2(B)

1 Université Rennes 1 - IRISA - Inria, Rennes, France
{sandrine.blazy,delphine.demange}@irisa.fr
2 ENS Rennes - IRISA - Inria, Rennes, France

david.pichardie@irisa.fr

Abstract. The problem of computing dominators in a control flow
graph is central to numerous modern compiler optimizations. Many effi-
cient algorithms have been proposed in the literature, but mechanizing
the correctness of the most sophisticated algorithms is still considered
as too hard problems, and to this date, verified compilers use less opti-
mized implementations. In contrast, production compilers, like GCC or
LLVM, implement the classic, efficient Lengauer-Tarjan algorithm [12],
to compute dominator trees. And subsequent optimization phases can
then determine whether a CFG node dominates another node in con-
stant time by using their respective depth-first search numbers in the
dominator tree. In this work, we aim at integrating such techniques in
verified compilers. We present a formally verified validator of untrusted
dominator trees, on top of which we implement and prove correct a fast
dominance test following these principles. We conduct our formal devel-
opment in the Coq proof assistant, and integrate it in the middle-end
of the CompCertSSA verified compiler. We also provide experimental
results showing performance improvement over previous formalizations.

1 Introduction and Related Work

Given a control flow graph (CFG) with a single entry node, computing domina-
tors consists in determining, for each node in the graph, the set of nodes that
dominate it. Informally, a node d dominates another node n if d belongs to every
path from the entry node to n. The problem of computing dominators is ubiq-
uitous in computer science, and occurs in applications ranging from program
optimization, to circuit testing, analysis of component systems, and worst-case
execution time estimation.

Since 1972, this problem has been extensively studied. Many algorithms have
been proposed, trading-off ease of implementation and efficiency. The natural
formulation of the problem as data-flow equations is due to Allen and Cocke [1].
It can be directly implemented using an iterative Kildall algorithm, but suffers,
in this case, from a quadratic asymptotic complexity. Cooper et al. [4] present

This work was supported by Agence Nationale de la Recherche, grant number ANR-
14-CE28-0004 DISCOVER.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 84–99, 2015.
DOI: 10.1007/978-3-319-22102-1 6

Validating Dominator Trees for a Fast, Verified Dominance Test 85

another iterative solution for this equation system, based on a more compact
representation of dominator sets (only the immediate dominator, i.e. the closest
dominator, is computed for each node), and a careful implementation, leading
to better performance in practice, despite the same worst-case bound time as
[1]. To date, the most popular algorithm remains the one by Lengauer-Tarjan
[12], which, as Cooper et al. algorithm, computes a compact representation
of the dominance relation (namely the dominator tree). But this sophisticated
algorithm relies on depth-first search (DFS) spanning tree of the CFG with
elaborate path compression and tree balancing techniques to achieve a stunning
near-linear complexity. We refer the interested reader to [16] for a more complete
survey of the numerous algorithms proposed so far in the literature, and to [10]
for a thorough experimental study comparing the leading algorithms.

We consider the problem of dominators in the specific context of compilation,
where dominators allow, for instance, the implementation of a variety of power-
ful and efficient program optimizations (e.g. loops optimization or global code
motion), and the construction of the SSA form [5], an intermediate representa-
tion of code that is specially tailored towards program optimization. Production
compilers, like GCC or LLVM, implement the classic, efficient Lengauer-Tarjan
algorithm [12], to compute dominator trees. Subsequent optimization phases
can then determine whether a node dominates another node in constant time by
using their respective DFS traversal numbers in the dominator tree.

Specifically, the present work is part of a compiler verification effort, where an
(optimizing) compiler must be formally proved to preserve the program behaviors
along the compilation chain, i.e. the generated code behaves as prescribed by the
semantics of the source program, if any. In this context, correctly implementing
a time- and space-efficient dominator algorithm is not sufficient; one has to
formally prove its correctness. We are not aware of any formal verification of the
dominator problem outside of the field of compiler verification. Further, faced
with this technical difficulty, existing verified compilers either ignore dominators,
or implement simplified and under-optimized versions of dominator algorithms.

For instance, the CompCert C compiler [13,14] is not based on any SSA form
for performing code optimization, and no global optimization uses explicit dom-
inance information. The CompCertSSA project extends the CompCert compiler
with an SSA-based middle-end. The SSA generation algorithm [2] is proved
by a posteriori validation of an external checker. Although we prove that the
checker ensures the strictness of the SSA generated function (that is, each vari-
able use is dominated by its definition), the checker implementation (a simple,
non-iterative, CFG traversal) and soundness proof do not rely on the compu-
tation of dominators. The only phase of the CompCertSSA middle-end that
depends on such a computation (that we would like to be efficient) is a common
sub-expression elimination (CSE) optimization based on Global Value Number-
ing (GVN). It discovers equivalence classes between program variables, where
variables belonging to the same class are supposed to evaluate to the same value.
Its implementation, presented in [7], closely follows the choices made in produc-
tion compilers, and performs some dominance test requests to make sure that the

86 S. Blazy et al.

chosen representative of a variable class dominates the definition point of that
variable. To date, this dominance test was implemented (and proved directly)
with a simple Allen and Cocke algorithm, using a Kildall workset algorithm,
thus impacting the performance of our middle-end.

Another SSA-based verified compiler is Vellvm. Zhao et al. [18,20] formalize
the LLVM SSA intermediate form and its generation algorithm in Coq. Their
work follows closely the LLVM design and their verified transformation can be
run inside the LLVM platform itself. Zhao et al. [19] formalize in Coq a fast
dominance computation based on the Cooper et al. algorithm [4], but their
algorithm is, for verification purposes, a simplified version of the initial algo-
rithm. This is a non-trivial formalization work that also proves in Coq the com-
pleteness of the dominance relation computation, an interesting and difficult
problem in itself. However, this work does not focus on compilation time. Other
CPS or ANF-based verified compilers for functional languages [3,6] implement
simple optimizations that do not require dominance information, although their
(unverified) peers, like MLton, benefit from dominators for, e.g. contification [8]
for inter-procedural optimization.

Facing the conceptual complexity of the most clever variants for computing
dominators, there has been a growing interest in proposing ways of checking
their results. Georgiadis et al. [11] propose a linear-time checker of the domina-
tor tree, based on the notions of headers and loop nesting forests. Georgiadis et
al. [9] propose a linear-time certifying algorithm, producing a certificate (a pre-
order of the vertices of the dominator tree, with a so-called property low-high),
that helps simplifying the checking process. Despite that checking the low-high
property on the certificate is straightforward, and easily implemented in linear
time, linking the low-high property back to the immediate dominance relation
(via the concepts of strongly independent spanning trees) remains quite involved.
As a matter of fact, to date, these two recent, sophisticated algorithms are still
out of the reach of mechanized developments.

In our context of verified compilation, we need two things: compute efficiently
the dominance relation, and represent this relation in a compact way, so that the
dominance test can be implemented efficiently. Note however that mechanically
verifying (or validating) the dominator tree remains, for the time being, unessen-
tial. Hence, we believe that the technique used in GCC and LLVM, i.e. comput-
ing a dominator tree using Lengauer-Tarjan’s algorithm, and then fast-checking
dominance with an ancestor test in the DFS numbering of the dominator tree,
provides a, perhaps more modest, yet viable, trade-off between efficiency and
verifiability. We argue that this technique can also be applied to verified com-
pilers, by relying on an a posteriori validation approach. We present a formally
verified validator of untrusted dominator trees, on top of which we implement
and prove a fast dominance test that follows these principles.

Contributions. After recalling the technical background on dominators and the
main algorithms (Sect. 2), we present the following contributions.
– A new, simple and verified validator for the dominance relation (Sect. 3), which

leads to a formally verified implementation of a dominance test technique

Validating Dominator Trees for a Fast, Verified Dominance Test 87

used in production compilers. The heart of the validator algorithm is our
own contribution but it is mixed with well-known graph algorithms for fast
ancestor checking. This paper presents, to our knowledge, the first verification
of these kinds of techniques.

– Empirical evidence that this technique allows, in practice, a non-negligible
performance gain, even in the context of verified compilers (Sect. 4).

– The integration of this dominance computation and dominance test within the
CompCertSSA verified compiler. Our formal development and experiments are
available online at http://www.irisa.fr/celtique/ext/ssa dom/.

2 Technical Background and Overview of Algorithms

In this section, we recall the technical background on dominance, together with
standard techniques to compute this relation. We also present how dominance
and dominance testing is implemented in modern compilers.

2.1 Definitions

A control flow graph G = (N,E, e) is defined as an oriented graph, i.e. a set of
nodes N , a set of edges E, and a distinguished entry node e ∈ N (that is not
the successor of any other node). In the following, we depict an edge connecting
node i ∈ N to j ∈ N by i → j.

Definition 1 (Dominance relation). A node d dominates a node n if n is
reachable from the graph entry node and if any path from the entry point to n
contains d. If d �= n, the dominance is said to be strict.

For every node n (except the entry e), the set sdom(n) of nodes that strictly
dominate n, contains a node idom(n) that is dominated by every other nodes
in sdom(n) [12]: the immediate dominator. As an extra important corollary, the
immediate dominance relation can be represented as a tree [12].

Definition 2 (Dominator tree). The dominator tree of a CFG is a tree whose
nodes are the nodes of the CFG, and where the children of a node are all the
nodes that it immediately dominates.

Figure 1 shows an example of a CFG and its dominator tree. For instance,
in the CFG, node 10 is dominated by node 15, since all paths from the entry
node 17 to node 10 must go through 15. Hence, in the dominator tree, node 10
must have node 15 as an ancestor. However, 15 is not the immediate dominator
of node 10, it is node 13: indeed, in the set sdom(10) = {17, 16, 15, 14, 13}, node
13 is the one dominated by every other node in the set. Hence, node 10 is a child
of node 13 in the dominator tree.

http://www.irisa.fr/celtique/ext/ssa_dom/

88 S. Blazy et al.

Fig. 1. Left: example CFG, with entry point 17, and nodes ordered in reverse post-
order (on the left). Center: its dominator tree (where, if i has j as a child, then i is
the immediate dominator of j). Right: dominator tree (solid arrows), annotated with
a DFS traversal (dotted arrows), and its corresponding DFS intervals (see Sect. 2.3).

2.2 Standard Techniques for Computing Dominance

Allen-Cocke (AC) Standard Data-Flow Analysis [1]. The AC algorithm is based
on the following fixpoint characterization of dominance.

dom(n) = {n} ∪
⋂

n′→n

dom(n′) (1)

Intuitively, it captures that every strict dominator of a node n must also
dominate every n’s predecessors in the CFG. Such fixpoint equation can be solved
using a workset fixpoint iteration à la Kildall. As is typical for forward data-flow
problems, the fixpoint resolution is speeded up if at each workset iteration we
choose the node with the lowest rank with respect to a reverse postorder ordering
on the CFG (a node is visited before any of its successor nodes has been visited,
except when the successor is reached by a back edge). A direct implementation
is quadratic in the number of nodes, or O(|N |2).

Cooper-Harvey-Kennedy (CHK) Algorithm [4]. The CHK dominance computa-
tion improves Allen-Cocke data-flow approach using the following properties.
First, dominator sets can be characterized by the immediate dominator table.

∀n,∃k, dom(n) = {n, idom(n), . . . , idomk(n)} (2)

CHK can be understood as a variation of the previous approach where dominance
sets are implicitly represented by the immediate dominator tree. Using reverse

Validating Dominator Trees for a Fast, Verified Dominance Test 89

postorder ordering, by noticing that ∀n, n ≺rpo idom(n), set intersection can be
performed in an efficient way because if dom(a)∩dom(b) �= ∅, then the resulting
set is a prefix of both dom(a) and dom(b) [4]. This algorithm performs better in
practice than AC, but follows the same O(|N |2) asymptotic time complexity.

Lengauer-Tarjan (LT) Algorithm [12]. Modern compilers implement dominance
using the LT algorithm. It uses depth-first search and union-find data structures
to achieve an asymptotic complexity of O(|N |log|N |+|E|). It relies on the subtle
notion of semi-dominator which provides a convenient intermediate step in the
dominators computation. An amortized quasi-linear complexity can be obtained
using path compression but it does not seem to be implemented in practice.

2.3 Modern Implementation of Dominance Test in Compilers

As explained above, modern compilers such as GCC or LLVM implement domi-
nance following the LT algorithm. Once they obtain a dominator tree (as shown
in Fig. 1), they pre-process it to obtain a constant-time dominance test. The
dominance between two nodes d and n can be determined by testing if the node
d is an ancestor of n in the dominator tree. For instance, in Fig. 1, node 15
dominates node 10 because there is an upward path from 10 to 15 in the tree.

This test can be performed in constant time thanks to a linear pre-
computation (on the |N | − 1 edges of the dominator tree). For each node, one
computes a depth-first search interval I(n) = [d(n), f(n)] where d(n) is the dis-
covery time of node n during the traversal (the first time n exists in the DFS
stack) and f(n) is the finishing time (the time where all sons of n have been
processed) [17]. In a direct acyclic graph, d is an ancestor of n if and only if
I(n) ⊆ I(d). Figure 1 shows, on the right, the results of such an interval com-
putation: intervals bounds are determined according to the starting and ending
time clocks when depth-first traversing the tree. There, the fact that 15 domi-
nates node 10 is obtained by observing that interval I(10) = [21, 22] is included
in I(15) = [2, 31].

As a result of this pre-computation with complexity O(|N |log|N | + |E|), a
constant time dominance can be obtained by storing the intervals information
in adequate data structures.

3 Validator and Proof of Dominance Test

Our formalization is done on top of an abstract notion of CFG. Such a graph is
defined as follows by an entry node and a set of edges.

Variable entry : node.

Variable cfg : node → node → Prop.

In the sequel, reached : node→Prop is a predicate characterizing the set of nodes
that are reachable, via cfg, from the node entry, and dom : node→node→Prop

denotes the dominance relation that is defined using a standard definition of
CFG paths.

90 S. Blazy et al.

In this section, we assume that an external tool computes a list dt_edges

that contains the reversed edges of the candidate dominator tree (i.e. the pair
(i,j) represents that, in the candidate dominator tree, i is a child of j, or that
j immediately dominates i).

Variable dt_edges : list (node * node).

We then validate this list and build a dominance test, implemented by the
function test_dom : node→node→bool that satisfies the following theorem:

forall i j, reached j → test_dom i j = true → dom i j.

In the rest of this section, we proceed in three steps. First, we give a domina-
tor map D : node→node (extracted from dt_edges), a specification that entails
dominance. Then, we provide an efficient procedure to test whether a node is a
descendant of another in the dominator tree (encoded morally in D). This pro-
cedure is used twice: for checking that D meets its specification, and in the final
implementation of the dominance test, test_dom.

3.1 Validation of Dominator Tree

In this section, we assume a dominator map D:node→node that provides an
(immediate) dominator candidate for each node. We will explain in Sect. 3.4
how we build D from the list dt_edges. We provide a formal specification for
D and prove it entails dominance. Note that we do not prove that it implies
immediate domination, as this is not required in our final soundness theorem1.

The specification, inspired from Eqs. (1) and (2), is defined as follows.

Record D_spec := { D_entry : D entry = entry;

D_cfg : forall i j, cfg i j → Dstar i (D j) }.

where (Dstar i j) holds whenever j is of the form Dk(i), for some k. Formally:

Inductive Dstar : node → node → Prop :=

| D_refl : forall i, Dstar i i

| D_trans: forall i j, Dstar i j → Dstar i (D j).

We then prove, quite straightforwardly, that D_spec implies dominance by
induction on the definition of predicate reached.

Theorem D_spec_correct : D_spec →
forall i j, reached i → Dstar i j → dom j i.

Hence, we can validate the map D if we manage to check that it satisfies the
specification D_spec. Interestingly, we need an executable version of the Dstar

relation for two distinct usages. First we want to validate D_spec on D. Second,
we want to implement a dominance test using Dstar.

1 Such a property would be required to prove completeness: if a node d dominates
a node n then the dominance test on (d, n) should succeed. To our experience in
verified compilation, we never make usage of such a completeness property. The
property holds, but we do not need to prove it in Coq.

Validating Dominator Trees for a Fast, Verified Dominance Test 91

3.2 Ancestor Test in the Dominator Tree

In this section we assume an acyclic oriented graph2, defined by an entry node
and a map, sons, from nodes to the list of their successors3. We will later relate
this graph with our dominator tree.

Variable entry: node. (* entry node *)

Variable sons : PTree.t (list node). (* adjacency map *)

As outlined in Sect. 2.3, the ancestor test consists in performing a depth-first
traversal of the graph, starting from entry, and using a traversal clock, that
increases each time a node is encountered (by visiting it or by marking it). We
compute for each node n, an interval I(n) = [d(n), f(n)] where d(n) is the value
of the clock when node n was first encountered, and f(n) is the value of the
clock when all successors of n have been processed. If the graph is acyclic and
each node is reachable from entry, we can use these intervals to perform efficient
ancestor tests [17]: there exists a path from n to m in the graph if and only
if I(m) ⊆ I(n). For our purpose, we only need to prove that this condition is
sufficient. We define intervals, intervals inclusion and our efficient ancestor test
in an interval map as follows.4

Record itv := { pre: Z; post: Z }.

Definition itv_Incl (i1 i2:itv) : Prop :=

i2.(pre) <= i1.(pre) /\ i1.(post) <= i2.(post).

Definition is_ancestor (itvm: PTree.t itv) (n1 n2:node) : bool :=

match itvm!n1, itvm!n2 with

| Some i1, Some i2 ⇒ itv_Incl i2 i1

| _, _ ⇒ false

end.

Now, to state the correctness of our interval computation, we specify a notion
of ancestor called InSubTree. A node r is an ancestor of n (or equivalently n
belongs to a subtree whose root is r) if n = r or there exists a successor s of n
such that s is an ancestor of n.

Inductive InSubTree (r:node) : node → Prop :=

|InSubTree_root: InSubTree r r

|InSubTree_sons: forall n s, InSubTree s n→In s (sons r)→InSubTree r n.

The interval map is computed by the function build_itv that performs the
recursive DFS traversal of the graph, accumulating in a record of type state,
the current interval map, and the current time clock.

Record state := { itvm: PTree.t itv; (* the interval map *)

next: Z (* the current time *) }.

2 Not to be confused with the control flow graph here.
3 PTree is a dictionary implementation using Patricia trees provided in CompCert.

Type (Ptree.t a) denotes an associative, partial map with keys of type positive –
binary encoding of strictly positive integers – with associated data of type a. In this
paper, types node and positive are synonyms.

4 We write m!n the lookup of a key n in a map m.

92 S. Blazy et al.

Note that, to ensure termination of build_itv_rec, we use a fuel auxiliary
argument, i.e. a natural number counter decreasing at each recursive call. The
fuel argument is useful not only to avoid proving termination, but also, and more
crucially, to get a useful induction principle on the next inductive predicate.

Definition build_itv (fuel:nat) : option state := build_itv_rec

entry (* start traversing the graph at entry node *)

{| itvm := PTree.empty _; next := 0 |} (* initial state *)

fuel. (* initial fuel *)

Fixpoint build_itv_rec (n:node) (st:state) (fuel:nat) : option state :=

match fuel with

| O ⇒ None (* no more fuel, abort computation *)

| S fuel ⇒
let pre_n := st.(next) in (* current time when we reach node n *)

match fold_left (fun ost s ⇒ (* we process each successor *)

match ost with

| None ⇒ None

| Some st ⇒ build_itv_rec s st fuel

end)

(sons n)

(Some {| itvm := st.(itvm); next := st.(next)+1 |})

with

| None ⇒ None

| Some st ⇒ (* if no fuel error occurred, we extract st.(next) *)

(* to build the last component of n’s interval *)

let itv_n := {| pre := pre_n; post := st.(next) |} in

Some {| itvm := PTree.set n itv_n st.(itvm); next := st.(next)+1 |}

end

end.

The correctness theorem of build_itv states that, in the resulting interval map
st.itvm, interval inclusion implies an ancestor relationship in the tree.

Theorem build_itv_correct : forall fuel,

NoRepetTreeN entry (S fuel) →
forall st, build_itv fuel = Some st →
forall n1 n2 itv1 itv2,

st.(itvm)!n1 = Some itv1 → st.(itvm)!n2 = Some itv2 →
itv_Incl itv1 itv2 → InSubTree n2 n1.

As can be seen, this theorem is proved under the hypothesis that the graph
is well-formed, namely that it does not contain duplicates or crossing edges, as
expressed by predicate NoRepetTreeN, whose formal definition is the following.

Inductive NoRepetTreeN (r:node) : nat → Prop :=

| NoRepetTreeN0: NoRepetTreeN r O

| NoRepetTreeN_sons: forall k,

(forall s, (* sons are well formed *)

In s (sons r) → NoRepetTreeN s k) →
(forall s, (* r does not appear in any of its subtrees *)

In s (sons r) → ¬ InSubTree s r) →
(forall s1 s2 n, (* r’s subtrees do not intersect *)

Validating Dominator Trees for a Fast, Verified Dominance Test 93

In s1 (sons r) → InSubTree s1 n →
In s2 (sons r) → InSubTree s2 n → s1=s2) →

(list_norepet (sons r)) → (* r’s sons don’t have duplicates *)

NoRepetTreeN r (S k).

The definition of NoRepetTreeN is staged, i.e. indexed by a natural number. This
level in the definition (that coincides with the height of the tree under considera-
tion) provides a nice induction principle when combined with the fuel argument
of function build_itv. Without such a trick, Coq does not generate a useful
induction principle.

We prove build_itv_rec correctness using several auxiliary invariants,
notably that the clocks are monotonic, that computed intervals are never empty,
and that in a given subtree, computed intervals are included in the interval of
the root of the subtree.

3.3 Well-Formed Graph Construction

This section explains how we relate the list dt_edges that contains the edges of
the dominator tree, with the immediate dominator map D we use in Sect. 3.1,
and the graph representation used in Sect. 3.2. We not only build a map of suc-
cessors, but also check sufficient conditions enforcing the NoRepetTreeN property
presented previously.

Starting from the list dt_edges, we straightforwardly build a map D from
nodes to their immediate dominator candidate with the function make_D_fun of
type make_D_fun (dt_edges:list (node*node)) : node → node. If a node is not
in the association list dt_edges, its (correct) immediate dominator is set to itself.

In a similar way to the construction of the candidate dominator tree from
dt_edges, we also define the function build_succs of type

build_succs (dt_edges:list (node * node)): option (PTree.t (list node))

that performs a reverse topological sort to build a map that associates to each
node the (candidate) list of immediately dominated nodes. Function build_succs

somewhat builds the inverse of the map D. Its correctness theorem states that
the output successor tree, if any, is well-formed.

Theorem build_succs_no_repet : forall dt_edges sn,

build_succs dt_edges = Some sn →
forall fuel, NoRepetTreeN (sons sn) entry (S fuel).

This theorem follows from the checks performed during the computation of
build_succs. Indeed, in its signature, the option type of the result represents
a validation failure.

Theorem build_succs_correct_tree : forall dt_edges sn,

make_D_fun dt_edges = D → build_succs dt_edges = Some sn →
forall i j, In j (sons sn(i)) → D j = i.

During the traversal of dt_edges, we check that it contains no edge of the
form (n,n), and that, when processing an edge (n,d), i.e. adding n to the list

94 S. Blazy et al.

Fig. 2. Dominance test construction

of successors of node d, node d was already seen (i.e. is already a key in the
tree), and that node n has not yet been seen. Hence, to be accepted by the
validator, the provided list dt_edges should be topologically sorted, and by the
same validation, we ensure there is no loop in the graph. For further details, we
refer the reader to the formal development available online.

3.4 Final Construction

The final dominance test computation is given in Fig. 2. It takes as input a
program represented by its CFG (more precisely any function of this program)
and combines the various functions presented earlier. It is proved correct with
the following theorem.

Theorem dom_test_correct : forall f test_dom,

compute_test_dom f = Some test_dom →
forall i j, reached f j → test_dom i j = true → dom f i j.

We now discuss its asymptotic complexity. If N denotes the number of nodes
in the CFG, and E the number of edges, then the asymptotic complexity of this
computation is as follows.

– The list dt_edges has length N −1 (every node, except the entry, has a unique
immediate dominator).

– The map make_D_fun dt_edges is computed with 1 traversal of dt_edges and 1
map update is performed at each step. The overall complexity is O(N logN).

Validating Dominator Trees for a Fast, Verified Dominance Test 95

– build_succs is computed with one traversal of dt_edges and several set
and map updates are performed at each step. The overall complexity is
O(N logN).

– Intervals are built with a traversal of a graph with N nodes and N − 1 edges
(this is a tree). At each step, some map updates are performed. The overall
complexity is O(N logN).

– One ancestor test requires two map lookups and some integer comparisons.
Each integer5 is between 0 and 2N − 1. The overall complexity of an ancestor
test is O(log(N)).

– Dominance tree validation requires, for each edge in the CFG, one ancestor
test and some map lookups. The overall complexity of this step is O(E log(N)).

Overall, the dominance tree pre-computation follows an asymptotic com-
plexity of 3O(N log(N)) +O(E log(N)) = O(E log(N)) (N ≤ E as all nodes are
reachable from the entry) and the generated dominance test requires O(log(N))
computations.

As will be explained in the next section, we also provide a native version of the
implementation, that uses native integers for graph nodes and interval bounds.
It does not improve the asymptotic time complexity of the whole dominance test
construction, but it enables a constant time dominance test since interval lookup
is as fast as an array access and interval test inclusion requires four comparisons
between native integers.

4 Experimental Results

Implementations. We compare experimentally the following dominance tests:

I-CHK. This is the implementation of the CHK algorithm available from the
Vellvm project [19]. To be able to plug it inside our middle-end, we have per-
formed the slightest adaptation possible (essentially by-passing the abstract
data-type of atoms and making them be bare positive; these are used to
define program points in the CFG). We have kept the choices of data-
structures used in their available development.

I-ACZ. This is the implementation of the AC algorithm available from the
Vellvm project [19]. We performed the same adaptations as in I-CHK.

I-AC. This is the implementation of the AC algorithm initially available in
CompCertSSA [2,7]. The implementation uses a classical Kildall workset
algorithm for solving the data-flow equations, and its correctness is proved
directly (no a posteriori validator). The CFG is stored in a PTree mapping to
every node in the graph, the list of its successors. The Kildall solver, taken
directly from CompCert, uses a Coq implementation of a heap data structure
(splay tree). Dominator sets are implemented using PTree while I-ACZ [19]
uses unsorted lists.

I-DT. This is the implementation presented in the previous section of this paper.
Its correctness is partly validated, partly verified. The CFG and dominance
test computation use PTree. The external computation of the dominator tree
is done in OCaml, using the LT algorithm on arrays, for more efficiency.

5 Recall that we rely on the standard implementation of positive integers, positive.

96 S. Blazy et al.

Table 1. Benchmarks description (lines of codes and categories of function sizes)

I-DT-NAT. Same as I-DT, but in native mode. The CFG of the function and
the dominance test computation use Patricia trees [15] on OCaml integers,
and the pre-computed dominance test is stored in an OCaml array to allow
for a constant time access. Dominator test is constant time.

I-LLVM. This is the OCaml-only version of the algorithm presented in the
previous section, without a posteriori validation. The CFG is stored in a
PTree. The dominator tree is computed using mutable OCaml data-structures
(arrays and stacks), for more efficiency. Interval are stored in a mutable
array but since graph nodes are encoded as Coq binary numbers (positive),
dominator test is O(log |N |) instead of constant time.

I-LLVM-NAT. Same as I-LLVM, except that the CFG of the function and the
dominance test computation use arrays. Dominator test is constant time.
This provides a lower bound of the performance we could aim to achieve.

I-CHK, I-ACZ, and I-AC represent the state-of-the-art of mechanically verified
dominance test (with a direct correctness proof and no extra validator).

Benchmarks. We plug each implementation in our SSA middle-end by extracting
its Coq implementation into OCaml code, and running it on some realistic C
program benchmarks, described in Table 1, taken from the CompCert test suite,
the SPEC2006 benchmarks and WCET-related reference benchmarks. These
represent around 192,600 lines of C code, each program ranging from thousands
of lines of C code, to tens of thousands.

To evaluate the scalability of the implementations in extreme conditions, we
force the compiler to always inline functions with a CFG size below 1000 nodes.
We classify some of our results by categories of function size, i.e. the number of
CFG nodes of its SSA form (see Table 1). We also present some global results,
categorized by programs. Experiments were run on a MacBook OSX 10.8.5,
2.3 GHz Intel Core i7, 8 GB 1600 MHz DDR3.

Measures and Results. To evaluate and compare the dominance test implementa-
tions, we measure both the building time of the dominance test, and its practical
cost in time, when using it.6 Results are presented in Figs. 3 and 4.

6 The impact of building and using the dominance test is currently negligible compared
to the whole compilation time, as, currently, certain compiler passes (such as the SSA
deconstruction) would need performance improvement.

Validating Dominator Trees for a Fast, Verified Dominance Test 97

Fig. 3. Building (left) and using (right) times, by function size (the average time for
each category). For I-ACZ, we set a time-out of 2 s for building the dominance test
of one program function. Because of these time-outs, we do not show using times for
I-ACZ (in practice, they are similar to, or higher than the ones for I-CHK).

Fig. 4. Total building (top) and using (bottom) time overheads, relatively to the I-
DT-NATIVE implementation, classified by programs.

98 S. Blazy et al.

The building time of the dominance test is the time, in seconds, required
to compute the function test_dom: node → node → bool. For I-DT, and I-DT-
NAT, this includes the validation time. As for the using time of dominance
tests, we measure for each function the time, in micro-seconds, spent in execut-
ing dominance test requests. To avoid glitches in the measures of so small values,
we performed 5 times the measures for all tests, and kept the lowest value. The
collection of dominance tests is the same for all implementations, these are the
ones required by our GVN-based CSE optimization (see Sect. 1). It is worth not-
ing that our GVN-CSE performs the exact same set of requests to the dominance
test, independently of the implementation that is used. Additionally, on this set
of dominance test requests, we have checked that the various implementations
were returning the same verdict (thus establishing their relative correctness and
completeness one to each other).

In Figs. 3 and 4, we observe that I-DT performs significantly better than
I-AC, I-ACZ, I-CHK for the building time. Setting I-DT to native mode (I-
DT-NAT) improves performance. Comparing building times for I-LLVM against
I-DT, and I-LLVM-NAT against I-DT-NAT gives a good estimate of the cost of
the validator. In terms of using time, we do not observe so much a big differ-
ence between I-DT and I-AC. This is as expected, given that both implementa-
tions require PTree accesses. I-ACZ and I-CHK provide much slower dominance
test because dominator sets are represented by lists. In Fig. 3, for using time,
we observe a constant time for I-DT-NAT and I-LLVM-NAT thanks to arrays
accesses. I-DT and I-LLVM are slower due to PTrees accesses.

5 Conclusion and Perspectives

We have described a new verified validator for the dominance relation. It is able
to validate the state-of-the-art dominance construction by Lengauer and Tarjan
combined with an ancestor test in the dominator tree candidate. This technique,
borrowed from (un-verified) production compilers like GCC and LLVM, brings
an important speedup compared to previous verified algorithms [2,19]. Using
native data-structures after extraction, it builds a constant-time dominance test
similar, in terms of efficiency, to the non-verified test.

In terms of program optimization, this dominance test already provides a
strong support (i.e. we are able to perform efficient dominance test on the CFG
on demand), and we already leverage this tool in our GVN-based CSE. This
important building block could help us implement other powerful optimizations
such as loop invariant code motion. However, the most efficient implementa-
tion of natural loops detection rely on iteration startegies on the dominator
tree itself. In this case, the dominance checking is no longer sufficient, and one
may have to investigate the mechanized verification of certifying algorithms for
the dominator tree, such as the linear-time certifying algorithm by Georgiadis
et al. [9].

Validating Dominator Trees for a Fast, Verified Dominance Test 99

References

1. Allen, F.E., Cocke, J.: Graph theoretic constructs for program control flow analysis.
Technical report, IBM T.J. Watson Research Center (1972)

2. Barthe, G., Demange, D., Pichardie, D.: Formal verification of an SSA-based
middle-end for CompCert. ACM TOPLAS 36(1), 4:1–4:35 (2014)

3. Chlipala, A.: A verified compiler for an impure functional language. In: POPL
2010, pp. 93–106. ACM (2010)

4. Cooper, K.D., Harvey, T.J., Kennedy, K.: A simple, fast dominance algorithm.
Technical report, Rice University (2006)

5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
TOPLAS 13(4), 451–490 (1991)

6. Dargaye, Z., Leroy, X.: Mechanized verification of CPS transformations. In: Der-
showitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 211–225.
Springer, Heidelberg (2007)

7. Demange, D., Pichardie, D., Stefanesco, L.: Verifying fast and sparse SSA-based
optimizations in Coq. In: Franke, B. (ed.) CC 2015. LNCS, vol. 9031, pp. 233–252.
Springer, Heidelberg (2015)

8. Fluet, M., Weeks, S.: Contification using dominators. In: Proceedings of ICFP
2001, pp. 2–13. ACM (2001)

9. Georgiadis, L., Laura, L., Parotsidis, N., Tarjan, R.E.: Dominator certification and
independent spanning trees: an experimental study. In: Demetrescu, C., Marchetti-
Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 284–295.
Springer, Heidelberg (2013)

10. Georgiadis, L., Tarjan, R.E., Werneck, R.F.: Finding dominators in practice. J.
Graph Algorithms Appl. 10(1), 69–94 (2006)

11. Georgiadis, L., Tarjan, R.E.: Dominator tree verification and vertex-disjoint paths.
In: Proceedings of SODA 2005, pp. 433–442. ACM (2005)

12. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM TOPLAS 1(1), 121–141 (1979)

13. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

14. Leroy, X.: A formally verified compiler back-end. JAR 43(4), 363–446 (2009)
15. Okasaki, C., Gill, A.: Fast mergeable integer maps. In: Workshop on ML, pp. 77–86

(1998)
16. Parotsidis, N., Georgiadis, L.: Dominators in directed graphs: a survey of recent

results, applications, and open problems. In: 2nd International Symposium on
Computing in Informatics and Mathematics (ISCIM 2013), vol. 1, pp. 15–20. Epoka
University (2013)

17. Rivest, R.L., Cormen, T.H., Leiserson, C.E., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

18. Zhao, J., Nagarakatte, S., Martin, M., Zdancewic, S.: Formal verification of SSA-
based optimizations for LLVM. In: PLDI 2013, pp. 175–186. ACM (2013)

19. Zhao, J., Zdancewic, S.: Mechanized verification of computing dominators for for-
malizing compilers. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol.
7679, pp. 27–42. Springer, Heidelberg (2012)

20. Zhao, J., Zdancewic, S., Nagarakatte, S., Martin, M.: Formalizing the LLVM inter-
mediate representation for verified program transformation. In: POPL 2012, pp.
427–440. ACM (2012)

Refinement to Certify Abstract Interpretations,
Illustrated on Linearization for Polyhedra

Sylvain Boulmé(B) and Alexandre Maréchal

VERIMAG, Université Grenoble-Alpes, 38000 Grenoble, France
{sylvain.boulme,alex.marechal}@imag.fr

Abstract. Our concern is the modular development of a certified static
analyzer in Coq: we extend a certified abstract domain of convex poly-
hedra with a linearization procedure approximating polynomial expres-
sions. In order to help such a development, we propose a proof framework,
embedded in Coq, that implements a refinement calculus.

1 Introduction

This paper presents two contributions: first, a certified linearization for an abstract
domain of convex polyhedra, approximating polynomials by affine constraints;
second, a refinement calculus, helping us to mechanize this proof in Coq [1].
We detail below the context and the features of these two contributions.

1.1 A Certified Linearization for the Abstract Domain of Polyhedra

We consider the certification of an abstract interpreter, which aims to ensure
absence of undefined behaviors such as division by zero or invalid memory access
in an input source program. This analyzer computes for each program point an
invariant: a property that the state at that point must satisfy in all executions.
Such invariants belong to datatypes called abstract domains [2] which are syntac-
tic classes of properties on memory states. For instance, in the abstract domain
of convex polyhedra [3], invariants are conjunctions of affine constraints written∑

i aixi ≤ b where ai, b ∈ Q are scalar values and xi are integer program vari-
ables. Hence, this domain cannot deal directly with non-linear invariants, e.g.
x2 − y2 ≤ x × y. Thus, linearization techniques, such as intervalization [4], are
necessary to analyze programs with non-linear arithmetic.

Indeed, intervalization replaces some variables in a non-linear product by
intervals of constants. For instance in Example 1, x is replaced by [0, 10] in
assignment r := x.(y − z) + 10.z. The interval is then eliminated by analyzing
the sign of y − z, leading to affine constraints usable by the polyhedra domain.

This work was partially supported by ANR project “VERASCO” (INS 2011) and
by the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013)/ERC Grant Agreement nr. 306595 “STATOR”.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 100–116, 2015.
DOI: 10.1007/978-3-319-22102-1 7

Refinement to Certify Abstract Interpretations 101

Example 1 (Intervalization Using a Sign-Analysis).
In any state where x∈ [0, 10], assignment “r := x.(y−z)+
10.z” is approximated by the affine program on the right
hand-side. Here operator :∈ performs a non-deterministic
assignment.

if y − z ≥ 0 then
r :∈ [10.z, 10.y]

else
r :∈ [10.y, 10.z]

Our certified linearization procedure is now part of the Verimag Poly-
hedra Library (VPL) [5,6], which provides a certified polyhedra domain to
Verasco [7], a certified abstract interpreter for CompCert C [8]. Follow-
ing a design proposed in [9], the VPL is organized as a two-tier architecture:
an untrusted oracle, combining Ocaml and C code, performs most complex
computations and outputs a Farkas certificate used by a certified front-end to
build a correct-by-construction result. As oracles may have side-effects and bugs,
they are viewed in Coq as non-deterministic computations of an axiomatized
monad [6].

Built on a similar design, our linearization procedure invokes an untrusted
oracle that selects strategies for linearizing an arithmetic expression and pro-
duces a certificate which is checked by the certified part of the procedure. It leads
to a correct-by-construction over-approximation of the expression. It is conve-
nient to see such strategies as program transformations, because their correctness
is independent from the implementation of the underlying abstract domain and
is naturally expressed using concrete semantics of programs [10]. Indeed, a lin-
earization is correct if, in the current context of the analysis, any postcondition
satisfied by the output program is also satisfied on the input one (see Example 1).
In such a case, we say that the input program refines the output one. This paper
aims to explain how refinement helps to develop certified procedures on abstract
domains, and in particular our linearization algorithm.

1.2 Certifying Computations on Abstract Domains by Refinement

Program refinement [11] consists in decomposing proofs of complex programs
by stepwise applications of correctness-preserving transformations. We provide
a framework in Coq to apply this methodology for certifying the correctness of
computations combining operators of an existing abstract domain. Our frame-
work provides a Guarded Command Language (GCL) called †

K that contains
these operators. A computation †K in †

K comes with two types of semantics: an
abstract and a concrete one. Concrete semantics of †K is a transformation on
memory states. Abstract semantics of †K is a transformation on abstract states,
i.e. on values of the abstract domain. A †

K computation also embeds a proof
that abstract semantics is correct w.r.t. concrete one: each †

K operator thus
preserves correctness by definition. Moreover, an Ocaml function is extracted
from abstract semantics which is certified to be correct w.r.t. concrete seman-
tics. Hence, concrete semantics of †K acts as a specification which is implemented
by its abstract semantics. In the following, a transformation on abstract (resp.
memory) states is called an abstract (resp. concrete) computation.

102 S. Boulmé and A. Maréchal

Taking a piece of code as input, our linearization procedure outputs a †
K

computation, and its correctness is ensured by proving that concrete semantics
of its input refines concrete semantics of its output. It means that the output
does not forget any behaviour of the input. Our procedure being developed in
a modular way from small intermediate functions, its proof reduces itself to
small refinement steps. Each of these refinement steps involves only concrete
semantics. Our framework provides a tactic simplifying such refinement proofs
by computational reflection of weakest-preconditions. The correctness of abstract
semantics w.r.t. concrete semantics is ensured by construction of †

K operators.
Our framework supports impure abstract computations, i.e. abstract com-

putations that invoke imperative oracles whose results are certified a posteri-
ori. It also allows to reason conveniently about higher-order abstract compu-
tations. In particular, our linearization procedure uses a Continuation-Passing-
Style (CPS) [12] in order to partition its analyzes according to the sign of affine
sub-expressions. For instance in Example 1, the approximation of the non-linear
assignment depends on the sign of y−z. In our procedure, CPS is a higher-order
programming style which avoids introducing an explicit datatype handling parti-
tions: this simplifies both the implementation and its proof. This also illustrates
the expressive power of our framework, since a simple Hoare logic does not suffice
to reason about such higher-order imperative programs.

Our refinement calculus could have applications beyond the correctness of
linearization strategies. In particular, the top-level interpreter of the analyzer
could also be proved correct in this way. Indeed, the interpreter invokes oper-
ations on abstract domains in order to over-approximate any execution of the
program, but its correctness does not depend on abstract domains implementa-
tions (as soon as these implementations are themselves correct). We illustrate
this claim on a toy analyzer, also implemented in Coq.

The mathematics involved in our refinement calculus, relating operational
semantics to the lattice structure of monotone predicate transformers, are well-
known in abstract interpretation theory [13]. In parallel of our work, the idea
to use a refinement calculus in formal proofs of abstract interpreters was pro-
posed in [14]. Hence, our contribution is more practical than theoretical. On the
theoretical side, we propose a refinement calculus dedicated to certification of
impure abstract computations. On the practical side, we show how to get a con-
cise implementation of such a refinement in Coq and how it helps on a realistic
case study: a linearization technique within the abstract interpreter Verasco.

1.3 Overview of the Paper

Our refinement calculus is implemented in only 350 lines of Coq (proof scripts
included), by a shallow-embedding of our GCL †

K which combines computational
reflection of weakest-preconditions [15] with monads [16]. However, it can be
more simply understood in classical set theory, using binary relations instead.
However, it can be understood in a much simpler setting using binary relations
instead of monads and weakest-preconditions, and classical set theory instead
of Coq. Section 2 introduces our refinement calculus in this simplified setting,

Refinement to Certify Abstract Interpretations 103

where computations are represented as binary relations. Section 3 presents our
certified linearization procedure and how its proof benefits from our refinement
calculus. Section 4 explains how we mechanize this refinement calculus in Coq
by using smart encodings of binary relations introduced in Sect. 2.

2 A Refinement Calculus for Abstract Interpretation

We consider an analyzer correct if and only if it rejects all programs that may
lead to an error state: due to lack of precision, it may also reject safe programs.
Let us begin by defining the notion of error state and semantics of concrete
computations, combining big-steps operational semantics with Hoare Logic.

Notations on Relations. The whole paper abusively uses classical set theory,
whereas our formalization is in the intuitionistic type theory of Coq without
axioms. In particular, it identifies type A → Prop of predicates on A with set
P(A). Hence, we note R(A,B) � P(A×B) the set of binary relations on A×B.
Given R of R(A,B), we note x

R−→ y instead of (x, y) ∈ R. We use operators on
R(A,A) inspired from regular expressions: ε is the identity relation on A, R1 ·R2

means “relation R2 composed with R1” (i.e. x
R1 · R2−−−−−→ z � ∃y, x

R1−−→ y∧y
R2−−→ z) and

R∗ is the reflexive and transitive closure of R. In all the paper, A → B is a type
of total functions.

2.1 Stepwise Refinement of Concrete Computations

Given a domain D representing the type of memory states, we add a dis-
tinguished element � to D in order to represent the error state: we define
D� � D � {�}.

Specifying Concrete Computations with Runtime Errors. We define the set of
concrete computations as K � R(D,D�). Hence, an element K of K corresponds
to a (possibly) non-deterministic or non-terminating computation from an input
state of type D to an output state of type D�. Typically, the empty relation
represents a computation that loops infinitely for any input. It also represents
unreachable code (dead code).

We denote by ↓K the normalization of the computation K that returns any
output in case of error. It is defined by d

↓K−−→ d′ � (d K−→ d′ ∨ d
K−→ �).

Refinement Pre-order and Hoare Specifications. We equip K with a refinement
pre-order � such that K1 � K2 iff K1 ⊆↓K2 (or equivalently, ↓K1 ⊆↓K2). Infor-
mally, an abstract analysis correct for K2 is also correct for K1. The equivalence
relation ≡ associated with this pre-order is given by K1 ≡ K2 iff ↓K1 =↓K2.

Hoare logic is a standard and convenient framework to reason about imper-
ative programs. Let us explain how computations in K are equivalent to speci-
fications of Hoare logic. A computation K corresponds to a Hoare specification
(pK , qK) of P(D) × R(D,D), where pK is a precondition ensuring the absence

104 S. Boulmé and A. Maréchal

of error, and qK a postcondition relating the input state to a non-error output
state,1 defined by pK � D \ {d | d

K−→ �} and qK � K ∩ (D × D). Conversely,
any Hoare specification (P,Q) corresponds to a computation � P ;Q – defined
below – such that K ≡� pK ;qK . Moreover, the refinement pre-order K1 � K2

is equivalent to pK2 ⊆ pK1 ∧ qK1 ∩ (pK2×D) ⊆ qK2 . Thus, it is equivalent to the
usual refinement of specifications in Hoare logic.

Algebra of Guarded Commands. We now equip K with an algebra of guarded
commands inspired by [11].2 It combines a complete lattice structure with oper-
ators inspired from regular expressions. Here, we present this algebra in the
case where K is represented as R(D,D�). In our Coq implementation (given
in Sect. 4), this representation is changed in order to mechanize refinement
proofs.

First, the complete lattice structure of K (for pre-order �) is given by opera-
tor � defined as “∩ after normalization” (e.g.

�
i Ki �

⋂
i ↓Ki) and by operator

� simply defined as ∪. In our context, � represents alternatives that may non-
deterministically happen at runtime: the analyzer must consider that each of
them may happen. Symmetrically, � represents some choice left to the analyzer.
Empty relation ∅ is the bottom element and is noted ⊥. Relation D×{�} is the
top element. Given d ∈ D�, we implicitly coerce it as the constant relation
D×{d}. Hence, the top element of the K lattice is simply noted �. The notation
↑f explicitly lifts function f of D → D in K.

Given a relation K ∈ R(D,D�), we define its lifting �K in R(D�,D�) by
�K � K ∪ {(�,�)}. This allows us to define the sequence of computations by
K1 ;K2 � K1· �K2, and the unbounded iteration of this sequence (i.e. a loop
with a runtime-chosen number of iterations) by K∗ � (�K)∗ ∩ (D × D�).

Given a predicate P ∈ P(D), we define the notion of assumption (or guard)
as � P � (P×D) � ε. Informally, if P is satisfied on the current state then � P
skips like ε. Otherwise, �P produces no output like ⊥. We also define the dual
notion of assertion as � P � (� ¬P ;�) � ε. If P is not satisfied on the current
state, then �P produces an error. Otherwise, it skips.

Hence, K provides a convenient language to express specifications: any Hoare
specification (P,Q) of P(D) × R(D,D) is expressed as the computation �P ;Q.
Moreover, refinement allows to express usual Verification Conditions (VC) of
Hoare Logic. For our toy analyzer – described later – we use the usual partial
correctness VC of unbounded iteration: K∗ is equivalent to produce an output
satisfying every inductive invariant I of K.

K∗ ≡
�

I∈{I∈P(D) | K � 	I;D×I} �I; D×I

1 A postcondition is thus in P(D×D) instead of the original P(D): this standard
generalization avoids introducing “auxiliary variables” to represent the input state.

2 However, in our algebra, � corresponds to “refines”, whereas in standard refinement
calculus it dually corresponds to “is refined by”. Actually, our convention follows
lattice notations of abstract interpretation.

Refinement to Certify Abstract Interpretations 105

In this equivalence, the �-way corresponds to the soundness of the VC, whereas
the �-way corresponds to its completeness. In our context, such a soundness
proof typically ensures that the specification of an abstract computation is
refined by concrete semantics of the analyzed code. It guarantees that the analy-
sis is correct w.r.t. semantics of the analyzed code.

Example on a Toy Language. Let t stands for an arithmetic term and c be a
condition over numerical variables, whose syntax is c ::= t1 �� t2 | ¬c | c1 ∧
c2 | c1 ∨ c2 with ��∈ {=, �=,≤,≥, <,>}. Semantics �t�of t and �c�of c work with
a domain of integer memories D � V → Z where V is the type of variables.
Hence, �t�∈ D → Z and �c�∈ P(D). We omit their definition here.

Let us now introduce a small imperative programming language named S for
which we will describe a toy analyzer in Sect. 2.2. The syntax of a S program
s is described on Fig. 1 together with its big-steps semantics �s� defined as an
element of K. This semantics is defined recursively on the syntax of s using
guarded commands derived from K. First, we define � c �� �c� and � c �� �c�.
We also use command “x := t” defined as ↑λd.d[x := �t�(d)], where the memory
assignment noted “d[x := n]” – for d ∈ D, x ∈ V and n ∈ Z – is defined as the
function λx′ : V, ifx′ = x thenn else d(x′).

Fig. 1. Syntax and concrete semantics of S

At this point, we have defined an algebra K of concrete computations: a
language that we use to express specifications – for instance, in the form of Hoare
specifications – on abstract computations. This algebra also provides denotations
for defining big-steps semantics (like in Fig. 1). Hence, K is aimed at providing an
intermediate level between operational semantics of programs and their abstract
interpretations. The next section defines how we certify correctness of abstract
computations with respect to K computations.

2.2 Composing Diagrams to Certify Abstract Computations

Rice’s theorem states that the property d
K−→ d′ is undecidable. In the theory

of abstract interpretation, we approximate K by a computable (terminating)
function �K working on an approximation �D of P(D). Set �D is called an abstract
domain and it is related to P(D) by a concretization function γ : �D → P(D).
Function �K is called an abstract interpretation (or abstract computation) of
K. This paper considers two abstract domains, intervals and convex polyhedra,
associated with the concrete domain D � V → Z involved in Fig. 1.

106 S. Boulmé and A. Maréchal

1. Given Z∞ � Z�{−∞,+∞}, an abstract memory �d of the interval domain is a
finite map associating each variable x with an interval [ax, bx] of Z∞×Z∞. Its
concretization is the set of concrete memory states satisfying the constraints
of �d, i.e. γ(�d) � {d ∈ D | ∀x, ax ≤ d(x) ≤ bx}.

2. The concretization of a convex polyhedron �d =
∧

i

∑
j aij .xj ≤ bi, where

aij and bi are rational constants, and xj are integer program variables is
γ(�d) � {d ∈ D | ∧

i

∑
j aij .d(xj)≤bi}.

Correctness Diagrams of Impure Abstract Computations. Our framework only
deals with partial correctness: we do not prove that abstract computations termi-
nate, but only that they are a sound over-approximation of their corresponding
concrete computation. Moreover, abstract computations may invoke untrusted
oracles, whose results are verified by a certified checker. A bug in those oracles
may make the whole computation non-deterministic or divergent. Thus, it is
potentially unsound to consider abstract computations as pure functions. In this
simplified presentation of our framework, we define abstract computations as
relations in R(�D, �D). In order to extract abstract computations from Coq to
Ocaml functions, we will improve this representation of abstract computations
in Sect. 4.

We express correctness of abstract computations through commutative dia-
grams represented on the right hand side and defined as follows.

Definition 1 (Correctness of Abstract Computations). An abstract compu-
tation �K ∈ R(�D, �D) is correct w.r.t.a concrete computation K ∈ R(D,D�) iff

∀�d, �d′ ∈ �D, ∀d ∈ D,∀d′ ∈ D�,

�d
�K−→ �d′ ∧ d

K−→ d′ ∧ d ∈ γ(�d) ⇒ d′ ∈ γ(�d′)

Note that d′ ∈ γ(�d′) implies itself that d′ �= �.
Such a diagram thus corresponds to a pair of an abstract

and a concrete computation, with a proof that the abstract
one is correct w.r.t. the concrete one. As illustrated on the example below, these
diagrams allow to build compositional proofs that an abstract computation, com-
posed of several simpler parts, is correct w.r.t. a concrete computation. Diagrams
are indeed preserved by several composition operators, and also by refinement
of concrete computations.

As an example, consider two abstract computations
�K1 and �K2 which are correct w.r.t. concrete K1 and
K2. In order to show that the sequential composition
�K1 · �K2 is correct w.r.t. concrete K, it suffices to prove
that K � K1 ;K2, as illustrated on the right hand side
scheme.

In the following, we introduce a datatype noted †
K to

represent these diagrams: a diagram †K ∈ †
K represents

an abstract computation �K which is correct w.r.t. its

Refinement to Certify Abstract Interpretations 107

associated concrete computation K. The core of our approach is to lift guarded-
commands on K involved in Fig. 1 as guarded-commands on †

K. For instance,
our toy analyzer ��s� for s in S is defined similarly to �s� of Fig. 1, but from †

K

operators instead of K ones. For a given diagram †K, we can prove the correct-
ness of an abstract computation �K w.r.t. a concrete computation K ′ simply by
proving that K ′ � K. In practice, such refinement proofs are simplified using a
weakest-liberal-precondition calculus (see Sect. 4).

Our Interface of Abstract Domains. We derive our guarded-commands on †
K

in a generic way from the VPL interface [6] of abstract domains, reformulated
here on Fig. 2. Besides its concretization function γ, an abstract domain �D
provides constants �� and �⊥, representing respectively predicate true and false.
It also provides abstract computations ��c and x�:=t of R(�D, �D), which are
respectively correct w.r.t. concrete computations � c and x := t. It provides
operator �� of R(�D×�D, �D), which over-approximates the binary union on P(D).
At last, it provides inclusion test �� of R(�D×�D, bool).

Fig. 2. Correctness specifications of our abstract domains

Abstract Computations of Guarded-commands. We now lift each K guarded-
command of Fig. 1 into a †

K guarded-command. A †
K operator has the same

notation than its corresponding K operator. Below, we associate each concrete
operator of Fig. 1 with an abstract computation. The diagrammatic proof relat-
ing them is straightforward from correctness specifications given on Fig. 2.

Concrete commands � c and x := t are associated with ��c and x�:=t. Con-
crete command K1 ;K2 is associated with �K1 · �K2 – where �K2 returns �⊥ if the
current abstract state is included in �⊥, or runs �K2 otherwise. Concrete K1�K2

is lifted by applying operator �� to the results of �K1 and �K2.
Concrete assertion � c is associated with checking that the result of ��¬c is

included in �⊥: otherwise, the abstract computation fails.3 Hence, concrete � is
associated with abstract computation ∅ (concrete ⊥ is associated with �⊥).

At last, concrete K∗ is associated with an abstract computation which
invokes an untrusted oracle proposing an inductive invariant of �K for the cur-
rent abstract state. Thus, using inclusion tests, �(K∗) checks that the invariant
proposed by the oracle is actually an inductive invariant (otherwise, it fails),
before returning this invariant as the output abstract state.
3 In practice, it may raise an alarm for the user, see our handling of alarms in the

extended version of this paper [17].

108 S. Boulmé and A. Maréchal

2.3 Higher-Order Programming with Correctness Diagrams

Our linearization procedure detailed in Sect. 3.2 illustrates how we use GCL †
K

as a programming language for abstract computations. GCL K is our specifi-
cation language. Each program †K of †

K is associated with a specification K
of K syntactically derived from its code, meaning that each †

K operator is syn-
tactically associated with the K operator from which it is lifted in the above
paragraph.

Our linearization procedure invokes two other operators of †
K. First, an oper-

ator which casts †K to a given specification K ′: it requires K ′ � K in order to
produce a new valid †

K diagram. This cast operator thus leads to a modular
design of the certified development since it allows stepwise refinement of †

K dia-
grams. Second, given a computation π of R(�D,A) where A is a given type, it
invokes an operator binding the results of π to a function †g of A → †

K. This
operator requires a concrete postcondition Q of A → P(D) on the results of π. In
other words, under the condition ∀�d, ∀x ∈ A, �d

π−→ x ⇒ γ(�d) ⊆ Q x, we define the

diagram π†�=Q
†g as the abstract computation {(�d1,

�d2) | ∃x, �d1
π−→ x ∧ �d1

�g x−−→ �d2}
specified by

�
x �Qx ;g x.

Actually, Sect. 3.2 applies our refinement calculus to certify higher-order
abstract computations. Indeed, our linearization procedure partitions abstract
states in order to increase precision. Continuation-Passing-Style (CPS) [12] is a
higher-order pattern which provides a lightweight and modular style to program
and certify simple partitioning strategies. Let us now detail this idea.

Typically, given an abstract state �d, our linearization procedure invokes a
sub-procedure �f that splits �d into a partition (�di)i∈I and computes a value ri (of
a given type A) for each cell �di. Then, the linearization procedure continues the
computation from each cell (ri,

�di) to finally return the join of all cells. In other
words, from �d, �f computes (ri,

�di)i∈I . The main procedure finally computes
�
⊔

i∈I(
�g ri

�di) – where �g is a given function of A → R(�D, �D). In order to
avoid explicit handling of partitions, we make �g a parameter of �f to perform
the join inside �f . In this style, �f is of type (A → R(�D, �D)) → R(�D, �D) and
the parameter �g of �f is called its continuation.

However, specifying directly the correctness of computations that use CPS
is not obvious because of the higher-order parameter. Actually, we define †f
of type (A → †

K) → †
K and work with a continuation †g of type A → †

K,
therefore keeping implicit the notion of partition, both in specification and in
implementation. This CPS technique could also be applied to simple strategies
of trace-partitioning without a trace-partitioning domain [17].

3 Interval-Based Linearization Strategies for Polyhedra

As described in [6], VPL works with affine terms given by the abstract syntax
t ::=n | x | t1 + t2 | n.t where x is a variable and n a constant of Z. We now
extend VPL operators of Fig. 2 to support polynomial terms, where the product
“n.t” is generalized into “t1 × t2”.

Refinement to Certify Abstract Interpretations 109

The VPL derives assignment operator �:= from guard �� and two low-level
operators: projection and renaming. It also derives the guard operator from a
restricted one where conditions have the form 0 �� t where ��∈ {≤,=, �=}. Hence,
we only need to linearize the restricted guard ��0 �� t, where t is a polynomial.
Below, we use letter p for polynomials and only keep letter t for affine terms.

Roughly speaking, we approximate a guard ��0 �� p by guards ��0 �� [t1, t2] –
where t1 and t2 are affine or infinite bounds – such that, in the current abstract
state, p ∈ [t1, t2]. Approximated guards ��0 �� [t1, t2] are defined by cases on ��:

�� ≤ = �=
�� 0�� [t1, t2] �� 0≤ t2

�� 0≤ t2∧ t1≤0 �� 0<t2∨ t1<0

Affine intervals are computed using heuristics inspired from [4], except that in
order to increase precision, we dynamically partition the abstract state accord-
ing to the sign of some affine subterms. This process will be detailed further.
More complex and precise linearization methods exist, implying more advanced
mathematics such as Bernstein’s basis [18] or Handelman representation of poly-
nomials [19]. Intervalization is clearly faster than others [10], and its precision-
versus-efficiency trade-off may be controlled by several heuristics.

Our certified linearization is built on a two-tier architecture: an untrusted
oracle uses heuristics to select linearization strategies and a certified procedure
applies them to build a correct-by-construction result. Let us now list these
strategies and their effect on the precision-versus-efficiency trade-off.

3.1 Our List of Interval-Based Strategies

Constant Intervalization. Our fastest strategy applies an intervalization operator
of the abstract domain. Given a polynomial p, this operator, written �π(p), over-
approximates p by an interval where affine terms are reduced to constants. More

formally, �π(p) is a computation of R(�D,Z2
∞) such that if �d

�π(p)−−−→ [n1, n2], then
γ(�d) ⊆ {d | n1 ≤ �p�d ≤ n2}. It uses a naive interval domain, built on the top of
the polyhedral domain. Arithmetic operations + and × are approximated by cor-
responding operations on intervals: [n1, n2] + [n3, n4] � [n1 + n3, n2 + n4] and
[n1, n2] × [n3, n4] � [min(E),max(E)] where E = {n1.n3, n1.n4, n2.n3, n2.n4}.

Ring Rewriting. A weakness of operator �π is its sensitivity to ring rewriting. For
instance, consider a polynomial p1 such that �π(p1) returns [0, n], n ∈ N

+. Then
�π(p1−p1) returns [−n, n] instead of the precise result 0. Such imprecision occurs
in barycentric computations such as p2 � p1 × t1 + (n − p1) × t2 where affine
terms t1, t2 are bounded by [n1, n2]. Indeed �π(p2) returns 2n.[n1, n2] instead
of n.[n1, n2]. Moreover, if we rewrite p2 into an equivalent polynomial p′

2 �
p1 × (t1 − t2) + n.t2, then �π(p′

2) returns n.[2.n1 − n2, 2.n2 − n1]. If n1 > 0 or
n2 < 0, then �π(p′

2) is strictly more precise than �π(p2). The situation is reversed
otherwise. Consequently, our oracle begins by simplifying the polynomial before
trying to factorize it conveniently. But as illustrated above, it is difficult to find
a factorization minimizing �π results. We give more details on the ring rewriting
heuristics of our oracle in the following.

110 S. Boulmé and A. Maréchal

Sign Partitioning. In order to find more precise bounds of a polynomial p than
those given by �π(p), we may split the current abstract state �d into a parti-
tion (�di)i∈I according to the sign of some affine subterms of p, such that each
cell �di may lead to a distinct affine interval [ti,1, ti,2]. Finally, ��0 �� p is over-
approximated by computing the join of all ��0 �� [ti,1, ti,2].

For example, given an affine term t and a polynomial p′ such that �π(p′)
returns [n′

1, n
′
2], if 0 ≤ t then p′ × t ∈ [n′

1.t, n
′
2.t], otherwise p′ × t ∈ [n′

2.t, n
′
1.t].

When the sign of t is known, sign partitioning allows to discard one of these two
cases and thus gives a fast affine approximation of p′ × t. The main drawback of
sign partitioning is a worst-case exponential blow-up if applied systematically.

Let us illustrate sign partitioning for the previous barycentric-like compu-
tation of p′

2. By convention, our certified procedure partitions the sign of right
affine subterms (here, the sign of t1 − t2). Hence, it founds p′

2 ∈ [n.t2, n.t1] in cell
0 ≤ t1 − t2, and p′

2 ∈ [n.t1, n.t2] in cell t1 − t2 < 0. When it joins the two cells,
��0 �� p′

2 is computed as ��0 �� n.[n1, n2] as we can expect for such a barycentre.
Remark that sign partitioning is also sensitive to ring rewriting. In particular,
the oracle may rewrite a product of affine terms t1 × t2 into t2 × t1, in order to
discard t1 instead of t2 by sign-partitioning.

Focusing. Focusing is a ring rewriting heuristic which may increase the precision
of sign partitioning. Given a product p � t1 × t2, we define the focusing of
t2 in center n as the rewriting of p into p′ � n.t1 + t1 × (t2 − n). Thanks
to this focusing, the affine term n.t1 appears whereas t1 would otherwise be
discarded by sign partitioning. Let us simply illustrate the effect of this rewriting
when 0 ≤ n ≤ n′

1 with t1 (resp. t2) bounded by [n1, n2] (resp. [n′
1, n

′
2]). Sign

partitioning bounds p in affine interval [n1.t2, n2.t2] whereas p′ is bounded by
interval [n1.t2 + n.(t1 − n1), n2.t2 − n.(n2 − t1)]. The former contains the latter
since t1−n1 and n2−t1 are non-negative. Under these assumptions, the precision
is maximal when n = n′

1.
Applied carelessly, focusing may also decrease the precision. Consequently,

on products p′′×t2, our oracle uses the following heuristic which can not decrease
the precision: if 0 ≤ n′

1, then focus t2 in center n′
1; if n′

2 ≤ 0, then focus t2 in
center n′

2; otherwise, do not try to change the focus of t2.

Static vs Dynamic Intervalization During Partitioning. Computing the constant
bounds of an affine term inside a given polyhedron invokes a costly linear pro-
gramming procedure. Hence, for a given polynomial p to approximate, we start
by computing an environment σ that associates each variable of p with a con-
stant interval: as detailed later, this environment is indeed used by heuristics
of our oracle. By default, operator �π is called in dynamic mode, meaning that
each bound is computed dynamically in the current cell – generated from sign
partitioning – using linear programming. If one wants a faster use of operator
�π, he may invoke it in static mode, where bounds are computed using σ.

For instance, let us consider the sign-partitioning of p � t1×t2 in the context
0 < n1, n2 and −n1 ≤ t2 ≤ t1 ≤ n2. In cell 0 ≤ t2, static mode bounds p by
[−n1.t2, n2.t2], whereas dynamic mode bounds p by [0, n2.t2]. In cell t2 < 0, both

Refinement to Certify Abstract Interpretations 111

Fig. 3. Sign-partitioning for p×t with continuation †g

modes bound p by [n2.t2,−n1.t2]. On the join of these cells, both modes give
the same upper bound. But the lower bound is −n1.n2 for static mode, whereas
it is n1.n2

n1+n2
(t2 + n1) − n1.n2 for dynamic mode, which is strictly more precise.

3.2 Design of Our Implementation

For a guard ��0 �� p, our certified procedure first rewrites p into p′ + t where t is
an affine term and p′ a polynomial. This may keep the non-affine part p′ small
compared with the affine one t. Typically, if p′ is syntactically equal to zero, we
simply apply the standard affine guard ��0 �� t. Otherwise, we compute environ-
ment σ for p′ variables and invoke our external oracle on p′ and σ. This oracle
returns a polynomial p′′ enriched with tags on subexpressions. We handle three
tags to direct the intervalization: AFFINE expresses that the subexpression is
affine; STATIC expresses that the subexpression has to be intervalized in sta-
tic mode; INTERV expresses that intervalization is done using only �π (instead
of sign-partitioning). Our certified procedure checks that p′ = p′′ using a nor-
malization procedure defined in the standard distribution of Coq (see [20]). If
p′ �= p′′, our procedure simply raises an error. If p′ = p′′, it invokes a CPS
affine intervalization of p′′ for continuation λ[t1, t2],� 0 �� [t1 + t, t2 + t]. The
next paragraphs detail this certified CPS intervalization and then, our external
oracle.

Certified CPS Affine Intervalization. We implement and prove our affine inter-
valization using the CPS technique described in Sect. 2.3. On polynomial p′′ and
continuation †g, the specification of our CPS intervalization is

ε �
�

[t1,t2]
�{d | t1 ≤ �p′′�d ≤ t2]} ;g[t1, t2]

The ε case corresponds to a failure of our procedure: typically, a subexpression
is not affine as claimed by the external oracle. In case of success, the proce-
dure selects non-deterministically some affine intervals [t1, t2] bounding p′′ before
merging continuations on them. The procedure is implemented recursively over
the syntax of p′′. Figure 3 sketches the implementation and the specification
of the sign-partitioning subprocedure. The figure deals with a particular case
where p′′ is a polynomial written p× t with t affine. In the implementation part,

112 S. Boulmé and A. Maréchal

boolean static indicates the mode of �π. In static mode, we indeed factorize the
computation of �π on both cells of the partition.

Our linearization procedure is written in around 2000 Coq lines, proofs
included. Among them, the CPS procedure and its subprocedures take only
200 lines. The bigger part – around 1000 lines – is thus taken by arithmetic
operators on interval domains (constant and affine intervals).

Design of Our External Oracle. Only fast strategies may be tractable on big
polynomials. Therefore, our external oracle may select systematically static con-
stant intervalization on big polynomials. Otherwise, it ranks variables according
to their priority to be discarded by sign-partitioning. Then, it factorizes vari-
ables with the highest priority. The priority rank is mainly computed from the
size of intervals in the precomputed environment σ: unbounded variables must
not be discarded whereas variables bounded by a singleton are always discarded
by static intervalization. Our oracle also tries to minimize the number of dis-
tinct variables that are discarded: variables appearing in many monomials have
a higher priority. The oracle also interleaves factorization with focusing. Our
oracle is written in 1300 lines of Ocaml code.

4 A Lightweight Refinement Calculus in Coq

Our implementation in Coq reformulates Sect. 2 with a more computational
representation of binary relations. We only sketch here these representations.
A more detailed description and our Coq sources are available online [17].

4.1 Representation of Abstract Computations

A relation R of R(A,B) can be equivalently seen as the function of A → P(B)
given by λx, {y |x R−→ y}. This curryfied representation is the basis of our repre-
sentations for abstract computations. Indeed, we need to provide a Coq rep-
resentation of R(�D, �D) that can be turned into an Ocaml type �D → �D at
extraction. This is achieved by axiomatizing in Coq the type “P(�D)” as “ ?�D”
where “ ? ” is the type transformer of a given may-return monad – defined below.
More generally, impure abstract computations of R(A,B) in Fig. 2 are actually
expressed in our Coq development as functions of A → ?B.

Definition 2 (May-Return Monad). For any type A, type ?A represents
impure computations returning values of type A. Type transformer “ ? ” is
equipped with a monad [16] providing a may-return relation [6]
– Operator �=A,B : ?A → (A → ?B) → ?B encodes Ocaml “letx = k1 in k2” as

“k1 �= λx, k2”.
– Operator εA : A → ?A lifts a pure computation as an impure one.
– Relation ≡A: ?A → ?A → Prop is a congruence (w.r.t. �=) which represents

equivalence of semantics between impure computations. Moreover, operator
�= is associative and admits ε as neutral element (w.r.t. ≡).

Refinement to Certify Abstract Interpretations 113

– Relation �A: ?A → A → Prop, where “k � a” means that “k may return a”.
This relation must be compatible with ≡A and satisfies the axioms

(ε a1)�a2 ⇒ a1=a2 (k1 �= k2) � b ⇒ ∃a, k1�a ∧ k2 a�b

A computation k of A → ?B represents a relation of R(A,B) defined by
d

k−→ d′ � k d � d′. Given k1 and k2 in �D → ?�D, then “λx, ((k1 x) �= k2)”
corresponds to a subrelation of “k1 · k2”. Formally, our Coq implementation
departs from Sect. 2 when we compose abstract computations, because we use
operator “�=” instead of the less precise “·”, but this does not differ a lot in
practice.

The VPL is parametrized by a core may-return monad which axiomatizes
external computations. This monad avoids a potential unsoundness by expressing
that external oracles are not pure functions but relations. It is instantiated at
extraction by providing the identity monad. Of course, the implementation of
the core monad remains opaque for our Coq proofs: therefore they are valid for
any instance of a may-return monad. Actually, our Coq proofs are sound if we
admit that there exists a may-return monad able to denote any typesafe Ocaml
computation.

4.2 Representation of Concrete Computations

Like in standard refinement calculus [11], we simplify refinement proofs by
computations of weakest-preconditions [15]. Precisely, we use weakest-liberal-
preconditions (WLP) because they appear naturally in correctness diagrams of
abstract computations. This will be illustrated in Sect. 4.3.

Given K ∈ R(D,D�), the WLP of K is the function [K] : P(D) → P(D)
defined by [K]P � {d ∈ D | ∀d′ ∈ D�, d

K−→ d′ ⇒ d′ ∈ P}. The benefit of WLP is
to propagate function computations through sequences of relations. Indeed, WLP
transforms a sequence into a function composition: [K1 ;K2]P = [K1]([K2]P).
Hence, it avoids existential quantifiers in relation composition defining x

K1 ;K2−−−−−→ z

as ∃y, x
K1−−→ y ∧ y

�K2−−→ z, which is tedious to handle in proofs. For functions f of
type D → D, [↑f]P = {d | f(d) ∈ P}. This allows for instance to compute
[↑f1 ; ↑f2]P as {d | f2(f1(d)) ∈ P}. We embed WLP computations in refinement
proofs using the equivalence between K1 � K2 and ∀P, [K2]P ⊆ [K1]P .

Our definition of K in Coq is based on a shallow embedding. This means
that we avoid introducing abstract syntax trees for K computations, which would
induce many difficulties because of binders in

⊔
and

�
operators. Instead, we

represent K computations directly as monotone predicate transformers. Hence,
our Coq definition for K is isomorphic to the following type4:

Record K: Type := {

wlp: (D → Prop) → D → Prop;

wlp_mono: ∀ P Q, (∀ d, P d → Q d) → ∀ d, wlp P d → wlp Q d}.

4 Actually, our definition of K derives from a more general structure, see [17].

114 S. Boulmé and A. Maréchal

In other words, our syntax for K guarded commands is directly provided by a
given set of Coq operators on monotone predicate transformers (corresponding
to some WLP computations). This shallow embedding is sufficient because we
do not need to establish in Coq properties of K as an algebra. Thus, the Coq
code for K operators is only 150 lines long, proofs and comments included. On
refinement goals, we let Coq computes weakest-preconditions and simply solve
the remaining goal using standard Coq tactics. In practice, this gives us well-
automated proof scripts.

4.3 Definition of Correctness Diagrams

The Coq pseudo-code below defines values of †
K as triples with a field impl

being an abstract computation, a field spec being a concrete computation and
a field impl correct being a proof that impl is correct w.r.t. spec. Such proofs
are simplified by applying together the WLP embedded in spec and the WLP
already designed by [6] which simplifies reasonings with relation �.

Record †
K: Type := {

impl:�D →?�D; spec:K;

impl_correct: ∀�d�d′, (impl �d) ��d′ → ∀d, d ∈ γ(�d) → (wlp spec γ(�d′) d)}.

Because impl is the only informative field of record †
K, type †

K is exactly
extracted as type �D → ?�D. A †

K command is also exactly extracted in Ocaml as
its underlying abstract computation. Here again, the Coq code for †

K operators,
diagrammatic proofs included, is small, around 200 lines.

5 Conclusion and Perspectives

We extended the VPL with certified handling of non-linear multiplication by a
modular and novel design. Our computations are performed by an untrusted ora-
cle delivering a certificate to a certified front-end. Our proofs use diagrammatic
constructs based on stepwise refinement calculus. Refinement proofs are finally
made clear and concise by the computations of Weakest-Liberal-Preconditions.

Our linearization procedure is able to give a fast over-approximation of
polynomials thanks to variable intervalization. The precision is increased by
domain partitioning (implicitly done with a Continuation-Passing-Style design)
and the dynamic computation of bounding affine terms, allowing to finely tune
the precision-versus-efficiency trade-off in the oracle.

Because floating arithmetic would make us explicitly handle error terms at
each operation, the VPL is for now limited to integers, and so is our lineariza-
tion. Our implementation also lacks other operators such as division or modulo.
For these reasons, it is hard to evaluate our method on real-life programs. Cur-
rently, our tests are limited to small handmade examples focusing on classes
of mathematical problems, such as parabola or barycentric approximations. On
these cases, our oracle is able to give much more precise approximations than
the Verasco interval domain.

Refinement to Certify Abstract Interpretations 115

We certified a toy analyzer from big-steps semantics by simply interpreting
the operators of concrete semantics in abstract semantics. Our approach should
scale up on a complex language like CompCert C, even if it does not use simple
big-steps semantics. Although its semantics allows to distinguish programs (for
instance diverging ones invoking system calls or not) that are equivalent for
our concrete semantics, such features do not seem necessary to the Verasco
analysis correctness. Hence, our approach would introduce an abstraction over
CompCert semantics which should even ease the proof of the analyzer.

Acknowledgements. We would like to thank Alexis Fouilhé, Michaël Périn and
David Monniaux for their continuous feedback all along this work. We also thank
the members of the Verasco project for their motivating interaction.

References

1. The Coq Development Team: The Coq proof assistant reference manual - version
8.4. INRIA (2012–2014)

2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
ACM (1977)

3. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL. ACM (1978)

4. Miné, A.: Symbolic methods to enhance the precision of numerical abstract
domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2006)

5. Fouilhe, A., Monniaux, D., Périn, M.: Efficient generation of correctness certificates
for the abstract domain of polyhedra. In: Logozzo, F., Fähndrich, M. (eds.) Static
Analysis. LNCS, vol. 7935, pp. 345–365. Springer, Heidelberg (2013)

6. Fouilhe, A., Boulmé, S.: A certifying frontend for (sub) polyhedral abstract
domains. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol.
8471, pp. 200–215. Springer, Heidelberg (2014)

7. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: POPL. ACM (2015)

8. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52, 107–115
(2009)

9. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Certified result checking for poly-
hedral analysis of bytecode programs. In: Wirsing, M., Hofmann, M., Rauschmayer,
A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 253–267. Springer, Heidelberg (2010)

10. Maréchal, A., Périn, M.: Three linearization techniques for multivariate polynomi-
als in static analysis using convex polyhedra. Technical report TR-2014-7, Verimag
Research Report (2014)

11. Back, R.J., von Wright, J.: Refinement Calculus - A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer, Heidelberg (1999)

12. Reynolds, J.C.: The discoveries of continuations. Lisp Symb. Comput. 6, 233–247
(1993)

13. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS 277, 47–103 (2002)

116 S. Boulmé and A. Maréchal

14. Spiwack, A.: Abstract interpretation as anti-refinement. CoRR abs/1310.4283
(2013)

15. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18, 453–457 (1975)

16. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925. Springer, Heidelberg (1995)

17. Boulmé, S., Maréchal, A.: A refinement calculus to certify impure abstract compu-
tations of the verimag polyhedra library - documentation and Coq+OCaml sources
(2015). http://www-verimag.imag.fr/∼boulme/vpl201503

18. Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput.
Aided Geom. Des. 29, 379–419 (2012)

19. Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pac. J. Math. 132, 35–62 (1988)

20. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in
Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113.
Springer, Heidelberg (2005)

http://www-verimag.imag.fr/~boulme/vpl201503

Mechanisation of AKS Algorithm:
Part 1 – The Main Theorem

Hing-Lun Chan1(B) and Michael Norrish2

1 Australian National University, Canberra, Australia
joseph.chan@anu.edu.au

2 Canberra Research Laboratory, NICTA, Australian National University,
Canberra, Australia

Michael.Norrish@nicta.com.au

Abstract. The AKS algorithm (by Agrawal, Kayal and Saxena) is a sig-
nificant theoretical result proving “PRIMES in P”, as well as a brilliant
application of ideas from finite fields. This paper describes the first step
towards the goal of a full mechanisation of this result: a mechanisation
of the AKS Main Theorem, which justifies the correctness (but not the
complexity) of the AKS algorithm.

1 Introduction

The AKS algorithm is a decision procedure for primality testing. That is, given
a number n, it returns “true” if n is prime and “false” otherwise. As per the
title of AKS paper [3],“PRIMES is in P”, the significance of their work is that
the number of steps for the verification is bounded by some polynomial function
of the size of n, measured by log2 n.

There have been several attempts to formalize the AKS Main Theorem (see
Sect. 6), but so far none is complete. In this paper, we describe the first complete
mechanization of this result. In subsequent work, we aim to demonstrate that
the algorithm built on top of this result does indeed compute its answer in
polynomial time.

1.1 Overview

A number n is a perfect-power of another number m if there exists an exponent e
such that n =me , and n is power-free if it is a trivial perfect power, i.e., if n =me

then e = 1 and m =n. Given a number n, the smallest positive exponent j such
that nj ≡ 1 (mod k) is denoted by orderk (n). Computation in (mod n, Xk − 1)
means that all numerical as well as polynomial computational results are reduced
to remainders after divisions by n and by Xk − 1. The constant polynomial
arising from constant c is denoted by boldface c. More notation will be covered
in Sect. 1.2. Here is a peek at our HOL4 result.

M. Norrish—NICTA is funded by the Australian Government through the Depart-
ment of Communications and the Australian Research Council through the ICT
Centre of Excellence Program.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 117–136, 2015.
DOI: 10.1007/978-3-319-22102-1 8

118 H.-L. Chan and M. Norrish

Theorem 1. The AKS Main Theorem.

� prime n ⇐⇒
1 < n ∧ power free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j) = 1) ∧
(k < n ⇒

∀ c.
0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒

(X + c)n ≡ (Xn + c) (mod n, Xk − 1))

This theorem then justifies the following algorithm1 for primality testing:

Input: integer n > 1.

1. If (n = bm for some base b with m > 1), return COMPOSITE.
2. Search for a prime k satisfying orderk (n) ≥ (2(log n + 1))2.
3. For each (j = 1 to k) if (j = n) break, else if (gcd(j ,n) 	= 1), return

COMPOSITE.
4. If (k >= n), return PRIME.
5. For each (c = 1 to 2

√
k (log n + 1)) if (X + c)n �≡ (Xn + c) (mod

n,Xk − 1), return COMPOSITE.
6. return PRIME.

Given a number n, this version of the AKS algorithm requires a search for
another prime k in Step 2. Step 4 suggests that it is not always true that k < n.
Nevertheless, the theorem can still be viewed as a well-founded recursive def-
inition because it turns out that k is roughly bounded by (log n)5 [3]. So, for
sufficiently large values of n, there will always be a k < n. For smaller n (effec-
tively the base cases of recursion), a look-up table might be used.

The rest of this paper is devoted to explaining the mechanised proof of this
result. Section 2 covers some necessary background. Sections 3 and 4 describe the
proof of the AKS Main Theorem. Section 5 discusses our mechanisation experi-
ence. Section 6 compares our work with others. Finally, we conclude in Sect. 7.

1.2 Notation

All statements starting with a turnstile (�) are HOL4 theorems, automati-
cally pretty-printed to LATEX from the relevant theory in the HOL4 develop-
ment. Generally, our notation allows an appealing combination of quantifiers

1 The constants involved in this algorithm are based on [10, Algorithm 8.2.1]. They
are slightly different from those in the AKS papers [2,3], but such variations do not
affect the conclusion of “PRIMES is in P”.

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 119

(∀,∃), set notation (∈,∪ and comprehensions such as {x | x < 6}), and func-
tional programming (λ for function abstraction, and juxtaposition for function
application).

The cardinality of a set s is written |s|; the image of set s under the mapping
f is written f (|s|); we write f : s ↪→ t to mean that function f is injective from
set s to set t.

Number-Theoretic Notation. With n a natural number,
√

n is its square-root,
and log n its logarithm to base 2. Both logarithm and square-root are integer
functions, being the floor value of the corresponding real functions. We use ϕ(n)
to denote the Euler ϕ-function of n, the count of coprime numbers less than n.
We write n | m when n divides m.

For the AKS algorithm, we shall use n for the input number, p for its prime
factor, k for the prime (existentially quantified) “parameter” of the Main The-
orem, and �= 2

√
k (log n + 1) for a computed parameter (the limit for a range

of constants). Note that orderk (n) is nonzero whenever gcd(k ,n)= 1.

Ring, Field, and Polynomial Notation. A ring R has carrier set R, with 1 and
0 its one and zero. The characteristic of a ring R is written as χ(R), often
abbreviated to χ for a generic ring. A ring homomorphism from a ring R to
another ring S via a map f is denoted by f : R �→r S.

We write R[X] to denote the ring of polynomials with coefficients drawn from
the underlying ring R. Similarly, the ring F [X] has polynomials with coefficients
from a field F . Polynomials from those rings are written with the sans-serif font,
e.g., p, q, h. The constant polynomial c (in bold) is derived from adding 1 repeat-
edly c times. The degree of p is written deg p, its leading coefficient is lead p,
and monic p means its leading coefficient is 1. The polynomial X is the monomial
(monic of degree 1) with zero constant. The polynomial field quotiented by mod-
ulus with an irreducible polynomial h is Fh[X], with multiplicative group F∗

h [X].
Arithmetic (addition, subtraction, multiplication, remainders) on polynomi-

als is written with usual symbols (+, −, ∗, mod etc.), e.g., Xk−1 is the unity
polynomial of degree k. Here we can see HOL4’s overloading facilities at work:
constant polynomials one and zero are 1 and 0, the same as those for a ring.
More aggressively, we use overloading to conceal “implicit” parameters such as
the underlying ring R in terms such as p ∗q (polynomial product).

We write p[[q]] to denote the substitution of q for every X in p. We use roots p
for the set of p’s roots, and ipoly p to mean that p is an irreducible polynomial,
both with respect to its underlying ring R. The quotient ring formed by R[X]
and irreducible polynomial h is denoted by Rh[X], which can be shown to be a
field. Its multiplicative group is R∗

h[X]. The order of an element in this group,
e.g., X, is denoted by orderh(X).

HOL4 Sources. All our proof scripts can be found at http://bitbucket.org/jhlchan/
hol/src/aks/theories.

http://bitbucket.org/jhlchan/hol/src/aks/theories
http://bitbucket.org/jhlchan/hol/src/aks/theories

120 H.-L. Chan and M. Norrish

2 Background

A glance at the algorithm in Sect. 1.1 shows its most prominent feature: poly-
nomial identity tests in modulo Xk−1. To understand this we need to get a feel
for the motivation behind the AKS algorithm.

2.1 Finite Fields

The AKS Main Theorem has a setting in finite fields, since the characteristic
of a finite field is always prime. A field is also a ring, and a ring with prime
characteristic enjoys some wonderful properties.

Theorem 2. The Freshman-Fermat Theorem
� Ring R ∧ prime χ ⇒ ∀ c. (X + c)χ = Xχ + c

Proof. This follows directly from two theorems, (a) Freshman’s Theorem:
� Ring R ∧ prime χ ⇒ ∀p q. poly p ∧ poly q ⇒ (p + q)χ = pχ + qχ

and (b) Fermat’s Little Theorem for polynomials:
� Ring R ∧ prime χ ⇒ ∀ c. cχ = c

Both theorems (a) and (b) have been mechanized in a previous paper by the
same authors [6]. �
The converse, suitably formulated, is also true:
Theorem 3. A ring has its characteristic prime iff a Freshman-Fermat identity
holds for any constant coprime with the characteristic.
� Ring R ⇒ ∀ c. gcd(c, χ) = 1 ⇒ (prime χ ⇐⇒ 1 < χ ∧ (X + c)χ = Xχ + c)

Given a number n > 1, we can identify R with Zn , and χ(Zn)=n. Since
gcd(1,n)= 1 always, pick c = 1, then this theorem applies, and whether n is
prime is just one check of a Freshman-Fermat polynomial identity in Zn , i.e.,
(mod n).

Therefore, this theorem amounts to a deterministic primality test. But there
is a catch: the left-side, upon expansion, contains n + 1 terms. Thus this is an
impractical primality test for large values of n.

The AKS idea begins with checking such Freshman-Fermat identities, with
two twists:
– Instead of just checking in (mod n), perform the computations in (modn, Xk−1)

for a suitably chosen parameter k . Since results are always the remainder after
division by Xk−1, the degree of intermediate polynomials (which determines the
number of terms) never exceed k—presumably k is much smaller than n.

– Instead of checking just one coprime value, check for a range of coprime val-
ues c, for 0 < c ≤ �, up to some maximum limit �—presumably � is related to
k , and small compared to n.

Of course, the big question is whether after such modifications there is still
a primality test. The AKS team answered this in the affirmative—there exist
parameters k and �, bounded by some polynomial function of the size of input
number n, i.e., log n, giving a polynomial-time deterministic primality test.

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 121

2.2 Introspective Relation

Recall from Sect. 1.1 that AKS computations are done in (mod n, Xk − 1).
This double modulo notation is clumsy. Let us work in a generic ring R, later to
be identified with instances such as Zn . The first (mod n) equivalence becomes
equality in the ring R (i.e., x ≡ y (mod n) means x = y in Zn); leaving the
symbol (≡) to indicate the polynomial modulo equivalence in R[X].

In this context, of a general ring R, the polynomial identity checks in Theo-
rem 1 take the form:

(X+ c)n ≡ Xn + c (mod Xk−1)

They look like Freshman-Fermat identities of Theorem 2, only now under
modulo by a polynomial. Rewriting with a polynomial substitution, the left and
right sides are strikingly similar:

(X+ c)n [[X]] ≡ (X+ c)[[Xn]] (mod Xk−1)

The rewrites are trivial, since for any polynomial p, we have p[[X]]= p and
(X+ c)[[p]]= p+ c. Superficially, the left-hand side is transformed into the right-
hand side simply by shifting of the exponent n. Following the terminology of
AKS team, we say n is introspective to polynomial p, denoted by n �� p, when:

� n �� p ⇐⇒ poly p ∧ 0 < k ∧ pn ≡ p[[Xn]] (mod Xk − 1)

Note that the symbol for introspective relation (��) hides the polynomial mod-
ulus Xk−1, and the underlying ring R. We shall include a subscript when the
underlying ring is of significance, e.g., ��Zn

.
Therefore, the AKS algorithm verifies, for the input number n, the identities

n �� X+ c in Zn for 0 < c ≤ � up to some maximum �. Moreover, Freshman-
Fermat (Theorem 2) can be restated as:

Theorem 4. For a ring with prime characteristic, its characteristic is intro-
spective to any monomial.

� Ring R ∧ 1 	= 0 ∧ prime χ ⇒ ∀ k. 0 < k ⇒ ∀ c. χ �� X + c

Proof. By introspective definition, this is to show: (X+ c)χ ≡ (X+ c)[[Xχ]] (mod
Xk−1). Transforming the right side by substitution, (X+ c)[[Xχ]]=Xχ + c. Then
both sides are equal by Freshman-Fermat (Theorem2), hence they are equivalent
under modulo by Xk−1. �

The fundamental properties of introspective relation are:

Theorem 5. Introspective relation is multiplicative for exponents.

� Ring R ∧ 1 	= 0 ⇒ ∀ k p n m. n �� p ∧ m �� p ⇒ n m �� p

Proof. Working in (mod Xk−1), we have pn ≡ p[[Xn]] by n �� p, and pm ≡ p[[Xm]]
by m �� p. The latter means p[[X]]m−p[[Xm]] is divisible by Xk−1. Substitute every
X of the previous statement by Xn , and noting Xk−1 | (Xn)k−1 by divisibility of
unity polynomials, p[[Xn]]m ≡ p[[(Xn)m]]. Therefore, pn m = (pn)m ≡ p[[Xn]]m ≡
p[[(Xn)m]]= p[[Xn m]], or n m �� p. �

122 H.-L. Chan and M. Norrish

Theorem 6. Introspective relation is multiplicative for polynomials.

� Ring R ∧ 1 	= 0 ⇒ ∀ k p q n. n �� p ∧ n �� q ⇒ n �� p∗q
Proof. Working in (mod Xk−1), we have pn ≡ p[[Xn]] by n �� p, and qn ≡
q[[Xn]] by n �� q. Therefore, (p ∗q)n = pn ∗qn ≡ p[[Xn]] ∗q[[Xn]]= (p ∗q)[[Xn]], or
n �� p ∗q. �

3 Main Theorem

We can now restate the AKS Main Theorem (Theorem 1) in terms of the intro-
spective relation.

Theorem 7. A number is prime iff it satisfies all the AKS checks.

� prime n ⇐⇒
1 < n ∧ power free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j) = 1) ∧
(k < n ⇒

∀ c. 0 < c ∧ c ≤ 2
√

k (log n + 1) ⇒ n ��Zn
X + c)

Note how the symbol ��Zn
encapsulates the introspective relation (i.e., mod

Xk−1) within Zn (i.e., mod n), the double modulo in the AKS computations.
We prove this logical equivalence in two parts.

3.1 Easy Part (⇒)

Theorem 8. The if-part of AKS Main Theorem (Theorem7).

� prime n ⇒
1 < n ∧ power free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j) = 1) ∧
(k < n ⇒ ∀ c. 0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒ n ��Zn

X + c)

Proof. The first two goals, 1 < n and power freen, are trivial for a prime n. For
the third goal, let m = (2(log n + 1))2, then parameter k exists by Theorem 25
in Sect. 4.6:

� 1 < n ∧ 0 < m ⇒ ∃ k. prime k ∧ gcd(k ,n) = 1 ∧ m ≤ orderk (n)

If k ≥ n, the coprime checks are subsumed by ∀ j . 0 < j ∧ j < n ⇒ gcd(n, j)= 1.
Otherwise k < n, and the coprime checks are subsumed by ∀ j . 0 < j ∧ j ≤ k ⇒
gcd(n, j)= 1. Either way this is true since a prime n is coprime with all values
less than itself. When k < n, the last check is established by Theorem 4, since a
prime n gives a field Zn , with χ(Zn)=n. �
A close equivalent of this Theorem 8 was mechanised by de Moura and Tadeu [9]
in Coq, and by Campos et al. [5] in ACL2.

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 123

3.2 Hard Part (⇐)

Theorem 9. The only-if part of AKS Main Theorem (Theorem7).

� 1 < n ∧ power free n ∧
(∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j) = 1) ∧
(k < n ⇒ ∀ c. 0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒ n ��Zn

X + c)) ⇒
prime n

Proof. Based on the given parameter k , let �= 2
√

k (log n + 1). If k ≥ n the
coprime checks will verify ∀ j . 0 < j ∧ j < n ⇒ gcd(n, j)= 1, thus n will be prime
since it has no proper factor. Otherwise k < n, the coprime checks are
∀ j . 0 < j ∧ j ≤ k ⇒ gcd(n, j)= 1. In Sect. 3.3 we shall establish:

Theorem 10. The AKS Main Theorem in Zn .

� 1 < n ⇒
∀ k �.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧ � = 2
√

k (log n + 1) ∧
(∀ j. 0 < j ∧ j ≤ k ⇒ gcd(n, j) = 1) ∧
(∀ c. 0 < c ∧ c ≤ � ⇒ n ��Zn

X + c) ⇒
∃ p. prime p ∧ perfect power n p

Applying this theorem, n = pe for some prime p and exponent e by definition of
a perfect power. But n is assumed power-free, so e = 1 and n = p, making n a
prime. �

3.3 Shifting Playgrounds

The AKS verifications take polynomials with coefficients from Zn , a ring for
general n. Polynomials with coefficients from a ring can have more roots than
their degree, due to the possible existence of zero divisors in a ring.2 A field has
no zero divisors, and polynomials with coefficients from a field have this nice
property:

� Field F ⇒ ∀p. poly p ∧ p 	= 0 ⇒ |roots p| ≤ deg p

As we shall see (Sects. 4.3 and 4.4), there will be two important injective maps
involved in the AKS proof. To establish the injective property, this restriction
on the number of polynomial roots by its degree is of utmost importance.

But where to find a field F to work with, given that we start in the ring Zn?
When the number n is not 1, it must have a prime factor p. This leads to the

field Zp . If relationships between monomials X+ c are carried over unaffected
from Zn [X] to Zp [X], we are in a better place to investigate the nature of n. This
shifting of playgrounds is essential in the proof of Theorem10:
2 For example, in Z6, 2 × 3 = 0, hence (X − 2)(X − 3) = X2 − 5X = X(X − 5), which

shows a polynomial of degree 2 can have more than 2 roots.

124 H.-L. Chan and M. Norrish

Proof (of Theorem 10). If n is prime, take p =n. Otherwise, n has a proper prime
factor p such that p < n and p | n. Introduce two rings, Zn and Zp . The latter
ring Zp is also a field, in fact a finite field. This is because all nonzero elements
are coprime to the prime modulus p, hence they have inverses.

There is a homomorphism between these two rings due to that fact that p
divides n:

� 0 < n ∧ 0 < p ∧ p | n ⇒ (λ x . x mod p) : Zn �→r Zp

This ring homomorphism will preserve monomials X+ c if a condition on limit �
is met:

� 0 < n ∧ 1 < p ∧ � < p ⇒
∀ c. 0 < c ∧ c ≤ � ⇒ ∀ f . f : Zn �→r Zp ⇒ f (X + c) = X + c

Here f (p) denotes applying the ring homomorphism f to each coefficient of a
polynomial p. We shall show in Sect. 4.6 that � ≤ k (Theorem 27). To meet the
condition � < p, we need only to show k < p. Note that the given coprime checks
on k are (from the statement of Theorem 10):

∀ j . 0 < j ∧ j ≤ k ⇒ gcd(n, j) = 1

Taking j = k , we conclude gcd(n, k)= 1. This will be useful later. Apply the
following theorems:

� 1 < n ∧ prime p ∧ p | n ⇒ ∀ j. gcd(n, j) = 1 ⇒ gcd(p, j) = 1
� 1 < p ⇒ ∀ k. (∀ j. 0 < j ∧ j ≤ k ⇒ gcd(p, j) = 1) ⇒ k < p

Tracing the transformation of gcd’s gives k < p, hence � < p.
Therefore the monomials are preserved by homomorphism, together with the

introspective relation:

� 0 < n ∧ 1 < p ∧ p | n ∧ 0 < k ∧ � < p ⇒
∀m c. 0 < c ∧ c ≤ � ∧ m ��Zn

X + c ⇒ m ��Zp
X + c

Thus the AKS checks in Zn are equivalent to checks in Zp , a finite field, where p
is a prime factor of n. Generalising to arbitrary finite fields, in Sect. 4.5 we will
prove:

Theorem 11. AKS Main Theorem in finite fields.

� FiniteField F ∧ prime k ∧ k < χ ⇒
∀n.

1 < n ∧ χ | n ∧ gcd(n, k) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ∧
� = 2

√
k (log n + 1) ∧ (∀ c. 0 < c ∧ c ≤ � ⇒ n �� X + c) ⇒

perfect power n χ

We then identify F with Zp , noting χ(Zp)= p, with k < p. Knowing gcd(n, k)= 1
from the gcd checks above, we conclude that n must be a perfect power of its
prime factor p, as required. �

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 125

4 Introspective Game

There are two useful facts when working in the context of a finite field F , where
χ is necessarily prime:

– We get, for free in F [X], the result: χ �� X+ c, by Theorem 4, since a field is a
non-trivial ring.

– The modulus polynomial Xk−1, now in F [X], will have a monic irreducible
factor h 	=X−1.

Both will play significant roles in the proof of Theorem11. Here are the high-
lights:

– The finite field F will enrich the introspective relation, through the interplay
between prime χ and n.

– This will give rise to some interesting sets, among them are two finite sets N̂
and M (Sect. 4.2).

– The conditions on parameters k and � will establish an injective map from N̂
to M.

– If n were not a perfect power of χ, then we would have |N̂ | > |M|, contradicting
the Pigeonhole Principle.

Summary of the AKS Proof (Theorem 11)

Our strategy for the AKS proof can be described as a game between two players
(see Fig. 1). The introspective relations of n and p, a prime factor of n, give rise
to two sets N and P (Sect. 4.1). Taking modulo by k (an AKS parameter) and
by h (an irreducible factor of Xk−1), the sets N and P map (straight arrows),
respectively, to two finite sets M and Qh (Sect. 4.2). Two finite subsets of N and
P, shown as N̂ and P̂, can be crafted in such a way that injective maps (curve
arrows) between the finite sets can be constructed, if k and � (another AKS
parameter) are suitably chosen to satisfy the “if” conditions (Sects. 4.3 and 4.4).
The construction of injective maps involves interactions (dashed arrows) between
the two players, based on properties of the introspective relation and polynomials
in Fh[X]. Once these are all in place, if n were not a perfect power of p, the grey set
N̂ will have more than |M| elements, where M is the target of the left injective
map. This contradicts the Pigeonhole Principle (Sect. 4.5). Hence n must be a
perfect power of its prime factor p.

4.1 Introspective Sets

As noted above, after shifting to a finite field F where p =χ is prime, for the
constants 0 < c ≤ �, besides the given n �� X+ c, we also have p �� X+ c by
Theorem 4.

In view of this, we define the following two sets:

� N = {m | gcd(m, k) = 1 ∧ ∀ c. 0 < c ∧ c ≤ � ⇒ m �� X + c}
� P = {p | poly p ∧ ∀m. m ∈ N ⇒ m �� p}

126 H.-L. Chan and M. Norrish

Fig. 1. The AKS proof as a game between numbers and polynomials via introspective
relation. Refer to summary above for an explanation.

The set N captures the introspective exponents. Observe that n ∈ N , p ∈ N , and
trivially, 1 ∈ N . They are all coprime to k , since the coprime checks in Sect. 3.3
give gcd(n, k)= 1 and k < p. For a prime p, k < p gives gcd(p, k)= 1.

The set P captures the introspective polynomials, those with introspective
exponents in N . Certainly ∀ c. 0 < c ∧ c ≤ � ⇒X+ c∈ P, and trivially, 1∈ P.

Recall the fundamental properties of introspective relation: there will be mul-
tiplicative exponents for N (Theorem 5) and multiplicative polynomials for P
(Theorem 6). Together they imply that the sets N and P will be infinitely large.
Our contradiction from the Pigeonhole Principle comes when we have derived
some related, and finite sets.

4.2 Modulo Sets

One way to get a finite counterpart from an infinite set is by looking at remain-
ders after division, or image of the set under some modulus. For the exponents
set N , the parameter k provides a modulus:

� M = (λm. m mod k)(|N |)
It is easy to estimate the cardinality of M:

Theorem 12. The cardinality of set M is bounded by k and orderk (n).

� Ring R ∧ 1 	= 0 ∧ 1 < k ⇒ ∀n. n ∈ N ⇒ orderk (n) ≤ |M| ∧ |M| < k

Proof. Since there are k remainders under modulo k , |M| ≤ k . But multiples of
k (those n with n mod k = 0) are not in N , as all elements of N are coprime to k
and k �= 1. Therefore 0 /∈ M, making |M| < k . Given n ∈ N , so are all its powers:

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 127

∀ j . nj ∈ N by Theorem 5. Hence all the remainders nj mod k are in M. Since
orderk (n) is the minimal exponent j before such remainders wrap around to 1,
there are at least orderk (n) distinct remainders. Thus orderk (n) ≤ |M|. �

For the polynomials set P, the irreducible factor h of Xk−1 provides a modulus:

� Qh = (λ p. p mod h)(|P|)
For the cardinality of Qh , estimation requires more work, due to the change of
modulus to h. Let z=Xk−1, then monic z and deg z= k . Note that z ≡ 0 (mod h),
since h divides z by being a factor. These facts ensure that polynomial equiva-
lences in (mod z) are preserved to (mod h):

Theorem 13. Polynomial modulo equivalence holds for modulus factor.

� Ring R ∧ monic z ∧ 0 < deg z ∧ monic h ∧ 0 < deg h ∧ z ≡ 0 (mod h) ⇒
∀p q. poly p ∧ poly q ∧ p ≡ q (mod z) ⇒ p ≡ q (mod h)

Proof. When (p − q) is divisible by z (due to p ≡ q (mod z)), and z is divisible
by h (due to z ≡ 0 (mod h)), the difference (p − q) is also divisible by h due to
transitivity of division. �

An irreducible polynomial h gives a polynomial modulo field Fh[X], and
nonzero elements of a field form a multiplicative group. Since X 	= 0, it has a
nonzero orderh(X), with the following features.

Theorem 14. When X is a root of unity, order of X is maximal when unity
exponent is prime.

� FiniteField F ∧ monic h ∧ ipoly h ∧ h 	=X − 1 ⇒
∀ k. prime k ∧ Xk ≡ 1 (mod h) ⇒ orderh(X) = k

Proof. Let t =orderh(X). By definition of order, Xt ≡ 1 (mod h), and given Xk ≡
1 (mod h). Since t is minimal, t divides k. Given prime k, t = 1 or t = k. Only 1

has order 1, but X �≡ 1 (mod h) by assumption. Therefore orderh(X) = t = k . �
Theorem 15. In the polynomial field Fh[X], powers of X are distinct for expo-
nents less than orderh(X).
� FiniteField F ∧ monic h ∧ ipoly h ∧ h 	=X ⇒

∀m n. m < orderh(X) ∧ n < orderh(X) ⇒ (Xm ≡ Xn (mod h) ⇐⇒ m = n)

Proof. Since Fh[X] is a finite field, its multiplicative group is a finite group. By
the given assumption, X �≡ 0 (mod h), thus X is an element in this group. Its
order is the minimal exponent for the powers of X to wrap around to 1. Given
the exponents are less than its order, such powers of X are distinct. �
We shall see how the distinct powers of X lead to a lower bound for Qh. This
simple result is helpful:

Theorem 16. Powers of X are equivalent in Xk − 1 if exponents are equivalent
in Zk .

� Ring R ∧ 1 	= 0 ⇒ ∀ k. 0 < k ⇒ ∀m. Xm ≡ Xm mod k (mod Xk − 1)

Proof. Since m = (m div k)k + m mod k and Xk ≡ 1 (mod Xk−1), the result
follows. �

128 H.-L. Chan and M. Norrish

4.3 Reduced Polynomials

Referring to Fig. 1, we shall see eventually that the right injective map is essential
to give a lower bound for Qh , and this lower bound is essential to provide the
left injective map. These two injective maps are critical in the AKS proof.

To obtain a lower bound for Qh , we need another way to get something finite
from the infinite set P, by taking a reduced subset of P:

� P̂ = {p | p∈ P ∧ deg p < |M| }
This is a finite subset of P due to the polynomial degree cut-off. We shall prove
that there is an injective map from P̂ to Qh, hence a lower bound on |P̂| will
also be a lower bound for |Qh|.

First, note an interesting interaction from M to P, which is relevant to P̂ since
P̂ ⊆ P. We know that P has a lot of elements (Sect. 4.1), so pick two polynomials
p∈ P and q∈ P. While it is almost impossible to identify any roots for p or q in
Fh[X], it turns out that introspective relation helps to identify some interesting
roots of their difference (p − q), from the elements of M.

Theorem 17. Each element in M gives a root for any difference polynomial
from P in Fh[X].

� Field F ∧ monic h ∧ 0 < deg h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀p q.

p∈ P ∧ q∈ P ∧ p ≡ q (mod h) ⇒
∀n. n ∈ M ⇒ (p − q)[[Xn]] ≡ 0 (mod h)

Proof. Given n ∈ M, there is m ∈ N such that n =m mod k . Therefore m �� p and
m �� q by definition of P. Let z=Xk−1. Note that z ≡ 0 (mod h) by assumption.
We can proceed:

pm ≡ p[[Xm]] (mod z) by m �� p
and p[[Xm]] ≡ p[[Xn]] (mod z) by Theorem 16
so pm ≡ p[[Xn]] (mod z) by transitivity
or for p , by z ≡ 0 (mod h) pm ≡ p[[Xn]] (mod h) by Theorem 13—[1]
Repeat the same steps for q qm ≡ q[[Xn]] (mod h) by m �� q etc.—[2]
Since pm ≡ qm (mod h) by p ≡ q (mod h) given
so p[[Xn]] ≡ q[[Xn]] (mod h) by [1] and [2] above
or (p − q)[[Xn]] ≡ 0 (mod h) as claimed. �

Due to this, an injective map between the two finite sets derived from P is
possible:

Theorem 18. There is an injective map from reduced set of P to modulo set of P.

� FiniteField F ∧ 0 < k ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ∧
k = orderh(X) ⇒

(λ p. p mod h) : P̂ ↪→ Qh.

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 129

Proof. Let p, q∈ P̂, with p ≡ q (mod h) in Qh. For our map to be injective, we
need to show p= q. Since P̂ ⊆ P, p, q∈ P. Theorem 17 applies: each n ∈ M gives a
root Xn for (p − q). Now h 	=X because, by assumption, h | Xk−1, but X 	 | Xk−1,
and n < k since n ∈ M means n is a remainder in (mod k). By assumption,
k =orderh(X), hence these roots are distinct by Theorem 15. Thus there are at
least |M| distinct roots for (p − q).

But deg p< |M| and deg q< |M| since p, q∈ P̂, hence deg (p − q) < |M|. There
are more roots than its degree for the difference (p − q) with coefficients from a
finite field F . This is possible only when the difference is 0, i.e., p= q. �

This injective map leads to a lower bound for the cardinality of Qh.

Theorem 19. The modulo set of P has a nice lower bound.

� FiniteField F ∧ 1 < k ∧ k = orderh(X) ∧ � < χ ∧ monic h ∧ ipoly h ∧
Xk − 1 ≡ 0 (mod h) ⇒

2min(�,|M|) ≤ |Qh|
Proof. Applying Theorem18, there is an injective map from P̂ to Qh. As both
sets are finite, |P̂| ≤ |Qh |. We shall estimate |P̂|, by counting how many polyno-
mials p∈ P have deg p< |M|.

Note that 1 < |M|, since orderk (n) ≤ |M| by Theorem 12, and 1 < orderk (n)
since n 	= 1. A simple estimate for |P̂| proceeds as follows:

– For 0 < c ≤ �, X+ c∈ P̂, since each monomial is in P, and each has a degree
equal to 1.

– Given � < χ, these monomials are distinct, as χ is the least additive wrap-
around of 1 in field F .3

– By Theorem 6, any product of these monomials will be in P̂, if the product
has a degree less than |M|.

– If � < |M|, there are less than |M| such monomials. Therefore any product
drawn from a subset of {X+ c | 0 < c ≤ �} will have a degree less than |M|.
There are 2� such products.

– If |M| ≤ �, reduce the constants range to 0 < c ≤ |M|. Any product drawn
from a subset of {X+ c | 0 < c ≤ |M|} will have a degree less than |M|,
almost—the product of all such monomials must be excluded. However, 1∈ P̂,
but 1 is not a monomial product. There are still 2|M| products.

Considering both cases, we conclude that 2min(�,|M|) ≤ |Qh |. �

4.4 Reduced Exponents

It turns out that an injective map to M is possible based on the following set of
reduced exponents:

� N̂ p n m = {pi nj | i ≤ m ∧ j ≤ m }
3 The characteristic χ of a ring R is defined as the order of 1 in the additive group of

R, i.e., χ1=0.

130 H.-L. Chan and M. Norrish

This is generated by the two known elements n, p ∈ N (Sect. 4.1), with cut-
off m in their exponents. By multiplicative closure of introspective exponents
(Theorem 5), N̂ ⊆ N . Observe the following property:

Theorem 20. Upper bound of an element in N̂ p n m.

� 1 < p ∧ p ≤ n ⇒ ∀ e m. e ∈ N̂ p n m ⇒ e ≤ n2m

Proof. Each e ∈ N̂ p n m has the form pi nj , where i, j ≤ m. Given p ≤ n, we
can deduce e = pi nj ≤ ni nj ≤ nm nm = n2m . �

Note another interesting interaction from Qh to N , which is relevant to N̂
since N̂ n p m ⊆ N . Pick two exponents n ∈ N and m ∈ N . Consider the special
polynomial Xn−Xm . It turns out that the introspective relation helps to identify
some interesting roots of this special polynomial, from the elements of Qh.

Theorem 21. Each element in Qh gives a root for a special polynomial from N
in Fh[X].

� Field F ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀n m.

n ∈ N ∧ m ∈ N ∧ n ≡ m (mod k) ⇒
∀p. p ∈ Qh ⇒ (Xn − Xm)[[p]] ≡ 0 (mod h)

Proof. Given p∈ Qh, there is q∈ P such that p= q mod h. Therefore n �� q and
m �� q by definition of P. Let z =Xk−1. Note that z ≡ 0 (mod h) by given. We
can proceed:

qn ≡ q[[Xn]] (mod z) by n �� q — [1]
qm ≡ q[[Xm]] (mod z) by m �� q — [2]

and q[[Xm]] ≡ q[[Xn]] (mod z) by Theorem16
so qn ≡ qm (mod z) by [1], [2], transitivity
Therefore qn−qm ≡ 0(mod z) by subtraction
by z ≡ 0 (mod h) qn−qm ≡ 0 (mod h) by Theorem13—[3]
Since (Xn−Xm)[[p]] ≡ (Xn−Xm)[[q]] (mod h) by p=q mod h —[4]
and the right-side (Xn−Xm)[[q]]=qn−qm by substitution of q —[5]
Combine [4],[5],[3] (Xn−Xm)[[p]] ≡ 0 (mod h) as claimed. �

Due to this, an injective map between the two finite sets derived from N is
possible:

Theorem 22. There is an injective map from reduced set of N to modulo set
of N .

� FiniteField F ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀n p.

1 < p ∧ p < n ∧ n ∈ N ∧ p ∈ N ∧ n2
√

|M| < |Qh| ⇒
(λm. m mod k) : N̂ p n

√|M| ↪→ M

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 131

Proof. Let i, j ∈ N̂ n p
√|M|, with i ≡ j (mod k) in M. If the map is to

be injective, we need i = j . Since N̂ n p
√|M| ⊆ N , both i, j ∈ N . Theorem 21

applies: every p∈ Qh is a root of Xi − Xj . Hence there are at least |Qh | roots.
By Theorem 20, both i, j are bounded by n2

√
|M|, hence deg (Xi−Xj) ≤

n2
√

|M|. Given n2 |M| < |Qh|, there are more roots than its degree for the poly-
nomial (Xi−Xj) with coefficients from a finite field F . This is not possible, unless
it is 0, which means i = j . �

4.5 Punch Line

Given a prime p that divides n, if nx = py for some exponents x , y with x > 0,
what can we conclude?

Theorem 23. A condition that implies a number is a perfect power of prime.

� 0 < n ∧ prime p ∧ p | n ∧ (∃ x y. 0 < x ∧ px = ny) ⇒ perfect power n p

Proof. Since p | n, divide n by p as many times as possible, and express n = pmq
where m is the maximum possible, and p 	 | q . The equation px = ny becomes
px = (pmq)y = pmyqy. By unique factorisation, with prime p and p 	 | q and x 	= 0,
it must be that y 	= 0, and qy = 1, i.e., q = 1. �

When its generators have a special property, the cardinality of N̂ p n m is simple
to express:

Theorem 24. Cardinality of N̂ when generators n and prime divisor p are not
related by perfect power.

� Ring R ∧ 1 	= 0 ∧ 1 < k ⇒
∀n p m.

n ∈ N ∧ p ∈ N ∧ prime p ∧ p | n ∧ ¬perfect power n p ⇒
|N̂ p n m| = (m + 1)2

Proof. Let f = (λ (i ,j). pi nj), t = { j | j ≤ m } . From its definition, it is simple
to verify that N̂ p n m = { pi nj|i ≤ m ∧ j ≤ m } = f (|t × t |). More interesting is
that the conditions will imply f : t × t ↪→ N̂ p q n. Once this is proved, being
the image of an injective map gives |N̂ p q n|= |t × t | = |t |2 = (m + 1)2.

To show that the map is injective, assume pi nj = pu nv for some i, j and u, v.
We need to show i = u and j = v . This comes down to analysis by cases.

If i < u, only the case j > v is interesting, with nj−v = pu−i . As j−v 	= 0,
Theorem 23 applies, giving perfect power n p, which contradicts the assumption.
By the symmetric roles of i, j and u, v, the case i > u leads to the same contra-
diction. The only possible case is i = u, giving j = v . �

This property is crucial in order to complete the proof of AKS Main Theorem
(Theorem 11).

Proof. (of Theorem 11). AKS Main Theorem in finite fields

132 H.-L. Chan and M. Norrish

� FiniteField F ∧ prime k ∧ k < χ ⇒
∀n.

1 < n ∧ χ | n ∧ gcd(n, k) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ∧
� = 2

√
k (log n + 1) ∧ (∀ c. 0 < c ∧ c ≤ � ⇒ n �� X + c) ⇒

perfect power n χ

Let p =χ. By assumption, p | n, so p ≤ n. The case p =n is trivial, so we shall
assume p < n.

The finite field F gives prime p, so p �� X+ c (Theorem 4). We have k < p, so
gcd(p, k)= 1. Assuming gcd(n, k)= 1 and n �� X+ c, we have the ingredients for
the introspective sets N and P (Sect. 4.1). Their finite counterparts, the modulo
sets M and Qh (Sect. 4.2), and reduced sets N̂ and P̂ (Sects. 4.3 and 4.4) can be
set up accordingly.

Recall that the introspective relation is based on modulus Xk−1. By the
second useful fact in Sect. 4, in a finite field F it has a monic irreducible factor
h 	=X−1, i.e., Xk−1 ≡ 0 (mod h). With prime k , we have orderh(X)= k
(Theorem 14), giving the injective map from P̂ to Qh (Theorem 18), which is
essential for the lower bound estimate of Qh .

In Sect. 4.6, we shall investigate the parameters k and �. We shall show that
� < k (Theorem 27). By assumption, k < p, so � < p. Therefore 2min(�,|M|) ≤ |Qh |
(Theorem 19, which invokes Theorem 18). We shall also show that n2

√
|M| <

2min(�,|M|) (Theorem 26). Hence n2
√

|M| < |Qh |. With p < n, these inequalities
establish the injective map from N̂ n p

√|M| to N̂ (Theorem 22).
Now, given prime p and p | n, if n were not a perfect power of p, Theorem 24

applies, so that:

|N̂ p n
√

|M||= (
√

|M| + 1)2 = |M| + (2
√

|M|) + 1 > |M|
This means the injective map from N̂ p n

√|M| to M, both finite sets, would
violate the Pigeonhole Principle. Therefore, n must be a perfect power of p =χ. �

4.6 Parameters

The AKS Main Theorem contains a parameter k with the property:
orderk (n) ≥ (2 (log n + 1))2, from which a related parameter �= 2

√
k (log n + 1)

is computed.
In the original AKS paper [2], parameter k is a prime (for a different set

of conditions) while in the revised version [3] this prime requirement on k is
dropped. Only the bound on k affects the conclusion “PRIMES is in P”, a
general k needs more advanced theory to establish. Our mechanisation effort is
based on a prime k , following Dietzfelbinger [10]. We use a prime k to show
k =orderh(X) in Theorem 14.

The existence of such a prime k can be established by generalizing the prob-
lem: given a number n, and a maximum m, find a prime modulus k such that
orderk (n) ≥ m. This is applied in Theorem 8:

Theorem 25. There is always a modulus k giving big enough order for n in Zk .

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 133

� 1 < n ∧ 0 < m ⇒ ∃ k. prime k ∧ gcd(k ,n) = 1 ∧ m ≤ orderk (n)

Proof. First, we define a set of candidates:

� candidates n m = {k | prime k ∧ k 	 | n ∧ ∀ j. 0 < j ∧ j < m ⇒ k 	 | nj − 1}
Pick a large prime z > nm , then z cannot divide n or any of the factors nj − 1
for 0 < j < m, hence z ∈ candidates n m.

Thus candidates n m 	= ∅, and we can pick a candidate k , say the least value,
from the set. Being an element, prime k ∧ k 	 | n. Since a prime is coprime to its non-
multiples, gcd(k ,n)= 1. Thus n has nonzero order in Zk . Let j =orderk (n), then
0 < j with nj ≡ 1 (mod k), or k | nj−1. If j < m, by the candidates definition
k 	 | nj−1, a contradiction. Hence orderk (n)= j ≥ m. �

The parameters k and � provide a crucial inequality involving |M|, used in
Theorem 11:

Theorem 26. The AKS parameters meet the inequality condition.

� FiniteField F ∧ 1 < k ∧ 1 < n ∧ n ∈ N ∧ (2(log n + 1))2 ≤ orderk (n) ∧
� = 2

√
k (log n + 1) ⇒

n2
√

|M| < 2min(�,|M|)

Proof. Let j =orderk (n), and m = log n + 1, then 2m > n for integer logarithm.
By Theorem 12, j ≤ |M| and |M| < k . By the given assumption, (2m)2 ≤ j . Tak-
ing integer square roots, we have

√|M| ≥ √
j ,

√
k ≥

√|M| and
√

j ≥ 2m. Note
also |M| ≥ √|M|√|M| by integer square root. Therefore:

– �= 2
√

k m ≥ m (2
√|M|)

– |M| ≥ √
j
√|M| ≥ m (2

√|M|)
Thus min(�, |M|) ≥ m (2

√|M|), and

2min(�,|M|) ≥ 2m (2
√

|M|) = 2m2
√

|M| > n2
√

|M|. �

Incidentally, the choice of k and � ensures that � ≤ k , used in Theorems 10
and 11:

Theorem 27. The AKS computed parameter does not exceed the modulus para-
meter.

� 1 < n ∧ 1 < k ∧ gcd(k ,n) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ⇒
2
√

k (log n + 1) ≤ k

Proof. Since orderk (n) | ϕ(k), and ϕ(k) < k when k > 1, we have orderk (n) < k .
Taking integer square-roots, with the given orderk (n), deduce

k ≥
√

k
√

k ≥
√

k
√

orderk (n) ≥ 2
√

k (log n + 1). �

134 H.-L. Chan and M. Norrish

5 Mechanisation and its Traps

The updated AKS proof [3] is contained within four pages. Mechanisation of
such a proof is the process of unwinding the dense mathematics within those
pages. It took us about a year to build up the basic libraries, another year to
forge the advanced libraries, then about six months to adapt the libraries for
the proof of AKS Main Theorem, during which time the missing pieces in the
developed libraries were steadily being filled in.

There are always pitfalls during the mechanisation process. One example is
the symbol X in various expositions of the AKS proof, e.g., [4,7,8,10]. Usually X

starts as an indeterminate or a degree one zero constant monomial, then switches
to a root of unity, even to a primitive root of unity. While this is common practice,
such changes mean that we needed to prove the switchings are valid.

The substitution by X is fundamental in the introspective relation (Sect. 2.2).
These subtle changes in the role of X presented some difficulties in our initial
effort to formalize the AKS proof. Indeed, we first used an inappropriate defin-
ition and got carried along until we found that shifting playgrounds (Sect. 3.3)
is impossible with that definition.

Shifting of playgrounds in the AKS proof is pivotal. Most expositions just
point this out without further elaboration.4 After this shifting, where the play-
ground is now Zp , the introspective relation is defined in Zp [X], side-stepping the
issue. It was in the process of mechanisation that we realized a proper formu-
lation should start by defining the introspective relation in a ring R (Sect. 2.2),
and then prove that shifting is valid through ring homomorphisms from Zn to
Zp (Sect. 3.3).

Lessons Learnt. Rather than attempting a direct transcription of the AKS proof,
we came to understand the proof in the context of finite fields, identifying the
key concepts involved in the proof, even comparing various expositions. By refor-
mulations of polynomial theorems in number theory into their counterparts in
rings and fields, a clear picture of the proof’s logic emerged, resulting in this
succinct presentation.

HOL4 and Abstract Algebra. This work demonstrates that HOL4’s simple type
theory, together with its proof machinery, are sufficient to allow the statement
and proof of moderately complicated theorems in abstract algebra. Without
dependent types (as in Coq) or locales (as in Isabelle), theorems are slightly
more awkward to state, but our experience is that ad hoc overloading gets one
a long way. Over-annotation of terms so that the parser chooses the “right”
meaning of a symbol like + is only necessary occasionally. Exploiting overloading
in this way requires a careful understanding of just what the parser is and is not
capable of, and one is often on exactly that boundary. Nonetheless, the result
gives terms that are not far removed from those that have been pretty-printed

4 For example, [3] first stated the computational identity in Zn , then “this implies”
the corresponding identity in Zp . Only [10] proved the shifting from Zn to Zp as a
lemma.

Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 135

in this paper. (Pretty-printing to LATEX adds niceties such as superscripts and
juxtaposition for multiplication; these could not be handled by the parser.)

Nor should we forget that Campos et al. [5] proved half of the Main Theorem
in ACL2, where the underlying logic is even simpler, and provides no static type-
checking.

6 Related Work

Other Pen-and-Paper Proofs. The revised proof (2004) of the AKS team [3] takes
this approach: use the injective map on Qh to establish a lower bound for |Qh |;
assuming that n is not a power of p, use the Pigeonhole Principle to show that a
special nonzero polynomial has at least |Qh | roots, thus giving an upper bound
for |Qh |; manipulate inequalities to show that the chosen parameters will lead
to the lower bound exceeding the upper bound, hence a contradiction.

Other expositions of the AKS Main Theorem [1,11–13] take similar approaches,
working mainly in Zp [X]. Our method is equivalent, but is clean in that we:
(i) emphasize the important role of shifting from Zn to Zp (Sect. 3.3); (ii) refor-
mulate the AKS Main Theorem in the context of finite fields (Theorem 11);
(iii) clarify that the choice of parameters gives injective maps between reduced
sets and modulo sets (Theorems 18 and 22); (iv) bring in the assumption that n
is not a power of prime p as late as possible; and (v) use the Pigeonhole Principle
as a punch line to force n to be a power of prime p (Sect. 4.5).

Other Mechanisations. We believe that we are the first to mechanise both direc-
tions of the central theorem of AKS algorithm. As noted earlier, two other teams
(Campos et al. [5] in ACL2, and de Moura and Tadeu [9] in Coq) have mecha-
nised the fact that if the number being tested is prime, then the AKS algorithm
will indeed report “yes”.

We are also aware of preliminary work started by John Harrison, and carried
out in HOL Light.5

7 Conclusion

It is well-known that the cardinality of a finite field must be a prime power, and
it is elementary to check whether a number is power-free. In essence, the AKS
team showed that primality testing can be reduced to finite field cardinality
testing, and demonstrated that the latter can be done in polynomial time.

Through our mechanisation effort, especially in presenting the AKS proof as
an introspective game (Sect. 4), we hope that this elementary proof of the AKS
Main Theorem provides further appreciation of the AKS team’s brilliant ideas.

Future Work. While the existence of parameter k in the AKS Main Theorem is
assured, to show that it is bounded by a polynomial function of log n is harder.
In future work, we intend to perform the necessary complexity analysis of the
AKS algorithm to complete the mechanised proof that PRIMES is indeed in P.
5 John was kind enough to share his approach with us via private communication.

136 H.-L. Chan and M. Norrish

References

1. Agrawal, M.: Primality tests based on Fermat’s Little Theorem, December 2006.
http://www.cse.iitk.ac.in/users/manindra/presentations/FLTBasedTests.pdf

2. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P, August 2002. Original paper
3. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793

(2004)
4. Bedodi, A.: Primality tests in polynomial time. Master’s thesis, Universitá Degli

Studi Roma TRE, February 2010
5. Campos, C., Modave, F., Roach, S.: Towards the verification of the AKS primal-

ity test in ACL2. In: Fifth International Conference on Intelligent Technologies,
November 2004

6. Chan, H.-L., Norrish, M.: A string of pearls: proofs of Fermat’s Little Theorem. J.
Formalized Reason. 6(1), 63–87 (2013)

7. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.
Springer, New York (2005)

8. Daleson, G.: Deterministic primality testing in polynomial time. Master’s thesis,
Portland State University, December 2006

9. de Moura, F.L. C., Tadeu, R.: The correctness of the AKS primality test in Coq.
July 2008. http://www.cic.unb.br/∼flavio/AKS.pdf

10. Dietzfelbinger, M.: Primality Testing in Polynomial Time: From Randomized Algo-
rithms to ‘PRIMES is in P’. Lecture Notes in Computer Science. Springer, Heidel-
berg (2004)

11. Domingues, R.: A polynomial time algorithm for prime recognition. Master’s thesis,
University of Pretoria, January 2006

12. Linowitz, B.: An exposition of the AKS polynomial time primality testing. Master’s
thesis, University of Pennsylvania, March 2006

13. Pomerance, C.: Primality testing, variations on a theme of Lucas (2008). http://
cm.bell-labs.com/who/carlp/PS/primalitytalk5.ps

http://www.cse.iitk.ac.in/users/manindra/presentations/FLTBasedTests.pdf
http://www.cic.unb.br/~flavio/AKS.pdf
http://cm.bell-labs.com/who/carlp/PS/primalitytalk5.ps
http://cm.bell-labs.com/who/carlp/PS/primalitytalk5.ps

Machine-Checked Verification
of the Correctness and Amortized Complexity

of an Efficient Union-Find Implementation

Arthur Charguéraud1 and François Pottier2(B)

1 Inria and LRI, Université Paris Sud, CNRS, Orsay, France
2 Inria, Paris-Rocquencourt, France

francois.pottier@inria.fr

Abstract. Union-Find is a famous example of a simple data structure
whose amortized asymptotic time complexity analysis is non-trivial. We
present a Coq formalization of this analysis. Moreover, we implement
Union-Find as an OCaml library and formally endow it with a modular
specification that offers a full functional correctness guarantee as well
as an amortized complexity bound. Reasoning in Coq about imperative
OCaml code relies on the CFML tool, which is based on characteristic
formulae and Separation Logic, and which we extend with time cred-
its. Although it was known in principle that amortized analysis can be
explained in terms of time credits and that time credits can be viewed as
resources in Separation Logic, we believe our work is the first practical
demonstration of this approach.

1 Introduction

The Union-Find data structure, also known as a disjoint set forest [12], is widely
used in the areas of graph algorithms and symbolic computation. It maintains a
collection of disjoint sets and keeps track in each set of a distinguished element,
known as the representative of this set. It supports the following operations:
make creates a new element, which forms a new singleton set; find maps an
element to the representative of its set; union merges the sets associated with
two elements (and returns the representative of the new set); equiv tests whether
two elements belong to the same set. In OCaml syntax, this data structure offers
the following signature, where the abstract type elem is the type of elements:

type elem

val make : unit -> elem

val find : elem -> elem

val union : elem -> elem -> elem

val equiv : elem -> elem -> bool

One could generalize the above signature by attaching a datum of type ’a to
every set, yielding a type ’a elem. We have not done so for the moment.

Disjoint set forests were invented by Galler and Fischer [15]. In such a forest,
an element either points to another element or points to no element (i.e., is a
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 137–153, 2015.
DOI: 10.1007/978-3-319-22102-1 9

138 A. Charguéraud and F. Pottier

Fig. 1. OCaml implementation of Union-Find

root). These pointers form a forest, where each tree represents a set, and where
the root of the tree is the representative of the set. There is a unique path from
every node in a tree to the root of this tree.

The find operation follows this unique path. For efficiency, it performs path
compression: every node along the path is updated so as to point directly to the
root of the tree. This idea is attributed by Aho et al. [1] to McIlroy and Morris.

The union operation updates the root of one tree so as to point to the root
of the other tree. To decide which of the two roots should become a child of the
other, we apply linking-by-rank [28,29]. A natural number, the rank, is associated
with every root. The rank of a newly created node is zero. When performing a
union, the root of lower rank becomes a child of the root of higher rank. In case
of equality, the new root is chosen arbitrarily, and its rank is increased by one.

A complete OCaml implementation appears in Fig. 1.
Union-Find is among the simplest of the classic data structures, yet requires

one of the most complicated complexity analyses. Tarjan [29] and Tarjan and
van Leeuwen [28] established that the worst-case time required for performing
m operations involving n elements is O(m · α(n)). The function α, an inverse of
Ackermann’s function, grows so slowly that α(n) does not exceed 5 in practice.
The original analysis was significantly simplified over the years [21], ultimately
resulting in a 2.5 page proof that appears in a set of course notes by Tarjan [27]
and in the textbook Introduction to Algorithms [12].

In this paper, we present a machine-checked version of this mathematical
result. In addition, we establish a machine-checked connection between this result
and the code shown in Fig. 1. Our proofs are available online [8].

To assess the asymptotic time complexity of an OCaml program, we rely on
the assumption that “it suffices to count the function calls”. More precisely, if one
ignores the cost of garbage collection and if one encodes loops as tail-recursive
functions, then the number of function calls performed by the source program is
an accurate measure of the number of machine instructions executed by the com-
piled program, up to a constant factor, which may depend (linearly) on the size
of the program. Relying on this assumption is an old idea. For example, in the
setting of a first-order functional programming language, Le Métayer [22] notes

Machine-Checked Verification of the Correctness 139

that “the asymptotic complexity and the number of recursive calls necessary
for the evaluation of the program are of the same order-of-magnitude”. In our
higher-order setting, every function call is potentially a “recursive” call, so must
be counted. Danielsson [13] does this. The cost of constructing and looking up the
environment of a closure is not a problem: as noted by Blelloch and Greiner [5],
it is a constant, which depends on the number of variables in the program.

We do not prove that the OCaml compiler respects our assumption. It is
very likely that it does. If it did not, that would be a bug, which should and
very likely could be fixed. On a related theme, the CerCo project [3] has built
compilers that not only produce machine code, but also determine the actual
cost (according to a concrete machine model) of every basic block in the source
program. This allows carrying out concrete worst-case-execution-time analysis
at the source level.

In order to formally verify the correctness and complexity of a program, we
rely on an extension of Separation Logic with time credits. Separation Logic [26]
offers a natural framework for reasoning about imperative programs that manip-
ulate the heap. A time credit is a resource that represents a right to perform one
step of computation. In our setting, every function call consumes one credit. A
number of credits can be explicitly requested as part of the precondition of a
function f , and can be used to justify the function calls performed by f and
by its callees. A time credit can be stored in the heap for later retrieval and
consumption: that is, amortization is permitted.

In short, the combination of Separation Logic and time credits is particularly
attractive because it allows (1) reasoning about correctness and complexity at
the same time, (2) dealing with dynamic memory allocation and mutation, and
(3) carrying out amortized complexity analyses.

Time credits, under various forms, have been used previously in several type
systems [13,17,25]. Atkey [4] has argued in favor of viewing credits as predicates
in Separation Logic. However, Atkey’s work did not go as far as using time
credits in a general-purpose program verification framework.

We express the specification of every operation (make, find , union, etc.) in
terms of an abstract predicate UFN D R, where N is an upper bound on the
number of elements, D is the set of all elements, and R is a mapping of every
element to its representative. The predicate UF captures: (1) the existence (and
ownership) in the heap of a collection of reference cells; (2) the fact that the graph
formed by these cells is a disjoint set forest; (3) the connection between this graph
and the parameters N , D, and R, which the client uses in her reasoning; and
(4) the ownership of a number of time credits that corresponds to the current
“total potential”, in Tarjan’s terminology, of the data structure.

The precondition of an operation tells how many credits this operation requires.
This is its amortized cost. Its actual cost may be lower or higher, as the operation
is free to store credits in the heap, or retrieve credits from the heap, as long as it
maintains the invariant encoded in the predicate UF. For instance, the precondi-
tion of find contains $(α(N) + 2), which means “α(N)+2 credits”. We note that it
might be preferable to state that find requires O(α(N)) credits. However, we have
not yet developed an infrastructure for formalizing the use of the big-O notation
in our specifications.

140 A. Charguéraud and F. Pottier

To prove that the implementation of an operation satisfies its specification,
we rely on the tool CFML [6,7], which is based on Separation Logic and on
characteristic formulae. The characteristic formula of an OCaml term t is a
higher-order logic formula �t� which describes the semantics of t. (This obviates
the need for embedding the syntax of t in the logic.) More precisely, �t� denotes
the set of all valid specifications of t, in the following sense: for any precondi-
tion H and postcondition Q, if the proposition �t�H Q can be proved, then the
Separation Logic triple {H} t {Q} holds. The characteristic formula �t� is built
automatically from the term t by the CFML tool. It can then be used, in Coq,
to formally establish that the term t satisfies a particular specification.

Our proofs are carried out in the Coq proof assistant. This allows us to
perform in a unified framework a mathematical analysis of the Union-Find data
structure and a step-by-step analysis of its OCaml implementation.

In addition to Coq, our trusted foundation includes the meta-theory and imple-
mentation of CFML. Indeed, the characteristic formulae produced by CFML are
accepted as axioms in our Coq proofs. We trust these formulae because they
are generated in a systematic way by a tool whose soundness has been proved
on paper [6,7]. For convenience, we also rely on a number of standard logical
axioms, including functional extensionality, predicate extensionality, the law of
excluded middle, and Hilbert’s ε operator. The latter allows, e.g., defining “the
minimum element” of a subset of N before this subset has been proved nonempty
(Sect. 4.4), or referring to “the parent” of a node before it has been established
that this node has a parent (Sect. 4.5).

In summary, our contribution is to present:

– the first practical verification framework with support for heap allocation,
mutation, and amortized complexity analysis;

– the first formalization of the potential-based analysis of Union-Find;
– the first integrated verification of correctness and time complexity for a Union-

Find implementation.

The paper is organized as follows. We describe the addition of time credits
to Separation Logic and to CFML (Sect. 2). We present a formal specification of
Union-Find, which mentions time credits (Sect. 3). We present a mathematical
analysis of the operations on disjoint set forests and of their complexity (Sect. 4).
We define the predicate UF, which relates our mathematical view of forests with
their concrete layout in memory, and we verify our implementation (Sect. 5).
Finally, we discuss related work (Sect. 6) and future work (Sect. 7).

2 Time Credits, Separation, and Characteristic Formulae

2.1 Time Credits in Separation Logic

In Separation Logic, a heap predicate has type Heap → Prop and characterizes
a portion of the heap. The fundamental heap predicates are defined as follows,
where h is a heap, H is a heap predicate, and P is a Coq proposition.

Machine-Checked Verification of the Correctness 141

[P] ≡ λh. h = ∅ ∧ P

H1 � H2 ≡ λh. ∃h1h2. h1 ⊥ h2 ∧ h = h1 � h2 ∧ H1 h1 ∧ H2 h2

∃∃x.H ≡ λh. ∃x. H h

The pure heap predicate [P] characterizes an empty heap and at the same time
asserts that P holds. The empty heap predicate [] is sugar for [True]. The sep-
arating conjunction of two heap predicates takes the form H1 � H2 and asserts
that the heap can be partitioned in two disjoint parts, of which one satisfies H1

and the other satisfies H2. Its definition involves two auxiliary notions: h1 ⊥ h2

asserts that the heaps h1 and h2 have disjoint domains; h1�h2 denotes the union
of two disjoint heaps. Existential quantification is also lifted to the level of heap
predicates, taking the form ∃∃x.H.

Logical entailment between two heap predicates, written H1 � H2, is defined
by ∀h. H1 h ⇒ H2 h. This relation is used in the construction of characteristic
formulae (Sect. 2.2) and also appears in specifications (Sect. 3).

To assert the existence (and ownership) of a memory cell and to describe
its content, Separation Logic introduces a heap predicate of the form l ↪→ v,
which asserts that the cell at location l contains the value v. Assuming the heap
is a store, i.e., a map of locations to values, the predicate l ↪→ v is defined as
λh. h = (l
→ v), where (l
→ v) denotes the singleton map of l to v. More details
on these definitions are given in the first author’s description of CFML [6].

To accommodate time credits, we give a new interpretation of the type Heap.
In traditional Separation Logic, a heap is a store, i.e., a map from location to
values: Heap ≡ Store. We reinterpret a heap h as a pair (m, c) of a store and of a
natural number: Heap ≡ Store× N. The second component represents a number
of time credits that are available for consumption.

This new interpretation of Heap allows us to define the heap predicate $n,
which asserts the ownership of n time credits. Furthermore, the definitions of �,
⊥, ∅, and l ↪→ v, are lifted as shown below.

$n ≡ λ(m, c). m = ∅ ∧ c = n

l ↪→ v ≡ λ(m, c). m = (l
→ v) ∧ c = 0
(m1, c1) ⊥ (m2, c2) ≡ m1 ⊥ m2

(m1, c1) � (m2, c2) ≡ (m1 � m2, c1 + c2)
∅:Heap ≡ (∅:Store, 0)

In short, we view Heap as the product of the monoids Store and (N,+). The
definitions of the fundamental heap predicates, namely [P], H1 � H2 and ∃∃x.H,
are unchanged.

Two provable equalities are essential when reasoning about credits:

$(n + n′) = $n � $n′ and $ 0 = [].

The left-hand equation, combined with the fact that the logic is affine, allows
weakening $n to $n′ when n � n′ holds. Technically, this exploits CFML’s
“garbage collection” rule [6], and can be largely automated using tactics.

142 A. Charguéraud and F. Pottier

2.2 Characteristic Formulae

Let t be an OCaml term. Its characteristic formula �t� is a higher-order predicate
such that, for every precondition H and postcondition Q, if �t�H Q can be proved
(in Coq), then the Separation Logic triple {H} t {Q} holds. This implies that,
starting in any state that satisfies H, the execution of t terminates and produces
a value v such that the final state satisfies the heap predicate Qv. This informal
sentence assumes that an OCaml value can be reflected as a Coq value; for the
sake of simplicity, we omit the details of this translation. In the following, we also
omit the use of a predicate transformer, called local [6], which allows applying the
structural rules of Separation Logic. Up to these simplifications, characteristic
formulae for a core subset of ML are constructed as follows:

�v� ≡ λHQ. H � Qv (1)
�letx = t1 in t2� ≡ λHQ. ∃Q′. �t1�H Q′ ∧ ∀x. �t2� (Q′ x)Q (2)

�f v� ≡ λHQ. App f v H Q (3)
�let f = λx. t1 in t2� ≡ λHQ. ∀f. P ⇒ �t2�H Q (4)

where P ≡ (∀xH ′Q′. �t1�H ′ Q′ ⇒ App f xH ′ Q′)

In order to read Eqs. (3) and (4), one must know that an OCaml function is
reflected in the logic as a value of abstract type func. Such a value is opaque:
nothing is known a priori about it. The abstract predicate App is used to assert
that a function satisfies a certain specification. Intuitively, App f v H Q stands
for the triple {H} f v {Q}. When a function is defined, an App assumption is
introduced Eq. (4); when a function is called, an App assumption is exploited
Eq. (3). In short, Eq. (4) states that if the body t1 of the function f satisfies
a specification {H ′} · {Q′}, then one can assume that a call f x satisfies the
same specification. Equation (3) states that the only way of reasoning about a
function call is to exploit such an assumption.

2.3 Combining Time Credits and Characteristic Formulae

To ensure that a time credit effectively represents “a right to perform one func-
tion call”, we must enforce spending one credit at every function call. In prin-
ciple, this can be achieved without any modification of the reasoning rules. All
we need to do is transform the program before constructing its characteristic
formula. We insert a call to an abstract function, pay, at the beginning of every
function body (and loop body). This is analogous to Danielsson’s “tick” [13].
We equip pay with a specification that causes one credit to be consumed when
pay is invoked:

App pay tt ($ 1) (λtt . [])

Here, tt denotes the unit argument and unit result of pay. The precondition $ 1
requests one time credit, while the postcondition [] is empty. When reasoning
about a call to pay, the user has no choice but to exploit the above specification
and give away one time credit.

Machine-Checked Verification of the Correctness 143

In practice, in order to reduce clutter, we simplify the characteristic formula
for a sequence that begins with a call to pay. The simplified formula is as follows:

�pay() ; t� ≡ λHQ. ∃H ′. H � $ 1� H ′ ∧ �t�H ′ Q

If desired, instead of performing a program transformation followed with the
generation of a characteristic formula, one can alter Eq. (4) above to impose the
consumption of one credit at the beginning of every function body:

�let f = λx. t1 in t2� ≡ λHQ. ∀f. P ⇒ �t2�H Q

where P ≡ (∀xH ′H ′′Q′. H ′ � $ 1� H ′′ ∧ �t1�H ′′ Q′ ⇒ App f xH ′ Q′) .

2.4 Meta-Theory

We revisit the informal soundness theorem for characteristic formulae [7] so as to
account for time credits. The new theorem relies on a cost-annotated semantics
of the programming language (a subset of OCaml). The judgment t/m ⇓n v/m′

means that the term t, executed in the initial store m, terminates after n function
calls and produces a value v and a final store m′. Our theorem is as follows.

Theorem 1 (Soundness of Characteristic FormulaewithTimeCredits).

∀mc.

{
�t�H Q

H (m, c)
⇒ ∃nvm′m′′c′c′′.

⎧
⎪⎪⎨

⎪⎪⎩

t/m ⇓n v/m′�m′′ (1)
m′ ⊥ m′′ (2)
Qv (m′, c′) (3)
c = n + c′ + c′′ (4)

Suppose we have proved �t�H Q. Pick an initial heap (m, c) that satisfies the
precondition H. Here, m is an initial store, while c is an initial number of time
credits. (Time credits are never created out of thin air, so one must assume that
they are given at the beginning.) Then, the theorem guarantees, the program t
runs without error and terminates (1). The final heap can be decomposed into
(m′, c′) and (m′′, c′′) (2), where (m′, c′) satisfies the postcondition Qv (3) and
(m′′, c′′) represents resources (memory and credits) that have been abandoned
during reasoning by applying the “garbage collection” rule [7]. Our accounting
of time is exact: the initial number of credits c is the sum of n, the number of
function calls that have been performed by the program, and c′ +c′′, the number
of credits that remain in the final heap (4). In other words, every credit either is
spent to justify a function call, or is still there at the end. In particular, Eq. (4)
implies c � n: the number of time credits that are initially supplied is an upper
bound on the number of function calls performed by the program.

The proof of Theorem 1 follows the exact same structure as that of the
original soundness theorem for characteristic formulae [7]. We have carried out
the extended proof on paper [8]. As expected, only minor additions are required.

144 A. Charguéraud and F. Pottier

3 Specification of Union-Find

Our specification of the library is expressed in Coq. It relies on an abstract type
elem and an abstract representation predicate UF. Their definitions, which we
present later on (Sect. 5), are not publicly known. As far as a client is concerned,
elem is the type of elements, and UFN D R is a heap predicate which asserts the
existence (and ownership) of a Union-Find data structure, whose current state
is summed up by the parameters N , D and R. The parameter D, whose type is
elem → Prop, is the domain of the data structure, that is, the set of all elements.
The parameter N is an upper bound on the cardinality of D. The parameter R,
whose type is elem → elem, maps every element to its representative.

Because R maps every element to its representative, we expect it to be an
idempotent function of the set D into itself. Furthermore, although this is in no
way essential, we decide that R should be the identity outside D. We advertise
this to the client via the first theorem in Fig. 2. Recall that � is entailment of
heap predicates. Thus, UF_properties states that, if one possesses UFN D R, then
certain logical properties of N , D and R hold.

The next theorem, UF_create, asserts that out of nothing one can create an
empty Union-Find data structure. UF_create is a “ghost” operation: it does not
exist in the OCaml code. Yet, it is essential: without it, the library would be
unusable, because UF appears in the pre-condition of every operation. When
one applies this theorem, one commits to an upper bound N on the number of
elements. N remains fixed thereafter.

The need for N is inherited from the proof that we follow [12,27]. Kaplan
et al. [20] and Alstrup et al. [2] have carried out more precise complexity analyses,
which lead to an amortized complexity bound of α(n), as opposed to α(N), where
n is the cardinality of D. In the future, we would like to formalize Alstrup et al.’s
argument, as it seems to require relatively minor adjustments to the proof that
we have followed. This would remove the need for fixing N in advance and would
thus make our specification easier to use for a client.

Next comes the specification of the OCaml function make. The theorem
make_spec refers to UnionFind_ml.make, which is defined for us by CFML and has
type func (recall Sect. 2.2). It states that UnionFind_ml.make satisfies a certain
specification, thereby describing the behavior of make. The condition card D < N

indicates that new elements can be created only as long as the number of ele-
ments remains under the limit N . Then comes an application of the predicate
App to the value UnionFind_ml.make, to the unit value tt, and to a pre- and
postcondition. The precondition is the conjunction of UFN D R, which describes
the pre-state, and of $ 1, which indicates that make works in constant time. (We
view the OCaml function ref, which appears in the implementation of make, as
a primitive operation, so its use does not count as a function call.) In the post-
condition, x denotes the element returned by make. The postcondition describes
the post-state via the heap predicate UFN (D ∪ {x}) R. It also asserts that x is
new, that is, distinct from all previous elements.

The next theorem provides a specification for find. The argument x must
be a member of D. In addition to UFN D R, the precondition requires α(N) + 2

Machine-Checked Verification of the Correctness 145

Fig. 2. Complete specification of Union-Find

credits. This reflects the amortized cost of find. The postcondition asserts that
find returns an element y such that R x = y. In other words, find returns the
representative of x. Furthermore, the postcondition asserts that UFN D R still
holds. Even though path compression may update internal pointers, the mapping
of elements to representatives, which is all the client knows about, is preserved.

The precondition of union requires UFN D R together with 3×α(N)+6 time
credits. The postcondition indicates that union returns an element z, which is
either x or y, and updates the data structure to UFN D R′, where R′ updates R
by mapping to z every element that was equivalent to x or y. The construct
If P then e1 else e2, where P is in Prop, is a non-constructive conditional. It is
defined using the law of excluded middle and Hilbert’s ε operator.

The postcondition of equiv indicates that equiv returns a Boolean result,
which tells whether the elements x and y have a common representative.

The function link is internal, so its specification (given in Sect. 5) is not
public.

146 A. Charguéraud and F. Pottier

4 Mathematical Analysis of Disjoint Set Forests

We carry out a mathematical analysis of disjoint set forests. This is a Coq
formalization of textbook material [12,27]. It is independent of the OCaml code
(Fig. 1) and of the content of the previous sections (Sects. 2, 3). For brevity, we
elide many details; we focus on the main definitions and highlight a few lemmas.

4.1 Disjoint Set Forests as Graphs

We model a disjoint set forest as a graph. The nodes of the graph inhabit a
type V which is an implicit parameter throughout this section (Sect. 4). As in
Sect. 3, the domain of the graph is represented by a set D of nodes. The edges of
the graph are represented by a relation F between nodes. Thus, F x y indicates
that there is an edge from node x to node y.

The predicate pathF is the reflexive, transitive closure of F . Thus, pathF x y
indicates the existence of a path from x to y. A node x is a root iff it has no
successor. A node x is represented by a node r iff there is a path from x to r and
r is a root.

Definition is_root F x := ∀y, ¬ F x y.
Definition is_repr F x r := path F x r ∧ is_root F r.

Several properties express the fact that the graph represents a disjoint set
forest. First, the relation F is confined to D: whenever there is an edge from x
to y, the nodes x and y are members of D. Second, the relation F is functional:
every node has at most one parent. Finally, the relation is_reprF is defined :
every node x is represented by some node r. This ensures that the graph is
acyclic. The predicate is_dsf is the conjunction of these three properties:

Definition is_dsf D F :=
confined D F ∧ functional F ∧ defined (is_repr F).

4.2 Correctness of Path Compression

The first part of our mathematical analysis is concerned mostly with the func-
tional correctness of linking and path compression. Here, we highlight a few
results on compression. Compression assumes that there is an edge between x
and y and a path from y to a root z. It replaces this edge with a direct edge
from x to z. We write compressF x z for the relation that describes the edges
after this operation: it is defined as F \ {(x,)} ∪ {(x, z)}.

We prove that, although compression destroys some paths in the graph
(namely, those that used to go through x), it preserves the relationship between
nodes and roots. More precisely, if v has representative r in F , then this still
holds in the updated graph compressF x z.

Lemma compress_preserves_is_repr : ∀D F x y z v r,
is_dsf D F → F x y → is_repr F y z →
is_repr F v r → is_repr (compress F x z) v r.

It is then easy to check that compression preserves is_dsf.

Machine-Checked Verification of the Correctness 147

4.3 Ranks

In order to perform linking-by-rank and to reason about it, we attach a rank to
every node in the graph. To do so, we introduce a function K of type V → N.
This function satisfies a number of interesting properties. First, because linking
makes the node of lower rank a child of the node of higher rank, and because
the rank of a node can increase only when this node is a root, ranks increase
along graph edges. Furthermore, a rank never exceeds log |D|. Indeed, if a root
has rank p, then its tree has at least 2p elements. We record these properties
using a new predicate, called is_rdsf, which extends is_dsf. This predicate also
records the fact that D is finite. Finally, we find it convenient to impose that
the function K be uniformly zero outside of the domain D.

Definition is_rdsf D F K :=
is_dsf D F ∧
(∀ x y, F x y → K x < K y) ∧
(∀ r, is_root F r → 2ˆ(K r) � card (descendants F r)) ∧
finite D ∧
(∀ x, x ∈ D → K x = 0).

It may be worth noting that, even though at runtime only roots carry a rank
(Fig. 1), in the mathematical analysis, the function K maps every node to a
rank. The value of K at non-root nodes can be thought of as “ghost state”.

4.4 Ackermann’s Function and Its Inverse

For the amortized complexity analysis, we need to introduce Ackermann’s func-
tion, written Ak(x). According to Tarjan [27], it is defined as follows:

A0(x) = x + 1 Ak+1(x) = A
(x+1)
k (x)

We write f (i) for the i-th iterate of the function f . In Coq, we write iter i f .
The above definition is transcribed very compactly:

Definition A k := iter k (fun f x ⇒ iter (x+1) f x) (fun x ⇒ x+1).

That is, Ak is the k-th iterate of λf. λx. f (x+1)(x), applied to A0.
The inverse of Ackermann’s function, written α(n), maps n to the smallest

value of k such that Ak(1) � n. Below, min_of le denotes the minimum element
of a nonempty subset of N.

Definition alpha n := min_of le (fun k ⇒ A k 1 � n).

4.5 Potential

The definition of the potential function relies on a few auxiliary definitions. First,
for every node x, Tarjan [27] writes p(x) for the parent of x in the forest. If x is
not a root, p(x) is uniquely defined. We define p(x) using Hilbert’s ε operator:

148 A. Charguéraud and F. Pottier

Definition p F x := epsilon (fun y ⇒ F x y).

Thus, p F x is formally defined for every node x, but the characteristic property
F x (p F x) can be exploited only if one can prove that x has a parent.

Then, Tarjan [27] introduces the level and the index of a non-root node x.
These definitions involve the rank of x and the rank of its parent. The level of x,
written k(x), is the largest k for which K(p(x)) � Ak(K(x)) holds. It lies in the
interval [0, α(N)), if N is an upper bound on the number of nodes. The index
of x, written i(x), is the largest i for which K(p(x)) � A

(i)
k(x)(K(x)) holds. It

lies in the interval [1,K(x)]. The formal definitions, shown below, rely on the
function max_of, which is the dual of min_of (Sect. 4.4).

Definition k F K x :=
max_of le (fun k ⇒ K (p F x) � A k (K x)).

Definition i F K x :=
max_of le (fun i ⇒ K (p F x) � iter i (A (k F K x)) (K x)).

The potential of a node, written φ(x), depends on the parameter N , which
is a pre-agreed upper bound on the number of nodes. (See the discussion of
UF_create in Sect. 3.) Following Tarjan [27], if x is a root or has rank 0, then
φ(x) is α(N) · K(x). Otherwise, φ(x) is (α(N) − k(x)) · K(x) − i(x).

Definition phi F K N x :=
If (is_root F x) ∨(K x = 0)
then (alpha N) ∗ (K x)
else (alpha N − k F K x) ∗ (K x) − (i F K x).

The total potential Φ is obtained by summing φ over all nodes in the domain D.

Definition Phi D F K N := fold (monoid_ plus 0) phi D.

4.6 Rank Analysis

The definition of the representation predicate UF, which we present later on
(Sect. 5), explicitly mentions Φ. It states that, between two operations, we have Φ
time credits at hand. Thus, when we try to prove that every operation preserves
UF, as claimed earlier (Sect. 3), we are naturally faced with the obligation to
prove that the initial potential Φ, plus the number of credits brought by the
caller, covers the new potential Φ′, plus the number of credits consumed during
the operation:

Φ + advertised cost of operation � Φ′ + actual cost of operation

We check that this property holds for all operations. The two key operations
are linking and path compression. In the latter case, we consider not just one
step of compression (i.e., updating one graph edge, as in Sect. 4.2), but “iterated
path compression”, i.e., updating the parent of every node along a path, as
performed by find in Fig. 1. To model iterated path compression, we introduce
the predicate ipcF x dF ′, which means that, if the initial graph is F and if

Machine-Checked Verification of the Correctness 149

one performs iterated path compression starting at node x, then one performs
d individual compression steps and the final graph is F ′.

is rootF x

ipcF x 0F

F x y is reprF y z ipcF y dF ′ F ′′ = compressF ′ x z

ipcF x (d + 1)F ′′

On the one hand, the predicate ipc is a paraphrase, in mathematical language,
of the recursive definition of find in Fig. 1, so it is easy to argue that “find
implements ipc”. This is done as part of the verification of find (Sect. 5). On
the other hand, by following Tarjan’s proof [27], we establish the following key
lemma, which sums up the amortized complexity analysis of iterated path com-
pression:

Lemma amortized_cost_of_iterated_path_compression : ∀D F K x N,
is_rdsf D F K → x ∈ D → card D � N →
∃d F’, ipc F x d F’ ∧ (Phi D F K N + alpha N + 2 � Phi D F’ K N + d + 1).

This lemma guarantees that, in any initial state described by D,F,K and for
any node x, (1) iterated path compression is possible, requiring a certain number
of steps d and taking us to a certain final state F ′, and (2) more interestingly,
the inequality “Φ + advertised cost � Φ′ + actual cost” holds. Indeed, α(N) + 2
is the advertised cost of find (Fig. 2), whereas d + 1 is its actual cost, because
iterated path compression along a path of length d involves d + 1 calls to find.

5 Verification of the Code

To prove that the OCaml code in Fig. 1 satisfies the specification in Fig. 2, we
first define the predicate UF, then establish each of the theorems in Fig. 2.

5.1 Definition of the Representation Predicate

In our OCaml code (Fig. 1), we have defined elem as content ref, and defined
content as Link of elem | Root of rank. CFML automatically mirrors these
type definitions in Coq. It defines elem as loc (an abstract type of memory
locations, provided by CFML’s library) and content as an inductive data type:

Definition elem := loc.
Inductive content := Link of elem | Root of rank.

To define the heap predicate UFN D R, we need two auxiliary predicates.
The auxiliary predicate Inv N D R F K includes the invariant is_rdsf D F K,

which describes a ranked disjoint set forest (Sect. 4.3), adds the condition card D

� N (which appears in the complexity analysis, Sect. 4.6), and adds the require-
ment that the function R and the relation is_reprF agree, in the sense that
R x = r implies is_reprF x r. The last conjunct is needed because our specifica-
tion exposes R, which describes only the mapping from nodes to representatives,
whereas our mathematical analysis is in terms of F , which describes the whole
graph.

150 A. Charguéraud and F. Pottier

Fig. 3. Verification script for the link function

Definition Inv N D F K R :=
(is_rdsf D F K) ∧ (card D � N) ∧ (rel_of_func R ⊂ is_repr F).

The auxiliary predicate Mem D F K M relates a model of a disjoint set forest,
represented by D, F , K, and a model of the memory, represented by a finite
map M of memory locations to values of type content. (This view of memory is
imposed by CFML.) M maps a location x to either Link y for some location y
or Root k for some natural number k. The predicate Mem D F K M explains how to
interpret the contents of memory as a disjoint set forest. It asserts that M has
domain D, that M(x) = Link y implies the existence of an edge of x to y, and
that M(x) = Root k implies that x is a root and has rank k.

Definition Mem D F K M := (dom M = D) ∧ (∀ x, x ∈ D →
match M\(x) with Link y ⇒ F x y | Root k ⇒ is_root F x ∧ k = K x end).

At last, we are ready to define the heap predicate UFN D R:

Definition UF N D R := ∃∃F K M,
Group (Ref Id) M � [Inv N D F K R] � [Mem D F K M] � $ (Phi D F K N).

The first conjunct asserts the existence in the heap of a group of reference cells,
collectively described by the map M . (The predicates Group, Ref and Id are pro-
vided by CFML’s library.) The second conjunct constrains the graph (D,F,K)
to represent a valid disjoint set forest whose roots are described by R, while the
third conjunct relates the graph (D,F,K) with the contents of memory (M).
Recall that the brackets lift an ordinary proposition as a heap predicate (Sect. 2).
The last conjunct asserts that we have Φ time credits at hand. The definition is
existentially quantified over F , K, and M , which are not exposed to the client.

Machine-Checked Verification of the Correctness 151

5.2 Verification Through Characteristic Formulae

Our workflow is as follows. Out of the file UnionFind.ml, which contains the
OCaml source code, the CFML tool produces the Coq file UnionFind_ml.v, which
contains characteristic formulae. Consider, for example, the OCaml function
link. The tool produces two Coq axioms for it. The first axiom asserts the
existence of a value link of type func (Sect. 2.2). The second axiom, link_cf,
is a characteristic formula for link. It can be exploited to establish that link

satisfies a particular specification. For instance, in Fig. 3, we state and prove
a specification for link. The proof involves a mix of standard Coq tactics and
tactics provided by CFML for manipulating characteristic formulae. It is quite
short, because all we need to do at this point is to establish a correspondence
between the operations performed by the imperative code and the mathematical
analysis that we have already carried out.

The CFML library is about 5Kloc. The analysis of Union-Find (Sect. 4)
is 3Kloc. The specification of Union-Find (Fig. 2) and the verification of the
code (Sect. 5), together, take up only 0.4Kloc. Both CFML and our proofs about
Union-Find rely on Charguéraud’s TLC library, a complement to Coq’s standard
library. Everything is available online [8].

6 Related Work

Disjoint set forests as well as linking-by-size are due to Galler and Fischer [15].
Path compression is attributed by Aho et al. [1] to McIlroy and Morris. Hopcroft
and Ullman [19] study linking-by-size and path compression and establish an
amortized bound of O(log∗N) per operation. Tarjan [29] studies linking-by-rank
and path compression and establishes the first amortized bound in O(α(N)).
After several simplifications [21,28], this leads to the proof that we follow [12,27].
Kaplan et al. [20] and Alstrup et al. [2] establish a “local” bound: they bound
the amortized cost of find(x) by O(α(n)), where n is the size of x’s set.

We know of only one machine-checked proof of the functional correctness of
Union-Find, due to Conchon and Filliâtre [11]. They reformulate the imperative
algorithm in a purely functional style, where the store is explicit. They represent
the store as a persistent array and obtain an efficient persistent Union-Find. We
note that Union-Find is part of the VACID-0 suite of benchmark verification
problems [23]. We did not find any solution to this particular benchmark problem
online. We know of no machine-checked proof of the complexity of Union-Find.

The idea of using a machine to assist in the complexity analysis of a program
goes back at least as far back as Wegbreit [30]. He extracts recurrence equations
from the program and bounds their solution. More recent work along these lines
includes Le Métayer’s [22] and Danner et al.’s [14]. Although Wegbreit aims for
complete automation, he notes that one could “allow the addition to the program
of performance specifications by the programmer, which the system then checks
for consistency”. We follow this route.

There is a huge body of work on program verification using Separation Logic.
We are particularly interested in embedding Separation Logic into an interactive

152 A. Charguéraud and F. Pottier

proof assistant, such as Coq, where it is possible to express arbitrarily complex
specifications and to perform arbitrarily complex proofs. Such an approach has
been explored in several projects, such as Ynot [10], Bedrock [9], and CFML [6,7].
This approach allows verifying not only the implementation of a data structure
but also its clients. In particular, when a data structure comes with an amortized
complexity bound, we verify that it is used in a single-threaded manner.

Nipkow [24] carries out machine-checked amortized analyses of several data
structures, including skew heaps, splay trees and splay heaps. As he seems to be
mainly interested in the mathematical analysis of a data structure, as opposed to
the verification of an actual implementation, he manually derives from the code
a “timing function”, which represents the actual time consumed by an operation.

The idea of extending a type system or program logic with time or space cred-
its, viewed as affine resources, has been put forth by several authors [4,18,25].
The extension is very modest; in fact, if the source program is explicitly instru-
mented by inserting calls to pay, no extension at all is required. We believe that
we are the first to follow this approach in practice to perform a modular verifi-
cation of functional correctness and complexity for a nontrivial data structure.

A line of work by Hofmann et al. [16–18] aims to infer amortized time and
space bounds. Because emphasis is on automation, these systems are limited in
the bounds that they can infer (e.g., polynomial bounds) and/or in the programs
that they can analyze (e.g., without side effects; without higher-order functions).

7 Future Work

We have demonstrated that the state of the art has advanced to a point where
one can (and, arguably, one should) prove not only that a library is correct but
also (and at the same time) that it meets a certain complexity bound.

There are many directions for future work. Concerning Union-Find, we would
like to formalize Alstrup et al.’s proof [2] that the amortized cost can be expressed
in terms of the current number n of nodes, as opposed to a fixed upper bound N .
Concerning our verification methodology, we wish to use the big-O notation in
our specifications, so as to make them more modular.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Alstrup, S., Thorup, M., Gørtz, I.L., Rauhe, T., Zwick, U.: Union-find with con-
stant time deletions. ACM Trans. Algorithms 11(1), 6:1–6:28 (2014)

3. Amadio, rm, et al.: Certified complexity (CerCo). In: Lago, U.D., Peña, R. (eds.)
FOPARA 2013. LNCS, vol. 8552, pp. 1–18. Springer, Heidelberg (2014)

4. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods in
Computer Science 7(2:17), 1–33 (2011)

5. Blelloch, G.E., Greiner, J.: Parallelism in sequential functional languages. In: Func-
tional Programming Languages and Computer Architecture (FPCA) (1995)

Machine-Checked Verification of the Correctness 153

6. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams in HOSC (2012, to appear)

7. Charguéraud, A.: Characteristic Formulae for Mechanized Program Verification.
Ph.D. Thesis, Université Paris 7 (2010)

8. Charguéraud, A., Pottier, F.: Self-contained archive (2015). http://gallium.inria.
fr/∼fpottier/dev/uf/

9. Chlipala, A.: The Bedrock structured programming system: combining generative
metaprogramming and Hoare logic in an extensible program verifier. In: Interna-
tional Conference on Functional Programming (ICFP) (2013)

10. Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective inter-
active proofs for higher-order imperative programs. In: International Conference
on Functional Programming (ICFP) (2009)

11. Conchon, S., Filliâtre, J.: A persistent union-find data structure. In: ACM Work-
shop on ML (2007)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

13. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-
tional data structures. In: Principles of Programming Languages (POPL) (2008)

14. Danner, N., Paykin, J., Royer, J.S.: A static cost analysis for a higher-order lan-
guage. In: Programming Languages Meets Program Verification (PLPV) (2013)

15. Galler, B.A., Fischer, M.J.: An improved equivalence algorithm. Commun. ACM
7(5), 301–303 (1964)

16. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14:1–14:62 (2012)

17. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer,
Heidelberg (2010)

18. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Principles of Programming Languages (POPL) (2003)

19. Hopcroft, J.E., Ullman, J.D.: Set merging algorithms. SIAM J. Comput. 2(4),
294–303 (1973)

20. Kaplan, H., Shafrir, N., Tarjan, R.E.: Union-find with deletions. In: Symposium
on Discrete Algorithms (SODA) (2002)

21. Kozen, D.C.: The Design and Analysis of Algorithms. Texts and Monographs in
Computer Science. Springer, Heidelberg (1992)

22. Le Métayer, D.: ACE: an automatic complexity evaluator. ACM Trans. Program.
Lang. Syst. 10(2), 248–266 (1988)

23. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample correctness of invari-
ants of data-structures, edition 0, manuscript KRML 209 (2010)

24. Nipkow, T.: Amortized complexity verified. In: Interactive Theorem Proving (2015)
25. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Types in Language

Design and Implementation (TLDI) (2011)
26. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

Logic in Computer Science (LICS) (2002)
27. Tarjan, R.E.: Class notes: Disjoint set union (1999)
28. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM

31(2), 245–281 (1984)
29. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM

22(2), 215–225 (1975)
30. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)

http://gallium.inria.fr/~fpottier/dev/uf/
http://gallium.inria.fr/~fpottier/dev/uf/

Formalizing Size-Optimal Sorting Networks:
Extracting a Certified Proof Checker

Lúıs Cruz-Filipe(B) and Peter Schneider-Kamp

Department of Mathematics and Computer Science,
University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

{lcf,petersk}@imada.sdu.dk

Abstract. Since the proof of the four color theorem in 1976, computer-
generated proofs have become a reality in mathematics and computer
science. During the last decade, we have seen formal proofs using verified
proof assistants being used to verify the validity of such proofs.

In this paper, we describe a formalized theory of size-optimal sorting
networks. From this formalization we extract a certified checker that
successfully verifies computer-generated proofs of optimality on up to
8 inputs. The checker relies on an untrusted oracle to shortcut the search
for witnesses on more than 1.6 million NP-complete subproblems.

1 Introduction

Sorting networks are hardware-oriented algorithms to sort a fixed number of
inputs using a predetermined sequence of comparisons between them. They are
built from a primitive operator, the comparator, which reads the values on two
channels, and interchanges them if necessary to guarantee that the smallest one
is always on a predetermined channel. Comparisons between independent pairs
of values can be performed in parallel, and the two main optimization problems
one wants to address are: how many comparators do we need to sort n inputs
(the optimal size problem); and how many computation steps do we need to sort
n inputs (the optimal depth problem). This paper focuses on the former problem.

Most results obtained on the optimal-size problem rely on exhaustive analysis
of state spaces. For up to 4 inputs, a simple information-theoretical argument
suffices, and for 5 inputs, the state space is small enough to be exhausted by
manual inspection and symmetry arguments. However, all known optimality
proofs for 7 inputs use computer programs to eliminate symmetries within the
search space of almost 1020 comparator sequences of length 15 and show that no
sorting network of this size exists [9]. It took 50 years before a similar approach [6]
was able to settle that the known sorting network of size 25 on 9 inputs is optimal.
Optimality results for 6, 8, and 10 are obtained by a theoretical argument [18].

The proof in [6] uses a generate-and-prune algorithm to show size optimality
of sorting networks, and it not only established optimality of 25 comparisons for
sorting 9 inputs, but it also directly confirmed all smaller cases. The pruning step
includes an expensive test taking two sequences of comparators and deciding
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 154–169, 2015.
DOI: 10.1007/978-3-319-22102-1 10

Formalizing Size-Optimal Sorting Networks 155

whether one of them can be ignored. This test, which often fails, is repeated
an exponential number of times, each invocation requiring iteration over all
permutations of n elements in the worst case. During execution, we took care to
log the comparator sequences and permutations for which this test was successful.

In this paper we describe a Coq formalization of the theory of optimal-
size sorting networks, from which we extract a certified checker implementing
generate-and-prune with the goal of confirming the validity of these results. In
order to obtain feasible runtimes, we bypass the expensive search process in the
extracted certified checker by means of an oracle based on the logs of the origi-
nal execution. The checker takes a skeptical approach towards the oracle: if the
oracle provides wrong information at any step, the checker ignores it.

In the presentation, we discuss how we exploit the constructiveness of the
theory to simplify the formalization and identify places where skepticism towards
the oracle becomes relevant. Interestingly, the interactive process of formaliza-
tion itself revealed minor gaps in the hand-written proofs of [6], underlining the
importance of formal proof assistants in computer-aided mathematical proofs.

This paper is structured as follows. Section 2 summarizes the theory of sort-
ing networks relevant for this formalization, and describes the generate-and-
prune algorithm together with the information logged during its execution.
Section 3 describes the formalization of the theory, with emphasis on the chal-
lenges encountered. Section 4 deals with the aspects of the formalization that
have a direct impact on the extracted program, namely the specification of the
oracle and the robustness needed to guarantee that unsound oracles do not com-
promise the final results. Section 5 addresses the implementation of the oracle
and the execution of the extracted code. Finally, Sect. 6 presents some concluding
remarks and directions in which this work can be extended.

1.1 Related Work

The proof of the four colour theorem from 1976 [1,2] was not the first computer-
assisted proof, but it was the first to generate broad awareness of a new area
of mathematics, sometimes dubbed “experimental” or “computational” math-
ematics. Since then, numerous theorems in mathematics and computer science
have been proved by computer-assisted and computer-generated proofs. Besides
obvious philosophical debates about what constitutes a mathematical proof, con-
cerns about the validity of such proofs have been raised since. In particular,
proofs based on exhausting the solution space have been met with skepticism.

During the last decade, we have seen an increasing use of verified proof
assistants to create formally verified computer-generated proofs. This has been a
success story, and it has resulted in a plethora of formalizations of mathematical
proofs, a list too long to even start mentioning particular instances. Pars pro
toto, consider the formal proof of the four colour theorem from 2005 [11].

Outside the world of formal proofs, computer-generated proofs are flour-
ishing, too, and growing to tremendous sizes. The proof of Erdös’ discrepancy
conjecture for C = 2 from 2014 [13] has been touted as one of the largest mathe-
matical proofs and produced approx. 13 GB of proof witnesses. Such large-scale

156 L. Cruz-Filipe and P. Schneider-Kamp

proofs are extremely challenging for formal verification. Given the current state
of theorem provers and computing equipment, it is unthinkable to use Claret et
al.’s approach [5] of importing an oracle based on the proof witnesses into Coq,
a process clearly prohibitive for such large-scale proofs as we consider.

The last years have seen the appearance of untrusted oracles, e.g. for a verified
compiler [14] or for polyhedral analysis [10]. Here, the verified proof tool is
relegated to a checker of the computations of the untrusted oracle, e.g., by using
hand-written untrusted code to compute a result and verified (extracted) code
to check it before continuing the computation.

The termination proof certification projects IsaFoR/CeTA [17], based on
Isabelle/HOL, and A3PAT [7], based on Coq, go one step further, and use an
offline untrusted oracle approach, where different termination analyzers provide
proof witnesses, which are stored and later checked. However, a typical termi-
nation proof has 10-100 proof witnesses and totals a few KB to a few MB of
data, and recent work [16] mentions problems were encountered when dealing
with proofs using “several hundred megabytes” of oracle data. In contrast, the
proof of size-optimality of sorting networks with 8 inputs requires dealing with
1.6 million proof witnesses, totalling more than 300 MB of oracle data.

2 Optimal-Size Sorting Networks

A comparator network C with n channels and size k is a sequence of comparators
C = (i1, j1); . . . ; (ik, jk), where each comparator (i�, j�) is a pair of channels
1 ≤ i� < j� ≤ n. If C1 and C2 are comparator networks with n channels, then
C1;C2 denotes the comparator network obtained by concatenating C1 and C2.
An input x = x1 . . . xn ∈ {0, 1}n propagates through C as follows: x 0 = x , and
for 0 < � ≤ k, x � is the permutation of x �−1 obtained by interchanging x �−1

i�
and

x �−1
j�

whenever x �−1
i�

> x �−1
j�

. The output of the network for input x is C(x) =
xk, and outputs(C) =

{
C(x)

∣
∣x ∈ {0, 1}n

}
. The comparator network C is a

sorting network if all elements of outputs(C) are sorted (in ascending order).

(a)

(b)

The zero-one principle [12] implies that a sorting network
also sorts sequences over any other totally ordered set,
e.g. integers. Images (a) and (b) on the right depict sorting
networks on 4 channels, each consisting of 6 comparators.
The channels are indicated as horizontal lines (with chan-
nel 4 at the bottom), comparators are indicated as vertical
lines connecting a pair of channels, and input values prop-
agate from left to right. The sequence of comparators associated with a picture
representation is obtained by a left-to-right, top-down traversal. For example,
the networks depicted above are: (a) (1, 2); (3, 4); (1, 4); (1, 3); (2, 4); (2, 3) and
(b) (1, 2); (3, 4); (2, 3); (1, 2); (3, 4); (2, 3).

2.1 Optimal Size Sorting Networks

The optimal-size sorting network problem is about finding the smallest size, S(n),
of a sorting network on n channels. In 1964, Floyd and Knuth presented sorting

Formalizing Size-Optimal Sorting Networks 157

networks of optimal size for n ≤ 8 and proved their optimality [9]. Their proof
required analyzing huge state spaces by means of a computer program, and the
combinatorial explosion involved implied that there was no further progress on
this problem in the next fifty years, until the proof that S(9) = 25 [6]. The best
currently known upper and lower bounds for S(n) are given in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Upper bound for S(n) 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Lower bound for S(n) 0 1 3 5 9 12 16 19 25 29 33 37 41 45 49 53

Given an n channel comparator network C = (i1, j1); . . . ; (ik, jk) and a per-
mutation π on {1, . . . , n}, π(C) is the sequence (π(i1), π(j1)); . . . ; (π(ik), π(jk)).
Formally, π(C) is not a comparator network, but rather a generalized compara-
tor network : a comparator network that may contain comparators (i, j) with
i > j, which order their outputs in descending order instead of ascending. A
generalized sorting network can always be transformed into a (standard) sort-
ing network with the same size and depth by means of a procedure we will
call standardization: if C = C1; (i, j);C2 is a generalized sorting network with
C1 standard and i > j, then standardizing C yields C1; (j, i);C ′

2, where C ′
2 is

obtained by (i) interchanging i and j and (ii) standardizing the result. We write
C1 ≈ C2 (C1 is equivalent to C2) iff there is a permutation π such that C1

is obtained by standardizing π(C2). The two networks (a) and (b) above are
equivalent via the permutation (1 3)(2 4).

Lemma 1. If C is a generalized sorting network, then standardizing C yields a
sorting network.

The proof of this result, proposed as Exercise 5.3.4.16 in [12], is an induc-
tion proof that requires manipulating permutations and reasoning about the
cardinality of outputs(C).

2.2 The Generate-and-Prune Approach

Conceptually, one could inspect all n-channel comparator networks of size k one-
by-one to determine if any of them is a sorting network. However, even for small
n such a naive approach is combinatorially infeasible. There are n(n−1)/2 com-
parators on n channels, and hence (n(n − 1)/2)k networks with k comparators.
For n = 9, aiming to prove that there does not exist a sorting network with 24
comparators would mean inspecting approximately 2.25 × 1037 comparator net-
works. Moreover, checking whether a comparator network is a sorting network
is known to be a co-NP complete problem [15].

In [6] we propose an alternative approach, generate-and-prune, which is
driven just as the naive approach, but takes advantage of the abundance of
symmetries in comparator networks, formalized via the notion of subsumption.

158 L. Cruz-Filipe and P. Schneider-Kamp

Given two comparator networks on n channels Ca and Cb, we say that Ca

subsumes Cb, and write Ca � Cb, if there exists a permutation π such that
π(outputs(Ca)) ⊆ outputs(Cb). If we need to make π explicit, we will write
Ca ≤π Cb.

Lemma 2 ([6]). Let Ca and Cb be comparator networks on n channels, both
of the same size, and such that Ca � Cb. Then, if there exists a sorting network
Cb;C of size k, there also exists a sorting network Ca;C ′ of size k.

Lemma 2 implies that, when adding a next comparator in the naive approach,
we do not need to consider all possible positions to place it. In particular, we
can omit networks that are subsumed by others.

The generate-and-Prune algorithm iteratively builds two sets Rn
k and Nn

k of
n channel networks of size k. First, it initializes Rn

0 to consist of a single element:
the empty comparator network. Then, it repeatedly applies two types of steps,
Generate and Prune, as follows.

1. Generate: Given Rn
k , construct Nn

k+1 by adding one comparator to each ele-
ment of Rn

k in all possible ways.
2. Prune: Given Nn

k+1, construct Rn
k+1 such that every element of Nn

k+1 is sub-
sumed by an element of Rn

k+1.

The algorithm stops when a sorting network is found, which will make |Rn
k | = 1.

To implement Prune, we loop on Nn
k and check whether the current network is

subsumed by any of the previous ones; if this is the case, we ignore it. Otherwise,
we add it to Rn

k and remove any networks already in this set that are subsumed
by it. This yields a double loop Nn

k where at each iteration we need to find
out whether a subsumption exists – which, in the worst case, requires looping
through all n! permutations. For n = 9, the largest set Nn

k is N9
15, with over

18 million elements, and there are potentially 300 × 1012 subsumptions to test.
These algorithms are straightforward to implement, test and debug. The

implementation from [6], written in Prolog, can be applied to reconstruct all of
the known values for S(n) for n ≤ 6 in under an hour of computation on a single
core and, after several optimizations and parallelization as described in [6], was
able to obtain the new value of S(9).

Soundness of generate-and-prune follows from the observation that Nn
k (and

Rn
k) are complete for the optimal size sorting network problem on n channels: if

there exists an optimal size sorting network on n channels, then there exists one
of the form C;C ′ for some C ∈ Nn

k (or C ∈ Rn
k), for every k.

2.3 Checking the Proof Using Proof Witnesses

Even though all of the mathematical claims underlying the design of the
generate-and-prune algorithm were proved and the correctness of the Prolog
implementation was carefully checked, it is reasonable to question the validity
of the final result. In [6], use was made of the de Bruijn criterion [3]: every
computer-generated proof should be verifiable by an independent small program

Formalizing Size-Optimal Sorting Networks 159

(a “checker”). The code was therefore augmented to produce a log file of success-
ful subsumptions during execution, and an independent Java verifier was able
to re-check the result without needing to replicate the expensive search steps in
just over 6 hours of computational time.1

However, we may again question the validity of the checker, and enter into an
endless loop of validations. In this paper, we propose a different goal: to obtain a
correct-by-design checker by extracting it from a formalized proof of the theory
of sorting networks. The reason for aiming at extracting a checker, rather than
the full generate-and-prune algorithm, is that by using the log as an (untrusted)
oracle we again gain a speedup of several orders of magnitude, as we completely
avoid all the search steps.

In total, for 9 inputs we have logged proof witnesses for approx. 70 mil-
lion subsumptions, yielding a 27 GB log file. For the smaller case of 8 inputs, we
logged 1.6 million subsumptions, yielding over 300 MB of data. Developing a for-
malization allowing the extraction of an efficient checker that uses an untrusted
oracle of even this smaller magnitude is an exciting challenge that, to the best
of our knowledge, has not been tackled before. We proceed in two stages. First,
we formalize the theory of optimal-size sorting networks directly following [12],
including the new results from [6,15]. Then we implement generate-and-prune
with an oracle in Coq, prove its soundness, and extract a certified checker able
to verify all results up to 8 inputs.

3 Formalizing Sorting Networks

Formalizing the theory of sorting networks presents some challenges relating to
the very finite nature of the domain. All the relevant notions are parameterized
on the number n of inputs, and thus the domain for most concepts is the finite
set {0, 1, . . . , n − 1}.

Directly working with this set in Coq is very cumbersome due to the ensuing
omnipresence of proof terms – every number required as argument has to be
accompanied by a proof that it is in the adequate range. Furthermore, these
proof terms are completely trivial, since the order relations on natural numbers
are all decidable. Therefore, we chose to define all relevant concepts in terms
of natural numbers, and define additional properties specifying that particular
instances fall in the appropriate range. For example, a comparator is simply
defined as a pair of natural numbers:

Definition comparator : Set := (prod nat nat).

and we define with predicates stating that a particular comparator is a (stan-
dard) comparator on n channels:

Definition comp_channels (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).

Definition comp_std (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<j).

1 The logs and the Java verifier are available at http://imada.sdu.dk/∼petersk/sn/.

http://imada.sdu.dk/~petersk/sn/

160 L. Cruz-Filipe and P. Schneider-Kamp

Likewise, the type CN of comparator networks is defined as list comparator,
and there are predicates stating that a comparator network spans n channels,
and that it is standard (which simply state that all comparators in the list have
the corresponding comparator property).

Comparator networks act on binary sequences, and we define these as a
dependent type, similar to Vector.

Inductive bin_seq : nat -> Set :=

| empty : bin_seq 0

| zero : forall n:nat, bin_seq n -> bin_seq (S n)

| one : forall n:nat, bin_seq n -> bin_seq (S n).

We then define two operations get and set, such that (get n s) returns
the element (0 or 1) in position n of s, and (set n s k) sets position n of s
to 0, if k is 0, and 1 otherwise. Setting an index larger than the length of a
sequence leaves the sequence unchanged, while attempting to get the value in
an index out of range returns 2. The contexts where these functions are used
ensure that these situations do not occur, so these options are immaterial for
the formalization.

A sequence is sorted if its first element is 0 and the remaining sequence is
sorted, or if it consists entirely of 1s.

Fixpoint all_ones (n:nat) (x:bin_seq n) : Prop := match x with

| empty => True

| zero _ _ => False

| one _ y => all_ones _ y

end.

Fixpoint sorted (n:nat) (x:bin_seq n) : Prop := match x with

| empty _ => True

| zero _ y => sorted _ y

| one _ y => all_ones _ y

end.

Sequences propagate through comparator networks as expected; a sorting
network is a comparator network that sorts all inputs.

Fixpoint apply (c:comparator) n (s:bin_seq n) :=

let (i,j):=c in let x:=(get s i) in let y:=(get s j) in

match (le_lt_dec x y) with

| left _ => s

| right _ => set (set s j x) i y

end.

Fixpoint full_apply (S:CN) n (s:bin_seq n) := match S with

| nil => s

| cons c S’ => full_apply S’ _ (apply c s)

end.

Definition sorting_network (n:nat) (S:CN) :=

(channels n S) /\ forall s:bin_seq n, sorted (full_apply S s).

Formalizing Size-Optimal Sorting Networks 161

We also define an alternative characterization of sorting networks in terms
of their sets of outputs and prove its equivalence to this one, but for space
constraints we will not present it here.

A posteriori, this characterization is actually quite close to the corresponding
mathematical definition: the comparator network {(0, 2); (2, 5)} is a network on 6
channels, but it is also a network on 9 or 11 channels, or indeed on n channels for
any n ≥ 6. So this implementation option does not only make the formalization
easier, but it is also a good model of the way we think about these objects.

3.1 Proof Methodology

As discussed above, we completely separate between objects and proof terms.
This option is dictated by the constructive nature of the theory of sorting net-
works. The key results underlying the pruning step of the generate-and-prune
algorithm are all of the form “If there is a sorting network N , then there is
another sorting network N ′ such that. . . ”, and the published proofs of these
results [6,12,15] all proceed by explicitly describing how to construct N ′ from
N . We formalize these results as operators in order to simplify their reuse: instead
of proving statements of the form ∀N.ϕ(N) → ∃N ′.ψ(N ′) we first define some
transformation T and prove that ∀N.ϕ(N) → ψ(T (N)) from which we can
straightforwardly prove the original statement.

Keeping the proof terms separated from the definitions and formalizing exis-
tential proofs as operators has several advantages:

– it is much easier to define these operators and then prove that they satisfy
the required properties than including proof terms in their definition;

– the hypotheses underlying the properties themselves become much more
explicit – e.g. renumbering channels yields a network on the same number
of channels and of the same size, and these two results are independent;

– later, we can use the operators directly together with the relevant lemmas,
rather than repeatedly applying inversion on an existential statement;

– additional properties of the operators that are needed later are easy to add
as new lemmas, instead of requiring changes to the original theorem;

– we automatically get proof irrelevance, as proof terms are universally quanti-
fied in lemmas.

As an example, recall the definition of standardization: given a comparator
network C, pick the first comparator (i, j) for which i > j, replace it with (j, i)
and exchange i with j in all subsequent comparators, then iterate the process
until a fixpoint is reached. Standardization is the key ingredient in Lemma2,
and it is formalized using well-founded recursion as follows.

Function std (S:CN) {measure length S} : CN := match S with

| nil => nil

| cons c S’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y : : std S’)

| right Hxy => (y[<]x : : std (permute x y) S’))

end end.

162 L. Cruz-Filipe and P. Schneider-Kamp

We then prove that standardizing a comparator network on n channels yields
a standard comparator network on n channels. This is not completely trivial,
because of the permutation in the recursive step: permuting channel labels x
and y preserves the total number channels n only if x < n and y < n. While
these hypotheses trivially hold (x and y are channels in an n-channel network),
requiring the corresponding proof terms in the definition of comparator would
make the definition of std unreadable. In later results, we can use the std opera-
tor when needed. There are in total seven different properties that are needed in
different places in the formalization, and all but two are proven independently. If
we did not have std as an operator, they would have to be formalized together as
one gigantic result stating that for every network C there exists another network
C ′ satisfying the seven necessary properties.

3.2 Permutations

The soundness of the checker essentially depends on the proof of Lemma 2. This
lemma is proved directly: if Ca ≤π Cb and Cb;C is a sorting network, then
Ca; std(π(C)) is a sorting network. The key ingredient in this proof is comparing
the effect of C and π(C) on the same input string, which requires extensive
manipulation of permutations.

Permutations are therefore an essential part of the formalization. Represent-
ing them in Coq is a challenging problem, and there are several common alterna-
tives. The standard library includes an inductive type stating that two lists are
permutations of each other; but manipulating it is cumbersome. Furthermore,
we are not interested in developing a theory of permutations, but rather in prov-
ing results about comparator networks whose channels are renamed by means
of a permutation of the numbers 0, . . . , n − 1, which we will hereafter refer to as
“a permutation of [n]”. Therefore we want a definition that makes it easy and
efficient to apply permutations to objects.

For this reason, we chose to represent permutations as finite functions. A
permutation P is a list of pairs of natural numbers, with the intended meaning
that (i, j) ∈ P corresponds to P mapping i into j. We assume that P does not
change i if there is no pair (i, j) ∈ P – this makes it much simpler to represent
transpositions, which are the only permutations we need to represent explicitly
in the formalization. In order for P to be a valid permutation of [n], several
conditions have to hold:

1. all pairs (i, j) ∈ P must satisfy i < n and j < n;
2. no number may occur twice either as the first or as the second element of

distinct pairs in P ; and
3. the sets of numbers occuring as first or second elements of the pairs in P

must coincide.

As before, we separate the datatype of permutations from the property of
being a permutation. Here, NoDup is the Coq standard library predicate stating
that a list does not have duplicate elements, and all lt(n,l) is an inductive
predicate stating that all elements of l are smaller than n.

Formalizing Size-Optimal Sorting Networks 163

Definition permut := list (nat*nat).

Definition dom (P:permut) := map (fst (A:=nat) (B:=nat)) P.

Definition cod (P:permut) := map (snd (A:=nat) (B:=nat)) P.

Definition permutation n (P:permut) :=

NoDup (dom P) /\ all_lt n (dom P) /\

forall i, In i (dom P) <-> In i (cod P).

As a sanity-check, we prove the relationship with the permutations in the
Coq standard library.

Lemma permutation_Permutation : Permutation (dom P) (cod P).

All properties of permutations are added to the core hint database, so that
Coq can automatically prove most properties of permutations required during
the formalization.

We provide mechanisms to define permutations in four different ways, three of
which correspond to the usage of permutations in proofs, and another one which
will be necessary for interacting with the oracle. The former are as follows.

1. The identity permutation is simply the empty list, and it is easily shown to
be a permutation of [n] for any n.

2. Given a permutation P, we construct its inverse (inverse perm P) by revers-
ing all pairs in P. If P is a permutation of [n], then so is (inverse perm P).

3. The transposition (transposition i j) is the permutation that switches i
and j, leaving all other values unchanged. This transposition is defined as the
list {(i, j), (j, i)}, and in order for it to be a permutation it is necessary that
i �= j (otherwise the list {i, j} contains duplicate elements). This condition
therefore shows up in some results about transpositions; it is never a problem,
though, as all transpositions arise from the standardization function, where
i and j are obtained from a comparator (i, j).

We also need to get permutations from the oracle, and here we use a different
representation for efficiency reasons. The log files record permutations as their
output on the set [n], so for example the transposition, when n = 4, exchanging
0 and 2 would be represented as {2, 1, 0, 3}. Since we want to be skeptic about
the oracle, we do not assume anything about the lists we are given; rather, we
show that the property of a list of natural numbers corresponding to a permu-
tation on [n] is decidable. We then define a function make perm to translate lists
of natural numbers into (syntactic) permutations, and show that the resulting
object satisfies permutation if the original list corresponds to a permutation.

Variable n:nat.

Variable l:list nat.

Definition pre_perm := NoDup l /\ all_lt n l /\ length l = n.

Lemma pre_perm_dec : {pre_perm} + {~pre_perm}.

Lemma pre_perm_lemma : pre_perm -> permutation n (make_perm l).

164 L. Cruz-Filipe and P. Schneider-Kamp

Thus, our checker will be able to get a list of natural numbers from the oracle,
test whether it corresponds to a permutation, and in the affirmative case use this
information.

One might question whether we could not have represented permutations
uniformly throughout. The reason for not doing so is that we have two distinct
objectives in mind. While formalizing results, we are working with an unknown
number n of channels, and it is much simpler to represent permutations by only
explicitly mentioning the values that are changed, as this allows for uniform
representations of transpositions and the identity permutation. Also, computing
the inverse of a permutation is very simple with the finite function representation,
but not from the compact list representation given by the oracle. When running
the extracted checker, however, we are concerned with efficiency. The oracle
will provide information on millions of subsumptions, so it is of the utmost
importance to minimize its size.

4 Formalizing Generate-and-Prune

Soundness of the generate-and-prune algorithm relies on the notion of a complete
set of filters. When formalizing this concept, we needed to make two changes:
the element C of R being extended must be a standard comparator network
with no redundant comparators2; and (as a consequence) the size of the sorting
network extending C is at most k, since there is an upper bound on how many
non-redundant comparisons we can make on n inputs.
Definition size_complete (R:list CN) (n:nat) := forall k:nat ,

(exists C:CN, sorting_network n C /\ length C = k) ->

exists C’ C’’:CN, In C’ R /\ standard n (C’++C’’)

/\ (forall C1 c C2, (C’++C’’) = (C1++c: :C2) -> ~redundant n C1 c)

/\ sorting_network n (C’++C’’) /\ length (C’++C’’) <= k.

These changes were discovered during the formalization of the original sound-
ness proof [6], which implicitly used the fact that the elements of the complete
sets of filters constructed were not redundant.

We prove that the set {∅} is complete, and that if there is a complete set of
filters R whose elements all have size k, then all sorting networks on n channels
have size at least k. This key property does not hold for the previous informal
definition of size completeness.
Lemma empty_complete : forall n, size_complete (nil: :nil) n.

Lemma complete_size : forall R n k, size_complete R n ->

(forall C, In C R -> length C = k) ->

forall S, sorting_network n S -> length S >= k.

4.1 The Generation Step

The formalization of the generation step proceeds in two phases. First, we define
the simple function adding a comparator at the end of a comparator network
2 Comparator (i, j) in comparator network C; (i, j);C′ is redundant if x i < x j for all
x ∈ outputs(C) – in other words, (i, j) never changes its inputs.

Formalizing Size-Optimal Sorting Networks 165

in all possible ways, and Generate simply maps it into a set. The function
all st comps produces a list of all standard comparators on n channels.

Definition add_to_all (cc:list comparator) (C:CN) :=

map (fun c => (C ++ (c : : nil))) cc.

Fixpoint Generate (R:list CN) (n:nat) := match R with

| nil => nil

| cons C R’ => (add_to_all (all_st_comps n) C) ++ Generate R’ n

end.

Then, we use the fact that redundancy of the last comparator is decidable
to define an optimized version that removes redundant networks.

Definition last_red (n:nat) (C:CN) : Prop :=

exists C’ c, redundant n C’ c /\ C = (C’ ++ c : : nil).

Lemma last_red_dec : forall n C, {last_red n C} + {~ last_red n C}.

Fixpoint filter_nred (n:nat) (R:list CN) := match R with

| nil => nil

| (C : : R’) => match last_red_dec n C with

| left _ => filter_nred n R’

| right _ => C : : filter_nred n R’

end end.

Definition OGenerate (R:list CN) (n:nat) := filter_nred n (Generate R n).

Both Generate and its optimized version map size complete sets into size
complete sets, as long as the input set does not already contain a sorting network
(in which case OGenerate would return an empty set).

Theorem OGenerate_complete : forall R n, size_complete R n ->

(forall C, In C R -> ~sorting_network n C) ->

size_complete (OGenerate R n) n.

The extracted code for these two functions coincides with their Coq defini-
tion, since they use no proof terms, and matches the pseudo-code in [6].

4.2 The Pruning Step

For the pruning step, we need to work with the untrusted oracle. We define an
oracle to be a list of subsumption triples 〈C,C ′, π〉, with intended meaning that
C ≤π C ′. Using the oracle, we then define the pruning step as follows.

Function Prune (O:Oracle) (R:list CN) (n:nat) {measure length R}

: list CN := match O with

| nil => R

| cons (C,C’,pi) O’ => match (CN_eq_dec C C’) with

| left _ => R

| right _ => match (In_dec CN_eq_dec C R) with

| right _ => R

166 L. Cruz-Filipe and P. Schneider-Kamp

| left _ => match (pre_perm_dec n pi) with

| right _ => R

| left A => match (subsumption_dec n C C’ pi’ Hpi) with

| right _ => R

| left _ => Prune O’ (remove CN_eq_dec C’ R) n

end end end end end.

The successive tests in Prune verify that: C �= C ′; C ∈ R; π is a permutation;
and C ≤π C ′. If any of these fail, this subsumption is skipped, else C ′ is removed
from R. For legibility, we wrote pi’ for the actual permutation generated by pi
and Hpi for the proof term stating that this is indeed a permutation. The Java
verifier from [6] did not validate that the permutations in the log files were
correct permutations.

The key result states that this is a mapping from complete sets of filters
into complete sets of filters, regardless of the correctness of the oracle, as long
as the input set contains only standard comparator networks with no redundant
comparators, and all are of the same size.
Theorem Prune_complete : forall O R n, size_complete R n ->

(forall C, In C R -> standard n C) ->

(forall C C’ c C’’, In C R -> C = C’++c: : C’’ -> ~redundant n C’ c) ->

(forall C C’, In C R -> In C’ R -> length C = length C’) ->

size_complete (Prune O R n) n.

This implementation is simpler than the pseudo-code in [6], as the oracle
allows us to bypass all search steps – both for permutations and for possible
subsumptions.

4.3 Coupling Everything Together

We now want to define the iterative generate-and-prune algorithm and prove
its correctness. Here we deviate somewhat from the original presentation. Our
algorithm will receive as inputs two natural numbers (the number of channels n
and the number of iterations m) and return one of three possible answers: (yes
n k), meaning that a sorting network of size k was found and that no sorting
network of size (k − 1) exists; (no n m R H1 H2 H3), meaning that R is a set of
standard (H3) comparator networks of size m (H2), with no duplicates (H1); or
maybe, meaning that an error occurred. The proof terms in no are necessary for
the correctness proof, but they are all removed in the extracted checker. They
make the code quite complex to read, so we present a simplified version where
they are omitted.
Inductive Answer : Set :=

| yes : nat -> nat -> Answer

| no : forall n k:nat , forall R:list CN, NoDup R ->

(forall C, In C R -> length C = k) ->

(forall C, In C R -> standard n C) -> Answer

| maybe : Answer.

Fixpoint Generate_and_Prune (n m:nat) (O:list Oracle) := match m with

| 0 => match n with

Formalizing Size-Optimal Sorting Networks 167

| 0 => yes 0 0

| 1 => yes 1 0

| _ => no n 0 (nil : : nil) _ _ _

end

| S k => match O with

| nil => maybe

| X : : O’ => let GP := (Generate_and_Prune n k O’) in

match GP with

| maybe => maybe

| yes p q => yes p q

| no p q R _ _ _ => let GP’ := Prune X (OGenerate R p) p in

match (exists_SN_dec p GP’ _) with

| left _ => yes p (S q)

| right _ => no p (S q) GP ’ _ _ _

end end end end.

In the case of a positive answer, the network constructed in the original proof
is guaranteed to be a sorting network; therefore we do not need to return it. Note
the elimination over exists SN dec, which states that we can decide whether a
set contains a sorting network.

Lemma exists_SN_dec : forall n l, (forall C, In C l -> channels n C) ->

{exists C, In C l /\ sorting_network n C} +

{forall C, In C l -> ~sorting_network n C}.

The correctness of the answer is shown in the two main theorems: if the
answer is (yes n k), then the smallest sorting network on n channels has size
k ≤ m; and if the answer is (no n m), then there is no sorting network on n
channels with size m or smaller. These results universally quantify over O, thus
holding regardless of whether the oracle gives right or wrong information.

Theorem GP_yes : forall n m O k, Generate_and_Prune n m O = yes n k ->

(forall C, sorting_network n C -> length C >= k) /\

exists C, sorting_network n C /\ length C = k.

Theorem GP_no : forall n m O R HR0 HR1 HR2,

Generate_and_Prune n m O = no n m R HR0 HR1 HR2 ->

forall C, sorting_network n C -> length C > m.

The full Coq formalization consists of 102 definitions and 405 lemmas, with
a total size of 206 KB, and the extracted program is around 650 lines of Haskell
code. The formalization and its generated documentation are available from
http://imada.sdu.dk/∼petersk/sn/.

5 Running the Extracted Program

We extracted the certified checker to Haskell using Coq’s extraction mecha-
nism. The result is a file Checker.hs containing among others a Haskell func-
tion generate and Prune : : Nat -> Nat -> (List Oracle) -> Answer. In
order to run this extracted certified checker, we wrote an interface that calls
generate and Prune function with the number of channels, the maximum size

http://imada.sdu.dk/~petersk/sn/

168 L. Cruz-Filipe and P. Schneider-Kamp

of the networks, and the list of the oracle information, and then prints the
answer. This interface includes conversion functions from Haskell integers to the
extracted naturals and a function implementing the oracle, as well as a definition
of Checker.Answer as an instance of the type class Show for printing the result.

It is important to stress that we do not need to worry about soundness
of almost any function defined in the interface, as the oracle is untrusted. For
example, a wrong conversion from natural numbers to their Peano representation
will not impact the correctness of the execution (although it will definitely impact
the execution time, as all subsumptions will become invalid). We only need to
worry about the function printing the result, but this is straightforward to verify.

The extracted checker was able to validate the proofs of optimal size up to
and including n = 8 in around one day – roughly the same time it took to
produce the original proof, albeit without search. This required processing more
than 300 MB of proof witnesses for the roughly 1.6 million subsumptions. To the
best of our knowledge, it constitutes the first formal proof of the results in [9].

Experiments suggested that, using this extracted checker, the verification
of the proof that S(9) = 25 would take around 20 years. Subsequent work in
optimizing its underlying algorithm [8], without significantly changing the for-
malization herein described, was able to reduce this time to just under one week.

6 Conclusions

We have presented a formalization of the theory of size-optimal sorting networks,
extracted a verified checker for size-optimality proofs, and used it to show that
informal results obtained in previous work are correct.

Our main contribution is a formalization of the theory of size-optimal sorting
networks, including an intuitive and reusable formalization of comparator net-
works and a new representation of permutations more suitable for computation.

Another immediate contribution is a certified checker that directly confirmed
all the values of S(n) quoted in [9], and that was subsequently able also to verify
that S(9) = 25 [8]. We plan to apply the same technique – first formalize, then
optimize – to other computer-generated proofs where formal verification has been
prohibitively expensive so far. We also plan to formalize the results from [18] in
order to obtain a formal proof of S(10) = 29.

Acknowledgements. We would like to thank Femke van Raamsdonk, whose initial
skepticism about our informal proof inspired this work, and Michael Codish for his
support and his enthusiasm about sorting networks. The authors were supported by the
Danish Council for Independent Research, Natural Sciences. Computational resources
were generously provided by the Danish Center for Scientific Computing.

References

1. Appel, K., Haken, W.: Every planar map is four colorable. Part I: discharging. Ill.
J. Math. 21, 429–490 (1977)

2. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. Part II:
reducibility. Ill. J. Math. 21, 491–567 (1977)

Formalizing Size-Optimal Sorting Networks 169

3. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Trans. A
Roy. Soc. 363(1835), 2351–2375 (2005)

4. Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): ITP 2013. LNCS, vol. 7998.
Springer, Heidelberg (2013)

5. Claret, G., González-Huesca, L.C., Régis-Gianas, Y., Ziliani, B.: Lightweight proof
by reflection using a posteriori simulation of effectful computation. In Blazy et al.
[4], pp. 67–83

6. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five compara-
tors is optimal when sorting nine inputs (and twenty-nine for ten). In: ICTAI 2014,
pp. 186–193. IEEE (2014)

7. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified
proofs with CiME3. In: Schmidt-Schauß, M., (ed.) RTA 2011. LIPIcs, vol. 10, pp.
21–30. Schloss Dagstuhl (2011)

8. Cruz-Filipe, L., Schneider-Kamp, P.: Optimizing a certified proof checker for a
large-scale computer-generated proof. In: Kerber, M., Carette, J., Kaliszyk, C.,
Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 55–70. Springer,
Heidelberg (2015)

9. Floyd, R.W., Knuth, D.E.: The Bose-Nelson sorting problem. In: Srivastava, J.N.
(ed.) A Survey of Combinatorial Theory, pp. 163–172. North-Holland, Amsterdam
(1973)

10. Fouilhe, A., Monniaux, D., Périn, M.: Efficient generation of correctness certificates
for the abstract domain of polyhedra. In: Logozzo, F., Fähndrich, M. (eds.) Static
Analysis. LNCS, vol. 7935, pp. 345–365. Springer, Heidelberg (2013)

11. Gonthier, G.: Formal proof - the four-color theorem. Not. AMS 55(11), 1382–1393
(2008)

12. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3.
Addison-Wesley, Reading (1973)

13. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 219–226. Springer, Heidelberg
(2014)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

15. Parberry, I.: A computer-assisted optimal depth lower bound for nine-input sorting
networks. Math. Syst. Theor. 24(2), 101–116 (1991)

16. Sternagel, C., Thiemann, R.: The certification problem format. In: Benzmüller, C.,
Paleo, B.W. (eds.) UITP 2014. EPTCS, vol. 167, pp. 61–72 (2014)

17. Thiemann, R.: Formalizing bounded increase. In: Blazy et al. [4], pp. 245–260
18. van Voorhis, D.C.: Toward a lower bound for sorting networks. In: Miller, R.E.,

Thatcher, J.W. (eds.) Complexity of Computer Computations. The IBM Research
Symposia Series, pp. 119–129. Plenum Press, New York (1972)

Proof-Producing Reflection for HOL

With an Application to Model Polymorphism

Benja Fallenstein1 and Ramana Kumar2(B)

1 Machine Intelligence Research Institute, Berkeley, USA
2 Computer Laboratory, University of Cambridge, Cambridge, UK

ramana.kumar@cl.cam.ac.uk

Abstract. We present a reflection principle of the form “If �ϕ� is prov-
able, then ϕ” implemented in the HOL4 theorem prover, assuming the
existence of a large cardinal. We use the large-cardinal assumption to
construct a model of HOL within HOL, and show how to ensure ϕ has
the same meaning both inside and outside of this model. Soundness of
HOL implies that if �ϕ� is provable, then it is true in this model, and
hence ϕ holds. We additionally show how this reflection principle can
be extended, assuming an infinite hierarchy of large cardinals, to imple-
ment model polymorphism, a technique designed for verifying systems
with self-replacement functionality.

1 Introduction

Reflection principles of the form1 “if �ϕ� is provable, then ϕ” have long been
of interest in logic and set theory (see, e.g., Franzén [5] and Jech [13]). In this
paper, we show how to implement a reflection principle for HOL in the HOL4
theorem prover [21], using a novel approach for establishing a correspondence
between the logic and an internal model. Such a reflection principle does not
come for free, since by Gödel’s second incompleteness theorem, HOL cannot
prove itself consistent [6]. We pay with an assumption about the existence of a
“large enough” HOL type. But we endeavour to ensure that this assumption has
the same content as the assumption, commonly studied in set theory [13], of the
existence of a strongly inaccessible cardinal.

Reflection is about trying to fit a logic inside itself, so one has to keep two
instances of the logic in mind separately. We use the term inner HOL to refer
to the object logic (the HOL that is formalised) and outer HOL for the meta
logic (the HOL in which inner HOL is formalised). We build upon Harrison’s
formalisation of HOL in itself [11] that was extended in our previous work [15,16]
to support defined constants. The first reflection principle we implement uses a
model of inner HOL provided by a large-cardinal assumption, together with the
previously-proved soundness theorem, to show that provability of a proposition
in inner HOL implies its truth in outer HOL.
1 �ϕ� refers to ϕ as a syntactic object, represented e.g. by its Gödel number or by an

abstract syntax tree.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 170–186, 2015.
DOI: 10.1007/978-3-319-22102-1 11

Proof-Producing Reflection for HOL with an Application 171

This kind of reflection principle is asymmetric: the large-cardinal assumption
used in outer HOL to justify reflection cannot be used again in inner HOL to
justify further reflection. One setting in which it is useful to lessen this asymme-
try is in constructing and verifying a system that can replace itself (including
the replacement mechanism) by a new version while nevertheless always satisfy-
ing some safety property. We have extended the reflection principle above to an
implementation of model polymorphism [3], which enables the use of reflective
reasoning multiple times to verify such self-modifying systems.

Our specific contributions in this paper are as follows:

– A simple approach to defining, in outer HOL, a partial embedding of outer
HOL in inner HOL (Sect. 3). We re-use a single polymorphic constant, to inner,
to embody the embedding at (almost) all outer HOL types.

– An algorithm for producing theorems that relate the semantics of inner HOL
terms to their outer HOL counterparts via the embedding (Sect. 4). The
method applies to terms that include user-defined constants and types, and
therefore supports construction of a semantic interpretation of constants based
on replaying outer definitions in inner HOL (Sect. 5). Combined with the
soundness theorem for inner HOL, this gives us a reflection principle for HOL
(Sect. 7).

– An extension of the reflection principle above to support model polymor-
phism [3] (Sect. 8).

– A reduction of the unavoidable assumption on the proof (in previous work)
of soundness and consistency of HOL within HOL to a traditionally-stated
large-cardinal assumption (Sect. 6).

All the work we present has been implemented in the HOL4 theorem prover,
and is available online at https://github.com/CakeML/hol-reflection.

Synopsis. Our reflection principle has two legs: (1) a soundness theorem for HOL
(from previous work) asserting that a provable formula is true in all models, and
(2) a formal correspondence between objects in a particular, reflective model
(constructed assuming a large cardinal) and their counterparts outside. The
reflection principle works as follows: if a formula �ϕ� is provable, the soundness
theorem asserts that �ϕ� is true in the reflective model of HOL, and via the
correspondence we may conclude that ϕ is true outside the model. The bulk of
our work in this paper is in building the reflective model and establishing the
correspondence, particularly in supporting user-defined constants.

2 Background: Inner HOL

The starting point for studying reflection principles is a formalisation of a logic
inside itself. We use higher-order logic (HOL), the logic of the HOL Light theo-
rem prover [12]. Our formalisation of HOL within itself is described carefully in
previous work [15,16], but we summarise it briefly in this section.

https://github.com/CakeML/hol-reflection

172 B. Fallenstein and R. Kumar

HOL has the syntax of the simply-typed lambda calculus2 and a well-known
semantics in Zermelo set theory. The judgements of the logic are sequents,
(thy ,hs) |- c, where c is a formula (a term of Boolean type), hs is a set of formu-
las, and thy specifies the current set of axiom formulas and the current signature
of constants and type operators. The semantics of each type is a non-empty set;
the Boolean type is specified as a distinguished two-element set (Boolset, with
elements True and False) and function types are specified as function spaces (a
set of pairs forming a functional relation). The semantics of each term is an ele-
ment of the semantics of its type. The semantics of each sequent is true, written
(thy ,hs) |= c, if the semantics of c is true whenever the semantics of all hs are
true, in any model (an interpretation of constants satisfying the axioms) of thy .

Since the semantic objects are sets, we need a model of set theory to define the
semantics of inner HOL. Our semantics does not pin down a particular model
of set theory. Instead, it is polymorphic: we use an outer HOL type variable,
usually μ, for the universe of sets, and encode the axioms of set theory as a
pair of assumptions, is set theory mem and ∃ inf . is infinite mem inf , about a
membership relation, (mem : μ → μ → bool), on sets. All our semantic
functions take the membership relation mem (and with it the universe μ) as a
parameter, and most theorems about the semantics assume the set-theory axioms
hold. However, for brevity we usually hide3 these parameters and assumptions
when they are obvious in context. We write x � y for infix application of the
mem relation (i.e., mem x y).

The important semantic function in this paper is the semantics of terms,
that is, the function that assigns an element of μ to each term of inner HOL.
We illustrate how it works with an example, considering the semantics of the
inner HOL version of the term λ x . foo y , where the constant (foo : α → β)
is instantiated at the types bool and ind list. The four parameters governing
the semantics are: the membership relation mem (hidden), the signature (s) of
constants and type operators in the theory, the interpretation (i) of constants
and type operators, and the valuation (v) of free term and type variables. We
denote the valuation of type variables by v ty whereas for term variables we use
v tm, and similar subscripts apply to the other semantic parameters. Our use of
interpretations and valuations is intended to be conventional and unsurprising;
we show the example here mainly to make our notation clear.4

termsem s tm i v
(Abs (Var “x” Bool)

(Comb (Const “foo” (Fun Bool (Tyapp “list” [Tyapp “ind” []])))
(Var “y” Bool))) =

Abstract Boolset sil (λ sx . sfoo ’ sy)

2 Including, as in Gordon [9], polymorphism (type variables and polymorphic con-
stants) and defined constants and type operators.

3 This is akin to working within an Isabelle [23] locale which fixes μ and mem and
assumes is set theory mem. (We assume infinity only when necessary).

4 The abstract syntax here is the inner HOL rendition of our example term. Bool and
Fun a b are abbreviations for Tyapp “bool” [] and Tyapp “fun” [a; b].

Proof-Producing Reflection for HOL with an Application 173

The semantics of the given lambda abstraction is a set-theoretic function (created
with Abstract) – in particular the set of two pairs, True �→ sfoo ’ sy and False �→
sfoo ’ sy . The following equations show how we obtain the semantics of the
applied type operator, the instantiated constant, and the free variable:

sil = i ty “list” [i ty “ind” []]
sfoo = i tm “foo” [Boolset; sil]
sy = v tm (“y”,Bool)

Inner HOL supports defined constants and type operators via the current
theory, which is attached to each sequent. The inference system uses a concrete
implementation of each theory as a list of updates. Such a list is called a context
and every context can be viewed abstractly as a theory (written: thyof ctxt).
Contexts are made from five kinds of update: new type operator, new constant,
new axiom, new defined type operator, and new defined constant. The updates
for defined type operators and constants have preconditions that require sequents
proved in the previous context. If an update upd satisfies all the preconditions
to be a valid update of the previous context ctxt , we say upd updates ctxt .

Both the within-theory inference rules and the theory-extending rules for
making updates (except new axiom) have been proved sound with respect to
the semantics. For the inference rules, the soundness theorem states5 that every
provable sequent is true:

� (thy ,hs) |- c ⇒ (thy ,hs) |= c

For the extension rules, the soundness theorem states that there exists an
extended interpretation of the new theory that continues to be a model of the
theory. Both theorems require the is set theory mem assumption.

3 An Inner Copy of Outer HOL

Given an outer HOL term, it is straightforward to write a function in ML—our
function is called term to deep—that walks the structure of the term and builds
the corresponding inner HOL term. For example, term to deep

turns Suc x into Comb (Const “Suc” (Fun Num Num)) (Var “x” Num).

This syntactic connection is straightforward. But what is the relationship
between the semantics of an outer HOL term and its inner counterpart? Let
�tm� stand for term to deep(tm). Ideally, we would like a connection between
Suc x and termsem s tm i v �Suc x �. Such a connection would mean that the
structure of outer HOL terms and types is replicated (indeed reflected) within

5 To understand the three turnstiles: � denotes provability in outer HOL (and applies
to the whole formula), infix |- denotes provability in inner HOL, and infix |= states
that a sequent is valid according to the semantics of inner HOL.

174 B. Fallenstein and R. Kumar

the type denoted by μ. We cannot expect to reflect everything: in particular, we
cannot reflect μ within itself, nor anything depending on μ. But we can cover
all other outer HOL types and terms generically.

Our solution is to define a polymorphic constant, to inner, which sends an
outer HOL term to the element of μ to which it is supposed to correspond. We
show how to prove theorems of the form termsem s tm i v �tm� = to inner ty tm.
The type of to inner ty is α → μ.6 (We explain the ty argument shortly.)

We do not want to have to specify exactly how to inner creates its (partial)
copy of outer HOL. What is important is that the copy is faithful, which means
to inner is injective. We formalise this injectivity property precisely by saying
that to inner at type α should be a bijection between U(:α) (everything of type
α) and the set7 of elements of some set x in μ. Formally, we define a well-
formedness condition:

wf to inner f ⇐⇒ ∃ x . BIJ f U(:α) { a | a � x }

Then we define to inner as an arbitrary well-formed injection, using Hilbert
choice8 as follows:

to inner ty = tag ty ◦ εf . wf to inner f

The tag ty part of the definition wraps the set produced by the well-formed
injection with a tag for the given inner HOL type, ty , thereby avoiding the
possibility of inadvertently sending outer HOL terms with different types to the
same element in μ. The need for this tagging is explained in Sect. 5.

Since Hilbert choice only picks a well-formed injection if one exists, the use-
fulness of to inner at any particular outer HOL type depends on our assuming
(or being able to prove) wf to inner (to inner ty). The automation we describe
in Sect. 4 produces theorems that assume these well-formedness conditions, and
the automation in Sect. 5 proves almost all of them.

Of course, since the well-formedness condition on to inner says it is not just an
injection but a bijection, we can also go in the other direction, from inner HOL
terms to their outer counterparts. Given a well-formed injection ina, we denote
the set of terms of type μ that are in its range—that is, the inner representation
of the domain of ina—by range ina. The faithfulness of the representation is
summarised in the following two theorems exhibiting invertibility.

� wf to inner ina ⇒ ∀ x . ina−1 (ina x) = x
� wf to inner ina ⇒ ∀ x . x � range ina ⇒ ina (ina−1 x) = x

6 To be pedantic, to inner also depends on the pervasive mem relation of the set theory.
7 We follow the convention of treating predicates in outer HOL as sets. To be clear

U(:α) is a term of type α → bool , and { a | a � x } is a term of type μ → bool .
These sets-as-predicates are distinct from the Zermelo sets, i.e., the terms of type μ.

8 Also known as indefinite choice, the Hilbert choice principle in HOL pro-
vides a constant (ε), usually written as a binder, together with the axiom
(∃ x . P x) ⇒ P (εx . P x) which holds for any predicate P .

Proof-Producing Reflection for HOL with an Application 175

Usually, but not always, ina will be to inner ty for some ty . We use to inner
to reflect outer HOL at all types except for those that depend on μ and except
for the two primitive types of HOL: Booleans and function types. The primitive
types must be treated differently because the semantics of HOL requires them to
be interpreted by a distinguished two-element set and by set-theoretic function
spaces, respectively. We provide specialised constants that map these types to
their intended interpretations instead of an arbitrary set:

bool to inner b = if b then True else False
fun to inner ina inb f =
Abstract (range ina) (range inb) (λ x . inb (f (ina−1 x)))

We have now seen how we intend to reflect outer HOL terms into inner HOL,
using to inner ty injections. We next describe an algorithm that produces a cer-
tificate theorem for (almost) any HOL term, asserting that the semantics of the
inner version of the term matches the reflection of the outer version. We develop
this algorithm in two stages: first (next section), we ignore the interpretation
of constants and the valuation of variables in the semantics and simply make
assumptions about them; then (Sect. 5), we build an interpretation and valuation
that satisfies these assumptions.

4 Proof-Producing Reflection

Let us begin with an example of the kind of theorem produced by the first stage
of our automation. Given as input the term Suc x , we produce the following
theorem that looks very long but whose components we will explain one by one.
We call each such theorem a certificate theorem for the input term.

� good context mem s i ∧ wf to inner (to inner Num) ∧
lookup s tm “Suc” = Some (Fun Num Num) ∧ lookup s ty “num” = Some 0 ∧
i ty “num” [] = range (to inner Num) ∧
i tm “Suc” [] = fun to inner (to inner Num) (to inner Num) Suc ∧
v tm (“x”,Num) = to inner Num x ⇒
termsem s tm i v �Suc x� = to inner Num (Suc x)

First, look at the conclusion9 (the last line): we have produced an equality
between the semantics of the inner version of our input term and its reflec-
tion created with to inner. Under what assumptions? The assumptions come in
five categories:

1. The assumption stated using good context, which represents the pervasive
is set theory mem assumption as well as some basic well-formedness condi-
tions on the signature and interpretation.

9 Num is an abbreviation for Tyapp “num” [].

176 B. Fallenstein and R. Kumar

2. wf to inner assumptions on all base types appearing in the input term (in this
case, just Num). A base type is any type variable or any application of a
non-primitive type operator. (For the primitives, Booleans and functions, we
prove wf to inner once and for all.)

3. Signature (s) assumptions stating that all non-primitive constants and type
operators in the input term (in this case Suc and num) have the same
type/arity in inner HOL as in outer HOL. (The only primitive constant,
equality, is assumed to have the correct type as part of good context.)

4. Interpretation (i) assumptions stating that the inner versions of all the base
types and constants of the input term are mapped to their reflections.

5. Valuation (v) assumptions stating that the inner versions of all type and term
variables in the input term are mapped to their reflections.

The algorithm for producing such a theorem works by recursively travers-
ing the structure of the input term. We build a theorem like the one above,
equating the semantics of an inner term to the reflection of its outer counter-
part, for each subterm in the input term starting at the leaves and progressing
bottom-up. When we encounter non-primitive type operators and constants we
add signature and interpretation assumptions as required, and similarly add val-
uation assumptions for free variables. The substitution of type variables used to
instantiate a polymorphic constant is easily reflected from outside to inside.

This algorithm works because the semantics itself is recursive. For example,
shown below is a theorem about the semantics that our algorithm uses when it
encounters a combination (function application) term. Notice that the theorem
makes two assumptions of the same form as its conclusion – these correspond to
recursive calls in the algorithm.

� termsem s tm i v ftm = fun to inner ina inb f ∧ termsem s tm i v xtm = ina x ∧
wf to inner ina ∧ wf to inner inb ⇒
termsem s tm i v (Comb ftm xtm) = inb (f x)

The analogous theorem for lambda abstractions requires us to prove connec-
tions between inner HOL types and their reflections (via range). Therefore, we
have a similar recursive algorithm for types as the one described above for terms.

So far, our certificate theorems leave the semantic parameters (s, i , and v)
as free variables but make various assumptions about them. Our aim in the next
section is to show how we can instantiate these parameters in such a way that
most of the assumptions become provable. In other words, we show how to build
a reflective model that satisfies the assumptions in each of the categories above.

5 Building a Reflective Interpretation and Valuation

Signature Assumptions. In outer HOL, types like num and constants like Suc are
all user-defined. Logically speaking, there is a context (typically not represented
explicitly in the theorem prover) that lists the sequence of updates made to pro-
duce the current environment of defined constants. An appropriate signature (s)

Proof-Producing Reflection for HOL with an Application 177

for a certificate theorem is one that corresponds to some context for the input
term, which will naturally satisfy all the signature assumptions. We require the
user of our automation to build an explicit representation of the desired context
(although we provide tools to help with this), and with that information proceed
to construct an interpretation and valuation to satisfy the assumptions of the
certificate theorem.

Algorithm for Building the Model. The idea is to reflect the updates from the
outer context into the inner inference system, creating an inner context, and
then, update by update, build an interpretation of the inner context. The inter-
pretation we build must be reflective, which means it must satisfy the certificate
theorem’s assumptions, namely: all the defined constants and types appearing
in the input term are mapped to the reflections of their outer versions. We build
the reflective interpretation by: (1) starting with the interpretation asserted to
exist by the soundness theorem, and (2) making a finite number of modifications
for each update in the context. We work recursively up the context applying the
relevant modifications for the last-added update at each stage.

Interpretation Assumptions. Each update introduces some number of type oper-
ators, constants, and axioms10 to the theory. Each update thereby induces some
constraints on an interpretation for the interpretation to be reflective. For exam-
ple, the update that defines �Suc� has an associated constraint that this constant
is interpreted as to inner (Fun Num Num) Suc.

For polymorphic constants and type operators with arguments, the con-
straints are more involved. In general, a constraint is induced by each instance
of the update and constrains the corresponding instance of the introduced con-
stants. Importantly, we only consider instances of the update that correspond to
the finitely many instances of the defined constants in the input term. We require
to inner to produce distinct reflections of distinct types, because otherwise we
cannot reliably distinguish different instances of an update.

To show that an interpretation continues to be a model after being con-
strained, we require that at each constrained instance the axioms of the update
are satisfied. We can prove this for the constraints we build (which map things
to their reflections) because the axioms of the update being replayed are true
in outer HOL. For each constrained instance of an axiom, we use the algorithm
from the previous section to generate a certificate theorem with assumptions
that are all easy to discharge because the constraint is reflective.

wf to inner Assumptions. To prove the wf to inner assumptions (for defined type
operators) on our certificate theorems, we use the fact that in outer HOL every
defined type is represented by a predicate on a previously defined (or primitive)
type. The same is true in inner HOL as we build up our interpretation, so the
wf to inner assumption on a defined type reduces to the wf to inner assumption

10 When a new constant or type operator is defined, theorems produced by the defi-
nition are considered axioms of the resulting theory. The other source of axioms is
new-axiom updates, which we do not support since they are not sound in general.

178 B. Fallenstein and R. Kumar

on its representing type. These assumptions propagate back recursively to the
base case. The only wf to inner assumptions left after this process are for type
variables in the input term, and for the type of individuals (ind) – this last
assumption may be introduced if not present.

Base Case of the Algorithm. To finish describing how we build a constrained
model that satisfies the assumptions of the certificate theorem, only the base
case of the recursive algorithm remains. What model do we start with before
replaying all the updates in the context? In our previous work [15,16] on the
soundness and consistency of HOL, we showed that there is a model for the base
context of HOL (assuming the set-theory axioms, including infinity). We use this
model in the base case of the algorithm for building a reflective interpretation,
modulo some subtleties concerning the Hilbert choice operator.

The base context, hol ctxt, includes the primitive types and constants
(Booleans, functions, equality) and the three axioms of HOL (extensionality,
choice, and infinity). To state the axioms, the base context also includes some
defined constants (conjunction, implication, etc.), and, importantly, the Hilbert
choice constant, and the type of individuals. Although most constraints are dealt
with before the base case, constraints on Hilbert choice remain. Therefore, we
extend the proof that hol ctxt has a model to show that in fact there is a model
satisfying any finite number of constraints on the intepretation of Hilbert choice.
We also modify the model to use range (to inner Ind) for the type of individuals.

Valuation Assumptions. So far we have described the algorithm for building an
interpretation (i) to satisfy the interpretation assumptions on certificate theo-
rems. To build a valuation (v) satisfying the valuation assumptions, we follow a
similar approach based on constraining an arbitrary valuation so that it maps
the free variables that occur in the input term to their reflections. We have not
covered all the gory details of these algorithms, but hope to have shared the
important insights. The ML code for our automation is around 1800 lines long,
supported by around 1000 lines of proof script about constrained interpretations.

6 Set Theory from a Large-Cardinal Assumption

Up until now, we have been working under the assumption is set theory mem,
as used in previous work [15,16], which consists of the set-theoretic axioms of
extensionality, specification, pairing, union, and power sets. To produce models
of hol ctxt and all its extensions, we also require the set-theoretic axiom of infinity
(which is implied by wf to inner (to inner Ind)). One of our contributions is to
clarify that these assumptions are implied by a more traditionally-stated large-
cardinal assumption.

Our large-cardinal assumption is strictly stronger than what is necessary for a
model of HOL. We leave proving an equivalence between is set theory mem plus
infinity and a large-cardinal assumption for future work, and here just prove

Proof-Producing Reflection for HOL with an Application 179

implication from a strongly inaccessible cardinal. The point is to build confi-
dence in our specification of set theory, by showing it is implied by a traditional
specification (of a strong inaccessible).

We make use of Norrish and Huffman’s formalisation [20] of cardinals and
ordinals in HOL4. We write s ≺ t to mean the predicate s has smaller cardinality
than the predicate t , i.e., there is an injection from s to t but not vice versa.
Remember that sets and predicates are usually identified in HOL; we use the
usual notation for sets like x ∈ s (x is an element of s) and f ’’s (the image of s
under f) when s is a predicate.

The reduction theorem we have proved is that if some (outer HOL) type,
say μ, is a strongly inaccessible cardinal, then there is a membership relation mem
on that type that satisfies is set theory and is infinite. Furthermore, according to
this mem, for every predicate s on the type μ which is strictly smaller than U(:μ),
there is a Zermelo set x whose elements are exactly the extension of s. In this
section, we are explicit with all uses of the type variable μ and the variable mem.
The formal statement of our reduction theorem is:

� strongly inaccessible U(:μ) ⇒
∃mem.
is set theory mem ∧
(∀ s. s ≺ U(:μ) ⇒ ∃ x . s = { a | a � x }) ∧
∃ inf . is infinite mem inf

It is well known that the existence of a strongly inaccessible cardinal gives rise to
a model of set theory [13, Lemma 12.13], and the proof of our reduction theorem
contains no surprises. (The main lemma is that a strongly inaccessible cardinal
is in bijection with its smaller subsets.) Our focus here is on the definition of
strongly inaccessible, aiming to accurately capture traditional usage.

A cardinal is called “strongly inaccessible” if it is uncountable, a regular
cardinal, and a strong limit cardinal [13]. Assuming the axiom of choice (which
we do as we are working in HOL), a cardinal X is regular iff it cannot be
expressed as the union of a set smaller than X all of whose elements are also
smaller than X [13, Lemma 3.10]. Formally:

regular cardinal X ⇐⇒
∀ x f .
x ⊆ X ∧ x ≺ X ∧ (∀ a. a ∈ x ⇒ f a ⊆ X ∧ f a ≺ X) ⇒⋃

(f ”x) ≺ X

A cardinal is a strong limit if it is larger than the power set of any smaller
cardinal. This is straightforward to formalise:

strong limit cardinal X ⇐⇒ ∀ x . x ⊆ X ∧ x ≺ X ⇒ P(x) ≺ X

A cardinal is countable if it can be injected into the natural numbers (this is
already defined in HOL4’s standard library). With these three ideas formalised,
we define strongly inaccessible as follows:

strongly inaccessible X ⇐⇒
regular cardinal X ∧ strong limit cardinal X ∧ ¬countable X

180 B. Fallenstein and R. Kumar

7 Proving Reflection Principles

We now have enough machinery in place to exhibit a reflection principle for HOL.
In the examples that follow, we use a two-place predicate Safe t v to construct
our input propositions, to match the example in Sect. 8. However, Safe can be
considered as a placeholder for any two-place predicate. As a concrete, simple
example, set Safe t v ⇐⇒ v �= Suc t .

First, let us see how the reflection principle works on the input proposition
∀ t . Safe t 0. Combining the automation from Sects. 4 and 5, we can construct a
certificate theorem with almost all of the assumptions proved:

� is set theory mem ∧ wf to inner (to inner Ind) ⇒
termsem (sigof inner ctxt)tm constrained model constrained valuation
�∀ t . Safe t 0� =
bool to inner (∀ t . Safe t 0)

Here constrained model and constrained valuation are built as described in Sect. 5:
they are a reflective model for the context (inner ctxt) that defines �Safe�, and
a reflective valuation11 for the input proposition.

Next, consider the inner HOL sequent corresponding to provability of our
input proposition:

(thyof inner ctxt,[]) |- �∀ t . Safe t 0�

The soundness theorem for inner HOL states that if this sequent is provable, then
the semantics of its conclusion is true. Our certificate theorem above already
tells us that the semantics of the conclusion is equal to the reflection of the
input proposition. By definition of bool to inner, if the reflection of a proposition
is true then that proposition holds, hence we obtain:

� is set theory mem ∧ wf to inner (to inner Ind) ⇒
(thyof inner ctxt,[]) |- �∀ t . Safe t 0� ⇒ ∀ t . Safe t 0

There would be additional wf to inner assumptions for each additional type vari-
able in the input term.

The final step is to replace the is set theory mem assumption with the large-
cardinal assumption that provides us with a model of set theory. In this model, we
can replace the wf to inner assumption on ind by a lower bound on the cardinality
of μ. Similarly, any wf to inner assumption on a type variable, say α, could be
replaced by an assumption of the form U(:α) ≺ U(:μ). Such assumptions can be
satisfied by large enough μ, except in the case α = μ; hence, it is important that
μ not occur in the input proposition. The resulting theorem no longer contains
any occurrences of mem, not even hidden ones.

� strongly inaccessible U(:μ) ∧ U(:ind) ≺ U(:μ) ⇒
(thyof inner ctxt,[]) |- �∀ t . Safe t 0� ⇒ ∀ t . Safe t 0

11 Any valuation would do for this input since it has no free type or term variables.

Proof-Producing Reflection for HOL with an Application 181

Thus we have shown that provability of our input proposition implies its truth,
assuming the existence of a large cardinal that is larger than the type of individ-
uals in outer HOL. We can prove a theorem like this for any input proposition
(that does not mention μ), including less obvious and even false propositions.

The reflection principle above can be generalised to a uniform reflection prin-
ciple [4], which, for an input proposition with a free natural-number variable,
requires an inner-HOL proof about only the relevant value of the variable. We
write �v � for the inner HOL numeral corresponding to the value of the outer
HOL variable v ; for example, if v = 1 in outer HOL, then �Safe t v � denotes
the term �Safe t (Suc 0) �. The uniform reflection principle for the predicate
∀ t . Safe t v is:

� strongly inaccessible U(:μ) ∧ U(:ind) ≺ U(:μ) ⇒
∀ v . (thyof inner ctxt,[]) |- �∀ t . Safe t v� ⇒ ∀ t . Safe t v

Since v is quantified in outer HOL, this theorem encapsulates infinitely many
reflection theorems of the previous kind. To implement uniform reflection, we
define an outer-HOL function quote : num → term which can be spliced into the
result of term to deep to provide terms of the form �v�. It is straightforward to
show that the semantics of �v� in a reflective valuation is equal to the reflection
of v , and uniform reflection follows.

8 An Implementation of Model Polymorphism

One application of reflection principles is in designing and verifying systems that
include mechanisms for self-replacement. For concreteness, consider an operating
system intended to satisfy a certain safety property (e.g., a certain file is never
overwritten), but also with a mechanism for replacing itself by an arbitrary
updated version. For this system to be safe, the replacement mechanism must
be restricted to prevent replacement by an unsafe update. A simple restriction
would be to require a proof that the updated version is safe until replacement is
invoked, together with a syntactic check that the updated version’s replacement
mechanism (including the proof checker) is unchanged (or that the replacement
mechanism is removed altogether). To verify this system, we need to know that
the system’s proof checker is sound (only admits valid proofs) and we need a
reflection principle for its logic (the conclusions of valid proofs are true). But we
only need to establish these properties once.

Things get more interesting if we want to allow updates that might change the
replacement mechanism. A more general replacement mechanism simply requires
a proof that the updated version (including any new replacement mechanisms)
is safe. To verify this system, we need a reflection principle to conclude that
any updated version is safe assuming only that it was proved safe before the
update was made. Furthermore, if we want to leave open the possibility that later
updated versions retain a general replacement mechanism, we need a reflection
principle that can be iterated.

182 B. Fallenstein and R. Kumar

The reflection principles in the previous section do not iterate. Using the
assumption that a strongly inaccessible cardinal exists and is larger than the
type of individuals they let us prove results of the form “If �ϕ� is provable, then
ϕ” for every ϕ not containing type variables. However, the proof of �ϕ� may only
make use of the ordinary axioms of HOL: in particular, it cannot in turn assume
that there is a strongly inaccessible cardinal. It is tempting to choose ϕ to be the
formula strongly inaccessible U(:μ) =⇒ ψ, for some formula ψ. But this contains
the type variable μ, leading our automation to produce the unsatisfiable assump-
tion U(:μ) ≺ U(:μ). We could instead try to use a different type variable, as in
strongly inaccessible U(:ν) =⇒ ψ; this would lead to a theorem showing ψ under
the assumptions that strongly inaccessible U(:μ), strongly inaccessible U(:ν),
U(:ν) ≺ U(:μ), and the provability of �strongly inaccessible U(:ν) =⇒ ψ�. How-
ever, while the proof in inner HOL may now assume that there is one inaccessible
(ν), the theorem in outer HOL now assumes that there are two strongly inac-
cessible cardinals (ν and μ), one of which is larger than the other.

Indeed, there must always be a stronger assumption in outer HOL than
in inner HOL, since by Gödel’s second incompleteness theorem, no consistent
proof system as strong as Peano Arithmetic can prove the reflection principle for
itself: Choosing ϕ ≡ F, the identically false proposition, the assertion “If �F� is
provable, then F” is equivalent to “�F� is not provable”, which asserts consistency
of the proof system. But by the second incompleteness theorem, a sufficiently
strong proof system which can show its own consistency is inconsistent.

Nevertheless, the construction outlined above can be repeated any finite
number of times, showing that if there are (n + 1) nested strongly inaccessi-
ble cardinals, then a proposition ϕ holds if it is provable under the assump-
tion that there are n inaccessibles. Formally, we can define a term LCA of type
num → (μ → bool) → bool such that LCA 0 U(:μ) indicates that ind fits
inside μ, and such that LCA (Suc t) U(:μ) indicates that μ is a strongly inac-
cessible cardinal and there is a strictly smaller subset Q of U(:μ) which satisfies
LCA t Q :

LCA 0 P ⇐⇒ U(:ind) � P
LCA (Suc n) P ⇐⇒ strongly inaccessible P ∧ ∃Q . Q ⊆ P ∧ Q ≺ P ∧ LCA n Q

Then, we can show a reflection principle of the form “If �LCA t U(:μ) ⇒ ϕ�
is provable, then LCA (Suc t) U(:μ) ⇒ ϕ”. This approach systematises the
idea of allowing stronger systems to reflect the reasoning of weaker systems. As
described below, we can strengthen this principle so that it requires proofs not
about particular numerals �t� but about a universally quantified variable t .

To see the relevance to problems like verifying the self-replacing operat-
ing system, consider interpreting Safe t v as “candidate system v , and any
updated versions it permits, behave safely for t updates”, hence we want to
show ∀ t . Safe t v0 for the initial system v0. Suppose we have proved Safe 0 v0,
that is, we have verified the initial system except for its replacement mechanism,
and suppose the initial replacement mechanism requires a proof of the proposi-
tion �∀ t . LCA t U(:μ) ⇒ Safe t v� before installing update v . We need, for all t ,

Proof-Producing Reflection for HOL with an Application 183

to show Safe (Suc t) v0, but this is equivalent to showing Safe t v for all v that
satisfy the replacement mechanism’s proof requirement. The following reflection
principle enables us to do just that, provided we assume LCA (Suc t) U(:μ).

� ∀ v .
(thyof inner ctxt,[]) |- �∀ t . LCA t U(:μ) ⇒ Safe t v� ⇒
∀ t . LCA (Suc t) U(:μ) ⇒ Safe t v

Furthermore, the same reflection principle can be used within the proof required
by the replacement mechanism, because the increase in the value of t passed to
LCA is cancelled out by the decrease in the argument to Safe when considering
a new version.

To prove the theorem above (for any predicate Safe t v not contain-
ing type variables), our automation shows that for every natural number t,
LCA (Suc t) U(:μ) implies the existence of a model of inner HOL in which
�LCA t U(:μ)� is true (with the inner variable t being interpreted to equal its
outer value). Thus, if the implication in the assumption of the theorem is prov-
able, then �Safe t v� is true in this model as well, and by our link between inner
and outer HOL, it follows that Safe t v . 12

At the top level, we are still left with the assumption of LCA (Suc t) U(:μ)
for every t. A model of HOL in which this assumption is true can easily be
constructed, for example, in ZFC extended with the much stronger assumption
that there is a Mahlo cardinal [13, Chapter 8], a strongly inaccessible cardinal κ
such that there are exactly κ strongly inaccessibles � κ. The assumption that a
Mahlo cardinal exists is not uncommon in set-theoretical work, and has been used
in studies of dependent type theory to justify inductive-recursive definitions [2].

9 Related Work

Reflection principles of the form “If �ϕ� is provable, then ϕ”, as well as the uni-
form reflection principle “If �ϕ(n)� is provable, then ϕ(n)”, have been studied
by Turing [22] and Feferman [4]. These authors consider sequences of theories
obtained by starting with a theory T0 (Peano Arithmetic, say), and repeat-
edly constructing theories Tα+1 by adding to Tα the reflection principle for all
theories Tβ , β ≤ α. One can extend these sequences transfinitely by letting
Tλ :=

⋃
α<λ Tα at limit ordinals λ. Turing and Feferman showed that, in a

rather technical sense, sequences constructed in this way prove every true sen-
tence of arithmetic (see Franzén [5] for an introduction, including an explanation
why this statement is not as strong as it may appear). Set theorists have been
interested in reflection principles, provable in ZF, which show that a sentence ϕ
is true if it is provable from a fixed finite subset of ZF [13].

In the interactive theorem proving community, interest in reflection principles
has mainly come from the perspective of computational reflection [10], which

12 Our proof constructs a potentially slightly different model of inner HOL for each
value of t; this is, roughly, the origin of the term model polymorphism.

184 B. Fallenstein and R. Kumar

justifies the use of an efficient decision procedure by proving that if the decision
procedure declares a sentence to be true, the sentence is in fact provable. For
example, Allen et al. [1] extend Nuprl with a reflection rule, an inference rule to
infer ϕ from “�ϕ� is provable”. To avoid inconsistency, they stratify their rule
in a manner similar to the transfinite progressions of Turing and Feferman: each
invocation of the reflection rule is annotated with a level,
, and an invocation
at level
 requires a proof that �ϕ� is provable using the reflection rule only
at levels <
. Perhaps the most systematic use of reflection to justify more
complex inference rules from simpler ones is in Milawa [18], which allows its
entire proof checker to be replaced by a new version when given a proof that
all sentences which are provable according to the new proof checker were also
provable according to the old one.

Harrison [10], reviewing a large number of arguments and proposals for com-
putational reflection, finds no evidence that it ever makes an otherwise infeasible
proof technique feasible, though he concedes that in some cases, the speed-up
can be significant. More recently, Coq’s ssreflect library [8] for computational
reflection has been instrumental in the formal verification of the four-color the-
orem [7].

The algorithm in Sect. 4 bears a strong resemblance to the proof-producing
translation (or code generation) algorithm presented by Myreen and Owens [19].
The input term in their algorithm is also an outer HOL term, but the target,
instead of inner HOL, is the functional programming language CakeML. The
semantics of CakeML is very different from the semantics of inner HOL, but the
overall approach of producing certificate theorems bottom-up works similarly.

10 Conclusion

We have described automation for proving reflection principles of the form “If
�ϕ� is provable, then ϕ” from assumptions about the existence of large cardi-
nals. Based on this work, we have discussed an implementation of model poly-
morphism [3], which allows reflective reasoning to be used in the verification of
self-replacing systems.

In this paper, we have focused on the automation for proving reflection
principles. In future work, we plan to apply this to an implementation of a
self-modifying, self-verifying system. It would also be interesting to apply these
techniques to create an extensible version of HOL, similar to Milawa [18]; in par-
ticular, where Milawa requires a proof that a new version of the proof checker
is conservative (i.e., only accepts proofs of propositions that were also provable
according to the old proof checker), our semantic approach would allow us to
instead require a proof that the new version is sound (i.e., whenever it accepts a
proof of a proposition, that proposition is semantically true). It would be inter-
esting to explore how these syntactic and semantic extension principles compare
in practice.

Acknowledgements. We thank Magnus Myreen for feedback on a draft of this paper.
We also thank the anonymous reviewers for their helpful criticism.

Proof-Producing Reflection for HOL with an Application 185

References

1. Allen, S.F., Constable, R.L., Howe, D.J., Aitken, W.E.: The semantics of reflected
proof. In: Proceedings of the LICS, pp. 95–105, IEEE Computer Society (1990)

2. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In:
Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146. Springer, Heidelberg
(1999)

3. Fallenstein, B., Soares, N.: Vingean reflection. Technical report, Machine Intelli-
gence Research Institute, Berkeley, CA (2015)

4. Feferman, S.: Transfinite recursive progressions of axiomatic theories. J. Symb.
Log. 27(3), 259–316 (1962)

5. Franzén, T.: Transfinite progressions: a second look at completeness. B. Symb. Log.
10(3), 367–389 (2004). http://www.math.ucla.edu/∼asl/bsl/1003/1003-003.ps

6. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte fr Mathematik und Physik 38(1), 173–198
(1931)

7. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 333–333. Springer, Heidelberg
(2008)

8. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Form. Reasoning 3(2), 95–152 (2010)

9. Gordon, M.: From LCF to HOL: a short history. In: Plotkin, G.D., Stirling, C.,
Tofte, M. (eds.) Proof, Language, and Interaction, Essays in Honour of Robin
Milner, pp. 169–186. The MIT Press, Cambridge (2000)

10. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique.
Technical report CRC-053, SRI, Cambridge, UK (1995). http://www.cl.cam.ac.
uk/∼jrh13/papers/reflect.dvi.gz

11. Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg
(2006)

12. Harrison, J.: HOL Light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009)

13. Jech, T.: Set Theory. The Third Millenium Edition, Revised and Expanded.
Springer Monographs in Mathematics. Springer, Heidelberg (2003)

14. Klein, G., Gamboa, R. (eds.): Interactive Theorem Proving. Springer, Heidelberg
(2014)

15. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with definitions: semantics,
soundness, and a verified implementation. In: Klein, G., Gamboa, R. (eds.) ITP
2014. LNCS, vol. 8558, pp. 308–324. Springer, Heidelberg (2014)

16. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-
order logic. J. Autom. Reasoning (2015), submitted. Preprint at https://cakeml.
org

17. Mohamed, O.A., Muñoz, C.A., Tahar, S. (eds.): Theorem Proving in Higher Order
Logics. Springer, Heidelberg (2008)

18. Myreen, M.O., Davis, J.: The reflective Milawa theorem prover is sound - (down
to the machine code that runs it). In: Klein and Gamboa [14], pp. 421–436

19. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ML. J. Funct. Program. 24(2–3), 284–315 (2014)

http://www.math.ucla.edu/~asl/bsl/1003/1003-003.ps
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz
https://cakeml.org
https://cakeml.org

186 B. Fallenstein and R. Kumar

20. Norrish, M., Huffman, B.: Ordinals in HOL: transfinite arithmetic up to (and
beyond) ω1. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 133–146. Springer, Heidelberg (2013)

21. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed et al. [17], pp.
28–32

22. Turing, A.M.: Systems of logic based on ordinals. Proc. LMS 2(1), 161–228 (1939)
23. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed

et al. [17], pp. 33–38

Improved Tool Support
for Machine-Code Decompilation in HOL4

Anthony Fox(B)

University of Cambridge, Cambridge, UK
anthony.fox@cl.cam.ac.uk

Abstract. The HOL4 interactive theorem prover provides a sound logi-
cal environment for reasoning about machine-code programs. The rigour
of HOL’s LCF-style kernel naturally guarantees very high levels of assur-
ance, but it does present challenges when it comes implementing efficient
proof tools. This paper presents improvements that have been made
to our methodology for soundly decompiling machine-code programs to
functions expressed in HOL logic. These advancements have been facili-
tated by the development of a domain specific language, called L3, for the
specification of Instruction Set Architectures (ISAs). As a result of these
improvements, decompilation is faster (on average by one to two orders
of magnitude), the instruction set specifications are easier to write, and
the proof tools are easier to maintain.

Traditional formal software verification has primarily focussed on developing and
using formalisations of high-level programming languages, with formal reasoning
occurring at the level of the programmer. However, in some high-assurance appli-
cations, such language formalisations could be too abstract or unrealistic, and the
trustworthiness of compilers may come into play. These issues can be addressed
by using a verified compiler, see [8,9]. However, an alternative approach is to
work directly with machine-code, which could be generated by any compiler for a
particular platform. This has the advantage that one does not have to formalise
the semantics of high-level source languages, and formal reasoning relates more
directly to the code that is actually being run. The success of this approach
hinges upon the ability to accurately formalise a processor’s instruction set and
on the ability to overcome the challenges of working with low-level code, which
is less structured and replete with platform specific details. To this end, Magnus
Myreen has developed an approach for soundly decompiling machine-code using
the HOL4 interactive theorem prover, see [12].

Commercial instruction set architectures are large and complex, with refer-
ence manuals running to thousands of pages in length.1 We use the L3 domain
specific language to formally specify ISAs, see [4]. Details of our current ISA
formalisations can be found in Sects. 2 and 8. Each architecture has its own idio-
syncrasies, which must be accommodated when writing proof automation for a

1 For example, 2736 pages for ARMv7-A, 5242 pages for ARM-v8 (which contains a
full description of the legacy AArch32 mode) and 3020 pages for x86.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 187–202, 2015.
DOI: 10.1007/978-3-319-22102-1 12

188 A. Fox

theorem prover. In this paper our main working instruction set is ARMv7-A
but we also support other architectures.2 In particular, we have recently added
support for the new 64-bit ARMv8 architecture.

Papers [12,13] of Myreen et al. present proof tools for decompiling machine-
code programs into logic using the HOL4 interactive theorem prover. The second
paper (from 2012) presented a new version of this proof-producing decompiler,
which provided significant improvements in the speed of decompilation. Bench-
mark figures showed that the overall run time had become dominated by model
evaluation, i.e. the time taken to generate Hoare triples that capture the seman-
tics of each individual machine-code instruction. These Hoare triples take the
form of spec theorems, which provide an interface between ISA models and the
decompiler, see Sect. 1. This paper presents substantial improvements in our
treatment of ISA specification and model evaluation. The techniques presented
here supersede those of [5]. For comparison purposes, updated benchmark figures
are provided in Sect. 7 for the examples listed in [13]. The HOL4 tools for gener-
ating spec theorems have been enhanced to be roughly one hundred times faster
than previous versions (those presented in [5]). This speedup comes from utilis-
ing dynamic databases of generic spec theorems, which capture the semantics of
multiple instruction instances (for multiple operating modes). These theorems
are derived by partially evaluating ISA models, see Sects. 3 and 4.

The improvements described in this paper have made it more tractable to
work with larger machine-code programs. The largest decompilation undertaken
to date has been for the seL4 microkernel (see [15]), where the code size is roughly
12,000 ARM instructions. Our models have also been used by other organisations
and research groups, including at the KTH Royal Institute of Technology, see [2].

The approach described here has matured to the point where specifying a new
ISA, and linking the generated HOL model to the decompiler, is mostly routine.
Experience indicates that the effort of supporting a new ISA is split almost evenly
between model development (in L3) and implementing tool support (in HOL4).
For simple RISC architectures, such as MIPS, preliminary support (without
model validation) has been provided within a few weeks. Although our tools
have been implemented in HOL4, the overall approach is applicable to other
LCF-style provers, such as HOL Light, Isabelle/HOL and ProofPower.

1 Decompilation of Machine-Code to HOL Logic

In [12] Myreen describes methods for soundly decompiling machine-code into
HOL functions. The decompiler outputs a collection of definitions, as well as
a certificate theorem, which proves that the definitions correctly capture the
semantics of the supplied machine-code. For example, the ARM code

e0010291 (* loop: mul r1, r1, r2 *)
e2500001 (* subs r0, r0, #1 *)
1afffffc (* bne loop *)

2 L3 specifications are available at www.cl.cam.ac.uk/-acjf3/l3/isa-models.tar.bz2 and
the HOL4 developments can be viewed at the Github repository www.github.com/
HOL-Theorem-Prover/HOL under the directory www.examples/l3-machine-code.

www.cl.cam.ac.uk/-acjf3/l3/isa-models.tar.bz2
www.github.com/HOL-Theorem-Prover/HOL
www.github.com/HOL-Theorem-Prover/HOL
www.examples/l3-machine-code

Improved Tool Support for Machine-Code Decompilation in HOL4 189

is decompiled into the following HOL function:3

power (r0,r1,r2) =
let r1 = r1 * r2 in
let r0’ = r0 - 1w
in

if r0 = 1w then (r0’,r1,r2) else power (r0’,r1,r2)

Certificate theorems are instances of a total correctness Hoare triple assertion
SPEC model p code q, see [12]. The certificate theorem for our example is

� SPEC ARM_MODEL
(~aS * arm_OK m * arm_PC p * arm_REG (R_mode m 0w) r0 *
arm_REG (R_mode m 1w) r1 * arm_REG (R_mode m 2w) r2 *
cond (power_pre (r0,r1,r2)))

{(p,0xE0010291w); (p + 4w,0xE2500001w); (p + 8w,0x1AFFFFFCw)}
(let (r0,r1,r2) = power (r0,r1,r2)
in

~aS * arm_OK m * arm_PC (p + 12w) * arm_REG (R_mode m 0w) r0 *
arm_REG (R_mode m 1w) r1 * arm_REG (R_mode m 2w) r2)

Here ARM MODEL is a 5-tuple that incorporates an ARM semantics relation. A set
(the code pool) associates memory addresses with machine-code values. The pre-
and post-conditions (p and q) are split into assertions, combined using Myreen’s
machine-code logic separating conjunction operator (*), see [12]. For example,

arm_OK m * arm_PC (p + 12w) * arm_REG (R_mode m 0w) r0

asserts that the program-counter has value p + 12w and the zeroth general-
purpose register (R mode m 0w) has value r0. The processor mode is constrained
to be valid with the assertion arm OK m, e.g. m = 16w (user mode) is valid.

The decompiler works by deriving and composing SPEC theorems for single
machine-code instructions. The semantics of each instruction is determined by
symbolically evaluating the next-state function of an ISA. This is implemented
in HOL with step and spec tools, which are described in Sects. 3 and 4. This
paper focusses on improvements made to the ISA models and associated model
evaluation tools. A list of these improvements is contained in Table 1.

The implementation of ISA specific step and spec tools – which effectively
link ISA models to the decompiler – is aided through the use of special pur-
pose HOL libraries. The primitive assertion predicates (such as arm REG) and
associated lemmas are now automatically generated by a tool which examines
the state type of the ISA. This automation makes it much easier to accommo-
date changes to specifications and to support new ISAs. However, the process of
developing ISA specific tools is not fully automatic. An understanding of each
ISA is required, and there are places where cognisant choices are made, i.e. which
parts of the ISA model are pertinent. Näıve symbolic evaluation of sizeable ISA
formalisations typically leads to the generation of unwieldy terms (perhaps tak-
ing minutes to compute in HOL). Also, it is frequently necessary to manually
prove simplification rewrites, as steadfastly following ISA reference manuals can
result in unwanted expressions arising within assertions and decompiler output.
3 This computes r1 := r1 * pow(r2, r0). Note that 1w denotes a machine word

(bit-vector) with value one.

190 A. Fox

Table 1. Comparison of the old and new approaches.

Old New

Specification
and formal
model

Native HOL using a
state-transformer monad with
exceptions

Specified in an imperative style
using the L3 domain specific
language. The exported HOL
models employ let-expressions
and have an ‘exception status’
state component. [See Sect. 2]

Step tool Requires a full machine-code
value (opcode). Evaluates the
instruction set model directly.
The ARM step tool employs a
call-by-value based conversion

Mainly based on machine-code
bit-patterns (named
instructions). Uses a database
of pre-computed ‘instruction
semantics’ theorems, with the
step theorem being derived
using HOL’s MATCH MP rule.
[See Sect. 3]

Spec tool State assertions and associated
theorems are all defined and
proved manually. The
theorems are based on
concrete opcode values. The
derivation tactic is
hard-coded for each ISA

Assertions are automatically
defined and various theorems
are automatically derived.
Supports generic Hoare
triples, based on instruction
bit-patterns. The derivation
tactic is customisable, so as to
support multiple ISAs. [See
Sect. 4]

Improved
decompiler
support [13]

The Hoare triple theorems are
derived direct from step
theorems. This derivation is
hard-coded for each ISA

The triple theorem derivation
uses spec theorems. This
method is generic (readily
customisable), so it is easy to
support new ISAs. [See
Sect. 5]

Assembly code
support

Written mostly in Standard ML,
using a parser generator or
parser combinators

Mostly written in L3, with a
small amount of
Standard ML. [See Sect. 6]

ISAs ARMv4 through to ARMv7,
PowerPC, x86-32, x86-64

ARMv4 through to ARMv7,
ARMv6-M, ARMv8, x86-64,
MIPS, CHERI. [See Sect. 8]

2 ISA Specification Using L3

The domain specific language L3 [4] provides an effective means to specify and
maintain a diverse selection of instruction set models. The language has been
designed to be simple and intuitive, with specifications being compact and easy
to comprehend. To date, L3 models have been exported to HOL4, Standard ML,
Isabelle/HOL and TSL [10].

Improved Tool Support for Machine-Code Decompilation in HOL4 191

The primary component of a formal ISA specification is a next-state function,
which defines the architecture’s operational semantics at the programmer’s model
level. One machine-code instruction is run for every application of the next-state
function. A HOL4 formalisation of the ARMv7 architecture was presented in [5].
This model was based on defining a state-transformer monad (with exceptions)
directly in HOL. Our new L3 source specifications now look much more like
the pseudo-code found in architecture reference manuals. The exported HOL4
version is treated as a reference formal specification (trusted model), whereas
exported SML code is used to implement emulators and assemblers. There is no
formal or verified connection between each of these models. We primarily carry
out model validation with respect to the trusted HOL model, typically using
step tools to determine the behaviour of machine-code instructions (see Sect. 3).
Additional validation and development work may be performed using the much
faster ML-based emulators. In particular, our MIPS model is now capable of
booting FreeBSD, see Sect. 8. This emulation work has also demonstrated that
L3 models are well suited to rapidly prototyping new architectural designs.

Two styles of HOL specification can be exported from L3: one uses a generic
state-transformer monad; and the other uses let-expressions, which directly
manipulate (pass through) the state of the architecture. The monadic style is
suited to security oriented proofs, such as [2]. This paper is primarily concerned
with the let-expression style, since this is the version that is used by the decom-
piler. The following two sections describe this new style of specification.

Model Exceptions. Model exceptions4 are normally used to handle various
instances of unpredictable (under-specified) behaviour.5 With the use of L3, our
treatment of model exceptions has changed so as to make it easier to write
efficient automated proof tools.

In our old monadic approach, the type of each (impure or state transforming)
operation is roughly:

[args →]state → (value × state) + exception

where + denotes the disjoint union type operator and square parenthesis are
used to indicate an optional type component. Such operations either return a
value together with an updated state, or they return an exception value. A
monadic bind operation (>>=) is used to compose sequential computations. Note
that performing symbolic evaluation in the context of >>= frequently leads to
the generation of unwieldy terms, since the bind definition includes a case split
over the value-state (exception free) and exception cases.

The following operation type is used in L3 generated models:

[args →]state ′ → value × state ′

4 This should not be confused with ISA exceptions (e.g. software interrupts), which
are typically modelled explicitly, following the ISA reference manual semantics.

5 The ARM manual describes the unpredictable as meaning “the behaviour cannot be
relied upon”. For example, the shift instruction ASR r1,r2,pc is unpredictable.

192 A. Fox

where state ′ = state[× exception − status]. The range now consists of a value
paired with a state, which may incorporate an exception status component. The
value and state parts of the result should be regarded as meaningless when an
exception occurs, which is flagged using the exception status component of state ′.
Although this representation is less principled – since junk values and states are
returned when an exception has occurred – it does have the advantage that we
can express operational semantics using a standard state-transformer monad or
using ordinary let-expressions. This makes the generated models easier to work
with.

Example Specification. Consider the following pedagogical L3 specification:

exception UNPREDICTABLE {- declare a new exception type -}

declare { A : : bits(8), B : : bits (8) } {- global variables -}

bits (8) example (c : : bits (8)) =
{

A <- B; {- assignment -}
when A < 4 do #UNPREDICTABLE; {- raise an exception -}
return (A * c + 1)

}

This L3 specification declares a new model exception UNPREDICTABLE, two global
state components A and B, and a unary function example. The generated HOL
script for this specification defines the following function:

example c =
(λstate.

(let s = state with A := state.B in
let s = if s.A < 4w then SND (raise’exception UNPREDICTABLE s)

else s
in

(s.A * c + 1w,s)))

Note that the state is explicitly modified using let-expressions. A record type is
used, with state components A and B being sub-fields of the global state. The
helper function raise’exception is used to tag the state when an exception
occurs (it ensures earlier exceptions are not overridden).

3 Model Evaluation: Step Theorems

A step tool uses forward proof to derive a theorem that characterises the next-
state behaviour of a particular instruction. In [5], step theorems are of the form:

� ∀s. P (s) ⇒ (next(s) = SOME (f0(f1(. . . fn(s)))))

where s is a state and predicate P consists of various conjuncts, usually includ-
ing assertions of the from mem(pc + i) = bi for i ∈ 0, . . . , 3. Each byte bi forms
part of the machine-code opcode of the instruction being run, which is located
in memory mem at the program-counter address pc. Other clauses determine

Improved Tool Support for Machine-Code Decompilation in HOL4 193

the operating mode, e.g. big- or little-endian byte ordering and so forth. Addi-
tional clauses are also required to avoid unpredictable or undesired behaviour; for
example, we assert that the program-counter address is word aligned (divisible
by four). The functions fi denote state updates for particular components; for
example, one function might write a value to a register. The next-state function
returns an option type, which is a standard HOL datatype.6

Generic Step Theorems. With the move to L3 specifications, we now use step
theorems of the form:

P0, . . . , Pn � next(s) = SOME (s with . . .).

The hypotheses Pi correspond with clauses of the old spec theorem predicate P .
The ‘with’ syntax denotes updates to a record, e.g. the next-state might be

s with pc := s.pc + 4.

Here the program-counter is updated so as to point to the next instruction in
memory. A key improvement is that we now generate step theorems that are not
restricted to concrete (ground) machine-code opcodes. Instead, each byte of the
fetched instruction can be represented by a list of Booleans, which form part of
the instruction’s opcode pattern. For example, the four bytes for the ‘Multiply
Accumulate’ instruction MLA (with little-endian ordering) are

i=0 v2w [T; F; F; T; x13; x14; x15; x16]

i=1 v2w [x5; x6; x7; x8; x9; x10; x11; x12]

i=2 v2w [F; F; T; F; x1; x2; x3; x4]

i=3 v2w [T; T; T; F; F; F; F; F]

Here T represents true, F is false and the HOL function v2w : bool list → word8
constructs a bit-vector from a list. Variables are used to encode register and
immediate argument values, as well as various instruction configuration options.
A particular instance of this ARM instruction is MLA r1, r2, r3, r4, which
has opcode 0xE0214392. This instance corresponds with the substitution:

x1, x2, x3, x4 �→ F, F, F, T, (r1) x5, x6, x7, x8 �→ F, T, F, F, (r4)

x9, x10, x11, x12 �→ F, F, T, T, (r3) x13, x14, x15, x16 �→ F, F, T, F (r2) .

This substitution effectively specialises the instruction pattern for our instruction
instance (choice of registers), i.e. r2 * r3 + r4 is written to register r1.

By developing tools that generate generic step theorems (which represent
partial evaluations of a next-state function with respect to opcode bit-patterns),
we are then able to derive generic spec theorems, i.e. Hoare triples for a class of
instructions. This generalisation provides a means to greatly speed-up the model
evaluation phase of decompilation. Rather than generate Hoare triple theorems

6 A state option value is either NONE (when there is an exception) or otherwise it is
SOME s for some state s. We are only interested in exception free cases here.

194 A. Fox

from scratch for every machine-code opcode (which is expensive), we can instead
dynamically build up a database of generic triples that can be quickly specialised
when needed.

Derivation. Generic step theorems are derived using HOL’s MATCH MP rule.7

For ARM, we first derive antecedent theorems (roughly) of the form:

F0, . . . , Ff � Fetch(s) = (v, s0) (1)
D0, . . . , Dd � DecodeARM(v, s0) = (ast , s1) (2)

� ∀s. Run(ast)(s) = defn(x)(s) (3)
I0, . . . , Ii � defn(x)(s1) = s with . . . (4)

which together imply the following step theorem

F0, . . . , Ff ,D0, . . . , Dd, I0, . . . , Ii � NextARM(s) = SOME (s with . . .). (5)

In the above, v represents a machine-code bit-pattern; ast is an instruction
datatype value; x is an instruction’s arguments (e.g. register indices and imme-
diate values); and defn represents an instruction semantics function. The various
hypotheses relate to different stages of execution, e.g. the F hypotheses assert
that the bytes of the opcode v are located in main memory, starting at the
program-counter address.

The functions Fetch, DecodeARM, Run and NextARM all come from the current
L3 specification of ARM. Equations (1) to (4) deconstruct the next-state function
NextARM, and the implication above is proved in HOL with a one-off theorem.
Similar theorems are proved for each ISA that we support. It is hard to fully
automate the process of decomposing next-state specifications, so as to construct
and verify suitable MATCH MP theorems. These theorems are very architecture
specific, for example, the MIPS theorems have to take the branch-delay slot into
consideration and the x86 model has to accommodate variable width instruction
opcodes and an instruction cache.

In deriving a step theorem for a particular instruction class (bit-pattern),
various parts of Eqs. (1) to (4) are specialised, prior to applying the MATCH MP
rule. For example, for a particular instruction instance the semantics function
defn might be dfn’StoreByte or dfn’MultiplyLong and Eq. (4) will give the
next-state semantics for that type of instruction. Equations (1) to (3) can be
readily derived on the fly for any particular opcode bit-pattern. Equations (2) and
(4) are precomputed for a fixed set of supported instruction bit-patterns. These
theorems are stored in databases that are based on Michael Norrish’s LVTermNet
structure, which implements local variable term nets.8 Using this method, the
resulting step tool is extremely efficient. The four antecedent theorems can be
7 This is the Modus Ponens inference rule with automatic matching. For example,

given a theorem A0 � t1 ∧ · · · ∧ tn ⇒ t0 and a list of theorems A1 � t1, . . . , An � tn,
we can use this rule to derive A0, . . . , An � t0.

8 These are a form of discrimination net. A similar structure Net (credited to Larry
Paulson) has been used for many years in HOL’s term-rewriting conversions.

Improved Tool Support for Machine-Code Decompilation in HOL4 195

deduced very quickly (since database lookup does not require any additional
logical inference) and an application of MATCH MP rule is fast as well.

The practicability of this new approach hinges upon the ability to precom-
pute all of the required instruction semantics theorems (instances of Eq. (4)) in
an “acceptable” amount of time. The ARM model is complex and, at the time of
writing, there are 318 of these theorems. They are produced by expanding defin-
itions to a canonical form that consists of primitive state (record field) updates.
This symbolic evaluation involves: considering instruction sub-cases; eliminating
let-expressions, avoiding unpredictable cases (by adding new conditions to the set
of hypotheses); and applying simplifications. A custom tool has been developed
to aid this process. Where appropriate, simplification rules are manually iden-
tified and verified, e.g. they may involve reasoning about machine arithmetic
and bit-vector manipulations. Here, HOL4’s bit-blasting procedure for decid-
ing bit-vector problems is of great use, see [3]. The HOL library arm stepLib
implements the ARM step tool; it consists of 4014 lines of hand-written code
and takes just under two minutes to build. This library uses theorems from
arm stepTheory, which is built using 1498 lines of hand-written proof script.

4 Model Evaluation: Machine-Code Hoare Triples

A spec tool derives spec theorems (Hoare triples) for machine-code instructions.
The performance of these tools has been greatly enhanced through the use of
generic spec theorems, which can be instantiated to obtain triples for concrete
opcodes (where instruction arguments become fixed). This new approach is illus-
trated in Fig. 1. A feature of this algorithm is that it incorporates a form of
memoization. The performance of the tool improves with use, since the costly
“no” branch in Fig. 1 only occurs when new instruction types are encountered.

Multiple generic spec theorems (up to sixteen for ARM) are derived for
each generic step theorem. These theorems cover various instruction forms, e.g.
MOV Rm, Rn (with Rm �= Rn) and MOV Rm, Rm are distinct forms. The pre- and
post-conditions are determined by syntactically examining the supplied step the-
orem. The spec theorem derivation is based on using a carefully crafted tactic; see
www.HOL/examples/l3-machine-code/common/stateScript.sml for an overview
of the approach and for proofs of key lemmas.

The ‘reject vacuous’ stage in Fig. 1 is used to select the appropriate specialised
spec theorems. In practice, we also apply post-processing stages, which support
different state assertions, e.g. viewing registers and/or memory as maps.

To illustrate the improvements in performance, consider the ‘Store Regis-
ter Dual’ instruction STRD r0, r1, [r2, r3]!, which has opcode 0xE1A200F3.
The timings for this instruction (on a 3.4 GHz Core i7, 32 GB) are as follows:

Old step tool: 0.35 s
Old spec tool: 2.54 s
New step tool ("STRD (+reg,pre,wb)" instruction class): 0.0017 s
New spec tool (first call): 0.91 s
New spec tool (subsequent calls within class): 0.0027 s

www.HOL/examples/l3-machine-code/common/stateScript.sml

196 A. Fox

Assemble Code
(parse & encode)

Look up
instruction’s
bit-pattern

Assembly
Code Input

Machine-code
Input

Find
matching
generic
spec

theorems?

Generate
generic step
theorems

Derive generic
spec theorems
and add them
to database

Specialise and
simplify spec
theorems†

Reject vacuous
theorems

Spec theorem
Output

no

yes

Fig. 1. Generation of spec theorems. † Note that theorem specialisation is fast and the
simplification phase has been fine-tuned for performance.

5 Supporting the Improved Decompiler

The improved decompiler [13] uses a new Hoare triple predicate, wherein the
pre- and post-condition assertions are more hardwired, i.e. fixed for a particular
(manually determined) processor configuration and state ‘view’. The uniformity
of these triple theorems helps in speeding up the decompilation process. A tool
has been developed to derive triple theorems from spec theorems. There is a
small overhead (typically a few thousandths of a second) for this conversion. As
such, it is relatively easy to support both versions of the decompiler.

6 Assembly Code Support

When working with an instruction set model, it is helpful to provide support for
some standard assembly code representation of instructions (which humans can
more readily comprehend). In particular, it is useful to be able to input assembly
code programs (or single instructions) and then output machine-code opcodes.
We achieve this by implementing light-weight assemblers, which consist of two
parts: a parser, which maps assembly code syntax (strings) into an instruction
datatype (AST); and an encoder, which maps instruction datatype values into
machine-code opcodes. We also define pretty-printers, which map instruction
datatype values back into assembly code syntax (strings). An example of these
mappings is shown below for an ARM load-multiple instruction:

Improved Tool Support for Machine-Code Decompilation in HOL4 197

AST: (14, Load (LoadMultipleExceptionReturn (T,F,T,1,112))

Hex: 0xE8F18070 Assembly: LDM r1!,{r4-r6,pc}^

decode

encode

print

parse

Round-trip validation is used to test the consistency of the decode, encode,
parse and print specifications; this is illustrated below.

Opcode Instruction AST
Assembly
code string

Instruction AST

decode print

parseencode
?

A successful round-trip occurs when the opcode produced by the encoder
is the same as an initial opcode. Note that the original opcode may not be
‘canonical’ (e.g. ARM immediate values do not have unique encodings) — in
such cases the round-trip will fail and a check is made on whether the abstract
syntax for the two instructions (from decoding and parsing) are equivalent. This
approach has been highly effective in terms of detecting inconsistencies and bugs
in instruction representation logic. The parsing and encoding logic has also been
checked laboriously with test vectors, e.g. to ensure that syntax and bounds
errors are handled correctly.

We have found little need for assembly code parsers and pretty-printers to
be formalised within a theorem prover, since we normally work directly with
machine-code opcodes when considering the semantics of low-level programs. As
such, these components are implemented at the meta-level using Standard ML.
There are some use cases for formalised instruction encoders, as these can be
used in compiler backends; for example, in the CakeML project [8].

Previously, encoders, parsers and printers have been written in Standard ML
(HOL’s meta-language), see [5]. In particular, parsing has been implemented
using parser generators and later with parsing combinators. We now specify
encoding, parsing and printing using L3, which helps in keeping these com-
ponents consistent and synchronised with the core model. L3 is well-suited to
specifying instruction encoders, since the language provides excellent support for
working with bit-vectors. The complete specification is exported to ML and this
is then used to write simple assemblers, using a relatively small piece of hand
coded ML. The parser and printer specifications are not exported to HOL.

7 Performance

In presenting a faster decompilation algorithm, Myreen et al. provided some
benchmarks figures, see Table 2. Following the changes presented in this paper,
the latest performance figures are shown in Table 3. Column one shows that

198 A. Fox

the performance of the decompiler itself, which excludes the model evaluation
phase, has improved since 2012.9 This has been achieved by implementing simple
coding improvements within the decompiler and associated library code. The
underlying algorithms, as presented by Myreen et el., have not been modified. Of
most interest is the model evaluation figures (column group two). Three timings
are presented: the first column contains updated figures for the old model and
tools; the second corresponds with generating spec theorems from a ‘cold’ state
(where no instructions have been encountered before) using the new L3 model
and tools; and the third is from a ‘warm’ state, where all of the instructions have
been encountered before.10 It is clear that significant performance improvements
have been achieved. The old tools (see [5]) have again improved due to tweaks
within library code. For the new tools, the performance is at worst just a bit
slower than before (i.e. in the ‘sum of array’ example), however this corresponds
with an outlying case where just four instruction are processed from a cold state.
From a ‘warm’ state, model evaluation is now faster than the main decompilation
phase itself. As such, this new technology has successfully overcome a bottleneck
in scalability. The faster and more general step tools also help in areas such as
model validation and compiler verification.

Table 2. Performance figures found in [13]. Examples: (1) sum of array; (2) copying
garbage collector; (3) 1024-bit multiword addition; and (4) 256-bit Skein hash function.

Example Code size (instructions) Decompilation time (and inferences) Model evaluation time

Original version 2012 version (and inferences)

1 4 2.5 s (73039 i) 0.3 s (4019 i) 7.8 s (1.5Mi)

2 89 50 s (1526281 i) 6.0 s (53301 i) 173 s (40Mi)

3 224 70 s (1029685 i) 1.2 s (10802 i) 37 s (8.9Mi)

4 1352 5366 s (21432926 i) 56 s (1,842,642 i) 500 s (105Mi)

Table 3. Latest performance figures for the same ARM examples.

Decompilation time (and inferences) Model evaluation time (and inferences)

Original version 2012 version Old Cold Warm

1.47 s (78,688 i) 0.12 s (16481 i) 3.2 s (0.74Mi) 9.8 s (3.9Mi) 0.02 s (15,521 i)

32.5 s (1,598,271 i) 2.0 s (349740 i) 51.3 s (16.2Mi) 19.8 s (13.5Mi) 0.35 s (273725 i)

50.0 s (1,085,104 i) 0.3 s (45949 i) 20.3 s (3.3Mi) 9.9 s (9Mi) 0.03 s (8435 i)

11786 s (19,921,648 i) 8.0 s (4756617 i) 350 s (44.6Mi) 23.7 s (28Mi) 4.0 s (2.8Mi)

9 The Skein example under the ‘original’ decompiler is an anomaly here.
10 Caching on hexadecimal opcode values has not been enabled, so these run times

correspond with specialising generic spec theorems.

Improved Tool Support for Machine-Code Decompilation in HOL4 199

Table 4. L3 instruction set models. The ‘Lines of L3’ figure is split into core model
and additional logic (for instruction encoding and assembly code support).

ISA Operating System Levels Instruction General-Purpose Flags Endianness Coverage Lines of L3
Modes Width Registers

ARMv4 to
ARMv7

ARM, Thumb User, System,
(Hypervisor), Abort,
Undefined, (Monitor),
IRQ, FIQ

32-bit,16-bit 32-bit
16† (banked)

N, Z, C, V,
Q, GE

Big, Little Partial VFP
No Adv. SIMD
No CP

9238+7687

ARMv6-M Thumb Main, Process 16-bit 32-bit
16† (SP banked)

N, Z, C, V Big, Little No CP 1996+2095

ARMv8 AArch64 only EL0, EL1, EL2, EL3 32-bit 64-bit
32 (reg. 31 is 0)

N, Z, C, V Big, Little No VFP
No Adv. SIMD
Partial System

2434+4097

x86-64 64-bit only - Variable
(bytes)

64-bit, 16 CF, PF, AF,
ZF, SF, OF

Little 40 basic
instructions

1357+1579

MIPS
(RS4000)

- User, Supervisor,
Kernel

32-bit 64-bit
32 (reg. 0 is 0)

- Big, Little Partial CP
Partial System

2080+700

CHERI - User, Supervisor,
Kernel

32-bit 64-bit
32 (reg. 0 is 0)

- Big Partial CP 5299

8 Instructions Sets

A summary of our ISA formalisations in L3 is shown in Table 4. The following
sections give a brief overview of these architectures.

ARMv4 through to ARMv7. Although nominally a RISC architecture, ARM is
challenging from a specification and verification perspective. Areas of complexity
are: the number of system levels and the use of banked general-purpose registers;
the program-counter is a general-purpose register,11 which leads to unpredictable
behaviour (see Sect. 2); and the LDM and STM block data transfer instructions are
remarkably elaborate. As part of previous work, described in [5], a fairly large
set of single instruction test vectors were developed for the purposes of ARMv7
validation. These tests have helped identify a handful of bugs in the new L3
specification, which were all trivial to fix. The new model is now considered to
be as trustworthy as the previous version, which was specified directly in HOL.
We have no plans to formally verify a correspondence between the two models.

A notable change to the new specification is with regard to the specification
of unpredictable and undefined12 instruction instances. This logic has moved
from instruction semantics functions to decoders. As such, the decoders can be
used to check the validity of instruction encodings, which is useful when writing
an assembler, see Sect. 6. The instruction semantics functions have also become
easier to work with.

11 When an instruction explicitly reads the PC this normally gives the value of that
instruction’s address plus eight (in ARM mode) or plus four (in Thumb mode). This
is because early ARM processors employed a 3-stage pipeline.

12 An instruction opcode is undefined when it is not supported by an architecture
version or configuration. For example, CLZ opcodes on ARMv4 will raise an undefined
exception trap.

200 A. Fox

ARMv6-M. This architecture is implemented by the Cortex-M0 micro-controller
and our model includes processor timing information (a cycle counter). Extensive
model validation has been carried out by Brian Campbell [1].

ARMv8. This is a completely new 64-bit architecture. Although compatibility
with ARMv7 is provided with an AArch32 operating mode, our L3 formalisa-
tion omits this functionality and just supports the new AArch64 mode. The
instruction set is completely new; as is the underlying programmer’s model. Our
formalisation is currently awaiting validation. Due to some rationalisations in the
ARMv8 architecture (in AArch64 mode), this ISA is actually cleaner and easier
to work with when compared to ARMv7. There are still some complexities, e.g.
the various encoding schemes for immediate values are somewhat elaborate.

x86-64. Being an older CISC architecture, the x86 family is renowned for its
size and complexity. However, we only provide a comparatively simple model of
x86-64 in L3, which covers just 64-bit operating mode for a core set of about
forty instructions (providing adequate coverage for case studies). This was ported
from a native HOL4 specifications. Some limited model validation with respect
to hardware has been carried out with the assistance of Magnus Myreen.

MIPS64 and CHERI. MIPS64 is a relatively clean RISC architecture. The
CHERI research architecture extends MIPS with capabilities for implementing
security management, see [17]. One source of complexity for MIPS is the pres-
ence of a branch-delay slot, which affects the semantics of jump instructions. The
CHERI model permits multi-core operation and also adds support for: inter-
rupts; UART I/O; a translation lookaside buffer (TLB); and more coprocessor
instructions. This advanced, high-fidelity model is primarily used for emulation,
validation and rapid prototyping. The model is mature enough that it can boot
an unmodified development version of FreeBSD (which has a 7.2 MB image size)
in about ten minutes on a modern machine. Booting the OS in multi-core mode
is supported as well. Alexandre Joannou, Matthew Taylor and Mike Roe have
worked on the extended MIPS and CHERI models, and this development can
be found on Github at www.github.com/acjf3/l3mips.

9 Related Work

Other recent work on reasoning about machine-code programs has mainly been
undertaken using the ACL2 and Coq theorem provers. Most of this work has
focussed on the x86 architecture. Related work is carried out in the field of
binary-analysis (using flow-based approaches), where instruction set models are
developed and used in less formal settings, i.e. where machine-code programs
are not formally verified against specifications.

Warren Hunt’s group have developed a high quality model of x86-64 using
ACL2, see [6]. Shilpi et al. report that their ACL2 model covers 121 user-level
instructions (much more than our L3 specification) and they note that there is

www.github.com/acjf3/l3mips

Improved Tool Support for Machine-Code Decompilation in HOL4 201

work in progress (headed by Moore) on an ACL2 based automated tool, called
Code Walker, that is comparable with Myreen’s decompiler. By design, the
ACL2 programming language naturally supports fast model evaluation. Their
x86 model can be tested in an execution mode and proofs can be constructed in
a logical mode. With the former evaluation mode, they achieve a performance
of nearly a million instructions per second, with a two-level page table enabled.
By contrast, HOL4 is an LCF-style theorem prover that is not designed for
high performance model evaluation. As such, when carrying out emulation work
we generate Standard ML versions of our models. When reasoning in the HOL
logic, the techniques presented in this paper provide sufficient performance for
formal verification work. We consider the main advantages of our approach to be
that our ISA models are compact and accessible (through the use of a domain
specific language); and also that our infrastructure for supporting automated
decompilation to logic (for multiple ISAs) is now relatively mature.

As part of the Rocksalt project (for a software-based fault isolation checker),
Morrisett et al. have developed an x86 model in Coq, see [11]. Other x86 models
have been developed in Coq as part of research into devising logical frameworks
for reasoning about low-level code, see [7,14]. In addition, simple assembly-level
Coq models of x86, PowerPC and ARM have also been used within the Com-
pCert verified compiler, see [9].

Within the area of binary-analysis, the work of Reps et al. is of note, see [10].
They use a domain specific language TSL to specify ISAs, including PowerPC
and x86. Recently, they have customised L3, so as to generate TSL code from
our ARMv7 model. These TSL specifications are used to generate a range of
binary-analysis tools. Related work includes the GDSL toolkit of Simon et al.,
see [16]. They have a used a domain specific language to specify (fast) decoders,
as well as semantics translators, e.g. for x86 and Atmel AVR. At present it is
unclear how easy it would be to adapt their work for the purposes of formal
verification using an interactive theorem prover.

10 Summary

This paper describes the current status of our models, tools and methodology
for the formal verification of machine-code programs. Our approach is based on
using three programming environments: L3 for developing ISA specifications;
Standard ML (compiled using Poly/ML or MLton) for efficient emulation; and
HOL4 for formal reasoning. L3 has eased the task of developing instruction set
specifications, and it has also helped ensure that generated HOL models are of
a known and manageable form. Improved techniques for model evaluation are
presented and proof tools have been implemented. The performance of machine-
code decompilation has been greatly enhanced, see Sect. 7. These gains have been
achieved by maintaining various databases of pre-proved theorems, see Sects. 3
and 4. In particular, the spec tool now maintains a database of generic spec
theorems. These methods are applicable to other LCF-style theorem provers.

Thanks to Mike Gordon, Magnus Myreen and the reviewers for providing
helpful comments on drafts of this paper.

202 A. Fox

References

1. Campbell, B., Stark, I.: Randomised testing of a microprocessor model using SMT-
solver state generation. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol.
8718, pp. 185–199. Springer, Heidelberg (2014)

2. Dam, M., Guanciale, R., Nemati, H.: Machine code verification of a tiny ARM
hypervisor. In: Sadeghi, A., Armknecht, F., Seifert, J. (eds.) TrustED 2013, pp.
3–12. ACM, New York (2013)

3. Fox, A.C.J.: LCF-Style bit-blasting in HOL4. In: van Eekelen, M., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 357–362. Springer,
Heidelberg (2011)

4. Fox, A.: Directions in ISA specification. In: Beringer, L., Felty, A. (eds.) ITP 2012.
LNCS, vol. 7406, pp. 338–344. Springer, Heidelberg (2012)

5. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

6. Goel, S., Hunt, Jr., W.A., Kaufmann, M., Ghosh, S.: Simulation and formal veri-
fication of x86 machine-code programs that make system calls. In: FMCAD 2014,
pp. 91–98. IEEE (2014)

7. Jensen, J.B., Benton, N., Kennedy, A.: High-level separation logic for low-level
code. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 301–314. ACM, New
York (2013)

8. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementa-
tion of ML. In: Jagannathan, S., Sewell, P. (eds.) POPL 2014, pp. 179–192. ACM,
New York (2014)

9. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

10. Lim, J., Reps, T.W.: TSL: a system for generating abstract interpreters and its
application to machine-code analysis. ACM Trans. Program. Lang. Syst. 35(1), 4
(2013)

11. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J., Gan, E.: Rocksalt: better, faster,
stronger SFI for the x86. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI 2012, pp.
395–404. ACM, New York (2012)

12. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007)

13. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic - improved. In:
Cabodi, G., Singh, S. (eds.) FMCAD, pp. 78–81. IEEE (2012)

14. Ni, Z., Yu, D., Shao, Z.: Using XCAP to certify realistic systems code: machine
context management. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS,
vol. 4732, pp. 189–206. Springer, Heidelberg (2007)

15. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: Boehm, H.J., Flanagan, C. (eds.) PLDI, pp. 471–482. ACM, New York
(2013)

16. Simon, A., Kranz, J.: The GDSL toolkit: Generating frontends for the analysis of
machine code. In: Jagannathan, S., Sewell, P. (eds.) PPREW 2014, p. 7. ACM,
New York (2014)

17. Woodruff, J., Watson, R.N.M., Chisnall, D., Moore, S.W., Anderson, J., Davis, B.,
Laurie, B., Neumann, P.G., Norton, R., Roe, M.: The CHERI capability model:
revisiting RISC in an age of risk. In: ISCA 2014, pp. 457–468. IEEE Computer
Society (2014)

A Formalized Hierarchy of
Probabilistic System Types

Proof Pearl

Johannes Hölzl1(B), Andreas Lochbihler2(B), and Dmitriy Traytel1(B)

1 Fakultät Für Informatik, Technische Universität München, Munich, Germany
{hoelzl,traytel}@in.tum.de

2 Department of Computer Science, Institute of Information Security, ETH Zurich,
Zurich, Switzerland

andreas.lochbihler@inf.ethz.ch

Abstract. Numerous models of probabilistic systems are studied in the
literature. Coalgebra has been used to classify them into system types
and compare their expressiveness. In this work, we formalize the result-
ing hierarchy of probabilistic system types in Isabelle/HOL by modeling
the semantics of the different systems as codatatypes. This approach
yields simple and concise proofs, as bisimilarity coincides with equality
for codatatypes. On the way, we develop libraries of bounded sets and
discrete probability distributions and integrate them with the facility for
(co)datatype definitions.

1 Introduction

The framework of coalgebra provides a unified view on various ways of model-
ing (probabilistic) systems [2,20,21,24]. A system is represented as a function
of type σ⇒ σ F that describes the possible evolutions of a state of type σ.
Here, the functor F (written postfix) determines the type of the system. For
example, a non-deterministic labeled transition system corresponds to a func-
tion σ⇒ (α⇒ σ set), which returns the set of the possible successor states for
each label of type α. Similarly, a Markov chain can be characterized by a function
from a state to the probability distribution over the successor states. More com-
plicated types combine non-deterministic and probabilistic aspects in different
ways.

Bartels et al. [2] and Sokolova [21] compare the expressiveness of system types
found in the literature and arrange them in a hierarchy. They define a type of
systems to be at least as expressive as another if every system of the latter can be
mapped to a system of the former such that the mapping preserves and reflects
bisimilarity, where two systems are bisimilar iff they cannot be distinguished by
finite observations [17].

In this paper, we formalize the probabilistic system types (Sect. 5) and their
hierarchy (Sect. 6) in Isabelle/HOL. The salient feature is that we model the sys-
tem types as codatatypes (Sect. 2) rather than functions as done in the original
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 203–220, 2015.
DOI: 10.1007/978-3-319-22102-1 13

204 J. Hölzl et al.

proofs [21]. On codatatypes, bisimilarity coincides with equality, which allows
for convenient equational reasoning. This makes the proofs simple and concise,
i.e., highly automated and without lots of technical clutter. Our formalization is
publicly available [14].

To construct the codatatypes, we introduce new types to express non-
deterministic and probabilistic choice, namely bounded (non-empty) powerset
(Sect. 3) and discrete probability distributions (Sect. 4). We integrate them with
Isabelle’s new package for (co)datatypes [4,6,22]. Thus, we can define the codata-
types directly, which demonstrates the versatility of the new package. Moreover,
future formalizations [18,25] benefit, too, as recursion in (co)datatypes may now
occur under discrete distributions and bounded sets.

Our work is more than just an exercise in formalization. We extend the orig-
inal hierarchy with additional standard system types and discover new intercon-
nections by considering systems extended with an additional label (Sect. 6.3).
Moreover, the formalization has revealed a flaw in the original hierarchy proof.
We show that Vardi systems (also known as concurrent Markov chains [23]) do
not satisfy the assumptions required in [21] and therefore must be (partially)
dismissed from the hierarchy (Sect. 6.4).

2 Preliminaries: Codatatypes via Bounded Natural
Functors

The flexibility of Isabelle’s (co)datatype package originates from a semantic cri-
terion that defines where (co)recursion may appear on the right-hand side of a
(co)datatype declaration (in contrast to syntactic criteria employed by most if
not all other proof assistants including past versions of Isabelle).

The core of the semantic criterion relies on the notion of a bounded natural
functor (BNF) [4,22]. Here, we shortly introduce BNFs targeted at our applica-
tion. A (unary) BNF is a type expression α F with a type parameter α equipped
with a polymorphic map function mapF :: (α⇒ β) ⇒ α F ⇒ β F, a polymorphic
set function setF :: α F ⇒ α set, and an infinite cardinal bound bdF on the number
of elements returned by setF. Additionally, these constants must satisfy certain
properties (e.g., mapF is functorial, i.e., preserves identities and composition,
and setF is a natural transformation, i.e., commutes with mapF). For example,
the type of (finite) lists α list forms a BNF with the standard map function map
and the function set returning the set of the list’s elements.

The semantic criterion allows (co)recursion to occur nested under BNFs. For
example, the (co)datatypes α tree and α ltree of finitely branching trees nest the
(co)recursive occurrences of α tree and α ltree under the BNF list:

datatype α tree = Node α (α tree list)
codatatype α ltree = Node α (α ltree list)

While only trees of finite depth inhabit the datatype α tree, the codatatype
α ltree also hosts trees of infinite depth. For example, the full binary

A Formalized Hierarchy of Probabilistic System Types 205

tree z containing 0 everywhere is defined by primitive corecursion [4]:
primcorec z :: nat ltree where z = Node 0 [z, z].

Users can register custom types as BNFs by supplying the required con-
stants and discharging the proof obligations for the BNF properties. Newly
registered BNFs can then participate in further (co)datatype declarations.
For example, after registering Isabelle’s type of finite sets α fset as a BNF,
we can define unordered finitely branching trees of potentially infinite depth:
codatatype α lftree = Node α (α lftree fset).

In general, BNFs can have arbitrary arity and may depend on additional dead
type variables that are ignored by the map function. For example, the sum and
product types are binary BNFs, while the function type α⇒ β is a unary BNF
with the dead variable α (BNFs thereby disallow recursion through negative
positions [10]). Compositions of BNF are again BNFs. We say that a BNF α F
induces a codatatype CF

codatatype CF = CtrF (CF F)

with a single bijective constructor CtrF :: CF F ⇒ CF, its inverse destructor
DtrF :: CF ⇒ CF F and the associated coiterator unfoldF defined by primitive
corecursion:

primcorec unfoldF :: (α⇒ α F) ⇒ α⇒ CF where
DtrF (unfoldF s a) = mapF (unfoldF s) (s a)

Finally, induced codatatypes are equipped with a coinduction rule for proving
equality by exhibiting a bisimulation relation witness R:

R x y ∀x y. R x y −→ relF R (DtrF x) (DtrF y)
(x :: CF) = (y :: CF)

where the relator relF :: (α⇒ β⇒ bool) ⇒ α F ⇒ β F ⇒ bool lifts binary relations
over elements to binary relations over the functor F. It is defined for each BNF
canonically in terms of mapF and setF (where π1 and π2 denote the standard
product projections):

relF R x y = ∃z. setF z ⊆ {(x, y) | R x y} ∧ mapF π1 z = x ∧ mapF π2 z = y (1)

3 Bounded Powerset

In this and the next section we define three new types and register them as
BNFs. We start with the simpler two: bounded sets and non-empty bounded
sets, with which we will model non-determinism on a state space. Our new type
and its BNF structure generalize the existing BNFs for finite sets α fset and
countable sets α cset in Isabelle/HOL’s library. Note that Isabelle’s standard
type of unbounded sets α set is not a BNF, due to the absence of a cardinal
bound on the number of elements contained in a set.

As for bounded sets, we cannot directly express the dependence of a type on
a cardinal bound constant within the simply typed logic of Isabelle. A standard

206 J. Hölzl et al.

trick [11] is to let the type depend on a type κ (and thereby on κ’s cardinality)
instead. We obtain the following type definitions for the type α setκ of strictly
κ-bounded sets:

typedef α setκ = {A :: α set | |A| <o |UNIV :: κ set| +c ℵ0}
The operators | − |, <o, +c and the constant ℵ0 = |UNIV :: nat set| are part of
Isabelle’s library of cardinals [5]—their exact definition is irrelevant; they encode
the intuition that α setκ contains all sets of strictly smaller cardinality than κ if
κ is an infinite type (in which case |UNIV :: κ set| +c ℵ0 =o |UNIV :: κ set|) and all
finite sets otherwise (since |UNIV :: κ set| +c ℵ0 =o ℵ0 for finite κ). In other words:
If we instantiate κ with a finite or countable type, then α setκ is isomorphic to
α fset, and if we instantiate κ with the cardinal successor of ℵ0 [5], then α setκ is
isomorphic to α cset.

It is easy to define the map and set function for α setκ using the Lifting
tool [15]:

lift-definition mapset :: (α⇒ β) ⇒ α setκ ⇒ β setκ is image
lift-definition setset :: α setκ ⇒ α set is id

The map function only acts on the element type α, which implies that κ will
be a dead type variable of the following BNF structure. The bound for the set
size in the above typedef command serves as bound for the BNF, too.

bnf α setκ map: mapset set: setset bd: |UNIV :: κ set| +c ℵ0

To finish the registration of α setκ as a BNF, the bnf command requires the user
to discharge the following proof obligations. (The proofs of these properties are
straightforward generalizations of the ones for α fset.)

The first five being easy to discharge, the last proof obligation requires some
explanation: 	 denotes implication lifted to binary predicates and denotes the
relational composition of binary predicates. With this definition the last proof
obligation is equivalent to what in categorical jargon is called weak pullback
preservation. We can show that bounded sets preserve weak pullbacks iff the
bound on the number of elements is infinite or ≤ 2. In our case, the bound is
infinite due to the addition of ℵ0, therefore α setκ is a BNF. This corrects an
earlier claim that α setκ is a BNF for all κ [22].

Similarly to α setκ, we define (and prove being a BNF) the type α setκ1 of
nonempty strictly κ-bounded sets which will be used to model Markov decision
processes.

typedef α setκ1 = {A :: α set | A �= ∅ ∧ |A| <o |UNIV :: κ set| +c ℵ0}

A Formalized Hierarchy of Probabilistic System Types 207

4 Probability Mass Functions

We introduce a type of probability mass functions (pmf) on a type α, representing
distributions of discrete random variables on α. There are two views on a pmf:
(1) as a non-negative real-valued function which sums up to 1, and (2) as a
discrete probability measure which has a countable set S which has probability
1. Both views are available in our formalization. In this paper, however, we only
present the measure view, as we lift all presented definitions from the existing
formalization of measure theory [13].

A measure M :: α measure consists of aσ-algebra of measurable sets sets M and
a measure function μ M that is non-negative and countably-additive on sets M.
A probability distribution M assigns 1 to the whole space (μ M UNIV = 1). It is
discrete iff every set is measurable (sets M = UNIV) and there exists a countable
set S with μ M S = 1.

typedef α pmf = {M :: α measure |
μ M UNIV = 1 ∧ sets M = UNIV ∧ (∃S . countable S ∧ μ M S = 1)}

The command typedef generates a representation functionmeasurepmf :: α pmf⇒
α measure . By declaring it as a coercion function, we can omit it in most cases.
In particular, we write μ p A for μ (measurepmf p) A. So, the probability mass of
a value x is the measure of its singleton set {x}. We lift the support set from the
measure definition:

lift-definition setpmf :: α pmf ⇒ α set is λM. {x | μ M {x} �= 0}
Next, we lift the monadic operators bindpmf and returnpmf from the Giry monad

on measure spaces [8] to pmfs. The map function mappmf is then defined in a stan-
dard way as a combination of these monadic operators.

lift-definition bindpmf :: α pmf ⇒ (α⇒ β pmf) ⇒ β pmf is bind

lift-definition returnpmf :: α⇒ α pmf is return (count-space UNIV)
definition mappmf :: (α⇒ β) ⇒ α pmf ⇒ β pmf where

mappmf f M = bindpmf M (λx. returnpmf (f x))

When working with general measure spaces, all functions must be shown to be
measurable. In our restricted discrete setting all function are trivially measurable,
hence characteristic theorems about bindpmf and returnpmf carry no measurability
assumptions:

bindpmf (bindpmf M f) g = bindpmf M (λx. bindpmf (f x) g)
bindpmf (returnpmf x) f = f x
bindpmf M returnpmf = M

The behavior of bindpmf and returnpmf under setpmf is as expected:

setpmf (bindpmf M f) =
⋃

x∈setpmf M setpmf (f x)
setpmf (returnpmf x) = {x}
(∀x ∈ setpmf M. f x = g x) −→ bindpmf M f = bindpmf M g

208 J. Hölzl et al.

Another standard construction in probability theory is the conditional prob-
ability Pr(X ∈ A | X ∈ B) = Pr(X ∈ A ∧ X ∈ B)/Pr(X ∈ B), i.e. the probabil-
ity that the random variable X has a result in A under the assumption that X is
in B. This requires that X being in B has positive probability. In Isabelle’s mea-
sure theory, the function uniform-measure expresses a conditional probability. It
returns a probability space when the measure of the set B is positive. Clearly, lift-
ing uniform-measure to pmfs works only if we restrict B to such sets. Therefore, we
fix a pmf p and a set B with the assumption setpmf p ∩ B �= ∅, which is equivalent
to μ p B �= 0.

lift-definition condpmf :: α pmf is uniform-measure (measurepmf p) B

Whenever setpmf p ∩ B �= ∅ holds we will from now on write condpmf p B.
We then have μ (condpmf p B) A = μ p (A ∩ B) / μ p B and hence setpmf(condpmf p B) =

setpmf p ∩ B.

Probability Mass Functions as a BNF. We now prove that α pmf is a BNF such that
the codatatypes for the probabilistic systems can recurse through α pmf. To that
end, we define the relator relpmf on pmfs and prove that setpmf, mappmf, and relpmf

satisfy the BNF properties. The definition of relpmf R p q is canonical as in (1). The
existentially quantified z corresponds to a matrix of non-negative reals with a row
and a column for each element in the support of p and q, respectively, such that (i)
summing over a row i or a column j yields the mass of p or q concentrated in i or j,
and (ii) positive entries are only at cells (i, j) for which R i j holds. We call such a
matrix an R-lifting matrix for p and q.

With the lemmas about bindpmf, returnpmf, setpmf and the definition of mappmf

we immediately derive the functorial BNF properties for pmfs with the cardi-
nal bound ℵ0. Only distributivity with composition has interesting proof, i.e.,

. That is, given an R-lifting matrix z1 for pmfs
p and q and an S -lifting matrix z2 for q and r, we have to construct an -
lifting matrix z for p and r. In the course of this work, we have formalized a series
of three different constructions for z, each of which made the previous proof sim-
pler and more concise. The steps are recorded in the changesets (mentioned below)
of the Isabelle repository at http://isabelle.in.tum.de/repos/isabelle. This process
illustrates how pmfs provide abstraction and lead to shorter proofs.

Initially, we followed Sokolova’s construction [21]. She defines the matrix z as
the sum of matrices z j over j ∈ setpmf q where each z j is a T j-lifting matrix for the
jth column of z1 and the jth row of z2 (we ignore that the rows and columns do
not sum to 1) where T j i k = R i j ∧ S j k. An iterative algorithm constructs the
matrix z j by walking on a path from the upper left corner to the lower right and
setting each entry to the maximum such that neither the row sum nor the column
sum is exceeded. If the row sum is matched after setting the entry, the path con-
tinues down, if the column sum is matched, it goes to the left, if both are matched,
it goes diagonally to the right and down. Her proof that z is an -lifting
matrix for p and r requires five pages on paper [21, Lemmas 3.5.5, 3.5.6]. Our HOL
formalization of a recursive version of the algorithm and the proof of the distribu-
tivity property is arduous and takes 577 lines (4999a616336c). By switching from

http://isabelle.in.tum.de/repos/isabelle
http://isabelle.in.tum.de/repos/isabelle/diff/4999a616336c/src/HOL/Probability/Probability_Mass_Function.thy

A Formalized Hierarchy of Probabilistic System Types 209

real-valued functions to pmfs and using mappmf in the construction of z from the
z j, we were able to shorten the proof to 406 lines (43e07797269b). Still, most of
the proof script dealt with showing the equality of different summations.

Next, we realized that taking a path through the matrix and setting the entries
to maximum values was needlessly convoluted. Instead, we fill the ith row of z j by
distributing z1’s value at (i, j) over the columns according to the jth row of z2. This
eliminates all the inductions and several bijections between the support sets and
natural numbers, which were needed for the recursion. This is the proof by Jonsson
et al. [16] formalized in 101 lines (922d31f5c3f5, 922d31f5c3f5). Zanella [26] has
previously formalized this proof for CertiCrypt using Audebaud’s and Mohring’s
library [1]. His proof script needs 337 lines of Coq.

Finally, we noted that the distribution over the columns and the summation
over the z j yields a conditional probability. So, we now define z simply as

z = bindpmf z1 (λ(i, j). bindpmf (condpmf z2 {(j′, k) | j′ = j}) (λ(, k). returnpmf(i, k)))

Thus, only one conjunct is shown with summations, namely of mappmf π1 z = p.
The others are discharged by reasoningwith the laws about setpmf, bindpmf, condpmf,
and returnpmf. The following law is particularly useful. It generalizes the law of total
probability, which states Pr(A) =

∑
n Pr(A | Bn) · Pr(Bn) for a countably indexed

partition B. Note that bindpmf expresses the sum and R relates the events of a and b.

relset R (setpmf a) (setpmf b)
∀x ∈ setpmf a. ∀y ∈ setpmf b. R x y −→ μ a {x | R x y} = μ b {y | R x y}

bindpmf b (λy. condpmf a {x | R x y}) = a
(2)

Here, the set relator relset R A B denotes (∀a∈A.∃b∈ B. R a b) ∧ (∀b∈ B.
∃a∈A. R a b). (Using the same notation for bounded and unbounded sets,
this characterization also holds for the relator of bounded sets.) We use this
law to show mappmf π2 z = r. Observe that mappmf π2 z = mappmf π2 (bindpmf

q (λy. condpmf z2 {(y′, z) | y′ = y})). Applying the law to the right-hand side yields
mappmf π2 z2, which equals r by assumption.

In the end, our proof is just 46 lines, which includes 18 lines for the proof of Eq. 2
(224741ede5ae). This confirms in our eyes that our pmf library is well designed.
Also, we argue that the proof has gained in clarity from the reduction in size. We
eliminated most of the technical transformations of sums and express them more
abstractly.

5 Probabilistic Systems

Probabilistic Systems as Probabilistic Automata. First, we review the approach
of modeling probabilistic systems as probabilistic automata. These automata fall
into different classes depending on whether they make use of probabilistic and non-
deterministic choice,where labels are placed, andwhether transitions generate out-
put for the environment or receive input from it.

Labeled Markov chains are a very simple class of probabilistic automata. Here
each state has a label and specifies a probability distribution over the successor

http://isabelle.in.tum.de/repos/isabelle/diff/43e07797269b/src/HOL/Probability/Probability_Mass_Function.thy
http://isabelle.in.tum.de/repos/isabelle/diff/922d31f5c3f5/src/HOL/Probability/Probability_Mass_Function.thy
http://isabelle.in.tum.de/repos/isabelle/diff/922d31f5c3f5/src/HOL/Probability/Probability_Mass_Function.thy
http://isabelle.in.tum.de/repos/isabelle/diff/224741ede5ae/src/HOL/Probability/Probability_Mass_Function.thy

210 J. Hölzl et al.

Fig. 1. Two labeled Markov chains (the dotted lines represent a bisimulation relation)

Fig. 2. Three probabilistic automata with non-deterministic and probabilistic choice

states. Figure 1 shows two labeled Markov chains. In our figures, � or � denote
labels and numbers between 0 and 1 denote probabilities. The Markov chain on
the right stores in the state only whether the system has reached the label �. In
contrast, the one on the left additionally records in its states how many steps have
been taken to reach �.

When modeling systems with probabilistic automata, we usually care only
about the labels, not the states. In that respect, both Markov chains produce the
same observations with the same probabilities. Thus, it is sensible to consider the
two chains as being equivalent. Bisimulation captures this equivalence by identify-
ing states which cannot be distinguished by observing the labels in any behavior
originating from these states. For labeled Markov chains, a bisimulation relation is
an equivalence relation R on the states such that whenever s and t are related by R,
then their labels are the same and for all equivalence classesC of R, the probabilities
of going to C from s and t are the same. In Fig. 1, the dotted lines show a bisimu-
lation relation between the two chains. We say that labeled Markov chains on the
same state space are bisimilar if the initial states are related in some bisimulation
relation.

Combining non-deterministic and probabilistic choice, we get more compli-
cated models. Figure 2 shows three examples. In a Markov decision process, each
state has a label, but it may choose non-deterministically a distribution of the suc-
cessor states. Graphically, the transition edges split after having taken the non-
deterministic choice. In a simple Segala system, the label is attached to the
non-deterministic transitions rather than the states. So, the transition generates
the label instead of the state. And in a Segala system, the label is attached to the

A Formalized Hierarchy of Probabilistic System Types 211

probabilistic choice rather than the non-deterministic one. For these more compli-
cated systems, the definition of bisimulation is analogous to Markov chains, but
more involved.

Coalgebraic View on Probabilistic Systems. Next, we switch perspective and out-
line the coalgebraic approach to modeling probabilistic systems [2,21,24]. We rec-
ollect the basic coalgebraic vocabulary (an in-depth introduction can be found else-
where [20]) and show how these notions are reflected in Isabelle/HOL.

Given a functor F, an F-coalgebra is defined as a pair (A, s) with the carrier set
A and the structural mapping s : A → F A. In our typed environment of HOL, we
restrict our attention to bounded natural functors and require the carrier set of a
coalgebra tobe theuniverse of a certain typeσ.Therefore, for us a coalgebra is just a
function s :: σ⇒ σ F for a BNFσ F. Intuitively, a coalgebra s :: σ⇒ σ F describes
a transition systemwhose states are inσ and each state x :: σ evolves into s x :: σ F.
For example, ifσ F = σ pmf, then s x :: σ pmf is a discrete probability distribution
over the next states and s taken as a whole denotes an unlabeled Markov chain.

Bisimilarity can be defined uniformly on coalgebras [12]: states x and y of
two systems s1 and s2 are F-bisimilar (written x s1∼s2

F y) iff there exists a rela-
tion R :: α⇒ β⇒ bool (called bisimulation) that relates x and y and for all
related pairs of states x and y their evolutions s1 x and s2 y are related by
relF R :: α F ⇒ β F ⇒ bool. Formally:

x s1∼s2
F y = ∃R. R x y ∧ (∀x y. R x y −→ relF R (s1 x) (s2 y))

It turns out that this generic notion coincides with the known concrete bisim-
ilarity notions for all systems F that we consider [2,21]. We should note that
for σ F = σ pmf all states of all systems are bisimilar: ∀s1 s2 x y. x s1∼s2

pmf y—the
bisimulation relation witness is R = λx y. True. This fact corresponds to the intu-
ition that bisimilarity can only distinguish states through observations along their
evolutions, while an unlabeled Markov chain does not produce anything observ-
able. For labeledMarkov chains and other systems bisimilarity is amore interesting
concept.

The last important notion is that of afinal F-coalgebra: anF-coalgebra forwhich
there exists a unique morphism from any other coalgebra. In our context, the final
coalgebra for a BNF F is the destructor DtrF :: CF ⇒ CF F of the codatatype CF

induced by F (states of the final coalgebra are of type CF) and the finality is wit-
nessed by the coiterator unfoldF mapping a coalgebra s :: σ⇒ σ F to the (unique)
function unfoldF s :: σ⇒ CF satisfying the characteristic equation of a coalgebra
morphism: DtrF ◦ unfoldF s = mapF (unfoldF s) ◦ s. The similarity of the coinduc-
tion rule for CF to the definition of bisimilarity is not a coincidence: codatatypes
are quotients modulo bisimilarity.

Modeled Systems. Table 1 lists the systems we consider and their BNFs. (The sta-
ndard type datatype α option = None | Some α is another BNF.) This list con-
tains all the systems from the original probabilistic hierarchy [21], except for
Vardi systems, which must be treated separately (Sect. 6.4). Moreover, popular
systems—labeled Markov chains and Markov decision processes—are new

212 J. Hölzl et al.

Table 1. List of formalized probabilistic systems

Name BNF Induced codatatype

Markov chain σ pmf MC

Labeled Markov chain α× σ pmf α LMC

Labeled Markov decision process α× σ pmf setκ1 α LMDPκ

Deterministic automaton α⇒ σ option α DLTS

Non-deterministic automatona (α× σ) setκ α LTSκ

Reactive system α⇒ σ pmf option α React

Generative system (α× σ) pmf option α Gen

Stratified system σ pmf + (α× σ) option α Str

Alternating system σ pmf + (α× σ) setκ α Altκ

Simple Segala system (α× σ pmf) setκ α SSegκ

Segala system (α× σ) pmf setκ α Segκ

Bundle system (α× σ) setκ pmf α Bunκ

Pnueli-Zuck system (α× σ) setκ1 pmf setκ2 α PZκ1 , κ2

Most general system (α× σ+ σ) setκ1 pmf setκ2 αMGκ1 , κ2
a The type (α× σ) setκ is isomorphic to the more standard α⇒ σ setκ for α set ≤ κ

additions. The third column assigns a name to the induced codatatype (e.g., for
labeled Markov decision processes, we write codatatype α LMDPκ = CtrLMDP

(α× α LMDPκ pmf setκ1) in Isabelle).

6 The FormalizedHierarchy

Howcanone compare the expressiveness of thedifferentprobabilistic systemtypes?
A natural criterion [21] is to exhibit a mapping between the types of systems that
preserves and reflects bisimilarity as a witness for an increase in expressiveness
along the mapping. Figure 3 shows our formalized hierarchy where arrows repre-
sent such mappings. New systems, not analyzed by Sokolova [21], are highlighted
with a gray background. Some arrows are annotated with necessary conditions on
the bounds of the involved bounded set types. We refer to our formalization [14] for
the definitions of all mappings.

Below, we first sketch our proof of the preservation and reflection of bisimilar-
ity abstractly for any mapping. Then we present our formal Isabelle proof for one
particular pair of system types and compare our formalized hierarchywith the orig-
inal [21].

6.1 The Abstract Proof

Formally, for two types of systems given as BNFs F and G, we consider G to be at
least as expressive as F, if there is a mapping G of F :: σ F ⇒ σ G that preserves
and reflects bisimilarity, i.e., satisfies

x s1∼s2
F y ←→ x (G of F◦s1)∼(G of F◦s2)

G y (3)

A Formalized Hierarchy of Probabilistic System Types 213

Fig. 3. Probabilistic hierarchy

for all F-coalgebras s1, s2 :: σ⇒ σ F and states x, y :: σ. Note that by composing
the F-coalgebras with G of F we obtain G-coalgebras: G of F ◦ s1, G of F ◦ s2 ::
σ⇒ σ G.

For any mappingG of F :: σ F ⇒ σ G, we prove Eq. 3 in four steps starting from
the right-hand side:

x (G of F◦s1)∼(G of F◦s2)
G y

1←→ unfoldG (G of F ◦ s1) x = unfoldG (G of F ◦ s2) y
2←→ G of F (unfoldF s1 x) = G of F (unfoldF s2 y)
3←→ unfoldF s1 x = unfoldF s2 y
1←→ x s1∼s2

F y

whereG of F :: CF ⇒ CG abbreviates unfoldG (G of F ◦ DtrF). The first and the last
step (labeled with a 1) are both instances of the general fact that for any BNF
F, bisimilarity is equivalent to equality on the induced codatatype CF. Formally,
x s1∼s2

F y ←→ unfoldF s1 x = unfoldF s2 y.
In step 2 we perform equational reasoning. The diagram in Fig. 4 illustrates the

situation. Essentially it shows three commutative diagrams for the characteristic
property of the coiterators unfoldF and unfoldG: one for the F-coalgebra s in the
lower left rectangle; one for the G-coalgebra G of F ◦ s using the outermost arrows;
and one for the G-coalgebra G of F ◦ DtrF in the upper rectangle.

To make the overall diagram commute, the mapping G of F has to be a natural
transformation, i.e., commute with the map functions for F and G (lower right
rectangle). Once this is ensured we can deduce unfoldG (G of F ◦ s) = G of F◦
unfoldF s (leftmost “triangle”) and use this equation as a rewrite rule.

Step 3 holds universally iff G of F is injective (note that unfoldF is surjective,
since, e.g., unfoldF DtrF = id). In principle, injectivity of G of F can be further

214 J. Hölzl et al.

Fig. 4. Bisimilarity preservation and reflection via codatatypes

reduced to injectivity of G of F, which yields the nice abstract characterization
from the original hierarchy [2,21]: if G of F is an injective natural transformation
then it preserves and reflects bisimilarity. Instead of formalizing the reduction of
injectivity of G of F to the injectivity of G of F (which must be done for all con-
crete instances of G of F), we found it easier to prove the injectivity of G of F
directly by coinduction. Likewise, instead of chasing the above commutative dia-
gram, we also prove directly the equation unfoldG (G of F ◦ s) = G of F ◦ unfoldF s
by coinduction.

6.2 A Concrete Example

We consider a particular instantiation for the BNFs F andG: simple Segala systems
(F = (α× σ pmf) setκ) and Segala systems (G = (α× σ) pmf setκ) and define the
mapping G of F sseg = mapset (λ(a, p). mappmf (λs. (a, s)) p) sseg .

Next,we formally prove the properties ofG of F outlined in the previous section
by straightforward coinductions. We start with the detailed manual proof of the
commutation property (leftmost “triangle” in Fig. 4).

The proof shown in Fig. 5 gives a flavor of the proof obligations that
arise with coinduction. The coinduction method instantiates the free vari-
able R from the coinduction rule for α Segκ with the canonical bisimulation
witness λseg seg ′. ∃x. seg = unfoldG (G of F ◦ s) x ∧ seg ′ = (G of F ◦ unfoldF s) x
and performs some minimal postprocessing [4]. We are left to prove that
DtrG (unfoldG (G of F ◦ s) x) and DtrG (unfoldG (G of F ◦ s) x) are related by the
bisimulation witness lifted to the α Segκ-inducing BNF via its relator. This sub-
goal is easy to discharge by unfolding and resolution. All the used theorems with
a dot in their name are generated by the primrec and bnf commands. The theo-
rem unfoldF.simps is the characteristic property of the coiterator; theorems rel-map
(two theorems) and rel-refl follow from the BNF properties and are given below for
α pmf:

relpmf R (mappmf f p) q = relpmf (λx y. R (f x) y) p q
(∀x. R x x) −→ relpmf R p prelpmf R p (mappmf g q) = relpmf (λx y. R x (g y)) p q

The proof can be automated by registering the appropriate rules as simplification
and introduction rules. Furthermore, it can be seen as a proof template: we have

A Formalized Hierarchy of Probabilistic System Types 215

Fig. 5. Isar proof of the commutation property from simple Segala to Segala systems

to perform the same reasoning for all concrete mappings that we consider and the
only part that is changing is the relator. Fortunately, the Eisbach proof method
language [19] helps us to avoid repeating the proof by creating a dedicated proof
method, where we replace the manual unfolding and rule steps by fastforce. The
proof then collapses to a one-liner.

method-definition commute-prover =
rule ext,
match conclusion in u1 s1 x = (f ◦ u2 s2) x for f u1 u2 s1 s2 x ⇒

(coinduction arbitrary: x, fastforce)
lemma unfoldG (G of F ◦ s) = G of F ◦ unfoldF s by commute-prover

We treat the injectivity of G of F and the fact that bisimilarity coincides with
equality on codatatypes for F and G in a similar fashion. As before, we omit some
essential simplification and introduction rules given as arguments to fastforce that
make the following degree of automation possible.

method-definition inj-prover =
rule injI,
matchconclusion in x = y for x y⇒ (coinduction arbitrary: x y, fastforce)

lemma inj G of F by inj-prover

method-definition ∼-alt-prover =
intro iffI, elim exE conjE,
match conclusion in u1 s1 x = u2 s2 y for u1 u2 s1 s2 x y ⇒

(coinduction arbitrary: x y, fastforce), fastforce
lemma x s1∼s2

F y ←→ unfoldF s1 x = unfoldF s2 y by ∼-alt-prover
lemma x s1∼s2

G y ←→ unfoldG s1 x = unfoldG s2 y by ∼-alt-prover

Overall, for each of the 14 considered probabilistic system types we prove the
alternative bisimilarity characterization by ∼-alt-prover and for each of the 22

216 J. Hölzl et al.

mappings (there are 25 arrows in Fig. 3, but e.g., the mapping from α option SSegκ

to α option Segκ is the same as the one from α SSegκ to α Segκ) we prove two state-
ments by a one-liner with one of our dedicated methods: commute-prover and
inj-prover. Finally, we state the 25 bisimilarity preservation and reflection prop-
erties (Eq. 3) and prove all of them by equational reasoning (i.e., one line of unfold-
ing). The whole hierarchy is formalized in 450 lines (including the codatatype
declarations).

6.3 Comparison to the Original Hierarchy

Our formalized hierarchy differs structurally from the original hierarchy [21] in
three aspects. First, ours omits the Vardi systems (also known as concurrent
Markov chains) for reasons we outline in a separate section (Sect. 6.4). Con-
versely, we have added two popular types of systems, namely labeled Markov
chains andMarkovdecision processes. Furthermore,we observe that theMostGen-
eral systems αMGκ1, κ2 , specifically introduced in the original hierarchy in order
to have a top element, are isomorphic to Pnuelli-Zuck systems extended with a
single additional label (which we model by using α option instead of just α, i.e.,
α option PZκ1, κ2). In other words, no new structurally different probabilistic sys-
tem is needed to get a top element if one allows additional labels. Following up on
this idea, we investigated adding new labels to various other systems in the hierar-
chy. As a result, Alternating systems α Altκ are placed below label-extended simple
Segala systems α option SSegκ and Bundle systems α option Bunκ, instead of just
below the top element αMGκ1, κ2 as in the original hierarchy.

Our usage of codatatypes (final coalgebras) caters for highly automatable
proofs. However, the resulting conciseness comes at a price: final coalgebras need
to exist. Concretely, this means that all our systems must be BNFs, in particular
bounded and weak pullback preserving. In contrast, the original hierarchy does not
require a boundedness assumption (basically allowing to useα set instead of α setκ)
and requires for each mapping only the system functor of the mapping’s domain to
preserveweakpullbacks.Whileweacknowledge the latter as a limitationof our app-
roach, we point out that the boundedness assumption is not a restriction in the set-
ting of the hierarchy, since the mappings are polymorphic in the type κ used as the
bound. That is, for any concrete system with unbounded non-determinism (α set)
expressible in HOL we can find an isomorphic bounded one, and the mapping will
showhowto transformthisbounded system intoone that is higher in thehierarchy.1

In contrast, the bounds being part of the types is in some sense more precise—for
example, we see that there are two ways of embedding α Altκ in αMGκ1, κ2 transi-
tively viaα option SSegκ orα option Bunκ and the cardinal bounds give a hint which
route was taken.
1 Clearly, this discussion is somewhat esoteric, since in practice one barely is interested

to look beyond countable sets. Still, we are interested in keeping the results as general
as possible.

A Formalized Hierarchy of Probabilistic System Types 217

6.4 Vardi Systems

Vardi systems, also known as concurrent Markov chains [23], blend non-
deterministic and probabilistic transitions in a rather symmetric fashion. They are
similar to coalgebras of the binary BNF (α, σ) Varκ0 = (α× σ) pmf + (α× σ) setκ;
however there is a twist: Vardi systems identify the singleton bounded set {(a, s)}
with the singleton discrete distribution returnpmf (a, s). Formally, we define the
equivalence relation � inductively by the following three rules, where Inl and Inr
are the sum type embeddings.

v � v Inl (returnpmf (a, s)) � Inr {(a, s)} Inr {(a, s)} � Inl (returnpmf (a, s))

The type (α, σ) Varκ is then defined as a quotient of (α, σ) Varκ0 by �. Lifting
the functorial structure of (α, σ) Varκ0 to the quotient (α, σ) Varκ is straightfor-
ward and we omit the definitions. However, it turns out that the resulting quo-
tient is not a BNF: its canonical relator relVar does not distribute over relation
composition. We only try to convey the intuition behind this fact—a formal proof
can be found in our formalization. Figure 6 shows on the left two Vardi automata
that use only non-deterministic transitions and are related by relset R (lifted to
the sum type (α, σ) Varκ0 and further to the quotient type (α, σ) Varκ) where
R x y ←→ y = �. Similarly, the two automata on the right are related by relpmf S
where S x y ←→ x = �. The two middle automata are related by �, i.e., they are
equal on the quotient type (α, σ) Varκ. Distributivity of the relator requires the two
outermost automata to be related by relVar, but this is not the case.

Fig. 6. Intransitivity of Vardi systems

Since (α, σ) Varκ is not a BNF, our proof approach is not applicable. Not only
that, the above counterexample, found in the course of formalization, is easily
transferable into the general coalgebraic setting, allowing us to prove that the func-
torused in theoriginal hierarchy [21] doesnotpreserveweakpullbacks, andasa con-
sequencebisimilarity ofVardi systems is not an equivalence relation.Theweakpull-
backpreservation, however, is anecessary criterion for the original proofmethod for
two mappings from Vardi to Segala and Bundle systems. Those outgoing “arrows”
must be purged: there is no such bisimilarity preserving and reflecting mapping.

In contrast to our approach, the original proof still covers the two incoming
“arrows” from non-deterministic automata and generative systems to Vardi sys-
tems. We have formalized those bisimilarity preserving and reflecting mappings
separately, without going through codatatypes. The proofs are significantly longer

218 J. Hölzl et al.

(overall 145 lines for just two mappings, contrasting 450 lines for 25 mappings in
our hierarchy) and less suited for automation, because they require several non-
trivial quantifier instantiations. In summary, equational reasoning on codatatypes
proved superior whenever applicable.

7 Further RelatedWork

In the other sections of the paper, we have already referenced existing work
we build on, in particular Sokolova’s [2,21] and the Isabelle packages and tools
[4–6,13,15,19].

Our formalization of pmfs is similar to the work in Coq presented by Aude-
baud and Paulin-Mohring [1]. They introduce a monadic structure on subprob-
ability measures. They use integrals as representations of measures, while in our
case we directly lift measures from Isabelle’s measure theory. As their measures
are subprobabilities they also provide a fixed-point operator which is not available
in general for α pmf. Their formalization is also directed towards program verifica-
tion; they do not provide a functorial structure (i.e. mappmf and setpmf in our case)
on their type of measures.

Apart from process algebra [16], the relator relpmf is used in probabilistic rela-
tional Hoare logic, too [3]. In this context, Zanella [26] proved distributivity with
composition in Coq; see Sect. 4 for a comparison. Deng [7] collects further results
on the relator and its applications. Beyond (strong) bisimilarity, weak bisimilarity
compares systems modulo certain irrelevant invisible observations. Sokolova [21]
recasts weak bisimilarity as bisimilarity of translated systems, which in turn can
be hierarchized as presented here.

Mechanizations of category theory abound (see [9] for an overview), and the
hierarchy result could probably be formalized with some of them. Yet, we do not
formalize the general theory, but its application to concrete instances. Thus, our
system types are proper HOL types and can be used directly for modeling concrete
systems.

8 Conclusion

We have presented a formalization of the hierarchy of probabilistic system types
in Isabelle/HOL. The hierarchy stems from the coalgebraic framework, which
presents the various systems in a uniform fashion and caters for simple and concise
proofs. We model probabilistic systems as codatatypes, which enables conve-
nient equational reasoning and makes the proofs even more concise. This mod-
eling requires nested corecursion through bounded sets and discrete probability
distributions—a perfect match for demonstrating the flexibility of Isabelle’s new
codatatype facility. Finally, we have learned that weak pullback preservation is an
important but subtle property, by uncovering two mistakes in informal proofs.

Acknowledgment. WethankTobiasNipkow for supporting this collaboration andAna
Sokolova for confirming our findings regarding Vardi systems. Jasmin Blanchette, Ondřej

A Formalized Hierarchy of Probabilistic System Types 219

Kunčar, and anonymous reviewers helped to improve the presentation through numerous
comments and offered stylistic advice. Hölzl is supported by the DFG project Verification
of Probabilistic Models in Interactive Theorem Provers (grant Ni 491/15-1). Traytel is
supported by the DFG program Program and Model Analysis (doctorate program 1480).
The authors are listed alphabetically.

References

1. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009)

2. Bartels, F., Sokolova, A., de Vink, E.P.: A hierarchy of probabilistic system types.
Theor. Comput. Sci. 327(1–2), 3–22 (2004)

3. Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella Béguelin, S.:
Probabilistic relational verification for cryptographic implementations. In: Jagan-
nathan, S., Sewell, P. (eds.) POPL 2014, pp. 193–205. ACM, New York (2014)

4. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly
modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014.
LNCS, vol. 8558, pp. 93–110. Springer, Heidelberg (2014)

5. Blanchette, J.C., Popescu, A., Traytel, D.: Cardinals in Isabelle/HOL. In: Klein, G.,
Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 111–127. Springer, Heidelberg
(2014)

6. Blanchette, J.C., Popescu, A., Traytel, D.: Witnessing (Co)datatypes. In: Vitek, J.
(ed.) ESOP 2015. LNCS, vol. 9032, pp. 359–382. Springer, Heidelberg (2015)

7. Deng, Y.: Semantics of Probabilistic Processes. Springer, Heidelberg (2014)
8. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density functions.

In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer, Heidelberg
(2015)

9. Gross, J., Chlipala, A., Spivak, D.I.: Experience implementing a performant
category-theory library in Coq. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS,
vol. 8558, pp. 275–291. Springer, Heidelberg (2014)

10. Gunter, E.L.: Why we can’t have SML-style datatype declarations in HOL. In:
TPHOLs 1992. IFIP Transactions, vol. A-20, pp. 561–568. North-Holland/Elsevier
(1993)

11. Harrison, J.V.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

12. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational set-
ting. Inf. Comput. 145(2), 107–152 (1998)

13. Hölzl, J.: Construction and Stochastic Applications of Measure Spaces in Higher-
Order Logic. Ph.D. thesis, Institut für Informatik, Technische Universität München
(2013)

14. Hölzl, J., Lochbihler, A., Traytel, D.: A zoo of probabilistic systems. In: Klein, G.,
Nipkow, T., Paulson, L. (eds.) Archive of Formal Proofs (2015). http://afp.sf.net/
entries/Probabilistic System Zoo.shtml

15. Huffman, B., Kunčar, O.: Lifting and Transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Heidelberg (2013)

16. Jonsson, B., Larsen, K.G., Yi, W.: Probabilistic extensions of process algebras. In:
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebras Chap.
11, pp. 685–710. Elsevier, Amsterdam (2001)

http://afp.sf.net/entries/Probabilistic_System_Zoo.shtml
http://afp.sf.net/entries/Probabilistic_System_Zoo.shtml

220 J. Hölzl et al.

17. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comp. 94(1),
1–28 (1991)

18. Lochbihler, A.: Measure definition on streams, 24 February 2015. Archived at
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-February/msg00112.
html

19. Matichuk, D., Wenzel, M., Murray, T.: An Isabelle proof method language. In: Klein,
G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 390–405. Springer, Heidelberg
(2014)

20. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249, 3–80 (2000)

21. Sokolova,A.:CoalgebraicAnalysis of Probabilistic Systems.Ph.D. thesis, Technische
Universiteit Eindhoven (2005)

22. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic–Category theory applied to theorem prov-
ing. In: LICS 2012, pp. 596–605. IEEE (2012)

23. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS 1985, pp. 327–338. IEEE (1985)

24. de Vink, E.P., Rutten, J.J.: Bisimulation for probabilistic transition systems: a coal-
gebraic approach. Theor. Comput. Sci. 221(1–2), 271–293 (1999)

25. Weber, T.: Introducing a BNF for sets of bounded cardinality, 14 March
2015. Archived at https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-March/
msg00116.html

26. Zanella Béguelin, S.: Formal Certification of Game-Based Cryptographic Proofs.
Ph.D. thesis, École Nationale Supérieure des Mines de Paris (2010)

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-February/msg00112.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-February/msg00112.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-March/msg00116.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-March/msg00116.html

A Verified Enclosure for the Lorenz Attractor
(Rough Diamond)

Fabian Immler(B)

Institut für Informatik, Technische Universität München, München, Germany
immler@in.tum.de

Abstract. A rigorous numerical algorithm, formally verified with
Isabelle/HOL, is used to compute an accurate enclosure for the Lorenz
attractor.

Accurately enclosing the attractor is highly relevant: a similar non
verified computation is part of Tucker’s proof that the Lorenz attractor
is chaotic in a rigorous mathematical sense. This proof settled a conjec-
ture that Fields medalist Stephen Smale has put on his list of eighteen
important mathematical problems for the twenty-first century.

Keywords: Isabelle/HOL · Ordinary differential equation · Lorenz
attractor · Rigorous numerics

1 Introduction

The Lorenz system of ordinary differential equation (ODEs) has become famous
as a classical example of chaotic dynamics since its introduction as a model
for atmospheric flows by Edward Lorenz in 1963. Numerical experiments sug-
gested chaotic behavior; in dynamical systems parlance, the existence of a strange
attractor. However, the existence of a strange attractor for the Lorenz equations
could not be proved until 1999 – shortly after Fields medalist Stephen Smale put
it on his list of eighteen unsolved mathematical problems for the 21st century.

The proof was accomplished by Warwick Tucker [8], and an interesting aspect
is that his proof relies on the output of a numerical program. His program
computes enclosures for the attractor and analytical properties of solutions on
the attractor.

These programs were written in C++ and not formally verified, Tucker even
discovered (and fixed) some bugs in it [7]. Formally verifying the numerical
results needed for the proof is therefore a worthwhile goal.

The contribution of this work is the computation of an accurate enclosure
for the Lorenz attractor with a formally verified ODE solver. The development
is available in the Archive of Formal Proofs [5].

F.Immler—Supported by the DFG RTG 1480 (PUMA).

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 221–226, 2015.
DOI: 10.1007/978-3-319-22102-1 14

222 F. Immler

2 The Lorenz Attractor

We consider (like Tucker) the classical parameter values, for which the Lorenz
equations in Jordan normal form are approximately given by the right hand side
f(x, y, z) = (11.8x−0.29(x+y)z,−22.8y +0.29(x+y)z,−2.67z +(x+y)(2.2x−
1.3y)). It can be shown that the properties of interest are robust under small
perturbations of the parameters.

A solution ϕ : R → R
3 is any function with derivative ϕ̇(t) = f(ϕ(t)). With

an initial condition ϕ(0) = x0, the solution is unique. We denote with flow the
solution ϕ(x0, t) depending on initial condition x0 at time t.

Numerical simulations suggest the existence of a set A, the Lorenz attractor
(enclosures of which is depicted in Fig. 1) with the following 3 properties, which
make it a strange attractor.

Property 1. Solutions (of the Lorenz system) tend towards A.

The dynamics on A can be described as follows: solutions starting from Σ =
{(x, y, z) | z = 27 ∧ x ∈ [−5.5; 5.5]} flow downwards (towards lower values of z)
and enter either the left or right branch of the attractor in order to circle around
the “holes” around (±6, ·, 27) and return back to Σ. Depending on where they
return, they either stay in the same branch or switch to the other side in the
next revolution. Small initial sets approaching the fixed point (0, 0, 0) exhibit
strong expansion in the x-direction, which causes Property 2.

Property 2. Solutions on A exhibit sensitive dependence on initial conditions.

The expansion is strong enough for Property 3.

Property 3. Small initial sets eventually spread over the whole attractor A.

A standard approach in the analysis of dynamical systems is to provide sufficient
conditions for properties 1,2,3 by studying a so-called Poincaré map R, which
simplifies reasoning about the three-dimensional flow to reasoning about discrete
iterations of the two-dimensional map R. To define R for Tucker’s proof, consider
the return plane Σ as defined before. For any point x ∈ Σ, τ(x) is the first time
when x flows through Σ from above. The Poincaré map R is then defined as
R(x) := ϕ(x, τ(x)). The significance is that the equivalents of properties 1,2,3
for the iterations of the map R and its attractor A ∩ Σ carry over to the flow
ϕ and A. Tucker proved those with a combination of rigorous numerics and
analytical reasoning locally around the origin (0, 0, 0).

Rigorous Numerics. Property 1 can be shown by exhibiting a forward invari-
ant (i.e. R(N) ⊆ N) subset N of the return plane that contains the attractor:
A ∩ Σ ⊆ N ⊆ Σ.

Tucker proves this by computing enclosures for R with rigorous numerics:
a function step(X) computes some set (by safely including e.g. round-off errors
into the result) that is reachable via the flow.

∀x ∈ X. ∃h > 0. ϕ(x, h) ∈ step(X)

A Verified Enclosure for the Lorenz Attractor (Rough Diamond) 223

-10

-5

 0

 5

 10

-15 -10 -5 0 5 10 15

y

x

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

z

 0

 10

 20

 30

 40

 50

-15 -10 -5 0 5 10 15

z

x

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

y

 0

 10

 20

 30

 40

 50

-10 -5 0 5 10

z

y

-15

-10

-5

 0

 5

 10

 15

x

 0

 0.5

 1

 1.5

 2

 2.5

 3

-4 -2 0 2 4

y

x

Fig. 1. Top left, top right, bottom left : projections of enclosures for Lorenz attrac-
tor. Bottom right : forward invariant subset N in black of the return plane Σ with
Tucker’s enclosure in gray; one half is omitted due to the symmetry (x, y, z) ∈ N ←→
(−x, −y, z) ∈ N

Overapproximations to the Poincaré map R can then be obtained by iterating
step(X) until the return plane Σ is reached:

poincare(X) :=
letY = step(X) in if Y ∩ Σ 	= ∅ then step-to-sigma(X) else poincare(Y)

Here step-to-sigma is like step but needs to satisfy step-to-sigma(X) ⊆ Σ. Now
if X ⊆ Σ, then R(X) ⊆ poincare(X). Tucker represents a candidate for the
forward invariant subset as a union of small rectangles N =

⋃
i≤k Ni, for which

computations confirm that poincare(Ni) ⊆ N for all i and therefore R(N) ⊆ N .
Tucker implements step as a function that propagates axis-parallel rectan-

gles by overapproximating the flow with the Euler method. Tucker implements
step-to-sigma by choosing an appropriate interval for the step size and projecting
the result onto the plane.

To quantify the dependence on initial conditions for Property 2, it is a stan-
dard approach to study the derivative DR of R. This can be done by adding
to step, which computes overapproximations to the flow ϕ, overapproximations

224 F. Immler

for the partial derivatives ∂ϕ
∂x , ∂ϕ

∂y , ∂ϕ
∂z , ∂ϕ

∂t of the flow. The overapproxima-
tions on DR can be used to prove that the Ni are expanded in some directions
and contracted in others (via a “forward invariant cone field” for DR). Tucker
can quantify the magnitude of the expansion as sufficiently large to establish
Property 3.

Local Theory Around the Origin. There is, however, one obstruction for
the numerical methods: some solutions tend towards the origin (0, 0, 0), and they
do so in infinite time. Any time discretization algorithm would therefore need
to take smaller and smaller steps but never reach the origin. Therefore, Tucker
derived a coordinate change (in about 25 pages in his article) that makes the flow
approximately linear in a cube with width 0.1 around the origin. Computations
can be interrupted upon reaching that cube. The solution inside the cube can
be propagated via an explicit formula, and the numerical computations can be
continued afterwards.

3 ODEs and Numerical Solutions in Isabelle/HOL

In Isabelle/HOL [6], ordinary differential equations are formalized together with
basic theorems for local existence/uniqueness (the Picard-Lindelöf theorem),
global unique solutions and basic properties of the flow, like continuity with
respect to initial conditions. Differentiability with respect to initial conditions is
still missing and would be needed for reasoning about DR.

We use the formalization in Isabelle/HOL of rigorous numerical algorithms
for ODEs [4]. The method we employ for step is slightly different from Tucker’s
approach: instead of the Euler method, we use the method of Heun, a two-
stage Runge-Kutta method (where the error in one step is cubic in the step
size) with adaptive step size control. Instead of rectangles we use zonotopes
(our algorithm is based on affine arithmetic [1] instead of interval arithmetic).
Numerical computations are carried out with software floating point numbers
m · 2e for (unbounded) integers m, e ∈ Z. Explicit round-off operations restrict
the size of m during the computations.

As detailed in the earlier paper [4], it turns out that reducing the reach-
able sets to two dimensions from time to time is crucial for maintaining pre-
cise enclosures and acceptable performance. For these reductions as well as for
step-to-sigma, it is necessary to compute intersections of reachable zonotopes
with intermediate planes or the return plane Σ, for which we use our formal-
ization [3] of Girard/Le Guernic’s geometric algorithm [2]. Tucker’s algorithm
achieves that implicitly because it propagates rectangles exclusively from plane
to plane.

Tucker’s and our implementation have in common that reachable sets are
split when their size exceeds some given threshold.

The following theorem for partial correctness, proved in Isabelle/HOL assures
that if poincare returns a result, this result is a safe overapproximation for the
flow of the Lorenz equations:

Theorem 4. poincare(X) ⊆ Σ ∧ ∀x ∈ X ∃t > 0. ϕ(x, t) ∈ poincare(X)

A Verified Enclosure for the Lorenz Attractor (Rough Diamond) 225

4 Computing a Verified Enclosure for the Lorenz
Attractor

We only tackle the numerical computations needed for Property 1: we verify a
forward invariant set N for R (and in the process an enclosure for the Lorenz
attractor A, forward invariant under ϕ).

The set N used for our computations is plotted in the bottom right of Fig. 1 in
black. The enclosure that was verified by Tucker is depicted with gray rectangles
and one can see that our computations are at least as accurate. In our case, N
is a collection of 14816 squares Ni with width 2−8.

4.1 Parallelization on Supercomputer

The overall computation is embarassingly parallel, since the computations for
the 14816 initial rectangles Ni are independent. We extracted code for our ver-
ified algorithm poincare to Standard ML (SML) and compiled it with MLTon.
With this setup, integers Z from the formalization are mapped to the arbitrary-
precision integers from The GNU Multiple Precision Arithmetic Library (GMP).

Then we distributed the program for the different input data on 1024 cores
of the computer cluster SuperMUC. With a wall-clock time limit of 7 h, this
amounts to a total computation time of around 7000 h. Tucker’s original com-
putations (more than fifteen years ago) have been distributed on 20 computers
for about 100 h.

During reachability analysis, the program outputs a trace containing infor-
mation like enclosures during propagation, which allowed us to plot enclosures of
the Lorenz attractor (see Fig. 1) generated from the formally verified program.
Since every rectangle Ni returns within N , N is verified as forward invariant
under R.

Note that a small part of the attractor is missing: we interrupt computations
close to the origin (as is necessary in Tucker’s proof as well), but we do not
continue with a symbolic propagation from there. This only affects 16 reachable
sets (which do not expand much anymore after leaving the cube around the
origin) so the impact on overall computation time is negligible.

4.2 Parallelization with Isabelle/ML

If one wants to avoid running independent instances compiled outside of Isabelle,
it is also possible to compile and evaluate the code from within Isabelle.
Then Isabelle trusts the outcome of the computations after reconstructing
Isabelle/HOL terms from the result of the SML program. To exploit the par-
allelization, Isabelle/HOL’s library provides special combinators, for which the
generated code uses parallel combinators of Isabelle/ML (i.e. Par List.map).
Using these combinators, we tested running the initial rectangles Ni for 0 ≤ i ≤
32 on a 8 core machine, which gave a speedup of factor 6.1 compared to serial
execution. Evaluating in Isabelle gives us the following theorem (trusting the
code generation oracle).

Theorem 5. ∀x ∈ ⋃
i≤32 Ni. ∃t > 0. ϕ(x, t) ∈ N

226 F. Immler

5 Conclusion

We took a first step towards a formal verification of the numerical part of Tucker’s
proof. However we do not track the derivative DR, because we have no formal-
ization of differentiability of the flow (and therefore R). It should increase the
computational efforts only by a constant factor (since in every step, one prop-
agates in addition to the flow on a reachable set just the derivative of the flow
on a cone field). Furthermore, we ignore the symbolic propagation at the origin
but this does not impact the overall computational effort too much.

Nevertheless we managed to obtain formally verified results on an important
and computationally intensive part of the proof, which we hope to be able to
extend with reasonable effort towards a propagation of DR.

Acknowledgments. I would like to thank Florian Haftmann for providing the the-
ories for parallelization with Isabelle/HOL and Makarius Wenzel for the underlying
infrastructure for parallel combinators in Isabelle/ML.

References

1. de Figueiredo, L., Stolfi, J.: Affine arithmetic: concepts and applications. Numer.
Algorithms 37(1–4), 147–158 (2004)

2. Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems
reachability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol.
4981, pp. 215–228. Springer, Heidelberg (2008)

3. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection.
In: Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP
2015, pp. 129–136. ACM, New York (2015)

4. Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 37–51. Springer, Heidelberg
(2015). http://dx.doi.org/10.1007/978-3-662-46681-0 3

5. Immler, F., Hölzl, J.: Ordinary differential equations. Archive of Formal Proofs,
August 2015, Formal proof development. http://afp.sf.net/devel-entries/Ordinary
Differential Equations.shtml

6. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

7. Tucker, W.: My thesis: the Lorenz attractor exists. http://www2.math.uu.se/
∼warwick/main/pre thesis.html

8. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput.
Math. 2(1), 53–117 (2002)

http://dx.doi.org/10.1007/978-3-662-46681-0_3
http://afp.sf.net/devel-entries/Ordinary_Differential_Equations.shtml
http://afp.sf.net/devel-entries/Ordinary_Differential_Equations.shtml
http://www2.math.uu.se/~warwick/main/pre_thesis.html
http://www2.math.uu.se/~warwick/main/pre_thesis.html

Learning to Parse on Aligned Corpora
(Rough Diamond)

Cezary Kaliszyk1, Josef Urban2(B), and Jǐŕı Vyskočil3

1 University of Innsbruck, Innsbruck, Austria
cezary.kaliszyk@uibk.ac.at

2 Radboud University Nijmegen, Nijmegen, The Netherlands
Josef.Urban@gmail.com

3 Czech Technical University, Prague, Czech Republic
vyskoj1@fel.cvut.cz

Abstract. One of the first big hurdles that mathematicians encounter
when considering writing formal proofs is the necessity to get acquainted
with the formal terminology and the parsing mechanisms used in the
large ITP libraries. This includes the large number of formal symbols,
the grammar of the formal languages and the advanced mechanisms
instrumenting the proof assistants to correctly understand the formal
expressions in the presence of ubiquitous overloading.

In this work we start to address this problem by developing approx-
imate probabilistic parsing techniques that autonomously train disam-
biguation on large corpora. Unlike in standard natural language process-
ing, we can filter the resulting parse trees by strong ITP and AR semantic
methods such as typechecking and automated theorem proving, and even
let the probabilistic methods self-improve based on such semantic feed-
back. We describe the general motivation and our first experiments, and
build an online system for parsing ambiguous formulas over the Flyspeck
library.

1 Introduction

Is it possible to automatically parse informal mathematical texts into formal ones
and formally verify them? Four out of five ITP (interactive theorem proving)
practitioners say no.1 Even Andrzej Trybulec – an accomplished linguist by one
of his professions and the father of human-like formal mathematical notation,
linguistic typing mechanisms and proof style – used to quote the past work (e.g.,
by Zinn [10]) as discouraging from such efforts. We however believe that it is a
good time to try, and in particular to try to automatically learn how to formalize
(“semanticize”) informal texts, based on the knowledge available in existing large
formal corpora. There are several reasons [6].

C. Kaliszyk—Supported by the Austrian Science Fund (FWF): P26201.
J. Urban—Supported by NWO grant nr. 612.001.208.

1 Approximate results of an opinion poll run by the second author since 2000.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 227–233, 2015.
DOI: 10.1007/978-3-319-22102-1 15

228 C. Kaliszyk et al.

First, statistical machine learning (data-driven algorithm design) has been
responsible for several recent AI breakthroughs, including machine translation
systems like Google Translate that automatically train on large aligned bilingual
corpora. Similar successes are in query answering (IBM Watson) and autonomous
car driving, which are arguably much more semantic domains than just “simple”
natural language alignment. It seems today that as soon as there are sufficiently
large datasets, data-driven algorithms can automatically learn complicated sets
of rules – thus perhaps also the nontrivial mapping of informal to formal – that
would be otherwise hard to program and maintain manually.

Second, recent formalization projects have produced large corpora that can –
perhaps after additional annotation – be used for such experiments with machine
learning of formalization. Further growth of such corpora is only a matter of time,
and assisted formalization might help “bootstrap” this process, making it faster
and faster due to the positive feedback loop from more data becoming available.

Third, statistical machine learning methods have recently really turned out to
be useful in deductive AI domains such as automated reasoning in large theories [1]
(ARLT). This shows that in practice, its inherent undecidability does not make
mathematics into somespecial fieldwhere statistical techniques cannotapply.Quite
the opposite: formal mathematical corpora seem to largely obey similar statistical
laws as other texts produced by humans, and statistical and information-retrieval
algorithms such as TF-IDF, naive Bayes, k-nearest neighbor, and kernel methods,
are indispensable parts of the ARLT methods [4,7].

Finally, we believe that strong ARLT methods are a new useful weapon
in auto-formalization, that can complement the statistical translation methods.
This could result in hybrid understanding/thinking AI methods that self-improve
on large annotated corpora by cycling between (i) statistical prediction of the
text disambiguation based on learning from existing annotations and knowledge,
and (ii) improving such knowledge by confirming or rejecting the predictions by
the semantic ARLT methods. This point is quite unique to the domain of (infor-
mal/formal) mathematics, and a good independent reason for this AI research.

2 Contributions

Below we briefly present the first significant effort in statistical learning of pars-
ing ambiguous formulas over a very large formal mathematical corpus – the
Flyspeck project. The main result of this effort is a large-scale evaluation of
the methods (Sect. 6), and the first version of an online system2 (Sect. 5) that
allows HOL Light and Flyspeck users to write ambiguous bracket-free formulas
using many common ambiguous symbols, skipping disambiguation mechanisms
such as casting functors. Such formulas are probabilistically parsed, using an effi-
ciently implemented parsing system (Sect. 4) trained on the correct parse trees
of all (about 22000) toplevel Flyspeck theorems (Sect. 3). The trained parsing
system produces a required number of most probable parse trees, which are then
further filtered by parsing and type checking in HOL Light, presenting the most
2 http://colo12-c703.uibk.ac.at/hh/parse.html.

http://colo12-c703.uibk.ac.at/hh/parse.html

Learning to Parse on Aligned Corpora (Rough Diamond) 229

probable filtered parses in a disambiguated HOL Light notation. Simultaneously,
these typechecked formulas are given to the HOL(y)Hammer system which then
further marks those that can be automatically proved using the whole Flyspeck
library and thus are much more likely to have the intended meaning.

In some sense we thus implement the first version of “jumping” between
probabilistic and semantic parsing used by informal mathematicians, as fittingly
described by Dijkstra [2]:

The bulk of traditional mathematics is highly informal: formulae are not
manipulated in their own right, they are all the time viewed as denoting
something, as standing for something else. The bulk of traditional math-
ematics is characterized by a constant jumping back and forth between
the formulae and their interpretation and the latter has to carry the bur-
den of justifying the manipulations. The manipulations of the formulae
are not justified by an appeal to explicitly stated rules but by the appeal
to the interpretation in which the manipulations are “obviously” OK.
By and large, the mathematicians form a much more informal lot than
they are aware of.

3 Making Ambiguous Data

While our ultimate goal is to parse the informal LATEX formulas that have been
aligned by Hales with the formal Flyspeck formulas [3,8], our initial research
approach is to explore parsing of increasingly ambiguous versions of the formal
HOL Light and Flyspeck theorems. Making the formal notation more ambiguous
turns out to be relatively easy, allowing us to experiment with different kinds of
ambiguities and their amount. We did the initial development and evaluations on
a subset of 550 Flyspeck trigonometric theorems.3 This subset is interesting and
suitable, because it contains complex and real versions of trigonometric functions
(e.g. csin instead of sin) and frequently uses casting functions such as e.g. Cx
which casts a real number to a complex number.

It could be however argued that this subset is a toy domain which does not
differ much from manually prepared examples, and where manual tweaking of
the algorithms is easy and not particularly useful to interested Flyspeck users.
That is why we have tried to scale the parsing methods to the whole Flyspeck,
making a large number of ambiguous symbols and sentences, hopefully in a way
that makes writing such sentences an interesting experiment for some users. The
transformations (informalizing) consist of:

– Using 72 overloaded instances defined in HOL Light/Flyspeck, like ("+",
"vector add"). The result sentence would use + instead of vector add.

– Getting the (currently 108) infix operators from HOL Light, and printing
them as infix in the informalized sentences. Since + is declared as infix,
vector add u v, would thus result in u + v.

3 Exactly, the theorems containing substrings sin, cos and tan.

230 C. Kaliszyk et al.

– Getting all “prefixed” symbols from the list of 1000 most frequent symbols by
searching for: real , int , vector , nadd , treal , hreal , matrix ,
complex and making them ambiguous by forgetting the prefix.

– Similar overloading of various other symbols that disambiguate overloading,
for example the “c”-versions of functions such as ccos cexp clog csin,
similarly for vsum, rpow, nsum, list sum, etc. In the end the above steps
yield a list of about 70 overloaded symbols corresponding to some 200 nonam-
biguous symbols used very frequently throughout HOL Light and Flyspeck.

– Deleting all brackets, type annotations, and the 10 most frequent casting
functors such as Cx and real of num (which alone is used 17152 times).

4 Probabilistic Parsing and its Extensions

Our task is to assign to each informalized sentence (a list of often ambiguous
symbols) its most probable HOL parse tree, with all terms annotated by types.
For example, the correct parse tree for REAL NEGNEG: ! A0 -- -- A0 = A0 is:

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool")) (Tyapp "bool")))

(Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun" (Tyapp "real") (Tyapp "fun"

(Tyapp "real") (Tyapp "bool")))) (Comb (Const "real neg" ... (Var "A0" (Tyapp "real")))))

For this, after initial tries with the Stanford Statistical Parser,4 we wrote
our custom OCaml implementation of the CYK chart parsing algorithm [9] for
probabilistic context-free grammars (PCFG), and a custom tree transformation
tool that enables us to create ambiguous sentences and annotated training input
(“grammar”) trees for the parser from the HOL parse trees. These grammar trees
treat each (possibly complicated) type as the resulting nonterminal assigned to
parsing each term, and additionally each ambiguous symbol (terminal) such as
‘‘--’’ is wrapped in its disambiguating nonterminal, such as $#real neg. This
is analogous to annotating with word-sense disambiguations for linguistic PCFG
tools, however our “semantic concepts” are not word senses but HOL types and
unambiguous symbols. The tool also applies infix notations and replaces casting
terminals with their corresponding nonterminals. For example the complex cast-
ing terminal Cx disappears, since we do not want the user to write it explicitly,
and is replaced in the grammar tree by the corresponding “semantic” nontermi-
nal $#Cx applied to the corresponding ambiguous subterm.

We produce two versions of the parser, a standard one and a HOL-specialized
one that prunes the parse space by additional fast lightweight semantic restric-
tions, such as compatibility constraints on types of free variables in parsed sub-
trees. Both versions have a training and testing phase. In the training phase all
the grammar trees (we use all 22000 trees for Flyspeck formulas by default, but
this can be further limited) are used to generate grammar rules about the ter-
minals and nonterminals and their probabilities, generating a binarized PCFG.
In the testing (evaluation) phase the PCFG is used to parse a given ambiguous
sentence with a required number of best parses. Efficient indexing is used to
4 http://nlp.stanford.edu/software/lex-parser.shtml.

http://nlp.stanford.edu/software/lex-parser.shtml

Learning to Parse on Aligned Corpora (Rough Diamond) 231

prune the search space, and the parse limit is used to prune improbable parsing
subtrees, making it reasonably fast (on average 4 s for a Flyspeck theorem) to
get the 20 most probable parses. The resulting grammar trees are again trans-
formed back into a HOL parse tree, to which HOL parsing and typechecking
is applied as an additional filter. Since all these three parts (CYK, transforma-
tions, and HOL Light routines) are written in OCaml, their tight integration is
possible, offering further future options such as full HOL-based pruning of unty-
pable subtrees during the CYK parsing, etc. The so far implemented HOL-based
extensions of CYK, include the variable typing constraints, special treatment of
lambda abstractions, and allowing all unknown symbols to have small nonzero
probability of being a variable.

5 Online Parsing System

Since we are very interested in seeing the probabilistic parsing in action, we
deploy the whole parsing toolchain as an online service5 that further uses the
HOL(y)Hammer AI/ATP system [5] for even stronger semantic filtering. The
service allows HOL Light and Flyspeck users to write ambiguous formulas using
many common ambiguous symbols and omitting brackets and casting functors.
For example, the top two parses out of allowed 16 for ‘‘sin 0 * x = cos pi
/ 2’’ are

sin (&0) * A0 = cos (pi / &2) where A0:real
sin (&0) * A0 = cos pi / &2 where A0:real

where only the first one can be automatically proved by HOL(y)Hammer. The
user can add brackets to limit the parses, and then for example ‘‘sin (0 *
x) = cos pi / 2’’ produces 16 parses of which 11 get type-checked by HOL
Light as follows, with all but three being proved by HOL(y)Hammer:

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2

The HOL-specialized probabilistic parsing and HOL typechecking phases are fast
(given that the input sentence is not too long), because we limit the number of
required parses to 16, and preselect only the 1024 closest grammar trees for the
grammar training by running a k-nearest neighbor (k-NN) filter using n-gram
(unigram, bigram and trigram) representations of all Flyspeck theorems in their
ambiguous form. Thus the four first phases – k-NN filtering, grammar induction,
probabilistic parsing, and HOL typechecking – typically take several seconds,
5 http://colo12-c703.uibk.ac.at/hh/parse.html.

http://colo12-c703.uibk.ac.at/hh/parse.html

232 C. Kaliszyk et al.

giving real-time feedback to the user. The AI/ATP phase is slow, because for
maximal semantic performance it typically runs parallelized (14-CPU) AI/ATP
methods selecting relevant premises from the whole Flyspeck, and this needs to
be done for a dozen of the most probable and typechecked parse trees. This is
however a “mere hardware” issue: If we had a 200-core server rather than the
current one, the 16 best parses could be attacked by HOL(y)Hammer in parallel,
and the AI/ATP phase would feel much more real-time too. Some screenshots
of the service in action are available on our web page.6

6 Evaluation on Flyspeck

Once the methods were reasonably scaled up to the whole Flyspeck, we have
done a large-scale training/testing evaluation (100-fold cross-validation) on the
whole corpus of 22000 theorems. It proceeds as follows:

1. We create the ambiguous sentences and the disambiguated grammar trees
from all 22k Flyspeck theorems as described in Sect. 3. These sets are per-
muted randomly and split into 100 equally sized chunks of about 220 trees or
sentences. The trees serve for training and the sentences for evaluation.

2. For each testing chunk Ci (i ∈ 1..100) of 220 sentences we take the union of the
99 chunks of grammar trees (altogether about 21800 trees) that correspond
to the remaining sentences and build the probabilistic grammar on them -
this is fast, taking several seconds. This way we avoid training on the parse
trees of the testing sentences.

3. Then we try to get the best 20 parse trees for all the 220 sentences in C using
that grammar. This takes on average 4 s for each sentence, i.e. the whole
parsing takes about 90000 CPU seconds = 25 CPU hours.

4. The parse trees are again transformed into HOL syntax trees, typechecked
in HOL, and a single AI/ATP method is run on each typechecked tree for
30 s (using Vampire and 128 most relevant Flyspeck premises). This is weaker
than using the full HOL(y)Hammer online system, but we cannot afford the
14-fold AI/ATP parallelization due to the number of parse trees.

5. 698549 of the parse trees typecheck (221145 do not), resulting in 302329
distinct (modulo alpha) HOL formulas. These are subjected to ATP, i.e., we
run for ca 9000000 CPU seconds = 2500 CPU hours. This is done on a large
server with 100-fold parallelization, taking about one day of real time.

We can automatically prove about 70957 (23.5 %) of the 302329 typechecked
formulas.7 However, first analysis shows that many of them are provable only
because they are parsed incorrectly, for example when the antecedent of an
implication becomes trivially false. In this first experiment we do not recognize
such cases, however it should not be too difficult to remove such cases with
another ATP round that checks for the unsatisfiability of antecedents. Such

6 http://colo12-c703.uibk.ac.at/hh/parseimg.html.
7 The exact list is at http://mizar.cs.ualberta.ca/∼mptp/i2f/00proved2.

http://colo12-c703.uibk.ac.at/hh/parseimg.html
http://mizar.cs.ualberta.ca/~mptp/i2f/00proved2

Learning to Parse on Aligned Corpora (Rough Diamond) 233

additional semantic checks could also eventually become a part of the (more
tightly integrated) semantic-parsing toolchain.

In 39.4 % of the 22000 cases, the HOL formula resulting from one of the
sentence’s 20 parse trees is alpha-equal to the correct (training) original HOL
formula, and its average rank there is 9.34. This is quite encouraging statistics,
given that this runs efficiently over whole Flyspeck with quite a high number
of introduced ambiguities, and many more sophisticated probabilistic parsing
tricks (such as full-scale lexicalization) have not been used yet.

Interestingly, 0.2 % of the 22000 cases produce a parse tree that is the same as
an existing training tree, but of a different theorem. This means – as can already
be seen from the online system parses above – that thanks to the probabilistic
behavior the system also (quite necessarily) functions as a conjecture maker.
Given a seed of symbols, the system tries to figure out the most probable ways
how to give meaning to them, a bit like the Dijkstra’s “informal mathematical
lot” does. Quite likely one of the many interesting future directions is to evolve
one version of the system in such a way that the conjectures are as interesting
as possible, using our probabilistic setting to avoid today’s brute-force methods.

References

1. Blanchette, J. C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards
QED. Accepted to J. Formalized Reasoning (2015). Preprint at http://www4.in.
tum.de/∼blanchet/h4qed.pdf

2. Dijkstra, E.W.: The fruits of misunderstanding. Elektronische Rechenanlagen
25(6), 10–13 (1983)

3. Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs. London Math-
ematical Society Lecture Note Series, vol. 400. Cambridge University Press, Cam-
bridge (2012)

4. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting
and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC
Series, vol. 14, pp. 87–95. EasyChair (2013)

5. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL Light. Math.
Comput. Sci. 9(1), 5–22 (2015)

6. Kaliszyk, C., Urban, J., Vyskočil, J., Geuvers, H.: Developing corpus-based trans-
lation methods between informal and formal mathematics: project description. In:
Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014.
LNCS, vol. 8543, pp. 435–439. Springer, Heidelberg (2014)

7. Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview
and evaluation of premise selection techniques for large theory mathematics. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
378–392. Springer, Heidelberg (2012)

8. Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display:
a wiki for flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 152–167. Springer, Heidelberg (2013)

9. Younger, D.H.: Recognition and parsing of context-free languages in time nˆ3. Inf.
Control 10(2), 189–208 (1967)

10. Zinn, C.: Understanding informal mathematical discourse. Ph.D. thesis, University
of Erlangen-Nuremberg (2004)

http://www4.in.tum.de/~blanchet/h4qed.pdf
http://www4.in.tum.de/~blanchet/h4qed.pdf

A Consistent Foundation for Isabelle/HOL

Ondřej Kunčar1(B) and Andrei Popescu2

1 Fakultät für Informatik, Technische Universität München, Munich, Germany
kuncar@in.tum.de

2 Department of Computer Science, School of Science and Technology,
Middlesex University, London, UK

a.popescu@mdx.ac.uk

Abstract. The interactive theorem prover Isabelle/HOL is based on the
well understood Higher-Order Logic (HOL), which is widely believed to
be consistent (and provably consistent in set theory by a standard seman-
tic argument). However, Isabelle/HOL brings its own personal touch to
HOL: overloaded constant definitions, used to achieve Haskell-like type
classes in the user space. These features are a delight for the users, but
unfortunately are not easy to get right as an extension of HOL—they
have a history of inconsistent behavior. It has been an open question
under which criteria overloaded constant definitions and type defini-
tions can be combined together while still guaranteeing consistency. This
paper presents a solution to this problem: non-overlapping definitions
and termination of the definition-dependency relation (tracked not only
through constants but also through types) ensures relative consistency
of Isabelle/HOL.

1 Introduction

Polymorphic HOL, more precisely, Classic Higher-Order Logic with Infinity,
Hilbert Choice and Rank-1 Polymorphism, endowed with a mechanism for con-
stant and type definitions, was proposed in the nineties as a logic for interactive
theorem provers by Mike Gordon, who also implemented the seminal HOL theo-
rem prover [12]. This system has produced many successors and emulators known
under the umbrella term “HOL-based provers” (e.g., [2,3,5,14,27]), launching a
very successful paradigm in interactive theorem proving.

A main strength of HOL-based provers is a sweet spot in expressiveness versus
complexity: HOL on the one hand is sufficient for most mainstream mathematics
and computer science applications, and on the other is a well-understood logic.
In particular, the consistency of HOL has a standard semantic argument, com-
prehensible to any science graduate: one interprets its types as sets, in particular
the function types as sets of functions, and the terms as elements of these sets,
in a natural way; the rules of the logic are easily seen to hold in this model. The
definitional mechanism has two flavors:

– New constants c are introduced by equations c ≡ t, where t is a closed term
not containing c.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 234–252, 2015.
DOI: 10.1007/978-3-319-22102-1_16

A Consistent Foundation for Isabelle/HOL 235

– New types τ are introduced by “typedef” equations τ ≡ t, where t : σ ⇒ bool is
a predicate on an existing type σ (not containing τ anywhere in the types of its
subterms)—intuitively, the type τ is carved out as the t-defined subset of σ.

Again, this mechanism is manifestly consistent by an immediate semantic argu-
ment [30]; alternatively, its consistency can be established by regarding defini-
tions as mere abbreviations (which here are non-cyclic by construction).

Polymorphic HOL with Ad Hoc Overloading. Isabelle/HOL [26,27] adds
its personal touch to the aforementioned sweet spot: it extends polymorphic HOL
with a mechanism for (ad hoc) overloading. As an example, consider the following
Nominal-style [33] definitions, where prm is the type of finite-support bijections
on an infinite type atom, and where we write apply pi a for the application of a
bijection pi to an atom a:
Example 1. consts perm : prm ⇒ α ⇒ α
defs perm_atom: perm pi (a : atom) ≡ apply pi a
defs perm_nat: perm pi (n : nat) ≡ n
defs perm_list: perm pi (xs : α list) ≡ map (perm pi) xs

Above, the constant perm is declared using the keyword “consts”—its intended
behavior is the application of a permutation to all atoms contained in an ele-
ment of a type α. Then, using the keyword “defs”, several overloaded definitions
of perm are performed for different instances of α. For atoms, perm applies the
permutation; for numbers (which don’t have atoms), perm is the identity func-
tion; for α list, the instance of perm is defined in terms of the instance for the
component α. All these definitions are non-overlapping and their type-based
recursion is terminating, hence Isabelle is fine with them.

Inconsistency. Of course, one may not be able to specify all the relevant
instances immediately after declaring a constant like perm—at a later point,
a user may define their own atom-container type, such as1

datatype myTree = Atom atom | LNode atom list | FNode nat => atom

and instantiate perm to this type. (In fact, the Nominal package automates
instantiations for user-requested datatypes, including terms with bindings.) To
support such delayed instantiations, which are also crucial for the implemen-
tation of type classes [13,35], Isabelle/HOL allows intermixing definitions of
instances of an overloaded constant with definitions of other constants and types.
Unfortunately, the improper management of the intermixture leads to inconsis-
tency: Isabelle/HOL accepts the following definitions2.

Example 2. consts c : α
typedef T = {True, c} by blast
defs c_bool_def: c:bool ≡ ¬ (∀(x:T) y. x = y)

1 In Isabelle/HOL, as in any HOL-based prover, the “datatype” command is not prim-
itive, but is compiled into “typedef.”

2 This example works in Isabelle2014; our correction patch [1] based on the results of
this paper and in its predecessor [19] is being evaluated at the Isabelle headquarters.

236 O. Kunčar and A. Popescu

which immediately yield a proof of False:

lemma L: (∀(x:T) y. x = y) ↔ c
using Rep_T Rep_T_inject Abs_T_inject by (cases c:bool) force+

theorem False
using L unfolding c_bool_def by auto

The inconsistency argument takes advantage of the circularity T � cbool � T
in the dependency relation introduced by the definitions: one first defines T to
contain only one element just in case cbool is True, and then defines c to be True
just in case T contains more than one element.

Our Contribution. In this paper, we provide the following, in the context of
polymorphic HOL extended with ad hoc overloading (Sect. 3):

– A definitional dependency relation that factors in both constant and type
definitions in a sensible fashion (Sect. 4.1).

– A proof of consistency of any set of constant and type definitions whose depen-
dency relation satisfies reasonable conditions, which accept Example 1 and
reject Example 2 (Sect. 4).

– A new semantics for polymorphic HOL (Sect. 4.4) that guides both our defi-
nition of the dependency relation and our proof of consistency.

More details on our constructions and proofs can be found in the technical report
[20]. We hope that our work settles the consistency problem for Isabelle/HOL’s
extension of HOL, while showing that the mechanisms of this logic admit a
natural and well-understandable semantics. We start with a discussion of related
work, including previous attempts to establish consistency (Sect. 2). Later we
also show how this work fits together with previous work by the first author
(Sect. 5).

2 Related Work

Type Classes and Overloading. Type classes were introduced in Haskell by
Wadler and Blott [34]—they allow programmers to write functions that operate
generically on types endowed with operations. For example, assuming a type α
which is a semigroup (i.e., comes with a binary associative operation +), one can
write a program that computes the sum of all the elements in an α-list. Then
the program can be run on any concrete type T that replaces α provided T has
this binary operation +. Prover-powered type classes were introduced by Nipkow
and Snelting [28] in Isabelle/HOL and by Sozeau and Oury [32] in Coq—they
additionally feature verifiability of the type-class conditions upon instantiation:
a type T is accepted as a member of the semigroup class only if associativity
can be proved for its + operation.

Whereas Coq implements type classes directly by virtue of its powerful type
system, Isabelle/HOL relies on arbitrary ad hoc overloading: to introduce the
semigroup class, the system declares a “global” constant + : α ⇒ α ⇒ α and

A Consistent Foundation for Isabelle/HOL 237

defines the associativity predicate; then different instance types T are registered
after defining the corresponding overloaded operation + : T ⇒ T ⇒ T and
verifying the condition. Our current paper focuses not on the Isabelle/HOL type
classes, but on the consistency of the mechanism of ad hoc overloading which
makes them possible.

Previous Consistency Attempts. The settling of this consistency problem
has been previously attempted by Wenzel [35] and Obua [29]. In 1997, Wenzel
defined a notion of safe theory extension and showed that overloading conforms
to this notion. But he did not consider type definitions and worked with a sim-
plified version of the system where all overloadings for a constant c are provided
at once. Years later, when Obua took over the problem, he found that the over-
loadings were almost completely unchecked—the following trivial inconsistency
was accepted by Isabelle2005:

Example 3. consts c : α ⇒ bool
defs c (x : α list × α) ≡ c (snd x # fst x)
defs c (x : α list) ≡ ¬ c (tl x, hd x)

lemma c [x] = ¬ c([], x) = ¬ c[x]

Obua noticed that the rewrite system produced by the definitions has to ter-
minate to avoid inconsistency, and implemented a private extension based on
a termination checker. He did consider intermixing overloaded constant defini-
tions and type definitions but his syntactic proof sketch misses out inconsistency
through type definitions.

Triggered by Obua’s observations, Wenzel implemented a simpler and more
structural solution based on work of Haftmann, Obua and Urban: fewer overload-
ings are accepted in order to make the consistency/termination check decidable
(which Obua’s original check is not). Wenzel’s solution has been part of the
kernel since Isabelle2007 without any important changes—parts of this solution
(which still misses out dependencies through types) are described by Haftmann
and Wenzel [13].

In 2014, we discovered that the dependencies through types are not covered
(Example 2), as well as an unrelated issue in the termination checker that led to
an inconsistency even without exploiting types. Kunčar [19] amended the latter
issue by presenting a modified version of the termination checker and proving its
correctness. The proof is general enough to cover termination of the definition
dependency relation through types as well. Our current paper complements this
result by showing that termination leads to consistency.

Inconsistency Club. Inconsistency problems arise quite frequently with provers
that step outside the safety of a simple and well-understood logic kernel. The
various proofs of False in the early PVS system [31] are folklore. Coq’s [8] current
stable version3 is inconsistent in the presence of Propositional Extensionality;

3 Namely, Coq 8.4pl5; the inconsistency is fixed in Coq 8.5 beta.

238 O. Kunčar and A. Popescu

this problem stood undetected by the Coq users and developers for 17 years;
interestingly, just like the Isabelle/HOL problem under scrutiny, it is due to an
error in the termination checker [11]. Agda [10] suffers from similar problems [23].
The recent Dafny prover [21] proposes an innovative combination of recursion
and corecursion whose initial version turned out to be inconsistent [9].

Of course, such “dangerous” experiments are often motivated by better sup-
port for the users’ formal developments. The Isabelle/HOL type class experiment
was practically successful: substantial developments such as the Nominal [17,33]
and HOLCF [24] packages and Isabelle’s mathematical analysis library [16] rely
heavily on type classes. One of Isabelle’s power users writes [22]: “Thanks to
type classes and refinement during code generation, our light-weight framework
is flexible, extensible, and easy to use.”

Consistency Club. Members of this select club try to avoid inconsistencies by
impressive efforts of proving soundness of logics and provers by means of inter-
active theorem provers themselves. Harisson’s pioneering work [15] uses HOL
Light to give semantic proofs of soundness of the HOL logic without definitional
mechanisms, in two flavors: either after removing the infinity axiom from the
object HOL logic, or after adding a “universe” axiom to HOL Light; a proof that
the OCaml implementation of the core of HOL Light correctly implements this
logic is also included. Kumar et al. [18] formalize in HOL4 the semantics and
the soundness proof of HOL, with its definitional principles included; from this
formalization, they extract a verified implementation of a HOL theorem prover
in CakeML, an ML-like language featuring a verified compiler. None of the above
verified systems factor in ad-hoc overloading, the starting point of our work.

Outside the HOL-based prover family, there are formalizations of Milawa
[25], Nuprl [4] and fragments of Coq [6,7].

3 Polymorphic HOL with Ad Hoc Overloading

Next we present syntactic aspects of our logic of interest (syntax, deduction and
definitions) and formulate its consistency problem.

3.1 Syntax

In what follows, by “countable” we mean “either finite or countably infinite.” All
throughout this section, we fix the following:

– A countably infinite set TVar, of type variables, ranged over by α, β
– A countably infinite set Var, of (term) variables, ranged over by x, y, z
– A countable set K of symbols, ranged over by k, called type constructors,

containing three special symbols: “bool”, “ ind” and “⇒” (aimed at represent-
ing the type of booleans, an infinite type and the function type constructor,
respectively)

We also fix a function arOf : K → N associating an arity to each type constructor,
such that arOf(bool) = arOf(ind) = 0 and arOf(⇒) = 2. We define the set Type,
ranged over by σ, τ , of types, inductively as follows:

A Consistent Foundation for Isabelle/HOL 239

– TVar ⊆ Type
– (σ1, . . . , σn)k ∈ Type if σ1, . . . , σn ∈ Type and k ∈ K such that arOf(k) = n

Thus, we use postfix notation for the application of an n-ary type constructor k
to the types σ1, . . . , σn. If n = 1, instead of (σ)k we write σ k (e.g., σ list).

A typed variable is a pair of a variable x and a type σ, written xσ. Given
T ⊆ Type, we write VarT for the set of typed variables xσ with σ ∈ T . Finally,
we fix the following:

– A countable set Const, ranged over by c, of symbols called constants, contain-
ing five special symbols: “→”, “=”, “some” “zero”, “suc” (aimed at representing
logical implication, equality, Hilbert choice of “some” element from a type,
zero and successor, respectively).

– A function tpOf : Const → Type associating a type to every constant, such
that:

tpOf(→) = bool ⇒ bool ⇒ bool
tpOf(=) = α ⇒ α ⇒ bool
tpOf(some) = (α ⇒ bool) ⇒ α

tpOf(zero) = ind
tpOf(suc) = ind ⇒ ind

We define the type variables of a type, TV : Type → P(TVar), as expected.
A type σ is called ground if TV(σ) = ∅. We let GType be the set of ground types.

A type substitution is a function ρ : TVar → Type; we let TSubst denote the
set of type substitutions. Each ρ ∈ TSubst extends to a homonymous function
ρ : Type → Type by defining ρ((σ1, . . . , σn)k) = (ρ(σ1), . . . , ρ(σn))k. We let
GTSubst be the set of all ground type substitutions θ : TVar → GType, which
again extend to homonymous functions θ : Type → GType.

We say that σ is an instance of τ , written σ ≤ τ , if there exists ρ ∈ TSubst
such that ρ(τ) = σ. Two types σ and τ are called orthogonal, written σ# τ , if
they have no common instance.

Given c ∈ Const such that σ ≤ tpOf(c), we call the pair (c, σ), written cσ,
an instance of c. A constant instance is therefore any such pair cσ. We let CInst
be the set of all constant instances, and GCInst the set of constant instances
whose type is ground. We extend the notions of being an instance (≤) and being
orthogonal (#) from types to constant instances, as follows:

cτ ≤ dσ iff c = d and τ ≤ σ cτ # dσ iff c �= d or τ # σ

We also define tpOf for constant instances by tpOf(cσ) = σ.
The tuple (K, arOf, C, tpOf), which will be fixed in what follows, is called

a signature. This signature’s pre-terms, ranged over by s, t, are defined by the
grammar:

t = xσ | cσ | t1 t2 | λxσ. t

Thus, a pre-term is either a typed variable, or a constant instance, or an
application, or an abstraction. As usual, we identify pre-terms modulo alpha-
equivalence.

240 O. Kunčar and A. Popescu

Typing of pre-terms is defined in the expected way (by assigning the most
general type possible); a term is a well-typed pre-term, and Term denotes the set
of terms. Given t ∈ Term, we write tpOf(t) for its (uniquely determined, most
general) type and FV(t) for the set of its free (term) variables. We call t closed
if FV(t) = ∅.

We let TV(t) denote the set of type variables occurring in t. A term t is
called ground if TV(t) = ∅. Thus, closedness refers to the absence of free (term)
variables in a term, whereas groundness refers to the absence of type variables
in a type or a term. Note that, for a term, being ground is a stronger condition
than having a ground type: (λxα. cbool)xα has the ground type bool, but is not
ground.

We can apply a type substitution ρ to a term t, written ρ(t), by applying ρ to
all the type variables occurring in t; and similarly for ground type substitutions
θ; note that θ(t) is always a ground term.

A formula is a term of type bool. We let Fmla, ranged over by ϕ, denote
the set of formulas. The formula connectives and quantifiers are defined in the
standard way, starting from the implication and equality primitives.

When writing concrete terms or formulas, we often omit indicating the type
in occurrences of bound variables—e.g., we may write λxα. x instead of λxα. xα.

3.2 Built-Ins and Non-Built-Ins

The distinction between built-in and non-built-in types and constants will be
important for us, since we will employ a slightly non-standard semantics only
for the latter.

A built-in type is any type of the form bool, ind, or σ1 ⇒ σ2 for σ1, σ2 ∈ Type.
We let Type• denote the set of types that are not built-in. Note that a non-built-
in type can have a built-in type as a subtype, and vice versa; e.g., if list is a
type constructor, then bool list and (α ⇒ β) list are non-built-in types, whereas
α ⇒ β list is a built-in type. We let GType• = GType ∩ Type• denote the set of
ground non-built-in types.

Given a type σ, we define types•(σ), the set of non-built-in types of σ, as
follows:

types•(bool) = types•(ind) = ∅
types•((σ1, . . . , σn) k) = {(σ1, . . . , σn) k}, if k is different from ⇒
types•(σ1 ⇒ σ2) = types•(σ1) ∪ types•(σ2)

Thus, types•(σ) is the smallest set of non-built-in types that can produce σ
by repeated application of the built-in type constructors. E.g., if the type con-
structors prm (0-ary) and list (unary) are in the signature and if σ is (bool ⇒
α list) ⇒ prm ⇒ (bool ⇒ ind) list, then types•(σ) has three elements: α list, prm
and (bool ⇒ ind) list.

A built-in constant is a constant of the form →, =, some, zero or suc. We let
CInst• be the set of constant instances that are not instances of built-in constants,
and GCInst• ⊆ CInst• be its subset of ground constants.

A Consistent Foundation for Isabelle/HOL 241

As a general notation rule: the prefix “G” indicates ground items, whereas
the superscript • indicates non-built-in items, where an item can be either a
type or a constant instance. In our semantics (Sect. 4.4), we will stick to the
standard interpretation of built-in items, whereas for non-built-in items we will
allow an interpretation looser than customary. The standardness of the bool, ind
and function-type interpretation will allow us to always automatically extend the
interpretation of a set of non-built-in types to the interpretation of its built-in
closure.

Given a term t, we let consts•(t) ⊆ CInst• be the set of all non-built-in
constant instances occurring in t and types•(t) ⊆ Type• be the set of all non-
built-in types that compose the types of non-built-in constants and (free or
bound) variables occurring in t. Note that the types• operator is overloaded for
types and terms.

consts•(xσ) = ∅ types•(xσ) = types•(σ)

consts•(cσ) =

{ {cσ} if cσ ∈ CInst•

∅ otherwise
types•(cσ) = types•(σ)

consts•(t1 t2) = consts•(t1) ∪ consts•(t2) types•(t1 t2) = types•(t1) ∪ types•(t2)
consts•(λxσ. t) = consts•(t) types•(λxσ. t) = types•(σ) ∪ types•(t)

Note that the consts• and types• operators commute with ground type substitu-
tions (and similarly with type substitutions, of course):

Lemma 4. (1) consts•(θ(t)) = {cθ(σ) | cσ ∈ consts•(t)}
(2) types•(θ(t)) = {θ(σ) | σ ∈ types•(t)}.

3.3 Deduction

If D is a finite set of closed formulas, a.k.a. a theory, and ϕ is a closed formula,
we write D � ϕ for the deducibility of ϕ from D according to the standard
deduction rules of polymorphic HOL [12,27].4 A theory D is called consistent if
there exists ϕ such that D �� ϕ (or equivalently if D �� False, where the formula
False is defined in a standard way from the built-in constants).

3.4 Definitional Theories

We are interested in the consistency of theories arising from constant-instance
and type definitions, which we call definitional theories.

Given cσ ∈ CInst• and a closed term t ∈ Termσ, we let cσ ≡ t denote
the formula cσ = t. We call cσ ≡ t a constant-instance definition provided
TV(t) ⊆ TV(cσ) (i.e., TV(t) ⊆ TV(σ)).

Given the types τ ∈ Type• and σ ∈ Type and the closed term t whose type
is σ ⇒ bool, we let τ ≡ t denote the formula
4 The deduction in polymorphic HOL takes place using open formulas in contexts. In

addition, Isabelle/HOL distinguishes between theory contexts and proof contexts.
We ignore these aspects in our presentation here, since they do not affect our con-
sistency argument.

242 O. Kunčar and A. Popescu

(∃xσ. t x) →
∃repτ⇒σ.∃absσ⇒τ .
(∀xτ . t (rep x)) ∧ (∀xτ . abs (rep x) = x) ∧ (∀yσ. t y → rep (abs y) = y).

We call τ ≡ t a type definition, provided TV(t) ⊆ TV(τ) (which also implies
TV(σ) ⊆ TV(τ)).

Note that we defined τ ≡ t not to mean:

(∗): The type τ is isomorphic, via abs and rep, to the subset of σ given by t

as customary in most HOL-based systems, but rather to mean:

If t gives a nonempty subset of σ, then (∗)holds

Moreover, note that we do not require τ to have the form (α1, . . . , αn)k, as is
currently required in Isabelle/HOL and the other HOL provers, but, more gener-
ally, allow any τ ∈ Type•. (To ensure consistency, we will also require that τ has
no common instance with the left-hand side of any other type definition.) This
enables an interesting feature: ad hoc overloading for type definitions. For exam-
ple, given a unary type constructor tree, we can have totally different definitions
for nat tree, bool tree and α list tree.

In general, a definition will have the form u ≡ t, where u is either a constant
instance or a type and t is a term (subject to the specific constraints of constant-
instance and type definitions). u and t are said to be the left-hand and right-hand
sides of the definition. A definitional theory is a finite set of definitions.

3.5 The Consistency Problem

An Isabelle/HOL development proceeds by:

1. declaring constants and types,
2. defining constant instances and types,
3. stating and proving theorems using the deduction rules of polymorphic HOL.

Consequently, at any point in the development, one has:

1. a signature (K, arOf : K → N,Const, tpOf : Const → Type),
2. a definitional theory D,
3. other proved theorems.

In our abstract formulation of Isabelle/HOL’s logic, we do not represent explic-
itly point 3, namely the stored theorems that are not produced as a result of defi-
nitions, i.e., are not in D. The reason is that, in Isabelle/HOL, the theorems in D
are not influenced by the others. Note that this is not the case of the other HOL
provers, due to the type definitions: there, τ ≡ t, with tpOf(t) = σ ⇒ bool, is
introduced in the unconditional form (*), and only after the user has proved that
t gives a nonempty subset (i.e., that ∃xσ. t x holds). Of course, Isabelle/HOL’s
behavior converges with standard HOL behavior since the user is also required

A Consistent Foundation for Isabelle/HOL 243

to prove nonemptiness, after which (*) is inferred by the system—however, this
last inference step is normal deduction, having nothing to do with the definition
itself. This very useful trick, due to Wenzel, cleanly separates definitions from
proofs. In summary, we only need to guarantee the consistency of D:

The Consistency Problem: Find a sufficient criterion for a defini-
tional theory D to be consistent (while allowing flexible overloading, as
discussed in the introduction).

4 Our Solution to the Consistency Problem

Assume for a moment we have a proper dependency relation between defined
items, where the defined items can be types or constant instances. Obviously,
the closure of this relation under type substitutions needs to terminate, other-
wise inconsistency arises immediately, as shown in Example 3. Moreover, it is
clear that the left-hand sides of the definitions need to be orthogonal: defin-
ing cα×ind⇒bool to be λxα×ind.False and cind×α⇒bool to be λxind×α.True yields
λxind×ind.False = cind×ind⇒bool = λxind×ind.True and hence False = True.

It turns out that these necessary criteria are also sufficient for consistency.
This was also believed by Wenzel and Obua; what they were missing was a proper
dependency relation and a transparent argument for its consistency, which is
what we provide next.

4.1 Definitional Dependency Relation

Given any binary relation R on Type• ∪ CInst•, we write R+ for its transitive
closure, R∗ for its reflexive-transitive closure and R↓ for its (type-)substitutive
closure, defined as follows: pR↓ q iff there exist p′, q′ and a type substitution ρ
such that p = ρ(p′), q = ρ(q′) and p′ R q′. We say that a relation R is terminating
if there exists no sequence (pi)i∈N such that pi R pi+1 for all i.

Let us fix a definitional theory D. We say D is orthogonal if for all distinct
definitions u ≡ t and u′ ≡ t′ in D, we have one of the following cases:

– either one of {u, u′} is a type and the other is constant instance,
– or both u and u′ are types and are orthogonal (u#u′),
– or both u and u′ are constant instances and are orthogonal (u#u′).

We define the binary relation � on Type• ∪ CInst• by setting u � v iff one
of the following holds:

1. there exists a (constant-instance or type) definition in D of the form u ≡ t
such that v ∈ consts•(t) ∪ types•(t),

2. there exists c ∈ Const• such that u = ctpOf(c) and v ∈ types•(tpOf(c)).

We call � the dependency relation (associated to D).

244 O. Kunčar and A. Popescu

Thus, when defining an item u by means of t (as in u ≡ t), we naturally
record that u depends on the constants and types appearing in t (clause 1);
moreover, any constant c should depend on its type (clause 2). But notice the
bullets! We only record dependencies on the non-built-in items, since intuitively
the built-in items have a pre-determined semantics which cannot be redefined or
overloaded, and hence by themselves cannot introduce inconsistencies. Moreover,
we do not dig for dependencies under any non-built-in type constructor—this
can be seen from the definition of the types• operator on types which yields a
singleton whenever it meets a non-built-in type constructor; the rationale for
this is that a non-built-in type constructor has an “opaque” semantics which
does not expose the components (as does the function type constructor). These
intuitions will be made precise by our semantics in Sect. 4.4.

Consider the following example, where the definition of α k is omitted:

Example 5. consts c : α d : α
typedef α k = ...
defs c : ind k ⇒ bool ≡ (d : bool k k ⇒ ind k ⇒ bool) (d : bool k k)

Werecord that cind k⇒bool depends on the non-built-in constants dbool k k⇒ind k⇒bool

and dbool k k, and on the non-built-in types bool k k and ind k. We do not record
any dependency on the built-in types bool k k ⇒ ind k ⇒ bool, ind k ⇒ bool or
bool. Also, we do not record any dependency on bool k, which can only be reached
by digging under k in bool k k.

4.2 The Consistency Theorem

We can now state our main result. We call a definitional theory D well-formed
if it is orthogonal and the substitutive closure of its dependency relation, �↓, is
terminating.

Note that a well-formed definitional theory is allowed to contain definitions
of two different (but orthogonal) instances of the same constant—this ad-hoc
overloading facility is a distinguishing feature of Isabelle/HOL among the HOL
provers.

Theorem 6. If D is well-formed, then D is consistent.

Previous attempts to prove consistency employed syntactic methods [29,35].
Instead, we will give a semantic proof:

1. We define a new semantics of Polymorphic HOL, suitable for overloading and
for which standard HOL deduction is sound (Sect. 4.4).

2. We prove that D has a model according to our semantics (Sect. 4.5).

Then 1 and 2 immediately imply consistency.

A Consistent Foundation for Isabelle/HOL 245

4.3 Inadequacy of the Standard Semantics of Polymorphic HOL

But why define a new semantics? Recall that our goal is to make sense of def-
initions as in Example 1. In the standard (Pitts) semantics [30], one chooses
a “universe” collection of sets U closed under suitable set operations (function
space, an infinite set, etc.) and interprets:

1. the built-in type constructors and constants as their standard counterparts
in U :
– [bool] and [ind] are some chosen two-element set and infinite set in U
– [⇒] : U → U → U takes two sets A1, A2 ∈ U to the set of functions

A1 → A2

– [True] and [False] are the two distinct elements of [bool], etc.
2. the non-built-in type constructors similarly:

– a defined type prm or type constructor list as an element [prm] ∈ U or
operator [list] : U → U , produced according to their “typedef”

– a polymorphic constant such as perm : prm → α → α as a family [perm] ∈∏
A∈U [prm] → A → A.

In standard polymorphic HOL, perm would be either completely unspecified, or
completely defined in terms of previously existing constants—this has a faithful
semantic counterpart in U . But now how to represent the overloaded definitions
of perm from Example 1? In U , they would become:

[perm][atom] pi a = [apply] pi a
[perm][nat] pi n = n
[perm][list](A) pi xs = [map]A ([perm]A pi) xs

There are two problems with these semantic definitions. First, given B ∈ U , the
value of [perm]B varies depending on whether B has the form [atom], or [nat], or
[list](A) for some A ∈ U ; hence the interpretations of the type constructors need
to be non-overlapping—this is not guaranteed by the assumptions about U , so we
would need to perform some low-level set-theoretic tricks to achieve the desired
property. Second, even though the definitions are syntactically terminating, their
semantic counterparts may not be: unless we again delve into low-level tricks
in set theory (based on the axiom of foundation), it is not guaranteed that
decomposing a set A0 as [list](A1), then A1 as [list](A2), and so on (as prescribed
by the third equation for [perm]) is a terminating process.

Even worse, termination is in general a global property, possibly involving
both constants and type constructors, as shown in the following example where
c and k are mutually defined (so that a copy of ebool kn is in bool kn+1 iff n is
even):

Example 7. consts c : α ⇒ bool d : α e : α
typedef α k = {d:α} ∪ {e : α . c (d : α)}
c (x : α k) ≡ ¬ c (d : α)
c (x : bool) ≡ True

246 O. Kunčar and A. Popescu

The above would require a set-theoretic setting where such fixpoint equations
have solutions; this is in principle possible, provided we tag the semantic equa-
tions with enough syntactic annotations to guide the fixpoint construction. How-
ever, such a construction seems excessive given the original intuitive justification:
the definitions are “OK” because they do not overlap and they terminate. On
the other hand, a purely syntactic (proof-theoretic) argument also seems difficult
due to the mixture of constant definitions and (conditional) type definitions.

Therefore, we decide to go for a natural syntactic-semantic blend, which
avoids stunt performance in set theory: we do not semantically interpret the
polymorphic types, but only the ground types, thinking of the former as “macros”
for families of the latter. For example, α ⇒ α list represents the family (τ ⇒
τ list)τ∈GType. Consequently, we think of the meaning of α ⇒ α list not as∏

A∈U A → [list](A), but rather as
∏

τ∈GType[τ] → [τ list]. Moreover, a polymor-
phic formula ϕ of type, say, (α ⇒ α list) ⇒ bool, will be considered true just in
case all its ground instances of types (τ ⇒ τ list) ⇒ bool are true.

Another (small) departure from standard HOL semantics is motivated by
our goal to construct a model for a well-formed definitional theory. Whereas in
standard semantics one first interprets all type constructors and constants and
only afterwards extends the interpretation to terms, here we need to interpret
some of the terms eagerly, before some of the types and constants. Namely, given
a definition u ≡ t, we interpret t before we interpret u (according to t). This
requires a straightforward refinement of the notion of semantic interpretation:
to interpret a term, we only need the interpretations for a sufficient fragment of
the signature containing all the items appearing in t.

4.4 Ground, Fragment-Localized Semantics for Polymorphic HOL

Recall that we have a fixed signature (K, arOf,Const, tpOf), that GType• is the
set of ground non-built-in types and GCInst• the set of ground non-built-in con-
stant instances.

Given T ⊆ Type, we define Cl(T) ⊆ Type, the built-in closure of T , induc-
tively:

– T ∪ {bool, ind} ⊆ Cl(T)
– σ1 ⇒ σ2 ∈ Cl(T) if σ1 ∈ Cl(T) and σ2 ∈ Cl(T).

I.e., Cl(T) is the smallest set of types built from T by repeatedly applying built-in
type constructors.

A (signature) fragment is a pair (T,C) with T ⊆ GType• and C ⊆ GCInst•

such that σ ∈ Cl(T) for all cσ ∈ C.
Let F = (T,C) be a fragment. We write:

– TypeF , for the set of types generated by this fragment, namely Cl(T)
– TermF , for the set of terms that fall within this fragment, namely {t ∈ Term |
types•(t) ⊆ T ∧ consts•(t) ⊆ C}

– FmlaF, for Fmla ∩ TermF .

Lemma 8. The following hold:

A Consistent Foundation for Isabelle/HOL 247

(1) TypeF ⊆ GType
(2) TermF ⊆ GTerm
(3) If t ∈ TermF , then tpOf(t) ∈ TypeF

(4) If t ∈ TermF , then FV(t) ⊆ TermF

(5) If t ∈ TermF , then each subterm of
t is also in TermF

(6) If t1, t2 ∈ TermF and xσ ∈
VarTypeF , then t1[t2/xσ] ∈ TermF

The above straightforward lemma shows that fragments F include only ground
items (points (1) and (2)) and are “autonomous” entities: the type of a term from
F is also in F (3), and similarly for the free (term) variables (4), subterms (5) and
substituted terms (6). This autonomy allows us to define semantic interpretations
for fragments.

For the rest of this paper, we fix the following:

– a singleton set {∗}
– a two-element set {true, false}
– a global choice function, choice, that assigns to each nonempty set A an ele-

ment choice(a) ∈ A.

Let F = (T,C) be a fragment. An F -interpretation is a pair I = (([τ])τ∈T ,
([cτ])cτ ∈C) such that:

1. ([τ])τ∈T is a family such that [τ] is a non-empty set for all τ ∈ T .
We extend this to a family ([τ])τ∈Cl(T) by interpreting the built-in type con-
structors as expected:

[bool] = {true, false}
[ind] = N (the set of natural numbers)5
[σ ⇒ τ] = [σ] → [τ] (the set of functions from [σ] to [τ])

2. ([cτ])cτ ∈C is a family such that [cτ] ∈ [τ] for all cτ ∈ C.

(Note that, in condition 2 above, [τ] refers to the extension described at point
1.)

Let GBIF be the set of ground built-in constant instances cτ with τ ∈ TypeF .
We extend the family ([cτ])cτ ∈C to a family ([cτ])cτ ∈ C ∪ GBIF , by interpreting
the built-in constants as expected:

– [→bool⇒bool⇒bool] as the logical implication on {true, false}
– [=τ⇒τ⇒bool] as the equality predicate in [τ] → [τ] → {true, false}
– [zeroind] as 0 and [sucind⇒ind] as the successor function for N

– [some(τ⇒bool)⇒τ] as the following function, where, for each f : [τ] →
{true, false}, we let Af = {a ∈ [τ] | f(a) = true}:

[some(τ⇒bool)⇒τ](f) =
{
choice(Af) if Af is non-empty
choice([τ]) otherwise

5 Any infinite (not necessarily countable) set would do here; we only choose N for
simplicity.

248 O. Kunčar and A. Popescu

In summary, an interpretationI is apair of families (([τ])τ∈T , ([cτ])cτ ∈C),which
in fact gives rise to an extended pair of families (([τ])τ∈Cl(T), ([cτ])cτ ∈ C ∪ GBIF).

Now we are ready to interpret the terms in TermF according to I. A valuation
ξ : VarTypeF → Set is called I-compatible if ξ(xσ) ∈ [σ]I for each xσ ∈ VarGType.
We write CompI for the set of compatible valuations. For each t ∈ TermF , we
define a function [t] : CompI → [tpOf(t)] recursively over terms as expected:

[xσ](ξ) = ξ(xσ)
[cσ](ξ) = [cσ]
[t1 t2](ξ) = [t1](ξ) ([t2](ξ))

[λxσ. t](ξ) is the function sending each
a ∈ [σ] to [t](ξ(xσ ← a)), where
ξ(xσ ← a) is ξ updated with a at xσ

(Note that this recursive definition is correct thanks to Lemma 8.(5).)
If t is a closed term, then [t] does not truly depend on ξ, and hence we can

assume [t] ∈ [tpOf(t)]. In what follows, we only care about the interpretation of
closed terms.

The above concepts are parameterizedby a fragmentF and anF -interpretation
I. If I or F are not clear from the context, we may write, e.g., [t]I or [t]F,I . If ϕ ∈
FmlaF , we say that I is a model of ϕ, written I |= ϕ, if [ϕ]I = true.

Note that the pairs (F, I) are naturally ordered: Given fragments F1 =
(T1, C1) and F2 = (T2, C2), F1-interpretation I1 and F2-interpretation I2, we
define (F1, I1) ≤ (F2, I2) to mean T1 ⊆ T2, C1 ⊆ C2 and [u]I1 = [u]I2 for all
u ∈ T1 ∪ C1.

Lemma 9. If (F1, I1) ≤ (F2, I2), then the following hold:

(1) TypeF1 ⊆ TypeF2

(2) TermF1 ⊆ TermF2
(3) [τ]F1,I1 = [τ]F2,I2 for all τ ∈ TypeF1

(4) [t]F1,I1 = [t]F2,I2 for all t ∈ TermF1

The total fragment � = (GType•,GCInst•) is the top element in this order.
Note that Type	 = GType and Term	 = GTerm.

So far, I |= ϕ, the notion of I being a model of ϕ, was only defined for
formulas ϕ that belong to TermF , in particular, that are ground formulas. As
promised, we extend this to polymorphic formulas by quantifying universally
over all ground type substitutions. We only care about such an extension for the
total fragment: Given a polymorphic formula ϕ and a �-interpretation I, we say
I is a model of ϕ, written I |= ϕ, if I |= θ(ϕ) for all ground type substitutions
θ. This extends to sets E of (polymorphic) formulas: I |= E is defined as I |= ϕ
for all ϕ ∈ E.

Theorem 10 (Soundness). Let E be a set of formulas that has a total-fragment
model, i.e., there exists a �-interpretation I such that I |= E. Then E is con-
sistent.

Proof. It is routine to verify that the deduction rules for polymorphic HOL are
sound w.r.t. our ground semantics. ��

A Consistent Foundation for Isabelle/HOL 249

4.5 The Model Construction

The only missing piece from the proof of consistency is the following:

Theorem 11. Assume D is a well-formed definitional theory. Then it has a
total-fragment model, i.e., there exists a �-interpretation I such that I |= D.

Proof. For each u ∈ GType• ∪ GCInst•, we define [u] by well-founded recur-
sion on �↓+, the transitive closure of �↓; indeed, the latter is a terminating
(well-founded) relation by the well-formedness of D, hence the former is also
terminating.

We assume [v] has been defined for all v ∈ GType• ∪ GCInst• such that
u �↓+ v. In order to define [u], we first need some terminology: We say that a
definition w ≡ s matches u if there exists a type substitution θ with u = θ(w).
We distinguish the cases:

1. There exists no definition in D that matches u. Here we have two subcases:
– u ∈ GType•. Then we define [u] = {∗}.
– u ∈ GCInst•. Say u has the form cσ. Then u �↓ σ, and hence [σ] is defined;

we define [u] = choice([σ]).
2. There exists a definition w ≡ s in D that matches u. Then let θ be such

that u = θ(w), and let t = θ(s). Let Vu = {v | u �↓+ v}, Tu = Vu ∩ Type
and Cu = Vu ∩ CInst. It follows from the definition of � that Fu = (Tu, Cu)
is a fragment; moreover, from the definition of � and Lemma 4, we obtain
that types•(t) ⊆ Tu and consts•(t) ⊆ Cu, which implies t ∈ TermFu ; hence
we can speak of the value [t]Fu,Iu obtained from the Fu-interpretation Iu =
(([v])v∈Tu

, ([v])v∈Cu
). We have two subcases:

– u ∈ GCInst•. Then we define [u] = [t]Fu,Iu .
– u ∈ GType•. Then the type of t has the form σ ⇒ bool; and since σ ∈
types•(t) ⊆ TypeFu , it follows that [σ]Fu,Iu is also defined. We have two
subsubcases:
• [∃xσ. t x] = false. Then we define [u] = {∗}.
• [∃xσ. t x] = true. Then we define [u] = {a ∈ [σ]Fu,Iu | [t](a) = true}.

Having defined the �-interpretation I = (([u])u∈GType• , ([u])u∈GCInst•), it
remains to show that I |= D. To this end, let w ≡ s be in D and let θ′ be a ground
type substitution. We need to show I |= θ′(w ≡ s), i.e., I |= θ′(w) ≡ θ′(s).

Let u = θ′(w); then u matches w ≡ s, and by orthogonality this is the only
definition in D that it matches. So the definition of [u] proceeds with case 2
above, using w ≡ s—let θ be the ground type substitution considered there.
Since θ′(w) = θ(w), it follows that θ′ and θ coincide on the type variables of
w, and hence on the type variables of s (because, in any definition, the type
variables of the right-hand side are included in those of the left-hand side);
hence θ′(s) = θ(s).

Now the desired fact follows from the definition of I, by a case analysis
matching the subcases of the above case 2. (Note that the definition oper-
ates with [t]Fu,Iu , whereas we need to prove the fact for [t]	,I ; however, since
(Fu, Iu) ≤ (�, I), by Lemma9 the two values coincide; and similarly for [σ]Fu,Iu

vs. [σ]	,I .) ��

250 O. Kunčar and A. Popescu

5 Deciding Well-Formedness

We proved that every well-formed theory is consistent. From the implementation
perspective, we can ask ourselves how difficult it is to check that the given theory
is well-formed. We can check that D is definitional and orthogonal by simple
polynomial algorithms. On the other hand, Obua [29] showed that a dependency
relation generated by overloaded definitions can encode the Post correspondence
problem and therefore termination of such a relation is not even a semi-decidable
problem.

Kunčar [19] takes the following approach: Let us impose a syntactic restric-
tion, called compositionality, on accepted overloaded definitions which makes the
termination of the dependency relation decidable while still permitting all use
cases of overloading in Isabelle. Namely, let �� be the substitutive and transitive
closure of the dependency relation � (which is in fact equal to �↓+). Then D
is called composable if for all u, u′ that are left-hand sides of some definitions
from D and for all v such that u �� v , it holds that either u′ ≤ v, or v ≤ u′, or
u′ # v. Under composability, termination of �� is equivalent to acyclicity of �,
which is a decidable condition.6

Theorem 12. The property of D of being composable and well-formed is
decidable.

Proof. The above-mentioned paper [19] presents a quadratic algorithm (in the
size of �), Check, that checks that D is definitional, orthogonal and com-
posable, and that �� terminates.7 Notice that �� =�↓+ terminates iff �↓

terminates. Thus, Check decides whether D is composable and well-formed. ��
For efficiency reasons, we optimize the size of the relation that the quadratic

algorithm works with. Let �1 be the relation defined like �, but only retaining
clause 1 in its definition. Since �↓ is terminating iff �↓

1 is terminating, it suffices
to check termination of the latter.

6 Composability reduces the search space when we are looking for the cycle—it tells
us that there exist three cases on how to extend a path (to possibly close a cycle):
in two cases we can still (easily) extend the path (v ≤ u′ or u′ ≤ v) and in one case
we cannot (v#u′). The fourth case (v and u′ have a non-trivial common instance;
formally u′ �≤ v and v �≤ u′ and there exists w such that w ≤ u′, w ≤ v), which
complicates the extension of the path, is ruled out by composability. More about
composability can be found in the original paper.

7 The correctness proof is relatively general and works for any �� : UΣ → UΣ → bool
on a set UΣ endowed with a certain structure—namely, three functions = : UΣ →
UΣ → bool, App : (Type → Type) → UΣ → UΣ and size : UΣ → N, indicating how to
compare for equality, type-substitute and measure the elements of UΣ . In this paper,
we set Σ = (K, arOf, C, tpOf) and UΣ = Type• ∪ CInst•. The definition of =,App
and size is then straightforward: two elements of Type• ∪ CInst• are equal iff they
are both constant instances and they are equal or they are both types and they are
equal; App ρ τ = ρ(τ) and App ρ cτ = cρ(τ); finally, size(τ) counts the number of type
constructors in τ and size(cτ) = size(τ).

A Consistent Foundation for Isabelle/HOL 251

6 Conclusion

We have provided a solution to the consistency problem for Isabelle/HOL’s logic,
namely, polymorphic HOL with ad hoc overloading. Consistency is a crucial,
but rather weak property—a suitable notion of conservativeness (perhaps in the
style of Wenzel [35], but covering type definitions as well) is left as future work.
Independently of Isabelle/HOL, our results show that Gordon-style type defini-
tions and ad hoc overloading can be soundly combined and naturally interpreted
semantically.

Acknowledgments. We thank Tobias Nipkow, Larry Paulson and Makarius Wenzel
for inspiring discussions and the anonymous referees for many useful comments. This
paper was partially supported by the DFG project Security Type Systems and Deduc-
tion (grant Ni 491/13-3) as part of the program Reliably Secure Software Systems (RS3,
priority program 1496).

References

1. http://www21.in.tum.de/~kuncar/documents/patch.html
2. The HOL4 Theorem Prover. http://hol.sourceforge.net/
3. Adams, M.: Introducing HOL Zero. In: Fukuda, K., Hoeven, J., Joswig, M.,

Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 142–143. Springer, Hei-
delberg (2010)

4. Anand, A., Rahli, V.: Towards a formally verified proof assistant. In: Klein, G.,
Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 27–44. Springer, Heidelberg
(2014)

5. Arthan, R.D.: Some mathematical case studies in ProofPower-HOL. In: TPHOLs
2004 (2004)

6. Barras, B.: Coq en Coq. Technical report 3026, INRIA (1996)
7. Barras, B.: Sets in Coq, Coq in Sets. J. Formalized Reasoning 3(1), 29–48 (2010)
8. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development:

Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)
9. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion. In:

ICFP 2015. ACM (2015)
10. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language

with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)

11. Dénès, M.: [Coq-Club] Propositional extensionality is inconsistent in Coq, archived
at https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html

12. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Prov-
ing Environment for Higher Order Logic. Cambridge University Press, New York
(1993)

13. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer,
Heidelberg (2007)

14. Harrison, J.: HOL Light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

15. Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg
(2006)

http://www21.in.tum.de/~kuncar/documents/patch.html
http://hol.sourceforge.net/
https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html

252 O. Kunčar and A. Popescu

16. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analy-
sis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP
2013. LNCS, vol. 7998, pp. 279–294. Springer, Heidelberg (2013)

17. Huffman, B., Urban, C.: Proof pearl: a new foundation for Nominal Isabelle.
In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50.
Springer, Heidelberg (2010)

18. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with definitions: semantics,
soundness, and a verified implementation. In: Klein, G., Gamboa, R. (eds.) ITP
2014. LNCS, vol. 8558, pp. 308–324. Springer, Heidelberg (2014)

19. Kunčar, O.: Correctness of Isabelle’s cyclicity checker: implementability of over-
loading in proof assistants. In: CPP 2015. ACM (2015)

20. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. Technical
report (2015). www.eis.mdx.ac.uk/staffpages/andreipopescu/pdf/IsabelleHOL.pdf

21. Leino, K.R.M., Moskal, M.: Co-induction simply–automatic co-inductive proofs in
a program verifier. In: FM 2014 (2014)

22. Lochbihler, A.: Light-Weight Containers for Isabelle: Efficient, Extensible,
Nestable. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 116–132. Springer, Heidelberg (2013)

23. McBride, C., et al.: [HoTT] Newbie questions about homotopy theory and advan-
tage of UF/Coq, archived at http://article.gmane.org/gmane.comp.lang.agda/
6106

24. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF. J.
Funct. Program. 9, 191–223 (1999)

25. Myreen, M.O., Davis, J.: The reflective Milawa theorem prover is sound. In:
Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 421–436. Springer,
Heidelberg (2014)

26. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer, New
York (2014)

27. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

28. Kang, J., Adibi, S.: Type classes and overloading resolution via order-sorted
unification. In: Doss, R., Piramuthu, S., ZHOU, W. (eds.) Functional Program-
ming Languages and Computer Architecture. LNCS, vol. 523, pp. 1–14. Springer,
Heidelberg (1991)

29. Obua, S.: Checking conservativity of overloaded definitions in higher-order logic. In:
Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 212–226. Springer, Heidelberg
(2006)

30. Pitts, A.: Introduction to HOL: a theorem proving environment for higher order
logic. Chapter The HOL Logic, pp. 191–232. In: Gordon and Melham [12] (1993)

31. Shankar, N., Owre, S., Rushby, J.M.: PVS Tutorial. Computer Science Laboratory,
SRI International (1993)

32. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008)

33. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356
(2008)

34. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: POPL
(1989)

35. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter,
E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer,
Heidelberg (1997)

www.eis.mdx.ac.uk/staffpages/andreipopescu/pdf/IsabelleHOL.pdf
http://article.gmane.org/gmane.comp.lang.agda/6106
http://article.gmane.org/gmane.comp.lang.agda/6106

Refinement to Imperative/HOL

Peter Lammich(B)

Technische Universität München, Munich, Germany
lammich@in.tum.de

Abstract. Many algorithms can be implemented most efficiently with
imperative data structures that support destructive update. In this paper
we present an approach to automatically generate verified imperative
implementations from abstract specifications in Isabelle/HOL. It is based
on the Isabelle Refinement Framework, for which a lot of abstract algo-
rithms are already formalized.

Based on Imperative/HOL, which allows to generate verified imper-
ative code, we develop a separation logic framework with automation to
make it conveniently usable. On top of this, we develop an imperative
collection framework, which provides standard implementations for sets
and maps like hash tables and array lists. Finally, we define a refinement
calculus to refine abstract (functional) algorithms to imperative ones.

Moreover, we have implemented a tool to automate the refinement
process, replacing abstract data types by efficient imperative implemen-
tations from our collection framework. As a case study, we apply our tool
to automatically generate verified imperative implementations of nested
depth-first search and Dijkstra’s shortest paths algorithm, which are con-
siderably faster than the corresponding functional implementations. The
nested DFS implementation is almost as fast as a C++ implementation
of the same algorithm.

1 Introduction

Using the Isabelle Refinement Framework (IRF) [13,17], we have verified sev-
eral graph and automata algorithms (e.g. [14,23]), including a fully verified LTL
model checker [6]. The IRF features a stepwise refinement approach, where an
abstract algorithm is refined, in possibly many steps, to a concrete implementa-
tion. This approach separates the correctness proof of the abstract algorithmic
ideas from the correctness proof of their implementation. This reduces the proof
complexity, and makes larger developments manageable in the first place.

The IRF only allows refinement to purely functional code, while the most
efficient implementations of (model checking) algorithms typically require imper-
ative features like destructive update of arrays.

The goal of this paper is to verify imperative algorithms using a stepwise refine-
ment approach, and automate the canonical task of replacing abstract by concrete
data structures. We build on Imperative/HOL [2], which introduces a heap monad
in Isabelle/HOL and supports code generation for several target platforms (cur-
rently OCaml, SML, Haskell, and Scala). However, the automation provided by
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 253–269, 2015.
DOI: 10.1007/978-3-319-22102-1 17

254 P. Lammich

Imperative/HOL is limited, and it has rarely been used for verification projects
so far. Thus, we have developed a separation logic framework that comes with a
verification condition generator and some automation that greatly simplifies rea-
soning about programs in Imperative/HOL.

Based on the separation logic framework, we formalize imperative data struc-
tures and integrate them into an imperative collection framework, which, similar
to the Isabelle Collection Framework [15], defines interfaces for abstract data
types and instantiates them with concrete implementations.

Next, we define a notion of data refinement between an IRF program and an
Imperative/HOL program, which supports mixing of imperative and functional
data structures, and provide proof rules for the standard combinators (return,
bind, recursion, while, foreach, etc.). We implement a tool which automatically
synthesizes an imperative program from an abstract functional one, selecting
appropriate data structures from both our imperative collection framework and
the (functional) Isabelle Collection Framework.

Finally, we present some case studies. We can use already existing abstract
formalizations for the IRF unchanged. In particular we use our tool to automat-
ically synthesize an imperative implementation of a nested DFS algorithm from
an existing abstract formalization, which is considerably faster than the original
purely functional implementation, and almost as fast as a C++ implementation
of the same algorithm. Our tool and the case studies are available at http://
www21.in.tum.de/∼lammich/refine imp hol.

The remainder of this paper is structured as follows: In Sect. 2 we present
our separation logic framework for Imperative/HOL. In Sect. 3, we describe
the imperative collection framework. The refinement from the IRF to Imper-
ative/HOL and its automation is described Sect. 4. Section 5 contains the case
studies, and, finally, Sect. 6, contains the conclusions, related work, and an out-
look to future research.

2 A Separation Logic for Imperative/HOL

Imperative/HOL provides a heap monad formalized in Isabelle/HOL, as well as
a code generator extension to generate imperative code in several target lan-
guages (currently OCaml, SML, Haskell, and Scala). However, Imperative/HOL
itself only comes with minimalistic support for reasoning about programs. In this
section, we report on our development of a separation logic framework for Imper-
ative/HOL. A preliminary version of this, which did not include frame inference
nor other automation, was formalized by Meis [19]. A more recent version is
available in the Archive of Formal Proofs [16].

2.1 Basics

We formalize separation logic [25] along the lines of Calcagno et al. [4].
We define a type pheap for a partial heap, which describes the content of a heap

at a specific set of addresses. An assertion is a predicate on partial heaps that

http://www21.in.tum.de/~lammich/refine_imp_hol
http://www21.in.tum.de/~lammich/refine_imp_hol

Refinement to Imperative/HOL 255

satisfies a well-formedness condition1. We define the type assn ⊂ pheap ⇒ bool of
assertions, and write h |= P if the partial heap h satisfies the assertion P .

We define the basic assertions true, false, emp for the empty heap, p �→r v
for a heap storing value v at address p, and p �→a l for a heap storing an array2

with values l ::α list at address p. Moreover we define the pure assertion ↑ Φ,
which holds if the heap is empty and the predicate Φ holds.

On assertions, we define the standard Boolean connectives, and show that
they form a Boolean algebra. We also define universal and existential quan-
tification. Moreover, we define the separation conjunction P ∗ Q, which holds
if the heap can be split into two disjoint parts, such that P holds on the
first, and Q on the second part. Finally, we define entailment as P =⇒A Q
iff ∀h. h |= P =⇒ h |= Q.

We prove standard properties on assertions and use them to set up Isabelle’s
proof tools to work seamlessly with assertions. For example, the simplifier pulls
existential quantifiers to the front, groups together pure assertions, and checks
pointer assertions (�→r and �→a) for consistency.

Example 1. The simplifier rewrites the assertion P∗ ↑ Φ ∗ (∃p. p �→r v∗ ↑ Ψ) to
∃p. P ∗p �→r v∗ ↑ (Φ∧Ψ), and the assertion P∗ ↑ Φ∗ (∃p. p �→r v∗ ↑ Ψ ∗p �→r w)
is rewritten to False (as p would have to point to two separate locations).

2.2 Hoare Triples

Having defined assertions, we are ready to define a separation logic on programs.
Imperative/HOL provides a shallow embedding of heap-manipulating programs
into Isabelle/HOL. A program is encoded in a heap-exception monad, i.e. it has
type α Heap = heap ⇒ (α × heap) option. Intuitively, a program takes a heap
and either produces a result of type α and a new heap, or fails.

We define the Hoare triple 〈P 〉 c 〈Q〉 to hold, iff for all heaps that satisfy
P , program c returns a result x such that the new heap satisfies Q x.3 When
reasoning about garbage collected languages, one has to frequently specify that
an operation may allocate some heap space for internal use. For this purpose,
we define 〈P 〉 c 〈Q〉t as a shortcut for 〈P〉 c 〈λx. Q x ∗ true〉.

For Hoare triples, we prove rules for the basic heap commands (allocation,
load/store from/to pointer and array, get array length), rules for the standard
combinators (return, bind, recursion, if, case, etc.), as well as a consequence and
a frame rule. Note that the frame rule, 〈P〉 c 〈Q〉 =⇒ 〈P ∗ F〉 c 〈λx. Q x ∗ F〉,
is crucial for modular reasoning in separation logic. Intuitively, it states that a
program does not depend on the content of the heap that it does not access.

1 For technical reasons, we formalize a partial heap as a full heap with an address range.
Assertions must not depend on heap content outside this address range.

2 The distinction between values and arrays is dictated by Imperative/HOL.
3 Again, for technical reasons, we additionally check that the program does not modify

addresses outside the heap’s address range, and that it does not deallocate memory.

256 P. Lammich

2.3 Automation

Application of these rules can be automated. We implement a verification con-
dition generator that transforms a Hoare triple to verification conditions, which
are plain HOL propositions and do not contain separation logic. The basic strat-
egy for verification condition generation is simple: Compute a strong enough
postcondition of the precondition and the program, and show that it entails
the postcondition of the Hoare triple. In Isabelle/HOL, this is implemented by
using a schematic variable as postcondition (i.e. a unification variable that can
be instantiated on rule application). However, there are two cases that cannot
be fully automated: frame inference and recursion.

Frame Inference. When applying a rule for a command c, say 〈P 〉c〈Q〉, the
current goal has the form 〈P ′〉c〈?R〉, where P ′ is the precondition describing the
current heap, and ?R is the unification variable that shall take the postcondition.
In order to apply the rule for c, we have to find a part of the heap that satisfies P .
In other words, we have to find a frame F such that P ′ =⇒A P ∗F . Then, we use
the frame rule to prove 〈P ∗ F ′〉c〈λx. Qx ∗ F ′〉, and with the consequence rule
we instantiate ?R to λx. Q x ∗F . A detailed discussion about automating frame
inference can be found in [28]. We implement a quite simple but effective method:
After some initial simplifications to handle quantifiers and pure predicates, we
split P and P ′ into P = P1 ∗ . . . ∗ Pn and P ′ = P ′

1 ∗ . . . ∗ P ′
n. Then, for every

Pi, we find the first P ′
j that can be unified with Pi. If we succeed to match up

all Pis, without using a P ′
j twice, we have found a valid frame, otherwise the

heuristic fails and frame inference has to be performed manually.

Recursion. Recursion over the heap monad is modeled as least fixed point over
an adequate CCPO [10]. Proving a Hoare triple for a recursive function requires
to perform induction over a well-founded ordering that is compatible with the
recursion scheme. Coming up with an induction ordering and finding a gener-
alization that is adequate for the induction proof to go through is undecidable
in general. We have not attempted to automate this, although there exist some
heuristics [3].

2.4 All-in-one Method

Finally, we combine the verification condition generator, frame inference and
Isabelle/HOL’s auto tactic into a single proof tactic sep auto, which is able to
solve many subgoals involving separation logic completely automatically. More-
over, if it cannot solve a goal it returns the proof state at which it got stuck.
This is a valuable tool for proof exploration, as this stuck state usually hints
to missing lemmas. The sep auto method allows for very straightforward and
convenient proofs. For example, the original Imperative/HOL formalization [2]
contains an example of in-place list reversal. The correctness proof requires about
100 lines of quite involved proof text. Using sep auto, the proof reduces to 6 lines
of straightforward proof text [16].

Refinement to Imperative/HOL 257

3 Imperative Collection Framework

We use our separation logic framework to implement an imperative collection
framework along the lines of [15]: For each abstract data type (e.g. set, map)
we define a locale that fixes a refinement assertion that relates abstract values
with concrete values (which may be on the heap). This locale is polymorphic in
the concrete data type ′s, and is later instantiated for every implementation. For
each operation, we define a locale that includes the locale of the abstract data
type, fixes a parameter for the operation, and assumes a Hoare triple stating the
correctness of the operation.

Example 2. The abstract set data type is specified by the following locale:

locale imp set = fixes is set :: ′a set ⇒′s ⇒ assn
assumes precise: precise is set

Here, the predicate precise describes that the abstract value is uniquely deter-
mined by the concrete value.

The insert operation on sets is specified as follows:

locale imp set ins = imp set + fixes ins :: ′a ⇒′s ⇒′s Heap
assumes ins rule: 〈is set s p〉 ins a p 〈λr. is set ({a} ∪ s) r〉t

Note that this specifies a destructive update of the set, as the postcondition does
not contain the original set p any more.

Example 3. Finite sets of natural numbers can be implemented by bitvectors.
We define a corresponding refinement assertion, and instantiate the set locale:

definition is bv :: nat set ⇒ bool array ⇒ assn [. . .]
interpretation bv: imp set is bv [. . .]

Then, we define the insert operation, and instantiate the locale imp set ins:

definition bv ins :: nat ⇒ bool array ⇒ bool array Heap [. . .]
interpretation bv: imp set ins is bv bv ins [. . .]

Using the approach sketched above, we have defined more standard data
structures for sets and maps, including hash sets, hash maps and array maps.

4 Refinement to Imperative/HOL

In the last section, we have described how to formalize imperative collection
data structures. In order to use these data structures in efficient algorithms, we
develop a refinement technique that allows us to refine a formalization of the
algorithm over abstract data types to one that uses efficient data structures.

With the Isabelle Refinement Framework [17], we have already developed a
formalism to describe and prove correct algorithms on an abstract level and then
refine them to use efficient purely functional data structures. With the Autoref
tool [13], we have even automated this process. In this section, we extend these
techniques to imperative data structures.

258 P. Lammich

4.1 Isabelle Refinement Framework

We briefly review the Isabelle Refinement Framework. For a more detailed
description, we refer to [12,17]. Programs are described via a nondeterminism
monad over the type ′anres, which is defined as follows:

datatype ′a nres = res (′a set) | fail
fun ≤ :: ′a nres ⇒ ′a nres ⇒ bool
where ≤ fail | fail �≤ res | res X ≤ res Y iff X ⊆ Y

fun return :: ′a ⇒ ′a nres where return x ≡ res {x}
fun bind :: ′a nres ⇒ (′a ⇒ ′b nres) ⇒ ′b nres
where bind fail f ≡ fail | bind (res X) f ≡ SUP x ∈ X. f x

The type ′a nres describes nondeterministic results, where res X describes the
nondeterministic choice of an element from X, and fail describes a failed asser-
tion. On nondeterministic results, we define the refinement ordering ≤ by lifting
the subset ordering, setting fail as top element. The intuitive meaning of a ≤ b
is that a refines b, i.e. results of a are also results of b. Note that the refinement
ordering is a complete lattice with top element fail and bottom element res {}.

Intuitively, return x denotes the unique result x, and bindmf denotes
sequential composition: Select a result from m, and apply f to it.

Non-recursive programs can be expressed by these monad operations and
Isabelle/HOL’s if and case-combinators. Recursion is encoded by a fixed point
combinator rec :: (′a ⇒ ′b nres) ⇒ ′a ⇒ ′b nres, such that rec F is the great-
est fixed point of the monotonic functor F wrt. the flat ordering of result sets
with fail as the top element. If F is not monotonic, rec F is defined to be fail:

rec F x ≡ if (mono′ F) then (flatf gfp F x) else fail

Here, mono′ denotes monotonicity wrt. both the flat ordering and the refinement
ordering. The reason is that for functors that are monotonic wrt. both orderings,
the respective greatest fixed points coincide, which is useful to show proof rules
for refinement.

Functors that only use the standard combinators described above are
monotonic by construction. This is also exploited by the Partial Function Pack-
age [10], which allows convenient specification of recursive monadic functions.

Building on the combinators described above, the IRF also defines while
and foreach loops to conveniently express tail recursion and folding over the
elements of a finite set.

Example 4. Listing 1 displays the IRF formalization of a simple depth-first
search algorithm that checks whether a directed graph, described by a (finite) set
of edges E, has a path from source node s to target node t: With the tool support
provided by the IRF, it is straightforward to prove this algorithm correct, and
refine it to efficient functional code (cf. [13,17]).

4.2 Connection to Imperative/HOL

In this section, we describe how to refine a program specified in the nondeter-
minism monad of the IRF to a program specified in the heap-exception monad

Refinement to Imperative/HOL 259

Listing 1. Simple DFS algorithm formalized in the IRF

definition dfs :: (′v ×′v) set ⇒′v ⇒′v ⇒ bool nres where
dfs E s t ≡ do {

(,r) ← rec (λdfs (V,v).
if v ∈ V then return (V,False)
else do {
let V = insert v V;
if v = t then return (V,True)
else foreach ({v′. (v,v′) ∈ E}) (λ(,brk). ¬brk)

(λv′ (V,). dfs (V,v′)) (V,False)
}

) ({},s);
return r

}

of Imperative/HOL. The main challenge is to refine abstract data to concrete
data that may be stored on the heap and updated destructively.

At this point, we have a design choice: One option is to formalize a nondeter-
ministic heap-exception monad, in which we encode an abstract program with
a heap containing abstract data. In a second step, this program is refined to a
deterministic program with concrete data structures. The other option is to omit
the intermediate step, and directly relate abstract nondeterministic programs to
concrete deterministic ones.

Due to limitations of the logic underlying Isabelle/HOL, we need a single HOL
type that can encode all types we want to store on the heap. In Imperative/HOL,
this type is chosen as N, and thus only countable types can be stored on the heap.
As long as we store concrete data structures, this is no real problem. However,
abstract data types are in general not countable, nor does there exist a type in
Isabelle/HOL that could encode all other types. This would lead to unnatural and
clumsy restrictions on abstract data types, contradicting the goal of focusing the
abstract proofs on algorithmic ideas rather than implementation details.

Thus, we opted for directly relating nondeterministic results with heap-
modifying programs. We define the predicate hnr (short for heap-nres refine-
ment) as follows:

hnr Γ c Γ ′ R m ≡
m �= fail −→ 〈Γ 〉 c 〈λr. Γ ′ ∗ (∃x. R x r ∗ ↑(return x ≤ m))〉t

Intuitively, for an Imperative/HOL program c, hnr Γ c Γ ′ R m states that on a
heap described by assertion Γ , c returns a value that refines the nondeterministic
result m wrt. the refinement assertion R. Additionally, the new heap contains Γ ′.

In order to prove refinements, we derive a set of proof rules for the hnr pred-
icate, including a frame rule, consequence rule, and rules relating the combina-
tors of the heap monad with the combinators of the nondeterminism monad. For

260 P. Lammich

example, the consequence rule allows us to strengthen the precondition, weaken
the postcondition, and refine the nondeterministic result:

[[Γ1 =⇒A Γ ′
1; hnr Γ ′

1 c Γ2 R m; Γ2 =⇒A Γ ′
2; m ≤ m′]] =⇒ hnr Γ1 c Γ ′

2 R m′

For recursion, we get the following rule4:

assumes
∧

cf af ax px. [[∧
ax px. hnr (Rx ax px ∗ Γ) (cf px) (Γ ′ ax px) Ry (af ax)]]

=⇒ hnr (Rx ax px ∗ Γ) (Fc cf px) (Γ ′ ax px) Ry (Fa af ax)
assumes (

∧
x. mono Heap (λf. Fc f x))

assumes precise Ry
shows hnr (Rx ax px ∗ Γ) (heap.fixp fun Fc px) (Γ ′ ax px) Ry (rec Fa ax)

Intuitively, we have to show that the concrete functor Fc refines the abstract
functor Fa , assuming that the concrete recursive function cf refines the abstract
one af. The argument of the call is refined by the refinement assertion Rx and
the result is refined by Ry. Additionally, the heap may contain Γ >, and is
transformed to Γ ′ ax px. Here, the ax and px that are attached to Γ ′ denote that
the new heap may also depend on the argument to the recursive function.

Note that a refinement assertion needs not necessarily relate heap content to
an abstract value. It can also relate a concrete non-heap assumes a Hoare triple.
For a relation R :: (′c ×′a) set we define:

pure R ≡ (λa c. ↑((c,a) ∈ R))

This allows us to mix imperative data structures with functional ones. For exam-
ple, the refinement assertion pure int rel describes the implementation of integer
numbers by themselves, where int rel ≡ Id::(int×int) set.

4.3 Automation

Using the rules for hnr, it is possible to manually prove refinement between an
Imperative/HOL program and a program in the Isabelle Refinement Framework,
provided they are structurally similar enough. However, this is usually a tedious
and quite canonical task, as it essentially consists of manually rewriting the
program from one monad to the other, thereby unfolding expressions into monad
operations if they depend on the heap.

For this reason, we focused our work on automating this process: Given some
hints which imperative data structures to use, we automatically synthesize the
Imperative/HOL program and the refinement proof. The idea is similar to the
Autoref tool [13], which automatically synthesizes efficient functional programs,
and, indeed, we could reuse parts of its design for our tool.

In the rest of this section, we describe our approach to automatically syn-
thesize imperative programs, focusing on the aspects that are different from
the Autoref tool. The process of synthesizing consists of several consecutive
phases: Identification of operations, monadifying, linearity analysis, translation,
and cleaning up.
4 Specified in Isabelle’s long goal format, which is more readable for large propositions.

Refinement to Imperative/HOL 261

Identification of Operations. Given an abstract program in Isabelle/HOL, it
is not always clear which abstract data types it uses. For example, maps are
encoded as functions ′a ⇒ ′b option, and so are priority queues or actual func-
tions. However, maps and priority queues are, also abstractly, quite different
concepts. The purpose of this phase is to identify the abstract data types (e.g.
maps and priority queues), and the operations on them. Technically, the iden-
tification is done by rewriting the operations to constants that are specific to
the abstract data type. For example, (f :: nat ⇒ nat option)x may be rewrit-
ten to op map lookup f x, provided that a heuristic identifies f as a map. If f
is identified as a priority queue, the same expression would be rewritten to
op get prio f x. The operation identification heuristic is already contained in the
Autoref tool, and we slightly adapted it for our needs.

Monadifying. Once we have identified the operations, we flatten all expressions,
such that each operation gets visible as a top-level computation in the monad.
This transformation essentially fixes an evaluation order (which we choose to be
left to right), and later allows us to translate the operations to heap-modifying
operations in Imperative/HOL’s heap monad.

Example 5. Consider the program letx = 1 ; return {x, x}.5 Note that {x, x}
is syntactic sugar for (insert x (insert x {})). A corresponding Imperative/HOL
program might be:

let x = 1; s ← bv new; s ← bv ins x s; bv ins x s

Note that the bv new and bv ins operations modify the heap, and thus have to be
applied as monad operations and cannot be nested into a plain HOL expression.
For this reason, the monadify phase flattens all expressions, and thus exposes all
operations as monad operations. It transforms the above program to6:

x ← return 1; s ← return {}; s ← return (insert x s); return (insert x s)

Note that operations that are not translated to heap-modifying operations will
be folded again in the cleanup phase.

Linearity Analysis. In order to refine data to be contained on the heap, and
destructively updated, we need to know whether the value of an operand may
be destroyed. For this purpose, we perform a program analysis on the monad-
ified program, which annotates each operand (which is a reference to a bound
variable) to be linear or nonlinear. A linear operand is not used again, and can
safely be destroyed by the operation, whereas a nonlinear operand needs to be
preserved.

Example 6. Consider the program from Example 5. Linearity analysis adds the
following annotations, where ·L means linear, and ·N means nonlinear:

x ← return 1; s ← return {}; s ← return (insert xN sL); return (insert xL sL)

5 Inserting x twice is redundant, but gives a nice example for our transformations.
6 We applied α-conversion to give the newly created variables meaningful names.

262 P. Lammich

That is, the insert operations may be translated to destructively update the
set, while at least the first insert operation must preserve the inserted value.

Translation. Let a be the monadified and annotated program. We now synthe-
size a corresponding Imperative/HOL program. Assume the program a depends
on the abstract parameters a1 . . . an, which are refined to concrete parameters
c1 . . . cn by refinement assertions R1 . . . Rn. We start with a proof obligation of
the form

hnr (R1 a1 c1 ∗ . . . ∗ Rn an cn) ?c ?Γ ′ ?R a

Recall that ? indicates schematic variables, which are instantiated during reso-
lution. We now repeatedly try to resolve with a set of syntax directed rules for
the hnr predicate. There are rules for each combinator and each operator. If a
rule would destroy an operand which is annotated as nonlinear, we synthesize
code to copy the operand. For this, the user must have defined a copy operation
for the operand’s concrete data type.

Apart from hnr-predicates, the premises of the rules may contain frame infer-
ence and constraints on the refinement assertions. Frame inference is solved by
a specialized tactic, which assumes that the frame consists of exactly one refine-
ment assertion per variable. The rules are designed to preserve this invariant.
If the content of a variable is destroyed, we still include a vacuous refinement
assertion invalid for it, which is defined as invalid ≡ λ . true.

Apart from standard frame inference goals, which have the form

Γ =⇒A R1 a1 c1 ∗ . . . ∗ Rn an cn ∗ ?F

we also have to solve goals of the form

R1 a1 c1 ∗ . . . ∗ Rn an cn ∨ R′
1 a1 c1 ∗ . . . ∗ R′

n an cn =⇒A ?Γ

These goals occur when merging the different branches of if or case combinators,
which may affect different data on the heap. Here, we keep refinement assertions
with Ri = R′

i, and set the others to invalid.

Example 7. The rule for the if combinator is

assumes P: Γ =⇒A Γ1 ∗ pure bool rel a a′

assumes RT: a =⇒ hnr (Γ1 ∗ pure bool rel a a′) b′ Γ2b R b
assumes RE: ¬a =⇒ hnr (Γ1 ∗ pure bool rel a a′) c′ Γ2c R c
assumes MERGE: Γ2b ∨A Γ2c =⇒A Γ ′

shows hnr Γ (if a′ then b′ else c′) Γ ′ R (if a then b else c)

Intuitively, it works as follows: We start with a heap described by the asser-
tion Γ . First, the concrete value for the condition a is extracted by a frame rule
(Premise P). Then, the then and else branches are translated (Premises RT and
RE), producing new heaps described by the assertions Γ2b and Γ2c, respectively.
Finally, these assertions are merged to form the assertion Γ ′ for the resulting
heap after the if statement (Premise MERGE).

Refinement to Imperative/HOL 263

Another type of side conditions are constraints on the refinement assertions.
For example, some rules require a refinement assertion to be precise (cf. Sect. 3).
When those rules are applied, the corresponding refinement assertion may not
be completely known, but (parts of) it may be schematic and only instantiated
later. For this purpose, we keep track of all constraints during translation, and
solve them as soon as the refinement assertion gets instantiated.

Using the resolution with rules for hnr, combined with frame inference and
solving of constraints, we can automatically synthesize an Imperative/HOL
program for a given abstract program. While there is only one rule for each
combinator, there may be multiple rules for operators on abstract data types,
corresponding to the different implementations. In the Autoref tool [13], we have
defined some elaborate heuristic how to select the implementations. In our pro-
totype implementation here we use a very simplistic strategy: Take the first
implementation that matches the operation. By specifying the refinement asser-
tions for the parameters of the algorithm, and declaring the implementations
with specialized abstract types, this simplistic strategy already allows some con-
trol over the synthesized algorithm. In future work, we may adopt some more
elaborate strategies for implementation selection.

Sometimes, functional data structures are more adequate than imperative
ones, be it because they are accessed in a nonlinear fashion, or because we
simply have no imperative implementation yet. Pure refinement assertions allow
for mixing of imperative and functional data structures, and our tool can import
rules from the Isabelle Collection Framework, thus making a large amount of
functional data structures readily available.

Cleaning Up. After we have generated the imperative version of the program, we
apply some rewriting rules to make it more readable. They undo the flattening
of expressions performed in the monadify phase at those places where it was
unnecessary, i.e. the heap is not modified. Technically, this is achieved by using
Isabelle/HOL’s simplifier with an adequate setup.

Example 8. Recall the DFS algorithm from Example 4. With a few (<10) lines
of straightforward Isabelle text, our tool generates7 the imperative algorithm
displayed in Listing 2. From this, Imperative/HOL generates verified code in
its target languages (currently OCaml, SML, Haskell, and Scala). Moreover, our
tool proves the following refinement theorem:

hnr (is graph nat rel E Ei ∗ pure nat rel s si ∗ pure nat rel t ti)
(dfs impl Ei si ti)
(pure nat rel t ti ∗ invalid s si ∗ is graph nat rel E Ei)
(pure bool rel)
(dfs E s t)

7 Again, we applied α-conversion, to make the generated variable names more read-
able.

264 P. Lammich

Listing 2. Imperative DFS algorithm generated by our tool.

dfs impl Ei si ti ≡ do {
V ← bv new;
(,r) ← heap rec (λdfs (V,v). do {
visited ← bv memb v V;
if visited then return (V,False)
else do {
V ← bv ins v V;
if v = ti then return (V,True)
else do {
succ list ← succi Ei v;
imp nfoldli succ list (λ(, brk). return (¬ brk))

(λv (V,). dfs (V,v)) (V,False)
}

}
}) (V,si);
return r

}

If we combine this with the correctness theorem of the abstract DFS algorithm
dfs, we immediately get the following theorem, stating total correctness of our
imperative algorithm:

corollary dfs impl correct:
finite (reachable E s) =⇒
〈is graph nat rel E Ei〉

dfs impl Ei s t
〈λr. is graph nat rel E Ei ∗ ↑(r ←→ (s,t)∈E∗)〉t.

5 Case Studies

In this section, we present two case studies: We apply our method to a nested
depth-first search algorithm and Dijkstra’s shortest paths algorithm. Both algo-
rithms have already been formalized within the Isabelle Refinement Frame-
work [6,22,23], and we were able to reuse the existing abstract algorithms and
correctness proofs unchanged. The resulting Imperative/HOL algorithms are
considerably more efficient than the original functional versions.

5.1 Nested Depth-First Search

For the CAVA model checker [6], we have verified various nested depth-first
search algorithms [26]. Here, we pick a version from the examples that come
with the Isabelle Collection Framework [11]. It contains an improvement by

Refinement to Imperative/HOL 265

Holzmann et al. [8], where the search already stops if the inner DFS finds a path
back to a node on the stack of the outer DFS.

From the existing abstract formalization, it takes about 160 lines of mostly
straightforward Isabelle text to arrive at the generated SML code and the corre-
sponding correctness theorem, relating the imperative algorithm to its specifica-
tion. The main part of the required Isabelle text consists of declaring parametricity
rules for specific algebraic data types defined by the abstract formalization, and
could be automated.

We compile the generated code with MLton [20] and benchmark it against
the original functional refinement and an unverified implementation of the same
algorithm in C++, taken from material accompanying [26]. The algorithm is
run on state spaces extracted from the BEEM benchmark suite [24]: dining
philosophers and Peterson’s mutual exclusion algorithm. We have checked for
valid properties only, such that the search has to explore the whole state space.
The results are displayed in the table below:

Model Property #States Fun Fun* Imp Imp* C++ (O3) C++ (O0)

phils.4 φ1 353668 975 75 70 63 48 66

phils.5 517789 1606 120 113 108 83 112

phils.4 G(true) 287578 740 59 53 46 40 54

phils.5 394010 1156 83 77 71 64 85

peterson.3 φ2 58960 119 9 7 5 5 7

peterson.4 1120253 2476 184 142 110 111 158

peterson.3 G(true) 29289 55 4 3 2 3 4

peterson.4 576156 1314 88 70 55 54 78

where φ1 = G(one0 =⇒ one0 W eat0) and φ2 = G(wait0 =⇒ F (wait0) ∨ G(¬ncs0))

The first column displays the name of the model, the second column the
checked property, and the third column displays the number of states. The
remaining columns show the time in ms required by the different implemen-
tations, on a 2.2 GHz i7 quadcore processor with 8GiB of RAM. Fun denotes
a purely functional implementation with red-black trees. Fun* denotes a purely
functional implementation, relying on an unverified array implementation sim-
ilar to Haskell’s Array.Diff. Imp denotes the verified implementation generated
by our tool, which uses array lists. Imp* denotes a verified implementation gen-
erated after hinting our tool to preinitialize the array lists to the correct size
(which required 5 extra lines of Isabelle text), such that no array reallocation
occurs during the search. Finally, the C++ columns denote the unverified C++
implementation, which uses arrays of fixed size. It was compiled using gcc 4.8.2
with (O3) and without (O0) optimizations.

The results are quite encouraging: Our tool generates code that is more than
one order of magnitude faster than the purely functional code. We are also faster
than the Fun*-implementation, which depends on an unverified component, and
faster than the unoptimized C++ implementation. For the philosopher models,

266 P. Lammich

we come close to the optimized C++ implementation, and for the Peterson
models, we even catch up.

5.2 Dijkstra’s Shortest Paths Algorithm

We have performed a second case study, based on an existing formalization of
Dijkstra’s shortest paths algorithm [23]. The crucial data types in the exist-
ing formalization are a priority queue, a map from nodes to current paths and
weights, and a map from nodes to outgoing edges that represents the graph.
It took us about 130 lines of straightforward Isabelle text to set up our tool to
produce an imperative version of Dijkstra’s algorithm, using arrays for the maps.
Currently, we do not have an imperative priority queue data structure, so we
reused the existing functional one which is based on finger trees [7], demonstrat-
ing the capability of our tool to mix imperative and functional data structures.
We benchmark our implementation (Imp) against the original functional version
(Fun), and a reference implementation in Java (Java), taken from Sedgewick
et al. [27]. The inputs are complete graphs with random weights and 1300 and
1500 nodes (cl1300, cl1500), as well as two examples from [27] (medium, large).
The required times in ms are displayed in Fig. 1:

Name Fun Imp Java
cl1300 278 167 28
cl1500 378 219 29

medium 2 2 3
large 45606 28861 1490

Fig. 1. Dijkstra benchmark

The results show that a significant speedup
(factor 1.5–2) can be gained by replacing only
some of the functional data structures by imper-
ative ones. However, we are still one order of
magnitude slower than the reference implemen-
tation in Java. Our profiling results indicate
that most of the time in the Imperative/HOL
implementation is spent to manage the finger
tree-based priority queue, and we are currently

formalizing an array-based min-heap — the same data structure as used in the
Java implementation.

6 Conclusion

We have presented an Isabelle/HOL-based approach to automatically refine func-
tional programs specified over abstract data types to imperative ones using heap-
based data structures. Not only the program, but also the refinement proof is
generated, such that we get imperative programs verified in Isabelle/HOL.

Our approach is based on the Isabelle Refinement Framework, for which many
formalized algorithms already exist. These can now be refined to imperative
implementations, without redoing their correctness proofs.

We have implemented a prototype tool, which we applied to generate a ver-
ified nested DFS algorithm, which is almost as efficient as an unverified imple-
mentation of the same algorithm in C++. Moreover, our approach can mix
refinements to functional and imperative data structures, which we demon-
strated by a refinement of Dijkstra’s algorithm, where the priority queue is

Refinement to Imperative/HOL 267

functional, but the graph representation and some maps are imperative. We
gained a speedup of factor 1.5–2 wrt. the purely functional version, but are still
an order of magnitude slower than an unverified implementation in Java.

Apart from extending the imperative collection framework by more data
structures, future work includes improving the automation. Another interesting
direction is to allow sharing of read-only data on the heap, which also would
allow refinement of nested abstract data types, e.g. sets of sets to arrays of
pointers to arrays. Fractional permissions [1] may be the right tool to achieve
this.

6.1 Related Work

We are not aware of interactive theorem prover-based tools to automatically
refine functional to imperative programs.

Separation logic has been implemented for various interactive theorem provers,
e.g. [9,18,21,28]. The work closest to ours is probably the Ynot project [21]. They
formalize a heap monad, a separation logic, and imperative data structures in Coq.
Their code generator targets Haskell. However, we are not aware of any perfor-
mance benchmarks.

For Isabelle/HOL, there is a second separation logic framework [9], which
has been developed independently of ours. It can be instantiated to various heap
models, while ours is specialized to Imperative/HOL. However, the provided
automation is less powerful than ours.

The HOLFoot tool [28] implements a separation logic framework in HOL4.
While it provides more powerful automation than our framework, its simplistic
imperative language is less convenient for formalizing complex algorithms.

In Coq, various imperative OCaml programs, including Dijkstra’s shortest
paths algorithm, have been verified with characteristic formulas [5]. Apart from
the genuine characteristic formula technique, the main difference to our work is
that we use a top-down approach, refining an abstract algorithm down to exe-
cutable code, while they use a bottom-up approach, starting with a translation
of the OCaml code to characteristic formulas.

Acknowledgements. We thank Rene Meis for formalizing the basics of separation
logic for Imperative/HOL. Moreover we thank Thomas Tuerk for interesting discussions
about automation of separation logic.

References

1. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270. ACM (2005)

2. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008)

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL 2009, pp. 289–300 (2009)

268 P. Lammich

4. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic.
LICS 2007, 366–378 (2007)

5. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: ICFP, pp. 418–430. ACM (2011)

6. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013)

7. Hinze, R., Paterson, R.: Finger trees: A simple general-purpose data structure. J.
Funct. Program. 16(2), 197–217 (2006)

8. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: SPIN.
Discrete Mathematics and Theoretical Computer Science, vol. 32, pp. 23–32.
American Mathematical Society (1996)

9. Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 332–337. Springer, Heidelberg
(2012)

10. Krauss, A.: Recursive definitions of monadic functions. In: Proceedings of PAR,
vol. 43, pp. 1–13 (2010)

11. Lammich, P.: Collections framework. In: Archive of Formal Proofs, Dec 2009.
http://afp.sf.net/entries/Collections.shtml. Formal proof development

12. Lammich, P.: Refinement for monadic programs. In: Archive of Formal Proofs
(2012). http://afp.sf.net/entries/Refine Monadic.shtml. Formal proof development

13. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013)

14. Lammich, P.: Verified efficient implementation of gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558,
pp. 325–340. Springer, Heidelberg (2014)

15. Lammich, P., Lochbihler, A.: The isabelle collections framework. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg
(2010)

16. Lammich, P., Meis, R.: A separation logic framework for imperative hol. In:
Archive of Formal Proofs, Nov 2012. http://afp.sf.net/entries/Separation Logic
Imperative HOL.shtml. Formal proof development

17. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 166–182. Springer, Heidelberg (2012)

18. Marti, N., Affeldt, R.: A certified verifier for a fragment of separation logic. In:
PPL-Workshop (2007)

19. Meis, R.: Integration von Separation Logic in das Imperative HOL-Framework.
Master Thesis, WWU Münster (2011)

20. MLton Standard ML compiler. http://mlton.org/
21. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Rea-

soning with the awkward squad. In: ICFP (2008)
22. Neumann, R.: A framework for verified depth-first algorithms. In: Workshop on

Automated Theory Exploration (ATX 2012), pp. 36–45 (2012)
23. Nordhoff, B., Lammich, P.: Formalization of Dijkstra’s algorithm. In: Archive of

Formal Proofs, Jan 2012. http://afp.sf.net/entries/Dijkstra Shortest Path.shtml.
Formal proof development

24. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

http://afp.sf.net/entries/Collections.shtml
http://afp.sf.net/entries/Refine_Monadic.shtml
http://afp.sf.net/entries/Separation_Logic_Imperative_HOL.shtml
http://afp.sf.net/entries/Separation_Logic_Imperative_HOL.shtml
http://mlton.org/
http://afp.sf.net/entries/Dijkstra_Shortest_Path.shtml

Refinement to Imperative/HOL 269

25. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of Logic in Computer Science (LICS), pp. 55–74. IEEE (2002)

26. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190.
Springer, Heidelberg (2005)

27. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)
28. Tuerk, T.: A separation logic framework for HOL. Technical report UCAM-CL-

TR-799, University of Cambridge, Computer Laboratory, June 2011

Stream Fusion for Isabelle’s Code Generator

Rough Diamond

Andreas Lochbihler(B) and Alexandra Maximova

Institute of Information Security, Department of Computer Science,
ETH Zurich, Zürich, Switzerland
andreas.lochbihler@inf.ethz.ch

Abstract. Stream fusion eliminates intermediate lists in functional code.
We formalise stream fusion for finite and coinductive lists in Isabelle/HOL
and implement the transformation in the code preprocessor. Our initial
results show that optimisations during code extraction can boost the per-
formance of the generated code, but the transformation requires further
engineering to be usable in practice.

1 Introduction

Over the last decade, code extraction spurred interest in writing executable spec-
ifications rather than abstract models in theorem provers [7,12]. For example, it
is now possible to verify a conference management system in a prover and com-
pile the model into a usable implementation [7]. Yet, satisfactory performance
is hard to achieve. Existing work on efficiency [8,9] focuses on making efficient
data structures available in the prover. The potential of optimisation during code
extraction has been neglected so far.

Code extraction can boost efficiency in two ways. On the one hand, the gen-
erated code can use optimised libraries of the target language. To that end, one
specifies manually how types and functions in the logic are mapped to the library.
Such a mapping is unverified, i.e., the mapping and the libraries become part of
the trusted code base. This is against the spirit of verification and should thus
be avoided. On the other hand, extraction itself can transform and optimise the
code. This seems sensible for three reasons. First, the transformations and the
verification are carried out in the same formal framework. This ensures that they
fit together. Second, the extractor can exploit the proven theorems (e.g., invari-
ants, congruences) for optimisation. This knowledge gets lost during translation,
as only the definitions are extracted. Thus, the target language compiler cannot
exploit it. Third, the evaluation order and strictness requirements of the logic may
be weaker than in the target language. This gives the extractor more freedom.

There is little benefit in re-implementing in the extractor all optimisations
of the target language. Instead, one should focus on transformations that enable
more optimisations in the target language. Fusion techniques [1,4,13] are a good
candidate, as they transform a function designed for high-level proofs into one
designed for optimisation.
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 270–277, 2015.
DOI: 10.1007/978-3-319-22102-1 18

Stream Fusion for Isabelle’s Code Generator 271

In this paper, we focus on stream fusion (see Sect. 2 for an introduction), as it
is more powerful than other fusion techniques [1,3]. We have formalised stream
fusion in Isabelle/HOL with its restrictive type system for finite and coinductive
lists and implemented the transformation in the code generator (Sect. 3). It is
designed such that fusion affects neither definitions nor proofs in applications.
Our evaluation on micro-benchmarks shows that the transformation improves
the run time of the generated code by 24 %–93 % (Sect. 4). Unfortunately, the
transformation hardly triggers for applications at present. We have identified the
obstacles and discuss how they could be overcome (Sect. 6).

The formalisation and implementation are available online [11].

2 Background on Stream Fusion

Stream fusion [1–3] transforms programs to enable optimisations. Consider, for
example, the program sum-odd -sq n = sum (map sq (filter odd [1..n])). The
function sum-odd -sq computes the sum of the squares (computed by sq) of all
odd numbers up to n. The definition is designed for proving, as it composes
functions like building blocks, so proofs can use the existing lemmas about them.
Yet, if sum-odd -sq is implemented as given, three lists are allocated at run-
time: all numbers up to n, all odd numbers up to n, and their squares. In lazy
languages, the lists are not allocated as a whole, but the cells still are. Ideally, no
list would be needed at all. But as sum, map, and filter are recursive, compilers
are unlikely to inline and optimise them aggressively.

Stream fusion transforms sum-odd -sq such that there is only one recursive
function left. Then, subsequent optimisations like inlining and call specialisation
can get rid of the intermediate allocations. To that end, it replaces a list of type
α list by a stream, which consists of a generator g ::σ ⇒ (α, σ) step and a state
s ::σ. Here, step has three constructors: Done indicates the end of the stream,
Yield x s produces the next element x and a new state s, and Skip s represents
a stuttering step. Lists and streams are linked via two functions stream and
unstream, which satisfy unstream (stream, xs) = xs.

stream [] = Done stream (x · xs) = Yield x xs
unstream (g, s) = (case g s of Done ⇒ [] | Skip s′ ⇒ unstream (g, s′)

| Yield x s′ ⇒ x · unstream (g, s′))

Functions on lists fall into three groups: producers such as [..] return a
list, consumers like sum take a list, and transformers (e.g., filter and map) do
both. Every such function f has a stream counterpart fS. For example, filterS
transforms a generator g into another generator filterS P g as follows.

filterS P g s = (case g s of Done ⇒ Done | Skip s′ ⇒ Skip s′

| Yield x s′ ⇒ if P x then Yield x s′ else Skip s′)

A fusion equation of the form f xs = unstream (fS stream, xs) links f and fS,
e.g., filterP xs = unstream (filterSP stream, xs). Equations for producers and

272 A. Lochbihler and A. Maximova

consumers omit stream and unstream as in [n..m] = unstream ([..m]S , n) and
sum xs = sumS stream xs.

The stream fusion transformation operates in two steps. First, it replaces
all list functions with stream functions using the fusion equations. This intro-
duces conversions from streams to lists and back. Second, it eliminates adja-
cent conversions as in unstream (f1 stream, unstream (f2 g, s)), i.e., we get
unstream (f1 (f2 g), s). In the end, only functions on streams should be left.
Coutts [1] identifies sufficient conditions for this to happen. Among others, only
consumers of a stream may be recursive and transformers must pass Skips along
unchanged. Then, later compiler stages can inline the functions and eliminate
the step constructors and thereby the unnecessary allocations.

Note that the second step can change the type σ of the state for f1. That is
why streams actually have the existential type ∃σ. (σ ⇒ (α, σ) step) × σ. Thus,
a consumer or transformer cannot examine the state type of the stream it takes.
Hence, it can use the state only via the supplied generator, i.e., it behaves the
same for all state types.

Transforming a function on lists to one on streams must currently be done
manually. So, stream fusion requires that the programmer uses only library func-
tions for which the setup has been provided. This restriction applies to other
fusion techniques, too [4,13].

3 Formalising and Performing Stream Fusion
in Isabelle/HOL

Due to the restriction to pre-defined library functions, it is sensible to express
fusion in HOL and prove it correct. Otherwise, the generated code must use
those library functions of the target language, provided that they are available
(we only know of list implementations in GHC [2,3]). Such adaptations exist
partly, e.g., for the Haskell function concatMap, but they are unverified and
error-prone, so it is better to avoid them.

Unfortunately, stream fusion cannot be formalised as is in HOL for two rea-
sons. First, HOL does not have existential type quantifiers. Thus, the type vari-
able σ cannot be hidden in the stream type. Consequently, the elimination of
adjacent occurrences of stream and unstream cannot be expressed as an equal-
ity in HOL, because the state type changes. Neither would Coutts’ induction
proof over types with a logical relation [1] work, as HOL types are not syntactic.
Second, stream fusion is designed for coinductive sequence types, as generators
need not terminate. However, the formalisation should support finite lists, too,
as they are the workhorse in Isabelle/HOL. Even coinductive lists [10], which
may be infinite, pose a definitional challenge, as a generator might always return
Skip, i.e., it refuses to decide whether the list ends. In a domain-theoretic setting,
unstream could return undefined, but in HOL it must make a choice.

We avoid the first problem by changing the format of the fusion equa-
tions. In the former f xs = unstream (fS stream, xs), we instantiate xs with
unstream (g, s) and eliminate the stream-unstream pair immediately in the equa-
tion. Thus, our format

Stream Fusion for Isabelle’s Code Generator 273

f (unstream (g, s)) = unstream (fS g, s) (1)

avoids stream entirely. Both formats are equivalent, as we get the standard equa-
tion back by setting g = stream and s = xs and rewriting with unstream (stream,
xs) = xs. In our example, we have [x..y] = unstream ([.. y]S , x) and filter P
(unstream (g, s)) = unstream (filterS P g, s) and sum (unstream (g, s)) =
sumS g s.

We address the second problem by defining two subtypes of generators. First,
terminating generators that always reach Done after finitely many iterations.
Second, productive generators whose iteration contains only finitely many con-
secutive Skips. The subtypes are defined using typedef and implemented via
data refinement in the code generator [5]. For finite lists, we define unstream on
terminating generators by well-founded recursion. Thus, well-founded induction
is our proof principle for the fusion equations. For coinductive lists, we define
unstream on arbitrary generators as a least fixpoint in the domain of functions
on prefix-ordered lists [10], and proofs are by fixpoint induction. Thus, unstream
interprets infinitely many consecutive Skips as the end of the list. Additionally,
we lift unstream to the type of productive generators, as some functions have
fusible implementations only for productive generators. For example, concatena-
tion ++ of two coinductive lists is fusible only if the first list has a productive gen-
erator. Otherwise, the fusion equation unstream (g1, s1) ++ unstream (g2, s2) =
unstream (appendS g1 g2 s2, s1) does not hold: for g1 = Skip, the left hand side
is unstream (g2, s2), but the right hand side equals [], as appendS must pass
Skips along.

We have defined stream versions for the fusible list functions in Isabelle/
HOL’s list library, i.e., 4 producers, 17 transformers, and 13 consumers, and
proved fusion equations for them. For concatMap, we also formalised the flatten
operator from [3], which is easier to optimise. The consumers were the easiest, as
they can be defined in terms of their list counterpart and unstream. The fusion
equation and the recursive code equations were proved automatically from the
definition. Producers and transformers are not recursive either, but the proofs of
termination and the fusion equation require inductions. For coinductive lists, we
have 3 producers, 10 transformers, and 7 consumers. When possible, they come
in two versions for productive and arbitrary generators. Proofs are by induction
on productivity and fixpoint induction, respectively.

The stream fusion transformation itself is implemented as a rewrite proce-
dure in the code generator. Its preprocessor invokes the procedure on all subex-
pressions of the right-hand side of each code equation. The procedure tries to
rewrite the given expression with the fusion equations. It succeeds only if there
are no unstream functions left at the end; otherwise, the transformation is dis-
carded for this invocation. Our format (1) for the fusion equations ensures that
the rewriting terminates, as the unstreams are pushed from producers outwards
through transformers to consumers. The check for left-over unstreams ensures
that fusion transformation is complete, as only consumers can eliminate the
unstreams that producers have introduced. It does not seem sensible to leave
unstreams in the code, although other fusion systems do so [3,4]. In our setting,

274 A. Lochbihler and A. Maximova

the target language compiler does not know that stream and unstream cancel
out. Thus, the conversions would end up in the compiled code and might slow
down the execution.

Our implementation is extensible. Users can register new unstream functions
for other sequence types and new fusion equations for their constants. Overlap-
ping fusion equations are tried in the order of registration. This allows us to
use a specialised fusion equation for flatten when the inner generator does not
depend on the outer’s state.

4 Evaluation

To evaluate the potential of stream fusion in Isabelle/HOL, we applied it to three
micro-benchmarks (enum, nested, merge) from [3]. They all consist of folding
addition on integers over lists generated by concatMap and [..], i.e., they are
designed to demonstrate the potential benefit of fusion. We generated Haskell
and SML code with fusion enabled and disabled, and compiled it under GHC,
PolyML, and mlton. Table 1 lists the run times averaged over ten runs (the
parameter n has been set to 10 000 for enum and merge and to 1000 for nested).
The measurements were performed on a 64-bit 2.4 GHz Intel i7-3630QM with
16 GB of RAM running Ubuntu Linux 12.04 LTS.

Surprisingly, the Haskell code with stream fusion enabled is slower than with-
out. By looking at GHC’s intermediate representation of the programs, we dis-
covered that GHC does not eliminate all step constructors, because it does not
specialise the consumer foldlS to the given combination of transformers and
producers. Apparently, foldlS itself being recursive prevents the transformation.
We manually applied the static argument transformation (SAT) to the gener-
ated consumer code such that the recursion occurs only in a nested function
as shown in Fig. 1. Then, the specialisation happens and stream fusion enables
run time improvements between 31 % and 42 % (row fusion + SAT in Table 1).
Unfortunately, Isabelle’s code generator cannot generate recursive subfunctions,
although this can be expressed with local contexts in Isabelle/HOL itself.

The SML tests show that heavily optimising compilers like mlton (approx.
93 % faster) profit from stream fusion more than less optimising ones like PolyML
(24 %–32 % faster). The manual SAT hardly affects PolyML and mlton as the
differences are not statistically significant. Note that the folding in the test cases

Table 1. Run times in seconds averaged over ten runs; the relative standard deviation
is <2.2 %.

Compiler GHC 7.8.4 with -O3 PolyML 5.5.2 mlton 20100608

Micro-benchmark enum nested merge enum nested merge enum nested merge

No fusion 1.33 5.24 1.38 16.2 60.1 16.6 5.19 30.4 5.48

Fusion 1.53 5.61 1.48 12.3 41.1 12.3 .395 1.89 .392

Fusion+ SAT .918 3.05 .934 12.3 41.1 12.3 .388 1.90 .389

Stream Fusion for Isabelle’s Code Generator 275

foldlS g f z s =
(case generator g s of {
Done − > z;
Skip a − > foldlS g f z a;
Yield a sa − > let { za = f z a; }
in Prelude.seq za (foldlS g f za sa); });

foldlS g f = go
where { go z s = (case generator g s of {

Done − > z;
Skip sa − > go z sa;
Yield a sa − > let { za = f z a; }
in Prelude.seq za (go za sa); })};

Fig. 1. Haskell code for foldlS as generated by Isabelle (left) and after manually apply-
ing SAT (right). The cast operator generator applies a terminating generator to a state.

ensures that everything gets evaluated eventually. Thus, the performance gains
are due to saving allocations and enabling subsequent optimisations. In particu-
lar, the effects of laziness introduced by stream fusion can be neglected. Fusion
replaces strict lists with streams a.k.a. lazy lists, i.e., it introduces laziness. This
can result in huge savings, as we noted previously [9].

5 Related Work

Coutts [1] introduced stream fusion for Haskell and identified sufficient condi-
tions for stream fusion being an optimisation. He calls our fusion equations “data
abstraction properties” and proves some of them on paper, but his implementa-
tion uses the traditional format. He justifies eliminating stream-unstream pairs
by induction over type syntax and invariants preserved by a fixed set of library
functions.

Recently, Farmer et al. [3] showed that stream fusion outperforms other fusion
techniques [4,13] when concatMap receives special treatment. Unlike in GHC’s
RULES system, the fusion equations necessary for that can be directly expressed
in Isabelle.

Huffman [6] formalised stream fusion in Isabelle/HOLCF and proved fusion
rules for seven functions on domain-theoretic lists. He focuses on proving Coutts’
fusion equations correct, but does not implement the transformation itself. As
HOLCF is incompatible with the code generator, we cannot use his work for our
purposes.

Lammich’s framework [8] transforms Isabelle/HOL programs such that they
use efficient data structures. It assumes that the user has carefully written the
program for efficiency. So, it does not attempt to eliminate any intermediate
data structures.

6 Conclusion and Future Work

We have formalised stream fusion in Isabelle/HOL and implemented it in its
code generator. Our initial results show that transformations performed during
code extraction from theorem provers can make the compiled code much faster.

In fact, our implementation is just a first step. The transformation works well
on code written with fusion in mind as in [9]. Yet, it hardly triggers in ordinary

276 A. Lochbihler and A. Maximova

user-space programs. For example, the termination checker CeTA [12] gener-
ates 38 K lines of Haskell code, but stream fusion applies only once. Two main
issues prevent performing stream fusion more widely. First, we perform fusion
only when a single code equation contains the complete chain from producers
via transformers to consumers. That is, if the calls to the producer and con-
sumer occur in different functions, the preprocessor cannot see this and fusion
is not applied. Control operators and let bindings break the chain, too. The
first issue can be addressed by improving the implementation. Transformations
like let floating and inlining of non-recursive functions can help to bring fusible
functions together. Care is needed to ensure that sharing is preserved. Currently,
Isabelle’s code preprocessor does not support such global transformations. More-
over, for Haskell, support for local recursive functions is desirable. We leave this
as future work.

Second, list functions are often defined recursively, even if they can be expressed
with list combinators. Stream fusion ignores them, as there is no automatic con-
version to streams. Yet, this restriction applies to all fusion implementations we
know. At the moment, users must either prove the alternative definition in terms
of combinators or define the counterparts on streams themselves. Fortunately, the
existing definitions (and proofs) remain unchanged, as such additions are local.

Acknowledgements. We thank Joachim Breitner for helping with analysing the
GHC compilation. He, Ralf Sasse, and David Basin helped to improve the presentation.

References

1. Coutts, D.: Stream fusion: practical shortcut fusion for coinductive sequence types.
Ph.D. thesis, University of Oxford (2010)

2. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream fusion: from lists to streams to
nothing at all. In: ICFP 2007, pp. 315–326. ACM (2007)

3. Farmer, A., Höner zu Siederdissen, C., Gill, A.: The HERMIT in the stream. In:
PEPM 2014, pp. 97–108. ACM (2014)

4. Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In: FPCA
1993, pp. 223–232. ACM (1993)

5. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in
Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013)

6. Huffman, B.: Stream fusion. Archive of Formal Proofs, formal proof development
(2009). http://afp.sf.net/entries/Stream-Fusion.shtml

7. Kanav, S., Lammich, P., Popescu, A.: A conference management system with ver-
ified document confidentiality. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 167–183. Springer, Heidelberg (2014)

8. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013)

9. Lochbihler, A.: Light-weight containers for Isabelle: efficient, extensible, nestable.
In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998,
pp. 116–132. Springer, Heidelberg (2013)

http://afp.sf.net/entries/Stream-Fusion.shtml

Stream Fusion for Isabelle’s Code Generator 277

10. Lochbihler, A., Hölzl, J.: Recursive functions on lazy lists via domains and topolo-
gies. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 341–357.
Springer, Heidelberg (2014)

11. Lochbihler, A., Maximova, A.: Stream fusion in HOL with code generation. Archive
of Formal Proofs, formal proof development (2014). http://afp.sf.net/entries/
Stream Fusion Code.shtml

12. Sternagel, C., Thiemann, R.: Ceta 2.18. http://cl-informatik.uibk.ac.at/software/
ceta/ (2014)

13. Svenningsson, J.: Shortcut fusion for accumulating parameters & zip-like functions.
In: ICFP 2002, pp. 124–132. ACM (2002)

http://afp.sf.net/entries/Stream_Fusion_Code.shtml
http://afp.sf.net/entries/Stream_Fusion_Code.shtml
http://cl-informatik.uibk.ac.at/software/ceta/
http://cl-informatik.uibk.ac.at/software/ceta/

HOCore in Coq

Petar Maksimović1,2 and Alan Schmitt1(B)

1 Inria, Rennes, France
2 Mathematical Institute of the Serbian Academy of Sciences and Arts,

Belgrade, Serbia
alan.schmitt@inria.fr

Abstract. We consider a recent publication on higher-order process cal-
culi [12] and describe how its main results have been formalized in the
Coq proof assistant. We highlight a number of important technical issues
that we have uncovered in the original publication. We believe that these
issues are not unique to the paper under consideration and require par-
ticular care to be avoided.

1 Introduction

Computer-aided verification has reached a point where it can be applied to
state-of-the-art research domains, including compilers, programming languages,
and mathematical theorems. Our goal is to contribute to this growing effort by
formalizing a recent paper on process calculi.

The paper that we are examining is [12], by Lanese et al. It introduces
HOCore—a minimal higher-order process calculus, which features input-prefixed
processes, output processes, and parallel composition. Its syntax is as follows:

P ::= a(x).P | a〈P 〉 | P ‖ P | x | 0.

HOCore is minimal, in the sense that it features only the operators strictly
necessary for higher-order communication. For one, there are no continuations
following output messages. More importantly, there is no restriction operator,
rendering all channels global and the dynamic creation of new channels impos-
sible. The semantics of HOCore is presented in [12] in the form of a labeled
transition system and it is shown that HOCore is a Turing-complete calculus.
On the other hand, its observational equivalence is proven to be decidable. In
fact, the main forms of strong bisimilarity considered in the literature (contextual
equivalence, barbed congruence, higher-order bisimilarity, context bisimilarity,
and normal bisimilarity [4,11,18,22]) all coincide in HOCore. Moreover, their
synchronous and asynchronous versions coincide as well. Therefore, it is possible
to decide that two processes are equivalent, yet it is impossible, in the general
case, to decide whether or not they terminate. In addition, the authors give

This work has been partially supported by the ANR project 2010-BLAN-0305 PiCoq,
as well as by the Serbian Ministry of Education, Science and Technological Devel-
opment, through projects III44006 and ON174026.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 278–293, 2015.
DOI: 10.1007/978-3-319-22102-1 19

HOCore in Coq 279

in [12] a sound and complete axiomatization of observational equivalence. Our
formalization in Coq [13] addresses all of the results of [12] concerning decid-
ability of observational equivalence, coincidence of synchronous bisimilarities, as
well as the soundness and completeness of the axiomatization.

Contributions. We present a formalization of the HOCore calculus and its behav-
ioral theory in Coq. Throughout the development, we have strived to preserve
a high degree of visual and technical correspondence between, on the one hand,
the formulations of theorems and their proofs in the original paper and, on the
other hand, their Coq counterparts. We introduce in Sect. 2 the syntactic and
semantic concepts of HOCore: processes, freshness of variables and channels,
structural congruence, and the labeled transition system. In particular, we focus
on modeling bound variables using the canonical approach of Pollack et al. [16].

Sections 3 and 4 contain the main contributions of this paper. In Sect. 3, we
present the formalization of various strong bisimilarities used in [12]: higher-
order, context, normal, open normal, and IO-bisimilarity, together with the for-
mal proofs that these five bisimilarities coincide and that they are decidable.
In Sect. 4, we present the axiomatization of HOCore and the formal proof of
its soundness and completeness. In both of these sections, we detail the errors,
inaccuracies, and implicit assumptions made in the pen-and-paper proofs, and
show how to correct them. These issues are not unique to the paper under con-
sideration, and require particular care to be avoided.

Section 5 is reserved for the overview of related work. Finally, we summarize
what we have learned in Sect. 6. The complete formalization, available online,1

contains approximately 4 thousands of lines of code (kloc) of specification and
22 kloc of proofs. It was developed intermittently over a period of three years by
the authors, Simon Boulier, and Mart́ın Escarrá. It relies on the TLC library—a
general purpose Coq library equipped with many tactics for proof automation—
developed by Arthur Charguéraud.2 Due to lack of space, the details for some of
the definitions and proofs can be found in the Appendix that is available online.

2 Formalizing HOCore

2.1 Syntax

HOCore is a minimal higher-order process calculus, based on the core of well-
known calculi such as CHOCS [21], Plain CHOCS [23], and Higher-Order π-
calculus [18–20]. The main syntactic categories of HOCore are channels (a, b, c),
variables (x, y, z), and processes (P,Q,R). Channels and variables are atomic,
whereas processes are defined inductively.

An input-prefixed process a(x).P awaits to receive a process, e.g., Q, on the
channel a; it then replaces all occurrences of the variable x in the process P

1 http://www.irisa.fr/celtique/aschmitt/research/hocore/.
2 http://www.chargueraud.org/softs/tlc/.

http://www.irisa.fr/celtique/aschmitt/research/hocore/
http://www.chargueraud.org/softs/tlc/

280 P. Maksimović and A. Schmitt

with Q, akin to λ-abstraction. An output process3 a〈Q〉 emits the process Q on
the channel a. Parallel composition allows senders and receivers to interact.

The only binding in HOCore occurs in input-prefixed processes. We denote
the free variables of a process P by fv(P), and the bound ones by bv(P). In [12],
processes are identified up to the renaming of bound variables. Processes that do
not contain free variables are closed and those that do are open. If a variable x
does not occur within a process P , we say that it is fresh with respect to that
process, and denote this in the Coq development by x�P . We denote lists with
the symbol ˜ : a list of variables is, for instance, denoted by x̃. In addition, we
define two notions of size for a process P : s‖(P), for which parallel compositions
count; and s(P), for which they do not. (see online Appendix)

Structural Congruence. The structural congruence relation (≡) is the smallest
congruence relation on processes for which parallel composition is associative,
commutative, and has 0 as the neutral element.

Canonical Representation of Terms. We first address our treatment of bound
variables and α-conversion. We have opted for the locally named approach of
Pollack et al. [16]. There, the set of variables is divided into two distinct subsets:
free (global) variables, denoted by X,Y,Z, and bound (local) variables, denoted
by x, y, z. The main idea is to dispense with α-equivalence by calculating the
value of a local variable canonically at the time of its binding. For this calculation,
we rely on a height function f that takes a global variable X and a term P
within which X will be bound, and computes the value of the corresponding
local variable x. We then replace every occurrence of X with x in P .

To illustrate, consider theprocessa(x).(x ‖ x). It isα-equivalent toa(y).(y ‖ y),
for any local variable y. We wish to choose a canonical representative for this
entire family of processes. To that end, we start from the process X ‖ X, where
X is free, calculate x = fX(X ‖ X), and take this x to be our canonical repre-
sentative. In the following, we write a[X]f .P for a(fX(P)).[fX(P)/X]P .

The height function needs to meet several criteria so that it does not, for
one, return a local variable already used in a binding position around the global
variable to be replaced, resulting in a capture. We use the criteria presented in
[16] that guarantee its well-definedness. Although it is not strictly necessary to
choose a particular height function f satisfying these criteria, it is important to
demonstrate that it exists, which we do. (see online Appendix)

3 We also refer to an output process as an output message or, simply, a message.

HOCore in Coq 281

Adjusting the Syntax. The separation of variables into local and global ones is
reflected in the syntax of processes

P, Q ::= a(x).P | a〈P 〉 | P ‖ Q | x | X | 0

which is encoded in Coq inductively as follows:

Inductive process : Set :=

| Send : chan -> process -> process

| Receive : chan -> lvar -> process -> process

| Lvar : lvar -> process

| Gvar : var -> process

| Par : process -> process -> process

| Nil : process.

Here, chan, lvar, and var are types representing channels, local variables, and
global variables, respectively. We can now define substitution without any com-
plications that would normally arise from the renaming of variables. We write
[Q/X]P for the substitution of the variable X with the process Q in P , and
[Q̃/X̃]P for the simultaneous substitution of distinct variables X̃ with processes
Q̃ in P .

Well-Formed Processes. Given our height function f , we define well-formed
processes as processes in which all local variables are bound4 and computed
using f . We refer to them as wf-processes and define the predicate wf that
characterizes them inductively. Since all subsequent definitions, such as those
of the labeled transition system, congruence, and bisimulations, consider wf-
processes only, we define a dependent type corresponding to wf-processes, by
pairing processes with the proof that they are well-formed.

Record wfprocess : Set := mkWfP { proc :> process ; wf_cond : wf proc}.

A wfprocess is a record with one constructor, mkWfP. This record contains
two fields: a process, named proc, and a proof that proc is well-formed, named
wf cond. We use Coq’s coercion mechanism to treat a wfprocess as a process
when needed. This approach allows us to reason about wf-processes directly,
without additional hypotheses in lemmas or definitions. Each time a wf-process
is constructed, however, we are required to provide a proof of its well-formedness.
To this end, we introduce well-formed counterparts for all process constructors;
e.g., we express parallel composition of wf-processes in the following way:

4 Here we have a slight overloading of terminology w.r.t. free and bound variables—
while local variables are intended to model the bound variables of the object lan-
guage, they can still appear free with respect to our adjusted syntax. For example, x
is free in the process Lvar x, and we do not consider this process to be well-formed.

282 P. Maksimović and A. Schmitt

Definition wfp_Par (p q : wfprocess) :=

mkWfP (Par p q) (WfPar p q (wf_cond p) (wf_cond q)).

where WfPar is used to construct well-formedness proofs for parallel processes:

| WfPar : forall (p q : process), (wf p) -> (wf q) -> (wf (Par p q))

Our initial development did not use dependent types, but relied on additional
well-formedness hypotheses for most lemmas instead. We have discovered that, in
practice, it is more convenient to bundle processes and well-formedness together.
We can, for instance, use Coq’s built-in notion of reflexive relations without hav-
ing to worry about relating non wf-processes. Also, we can define transitions and
congruence directly on wf-processes, thus streamlining the proofs by removing a
substantial amount of code otherwise required to show that processes obtained
and constructed during the proofs are indeed well-formed.

2.2 Semantics

The original semantics of HOCore is expressed via a labeled transition system
(LTS) applied to a calculus with α-conversion. It features the following transition
types: internal transitions P τ−−→ P ′, input transitions P a(x)−−−→ P ′, where P
receives on the channel a a process that is to replace a local variable x in the
continuation P ′, and output transitions P a〈P ′′〉−−−−−→ P ′, where P emits the process
P ′′ on channel a and evolves to P ′. This LTS is not satisfactory because input
transitions mention the name of their bound variable. For one, the following
transition has to be prevented to avoid name capture: x ‖ a(x).x a(x)−−−→ x ‖ x.
To this end, side conditions are introduced and the entire semantics is defined
up-to α-conversion to make sure terms do not get stuck because of the choice of
a bound name. To simplify the formalization, we restate it using abstractions.

Abstractions and Agents. An agent A is either a process P or an abstraction F .
An abstraction can be viewed as a λ-abstraction inside a context.

A ::= P | F F ::= (x).P | F ‖ P | P ‖ F

We call these abstractions localized, since the binder (x) does not move (the
usual approach to abstractions involves “lifting” the binder so that the abstrac-
tion remains of the form (x).P). Our approach, similar to the one in [24], allows
us to avoid recalculation of bound variables. The application of an abstraction
to a process, denoted by F • Q, follows the inductive definition of abstractions.

((x).P) • Q = [Q/x]P (F ‖ P) • Q = (F • Q) ‖ P (P ‖ F) • Q = P ‖ (F • Q)

Removal Transitions. To simplify the definition of bisimulations that allow an
occurrence of a free variable to be deleted from related processes, we also add
transitions X X−−→ 0, where a global variable dissolves into an empty process.

HOCore in Coq 283

The Labeled Transition System. The LTS consists of the following seven rules.

Inp a(x).P a−−→ (x).P Out a〈P 〉 a〈P 〉−−−−→ 0 Rem X X−−→ 0

Act1 If P α−−→ A, then P ‖ Q α−−→ A ‖ Q.
Act2 If Q α−−→ A, then P ‖ Q α−−→ P ‖ A.
Tau1 If P a〈P ′′〉−−−−−→ P ′ and Q a−−→ F , then P ‖ Q τ−−→ P ′ ‖ (F • P ′′).
Tau2 If P a−−→ F and Q a〈P ′′〉−−−−−→ Q′, then P ‖ Q τ−−→ (F • P ′′) ‖ Q′.

In these rules, α denotes an arbitrary transition label. In Coq, we represent
transitions inductively, providing a constructor for each rule. To illustrate, we
present constructors corresponding to the rules Out, In, and Rem.

| TrOut : forall a p, {{ wfp_Send a p -- LabOut a p ->> AP wfp_Nil}}

| TrIn : forall a X p, {{ wfp_Abs a X p -- LabIn a ->> AA (AbsPure X p)}}

| TrRem : forall X, {{ wfp_Gvar X -- LabRem X ->> AP wfp_Nil}}

3 Coincidence and Decidability of Bisimilarities

We now present the formalization of the decidability and coincidence theorems of
HOCore. We emphasize that, in order to arrive at those results, it was necessary
to prove a number of auxiliary lemmas about structural congruence, substitution,
multiple substitution, and transitions that were implicitly considered true in
the original paper. Some of these lemmas were purely mechanical, while others
required a substantial effort. (see online Appendix)

We begin by presenting the five forms of strong bisimilarity commonly used
in higher-order process calculi and describe their formalization in Coq. Follow-
ing [12], we first define a number of basic bisimulation clauses. We show here
only those adjusted during the formalization. (see online Appendix)

Definition 1. A relation R on HOCore processes is:

– a variable relation, if when P R Q and P X−−→ P ′, there exists a process Q′,
such that Q X−−→ Q′ and P ′ R Q′.

– an input relation, if when P R Q and P a−−→ F , there exists an abstraction
F ′, such that Q a−−→ F ′, and for all global variables X fresh in P and Q, it
holds that (F • X) R (F ′ • X).

– an input normal relation, if when P R Q and P a−−→ F , there exists an
abstraction F ′, such that Q a−−→ F ′, and for all channels m fresh in P and Q
it holds that (F • m〈0〉) R (F ′ • m〈0〉).

– closed, if when P R Q and P a−−→ F , then there exist Q′ and F ′, such that
Q a−−→ F ′, and for all closed R, it holds that (F • R) R (F ′ • R).

Definition var_relation (R : RelWfP) : Prop :=

forall (p q : wfprocess), (R p q) ->

forall (X : var) (p’ : wfprocess), {{ p -- LabRem X ->> (AP p’)}} ->

exists (q’ : wfprocess), {{ q -- LabRem X ->> (AP q’)}} /\ (R p’ q’).

284 P. Maksimović and A. Schmitt

There are two main differences between these definitions and the ones pre-
sented in [12]. The first one, as previously mentioned, is the use of abstractions
in place of variables in input transitions. The second difference is found in the
definition of a variable relation; we use the transition Rem, while the one in [12]
uses structural congruence. This change was motivated by the fact that we have
chosen to define bisimulations semantically, in terms of processes capable of exe-
cuting transitions. In that context, preserving the definition of a variable relation
from [12] and involving structural congruence would be inconsistent. Moreover,
working under the hypothesis that two processes are structurally congruent is
very inconvenient, as their structure may be completely different.

Using these clauses, we define the five forms of strong bisimulation: higher-
order (∼HO), context (∼CON), normal (∼NOR), input-output (∼o

IO), and open normal
(∼o

NOR) bisimulations. We present here only the ones that differ from those in [12].

Definition 2. A relation R on HOCore processes is:

– an input-output (IO) bisimulation if it is symmetric, an input relation, an
output relation, and a variable relation;

– an open normal bisimulation if it is symmetric, a τ -relation, an input relation,
an output normal relation, and a variable relation.

Definition IO_bisimulation (R : RelWfP) : Prop :=

(Symmetric R) /\ (in_relation R) /\ (out_relation R) /\ (var_relation R).

For each of these bisimulations, we also consider a corresponding bisimilarity,
i.e., the union of all corresponding bisimulations, and each of these bisimilarities
is proven to be a bisimulation itself. Bisimilarity can naturally be viewed as
a co-inductive notion, but its co-inductive aspects can also be expressed in a
set-theoretic way, as follows:

Definition IObis (p q : wfprocess) : Prop :=

exists R, (IO_bisimulation R) /\ (R p q).

To compare the set-theoretic and the native Coq co-inductive versions of
bisimilarity, we have also defined the latter and proven it equivalent to the set-
theoretic one by using a variation of Park’s principle [7]. We use these two defi-
nitions interchangeably, depending on which is more suited to a given proof. For
instance, the co-inductive definition is more convenient for statements in which
the candidate relations are simple and follow the formulation of the statement,
as there is no need to supply the relation during the proof process. In the cases
where the candidate relations are more complicated, however, we find it more
natural and closer to the paper proofs to use the set-theoretic definition.

We also define the extensions of ∼HO, ∼CON, and ∼NOR to open processes by
adding abstractions that bind all free variables, and denote these extensions by
∼�

HO, ∼�
CON, and ∼�

NOR, respectively. (see online Appendix)

HOCore in Coq 285

Relations and Bisimilarities “up-to”. An important notion used in our devel-
opment is that of two processes P and Q being in a relation R up to another
relation R′: assuming the processes are related by R before a transition, they
are related by R′RR′ after the transition. We establish the following connec-
tion between bisimilarities and bisimilarities “up-to”, illustrated here only for
∼o

NOR-bisimilarity, but holding for all five.

Lemma 1. Let R′ be an equivalence relation that is also an ONOR-bisimulation.
Then, p ∼o

NOR q if and only if p ∼o
NOR q up to R′.

We mainly use this technique to reason up to structural congruence. We prove
≡ is an equivalence relation, and that it is an ∼o

NOR-bisimulation. By Lemma 1,
we may reason up to ≡ to show that processes are ∼o

NOR-bisimilar. This allows
us to consider small bisimulation candidates and use ≡ after a transition to get
back in the candidate.(see online Appendix)

Existential vs. Universal Quantification of Freshness. Definitions of input, input
normal, and output normal relations all feature universal quantification on a
fresh channel and/or variable. Our formalization has revealed that this condition
leads to major problems in proving a number of statements, such as transitiv-
ity of ∼o

NOR-bisimilarity, Lemmas 1 and 3; these problems were not addressed in
[12]. To correct this, we defined existentially-quantified ∼o

IO-, ∼NOR-, and ∼o
NOR-

bisimilarities and proved they coincide with their universally-quantified coun-
terparts. We could consider closing candidate relations under variable freshness
instead, but this would complicate the formal proofs substantially. Much more
importantly, existentially-quantified IO-bisimulation cannot be avoided in the
formalization of the decidability procedure.

Decidability of IO-bisimilarity. The simplicity of IO-bisimilarity lets us show
directly that not only it is a congruence, but that it is also decidable.

Lemma 2. The following properties concerning ∼o
IO hold:

1. ∼o
IO is a congruence: if P ∼o

IO P ′, then: (1) a[X]f .P ∼o
IO a[X]f .P ′; (2) for all

Q, P ‖ Q ∼o
IO P ′ ‖ Q; and (3) a〈P 〉 ∼o

IO a〈P ′〉.
2. IO-bisimilarity and existential IO-bisimilarity coincide.
3. IO-bisimilarity and IO-bisimilarity up to ≡ coincide.
4. ∼o

IO is a τ -bisimulation.
5. ∼o

IO is decidable.

To show decidability, we specify a brute force algorithm that tests every pos-
sible transition for the two processes, up to a given depth. As IO-bisimilarity
testing always results in smaller processes (there is no τ clause in this bisim-
ilarity), we can show that this algorithm decides IO-bisimilarity, if the depth
considered is large enough. This allows us to conclude:

Theorem IObis_constructive_decidable : forall p q, { p ≈ q} + { ~(p ≈ q)}.

286 P. Maksimović and A. Schmitt

We should note here that the brute force algorithm would not be applicable
to the definition of IO-bisimilarity as stated in Definition 2, because we would
need to consider universal quantification on the fresh variable X in the case of an
input transition. However, since we have proven the equivalence of universally-
and existentially-quantified IO-bisimilarities, it is sufficient to check bisimilarity
for only one arbitrary fresh X. More importantly, we strongly emphasize that,
although the TLC library is based on classical logic, the decidability procedure
that we have formalized is fully constructive.

Coincidence of Bisimilarities. First, we address one of the two most technically
challenging lemmas of this part of the development (Lemma 4.15 of [12]).

Lemma 3. If (m[X]f .P ′) ‖ P ∼o
NOR (m[X]f .Q′) ‖ Q for some fresh m, then

P ∼o
NOR Q and P ′ ∼o

NOR Q′.

Proof. In order to show the first part of the lemma, we show that the relation

S=
∞⋃

j=1

⎧
⎨

⎩
(P, Q) :

⎛

⎝
∏

k∈1..j

mk[Xk]f .Pk

⎞

⎠ ‖ P ∼o
NOR

⎛

⎝
∏

k∈1..j

mk[Xk]f .Qk

⎞

⎠ ‖ Q

⎫
⎬

⎭

is an existential ∼o
NOR-bisimulation, where {Pi}∞

1 , {Qi}∞
1 are arbitrary processes,

{mi}∞
1 are channels fresh with respect to P , Q, {Pi}∞

1 , and {Qi}∞
1 , and each

variable Xi is fresh with respect to Pi and Qi. The proof proceeds as in [12], by
examining possible transitions of P and showing these transitions are matched
by Q. To this end, we study processes of the form (

∏
k∈1..j mk[Xk]f .Pk) ‖ P

and prove several lemmas about their properties in relation to transitions and
structural congruence. The original proof silently relies on the use of existentially-
quantified ∼o

NOR-bisimilarity and up-to structural congruence proof techniques
for this bisimilarity (up-to techniques are proven, but only for IO-bisimilarity).
These assumed results were not trivial to formally establish.

For the second part, we determined that it is unnecessary to formalize the
informal procedure to consume ∼o

NOR-bisimilar processes presented in [12]. Instead,
it is sufficient to proceed by induction on (s(P)+ o(P)), where o(P) is the num-
ber of outputs in P , and use the already proven first part, reducing the formal
proof to a technical exercise. We believe that the formalization of this consump-
tion procedure would have been very difficult and would require a substantial
amount of time and effort. This illustrates the insights one can gain through
formal proving when it comes to proof understanding and simplification. �	

We are now ready to state and prove the coincidence of bisimilarities.

Theorem 1. The five strong bisimilarities coincide in HOCore.

Proof. We prove the following implications, the direct corollary of which is our
goal: (1) ∼o

IO implies ∼�
HO; (2) ∼�

HO implies ∼�
CON; (3) ∼�

CON implies ∼�
NOR; (4) ∼�

NOR

implies ∼o
NOR; (5) ∼o

NOR implies ∼o
IO.

HOCore in Coq 287

The only major auxiliary claim that needs to be proven here is that an open
normal bisimulation also satisfies the output relation clause; this is an immediate
consequence of Lemma 3. �	

To conclude this section, we focus on the error discovered in the proof of the
right-to-left direction of Lemma 4.14 of [12], stating that higher order bisimilarity
implies IO-bisimilarity. Its proof was the most challenging to formalize in this
part of the development and this formalization has led us to several important
insights. First, we need the following auxiliary lemma.

Lemma 4. P ∼�
HO Q if and only if for all closed R̃, [R̃/X̃]P ∼HO [R̃/X̃]Q, where

X̃ = fv(P) ∪ fv(Q). (Lemma 4.13 of [12]).

While the proof of this claim takes only several lines on paper, its Coq version
amounts to more than three hundred lines of code, requiring a number of aux-
iliary lemmas that appear evident in a pen-and-paper context. These lemmas
mostly deal with permutations of elements inside a list and the treatment of
channels in the “opening” of ∼HO. We can now proceed to our desired claim.

Lemma 5. ∼�
HO implies ∼o

IO.

Discussion It suffices to prove that the relation R = {(P,Q) | [M̃/X̃]P ∼�
HO

[M̃/X̃]Q} is an IO-bisimulation, where X̃ and M̃ are, respectively, lists of vari-
ables and messages carrying 0 on fresh channels. We show R is an input, an
output, and a variable relation. The proofs of all three cases in [12] share the
same structure that relies on the application of both directions of Lemma 4.

First, the unguarded variables5 are substituted with processes of the form
m〈0〉. Then, the remaining free variables are substituted with arbitrary closed
processes R̃, using Lemma 4 left-to-right to show that the result is still in R.
Next, the processes do a transition, and it is proposed to apply Lemma 4 right-to-
left to conclude. This last step is not justified, as we now explain. The main idea
is to show that the bisimulation diagrams are closed under multiple substitution,
i.e., that for all processes P and Q, all global variables X, and all closed processes
R̃, given [R̃/X̃]P ∼HO [R̃/X̃]Q and [R̃/X̃]P α−−→ [R̃/X̃]P ′, there exists a Q′ such
that [R̃/X̃]Q α−−→ [R̃/X̃]Q′ and [R̃/X̃]P ′ ∼HO [R̃/X̃]Q′. Then, the idea is to apply
Lemma 4 right-to-left to obtain P ′ ∼�

HO Q′. This is accomplished by first showing
that there exists an S, such that [R̃/X̃]Q α−−→ S and [R̃/X̃]P ′ ∼HO S, and then
showing that there exists a Q′, such that S = [R̃/X̃]Q′. The crucial mistake is
that Q′ here depends on R̃, unless proven otherwise. Thus, the requirement for
a unique Q′ with a universal quantification on R̃ of Lemma 4 right-to-left is not
satisfied, and the lemma cannot be applied.

Our initial attempt at this proof followed this approach, which failed when
Coq refused to let us generalize R̃ since Q′ depended on it. We thus proceeded
differently, by first substituting every free variable with processes of the form
m〈0〉, using Lemma 4 left-to-right to show that we remain in the relation. We
5 Variables that appear in an execution context, i.e., those not “guarded” by an input.

288 P. Maksimović and A. Schmitt

then applied several auxiliary lemmas to finish the proof. While the error in this
proof was corrected relatively easily, its very existence in the final version of [12]
is indicative of the need for a more formal treatment of proofs in this domain, a
need further substantiated by the findings presented in the following Section.

4 Axiomatization of HOCore

In this section, we present a formal proof of the soundness and completeness
of the axiomatization of HOCore and reflect on the errors discovered in the
pen-and-paper proofs. First, we briefly outline the treatment of axiomatization
in [12]. The authors begin by formulating a cancellation lemma for ∼o

IO:

Lemma 6. For all processes P,Q,R, if P ‖ R ∼o
IO Q ‖ R, then also P ∼o

IO Q.

Next, they introduce the notion of a prime process and prime decomposition.

Definition 3. A process P is prime if P �
o
IO 0 and P ∼o

IO P1 ‖ P2 implies
P1 ∼o

IO 0 or P2 ∼o
IO 0. When P ∼o

IO

∏n
i=1 Pi, with each Pi prime, we say that∏n

i=1 Pi is a prime decomposition of P .

The authors then prove that every process admits a prime decomposition unique
up to bisimilarity and permutation of indices. Next, extended structural congru-
ence (≡E ,) is defined by adding to ≡ the following distribution law:

a(x).

(

P ‖
k−1∏

1

a(x).P

)

≡E

k∏

1

a(x).P .

Next, a reduction relation � and normal forms are defined as follows:

Definition 4. We write P � Q if there exist processes P ′ and Q′, such that
P ≡ P ′, Q′ ≡ Q, and Q′ is obtained from P ′ by rewriting a subterm of P ′ using
the distribution law left-to-right. A process P is in normal form if it cannot be
further simplified in the system ≡E using �.

Finally, the following three claims conclude the axiomatization section of [12]:

Lemma 7. If a(x).P ∼o
IO Q ‖ Q′, with Q,Q′

�
o
IO 0, then a(x).P ∼o

IO

∏k
1 a(x).R,

with k > 1 and a(x).R in normal form.

Lemma 8. For all P , Q in normal form, if P ∼o
IO Q, then P ≡ Q.

Theorem 2. ≡E is a sound and complete axiomatization of ∼o
IO in HOCore.

Our formalization of this section has led to the discovery of the following
imprecisions and errors.

HOCore in Coq 289

Cancellation Lemma. For the proof of Lemma 6 in [12], the authors attempt
to re-use the proof from [14], that proceeds by induction on the sum of sizes
of P , Q, and R. This, however, is not possible, as that proof was designed for
a calculus with operators structurally different than the ones used in HOCore.
Instead, we need to use the candidate relation R, parameterized by a natural
number n, such that P R Q at level n if and only if there exists a process R
such that s(P) + s(Q) + s(R) ≤ n and P ‖ R ∼o

IO Q ‖ R, and prove that this
candidate relation is an IO-bisimulation by total induction on n.

“Deep” Prime Decomposition. In the proof of Lemma 7, the authors in [12]
claim that every process is bisimilar to a parallel composition of a collection of
prime processes in normal form. They prove this by taking the normal form of a
process, performing a prime decomposition on this normal form, and concluding
that all of the constitutents in this prime decomposition are both prime and in
normal form. This, however, is not necessarily true, as there is no proof that
taking the prime decomposition of a process preserves the fact that it is in
normal form. In particular, the definition of primality considers only the top-
level structure of the process: we can prove that every output message a〈P 〉 is
prime for all a and P , but we cannot obtain any information on the primality of
P from this. On the other hand, normal forms are defined “in depth”. Because
of these discrepancies, the proof in [12] cannot be concluded. To remedy this,
we need to define a “deep” version of primality that recursively requires of all
sub-processes of P to be prime as well, together with the notion of “deep” prime
decomposition, using which we can prove Lemma 7 properly.

Normal Forms and the Proof of Lemma 8. The proof of Lemma 8 in [12] exhibits
several errors. It is performed by induction on s(P), simultanously proving A and
C, where A is an auxiliary lemma stating that if P is an input-prefixed process in
normal form, then it is prime, and C is the main claim. However, the induction
must actually be performed on A ∧ (A → C), since C cannot be proven otherwise
(the third case of item 2 on page 27 of [12] fails). Much more importantly, the
seemingly trivial case when P = a(x).P ′ ‖ 0 is not covered by the proof, and it
turned out that it cannot be covered at all with the proof structure as presented
in [12]. As we were unable to immediately discover an alternate proof method,
we decided to adjust the notion of normal form by disallowing empty processes in
parallel composition. This meant that normal forms could no longer be defined
using �, but had to be defined directly instead. Interestingly, we can say that
normal forms are now “more normal” w.r.t. those in [12], as they are unique
only up to commutativity and associativity of parallel composition. With these
corrections, we were able to conclude the proof of Lemma 8.

5 Related Work

We first discuss alternative approaches to the treatment of binding and α-
conversion, starting from Nominal Isabelle [10,25,27], where nominal datatypes

290 P. Maksimović and A. Schmitt

are used to represent α-equivalence classes. This extension of Isabelle has been
successfully applied in a number of formalizations of various calculi with binders
[2,15,26], and taking advantage of it would probably reduce the size of our devel-
opment. However, since one of our main results is the formalization of the decid-
ability procedure for IO-bisimulation, and since stating decidability in Isabelle
is not a trivial task, we have ultimately opted to use Coq.

The locally nameless approach [1,5] is the one most similar to the one we are
using. There, variables are also split into two categories—local and global—but
local variables are calculated by using de Bruijn indices instead of a height func-
tion. We find this approach to be both equally viable and equally demanding—
freshness and well-formedness would both have to be defined, albeit differently,
the proofs would retain their level of complexity, and the amount of code required
would not be reduced substantially.

In the Higher-Order-Abstract-Syntax (HOAS), binders of the meta-language
are used to encode the binding structure of the object language. In some set-
tings, HOAS can streamline the development and provide an elegant solution
for dealing with α-conversion, but in the case of process calculi it also brings
certain drawbacks. As stated in [9], there are difficulties with HOAS in dealing
with meta-theoretic issues concerning names, especially when it comes to the
opening of processes, to the extent that certain meta-theoretic properties that
involve substitution and freshness of names inside proofs and processes cannot
be proven inside the framework and must be postulated instead.

In light of everything previously stated in this section and since HOCore does
not have a restriction operator, we have decided to use the canonical locally
named approach [16] for variables bound by the input operator. We have not
yet considered more general approaches for name binding, such as [17]. In fact,
our development may easily be adapted to other models for binders, as long as
binders remain canonical (α-convertibility is equality).

We now turn to works related to the formalization of process calculi and
their properties. To the best of the authors’ knowledge, there have been no
formalizations of the higher-order π-calculus so far. There are, however, many
formalizations of the π-calculus in various proof assistants, including Coq, such
as [8] (where the author uses de Bruijn indices) and [9] (where the authors
use HOAS). The work closest to ours is the recent formalization in Isabelle of
higher-order Psi-calculi [15], an extension of [2] to the higher-order setting. We
have developed our own formalization because we wanted to stay as close to the
paper proofs as possible, in particular when it came to the handling of higher-
order and the definitions of the many bisimulations involved. Although we feel
that translating HOCore and its bisimulations into a higher-order psi-calculus
constitutes a very interesting problem, it is beyond the scope of this paper.

Preliminary versions of this paper have appeared in [3,6]. The former con-
tained the initial results of the effort, which included the locally nameless tech-
nique for dealing with binders, the correction of the semantics, and the results on
decidability. The latter added to this the new and more solid treatment of well-
formed processes as records and the proof of the coincidence of bisimilarities.

HOCore in Coq 291

This version rounds this formalization effort up with results on the soundness
and completeness of the axiomatization, as well as the discovery and correction
of a number of errors and imprecisions made in [12].

6 Lessons Learned and Conclusions

This formalization of HOCore in Coq has given us a deeper understanding of
both the calculus itself and the level of precision required for proving properties
of bisimulations in a higher-order setting. Moreover, it has led to the discovery of
several major flaws in the proofs of [12]. First, there was the improper generaliza-
tion of a hypothesis in the proof of Lemma 5. This flaw was due to a lapse in the
tracking of the context inside which a property is derived, and it is in precisely
such tracking that proof assistants excel. Next, the proof of Lemma 6 was incor-
rect, as it relied on a previously existing technique not applicable to higher-order
process calculi. Finally, two notions crucial for the axiomatization of HOCore—
prime decomposition and normal forms—were not defined correctly and did not
take into account, respectively, the need for structural recursion in primality and
the subtle impact of empty processes in parallel composition. These errors have
all been corrected during the formalization and did not ultimately affect the
correctness of the main results of [12], but we feel that it is their very presence
in a peer-reviewed, state-of-the-art paper that strongly underlines the need for
a more precise formal treatment of proofs in this domain.

We have also identified two missing results required by some lemmas. The
first concerns existentially-quantified bisimulations: certain properties of bisim-
ulations cannot be proven if the variables or channels featured in freshness
conditions of bisimulation clauses are universally quantified. We solved this by
introducing bisimulations with existential quantification and demonstrating that
they are equivalent to the universally quantified ones. We have also discovered
that existentially-quantified bisimulations are necessary for the formulation of
the decidability procedure. The second missing result concerns transitivity of
bisimulations, which is, in turn, required to prove that open normal bisimilarity
and existential open normal bisimilarity coincide. This claim was not trivial to
formalize; it required the use of up-to techniques, which were also left untreated
for some bisimilarities in [12].

In the end, we were able to prove the decidability of IO-bisimilarity, the main
coincidence theorem, and their supporting lemmas, as well as the results on the
soundness and completeness of the axiomatization. We realized that some of
the lemmas of the paper are actually not needed, such as Lemma 5. Addition-
ally, we significantly simplified some proofs. For instance, the proof of Lemma 3
(Lemma 4.15 in [12]) does not require the consumption procedure described
in [12]; induction on the combined measure m(P) is sufficient and more elegant.

As a side effect of our precise treatment of bound variables, we have detected
and corrected an error in the original semantics of HOCore, streamlining it in
the process. Labels for input transitions no longer contain the variable to be sub-
stituted, but evolve to a localized abstraction instead. We have also introduced

292 P. Maksimović and A. Schmitt

the deletion of a variable as a transition in the LTS, removing a special case in
the definition of the bisimulations and avoiding the use of structural congruence.

In fact, many of the choices that were made during the formalization were
guided by the intent to avoid structural congruence. Although it is very conve-
nient to be able to freely change the structure of a process, doing so interferes
considerably with local reasoning. There were cases, however, where we could not
avoid it, in particular when proving properties of normal bisimulations. There,
we have used “up-to structural congruence” techniques to keep the bisimulation
candidates small enough. We have discovered that the discord between the rigid
syntax of a formal process and the intuition that it models a “soup” where
processes can move around freely and interact with each other made the formal-
izations of some of the proofs more difficult than anticipated.

We have also proved that the co-inductive and set-theoretic definitions of
IO-bisimilarity are equivalent, and used them interchangeably, depending on the
complexity of the candidate relation at hand.

As for further work, our immediate aim is to formalize the results presented in
Sect. 5 of [12], pertaining to the correctness and completeness of IO-bisimilarity
w.r.t. barbed congruence. At this point, we have the correctness proof, which,
given Theorem 1, means that all of the five forms of bisimilarity in HOCore are
correct w.r.t. barbed congruence. Afterwards, we plan to extend the formaliza-
tion of HOCore with name restriction, before tackling more complex features
such as passivation.

In conclusion, we hope that the experience described in this paper will serve
as a motivational step towards a more systematic use of proof assistants in the
domain of process calculi.

References

1. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineer-
ing formal metatheory. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pp. 3–15. ACM, Jan 2008

2. Bengtson, J., Parrow, J.: Psi-calculi in Isabelle. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 99–114. Springer,
Heidelberg (2009)

3. Boulier, S., Schmitt, A.: Formalisation de HOCore en Coq. In: Actes des 23èmes
Journées Francophones des Langages Applicatifs, Jan 2012

4. Cao, Z.: More on bisimulations for higher order π-calculus. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 63–78. Springer,
Heidelberg (2006)

5. Charguéraud, A.: The locally nameless representation. J. Autom. Reasoning, 1–46
(2011). doi:10.1007/s10817-011-9225-2

6. Escarrá, M., Maksimović, P., Schmitt, A.: HOCore in Coq. In: Actes des 26èmes
Journées Francophones des Langages Applicatifs, Jan 2015

7. Gimenez, E.: A Tutorial on Recursive Types in Coq. Technical report No 0221
(1998)

8. Hirschkoff, D.: A full formalisation of pi-calculus theory in the calculus of construc-
tions. In: Gunter, Elsa L., Felty, Amy P. (eds.) TPHOLs 1997. LNCS, vol. 1275,
pp. 153–169. Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/s10817-011-9225-2

HOCore in Coq 293

9. Honsell, F., Miculan, M., Scagnetto, I.: pi-calculus in (co)inductive-type theory.
Theoret. Comput. Sci. 253(2), 239–285 (2000)

10. Huffman, B., Urban, C.: A new foundation for nominal Isabelle. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50. Springer, Heidelberg
(2010)

11. Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order Pi-calculus revis-
ited. Log. Meth. Comput. Sci. 1(1), 1–22 (2005)

12. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decid-
ability of higher-order process calculi. Inf. Comput. 209(2), 198–226 (2011)

13. The Coq development team. Coq reference manual (2014). version. 8.4
14. Milner, R., Moller, F.: Unique decomposition of processes. Theor. Comput. Sci.

107(2), 357–363 (1993)
15. Parrow, J., Borgström, J., Raabjerg, P., Åman Pohjola, J.: Higher-order psi-calculi.

Math. Struct. Comput. Sci. FirstView 3, 1–37 2014
16. Pollack, R., Sato, M., Ricciotti, W.: A canonical locally named representation of

binding. J. Autom. Reasoning, 1–23, May 2011. doi:10.1007/s10817-011-9229-y
17. Pouillard, N., Pottier, F.: A fresh look at programming with names and binders. In:

Proceedings of the Fifteenth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2010), pp. 217–228, Sept 2010

18. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. Ph.D. thesis, Univ. of Edinburgh, Dept. of Comp. Sci. (1992)

19. Sangiorgi, D.: Bisimulation for higher-order process calculi. Inf. Comput. 131(2),
141–178 (1996)

20. Sangiorgi, D.: π-calculus, internal mobility and agent-passing calculi. Theor. Com-
put. Sci. 167(2), 235–274 (1996)

21. Thomsen, B.: A calculus of higher order communicating systems. In: Proceedings
of POPL 1989, pp. 143–154. ACM Press (1989)

22. Thomsen, B.: Calculi for Higher Order Communicating Systems. Ph.D. thesis,
Imperial College (1990)

23. Thomsen, B.: Plain CHOCS: A second generation calculus for higher order
processes. Acta Inf. 30(1), 1–59 (1993)

24. Tiu, A., Miller, D.: Proof search specifications of bisimulation and modal logics for
the pi-calculus. ACM Trans. Comput. Logic (TOCL) 11, 13:1–13:35 (2010)

25. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reasoning 40(4), 327–
356 (2008)

26. Urban, C., Cheney, J., Berghofer, S.: Mechanizing the metatheory of LF. ACM
Trans. Comput. Log. 12(2), 15 (2011)

27. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in nominal
isabelle. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 480–500. Springer,
Heidelberg (2011)

http://dx.doi.org/10.1007/s10817-011-9229-y

Affine Arithmetic and Applications
to Real-Number Proving

Mariano M. Moscato1(B), César A. Muñoz2, and Andrew P. Smith1

1 National Institute of Aerospace, Hampton, VA 23666, USA
{mariano.moscato,andrew.smith}@nianet.org

2 NASA Langley Research Center, Hampton, VA 23681, USA
cesar.a.munoz@nasa.gov

Abstract. Accuracy and correctness are central issues in numerical
analysis. To address these issues, several self-validated computation
methods have been proposed in the last fifty years. Their common goal is
to provide rigorously correct enclosures for calculated values, sacrificing
a measure of precision for correctness. Perhaps the most widely adopted
enclosure method is interval arithmetic. Interval arithmetic performs well
in a wide range of cases, but often produces excessively large overesti-
mations, unless the domain is reduced in size, e.g., by subdivision. Many
extensions of interval arithmetic have been developed in order to cope
with this problem. Among them, affine arithmetic provides tighter esti-
mations by taking into account linear correlations between operands.
This paper presents a formalization of affine arithmetic, written in the
Prototype Verification System (PVS), along with a formally verified
branch-and-bound procedure implementing that model. This procedure
and its correctness property enables the implementation of a PVS strat-
egy for automatically computing upper and lower bounds of real-valued
expressions that are provably correct up to a user-specified precision.

1 Introduction

Formal verification of safety-critical cyber-physical systems often requires prov-
ing formulas involving real-valued computations. At NASA, examples of such
verification efforts include formally verified algorithms and operational concepts
for the next generation of air traffic management systems [6,16,19]. Provably
correct real-valued computations are also essential in areas such as analysis of
floating point programs [1–3,7], verification of numerical algorithms [9,22], and
in the formalization of mathematical results such as Kepler conjecture [8].

In general, the exact range of a nonlinear function of one or more variables
over an interval domain cannot be determined in finite time. Enclosure methods
are designed to provide sound intervals that are guaranteed to include, but may
however overestimate, the true range of a nonlinear function over a bounded
domain. More formally, given a function f : Rm → R, an interval-valued function
F : IRm → IR is obtained, where IR denotes the set of closed non-empty real
intervals, such that for all V ∈ IR

m

v ∈ V =⇒ f(v) ∈ F (V). (1)
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 294–309, 2015.
DOI: 10.1007/978-3-319-22102-1 20

Affine Arithmetic and Applications to Real-Number Proving 295

Arithmetic may be performed on intervals, by providing definitions for ele-
mentary operators, logarithmic and trigonometric functions, and other real-
valued functions that satisfy Formula (1). For example, if a = [a, a],b = [b, b] ∈
IR, then a+b = [a + b, a + b]. Such definitions yield an enclosure method called
interval arithmetic [14]. A natural interval extension E of any real expression
e is then obtained by recursively replacing in e each constant by an interval
containing the constant, each variable by its interval range, and each operator
and function by their interval equivalents. Formalizations of interval arithmetic
are available in several interactive theorem provers [4,13,21]. These formaliza-
tions also include proof strategies for performing provably correct real-valued
computations.

While correct, enclosure methods often provide imprecise calculations of
expressions involving real-valued functions due to the fact that approximation
errors quickly accumulate. To mitigate this problem, enclosure methods often
rely on the following property, which must be satisfied by any interval-valued
function F . For all U,V ∈ IR

m,

U ⊆ V =⇒ F (U) ⊆ F (V). (2)

Formula (2) enables the use of domain subdivision techniques, whereby the start-
ing domain is recursively subdivided into smaller box sub-domains, on which the
enclosure methods provide suitable precision. Branch and bound is a recursive
method for computing rigorous approximations that combines domain subdivi-
sion with pruning strategies. These strategies avoid unnecessary computations
that do not improve already computed bounds. A formally verified branch and
bound algorithm for generic enclosure methods is presented in [18].

It is well-known that enclosure methods such as interval arithmetic suffer
from the dependency problem. This problem occurs when a real variable appears
multiple times in an expression. In this case, large over-approximations may
occur when each variable is treated as an independent interval. The dependency
problem can be reduced by using enhanced data structures that, among other
things, keep track of variable dependencies. In the case of polynomial and ratio-
nal functions, a method based on Bernstein polynomials [12], provide better
precision than interval arithmetic at the cost of increased computational time.
Multivariate Bernstein polynomials and proof-producing strategies for rigorous
approximation based on their properties are available in PVS [17].

The use of a particular enclosure method depends on a trade-off between
precision and efficiency. At one extreme, interval arithmetic is computationally
efficient but may produce imprecise bounds. At the other extreme, Bernstein
polynomials offer precise bounds but they are computationally expensive. Affine
arithmetic [5] is an enclosure method situated between these two extremes. By
taking into account linear correlations between operands, affine arithmetic pro-
duces better estimates than interval arithmetic at a computational cost that is
smaller than Bernstein polynomials.

This paper presents a deep embedding of affine arithmetic in the Prototype
Verification System (PVS) [20] that includes addition, subtraction, multiplica-
tion, and power operation on variables. The embedding is used in an instantiation

296 M.M. Moscato et al.

of a generic branch and bound algorithm [18] that yield a provably correct proce-
dure for computing enclosures of polynomials with variables in interval domains.
The formally verified branch and bound procedure is the foundation of a PVS
proof strategy for mechanically and automatically finding lower and upper bounds
for the minimum and maximum values of multivariate polynomials on a bounded
domain.

The formal development presented in this paper is available as part of the
NASA PVS Library.1 All theorems presented in this paper are formally verified
in PVS. For readability, standard mathematical notation is used throughout
this paper. The reader is referred to the formal development for implementation
details.

2 Affine Arithmetic

Affine arithmetic is a refinement of interval arithmetic that attempts to reduce
the dependency problem by tracking linear dependencies between repeated vari-
able instances and thereby retaining simple shape information. It is based on
the idea that any real value a can be represented by an affine form â, defined as

â
def
= a(0) +

∞∑

i=1

a(i)εi, (3)

where εi ∈ [−1, 1], and a(j) ∈ R, with j > 0. It is assumed that the set of indices
j such that aj �= 0 is finite. Henceforth, �â denotes the maximum element of that
set or 0 if the set is empty. Each εi stands for an unknown error value introduced
during the calculation of a. An affine form grows symmetrically around its central
value a(0). Each a(i) represents the weight that the corresponding εi has on the
overall uncertainty of a. The coefficients a(i) are called the partial deviations of
the affine form.

There is a close relationship between affine forms and intervals. Given an
affine form â as in Formula (3), it is clear that the value a is included in the
interval

[â]
def
=

[

a(0) −
�â∑

i=1

|a(i)|, a(0) +
�â∑

i=1

|a(i)|
]

. (4)

In fact, for every real value a′ in [â], there exists an assignment N of values from
[−1, 1] to each εi in â such that a′ = â(N), where

â(N)
def
= a(0) +

�â∑

i=1

a(i)N(i). (5)

As stated in [23], the semantics of affine arithmetic rely on the existence of a
single N for which a′ is equal to the ideal real value a. This property is called
the fundamental invariant of affine arithmetic.
1 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/

Affine Arithmetic and Applications to Real-Number Proving 297

Conversely, any given interval I = [u, v] is equivalent to the affine form

VI
k

def
=

v + u

2
+

v − u

2
εk, (6)

where all the partial deviations, except for the k-th coefficient, are equal to 0.
Arithmetic operations on affine forms can be defined. Operations that are

affine combinations of their arguments are called affine operations. In contrast
to affine operations, non-affine operations may require the addition of noise sym-
bols that do not appear in their operands. For simplicity, variables are indexed
by positive natural numbers. It is assumed that the number of variables in any
expression is at most m. Thus, the first m noise symbols are reserved for vari-
ables. Using this convention, the affine form of variable xm ranging over I is
conveniently defined as VI

m. An index k > max(m, �â) is referred to as a fresh
index with respect to â.

Addition and multiplication of scalars, as unrestricted subtractions and addi-
tions, are affine operations. They are defined as shown next. Given an affine form
â = a(0) +

∑�â
i=1 a(i)εi for a as in Formula (3) and c ∈ R,

addc(â)
def
= c + a(0) +

�â∑

i=1

a(i)εi,

mulc(â)
def
= c · a(0) +

�â∑

i=1

c · a(i)εi.

(7)

The negation operation is defined as neg(â)
def
= mul−1(â).

Given another affine form b̂ = b(0) +
∑�

̂b
i=1 b(i)εi for some real value b,

add(â, b̂)
def
=

(
a(0) + b(0)

)
+

max(�â,�
̂b
)

∑

i=1

(
a(i) + b(i)

)
εi. (8)

The subtraction operation is defined as sub(â, b̂)
def
= add(â, neg(̂b)).

Whilst affine operations can be performed without the introduction of addi-
tional error terms, i.e., without any extra overestimation, a suitable rigorous
affine approximation must be used for each non-affine operation. Next, defini-
tions for multiplication and power operation on single variables (instead of arbi-
trary expressions) are presented. Multiplication of two affine forms is defined as

mulk(â, b̂)
def
= a(0)b(0) +

max(�â,�
̂b
)

∑

i=1

(a(0)b(i) +a(i)b(0))εi +εk

�â∑

i=1

|a(i)|
�
̂b∑

i=1

|b(i)|, (9)

where k is a fresh noise index with respect to â and b̂, i.e., k > max(m, �â, �
̂b).

Even though the power operation can be implemented by reducing it to suc-
cessive multiplications, the following definition gives a better performing alterna-
tive for the case where a single variable is raised to a power. Given an elementary

298 M.M. Moscato et al.

affine form â = a(0) + a(m)εm for a real value ranging over the interval [â] and a
collection of n − 2 fresh noise indices I with respect to â,

powI(â, n)
def
=

⎧
⎨

⎩

1 if n = 0,

an
(0) + n an−1

(0) a(m)εm +
n∑

k=2

(
n
k

)
an−k
(0) ak

(m)εIk−2 otherwise.

(10)
As in the case of interval arithmetic, the affine arithmetic operations satisfy
containment properties. However, it is not generally true that c ∈ [â] and d ∈ [̂b]
implies c ◦ d ∈ [â ◦ b̂], for an arbitrary affine operation ◦. The correctness of the
containment properties depends on a careful management of the noise symbols.

In general, the implementation of non-affine operations such as transcenden-
tal functions requires a series expansion with a rigorous error term. A Chebyshev
approximation is well-suited and is sometimes used.

3 Formalization in PVS

In PVS, an affine form α̂, defined as in Formula (3), is represented by a record
type that holds the central value a(0) and the list of coefficients a(1), . . . , a(n).
Since noise terms may be common to several affine forms, they are represented
by an independent type Noise that denotes a mapping from positive natural
numbers (the noise indices) to values in the interval [−1, 1].

The following lemmas, which are proved in PVS, show the correctness of
the affine arithmetic operations. In particular, they provide sufficient conditions
for the containment properties to hold. For each lemma, the name of the corre-
sponding PVS lemma is included in parentheses.

Lemma 1 (containment interval). Let N be a map of type Noise, a be a real
number, and â be an affine form of a over N, i.e., â (N) = a. Then, a ∈ [â].

Proof. Using Formula (5), it has to be proved that a = a(0) +
∑�â

i=1 a(i)N(i) ∈
[a(0) −∑�â

i=1 |a(i)|, a(0) +
∑�â

i=1 |a(i)|]. A known property from interval arithmetic
called containment add (formally proved in the development interval arith,
part of the NASA PVS Library) states that u + v ∈ [u1 + v1, u2 + v2], when
u ∈ [u1, u2] and v ∈ [v1, v2]. Then it suffices to show that a(0) ∈ [a(0), a(0)],
which is trivially true, and

∑�â
i=1 a(i)N(i) ∈ [−∑�â

i=1 |a(i)|,
∑�â

i=1 |a(i)|]. This lat-
ter property can be proved by induction on �â and using containment add. �	
Lemma 2 (containment var). Let N be a map of type Noise, k be a natural
number, I be a real interval, and v ∈ I. There exists a real number b ∈ [−1, 1]
such that VI

k (N with [n
→ b]) = v.

Proof. This lemma is proved by using the definition of VI
k in Formula (6). �	

Lemma 3 (containment aff un). Let N be a map of type Noise, and a, c be
a pair of real numbers. Given â = a(0)+

∑�â
i=0 a(i)εi, an affine form of a over N,

neg(â) (N) = −a and addc(â) (N) = c + a and mulc(â) (N) = c · a.

Affine Arithmetic and Applications to Real-Number Proving 299

Proof. The equality addc(â) (N) = c+ a is a trivial consequence of Formulas (5)
and (7). Meanwhile, neg(â) (N) = −a and mulc(â) (N) = c · a can be proved by
induction on the length of the partial deviation of â �	
Lemma 4 (containment aff bin). Let N be a map of type Noise and a, b be
a pair of real numbers. Given â = a(0) +

∑�â
i=0 a(i)εi and b̂ = b(0) +

∑�
̂b

i=0 b(i)εi,
affine forms of a and b, resp., over N, i.e., â (N) = a and b̂ (N) = b,

add(â, b̂) (N) = a + b and sub(â, b̂) (N) = a − b.

Proof. Both properties can be proved by induction on the sum of the lengths of
the partial deviations of â and b̂. �	
Non-affine operations introduce new noise symbols. The following lemma states
that fresh noise symbols can be soundly added to any affine representation.

Lemma 5 (eval updb no idxs). Let N be a map of type Noise, a be a real
number, and â an affine form of a over N, i.e., â (N) = a. For any collection
{ik}n

k=1 of fresh indices with respect to â and b1, . . . , bn real numbers in [−1, 1],

â (N) = â (N with [i1
→ b1, . . . , in
→ bn]) .

Proof. The proof proceeds by induction on n. The interesting part is the base
case (n = 1), which is proved by induction on �â. That part of the proof relies
on the fact that i1 is a fresh index with respect to â. �	
Henceforth, the notation Np, where p is a positive natural number, denotes the
map that is equal to N in every index except in indices i > p, where Np(i) = 0.

Lemma 6 (containment mul). Let N be a map of type Noise and a, b be a
pair of real numbers. Given â = a(0) +

∑�â
i=0 a(i)εi and b̂ = b(0) +

∑�
̂b

i=0 b(i)εi,
affine forms of a and b (resp.) over N, for each index p > max(m, �â, �

̂b), if

N(p) =
â (Np) b̂ (Np) − a(0)b(0) − ∑max(�â,�

̂b
)

i=1 (a(0)b(i) + a(i)b(0))N(i)
∑�â

i=1 |a(i)|
∑�

̂b
i=1 |b(i)|

,

then mulp(â, b̂) (N) = a · b.

Proof. It can be shown that mulp(â, b̂) (N) = â (Np) · b̂ (Np), by applying arith-
metic manipulations and using Formulas (5) and (9) and the hypothesis on N(p).
By Lemma 5, since p > �â, â (Np)=â (N). Also, if â is an affine form of a over
N, â (N) = a. Then, â (Np) = a. Similarly, b̂ (Np) = b. �	
Lemma 7 (containment pow var ac). Let N be a map of type Noise, n be
natural number, a be a real number, and â = a(0) + a(l)εl an affine form of a

over N. Given {ik}n−2
k=0 , a collection of fresh indices with respect to â, if

N(ik) = N(l)k+2 for every k,with 0 ≤ k ≤ n

then pow{ik}n−2
k=0

(â, n) (N) = an.

300 M.M. Moscato et al.

Proof. The proof proceeds by separating cases according to the definition of
pow{ik}n−2

k=0
(â, n). The case n = 0 is trivial. When n > 0, using Formulas (5)

and (10) and the hypothesis on N(ik), it can be shown that pow{ik}n−2
k=0

(â, n) (N)

is the combinatorial expansion of â (N)k. The hypothesis assuring â (N) = a can
be used to conclude the proof. �	
In PVS, the fundamental property of affine arithmetic (Formula (2)) is proved on
formal expressions containing constants, variables, addition, multiplication, and
power operation on variables. Variables are indexed by positive natural numbers.
A formal expression e represents a real number e by means of an evaluation
function. More precisely, the PVS function evalΓ from formal expressions into
real numbers is recursively defined as follows, where Γ is a map from positive
natural numbers, representing variable indices, into real values.

evalΓ (vi)
def
= Γ (i),where vi represents the i-th variable,

evalΓ (c)
def
= c,where c represents the numerical constant c,

evalΓ (−e)
def
= −evalΓ (e),

evalΓ (e + f)
def
= evalΓ (e) + evalΓ (e),

evalΓ (e − f)
def
= evalΓ (e) − evalΓ (e),

evalΓ (e × f)
def
= evalΓ (e) · evalΓ (e),

evalΓ (en)
def
= evalΓ (e)n.

(11)

Algorithm 1, which is formally defined in PVS, recursively constructs an
affine form of a formal expression e. It has as parameters the formal expression
e containing at most m variables, a collection {Ii}m

i=1 of m intervals (one per
variable), and a map that caches affine forms of sub-expressions of e. It returns a
map of all sub-expressions of e, including itself, to affine forms. The cache map
ensures that noise symbol indices are shared among common sub-expressions.
In the algorithm, the notation I[0...k] stands for a collection containing the first
k + 1 indices in I, and [a . . . b] stands for the collection of consecutive indices
from a to b.

The following theorem, which is proved in PVS, states the fundamental the-
orem of affine arithmetic.

Theorem 1. Let e be a formal expression, {Ii}m
i=1 be a collection of inter-

vals, Γ be map from variable indices in e to real numbers such that Γ (i) ∈ Ii,
e = evalΓ (e), and ê = RE2AF(e, {Ij}m

j=1, ∅)(e). There exists a map N of type
Noise such that ê (N) = e.

Proof. The proof proceeds by structural induction on e of a more general state-
ment, where the cache map may be non-empty. The proof of that statement uses
the fact that every expression in the cache map is a sub-expression of e. Since
this condition is encoded in the type of the parameter cache, it is guaranteed by
the PVS type checker. The base cases are discharged with Lemmas 2–7. �	

Affine Arithmetic and Applications to Real-Number Proving 301

1 RE2AF(e, {Ii}m
i=1, cache)

2 if e is in cache then return cache;

3 else if e is the variable vj then return cache with [e �→ V
Ij

j];

4 else
5 do
6 switch e do

// Affine Operations
7 case −e1 return cache with [e �→ neg(ê1)];
8 case e1 + k or k + e1 return cache with [e �→ addk(ê1)];
9 case e1 × k or k × e1 return cache with [e �→ mulk(ê1)];

10 case e1 + e2 return cache with [e �→ add(ê1, ê2)];
11 case e1 − e2 return cache with [e �→ sub(ê1, ê2)];

// Non-Affine Operations
12 case e1 × e2 return cache with [e �→ mulp(ê1, ê2)];

13 case vki
14 if exists some (vk

′
i �→ powI(V

Ij

j , k)) ∈ cache then

15 if k < k′ then
16 return cache with [e �→ powI[0...k−2](V

Ij

j , k)];

17 else

18 return cache with [e �→ powI
⋃

[p...p+k−k′](V
Ij

j , k)];

19 end

20 else return cache with [e �→ pow[p...p+(k−2)](V
Ij

j , k)];

21 end

22 endsw

23 where k, k′ are constants expressions and e1, e2 are non-constant
expressions and I is a collection of noise indices
and p > max(m, the greatest noise index in cache)
and cache1 = RE2AF(e1,{Ii}m

i=1,cache) and ê1 = cache1(e1)
and cache2 = RE2AF(e2,{Ii}m

i=1,cache1) and ê2 = cache2(e2);

24 end

25 end
Algorithm 1. Construction of affine forms of all sub-expressions in e

4 Proof Strategy

The motivation for the formalization of affine arithmetic presented in this paper
is not only to verify the correctness of its operations, but more importantly to
develop a practical method for performing guaranteed computations inside a
theorem prover. In particular, the following problem is considered.

Given a polynomial expression p with variables x1, . . . , xm ranging over
real intervals {Ii}m

i=1, respectively, and a positive natural number n
(called precision) compute an interval enclosure [u, v] for p, i.e., p ∈ [u, v],
that is provably correct up to the accuracy ε = 10−n, i.e., v−max(p) ≤ ε
and min(p) − u ≤ ε.

302 M.M. Moscato et al.

Using Algorithm 1 and Theorem 1, it is possible to construct an affine form
p̂ of any polynomial expression p. Lemma 1 guarantees that the interval [p̂], as
defined in Formula (4), is a correct enclosure of p. This approach for computing
correct polynomial enclosures can be easily automated in most theorem provers
that support a soundness-preserving strategy language. However, this approach
does not guarantee the quality of the enclosure.

As outlined in the introduction, a way to improve the quality of an enclo-
sure consists in dividing the original range of the variables into smaller inter-
vals and considering the union of all the enclosures computed on these smaller
subdomains. This technique typically yields tighter range enclosures, albeit at
computational cost.

The NASA PVS Library includes the formalization of a branch and
bound algorithm that implements domain subdivision on a generic enclosure
method [18]. The algorithm, namely simple bandb, can be instantiated with
concrete data types and heuristics for deciding the subdivision and pruning
schemas. The instantiation presented here is similar to the one given in [18]
using interval arithmetic. A simplified version of the signature of simple bandb
has as parameters a formal expression e, a domain box for the variables in e,
an enclosure method evaluate, a subdivision schema subdivide, a function
combine that combines results from recursive calls, and an upper bound maxd
for the maximum recursion depth. The output of the algorithm is an interval
indicating the maximum and the minimum of the values that the expression e
takes over box and additional information regarding the performance of the algo-
rithm such as number of subdivisions, maximum recursion depth, and precision
of the solution.

Intervals are represented by the data type Interval. The parameter box
is an element of type Box, which is a list of intervals. The abstract data type
RealExpr is used to represent formal expressions such as e. All these types are
available from the development interval arith in the NASA PVS Library. The
parameter evaluate corresponds to a generic enclosure method. In the case of
affine arithmetic, that parameter corresponds to the following function.

Eval(e,box)
def
= [RE2AF(e, box, ∅)(e)]. (12)

The functions that correspond to the parameters subdivide and combine are
defined as in [18]. The former takes as parameter a box and a natural number n,
it returns two boxes, which only differ from the original box in the n-th interval.
That interval is replaced in the first (resp. second) box by the lower (resp. upper)
half of the n-th interval in the original box. The latter function is just the union
of two intervals.

The soundness property of simple bandb is expressed in terms of the follow-
ing predicate.

sound?(e, box, I)
def
= ∀Γ ∈ box : evalΓ (e) ∈ I. (13)

Corollary 1 in [18] states that when I is the interval returned by simple bandb
applied to e, box, Eval, subdivide, combine, and maxd, three specific properties

Affine Arithmetic and Applications to Real-Number Proving 303

suffice to prove sound?(e, box, I). Two of them are properties about the func-
tions subdivide and combine. As they are the same as the interval arithmetic
instantiation of the generic algorithm [18], the proofs of these properties are also
the same. The remaining property is stated below.

∀ box, e : sound?(e, box, Eval(e,box)).

This property follows directly from Theorem 1, Formula (12), and Formula (13).
The development in [18] includes a more sophisticated algorithm bandb that has
some additional parameters. These parameters, which do not affect the sound-
ness of the algorithm, enable the specification of a pruning heuristic and early
termination conditions.

The formalization presented in [18] includes infrastructure for developing
strategies via computational reflection using a provably correct instantiation of
the generic branch and bound algorithm. In particular, it includes a function,
written in the PVS strategy language, for constructing a formal expression e of
type RealExpr representing a PVS arithmetic expression e of type real and an
element box of type Box that contains of the interval ranges of the variables in e.
Based on that infrastructure, the development presented in this paper includes a
proof-producing PVS strategy aff-numerical that computes probably correct
bounds of polynomial expressions up to a user specified precision.

In its more general form, the strategy aff-numerical has as parameter an
arithmetic expression e. It adds to the current proof sequent the hypothesis
e ∈ I, where I is an enclosure computed by the affine arithmetic instantiation
of bandb on default parameters. Optional parameters that can be specified by
the user include desired precision, upper bound to the maximum depth, and
strategy for selecting the variable direction for the subdivision schema.

Example 1. The left-hand side of Fig. 1 illustrates a PVS sequent involving the
polynomial P1(x) = x5 − 2x3, where the variable x is assumed to range over the
open interval (−1000, 0). In a sequent, the formulas appearing above the hori-
zontal line are the antecedent, while the formulas appearing below the horizontal
line are the consequent. The right-hand side of Fig. 1 illustrates the sequent after
the application of the proof command

(aff-numerical "x^5-2*x^3" :precision 3 :maxdepth 14)

This command introduces a new formula to the antecedent, i.e., sequent formula
{-1}. The new formula states that P1(x) ∈ [−999998000000000, 1.066], when
x ∈ (−1000, 0). The sequent can be easily discharged by unfolding the definition
of ##, which stands for inclusion of a real number in an interval. The optional
parameters :precision and :maxdepth in the strategy aff-numerical are used
by the branch and bound algorithm to stop the recursion. In this case, the
algorithm stops when either the enclosure is guaranteed to be accurate up to 10−3

or when a maximum depth of 14 is reached. The branch and bound algorithm
uses rational arithmetic to compute enclosures. Since the upper and lower bounds
of these enclosures tend to have large denominators and numerators, the strategy

304 M.M. Moscato et al.

computes another enclosure whose upper and lower bounds are decimal numbers.
These numbers are the closest decimal numbers, for the given precision, to the
rational numbers of the original enclosure.

Fig. 1. Example of use of the strategy aff-numerical.

The strategy aff-numerical does not depend on external oracles since all
the required theorems are proved within the PVS logic. Indeed, any particular
instantiation of the strategy can be unfolded into a tree of proof commands that
only includes PVS proof rules. The strategy does depend on the PVS ground
evaluator [15], which is part of the PVS trusted code base, for the evaluation
of the function branch and bound algorithm. It should be noted that while the
soundness of the strategy depends on the correctness of the ground evaluator, the
formal development presented in Sect. 3 does not. Furthermore, it is theoretically
possible, although impractical, to replace every instance of the PVS ground
evaluator in a proof by another strategy that only depends on deductive steps
such as PVS’s grind.

As part of the development presented in this paper, there is also available a
strategy aff-interval that solves to a target enclosure or inequality as opposed
to a target precision. For that kind of problem, aff-interval is more efficient
than aff-numerical, since aff-interval takes advantage of early termination
criteria, which are not available with aff-numerical.

5 Experimental Results

The objective of the experiments described in this section is to illustrate the
performance of affine arithmetic compared to interval arithmetic using their
PVS formalizations. The experiments use the strategies numerical, which is
part of interval arith in the NASA PVS Library, and aff-numerical, which
is part of the development presented in this paper. The strategies share most of
the strategy code and only differ in the enclosure method.

Both strategies were used to find enclosures of polynomials with different
characteristics. The performance was measured not only in terms of the time
consumed by each strategy in every case but also with respect to the quality of
the results. These experiments were performed on a desktop PC with an Intel

Affine Arithmetic and Applications to Real-Number Proving 305

Quad Core i5-4200U 1.60 GHz processor, 3.9 GiB of RAM, and 32-bit Ubuntu
Linux.

The first part of this section presents the results obtained for polynomials
in a single variable. The polynomials to be considered are P1 = x5 − 2x3, from
Example 1, and

P2(x) = − 10207769
65536 x20 + 3002285

4096 x18 − 95851899
65536 x16 + 6600165

4096 x14 − 35043645
32768 x12

+ 1792791
4096 x10 − 3558555

32768 x8 + 63063
4096 x6 − 72765

65536x4 + 3969
65536 ,

where x ∈ (−1, 1). Turan’s inequality for Legendre polynomials states that, for
x ∈ (−1, 1), Lj(x)2 > Lj−1(x)Lj+1(x) for all x ∈ (−1, 1), where Li stands for
the i-th Legendre polynomial. The formula P2(x) > 0 states Turan’s inequality
for j = 10.

The result of the comparison of the two enclosure methods using these exam-
ples is depicted in Fig. 2. The top graphic shows the magnitude of the overesti-
mation produced by both strategies for each maximum subdivision depth (up to
43). In the bottom graphic, the y axis represents the time spent by the strategies
for both examples and each depth.

The expected behavior of the affine arithmetic method — second-order con-
vergence in overestimation with respect to depth, as compared to first-order
for interval arithmetic — can be clearly seen in these graphs. For both P1 and
P2 the rate of convergence for affine arithmetic method is significantly faster.
Regarding P1, even though the leftmost result is significantly worse than the
one given by the interval arithmetic method, the convergence of the former is so
fast that it reaches its best approximation at depth 16, while the latter needs
a depth of 43 to reach an equivalent result. The difference in performance for
P2 is even sharper: only a depth of 4 is needed for the affine method to achieve
its best result, which could not be matched with a depth below 20 for interval
arithmetic.

For a given depth, the computation time for the affine method is always
higher than the time for the interval method. Nevertheless, when considering
the quality of the result, the former achieves a much better performance in the
same amount of time.

The difference in the performance for P2 is mostly due to the high level
of dependency in the polynomial. In the corresponding affine form almost every
sub-expression has noise terms shared with others in the expression. This sharing
constrains the overall number of noise terms and tracks the dependencies to a
considerable extent, allowing the affine method to reach much better results in
less time.

Finally, both enclosure methods are tested on the following non-trivial mul-
tivariate polynomial.

P3(x0, x1, x2, x3, x4, x5, x6, x7) = −x0x
3
5 + 3x0x5x

2
6 − x2x

3
6 + 3x2x6x

2
5 − x1x

3
4

+ 3x1x4x
2
7 − x3x

3
7 + 3x3x7x

2
4 − 0.9563453,

where x0 ∈ [−10, 40], x1 ∈ [40, 100], x2 ∈ [−70,−40], x3 ∈ [−70, 40], x4 ∈
[10, 20], x5 ∈ [−10, 20], x6 ∈ [−30, 110], and x7 ∈ [−110,−30]. This polynomial

306 M.M. Moscato et al.

Fig. 2. Convergence rate for affine and interval arithmetic methods in P1 and P2

is taken from a database of demanding test problems for global optimization
algorithms [24].

As shown in Table 1, both methods have similar results in this case. Despite
starting with a better result (as in P2) the interval method is overpassed by the
affine method when the depth is set to 30. Nevertheless, the time taken by the
latter is almost the double of the consumed by the former at this depth. The
affine method is likely to perform better for smaller boxes or at even greater
depth.

6 Conclusion and Further Work

The main contribution of this paper is a formalization of the affine arithmetic
model [23] for self-validated numerical analysis. Although it has been performed
in the Prototype Verification System (PVS), it does not depend on any specific
feature of that system. The techniques presented in this paper could be imple-
mented in any theorem prover with similar characteristics to PVS such as Coq,

Affine Arithmetic and Applications to Real-Number Proving 307

Table 1. Data from P3.

max Interval
depth result time

10 [−895381 × 102, 247381 × 103] 3.63 s.
20 [−824131 × 102, 242342 × 103] 16.91 s.
25 [−800610 × 102, 238942 × 103] 54.09 s.
30 [−794831 × 102, 237518 × 103] 157.22 s.
35 [−793982 × 102, 235733 × 103] 322.54 s.
40 [−791026 × 102, 234318 × 103] 755.40 s.
45 [−790319 × 102, 233936 × 103] 1524.40 s.

Affine
result time[−951004 × 102, 247079 × 103]

9.2 s.[−833045 × 102, 236464 × 103]
55.96 s.[−804002 × 102, 233724 × 103]
150.87 s.[−796329 × 102, 233405 × 103]
281.45 s.[−790525 × 102, 232709 × 103]
530.89 s.[−789961 × 102, 232657 × 103]
963.66 s.[−789319 × 102, 232480 × 103]
1627.00 s.

HOL, among others. Additionally, a proof-producing strategy for computing
provably correct bounds of polynomials with variables over bounded domains
was developed. This strategy relies heavily on the generic branch and bound
algorithm introduced in [18]. The entire formalization, which is called affine, is
available as part of the NASA PVS Library. The PVS formalization is organized
into 11 theories, including the proofs of 193 properties and 483 non-trivial proof
obligations automatically generated from typing conditions.

The performance of affine arithmetic is compared to interval arithmetic on
some test cases using the PVS strategies developed for both enclosure methods.
These experiments illustrate that, when dealing with problems with a high level
of coupling between sub-expressions, the affine method performs significantly
better than the interval method. The observed second-order rate of overestima-
tion convergence for affine arithmetic accords with the theoretical result. In the
presence of non-trivial functions over many variables, for a wide initial domain,
it is possible that a large subdivision depth is necessary in order to realize this
convergence.

Immler presents a formalization of affine arithmetic in Isabelle and uses it
as part of developments intended to solve ordinary differential equations [9] and
to calculate intersections between zonotopes and hyperplanes [10]. A minor dif-
ference with respect to the work presented in this paper is that formalization
considers the multiplication inverse, which is not considered here, but it does not
consider the power operation. The authors are not aware of any formalization of
a subdivision technique or the development of proof-producing strategies using
affine arithmetic as the one presented in the current paper. There are imple-
mentations of affine arithmetic in C and C++ [11], but a comparison with these
tools would be also unfair since these are non-formal compiled codes, whereas
the developed affine arithmetic strategy presented in this paper yields a formal
proof.

The current approach only supports polynomial expressions. This support
can easily be extended to a larger set of real-valued functions when affine forms
for these functions are implemented. The performance of the proposed approach
could be improved in several ways. The definition of Algorithm 1 uses simple data
structures, which could be replaced by better-performing ones. Furthermore, the
algorithm could also take advantage of some of the improvements proposed to
the basic model of affine arithmetic. A comprehensive survey of such improve-

308 M.M. Moscato et al.

ments can be found in [11]. Another well-known way to achieve better results
is to combine both interval and affine methods by first applying the more effi-
cient interval arithmetic approach and, after a certain subdivision depth, to take
advantage of the better convergence rate of the affine algorithm.

References

1. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: A comprehensive mechanized proof of a C program.
J. Autom. Reasoning 50(4), 423–456 (2013). http://hal.inria.fr/hal-00649240/en/

2. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis,
P.: Trusting computations: a mechanized proof from partial differential equa-
tions to actual program. Comput. Math. Appl. 68(3), 325–352 (2014).
http://www.sciencedirect.com/science/article/pii/S0898122114002636

3. Boldo, S., Marché, C.: Formal verification of numerical programs: From C anno-
tated programs to mechanical proofs. Math. Comput. Sci. 5, 377–393 (2011).
http://dx.doi.org/10.1007/s11786-011-0099-9

4. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library
for interval arithmetic. IEEE Trans. Comput. 58(2), 1–12 (2009)

5. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and applications. Numer.
Algorithms 37(1–4), 147–158 (2004)

6. Galdino, A.L., Muñoz, C., Ayala-Rincón, M.: Formal verification of an optimal air
traffic conflict resolution and recovery algorithm. In: Leivant, D., de Queiroz, R.
(eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 177–188. Springer, Heidelberg (2007)

7. Goodloe, A.E., Muñoz, C., Kirchner, F., Correnson, L.: Verification of numerical
programs: From real numbers to floating point numbers. In: Brat, G., Rungta, N.,
Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 441–446. Springer, Heidelberg
(2013)

8. Hales, T., Adams, M., Bauer, G., Tat Dang, D., Harrison, J., Le Hoang, T.,
Kaliszyk, C., Magron, V., McLaughlin, S., Tat Nguyen, T., Quang Nguyen, T.,
Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Hoai Thi Ta, A., Tran,
T.N., Thi Trieu, D., Urban, J., Khac Vu, K., Zumkeller, R.: A formal proof of the
Kepler conjecture. ArXiv e-prints, January 2015

9. Immler, F.: Formally verified computation of enclosures of solutions of
ordinary differential equations. In: Badger, J.M., Rozier, K.Y. (eds.)
NFM 2014. LNCS, vol. 8430, pp. 113–127. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-319-06200-6

10. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersec-
tion. In: Proceedings of the 2015 Conference on Certified Programs and Proofs
(CPP), pp. 129–136. ACM, New York (2015). http://doi.acm.org/10.1145/
2676724.2693164

11. Kiel, S.: Yalaa: Yet another library for affine arithmetic. Reliable Comput. 16,
114–129 (2012)

12. Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea Publishing Company, New
York (1986)

13. Melquiond, G.: Proving bounds on real-valued functions with computations. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 2–17. Springer, Heidelberg (2008)

http://hal.inria.fr/hal-00649240/en/
http://www.sciencedirect.com/science/article/pii/S0898122114002636
http://dx.doi.org/10.1007/s11786-011-0099-9
http://dx.doi.org/10.1007/978-3-319-06200-6
http://doi.acm.org/10.1145/2676724.2693164
http://doi.acm.org/10.1145/2676724.2693164

Affine Arithmetic and Applications to Real-Number Proving 309

14. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

15. Muñoz, C.: Rapid prototyping in PVS. Contractor Report NASA/CR-2003-212418,
NASA, Langley Research Center, Hampton VA 23681–2199, USA (2003)

16. Muñoz, C., Carreño, V., Dowek, G., Butler, R.: Formal verification of conflict
detection algorithms. Int. J. Softw. Tools Technol. Transf. 4(3), 371–380 (2003)

17. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polyno-
mials and applications to global optimization. J. Autom. Reasoning 51(2), 151–196
(2013). http://dx.doi.org/10.1007/s10817-012-9256-3

18. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS,
vol. 8164, pp. 326–343. Springer, Heidelberg (2014)

19. Narkawicz, A., Muñoz, C., Dowek, G.: Provably correct conflict preven-
tion bands algorithms. Sci. Comput. Program. 77(1–2), 1039–1057 (2012).
http://dx.doi.org/10.1016/j.scico.2011.07.002

20. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verificationsystem. In: Kapur,
D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

21. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with Taylor
interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013.
LNCS, vol. 7871, pp. 383–397. Springer, Heidelberg (2013)

22. Solovyev, A., Hales, T.C.: Efficient formal verification of bounds of linear programs.
In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and
Calculemus 2011. LNCS, vol. 6824, pp. 123–132. Springer, Heidelberg (2011)

23. Stolfi, J., Figueiredo, L.H.D.: Self-validated numerical methods and applications
(1997)

24. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polyno-
mial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276
(1999)

http://dx.doi.org/10.1007/s10817-012-9256-3
http://dx.doi.org/10.1016/j.scico.2011.07.002

Amortized Complexity Verified

Tobias Nipkow(B)

Technische Universität München, Munich, Germany
nipkow@in.tum.de

Abstract. A framework for the analysis of the amortized complexity of
(functional) data structures is formalized in Isabelle/HOL and applied
to a number of standard examples and to three famous non-trivial ones:
skew heaps, splay trees and splay heaps.

1 Introduction

Amortized complexity [3,14] of an algorithm averages the running times of a
sequence of invocations of the algorithm. In this paper we formalize a simple
framework for the analysis of the amortized complexity of functional programs
and apply it to both the easy standard examples and the more challenging
examples of skew heaps, splay trees and splay heaps. We have also analyzed
pairing heaps [4] but cannot present them here for lack of space. All proofs are
available online [9].

We are aiming for a particularly lightweight framework that supports proofs
at a high level of abstraction. Therefore all algorithms are modeled as recursive
functions in the logic. Because mathematical functions do not have a complexity
they need to be accompanied by definitions of the intended running time that
follow the recursive structure of the actual function definitions. Thus the user is
free to choose the level of granularity of the complexity analysis. In our examples
we simply count function calls.

Although one can view the artefacts that we analyze as functional programs,
one can also view them as models or abstractions of imperative programs. For
the amortized complexity we are only interested in the input-output behaviour
and the running time complexity. As long as those are the same, it does not
matter in what language the algorithm is implemented. In fact, the standard
imperative implementations of all of our examples have the same complexity
as the functional model. However, in a functional setting, amortized complexity
reasoning may be invalid if the data structure under consideration is not used
in a single-threaded manner [10].

1.1 Related Work

Hofmann and Jost [7] pioneered automatic type-based amortized analysis of heap
usage of functional programs. This was later generalized in many directions, for
example allowing multivariate polynomials [6]. Atkey [1] carries some of the
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 310–324, 2015.
DOI: 10.1007/978-3-319-22102-1 21

Amortized Complexity Verified 311

ideas over to an imperative language with separation logic embedded in Coq.
Charguéraud and Pottier [2] employ separation logic to verify the almost-linear
amortized complexity of a Union-Find implementation in OCaml in Coq.

2 Lists and Trees

Lists are constructed from the empty list [] via the infix cons-operator “·”, |xs|
is the length of xs, tl takes the tail and rev reverses a list.

Binary trees are defined as the data type ′a tree with two constructors: the
empty tree or leaf 〈〉 and the node 〈l , a, r〉 with subtrees l , r :: ′a tree and
contents a :: ′a. The size of a tree is the number of its nodes:

|〈〉| = 0 |〈l , , r〉| = |l | + |r | + 1

For convenience there is also the modified size function |t |1 = |t | + 1.

3 Amortized Analysis Formalized

We formalize the following scenario. We are given a number of operations that
may take parameters and that update the state (some data structure) as a side
effect. Our model is purely functional: the state is replaced by a new state with
each invocation of an operation, rather than mutating the state. This makes no
difference because we only analyze time, not space.

Our model of amortized analysis is a theory that is parameterized as follows
(a locale in Isabelle-speak):

′s is the type of state.
′o is the type of operations.
init :: ′s is the initial state.
nxt :: ′o ⇒ ′s ⇒ ′s is the next state function.
inv :: ′s ⇒ bool is an invariant on the state. We assume that the invariant

holds initially (inv init) and that it is preserved by all operations
(inv s =⇒ inv (nxt f s)).

t :: ′o ⇒ ′s ⇒ real is the timing function: t f s represents the time it takes to
execute operation f in state s, i.e. nxt f s.

The effect of each operation f is modeled as a function nxt f from state to
state. Since functions are extensional, the execution time is modeled explicitly
by function t. Alternatively one can instrument nxt with timing information and
have it return a pair of a new state and the time the operation took. We have
separated the computation of the result and the timing information into two
functions because that is what one would typically do in a first step anyway to
simplify the proofs. In particular this means that t need not be a closed form
expression for the actual complexity. In all of our examples the definition of t
will follow the (usually recursive) structure of the definition of nxt precisely. One
could go one step further and derive t from an intensional formulation of nxt

312 T. Nipkow

automatically, but that is orthogonal to our aim in this paper, namely amortized
complexity.

For the analysis of amortized complexity we formalize the potential method.
That is, our theory has another parameter:

Φ :: ′s ⇒ real is the potential of a state. We assume the potential is initially
0 (Φ init = 0) and never becomes negative (inv s =⇒ 0 ≤ Φ s).

The potential of the state represents the savings that can pay for future restruc-
turings of the data structure. Typically, the higher the potential, the more out
of balance the data structure is. Note that the potential is just a means to an
end, the analysis, but does not influence the actual operations.

Let us now analyze the complexity of a sequence of operations formalized
as a function of type nat ⇒ ′o. The sequence is infinite for convenience but of
course we only analyze the execution of finite prefixes. For this purpose we define
state f n, the state after the execution of the first n elements of f:

state :: (nat ⇒ ′o) ⇒ nat ⇒ ′s
state f 0 = init
state f (Suc n) = nxt (f n) (state f n)

Now we can define the amortized complexity of an operation as the actual time
it takes plus the difference in potential:

a :: (nat ⇒ ′o) ⇒ nat ⇒ real
a f i = t (f i) (state f i) + Φ (state f (i + 1)) − Φ (state f i)

By telescoping (i.e. induction) we obtain

(
∑

i<n t (f i) (state f i)) = (
∑

i<n a f i) + Φ (state f 0) − Φ (state f n)

where
∑

i<n F i is the sum of all F i with i < n. Because of the assumptions
on Φ this implies that on average the amortized complexity is an upper bound
of the real complexity:

(
∑

i<n t (f i) (state f i)) ≤ (
∑

i<n a f i)

To complete our formalization we add one more parameter:

U :: ′o ⇒ ′s ⇒ real is an explicit upper bound for the amortized
complexity of each operation (in a certain state), i.e. we assume that
inv s =⇒ t f s + Φ (nxt f s) − Φ s ≤ U f s.

Thus we obtain that U is indeed an upper bound of the real complexity:

(
∑

i<n t (f i) (state f i)) ≤ (
∑

i<n U (f i) (state f i))

Instantiating this theory of amortized complexity means defining the para-
meters and proving the assumptions, in particular about U.

Amortized Complexity Verified 313

4 Easy Examples

Unless noted otherwise, the examples in this section come from a standard text-
book [3].

4.1 Binary Counter

We start with the binary counter explained in the introduction. The state space
′s is just a list of booleans, starting with the least significant bit. There is just
one parameterless operation “increment”. Thus we can model type ′o with the
unit type. The increment operation is defined recursively:

incr [] = [True]
incr (False · bs) = True · bs
incr (True · bs) = False · incr bs

In complete analogy the running time function for incr is defined:

t incr [] = 1
t incr (False · bs) = 1
t incr (True · bs) = t incr bs + 1

Now we can instantiate the parameters of the amortized analysis theory:
init = [] nxt () = incr t () = t incr

inv s = True Φ s = |filter id s| U () s = 2

The key idea of the analysis is to define the potential of s as |filter id s|, the
number of True bits in s. This makes sense because the higher the potential, the
longer an increment may take (roughly speaking). Now it is easy to show that 2
is an upper bound for the amortized complexity: the requirement on U follows
immediately from this lemma (which is proved by induction):

t incr bs + Φincr (incr bs) − Φincr bs = 2

4.2 Stack with Multipop

The operations are

datatype ′a opstk = Push ′a | Pop nat

where Pop n pops n elements off the stack:

nxtstk (Push x) xs = x · xs
nxtstk (Pop n) xs = drop n xs

In complete analogy the running time function is defined:

tstk (Push x) xs = 1
tstk (Pop n) xs = min n |xs|

Now we can instantiate the parameters of the amortized analysis theory:
init = [] nxt = nxtstk t = tstk inv s = True
Φ = length U f s = (case f of Push x ⇒ 2 | Pop n ⇒ 0)

The necessary proofs are all automatic.

314 T. Nipkow

4.3 Dynamic Tables

Dynamic tables are tables where elements are added and deleted and the table
grows and shrinks accordingly. We ignore the actual elements because they are
irrelevant for the complexity analysis. Therefore the operations

datatype optb = Ins | Del

do not have arguments. Similarly the state is merely a pair of natural numbers
(n, l) that abstracts a table of size l with n elements. This is how the operations
behave:

nxt tb Ins (n, l) = (n + 1, if n < l then l else if l = 0 then 1 else 2 ∗ l)
nxt tb Del (n, l) =
(n − 1, if n = 1 then 0 else if 4 ∗ (n − 1) < l then l div 2 else l)

If the table overflows upon insertion, its size is doubled. If a table is less than
one quarter full after deletion, its size is halved. The transition from and to the
empty table is treated specially.

This is the corresponding running time function:

t tb Ins (n, l) = (if n < l then 1 else n + 1)
t tb Del (n, l) = (if n = 1 then 1 else if 4 ∗ (n − 1) < l then n else 1)

The running time for the cases where the table expands or shrinks is determined
by the number of elements that need to be copied.

Now we can instantiate the parameters of the amortized analysis theory. We
start with the system itself:

init = (0, 0) nxt = nxt tb t = t tb
inv (n,l) = (if l = 0 then n = 0 else n ≤ l ∧ l ≤ 4 ∗ n)

This is the first time we have a non-trivial invariant. The potential is also more
complicated than before:

Φ (n,l) = (if 2 ∗ n < l then l / 2 − n else 2 ∗ n − l)

Now it is automatic to show the following amortized complexity:

U f s = (case f of Ins ⇒ 3 | Del ⇒ 2)

4.4 Queues

Queues have one operation for enqueueing a new item and one for dequeueing
the oldest item:

datatype ′a opq = Enq ′a | Deq

We ignore accessing the oldest item because it is a constant time operation in
our implementation.

The simplest possible implementation of functional queues (e.g. [10]) consists
of two lists (stacks) (xs, ys):

Amortized Complexity Verified 315

nxtq (Enq x) (xs, ys) = (x · xs, ys)
nxtq Deq (xs, ys) = (if ys = [] then ([], tl (rev xs)) else (xs, tl ys))

tq (Enq x) (xs, ys) = 1
tq Deq (xs, ys) = (if ys = [] then |xs| else 0)

Note that the running time function counts only allocations of list cells and that
it assumes rev is linear. Now we can instantiate the parameters of the amortized
analysis theory to show that the average complexity of both Enq and Deq is 2.
The necessary proofs are all automatic.

init = ([], []) nxt = nxtq t = tq inv s = True
Φ (xs,ys) = |xs| U f s = (case f of Enq x ⇒ 2 | Deq ⇒ 0)

In the same manner I have also verified [9] a modified implementation where
reversal happens already when |xs| = |ys| + 1; this improves the worst-case
behaviour but (using Φ(xs,ys) =2 ∗ |xs|) the amortized complexity of Enq
increases to 3.

5 Skew Heaps

This section analyzes a beautifully simple data structure for priority queues: skew
heaps [13]. Heaps are trees where the least element is at the root. We assume
that the elements are linearly ordered. The central operation on skew heaps is
meld, that merges two skew heaps and swaps children along the merge path:

meld h1 h2 =
(case h1 of 〈〉 ⇒ h2

| 〈l1, a1, r1〉 ⇒
case h2 of 〈〉 ⇒ h1

| 〈l2, a2, r2〉 ⇒
if a1 ≤ a2 then 〈meld h2 r1, a1, l1〉 else 〈meld h1 r2, a2, l2〉)

We consider the two operations of inserting an element and removing the minimal
element:

datatype ′a oppq = Insert ′a | Delmin

They are implemented via meld as follows:

nxtpq (Insert a) h = meld 〈〈〉, a, 〈〉〉 h
nxtpq Delmin h = del min h

del min 〈〉 = 〈〉
del min 〈l , m, r〉 = meld l r

For the functional correctness proofs see [9].
The analysis by Sleator and Tarjan is not ideal as a starting point for a

formalization. Luckily there is a nice, precise functional account by Kaldewaij
and Schoenmakers [8] that we will follow (although their meld differs slightly
from ours). Their cost measure counts the number of calls of meld, Insert and
Delmin:

316 T. Nipkow

tmeld 〈〉 h = 1
tmeld h 〈〉 = 1
tmeld 〈l1, a1, r1〉 〈l2, a2, r2〉 =
(if a1 ≤ a2 then tmeld 〈l2, a2, r2〉 r1 else tmeld 〈l1, a1, r1〉 r2) + 1

tpq (Insert a) h = tmeld 〈〈〉, a, 〈〉〉 h + 1
tpq Delmin h = (case h of 〈〉 ⇒ 1 | 〈t1, a, t2〉 ⇒ tmeld t1 t2 + 1)

Kaldewaij and Schoenmakers prove a tighter upper bound than Sleator and
Tarjan, replacing the factor of 3 by 1.44. We are satisfied with verifying the bound
by Sleator and Tarjan and work with the following simple potential function
which is an instance of the one by Kaldewaij and Schoenmakers: it counts the
number of “right heavy” nodes.

Φ 〈〉 = 0
Φ 〈l , , r〉 = Φ l + Φ r + (if |l | < |r | then 1 else 0)

To prove the amortized complexity of meld we need some further notions that
capture the ideas of Sleator and Tarjan in a concise manner:

rheavy 〈l , , r〉 = (|l | < |r |)
lpath 〈〉 = []
lpath 〈l , a, r〉 = 〈l , a, r〉 · lpath l

rpath 〈〉 = []
rpath 〈l , a, r〉 = 〈l , a, r〉 · rpath r

Γ h = |filter rheavy (lpath h)|
Δ h = |filter (λp. ¬ rheavy p) (rpath h)|

Two easy inductive properties:

Γ h ≤ log2 |h|1 (1) Δ h ≤ log2 |h|1 (2)

Now the desired logarithmic amortized complexity of meld follows:

tmeld t1 t2 + Φ (meld t1 t2) − Φ t1 − Φ t2
≤ Γ (meld t1 t2) + Δ t1 + Δ t2 + 1 by induction on meld
≤ log2 |meld t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1 by (1), (2)
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1

because |meld t1 t2| = |t1| + |t2|
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x, y ≥ 1
= 3 ∗ log2 (|t1|1 + |t2|1) + 1

Now it is easy to verify the following amortized complexity for Insert and Delmin
by instantiating our standard theory with

U (Insert) h = 3 ∗ log2 (|h|1 + 2) + 2
U Delmin = 3 ∗ log2 (|h|1 + 2) + 4

Note that Isabelle supports implicit coercions, in particular from nat to real,
that are inserted automatically [15].

Amortized Complexity Verified 317

6 Splay Trees

A splay tree [12] is a subtle self-adjusting binary search tree. It achieves its
amortized logarithmic complexity by local rotations of subtrees along the access
path. Its central operation is splay of type ′a ⇒ ′a tree ⇒ ′a tree that rotates
the given element (of a linearly ordered type ′a) to the root of the tree. Most
presentations of splay confine themselves to this case where the given element is
in the tree. If the given element is not in the tree, the last element found before
a 〈〉 was met is rotated to the root. The complete definition is shown in Fig. 1.

Given splaying, searching for an element in the tree is trivial: you splay with
the given element and check if it ends up at the root. For insertion and deletion,
algorithm texts typically show pictures only. In contrast, we show the code only,
in Figs. 2–3. To insert a, you splay with a to see if it is already there, and if it is not,
you insert it at the top (which is the right place due to the previous splay action).

splay a 〈〉 = 〈〉
splay a 〈cl , c, cr〉 =
(if a = c then 〈cl , c, cr〉
else if a < c

then case cl of 〈〉 ⇒ 〈cl , c, cr〉
| 〈bl , b, br〉 ⇒

if a = b then 〈bl , a, 〈br , c, cr〉〉
else if a < b

then if bl = 〈〉 then 〈bl , b, 〈br , c, cr〉〉
else case splay a bl of

〈al , a ′, ar〉 ⇒ 〈al , a ′, 〈ar , b, 〈br , c, cr〉〉〉
else if br = 〈〉 then 〈bl , b, 〈br , c, cr〉〉

else case splay a br of
〈al , a ′, ar〉 ⇒ 〈〈bl , b, al〉, a ′, 〈ar , c, cr〉〉

else case cr of 〈〉 ⇒ 〈cl , c, cr〉
| 〈bl , b, br〉 ⇒

if a = b then 〈〈cl , c, bl〉, a, br〉
else if a < b

then if bl = 〈〉 then 〈〈cl , c, bl〉, b, br〉
else case splay a bl of

〈al , a ′, ar〉 ⇒ 〈〈cl , c, al〉, a ′, 〈ar , b, br〉〉
else if br = 〈〉 then 〈〈cl , c, bl〉, b, br〉

else case splay a br of
〈al , x , xa〉 ⇒ 〈〈〈cl , c, bl〉, b, al〉, x , xa〉)

Fig. 1. Function splay

318 T. Nipkow

insertst a t =
(if t = 〈〉 then 〈〈〉, a, 〈〉〉
else case splay a t of

〈l , a ′, r〉 ⇒
if a = a ′ then 〈l , a, r〉
else if a < a ′ then 〈l , a, 〈〈〉, a ′, r〉〉 else 〈〈l , a ′, 〈〉〉, a, r〉)

deletest a t =
(if t = 〈〉 then 〈〉
else case splay a t of

〈l , a ′, r〉 ⇒
if a = a ′

then if l = 〈〉 then r else case splay max l of 〈l ′, m, r ′〉 ⇒ 〈l ′, m, r〉
else 〈l , a ′, r〉)

Fig. 2. Functions insertst and deletest

splay max 〈〉 = 〈〉
splay max 〈l , b, 〈〉〉 = 〈l , b, 〈〉〉
splay max 〈l , b, 〈rl , c, rr〉〉 =
(if rr = 〈〉 then 〈〈l , b, rl〉, c, 〈〉〉
else case splay max rr of 〈rrl , x , xa〉 ⇒ 〈〈〈l , b, rl〉, c, rrl〉, x , xa〉)

Fig. 3. Function splay max

set tree 〈〉 = ∅
set tree 〈l , a, r〉 = {a} ∪ (set tree l ∪ set tree r)

bst 〈〉 = True
bst 〈l , a, r〉 =
(bst l ∧ bst r ∧ (∀ x ∈ set tree l . x < a) ∧ (∀ x ∈ set tree r . a < x))

Fig. 4. Functions settree and bst

To delete a, you splay with a and if a ends up at the root, you replace it with the
maximal element removed from the left subtree. The latter step is performed by
splay max that splays with the maximal element.

6.1 Functional Correctness

So far we had ignored functional correctness but for splay trees we actually need
it in the verification of the complexity. To formulate functional correctness we

Amortized Complexity Verified 319

c
/ \
b T
/ \

R S

�

a
/ \

R1 b
/ \

R2 c
/ \

S T

Fig. 5. Zig-zig case for splay: a < b < c

need the two auxiliary functions shown in Fig. 4. Function set tree collects the
elements in the tree, function bst checks if the tree is a binary search tree accord-
ing to the linear ordering “<” on the elements. The key functional properties
are that splaying does not change the contents of the tree (it merely reorganizes
it) and that bst is an invariant of splaying:

set tree (splay a t) = set tree t
bst t =⇒ bst (splay a t)

Similar properties can be proved for insertion and deletion, e.g.,

bst t =⇒ set tree (deletest a t) = set tree t − {a}
Now we present two amortized analyses: a simpler one that yields the bounds

proved by Sleator and Tarjan [12] and a more complicated and precise one due
to Schoenmakers [11].

6.2 Amortized Analysis

The timing functions are straightforward and not shown. Roughly speaking, they
count only the number of splay steps: tsplay counts the number of calls of splay,
tsplay max counts the number of calls of splay max; tdelete counts the time for
both splay and splay max.

The potential of a tree is defined as a sum of logarithms as follows:

ϕ t = log2 |t |1
Φ 〈〉 = 0
Φ 〈l , a, r〉 = Φ l + Φ r + ϕ 〈l , a, r〉

The amortized complexity of splaying is defined as usual:

A a t = tsplay a t + Φ (splay a t) − Φ t

Let subtrees yield the set of all subtrees of a tree:

subtrees 〈〉 = {〈〉}
subtrees 〈l , a, r〉 = {〈l , a, r〉} ∪ (subtrees l ∪ subtrees r)

320 T. Nipkow

The following logarithmic bound is proved by induction on t according to the
recursion schema of splay: if bst t and 〈l , a, r〉 ∈ subtrees t then

A a t ≤ 3 ∗ (ϕ t − ϕ 〈l , a, r〉) + 1 (3)

Let us look at one case of the inductive proof in detail. We pick the so-called
zig-zig case shown in Fig. 5. Subtrees with root x are called X on the left and
X ′ on the right-hand side. Thus the figure depicts splay a C = A ′ assuming the
recursive call splay a R = 〈R1, a, R2〉 =: R ′.

A a C = A a R + ϕ B ′ + ϕ C ′ − ϕ B − ϕ R ′ + 1
≤ 3 ∗ (ϕ R − ϕ 〈l , a, r〉) + ϕ B ′ + ϕ C ′ − ϕ B − ϕ R ′ + 2

by ind.hyp.
= 2 ∗ ϕ R + ϕ B ′ + ϕ C ′ − ϕ B − 3 ∗ ϕ 〈l , a, r〉 + 2

because ϕ R = ϕ R ′

≤ ϕ R + ϕ B ′ + ϕ C ′ − 3 ∗ ϕ 〈l , a, r〉 + 2
because ϕ B < ϕ R

≤ ϕ B ′ + 2 ∗ ϕ C − 3 ∗ ϕ 〈l , a, r〉 + 1
because 1 + log2 x + log2 y < 2 ∗ log2 (x + y) if x, y > 0

≤ 3 ∗ (ϕ C − ϕ 〈l , a, r〉) + 1 because ϕ B ′ ≤ ϕ C

This looks similar to the proof by Sleator and Tarjan but is different: they
consider one double rotation whereas we argue about the whole input-output
relationship; also our log argument is simpler.

From (3) we obtain in the worst case (l = r =〈〉):
If bst t and a ∈ set tree t then A a t ≤ 3 ∗ (ϕ t − 1) + 1.

In the literature the case a /∈ set tree t is treated informally by stating that it can
be reduced to a ′ ∈ set tree t: one could have called splay with some a ′ ∈ set tree t
instead of a and the behaviour would have been the same. Formally we prove by
induction that if t = 〈〉 and bst t then

∃ a ′∈set tree t . splay a ′ t = splay a t ∧ tsplay a ′ t = tsplay a t

This gives us an upper bound for all binary search trees:

bst t =⇒ A a t ≤ 3 ∗ ϕ t + 1 (4)

The ϕ t − 1 was increased to ϕ t because the former is negative if t = 〈〉.
We also need to determine the amortized complexity Am of splay max

Am t = tsplay max t + Φ (splay max t) − Φ t

A derivation similar to but simpler than the one for A yields the same upper
bound: bst t =⇒ Am t ≤ 3 ∗ ϕ t + 1.

Now we can apply our amortized analysis theory:

Amortized Complexity Verified 321

datatype ′a opst = Splay ′a | Insert ′a | Delete ′a

nxtst (Splay a) t = splay a t tst (Splay a) t = tsplay a t
nxtst (Insert a) t = insertst a t tst (Insert a) t = tsplay a t
nxtst (Delete a) t = deletest a t tst (Delete a) t = tdelete a t

init = 〈〉 nxt = nxtst t = tst inv = bst Φ = Φ
U (Splay) t = 3 ∗ ϕ t + 1
U (Insert) t = 4 ∗ ϕ t + 2
U (Delete) t = 6 ∗ ϕ t + 2

The fact that the given U is indeed a correct upper bound follows from the
upper bounds for A and Am; for Insert and Delete the proof needs more case
distinctions and log-manipulations.

6.3 Improved Amortized Analysis

This subsection follows the work of Schoenmakers [11] (except that he confines
himself to splay) who improves upon the constants in the above analysis. His
analysis is parameterized by two constants α > 1 and β subject to three con-
straints where all the variables are assumed to be ≥ 1:

(x + y) ∗ (y + z)β ≤ (x + y)β ∗ (x + y + z)

α ∗ (l ′ + r ′) ∗ (lr + r)β ∗ (lr + r ′ + r)β

≤ (l ′ + r ′)β ∗ (l ′ + lr + r ′)β ∗ (l ′ + lr + r ′ + r)

α ∗ (l ′ + r ′) ∗ (l ′ + ll)β ∗ (r ′ + r)β

≤ (l ′ + r ′)β ∗ (l ′ + ll + r ′)β ∗ (l ′ + ll + r ′ + r)

The following upper bound is again proved by induction but this time with
the help of the above constraints: if bst t and 〈l , a, r〉 ∈ subtrees t then

A a t ≤ logα (|t |1 / (|l |1 + |r |1)) + 1

From this we obtain the following main theorem just like before:

A a t ≤ logα |t |1 + 1

Now we instantiate the above abstract development with α = 3
√

4 and β = 1/3
(which includes proving the three constraints on α and β above) to obtain a
bound for splaying that is only half as large as in (4):

bst t =⇒ A34 a t ≤ 3 / 2 ∗ ϕ t

The subscript 34 is our indication that we refer to the α = 3
√

4 and β = 1/3
instance. Schoenmakers additionally showed that this specific choice of α and β
yields the minimal upper bound.

A similar but simpler development leads to the same bound for Am34 as for
A34. Again we apply our amortized analysis theory to verify upper bounds for
Splay, Insert and Delete that are also only half as large as before:

322 T. Nipkow

U (Splay) t = 3 / 2 ∗ ϕ t + 1
U (Insert) t = 2 ∗ ϕ t + 3 / 2
U (Delete) t = 3 ∗ ϕ t + 2

The proofs in this subsection require a lot of highly nonlinear arithmetic.
Only some of the polynomial inequalities can be automated with Harrison’s
sum-of-squares method [5].

7 Splay Heaps

Splay heaps are another self-adjusting data structure and were invented by
Okasaki [10]. Splay heaps are organized internally like splay trees but they imple-
ment a priority queue interface. When inserting an element x into a splay heap,
the splay heap is first partitioned (by rotations, like splay) into two trees, one
≤ x and one > x, and x becomes the new root:

insert x h = (let (l , r) = partition x h in 〈l , x , r〉)
partition p 〈〉 = (〈〉, 〈〉)
partition p 〈al , a, ar〉 =
(if a ≤ p
then case ar of 〈〉 ⇒ (〈al , a, ar〉, 〈〉)

| 〈bl , b, br〉 ⇒
if b ≤ p then let (pl , y) = partition p br in (〈〈al , a, bl〉, b, pl〉, y)
else let (pl , pr) = partition p bl in (〈al , a, pl〉, 〈pr , b, br〉)

else case al of 〈〉 ⇒ (〈〉, 〈al , a, ar〉)
| 〈bl , b, br〉 ⇒

if b ≤ p then let (pl , pr) = partition p br in (〈bl , b, pl〉, 〈pr , a, ar〉)
else let (pl , pr) = partition p bl in (pl , 〈pr , b, 〈br , a, ar〉〉))

Function del min removes the minimal element and is similar to splay max:

del min 〈〉 = 〈〉
del min 〈〈〉, uu, r〉 = r
del min 〈〈ll , a, lr〉, b, r〉 =
(if ll = 〈〉 then 〈lr , b, r〉 else 〈del min ll , a, 〈lr , b, r〉〉)
In contrast to search trees, priority queues may contain elements multiple

times. Therefore splay heaps satisfy the weaker invariant bsteq:

bsteq 〈〉 = True
bsteq 〈l , a, r〉=
(bsteq l ∧ bsteq r ∧ (∀ x ∈ set tree l . x ≤ a) ∧ (∀ x ∈ set tree r . a ≤ x))

This is an invariant for both partition and del min:

If bsteq t and partition p t = (l , r) then bsteq 〈l , p, r〉.
If bsteq t then bsteq (del min t).

For the functional correctness proofs see [9].

Amortized Complexity Verified 323

a
/ \
b T
/ \

R S

�

⎛

⎜
⎝

b
/ \

R S1

,
a
/ \

S2 T

⎞

⎟
⎠

Fig. 6. Zig-zag case for partition: b ≤ p < a

7.1 Amortized Analysis

Now we verify the amortized analysis due to Okasaki. The timing functions
are straightforward and not shown: tpart and tdm count the number of calls
of partition and del min. The potential of a tree is defined as for splay trees in
Sect. 6.2. The following logarithmic bound of the amortized complexity
A p t = tpart p t + Φ l ′ + Φ r ′ − Φ t is proved by computation induction on
partition t : if bsteq t and partition p t = (l ′, r ′) then

A p t ≤ 2 ∗ ϕ t + 1

Okasaki [10] shows the zig-zig case of the induction, I show the zig-zag case in
Fig. 6. Subtrees with root x are called X on the left and X ′ on the right-hand
side. Thus Fig. 6 depicts partition p A = (B ′, A ′) assuming the recursive call
partition p S = (S 1, S 2).

A p A = A p S + 1 + ϕ B ′ + ϕ A ′ − ϕ B − ϕ A
≤ 2 ∗ ϕ S + 2 + ϕ B ′ + ϕ A ′ − ϕ B − ϕ A by ind.hyp.
= 2 + ϕ B ′ + ϕ A ′ because ϕ S < ϕ B and ϕ S < ϕ A
≤ 2 ∗ log2 (|R|1 + |S 1|1 + |S 2|1 + |T |1 − 1) + 1

because 1 + log2 x + log2 y ≤ 2 ∗ log2 (x + y − 1) if x, y ≥ 2
= 2 ∗ ϕ A + 1 because |S 1| + |S 2| = |S |
The proof of the amortized complexity of del min is similar to the one for

splay max: tdm t + Φ (del min t) − Φ t ≤ 2 ∗ ϕ t + 1. Now it is routine to
verify the following amortized complexities by instantiating our standard theory
with U (Insert) t = 3 ∗ log2 (|t |1 + 1) + 1 and U Delmin t = 2 ∗ ϕ t + 1.

Acknowledgement. Berry Schoenmakers patiently answered many questions about
his work whenever I needed help.

References

1. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods
Comput. Sci. 7(2), 33 (2011)

2. Charguéraud, A., Pottier, F.: Machine-checked verification of the correctness and
amortized complexity of an efficient union-find implementation. In: Urban, C.,
Zhang, X. (ed.) ITP 2015. LNCS, vol. 9236, pp. 137–154. Springer, Heidelberg
(2015)

324 T. Nipkow

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, New York (1990)

4. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: A
new form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986)

5. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider,
K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer,
Heidelberg (2007)

6. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14 (2012)

7. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Proceedings of the 30th ACM Symposium Principles of Pro-
gramming Languages, pp. 185–197 (2003)

8. Kaldewaij, A., Schoenmakers, B.: The derivation of a tighter bound for top-down
skew heaps. Inf. Process. Lett. 37, 265–271 (1991)

9. Nipkow, T.: Amortized complexity verified. Archive of Formal Proofs (2014).
http://afp.sf.net/entries/Amortized Complexity.shtml. Formal proof development

10. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press,
Cambridge (1998)

11. Schoenmakers, B.: A systematic analysis of splaying. Inf. Process. Lett. 45, 41–50
(1993)

12. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

13. Sleator, D.D., Tarjan, R.E.: Self-adjusting heaps. SIAM J. Comput. 15(1), 52–69
(1986)

14. Tarjan, R.E.: Amortized complexity. SIAM J. Alg. Disc. Meth. 6(2), 306–318
(1985)

15. Traytel, D., Berghofer, S., Nipkow, T.: Extending hindley-milner type inference
with coercive structural subtyping. In: Yang, H. (ed.) APLAS 2011. LNCS, vol.
7078, pp. 89–104. Springer, Heidelberg (2011)

http://afp.sf.net/entries/Amortized_Complexity.shtml

Foundational Property-Based Testing

Zoe Paraskevopoulou1,2, Cătălin Hriţcu1(B), Maxime Dénès1,
Leonidas Lampropoulos3, and Benjamin C. Pierce3

1 Inria Paris-Rocquencourt, Rocquencourt, France
catalin.hritcu@inria.fr

2 ENS Cachan, Cachan, France
3 University of Pennsylvania, Philadelphia, PA, USA

Abstract. Integrating property-based testing with a proof assistant cre-
ates an interesting opportunity: reusable or tricky testing code can be
formally verified using the proof assistant itself. In this work we introduce
a novel methodology for formally verified property-based testing and
implement it as a foundational verification framework for QuickChick, a
port of QuickCheck to Coq. Our framework enables one to verify that
the executable testing code is testing the right Coq property. To make
verification tractable, we provide a systematic way for reasoning about
the set of outcomes a random data generator can produce with non-
zero probability, while abstracting away from the actual probabilities.
Our framework is firmly grounded in a fully verified implementation of
QuickChick itself, using the same underlying verification methodology.
We also apply this methodology to a complex case study on testing an
information-flow control abstract machine, demonstrating that our verifi-
cation methodology is modular and scalable and that it requires minimal
changes to existing code.

1 Introduction

Property-based testing (PBT) allows programmers to capture informal conjec-
tures about their code as executable specifications and to thoroughly test these
conjectures on a large number of inputs, usually randomly generated. When a
counterexample is found it is shrunk to a minimal one, which is displayed to
the programmer. The original Haskell QuickCheck [12], the first popular PBT
tool, has inspired ports to every mainstream programming language and led to
a growing body of continuing research [11,15] and industrial interest [20]. PBT
has also been integrated into proof assistants [5,8,13,14,21] as a way of reducing
the cost of formal verification, finding bugs earlier in the verification process and
decreasing the number of failed proof attempts: Testing helps proving! Motivated
by these earlier successes, we have ported the QuickCheck framework to Coq,
resulting in a prototype Coq plugin called QuickChick. With QuickChick, we
hope to make testing a convenient aid during Coq proof development.

In this paper we explore a rather different way that testing and proving can
cooperate in a proof assistant. Since our testing code (and most of QuickChick
itself) is written in Coq, we can also formally verify this code using Coq. That
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 325–343, 2015.
DOI: 10.1007/978-3-319-22102-1 22

326 Z. Paraskevopoulou et al.

is, proving helps testing! This verified-testing idea was first proposed a decade
ago by Dybjer, Haiyan, and Takeyama [13,14,18] in the context of Agda/Alfa,
but it has apparently received very little attention since then [4,7].

Why would one want verified testing? Because PBT is very rarely a
push-button process. While frameworks such as QuickCheck provide generic
infrastructure for writing testing code, it is normally up to the user to compose
the QuickCheck combinators in creative ways to obtain effective testing code for
the properties they care about. This testing code can be highly non-trivial, so
mistakes are hard to avoid. Some types of mistakes are easily detected by the
testing itself, while others are not: inadvertently testing a stronger property will
usually fail with a counter-example that one can manually inspect, but testing a
weaker or just a different property can succeed although the artifact under test
is completely broken with respect to the property of interest. Thus, while PBT
is effective at quickly finding bugs in formal artifacts, errors in testing code can
conceal important bugs, instilling a false sense of confidence until late in the
verification process and reducing the benefits of testing.

One response to this problem is providing more automation. QuickCheck
uses type classes for this purpose, and other tools go much further—using, for
instance, techniques inspired by functional logic programming and constraint
solving [5,6,9,11,15,16]. While automation reduces user effort by handling easy
but tedious and repetitive tasks, we are doubtful that the creative parts of writing
effective testing code can be fully automated in general (any more than writ-
ing non-trivial programs in any other domain can); our experience shows that
the parts that cannot be automated are usually tricky enough to also contain
bugs [19]. Moreover, the more sophisticated the testing framework becomes, the
higher the chances that it is going to contain bugs itself. Given the randomized
nature of QuickCheck-style PBT, such bugs can go unnoticed for a long time.

Thus, both for tricky user code and for reusable framework code, verified
testing may be an attractive solution. In particular, formal verification allows
one to show that non-trivial testing code is actually testing the intended prop-
erty. To make this process viable in practice, we need a modular and scalable
way of reasoning about probabilistic testing code. Moreover, for high assurance,
we desire a verification framework based on strong formal foundations, with
precisely identified assumptions. More speculatively, such a foundational verifi-
cation framework could serve as a target for certificate-producing metaprograms
and external tools that produce testing code automatically (e.g., from inductive
type specifications or boolean predicates).

Contributions. We introduce a novel methodology for formally verified PBT
and implement it as a foundational verification framework for our QuickChick
Coq plugin. To make verification tractable, we provide a systematic way for rea-
soning about the set of outcomes a random data generator can produce with
non-zero probability, abstracting away from actual probabilities. This possi-
bilistic abstraction is not only convenient in practice, but also very simple and
intuitive. Beyond this abstraction, our framework is firmly grounded on a fully
verified implementation of QuickChick itself. We are the first to successfully

Foundational Property-Based Testing 327

verify a QuickCheck-like library—significant validation for our verification
methodology. We also describe a significant case study on testing an information-
flow control abstract machine. These experimental results are encouraging, indi-
cating that our verification methodology is modular and scalable, requiring
minimal changes to existing code. Finally, porting QuickCheck to Coq is a useful
side-contribution that is of independent interest, and we hope that we and oth-
ers will build upon QuickChick in the future. Our verification framework relies
on the SSReflect [17] extension to Coq, and is fully integrated into QuickChick,
which is available under a permissive open source license at https://github.com/
QuickChick.

Outline. Our verification framework is illustrated on an example in Sect. 2 and
presented in full detail in Sect. 3. The information-flow case study is discussed
in Sect. 4. We present related work in Sect. 5, before drawing conclusions and
discussing future work in Sect. 6.

2 Example: Red-Black Trees

In this section we illustrate both the QuickChick plugin for Coq and our ver-
ification framework on a simple red-black tree example.1 A red-black tree is a
self-balancing binary search tree in which each non-leaf node stores a data item
and is colored either Red or Black. We define the type of red-black trees of naturals
in Coq as follows:

Inductive color := Red | Black.

Inductive tree := Leaf : tree | Node : color -> tree -> nat -> tree -> tree.

Inserting a new element into a red-black tree is non-trivial as it involves re-
balancing to preserve the following invariants: (i) the root is black (ii) all leaves
are black (iii) red nodes have two black children (iv) from any given node, all
descendant paths to leaves have the same number of black nodes. (For simplicity,
we ignore the binary-search-tree property and focus only on balancing here.) If
we wanted to prove that an insert function of type nat -> tree -> tree preserves the
red-black tree invariant, we could take inspiration from Appel [1] and express
this invariant in declarative form:

Inductive is_redblack ’ : tree -> color -> nat -> Prop :=

| IsRB_leaf: forall c, is_redblack ’ Leaf c 0

| IsRB_r: forall n tl tr h, is_redblack ’ tl Red h -> is_redblack ’ tr Red h ->

is_redblack ’ (Node Red tl n tr) Black h

| IsRB_b: forall c n tl tr h, is_redblack ’ tl Black h -> is_redblack ’ tr Black h ->

is_redblack ’ (Node Black tl n tr) c (S h).

Definition is_redblack (t:tree) : Prop := exists h, is_redblack ’ t Red h.

The definition uses a helper inductive relation is_redblack’, pronounced “is a
red-black subtree,” with three parameters: (i) a sub-tree (ii) the color-context c

(i.e., the color of the parent node) (iii) the black-height h of the sub-tree (i.e., the
number of black nodes in any path from the root of the sub-tree to a leaf). A leaf
1 The complete code for this example is available at https://github.com/QuickChick/

QuickChick/tree/master/examples/RedBlack.

https://github.com/QuickChick
https://github.com/QuickChick
https://github.com/QuickChick/QuickChick/tree/master/examples/RedBlack
https://github.com/QuickChick/QuickChick/tree/master/examples/RedBlack

328 Z. Paraskevopoulou et al.

is a well-formed red-black sub-tree in any color-context and has black-height 0.
A node is a red-black sub-tree if both its child trees are red-black sub-trees and
if the color-context is black in case it has a red root. Moreover, the black-height
of the children must be equal, and we increase this height by 1 if the root is
black. Using this definition we might like to prove in Coq the following property
of insert:

Definition insert_preserves_redblack : Prop :=

forall x s, is_redblack s -> is_redblack (insert x s).

Before starting a proof of this proposition we would like to quickly check that
we did not do any mistakes in the definition of insert or is_redblack. However,
the declarative definition of is_redblack is not well adapted to efficient testing.
Even if we were able to automatically give an executable interpretation to the
inductive definition of is_redblack’ [2,23], we would still have to guess the exis-
tentially quantified black-height h, which would be highly inefficient. So in order
to effectively test the is_redblack invariant, we first manually devise an efficiently
executable version:

Definition is_redblack_bool (t : tree) : bool :=

is_black_balanced t && has_no_red_red Red t.

We omit the definitions of the auxiliaries is_black_balanced and has_no_red_red. While
is_redblack_bool allows us to check whether a tree is red-black or not, in order
to test the invariant of insert using QuickChick, we also need a way to generate
random trees. We start by devising a generic tree generator using the QuickChick
combinators:

Definition genColor := elems [Red; Black].

Fixpoint genAnyTree_depth (d : nat) : G tree :=

match d with

| 0 => returnGen Leaf

| S d’ => freq [(1, returnGen Leaf);

(9, liftGen4 Node genColor (genAnyTree_depth d’)

arbitrary (genAnyTree_depth d ’))]

end.

Definition genAnyTree : G tree := sized genAnyTree_depth.

The genAnyTree_depth auxiliary generates trees of a given depth. If the depth is zero,
we generate a leaf using returnGen Leaf, otherwise we use the freq combinator to
choose whether to generate a leaf or to generate a color using genColor, a natural
number using arbitrary, the two sub-trees using recursive calls, and put everything
together using liftGen 4Node. The code illustrates several QuickChick combinators:
(i) elems chooses a color from a list of colors uniformly at random (ii) returnGen

always chooses the same thing, a Leaf in this case (iii) freq performs a biased
probabilistic choice choosing a generator from a list using user-provided weights
(in the example above we generate nodes 9 times more often than leafs) (iv)
liftGen4 takes a function of 4 arguments, here the Node constructor, and applies
it to the result of 4 other generators (v) arbitrary is a method of the Arbitrary

type class, which assigns default generators to frequently used types, in this case
the naturals (vi) sized takes a generator parameterized by a size, in this case
genAnyTree_depth, and produces a non-parameterized generator by iterating over

Foundational Property-Based Testing 329

different sizes. Even this naive generator is easy to get wrong: our first take at
it did not include the call to freq and was thus only generating full trees, which
can cause testing to miss interesting bugs.

The final step for testing the insert function using this naive generator is
combining the genAnyTree generator and the is_redblack boolean function into a
property checker—i.e., the testing equivalent of insert_preserves_redblack:

Definition insert_preserves_redblack_checker (genTree : G tree) : Checker :=

forAll arbitrary (fun n => forAll genTree (fun t =>

is_redblack_bool t ==> is_redblack_bool (insert n t))).

This uses two checker combinators from QuickChick: (i) forAll produces data
using a generator and passes it to another checker (ii) c1 ==> c2 takes two checkers
c1 and c2 and tests that c2 does not fail when c1 succeeds. The “==>” operator also
remembers the percentage of inputs that do not satisfy the precondition c1 and
thus have to be discarded without checking the conclusion c2. In our running
example c1 and c2 are two boolean expressions that are implicitly promoted to
checkers. Now we have something we can test using the QuickChick plugin, using
the QuickChick command:

QuickChick (insert_preserves_redblack_checker genAnyTree).

*** Gave up! Passed only 2415 tests

Discarded: 20000

We have a problem: Our naive generator for trees is very unlikely to generate
red-black trees, so the premise of insert_preserves_redblack_checker is false and thus
the property vacuously true 88 % of the time. The conclusion is actually tested
infrequently, and if we collect statistics about the distribution of data on which it
is tested, we see that the size of the trees that pass the very strong precondition
is very small: about 95.3 % of the trees have 1 node, 4.2 % of them have 3 nodes,
0.4 % of them have 5 nodes, and only 0.03 % of them have 7 or 9 nodes. So
we are not yet doing a good job at testing the property. While the generator
above is very simple—it could probably even be generated automatically from
the definition of tree [2,24]—in order to effectively test the property we need to
write a property-based generator that only produces red-black trees.

Program Fixpoint genRBTree_height (hc : nat*color) {wf wf_hc hc} : G tree :=

match hc with

| (0, Red) => returnGen Leaf

| (0, Black) => oneOf [returnGen Leaf;

(do! n <- arbitrary; returnGen (Node Red Leaf n Leaf))]

| (S h, Red) => liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))

arbitrary (genRBTree_height (h, Black))

| (S h, Black) => do! c’ <- genColor;

let h’ := match c’ with Red => S h | Black => h end in

liftGen4 Node (returnGen c’) (genRBTree_height (h’, c’))

arbitrary (genRBTree_height (h’, c’)) end.

Definition genRBTree := bindGen arbitrary (fun h => genRBTree_height (h, Red)).

The genRBTree_height generator produces red-black trees of a given black-height and
color-context. For black-height 0, if the color-context is Red it returns a (black)

330 Z. Paraskevopoulou et al.

leaf, and if the color-context is Black it uses the oneOf combinator to select between
two generators: one that returns a leaf, and another that returns a Red node
with leaf children and a random number. The latter uses do notation for bind
(“do! n <- arbitrary;...”) in the G randomness monad. For black-height larger than 0

and color-context Red we always generate a Black node (to prevent red-red conflicts)
and generate the sub-trees recursively using a smaller black-height. Finally, for
black-height larger than 0 and color-context Black we have the choice of generating
a Red or a Black node. If we generate a Red node the recursive call is done using
the same black-length. The function is shown terminating using a lexicographic
ordering on the black-height and color-context.

With this new generator we can run 10000 tests on a laptop in less than 9 s,
of which only 1 s is spent executing the tests. The the rest is spent extracting
to OCaml and running the OCaml compiler (the extraction and compilation
part could be significantly sped up; this time is also easily amortized for longer
running tests):

QuickChick (insert_preserves_redblack_checker genRBTree).

+++ OK, passed 10000 tests

Moreover, none of the generated trees fails the precondition and the average size
of the trees used for testing the conclusion is 940.7 nodes (compared to 1.1 nodes
naively!)

In the process of testing, we have, however, written quite a bit of executable
testing code—some of it non-trivial, like the generator for red-black trees. How
do we know that this code is testing the declarative proposition we started with?
Does our generator for red-black trees only produce red-black trees, and even
more importantly can it in principle produce all red-black trees? Our founda-
tional testing verification framework supports formal answers to these questions.
In our framework the semantics of each generator is the set of values that have
non-zero probability of being generated. Building on this, we assign a semantics
to each checker expressing the logical proposition it tests, abstracting away from
computational constraints like space and time as well as the precise probability
distributions of the generators it uses. In concrete terms, a function semChecker

assigns each Checker a Prop, and a function semGen assigns each generator of type G A

a (non-computable) set of outcomes with Coq type A-> Prop.

semChecker : Checker -> Prop

semCheckable : forall (C : Type) ‘{Checkable C}, C -> Prop.

Definition set T := T -> Prop.

Definition set_eq {A} (m1 m2 : set A) := forall (a : A), m1 a <-> m2 a.

Infix "<-->" := set_eq (at level 70, no associativity) : set_scope.

semGen : forall A : Type , G A -> set A

semGenSize : forall A : Type , G A -> nat -> set A

Given these, we can prove that a checker c tests a declarative proposition P by
showing that semChecker c is logically equivalent with P. Similarly, we can prove that
a generator g produces the set of outcomes O by showing that the set semGen g is
equal to O, using the extensional definition of set equality set_eq above. Returning
to our red-black tree example we can prove the following top-level theorem:

Foundational Property-Based Testing 331

Lemma insert_preserves_redblack_checker_correct:

semChecker (insert_preserves_redblack_checker genRBTree)

<-> insert_preserves_redblack.

The top-level structure of the checker and the declarative proposition is very
similar in this case, and our framework provides lemmas about the semantics
of forAll and “==>” that we can use to make the connection (semCheckable is just a
variant of semChecker described further in Sect. 3.2):

Lemma semForAllSizeMonotonic {A C} ‘{Show A, Checkable C} (g : G A) (f : A -> C)

‘{SizeMonotonic _ g} ‘{forall a, SizeMonotonicChecker (checker (f a))} :

(semChecker (forAll g f) <-> forall (a:A), a \in semGen g -> semCheckable (f a)).

Lemma semImplication {C} ‘{Checkable C} (c : C) (b : bool) :

semChecker (b ==> c) <-> (b -> semCheckable c).

Lemma semCheckableBool (b : bool) : semCheckable b <-> b.

Using these generic lemmas, we reduce the original equivalence we want to
show to the equivalence between is_redblack and is_redblack_bool (reflect is equivalence
between a Prop and a bool in the SSReflect libraries).

Lemma is_redblackP t : reflect (is_redblack t) (is_redblack_bool t).

Moreover, we need to show that the generator for red-black trees is complete;
i.e., they it can generate all red-black trees. We show this via a series of lemmas,
including:

Lemma semColor : semGen genColor <--> [set : color].

Lemma semGenRBTreeHeight h c :

semGen (genRBTree_height (h, c)) <--> [set t | is_redblack ’ t c h].

Lemma semRBTree : semGen genRBTree <--> [set t | is_redblack t].

The proofs of these custom lemmas rely again on generic lemmas about the
QuickChick combinators that they use. We list the generic lemmas that we used
in this proof:

Lemma semReturn {A} (x : A) : semGen (returnGen x) <--> [set x].

Lemma semBindSizeMonotonic {A B} (g : G A) (f : A -> G B)

‘{Hg : SizeMonotonic _ g} ‘{Hf : forall a, SizeMonotonic (f a)} :

semGen (bindGen g f) <--> \bigcup_(a in semGen g) semGen (f a).

Lemma semElems A (x : A) xs : semGen (elems (x ;; xs)) <--> x :: xs.

Lemma semOneOf A (g0 : G A) (gs : list (G A)) :

semGen (oneOf (g0 ;; gs)) <--> \bigcup_(g in (g0 :: gs)) semGen g.

While the proof of the red-black tree generator still requires manual effort
the user only needs to verify the code she wrote, relying on the precise high-level
specifications of all combinators she uses (e.g., the lemmas above). Moreover, all
proofs are in terms of propositions and sets, not probability distributions or low-
level pseudo-randomness. The complete example is around 150 lines of proofs
for 236 lines of definitions. While more aggressive automation (e.g., using SMT)
could further reduce the effort in the future, we believe that verifying reusable
or tricky testing code (like QuickChick itself or the IFC generators from Sect. 4)
with our framework is already an interesting proposition.

332 Z. Paraskevopoulou et al.

3 Foundational Verification Framework

As the example above illustrates, the main advantage of using our verified testing
framework is the ability to carry out abstract (possibilistic) correctness proofs
of testing code with respect to the high-level specifications of the QuickChick
combinators. But how do we know that those specifications are correct? And
what exactly do we mean by “correct”? What does it mean that a property
checker is testing the right proposition, or that a generator is in principle able
to produce a certain outcome? To answer these questions with high confidence
we have verified QuickChick all the way down to a small set of definitions and
assumptions. At the base of our formal construction lies our possibilistic seman-
tics of generators (Sect. 3.1) and checkers (Sect. 3.2), and an idealized interface
for a splittable pseudorandom number generator (splittable PRNG, in Sect. 3.3).
Our possibilistic abstraction allows us to completely avoid complex probabilistic
reasoning at all levels, which greatly improves the scalability and ease of use of
our methodology. On top of this we verify all the combinators of QuickChick,
following the modular structure of the code (Sect. 3.4). We provide support for
conveniently reasoning about sizes (Sect. 3.5) and about generators for functions
(Sect. 3.6). Our proofs use a small library for reasoning about non-computable
sets in point-free style (Sect. 3.7).

3.1 Set-of-Outcomes Semantics for Generators

In our framework, the semantics of a generator is the set of outcomes it can pro-
duce with non-zero probability. We chose this over a more precise abstraction
involving probability distributions, because specifying and verifying probabilis-
tic programs is significantly harder than nondeterministic ones. Our possibilistic
semantics is simpler and easier to work with, allowing us to scale up our verifica-
tion to realistic generators, while still being precise enough to find many bugs in
them (Sect. 4). Moreover, the possibilistic semantics allows us to directly relate
checkers to the declarative propositions they test (Sect. 3.2); in a probabilistic
setting the obvious way to achieve this is by only looking at the support of
the probability distributions, which would be equivalent to what we do, just
more complex. Finally, with our set-of-outcomes semantics, set inclusion cor-
responds exactly to generator surjectivity from previous work on verified test-
ing [13,14,18], while bringing significant improvements to proofs via point-free
reasoning (Sect. 3.7) and allowing us to verify both soundness and completeness.

QuickChick generators are represented internally the same way as a reader
monad with two parameters: a size and a random seed [12] (the bind of this
monad splits the seed, which is further discussed in Sect. 3.3 and Sect. 3.4).

Inductive G (A:Type) : Type := MkGen : (nat -> RandomSeed -> A) -> G A.

Definition run {A : Type} (g : G A) := match g with MkGen f => f end.

Formally, the semantics of a generator g of type G A is defined as the set of elements
a of type A for which there exist a size s and a random seed r with run g s r = a.

Foundational Property-Based Testing 333

Definition semGenSize {A : Type} (g : G A) (s : nat) : set A :=

[set a : A | exists r, run g s r = a].

Definition semGen {A : Type} (g : G A) : set A :=

[set a : A | exists s, a \in semGenSize g s].

We also define semGenSize, a variant of the semantics that assigns to a generator
the outcomes it can produce for a given size. Reasoning about sizes is discussed
in Sect. 3.5.

3.2 Possibilistic Semantics of Checkers

A property checker is an executable routine that expresses a property under test
so that is can be checked against a large number of randomly generated inputs.
The result of a test can be either successful, when the property holds for a given
input, or it may reveal a counterexample. Property checkers have type Checker and
are essentially generators of testing results.

In our framework the semantics of a checker is a Coq proposition. The propo-
sition obtained from the semantics can then be proved logically equivalent to the
desired high-level proposition that we claim to test. More precisely, we map a
checker to a proposition that holds if and only if no counterexamples can possibly
be generated, i.e., when the property we are testing is always valid for the gen-
erators we are using. This can be expressed very naturally in our framework by
stating that all the results that belong to the set of outcomes of the checker are
successful (remember that checkers are generators), meaning that they do not
yield any counterexample. Analogously to generators, we also define semCheckerSize

that maps the checker to its semantics for a given size.

Definition semCheckerSize (c : Checker) (s : nat): Prop :=

successful @: semGenSize c s \subset [set true].

Definition semChecker (c : Checker) : Prop := forall s, semCheckerSize c s.

Universally quantifying over all sizes in the definition of semChecker is a useful ideal-
ization. While in practice QuickChick uses an incomplete heuristic for trying out
different sizes in an efficient way, it would be very cumbersome and completely
unenlightening to reason formally about this heuristic. By deliberately abstract-
ing away from this source of incompleteness in QuickChick, we obtain a cleaner
mathematical model. Despite this idealization, it is often not possible to com-
pletely abstract away from the sizes in our proofs, but we provide ways to make
reasoning about sizes convenient (Sect. 3.5).

In order to make writing checkers easier, QuickChick provides the type class
Checkable that defines checker, a coercion from a certain type (e.g., bool) to Checker. We
trivially give semantics to a type that is instance of Checkable with:

Definition semCheckableSize {A} ‘{Checkable A} (a : A) (s : nat) : Prop :=

semCheckerSize (checker a) s.

Definition semCheckable {A} ‘{Checkable A} (a : A) : Prop := semChecker (checker a).

334 Z. Paraskevopoulou et al.

3.3 Splittable Pseudorandom Number Generator Interface

QuickChick’s splittable PRNG is written in OCaml. The rest of QuickChick
is written and verified in Coq and then extracted to OCaml. Testing happens
outside of Coq for efficiency reasons. The random seed type and the low-level
operations on it, such as splitting a random seed and generating booleans and
numbers, are simply axioms in Coq. Our proofs also assume that the random
seed type is inhabited and that the operations producing numbers from seeds
respect the provided range. All these axioms would disappear if the splittable
PRNG were implemented in Coq. One remaining axiom would stay though, since
it is inherent to our idealized model of randomness:

Axiom randomSplit : RandomSeed -> RandomSeed * RandomSeed.

Axiom randomSplitAssumption :

forall s1 s2 : RandomSeed , exists s, randomSplit s = (s1,s2).

This axiom says that the randomSplit function is surjective. This axiom has non-
trivial models: the RandomSeed type could be instantiated with the naturals, infinite
streams, infinite trees, etc. One can also easily show that, in all non-trivial mod-
els of this axiom, RandomSeed is an infinite type. In reality though, PRNGs work
with finite seeds. Our axiom basically takes us from pseudorandomness to ideal
mathematical randomness, as used in probability theory. This idealization seems
unavoidable for formal reasoning and it would also be needed even if we did prob-
abilistic as opposed to possibilistic reasoning. Conceptually, one can think of our
framework as raising the level of discourse in two ways: (i) idealizing pseudo-
randomness to probabilities (ii) abstracting probability distributions to their
support sets. While the abstraction step could be formally justified (although
we do not do this at the moment), the idealization step has to be taken on faith
and intuition only. We believe that the possibilistic semantics from Sects. 3.1 and
3.2 and the axioms described here are simple and intuitive enough to be trusted;
together with Coq they form the trusted computing base of our foundational
verification framework.

3.4 Verified Testing Combinators

Fig. 1. QuickChick organization diagram

QuickChick provides numerous com-
binators for building generators and
checkers. Using the semantics described
above, we prove that each of these com-
binators satisfies a high-level declara-
tive specification. We build our proofs
following the modular organization of
the QuickChick code (Fig. 1): only a
few low-level generator combinators
directly access the splittable PRNG
interface and the concrete representa-
tion of generators. All the other combi-
nators are built on top of the low-level

Foundational Property-Based Testing 335

Table 1. Selected QuickChick combinators

generators. This modular organization is convenient for structuring our proofs all
the way down. Table 1 illustrates an important part of the combinator library and
how it is divided into low-level generators, high-level generators, and checkers.

The verification of low-level generators has to be done in a very concrete
way that involves reasoning about random seeds. However, once we fully specify
these generators in terms of their sets of outcomes, the proof of any generator
that builds on top of them can be done in a fully compositional way that only
depends on the set of outcomes specifications of the combinators used, abstract-
ing away from the internal representation of generators, the implementation of
the combinators, and the PRNG interface.

As we want the proofs to be structured in compositional way and only depend
on the specifications and not the implementation of the combinators, we make
the combinator implementations opaque for later proofs by enclosing them in
a module that only exports their specifications. The size of the QuickChick
framework (excluding examples) is around 2.4 kLOC of definitions and 2.0 kLOC
of proofs.

3.5 Conveniently Reasoning About Sizes

QuickChick does not prescribe how the generators use the size parameter:
some of them are actually unsized (they do not use their size parameter at

336 Z. Paraskevopoulou et al.

all), while others are sized (they produce data depending on the size). For
instance genColor from Sect. 2 is unsized—it always chooses uniformly at random
between Red or Black—while genAnyTree and genRBTree are both sized. For sized gen-
erators, the precise size dependency can vary; indeed, there can be different
notions of size for the same type: e.g., for genAnyTree size means depth, while for
genRBTree it means black-height. Finally, some generators take the size parameter
to mean the maximal size of the data they generate (e.g., the default genera-
tor for naturals, genAnyTree, genRBTree), while others take it to mean the exact size
(e.g., sized (fun h => genRBTree_height (h, Red)) would be such a generator). Through our
verification we discovered that unsized generators and sized generators using
maximal size are easier to compose right since they allow stronger principles for
compositional reasoning.

In Sect. 3.2 we defined the semantics of checkers by universally quantifying
over all sizes, so one could naively expect that with this idealization there would
be no need to unfold semGen and reason explicitly about the size parameter in terms
of semGenSize in our generator proofs. Unfortunately, this is not always the case: low-
level combinators taking several generators (or generator-producing functions) as
arguments call all these arguments with the same size parameter (reader monad).
For instance, bindGen g f returns a generator that given a size s and a seed r, splits
r into (r1,r2), runs g on s and r1 in order to generate a value v, then applies f to v

and runs the resulting generator with the same size s and with seed r2. It would
be very tempting to try to give bindGen the following very intuitive specification,
basically interpreting it as the bind of the nondetederminism monad:2

semGen (bindGen g f) <--> \bigcup_(a \in semGen g) semGen (f a).

This intuitive specification is, however, wrong in our setting. The set on the
right-hand side contains elements that are generated from (f a) for some size
parameter, whereas a is an element that has been generated from g with a different
size parameter. This would allow us to prove the following generator complete

gAB = bindGen gA (fun a => bindGen gB (fun b => returnGen (a,b)))

with respect to [set : A * B] for any generators gA and gB for types A and B, even in
the case when gA and gB are fixed-size generators, in which case gAB only produces
pairs of equally-sized elements. In our setting, a correct specification of bindGen

that works for arbitrary generators can only be given in terms of semGenSize, where
the size parameter is also threaded through explicitly at the specification level:

Lemma semBindSize A B (g : G A) (f : A -> G B) (s : nat) :

semGenSize (bindGen g f) s <--> \bigcup_(a in semGenSize g s) semGenSize (f a) s.

The two calls to semGenSize on the right-hand side are now passed the same size.
While in general we cannot avoid explicitly reasoning about the interaction

between the ways composed generators use sizes, we can avoid it for two large
classes of generators: unsized and size-monotonic generators. We call a generator

2 Indeed, in a preliminary version of our framework the low-level generators were
axiomatized instead of verified with respect to a semantics, and we took this speci-
fication as an axiom.

Foundational Property-Based Testing 337

size-monotonic when increasing the size produces a larger (with respect to set
inclusion) set of outcomes. Formally, these properties of generators are expressed
by the following two type classes:

Class Unsized {A} (g : G A) := {

unsized : forall s1 s2 , semGenSize g s1 <--> semGenSize g s2 }.

Class SizeMonotonic {A} (g : G A) := {

monotonic : forall s1 s2 , s1 <= s2 -> semGenSize g s1 \subset semGenSize g s2 }.

The gAB generator above is in fact complete with respect to [set : A * B] if at
least one of gA and gB is Unsized or if both gA and gB are SizeMonotonic. We can prove this
conveniently using specialized specifications for bindGen from our library, such as
the semBindSizeMonotonic lemma from Sect. 2 or the lemma below:

Lemma semBindUnsized1 {A B} (g : G A) (f : A -> G B) ‘{H : Unsized _ g}:

semGen (bindGen g f) <--> \bigcup_(a in semGen g) semGen (f a).

Our library additionally provides generic type-class instances for proving
automatically that generators are Unsized or SizeMonotonic. For instance Unsized gener-
ators are always SizeMonotonic and a bind is Unsized when both its parts are Unsized:

Declare Instance unsizedMonotonic {A} (g : G A) ‘{Unsized _ g} : SizeMonotonic g.

Declare Instance bindUnsized {A B} (g : G A) (f : A -> G B)

‘{Unsized _ g} ‘{forall x, Unsized (f x)} : Unsized (bindGen g f).

There is a similar situation for checkers, for instance the lemma providing a
specification to forAll (internally just a bindGen) we used in Sect. 2 is only correct
because of the preconditions that both the generator and the body of the forAll

are SizeMonotonic.

3.6 Verified Generation of Functions

In QuickChick we emulate (and verify!) the original QuickCheck’s approach to
generating functions [10,12]. In order to generate a function f of type a->b we
use a generator for type b, making sure that subsequent calls to f with the same
argument use the same random seed. Upon function generation, QuickCheck
captures a random seed within the returned closure. The closure calls a user-
provided coarbitrary method that deterministically derives a new seed based on the
captured seed and each argument to the function, and then passes this new seed
to the generator for type b.

Conceptually, repeatedly splitting a random seed gives rise to an infinite
binary tree of random seeds. Mapping arguments of type a to tree paths gives
rise to a natural implementation of the coarbitrary method. For random generation
to be correct, the set of all possible paths used for generation needs to be prefix-
free: if any path is a subpath of another then the values that will be generated
will be correlated.

To make our framework easier to use, we decompose verifying completeness
of function generation into two parts. On the client side, the user need only pro-
vide an injective mapping from the function argument type to positives (binary

338 Z. Paraskevopoulou et al.

positive integers) to leverage the guarantees of our framework. On the framework
side, we made the split-tree explicit using lists of booleans as paths and proved
a completeness theorem:

Theorem SplitPathCompleteness (l : list SplitPath) (f : SplitPath -> RandomSeed) :

PrefixFree l -> exists (s : RandomSeed), forall p, In p l -> varySeed p s = f p.

Intuitively, given any finite prefix-free set of paths S and a function f from paths
to seeds, there exists a random seed s such that following any path p from S in s’s
split-tree, we get f p. In addition, our framework provides a mapping from Coq’s
positives to a prefix-free subset of paths. Combining all of the above with the
user-provided injective mapping to positives, the user can get strong correctness
guarantees for function generation.

Theorem arbFunComplete ‘{CoArbitrary A, Arbitrary B} (max:A) (f:A-> B) (s:nat) :

s = Pos.to_nat (coarbitrary max) -> (semGenSize arbitrary s <--> setT) ->

exists seed , forall a, coarbLe a max -> run arbitrary s seed a = f a.

For generators for finite argument function types, the above is a full com-
pleteness proof, assuming the result type also admits a complete generator. For
functions with infinite argument types we get a weaker notion of completeness:
given any finite subset A of a and any function f : a->b, there exists a seed that
generates a function f’ that agrees with f in A. We have a paper proof (not yet
formalized) extending this to a proof of completeness for arbitrary functions
using transfinite induction and assuming the set of seeds is uncountable.

3.7 Reasoning About Non-computable Sets

Our framework provides convenient ways of reasoning about the set-of-outcomes
semantics from Sect. 3.1. In particular, we favor as much as possible point-free
reasoning by relating generator combinators to set operations. To this aim, we
designed a small library for reasoning about non-computable sets that could be
generally useful. A set A over type T is represented by a function P : T -> Prop such
that P x expresses whether x belongs to A. On such sets, we defined and proved
properties of (extensional) equality, inclusion, union and intersection, product
sets, iterated union and the image of a set through a function. Interestingly
enough, we did not need the set complement, which made it possible to avoid
classical logic. Finally, in Coq’s logic, extensional equality of predicates does
not coincide with the primitive notion of equality. So in order to be able to
rewrite with identities between sets (critical for point-free reasoning), we could
have assumed some extensionality axioms. However, we decided to avoid this
and instead used generalized rewriting [22], which extends the usual facilities for
rewriting with primitive equality to more general relations.

4 Case Study: Testing Noninterference

We applied our methodology to verify the existing generators used in a complex
testing infrastructure for information flow control machines [19]. The machines

Foundational Property-Based Testing 339

dynamically enforce noninterference: starting from any pair of indistinguishable
states, any two executions result in final states are also indistinguishable. Instead
of testing this end-to-end property directly we test a stronger single-step invari-
ant proposed in [19]. Each generated machine state consists of instruction and
data memories, a program counter, a stack and a set of registers. The generators
we verified produce pairs of indistinguishable states according to a certain indis-
tinguishability definition. The first state is generated arbitrarily and the second
is produced by randomly varying the first in order to create an indistinguishable
state.

We verified each of these generators with respect to a high-level specification.
We proved soundness of the generation strategy, i.e. that any pair generated by
the variation generators was indeed indistinguishable, thus state variation gener-
ation is sound with respect to indistinguishability. We also proved completeness
of the generators with respect to a set of outcomes that is smaller than all possi-
ble indistinguishable states, precisely capturing the behavior of our generators.
While generating all pairs of indistinguishable states seems good in theory, in
practice it is more efficient to bound the size of the generated artifacts. How-
ever, the trade-off between completeness and efficiency needs to be considered
carefully and our framework allowed us to understand and precisely characterize
what additional constraints we enforce in our generation, revealing a number of
bugs in the process. One of the trade-offs we had to precisely characterize in
our specs is that we only generate instruction sequences of length 2, since we
are only going to execute at most one instruction in a single step, but we must
also allow the program counter to point to different instructions. This greatly
improves efficiency since it is much cheaper to generate a couple than an entire
sequence of reasonable instructions.

In some cases, we were not able to prove completeness with respect to the
specification we had in mind when writing the generators. These cases revealed
bugs in our generation that were not found during extensive prior testing and
experiments. Some revealed hidden assumptions we had made while testing pro-
gressively more complex machines. For instance, in the simple stack-machine
from [19], the label of the saved program counters on the stack was always
decreasing. When porting the generators to more complex machines that inval-
idated this assumption, one should have restructured generation to reflect this.
In our attempts to prove completeness this assumption surfaced and we were
able to fix the problem, validate our fixes and see a noticeable improvement in
bug-finding capabilities (some of the bugs we introduced on purpose in the IFC
machine to evaluate testing were found much faster).

Other bugs we found were minor errors in the generation. For instance, when
generating an indistinguishable atom from an existing one, most of the time we
want to preserve the type of the atom (pointers to pointers, labels to labels,
etc.) while varying the payload. This is necessary for example in cases where
the atoms will be touched by the same instruction that expects a pointer at
a location and finding something else there would raise a non-informative (for
IFC) exception. On the other hand we did not always want to generate atoms

340 Z. Paraskevopoulou et al.

of the same type, because some bugs might only be exposed in those cases. We
had forgotten to vary the type in our generation which was revealed and fixed
during proving. Fixing all these completeness bugs had little impact on generator
efficiency, while giving us better testing.

In this case study we were able to verify existing code that was not written
with verification in mind. For verifying ≈2000 lines of Coq code (of which around
≈1000 lines deal strictly with generation and indistinguishability and the other
≈1000 lines are transitively used definitions) our proofs required ≈2000 lines of
code. We think this number could be further reduced in the future by taking
better advantage of point-free reasoning and the non-computable sets library.
With minimal changes to the existing code (e.g. fixing revealed bugs) we were
able to structure our proofs in a compositional and modular way. We were able to
locate incomplete generators with respect to our specification, reason about the
exact sets of values that they can generate, and fix real problems in an already
thoroughly tested code base.

5 Related Work

In their seminal work on combining testing and proving in dependent type the-
ory [13,14], Dybjer et al., also introduce the idea of verifying generators and iden-
tify surjectivity (completeness) as the most important property to verify. They
model generators in Agda/Alfa as functions transforming finite binary trees of
naturals to elements of the domain, and prove from first principles the surjec-
tivity of several generators similar in complexity to our red-black tree example
generator from Sect. 2. They study a more complex propositional solver using
a randomized Prolog-like search [14,18], but apparently only prove this gener-
ator correct informally, on paper [18, Appendix of Chap. 4]. The binary trees
of naturals are randomly generated outside the system, and roughly correspond
both to our seed and size. While Dybjer et al.’s idea of verifying generators is
pioneering, we take this further and build a generic verification framework for
PBT. By separating seeds and sizes, as already done in QuickCheck [12], we get
much more control over the size of the data we can construct. While this makes
formal verification a bit more difficult as we have to explicitly reason about sizes
in our proofs, we support compositional size reasoning via type classes such as
Unsized and SizeMonotonic (Sect. 3.5). Finally, our checkers do not have a fixed shape,
but are also built and verified in a modular way.

In a previous attempt at bringing PBT to Coq, Wilson [24] created a sim-
plified QuickCheck like tool for automatically generating test inputs for a small
class of testable properties. His goal was to support dependently typed program-
ming in Coq with both proof automation and testing support. In the same work,
attempts are made to aid proof automation by disproving false generalizations
using testing. However there is no support for writing generations in Coq and
therefore also no way of proving interesting facts about generators. In addition,
the generation is executed inside Coq which can lead to inefficiency issues with-
out proper care. For example, as they report, a simple multiplication 200 x 200

Foundational Property-Based Testing 341

takes them 0.35 s, while at the same time our framework can generate and test
the insert property on around 400 red-black trees (Sect. 2).

A different approach at producing a formalized testing tool was taken in the
context of FocalTest [7]. Their verification goal is different; they want to provide a
fully verified constraint-based testing tool that automatically generates MC/DC
compliant test suites from high-level specifications. They prove a translation
from their high level ML-like language to their constraint solving language.

Isabelle provides significant support for testing, in particular via a push-
button testing framework [5]. The current goals for QuickChick are different:
we do not try to automatically generate test data satisfying complex invariant,
but provide ways for the users to construct property-based generators. Both of
these approaches have their advantages: the automatic generation of random test
data in Isabelle is relatively easy to use for novices, while the approach taken
by QuickChick gives the experienced user more control over how the data is
generated. In the future, it would make sense to combine these approaches and
obtain the best of both worlds.

A work perhaps closer related to ours, but still complementary, is the one
by Brucker et al. [4], who in their HOL-TestGen framework also take a more
foundational approach to testing methodologies, making certain assumptions
explicit. Instead of using adequacy criteria like MC/DC [7], they provide feed-
back on “what remains to be proved” after testing. This is somewhat similar in
concept to the notion of completeness of generators in our framework. However
the tool’s approach to generation is automatic small-scale exhaustive testing
with no support for manual generators. Our experience is that randomized test-
ing with large instances scales much better in practice. A more recent paper
on HOL-TestGen [3] presents a complete case study and establishes a formal
correspondence between the specifications of the program under test and the
properties that will be tested after optimization.

6 Conclusion and Future Work

We introduce a novel methodology for formally verified PBT and implement
it as a foundational verification framework for QuickChick, our Coq clone of
Haskell QuickCheck. Our verification framework is firmly grounded in a verified
implementation of QuickChick itself. This illustrates an interesting interaction
between testing and proving in a proof assistant, showing that proving can help
testing. This also reinforces the general idea that testing and proving are syn-
ergistic activities, and gives us hope that a virtuous cycle between testing and
proving can be achieved in a theorem prover.

Future Work. Our framework reduces the effort of proving the correctness of
testing code to a reasonable level, so verifying reusable or tricky code should
already be an interesting proposition in many cases. The sets of outcomes
abstraction also seems well-suited for more aggressive automation in the future
(e.g., using an SMT solver).

342 Z. Paraskevopoulou et al.

Maybe more importantly, one should also strive to reduce the cost of effective
testing in the first place. For instance, we are working on a property-based gener-
ator language in which programs can be interpreted both as boolean predicates
and as generators for the same property. Other tools from the literature provide
automation for testing [5,6,9,11,15,16], still, with very few exceptions [7], the
code of these tools is fully trusted. While for some of these tools full formal
verification might be too ambitious at the moment, having these tools produce
certificates that can be checked in a foundational framework like ours seems well
within reach.

Acknowledgments. We thank John Hughes for insightful discussions and the anony-
mous reviewers for their helpful comments. This work was supported by NSF award
1421243, Random Testing for Language Design.

References

1. Appel, A.W.: Efficient verified red-black trees, Manuscript (2011)
2. Berghofer, S., Bulwahn, L., Haftmann, F.: Turning inductive into equational spec-

ifications. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 131–146. Springer, Heidelberg (2009)

3. Brucker, A.D., Brügger, L., Wolff, B.: Formal firewall conformance testing: an
application of test and proof techniques. Softw. Test. Verification Reliab. 25(1),
34–71 (2015)

4. Brucker, A.D., Wolff, B.: On theorem prover-based testing. Formal Aspects Com-
put. 25(5), 683–721 (2013)

5. Bulwahn, L.: The new quickcheck for Isabelle. In: Hawblitzel, C., Miller, D. (eds.)
CPP 2012. LNCS, vol. 7679, pp. 92–108. Springer, Heidelberg (2012)

6. Bulwahn, L.: Smart testing of functional programs in Isabelle. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 153–167. Springer, Hei-
delberg (2012)

7. Carlier, M., Dubois, C., Gotlieb, A.: A first step in the design of a formally verified
constraint-based testing tool: focaltest. In: Brucker, A.D., Julliand, J. (eds.) TAP
2012. LNCS, vol. 7305, pp. 35–50. Springer, Heidelberg (2012)

8. Chamarthi, H.R., Dillinger, P.C., Kaufmann, M., Manolios, P.: Integrating testing
and interactive theorem proving. In: 10th International Workshop on the ACL2
Theorem Prover and its Applications. EPTCS, vol. 70, pp. 4–19 (2011)

9. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008)

10. Claessen, K.: Shrinking and showing functions: (functional pearl). In: 5th ACM
SIGPLAN Symposium on Haskell, pp. 73–80. ACM (2012)

11. Claessen, K., Dureg̊ard, J., Pa�lka, M.H.: Generating constrained random data
with uniform distribution. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS,
vol. 8475, pp. 18–34. Springer, Heidelberg (2014)

12. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: 5th ACM SIGPLAN International Conference on Functional
Programming (ICFP), pp. 268–279. ACM (2000)

Foundational Property-Based Testing 343

13. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in dependent
type theory. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp.
188–203. Springer, Heidelberg (2003)

14. Dybjer, P., Haiyan, Q., Takeyama, M.: Random generators for dependent types.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 341–355. Springer,
Heidelberg (2005)

15. Fetscher, B., Claessen, K., Pa�lka, M., Hughes, J., Findler, R.B.: Making random
judgments: automatically generating well-typed terms from the definition of a type-
system. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 383–405. Springer,
Heidelberg (2015)

16. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional
logic programs. In: 9th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP), pp. 63–74. ACM (2007)

17. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Formalized Reasoning 3(2), 95–152 (2010)

18. Haiyan, Q.: Testing and Proving in Dependent Type Theory. Ph.D. thesis,
Chalmers (2003)

19. Hriţcu, C., Hughes, J., Pierce, B.C., Spector-Zabusky, A., Vytiniotis, D., de
Amorim, A.A., Lampropoulos, L.: Testing noninterference, quickly. In: 18th ACM
SIGPLAN International Conference on Functional Programming (ICFP), pp. 455–
468. ACM (2013)

20. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2007)

21. Owre, S.: Random testing in PVS. In: Workshop on Automated Formal Methods
(2006)

22. Sozeau, M.: A new look at generalized rewriting in type theory. J. Formalized
Reasoning 2(1), 41–62 (2009)

23. Tollitte, P.-N., Delahaye, D., Dubois, C.: Producing certified functional code from
inductive specifications. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol.
7679, pp. 76–91. Springer, Heidelberg (2012)

24. Wilson, S.: Supporting dependently typed functional programming with proof
automation and testing. Ph.D. thesis, The University of Edinburgh, June 2011

A Linear First-Order Functional Intermediate
Language for Verified Compilers

Sigurd Schneider(B), Gert Smolka, and Sebastian Hack

Saarland University, Saarbrücken, Germany
sigurd.schneider@cs.uni-saarland.de

Abstract. We present the linear first-order intermediate language IL
for verified compilers. IL is a functional language with calls to a nonde-
terministic environment. We give IL terms a second, imperative semantic
interpretation and obtain a register transfer language. For the impera-
tive interpretation we establish a notion of live variables. Based on live
variables, we formulate a decidable property called coherence ensuring
that the functional and the imperative interpretation of a term coin-
cide. We formulate a register assignment algorithm for IL and prove
its correctness. The algorithm translates a functional IL program into
an equivalent imperative IL program. Correctness follows from the fact
that the algorithm reaches a coherent program after consistently renam-
ing local variables. We prove that the maximal number of live variables
in the initial program bounds the number of different variables in the
final coherent program. The entire development is formalized in Coq.

1 Introduction

We study the intermediate language IL for verified compilers. IL is a linear
functional language with calls to a nondeterministic environment.

We are interested in translating IL to a register transfer language. To this
end, we give IL terms a second, imperative interpretation called IL/I. IL/I inter-
prets variable binding as assignment, and function application as goto, where
parameter passing becomes parallel assignment.

For some IL terms, the functional interpretation coincides with the imper-
ative interpretation. We call such terms invariant. We develop an efficiently
decidable property we call coherence that is sufficient for invariance. To trans-
late IL to IL/I, translating to the coherent subset of IL suffices, i.e. the entire
translation can be done in the functional setting.

The notion of a live variable is central to the definition of coherence. Liveness
analysis is a standard technique in compiler construction to over-approximate
the set of variables the evaluation of a program depends on. Coherence is defined
relative to the result of a liveness analysis.

Inspired by the correspondence between SSA [8] and functional program-
ming [2,10], we formulate a register assignment algorithm [9] for IL and show
that it realizes the translation to IL/I. For example, the algorithm translates
program (a) in Fig. 1 to program (b). Correctness follows from two facts: First,
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 344–358, 2015.
DOI: 10.1007/978-3-319-22102-1 23

A Linear First-Order Functional Intermediate Language 345

1 let i = 1 in

2 fun f (j,p) =

3 let c = p <= m in

4 if c then

5 let k = p * j in

6 let m = p + 1 in

7 f (k,m)

8 else

9 j

10 in f (i,n)

1 i := 1;

2 fun f (i,n) =

3 c := n <= m;

4 if c then

5 i := n * i;

6 n := n + 1;

7 f (i,n)

8 else

9 i

10 in f (i,n)

Fig. 1. Program (a) and (b) computing F (n, m) := n ∗ (n + 1) ∗ . . . ∗ m

register assignment consistently renames program (a) such that the variable
names correspond to program (b). Second, program (b) is coherent, hence let
binding and imperative assignment behave equivalently. Parameter passing in
IL/I can be eliminated by inserting parallel assignments [9]. In program (b), all
parameters i, n can simply be removed, as they constitute self-assignments.

A key property of SSA-based register assignment is that the number of imper-
ative registers required after register assignment is bounded by the maximal
number of simultaneously live variables [9], which allows register assignment to
be considered separate from spilling. We show that our algorithm provides the
same bound on the number of different variable names in the resulting IL/I term.

1.1 Related Work

Correspondences between imperative and functional languages were investigated
already by Landin [11]. The correspondence between SSA and functional pro-
gramming is due to Appel [2] and Kelsey [10] and consists of a translation from
SSA programs to functional programs in continuation passing style (CPS) [1,15].
Chakravarty et al. [6] reformulate SSA-based sparse conditional constant propa-
gation on a functional language in administrative normal form (ANF) [16]. Our
intermediate language IL is in ANF, and a sub-language (up to system calls) of
the ANF language presented in Chakravarty et al. [6].

Two major compiler verification projects using SSA exist. CompCertSSA [3]
integrates SSA-based optimization passes into CompCert [13]. VeLLVM [17,18]
is an ongoing effort to verify the production compiler LLVM [12]. Both projects
use imperative languages with φ-functions to enable SSA, and do not consider a
functional intermediate language. As of yet, neither of the projects verifies regis-
ter assignment in the SSA setting. In the non-SSA setting, a register allocation
algorithm, which also deals with spilling, has been formally verified [5].

Beringer et al. [4] use a language with a functional and imperative inter-
pretation for proof carrying code. They give a sufficient condition for the two
semantics to coincide which they call Grail normal form (GNF). GNF requires
functions to be closure converted, i.e. all variables a function body depends on
must be parameters.

346 S. Schneider et al.

Chlipala [7] proves correctness for a compiler from Mini-ML to assembly
including mutable references, but without system calls. Register assignment uses
an interference graph constructed from liveness information. Chlipala restricts
functions to take exactly one argument and requires the program to be closure
converted prior to register assignment. This means liveness coincides with free
variables and values shared or passed between functions reside in an (argument)
tuple in the heap: Effectively, register assignment is function local. Chlipala
does not prove bounds on the number of different variables used after register
assignment and does not investigate the relationship to α-equivalence.

1.2 Contributions and Outline

– We formally define the functional intermediate language IL and its imperative
interpretation, IL/I. We establish the notion of live variables via an induc-
tive definition. We identify terms for which both semantic interpretations
coincide via the decidable notion of coherence.

– Inspired by SSA-based register allocation, we formulate a register assignment
algorithm for IL and prove that it realizes an equivalence preserving transfor-
mation to IL/I. We show the size of the maximal live set bounds the number
of names after register assignment.

– All results in this paper have formal Coq proofs, and the development is
available online (see Sect. 9). We omit proofs in the paper for space reasons.
An extended version is available [DBLP:journals/corr/SchneiderSH15].

The paper is structured as follows: We introduce the functional language IL
in Sect. 2 and the imperative language IL/I in Sect. 3. Program equivalence is
defined in Sect. 4. We define invariance in Sect. 5, establish a notion of live vari-
ables in Sect. 6, and present coherence in Sect. 7. Register assignment is treated
in Sect. 8.

2 IL

Values, Variables, and Expressions. We assume a set V of values and a function
β : V → {0, 1} that we use to simplify the semantic rule for the conditional. By
convention, v ranges over V. We use the countably-infinite alphabet V for names
x, y, z of values, which we call variables.

We assume a type Exp of expressions. By convention, e ranges over Exp.
Expressions are pure, their evaluation is deterministic and may fail, hence expres-
sion evaluation is a function [[·]] : Exp → (V → V⊥) ⇀ V⊥. Environments
are of type V → V⊥ to track uninitialized variables. We assume a function
fv : Exp → set V such that for all environments V, V ′ that agree on fv(e) we
have [[e]] V = [[e]] V ′. We lift [[·]] pointwise to lists of expressions in a strict
fashion: [[e]] yields a list of values if none of the expressions in e failed, and ⊥
otherwise.

A Linear First-Order Functional Intermediate Language 347

η ::= e | α extended expression

Term � s, t ::= letx = η in s variable binding

| if e then s else t conditional

| e value

| fun f x = s in t function definition

| f e application

Fig. 2. Syntax of IL

Syntax. IL is a functional language with a tail-call restriction and system calls.
IL syntactically enforces a first-order discipline by using a separate alphabet F
for names f, g of function type, which we call labels. IL uses a third alphabet
A for names α which we call actions. The term letx = α in . . . is like a system
call α that non-deterministically returns a value. The formal development treats
system calls with arguments. Their treatment is straightforward and omitted
here for the sake of simplicity.

IL allows function definitions, but does not allow mutually recursive defini-
tions. The syntax of IL is given in Fig. 2.

Semantics. The semantics of IL is given as small-step relation −→ in Fig. 3. Note
that the tail-call restriction ensures that no call stack is required. The reduction
relation −→ operates on configurations of the form (F, V, s) where s is the IL
term to be evaluated. The semantics does not rely on substitution, but uses an
environment V : V → V⊥ for variable definitions and a context F for function
definitions. Transitions in −→ are labeled with events φ. By convention, ψ ranges
over events different from τ .

E � φ ::= τ | v = α

A context is a list of named definitions. A definition in a context may refer
to previous definitions and itself. Notationally, we use contexts like functions: If
a context F can be decomposed as F1; f : a;F2 where f �∈ dom F2, we write Ff
for a and F f for F1; f : a. Otherwise, Ff = ⊥. To ease presentation of partial
functions, we treat f : ⊥ as if f was not defined, i.e. f �∈ dom (f : ⊥). We write
∅ for the empty context.

A closure is a tuple (V, x, s) ∈ C consisting of an environment V , a parameter
list x, and a function body s. Since a function f in a context F ; f : . . . ;F ′ can
refer to function definitions in F (and to itself), the first-order restriction allows
the closures to be non-recursive: function closures do not need to close under
labels. An application fe causes the function context F to rewind to F f , i.e.
up to the definition of f (rule App). In contrast to higher-order formulations,
we do not define closures mutually recursively with the values of the language.

A system call let x = α in s invokes a function α of the system, which is
not assumed to be deterministic. This reflects in the rule Extern, which does
not restrict the result value of the system call other than requiring that it is a

348 S. Schneider et al.

Fig. 3. Semantics of IL

value. The semantic transition records the system call name α and the result
value v in the event v = α.

IL is linear in the sense that the execution of each term either passes control
to a strict subterm, or applies a function that never returns. This ensures no
run-time stack is required to manage continuations. While, by contrast, uses
sequentialization ; to manage a stack of continuations.

3 Imperative Interpretation of IL: IL/I

We are interested in a translation of IL to an imperative language that does
not require function closures at run-time. We introduce a second semantic inter-
pretation for IL which we call IL/I to investigate this translation. IL/I is an
imperative language, where variable binding is interpreted as imperative assign-
ment. Function application becomes a goto, and parameter passing is a parallel
assignment to the parameter names. Closures are replaced by blocks (x, s) ∈ B
and blocks do not contain variable environments. Consequently, a called func-
tion can see all previous updates to variables. For example, the following two
programs each return 5 in IL/I, but evaluate to 7 in IL:

1 let x = 7 in

2 fun f () = x in

3 let x = 5 in f ()

1 let x = 7 in

2 fun f () = x in

3 fun g x = f() in

4 let y = 5 in g y

To obtain the IL/I small-step relation −→I , we replace the rules F-Let and
F-App by the following rules:

I-Let

L |V | fun f x = s in t
τ−→I L; f : (x, s) |V | t

I-App

[[e]] V = v Lf = (x, s)

L |V | f e
τ−→I Lf |V [x �→ v] | s

A Linear First-Order Functional Intermediate Language 349

4 Program Equivalence

To relate programs from different languages, we abstract from a configuration’s
internal behavior and only consider interactions with the environment (via sys-
tem calls) and termination behavior. IL’s reduction relation forms a labeled
transition system (LTS) over configurations.

Definition 1. A reduction system (RS) is a tuple (Σ, E ,−→, τ, res), s.t.

(1) (Σ, E ,−→) is a LTS
(2) τ ∈ E

(3) res : Σ → V⊥
(4) res σ = v ⇒ σ −→-terminal

An internally deterministic reduction system (IDRS) additionally satisfies

(5) σ
φ−→ σ1 ∧ σ

φ−→ σ2 ⇒ σ1 = σ2 action-deterministic

(6) σ
φ−→ σ1 ∧ σ

τ−→ σ2 ⇒ φ = τ τ -deterministic

4.1 Partial Traces

We consider two configurations in an IDRS equivalent, if they produce the same
partial traces. A partial trace π adheres to the following grammar:

Π � π ::= ε | v | ⊥ | ψπ

We inductively define the relation ⊆ Σ×Π such that σπ whenever σ produces
the trace π. In the following, we write trace for partial trace.

Tr-Tau

σ
τ−→ σ′ σ′ π

σ π

Tr-End

σ ε

Tr-Trm
σ −→-terminal

σ res σ

Tr-Evt

σ
ψ−→ σ′ σ′ π

σ ψ, π

The traces a configuration produces are given as Pσ = {π | σ π}.

Definition 2 (Trace Equivalence). σ � σ′ :⇐⇒ Pσ = Pσ′

Lemma 1. σ silently diverges if and only if Pσ = {ε}.

4.2 Bisimilarity

We give a sound and complete characterization of trace equivalence via bisimi-
larity. Bisimilarity enables coinduction as proof method for program equivalence,
which is more concise than arguing about traces directly. We say a configuration
σ is ready if the next step is a system call. We write σ2

R� σ1 for ∀σ′
1, σ1

φ−→ σ′
1 ⇒

∃σ′
2, σ2

φ−→ σ′
2 ∧ σ′

1 R σ′
2. We write σ ⇓ w (where w ∈ V⊥) if σ −→∗ σ′ such that

σ′ is −→-terminal and res(σ′) = w.

350 S. Schneider et al.

Definition 3 (Bisimilarity). Let (S, E ,−→, res, τ) be an IDRS. Bisimilarity
∼ ⊆ S × S is coinductively defined as the greatest relation closed under the
following rules:

Bisim-Silent

σ1 −→+ σ′
1 σ2 −→+ σ′

2 σ′
1 ∼ σ′

2

σ1 ∼ σ2

Bisim-Term
σ1 ⇓ w σ2 ⇓ w

σ1 ∼ σ2

Bisim-Extern

σ1 −→∗ σ′
1 σ2 −→∗ σ′

2 σ′
1, σ

′
2 ready σ′

1
∼� σ′

2 σ′
2

∼� σ′
1

σ1 ∼ σ2

Bisim-Silent allows to match finitely many steps on both sides, as long as all
transitions are silent. This makes sense for IDRS, but would not yield a meaning-
ful definition otherwise. Bisim-Silent ensures that every external transition of
σ′
1 is matched by the same external transition of σ′

2, and vice versa. This ensures
that if two programs are in relation, they react to every possible result value of
the external call in a bisimilar way. The premises that σ′

1, σ
′
2 are ready is there

to simplify case distinctions by ensuring that the next event cannot be τ .

Theorem 1 (Soundness and Completeness). Let (S, E ,−→, res, τ) be an
IDRS and σ, σ′ ∈ S. Then: σ ∼ σ′ ⇐⇒ σ � σ′

The semantics of IL and of IL/I each forms an IDRS. We define res such that
res(σ) = v if σ is of the form (F, V, e) and [[e]] V = v. Otherwise, res(σ) = ⊥. The
definitions for IL/I are analogous. To relate configurations IL to IL/I, we form
a reduction system on the sum ΣF + ΣI of the configurations and lift −→ and
res accordingly. It is easy to see that the resulting reduction system is internally
deterministic. If not clear from context, we use an index σF , σI to indicate which
language a configuration belongs to.

5 Invariance

We call a term invariant if it has the same traces in both the functional and the
imperative interpretation.

Definition 4 (Invariance). A closed program s is invariant if

∀V, (∅, V, s)F � (∅, V, s)I

Invariance is undecidable. We develop a syntactic, efficiently decidable crite-
rion sufficient for invariance, which we call coherence. Coherence simplifies the
translation between IL and IL/I.

Coherence is based on the observation that some IL programs do not really
depend on information from the closure. Assume Ff = (V ′, x, s) and consider
the following IL reduction according to rule App:

(F, V, f e) −→ (F f , V ′[x �→ v], s)

A Linear First-Order Functional Intermediate Language 351

If V agrees with V ′ on all variables X that s depends on, then the configuration
could have equivalently reduced to (F f , V [x �→ v], s). This reduction does not
require the closure V ′ and is similar in spirit to the rule I-App. Coherence is
a syntactic criterion that ensures V and V ′ agree on a suitable set X at every
function application. We proceed in two steps:

1. Section 6 introduces the notion of live variables, which identifies a set that
contains all variables a program depends on.

2. Section 7 gives the inductive definition of coherence and shows that coherent
programs are invariant.

6 Liveness

A variable x is significant to a program s and a context L, if there is an envi-
ronment V and a value v such that (L, V, s)I �� (L, V [x �→ v], s)I . Significance is
not decidable, as it is a non-trivial semantic property.

Liveness analysis is a standard technique in compiler construction to over-
approximate the set of variables significant to the evaluation of an imperative
program. While usual characterizations of live variables rely on data-flow equa-
tions [14], we define liveness inductively on the structure of IL’s syntax. To
the best of our knowledge, such an inductive definition is not in literature. The
inductive definition factorizes the correctness aspect from the algorithmic aspect
of liveness analysis.

We embed liveness information in the syntax of IL by introducing annotations
for function definitions: The term fun f x : X = s in t is annotated with a set of
variables X.

6.1 Inductive Definition of the Liveness Judgment

We define inductively the judgment live, which characterizes sound results of a
liveness analysis.

Λ : context (set V) liveness for functions
Λ � live s : X where X : set V live variables

s : Exp expression

The predicate Λ � live s : X can be read as X contains all variables signifi-
cant to s in any context satisfying the assumptions Λ. The context Λ records for
every function f a set of variables X that we call the globals of f . Assuming x
are the parameters of f , we will arrange things such that the set X ∪ x contains
all variables significant for the body of f , but never a parameter of f : X ∩x = ∅.
Throughout the paper, Λ is always a (partial) mapping from labels to globals,
and X denotes a set of variables.

352 S. Schneider et al.

Fig. 4. Liveness: An approximation of the significant variables for IL/I

Description of the Rules. Live-Op ensures that all variables free in η are
live. Every live variable of the continuation s except x must be live at the assign-
ment. We require x to be live in the continuation. Live-Cond ensures that the
live variables of a conditional at least contain the free variables of the condition,
and the variables live in the consequence and alternative. Live-Exp ensures that
for programs consisting of a single expression e at least the free variables of e are
live. Live-App ensures that the free variables of every argument are live, and that
the globals X1 of f are live at the call site. Live-Fun records the annotation X1

as globals for f in Λ, ensures that X1 ∪x is a large enough live set for the function
body, and that X1 does not contain parameters of f . The live variables X2 of the
continuation t must be live at the function definition (Fig. 4).

Theorem 2 (Liveness is Decidable). For all Λ, X and annotated s, it is
efficiently decidable whether Λ � live s : X holds.

The proof of Theorem 2 is constructive and yields an efficient, extractable
decision procedure. The decision procedure recursively descends on the program
structure, checking the conditions of the appropriate rule in every step.

6.2 Liveness Approximates Significance

We show that the live variables approximate the significant variables. We write
L |= Λ if a context L satisfies the assumptions Λ, and define:

LiveCtx1

L |= Λ X ∩ x = ∅ Λ; f : X � live s : X ∪ x

L; f : (x, s) |= Λ; f : X

LiveCtx2

∅ |= ∅

LiveCtx1 ensures that X does not contain parameters and that X ∪x is a large
enough live set for the function body s under the context Λ; f : X.

We can now formally state the soundness of the live predicate. We prove that
if Λ � live s : X, then X contains at least the significant variables of s in every
context L that satisfies the assumptions Λ. We write V =X V ′ if V and V ′ agree
on X, that is if ∀x ∈ X,V x = V ′x.

A Linear First-Order Functional Intermediate Language 353

Theorem 3. For every program s, if Λ � live s : X and L |= Λ and V =X V ′,
then (L, V, s)I � (L, V ′, s)I .

7 Coherence

Coherence is a syntactic condition that ensures that a program is invariant.
Coherence is defined relative to liveness information Λ � live s : X.

In the following programs, the set of globals of f is {x}. The program on the
left is not invariant, while the program on the right is coherent.

1 let x = 7 in

2 fun f () : {x} = x in

3 let x = 5 in f ()

1 let x = 7 in

2 fun f () : {x} = x in

3 let y = 5 in f ()

In the program on the left in line 3, the value of x is 5 and disagrees with the
value of x in the closure of f . In the program on the right, x was not redefined,
hence both IL and IL/I will compute 7. We say a function f is available as
long as none of f ’s globals were redefined. The inductive definition of coherence
ensures only available functions are applied.

7.1 Inductive Predicate

The coherence judgment is of the form Λ � coh s , where s is an annotated
program and Λ is similar to the context in the liveness judgment. We exploit that
contexts realize a partial mapping, and maintain the invariant that Λ maps only
available functions to their globals, and all other functions to ⊥. The inductive
definition given below ensures that only available functions are applied.

Coh-Op
�Λ�V\{x} � coh s

Λ � coh letx = η in s

Coh-Exp

Λ � coh e

Coh-App
Λf �= ⊥

Λ � coh f y

Coh-Cond
Λ � coh s Λ � coh t
Λ � coh ifx then s else t

Coh-Fun
Λ; f : X � coh t �Λ; f : X�X � coh s

Λ � coh fun f x : X = s in t

Description of the Rules. Coh-Op deals with binding a variable x. Every
function that has x as a global (i.e. x ∈ Λf) becomes unavailable, and must be
removed from Λ. We write �Λ�X to remove all definitions from Λ that require
more globals than X. Trivally, �Λ�V = Λ. To remove all definitions from Λ that
use x as global, we use �Λ�V\{x}.

Formally, the definition of �Λ�X exploits the list structure of contexts:

�∅�X = ∅
�Λ; f : ⊥�X = �Λ�X ; f : ⊥

�Λ; f : X ′�X = �Λ�X ; f : X ′ X ′ ⊆ X

�Λ; f : X ′�X = �Λ�X ; f : ⊥ X ′ �⊆ X

354 S. Schneider et al.

Coh-App ensures only available functions can be applied, since Λ maps func-
tions that are not available to ⊥. Coh-Fun deals with function definitions. When
the definition of a function f is encountered, its globals X according to the anno-
tation are recorded in Λ. In the function body s, only functions that require at
most X as globals are available, so the context is restricted to �Λ; f : X�X .

Theorem 4 (Coherence is Decidable). For all Λ and annotated s, it is effi-
ciently decidable whether Λ � coh s holds.

7.2 Coherent Programs are Invariant

Given a configuration (F, V, t) such that Ff = (V ′, x, s), the agreement invari-
ant describes a correspondence between the values of variables in the function
closure V ′ and the environment V . If the closure of f is available, the closure envi-
ronment V ′ agrees with the primary environment V on f ’s globals X: V ′ =X V .
We write F, V |= Λ if ∀f ∈ dom F ∩ dom Λ, V ′ =X V (where Λf = X and
Ff = (V ′, x, s)).

Function application continues evaluation with the function body from the
closure. Assume Ff = (V ′, x, s) and consider the IL reduction:

(F, V, f e) −→ (F f , V ′[x �→ v]a, s)

If coherence is to be preserved, s must be coherent under suitable assumptions.
We say Λ approximates Λ′ if whenever Λf is defined, it agrees with Λ′ and define
Λ � Λ′ : ⇐⇒ ∀f ∈ dom Λ, Λf = Λ′f . The context coherence predicate
Λ � cohF ensures that all function bodies in closures are coherent. It is defined
inductively on the context:

CohC-Emp

∅ � coh ∅

CohC-Bot
Λ � cohF

Λ; f :⊥ � cohF ; f :b

CohC-Con

Λ′ � live s : X ∪ x Λ; f :X � Λ′

�Λ; f : X�X � coh s Λ � cohF

Λ, f : X � cohF ; f : (V, x, s)

CohC-Con encodes two requirements: First, the body of f must be coherent
under the context restricted to the globals X of f (cf. Coh-Fun). Second, X ∪x
must suffice as live variables for the function body s under some assumptions Λ′

such that Λ; f : X approximates Λ′. Approximation ensures stability under
restriction: Λ � cohF ⇒ �Λ�X � cohF .

We define strip(V, x, s) = (x, s) and lift strip pointwise to contexts.

Theorem 5 (Coherence Implies Invariance). Let Λ � coh s and Λ � cohF
and Λ′ � live s : X such that Λ � Λ′. Then for all V =X V ′ such that F, V |= Λ,
it holds (F, V, s)F � (strip F, V ′, s)I .

Theorem 5 reduces the problem of translating between IL/I and IL to the prob-
lem of establishing coherence. For the translation from IL to IL/I, it suffices to
establish coherence while preserving IL semantics. Since SSA and functional pro-
gramming correspond [2,10], the translation from IL/I to IL can be seen as SSA
construction [8], and the translation from IL to IL/I, which we treat in the next
section, as SSA destruction.

A Linear First-Order Functional Intermediate Language 355

8 Translating from IL/F to IL/I via Coherence

The simplest method to establish coherence while preserving IL semantics is
α-renaming the program apart. A renamed-apart program (for formal definition
see [DBLP:journals/corr/SchneiderSH15]) is coherent, since every function
is always available. The properties of α-conversion ensure semantic equivalence.

We present an algorithm that establishes coherence and uses no more dif-
ferent names than the maximal number of simultaneously live variables in the
program. This algorithm corresponds to the assignment phase of SSA-based reg-
ister allocation [9]. The algorithm requires a renamed-apart program as input
to ensure that every consistent renaming can be expressed as a function from
V → V. We proceed in two steps:

1. We define the notion of local injectivity for a function ρ : V → V. We show
that renaming with a locally injective ρ yields an α-equivalent and coherent
program ρ s.

2. We give an algorithm rassign and show that it constructs a locally injective
ρ that uses the minimal number of different names.

We introduce more liveness annotations before every term in the syntax,
i.e. wherever a term s appeared before, now a term 〈X〉 s appears that annotates
s with the set X. From now on, s, t range over such annotated terms. We define
the projection [〈X〉 s] = X. The annotation corresponds directly to the live set
parameter X of the relation Λ � live s : X, hence it suffices to write Λ � live s
for annotated programs.

8.1 Local Injectivity

We define inductively a judgment ρ � inj s where ρ : V → V and s is an
annotated program. We use the following notation for injectivity on X:

f � X :⇐⇒ ∀x y ∈ X, f x = f y =⇒ x = y

The rules defining the judgement are given below and require ρ to be injective
on every live set X annotating any subterm:

Inj-Op
ρ � X ρ � inj s

ρ � inj 〈X〉 letx = η in s

Inj-Val
ρ � X

ρ � inj 〈X〉 e

Inj-App
ρ � X

ρ � inj 〈X〉 f y

Inj-Cond
ρ � X ρ � inj s ρ � inj t

ρ � inj 〈X〉 ifx then s else t

Inj-Fun
ρ � X ρ � inj s ρ � inj t

ρ � inj 〈X〉 fun f x : X1 = s in t

Let VB(s) be the set of variables that occur in a binding position in s, and
fv(s) be the set of free variables of s. For our theorems, several properties are
required:

356 S. Schneider et al.

(1) The program must be without unreachable code, i.e. in every subterm
fun f x = s in t it must be the case that f is applied in t.

(2) A variable in VB(s) must not occur in a set of globals in Λ. We define
Λ ⊆ U :⇐⇒ ∀f ∈ dom Λ, Λ f ⊆ U .

(3) A variable in VB(s) must not occur in the annotation [s]. We write s ⊆ U if
for every subterm t of s it holds that every x ∈ [t] is either in U or bound
at t in s.

For renamed-apart programs, these conditions ensure that the live set X in Inj-
Fun always contains the globals X1 of f (cf. Live-App).

Theorem 6. Let s be a renamed-apart program without unreachable code such
that Λ � live s, Λ ⊆ fv(s) and s ⊆ fv(s). Then

ρ � inj s =⇒ ρ (�Λ�[s]) � coh (ρ s)

Theorem 6 states that the renamed program ρ s is coherent under the assump-
tions ρ (�Λ�[s]), i.e. the point-wise image of �Λ�[s] under ρ.

Renaming with a locally injective renaming produces an α-equivalent pro-
gram (for formal definition see [DBLP:journals/corr/SchneiderSH15]), and
hence preserves program equivalence:

Theorem 7. Let s be a renamed-apart program without unreachable code such
that Λ � live s, Λ ⊆ fv(s) and s ⊆ fv(s). Let ρ, d : V → V such that ρ is the
inverse of d on fv(s). Then ρ � inj s =⇒ ρ, d � ρ s ∼α s

8.2 A Simple Register Assignment Algorithm

The algorithm rassign is parametrized by a function fresh : set V → V of which
we require fresh X �∈ X for all finite sets of variables X. Based on fresh, we
define a function freshlist X n that yields a list of n pairwise-distinct variables
such that (freshlist X n)∩X = ∅. The SSA algorithm must process the program
in an order compatible with the dominance order to work [9]. In our case it
suffices to simply recurse on s as follows:

rassign ρ (〈X〉 letx = η in s) = rassign (ρ[x �→ y]) s
where y = fresh (ρ([s] \ {x}))

rassign ρ (〈X〉 if e then s else t) = rassign (rassign ρ s) t
rassign ρ (〈X〉 e) = ρ
rassign ρ (〈X〉 f e) = ρ
rassign ρ (〈X〉 fun f x : X ′ = s in t) = rassign (rassign (ρ[x �→ y]) s) t

where y = freshlist (ρ([s] \ x)) |x|

We prove in Theorem 8 that the algorithm is correct for any choice of fresh
and freshlist , as long as they satisfy the specifications above.

A Linear First-Order Functional Intermediate Language 357

Theorem 8. Let s be renamed-apart such that Λ � live s, Λ ⊆ fv(s) and s ⊆
fv(s). Let ρ be injective on [s]. Then: rassign ρ s � inj s.

Our implementation of fresh implements the heuristic of simply choosing the
smallest unused variable. Theorem 9 shows that for this choice of fresh, the
largest live set determines the number of required names. We use S(k) to denote
the set of the k smallest variables, and VO(s) to denote the set of variables
occurring (free or in a binding position) in s.

Theorem 9. Assume fresh X yields a variable less or equal to |X|. Let s be
renamed-apart such that Λ � live s, Λ ⊆ fv(s) and s ⊆ fv(s). Let k be the size of
the largest set of live variables in s, and rassign ρ s = ρ′. If ρ(fv(s)) ⊆ S(n) then
ρ′(VO(s)) ⊆ S(max{n, k}).

We prove a slightly generalized version of Theorem 9 by induction on s.

9 Formal Coq Development

Each theorem and lemma in this paper is proven as part of a larger Coq develop-
ment, which is available online1. The development extracts to a simple compiler
that, for instance, produces program (b) when given program (a) from the intro-
duction as input.

The formalization uses De-Bruijn representation for labels, and named repre-
sentation for variables. Notable differences to the paper presentation concern the
treatment of annotations, the technical realization of the definition of liveness,
and the inductive generalizations of Theorems 6–9.

10 Conclusion

We presented the functional intermediate language IL and developed the notion
of coherence, which provides for a canonical and verified translation between
functional and imperative programs. We formulate a register assignment algo-
rithm by recursion on the structure of IL that achieves the same bound on
the number of required registers as SSA-based register assignment. Coherence
allowed us to justify correctness without directly arguing about program seman-
tics by proving that the algorithm α-renames to a coherent program.

Acknowledgments. This research has been supported in part by a Google European
Doctoral Fellowship granted to the first author.

1 http://www.ps.uni-saarland.de/∼sdschn/publications/lvc15.

http://www.ps.uni-saarland.de/~sdschn/publications/lvc15

358 S. Schneider et al.

References

1. Appel, A.W.: Compiling with Continuations. Cambridge University Press, Cam-
bridge (1992)

2. Appel, A.W.: SSA is functional programming. In: SIGPLAN Notices, vol. 33, no.
4 (1998)

3. Barthe, G., Demange, D., Pichardie, D.: A formally verified SSA-based middle-
end. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211,
pp. 47–66. Springer, Heidelberg (2012)

4. Beringer, L., MacKenzie, K., Stark, I.: Grail: a functional form for imperative
mobile code. In: ENTCS, vol. 85, no. 1 (2003)

5. Blazy, S., Robillard, B., Appel, A.W.: Formal verification of coalescing graph-
coloring register allocation. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012,
pp. 145–164. Springer, Heidelberg (2010)

6. Chakravarty, M.M.T., Keller, G., Zadarnowski, P.: A functional perspective on
SSA optimisation algorithms. In: ENTCS, vol. 82, no. 2 (2003)

7. Chlipala, A.: A verified compiler for an impure functional language. In: POPL
(2010)

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. In:
TOPLAS, vol. 13, no. 4 (1991)

9. Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-Form. In:
CC (2006)

10. Kelsey, R.A.: A correspondence between continuation passing style and static single
assignment form. In: SIGPLAN Notices, vol. 30, no. 3 (1995)

11. Landin, P.J.: Correspondence between ALGOL 60 and Church’s Lambda-notation:
part I. In: CACM, vol. 8, no. 2 (1965)

12. Lattner, C., Adve, V.S.: LLVM: a Compilation framework for lifelong program
analysis and transformation. In: CGO (2004)

13. Leroy, X.: Formal verification of a realistic compiler. In: CACM, vol. 52, no. 7
(2009)

14. Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer Publish-
ing Company, Incorporated, Switzerland (2014)

15. Reynolds, J.C.: The discoveries of continuations. LSC 6(3–4), 23–247 (1993)
16. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.

In: LSC, vol. 6, no. (3-4) (1993)
17. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formal verification of

SSA-based Optimizations for LLVM. In: PLDI (2013)
18. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing LLVM

intermediate representation for verified program transformations. In: POPL (2012)
19. Schneider, S., Smolka, G., Hack, S.: A first-order functional intermediate language

for verified compilers. CoRR (2015). 1503.08665

http://arxiv.org/abs/1503.08665

Autosubst: Reasoning with de Bruijn Terms
and Parallel Substitutions

Steven Schäfer(B), Tobias Tebbi, and Gert Smolka

Saarland University, Saarbrücken, Germany
{schaefer,ttebbi,smolka}@ps.uni-saarland.de

Abstract. Reasoning about syntax with binders plays an essential role
in the formalization of the metatheory of programming languages. While
the intricacies of binders can be ignored in paper proofs, formalizations
involving binders tend to be heavyweight. We present a discipline for
syntax with binders based on de Bruijn terms and parallel substitutions,
with a decision procedure covering all assumption-free equational substi-
tution lemmas. The approach is implemented in the Coq library Auto-
subst, which additionally derives substitution operations and proofs of
substitution lemmas for custom term types. We demonstrate the effec-
tiveness of the approach with several case studies, including part A of
the POPLmark challenge.

1 Introduction

Proofs in the metatheory of programming languages and type systems are the
kind of proofs that mathematicians hate for good reason: they are long, contain
few essential insights, and have a lot of tedious but error-prone cases. Thus
they appear to be an ideal target for computer-verification. Unfortunately, such
efforts have often been hampered by the formalization of binders. On paper, it is
consensus that issues of α-equivalence can be neglected with a clean conscience.
For a machine-verifiable formalization, this is not an option.

We propose a style of reasoning about binders based on parallel de Bruijn
substitutions [6]. A (parallel) substitution is a function mapping all variables to
terms. The instantiation of a term s under a substitution σ implements capture-
avoiding substitution, replacing all free variables simultaneously.

Parallel substitutions by themselves are already a useful tool. De Bruijn [6]
used parallel substitutions to produce a simplified proof of the Church-Rosser
theorem. Statements about typing judgements, such as weakening and substitu-
tivity, can be generalized to manipulate the whole context at the same time [2,9].
When working with logical relations [8], we need parallel substitutions in the
statement of the fundamental theorem. In all of these examples it is beneficial
to quantify over parallel substitutions.

Parallel de Bruijn substitutions can be described in the σ-calculus of Abadi
et al. [1], which is a first-order equational theory capturing the interaction of
terms and substitutions. The σ-calculus is formulated as a confluent and termi-
nating rewriting system. In addition, we recently showed that computing normal
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 359–374, 2015.
DOI: 10.1007/978-3-319-22102-1 24

360 S. Schäfer et al.

forms with the σ-calculus yields a decision procedure for equational substitution
lemmas [14].

While none of the ingredients we use are novel, their combination yields a
powerful and practical approach to syntactic theories. In particular, the appli-
cation of the σ-calculus to prove substitution lemmas is novel.

There are a number of routine proofs required to adapt our approach to a given
term language. We have implemented a Coq library Autosubst [15] to automate
this step. Autosubst can automatically generate the substitution operations for
a custom inductive type of terms and prove the corresponding substitution lem-
mas. Autosubst offers tactics that implement the aforementioned normalization
and decision procedure. Autosubst also supports heterogeneous substitutions
between multiple syntactic sorts, like terms with type binders in System F.

The paper is structured as follows. In Sect. 2, we present the approach behind
Autosubst using the untyped λ-calculus as a running example. We explain our
handling of heterogeneous substitutions in Sect. 3. In Sect. 4, we report on our
experiences using Autosubst in practical formalizations.

1.1 Evaluation

We evaluate our approach, as well as Autosubst, on a number of case studies.

– Type Preservation of CCω, a Martin-Löf style dependent type theory [11]
with a predicative hierarchy of universes. This is a technically challenging
development, which needs a number of auxiliary results (e.g., confluence of
reduction). In total, the development takes 214 lines of specification and 233
lines of proof.

– Normalization of System F. The proof uses logical relations, which require
some form of parallel substitutions in the fundamental theorem. We have
mechanized both a proof for a call-by-value variant of System F, as well as
a proof of strong normalization following Girard [8]. For the call-by-value
case we require 99 lines of specification and 65 lines of proof. The strong
normalization proof amounts to 153 lines of specification and 107 lines of
proof.

– Progress and Type Preservation of System F with Subtyping. This is part A
of the POPLmark challenge [4]. The whole development consists of 206 lines
of specification and 240 lines of proof. This is less than half the length of
existing solutions in Coq. The development has been kept fairly close to the
paper proofs for easier comparison to other implementations. If we deviate
from the paper proofs and omit well-formedness assumptions, we can shorten
the proofs to 185 lines of specification and 157 lines of proof.

We report on these case studies in Sect. 4.
All case studies, as well as the source code of Autosubst can be found at

https://www.ps.uni-saarland.de/autosubst.

https://www.ps.uni-saarland.de/autosubst

Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions 361

1.2 Related Work

There are a number of libraries and tools supporting proofs about syntax. We
mention the ones that are available for Coq. What sets Autosubst apart from
the related work is our usage of parallel substitutions, which subsume single vari-
able substitutions. This allows us to offer an automation tactic for solving substi-
tution lemmas and simplifying terms involving substitutions based on a clearly
defined equational theory. Additionally, Autosubst is completely implemented
within Coq and does not require external tools.

– CFGV [3] uses a generic type of context free grammars with variable binding.
Custom term types are obtained by instantiating the generic construction.
The library provides a number of general lemmas to work with CFGVs. The
representation is named and explicitly deals with issues of α-equivalence.

– DBGen [12] is an external tool that generates de Bruijn substitution oper-
ations and proofs of corresponding lemmas. It includes support for syntax
defined by mutual recursion. It generates a single-variable substitution oper-
ation.

– DBLib [13] is a Coq library for de Bruijn substitutions. It offers a generic type
class interface and support for defining single-variable substitution operations
in a uniform way. The substitution lemmas are solved by generic tactics.
It offers tactics that nicely unfold the substitution operations. Also, DBLib
offers some automation in the form of a hint database with frequently needed
lemmas.

– GMeta [10] uses a generic term type and automatically generated isomor-
phisms between it and custom term types. It supports a de Bruijn and a
locally nameless interface. Moreover, it has support for mutually recursive
syntax and the corresponding heterogeneous substitutions. It supports single-
variable substitutions, but lacks automation for substitution lemmas.

– Lambda Tamer [7] is a small library of general purpose automation tactics.
It provides support for working with higher-order and dependently-typed
abstract syntax.

– LNGen [5] is a generator for single-variable locally-nameless substitution oper-
ations and the corresponding lemmas for Coq. It is based on the specification
syntax of the Ott tool [16].

2 From de Bruijn to Autosubst

In this section, we illustrate the de Bruijn representation as used in Autosubst
on the example of the untyped λ-calculus. We first recall the definition of de Bruijn
terms and instantiation (Sect. 2.1) and argue that this yields a model of the
σ-calculus [14]. We then demonstrate reasoning with de Bruijn terms at the
example of the Takahashi, Tait, Martin-Löf proof of the Church-Rosser theorem
(Sect. 2.2). In Sect. 2.3 we discuss the implementation of de Bruijn terms and sub-
stitutions in the interactive theorem prover Coq. This is automated in Auto-
subst, and in Sect. 2.4 we present the same implementation using Autosubst.

362 S. Schäfer et al.

2.1 De Bruijn Representation and Substitution

In this section, we recall the de Bruijn representation of terms in the untyped
λ-calculus and derive the corresponding definitions and lemmas.

The untyped λ-calculus is the archetype of a language with local definitions.
A term of the untyped λ-calculus is either an application, a binder, or a variable.
The idea behind a variable is that it is a reference — either to a binder within the
same term or to an outside context. In de Bruijn representation we implement
these references using natural numbers. The number n refers to the n-th enclosing
binder, counting from 0.

We call the numbers by which we implement variables de Bruijn indices, or
simply indices, and write them as x, y, z. We write terms s, t ∈ T as s, t ::= x |
s t | λ. s. A substitution is a total function mapping indices to terms. A renaming
is a substitution that replaces indices by indices. Note that we do not assume
that renamings are bijective. The letters σ, τ, θ will denote substitutions, while
ξ, ζ will stand for renamings.

A substitution can be seen as an infinite sequence (s0, s1, s2, . . .) of terms.
This view motivates the definition of a cons operation s · σ.

(s · σ)(x) :=

{
s if x = 0
σ(x − 1) otherwise

We also introduce notation for the identity and the shift substitution:

id(x) := x ↑(x) := x + 1

Next, we define the instantiation and composition operations s[σ] (read s
under σ) and σ ◦ τ , which implement capture-avoiding substitution and compo-
sition of substitutions, respectively.

x[σ] = σ(x)
(s t)[σ] = (s[σ]) (t[σ])

(λ. s)[σ] = λ. (s[⇑σ])
(σ ◦ τ)(x) = σ(x)[τ]

In the third equation, we change the substitution using the operator ⇑ (pro-
nounced “up”). This is necessary because λ is a binder and changes the inter-
pretation of the indices in its scope. As we want to implement capture-avoiding
substitution, we have to preserve the bound index 0 and increase all other indices
to skip the additional binder. Combining both cases, we define ⇑σ as

⇑σ := 0 · (σ ◦ ↑)

This shows that the operation ⇑ does not need to be primitive.
This definition of instantiation is by mutual recursion between instantiation,

⇑ and composition. We have to argue termination to show that it is well-defined.
The mutual recursion can be broken up by considering the definition for

renamings. For a renaming ξ, the definition of ⇑ξ simplifies to a non-recursive one

Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions 363

(st)[σ] ≡ (s[σ])(t[σ]) id ◦ σ ≡ σ

(λ. s)[σ] ≡ λ. (s[0 · σ ◦ ↑]) σ ◦ id ≡ σ

0[s · σ] ≡ s (σ ◦ τ) ◦ θ ≡ σ ◦ (τ ◦ θ)

↑ ◦ (s · σ) ≡ σ (s · σ) ◦ τ ≡ s[τ] · σ ◦ τ

s[id] ≡ s s[σ][τ] ≡ s[σ ◦ τ]

0[σ] · (↑ ◦ σ) ≡ σ 0 · ↑ ≡ id

Fig. 1. The convergent rewriting system of the σ-calculus

(for a renaming ξ and a substitution σ, ξ ◦ σ is ordinary function composition)
and thus the definition of s[ξ] boils down to a structural recursion. Since ↑ is
a renaming, we can now define ⇑σ for general substitutions. Finally, we can
define s[σ] with a second structural recursion. Such a two-level definition of
instantiation has been used by Adams in [2].

De Bruijn terms and parallel substitutions, together with the substitution
operations (instantiation, composition, cons, shift, and id) form a model of the
σ-calculus by Abadi et al. [1]. The σ-calculus is a calculus of explicit substitu-
tions. Explicit substitutions were intended to analyze reduction and its imple-
mentation in a more fine-grained way. For us, it is interesting for two reasons.

First, the σ-calculus can express all substitutions necessary to describe reduc-
tions in the λ-calculus. For instance, β-reduction can be expressed using cons. In
de Bruijn representation, a term (λ. s) t reduces to the term s where the index 0
is replaced by t and every other index is decremented by 1, since we removed a
binder. Using the substitution operations of the σ-calculus, this is expressed as
(λ. s) t � s[t · id]. We can express η-reduction as (λ. s[↑] 0) � s. The bound index
0 cannot appear in the image of s under the shift substitution, which replaces
an explicit side condition on the rule.

Second, the σ-calculus yields a useful decision procedure for equational sub-
stitution lemmas. The decision procedure is based on the rewriting system shown
in Fig. 1. As shown in [14], it is also complete for the given model. Thus, we
obtain a rewriting-based decision procedure for equations containing the oper-
ations defined in this section, the term constructors of the untyped λ-calculus,
and universally quantified meta-variables for terms and substitutions.

This concludes the definitions needed for the untyped λ-calculus. It is inter-
esting to note that the use of parallel substitutions goes back to de Bruijn [6].
Nevertheless, the use of single-index substitutions is widespread in the program-
ming language community, although they are equally complicated to define, sig-
nificantly less expressive, and their definition involves ad-hoc recursive “shift”
functions. We believe that single-index substitutions are responsible for much
of the dissatisfaction with de Bruijn terms. In contrast, the careful choice of
substitution operations by Abadi et al. [1] makes this approach to formalizing
syntax elegant.

364 S. Schäfer et al.

2.2 Case Study: Confluence of Reduction

De Bruijn terms were originally introduced both as an implementation tech-
nique and as a way of simplifying paper proofs about the λ-calculus [6]. In this
section we will outline a formal proof of the Church-Rosser theorem based on
de Bruijn terms. There is almost no overhead in the definitions when compared
to a presentation with named variables. We illustrate how parallel substitutions
are used to obtain useful generalizations and how substitution lemmas can be
shown using the σ-calculus.

The Church-Rosser theorem is equivalent to the statement that reduction is
confluent, that is, if a term s reduces to t1 and to t2 in an arbitrary number
of steps, then we can always find a common reduct of t1 and t2. The following
proof is based on the work of Takahashi, Tait, and Martin-Löf [11,17].

Definition 1. Parallel reduction s �> t is defined by the following system of
inference rules.

s1 �> s2 t1 �> t2

(λ. s1) t1 �> s2[t2 · id] x �> x

s1 �> s2 t1 �> t2

s1 t1 �> s2 t2

s1 �> s2

λ. s1 �> λ. s2

Parallel reduction on substitutions is defined pointwise.

σ �> τ := ∀x, σ(x) �> τ(x)

Parallel reduction interpolates between ordinary reduction and many-step
reduction, that is, � ⊆ �> ⊆ �∗. From this, we see that the confluence of
parallel reduction implies the confluence of single-step reduction.

Parallel reduction may contract an arbitrary number of toplevel redexes in a
single step. We consider a function ρ which performs a maximal parallel reduc-
tion.

ρ(x) = x

ρ(λ. s) = λ. ρ(s)
ρ((λ. s) t) = ρ(s)[ρ(t) · id]

ρ(s t) = ρ(s) ρ(t) if s is not a λ abstraction

The result of applying ρ to a term s is maximal in the sense that we can
always extend an arbitrary parallel reduction from s to ρs by contracting the
remaining redices.

Lemma 1 (Triangle Property). For terms s, t, if s �> t, then t �> ρ(s).

From this, the confluence of parallel reduction follows by a diagram chasing
argument. The proof of Lemma 1 relies on a strong substitutivity property for
parallel reductions. We need to show that if s1 �>s2 and t1 �>t2 then s1[t1 · id]�>
s2[t2 · id].

We cannot show this lemma by a direct induction, because the β-substitution
t1·id is not stable when going under a binder. In the case of a λ. s1, we would have

Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions 365

to show by induction that s1[⇑(t1 · id)]�>s2[⇑(t2 · id)]. The minimal generalization
that works is to consider all single index substitutions, that is, substitutions
which replace an index k by a term s. In our notation, these substitutions can
be written as ⇑k(s · id). If we continue in this vein, we will notice that we also
have to show a similar lemma for shift substitutions of the form ⇑k(↑l). A better
strategy is to generalize the lemma over all substitutions.

Lemma 2 (Strong Substitutivity). For all terms s �> t and substitutions
σ �> τ we have s[σ] �> t[τ].

The proof proceeds by induction on the derivation of s �> t. In the case of the
binder, we need to show that σ �> τ implies ⇑σ �> ⇑τ . This statement in turn
depends on a special case of the same lemma. In particular, we can show it by
Lemma 2 specialized to renamings. Intuitively, this is because the proof has to
follow the inductive structure of the instantiation operation.

The other interesting case in the proof of Lemma 2 is the case for β-reduction,
where we have to show a substitution lemma.

s[⇑τ][t[τ] · id] = s[t · id][τ]

This equation holds as a consequence of the axioms of the σ-calculus. In par-
ticular we can show it completely mechanically by rewriting both sides of the
equation to the normal form s[t[τ] · τ].

2.3 Realization in Coq

In Coq we can define the terms of the untyped λ-calculus as an inductive type.

Inductive term : Type :=

| Var (x : nat)

| App (s t : term)

| Lam (s : term).

The cons operation can be defined generically for functions N → X for every
type X. We introduce the notation s .: σ to stand for s ·σ. The identity substi-
tution id will be written as ids and corresponds to the variable constructor. By
post-composing with the identity substitution, we can lift arbitrary renamings
(functions ξ : nat → nat) to substitutions. Since there is no standard notation
for forward composition, we introduce the notation f >>> g for forward compo-
sition of functions. For readability, we also introduce notation for the coercion
of renamings into substitutions, ren ξ := ξ >>> ids. The shift renaming ↑ is
written (+1).

As mentioned before, we implement the instantiation operation by first spe-
cializing to renamings.

Fixpoint rename (ξ : nat → nat) (s : term) : term :=

match s with

| Var x ⇒ Var (ξ x)

| App s t ⇒ App (rename ξ s) (rename ξ t)

| Lam s ⇒ Lam (rename (0 .: ξ >>> (+1)))

end.

366 S. Schäfer et al.

Using rename, we now define up σ := ids 0 .: σ >>> rename (+1). Finally, using
up, we define the full instantiation operation on terms.

Fixpoint inst (σ : nat → term) (s : term) : term :=

match s with

| Var x ⇒ σ x

| App s t ⇒ App (inst σ s) (inst σ t)

| Lam s ⇒ Lam (inst (up σ) s)

end.

With instantiation, we define substitution composition σ >> τ as σ >>> inst τ .
We write s.[σ] for s[σ].

To complete the definition of instantiation we need to show that rename is a
special case of inst. Concretely we must have rename ξ s = inst (ren ξ) s for
all renamings ξ and terms s. The proof proceeds by induction on s and allows
us to forget about rename in the remainder.

In order to show that the definitions above yield a model of the σ-calculus, we
have to show every equation in Fig. 1. Note however, that the only definitions
that are specific to the term language at hand are the identity substitution,
and the definition of instantiation. In order to show that our definitions yield a
model of the σ-calculus, we only need to know that instantiation and the identity
substitution behave correctly. For this, it suffices to establish

id(x)[σ] = σ(x)
s[id] = s

s[σ][τ] = s[σ ◦ τ]

It is easy to check that given these three equations all the other equations in
Fig. 1 follow without any other assumptions about id or instantiation.

In the particular case of the untyped λ-calculus, the first equation id(x)[σ] =
σ(x) holds by definition, while the second follows by a straightforward term
induction. The third equation is more interesting, since the proof has to follow
the inductive structure of the instantiation operation.

Formally, the proof proceeds in three steps. First we show s[ξ][τ] = s[ξ ◦ τ],
by induction on s. Using this result we can show s[σ][ξ] = s[σ ◦ ξ], again by
induction on s. We finally show the full equation, with another term induction.
This proof boils down to showing that ⇑σ ◦ ⇑τ = ⇑(σ ◦ τ), which depends on
both specializations.

2.4 Realization in Autosubst

The library Autosubst generalizes and automates the constructions from the
previous sections for arbitrary term languages. A term language is specified as
an inductive type with annotations.

Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions 367

Fig. 2. Substitution Lemmas in SubstLemmas

For the untyped λ-calculus, we define the type of terms as follows.

Inductive term : Type :=

| Var (x : var)

| App (s t : term)

| Lam (s : {bind term}).

Every term language must contain exactly one constructor for de Bruijn
indices, i.e., a constructor which takes a single argument of type var. As before,
this constructor serves as the identity substitution. The type var is an alias
for nat.

Additionally, all binders must be marked. In this example, Lam is the only
binder. It introduces a new index into the scope of its argument s. The annotation
{bind term} is definitionally equal to term.

Using this definition of terms, we can derive the instantiation operation by
defining an instance of the Subst type class using the tactic derive. This is com-
parable to the usage of deriving-clauses in the programming language Haskell. In
addition, we need to define instances for the two auxiliary type classes Ids and
Rename, defining the identity substitution and the instantiation of renamings.

Instance Ids_term : Ids term. derive. Defined.

Instance Rename_term : Rename term. derive. Defined.

Instance Subst_term : Subst term. derive. Defined.

Next, we derive the substitution lemmas from Fig. 1 by generating an instance
of the SubstLemmas type class.

Instance SubstLemmas_term : SubstLemmas term. derive. Qed.

This class contains the lemmas depicted in Fig. 2.
These are all the necessary definitions to start using the library. In proofs

involving terms and substitutions we can now benefit from the autosubst and
asimpl tactics. The autosubst tactic is a decision procedure for equations between
substitution expressions, that is, terms or substitutions build with the substi-
tution operations. The tactic asimpl normalizes substitution expressions which
appear in the goal. There are also focused variants, asimpl in H and asimpl in *,
for simplifying a specific assumption H or all assumptions as well as the goal.

In order to use these tactics effectively, it is sometimes necessary to produce
equational goals by hand. For instance, consider the following constructor for
β-reduction.

step_beta s t : step (App (Lam s) t) s.[t .: ids]

This constructor can only be applied if the goal contains a term which is syntacti-
cally of the shape s.[t .: ids]. In order to apply the constructor to a goal of the
form step (App (Lam s) t) u, we need a lemma with an equational hypothesis.

368 S. Schäfer et al.

step_ebeta s u t : u = s.[t .: ids] → step (App (Lam s) t) u

We can then apply step_ebeta and show the subgoal using autosubst. Alterna-
tively, we could have used step_ebeta directly in the definition of the reduction
relation. With this design choice, we can show simple properties like substitu-
tivity of reduction with an almost trivial proof script.

Lemma step_subst s t :

step s t → ∀ σ, step s.[σ] t.[σ].
Proof.

induction 1; constructor; subst; autosubst.

Qed.

The tactic autosubst solves the crucial substitution lemma

s.[up σ].[t.[σ] .: ids] = s.[t .: ids].[σ]

Similar considerations apply to every lemma statement involving specific substi-
tutions.

Internally, Autosubst differs from a straightforward implementation of the
σ-calculus in several ways. The σ-calculus contains a number of equations which
are specific to the untyped λ-calculus. If we wanted to use the same approach for a
new term language, we would need to extend the rewriting system with equations
specific to the new term language. Instead, we construct a definition of instanti-
ation with the appropriate simplification behavior. The automation tactics use a
combination of rewriting and term simplification.

Internally, instantiation is defined in terms of renaming. We hide this fact by
treating up as if it was an additional primitive. The automation tactics work by
unfolding these definitions and rewriting substitution expressions to an internal
normal form. In the case of asimpl, we then fold the expressions back into a more
readable format.

Autosubst is completely written in Coq. We synthesize the substitution
operations using the meta-programming capabilities of Ltac.

3 Heterogeneous Substitutions

So far, we have only considered single-sorted syntactic theories. However, many
practical programming languages distinguish at least between terms and types.
In such a setting, we may have more than one substitution operations on terms,
which may interact with one another.

As before, we shall introduce the necessary machinery with a concrete exam-
ple. In this section we consider a two-sorted presentation of System F.

A,B ::= X | A → B | ∀. A

s, t ::= x | s t | λA. s | Λ. s | sA

Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions 369

Substituting types in types works as before. Term substitutions are compli-
cated by the fact that terms contain type binders.

x[σ] = σ(x)
(s t)[σ] = s[σ] t[σ]

(λA. s)[σ] = λA. s[⇑σ]

(sA)[σ] = s[σ]A
(Λ. s)[σ] = Λ. s[σ • ↑]

Upon traversing a type binder, we need to increment all type variables in σ.
In order to substitute types in terms, we introduce heterogeneous instantiation
and composition operations (s|[θ] and σ • θ). To avoid confusion with term sub-
stitutions, we will write θ, θ′ for type substitutions.

x|[θ] = x

(s t)|[θ] = s|[θ] t|[θ]
(λA. s)|[θ] = λA[θ]. s|[θ]

(sA)|[θ] = s|[θ]A[θ]
(Λ. s)|[θ] = Λ. s|[⇑θ]

(σ • θ)(x) = σ(x)|[θ]
We need a number of lemmas about heterogeneous instantiation in order to

work with it using equational reasoning. The situation is analogous to the case
of ordinary instantiation, expect that heterogeneous substitutions have to be
invariant in the image of the identity substitution on terms.

id(x)|[θ] = id(x)
s|[id] = s

s|[θ]|[θ]′ = s|[θ ◦ θ′]

Note that the identity substitution in the first equation is the identity substitu-
tion on terms, while in the second equation, it refers to the identity substitution
on types.

Furthermore, in order to show the substitution lemmas for terms, we need to
know something about the interaction between the two kinds of substitutions.
The fact to take care of is that terms may contain types, but types do not contain
terms. Thus, we can push a type substitution under a term substitution, so long
as we take care that the type substitution was applied in the image of the term
substitution.

s[σ]|[θ] = s|[θ][σ • θ]

4 Case Studies

We have used Autosubst to mechanize proofs about the metatheory of Sys-
tem F, System F<:, and CCω. In each case study we define an inductive type
of terms and derive the substitution operations using Autosubst. In the case
of System F and System F<:, this uses Autosubst’s support for heterogeneous
substitutions as presented in Sect. 3.

For the proofs, we follow the same general strategy as presented in Sect. 2.2.
Whenever we encounter a lemma concerning a specific substitution, we try to

370 S. Schäfer et al.

find a generalization over all substitutions. For instance, in proofs of type preser-
vation, we must show the admissibility of β-substitution for the typing relation.
We generalize and show the admissibility of every “well-typed” substitution.

Γ,A 	 s : B Γ 	 t : A

Γ 	 s[t · id] : B
�

Γ 	 s : A σ : Δ → Γ

Δ 	 s[σ] : A

where σ : Δ → Γ means that every σ(x) is a term of type Γx in context Δ.
However, the details of this definition depend on the typing relation. In the
literature, such well-typed substitutions are known as context morphisms [9].

Context morphisms are more powerful than the β-substitution lemma. In
particular, we obtain weakening by showing ↑ : Γ,A → Γ and the admissibility
of β by showing that if Γ 	 s : A, then s · id : Γ → Γ,A.

The proof of a context morphism lemma always follows the inductive struc-
ture of the instantiation operation. We first show the lemma for renamings. Then
using the lemma for renamings, we show that ⇑ corresponds to context exten-
sion, that is, ⇑σ : Δ,A → Γ,A, whenever σ : Δ → Γ . From this, the full context
morphism lemma follows.

In every case study, we show all equational substitution lemmas automatically
with Autosubst. With the correct definitions and lemma statements, most
proofs are straightforward.

4.1 Type Preservation for CCω

Type preservation of CCω boils down to a number of inversion lemmas for typing
derivations, as well as the admissibility of substitution. The former depend on the
Church-Rosser theorem, whose proof proceeds exactly as illustrated in Sect. 2.2.

The main difference between a normal paper presentation of CCω and the
de Bruijn presentation is in the case of the variable rule. Context lookup is
needed to implement the variable rule.

(x,A) ∈ Γ

Γ 	 x : A
�

x < |Γ |
Γ 	 x : Γx

In the non-dependent case, we can implement Γx by list lookup. In this case,
however, the context is dependent. For dependent contexts Γ , we need to ensure
that Γx is a valid type in Γ . In Coq, we totalize this function by adding a case
for the empty context.

(Γ,A)0 = A[↑]
(Γ,A)x+1 = Γx[↑]

The context morphism lemma for CCω takes the form

Γ 	 s : A σ : Δ → Γ

Δ 	 s[σ] : A[σ]
σ : Δ → Γ := ∀x < |Γ | ,Δ 	 σ(x) : Γx[σ]

Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions 371

Apart from the obvious instances for weakening and β, we also obtain a context
conversion lemma as a corollary. If we have two types A ≡ B, then id : Γ,B →
Γ,A. Instantiating the context morphism lemma yields

Γ,A 	 s : C A ≡ B

Γ,B 	 s : C

4.2 Strong Normalization for System F

We follow Girard’s proof of strong normalization [8]. The proof consists of defin-
ing a type-indexed family of sets of terms L(A) such that s ∈ L(A) implies that
s is strongly normalizing. We then show that every term of type A is contained
in L(A), which implies the strong normalization result. The main technical diffi-
culty with this proof is that we need to generalize the latter statement. Instead
of showing that Γ 	 s : A implies s ∈ L(A), we need to show that s[σ] ∈ L(A) for
all substitutions σ such that σ(x) ∈ L(Γx). This generalization is standard and
extensively documented in the literature.1 In the proof, we have some occasion
to generalize lemmas over all substitutions, but otherwise there are no surprises.

We still need to show how to define System F using de Bruijn terms.
In the named presentation of System F, we have two contexts, a context Δ for

type variables and a context Γ for term variables. The rule for type abstraction
is usually rendered with a side condition.

Δ,X;Γ 	 s : A

Δ;Γ 	 ΛX. s : ∀X.A
(X �∈ FV(Γ))

For de Bruijn terms, we can drop the context Δ, since it only asserts that at
most a certain number of type variables are free. This constraint is orthogonal
to the typing relation. The freshness assumption can in turn be implemented
similar to η-reduction. Note that we do not abstract over an arbitrary variable
X, but rather over the index 0. If Γ is an arbitrary context, then 0 is not free
in the context Γ [↑], where we instantiate every type in Γ under ↑. This leads to
the following concise definition.

Γ [↑] 	 s : A

Γ 	 Λ. s : ∀. A

All other inference rules are straightforward.

4.3 POPLmark Challenge

The POPLmark [4] is a benchmark to “measur[e] progress [...] in mechanizing
the metatheory of programming languages”. We solve part A, which concerns
progress and preservation of System F<:.
1 There are a large number of details which are swept under the carpet in this short

overview. The formalization tells the whole story.

372 S. Schäfer et al.

Fig. 3. Comparison of Coq solutions to part A of the POPLmark challenge

The typing relation of System F<: carries two contexts: A context Δ with
subtyping assumptions for type variables and a context Γ with typing assump-
tions for terms. The context Δ is dependent, while Γ is non-dependent.

The proof of type preservation decomposes into a sequence of context mor-
phism lemmas. In part 1A of the POPLmark challenge, we show the context
morphism lemma for subtyping. For part 2A, we prove similar context mor-
phism lemmas for the typing relation. These proofs are all simple and regular.
The other lemmas are all very close to the informal proof.

In Fig. 3, we compare lines of code using coqwc, excluding parts that the
authors marked as reusable libraries.

– Xavier Leroy’s solution2 is a self-contained development using the locally
nameless representation.

– Arthur Charguéraud’s solution3 also uses the locally nameless representation,
but uses a small library to reason about the locally nameless representation.

– Jérôme Vouillon4 uses de Bruijn indices in a self-contained development.
– There are two solutions using the GMeta [10] library. One using locally name-

less and one using de Bruijn indices.
– There is a solution5 using the LNGen [5] library, which generates substitu-

tion operations for locally nameless terms and proofs for the corresponding
infrastructure lemmas.

5 Conclusion

There is an abundance of proposals for the formalization of binders: named syn-
tax with α-equivalence and freshness-assumptions, de Bruijn indices, the locally

2 http://www.seas.upenn.edu/∼plclub/poplmark/leroy.html.
3 http://www.chargueraud.org/softs/ln/.
4 http://www.seas.upenn.edu/∼plclub/poplmark/vouillon.html.
5 http://www.cis.upenn.edu/∼sweirich/papers/lngen/.

http://www.seas.upenn.edu/~plclub/poplmark/leroy.html
http://www.chargueraud.org/softs/ln/
http://www.seas.upenn.edu/~plclub/poplmark/vouillon.html
http://www.cis.upenn.edu/~sweirich/papers/lngen/

Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions 373

nameless representation, higher-order abstract syntax, and nominal logic to name
just a few contenders. The POPLmark Challenge [4] has been set up as a bench-
mark for these approaches and to encourage further development of solutions
that work and scale.

However, the right method to choose depends on a lot of factors, the most
important of which is probably the logic or theorem prover that one is working
with. For example, higher-order abstract syntax and nominal logic require special
support from the meta-logic in most variations. On the other hand, pure first-
order approaches like named syntax, de Bruijn indices and the locally nameless
representation work in most systems.

Another important distinction is the distance to paper proofs. Here,
approaches with named contexts like named terms and locally nameless are
closer, at the price of having to deal with issues of freshness manually. Our
approach is rather distant from the usual paper proofs, which tend to use single-
variable substitutions. In this respect, it is more distant than the more common
approach using single-variable de Bruijn substitutions. On the other hand, our
approach removes most of the technicalities of single-variable de Bruijn substi-
tutions. Our decision procedure relies crucially on the fact that we use parallel
substitutions. We believe that the elegance of this pure and parallel de Bruijn
style is worth the paradigm shift.

5.1 Future Work

We identified the following shortcomings with the current implementation of
Autosubst, which we would like to address in future work.

– The current approach to heterogeneous substitutions is rather ad-hoc. It is
not extensible to mutually recursive types and it is lacking a completeness
result.

– Autosubst lacks support for binders with variable arity. This is needed to
formalize pattern matching, as used in part B of the POPLmark challenge.

– Autosubst generates definitions using Ltac, which is rather fragile. Proper
error reporting is currently not available, and in some cases it is necessary
to manually inspect the generated code for errors. It seems to be almost
impossible to build an Ltac script that is reliable in corner cases, due to
the unpredictable nature of the Ltac semantics. Additionally, Autosubst
cannot handle mutually recursive term types. These problems could be solved
by writing the code generator in an external programming language, or by
extending the metaprogramming capabilities of Coq.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. J. Funct.
Program. 1(4), 375–416 (1991)

2. Adams, R.: Formalized metatheory with terms represented by an indexed family
of types. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004.
LNCS, vol. 3839, pp. 1–16. Springer, Heidelberg (2006)

374 S. Schäfer et al.

3. Anand, A., Rahli, V.: A generic approach to proofs about substitution. In: Pro-
ceedings of the 2014 International Workshop on Logical Frameworks and Meta-
languages: Theory and Practice, p. 5. ACM (2014)

4. Aydemir, B.E., et al.: Mechanized metatheory for the masses: the PoplMark
challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
50–65. Springer, Heidelberg (2005)

5. Aydemir, B.E., Weirich, S.: LNgen: Tool support for locally nameless representa-
tions. Technical report, University of Pennsylvania (2010)

6. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae (Proceedings) 75(5), 381–392 (1972)

7. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: ACM Sigplan Notices, vol. 43, pp. 143–156. ACM (2008)

8. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types, vol. 7. Cambridge University
Press, Cambridge (1989)

9. Goguen, H., McKinna, J.: Candidates for substitution. LFCS report series - Lab-
oratory for Foundations of Computer Science ECS LFCS (1997)

10. Lee, G., Oliveira, B.C.D.S., Cho, S., Yi, K.: GMeta: a generic formal metatheory
framework for first-order representations. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 436–455. Springer, Heidelberg (2012)

11. Martin-Löf, P.: An intuitionistic theory of types. Twenty-five Years Constructive
Type Theory 36, 127–172 (1998)

12. Polonowski, E.: Automatically generated infrastructure for de bruijn syntaxes. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp.
402–417. Springer, Heidelberg (2013)

13. Pottier, F.: DBLIB, a Coq library for dealing with binding using de Bruijn indices,
Dec 2013. https://github.com/fpottier/dblib

14. Schäfer, S., Smolka, G., Tebbi, T.: Completeness and Decidability of de Bruijn
Substitution Algebra in Coq. In: Proceedings of the 2015 Conference on Certified
Programs and Proofs, CPP 2015, pp. 67–73. ACM, New York, Jan 2015

15. Schäfer, S., Tebbi, T.: Autosubst: Automation for de Bruijn syntax and substitu-
tion in Coq, August 2014. www.ps.uni-saarland.de/autosubst

16. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnǐsa, R.:
Ott: Effective tool support for the working semanticist. J. Funct. Program. 20(1),
71 (2010)

17. Takahashi, M.: Parallel reductions in λ-calculus. Inf. Comput. 118(1), 120–127
(1995)

https://github.com/fpottier/dblib
www.ps.uni-saarland.de/autosubst

ModuRes: A Coq Library for Modular
Reasoning About Concurrent Higher-Order

Imperative Programming Languages

Filip Sieczkowski(B), Aleš Bizjak, and Lars Birkedal

Department of Computer Science, Aarhus University, Aarhus, Denmark
{filips,abizjak,birkedal}@cs.au.dk

Abstract. It is well-known that it is challenging to build semantic mod-
els of type systems or logics for reasoning about concurrent higher-order
imperative programming languages. One of the key challenges is that
such semantic models often involve constructing solutions to certain
kinds of recursive domain equations, which in practice has been a barrier
to formalization efforts. Here we present the ModuRes Coq library, which
provides an easy way to solve such equations. We show how the library
can be used to construct models of type systems and logics for reasoning
about concurrent higher-order imperative programming languages.

1 Introduction

In recent years we have seen a marked progress in techniques for reasoning about
higher-order, effectful programming languages. However, many of the resulting
models and logics have eschewed formal verification. The main reason seems
to be the rising complexity of these theories, as well as the increasing use of
sophisticated mathematical structures, which impose a substantial barrier to
entry for potential formalization efforts. One of the crucial features that is dif-
ficult to model is circularity, in its various shapes. Its prototypical form stems
from higher-order store, where we can store functions and references as well
as first-order data, but circularities can arise in many other ways. One that is
commonly encountered in program logics for concurrency, for instance, is shared
invariants, which can be accessed by any one thread of computation — provided
that the access preserves the invariant. Since the state that a particular invariant
describes could well refer to other invariants, a circularity arises. This circularity
is quite similar in nature to the one that arises when one attempts to interpret
types of higher-order references: the semantic description of the store has to
include the interpretation of the type for each location — but the interpretation
of the type itself depends on the description of the store.

In this paper we present the ModuRes Coq library1, which provides an easy
way to solve these kinds of circularities, and help use the solutions to build
models of programming languages and program logics.

1 Available at http://cs.au.dk/∼birke/modures/tutorial.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 375–390, 2015.
DOI: 10.1007/978-3-319-22102-1 25

http://cs.au.dk/~birke/modures/tutorial

376 F. Sieczkowski et al.

Example: Consider a simply-typed lambda-calculus extended with ML-style
higher-order references. As discussed in [1,2,9,11,17] it is natural to try to give
the semantic interpretation of its types in the following (flawed) way:

type = world → P(value) world = loc ⇀fin type. (1)

The idea is that the world associates with each location its semantic type, and
the semantic types use the world to give the interpretation to the reference
types: the interpretation of a reference type should only contain locations that
are associated with the appropriate type by the world. However, the recursive
dependency between type and world is not well-founded and thus a simple set-
theoretic solution to such an equation does not exist in general (for a more
detailed treatment of this circularity see e.g. [9]).

Various solutions to this problem have been proposed, using tools like explicit
step-indexing [1,2], Hobor et al.’s indirection theory, which also comes with an
associated Coq formalization [17], and ultrametric spaces [9,11], among others.
In our library, we formalize a variant of the ultrametric-space approach described
by Birkedal et al. [9–11], that not only gives us a general way of solving the
recursive domain equations, but puts it in a larger context that allows us to
easily utilize it to build higher-order logics with recursively defined predicates. In
the following, we explain some of the basics of our approach, and why we believe
that it forms a low-boilerplate and powerful tool, and present how it can be
used to model and solve equations like (1). We also report on a recent successful
application of the ModuRes Coq library to formalize a state-of-the-art program
logic for a concurrent higher-order imperative programming language [20].

2 COFE in Coq

As mentioned above, the recursive domain equations that often arise when mod-
eling sophisticated type systems and logics for advanced programming languages,
in general do not have a solution using standard sets and functions. In the Mod-
uRes library we use the approach of Birkedal et al. [10] and move from the
category Set of sets and functions to categories enriched over certain kinds of
ultrametric spaces. For formalization purposes, it is important that this move is
not too cumbersome in practical use. The ModuRes library and this paper there-
fore makes use of an alternative, simpler, presentation of the necessary ultramet-
ric spaces, known as complete ordered families of equivalences, or COFEs [16]. A
tutorial presentation of COFEs and their application to models of higher-order
logics can be found in Birkedal and Bizjak [8]. In this section we focus on our
formalization in Coq, and introduce the types that are necessary to understand
the statement and solution of recursive domain equations.

2.1 Using Type Classes: Types with Equality

COFEs will be represented in Coq as types enriched with some additional infor-
mation. To make it easier to work with such enriched types, we make use of

ModuRes: A Coq Library for Modular Reasoning 377

Coq’s type classes [23]. In this subsection we explain the general approach we
follow, by first considering how to represent types with an equality provided by
the user (known in the Coq standard library as a setoid).

We begin by calling to mind the setoid definition from the standard library:

Class Setoid A := {
equiv : relation A ;
setoid equiv :> Equivalence equiv }.

This definition means that for any type T for which we can find an instance of the
Setoid class, we have a relation, and we know that this relation is an equivalence
relation. The type class system allows us to build many generic constructions on
setoids, such as products and subset types. Consider, for instance the product
of two setoids, with the usual, pointwise equality. The following snippet gives
the definition, with the proof that the relation is indeed an equivalence elided
(recall == is the standard library infix notation for equiv).

Context ‘{eqU : Setoid U} ‘{eqV : Setoid V}.
Definition prod equiv (p1 p2 : U ∗ V) :=

fst p1 == fst p2 /\ snd p1 == snd p2.
Global Program Instance prod setoid : Setoid (U ∗ V) :=

Build Setoid (equiv := prod equiv) .
Next Obligation. . . . Qed.

The principal strength of the type class mechanism as applied as above is in the
lightweight usage: any type T∗U can be considered as a setoid as long as we can
find a proof that both arguments have a setoid structure too.

We can build many general constructions on types of equality, but one of
particular importance is the function space on equality types. As with many
other mathematical structures, the general functions between the underlying
types are too loose: we need a space of “good” functions. In the case of setoids,
the appropriate notion of goodness is, unsurprisingly, preservation of equality.
We can define equality-preserving maps as follows:

Record morphism S T ‘{eqS : Setoid S} ‘{eqT : Setoid T} :=
mkMorph {

morph :> U −> V;
morph resp : Proper (equiv ==> equiv) morph}.

Infix ”−=>” := morphism (at level 45, right associativity).

Several things are worth noting here. Firstly, an equality preserving function is
actually a record that carries with itself the proof of that property. Note that
while we could declare it a typeclass, this would not give us much, since finding
a proof of preservation of equality is beyond the type-directed proof search that
the type class mechanism employs. Secondly, we are using the standard library
Proper class, which expresses the general notion of a relation being preserved by a
function symbol — in our case, that the function morph preserves setoid equality,
i.e., takes equiv arguments to equiv results. Finally, in contrast to the general

378 F. Sieczkowski et al.

function spaces, we can define the setoid structure for the equality preserving
maps, as illustrated by the following snippet:

Context ‘{eqT : Setoid T} ‘{eqU : Setoid U}.
Definition morph equiv (f g : T −=> U) := forall t, f t == g t.
Global Program Instance morph setoid : Setoid (T −=> U) :=

Build Setoid (equiv := morph equiv) .
Next Obligation. . . . Qed.

This is the gist of the pattern of enriching the types that we follow throughout
the library. It is reminiscent and indeed inspired by the approach of Spitters
and van der Weegen [24]; we discuss the relationship in more detail in Sect. 5.
The library provides many additional constructions on setoids, as well as useful
definitions and lemmas. However, the most important aspect is that we provide
a lightweight way of enriching the types, particularly the function spaces.

2.2 Complete Ordered Families of Equivalences

After seeing the general pattern we use to enrich types, we can move to defining
the actual COFEs. Conceptually, ordered families of equivalences are an exten-
sion of setoids: where the setoid provides one notion of equality for a given type,
an ordered family of equivalences (OFE) provides a whole family of equivalences
that approximate equality. Formally, we define them as follows:

Class ofe T {eqT : Setoid T} :=
{ dist : nat −> T −> T −> Prop;

dist morph n :> Proper (equiv ==> equiv ==> iff) (dist n);
dist refl : forall x y, (forall n, dist n x y) <−> x == y;
dist sym n :> Symmetric (dist n);
dist trans n :> Transitive (dist n);
dist mono : forall n x y, dist (S n) x y −> dist n x y;
dist bound : forall x y, dist 0 x y}.

As we can see, in addition to a setoid structure, an ofe has a relation for each
natural number. These are ordered, in the sense that distmono implies: a relation at
level n is included in all smaller levels. Furthermore, the relation is trivial at level
0, and the family’s limit is the setoid equality — i.e., two elements of an OFE
are considered equal iff they are approximately equal at all levels, as enforced by
distrefl. The somewhat cryptic statement of distmorph ensures that the approximate
equality respects the setoid equality, i.e., that one can freely substitute equal
arguments of dist. We use the following notation for the approximate equality:

Notation ”x ’=’ n ’=’ y” := (dist n x y).

For the OFEs to serve their purpose, we need one extra property: com-
pleteness of all Cauchy chains. Cauchy chains are sequences (or chains) whose
elements get arbitrarily close together. An OFE T is complete (a COFE) if all
Cauchy chains converge to an element of T: for any level of approximation n there
is a tail of the chain whose elements are all n-equal to the limit. Formally

ModuRes: A Coq Library for Modular Reasoning 379

Definition chain (T : Type) := nat −> T.
Class cchain ‘{ofeT : ofe T} (c : chain T) :=

chain cauchy : forall n i j (HLei : n <= i) (HLej : n <= j), (c i) = n = (c j).
Definition converges (c : chain T) (m : T) :=

forall n, exists k, forall i (HLe : k <= i), m = n = (c i)
Class cofe T ‘{ofeT : ofe T} :=

{ compl : forall c {cc : cchain c}, T;
conv cauchy : forall c {cc : cchain c}, converges c (compl c)}.

Constructions on COFEs. Much like in the case of types with equality, we can
provide various standard constructions on COFEs. For most standard construc-
tions, such as products and indexed products, or subset types, it suffices to define
the approximation pointwise.2 However, we can also define another simple, but
important space: step-indexed propositions, or, uniform predicates. The (slightly
simplified) definition is as follows:

Record UPred T :=
mkUPred {p :> nat −> T −> Prop;

uni pred : forall n m t (HLe : m <= n), p n t −> p m t}.

As we can see, these are families of predicates over some type T, such that the
predicates are downwards-closed in the natural number component. This makes
it easy to define non-trivial approximate equality on them:

Definition up dist {T} n (p q : UPred T) :=
forall m t, m < n −> (p m t <−> q m t).

Note that we require the propositions to be equivalent only for strictly smaller
indices: this ensures that any two uniform predicates are equal at level 0.

Non-expansive Maps. For function spaces between COFEs, we can proceed in a
manner similar to the equality types. Here, the appropriate notion of a function
space consists of the non-expansive functions, i.e., the equality preserving maps
that also preserve all the approximations:

Record ofe morphism T U ‘{oT : ofe T} ‘{oU : ofe U} :=
mkUMorph { ofe morph :> T −=> U;

ofe morph nonexp n : Proper (dist n ==> dist n) met morph}.
Infix ”→ne” := ofe morphism (at level 45, right associativity).

Following the pattern set by the equality types, we can show that this notion
of function space between COFEs itself forms a COFE with the usual application
and abstraction properties. In other words, the category with objects COFEs and
with morphisms non-expansive functions is cartesian closed.

2 Although in the case of subset types an extra condition is required to make sure the
subset is complete.

380 F. Sieczkowski et al.

2.3 Contractiveness and Fixed Points

A contractive function is a non-expansive function for which the level of approx-
imate equality between the results of function application not only persists, but
actually increases. Formally, we can define it as

Class contractive (f : T →ne U) := contr n : Proper (dist n ==> dist (S n)) f.

Observe, that if we have a contractive endofunction f on some space T,
the results of iterating f on any two elements get progressively more and more
equal — any two elements of T are 0-equal, so the results of applying f to them
are 1-equal, and so on. This results in a version of Banach’s fixed-point theorem
for contractive maps on COFEs, i.e., we get the following properties:

Definition fixp (f : T →ne T) {HC : contractive f} (x : T) : T := . . .
Lemma fixp eq f x {HC : contractive f} : fixp f x == f (fixp f x).
Lemma fixp unique f x y {HC : contractive f} : fixp f x == fixp f y.

The term fixp constructs the fixed point of a contractive function f by iterating f
starting at x and taking the limit (hence the need for completeness). The lemma
fixp eq expresses that fixp f x is indeed a fixed point of f for any x and lemma
fixp unique shows that the starting point of the iteration is irrelevant.

When using the library to build models of type systems and logics, fixed-point
properties allow us to interpret recursively defined types and predicates.

3 Solving the Recursive Domain Equation

Following Birkedal et al. [10], the ModuRes library provides solutions to recursive
domain equations in categories enriched over COFEs. Here, for simplicity of
presentation, we just present our approach to recursive domain equations for
the concrete category of COFEs,3 which suffices for many applications.

We first describe the interface of the input to the part of the library solving
recursive domain equations, then describe the interface of the provided solution,
and finally describe how one may use the solution.

3.1 Interface of the Recursive Domain Equation

The ModuRes library provides solutions to recursive domain equations in the
category of COFEs. A recursive domain equation must be specified by a suitable
functor F on the category of COFEs. To accommodate mixed-variance recursive
domain equations, the functor F must be a bifunctor, such that positive and
negative occurrences of the recursion variable are split apart. In the example
from the Introduction, we were seeking a solution to the equation

T � (Loc ⇀fin T) → Pred(Val)

3 Since the category of COFEs itself is cartesian closed it is indeed enriched over itself,
and hence it is a special case of the general approach provided by the library.

ModuRes: A Coq Library for Modular Reasoning 381

In this case, there are no positive occurrences, and just one negative one. Thus,
in this case, our functor F can be defined by

F(T−,T+) = (Loc ⇀fin T−) →ne UPred(Val).

Note that since the result needs to be a COFE, we need to use non-expansive
function spaces (→ne) and the step-indexed predicate space, UPred.4

The key parts of the interface to a recursive domain equation are:

Module Type SimplInput.
. . .
Parameter F : COFE −> COFE −> COFE.
Parameter FArr : BiFMap F.
Parameter FFun : BiFunctor F.
Parameter F ne : unit →ne F unit unit.

End SimplInput.

The interface consists of several components. The function F works on type
COFE — a record that packs a type together with a proof that it is indeed a
COFE. We have to enforce that F is not just any function on COFEs, but a
functor. To this end, we need to provide a definition of how it transforms non-
expansive functions on its arguments into non-expansive functions on the result:
a requirement expressed by the BiFMap typeclass. Moreover, the result has to
be contravariant in the first argument, and covariant in the second, as shown in
the following formulation, specialized to the category of COFEs

Class BiFMap (F : COFE −> COFE −> COFE) :=
fmorph : forall {t t’ u u’}, (t’ →ne t) ∗ (u →ne u’) →ne (F t u →ne F t’ u’).

In our running example, this means that for any spaces T−
1 ,T+

1 ,T−
2 ,T+

2 ,
and any functions f : T−

2 →ne T−
1 , g : T+

1 →ne T+
2 we need to build – in a non-

expansive way – a function of type

((Loc ⇀fin T−
1) →ne UPred(Val)) →ne (Loc ⇀fin T−

2) →ne UPred(Val).

As is usual in such cases, there is only one sensible definition: we define FArr as

FArr (f : T−
2 →ne T−

1 , g : T+
1 →ne T+

2) (P : (Loc ⇀fin T−
1) →ne UPred(Val))

(w : Loc ⇀fin T−
2) = P(map f w),

i.e., use the function f to map over the finite map that describes the world, and
finish the definition by using the predicate we took as an argument. Of course, we
also need to check that this definition is non-expansive in all of the arguments,
which is a simple excercise.

To prove that F actually forms a functor, we need one more check: the defin-
ition of FArr has to preserve compositions of non-expansive maps, as well as the
4 For the actual application to modeling ML-style reference types, the functions should

not only be non-expansive, but also monotone wrt. a suitable extension ordering on
the worlds. The ModuRes library includes support for such, but we omit that here.

382 F. Sieczkowski et al.

identity function. This is expressed using the BiFunctor typeclass. Again, these
conditions typically amount to simple proofs.

The final ingredient in the interface is that we should provide a proof that
the type produced by F, if it is applied to the singleton space, is inhabited.
Obviously, this is easy to achieve for our running example: any constant uniform
predicate is a good candidate, and we have the freedom to pick any one.

3.2 Interface of the Solution

Now that we know how to represent a recursive domain equation, we can look at
what our general solution provides. The signature looks as follows (here, again,
specialised to the type of COFEs, rather than more general enriched categories).

Module Type SolutionType(InputF : SimplInput).
Import InputF.
Axiom TInf : COFE.
Axiom Fold : � (F TInf TInf) →ne TInf.
Axiom Unfold : TInf →ne � (F TInf TInf).
Axiom FU id : Fold ◦ Unfold == id TInf.
Axiom UF id : Unfold ◦ Fold == id (� (F TInf TInf)).
. . .

End SolutionType.

First of all, the solution provides a COFE by the name of TInf. This is the
solution to the recursive domain equation, an abstract complete, ordered family
of equivalences. Since we don’t know its definition (the definition is not provided
as part of the interface) — and, indeed, we do not need to know it — we need
some other ways to use it. This is provided by the two dual functions: Fold
and Unfold, that convert between TInf and the input functor that defines the
recursive domain equation, F.

The Unfold function takes an object of type TInf to (F TInf TInf): but there
is a twist, namely, the � operator, usually called “later”. This operator acts on
the distances of the spaces that is its argument, bringing them “one step down”.
That is, if we have m1 = n + 1 = m2 in some space M, we only have m1 = n = m2

in the space �M. This has consequences for the Unfold function: assume we have
some elements t1, t2 of our solution TInf, and that t1 = n + 1 = t2. In such a
case, we can learn something about the structure of these elements by applying
Unfold (remember that we know the definition of F), but we can only establish
that Unfold t1 = n = Unfold t2. We will see in the following section that while
this affects the way we use the solution, it does not give rise to any problems.

While Unfold provides us with a way of extracting information from the
solution, Fold does the converse: it gives us a way to convert an object of type
(F TInf TInf) into a TInf. Similarly to Unfold, there is a later operator, although
in this case it allows us to increase the level of approximation, since it appears
on the argument type.

Finally, the solution provides two equations that describe the effects of Fold
and Unfold. These effects are simple: if one follows Fold with an Unfold, the

ModuRes: A Coq Library for Modular Reasoning 383

resulting function is equivalent to an identity; similarly if we follow unfolding
with folding. This provides us with the only way to eliminate the calls to Unfold
and Fold that can appear in the definitions that use the solution.

3.3 Using the Solution

As we can see, apart for the later operators appearing in some places, the solution
interface is remarkably simple. However, this leads to the question of how we can
use it in practice. To address this question, in this section we take the solution
that arises from our running example, and show some key cases of a simple unary
logical relation that uses the solution as a foundation.

In Sect. 3.1 we have defined the functor F that describes the recursive domain
equation that arises from the presence of reference types. The solution of this
equation has given us a type TInf. The final types we need to define now are the
semantic types that we will use to interpret the syntax (the type T), and the
useful helper type of worlds W.

Definition T := F TInf TInf.
Definition W := Loc ⇀fin TInf.

The easiest way to define a logical relation in Coq is by first defining semantic
operators that will be used to interpret the programming language type construc-
tors. Particularly interesting is the semantic operator for interpreting reference
types. Naturally, the operator, call it sref, should map semantic types to seman-
tic types: sref : T →ne T. The idea is that if R is a semantic type interpreting
a programming language type τ then sref(R) should interpret the programming
language type ref τ , and thus, loosely speaking, sref(R) should, given a world w
consist of those locations in the world whose type matches R. Now, if we unroll
the definitions of T and F, we can see that there are a lot of side conditions
about non-expansiveness that we will need to prove when defining sref. Thus, it
is easiest to start by building the actual predicate. This can be done roughly as
follows (explanation follows below):

Inductive refR : T −> W −> nat −> val −> Prop :=
| RRef (w : W) (R : T) (Rw : TInf) l n (HLup : w l = Some Rw)

(HEqn : R = n = Unfold Rw) : refR R w n (vLoc l).

The next step is to show that refR is in reality a uniform predicate, and that
the remaining function spaces are non-expansive. We elide these straightforward
proofs, and instead examine the definition itself.

Let us look at the arguments of refR. The first, R, is the semantic type that
models the argument of the reference type. The following, w, is the world followed
by the step index of the uniform predicate, and the value that inhabits our type.
Obviously, this value should be a location, but what makes a location a proper
value of a reference type? The answer lies in the assumptions: HLup ensures
that the location is defined in the world, and gives us a type Rw. However, Rw is
of the type TInf, and R is at type T. This is where the conversion functions from
the solution interface come in: we can use Unfold to cast Rw to type T (with the

384 F. Sieczkowski et al.

equalities brought “one step down”), which allows us to compare it to R with
the HEqn assumption: we claim that R is indistinguishable from Rw at the given
approximation level.

The other place in the definition of the logical relation that needs to use
the world in a nontrivial way is the interpretation of computations. To interpret
computations we need to take a heap that matches the world and, in addition to
ensuring that the resulting value is in the interpretation of the type, we need to
check that the resulting heap also matches the world (allowing for its evolution).
What does it mean for a heap to match the world? Clearly, all the locations in
the world should be defined in the heap. Additionally, the values stored in the
heap should belong to the semantic types stored in the world. This gives us the
following definition:

Definition interpR (w : W) (n : nat) (h : heap) :=
forall l R (HLu : w k = Some R), exists v, h k = Some v /\ Unfold R w n v.

Like in the definition of refR, we use the Unfold function to map the element
stored in the world back to type T, in this case in order to apply it to arguments.

One may be concerned that we only use the Unfold function in these defini-
tions: clearly there should be places in the logical relations argument where we
need to use the Fold function. The answer is, that Fold is used in the proof of
compatibility of the allocation rule. This is the one rule that forces us to extend
the world, and to do this we need to come up with an object of type TInf —
which we can only procure by using Fold. This is also the only place where we
need to use the proof that Fold and Unfold compose to identity, to ensure that
the resulting heap matches the extended world.

3.4 Summary

In summary, we have now seen how a user of the ModuRes library can obtain a
solution to a recursive domain equation in the category of COFEs by providing
a suitable bifunctor. The library then provides a solution with associated iso-
morphisms, which the user of the library can use to build, e.g., a logical relations
interpretation of programming language reference types.

The user of the ModuRes library does not need to understand how
the solution is constructed. The construction in Coq follows the proof in
Birkedal et al. [10].

4 Building Models of Higher-Order Logics

In this section we explain how the ModuRes library can be used to build models
of higher-order logics for reasoning about concurrent higher-order imperative
programs. Concretely, we describe the core part of the model of Iris, a recently
published state-of-the-art program logic [20]. For reasons of space, we cannot
explain in detail here why the core part of Iris is defined as it is; for that we
refer the reader to loc. cit. Instead, we aim at showing how the library supports

ModuRes: A Coq Library for Modular Reasoning 385

working with a model of higher-order logic using a recursively defined space of
truth values.

To reason about mutable state, Iris follows earlier work on separation logic
where a variety of structures with which models of propositions can be built have
been proposed [12,13,15,22], see [19, Chap. 7] for a recent review. Iris settles on a
simple yet expressive choice to model propositions as suitable subsets of a partial
commutative monoid. In the simplest case, the partial commutative monoid can
be the one of heaps, as used in classical separation logic, but in general it is useful
to allow for much more elaborate partial commutative monoids [20]. To reason
about concurrent programs, Iris propositions are indexed over named invariants,
which are used to describe how some shared state may evolve. There has been
a lot of research on developing a rich language for describing invariants (aka
protocols); one of the observations of the work on Iris is that it suffices to describe
an invariant by a predicate itself, when the predicate is over a suitably rich
notion of partial commutative monoid. In other words, the invariants in Iris are
described by worlds, which map numbers (names of invariants) to propositions,
and a proposition is a map from worlds to (a suitable) powerset of a partial
commutative monoid M. Thus, to model Iris propositions using the ModuRes
library, we use as input the following bifunctor:

F(P−,P+) = (N ⇀fin P−) →ne,mon UPred(M),

Note that the functor is very similar to the one for modeling ML reference
types. Here UPred(M) is the COFE object consisting of uniform predicates over
the partial commutative monoid M, and →ne,mon denotes the set of non-expansive
and monotone functions. For monotonicity, the order on (N ⇀fin P−) is given by
the extension ordering (inclusion of graphs of finite functions) and the order on
UPred(M) is just the ordinary subset ordering. Using the library, we obtain a
solution, which we call PreProp. Then we define

Wld = N ⇀fin PreProp Props = Wld →ne,mon UPred(M).

The type Props serves as the semantic space of Iris propositions. Recall that the
interface of the solution gives us an isomorphism between PreProp and �Props —
a fact that is not necessary to show Props form a general separation logic, but
crucial when we want to make use of the invariants in the logic-specific develop-
ment of Iris.

Let us take stock. What we have achieved so far is to define the propositions
(the object of truth values) of Iris, as a complete ordered family of equivalences,
and we obtained it by solving a recursive domain equation. We want to use
this to get a model of higher-order separation logic. In Iris, types are modeled
by complete ordered families of equivalences, terms by non-expansive functions,
and the type of propositions is modeled by Props. We can show on paper (see the
tutorial [8]) that this is an example of a so-called BI-hyperdoctrine, a categorical
notion of model of higher-order separation logic [7]. In the ModuRes library we
do not provide a general formalization of BI-hyperdoctrines. Instead, we have
formalized a particular class of BI-hyperdoctrines, namely those where types and

386 F. Sieczkowski et al.

terms are modeled by COFEs and non-expansive functions and propositions are
modeled by a preordered COFE, the preorder modeling logical entailment. We
now describe how that is done, and later we return to the instantiation to Iris.

Let T be a preordered COFE — think of T as the object of truth values. We
write � for the ordering relation. Logical connectives will be described by the
laws they need to satisfy. Most of the connectives are relatively easy to model:
the usual binary connectives of separation logic are maps of type T →ne T →ne T
that satisfy certain laws. For instance, implication is defined by the two axioms

and impl : forall P Q R, and P Q � R <−> P � impl Q R;
impl pord :> Proper (pord −−> pord ++> pord) impl;

The former of these establishes the adjoint correspondence between conjunction
and implication, and the latter ensures that implication is contravariant in its
first argument and covariant in its second argument, with respect to the entail-
ment relation (pord denotes the pre-order for which � is the infix notation).

This leaves us with the issue of quantifiers. Since the library provides the
notion of BI-hyperdoctrine that is modeled by complete ordered families of equiv-
alences, the quantifiers should work only for functions between COFEs — indeed,
only for functions that are nonexpansive. This gives rise to the following types
of the quantifiers:

all : forall {U} ‘{cofeU : cofe U}, (U →ne T) →ne T;
xist : forall {U} ‘{cofeU : cofe U}, (U →ne T) →ne T;

As with the other connectives, we require certain laws to hold. For example,
below are the laws for the existential quantifier. The first law expresses that exis-
tential quantification is left adjoint to reindexing, while the second law expresses
functoriality of existential quantification.

xist L U ‘{cU : cofe U} :
forall (P : U →ne T) Q, (forall u, P u � Q) <−> xist P � Q;

xist pord U ‘{cU : cofe U} (P Q : U →ne T) :
(forall u, P u � Q u) −> xist P � xist Q

Now that we have a description of what a model of higher-order separation
logic is, we can proceed to show that if we let T = Props, then all the required
properties hold. With the help of the ModuRes library we can establish this
automatically, and in a modular fashion. Firstly, the library contains a fact that
UPred(M), the space of uniform predicates over a partial commutative monoid
M, forms a model of higher-order separation logic. Moreover, it also shows that
the set of monotone and non-expansive maps from a preordered COFE, such as
Wld, to any structure that models a higher-order separation logic itself models
higher-order separation logic. Thus, it follows easily — and, thanks to the use
of typeclasses, automatically — that the space of Props also satisfies the rules of
the logic. In the development process, this allows us to focus on the application-
specific parts of the logic, rather than on the general BI structure.

ModuRes: A Coq Library for Modular Reasoning 387

Recursive Predicates. To reason about recursive programs, Iris includes guarded
recursively defined predicates, inspired by earlier work of Appel et. al. [3]. In
the Coq formalization they are modeled roughly as follows. First, we show that
there is an endo-function on UPred(M), also denoted � and also called “later”
(though it is different from the later functor on COFEs we described earlier). It
is defined by

Definition laterF (p : nat −> T −> Prop) n t :=
match n with O => True

| S n => p n t
end.

This later operator extends pointwise to Props. Now if we have a non-expansive
function ϕ : (U →ne Props) →ne (U →ne Props), then if we compose it with the
later operator on U →ne Props we can show that the resulting function is con-
tractive, and hence we get a fixed-point, as described in Sect. 2.3.

The combination of higher-order separation logic with guarded recursively
defined predicates makes it possible to give abstract specifications of layered
and recursive program modules [25]. Indeed, it is to facilitate this in full gener-
ality that we model the types and terms of Iris by COFEs and non-expansive
functions, rather than simply by Coq types and Coq functions.

In the formalization of Iris, we also use this facility to define the meaning of
Hoare triples via a fixed-point of a contractive function.

We have explained how some of the key features of Iris are modeled using the
ModuRes library. The actual formalization of Iris also includes a treatment of
the specific program logic rules that Iris includes. They are modeled and proved
sound in our formalization of Iris, but we do not discuss that part here, since
that part only involves features of the library that we have already discussed.

5 Related Work

Benton et al. [6] and Huffman [18] provide libraries for constructing solutions
to recursive domain equations using classical domain theory. In recent work on
program logics the spaces involved are naturally equipped with a metric structure
and the functions needed are suitably non-expansive, a fact used extensively in
the ModuRes library. In contrast solutions using domain theory do not appear to
provide the necessary properties for modeling such higher-order program logics.

The line of work that is possibly the closest related to the ModuRes library is
Hobor et al.’s theory of indirection [17] and their associated Mechanized Seman-
tic Library in Coq [4]. It provides an approximate step-indexed solution of a
recursive domain equation expressed as a functor in the category of sets. The
explicit aim of indirection theory is to obtain the approximations in a simple set-
ting, and it manages to do so: in the Mechanized Semantic Library, the approx-
imate solution is represented as a usual Coq type. Thus, one can use standard
Coq function spaces and standard higher-order quantification, over Coq types.

As argued in detail in [9], the ultrametric — or, equivalently, COFE — treat-
ment that the ModuRes library implements subsumes indirection theory. What’s

388 F. Sieczkowski et al.

more, it is not necessarily limited to step-indexing over operational models, but
can also be readily used over classical domain-theoretic denotational semantics.
Generally, it also seems easier to enrich the constructions with additional struc-
ture, such as the preorder in Sect. 4, or build recursive objects and predicates
through the use of Banach’s fixed-point operator.

Another important aspect is pointed out in the recent work by Svendsen and
Birkedal [25], where they explore program logics for reasoning about layered and
recursive abstractions. To this end, they need to quantify over higher-order pred-
icates, and use them within definitions of other, recursive, predicates. In general
this can lead to problems with well-definedness. However, since in their setup all
maps are non-expansive by default, the recursive predicate can be defined with-
out problems. In contrast, if the model admitted other functions, the question
would be far from certain, and probably require explicit restrictions to non-
expansive maps in certain places, and more frequent reasoning explicitly in the
model. Thus to model higher-order logics with guarded recursion in general, func-
tions should be modeled by non-expansive functions (rather than all functions).
This is the approach taken by the ModuRes library. See Sect. 4 (Exercise 4.17)
and Sect. 5 (Corollary 5.22) of the tutorial [8] for more details.

Throughout the development, we intended the ModuRes library to provide
a readable and easy to grasp set of tools. This would not be possible without
some recent developments in proof engineering. Throughout the development
we heavily use the type class feature of Coq, due to Sozeau and Oury [23] to
abstract from the particular kind of enriched structure we are working in and
present a simple and meaningful context to the user. In setting up the pattern
for the hierarchy of classes that forms the backbone of the development — the
types with equality, OFEs and COFEs — we follow closely Spitters and van der
Weegen’s work [24], which inspired our attempt to set up this hierarchy in a clean
and readable fashion. We deviate somewhat from their pattern, however, in that
we package the operations together with the proofs (see dist in the definition of
ofe in Sect. 2), where their approach would separate them from the propositional
content. This works because our hierarchy does not contain problematic diamond
inheritance patterns, and we found that it improves performance.

6 Conclusions and Future Work

A question one could ask of any development in this line of work is, how easy the
library is to adopt. Our early experiences seem encouraging in this regard. An
intern, who recently worked with us on applying the library, was able to pick it
up with little trouble. Moreover, in the development and formalization of Iris [20]
this was also our experience. We believe that the abstract presentation of the
solution of the recursive domain equation, and the structured construction of
the spaces that the library supports will allow this experience to scale. However,
since the authors were involved in both of these projects, it is not a certainty.
To make the library more accessible to others, we have started developing a
tutorial for the ModuRes library. While still a work in progress, we believe it

ModuRes: A Coq Library for Modular Reasoning 389

can already be helpful for potential users of the library. It can be found, along
with the library, online at http://cs.au.dk/∼birke/modures/tutorial. It features,
in particular, a detailed tutorial treatment of the running example we used in
this paper, a logical relations interpretation of an ML-like language with general
references.

Outside the tutorial context, we see the future of the ModuRes library as
serving in the development of formalized models of programming languages and
program logics. It would be of particular interest to try to extend the simpler
models currently used by tools that attempt to verify programs within Coq,
such as Bedrock [14] or Charge! [5], in order to enhance the expressive power of
their respective logics. The proof-engineering effort required to achieve this in an
efficient and scalable is non-trivial, however. We hope that the recent progress
by Malecha and Bengtson on reflective tactics can help in this regard [21].

In conclusion, we have presented a library that provides a powerful, low-
boilerplate set of tools that can serve to build models of type systems and logics
for reasoning about concurrent higher-order imperative programing languages.
The structures and properties provided by the library help the user focus on the
issues specific to the model being constructed, while the well-definedness of the
model and some of the common patterns can be handled automatically. Thus,
we believe that this line of work can significantly lower the barrier to entry when
it comes to formalizing the complex models of programming languages of today.

Acknowledgements. The formalization of the general solution of the recursive
domain equation is inspired by an earlier, unpublished development by Varming and
Birkedal. While both the proof engineering methods used and the scope of the ModuRes
library differ significantly from this earlier effort, some of the setup is borrowed from
that. Yannick Zakowski was the first user of the library, providing important feedback,
as well as a formalization of the example used in Sect. 3. We thank the anonymous
reviewers for their comments.

This research was supported in part by the ModuRes Sapere Aude Advanced Grant
from The Danish Council for Independent Research for the Natural Sciences (FNU).

References

1. Ahmed, A.: Semantics of Types for Mutable State. Ph.D. thesis, Princeton Uni-
versity (2004)

2. Ahmed, A., Appel, A.W., Virga, R.: A stratified semantics of general references
embeddable in higher-order logic. In: LICS (2002)

3. Appel, A., Melliès, P.-A., Richards, C., Vouillon, J.: A very modal model of a
modern, major, general type system. In: POPL (2007)

4. Appel, A.W., Dockins, R., Hobor, A.: (2009). http://vst.cs.princeton.edu/msl/
5. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! - a framework for higher-order

separation logic in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 315–331. Springer, Heidelberg (2012)

6. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational
semantics in Coq. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009)

http://cs.au.dk/~birke/modures/tutorial
http://vst.cs.princeton.edu/msl/

390 F. Sieczkowski et al.

7. Biering, B., Birkedal, L., Torp-Smith, N.: BI hyperdoctrines and higher-order sep-
aration logic. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 233–247.
Springer, Heidelberg (2005)

8. Birkedal, L., Bizjak, A.: A taste of categorical logic - tutorial notes (2014). http://
cs.au.dk/∼birke/modures/tutorial/categorical-logic-tutorial-notes.pdf

9. Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.:
Step-indexed kripke models over recursive worlds. In: POPL (2011)

10. Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of recur-
sive metric-space equations. Theor. Comput. Sci. 411(47), 4102–4122 (2010)

11. Birkedal, L., Støvring, K., Thamsborg, J.: Realizability semantics of parametric
polymorphism, general references, and recursive types. In: de Alfaro, L. (ed.) FOS-
SACS 2009. LNCS, vol. 5504, pp. 456–470. Springer, Heidelberg (2009)

12. Brotherston, J., Villard, J.: Parametric completeness for separation theories. In:
POPL (2014)

13. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS (2007)

14. Chlipala, A.: The bedrock structured programming system: combining generative
metaprogramming and hoare logic in an extensible program verifier. In: ICFP
(2013)

15. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009)

16. Di Gianantonio, P., Miculan, M.: A unifying approach to recursive and co-recursive
definitions. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp.
148–161. Springer, Heidelberg (2003)

17. Hobor, A., Dockins, R., Appel, A.: A theory of indirection via approximation. In:
POPL (2010)

18. Huffman, B.: A purely definitional universal domain. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 260–275.
Springer, Heidelberg (2009)

19. Jensen, J.B.: Enabling Concise and Modular Specifications in Separation Logic.
Ph.D. thesis, IT University of Copenhagen (2014)

20. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In: POPL (2015)

21. Malecha, G., Bengtson, J.: Rtac – a reflective tactic language for Coq (2015) (Sub-
mitted for publication)

22. Pottier, F.: Syntactic soundness proof of a type-and-capability system with hidden
state. JFP 23(1), 38–144 (2013)

23. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008)

24. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.
Math. Struct. Comput. Sci. 21(4), 795–825 (2011)

25. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014)

http://cs.au.dk/~birke/modures/tutorial/categorical-logic-tutorial-notes.pdf
http://cs.au.dk/~birke/modures/tutorial/categorical-logic-tutorial-notes.pdf

Transfinite Constructions in Classical Type
Theory

Gert Smolka(B), Steven Schäfer, and Christian Doczkal

Saarland University, Saarbrücken, Germany
{smolka,schaefer,doczkal}@ps.uni-saarland.de

Abstract. We study a transfinite construction we call tower construc-
tion in classical type theory. The construction is inductive and applies
to partially ordered types. It yields the set of all points reachable from
a starting point with an increasing successor function and a family of
admissible suprema. Based on the construction, we obtain type-theoretic
versions of the theorems of Zermelo (well-orderings), Hausdorff (maxi-
mal chains), and Bourbaki and Witt (fixed points). The development is
formalized in Coq assuming excluded middle.

1 Introduction

We are interested in type-theoretic versions of set-theoretic theorems involving
transfinite constructions. Here are three prominent examples we will consider in
this paper:

– Zermelo 1904 [12,13]. Every set with a choice function can be well-ordered.
– Hausdorff 1914 [5]. Every poset with a choice function has a maximal chain.
– Bourbaki-Witt 1951 [2,9,11]. Every increasing function on a chain-complete

poset has a fixed point.

All three results can be obtained in type theory with a transfinite construction
we call tower construction. We start with a partial order ≤ on a type X and a
successor function f : X → X such that x ≤ fx for all x. We also assume a
subset-closed family of admissible sets (i.e., unary predicates on X) and a join
function � that yields the suprema of admissible sets. Now for each point a in X
we inductively define a set Σa we call the tower for a:

a ∈ Σa

x ∈ Σa

fx ∈ Σa

p ⊆ Σa p admissible and inhabited
�p ∈ Σa

For every tower we show the following:

1. Σa is well-ordered by ≤.
2. If Σa is admissible, then �Σa is the greatest element of Σa.
3. x ∈ Σa is a fixed point of f iff x is the greatest element of Σa.

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 391–404, 2015.
DOI: 10.1007/978-3-319-22102-1 26

392 G. Smolka et al.

The proofs make frequent use of excluded middle but no other assumptions
are needed.

The tower construction formalizes Cantor’s idea of transfinite iteration in
type theory. No notion of ordinals is used. In axiomatic set theory, an instance
of the tower construction appears first in 1908 in dualized form in Zermelo’s
second proof [13] of the well-ordering theorem. The general form of the tower
construction in set theory was identified by Bourbaki [2] in 1949. Bourbaki [2]
defines Σa as the intersection of all sets closed under the rules of our inductive
definition and proves the three results stated above. Felscher [3] discusses the
tower construction in set theory and gives many historical references. Felscher
reports that the tower construction was already studied in 1909 by Hessenberg [6]
in almost general form (set inclusion as order and union as supremum).

The Bourbaki-Witt theorem stated at the beginning of this section does not
appear in Bourbaki [2]. The theorem is, however, an immediate consequence
of the results Bourbaki [2] shows for towers (see above). As admissible sets we
take chains; Result 1 tells us that Σa is a chain; hence it follows with Results 2
and 3 that �Σ is a fixed point of f . In fact, the argument gives us a generalized
version of the Bourbaki-Witt fixed point theorem that requires suprema only for
well-ordered subsets and that asserts the existence of a fixed point above any
given point. Explicit statements of the Bourbaki-Witt fixpoint theorem appear
in Witt [11] and Lang [9]. In contrast to Bourbaki [2], who like us sees the tower
construction as the main object of interest, Witt and Lang see the fixed point
theorem as the main result and hide the tower construction in the proof of the
theorem.

The theorems of Zermelo and Hausdorff mentioned above can also be
obtained with the tower construction (Bourbaki [2] argues the case for Zermelo’s
theorem and Zorn’s lemma, a better known variant of Hausdorff’s theorem). For
both theorems, we start with a base type B and take for X the type of all
sets over B. We assume that the sets over B are extensional. As ordering we
take set inclusion and as admissible sets we take all families of sets over B. For
Zermelo’s theorem, the successor function adds an element as determined by the
given choice function. The well-ordering of the tower Σ∅ for the empty set then
induces a well-ordering of B. For Hausdorff’s theorem, we define the successor
function as the function that based on the given choice function adds an element
such that a chain is obtained if this is possible. Then �Σ∅ is a maximal chain.

The present paper is organized as follows. We first study a specialized tower
construction that suffices for the proofs of Zermelo’s and Hausdorff’s theorem.
We present the specialized tower construction in addition to the general con-
struction since it comes with simpler proofs. The specialized tower construction
operates on sets and uses a successor function that adds at most one element.
We obtain proofs of Hausdorff’s and Zermelo’s theorem. From Zermelo’s the-
orem we obtain a result asserting the existence of well-ordered extensions of
well-founded relations. We then restart in a more abstract setting and study the
general tower construction. We prove that towers are well-ordered and obtain
the Bourbaki-Witt fixed point theorem.

Transfinite Constructions in Classical Type Theory 393

The development of this paper is formalized in Coq assuming excluded mid-
dle and can be found at https://www.ps.uni-saarland.de/extras/itp15. The devel-
opment profits much from Coq’s support for inductive definitions. The material
in this paper is a perfect candidate for formalization since it is abstract and
pretty formal anyway. The interactive support Coq provides for the construc-
tion and verification of the often technical proofs turned out to be beneficial. The
fact that Coq comes without built-in assumptions like choice and extensionality
also proved to be beneficial since this way we could easily identify the minimal
assumptions needed for the development.

We mention some related work in type theory. A type-theoretic proof
of Zermelo’s theorem based on Zorn’s lemma appears in Isabelle’s standard
library [8] (including well-ordered extensions of well-founded relations). Ilik [7]
presents a type-theoretic proof of Zermelo’s theorem formalized in AgdaLight
following Zermelo’s 1904 proof. Bauer and Lumsdaine [1] study the Bourbaki-
Witt fixed point principle in an intuitionistic setting.

2 Sets as Unary Predicates

Assumption 1. We assume excluded middle throughout the paper.

Let X be a type. A set over X is a unary predicate on X. We write

set X := X → Prop

for the type of sets over X and use familiar notations for sets:

x ∈ p := px {x | s } := λx.s

p ⊆ q := ∀x ∈ p. x ∈ q {x} := λz. z = x

p ⊂ q := p ⊆ q ∧ ∃x ∈ q. x /∈ p X := λx.� ∅ := λx.⊥
p ∩ q := {x | x ∈ p ∧ x ∈ q } p ∪ q := { x | x ∈ p ∨ x ∈ q }
p \ q := {x | x ∈ p ∧ x /∈ q } ¬p := { x | x /∈ p }

We call a set inhabited if it has at least one member, and unique if it has at
most one member. A singleton is a set that has exactly one member. We call
a set empty if it has no member. We call two sets p and q comparable if either
p ⊆ q or q ⊆ p.

We call a type X extensional if two sets over X are equal whenever they
have the same elements. If we assume excluded middle, sets over an extensional
type are very much like the familiar mathematical sets.

Fact 2. Let p and q be sets over an extensional type X. Then:

1. If p ⊆ q and q ⊆ p, then p = q.
2. p ⊆ q iff p ⊂ q or p = q.
3. p ⊂ q iff p ⊆ q and p �= q.
4. ¬¬p = p, ¬(p ∩ q) = ¬p ∪ ¬q, ¬(p ∪ q) = ¬p ∩ ¬q, and p \ q = p ∩ ¬q.

https://www.ps.uni-saarland.de/extras/itp15

394 G. Smolka et al.

By a family over X we mean a set over set X. We define intersection and
union of families as one would expect:

⋂
F := {x | ∀p ∈ F. x ∈ p } ⋃

F := { x | ∃p ∈ F. x ∈ p }
Note that the members of a family are ordered by inclusion.

3 Orderings and Choice Functions

Let X be a type.
Let R be a binary predicate on X and p be a set over X. We define

LR p := {x ∈ p | ∀y ∈ p. Rxy }
and speak of the set of least elements for R and p.

Let p be a set over X. A partial ordering of p is a binary predicate ≤ on X
satisfying the following properties for all x, y, z ∈ p:

– Reflexivity: x ≤ x.
– Antisymmetry: If x ≤ y and y ≤ x, then x = y.
– Transitivity: If x ≤ y and y ≤ z, then x ≤ z.

A linear ordering of p is a partial ordering ≤ of p such that for all x, y ∈ p either
x ≤ y or y ≤ x. A well-ordering of p is a partial ordering ≤ of p such that every
inhabited subset of p has a least element (i.e., L(≤)q is inhabited whenever q ⊆ p
is inhabited). Note that every well-ordering of p is a linear ordering of p.

A partial ordering of X is a partial ordering of λx.�. Linear orderings of X
and well-orderings of X are defined analogously.

We define the notation x < y := x ≤ y ∧ x �= y.

Fact 3 (Inclusion and Families). Let F be a family over an extensional
type X. Then inclusion λpq. p ⊆ q is a partial ordering of F . Moreover:

1. Inclusion is a linear ordering of F iff two members of F are always compa-
rable.

2. Inclusion is a well-ordering of F iff
⋂

G ∈ G for every inhabited G ⊆ F .

A choice function for X is a function γ : set X → set X such that γp ⊆ p
for every p and γp is a singleton whenever p is inhabited. Our definition of a
choice function is such that no description operator is needed to obtain a choice
function from a well-ordering.

Fact 4. If ≤ is a well-ordering of X, then L(≤) is a choice function for X.

4 Special Towers

An extension function for a type X is a function η : set X → set X such that
ηp ⊆ ¬p for all p. An extension function η is called unique if ηp is unique for
every p.

Transfinite Constructions in Classical Type Theory 395

Assumption 5. Let X be an extensional type and η be a unique extension func-
tion for X.

We define p+ := p ∪ ηp and speak of adjunction. We inductively define a
family Σ over X:

F ⊆ Σ
⋃

F ∈ Σ

p ∈ Σ

p+ ∈ Σ

We refer to the definition of Σ as specialized tower construction and call the
family Σ tower and the elements of Σ stages. We have

⋃ ∅ = ∅ ∈ Σ. Note that ∅
is the least stage and

⋃
Σ is the greatest stage. Also note that Σ is a minimal

family over X that is closed under union and adjunction.

Fact 6. η(
⋃

Σ) = ∅.
Proof. Suppose x ∈ η(

⋃
Σ). Since (

⋃
Σ)+ ⊆ ⋃

Σ, we have x ∈ ⋃
Σ. Contradic-

tion since η is an extension function. ��
We show that Σ is linearly ordered by inclusion. We base the proof on two

lemmas.

Lemma 7. Let a set p and a family F be given such that p is comparable with
every member of F . Then p is comparable with

⋃
F .

Proof. Suppose
⋃

F �⊆ p. Then there exists q ∈ F such that q �⊆ p. Thus p ⊆ q
by assumption. Hence p ⊆ ⋃

F . ��
Lemma 8. Let p ⊆ q+ and q ⊆ p+. Then p+ and q+are comparable.

Proof. The claim is obvious if ηp ⊆ q or ηq ⊆ p. Otherwise, we have x ∈ ηp \ q
and y ∈ ηq \ p. We show p = q, which yields the claim.

Let z ∈ p. Then z ∈ q+. Suppose z ∈ ηq. Then z = y by uniqueness of ηq.
Contradiction since y /∈ p.

The other direction is analogous. ��
Fact 9 (Linearity). Σ is linearly ordered by inclusion.

Proof. Let p and q be in Σ. We show by nested induction on p ∈ Σ and q ∈ Σ
that p and q are comparable. There are four cases. The cases where p or q is
a union follow with Lemma 7. The remaining case where p = p+1 and q = q+1
follows with Lemma 8 by exploiting the inductive hypotheses for the pair p1
and q and the pair q1 and p. ��
Fact 10 (Inclusion). Let p, q ∈ Σ and p ⊂ q. Then p+ ⊆ q.

Proof. By Linearity we have p+ ⊆ q or q ⊆ p+. The first case is trivial. For the
second case we have p ⊂ q ⊆ p+ = p ∪ ηp. Since ηp is unique, we have q = p+.
The claim follows. ��

396 G. Smolka et al.

Fact 11 (Greatest Element). Let p+ = p ∈ Σ. Then p is the greatest element
of Σ.

Proof. Let q ∈ Σ. We show q ⊆ p by induction on q ∈ Σ.

Union. Let F ⊆ Σ. We show
⋃

F ⊆ p. Let r ∈ F . We show r ⊆ p. The claim
follows by the inductive hypothesis.

Adjunction. Let q ∈ Σ. We show q+ ⊆ p. We have q ⊆ p by the inductive
hypothesis. If q = p, q+ = p+ = p by the assumption. If q �= p, we have q+ ⊆ p
by Fact 10. ��
Fact 12. Let p+ = p ∈ Σ. Then p =

⋃
Σ.

Proof. We know that
⋃

Σ is the greatest element of Σ. Since greatest elements
are unique, we know p =

⋃
Σ by Fact 11. ��

Lemma 13. Let F ⊆ Σ be inhabited. Then
⋂

F ∈ F .

Proof. By contradiction. Suppose
⋂

F /∈ F . Then
⋂

F ⊂ q whenever q ∈ F . We
define

p :=
⋃ { q ∈ Σ | q ⊆ ⋂

F }
We have p ⊆ ⋂

F . Since
⋂

F /∈ F , we have p ⊂ q whenever q ∈ F . Thus
p+ ⊆ ⋂

F by Fact 10. Hence p+ ⊆ p by the definition of p. Thus p+ = p. Let
q ∈ F . We have p ⊆ ⋂

F ⊆ q ⊆ ⋃
Σ = p by Fact 12. Thus

⋂
Σ = q ∈ F .

Contradiction. ��
Theorem 1 (Well-Ordering). Σ is well-ordered by inclusion.

Proof. Follows with Lemma 13 and Fact 3. ��
Fact 14 (Intersection). Σ is closed under intersections.

Proof. Follows with Lemma 13 and Fact 15. ��
We call an extension function η exhaustive if ηp is inhabited whenever ¬p is

inhabited.

Fact 15. If η is exhaustive, then
⋃

Σ = X ∈ Σ.

Proof. Follows with Fact 6. ��

5 Hausdorff’s Theorem

Assumption 16. Let R be a binary predicate on X and γ be a choice function
for X.

We call a set p over X a chain if for all x, y ∈ p either Rxy or Ryx. We call
a family over X linear if it is linearly ordered by inclusion.

Transfinite Constructions in Classical Type Theory 397

Fact 17. The union of a linear family of chains is a chain.

We show that the tower construction gives us a maximal chain. We choose
the extension function ηp := γ(λx. x /∈ p∧ chain (p∪{x})). Clearly, η is unique.
Moreover, all stages are chains since the rules of the tower construction yield
chains when applied to chains. That the union rule yields a chain follows from
Fact 17 and the linearity of Σ. We have η(

⋃
Σ) = ∅ for the greatest stage. By

the definition of η it now follows that
⋃

Σ is a maximal chain. This completes
our proof of Hausdorff’s theorem.

Theorem 2 (Existence of Maximal Chains). Let X be an extensional type
with a choice function. Then every binary predicate on X has a maximal chain.

Proof. Follows from the development above. ��
Hausdorff’s theorem can be strengthened so that one obtains a maximal chain

extending a given chain. For the proof one uses an extension function that gives
preference to the elements of the given chain. If q is the given chain, the extension
function λp. γ(λx. x /∈ p ∧ chain (p ∪ {x}) ∧ (x ∈ q ∨ q ⊆ p)) does the job.

We remark that Zorn’s lemma is a straightforward consequence of Hausdorff’s
theorem.

6 Zermelo’s Theorem

We can obtain a well-ordering of
⋃

Σ by constructing an injective embedding
of

⋃
Σ into Σ. This gives us a well-ordering of X if the extension function is

exhaustive. Since a choice function γ for X gives us a unique and exhaustive
extension function λp. γ(¬p), we have arrived at a proof of Zermelo’s theorem.

We define the stage for x as the greatest stage not containing x:

x :=
⋃ { q ∈ Σ | x /∈ q }

Fact 18. Let x ∈ ⋃
Σ. Then ηx = {x}.

Proof. Since η is unique it suffices to show x ∈ ηx. Suppose x /∈ ηx. Then x+ ⊆ x
since x+ is a stage not containing x. Thus x =

⋃
Σ by Fact 12. Contradiction

since x /∈ x. ��
Fact 19 (Injectivity). Let x, y ∈ ⋃

Σ and x = y. Then x = y.

Proof. Follows with Fact 18 and the uniqueness of η since ηx = ηy.

Theorem 3. x ≤η y := x ⊆ y is a well-ordering of
⋃

Σ.

Proof. Follows with Fact 19 and Theorem 1. ��
We prove some properties of the well-ordering we have obtained for

⋃
Σ.

Fact 20. Let x ∈ p ∈ Σ. Then x ⊂ p.

398 G. Smolka et al.

Proof. By Linearity it suffices to show that p ⊆ x is contradictory, which is the
case since x ∈ p and x /∈ x. ��
Fact 21. Let x ∈ ⋃

Σ. Then x = { z ∈ ⋃
Σ | z ⊂ x }.

Proof. Let z ∈ x. We have z ⊂ x by Fact 20. Let z ∈ ⋃
Σ and z ⊂ x. We show

z ∈ x. We have z ∈ ηz ⊆ x by Facts 10 and 18. ��
Let ≤ be a partial ordering of X. We define the segment for x and ≤ as

Sx := { z | z < x }. We say that a well-ordering ≤ agrees with a choice function γ
if γ(¬Sx) = {x} for every x.

Theorem 4 (Existence of Well-Orderings). Let X be an extensional type
and γ be a choice function for X. Then there exists a well-ordering of X that
agrees with γ.

Proof. Let ηp := γ(¬x). Then η is a unique and exhaustive extension func-
tion for X. We have X =

⋃
Σ by Fact 15. Thus ≤η is a well-ordering of X by

Theorem 3. Let Sη
x be the segment for x and ≤η. We have Sη

x = x by Fact 21.
Moreover, ≤η agrees with γ since γ(¬Sη

x) = η(Sη
x) = η x = {x} by Facts 18

and 21. ��
One can show that there exists at most one well-ordering of X that agrees

with a given choice function. Thus our construction yields the unique well-
ordering that agrees with the given choice function. This is also true for the
well-orderings obtained with Zermelo’s proofs [12,13].

We show that with Theorem 4 we can get well-ordered extensions of well-
founded predicates. Let R be a binary predicate on X and p be a set over X.
We define

MR p := {x ∈ p | ∀y ∈ p. Ryx → y = x }
and call R well-founded if MR p is inhabited whenever p is inhabited. Note that
λxy.⊥ is well-founded, and that every well-ordering is well-founded. We say that
a binary predicate ≤ extends R if x ≤ y whenever Rxy.

Corollary 1 (Existence of Well-Ordered Extensions). Let X be an exten-
sional type with a choice function. Then every well-founded predicate on X can
be extended into a well-ordering of X.

Proof. Let R be a well-founded predicate on X. From the given choice function
we obtain a choice function γ such that γp ⊆ MR p for all sets p over X. This
is possible since R is well-founded. By Theorem 4 we have a well-ordering ≤
of X that agrees with γ. Let Ryx. We show y ≤ x by contradiction. Suppose
not y ≤ x. By Linearity and excluded middle we have x < y. Since ≤ agrees
with γ, we have x ∈ γ(¬Sx) ⊆ MR(¬Sx). Since y ∈ ¬Sx and Ryx, we have
y = x. Contradiction. ��

We return to the tower construction and show that Σ contains exactly the
lower sets of the well-ordering ≤η of

⋃
Σ.

Transfinite Constructions in Classical Type Theory 399

Fact 22. Let p, q ∈ Σ.

1. If p ⊂ q, then ηp �= ηq.
2. If ηp = ηq, then p = q.

Proof. Claim 2 follows with excluded middle and Linearity from Claim 1. To
show Claim 1, let p ⊂ q. Then ηp ⊆ q by Fact 10. Suppose ηp = ηq. Then ηq = ∅
and thus ηp = ∅. Hence p =

⋃
Σ by Fact 12. Contradiction since p ⊂ q ∈ Σ. ��

Fact 23. p ∈ Σ if and only if p =
⋃

Σ or p = x for some x ∈ ⋃
Σ.

Proof. The direction from right to left is obvious. For the other direction assume
p ∈ Σ and p �= ⋃

Σ. By Fact 12 we have some x ∈ ηp ∈ ⋃
Σ. By Fact 22 we

have p = x if ηp = ηx. Follows by Fact 18 and the uniqueness of η. ��
Bourbaki [2] shows that Zermelo’s theorem can be elegantly obtained from

Zorn’s lemma. A similar proof appears in Halmos [4]. Both proofs can be based
equally well on Hausdorff’s theorem.

7 General Towers

Our results for the specialized tower construction are not fully satisfactory. Intu-
ition tells us that Σ should be well-ordered for every extension function, not just
unique extension functions. However, in the proofs we have seen, uniqueness of
the extension function is crucial. The search for a general proof led us to a gener-
alized tower construction where the initial stage of a tower can be chosen freely
(so far, the initial stage was always ∅). Now the lemmas and proofs can talk
about all final segments of a tower, not just the full tower. This generality is
needed for the inductive proofs to go through.

We make another abstraction step, which puts us in the setting of the
Bourbaki-Witt fixed point theorem. Instead of taking sets as stages, we now con-
sider towers whose stages are abstract points of some partially ordered type X.
We assume an increasing function f : X → X to account for adjunction, and a
subset-closed family S of sets over X having suprema to account for union. Given
a starting point a, the tower for a is obtained by closing under f and suprema
from S. We regain the concrete tower construction by choosing set inclusion as
ordering and the family of all families of sets for S.

To understand the general tower construction, it is best to forget the spe-
cialized tower construction and start from the intuitions underlying the general
construction. We drop all assumptions made so far except for excluded middle.

Assumption 24. Let X be a type and ≤ be a partial order on X. Moreover,
let f be a function X → X, S be a family over X, and � be a function set X → X
such that:

1. For all x : x ≤ fx (f is increasing).
2. For all p ⊆ q : p ∈ S if q ∈ S (S is subset-closed).
3. For all p ∈ S : �p ≤ x ↔ ∀z ∈ p. z ≤ x (� yields suprema on S).

400 G. Smolka et al.

We call fx the successor of x, �p the join of p, and the sets in S admissible.

We think of a tuple (X,≤,�, S) satisfying the above assumptions as an
S-complete partial order having suprema for all admissible sets.

Definition 1. We inductively define a binary predicate � we call reachability:

x � x

x � y

x � fy

p ∈ S p inhabited ∀y ∈ p. x � y

x � �p

Informally, x�y means that x can reach y by transfinite iteration of f . We define
some helpful notations:

Σx := { y | x � y } tower for x
x �� y := x � y ∨ y � x x and y connected
x � p := p ∈ S ∧ p inhabited ∧ ∀y ∈ p. x � y

We will show that every tower is well-ordered by ≤ and that the predicates ≤
and � agree on towers. With the notation x � p we can write the join rule more
compactly:

x � p

x � �p

Fact 25. If x ∈ p ∈ S, then x ≤ �p.

Fact 26. If x � y, then x ≤ y.

Proof. By induction on x � y exploiting the assumption that f is increasing. ��
Lemma 27 (Strong Join Rule). The following rule is admissible for �.

p ∈ S p inhabited ∀y ∈ p ∃z ∈ p. y ≤ z ∧ x � z

x � �p

Proof. We have �p = �(p ∩ Σx) by the assumptions, Fact 25, and the subset-
closedness of S. We also have x � p ∩ Σx. Thus the conclusion follows with the
join rule. ��
Fact 28 (Successor). If x � y, then either x = y or fx � y.

Proof. By induction on x�y. There is a case for every rule. The case for the first
rule is trivial.

Successor. Let x � y. We show x = fy or fx � fy. By the inductive hypotheses
we have x = y or fx � y. The claim follows.

Join. Let x�p. We show x = �p or fx��p. Case analysis with excluded middle.

Transfinite Constructions in Classical Type Theory 401

1. p unique. We have �p = y for some y ∈ p since p is inhabited. By the inductive
hypothesis for x � y we have x = y or fx � y. The claim follows.

2. p not unique. We show fx ��p by Lemma 27. Let y ∈ p. We need some z ∈ p
such that y ≤ z and x � z. By the inductive hypothesis for x � y we have two
cases.
(a) fx � y. The claim follows with z := y.
(b) x = y. We need some z ∈ p such that x ≤ z and fx � z. Since p is not

unique, we have z ∈ p different from x. By the inductive hypothesis for
x � z we have fx � z. The claim follows with z := z. ��

Lemma 29. Let x �� �q for all x ∈ p. Then either �p ≤ �q or �q � �p.

Proof. Case analysis using excluded middle.

1. �q � x for some x ∈ p. We show �q � �p with Lemma 27. Let y ∈ p. We need
some z ∈ p such that y ≤ z and �q � z. By assumption we have y �� �q. If
y � �q, the claim follows with z := x since y ≤ x by Fact 26. If �q � y, the
claim follows with z := y.

2. �q � x for no x ∈ p. We show �p ≤ �q. Let y ∈ p. We show x ≤ �q. By
assumption we have x �� �q. If x � �q, the claim follows by Fact 26. If �q � x,
we have a contradiction. ��

Lemma 30. Let a � x and a � y. Then x �� y.

Proof. By nested induction on a � x and a � y. The cases where x = a or y = a
are trivial. The cases were x = fx′ or y = fy′ are straightforward with Fact 28.
Now only the case where x and y are both joins remains.

We have a � �p, a � �q, a � p, and a � q. The inductive hypotheses give us
x �� �q for all x ∈ p and x �� �p for all x ∈ q. By Lemma 29 we have �p ≤ �q or
�q � �p and also �q ≤ �p or �p � �q. Thus �p �� �q by antisymmetry of ≤. ��
Theorem 5 (Coincidence and Linearity). Let x, y ∈ Σa. Then:

1. x ≤ y iff x � y.
2. x ≤ y or y ≤ x.

Proof. Follows with Facts 26 and Lemma 30. ��
Lemma 31. Let a � b = fb. Then x � b whenever a � x.

Proof. We show x � b induction on a � x. For the first rule the claim is trivial.

Successor. Let a � x. We show fx � b. We have x � b by the inductive hypothesis.
The claim follows with Fact 28.

Join. Let a � p. We show �p � b. By Theorem 5 it suffices to show �p ≤ b. Let
x ∈ p. We show x ≤ b. Follows by the inductive hypothesis. ��

402 G. Smolka et al.

Theorem 6 (Fixed Point).

1. fx = x and x ∈ Σa iff x is the greatest element of Σa.
2. If Σa ∈ S, then �Σa is the greatest element of Σa.

Proof. Claim (1) follows with Lemma 31 and Fact 26. For Claim (2) let Σa ∈ S.
Then a � Σa. Thus a � �Σa and �Σa ∈ Σa. The claim follows with Fact 25. ��
Fact 32 (Successor). Let x, y ∈ Σa and x ≤ y ≤ fx. Then either x = y or
y = fx.

Proof. By Coincidence we have x � y. By Fact 28 we have x = y or fx � y. If
x = y, we are done. Let fx � y. By Coincidence we have fx ≤ y. Thus y = fx
by the assumption and antisymmetry of ≤. ��
Fact 33 (Join). Let x ∈ Σa, p ⊆ Σa, p ∈ S, and x < �p. Then there exists
y ∈ p such that x < y.

Proof. By contradiction. Suppose x �< y for all y ∈ p. By Linearity we have
y ≤ x for all y ∈ p. Thus �p ≤ x and therefore x < x. Contradiction. ��

8 Well-Ordering of General Towers

We already know that every tower Σa is linearly ordered by ≤ (Theorem 5).
We now show that every tower is well-ordered by ≤. To do so, we establish
an induction principle for towers, from which we obtain the existence of least
elements. We use an inductive definition to establish the induction principle.

Definition 2. For every a in X we inductively define a set Ia:

x ∈ Σa ∀y ∈ Σa. y < x → y ∈ Ia

x ∈ Ia

Lemma 34 (Induction). Σa ⊆ Ia and Ia ⊆ Σa.

Proof. Ia ⊆ Σa is obvious from the definition of Ia. For the other direction, let
x ∈ Σa. We show x ∈ Ia by induction on a � x. We have three cases. If x = a,
the claim is obvious.

Sucessor. Let a � x. We show fx ∈ Ia. Let y ∈ Σa such that y < fx. We show
y ∈ Ia. We have x ∈ Ia by the inductive hypothesis. By Linearity and excluded
middle we have three cases. If x < y, we have a contradiction by Fact 32.
If x = y, the claim follows from x ∈ Ia. If y < x, the claim follows by inversion
of x ∈ Ia.

Join. Let a�p. We show �p ∈ Ia. Let y ∈ Σa such that y < �p. We show y ∈ Ia.
Since y < �p, we have z ∈ p such that y < z by Fact 33. By the inductive
hypothesis we have z ∈ Ia. The claim follows by inversion. ��

Transfinite Constructions in Classical Type Theory 403

Theorem 7 (Well-Ordering). Σa is well-ordered by ≤.

Proof. Let x ∈ p ⊆ Σa. Then x ∈ Ia by Lemma 34. We show by induction
on x ∈ Ia that L(≤)p is inhabited. If x ∈ L(≤)p, we are done. Otherwise, we
have y ∈ p such that y < x by Linearity (Theorem 5). The claim follows by the
inductive hypothesis. ��

We can now prove a generalized version of the Bourbaki-Witt theorem.

Theorem 8 (Bourbaki-Witt, Generalized). Let X be a type, ≤ be a partial
order of X, and � be a function set X → X such that �p is the supremum of p
whenever p is well-ordered by ≤. Let f be an increasing function X → X and a
be an element of X. Then f has a fixed point above a.

Proof. Let S be the family of all sets over X that are well-ordered by ≤. Then
all assumptions made so far are satisfied. By Theorem 7 we know that Σa is
well-ordered by ≤. Thus Σa ∈ S. The claim follows with Theorem 6. ��

The general tower construction can be instantiated so that it yields the spe-
cial tower construction considered in the first part of the paper. Based on this
instantiation, the theorems of Hausdorff and Zermelo can be shown as before.
For the generalized version of Hausdorff’s theorem (extension of a given chain),
the fact that the general construction yields a tower for every starting point
provides for a simpler proof.

9 Final Remarks

We have studied the tower construction and some of its applications in classical
type theory (i.e., excluded middle and impredicative universe of propositions). The
tower construction is a transfinite construction from set theory used in the proofs
of the theorems of Zermelo, Hausdorff, and Bourbaki and Witt. The general form
of the tower construction in set theory was identified by Bourbaki [2] in 1949.

Translating the tower construction and the mentioned results from set theory
to classical type theory is not difficult. There is no need for an axiomatized
type of sets. The sets used in the set-theoretic presentation can be expressed as
types and as predicates (both forms are needed). The tower construction can be
naturally expressed with an inductive definition.

We have studied a specialized and a general form of the tower construc-
tion, both expressed with an inductive definition. The specialized form enjoys
straightforward proofs and suffices for the proofs of the theorems of Zermelo and
Hausdorff. The general form applies to a partially ordered type and is needed
for the proof of the Bourbaki-Witt fixed point theorem. Our proofs of the prop-
erties of the tower construction are different from the proofs in the set-theoretic
literature in that they make substantial use of induction. The proofs in the set-
theoretic literature have less structure and use proof by contradiction in place
of induction (with the exception of Felscher [3]).

There are two prominent unbounded towers in axiomatic set theory: The class
of ordinals and the cumulative hierarchy. The cumulative hierarchy is usually

404 G. Smolka et al.

obtained with transfinite recursion on ordinals. If we consider an axiomatized
type of sets in type theory, the general tower construction of this paper yields
a direct construction of the cumulative hierarchy (i.e., a construction not using
ordinals). Such a direct construction of the cumulative hierarchy will be the
subject of a forthcoming paper.1

We have obtained Hausdorff’s and Zermelo’s theorem under the assumption
that the underlying base type is extensional. This assumption was made for
simplicity and can be dropped if one works with extensional choice functions
and equivalence of sets.

Acknowledgement. It was Chad E. Brown who got us interested in the topic of this
paper when in February 2014 he came up with a surprisingly small Coq formalization
of Zermelo’s second proof of the well-ordering theorem using an inductive definition for
the least Θ-chain. In May 2015, Frédéric Blanqui told us about the papers of Felscher
and Hessenberg in Tallinn.

References

1. Bauer, A., Lumsdaine, P.L.: On the Bourbaki-Witt principle in toposes. Math.
Proc. Camb. Philos. Soc. 155, 87–99 (2013)

2. Bourbaki, N.: Sur le théorème de Zorn. Archiv der Mathematik 2(6), 434–437
(1949)

3. Felscher, W.: Doppelte Hülleninduktion und ein Satz von Hessenberg und
Bourbaki. Archiv der Mathematik 13(1), 160–165 (1962)

4. Halmos, P.R.: Naive Set Theory. Springer, New York (1960)
5. Hausdorff, F.: Grundzüge der Mengenlehre. Viet, Leipzig (1914). English transla-

tion appeared with AMS Chelsea Publishing
6. Hessenberg, G.: Kettentheorie und Wahlordnung. Journal für die reine und Ange-

wandte Mathematik 135, 81–133 (1909)
7. Ilik, D.: Zermelo’s well-ordering theorem in type theory. In: Altenkirch, T.,

McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 175–187. Springer,
Heidelberg (2007)

8. Isabelle/HOL: a generic proof assistant (2015). http://isabelle.in.tum.de
9. Lang, S.: Algebra. Graduate Texts in Mathematics, 3rd edn. Springer, New York

(2002)
10. van Heijenoort, J.: From Frege to Gödel: a source book in mathematical logic.

Harvard University Press, Cambridge (1967)
11. Witt, E.: Beweisstudien zum Satz von M. Zorn. Mathematische Nachrichten

4(1–6), 434–438 (1950)
12. Zermelo, E.: Beweis, daß jede Menge wohlgeordnet werden kann. (Aus einem an

Herrn Hilbert gerichteten Briefe). Mathematische Annalen 59, 514–516 (1904).
English translation in [10]

13. Zermelo, E.: Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische
Annalen 65, 107–128 (1908). English translation in [10]

1 Our initial motivation for studying the general tower construction was the direct
construction of the cumulative hierarchy in axiomatic set theory. Only after finishing
the proofs for the general tower construction in type theory, we discovered Bourbaki’s
marvelous presentation [2] of the tower construction in set theory.

http://isabelle.in.tum.de

A Mechanized Theory of Regular Trees
in Dependent Type Theory

Régis Spadotti(B)

Institut de Recherche en Informatique de Toulouse (irit),
Université de Toulouse, Toulouse, France

Regis.Spadotti@irit.fr

Abstract. Regular trees are potentially infinite trees such that the set
of distinct subtrees is finite. This paper describes an implementation
of regular trees in dependent type theory. Regular trees are semanti-
cally characterised as a coinductive type and syntactically as a nested
datatype. We show how tree transducers can be used to define regular
tree homomorphisms by guarded corecursion. Finally, we give examples
on how transducers are used to obtain decidability of properties over reg-
ular trees. All results have been mechanized in the proof assistant Coq.

1 Introduction

Infinite trees arise in the formalization of the semantics of programming lan-
guages or process algebras. For instance, they can be used to give semantics
to while loops in imperative programming languages where the loops are inter-
preted as their potentially infinite unfolding. In addition, infinite trees can be
used to model diverging or never ending computations.

More abstractly, infinite trees can be used to model cyclic structures. Such
circular structures are found, for instance, in cyclic lists, cyclic binary trees [16],
iso-recursive types in functional programming algebras [12], or labeled transition
systems. However, in practice, it is often the case that these infinite trees are
finitely defined in the sense that they are obtained from a finite cyclic structure
and thus embed a regularity property, e.g. the infinite paths of finitely branching
trees are ultimately periodic.

Coinductive types provide a natural framework to define and reason about
these infinite objects. However, the support of coinductive types in proof
assistants based on dependent type theory (such as coq or Agda) is less mature
than for their counterparts, namely inductive types, and is still subject to active
research [2,10].

Consequently, reasoning with coinductive types in such proof assistants can
be sometimes quite challenging, especially when coinduction is mixed with induc-
tion [7,8,15].

The motivation for this work is to provide a mechanized theory of a subset
of infinite trees called regular trees in the proof assistant coq. In particular, this
library could be used within coq as an implementation of regular coinductive

c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 405–420, 2015.
DOI: 10.1007/978-3-319-22102-1 27

406 R. Spadotti

types or it could be used outside of coq through extraction since the whole
development is constructive and axiom-free.

Contributions. In this paper, we make the following contributions1:

– We define a characterization of regular trees as a subset of a coinductive type
and give a syntax for regular trees as a nested datatype.

– We show that top-down tree transducers may be used to define, by means of
guarded corecursion, regular tree homomorphisms.

– Finally, we provide an embedding of a fragment of Computation Tree Logic
(ctl [9]) for regular trees and show how, in combination with top-down tree
transducers [19], it can be used to decide some properties over regular trees.

Notations. We introduce briefly the type theory we are working with along
with various notations. Even though all of the results contained in this article
are fully mechanized in coq, we choose to present this work with slightly different
notations, yet very close to the ones used within the implementation, in an effort
to improve readability. In particular, we use mixfix notations to avoid to declare
notations and some form of dependent pattern-matching in order to hide match
annotations.

Dependent product is written (a : A) → B a while the dependent sum is
denoted (a : A) × B a or

∑
a:A B a. When no dependence is involved, we shall

drop the formal parameter and simply write A → B and A × B for functions
and product of types respectively. Type annotations may be omitted when they
can be inferred from the context. The coproduct of two types is written A � B,
propositional equality (also known as Leibniz equality) of two terms t and s of
type A is noted t =A s or simply t = s. The cumulative hierarchy of types is
written Ui but we omit the level and simply write U .

Inductive (resp. coinductive) datatypes are introduced with the keyword
inductive (resp. coinductive). Indexed datatypes representing propositions may
rather be introduced with inference rules where single (resp. double) line rules
denote inductive (resp. coinductive) definitions. Note that coinductive datatypes
are introduced in term of constructors rather than destructors. As a result, we
assume that the names of the arguments of the constructors define (implicitly)
the destructors.

Finally, under the Curry-Howard isomorphism propositions are interpreted
as types but we also use the quantifiers ∀, ∃ and connectors ∧, ∨ (in place of
dependent product, dependent sum, and coproduct) in order to emphasize the
propositional nature of a statement.

2 Regular Trees

In this section, we aim at defining formally the type of regular trees. Intuitively,
a regular tree is a potentially infinite tree having the property that there exist
only finitely many distinct subtrees [6].
1 coq files available at http://www.irit.fr/∼Regis.Spadotti/regular-tree/.

http://www.irit.fr/~Regis.Spadotti/regular-tree/

A Mechanized Theory of Regular Trees in Dependent Type Theory 407

2.1 Signatures and Trees

Our goal is to reason about trees abstractly, thus we introduce a notion of
signature [1] (ranked alphabet) from which the type of trees is derived:

record Sig : U
constructor −�−

Op :〉 U
Dec-Op : ∀ (o1 o2 : Op), Dec (o1 = o2)
Ar : Op → N

The first field Op describes the set of operators or function symbols while the
field Ar assigns an arity to each operator. Note that there is a coercion from Sig
to U , thus we write o : Σ instead of o : Σ.Op whenever the signature Σ is used
in a context where a type is expected. In addition, we assume that there is a
coercion from N to U through Fin, where Fin n is the type representing the set
of {0, . . . , n − 1}. The second field Dec-Op requires the equality over the type of
operators to be decidable, where Dec(T) means T � ¬T . Each signature induces
a functor on U , called the extension of a signature:

ext : Sig → U → U
ext S X ≡ ∑

(o:S) Vec X (S.Ar o)

When T is a type, we write Σ T to mean ext Σ T .
Given a signature Σ, the type of finite (resp. potentially infinite) trees is

obtained as follows:
inductive μ (Σ : Sig) : U

−�− : (o : Σ) → Vec (μ Σ) (Σ.Ar o) → μ Σ

coinductive ν (Σ : Sig) : U
−�− : (root : Σ) → (br : Fin (Σ.Ar o) → ν Σ) → ν Σ

Informally, the type μ Σ (resp. ν Σ) represents the least (resp. greatest)
fixpoint of the extension functor induced by Σ. Note that we use two different
representations for the type of subtrees, namely a vector (Vec, defined as a
bounded list) and a finite map.

The choice of the vector is motivated by the fact that we want to remain
“compatible” with the propositional equality. If we used the finite map repre-
sentation, proving two trees to be equal would require function extensionality,
which is not available within the type theory we are working with.

However, the representation with a finite map for the coinductive type is
due to a limitation of coq since no proper support for nesting inductive and
coinductive types is provided. From now on, we shall write coT Σ instead of ν Σ
to denote the type of potentially infinite trees over the signature Σ.

2.2 Equality Between Infinite Trees

Leibniz equality is not adequate to identify two infinite trees, mainly because
the identity type is defined inductively whereas the type of trees is defined coin-
ductively. Thus, we need a more suitable definition to assess equality between
two trees, also known as bisimilarity, this time defined coinductively :

408 R. Spadotti

Definition 1 (Bisimilarity). −∼ − {Σ} : coT Σ → coT Σ → U

∼-intro
(root-= : root t1 = root t2) (br-∼ : ∀ k, br t1 k ∼ br t2 (root-=∗ k))

t1 ∼ t2

Because there is a dependence between a function symbol and its arity, we
have to transport the equality root-= in the type of k in order to obtain the kth

subtree of t2. This is written as root-=∗ : Σ.Ar (root t1) → Σ.Ar (root t2)2.
An alternative definition of bisimilarity is to consider the limit of a chain of

equalities of tree approximations.

Definition 2 (Bisim. depth). − ∼− − {Σ} : coT Σ → N → coT Σ → U

∼0-intro
t1 ∼0 t2

∼n-intro
(root-= : t1 = t2) (br-∼ : ∀ k, br t1 k ∼n br t2 (root-=∗ k))

t1 ∼1+n t2

The relationship between these two definitions is established in the next
section.

2.3 Coalgebra-Based Approach

It is interesting to view the coinductive type as a (weakly) final coalgebra over
a suitable functor in order to circumvent the syntactic guard condition. In our
case, we define the coiterator for the type of coT Σ as follows:

coiterator {Σ} {X} : (X → Σ X) → X → coT Σ
coiterator outX x ≡ π1 (outX x) � coiterator ◦ π2 (outX x)

As a result, in order to define a tree over a signature Σ, it suffices to give a type
X a Σ-coalgebra structure.

The same principle can be applied to the type witnessing the bisimilarity of
two trees −∼− by proving that it is actually the greatest bisimulation relation:

Lemma 1 (Greatest bisimulation). Let a signature Σ. For any binary rela-
tion −R− over coT Σ such that:

∀ s t, s R t →
∑

e : root s= root t

(∀ k, (br t1 k) R (br t2 (e∗ k)))

we have R ⊆ ∼, i.e., ∀ s t, s R t → s ∼ t.

A binary relation satisfying the condition of the above lemma is called a
bisimulation relation over coT Σ. Finally, we have yet another proof method at
our disposal, this time based on induction, thanks to the following result:

2 rew-in in coq.

A Mechanized Theory of Regular Trees in Dependent Type Theory 409

Lemma 2. The binary relation defined as

s R t := (ϕ : ∀ n, s ∼n t)

is a bisimulation relation.

The proof of Lemma 2 relies on the fact that equality over the type of oper-
ators (Σ.Op) is decidable and thus satisfies the Uniqueness of Identity Proofs
principle. Essentially, this means that the choice of the proof witnessing the
equality between the roots is irrelevant. However, without such principle the
definition of −R− is not strong enough to complete the proof and would require
an additional hypothesis such as:

∀ n, trunc (ϕ (1 + n)) = ϕ n

where the function trunc has the following type: s ∼1+n t → s ∼n t.

2.4 Reasoning Modulo Bisimilarity

Contrary to Leibniz equality, the bisimilarity relation is not provably substitu-
tive. This means that it is not possible to substitute bisimilar trees in an arbitrary
context unless there is a proof that the context respects bisimilarity. As a result,
most of the development containing coinductive trees has to be carried modulo
this bisimilarity relation. Without proper quotient types, this is usually achieved
by considering types as setoids, i.e., as a pair (T,−≈T −) where ≈T is an equiva-
lence relation over T , and functions and predicates as setoid morphisms. Within
the coq development, setoids and setoid rewriting is achieved by means of type
classes. This has the benefit of leaving much of the details implicit while relying
on instance resolution to fill in the missing parts. We follow the same approach
in the remaining sections of this paper.

In particular, given a type A we can always form the setoid (A,− = −). Given
a signature Σ, the setoid over coT Σ is defined as the pair (coT Σ,− ∼ −).
Finally, given a setoid (A,− ≈A −) and family of types B : A → U such that B
respects the equivalence relation ≈A, the setoid over the type S :=

∑
(a:A) B a

is defined as (S,− ≈S −) where s ≈S s′ := π1(s) ≈A π1(s′).

2.5 A Formal Definition of the Type of Regular Trees

Informally, a tree t is said to be regular when there are only finitely many distinct
subtrees. In order to translate this statement into a formal definition, we define
the type of subtrees and a characterization of finite type.

Definition 3 (Subtree). − � − {Σ} : coT Σ → coT Σ → U

�-refl
t1 ∼ t2
t1 � t2

�-br
k : Σ.Ar (root t2) t1 � br t2 k

t1 � t2

410 R. Spadotti

Obviously, the subtree relation respects bisimilarity and is provably transi-
tive. A proof of t′ � t is thus a finite path from t to t′. For a given tree t, we
note [− � t] to mean

∑
t′(t′ � t).

Definition 4 (Finite type). Let (A,− ≈ −) be a setoid. The type A is said to
be finite if there exists a surjection from a finite type to A. More formally, there
exist:

1. a natural number ucard
2. a map to-index : A → Fin ucard
3. a map from-index : Fin ucard → A

such that for all (a : A), from-index (to-index a) ≈ a.

There exist others definition of finite type [18]. Some of them require the
underlying equality over the type A to be decidable, which, in general, is not the
case for coinductive types.

Definition 5 (Regular tree). Let Σ be a signature. A tree (χ : coT Σ) is said
to be regular if the type [− � χ] is finite.

We note RegΣ the type of regular trees over Σ.

3 A Syntax for Regular Trees

In this section, we aim at defining a syntax for regular trees, also know as rational
expressions [6]. We proceed as follows.

First, we describe the syntax of regular trees as an inductively-defined het-
erogeneous datatype, called cyclic terms [16]. Then, we give an interpretation of
cyclic terms as a coinductive type corresponding to their infinite unfolding.

Finally, we prove soundness and completeness of the interpretation of cyclic
terms in the sense that each cyclic term yields a regular tree and conversely.

3.1 Cyclic Terms

The syntax is defined as an inductive datatype. As a result, we have to find a
way to implicitly encode cycles. The key idea is to represent a cycle through a
binder [16]. The binder will act as a marker for the beginning of the cycle while
the bound variable will represent a back-pointer to it, thus creating an implicit
cycle. We define the syntax of cyclic terms for a given signature Σ as a nested
datatype with De Bruijn index [3]:

inductive C (Σ : Sig) (n : N) : U
var : Fin n → C Σ n
−�− : (o : Σ) → Vec (C Σ n) (Σ.Ar o) → C Σ n
rec− � − : (o : Σ) → Vec (C Σ (1 + n)) (Σ.Ar o) → C Σ n

The definition of C Σ is similar to the definition of the term algebra over Σ
(see Sect. 2). The main difference is the presence of two additional constructors,

A Mechanized Theory of Regular Trees in Dependent Type Theory 411

namely var and rec− �−, that are used to represent bound variables and binders
respectively.

The constructor introducing the binder, namely rec−� −, contains some
form of redundancy to guarantee that each binder rec is guarded by a function
symbol. This will ensure that the interpretation function is total. The type of
closed terms C Σ 0 is abbreviated to C Σ.

Finally, the type of cyclic terms carries the structure of a monad. As such,
we note parallel substitution as

− >>= − : C Σ n → (Fin n → C Σ m) → C Σ m

while substitution in a rec-bound term with a newly introduced free variable is
written as

−[∗ := −] : CΣ (1 + n) → C Σ n → C Σ n.

3.2 Semantics of Cyclic Terms

Cyclic terms over a signature Σ will be interpreted as infinite trees coT Σ. First,
we introduce the type of closures in order to ensure that each free variable has
a definition:

inductive Closure {Σ : Sig} : N → U
[] : Closure Σ 0
− ::− : ∀ {n}, C Σ n → Closure Σ n → Closure Σ (1 + n)

The type Closure is defined in such a way as to ensure that each free variable
may only refer to terms that have been previously introduced within the closure.
As a result, this ensures that each free variable is defined by a closed term:

var-def {Σ} {n} : Closure Σ n → Fin n → C Σ
var-def (t :: ρ) zero ≡ t >>= var-def ρ
var-def (t :: ρ) (suc i) ≡ var-def ρ i

Note that the function var-def terminates since the number n of free variables
decreases in-between each recursive call. Given a term and a closure, we get a
closed term as follows:

close-term {Σ} {n} : Closure Σ n → C Σ n → C Σ zero
close-term ρ t ≡ t >>= var-def ρ

Now, we give two interpretation functions of cyclic terms as infinite trees
based on two different implementation strategies. The first one is based on sub-
stitution and operates on closed terms:

[[−]] {Σ} {n} : C Σ → coT Σ
[[o � os]] ≡ o � λ i · [[os[i]]]
[[rec o � os]] ≡ o � λ i · [[os[i] [∗ := rec o � os]]]

Note that the case for var is omitted since we are working with closed terms.
The second interpretation function is defined for terms that may contain

free variables while carrying their definitions within a closure. However, we have

412 R. Spadotti

to deal with one technicality in defining the function by guarded corecursion.
When the term is a free variable, its definition has to be looked up within the
closure in order to extract a function symbol in order to ensure productivity.
Moreover, note that, nothing prevents the definition of a free variable to be
again a free variable. Consequently, the process of looking up the definition of
the variable has to be repeated until a term in guarded form (i.e. guarded by
− � −) is obtained. Though, this process is guaranteed to terminate eventually
since closures are inductively defined terms. As a result, we use the coiterator
mapping Σ-coalgebras into infinite trees to define the interpretation function.
The carrier of the Σ-coalgebra consists in the pairs of terms in guarded form
associated with a closure:

G : Sig → U
G Σ ≡ (n : N) × (o : Σ) × Vec (C Σ n) (Σ.Ar o) × Closure Σ n

while the morphism is defined as to inductively compute the next guarded term,
by first looking up the definition of a free variable in the closure:

lookup {Σ} {n} : Fin n → Closure Σ n → G Σ
lookup zero (var k :: ρ) ≡ lookup k ρ
lookup zero (o � os :: ρ) ≡ (, o , os , ρ)
lookup zero (rec o � os :: ρ) ≡ (, o , os , rec o � os :: ρ)
lookup (suc i) (:: ρ) ≡ lookup i ρ

Finally, any term associated with a closure can be turned into guarded form:

toG {Σ} {n} : C Σ n → Closure Σ n → G Σ
toG (var k) ρ ≡ lookup k ρ
toG (o � os) ρ ≡ (, o , os , ρ)
toG (rec o � os) ρ ≡ (, o , os , rec o � os :: ρ)

The semantics of cyclic term as an infinite tree is thus obtained as follows:

G-coalg {Σ} : G Σ → Σ (G Σ)
G-coalg (m , o , os , ρ) ≡ (o , λ i · toG (os[i]) ρ)

[[−]]− {Σ} {n} : C Σ n → Closure Σ n → coT Σ
[[t]]ρ ≡ coiterator G-coalg (toG t ρ)

Theorem 1 (Equivalence of semantics). Given a signature Σ, a cyclic term
t with n free variables and a closure ρ then

[[close−term t ρ]] ∼ [[t]]ρ

3.3 From Cyclic Terms to Regular Trees

So far, we have defined two equivalent functions mapping cyclic terms to infinite
trees but we have yet to show that these infinite trees are actually regular.
It is interesting to remark that the following definitions and theorems are a
generalization (to an arbitrary signature) of [5], which deals with the problem of
giving a complete axiomatization of the subtyping relation of iso-recursive types.
First, we specify, in the form of a structural operational semantics, the subset
of terms from which a cyclic term may unfold to:

A Mechanized Theory of Regular Trees in Dependent Type Theory 413

Definition 6 (Immediate subterm/Subterm modulo unfolding).

	0-�
k : Σ.Ar o

o � os 	0 os[k]
	0-rec

k : Σ.Ar o

rec o � os 	0 os[k] [∗ := rec o � os]

We note −�− the reflexive-transitive closure of −�0−.

In order to show that the type [t � −] is finite, we show that it is included
in a finite set t∗ computed as follows:

−∗ {Σ} {n} : C Σ n → list (C Σ n)
(var x)∗ ≡ [var x]

(o � os)∗ ≡ (o � os) ::
⋃

mapVec −∗ os

(rec o � os)∗ ≡ (rec o � os) :: maplist [∗ := rec o � os]
(⋃

mapVec −∗ os
)

Theorem 2. For any cyclic term t, we have:

1. for all u such that t � u then u ∈ t∗,
2. for all u ∈ t∗ then t � u.

hence the type [t � −] is finite.

Theorem 3 (Soundness). For all closed cyclic term t, the tree [[t]] is regular.

Proof. We construct a surjection from [t � −] to [− � t] and conclude with
Theorem 2. ��

3.4 From Regular Trees to Cyclic Terms

In Sect. 3.3, we showed that each cyclic term interpreted as a potentially infinite
tree yields a regular tree. We are now interested in the converse, i.e., to define
a function:

[[−]]inv : Reg Σ → C Σ

By definition, regular trees embed a finite structure and thus an iteration
principle. To define [[−]]inv, we introduce an auxiliary function that operates
over an arbitrary subterm of a fixed regular tree that we call χ. Intuitively, to
construct the cyclic term from the regular tree we have to store the subterms
that have already been processed. We know that this will eventually terminate
since the set of subterms of a regular tree is finite. However, since equality of
infinite trees is not decidable, we are faced with the issue of testing whether a
subterm has already been processed. One solution is to exploit the fact that the
type [− � χ] is finite, which means by definition of finite, that we know how
to index subterms of χ. Thus, instead of storing the subterms we store their
indexes, for which equality is decidable. As a result, given a finite type A, we
can define a function

− ∈i?− : ∀ (a : A) (l : list (Fin ucardA)),

⎛

⎝
∑

i : Fin (len l)

l(i) ≈A a

⎞

⎠ � (to-indexA t �∈ l).

414 R. Spadotti

such that, given an element a of A and a list l, returns either the position of a
in the list l, if the index of a is in the list, or a proof that the index of a is not
in the list. The notation l(i) denotes an element a′ such from-indexA (l(i)) = a′.

[[−]]invχ : ∀t, t � χ →
l� → Env Σ (len l) → C Σ (len l)
[[t]]invχ p B Γ ≡

match t ∈i? l with
| yes (i ,) ⇒ Γ (i)
| no nl ⇒ rec (root t) � i �→ [[br t i]]invχ (nl
::�B) (Γ ⊕ var 0)

The termination of this recursive function [[−]]invχ is witnessed by the term B
whose type is given by

 − � {A} : list A → U

 − � ≡ Acc (λ l l′ · ∃ x, x �∈ l ∧ l′ = x :: l)

where Acc R defines the accessibility predicate over a binary relation R. A list
l is said to be accessible, written �l�, if the process of adding elements which
are not yet in l eventually terminates, i.e., there exists a bound. Given a proof
(nl : x �∈ l) and a term (B : �l�) we can form the term (np �::� B : �x :: l�),
obtained by inversion of B, which results in a structurally smaller term than B.
Finally, the inverse function [[−]]inv is obtained by starting at the root of χ:

[[−]]inv {Σ} : Reg Σ → C Σ
[[χ]]inv ≡ [[χ]]invχ init �-refl empty

where init is a proof that the empty list of indexes is accessible and empty denotes
the empty environment.

Theorem 4 (Completeness). For all regular tree χ, there exists a cyclic term
χ such that χ ∼ [[χ]].

Proof. χ is defined by [[χ]]inv. ��

4 Defining Regular Tree Homomorphisms

A regular tree homomorphism between an input signature Σ and an output
signature Δ is a morphism ϕ : coT Σ → coT Δ preserving regularity. As an
example, consider the two following mutually corecursive functions where Σ =
Δ = Stream A:

ϕ1 : Stream A → Stream A
ϕ1 (x :: xs) ≡ f1(x) :: ϕ2 xs

ϕ2 : Stream A → Stream A
ϕ2 (x :: xs) ≡ f2(x) :: ϕ1 xs

To show that both ϕ1 and ϕ2 preserves regularity amounts to construct a sur-
jection between the set of subtrees of a regular input stream σ and the set of
subtrees of ϕi.

On the other hand, let’s first observe through an other example, a tree mor-
phism that does not preserve regularity. For i ∈ N, we define the family of
corecursive functions ϕi as follows:

A Mechanized Theory of Regular Trees in Dependent Type Theory 415

ψi : Stream N → Stream N

ψi (x :: xs) ≡ fi(x) :: ψi+1 xs

If we define, for all x, fi(x) = i, then, for any input stream σ, the resulting
stream ψ0(σ) = ω is not regular.

The difference between the two examples is that ψ is defined using an infinite
family of corecursive equations. In order to capture this difference, we use a
shallow embedding of the formalism of tree transducers [19]. Then, we show
that tree transducers induce regular tree homomorphisms.

4.1 Top-Down Tree Transducers

Definition 7 (Top-down tree transducer). Given a finite type Q, an input
signature Σ and an output signature Δ, the type of top-down tree transducer is
defined as:

tdtt : U → Sig → Sig → U
tdtt Q Σ Δ ≡ Q → (o : Σ) → Δ+(Q × Σ.Ar o)

The type Q is called the state space of the transducer and is used to represent
a set of mutually corecursive definitions. The definition of tdtt describes a set of
rewrite rules: for each state q and function symbol (o : Σ) we specify a tree δ to
substitute for o. The leafs of δ are pairs composed of the next state and a variable
indexing a subtree of o. The tree δ is called the right-hand side of the rewrite
rule. Finally, for a type X, the type Δ∗(X) represents the free monad over the
signature Δ, inductively defined from the two constructors: var : X → Δ∗(X)
and ↓Δ : Δ+(X) → Δ∗(X).

Definition 8 (Induced natural transformation). Given a tree transducer
(τ : tdtt Q Σ Δ) the natural transformation induced by τ over the functors
Q × Σ − and Δ+ (Q × −) is defined as:

η : ∀ {α}, Q × Σ α → Δ+ (Q × α)

η (q , t) ≡ mapΔ+(Q×−) (π2 t) (τ q (π1 t))

Definition 9 (Induced tree morphism). A tree transducer (τ : tdtt Q Σ Δ)
induces a tree morphism defined by coiteration, as follows:

〈〈 − 〉〉 : tdtt Q Σ Δ → Q → coT Σ → coT Δ

〈〈 τ 〉〉 q t ≡ coiterator
(
foldΔ∗

η′ (mapΔ ↓Δ)
)

(var (q , t))

where η′ ≡ η(τ) ◦ mapQ×− outΣ

where foldΔ∗
is the non-dependent eliminator of the free monad, and outΣ :

coT Σ → Σ (coT Σ) is the destructor for the type coT Σ. Figure 1 illustrates
how the tree transducer operates on an input tree.

Theorem 5. Given a tree transducer (τ : tdtt Q Σ Δ), a state q and a regular
tree χ, then 〈〈 τ 〉〉 q χ is regular.

416 R. Spadotti

�
β

q

σ

x1 xn

s1 sn

q

σ

x1 xn

δ
qi qj

xk xl

�

�
β

δ
qi qj

xk xl

sk sl

Fig. 1. A derivation step induced by τ .

4.2 2-Ary Tree Transducers

We modify the type of top-down tree transducer defined previously to operate
on two trees rather than one.

Definition 10 (2-ary top-down tree transducer). Given a finite type Q,
two input signatures Σ and Δ and an output signature Γ the type of 2-ary top-
down tree transducer is defined as:

tdtt2 : U → Sig → Sig → U
tdtt2 Q Σ Δ Γ ≡

Q → (σ : Σ) → (δ : Δ) → Γ+(Q × (Σ.Ar σ × Δ.Ar δ � Σ.Ar σ � Δ.Ar δ))

We introduce a function lifting a product of trees to a tree over a product of
signatures. Consequently, this means that the induced tree morphism of a 2-ary
transducer can be defined as the induced tree morphism of a (unary) transducer.
First, we define the product of signature as follows:

− ⊗ − : Sig → Sig → Sig
Σ ⊗ Δ ≡ { Op := Σ × Δ

; Ar (σ , δ) := Σ.Ar σ × Δ.Ar δ + Σ.Ar σ + Δ.Ar δ }
while the lifting of a product of trees to a tree over the product of signature is
defined as:

− ⊗ − {Σ} {Δ} : coT Σ → coT Δ → coT (Σ ⊗ Δ)
t1 ⊗ t2 ≡ (root t1 , root t2) � λ i · match [i] with

| ι1 (ι1 (i , j)) ⇒ br t1 i ⊗ br t2 j
| ι1 (ι2 i) ⇒ br t1 i ⊗ t2
| ι2 j ⇒ t1 ⊗ br t2 j

where the function [−] converts a type Fin(a × b + c + d) to the type Fin(a) ×
Fin(b) � Fin(c) � Fin(d). It has an inverse that we write [−]inv.

A Mechanized Theory of Regular Trees in Dependent Type Theory 417

Definition 11 (Induced tree morphism). A transducer (τ : tdtt2 Q Σ Δ)
induces a tree morphism defined by coiteration, as follows:

〈〈 − 〉〉2 : tdtt2 Q Σ Δ Γ → coT Σ → coT Δ → coT Γ
〈〈 τ 〉〉2 q t1 t2 ≡ 〈〈 τ ′ 〉〉 q (t1 ⊗ t2)

where τ ′ q (σ , δ) ≡ mapΓ+(Q×−) [−]inv (τ q σ δ)

Theorem 6. Given a tree transducer (τ : tdtt2 Q Σ Δ Γ), a state q and two
regular trees χ1 and χ2, then 〈〈 τ 〉〉2 q χ1 χ2 is regular.

4.3 Induced Tree Morphism on Cyclic Terms

So far, we defined the type of top-down tree transducers and showed that the
tree morphisms induced by tree transducers preserve the regularity of trees.
Consequently, we can lift the induced tree morphism to operate on cyclic terms
since we know how to obtain a cyclic term back from a regular tree:

〈〈 − 〉〉C : tdtt Q Σ Δ → Q → C Σ → C Δ

〈〈 τ 〉〉C q ≡ [[−]]inv ◦ 〈〈 τ 〉〉 q ◦ [[−]]

In particular, the induced tree morphism 〈〈− 〉〉C satisfies the following equation:

〈〈 τ 〉〉C q (rec o � os) ≈ 〈〈 τ 〉〉C q (o � os [∗ := rec o � os]) (∗)

Essentially, this means that 〈〈 τ 〉〉C respects the semantics of cyclic terms in
the sense that cycles ought to be indistinguishable from their unfolding. As a
result, tree transducers give us a way to define functions on cyclic terms core-
cursively: a termination problem (i.e. the term o � os [∗ := rec o � os] is not
a subterm of rec o � os) is reduced to productivity problem.

Example. To illustrate the approach consider the problem of defining the syn-
chronous parallel product of processes for a fragment of process algebra such as
csp [12]. The syntax Proc of processes is defined inductively as

P,Q ::= STOP | SKIP | a → P | P � Q | μX · P | X

where SKIP (resp. STOP) denotes the successful (resp. unsuccessful) terminating
process. The process a → P accepts the letter a and then behaves as P . The
non-deterministic choice between P and Q is noted P � Q. Finally, μX · P
represents a recursively defined process.

We call ΣProc the signature of csp process consisting of the constructors
STOP, SKIP and �. Thus the type C ΣProc (defined in Sect. 3.1) can be regarded
as the subset of guarded closed terms of Proc. The synchronous parallel product
is axiomatized in csp as follows:

STOP ‖ = STOP
‖ STOP = STOP

(a → P) ‖ (b → Q) = if a
?= b then a → (P ‖ Q) else STOP

(P � Q) ‖ R = (P ‖ R) � (Q ‖ R)
R ‖ (P � Q) = (R ‖ P) � (R ‖ P)
SKIP ‖ P = P
P ‖ SKIP = P

418 R. Spadotti

These axioms can also be read as a recursive definition of the parallel opera-
tor, provided that this definition can extended to the μ constructor. However,
unfolding of μ could lead to a non structural recursive definition. Instead of
trying to find a termination criterion, we can reinterpret the axioms as a set of
rewrite rules. These rules are clearly expressible as a 2-ary tree transducer. By
exploiting the induced tree morphism 〈〈− 〉〉C, we can derive a recursive function
on the syntax. Moreover, the behavior for recursive processes conforms to the
specification given by Equation (∗).

5 Decidability Results

We define a fragment of Computation Tree Logic [9] CTL− over infinite trees
coT Σ. The syntax is defined inductively as follows:

Φ ::= � | P | ¬ Φ | Φ ∧ Φ | AG Φ | AX Φ

where P denotes predicates over infinite trees. The semantics of CTL− is given as:
[[−]] : CTL− → coT Σ → U
[[�]] ≡ const �
[[P]] ≡ P
[[¬ Φ]] ≡ ¬ ◦ [[Φ]]
[[Φ1 ∧ Φ2]] ≡ [[Φ1]] ∧ [[Φ2]]
[[AG Φ]] ≡ AG [[Φ]]
[[AX Φ]] ≡ AX [[Φ]]

where AX P t := ∀ k, P (br t k) and AG P := ν Z · P ∧ AX Z (coinductively
defined). The set of predicates of a formula Φ is noted Preds(Φ).

Theorem 7 (Model-checking). Given a regular tree χ : coT Σ, a formula of
CTL−, if all predicates in Preds(Φ) are decidable then [[Φ]] χ is decidable.

5.1 Decidability of Bisimilarity for Regular Trees

We give a proof of the decidability of equality (bisimilarity) between regularity
trees. The proof is based on both the encoding of CTL− and the usage of top-
down tree transducers.

τ∼ : coT Σ → coT Σ → coT Σ⊥

τ∼ t1 t2 ≡ match root t1
?
= root t2 with

| yes e ⇒ ι1 (t1, t2, e) � λ k · τ∼ (br t1 k) (br t2 (e∗k))
| no ⇒⊥

Lemma 3 (Bisimilarity encoding). Given two infinite trees χ1 and χ2, we
have

χ1 ∼ χ2 ⇔ [[AG �]] (τ∼ χ1 χ2)

where � is a state predicate that is true when the root symbol of a tree is not ⊥.

Theorem 8 (Decidability of bisimilarity). Given two regular trees χ1 and
χ2, it is decidable whether χ1 is bisimilar to χ2.

A Mechanized Theory of Regular Trees in Dependent Type Theory 419

6 Conclusion

In this paper, we described the implementation of a mechanized theory of reg-
ular trees. Regular trees are characterized both coinductively, as a subset of a
coinductive type satisfying a regularity property, and inductively, as a cyclic
term. We showed that top-down tree transducers induce maps which preserve
regularity of trees. Moreover, we gave a proof of the decidability of bisimilarity
of regular trees through a reduction to a model-checking problem.

The choice to represent cyclic structures as nested datatypes is motivated in
work of [16]. They show, by considering increasingly more general signatures,
that such datatypes carry both an algebra and coalgebra structures. However,
they do not address the problem of defining regular tree homomorphisms.

Close to our work, in the context of mechanizing regular trees, is [8], dealing
with the problem of subtyping iso-recursive type. This work exploits the ability
to define in Agda mixed induction/coinduction which is not available in coq.

Another example, is the work of [13], where they describe an implementa-
tion of regular coinductive types in the context of the ocaml programming lan-
guage. We could investigate whether some part of their implementation could be
obtained through extraction of our coq library. Alternatively, we could consider
bringing some of the extensions defined in [13] by means of a coq plugin.

As future work, we would like to extend the expressiveness of top-down tree
transducers while still preserving the regularity property of the induced tree mor-
phism. Examples of such tree transducers include extended top-down tree trans-
ducers [4] or macro tree transducers [11].

Finally, we could consider more expressive logics over regular trees such as
ctl∗ [17], or even the modal μ-calculus [14] and use these logics to derive decid-
ability results on regular trees.

Acknowledgements. I am grateful to Jean-Paul Bodeveix and Mamoun Filali for
helpful discussions about this work and the anonymous referees for suggesting improve-
ments and clarifications for this paper.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly positive
types. Theor. Comput. Sci. 342(1), 3–27 (2005)

2. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infi-
nite structures by observations. In: The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy,
January 23–25, 2013, pp. 27–38 (2013)

3. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol.
1683, pp. 453–468. Springer, Heidelberg (1999)

4. Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP, pp. 74–86 (1976)
5. Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality

and subtyping. Fundam. Inform. 33(4), 309–338 (1998)

420 R. Spadotti

6. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput. Sci. 25,
95–169 (1983)

7. Danielsson, N.A.: Beating the productivity checker using embedded languages. In:
Proceedings Workshop on Partiality and Recursion in Interactive Theorem Provers,
PAR 2010, Edinburgh, UK, 15th July 2010, pp. 29–48 (2010)

8. Danielsson, N.A., Altenkirch, T.: Subtyping, declaratively. In: Bolduc, C.,
Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 100–118. Springer,
Heidelberg (2010)

9. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, STOC 1982, pp. 169–180. ACM, New York
(1982)

10. Endrullis, J., Hendriks, D., Bodin, M.: Circular coinduction in coq using
bisimulation-up-to techniques. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 354–369. Springer, Heidelberg (2013)

11. Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. Syst. Sci. 31(1),
71–146 (1985)

12. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

13. Jeannin, J.-B., Kozen, D., Silva, A.: CoCaml: Programming with coinductive types.
Technical report. http://hdl.handle.net/1813/30798, Computing and Information
Science, Cornell University, December 2012. Fundamenta Informaticae, to appear

14. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

15. Nakata, K., Uustalu, T., Bezem, M.: A proof pearl with the fan theorem and bar
induction - walking through infinite trees with mixed induction. In: Yang, H. (ed.)
APLAS 2011. LNCS, vol. 7078, pp. 353–368. Springer, Heidelberg (2011)

16. Uustalu, T., Ghani, N., Hamana, M., Vene, V.: Representing cyclic structures as
nested datatypes. In: Proceedings of 7th Trends in Functional Programming, pp.
173–188. Intellect (2006)

17. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57 (1977)

18. Spiwack, A., Coquand, T.: Constructively finite? In: Pardo, L.L., Ibáñez, A.R.,
Garćıa, J.R. (eds.) Contribuciones cient́ıficas en honor de Mirian Andrés Gómez,
pp. 217–230. Universidad de La Rioja (2010)

19. Thatcher, J.W.: Generalized sequential machine maps. J. Comput. Syst. Sci. 4(4),
339–367 (1970)

http://hdl.handle.net/1813/30798

Deriving Comparators and Show Functions
in Isabelle/HOL

Christian Sternagel and René Thiemann(B)

Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{christian.sternagel,rene.thiemann}@uibk.ac.at

Abstract. We present an Isabelle/HOL development that allows for the
automatic generation of certain operations for user-defined datatypes.
Since the operations are defined within the logic, they are applicable
for code generation. Triggered by the demand to provide readable error
messages as well as to access efficient data structures like sorted trees
in generated code, we provide show functions that compute the string
representation of a given value, comparators that yield linear orders, and
hash functions. Moreover, large parts of the employed machinery should
be reusable for other operations like read functions, etc.

In contrast to similar mechanisms, like Haskell’s “deriving,” we do
not only generate definitions, but also prove some desired properties,
e.g., that a comparator indeed orders values linearly. This is achieved by
a collection of tactics that discharge the corresponding proof obligations
automatically.

1 Introduction

Before shedding light on how things are handled internally, let us have a look at
what the new mechanism does by means of an example.

As reasonably simple datatypes consider lists and rose trees

datatype α list = Nil | Cons α (α list) datatype α tree = Tree α (α tree list)

where both datatypes store content of type α. Typical operations that are
required on specific lists or trees include the following: determine which of two
values is smaller, e.g., for sorting; turning a value into a string, e.g., for printing;
computing a hash code for a value, e.g., for efficient indexing; etc.

With our development, obtaining such functionality for trees—assuming that
it is already available for lists—is as easy as issuing

derive compare tree derive show tree derive hashable tree

which may be read as “derive a compare function for trees, then derive a show
function for trees, and finally derive a hash function for trees.” Afterwards, we
can easily handle sets of trees or dictionaries where trees are used as keys in code
generation [3]: comparisons or hash codes are required to invoke the efficient
algorithms from Isabelle’s collections framework [6] and container library [7].
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 421–437, 2015.
DOI: 10.1007/978-3-319-22102-1 28

422 C. Sternagel and R. Thiemann

From the deriving mechanism we get the following functions at our disposal
where order is a type which consists of the three elements Eq, Lt, and Gt:

compare :: (α::compare) tree ⇒ α tree ⇒ order
show :: (α::show) tree ⇒ string
hashcode :: (α::hashable) tree ⇒ hashcode

Here, the annotation α::c denotes that type variable α has to be in type class c,
i.e., trees are comparable (“showable”, “hashable”) if their node contents are.

This is exactly what one would expect from similar mechanisms like Haskell’s
deriving or Scala’s case classes (which support automatic definitions of equality
checks, show functions, and hash functions).

However, we are in the formal setting of the proof assistant Isabelle/HOL [9],
and can thus go one step further and in addition to automatic function defini-
tions also provide automatic proofs of some properties that these functions have
to satisfy: since HOL is a logic of total functions, totality is obligatory; for com-
parators we guarantee that they implement a linear order (see Sect. 3); and for
show functions that they adhere to the show law (see Sect. 4).

Overview. After presenting some preliminaries and related work in Sect. 2, we
first present our two main applications: comparators are the topic of Sect. 3 and
show functions are discussed in Sect. 4. While we also support the generation of
hash functions (without proving any properties about them), we do not discuss
them in the remainder, since this would give no further insight.

Afterwards we explain the main parts of the process to generate class
instances. Since this is mostly generic, we will present each part with only one
of the classes as a leading example. In general the process is divided into the
following steps:

1. First, in Sect. 5, we show how to define the desired operations as recursive
functions. To this end, we illustrate a two-level construction principle that
guarantees totality.

2. In Sect. 6, we further illustrate how the defining equations of operations are
post-processed for code generation with the aim of improved efficiency.

3. After that, in Sect. 7, we discuss how to generate proof obligations for
the desired properties and use induction along the recursive structure of a
datatype to discharge them. Once these properties are proved it is straight-
forward to derive class instances.

After the explanation of the deriving mechanism, we continue in Sect. 8 and
illustrate how the new infrastructure for comparators can be integrated into
existing Isabelle/HOL formalizations. Finally, we conclude in Sect. 9.

Our formalization is part of the development version of the archive of formal
proofs (AFP). Instructions on how to access our formalization as well as details
on our experiments are provided at: http://cl-informatik.uibk.ac.at/software/
ceta/experiments/deriving

http://cl-informatik.uibk.ac.at/software/ceta/experiments/deriving
http://cl-informatik.uibk.ac.at/software/ceta/experiments/deriving

Deriving Comparators and Show Functions in Isabelle/HOL 423

2 Preliminaries and Related Work

Let us start with two remarks about notation: [] and # are syntactic sugar for
the list constructors Nil and Cons, and we use both notations freely; function
composition is denoted ◦.

Our work is built on top of Isabelle/HOL’s new datatype package [1,15],
which thus had a strong impact on the specifics of our implementation. There-
fore, some more details might be helpful. The new datatype package is based
on the notion of bounded natural functors (BNFs). A BNF is a type construc-
tor equipped with a map function, set functions (one for each type parameter;
collecting all elements of that type which are part of a given value), and a cardi-
nality bound (which is however irrelevant for our purposes). Moreover, BNFs are
closed under composition as well as least and greatest fixpoints. At the lowest
level, BNF-based (co)datatypes correspond to fixpoint equations, where multiple
curried constructors are modeled by disjoint sums (+) of products (×). Finite
lists, for example, are obtained as least fixpoint of the equation β = unit+α×β.

While in principle this might provide opportunity for generic programming a
la Magalhães et al. [8]—which makes a sum-of-products representation available
to the user—there is the severe problem that we not only need to define the
generic functions, but also have to prove properties about them. For this reason,
we do not work on the low-level representation, but instead access BNFs via its
high-level interface, e.g., we utilize the primrec command for specifying primi-
tive recursive functions, and heavily depend on the induction theorems that are
generated by the datatype package. A further problem in realizing the approach
of [8] is the lack of multi-parameter type classes in Isabelle/HOL. In the follow-
ing, whenever we mention “primitive recursion,” what we actually mean is the
specific version of primitive recursion provided by primrec.

Given a type constructor κ with n type parameters α1, . . . , αn—written
(α1, . . . , αn) κ—the corresponding map function is written mapκ and the set
functions set1κ, . . . , setnκ, where the superscript is dropped in case of a single
type parameter.1 In the following we will use “datatype” synonymously with
“BNF” but restrict ourselves to BNFs obtained as least fixpoints. Moreover, we
often use types and type constructors synonymously.

In general we consider arbitrary datatypes of the form

datatype (α1, . . . , αn) κ = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm
(1)

where each τij may only consist of the type variables α1, . . . , αn, previously
defined types, and (α1, . . . , αn) (for which the type parameters α1, . . . , αn may
not be instantiated differently; a standard restriction in Isabelle/HOL). In gen-
eral several mutually recursive datatypes may be defined simultaneously. For
simplicity’s sake we restrict to the case of a single datatype in our presentation.
1 A further technicality—allowing for things like phantom types—is the separation

between “used” and “unused” type parameters. To simplify matters, we consider
all variables to be “used” in the remainder, even though our implementation also
supports “unused” ones.

424 C. Sternagel and R. Thiemann

Related Work. Our work is inspired by the deriving mechanism of Haskell [10,
Chap. 10], which was later extended by Hinze and Peyton Jones [4] as well as
Magalhães et al. [8]. Similar functionality is also provided by Scala’s2 case classes
and Janestreet’s comparelib3 for OCaml. To the best of our knowledge there is
no previous work on a deriving mechanism that also provides formally verified
guarantees about its generated functions (apart from our previous work [12,14]
on top of the, now old, datatype package that was never described in detail).

However, the basics of generic programming in theorem provers—automati-
cally deriving functions for arbitrary datatypes, but without proofs—where
already investigated by Slind and Hurd [11] (thanks to the anonymous refer-
ees for pointing us to that work). Not surprisingly, our basic constructions bear
a strong resemblance to that work, where the relationship will be addressed in
more detail in Sect. 5.

3 Linear Orders and Comparators

Several efficient data structures and algorithms rely on a linear order of the
underlying element type. For example, to uniquely represent sets by lists, they
have to be sorted; dictionaries often require a linear order on keys, etc. Hence,
in order to use these algorithms within generated code we require linear orders
for the corresponding element types.

There are at least two alternative approaches when representing linear orders
for some type α. The first one is to provide one (or both) of the orders < or ≤,
and the second one is to demand a comparator of type α ⇒ α ⇒ order. In the
following, we favor the approach using comparators for several reasons:

The first one is related to simplicity. When constructing comparators, only
one function has to be synthesized, whereas linear orders in Isabelle/HOL require
both of < and ≤. Of course we could just synthesize one of those, say <, and
then define the other using the built-in equality, i.e., x ≤ y iff x < y ∨ x = y.
But then even a single invocation of ≤ might result in two comparisons.

Concerning efficiency, for some algorithms, one has to invoke two comparisons
of elements of type α, where a comparator only needs one. For example, when
traversing a binary search tree, it may require two comparisons to figure out,
whether we have to go on left, or right, or whether we are already at the right
node. Similarly, also when generating linear orders for complex types, we might
want to define the lexicographic order on pairs, where we again may need to
perform two comparisons between the first entries of the pairs. In contrast, for
both examples we get all the required information from one invocation of the
comparator. This may lead to an exponential difference when comparing two
tree-shaped values. Despite these benefits of comparators we do not want to
hide that there are also some disadvantages. For example for numeral types,
where < and ≤ can be seen as built-in functions, there might be some overhead
when computing the full comparison result of a comparator (which needs two
2 http://scala-lang.org.
3 https://github.com/janestreet/comparelib.

http://scala-lang.org
https://github.com/janestreet/comparelib

Deriving Comparators and Show Functions in Isabelle/HOL 425

comparisons), where a single invocation of < might have been sufficient as in a
sorting algorithm.

The last and perhaps most important reason for preferring comparators is the
fact that using comparators as a new dedicated class for sorting, etc., one does not
interfere with the remaining formalization. The problem here is, that Isabelle’s
type class for orders allows to specify exactly one order <. As an example, in
IsaFoR [13] we defined < on positions (of terms) as the standard prefix order,
which is the natural choice for a large part of the whole formalization, except for
sorting. Still we can invoke a sorting algorithm via the comparator for positions,
since the orders within the classes “comparator” and “order” may differ.

In order to formalize comparators in Isabelle/HOL, we started by defining a
predicate is-cmp :: α comparator ⇒ bool that demands three crucial properties
for symmetry, equality, and transitivity.

invert-order (c x y) = c y x

c x y = Eq =⇒ x = y (2)
c x y = Lt =⇒ c y z = Lt =⇒ c x z = Lt

Here, α comparator is a type abbreviation for α ⇒ α ⇒ order, and invert-order ::
order ⇒ order swaps Lt with Gt.

We further provide definitions to switch between comparators and linear
orders, which eases the integration of our results in the existing Isabelle/HOL
infrastructure which primarily works on linear orders, when it comes to sorting,
etc., cf. Sect. 8.

comparator-of x y = (if x < y then Lt else if x = y then Eq else Gt)
le-of-comp c x y = (case c x y of Gt ⇒ False | ⇒ True)
lt-of-comp c x y = (case c x y of Lt ⇒ True | ⇒ False)

It was an easy exercise to prove that is-cmp c implies that le-of-comp c and
lt-of-comp c satisfy the conditions of Isabelle/HOL’s class for linear orders, and
vice versa, if ≤ and < form a linear order, then also is-cmp comparator-of.

We further defined a type class for comparators, compare, which demands a
constant compare :: α comparator that satisfies is-cmp compare.

In order to define comparators for datatypes, we rely on an auxiliary function
that combines a list of elements of type order lexicographically.

Definition 1. We define the function comp-lex :: order list ⇒ order as

comp-lex [] = Eq
comp-lex (x # xs) = (case x of Eq ⇒ comp-lex xs | ⇒ x)

Now comparators for lists and trees are easily defined. We just compare the
constructors first, and in case of equality recurse and combine the results for
each argument via comp-lex.

Example 2. Since both lists and trees have one type variable α, the corre-
sponding comparators require a comparator c :: α comparator as additional

426 C. Sternagel and R. Thiemann

argument. Hence we will define the functions cmplist and cmptree of types
α comparator ⇒ α list comparator and α comparator ⇒ α tree comparator,
respectively.

cmplist c Nil Nil = comp-lex []
cmplist c Nil (Cons) = Lt
cmplist c (Cons) Nil = Gt (3)

cmplist c (Cons x xs) (Cons y ys) = comp-lex [c x y, cmplist c xs ys]
cmptree c (Tree x xs) (Tree y ys) = comp-lex [c x y, cmplist (cmptree c) xs ys]

Both comparators are constructed following a general schema which will be
discussed further in Sect. 5, and which produces a comparator cmpκ of type
α1 comparator ⇒ . . . ⇒ αn comparator ⇒ (α1, . . . , αn) κ comparator.

4 Show

A show function for type α provides a string representation of any given value of
that type, i.e., show :: α ⇒ string. In order to allow for constant time concatena-
tion of results (and thus avoid unnecessary performance regression) the actual
transformation into a string is postponed as long as possible. This is achieved
by the usual trick of using functions of type string ⇒ string (which we will
abbreviate to shows) instead of plain strings. Then show from above is gener-
alized to shows :: α ⇒ shows. The original show function is easily recovered by
show x = shows x [].

In our implementation this is further extended by a nat argument represent-
ing the “precedence” of the context in which the show function is used, providing
more flexibility with respect to parenthesization. For simplicity’s sake we omit
this detail in the following.

Another quirk that is required by user convenience is a special show function
for lists of αs, shows-list :: α list ⇒ shows. E.g., we usually want lists of charac-
ters to be printed as string, i.e., “abc” instead of “[a, b, c].” In addition, show
functions are required to satisfy the show law :

shows x (ys @ zs) = shows x ys @ zs

Together this brings us to the type class show :

class show =
fixes shows :: α ⇒ shows and shows-list :: α list ⇒ shows
assumes shows x (ys @ zs) = shows x ys @ zs and
shows-list xs (ys @ zs) = shows-list xs ys @ zs

The Show Law. One way of looking at the show law is that show functions do
not temper with or depend on output produced so far. To see this, consider the
specific instance shows x ([]@zs) = shows x []@zs and observe that this requires
shows always to behave as if called with [] as second argument.

Our goal is now to automatically derive a show function for a given datatype.

Deriving Comparators and Show Functions in Isabelle/HOL 427

Example 3. Assuming a show function for list elements s, this would look as
follows for the list datatype:

showslist s Nil = λ“Nil”
showslist s (Cons x xs) = λ“ (Cons” ◦ ◦ s x ◦ ◦ showslist s xs ◦ λ“)”

Here we use two notational conveniences: λ“text” is the show function producing
the literal string “text”; and is a show function producing a single space.

For the tree datatype from the introduction it would be:

showstree s (Tree x ts) =
λ“ (Tree” ◦ ◦ s x ◦ ◦ showslist (showstree s) ts ◦ λ“)”

The underlying general schema (Sect. 5) produces a show function showsκ of
type (α1 ⇒ shows) ⇒ . . . ⇒ (αn ⇒ shows) ⇒ (α1, . . . , αn) κ ⇒ shows.

5 Internal Constructions

In general we have to consider an arbitrary datatype (1) for which we want to
define some function

fκ :: (α1 ⇒ σ1) ⇒ . . . ⇒ (αn ⇒ σn) ⇒ (α1, . . . , αn) κ ⇒ σ′

that is parameterized by corresponding functions for type parameters and relies
on the existence of a function fκ′ for each datatype κ′ that was used in the
construction of κ. For comparators and show functions this specializes to

cmpκ :: (α1 comparator) ⇒ . . . ⇒ (αn comparator) ⇒ (α1, . . . , αn) κ comparator
showsκ :: (α1 ⇒ shows) ⇒ . . . ⇒ (αn ⇒ shows) ⇒ (α1, . . . , αn) κ ⇒ shows

whose definitions will rely on a comparator (show function) for each of the αi

as well as each κ′ used in the definition of κ.
Note that for such κ′, the function fκ′ itself takes arguments for the type

parameters of κ′. Thus, for any occurrence (τ1, . . . , τk) κ′ there will be a subterm
of the shape fκ′ g1 . . . gk, where each gi depends on the structure of τi. For
nested recursive datatypes this may result in κ occurring inside a type parameter
position of κ′, e.g., the rose tree type makes a nested occurrence inside α tree list.

Before we discuss this any further, let us have a look at the specification
mechanisms of Isabelle/HOL that would in principle support the automatic def-
inition of a function fκ (like cmptree or showstree)

One candidate would be Isabelle’s function package [5] by Krauss. This would
require automatic termination proofs, and recursion through previously defined
fκ′ is only possible after the automatic generation of congruence rules, which
both seems at least tedious. Krauss himself remarked that the function package
might not be the right solution for our purposes (personal communication).

428 C. Sternagel and R. Thiemann

The other candidate is primitive recursion, which is provided by the datatype
package in form of the primrec command. When using primrec, termination
is obtained automatically in exchange for certain syntactic restrictions, which
we will call primitive recursive form in the following. Essentially, we may
only perform pattern matching on one argument, and for a left-hand side like
g (C t1 . . . tn), the recursive calls must be of the form maps g ti where maps
is a combination of canonical map functions of those types which are involved
in nesting. For instance, if g takes lists as argument, then maps is the identity,
since the datatype of lists is not nested. If g takes rose trees as argument then
maps is the map function on lists, since trees are nested within lists.

Note that neither cmplist and cmptree from Example 2 nor showstree from
Example 3 are in primitive recursive form. It is well-known how to reduce the
pattern matching to only one argument, by moving the pattern matching into
a case-expression on the right-hand side. In the case of lists we are done: the
defining equations are in primitive recursive form, and from these we can easily
derive the equations of Examples 2 and 3. However, in the presence of nesting
there is still some work to be done.

For instance, one can apply a nested-to-mutual translation as proposed by
Slind and Hurd [11]. We actually applied this definitional principle in our pre-
vious version [12,14]. However, it has the disadvantage of not being modular, in
the sense that in the presence of nesting we could not reuse existing constants.
As an example, in [14] the definition of cmptree will not contain cmplist itself,
but a fresh copy of the definition of cmplist, specialized to lists of trees. And
even worse, when proving properties of cmptree, the tactic has to reprove all
properties for the copy of cmplist and cannot reuse properties of cmplist.

In the remainder, we describe another workaround which will establish prim-
itive recursive form w.r.t. primrec, and allow modular proofs. The main problem
is that calls like cmplist (cmptree c) xs and showslist(showstree s) ts are not of
the desired form, as neither cmplist nor showslist is the map function for lists. In
general we have to gracefully handle patterns of the shape fκ′ (fκ f) (where fκ′

and fκ might of course take more than one argument function, but such cases
can be handled similarly).

The essential idea is now instead of defining fκ f1 . . . fn (Ci x1 . . . xn) = . . .,
to encode the information that is provided by the argument functions fi already
into the type of the first argument Ci x1 . . . xn of type (α1, . . . , αn) κ. This is
akin to assuming that the fi have already been partially applied to the appro-
priate subterms xi, thus we call such functions partially applied (comparator
or show) functions and denote them by prefixing the function name with a p.
In the following we depict the type changes in the general case as well as for
comparators and show functions:

pfκ :: (σ1, . . . , σn) κ ⇒ σ′

pcmpκ :: (α1 ⇒ order, . . . , αn ⇒ order) κ ⇒ (α1, . . . , αn) κ ⇒ order
pshowsκ :: (shows, . . . , shows) κ ⇒ shows

Deriving Comparators and Show Functions in Isabelle/HOL 429

Given a partially applied function it is easy to define the originally intended one
by using canonical maps:

fκ f1 . . . fn = pfκ ◦ mapκ f1 . . . fn

cmpκ c1 . . . cn = pcmpκ ◦ mapκ c1 . . . cn

showsκ s1 . . . sn = pshowsκ ◦ mapκ s1 . . . sn

Now let us turn to the construction of such partially applied functions using
the primrec mechanism. To ease matters, we provide some auxiliary Isabelle/ML
functions (as opposed to HOL functions that can be reasoned about inside the
logic). Please keep in mind that in the following we just describe general schemas
of putting together certain terms and not recursive Isabelle/HOL functions.
They are similar to the interpretation �·�Θ,Γ of Slind and Hurd [11], but differ
since only the former produce terms which fit the requirements of primrec.

Given a type constructor κ together with a function fκ :: (α1, . . . , αn) κ ⇒ σ,
we support the construction of what we call a map block for type τ

Mf
τ =

⎧
⎪⎨

⎪⎩

fκ if τ = (τ1, . . . , τn) κ

mapκ′ Mf
τ1 . . . Mf

τ�
if τ = (τ1, . . . , τ�) κ′ with κ′ �= κ

λx. x otherwise

The purpose of a map block is to relay recursive calls to fκ through arbitrary
layers of type constructors. Note that this matches exactly the requirements of
the primrec command.

Given a function fκ′ for each κ′ �= κ occurring in τ , we further support the
construction of a corresponding compose block for type τ

Cf
τ =

⎧
⎪⎨

⎪⎩

λx. x if τ = (τ1, . . . , τn) κ

fκ′ ◦ mapκ′ Cf
τ1 . . . Cf

τ�
if τ = (τ1, . . . , τ�) κ′ and κ′ �= κ

λx. x otherwise

whose purpose is to apply the fκ′ functions to (via Mf
τ) appropriately prepared

subterms. In this way we can cleanly separate recursive function calls as accepted
by primrec from further processing of the corresponding results (via the fκ′s).

Compose and map blocks are then combined into Cf
τ (Mf

τ x) for a variable
x of type τ . We illustrate this general construction in the following example.

Example 4. For κ = tree and a variable x of type τ = α tree list we obtain

Cf
τ (Mf

τ x) = Cf
τ (map fκ x) = (flist ◦ map (λx. x)) (map fκ x)

For comparators with τ = (α ⇒ order) tree list the last term would be

pcmplist (map pcmptree x) :: α tree list ⇒ order

and for show functions with τ = shows tree list

pshowslist (map pshowstree x) :: shows

which both fit the rules of primrec.

430 C. Sternagel and R. Thiemann

Putting everything together, partial comparators are defined as follows.

pcmpκ (Ci x1 . . . xki
) z = case z of Cj y1 . . . ykj

⇒
⎧
⎪⎨

⎪⎩

Lt if i < j

Gt if j < i

comp-lex [Cpcmp
τi1

(Mpcmp
τi1

x1) y1, . . . , Cpcmp
τiki

(Mpcmp
τiki

xki
) yki

] if i = j

Example 5. For our example types this results in the following definitions:

pcmplist Nil z = (case z of Nil ⇒ comp-lex [] | Cons ⇒ Lt)
pcmplist (Cons cx cxs) z = (case z of

Nil ⇒ Gt | Cons y ys ⇒ comp-lex [cx y, pcmplist cxs ys])
pcmptree (Tree cx cxs) z = (case z of

Tree y ys ⇒ comp-lex [cx y, pcmplist (map pcmptree cxs) ys])

For partial show functions the general schema is

showsκ (Ci x1 . . . xki
) =

λ“(Ci” ◦ ◦ Cpshows
τi1

(Mpshows
τi1

x1) ◦ ◦ · · · ◦ ◦ Cpshows
τiki

(Mpshows
τiki

xki
) ◦ λ“)”

Example 6. For the type of rose trees this results in the following definition:

pshowstree (Tree s ts) =
λ“ (Tree” ◦ ◦ s ◦ ◦ pshowslist (map pshowstree ts) ◦ λ“)”

which is in the desired primitive recursive form.

It eventually remains to prove the equations of Examples 2 and 3 from these
definitions. For this, we mainly demand compositionality of the various map
functions, the simplification rules for map functions, the definitions of all par-
ticipating comparators (or show functions), and the definitions of the partially
applied functions. For example, for the comparator of trees we derive the desired
equation as follows, where in the step from (7) to (8) we use the compositionality
of maptree and map, and we go from (9) to (8) by unfolding both definitions of
cmptree and cmplist.

cmptree c (Tree x xs) (Tree y ys) (4)
= pcmptree (maptree c (Tree x xs)) (Tree y ys) (5)
= pcmptree (Tree (c x) (map (maptree c) xs)) (Tree y ys) (6)
= comp-lex [c x y, pcmplist (map pcmptree (map (maptree c) xs)) ys] (7)
= comp-lex [c x y, pcmplist (map (pcmptree ◦ (maptree c)) xs) ys] (8)
= comp-lex [c x y, cmplist (cmptree c) xs ys] (9)

Deriving Comparators and Show Functions in Isabelle/HOL 431

6 Code Equations for Comparators

Recall that our main motivation was to define functions inside the logic which
then should become available for code generation. Hence, after having defined
comparators as in Example 5, and having proved the equations of Example 2,
we just register the latter as code equations. In this way, only comparators will
appear in generated code, and the internal construction via the partially applied
comparators remains opaque—and for the same reasons, the partially applied
show functions will not occur in the generated code.

Still these code equations are not optimal w.r.t. execution time. Especially
in languages with eager evaluation, the right-hand side of (3),

comp-lex [c x y, cmplist c xs ys]

is problematic. Even if the first comparison c x y evaluates to Lt or Gt, also the
second argument cmplist c xs ys will be evaluated in eager languages.

To avoid this inefficiency, we completely unfold applications of comp-lex in
the right-hand sides of the equations in Example 2 before handing them over to
the code generator. To be more precise, unfolding is always performed w.r.t. the
following three equations (which are all easily proved):

comp-lex [] = Eq
comp-lex [x] = x

comp-lex (x # y # xs) = (case x of Eq ⇒ comp-lex (y # xs) | z ⇒ z)

The advantage of doing this just for code generation is that we can still use
properties of comp-lex within proofs, e.g., when showing that our comparators
really behave like comparators. Moreover, we can keep the canonical structure
as described in Example 2 without having to perform lots of case splits.

After the expansion, the right-hand side of the code equation for (3) becomes

case c x y of Eq ⇒ cmplist c xs ys | z ⇒ z

where even in eager languages the recursive call will only be evaluated on
demand.

7 Correctness of Generated Functions

Eventually we have to ensure correctness of the generated show functions and
comparators. For comparators, this amounts to proving the following soundness
theorems for our example types and for the general case, and similar theorems
have to be proved regarding the show law.

is-cmp c =⇒ is-cmp (cmplist c) is-cmp c =⇒ is-cmp (cmptree c)
is-cmp c1 =⇒ . . . =⇒ is-cmp cn =⇒ is-cmp (cmpκ c1 . . . cn) (10)

432 C. Sternagel and R. Thiemann

Although the theorems are clearly sufficient to easily plug together valid
comparators, they are not sufficient when proving the soundness theorem for a
new datatype which uses nested recursion, such as rose trees. To illustrate the
problem, recall the defining equation for cmptree:

cmptree c (Tree x xs) (Tree y ys) = comp-lex [c x y, cmplist (cmptree c) xs ys]

In order to prove the soundness theorem for cmptree, we clearly need correctness
of cmplist. However, since cmplist is invoked on cmptree c, the soundness theorem
for cmplist can only be applied if we already would have the soundness theorem
for cmptree, and thus the current form of the soundness theorems is not strong
enough in the presence of nesting.

As a solution, we always generate pointwise soundness theorems which are
based on pointwise properties of a comparator. From the pointwise theorems we
can then easily conclude the soundness theorems stated above.

In detail, for symmetry, transitivity, equality, the show law, etc., we define
pointwise variants. Here, we only illustrate transitivity. We define transitivity on
the level of order, and a pointwise variant on the level of comparators. It imposes
a stronger variant of transitivity in comparison to (2), which captures all possible
combinations of Lt and Eq. This is required, as we want to prove transitivity in
a standalone way, without having to refer to symmetry or equality.

definition trans-order :: order ⇒ order ⇒ order ⇒ bool where
trans-order x y z ←→

(x �= Gt −→ y �= Gt −→ z �= Gt ∧ ((x = Lt ∨ y = Lt) −→ z = Lt))

definition ptrans-comp :: α comparator ⇒ α ⇒ bool where
ptrans-comp c x ←→ (∀ y z . trans-order (c x y) (c y z) (c x z))

The former definition is more low-level, but has the advantage of being smoothly
combinable with comp-lex , independent of any comparator:

lemma comp-lex-trans: assumes length xs = length ys and length ys = length zs
and ∀ i < length zs. trans-order (xs ! i) (ys ! i) (zs ! i)
shows trans-order (comp-lex xs) (comp-lex ys) (comp-lex zs)

In combination with the already proved partial transitivity property of cmplist

(
∧

x . x ∈ set xs =⇒ ptrans-comp c x) =⇒ ptrans-comp (cmplist c) xs (11)

we can now prove the partial transitivity property for trees in a modular way.

(
∧

x . x ∈ settree t =⇒ ptrans-comp c x) =⇒ ptrans-comp (cmptree c) t

We first apply induction on t. So let t = Tree x1 ts1 where we can assume the
premise and the induction hypothesis.

x ∈ settree (Tree x 1 ts1) =⇒ ptrans-comp c x for all x (12)
t1 ∈ set ts1 =⇒ ptrans-comp (cmptree c) t1 for all t1 (13)

Deriving Comparators and Show Functions in Isabelle/HOL 433

We have to prove ptrans-comp (cmptree c) (Tree x 1 ts1), i.e.,

trans-order (cmptree c (Tree x 1 ts1) t2) (cmptree c t2 t3)
(cmptree c (Tree x 1 ts1) t3)

(14)

for all t2 and t3. In the general case, at this point we perform a case analysis
on both t2 and t3, where all of the cases where the three leading constructors
are different are easily proved by unfolding the transitivity property followed by
simplification. Hence, it remains the interesting case with identical constructors.
Let t2 = Tree x2 ts2 and t3 = Tree x3 ts3. Then, (14) simplifies to

trans-order (comp-lex [c x 1 x 2, cmplist (cmptree c) ts1 ts2])
(comp-lex [c x 2 x 3, cmplist (cmptree c) ts2 ts3])
(comp-lex [c x 1 x 3, cmplist (cmptree c) ts1 ts3])

and via theorem comp-lex-trans, it remains to consider all the comparisons of the
arguments of the constructor Tree which leads to the following proof obligations.

ptrans-comp c x 1 (15)
ptrans-comp (cmplist (cmptree c)) ts1 (16)

Here, (15) is immediately solved by (12) and the simplification rules for set . And
for (16) we first apply (11), then conclude via the induction hypothesis (13).

The proof for the individual arguments is easily generalized to the generic case
and follows a simple schema: whenever we hit some foreign type (τ1, . . . , τm) κ,
we use the partial transitivity theorem of cmpκ and proceed recursively on each
τi; whenever we hit the comparator under consideration, we apply the induction
hypothesis, and whenever we hit a comparator for some type variable, we apply
the corresponding premise.

In a similar way, also partial symmetry and equality properties are defined
and proved. We separated the three properties and did not define a partial
comparator property, as the corresponding proofs are all a little bit different
and could not easily be merged into a single one. For example, for transitivity
we perform one induction and then do a case analyses on two other elements,
whereas for symmetry and equality, a single case analysis suffices.

Having proved the partial properties of a comparator and show function, it is
easy to derive the main (global) properties of comparators and show functions,
namely soundness theorems in (10) and the show law.

8 Integration into Isabelle/HOL Infrastructure

At this point, we have a machinery to automatically derive various class instances
for datatypes. Whereas for hash codes and show functions these mechanisms are
immediately applicable, this is not the case for comparators. The reason for
the latter is the fact, that comparators are not well supported in the Isabelle
distribution, where most algorithms for sorting, search-trees, etc. are defined via

434 C. Sternagel and R. Thiemann

class linorder, and a combination of ≤, <, and = is applied. To bridge this gap,
we offer three different alternatives.

The first alternative is to bridge everything via lt-of-comp, le-of-comp, and
comparator-of . This is done when invoking derive linorder tree. This command
creates a new class instance for trees, tree :: (linorder) linorder, where the syn-
tax says that if the type parameter α is an instance of linorder, then so is α
tree. Here, < and ≤ will be defined as lt-of-comp (cmptree comparator-of) and
le-of-comp (cmptree comparator-of), respectively. With this approach one can
easily use all the existing algorithms. For example, we used this approach to
generate linear orders for the datatypes of the CAVA LTL model checker [2],
without changing a single line in the remaining formalization. However the switch
between comparators and orders clearly has a negative impact on efficiency.

The second alternative is to modify the existing algorithms so that they are
defined via comparators. Here, we provide an easy solution which performs this
change just before code generation. It works as follows. First, we defined a class
compare-order, which demands that there is a linear order and a comparator
compare, where the induced orders coincide, i.e., < = lt-of-comp compare and
≤ = le-of-comp compare must hold. Afterwards we provide a method which
strengthens the class constraints from linorder to compare-order, where every
two consecutive comparisons are replaced by one comparator invocation with
the help of several lemmas of the shape:

(if x ≤ y then if x = y then P else Q else R) =
(case compare x y of Eq ⇒ P | Lt ⇒ Q | Gt ⇒ R)

For example, the standard code equations to lookup the value of some key in a
red-black tree, rbt-lookup :: (α, β) rbt ⇒ α ⇒ β option, are

rbt-lookup Empty k = None
rbt-lookup (Branch c l x y r) k =
(if k < x then rbt-lookup l k else if x < k then rbt-lookup r k else Some y)

but after invoking compare-code (α) rbt-lookup they are transformed into:

rbt-lookup Empty k = None
rbt-lookup (Branch c l x y r) k =
(case compare k x of Eq⇒ Some y | Lt⇒ rbt-lookup l k | Gt⇒ rbt-lookup r k)

Note that in the original code equations, α only has to be an instance of linorder,
whereas the modified version enforces α to be an instance of compare-order.

In summary, the second approach is also easily integrated. For example,
it suffices to invoke compare-code on all constants rbt-ins, rbt-lookup, rbt-del,
rbt-map-entry, sunion-with, and sinter-with in order to completely adapt the
whole red-black tree implementation to work on comparators. And it suffices
to call derive compare-order list to make lists an instance of compare-order, and
similarly for other datatypes. This command internally just combines the sound-
ness lemmas (10) of the comparators to assemble a comparator, and then defines
< and ≤ via lt-of-comp and le-of-comp. In this way, we could remove over 600

Deriving Comparators and Show Functions in Isabelle/HOL 435

lines of proofs for manually created linear orders in IsaFoR . Moreover, the change
from linear orders to comparators led in theory to a linear speed-up when per-
forming comparisons. To measure the impact in practice, we certified over 4122
termination and complexity proofs that have been produced by various tools
during the international termination competition, which the generated code had
to validate. Whereas the old code required around 17 min for the certification of
all proofs, the new version required less than 4 min.

However, there remains one disadvantage, namely that an existing class
instance might interfere with the instance that derive compare-order wants to
create. For instance, if the ordering on products is defined to be pointwise, then
there is no chance to make prod an instance of compare-order .

Therefore, the third alternative does not require instances of compare-order.
Instead, one has to copy those functions which are relevant for code genera-
tion, manually integrate comparators, and then perform an equivalence proof.
Afterwards, one can reuse all of the theorems without much overhead.

As an example, we again consider red-black trees. Here, we manually adapted
the lookup function, and the corresponding equivalence proof is straightforward.

primrec rbt-comp-lookup :: α comparator ⇒ (α, β) rbt ⇒ α ⇒ β option where
rbt-comp-lookup c Empty k = None

| rbt-comp-lookup c (Branch - l x y r) k = (case c k x of
Lt ⇒ rbt-comp-lookup c l k

| Gt ⇒ rbt-comp-lookup c r k
| Eq ⇒ Some y)

lemma rbt-comp-lookup:
is-cmp c =⇒ rbt-comp-lookup c = ord .rbt-lookup (lt-of-comp c)

Afterwards, a theorem like map-of-entries—which required a proof of 66 lines—
is easily adapted for comparators via rbt-comp-lookup and proved in a single line.
Notice that ord.rbt-sorted and ord.rbt-sorted require the order as a parameter,
whereas rbt-lookup and rbt-sorted implicitly take the order from the type class.

lemma map-of-entries: rbt-sorted t =⇒ map-of (entries t) = rbt-lookup t

lemma comp-map-of-entries: is-cmp c =⇒ ord .rbt-sorted (lt-of-comp c) t
=⇒ map-of (entries t) = rbt-comp-lookup c t
using linorder .map-of-entries[OFcomparator .linorder]rbt-comp-lookup by metis

In this way, as a case study we adapted the whole container framework of
Lochbihler to use comparators instead of linear orders. Most of the adaptation was
straightforward and just required the insertion of suitable equivalence statements
like rbt-comp-lookup, and the change from ord.rbt-lookup to rbt-comp-lookup.
Moreover, we could remove over 450 lines within the container framework, where
manual constructions for orders (now: comparators) and equality-checking have
been replaced by one-line invocations of our generators.

436 C. Sternagel and R. Thiemann

9 Conclusion

We presented a mechanism that allows for the automatic derivation of the follow-
ing operations for arbitrary user-defined datatypes: comparators, show functions,
and hash functions. Our work relies on the canonical map functions and corre-
sponding facts that are provided by Isabelle’s new datatype package. We further
showed how our work can be integrated into existing formalizations, thereby
saving lines of code as well as improving the efficiency of generated code.

Acknowledgments. We thank S. Berghofer, J. Blanchette, L. Bulwahn, F. Haftmann,
B. Huffman, A. Krauss, P. Lammich, A. Lochbihler, C. Urban, T. Nipkow, D. Traytel,
and M. Wenzel for their valuable support w.r.t. motivating our development, information
on the old and new datatype packages, and for answering several Isabelle/ML related
questions. We thank the anonymous reviewers for their helpful comments. This work was
supported by Austrian Science Fund (FWF) projects P27502 and Y757. The authors are
listed in alphabetical order regardless of individual contribution or seniority.

References

1. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08970-6 7

2. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39799-8 31

3. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12251-4 9

4. Hinze, R., Peyton Jones, S.: Derivable type classes. ENTCS 41(1), 5–35 (2001).
doi:10.1016/S1571-0661(05)80542-0

5. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
JAR 44(4), 303–336 (2010). doi:10.1007/s10817-009-9157-2

6. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-14052-5 24

7. Lochbihler, A.: Light-weight containers for Isabelle: efficient, extensible, nestable.
In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998,
pp. 116–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 11

8. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mechanism
for Haskell. SIGPLAN Not. 45(11), 37–48 (2010). doi:10.1145/2088456.1863529

9. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

10. Peyton Jones, S.: The Haskell 98 language. JFP 13(1), 139–144 (2003). doi:10.
1017/S0956796803001217

11. Slind, K., Hurd, J.: Applications of polytypism in theorem proving. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 103–119. Springer, Heidelberg
(2003). doi:10.1007/10930755 7

http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1016/S1571-0661(05)80542-0
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.1007/978-3-642-14052-5_24
http://dx.doi.org/10.1007/978-3-642-39634-2_11
http://dx.doi.org/10.1145/2088456.1863529
http://dx.doi.org/10.1017/S0956796803001217
http://dx.doi.org/10.1017/S0956796803001217
http://dx.doi.org/10.1007/10930755_7

Deriving Comparators and Show Functions in Isabelle/HOL 437

12. Sternagel, C., Thiemann, R.: Haskell’s show-class in Isabelle/HOL. Archive of For-
mal Proofs, July 2014. http://afp.sf.net/entries/Show.shtml

13. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 452–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 31

14. Thiemann, R.: Generating linear orders for datatypes. Archive of Formal Proofs,
August 2012. http://afp.sf.net/entries/Datatype Order Generator.shtml

15. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic: category theory applied to theorem proving.
In: Proceedings of the 27th LICS, pp. 596–605 (2012). doi:10.1109/LICS.2012.75

http://afp.sf.net/entries/Show.shtml
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://afp.sf.net/entries/Datatype_Order_Generator.shtml
http://dx.doi.org/10.1109/LICS.2012.75

Formalising Knot Theory in Isabelle/HOL

T.V.H. Prathamesh(B)

Department of Mathematics, Indian Institute of Science, Bangalore, India
prathamesh@math.iisc.ernet.in

Abstract. This paper describes a formalization of some topics in knot
theory. The formalization was carried out in the interactive proof assis-
tant, Isabelle. The concepts that were formalized include definitions of
tangles, links, framed links and various forms of equivalences between
them. The formalization is based on a formulation of links in terms of
tangles. We further construct and prove the invariance of the Bracket
polynomial. Bracket polynomial is an invariant of framed links closely
linked to the Jones polynomial. This is perhaps the first attempt to for-
malize any aspect of knot theory in an interactive proof assistant.

Keywords: Formalization of mathematics · Knot theory · Kauffman
bracket · Bracket polynomial

1 Introduction

Knot theory refers to a study of mathematical objects which are derived from
the intuitive notion of a knotted loop of rope. Its modern day origins lie in Lord
Kelvin’s theory of vortex atoms. It transcended its origins to become an impor-
tant area of mathematical research. Its applications extend to various branches of
physics, chemistry and biology. Despite the enormous growth in formalization of
important results and theories in proof assistants, there has been no formalized
theory of knots in an interactive proof assistant to the best of our knowledge.

Knot theory as a discipline is largely centered around study of knots, links
and various invariants of knots and links. Knots in the context of the knot theory
are simple closed loops in 3-dimensional space. A link refers to a disjoint non-
intersecting collection of knots. The constituent knots of a link can be entangled.
If a link can be obtained from another link by wiggling and twisting, without
involving any cutting and pasting, then the two links are regarded as equivalent.
The equivalence class of the (unknotted) circle is called the unknot.

Establishing equivalence of two given knots can be a difficult task. Even
though this problem is decidable, the algorithm is extremely complicated and
difficult to implement in its generality. There are, however, several algorithms
for unknot recognition which have been implemented. Knots and links are often
distinguished by the means of various knot and link invariants. Some of the
prominent link invariants include Khovanov homology, Alexander polynomial
and Jones polynomial.
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 438–452, 2015.
DOI: 10.1007/978-3-319-22102-1 29

Formalising Knot Theory in Isabelle/HOL 439

This paper outlines our formalization of some of the important definitions and
results in knot theory in Isabelle/HOL. The choice of interactive proof assistant
and the implementation logic was based on the high expressiveness of the logic,
presence of the formal proof language (Isar) and reasonably effective automation.

The definitions that have been formalized include links, equivalence of links
and framed links. A framed link is a link in which each knot is viewed as being
made out of a ribbon instead of a string. Many of the definitions and results con-
tained in our formalization are skipped in this paper for the purpose of brevity.
The most significant contribution outlined in this paper is the construction and
proof of invariance of the Kauffman bracket or Bracket polynomial, an invariant
of framed links which is closely linked to the Jones polynomial.

The formalization described in this paper should be seen a part of an attempt
to formalize various concepts and results in knot theory in Isabelle/HOL. Some
of the reasons why such a project could be important are listed as follows.

1. It is perhaps the first attempt to formalize results in knot theory in an inter-
active proof assistant. Deep interconnections of knot theory with various
other branches of mathematics, also enable development of various support-
ing libraries. For instance, this project led to the development of a formalized
theory of tensor product of matrices.

2. Given the reliance on computer generated results in knot theory, be it for the
purpose of unknot recognition or for the computation of invariants, develop-
ment of formally verified code and theories should prove to be great impor-
tance in improving trust in these results.

The paper is organised along the following lines. In Sect. 2.1, we introduce
the reader to the definitions of basics concepts in knot theory that are found in
most textbooks. In Sect. 2.2, we introduce tangles which form the basis of our
formulation of knots. In Sect. 3, we introduce the formalization of tangles and
links in Isabelle/HOL. In Sect. 4.1, we describe how the Kauffman bracket could
be defined through tangles. In Sect. 4.2, we describe how the above definition was
employed for the purpose of formalization of the Kauffman bracket. Section 5,
contains the conclusions and further work.

2 Preliminaries

2.1 Standard Definitions

In this section, we introduce some of the basic concepts in knot theory. We stick
to the definitions that are found in most standard textbooks on the subject.
For further reading, one could refer to [3]. One may note that the formalization
presented in this paper is based on a representation of links through tangles,
which is described in Sect. 2.2. The standard definitions are introduced for the
sake of completeness.

Definition 1. A knot K is defined as the image of a smooth, injective map
h : S1 → S3 so that h′(θ) �= 0 for all θ ∈ S1. An oriented knot refers to a knot

440 T.V.H. Prathamesh

along with an assigned orientation to the curve. The orientation is denoted by
an arrow on the curve.

Unknot Trefoil Oriented Unknot

Remark 1. A knot is defined as an embedding in the 3-sphere S3 and not R
3,

because S3 is compact. The complement of a tubular neighbourhood of a knot is
an important object of study from the perspective of 3-manifold topology.

Definition 2. A link L ⊂ S3 is a smooth 1-dimensional submanifold of S3 such
that each component of L is a knot and there are only finitely many components.
An oriented link refers to a link whose components are oriented knots.

Two links are considered to the same if there is an ambient isotopy between
them, which is defined as follows.

Definition 3 (Ambient Isotopy). Two links L1 and L2 in S3 are said to be
ambient isotopic if there exists a smooth map F : S3 × [0, 1] → S3 such that

1. F |S3×{0} = id|S3 : S3 → S3.
2. F |S3×{1}(L1) = L2.
3. F |S3×{1} is a diffeomorphism ∀s ∈ [0, 1]

Ambient isotopy induces an equivalence relation on links as attested by the
following theorem.

Theorem 1. Ambient isotopy induces an equivalent relation on the set of all links.

A framed link is a link in which each knot is viewed as being made out of a
ribbon instead of a string. One may note that, because of the thickness of a rib-
bon, two equivalent links may not be equivalent as framed links. However, if two
framed links are equivalent, they are equivalent as links without the framing.
Framed links are formally defined as follows.

Formalising Knot Theory in Isabelle/HOL 441

Definition 4 (Framed Link). A framed m-component link is a collection of
m unordered (unoriented) circles smoothly and disjointly embedded in S3 and
such that each component is equipped with a continuous unit normal vector field.
Two framed links are equivalent if they are isotopic by an ambient isotopy that
preserves the homotopy class of the vector field on each component.

An important invariant of framed links is the Kauffman bracket (also called the
Bracket polynomial), which is defined as follows.

Definition 5 (Kauffman Bracket). [1] Let L be a projection of a framed,
unoriented link L. The Kauffman bracket of L, is an element of Z[A,A−1], with
A an indeterminate, computed by the following skein relations

((

where φ is the link with no components. The second equation, for example, says that
any time you can find three different link projections which look exactly the same
except in a small disk, where they look as shown in the equation, then their brackets
satisfy this equation. Of course, this means if you happen to know the brackets of
the two projections on the right side, this tells you the bracket of the left side. The
third equation is interpreted similarly, and gives the effect of removing an unlinked
unknot from a link.

Theorem 2. The Kauffman bracket is an invariant of framed links.

The Kauffman bracket is closely linked to the Jones polynomial, an invariant
of oriented links. If we consider the link L without the framing and induce an
orientation on the link L, the Jones polynomial J(L) of this oriented link can
be defined in terms of the Kauffman bracket by

J(L) = A−3ω(L)〈L〉 (1)

where ω(L) is the writhe of the oriented link diagram. Writhe is an integer valued
property of an oriented link diagram that describes the amount of coiling in the
3-dimensional space.

442 T.V.H. Prathamesh

2.2 Tangles and Links

To formalize knot theory using the canonical definitions introduced in the pre-
vious sections would become a tedious and unrewarding exercise. This is partly
because formalization of even basic results in knot theory using these definitions
would require an extremely well developed library of topology and algebraic
topology. Moreover proofs of many of the results found in literature are largely
guided by pictures, which make it very difficult to formalize.

There are a large variety of syntactic representations of knots and links,
which are useful from the perspective of formalization. Closed braids, planar
graphs, grid diagrams, DT code and Gauss code are some of the commonly used
representations. Given the multiplicity of representations and definitions, fixing
a particular way of representing and defining knots and links for the purpose of
formalization was among the earliest choices to be confronted. In such a scenario,
defining links and framed links in terms of tangles seemed most appropriate for
the following reasons

1. Tangles are easy to visualise and defining links through tangles does not lead
us too far from an intuitive understanding of links.

2. Framed links can easily be defined using tangle moves.
3. Links are easy to construct from the generating tangles using composition

and tensor products.

All the definitions and theorems used in this section can be found in [1].

Definition 6 (Tangle). A tangle is the image of a smooth embedding of a
union of circles and intervals into the cylinder D × I, where D is the unit disk
in C. The intersection of a tangle with the boundary of the cylinder is required
to be transverse, to lie in X × ({0, 1}), where X is the x-axis in D, and to be
exactly the image of the endpoints of the intervals. Tangles are considered up to
smooth isotopy of the cylinder leaving X×{0} and X×{1} invariant as sets. The
domain of a tangle is defined as the number of intersection points of the tangle
with X × {0}. The domain of a tangle T is denoted by dom(T). The codomain
of a tangle is defined as the number of intersection points of the tangle with
X × {1}. The codomain of a tangle T is denoted by codom(T).

Links are tangles whose codomain as well as domain equal 0. It can be proven
that any two links are ambient isotopic if and only if they are isotopic as tangles.

Formalising Knot Theory in Isabelle/HOL 443

Tangles can thus be treated as a generalisation of links. Tangles also simultane-
ously serve the purpose of being the building blocks of links, using the operations
defined below.

Definition 7 (Tangle Composition). The composition of two tangles (◦) is
a partial function which takes the tangles T1 and T2 to the tangle obtained by
placing T1 on top of T2 and isotoping to ensure that the endpoints match smoothly
and then rescaling it appropriately. T1 ◦ T2 is defined only when

dom(T1) = codom(T2)

T1 T2 T1 ◦ T2

Definition 8 (Tangle Tensor). The tensor product of tangles(⊗), T1 and T2,
is obtained by placing T1 next to T2 and rescaling it appropriately. To be more
precise, T1 and T2 are isometrically embedded next to each other in a cylinder
with a large enough diameter to accomodate both of them such that the endpoints
lie in X × {0, 1}. The cylinder is then rescaled to ensure that the diameter is 1.

T1 T2 T1 ⊗ T2

Framed links can be similarly generalised as well as built using framed tangles.

Definition 9 (Framed Tangle). A framed tangle is a tangle where every con-
nected component is equipped with a continuous unit normal vector field. Two
framed tangles are equivalent if they are isotopic by an ambient isotopy (of tan-
gles) that preserves the homotopy class of the vector field on each component.

The following theorem tells us that every tangle can be constructed from a
finite set of generating tangles using composition and tensor product and that
the equivalence of tangles can be formulated in terms of a finite set of generating
relations.

Theorem 3. Every unoriented, framed tangle is the composition of tensor prod-
ucts of the five tangles

vert cup cap over under

444 T.V.H. Prathamesh

and two such products correspond to the same tangle if and only if they can be
connected by a sequence of the following moves, where T and S are arbitrary
tangles.

The same is true of oriented, framed tangles, if each generator and each relation
above is written with every possible consistent orientation. The same is also true
in either case for unframed tangles, if one adds in relation (1) that both equal
the identity tangle.

Remark 2. We will refer to a representation of a tangle in terms of the generating
tangles, as a tangle diagram. Framed tangles upto isotopy can then be treated
as the equivalence class of tangle diagrams under the relations above. We will
use the term generating tangles to refer to the five tangles mentioned in the
above theorem - vert, cap, cup, over and under. We will use the term framed
tangle moves to refer to the moves described above. The corresponding moves
for tangles shall be referred to as tangle moves.

3 Formalization of Tangles and Links

The Theorem 3 of the previous section enables an algebraic description of tangles.
This algebraic description can be used to used to formalize tangles and links in
Isabelle/HOL. We begin by defining generating tangles as a type.

datatype brick = vert

|cup

|cap

|over

|under

Formalising Knot Theory in Isabelle/HOL 445

We then proceed to define blocks, which can be geometrically interpreted as
collection of bricks placed next to each other in a horizontal fashion. The type
of blocks is defined as follows

type synonym block = "brick list"

A wall can be interpreted as collection of blocks arranged vertically over
each other. It is formally defined as follows

datatype wall = basic block

|prod block wall (infixr "*" 66)

One may note that every tangle diagram can be represented by a wall. Every
wall need not however represent a tangle diagram, because the number of incom-
ing and outgoing strands of constituent blocks need not match appropriately. The
following functions are thus used to check if a wall represents a tangle diagram
or a link diagram.

primrec is_tangle_diagram::"wall ⇒ bool"

where
"is_tangle_diagram (basic x) = True"

|"is_tangle_diagram (x*xs) = (if is_tangle_diagram xs

then (codomain_block x = domain_wall xs)

else False)"

definition is_link_diagram::"wall ⇒ bool"

where
"is_link_diagram x ≡ (if (is_tangle_diagram x)

then

(abs (domain_wall x) + abs(codomain_wall x) = 0)

else False)"

The domain and codomain functions mentioned above are used to describe
the number of incoming and outgoing strands of a block and a wall respectively.

Defining the tensor product of two tangle diagrams through walls is more
intricate process, since we want to ensure that tensor product of two well defined
tangle diagrams returns a well defined tangle diagram. The tensor product is
defined along the following lines.

446 T.V.H. Prathamesh

Tensor product of two walls, when both the walls consist a single block, is
equal to placing the blocks next to each other. The following diagram illustrates
how the tensor product is defined when one of the walls consists of a single block
and the other consists of multiple blocks.

In a similar fashion, tensor product of two walls when the wall on the left
hand side consists of more blocks than the wall on the right hand side, are
defined. Tensor product of two walls, when both the walls are consituted by
multiple blocks is recursively defined in terms of the above steps.

The following theorem tells us that if two walls represent tangle diagrams,
then their tensor product is a tangle diagram.

theorem tensor_preserves_is_tangle:

assumes "is_tangle_diagram x"

and "is_tangle_diagram y"

shows "is_tangle_diagram (x ⊗ y)"

Formalising Knot Theory in Isabelle/HOL 447

3.1 Tangle Moves and Tangle Equivalence

The tangle moves express a relationship between the walls, and are defined as
boolean functions. For instance the following tangle move

is formalized as

definition swing_pos::"wall ⇒ wall ⇒ bool"

where
"swing_pos x y ≡ (x = r_over_braid)∧(y = l_over_braid)"

The relation expressing equivalence of two walls through generating moves is
defined by the function linkrel, which is defined as the disjunction of individual
tangle moves.
definition linkrel::"wall ⇒wall ⇒bool"

where
"linkrel x y = ((uncross x y) ∨ (pull x y) ∨ (straighten x y)

∨(swing x y)∨(rotate x y) ∨ (compress x y) ∨ (slide x y))"

The function framed linkrel similarly defines the equivalence of two
framed links by omitting appropriate tangle moves. This enables us to define
tangle equivalence as follows

448 T.V.H. Prathamesh

This definition of Tangle Equivalence states that the wall xs is equivalent
to the wall ys if and only if:-

1. If xs and ys are same as walls.
2. They are related by a tangle move.
3. If xs and ys can be expressed as tensor product of two walls representing

tangle diagrams, such that the corresponding walls are equivalent.
4. If xs and ys can be expressed as composition of two walls representing tangle

diagrams, such that the corresponding walls are equivalent and the composi-
tion is end point matching.

5. If ys belongs to the transitive closure of ys under tangle equivalence or vice
versa.

The equivalence of two framed tangles, in terms of representative walls, is
obtained by replacing linkrel with framed linkrel in the above definition.
These definitions along with the presence of quotient types in Isabelle/HOL,
enable us to define both tangle diagrams and framed tangle diagrams as types.
Links, framed links, tangles and framed tangles can then be defined as types
quotiented under the above equivalence relations.

The formalization described above enables us to prove equivalence of two
link diagrams, as illustrated by the following theorem.

theorem Example:

"(basic [cup,cup])◦(basic [vert,over,vert]) ◦ (basic [cap,cap])

~ (basic [cup]) ◦ (basic [cap])"

4 Kauffman Bracket

4.1 Kauffman Bracket Through Tangles

The Kauffman bracket of a link, as defined in Sect. 2.1, is fairly cumbersome
to formalize in the given form. We take recourse to an alternative method of
constructing the Kauffman bracket through tangles, which can be found in [1].
In the form as described in the paper, it is defined as a functor from the category
of tangles to the category of linear operators on vector spaces. In essence, it can
treated as a map from the set of tangles to the set of matrices over the ring of
Laurent polynomials. Consider the map 〈 〉 from the set of tangle diagrams to
the set of matrices whose entries are Laurent polynomials such that:-

Formalising Knot Theory in Isabelle/HOL 449

– Step 1: Generators are mapped to the following matrices

〈vert〉 −→
[
1 0
0 1

]

〈cup〉 −→ [
0 −A A−1 0

]T

〈cap〉 −→ [
0 A −A−1 0

]

〈over〉 −→

⎡

⎢
⎢
⎣

A 0 0 0
0 0 A−1 0
0 A−1 A − A−3 0
0 0 0 A

⎤

⎥
⎥
⎦

〈under〉 −→

⎡

⎢
⎢
⎣

A−1 0 0 0
0 A−1 − A3 A 0
0 A 0 0
0 0 0 A−1

⎤

⎥
⎥
⎦

– Step 2: It is extended to all tangles in the following fashion.

〈T1 ⊗ T2〉 = 〈T1〉 ⊗ 〈T2〉
〈T1 ◦ T2〉 = 〈T1〉 ◦ 〈T2〉

The map 〈 〉 is a tangle invariant. The proof of invariance involves checking
that the map defined above is invariant under tangle moves. If one pays careful
attention to the rank of the matrices defined above, one might notice a corre-
spondence between the dimension of the matrix and the codomain and domain
of the tangles. The relationship is given by

row length (〈T 〉) = 2dom(T)

column length (〈T 〉) = 2codom(T)

As a consequence, it follows that every link is mapped to a 1 × 1 matrix,
whose entry is a Laurent polynomial. This polynomial is a link invariant, which
is the same as the Kauffman Bracket or the Bracket Polynomial [1].

4.2 Formalizing Kauffman Bracket

Formalizing Kauffman bracket on the lines defined above, requires a formalized
theory of tensor products of matrices. There was no such formalized theory
available in Isabelle/HOL to the best of our knowledge. The tensor product
and some of its relevant properties were formalized by building on the existent
formalized theory of matrices by Sternagel and Thiemann which can be found
in [2]. Two of the important features of this formalization are:-

450 T.V.H. Prathamesh

1. Tensor products can be defined for matrices over any commutative ring with
unity.

2. Properties such as associativity and bilinearity of the tensor product have
been proved.

Laurent polynomials could be defined by treating Laurent polynomials as
rational functions, and by combining aspects of the existent theories on polyno-
mials and fraction fields.

type synonym intpoly = "int poly"

type synonym rat_poly = "intpoly fract"

In order to define the Kauffman bracket, we begin by mapping bricks to the
matrices whose entries are rational functions.

primrec brickmat::"brick ⇒ rat_poly mat"

where
"brickmat vert = [[1,0],[0,1]]"

|"brickmat cup = [[0],[A],[-B],[0]]"

|"brickmat cap = [[0,-A,B,0]]"

|"brickmat over = [[A,0,0,0],

[0,0,B,0],

[0,B,A-(B*B*B),0],

[0,0,0,A]]"

|"brickmat under = [[B,0,0,0],

[0,B-(A*A*A),A,0],

[0,A,0,0],

[0,0,0,B]]"

The variables A and B used above refer to x and 1/x. This map is extended
to blocks in the following manner.

primrec blockmat::"block ⇒ rat_poly mat"

where
"blockmat [] = [[1]]"

|"blockmat (l#ls) = (brickmat l) ⊗ (blockmat ls)"

Every wall is mapped to the product of matrices corresponding to its con-
stituent blocks. We refer to the matrix associated to a wall as the Kauffman
matrix of the wall.

primrec kauff mat::"wall ⇒ rat_poly mat"

where
"kauff mat (basic w) = (blockmat w)"

|"kauff mat (w*ws) = rat_poly.matrix_mult (blockmat w) (kauff mat ws)"

The type rat poly mat consists of both ‘valid’ and ‘invalid’ matrices. The
product of two matrices need not be a valid matrix, unless both the matrices
are valid and the relevant row lengths and column lengths match. Given that

Formalising Knot Theory in Isabelle/HOL 451

the Kauffman matrix of a wall is obtained by composition of matrices, it is
neccessary to ensure that the Kauffman matrix of a wall representing a tangle
diagram is a valid matrix.

theorem effective_matrix_kauff mat:

assumes "is_tangle_diagram ws"

shows "(rat_poly.row_length (kauff mat ws)) = 2^(nat (domain_wall ws))"

and "length (kauff mat ws) = 2^(nat (codomain_wall ws))"

and "mat (rat_poly.row_length (kauff mat ws)) (length (kauff mat ws))

(kauff mat ws) "

It follows from this result that the Kauffman matrix of a wall representing
a link diagram, is a 1 × 1 matrix. Thus it establishes a correspondence between
links and rational functions.

theorem link_diagram_matrix:

assumes "is_link_diagram ws"

shows "mat 1 1 (kauff mat ws) "

The following theorems illustrate that the Kauffman matrix of a tensor prod-
uct of two tangles is the tensor product of their Kauffman matrices and that the
composition of two tangles is the product of their Kauffman matrices.

theorem tangle_compose_matrix:

"((is_tangle_diagram ws1) ∧ (is_tangle_diagram ws2)

∧ (domain_wall ws2 = codomain_wall ws1)) =⇒
kauff mat (ws1 ◦ ws2) =

rat_poly.matrix_mult (kauff mat ws1) (kauff mat ws2)"

theorem Tensor_Invariance:

"(is_tangle_diagram ws1) ∧ (is_tangle_diagram ws2)

=⇒ (kauff mat (ws1 ⊗ ws2) = (kauff mat ws1) ⊗ (kauff mat ws2))"

In order to prove that the Kauffman bracket is an invariant of links, it suffices
to prove that the map kauff mat is an invariant of walls under the relation
Tangle Equivalence. This statement is formally expressed as follows.
theorem "(w1::wall) ~f w2 =⇒ kauff mat w1 = kauff mat w2"

The proof of this theorem consisted of splitting the goal into subgoals using
the induction rule, and then checking invariance under various tangle moves.

5 Conclusions and Further Work

In this paper, a formalization of some of the knot theoretic concepts has been
presented. These concepts include tangles, links upto ambient isotopy and the
Kauffman bracket. The invariance of the Kauffman bracket for framed tangles
has been further proved in Isabelle/HOL. The list of results proved in the course
of formalization however was not restricted to these results. The total length of

452 T.V.H. Prathamesh

the code is over 8000 lines. This also includes development of tensor product
for matrices, with proofs of some of the basic results. The proofs can be found
online at https://github.com/prathamesh-t/Tangle-Isabelle/

The choice of formalization of knots through tangles has its share of advan-
tages and disadvantages. The correctness of the formalized theory presented here
depends on the correctness of the human proofs that establish the equivalence
of knot isotopy and tangle moves. The proof can be obtained by morse theory.
The proof can also be motivated pictorially. The formal proof of invariance of
the Kauffman bracket illustrates the fact that highly nontrivial results can be
obtained from this choice of definition. At the same time, the same definitions
do make it fairly tricky to prove some of the simpler results such as invariance
of the number of components of links.

With respect to our future work, we would like to formalize other knot invari-
ants such as the Alexander polynomial. We would also like to formulate forms
of equivalence between links which are important in 3-manifold topology, such
as the ribbon equivalence. We intend to extract formally verified code for com-
putation of various invariants including the Kauffman bracket. We are also keen
on formalizing more results about rational functions, since many of these results
could prove useful in computation of Kauffman bracket. Another possible direc-
tion for future research is to formalize results about similar topological objects
such as virtual links.

We hope that this work illustrates the provability of results in low dimensional
topology and geometry in interactive proof assistants.

Acknowledgments. I would like to thank Siddhartha Gadgil for conceptualising and
supervising the project, apart from his many other invaluable suggestions.

References

1. Sawin, S.: Links, quantum groups and TQFTs. Bull. Amer. Math. Soc. (N.S.) 33,
413–445 (1996)

2. Sternagel, C., Thiemann, R.: Executable Matrix Operations on Matrices of Arbi-
trary Dimensions, Archive of Formal Proofs (2010). http://afp.sf.net/entries/
Matrix.shtml

3. Kauffman, L.H.: On Knots. Princeton University Press, Princeton (1987)

https://github.com/prathamesh-t/Tangle-Isabelle/
http://afp.sf.net/entries/Matrix.shtml
http://afp.sf.net/entries/Matrix.shtml

Pattern Matches in HOL:

A New Representation and Improved Code Generation

Thomas Tuerk1(B), Magnus O. Myreen2,3, and Ramana Kumar3

1 Independent Scholar, Brechen, Germany
thomas@tuerk-brechen.de

2 CSE Department, Chalmers University of Technology, Gothenburg, Sweden
3 Computer Laboratory, University of Cambridge, Cambridge, UK

Abstract. Pattern matching is ubiquitous in functional programming
and also very useful for definitions in higher-order logic. However, it is not
directly supported by higher-order logic. Therefore, the parsers of theo-
rem provers like HOL4 and Isabelle/HOL contain a pattern-compilation
algorithm. Internally, decision trees based on case constants are used.
For non-trivial case expressions, there is a big discrepancy between the
user’s view and the internal representation.

This paper presents a new general-purpose representation for case
expressions that mirrors the input syntax in the internal representation
closely. Because of this close connection, the new representation is more
intuitive and often much more compact. Complicated parsers and pretty
printers are no longer required. Proofs can more closely follow the user’s
intentions, and code generators can produce better code. Moreover, the
new representation is more general than the currently used representa-
tion, supporting guards, patterns with multiple occurrences of the same
bound variable, unbound variables, arithmetic expressions in patterns,
and more. This work has been implemented in the HOL4 theorem prover
and integrated into CakeML’s proof-producing code generator.

1 Introduction

Pattern matching is ubiquitous in functional programming and in definitions
within interactive theorem provers. Through the use of case expressions (a. k. a.
match expressions), pattern matching allows for concise and easy to read defin-
itions. For provers based on higher-order logic (HOL), case expressions are not
natively part of the logic. To use them, they are processed outside the logic.

The term parsers of all major HOL systems, in particular HOL4 [11],
Isabelle/HOL [13], HOL Light [2], and ProofPower, contain an implementation
of pattern compilation. This pattern compilation turns case expressions into
decision trees consisting of nested applications of case constants [1,10], which
are defined for each algebraic datatype. A complicated pretty printer prints the
resulting decision trees as case expressions. The decision trees can be evalu-
ated efficiently using basic rewriting techniques. They represent complete case
splits; no cases overlap and no case is missing. However, the pattern-compilation
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 453–468, 2015.
DOI: 10.1007/978-3-319-22102-1 30

454 T. Tuerk et al.

implementation in the parser and the complicated pretty printer are a cause for
concern in an LCF-style prover. In addition to the inference kernel, these compo-
nents need to be trusted to some degree. Another disadvantage is that pattern
compilation often leads to a huge blow-up in term size. Code extracted from
the internal representation is often both hard to read and slow. Moreover, the
structure intended by the user is obfuscated by pattern compilation and proofs
have to follow the artificial, often very complicated structure of the internal
representation.

Our contribution is a new representation for case expressions that avoids
these problems. Our representation is able to mirror the user’s input syntax
faithfully. Therefore parsing and pretty printing are straightforward and the
blow-up in term size is avoided. Compared to the decision tree representation,
extracted code is of better quality and proofs need to consider fewer cases. More-
over, the new representation supports more advanced pattern-matching features.
For example, it supports patterns that include guards, binding a variable mul-
tiple times, arithmetic expressions as well as a concept similar to simple view
patterns [12].

Related to our work are function definitions packages like the ones implemented
in Isabelle/HOL [3], HOL4 [10] and HOL Light [2]. At the top level, they are able
to avoid case expressions in the logic completely by using a set of (conditional)
equations for function specifications. For example, the length function on lists
(len l := case l of [] => 0 | x :: xs => (len xs + 1)) is described by the equa-
tions len [] = 0 and ∀ x xs. len (x :: xs) = length xs + 1. Since arbitrary equa-
tions are used instead of case constants, these packages provide all the features
offered by our approach like guards, arithmetic expressions or binding a variable
multiple times. However, unlike our approach, these packages do not represent case
expressions in the logic at all. Instead a set of (conditional) equations is returned.
The most striking difference in semantics, compared to case expressions, is that
there is no precedence on these equations. This means that overlapping patterns
are problematic. One option, implemented by e g. HOL4 and Isabelle/HOL, is to
use pattern compilation to transform the input patterns to a set of non-overlapping
patterns. This leads however to the same issues and restrictions described for pat-
tern compilation above. An alternative implemented in e. g. Isabelle/HOL [3] and
HOL Light is to prove that overlapping input patterns result in the same value.
Enforcing non-overlapping patterns often leads to either very complicated guards
or similar blow-ups in the number of cases as compilation to a decision tree.

The work1 presented here has been implemented in HOL4 [11]. Our rep-
resentation is very similar to concepts used internally by the HOL Light
function definition package2. However, we expose our definitions to the user,
whereas the function definition package uses it only internally. Since our rep-
resentation uses Hilbert’s choice operator and existential quantification, naive
usage is likely to cause problems. In contrast to decision trees, simple rewrite

1 The code can be found under: https://github.com/HOL-Theorem-Prover/HOL/
examples/pattern matches.

2 Compare function CASEWISE in define.ml.

https://github.com/HOL-Theorem-Prover/HOL/examples/pattern_matches
https://github.com/HOL-Theorem-Prover/HOL/examples/pattern_matches

Pattern Matches in HOL 455

techniques are not sufficient. Therefore, a significant part of this work consists
in providing specialised tools for dealing with our case expressions. We provide
parsers and pretty printers3, and evaluation and simplification tools4. There is
support for turning function definitions using our case expression into equations
similar to the ones produced by function definition packages5. Furthermore, there
are tools for converting between our case expressions and ones represented by
decision trees. These tools range from untrustworthy parsers and pretty printers
to a pattern-compilation algorithm implemented inside the logic. This allows
the user to choose the right representation for the task at hand. Moreover, our
implementation of a pattern-compilation algorithm6 lets us leverage some of the
nice properties of decision trees. It is used to check the exhaustiveness of our
case expressions7 as well as pruning patterns that are made redundant by the
combination of multiple other patterns8.

Applying code generation to the new representation, we can produce higher-
quality code. We demonstrate the quality improvement with a few examples, and
describe how proof-producing code generation (for CakeML [5]) can be extended
to generate code that mirrors the exact structure of the HOL term and the
concrete syntax provided by the user (Sect. 6).

2 Shortcomings of Decision Tree Representation

All major HOL systems, in particular HOL4 [11], Isabelle/HOL [13], ProofPower
and HOL Light [2], use decision trees based on case constants for representing
case expressions. In this section, we try to illustrate this method and its short-
comings using a number of examples. If not explicitly stated otherwise, we use
HOL4 as the example prover. The implementation in the other systems is very
similar, though.

Basic Example. The classical representation of case expressions is based on case
constants [1,10]. HOL4’s datatype definition package produces for each algebraic
datatype definition a case constant that can perform a top-level pattern match on
the constructors of that datatype. HOL4’s list datatype (with constructors Nil
and Cons) for example has an associated case constant list case, which is char-
acterised by the following equations

list_case Nil n f = n

list_case (Cons y ys) n f = f y ys

3 See patternMatchesSyntax.
4 See e. g. PMATCH SIMP ss or PMATCH REMOVE GUARDS ss.
5 See PMATCH LIFT BOOL ss.
6 See e. g. PMATCH CASE SPLIT ss.
7 See COMPUTE REDUNDANT ROWS INFO OF PMATCH and
PMATCH IS EXHAUSTIVE CONSEQ CONV.

8 See PMATCH REMOVE REDUNDANT ss.

456 T. Tuerk et al.

The datatype definition package also informs the parser and the pretty printer
about such case constants. The term list case x 5 (λy ys. y + 3) is pretty
printed as

case x of Nil => 5 | Cons y ys => y + 3

This representation is also accepted by the parser and parsed to the internal
list case representation.

Pattern Match Heuristics. For such simple case expressions, the classical
approach works perfectly. However, problems start to appear if the case expres-
sions become even slightly more complex. As an example, let’s define b ∨ (a ∧ c)
via a case expression:

case (a, b, c) of

(_, T, _) => T

| (T, _, T) => T

| (_, _, _) => F

For this example, several applications of the case constant for type bool, better
known as if-then-else, need to be nested. Classically, HOL4 performs the splits
from left to right, i. e. in the order a, b, c. This leads to (slightly simplified) the
following internal representation and corresponding pretty printed output:

if a then (

if b then (

if c then T else T

) else (

if c then T else F

)

) else (

if b then T else F

)

case (a,b,c) of

(T,T,T) => T

| (T,T,F) => T

| (T,F,T) => T

| (T,F,F) => F

| (F,T,_) => T

| (F,F,_) => F

Even for this simple example, one can observe a severe blow-up. The number of
rows has doubled. One might also notice that the clear structure of the input is
lost. Other systems using the classical approach might behave slightly differently
in detail but in principle suffer from the same issues. Isabelle/HOL for example
also performs pattern compilation always from left to right, but is slightly better
at avoiding unnecessary splits.

To combat some of these issues, we extended HOL4’s pattern compilation
algorithm in early 2013 with state-of-the-art pattern match heuristics9 presented
by Luc Maranget [6]. These heuristics often choose a decent ordering of case
splits. Moreover, we also implemented – similar to Isabelle/HOL – the avoidance
of some unnecessary splits. With these extensions, the example is compiled to:

9 See /src/1/PmatchHeuristics.sig in the HOL4 sources.

Pattern Matches in HOL 457

if b then T else (

if c then

(if a then T else F)

else F

)

case (a,b,c) of

(v,T,v3) => T

| (T,F,T) => T

| (F,F,T) => F

| (v,F,F) => F)

However, this improvement has a price. The pattern compilation algorithm in
the parser became slightly more complicated and the results are even harder to
predict.

Real World Example. The following case expression is taken from Okasaki’s
book on Functional Datastructures [8]. It is used in a function for balancing
red-black trees, which are represented using the constructors Empty, Red and
Black.

case (a,b) of

(Red (Red a x b) y c,d) => Red (Black a x b) y (Black c n d)

| (Red a x (Red b y c),d) => Red (Black a x b) y (Black c n d)

| (a,Red (Red b y c) z d) => Red (Black a n b) y (Black c z d)

| (a,Red b y (Red c z d)) => Red (Black a n b) y (Black c z d)

| other => Black a n b

Parsing this term with the classical pattern-compilation settings in HOL4
results in a huge term that pretty prints with 121 cases! Even with our state of
the art pattern-match heuristics a term with 57 cases is produced. In this term
the right-hand sides of the rows are duplicated a lot. The right-hand side of the
last row (Black a n b) alone appears 36 times in the resulting term.

This blowup is intrinsic to the classical approach. Our pattern match heuris-
tics are pretty good at finding a good order in which to perform case splits. For
this example, they find an optimal order. There is no term based on case con-
stants that gets away with fewer than 57 cases. However, clever pretty printers
might present a smaller looking case expression (see Sect. 6.2).

Also notice that this example relies heavily on the precedence of earlier rows
over later ones in the case expressions. If we use – as required by the equations
produced by function definition packages – non-overlapping patterns, we get a
similar blow-up as when compiling to a decision tree.

3 New Approach

In the previous section we presented the classical approach used currently by
all major HOL systems. We showed that the internal representation for this
approach often differs significantly from the input. There is often a huge blow-
up in size. This leads to less readable and more importantly less efficient code as
well as lengthier and more complicated proofs. In the following we will present
our new approach and how it overcomes these issues.

458 T. Tuerk et al.

3.1 Definition

A row of a case expression consists of a pattern p, a guard g and a right hand
side r. We need to model the variables bound by the pattern. Therefore, p, g
and r are functions that get the value of the bound variables as their argument.
They are of type γ → α, γ → bool and γ → β, respectively. The type of the
bound variables γ changes for each row of a case expression. In order to easily fit
into HOL’s type system, we apply these components to a function PMATCH ROW
which maps them to their intended semantics.

PMATCH_ROW p g r := λv.
if (∃x. (p x = v) ∧ g x) then

SOME (r (@x. (p x = v) ∧ g x))

else

NONE

For injective patterns, i. e. the ones normally used, this function models perfectly
the standard semantics of case expressions (as e. g. defined in [9]).

It remains to extend this definition of the semantics of a single row to case
expressions. Our case expressions try to find the first row that matches a given
input value. If no row matches, a functional language like ML would raise a
match-exception. Here, we decided not to model this error case explicitly and
use ARB (a. k. a. Undef) instead. This constant is used to denote a fixed, but
unknown value of an arbitrary type in HOL. Formally, this means that our case-
expression constant PMATCH is defined recursively by the following equations:

PMATCH v [] := PMATCH_INCOMPLETE := ARB

PMATCH v (r::rs) := case r v of

SOME result => result

| NONE => PMATCH v rs

3.2 Concrete Syntax and Bound Variables

The definitions above let us write case expressions with guards. The body of the
list-membership function mem x l, can for example be written as:

PMATCH l [

PMATCH_ROW (λ (uv:unit). []) (λuv. T) (λuv. F);

PMATCH_ROW (λ(y,ys). y::ys) (λ(y,ys). x = y) (λ(y,ys). T);

PMATCH_ROW (λ(_0 ,ys). _0::ys) (λ(_0 ,ys). T) (λ(_0 ,ys). mem x ys)

]

This syntax closely mirrors the user’s intention inside HOL. However, it is
rather lengthy and hard to read and write. Therefore, we implemented a pretty
printer and a parser for such expressions, enabling the following syntax:

CASE l OF [

||. [] ~> F;

|| (y,ys). y:: ys when (x = y) ~> T;

|| ys. _:: ys ~> mem x ys

]

Pattern Matches in HOL 459

For rows, we write bound variables only once instead of repeating them for
pattern, guard and right-hand side. Moreover, there is support for wildcard syn-
tax. Finally, we provide the CASE . OF . notation for PMATCH and reuse standard
list syntax for the list of rows. Thus, in contrast to the classical approach the
parser and pretty printer are straightforward.

3.3 Advanced Features

Our representation provides more expressive case expressions than the classical
approach. We don’t enforce syntactic restrictions like using only datatype con-
structors or binding variables only once in a pattern. Fine control over the bound
variables in a pattern allows inclusion of free variables, which act like constants.
Finally, there are guards.

These features can be used to very succinctly and clearly express complicated
definitions that could not be handled with the classical approach. Division with
remainder can for example be defined by:

my_divmod n c :=

CASE n OF [

|| (q, r). q * c + r when r < c ~> (q,r)

]

The new case expressions are not even limited to injective patterns. They
can for example be used to perform case splits on sets.

CASE n OF [

||. {} ~> NONE;

||(x, s). x INSERT s when ~(x IN s) ~> SOME (x, s)

]

3.4 Congruence Rules

Case expressions are frequently used to define recursive functions. In order to
prove the well-foundedness of recursive definitions, HOL systems use a termina-
tion condition extraction mechanism, which is configured via congruence rules10.
We provide such congruence rules for HOL4.

∀v v’ rows rows’. (
(v = v’) ∧ (r v’ = r’ v’) ∧
(PMATCH v’ rows = PMATCH v’ rows’)) =⇒

(PMATCH v (r :: rows) =
PMATCH v’ (r’ :: rows’))

∀p p’ g g’ r r’ v v’. (
(p = p’) ∧ (v = v’) ∧
(∀x. (v = (p x)) ⇒ (g x = g’ x)) ∧
(∀x. (v = (p x) ∧ g x) ⇒

(r x = r’ x))) =⇒
(PMATCH_ROW p g r v =
PMATCH_ROW p’ g’ r’ v’)

These rules lead to very similar termination conditions as produced by the con-
gruence rules for the classical decision trees. Therefore they work well with exist-
ing automatic well-foundedness checkers.

10 See e. g. HOL4’s Description Manual Sect. 4.5.2 or Isabelle/HOL’s manual Defining
Recursive Functions in Isabelle/HOL Sect. 10.1.

460 T. Tuerk et al.

Remark. The observant reader might wonder, why PMATCH ROW uses 3 func-
tions as arguments instead of just one function returning a triple. This would
simplify parsing and pretty printing, but cause severe problems for recursive def-
initions using PMATCH. HOL4’s machinery would not be able to use the resulting
congruence rules, since their application would require higher-order matching.
We expect that Isabelle/HOL would be fine with rules that require higher-order
matching, but have not tested this.

4 Evaluation and Simplification

If one naively expands the definition of PMATCH, one easily ends up with huge
terms containing Hilbert’s choice operator and existential quantifiers. To avoid
this, we developed specialised tools for HOL4 to evaluate and simplify our case
expressions. As a running example consider

CASE (SOME x, ys) OF [

|| y. (NONE , y::_) ~> y;

|| (x’,y). (x’, y::_) ~> (THE x’)+y;

|| x. (SOME x, _) ~> x;

||. (_, _) ~> 0

]

Pruning Rows. For each row of a PMATCH expression, we check, whether its pat-
tern and guard match the input value. If we can show that a row does not match,
it can be dropped. If it matches, all following rows can be dropped. We don’t need
a decision for each row. If it is unknown whether a row matches, the row can just
be kept. Finally, if the first remaining row matches, we can evaluate the whole case
expression. Applying this method to the running example results in

CASE (SOME x, ys) OF [

|| (x’,y). (x’, y::_) ~> (THE x’)+y;

|| x. (SOME x, _) ~> x

]

Partial Evaluation. In order to partially evaluate PMATCH expressions, we try
to split the involved patterns into more primitive ones. For this we split tuples
and group corresponding tuple elements in multiple rows into so-called columns.
In the running example the first column contains the input SOME x and the
patterns x’ (where x’ is bound) and SOME x (where x is bound). The second
column contains ys as input and y:: and as patterns.

If the input value of a column consists of the application of an injective func-
tion, e. g. a datatype constructor, and all patterns of this column contain either
applications of the same injective function or bound variables, this column can
be partially evaluated. We can remove the function application and just keep the
arguments of the function in new columns. For rows containing bound variables,

Pattern Matches in HOL 461

we substitute that variable with the input value and fill the new columns with
fresh bound variables. In our running example, we can simplify the first column
with this method. This partial evaluation leads to:

CASE (x, ys) OF [

|| y. (x’’, y::_) ~> x’’ + y;

|| x. (x, _) ~> x

]

Now, the first column consists of only variables and can be removed:

CASE ys OF [

|| y. y::_ ~> x + y;

||. _ ~> x

]

The semantic justification for this partial evaluation is straightforward. Essen-
tially we are employing the same rules used by classical pattern compilation
algorithms (compare e. g. Chap. 5.2 in [9]). However, implementing it smoothly
in HOL4 is a bit fiddly. It involves searching for a suitable column to simplify
and instantiating general theorems in non-straightforward ways.

Integration with Simplifier. Pruning rows and partial evaluation are the
most important conversions for PMATCH-based case expressions. Other useful
conversions use simple syntactic checks to remove redundant or subsumed rows.
Additionally, we implemented conversions that do low-level maintenance work on
the datastructure. For example, there are conversions to ensure that no unused
bound variables are present, that the variable names in the pattern, guard and
right-hand side of each row coincide and that each row has the same number
of columns. All these conversions are combined in a single conversion called
PMATCH SIMP CONV. We also provide integration with the simplifier in form of a
simpset-fragment called PMATCH SIMP ss.

The presented conversions might look straightforward. However, the imple-
mentation is surprisingly fiddly. For example, one needs to be careful about not
accidentally destroying the names of bound variables. The implementation of
PMATCH SIMP CONV consists of about 1100 lines of ML.

5 Pattern Compilation

We provide several methods based on existing pretty printing and parsing tech-
niques to translate between case expressions represented as decision trees and
via PMATCH. The equivalence of their results can be proved automatically via
repeated case splits and evaluation.

More interestingly, we implemented a highly flexible pattern-compilation
algorithm for our new representation. As stated above, our simplification tools
for PMATCH are inspired by pattern compilation. Thus, the remainder is simple:
we provide some heuristics to compute a case-split theorem. Pattern compilation
consists of choosing a case split, simplifying the result and iterating.

462 T. Tuerk et al.

5.1 Constructor Families

We implemented the heuristics for finding case splits in form of a library called
constrFamiliesLib. This library maintains lists of ML functions that construct
case splits. An example of such a function is a literal-case function that performs
a case distinction based on nested applications of if-then-else when a column
consists only of bound variables and constants. However, the main source of
case splits found by the library are constructor families.

A constructor family is a list of functions (constructors) together with a case
constant and a flag indicating whether the list of constructors is exhaustive.
Moreover, it contains theorems stating that these constructors have the desired
properties, i. e. they state that all the constructors are injective and pairwise
distinct and that the case constant performs a case split for the given list of
constructors. If a column of the input PMATCH expression contains only bound
variables and applications of constructor functions of a certain constructor fam-
ily, a case-split theorem based on the case constant of that constructor family is
returned.

constrFamiliesLib accesses HOL4’s TypeBase database and therefore auto-
matically contains a constructor family for each algebraic datatype. This default
constructor family uses the classical datatype constructors and case constant.
One can easily define additional constructor families and use them for pattern
compilation as well as simplifying PMATCH expressions. These families can use
constructor functions that are not classical datatype constructors. Such con-
structor families provide a different view on the datatype. They lead to a feature
similar to the original views in Haskell [12]. This is perhaps best illustrated by
a few examples.

List Example. One can for example declare [] and SNOC (appending an element
at the end of a list) together with list REVCASE as a constructor family for lists,
where list REVCASE is defined by

list_REVCASE l c_nil c_snoc =

if l = [] then c_nil else (c_snoc (LAST l) (BUTLAST l))

With this declaration in place, we get list REVCASE l 0 (λ x xs. x) auto-
matically from compiling

CASE l OF [

||. [] ~> 0;

|| (x, xs). SNOC x xs ~> x

]

5.2 Exhaustiveness Check/Redundancy Elimination

The case-split heuristics of our pattern compilation algorithm can be used to
compute for a given PMATCH expression an exhaustive list of patterns with the
following property: a pattern in the list is either subsumed by a pattern of the

Pattern Matches in HOL 463

original PMATCH expression or does not overlap with it. There are no partial
overlaps. Moreover, subsumption can be checked easily via first-order matching.

We can use such an exhaustive list of patterns to implement an exhaustiveness
check11. We prune all patterns from the list that are subsumed by a pattern
and guard in the original PMATCH expression. Pruning the list with respect to a
pattern p and guard g, consists of adding the negation of g to all patterns in
the list that are matched by p. Then we remove patterns whose guard became
false. If after pruning with all original patterns and guards, the resulting list is
empty, the original pattern match is exhaustive. Otherwise, we computed a list
of patterns and guards that don’t overlap with the original patterns and when
added to the original case expression make it exhaustive.

The same algorithm also leads to a powerful redundancy-detection algo-
rithm12. To check whether a row is redundant, we prune the exhaustive list
of patterns with the patterns and guards of the rows above it. Then we check
whether any pattern in the remaining list overlaps with the pattern of the row
in question.

6 Improved Code Generation

In this section we turn our attention to code generation. It has become increas-
ingly common to generate code from function definitions in theorem provers.
Code generators for HOL operate by traversing the internal structure of HOL
terms and producing corresponding code in a suitable functional programming
language, e. g. SML, OCaml or Scala.

As discussed in Sect. 2, the classical per-datatype case constants can
produce harmful duplication and a significant blow-up in the size of the HOL
terms. Code generators that walk the internal structure of the terms are likely
not to realise that there is duplication in various subterms and therefore to pro-
duce code that is unnecessarily verbose and somewhat unexpected considering
what the user gave as input in their definition.

Our PMATCH-based case expressions avoid accidental duplication and instead
very carefully represent the user’s desired format of case expressions in the logic.
As a result, even naive term-traversing code generators can produce high-quality
code from HOL when PMATCH-based case expressions are used.

In what follows, we first illustrate the quality difference between code gen-
erated from the classical approach versus from PMATCH-based case expressions.
Then, we will explain how our proof-producing code generator for CakeML has
been extended to handle PMATCH. Typically, code generators do not provide any
formal guarantee that the semantics of the generated code matches the seman-
tics of the HOL definitions given as input, but code generation for CakeML is
exceptional in that it does produce proofs. We have found that PMATCH is bene-
ficial not only to the generated code itself but also when producing proofs about
the semantics of the generated code.
11 See PMATCH IS EXHAUSTIVE CONSEQ CONV.
12 See PMATCH REMOVE REDUNDANT ss.

464 T. Tuerk et al.

6.1 The Quality of Generated Code

Simple code generators, which traverse the syntax of the HOL terms, produce
code that is very similar to the internal representation. Take for instance a vari-
ation, using a catch-all pattern, of the basic example in Sect. 2. When compiled
classically, this case expression results in a term that repeats the 5 on the right-
hand side. The generated code also repeats the 5. We show the user input on
the left and the output of code generation13 on the right.

case x of

Cons y Nil => y + 3

| _ => 5

case v5 of

Nil => 5

| Cons v4 v3 => case v3 of

[] => v4 + 3

| Cons v2 v1 => 5

If we instead input the example above as a PMATCH-based case expression, we
retain the intended structure: the result does not repeat the 5 and the Cons y
Nil row stays on top. It is easy for a code generator to follow the structure of a
PMATCH term, so the generated code reflects the user’s input.

CASE x OF [

|| y. Cons y Nil ~> y + 3 ;

||. _ ~> 5

]

case v2 of

Cons v1 Nil => v1 + 3

| _ => 5

In this simple example, the duplication of the 5 is not too bad. However,
for more serious examples like the red-black tree balancing function (in Sect. 2)
the difference in code quality is significant. The code generated from the classi-
cal version is 90 lines long and unreadable, while the code generated from the
PMATCH-based case expression is almost identical to the input expression, i. e.
readable, unsurprising and only 8 lines long.

The red-black tree example is not the only source of motivation for producing
better code. Our formalisation of the HOL Light kernel, which we have proved
sound [4], contains several functions with tricky case expressions. For the HOL
Light kernel, we want to carry the soundness proof over to the generated imple-
mentation, so it is important that the code generator can also produce proofs
about the semantics of its output.

The helper function raconv (used in deciding alpha-convertibility) has the
most complex case expression in the HOL Light kernel:

raconv env tm1 tm2 =

case (tm1 ,tm2) of

(Var _ _, Var _ _) => alphavars env tm1 tm2

| (Const _ _, Const _ _) => (tm1 = tm2)

| (Comb s1 t1, Comb s2 t2) => raconv env s1 s2 ∧ raconv env t1 t2

| (Abs v1 t1, Abs v2 t2) =>

(case (v1,v2) of

(Var n1 ty1 , Var n2 ty2) => (ty1 = ty2) ∧
raconv ((v1,v2)::env) t1 t2

| _ => F)

| _ => F

13 Our code generator renames variables. Here x has become v5, for example.

Pattern Matches in HOL 465

For this and other examples, a significant case explosion happens when parsed
using the classical approach. The generated code is verbose, and the performance
of our verified CakeML implementation [4] suffers as a result. By using PMATCH-
based case expressions as input to the code generator, we retain the original
structure and avoid the explosion.

6.2 Why Good Input Case Expressions Matter

For generating high-quality code, there is an alternative to rephrasing the
input: post-processing the generated code. Such post-processing is (in a sim-
ple form) implemented as part of the case-expression pretty printers and the
code-generation facilities of all major HOL systems. For translating decision
trees into PMATCH expressions, (see Sect. 5) we implemented a similar, but more
powerful post-processor, which combines rows by reordering them and introduc-
ing wildcards.

As discussed in Sect. 2, the 5 input cases of the red-black tree example pro-
duce 57 cases when printed naively in HOL4. After re-sorting and collapsing
rows, our post-processor reduces this to 8 cases. Isabelle/HOL’s pretty printer
and code generator produce 41 cases. What’s worse, these figures depend on the
exact form of the internal decision tree. For another valid decision tree our post-
processor produced e. g. 25 cases. So, post-processing can improve the result, but
the results are still significantly worse than good user input.

For CakeML, there is the added difficulty that we need to verify the post-
processing optimisation phase. Formally verifying optimisations over a language
which includes closure values is very time consuming, as we have found when
working on the CakeML compiler [5]. The reason is that optimisations alter the
code, and, through closure values, code can appear in the values of the language.
As a result, every optimisation requires a longwinded value-code relation for its
correctness theorem.

Reasoning about and optimising PMATCH-based case expressions is much sim-
pler. Moreover, the PMATCH-based approach allows manual fine-tuning of the
exact form of the case expression in the logic, before the automation for code
generation takes over. In general this leads to better results.

6.3 Proof-Producing Code Generation for CakeML

It is straightforward to write a code generator that walks a PMATCH term and
produces a corresponding case expression in a functional programming language
like CakeML. For CakeML, we additionally need to derive a (certificate) theorem
which shows that the semantics of the generated CakeML code matches the
semantics of the input PMATCH term. In this section, we explain how the proof-
producing code generator of Myreen and Owens [7] has been extended to handle
PMATCH-based case expressions.

The proof-producing code generator has been described previously [7]; due
to space restrictions, we will not present a detailed description here. Since the
approach is compositional, it is sufficient for the purposes of this paper to focus

466 T. Tuerk et al.

on the form of the HOL theorems that are produced during code generation.
These theorems relate generated code (deep embeddings) to input terms (shallow
embeddings) via the CakeML semantics. They are of the the following form.

assumptions =⇒ Eval deep_embedding env (inv shallow_embedding)

Here Eval is an interface to the CakeML semantics, and the env argument is
the semantic environment. The assumptions are used to collect constraints on
the environment. The refinement invariant inv describes how a HOL4 value is
implemented by a CakeML value. For example, for lists of Booleans, the appro-
priate refinement invariant would relate the HOL value Cons F Nil to the value
Conv "Cons" [Litv (Bool F); Conv "Nil" []] in the semantics of CakeML.

The code-generation algorithm traverses a given shallow embedding bottom-
up. To each subterm se, it applies a theorem of the form ... =⇒ Eval ...
env (inv se), where inv is the refinement invariant appropriate for the type
of se. Assumptions that relate shallow and deep embeddings are discharged via
recursive calls. Other assumptions are either collected or discharged directly. The
by-product of this forward proof is a deep embedding constructed in the first
argument of Eval.

In order to support PMATCH, we need to provide theorems of the following
form to this algorithm:

... =⇒ Eval (...) env (inv (PMATCH xv rows))

For an empty set of rows, the CakeML semantics of case expressions raises a Bind
exception, whereas PMATCH results in PMATCH INCOMPLETE. There is no connection
between these two outcomes. Therefore, the following theorem intentionally uses
the assumption false (F) to mark that one should never end up in this case.

F =⇒ Eval env (Mat x []) (b (PMATCH xv []))

The case of non-empty pattern lists is more interesting. The theorem is long
and complicated, so we explain its parts in turn. First, let us look at the conclu-
sion, i. e. lines 11 and 12 below. The conclusion allows us to add a pattern row,
PMATCH ROW, to the shallowly embedded PMATCH term and, at the same time, a
row is added to the deep embedding: Mat x ((p,e)::ys).

1 ALL_DISTINCT (pat_bindings p []) ∧
2 (∀v1 v2. (pat v1 = pat v2) ∧ v1 = v2) ∧
3 Eval env x (a xv) ∧
4 (p1 xv =⇒ Eval env (Mat x ys) (b (PMATCH xv yrs))) ∧
5 EvalPatRel env a p pat ∧
6 (∀env2 vars.

7 EvalPatBind env a p pat vars env2 ∧ p2 vars =⇒
8 Eval env2 e (b (res vars))) ∧
9 (∀vars. (pat vars = xv) =⇒ p2 vars) ∧

10 ((∀vars. ¬(pat vars = xv)) =⇒ p1 xv) =⇒
11 Eval env (Mat x ((p,e)::ys))
12 (b (PMATCH xv ((PMATCH_ROW pat (K T) res)::yrs)))

Now let us look at the assumptions on the theorem and how they are discharged
by the code generator when the theorem is used. The subterm evaluations are on

Pattern Matches in HOL 467

lines 4 and 6–8. The code generator derives theorems of these forms by recursively
calling its syntax-traversing function. As mentioned above, each such translation
comes with assumptions and these assumptions are captured by variables p1 and
p2. When the theorem above is used lines 9 and 10 will be left as assumptions,
but the internal assumptions, p1 and p2, are passed in these lines to higher levels
(see [7] for details).

The other lines 1, 2 and 5 are simple assumptions that are discharged by
evaluation and an automatic tactic. Line 1 states that all the variables in the
pattern have distinct names. PMATCH allows multiple binds to the same variable,
but CakeML’s pattern matching semantics does not allow this. Line 2 states
that the pattern function in HOL is injective; and line 5 states that the CakeML
pattern p corresponds to the pattern function pat in the current CakeML envi-
ronment env and based on refinement invariant a for the input type.

The CakeML code generator can only generate code for PMATCH-based case
expressions when there is an equivalent pattern expression in CakeML. This
means, for instance, that one cannot generate code for case expressions with
multiple binds to a variable, those that use non-constructor based patterns, or
those that use guards. PMATCH-based case expressions that do not fall into this
subset can usually be translated by removing these features first. We provide
automated tools which work for most situations14, although using this feature-
removing automation can, in the worst case, lead to significant changes in struc-
ture of the terms, even replacing them with bulky decision trees similar to those
of the classical approach.

We have used this PMATCH-based translation to produce high-quality CakeML
code for all of the case expressions in the HOL Light kernel.

7 Summary

This paper presents a new representation, PMATCH, for case expressions in higher-
order logic which faithfully captures the structure of the user’s input. Because
pattern-matching structure is retained, proofs over PMATCH expressions are sim-
pler, and code generated from PMATCH expressions is better. Moreover, PMATCH
is more general than currently-used representations: it supports guards, views,
unbound variables, arithmetic expressions in patterns and even non-injective
functions in patterns.

In addition to the new representation itself, we provide tools for working with
PMATCH expressions in HOL4. Our tools include a parser and pretty printer, con-
versions for simplification and evaluation, and a pattern-compilation algorithm
inside the logic. This pattern compilation is used to check the exhaustiveness of
lists of patterns as well as for implementing powerful techniques for eliminat-
ing redundant rows. Furthermore, we have extended CakeML’s proof-producing
code generator to translate PMATCH expressions into high-quality CakeML code.

At present, our tools are already more powerful and convenient than the exist-
ing support for case expressions in the major HOL systems. In the future we plan
14 The exceptions are non-constructor patterns that are not part of a constructor family.

468 T. Tuerk et al.

to extend them further. In particular, we plan to improve the support for advanced
patterns like arithmetic expressions.

Acknowledgements. The second author was partially supported by the Royal
Society UK and the Swedish Research Council.

References

1. Augustsson, L.: Compiling pattern matching. In: FPCA, pp. 368–381
(1985). http://dx.doi.org/10.1007/3-540-15975-4 48

2. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). http://dx.doi.org/10.1007/978-3-642-03359-9 4

3. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 589–603. Springer,
Heidelberg (2006)

4. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with definitions: seman-
tics, soundness, and a verified implementation. In: Klein, G., Gamboa, R.
(eds.) ITP 2014. LNCS, vol. 8558, pp. 308–324. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-319-08970-6 20

5. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Jagannathan, S., Sewell, P. (eds.) POPL, pp. 179–192. ACM
(2014)

6. Maranget, L.: Compiling pattern matching to good decision trees, September 2008
7. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into

pure and stateful ML. J. Funct. Program. 24(2–3), 284–315 (2014)
8. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press,

Cambridge (1998)
9. Peyton Jones, S.L.: The Implementation of Functional Programming Languages

(Prentice-Hall International Series in Computer Science). Prentice-Hall Inc., Upper
Saddle River (1987)

10. Slind, K.: Function definition in higher-order logic. In: von Wright, J., Harrison,
J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 381–397. Springer,
Heidelberg (1996)

11. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

12. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: POPL, pp. 307–313. ACM (1987)

13. Wenzel, M., Paulson, L.C., Nipkow, T.: The isabelle framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-71067-7 7

http://dx.doi.org/10.1007/3-540-15975-4_48
http://dx.doi.org/10.1007/978-3-642-03359-9_4
http://dx.doi.org/10.1007/978-3-319-08970-6_20
http://dx.doi.org/10.1007/978-3-540-71067-7_7

Author Index

Abdulaziz, Mohammad 1
Affeldt, Reynald 17
Anand, Abhishek 34

Barras, Bruno 51
Besson, Frédéric 67
Birkedal, Lars 375
Bizjak, Aleš 375
Blazy, Sandrine 67, 84
Boulmé, Sylvain 100

Chan, Hing-Lun 117
Charguéraud, Arthur 137
Cruz-Filipe, Luís 154

Demange, Delphine 84
Dénès, Maxime 325
Doczkal, Christian 391

Fallenstein, Benja 170
Fox, Anthony 187

Garrigue, Jacques 17
Gretton, Charles 1

Hack, Sebastian 344
Hölzl, Johannes 203
Hriţcu, Cătălin 325

Immler, Fabian 221

Kaliszyk, Cezary 227
Knepper, Ross 34
Kumar, Ramana 170, 453
Kunčar, Ondřej 234

Lammich, Peter 253
Lampropoulos, Leonidas 325
Lochbihler, Andreas 203, 270

Maksimović, Petar 278
Maréchal, Alexandre 100
Maximova, Alexandra 270
Moscato, Mariano M. 294
Muñoz, César A. 294
Myreen, Magnus O. 453

Nipkow, Tobias 310
Norrish, Michael 1, 117

Paraskevopoulou, Zoe 325
Pichardie, David 84
Pierce, Benjamin C. 325
Popescu, Andrei 234
Pottier, François 137
Prathamesh, T.V.H. 438

Schäfer, Steven 359, 391
Schmitt, Alan 278
Schneider, Sigurd 344
Schneider-Kamp, Peter 154
Sieczkowski, Filip 375
Smith, Andrew P. 294
Smolka, Gert 344, 359, 391
Spadotti, Régis 405
Sternagel, Christian 421

Tankink, Carst 51
Tassi, Enrico 51
Tebbi, Tobias 359
Thiemann, René 421
Traytel, Dmitriy 203
Tuerk, Thomas 453

Urban, Josef 227

Vyskočil, Jiří 227

Wilke, Pierre 67

	Preface
	Organisation
	Contents
	Verified Over-Approximation of the Diameter of Propositionally Factored Transition Systems
	1 Introduction
	2 Definitions
	3 Upper Bounding the Diameter with Decomposition
	3.1 Decomposable Diameters

	4 Decomposition for Tighter Bounds
	4.1 A Bounding Algorithm

	5 Bounds in Practice
	5.1 Evaluating in Benchmarks from Automated Planning
	5.2 Hotel Key Protocol

	6 Related Work
	7 Conclusion
	References

	Formalization of Error-Correcting Codes: From Hamming to Modern Coding Theory
	1 Introduction
	2 Premises on Information Theory and Probabilities
	2.1 Channels and Codes in Information Theory
	2.2 Aposteriori Probability

	3 A Formal Setting for Linear ECCs
	3.1 Linear ECCs as Sets of Codewords
	3.2 Linear ECCs with Coding and Decoding Functions
	3.3 The Variety of Decoding Procedures

	4 Formalization of Hamming Codes and Their Properties
	5 Formalization of the Properties of Sum-Product Decoding
	5.1 Parity Check Matrix as Tanner Graphs
	5.2 The Summary Operator
	5.3 Properties of the Sum-Product Decoding

	6 Implementation and Verification of Sum-Product Decoding
	7 Related Work
	8 Conclusion
	References

	ROSCoq: Robots Powered by Constructive Reals
	1 Introduction
	2 Physics
	3 Events and Message Delivery
	3.1 Message Delivery

	4 Semantics of Agents
	4.1 Hardware Agents
	4.2 Software Agents

	5 Reasoning About the System
	5.1 Experiments

	6 Related Work
	7 Conclusion and Future Work
	References

	Asynchronous Processing of Coq Documents: From the Kernel up to the User Interface
	1 Introduction
	2 Processing the Formal Document Out-of-Order
	2.1 The STM and the Static Analysis of the Document

	3 Modelling Asynchronously Computed Proofs
	3.1 Proof Promises in Coq
	3.2 Parallelism in OCaml
	3.3 The Asynchronous Task Queue and the Quick Compilation chain

	4 The User Side
	4.1 PIDE and Its Document Model
	4.2 Pidetop
	4.3 Metadata Collection
	4.4 Rich Feedback

	5 Assessment of the Quick Compilation Chain
	6 Concluding Remarks and Future Directions
	References

	A Concrete Memory Model for CompCert
	1 Introduction
	2 A More Concrete Memory Model for CompCert
	2.1 CompCert's Memory Model
	2.2 Motivation for an Enhanced Memory Model
	2.3 A Memory Model with Symbolic Expressions

	3 Proving the Operations of the Memory Model
	3.1 Precise Handling of Undefined Values
	3.2 Memory Allocation
	3.3 Good Variable Properties

	4 Cross-Validation of Memory Models
	5 Redesign of Memory Injections
	5.1 Memory Injections in CompCert
	5.2 Memory Injection with Symbolic Expressions
	5.3 Memory Injection and Normalisation

	6 Proving the Front-End of the CompCert Compiler
	6.1 CompCert Front-End with Symbolic Expressions
	6.2 From Clight to Cminor
	6.3 From Cminor to Cminor

	7 Related Work
	8 Conclusion
	References

	Validating Dominator Trees for a Fast, Verified Dominance Test
	1 Introduction and Related Work
	2 Technical Background and Overview of Algorithms
	2.1 Definitions
	2.2 Standard Techniques for Computing Dominance
	2.3 Modern Implementation of Dominance Test in Compilers

	3 Validator and Proof of Dominance Test
	3.1 Validation of Dominator Tree
	3.2 Ancestor Test in the Dominator Tree
	3.3 Well-Formed Graph Construction
	3.4 Final Construction

	4 Experimental Results
	5 Conclusion and Perspectives
	References

	Refinement to Certify Abstract Interpretations, Illustrated on Linearization for Polyhedra
	1 Introduction
	1.1 A Certified Linearization for the Abstract Domain of Polyhedra
	1.2 Certifying Computations on Abstract Domains by Refinement
	1.3 Overview of the Paper

	2 A Refinement Calculus for Abstract Interpretation
	2.1 Stepwise Refinement of Concrete Computations
	2.2 Composing Diagrams to Certify Abstract Computations
	2.3 Higher-Order Programming with Correctness Diagrams

	3 Interval-Based Linearization Strategies for Polyhedra
	3.1 Our List of Interval-Based Strategies
	3.2 Design of Our Implementation

	4 A Lightweight Refinement Calculus in Coq
	4.1 Representation of Abstract Computations
	4.2 Representation of Concrete Computations
	4.3 Definition of Correctness Diagrams

	5 Conclusion and Perspectives
	References

	Mechanisation of AKS Algorithm: Part 1 -- The Main Theorem
	1 Introduction
	1.1 Overview
	1.2 Notation

	2 Background
	2.1 Finite Fields
	2.2 Introspective Relation

	3 Main Theorem
	3.1 Easy Part ()
	3.2 Hard Part ()
	3.3 Shifting Playgrounds

	4 Introspective Game
	4.1 Introspective Sets
	4.2 Modulo Sets
	4.3 Reduced Polynomials
	4.4 Reduced Exponents
	4.5 Punch Line
	4.6 Parameters

	5 Mechanisation and its Traps
	6 Related Work
	7 Conclusion
	References

	Machine-Checked Verification of the Correctness and Amortized Complexity of an Efficient Union-Find Implementation
	1 Introduction
	2 Time Credits, Separation, and Characteristic Formulae
	2.1 Time Credits in Separation Logic
	2.2 Characteristic Formulae
	2.3 Combining Time Credits and Characteristic Formulae
	2.4 Meta-Theory

	3 Specification of Union-Find
	4 Mathematical Analysis of Disjoint Set Forests
	4.1 Disjoint Set Forests as Graphs
	4.2 Correctness of Path Compression
	4.3 Ranks
	4.4 Ackermann's Function and Its Inverse
	4.5 Potential
	4.6 Rank Analysis

	5 Verification of the Code
	5.1 Definition of the Representation Predicate
	5.2 Verification Through Characteristic Formulae

	6 Related Work
	7 Future Work
	References

	Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker
	1 Introduction
	1.1 Related Work

	2 Optimal-Size Sorting Networks
	2.1 Optimal Size Sorting Networks
	2.2 The Generate-and-Prune Approach
	2.3 Checking the Proof Using Proof Witnesses

	3 Formalizing Sorting Networks
	3.1 Proof Methodology
	3.2 Permutations

	4 Formalizing Generate-and-Prune
	4.1 The Generation Step
	4.2 The Pruning Step
	4.3 Coupling Everything Together

	5 Running the Extracted Program
	6 Conclusions
	References

	Proof-Producing Reflection for HOL
	1 Introduction
	2 Background: Inner HOL
	3 An Inner Copy of Outer HOL
	4 Proof-Producing Reflection
	5 Building a Reflective Interpretation and Valuation
	6 Set Theory from a Large-Cardinal Assumption
	7 Proving Reflection Principles
	8 An Implementation of Model Polymorphism
	9 Related Work
	10 Conclusion
	References

	Improved Tool Support for Machine-Code Decompilation in HOL4
	1 Decompilation of Machine-Code to HOL Logic
	2 ISA Specification Using L3
	3 Model Evaluation: Step Theorems
	4 Model Evaluation: Machine-Code Hoare Triples
	5 Supporting the Improved Decompiler
	6 Assembly Code Support
	7 Performance
	8 Instructions Sets
	9 Related Work
	10 Summary
	References

	A Formalized Hierarchy of Probabilistic System Types
	1 Introduction
	2 Preliminaries: Codatatypes via Bounded Natural Functors
	3 Bounded Powerset
	4 Probability Mass Functions
	5 Probabilistic Systems
	6 The Formalized Hierarchy
	6.1 The Abstract Proof
	6.2 A Concrete Example
	6.3 Comparison to the Original Hierarchy
	6.4 Vardi Systems

	7 Further Related Work
	8 Conclusion
	References

	A Verified Enclosure for the Lorenz Attractor (Rough Diamond)
	1 Introduction
	2 The Lorenz Attractor
	3 ODEs and Numerical Solutions in Isabelle/HOL
	4 Computing a Verified Enclosure for the Lorenz Attractor
	4.1 Parallelization on Supercomputer
	4.2 Parallelization with Isabelle/ML

	5 Conclusion
	References

	Learning to Parse on Aligned Corpora (Rough Diamond)
	1 Introduction
	2 Contributions
	3 Making Ambiguous Data
	4 Probabilistic Parsing and its Extensions
	5 Online Parsing System
	6 Evaluation on Flyspeck
	References

	A Consistent Foundation for Isabelle/HOL
	1 Introduction
	2 Related Work
	3 Polymorphic HOL with Ad Hoc Overloading
	3.1 Syntax
	3.2 Built-Ins and Non-Built-Ins
	3.3 Deduction
	3.4 Definitional Theories
	3.5 The Consistency Problem

	4 Our Solution to the Consistency Problem
	4.1 Definitional Dependency Relation
	4.2 The Consistency Theorem
	4.3 Inadequacy of the Standard Semantics of Polymorphic HOL
	4.4 Ground, Fragment-Localized Semantics for Polymorphic HOL
	4.5 The Model Construction

	5 Deciding Well-Formedness
	6 Conclusion
	References

	Refinement to Imperative/HOL
	1 Introduction
	2 A Separation Logic for Imperative/HOL
	2.1 Basics
	2.2 Hoare Triples
	2.3 Automation
	2.4 All-in-one Method

	3 Imperative Collection Framework
	4 Refinement to Imperative/HOL
	4.1 Isabelle Refinement Framework
	4.2 Connection to Imperative/HOL
	4.3 Automation

	5 Case Studies
	5.1 Nested Depth-First Search
	5.2 Dijkstra's Shortest Paths Algorithm

	6 Conclusion
	6.1 Related Work

	References

	Stream Fusion for Isabelle's Code Generator
	1 Introduction
	2 Background on Stream Fusion
	3 Formalising and Performing Stream Fusion in Isabelle/HOL
	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	HOCore in Coq
	1 Introduction
	2 Formalizing HOCore
	2.1 Syntax
	2.2 Semantics

	3 Coincidence and Decidability of Bisimilarities
	4 Axiomatization of HOCore
	5 Related Work
	6 Lessons Learned and Conclusions
	References

	Affine Arithmetic and Applications to Real-Number Proving
	1 Introduction
	2 Affine Arithmetic
	3 Formalization in PVS
	4 Proof Strategy
	5 Experimental Results
	6 Conclusion and Further Work
	References

	Amortized Complexity Verified
	1 Introduction
	1.1 Related Work

	2 Lists and Trees
	3 Amortized Analysis Formalized
	4 Easy Examples
	4.1 Binary Counter
	4.2 Stack with Multipop
	4.3 Dynamic Tables
	4.4 Queues

	5 Skew Heaps
	6 Splay Trees
	6.1 Functional Correctness
	6.2 Amortized Analysis
	6.3 Improved Amortized Analysis

	7 Splay Heaps
	7.1 Amortized Analysis

	References

	Foundational Property-Based Testing
	1 Introduction
	2 Example: Red-Black Trees
	3 Foundational Verification Framework
	3.1 Set-of-Outcomes Semantics for Generators
	3.2 Possibilistic Semantics of Checkers
	3.3 Splittable Pseudorandom Number Generator Interface
	3.4 Verified Testing Combinators
	3.5 Conveniently Reasoning About Sizes
	3.6 Verified Generation of Functions
	3.7 Reasoning About Non-computable Sets

	4 Case Study: Testing Noninterference
	5 Related Work
	6 Conclusion and Future Work
	References

	A Linear First-Order Functional Intermediate Language for Verified Compilers
	1 Introduction
	1.1 Related Work
	1.2 Contributions and Outline

	2 IL
	3 Imperative Interpretation of IL: IL/I
	4 Program Equivalence
	4.1 Partial Traces
	4.2 Bisimilarity

	5 Invariance
	6 Liveness
	6.1 Inductive Definition of the Liveness Judgment
	6.2 Liveness Approximates Significance

	7 Coherence
	7.1 Inductive Predicate
	7.2 Coherent Programs are Invariant

	8 Translating from IL/F to IL/I via Coherence
	8.1 Local Injectivity
	8.2 A Simple Register Assignment Algorithm

	9 Formal Coq Development
	10 Conclusion
	References

	Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions
	1 Introduction
	1.1 Evaluation
	1.2 Related Work

	2 From de Bruijn to Autosubst
	2.1 De Bruijn Representation and Substitution
	2.2 Case Study: Confluence of Reduction
	2.3 Realization in Coq
	2.4 Realization in Autosubst

	3 Heterogeneous Substitutions
	4 Case Studies
	4.1 Type Preservation for CC
	4.2 Strong Normalization for System F
	4.3 POPLmark Challenge

	5 Conclusion
	5.1 Future Work

	References

	ModuRes: A Coq Library for Modular Reasoning About Concurrent Higher-Order Imperative Programming Languages
	1 Introduction
	2 COFE in Coq
	2.1 Using Type Classes: Types with Equality
	2.2 Complete Ordered Families of Equivalences
	2.3 Contractiveness and Fixed Points

	3 Solving the Recursive Domain Equation
	3.1 Interface of the Recursive Domain Equation
	3.2 Interface of the Solution
	3.3 Using the Solution
	3.4 Summary

	4 Building Models of Higher-Order Logics
	5 Related Work
	6 Conclusions and Future Work
	References

	Transfinite Constructions in Classical Type Theory
	1 Introduction
	2 Sets as Unary Predicates
	3 Orderings and Choice Functions
	4 Special Towers
	5 Hausdorff's Theorem
	6 Zermelo's Theorem
	7 General Towers
	8 Well-Ordering of General Towers
	9 Final Remarks
	References

	A Mechanized Theory of Regular Trees in Dependent Type Theory
	1 Introduction
	2 Regular Trees
	2.1 Signatures and Trees
	2.2 Equality Between Infinite Trees
	2.3 Coalgebra-Based Approach
	2.4 Reasoning Modulo Bisimilarity
	2.5 A Formal Definition of the Type of Regular Trees

	3 A Syntax for Regular Trees
	3.1 Cyclic Terms
	3.2 Semantics of Cyclic Terms
	3.3 From Cyclic Terms to Regular Trees
	3.4 From Regular Trees to Cyclic Terms

	4 Defining Regular Tree Homomorphisms
	4.1 Top-Down Tree Transducers
	4.2 2-Ary Tree Transducers
	4.3 Induced Tree Morphism on Cyclic Terms

	5 Decidability Results
	5.1 Decidability of Bisimilarity for Regular Trees

	6 Conclusion
	References

	Deriving Comparators and Show Functions in Isabelle/HOL
	1 Introduction
	2 Preliminaries and Related Work
	3 Linear Orders and Comparators
	4 Show
	5 Internal Constructions
	6 Code Equations for Comparators
	7 Correctness of Generated Functions
	8 Integration into Isabelle/HOL Infrastructure
	9 Conclusion
	References

	Formalising Knot Theory in Isabelle/HOL
	1 Introduction
	2 Preliminaries
	2.1 Standard Definitions
	2.2 Tangles and Links

	3 Formalization of Tangles and Links
	3.1 Tangle Moves and Tangle Equivalence

	4 Kauffman Bracket
	4.1 Kauffman Bracket Through Tangles
	4.2 Formalizing Kauffman Bracket

	5 Conclusions and Further Work
	References

	Pattern Matches in HOL:
	1 Introduction
	2 Shortcomings of Decision Tree Representation
	3 New Approach
	3.1 Definition
	3.2 Concrete Syntax and Bound Variables
	3.3 Advanced Features
	3.4 Congruence Rules

	4 Evaluation and Simplification
	5 Pattern Compilation
	5.1 Constructor Families
	5.2 Exhaustiveness Check/Redundancy Elimination

	6 Improved Code Generation
	6.1 The Quality of Generated Code
	6.2 Why Good Input Case Expressions Matter
	6.3 Proof-Producing Code Generation for CakeML

	7 Summary
	References

	Author Index

