
Manfred Kerber · Jacques Carette
Cezary Kaliszyk · Florian Rabe
Volker Sorge (Eds.)

 123

LN
AI

 9
15

0

International Conference, CICM 2015
Washington, DC, USA, July 13–17, 2015
Proceedings

Intelligent
Computer Mathematics

Lecture Notes in Artificial Intelligence 9150

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Manfred Kerber • Jacques Carette
Cezary Kaliszyk • Florian Rabe
Volker Sorge (Eds.)

Intelligent
Computer Mathematics
International Conference, CICM 2015
Washington, DC, USA, July 13–17, 2015
Proceedings

123

Editors
Manfred Kerber
University of Birmingham
Birmingham
UK

Jacques Carette
McMaster University
Hamilton, ON
Canada

Cezary Kaliszyk
University of Innsbruck
Innsbruck
Austria

Florian Rabe
Jacobs University Bremen
Bremen
Germany

Volker Sorge
University of Birmingham
Birmingham
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-20614-1 ISBN 978-3-319-20615-8 (eBook)
DOI 10.1007/978-3-319-20615-8

Library of Congress Control Number: 2015942531

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Digital and computational solutions are becoming the prevalent means for the gener-
ation, communication, processing, storage, and curation of mathematical information.
Separate communities have been developed to investigate and build computer-based
systems for computer algebra, automated deduction, and mathematical publishing as
well as novel user interfaces. While all of these systems excel in their own right, their
integration can lead to synergies offering significant added value. The Conference on
Intelligent Computer Mathematics (CICM) offers a venue for discussing and devel-
oping solutions to the great challenges posed by the integration of these diverse areas.

CICM has been held annually as a joint meeting since 2008, co-locating related
conferences and workshops to advance work in these subjects. Previous meetings have
been held in Birmingham (UK 2008), Grand Bend (Canada 2009), Paris (France 2010),
Bertinoro (Italy 2011), Bremen (Germany 2012), Bath (UK 2013), and Coimbra
(Portugal 2014).

CICM 2015 was held in Washington, DC, during July 13–17, 2015, with four
invited presentations, five main tracks, a number of workshops, a doctoral mentoring
program, and an informal track to share work in progress. The program of the meeting,
as well as additional materials, are available at http://cicm-conference.org/2015/cicm.
php.

We were pleased to have four distinguished invited speakers to make presentations
on a set of subjects, each touching on several CICM topics. This volume includes one
abstract of a presentation by Leonardo de Moura (Microsoft Research) on “Formalizing
Mathematics with The Lean Theorem Prover” and two full papers that were each
written with co-authors by Tobias Nipkow (Technische Universität München) on
“Mining the Archive of Formal Proofs” and Richard Zanibbi (Rochester Institute of
Technology) on “Math Search for the Masses: Multimodal Search Interfaces and
Appearance-Based Retrieval.” Furthermore, we had a talk by Jim Pitman (University of
California, Berkeley) about GDML, the Global Digital Math Library project.

The abstract follows this preface, the two full papers are the first two in these
proceedings.

As in previous years, we had several tracks, five altogether: Calculemus, Digital
Mathematics Libraries (DML), and Mathematical Knowledge Management (MKM),
which mirror the three main communities that form CICM, and two tracks on Systems
and Data and Projects and Surveys.

The Calculemus track of CICM examines the integration of symbolic computation
and mechanized reasoning, the Digital Mathematics Libraries track deals with
math-aware technologies, standards, algorithms and processes, the Mathematical
Knowledge Management track is concerned with all aspects of managing mathematical
knowledge in informal, semi-formal, and formal settings.

The Systems and Projects track of previous years was split into two different tracks,
first Systems and Data to explicitly stress the importance of data collections, and

http://cicm-conference.org/2015/cicm.php
http://cicm-conference.org/2015/cicm.php

second Projects and Surveys to also encourage survey papers, which may become a
starting point for people interested in a particular subject.

Prior to the creation of CICM, two of the present tracks already had a significant
history: there had been 15 previous Calculemus meetings and six MKM conferences.
In 2007, when Calculemus and MKM were held together in Hagenberg, Austria, as part
of the RISC Summer, it was decided to continue to hold these meetings together. This
led to the first CICM in 2008. The DML track has been present since that first CICM, at
first as a workshop. The other tracks were added in the form of a Systems and Projects
track in 2011.

This year, CICM had 43 submissions. Of these, there were 27 full papers and 16
shorter descriptions (on systems, data, or projects). A small number of papers was
moved between tracks when it was felt there would be a more natural fit. Each sub-
mission received at least three reviews, some four or even five. The review phase
included a response period, in which authors could clarify points raised by the
reviewers. This made for a highly productive round of deliberations before the final
decisions were taken. In the end, the track Program Committees decided to accept
16 full papers (two of them surveys) and nine in Systems and Data or Projects for these
proceedings.

The Program Committee work for the tracks was managed using the EasyChair
system. This allowed committee members to declare actual or potential conflicts of
interest, and thereby be excluded from any deliberations on those papers. Submissions
on which track chairs had conflicts were handled by the general program chair. In this
way, committee members could (and did) submit papers for consideration without
compromising the peer-review process.

As in previous years, several workshops and informal programs were organized in
conjunction with CICM 2015. This year these were:

– CICM Doctoral Program, providing a dedicated forum for PhD students to present
their on-going or planned research and receive feedback, advice and suggestions
from a dedicated research advisory board.

– CICM Work-in-Progress Session, a forum for the presentation of original work not
yet in a suitable form for communication as a formal paper.

– ThEdu 2015 – Theorem Provers Components for Educational Software, with the
goal of combining and focus systems from theorem proving, computer algebra, and
dynamic geometry to enhance existing educational software and the design of the
next generation of mechanized mathematics assistants. ThEdu was organized by
Walther Neuper, Graz University of Technology, Austria, and Pedro Quaresma,
University of Coimbra, Portugal.

– MathUI 2015 – 10th Workshop on Mathematical User Interfaces, an international
workshop to discuss how users can be best supported when doing/learning/searching
for/interacting with mathematics using a computer. MathUI was organized this year
by Andrea Kohlhase, University of Applied Sciences Neu-Ulm, and Paul Libbrecht,
University of Education of Weingarten, Germany.

VI Preface

– Formal Mathematics for Mathematicians, a workshop dealing with developing large
repositories of advanced mathematics. It was organized by Adam Grabowski, Artur
Kornilowicz, University of Białystok, Poland, Krystyna Kuperberg, Auburn Uni-
versity, USA, Adam Naumowicz, University of Białystok, Poland, and Josef Urban,
Radboud University, The Netherlands.

We thank all those who contributed to this meeting. We are grateful for the support
by The George Washington University, the National Institute of Standards and
Technology, the Sloan Foundation, MapleSoft, Wolfram Inc., and Microsoft. We
would like to thank the EasyChair team (Andrei Voronkov et al.) for the EasyChair
system, which we found indispensable. We would like also to thank the invited
speakers, the contributing authors, the reviewers, the members of the Program Com-
mittee and the local organizers, all of whose efforts contributed to the practical and
scientific success of the meeting.

May 2015 Manfred Kerber
Jacques Carette
Cezary Kaliszyk

Florian Rabe
Volker Sorge

Preface VII

Organization

CICM Steering Committee

Serge Autexier (Publicity/Workshop Officer)
Thierry Bouche (DML Delegate)
Bill Farmer (Treasurer)
Manfred Kerber (CICM PC Chair 2015)
Michael Kohlhase (Secretary)
Florian Rabe (MKM Delegate)
Renaud Rioboo (CALCULEMUS delegate)
Stephen Watt (CICM PC Chair 2014)

CICM 2015 Organizing Committee

General Program Chair, Projects and Surveys Track Chair

Manfred Kerber University of Birmingham, UK

Local Arrangements Chairs

Bruce R. Miller NIST, USA
Abdou Youssef George Washington University, USA

Calculemus Track Chair

Jacques Carette McMaster University, Canada

DML Track Chair

Volker Sorge University of Birmingham, UK

MKM Track Chair

Cezary Kaliszyk University of Innsbruck, Austria

Systems and Data Track Chair

Florian Rabe Jacobs University Bremen, Germany

Doctoral Program Chair

Umair Siddique Concordia University, Canada

Publicity and Workshops Chair

Serge Autexier DFKI, Germany

Program Committee

Calculemus Track Program Committee

Jacques Carette McMaster University, Canada
Frédéric Chyzak Inria, France
James H. Davenport University of Bath, UK
Madalina Erascu Institute e-Austria and West University of Timisoara,

Romania
Michal Konecny Aston University, UK
Anders Mörtberg University of Gothenburg, Sweden
François Pessaux ENSTA ParisTech, France
Renaud Rioboo ENSIIE, France
Bas Spitters The Netherlands
Makarius Wenzel Germany
David Wilson University of Bath, UK
Wolfgang Windsteiger RISC Institute, JKU Linz, Austria

DML Track Program Committee

Volker Sorge University of Birmingham, UK
Thiery Bouche University of Grenoble, France
Joe Cornelli Planet Math, USA
Thomas Fischer University Library Göttingen, Germany
Toshihiro Kanahori Tsukuba University, Japan
Peter Krautzberger MathJax Consortium, USA
Ross Moore University of Queensland, Australia
Jiri Rakosník Czech Academy of Sciences, Czech Republic
David Ruddy Cornell University Library, USA
Noureddin Sadawi Brunel University, UK
Petr Sojka Masaryk University, Czech Republic

MKM Track Program Committee

Cezary Kaliszyk University of Innsbruck, Austria
Andrea Asperti University of Bologna, Italy
David Aspinall University of Edinburgh, UK
Pierre Corbineau Verimag
Marcos Cramer University of Luxembourg, Luxembourg
Oleg Golubitsky Google, Inc.
Gudmund Grov Heriot-Watt University, UK
Predrag Janičić University of Belgrade, Serbia
Andrea Kohlhase University of Applied Sciences Neu-Ulm, Germany
George Labahn University of Waterloo, Canada

X Organization

Bruce Miller NIST, USA
Grant Passmore University of Cambridge and University of Edinburgh, UK
Erik Postma Maplesoft
Aleksy Schubert University of Warsaw, Poland
Christoph Schwarzweller Gdansk University, Poland
Alan Sexton University of Birmingham, UK
Elena Smirnova Texas Instruments, USA
Sofiène Tahar Concordia University, Canada
Christian Urban King’s College London, UK
Josef Urban Radboud University, The Netherlands

Systems and Data Track Program Committee

Florian Rabe Jacobs University Bremen, Germany
Serge Autexier DFKI, Germany
Paul-Olivier Dehaye University of Zurich, Switzerland
Matthew England University of Bath, UK
Yannis Haralambous Institut Mines-Télécom, France
Moa Johansson Chalmers University, Sweden
Christoph Lange University of Bonn, Germany
Adam Naumowicz University of Białystok, Poland
Pedro Quaresma University of Coimbra, Portugal
Alan Sexton University of Birmingham, UK
Geoff Sutcliffe University of Miami, USA
Frank Tompa University of Waterloo, Canada
Josef Urban Radboud University, The Netherlands

Papers in the Projects and Surveys track were reviewed by Program Committee
members from the other tracks.

Additional Reviewers

Caminati, Marco B.
Chrząszcz, Jacek
Hardin, Thérèse
Hölzl, Johannes
Jackson, Paul
Kohlhase, Michael
Kumar, Ramana
Lüth, Christoph
Maggesi, Marco

Mahmoud, Mohamed Yousri
Pałka, Michał
Rosén, Dan
Sacerdoti Coen, Claudio
Siddique, Umair
Smallbone, Nicholas
Staton, Sam
Youssef, Abdou
Zeilberger, Noam

Organization XI

Abstracts of Invited Talks

Formalizing Mathematics with the Lean
Theorem Prover

Leonardo de Moura

Microsoft Research
leonardo@microsoft.com

Abstract. Lean is a new open source theorem prover being developed
at Microsoft Research and Carnegie Mellon University, with a small
trusted kernel based on dependent type theory. It aims to bridge the
gap between interactive and automated theorem proving, by situating
automated tools and methods in a framework that supports user inter-
action and the construction of fully specified axiomatic proofs. The goal
is to support both mathematical reasoning and reasoning about com-
plex systems, and to verify claims in both domains. Lean is an ongoing
and long-term effort, and much of the potential for automation will be
realized only gradually over time, but it already provides many use-
ful components, integrated development environments, and a rich API
which can be used to embed it into other systems. It is currently being
used to formalize basic datatypes and algebraic structures, a library for
homotopy type theory, rudimentary category theory, and elements of
non-abelian topology. The core parts of the Lean standard library have
been developed constructively, but we also provide a smooth transition
to classical logic. If users want to work classically, they just have to load
the classical axioms and/or files built on them.

In this talk, we provide a short introduction to the Lean theorem
prover, describe how mathematical structures (e.g., groups, rings and
fields) are encoded in the system, quotient types, the type class mecha-
nism, and the main ideas behind the novel elaboration algorithm imple-
mented in Lean. More information about Lean can be found at http://
leanprover.github.io. The interactive book “Theorem Proving in Lean”1

is the standard reference for Lean. The book is available in PDF and
HTML formats. In the HTML version, all examples and exercises can
be executed in the reader’s web browser. This book is part of the course
material for the interactive theorem proving course2 offered in the spring
of 2015 at Carnegie Mellon University.

1 http://leanprover.github.io/tutorial
2 http://www.cs.cmu.edu/∼emc/15815-s15

http://leanprover.github.io
http://leanprover.github.io
http://leanprover.github.io/tutorial
http://www.cs.cmu.edu/~emc/15815-s15

Mining the Archive of Formal Proofs

Jasmin Christian Blanchette1,2, Maximilian Haslbeck3, Daniel Matichuk4,5,
and Tobias Nipkow3

1 Inria Nancy & LORIA, Villers-lès-Nancy, France
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

3 Fakultät für Informatik, Technische Universität München, Munich, Germany
nipkow@in.tum.de

4 NICTA, Sydney, Australia
5 University of New South Wales, Sydney, Australia

Abstract. The Archive of Formal Proofs is a vast collection of computer-
checked proofs developed using the proof assistant Isabelle. We perform
an in-depth analysis of the archive, looking at various properties of the
proof developments, including size, dependencies, and proof style. This
gives some insights into the nature of formal proofs.

Math Search for the Masses: Multimodal Search
Interfaces and Appearance-Based Retrieval

Richard Zanibbi and Awelemdy Orakwue

Document and Pattern Recognition Lab, Department of Computer Science,
Rochester Institute of Technology, Rochester, NY 14623, USA

rlaz@cs.rit.edu

Abstract. We summarize math search engines and search interfaces
produced by the Document and Pattern Recognition Lab in recent years,
and in particular the min math search interface and the Tangent search
engine. Source code for both systems are publicly available. “The Masses”
refers to our emphasis on creating systems for mathematical non-experts,
who may be looking to define unfamiliar notation, or browse documents
based on the visual appearance of formulae rather than their mathemat-
ical semantics.

Contents

Invited Talks

Mining the Archive of Formal Proofs . 3
Jasmin Christian Blanchette, Maximilian Haslbeck, Daniel Matichuk,
and Tobias Nipkow

Math Search for the Masses: Multimodal Search Interfaces
and Appearance-Based Retrieval . 18

Richard Zanibbi and Awelemdy Orakwue

Calculemus

Towards Formal Fault Tree Analysis Using Theorem Proving. 39
Waqar Ahmad and Osman Hasan

Optimizing a Certified Proof Checker for a Large-Scale
Computer-Generated Proof . 55

Luís Cruz-Filipe and Peter Schneider-Kamp

A First Class Boolean Sort in First-Order Theorem Proving and TPTP 71
Evgenii Kotelnikov, Laura Kovács, and Andrei Voronkov

Type Inference for ZFH. 87
Steven Obua, Jacques Fleuriot, Phil Scott, and David Aspinall

Generic Literals . 102
Florian Rabe

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices . . . 118
Paul Tarau

Digital Mathematics Libraries

A Flexiformal Model of Knowledge Dissemination and Aggregation
in Mathematics . 137

Mihnea Iancu and Michael Kohlhase

Mathematical Knowledge Management

Structure Formation in Large Theories . 155
Serge Autexier and Dieter Hutter

http://dx.doi.org/10.1007/978-3-319-20615-8_1
http://dx.doi.org/10.1007/978-3-319-20615-8_2
http://dx.doi.org/10.1007/978-3-319-20615-8_2
http://dx.doi.org/10.1007/978-3-319-20615-8_3
http://dx.doi.org/10.1007/978-3-319-20615-8_4
http://dx.doi.org/10.1007/978-3-319-20615-8_4
http://dx.doi.org/10.1007/978-3-319-20615-8_5
http://dx.doi.org/10.1007/978-3-319-20615-8_6
http://dx.doi.org/10.1007/978-3-319-20615-8_7
http://dx.doi.org/10.1007/978-3-319-20615-8_8
http://dx.doi.org/10.1007/978-3-319-20615-8_9
http://dx.doi.org/10.1007/978-3-319-20615-8_9
http://dx.doi.org/10.1007/978-3-319-20615-8_10

Formal Logic Definitions for Interchange Languages 171
Fulya Horozal and Florian Rabe

Math Literate Knowledge Management via Induced Material 187
Mihnea Iancu and Michael Kohlhase

Strategies for Parallel Markup. 203
Bruce R. Miller

Readable Formalization of Euler’s Partition Theorem in Mizar 211
Karol Pąk

Automating Change of Representation for Proofs in Discrete Mathematics . . . 227
Daniel Raggi, Alan Bundy, Gudmund Grov, and Alison Pease

Performance Evaluation and Optimization of Math-Similarity Search 243
Qun Zhang and Abdou Youssef

Projects and Surveys

Mizar: State-of-the-Art and Beyond . 261
Grzegorz Bancerek, Czesław Byliński, Adam Grabowski,
Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz,
Karol Pa̧k, and Josef Urban

Growing the Digital Repository of Mathematical Formulae with Generic
Sources . 280

Howard S. Cohl, Moritz Schubotz, Marjorie A. McClain,
Bonita V. Saunders, Cherry Y. Zou, Azeem S. Mohammed,
and Alex A. Danoff

Formalizing Physics: Automation, Presentation and Foundation Issues 288
Cezary Kaliszyk, Josef Urban, Umair Siddique, Sanaz Khan-Afshar,
Cvetan Dunchev, and Sofiène Tahar

A Survey on Retrieval of Mathematical Knowledge. 296
Ferruccio Guidi and Claudio Sacerdoti Coen

Towards the Formalization of Fractional Calculus in Higher-Order Logic. . . . 316
Umair Siddique, Osman Hasan, and Sofiène Tahar

LeoPARD — A Generic Platform for the Implementation of Higher-Order
Reasoners. 325

Max Wisniewski, Alexander Steen, and Christoph Benzmüller

LT XEA

XX Contents

http://dx.doi.org/10.1007/978-3-319-20615-8_11
http://dx.doi.org/10.1007/978-3-319-20615-8_12
http://dx.doi.org/10.1007/978-3-319-20615-8_13
http://dx.doi.org/10.1007/978-3-319-20615-8_14
http://dx.doi.org/10.1007/978-3-319-20615-8_15
http://dx.doi.org/10.1007/978-3-319-20615-8_16
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_18
http://dx.doi.org/10.1007/978-3-319-20615-8_18
http://dx.doi.org/10.1007/978-3-319-20615-8_18
http://dx.doi.org/10.1007/978-3-319-20615-8_18
http://dx.doi.org/10.1007/978-3-319-20615-8_19
http://dx.doi.org/10.1007/978-3-319-20615-8_20
http://dx.doi.org/10.1007/978-3-319-20615-8_21
http://dx.doi.org/10.1007/978-3-319-20615-8_22
http://dx.doi.org/10.1007/978-3-319-20615-8_22

Systems and Data

TIP: Tons of Inductive Problems. 333
Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone

Semantic Enrichment of Mathematics via ‘tooltips’ 338
Ross Moore

Documentation Generator Focusing on Symbols for the HTML-ized Mizar
Library . 343

Kazuhisa Nakasho and Yasunari Shidama

Tools for MML Environment Analysis . 348
Adam Naumowicz

Enabling Symbolic and Numerical Computations in HOL Light 353
Ons Seddiki, Cvetan Dunchev, Sanaz Khan-Afshar, and Sofiène Tahar

Erratum to: Towards Formal Fault Tree Analysis Using Theorem Proving . . . E1
Waqar Ahmad and Osman Hasan

Author Index . 359

Contents XXI

http://dx.doi.org/10.1007/978-3-319-20615-8_23
http://dx.doi.org/10.1007/978-3-319-20615-8_24
http://dx.doi.org/10.1007/978-3-319-20615-8_25
http://dx.doi.org/10.1007/978-3-319-20615-8_25
http://dx.doi.org/10.1007/978-3-319-20615-8_26
http://dx.doi.org/10.1007/978-3-319-20615-8_27

Invited Talks

Mining the Archive of Formal Proofs

Jasmin Christian Blanchette1,2, Maximilian Haslbeck3, Daniel Matichuk4,5,
and Tobias Nipkow3(B)

1 Inria Nancy and LORIA, Villers-lès-Nancy, France
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

3 Fakultät für Informatik, Technische Universität München, Munich, Germany
nipkow@in.tum.de

4 NICTA, Sydney, Australia
5 University of New South Wales, Sydney, Australia

Abstract. The Archive of Formal Proofs is a vast collection of computer-
checked proofs developed using the proof assistant Isabelle. We perform
an in-depth analysis of the archive, looking at various properties of the
proof developments, including size, dependencies, and proof style. This
gives some insights into the nature of formal proofs.

1 Introduction

The Archive of Formal Proofs (AFP, http://afp.sf.org) is an online library of
proof developments for the proof assistant Isabelle [21] contributed by its users.
The AFP is organized like a scientific journal. Each contribution is called an
article and is a collection of Isabelle theories, i.e., files with definitions, lemmas,
and proofs in Isabelle’s input language Isar [20,29]. A few articles are ML pro-
grams that realize specialized definition or proof facilities. The AFP was started
in 2004. This paper refers to the AFP snapshot of 16 April 2015, which contains
a total of 64,497 lemmas. The term lemmas subsumes theorems and corollaries
throughout the paper.

The purpose of this paper is to analyze the following properties of the AFP:
general size statistics, dependency graph, proof style and proof size, and perfor-
mance of fully automatic proof. We attempt to answer a number of questions:

– To what extent are AFP articles reused as the basis of other articles?
– How large are articles?
– What percentage of text is taken up by definitions, lemmas, and proofs?
– How many contributors are behind the AFP, and how large are their contri-

butions?
– Does the dependency graph share characteristics with citation graphs in the

scientific literature?
– How did the AFP evolve over time?
– Can we estimate the size of a proof from the statement to be proved?
– What is the typical structure of lemma statements? Are they mostly equalities,

Horn clauses, or more complex formulas?
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-20615-8 1

http://afp.sf.org

4 J.C. Blanchette et al.

– How successful is the automatic proof tool Sledgehammer [4,22] at discharging
various goals from the AFP, as opposed to the smaller benchmark sets used in
earlier evaluations?

This appears to be the first in-depth analysis of a large collection of computer-
checked formal proofs, with the partial exception of Josef Urban’s work on the
Mizar Problems for Theorem Proving [26], a library of problems for first-order
automatic theorem proving generated from the Mizar Mathematical Library [1].

The AFP is heavily biased towards computer science: of the 215 articles, 146
are indexed under computer science and only 82 articles under either mathemat-
ics or logic. (Entries may occur in multiple categories.) In contrast, the Mizar
Mathematical Library is heavily biased towards mathematics.

Although Isabelle is a generic proof assistant supporting several object logics,
all AFP articles use higher-order logic (HOL) as their object logic. Isabelle’s
version of HOL corresponds to Church’s simple type theory [8] extended with
polymorphism and Haskell-style type classes. HOL allows nested function types
and quantification over functions. Predicates are simply functions to the Boolean
type. Named functions are called constants in HOL terminology, even if they take
arguments. Thus, in the formula x+0 = x, both 0 and + are constants, whereas
x is a variable. Otherwise, HOL conventions are a mixture of mathematics and
functional programming.

2 Sizes

In its 11 years, the AFP has grown to one million lines of “code” (LOC)—
1,018,800 LOC to be precise—where “code” refers to definitions and proofs
(including comments but not empty lines). The growth of the AFP over time is
shown in Figs. 1 and 2. The growth in Fig. 1 looks roughly linear. If one examines
the growth rate, it fluctuates but has an upward trend. The development of the
total number of authors that have ever contributed to the AFP is shown in Fig. 3
and it is similar to the size graph. The number of authors active each year, shown
in short lighter (in colour: pink) bars in Fig. 3, has only been growing slowly.

The distribution of sizes of the articles is shown in Fig. 4. Half the articles have
up to 2,000 LOC, beyond that the number of articles decays sharply, but with a
long tail, not all of which is visible in the figure: 9 AFP articles are larger than
20,000 LOC; the largest AFP article (77,100 LOC) is JinjaThreads, a formaliza-
tion of a dialect of Java by Andreas Lochbihler [16]. At first sight it is not clear what
distribution Fig. 4 follows. Initially, it shows an exponential decay, but a better fit
is a power law: a log-log plot shows something close to a straight line. Many similar
phenomena, e.g., file sizes on the Internet [9], also follow a power law.

2.1 Definitions vs. Lemmas vs. Proofs

The three largest categories of text in the AFP are proofs, lemma statements,
and definitions (in that order):

Mining the Archive of Formal Proofs 5

Proofs: 593,828 LOC (58 %)
Lemma statements: 192,576 LOC (19 %)
Definitions: 85,808 LOC (8 %)

Above we have only counted proofs associated with lemmas.

20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15

0

0.5

1

·106
lin

es
of

co
de

Fig. 1. Size of AFP over time (cumulative)

20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15

0

100

200

14 22 29 37
52

63
84

101
126

148

205 215

nu
m
be

ro
fa

rt
ic
le
s

Fig. 2. Number of AFP articles over time (cumulative)

20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15

0

50

100

150

14
25 31 37

47 52

72
84

102
117

154 158

14

12 7 7
13 11

25
19

31
24

62

14

nu
m
be
r
of

au
th
or
s

Fig. 3. Number of AFP authors over time (cumulative)

6 J.C. Blanchette et al.

0–2
,00

0

2,0
00–

4,0
00

4,0
00–

6,0
00

6,0
00–

8,0
00

8,0
00–

10,
000

10,
000

–12
,00

0

12,
000

–14
,00

0

14,
000

–16
,00

0

16,
000

–18
,00

0
0

50

100
101

44

24
16

7 6 5 1 2

lines of code

nu
m
be
r
of

ar
tic
le
s

Fig. 4. Sizes of articles

In his study of the textual sizes of the libraries distributed with four
proof assistants, Wiedijk [30] measured the following percentages for the above
three categories (excluding empty lines): 62/14/1.4 for HOL Light, 50/21/8 for
Isabelle, 60/12/10 for Coq, and 84/9/3 for Mizar. The discrepancy between the
AFP and Wiedijk’s numbers for Isabelle should not surprise because of the dif-
ferences between the source texts (e.g., applications vs. foundations, degree of
polish, age (2015 vs. 2007)) and because of slightly different counting schemes
(e.g., proofs associated with lemmas vs. all proofs). As another example that
these numbers can fluctuate take the verified C compiler (in Coq) by Leroy [15]:
only 44 % of the space (excluding empty lines and comments) is taken up by
proofs, 21 % by lemma statements and “supporting definitions”, and 24 % by
the definition of the compiler and the semantics.

If instead of the size we compare the number of lemmas and definitions, the
ratio for the AFP is 64,497/17,909 ≈ 3.6. The ratio for the proof of the odd-
order theorem in Coq is very similar: 13,000/4,000 ≈ 3.25 [11]. This echoes an
old adage:

One good definition is worth three theorems.
— Alfred Adler, “Mathematics and Creativity,” The New Yorker (1972)

2.2 Proof Depth

Isabelle proofs are block-structured and can be nested, i.e., proofs can have
subproofs, sub-subproofs, and so on, like the blocks in a programming language.
The maximum depth of a proof is a potential indication of its complexity. At
the same time, it is also a potential indication that a monolithic proof should be
refactored into smaller lemmas.

Figure 5 shows the number of lemmas at each proof depth in the AFP. A proof
depth of 1 means that no structured proof commands were used, otherwise known
as a proof script. The logarithmic y-axis reveals a nearly perfect exponential
distribution. The vast majority of proof goals never exceeds a depth of 1. But

Mining the Archive of Formal Proofs 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

100

10,000

48,755

10,399
3,187

1,244
533

239
72

41
13 9

1
2

1 1

proof depth

le
m
m
as

Fig. 5. Number of lemmas at each proof depth

still more than 1 % have a depth of 5 or more, and there is even one proof of
depth 15.

It would be interesting to compare this with other block-structured proof
languages, such as Mizar [18] and the TLA+ Proof System [7]. Proofs written in
the latter system tend to have a richer hierarchic structure. It is not clear to us
whether this is due to the application area (the verification of concurrent and
distributed algorithms), to specific features of the proof language, or simply to
the personal preferences of its users.

3 The Imports Graph

Figure 6 shows the AFP imports graph. The nodes of the graph are the AFP
articles. We say that an AFP article E2 imports an article E1 if some theory

102

100 163 164

165

106

123 149 46

80

109

143

11

159

113

96

183 83

94

114

126

10

127 129

107 24

137 14156

75

162

2015

120

140

212

125 132

48

71

172

99

181

12

182 186

8

191

211

192

185

194

84

41

2

0

27

187

28

54

33

108

199

190

40

39

55

161

60

195

63

35

176

206

20

73

200

101 128

202 20347

104117

148

21

180

157

151

29

214

42

51

103

6 97

7

134

74

118

146

78

155

81

179

82

207

85

6492

Fig. 6. The AFP imports graph

8 J.C. Blanchette et al.

of E2 imports some theory of E1. In this case there is a directed edge from E1

to E2. We say that E2 depends on E1 if there is a non-empty path from E2 to
E1. The graph is a dag; in Fig. 6 edges always go downwards. We do not show
transitive edges and isolated nodes.

One of the questions we want to answer in this section is whether the imports
graph share characteristics with citation graphs in the scientific literature.

The key characteristics of the graph are as follows:

Nodes: 215
Isolated nodes: 106
Edges: 97

Depth: 6
Max. out-degree: 9
Max. in-degree: 4

The top three articles with respect to their out-degree, i.e., the three most
popular articles, are shown in Fig. 7. The top article, Collections, is a frame-
work for efficient implementations of common collection types like sets and maps
[14]. All three articles are of a generic nature and designed for reuse.

Collections
Regular-Sets

Datatype_Order_Generator

9
6

4

Fig. 7. The most popular AFP articles

3.1 Weakly Connected Components

Now we consider the weakly connected components (WCC) in the graph, i.e., the
maximal subgraphs such that from any node there is a path to any other node
where edges may be followed either forwards or backwards. Each WCC is a group
of loosely related articles. When mining the citation graphs of different subfields
of computer science, it was observed [2] that there is always one large WCC that
covers 80–90 % of the nodes, and the second largest WCC is smaller by three
orders of magnitude: almost everything is connected to almost everything else.
A similar phenomenon can be observed in the AFP, although the numbers are
smaller. The largest WCC has 70 nodes (1/3 of the graph), whereas the second
largest one has 5 nodes.

3.2 The Most Productive Contributors

We should also like to acknowledge the most productive contributors to the AFP.
Figure 8 shows the top 5 authors in terms of lines of code they contributed. Each
author of an n-author article is assumed to have contributed 1/n. It turns out
that the top 5 authors have contributed a third of the AFP. The contributions
are all in programming languages, data structures, and model checking, not in
mathematics. The computer science bias is even more overwhelming than the
classification of all articles into computer science versus mathematics and logic
mentioned in the introduction would have lead us to expect.

Mining the Archive of Formal Proofs 9

Andreas Lochbihler
Peter Lammich

Daniel Wasserrab
Jesper Bengtson
Tobias Nipkow

1.05 ·105
78,000

61,100
57,100

42,700

Fig. 8. The most productive authors

Code_Target_Numeral

Multiset
Infinite_Set

While_Combinator
Multivariate_Analysis

Monad_Syntax

Sublist

20

19

17

13

11

11

10

Fig. 9. The most popular library theories

3.3 Library Theories

Isabelle/HOL provides the theories Main and Complex Main that contain many
standard theories such as sets, relations, lists, natural numbers, integers, and
real numbers. Many applications build on either of those. In addition, there
is a large number of library theories that are included with Isabelle/HOL and
can be imported selectively. The difference to the AFP is that these library
theories are originated by the Isabelle developers and are specifically designed
for reuse. Figure 9 shows the most popular library theories and how often they
are used. The top theories are a mixture of specific theories (e.g., Multiset) and
substantial mathematical developments (e.g., Multivariate Analysis [12]).

Comparing Fig. 9 with Fig. 7, we find that the top library theories are
imported twice as often as the top AFP articles, although both are designed
for reuse. There are a number of explanations: library theories are developed
by the Isabelle developers who concentrate on the most fundamental theories;
adding a theory to the library is a more lightweight process than adding a new
article to the AFP; the library was started at least four years before the AFP.

4 Lemma Statement Size vs. Proof Size

In addition to complete proof developments, the size of individual lemma proofs
can also be considered. A naive measurement could consider the number of lines
between the lemma and qed keywords to be the size of a proof. However, the
intent of measuring the proof size is generally to estimate the effort required to
produce that proof. Such a naive measurement will fail to capture the cumulative
nature of proofs; for example, a simple corollary will seem to have a trivial proof
despite depending on some large result.

10 J.C. Blanchette et al.

4.1 Previous Work

Matichuk et al. [17] chose to consider the size of the proof of a lemma as the total
number of lines required to prove it. This includes (recursively) the sizes of all
lemmas the proof depends on. Their study sought to establish a leading measure
of proof effort by building upon previous work [25], which demonstrated a linear
relationship between proof effort (measured in person-weeks) and proof size.
Matichuk et al. investigated the relationship between proof size and statement
size of lemmas. The motivation is that the specification size for a proof (i.e.
the statement size of its top-level theorem) is much easier to calculate early in
a proof development, and thus it would be valuable to be able to use this to
estimate the eventual size of the entire proof. Statement size was measured as
the total number of unique constants used in the lemma statement, including
(recursively) all constants used in their definitions.

This proved to be susceptible to lemma over-specification, where constants
were mentioned but never interpreted, i.e., the lemma could instead have been
abstracted over those constants. In these cases, the size of the lemma state-
ment was much larger than its proof would indicate. This prompted an idealized
measure, which discounts constants whose definitions are never unfolded in the
entire proof.

The study examined six software verification proof developments: four
proofs from the L4.verified project as well as JinjaThreads and SATSolver
Verification from the AFP. They compared the raw statement and idealized
statement sizes to the proof sizes for all lemmas in each proof and found a con-
sistent quadratic relationship, which was strengthened by the idealized measure.
However, the exact nature of the relationship was different between each proof:
a model built against one proof does not necessarily fit others.

4.2 Analysis Against the AFP

We performed the same analysis against three of the largest AFP articles, shown
in Table 1 and Fig. 10. Here R2 is the usual coefficient of determination for sta-
tistical models, where an R2 of 1 indicates that the model fits the data perfectly.
We see that Group-Ring-Module partially fits a quadratic model, which can
be explained by the hierarchical nature of the proofs. Although JinjaThreads
and Group-Ring-Module both fit a quadratic model, the quadratic coefficient
on their regression lines differ by an order of magnitude. Psi Calculi, does not
fit the same relationship. There is a column of data points at a statement size
of about 100 (or about 60 idealized), indicating that most lemmas in the devel-
opment actually have the same statement size. This can be explained by the
fact that Psi Calculi is a language formalization. Each lemma mentions the
inductive set which defines the language semantics, and the size of that constant
dominates the statement size of the lemma. This indicates that this measure of
lemma statement size is too coarse for Psi Calculi: no model built against this
data will be able to discriminate between long and short proofs.

Mining the Archive of Formal Proofs 11

Table 1. R2 and coefficients a, b, c for quadratic regression with equation ax2 + bx+ c
statement size versus proof size

AFP article Measure R2 a b c

JinjaThreads Raw 0.346 0.04 10.04 287.22

Idealized 0.712 0.12 16.48 283.49

Group-Ring-Module Raw 0.487 1.29 29.20 154.81

Idealized 0.622 2.26 20.56 58.25

Psi Calculi Raw 0.349 0.85 69.21 609.56

Idealized 0.431 4.87 198.49 798.34

The results are similarly diverse when performing this analysis against the
entire AFP. Using the idealized measure, approximately half of the articles have
an R2 of less than 0.5 (or have too few data points to build a model), 50 have
an R2 between 0.5, and 0.7 and 50 have an R2 greater than 0.7. The best fitting
articles are primarily those related to software verification, e.g. JinjaThreads,
SATSolverVerification, DiskPaxos. Among these, the quadratic coefficients
span two orders of magnitude, from 0.07 to 21.29. The variation in the consis-
tency of this relationship, and the differences between the models, demonstrates
proof size cannot be estimated based solely on this coarse measure of lemma
statement size. It is, however, an indication that it could be used as part of a
more sophisticated measure, which considers the particular domain of the proof
as well as additional measures of lemma statement complexity, such as those
discussed in the following section.

5 Lemma Statement Complexity

We are interested in the complexity of the 64,497 lemma statements, using more
traditional metrics than in the previous section, such as clause and literal counts.
We used Isabelle’s clausifier to rewrite formulas into conjunctive normal form
(CNF), i.e. as a conjunction of clauses, each of which is a disjunction of literals.
Literals of the form ¬ a are negative; otherwise, they are positive.

Out of the AFP’s 64,497 lemmas, the clausifier times out or fails on 171
of them. These are completely excluded from the statistics below. A manual
inspection reveals that these are typically highly complex formulas, such as cus-
tom induction schemas.

As measures of formula complexity, Fig. 11 gives the number of clauses per
lemma, and Fig. 12 gives the number of literals per lemma.

A few lemmas give rise to zero clauses: these are typically simple tautologies
identified as such by the clausifier. Most formulas give rise to exactly one clause.
These are further classified as follows:

– 11,444 formulas correspond to unit equality clauses, i.e., simple equations of
the form t = u for two terms t, u.

– 22,475 formulas correspond to conditional equality clauses, i.e., clauses that
contain at least one positive literal of the form t = u.

12 J.C. Blanchette et al.

Fig. 10. Relation between statement size and proof size

– 46,186 formulas correspond to Horn clauses, i.e., clauses that contain at most
one positive literal. These can be seen as implications a1 ∧ · · · ∧ an =⇒ a
or a1 ∧ · · · ∧ an =⇒ False and are relatively easy to reason automatically
about.

Mining the Archive of Formal Proofs 13

0 1 2 3 4 5 6 7 8 9 10

11
–1
00

10
1–
20
0

10

1,000

100,000

421

49,901

7,980
2,667

1,559

351 468

80
232

92
51

518

6

clauses

le
m
m
as

Fig. 11. Number of lemmas with a corresponding number of clauses

0 1
2–
4

5–
10

11
–2
5

26
–5
0

51
–1
00

10
1–
25
0

25
1–
50
0

50
1–
1,0
00

1,0
01
–2
,50
0

2,5
01
–5
,00
0

5,0
01
–1
0,0
00

1

100

10,000

421

20,23530,502
9,065

2,835

682
262 170

84 59

10

1

literals

le
m
m
as

Fig. 12. Number of lemmas with a corresponding number of literals

6 Proof Automation with Sledgehammer

Sledgehammer is a proof tool for Isabelle that exploits powerful first-order auto-
matic theorem provers, notably E [24], SPASS [28], Vampire [23], and Z3 [10].
Given a proof goal, it heuristically selects a few hundred potentially relevant
lemmas, invokes the external provers, and upon success produces a proof snip-
pet that can be inserted in the user’s formalization to discharge the goal. Similar
tools are available for other proof assistants, notably MizAR [27] for Mizar and
HOLyHammer [13] for HOL Light.

Sledgehammer was introduced in the 2007 edition of Isabelle and started to
be used seriously in 2009. In their “Judgement Day” study from 2010, Böhme and
Nipkow [6] evaluated Sledgehammer on 1240 subgoals emerging from seven the-
ory representing various applications of Isabelle to computer science and math-
ematics. They reported a success rate of 46 % for three provers (E, SPASS, and
Vampire) run in parallel for 30 s, meaning that nearly half of the goals in these
seven theories could be discharged automatically, with no user guidance.

14 J.C. Blanchette et al.

The tool has been further improved since then. Moreover, the automatic
provers that form its back-ends have themselves undergone major development.
A recent evaluation using a preliminary version of Isabelle2015 finds a success
rate of 75 % for six provers run for 30 s on newer hardware [5], for the Judgement
Day benchmarks. The success rate rise can be tracked in the various papers on
Sledgehammer.

One question that has lingered since 2010 is whether Judgement Day is really
representative of Isabelle formalizations. This is especially an issue since Sledge-
hammer has been extensively tuned against the benchmark set, on the assump-
tion that it is representative. To get a clearer idea of Sledgehammer’s usefulness,
we now ran an evaluation on 128 randomly selected theories from the AFP. Up to
100 goals were selected for each theory, for a total of 6,934 goals. Our evaluation
data is publicly available.1

The evaluation harness invokes Sledgehammer on each goal. The hardware
setup consists of Linux servers equipped with Intel Core2 Duo CPUs running at
2.40 GHz. Each prover was given 30 s to solve each goal, but the 30 s slot was
split into several slices, each corresponding to different problems and options to
the prover. Lemmas were selected using the static MePo filter [19], as opposed
to the machine learning based MaSh [5], whose development has fully stabilized
only after the Isabelle2014 release. The results are summarized in Fig. 13.

As we remarked elsewhere [3], “It is important to bear in mind that the
evaluation is not a competition between the provers. Different provers are invoked
with different problems and options, and although we have tried to optimize the
setup for each, we might have missed an important configuration option. Each
number must be seen as a lower bound on the potential of the prover.”

In case of success, the search is followed by reconstruction in Isabelle. For
most goals, the reconstructed proof is a one-line call to an Isabelle proof method,
such as simp (term rewriting), metis (a built-in resolution prover), or blast (a
tableau prover). This call can then be inserted in the Isabelle formalization to
discharge the goal. Reconstruction is a success if at least one of the attempted
proof methods succeeds within 2 s. The percentage of goals with successful one-
line proofs is given in the “One-line” column of Fig. 13. A few goals require a
more detailed proof, expressed in the Isar format. The goal is considered solved
if the Isar proof is successfully generated and replayed. This is reflected in the
“+ Isar” column of Fig. 13.

One-line + Isar + Oracle

E 49.7 51.4 52.5
SPASS 49.4 50.5 52.0
Vampire 49.5 51.0 51.8
Z3 49.6 50.0 53.7

Fig. 13. Success rate of Sledgehammer invocations per automatic prover (%)

1 http://www21.in.tum.de/∼blanchet/afp mining data.tgz.

http://www21.in.tum.de/~blanchet/afp_mining_data.tgz

Mining the Archive of Formal Proofs 15

When both reconstruction approaches fail, the user can still trust the external
prover (and Sledgehammer’s translation from HOL to the prover’s formalism) as
an oracle. In practice, most Isabelle users would prefer to work on a manual proof
instead. These reconstruction failures are recorded in the “+ Oracle” column of
Fig. 13.

The provers are neck and neck. Trusted as oracles, they prove 60.7 % of
the goals when used in combination. This is significantly lower than the most
recent evaluations based on Judgement Day. We offer the following possible
explanations:

– Our evaluation uses the official release (Isabelle2014), instead of a preliminary
version of Isabelle2015. It misses out on MaSh [5], on the improved Isar proof
generation module [3], and on modern versions of provers. Recently, the SMT
solver CVC4 has been integrated with Isabelle and is now, by a clear margin,
the most successful prover [5].

– Sledgehammer’s development since 2010 has been guided by experimental
results on the Judgement Day suite, under the assumption that it is repre-
sentative of Isabelle. Hence, it is not surprising that Sledgehammer should
perform particularly well on these benchmarks.

– There is a lot of variation between theories. For theories with at least ten
goals, our evaluation found success rates varying between 10 % and 100 %.
We cannot exclude that the seven Judgement Day theories are particularly
easy for Sledgehammer. Indeed, one third of Judgement Day consists of a
large mathematical theory (Fundamental Theorem Algebra) whose goals are
particularly easy.

7 Conclusion

We can summarize our findings by answering the questions raised in the intro-
duction:

– There is too little reuse to our taste: the top 3 articles are reused 9, 6, and 4
times.

– There is some similarity to citation graphs in the computer science literature:
the largest weakly connected component (WCC) in the AFP imports graph
is 10 times larger than the next smaller WCC.

– The growth of the AFP appears to be only slightly better than linear although
we hope it is only early days.

– The sizes of articles seem to follow a power law with a long tail. Two thirds
are less than 4,000 lines long but 9 are longer than 20,000 lines.

– Over the whole AFP, 58 % of the text is taken up by proofs, 19 % by lemma
statements, and 8 % by definitions.

– Lemma statement size is quadratically related to lemma proof size in approx-
imately half of the AFP articles (with R2 > 0.5). The exact nature of the
relationship is not consistent, however. A more sophisticated measure for
statement size/complexity is required to build a predictive model.

16 J.C. Blanchette et al.

– The syntactic nesting depth of proofs follows an exponential decay. Almost
99 % of all proofs have a depth of 4 or less, but there is one proof of depth 15.

– One third of all lemma statements are equations, two thirds are Horn clauses.
– Sledgehammer can automate the proof of about 60 % of the goals that arise,

which is respectable but less than on the Judgement Day benchmark suite.

Acknowledgement. Our colleague Johannes Hölzl suggested the proof depth dia-
gram (Fig. 5), which we found insightful. Matichuk is partially supported by NICTA.
NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program. Nipkow is supported by DFG grant NI 491/16-1.

References

1. The Mizar mathematical library. http://mizar.org
2. An, Y., Janssen, J., Milios, E.: Characterizing and mining citation graphs of the

computer science literature. Knowl. Inf. Syst. 6, 664–678 (2004)
3. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-

intelligible Isar proofs from machine-generated proofs. Accepted in J. Autom.
Reason. http://www21.in.tum.de/∼blanchet/isar2.pdf

4. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013)

5. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based relevance filter for Isabelle/HOL (2015) (Submitted). http://www21.in.tum.
de/∼blanchet/mash2.pdf

6. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

7. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: The TLA+ proof system: build-
ing a heterogeneous verification platform. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, p. 44. Springer, Heidel-
berg (2010)

8. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2),
56–68 (1940)

9. Crovella, M.E., Bestavros, A.: Self-similarity in world wide web traffic: evidence
and possible causes. IEEE/ACM Trans. Network. 5(6), 835–846 (1997)

10. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

11. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013)

12. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analy-
sis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP
2013. LNCS, vol. 7998, pp. 279–294. Springer, Heidelberg (2013)

13. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL light. Math.
Comput. Sci. 9(1), 5–22 (2015)

14. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Hei-
delberg (2010)

http://mizar.org
http://www21.in.tum.de/~blanchet/isar2.pdf
http://www21.in.tum.de/~blanchet/mash2.pdf
http://www21.in.tum.de/~blanchet/mash2.pdf

Mining the Archive of Formal Proofs 17

15. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43, 363–446
(2009)

16. Lochbihler, A.: Java and the Java memory model — a unified, machine-checked for-
malisation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 497–517. Springer,
Heidelberg (2012)

17. Matichuk, D., Murray, T., Andronick, J., Jeffery, R., Klein, G., Staples, M.: Empir-
ical study towards a leading indicator for cost of formal software verification. In:
Canfora, G., Elbaum, S. (eds.) International Conference on Software Engineering
(ICSE 2015). ACM (2015)

18. Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mech. Math. Appl. 4(1),
3–24 (2005)

19. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Appl. Logic 7(1), 41–57 (2009)

20. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer, Heidel-
berg (2014). http://concrete-semantics.org

21. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

22. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) International Workshop on the Implementation of
Logics (IWIL 2010). EPiC Series, vol. 2, pp. 1–11. EasyChair (2012)

23. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Com-
mun. 15(2–3), 91–110 (2002)

24. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

25. Staples, M., Jeffery, R., Andronick, J., Murray, T., Klein, G., Kolanski, R.: Pro-
ductivity for proof engineering. In: Morisio, M., Dyb̊a, T., Torchiano, M. (eds.)
Empirical Software Engineering and Measurement (ESEM 2014), pp. 15:1–15:4.
ACM, New York (2014)

26. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reason. 37(1–2), 21–43 (2006)

27. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

28. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–
145. Springer, Heidelberg (2009)

29. Wenzel, M.: Isabelle/Isar—a versatile environment for human-readable formal
proof documents. Ph.D. thesis, Institut für Informatik, Technische Universität
München (2002). http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.
html

30. Wiedijk, F.: Statistics on digital libraries of mathematics. Stud. Logic, Gramm.
Rhetor. 18(31), 137–151 (2009)

http://concrete-semantics.org
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

Math Search for the Masses: Multimodal Search
Interfaces and Appearance-Based Retrieval

Richard Zanibbi(B) and Awelemdy Orakwue

Document and Pattern Recognition Laboratory, Department of Computer Science,
Rochester Institute of Technology, Rochester, NY 14623, USA

rlaz@cs.rit.edu

Abstract. We summarize math search engines and search interfaces
produced by the Document and Pattern Recognition Lab in recent
years, and in particular the min math search interface and the Tan-
gent search engine. Source code for both systems are publicly available.
“The Masses” refers to our emphasis on creating systems for mathemat-
ical non-experts, who may be looking to define unfamiliar notation, or
browse documents based on the visual appearance of formulae rather
than their mathematical semantics.

Keywords: Mathematical Information Retrieval (MIR) · User interface
design · Handwriting recognition · Character recognition

1 Introduction: Why Math Search Pertains to the Masses

Mathematical notation is a natural language used to define the models, metrics
and analytical tools of modern societies. It is natural in the sense that the nota-
tion is re-purposed and adapted for different mathematical concepts, problems,
and communities, leading to various dialects. The influence of mathematical
notation, while quiet, is pervasive. Whether it is choosing foods to purchase
based on their cost and quantified nutritional information, using demographic
and usage statistics to determine which forms of entertainment to attract and
promote, determining where to build manufacturing sites, or how to represent
a problem and its potential solutions in science and technology, math notation
is an essential tool that shapes both our personal lives and environment. Given
this, math literacy is critical for participating fully in the modern world, and
considerable attention continues to be focused on strengthening mathematics
education.

However, for many persons of all ages, mathematical notation is a source of
significant frustration or anxiety at times due to real or perceived difficulties
with interpreting unfamiliar notation. This is particularly true when the text
accompanying mathematical notation is found to be confusing. To search the
internet for alternative sources about the notation, users must formulate their
query in text, even if they are unclear what about what the represented concept
is. Mathematical experts might search the internet using LATEX for an expression,
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 18–36, 2015.
DOI: 10.1007/978-3-319-20615-8 2

Math Search for the Masses 19

or using the (often, already known) name for the concept [42]. Even experts relate
to the odd experience of revisiting concepts expressed in a notation distinct
from that used when they originally learned a concept, and the difficulties this
introduces in interpreting the notation.

While mathematical concepts can often be notated various ways, some psy-
chological studies suggests that the appearance of math notation affects our
reasoning about it [15], and that individuals will often space subexpressions sys-
tematically when entering math, even if mathematically unnecessary [14]. The
studies suggest that our perception of math notation may be grounded in visual
structure, i.e. how it looks.

An important related concern is hit content summarization, i.e. how search
hits are presented to the user [36]. In a recent study it was confirmed that as
one expects, the formatting of math expressions significantly affects relevance
assessment of search hits [25]. The normal hit format provided by Google (e.g.
as raw LATEX or Presentation MathML) was compared with the same hits with
formulae rendered, and on average participants had a 17 % higher relevance
assessment accuracy in the rendered condition.

We propose that if it is natural to use words from unclear texts in queries, it is
also natural to use mathematical notation from unclear texts directly in queries.
A recent study illustrates the benefit of this approach [35]. When undergradu-
ate students were asked to learn about the binomial coefficient, and shown the
expression

(
4
2

)
, many did not know what the notation represented. When given

an interface in which they could draw, recognize the spatial layout of symbols
and then search for the expression, most participants found this to be both
intuitive and helpful.

In the remainder of our paper, we summarize research carried out to realize
the entry and retrieval of math based on its appearance, as this is what one works
from when notation is unfamiliar or difficult to interpret, or when trying to locate
similarly structured expressions (e.g. when browsing formulae in a collection).

2 Math Encodings: Symbol Layout Trees
and Operator Trees

In practice, math encodings are most commonly used to represent the appear-
ance and mathematical content of formulae. Appearance-based encodings such as
LATEX [13] and Presentation MathML1 are used to display mathematical expres-
sions. A number of web browsers support Presentation MathML directly (e.g.
Firefox), and online tools such as MathJax2 may also be used to render LATEX
and MathML contained in HTML pages. Mathematical content encodings such
as Content MathML can be used for evaluation and symbolic manipulation by
Computer Algebra Systems (e.g. Mathematica, Maple).

1 http://www.w3.org/Math/.
2 https://www.mathjax.org/.

http://www.w3.org/Math/
https://www.mathjax.org/

20 R. Zanibbi and A. Orakwue

(a + b)

SUPER

2

EXP

ADD

a b

2

a) Symbol layout tree (appearance) b) Operator tree (semantics)

Fig. 1. Symbol layout tree and operator tree for (a + b)2

As illustrated in Fig. 1, the appearance and content of mathematical expres-
sions are hierarchical. As a result, both appearance and content-based encod-
ings define trees, which are annotated in various ways to support applications.
Encodings for appearance represent a spatial arrangement of symbols on base-
lines (writing lines), which we term a Symbol Layout Tree. In Fig. 1a the symbol
layout tree is rooted at the leftmost parenthesis (‘(’)), and there are two writing
lines present: the main baseline, and a superscripted baseline.

The Operator Tree in Fig. 1b represents a hierarchical application of opera-
tions to operands, from the leaves to the root of the tree. Relative to the layout
tree in Fig. 1a, in the operator tree operator symbols are replaced by their asso-
ciated operation (e.g. ‘+’ becomes ADD), implicit operations are made explicit
(e.g. superscript becomes EXP (exponent)), and parentheses used for group-
ing in the expression appearance are removed. Groupings are redundant in an
operator tree, where ordering constraints are explicit.

Due to symbols and spatial relationships in formulae being frequently rede-
fined by authors, it is impossible to define a mapping from formula appearance to
formula semantics. To create this mapping the domain of discourse (e.g. algebra
vs. calculus vs. logic, etc.) along with the specific environment defining con-
stants, variables, and operations in an expression are required. The mapping
from operator trees to layout trees is also one-to-many, as a single operator tree
may be written various ways. For example, ‘x2’ and ‘(x)2’ can represent the same
operation, and operations may be associated with different symbols (e.g. ‘÷’ vs.
‘/’ for division) and symbol arrangements (e.g. 1/2 vs. 1

2).
The flexibility of mathematical notation benefits both authors and their tech-

nical communities. However, this flexibility and dependency on context for inter-
pretation poses substantial challenges for automated recognition and retrieval of
mathematical notation [3,37].

3 min: A Multimodal Math Search Interface

Figure 2 shows the min search interface which runs in standard web browsers on
desktop and tablet computers (e.g. iPads [26]). min is implemented in Javascript
and HTML, with symbol recognition and parsing performed by external web

Math Search for the Masses 21

services.3 In Fig. 2 we see a text box for keywords at top-right, while the large
white canvas at bottom is used to enter formulae. A list of formula are stored in
the ‘deck,’ the wide rectangular panel at the top of the interface. The deck has
operations to add, remove, and switch between formulae.

min’s design seeks to allow mathematical non-experts to easily ‘draw’ math
expressions for queries by switching seamlessly between typing, freehand draw-
ing, and importing formula images. Another design goal is providing clear, intu-
itive feedback for the recognized structure of an expression (i.e. the symbol
layout tree). Our design was influenced by earlier math editing and recognition
prototypes, particularly the pen-based Freehand Formula Entry System (FFES
[29,41]), the vector graphics-based XPress system [23], and the infty math OCR
system [33].

Figure 7 shows the entry of the formula in Fig. 2. A combination of typed
LATEX (e.g. ‘xi − x’ in the top-left panel) and handwriting (shown as red lines)
are used in queries. As handwritten symbols are recognized, they gradually fade
and are replaced by the recognized symbol. LATEX strings are replaced by Math-
Jax renderings. In the final step the symbol layout is parsed, and symbols are
gradually moved in an animation to ideal positions. The fonts and locations for
recognized symbols are obtained from Support Vector Graphics (SVG) MathJax
output produced using the LATEX string for recognized symbol layout. Hand-
writing is visible in the Editing mode, where pen/touch strokes appear above
recognition results (see Fig. 2).

Figures 4 and 5 illustrate additional operations for image input, using the
deck to store and combine formulae, matrix entry, and correcting symbol recog-
nition errors.

3.1 Human Studies: Formula Entry Operations
and Recognition Visualization

A pair of human studies have influenced the design of min. The first study
compared visualizations of recognition results for handwritten formulae. In the
first condition, results were shown separately from user input in a rendered
LATEX image, and in the second condition handwritten symbols were gradually
rescaled and moved to ideal positions using a style-preserving morph [41]. Over-
all, participants found results from the rendered image clearer, but surprisingly
there was no significant difference in entry time for users using the image or
morphing feedback, despite symbol recognition results not being visible in the
morphing condition unless individual symbols were selected. Also, in the image
condition some participants became stuck, as they were unable to find where
their expression was recognized incorrectly (this finding has been replicated in
other studies since; see [37]). This did not happen when the participant’s symbols
were ‘morphed’ in-place.

3 Source code: http://www.cs.rit.edu/∼dprl/Software.html.

http://www.cs.rit.edu/~dprl/Software.html

22 R. Zanibbi and A. Orakwue

Fig. 2. Combined Keyword (‘ssd’) and Formula Query in min (Editing Mode). At
top, from left-to-right buttons are provided for symbol entry, selection and correction,
image import, parsing/grouping symbols, creating an expression grid (matrix), and
undo/redo. The ‘deck’ stores a list of entered formulae, which may be combined (see
Fig. 4). On pressing the search button (the magnifying glass), LATEX for the formula
shown in the ‘deck’ is concatenated with keywords and sent to a selected search engine
(Color figure online)

Fig. 3. min circa Spring 2013 (Drawing Mode [35]). The drop-down list of search
engines is visible. The third button from the left at top corrects stroke groupings,
and was later replaced by the symbol correction button. Browser fonts drawn above
handwritten strokes and simple symbol repositioning visualize recognition. In the new
min strokes gradually fade and are replaced by recognized symbols in draw mode

In min a style-preserving morph is performed when a button to recognize
expression structure is pressed (the ‘Parse/Group’ button). This ‘morph’ is actu-
ally a modified version, described below.

The second human study evaluated an earlier version of min (see Fig. 3),
and identified opportunities for improvement [35]. In particular, the undergrad-
uate college students that participated in the study found that while symbol

Math Search for the Masses 23

a) Drag and drop image b) Recognition result c) New deck panel; clear canvas

d) New expression e) Moved and resized f) Drag from deck to canvas

g) After drop, add new panel h) Recognition result i) Draw view

Fig. 4. Image Input and the Formula ‘Deck.’ The panel (deck) showing images at top
of the interface stores formulae. An image creates the first expression (a,b), which is
then added to a second expression (c,d,e) by dragging its panel from the deck to the
canvas (f,g), and then storing the combined result in a third slider panel (g,h,i)

a) Drawing a ‘2’ b) Correct misrecognition as ‘n’ c) Select subexpression

d) Parsed subexpression e) Create formula grid (matrix) f) Draw braces and parse

Fig. 5. Matrix Entry and Symbol Correction. As shown in this example, min allows
subexpressions to be grouped separately (c,d) or as a grid of expressions (e). Symbol
recognition errors are corrected using a transparent pop-up window (b). The window
appears after selecting a symbol and then pressing the ‘relabel’ button at top

recognition results were now visible when drawing (they would appear above user
strokes, see Fig. 3), this cluttered the canvas, making it difficult to see errors.
The symbol placement from the original style preserving morph is also coarse
and sometimes confusing (e.g. making adjacent symbols appear subscripted [41]).
To address these issues, in the new min recognized symbols replace handwritten

24 R. Zanibbi and A. Orakwue

strokes in the drawing view using a gradual fade, and the target positions for mor-
phing are defined using rendered LATEX. To avoid loss of context and interfering
with users’ ‘mental maps,’ handwritten strokes remain visible in the editing mode,
with strokes shown in red above characters for recognized symbols (see Fig. 2).

Participants in the second study were also shown a tool for stroke grouping
to correct symbol segmentation errors at the beginning of each session, but
there was almost no use of this tool, with participants instead deleting and
redrawing symbols if they were segmented incorrectly. Participants also had
difficulty remembering that double-clicking/tapping on a symbol brings up the
symbol correction menu (see Fig. 5b). As a result, the stroke grouping button was
replaced by a button for relabeling selected symbols in the new version of min.

In the future we hope to carry out additional studies to evaluate the new
interface, and in particular the utility of the formula deck when working with
multiple expressions, and the new matrix entry operations. We feel that we have
made some progress, but questions about which formula editing and correction
operations to include in the interface, and how best to visualize recognition
results remain.

3.2 min System Architecture and Recognition Modules

Figure 6 presents a global view of min’s architecture. Users input keywords as
text, and math using a combination of LATEX, handwritten symbols and images.
There are two primary data structures that define the interpretation of a formula
on the canvas: a list of symbols and their locations, and the recognized symbol
layout tree for the formula. For clarity, we do not show the formula ‘deck’ in Fig. 6
(see Fig. 4 for an illustration of the deck). When the user clicks on the search
button, keywords and the current expression shown in the deck are concatenated
in a query string, which is then sent to the currently selected search engine.

Both automatic (solid arrows) and user operations (dotted arrows) are shown
in Fig. 6. Users manipulate symbols through entry, deletion, moving, resizing
and merging (e.g. to combine two dashes into an ‘=’ sign). Users also invoke
the parser to update the symbol layout tree and produce LATEX. When the
‘Parse/Group’ button is pushed by the user, formula structure is visualized two
ways, by moving symbols on the canvas to ideal positions, and also by showing
the rendered LATEX in the formula ‘deck.’

Fig. 6. min Architecture. User interactions are shown using dotted arrows, and solid
arrows represent automated processing.

Math Search for the Masses 25

Fig. 7. Entering Formula in Fig. 2 (from top-left, left-to-right). Symbols are entered
through typing and drawing. At bottom-right the ‘Parse/Group’ button is pressed,
symbol layout is recognized and symbols are gradually moved (‘morphed’) to ideal
positions (Color figure online)

Currently, operations for entering symbols and recognizing symbol layout are
independent of one another. In particular, layout analysis is not performed until
explicitly requested by the user. While it is beneficial to integrate classification,
segmentation and parsing for automatic recognition [37], this type of integration
may be unhelpful in an interactive system, such as when decisions previously
accepted by the user are modified (e.g. if handwritten symbols are re-segmented
and re-classified). Our parser only revises symbols when a compound token is
detected, such as replacing a horizontal line with ‘+’ above by ‘±.’ Our hope is
that this behavior is both convenient and predictable.

In the remainder of this section we discuss the recognition modules used in
min. The current recognition modules were designed with accuracy, speed, and
simplicity in mind. The symbol recognition and parsing modules run externally
to min on servers, with requests made and results transmitted back using simple
XML encodings. This allows recognition modules to be easily replaced by services
provided on other servers that accept and produce the same encodings. Despite
this network overhead, recognition is fast and most first-time users are unaware
that recognition is performed remotely.

3.3 Symbol Entry and Correction

For formula entry, the grouping (segmentation) of handwritten strokes and sym-
bols in images is performed using simple methods. It is assumed that handwritten
symbols are entered one-at-a-time, and recognition is invoked after a short delay
(e.g. 1–2 s), or when a drawn stroke intersects other strokes (in which case the
strokes are merged into a single symbol). For typeset symbols in images, each
separate region of connected black pixels (connected component) is treated as
a separate symbol. This results in many symbols being over-segmented initially
(e.g. ‘=’), but in many cases the DRACULAE parser can locate and correct this
by matching rewriting local structures in the symbol layout tree [40]. A pair
of parameters are used to control the location of the centroid used to repre-
sent symbol locations, and thresholds to define vertical spatial regions around
symbols (above, below, superscipt, subscript).

Handwritten symbol classification is performed by a Support Vector Machine
with a Gaussian kernel applied to modified off-line (i.e. image-based) features [7].

26 R. Zanibbi and A. Orakwue

Previously we used Hidden Markov Models [9]. These worked well, but were
sensitive to the writing order of strokes. Our new features are insensitive to
stroke order and are more accurate as a result. Our classifier is trained using data
from the CROHME handwritten math recognition competitions.4 In the most
recent CROHME competition [19] our SVM classifier obtained a test accuracy
of 88.7 % for 101 symbol classes, and 83.6 % when invalid symbols are included
(102 classes). These rates are within 2–3% of those obtained by the winning
system from MyScript Corporation.5

Typeset symbols in images (especially digitally-born) tend to be clean and
regular, and so we use a simple nearest neighbor classifier. Connected compo-
nents are assigned to classes using a 10 × 10 histogram of pixel counts. We cur-
rently use a kd-tree implementation from the Python-based scikit-learn library6

for fast approximate nearest-neighbor classification. The classifier is trained
using the Infty data sets [34]. An earlier version obtained recognition rates over
97 % for 190 classes on 70,637 test samples in the Infty data set using pixel
histograms [43]. We do not yet support .pdf input [2,16], but hope to in the
future.

In the current version of min, mis-segmented symbols from handwriting or
images are deleted and re-entered by users, for example using handwriting or
typing. Both of the handwritten and image-based symbol recognizers return a
ranked list of classes that can be selected from the symbol correction menu (see
Fig. 5b). This menu also includes a list of symbols organized by type (e.g. digits,
latin letters, greek letters, operators, etc.).

3.4 Parsing Symbol Layout and Generating LATEX

Symbol layout in a formula written on the min canvas is parsed using DRAC-
ULAE [40], implemented in the TXL tree rewriting language [5]. DRACULAE
employs a compiler design, performing a series of tree rewriting passes that: (1)
produce an initial symbol layout tree, (2) replace compound tokens (e.g. replac-
ing two vertically adjacent dashes by ‘=’), (3) rewrite structures such as fractions,
and (4) translate the resulting tree to LATEX. DRACULAE also produces oper-
ator trees where possible (i.e. a ‘semantic’ encoding), but this is unused in min.
In the initial layout analysis step, DRACULAE uses a fast greedy algorithm
to recursively locate symbols on the main baseline, and then assigns remain-
ing symbols to regions around baseline symbols (e.g. above, below, superscript,
subscripts, within for roots, etc.).

As shown in Fig. 5, users can invoke DRACULAE to parse a subexpression
which is then grouped into a unit, ‘locking’ its interpretation [17] and preventing
modification by subsequent parses. Symbols and grouped subexpressions may
also be combined in a grid, e.g. to enter matrices. This operation uses simple
horizontal and vertical bounding box projections to identify gaps for rows and

4 http://www.isical.ac.in/∼crohme/.
5 http://www.myscript.com/.
6 http://scikit-learn.org/.

http://www.isical.ac.in/~crohme/
http://www.myscript.com/
http://scikit-learn.org/

Math Search for the Masses 27

columns - DRACULAE does not recognize matrix structure. Instead, we have
DRACULAE treat grouped subexpressions as individual symbols during parsing.
Matrix recognition remains a difficult open problem [19,37], but if accuracy can
be increased, in the future it may be beneficial to recognize grid cells in addition
to rows and columns of predefined cells.

As described earlier, MathJax is used to visualize recognized symbols, and
define the ideal locations to which symbols on the canvas are repositioned (mor-
phed) after parsing.

Parsing errors (e.g. detecting an adjacent symbol as subscripted) are cor-
rected by some combination of moving symbols, undoing the previous parse
operation (which ‘morphs’ symbols back to their previous positions), and press-
ing ‘Parse/Group’ again.

4 Appearance-Based Math Retrieval

In this section we summarize a number of different search engines and models
designed to support math search using formula appearance. In particular, we
describe the Tangent search engine and its integration with the min math search
interface, along with methods for visual search of document images and videos.

4.1 Query-by-Expression for Symbolic Encodings (LATEX, MathML)

Approaches to query-by-expression may be categorized as text-based or tree-
based, as determined by the structure used to represent and retrieve expres-
sions. In text-based approaches, math expressions are linearized before indexing
and retrieval. These linearizations are normalized to reduce variability in repre-
sentation. Common normalizations include defining synonyms for symbols (e.g.
function names), using canonical orderings for spatial relationships and commu-
tative operators (e.g. to group ‘a + b’ with ‘b + a’), enumerating variables, and
replacing symbols by their mathematical type.

Linearized math expressions are often handled by term frequency-inverse
document frequency-based (TF-IDF) techniques from text retrieval [18,30,39].
While linearization loses some formula structure information, it allows text and
math retrieval to be carried out in a single framework (usually Lucene7). In a
different approach, the largest common string subsequence is used to retrieve
LATEX strings [31].

Tree-based approaches represent layout or operator trees for formulae
directly. Methods have been developed that compress tree indices by storing
identical subtrees in expressions uniquely [10], with exact matching and tree-edit
distances used for retrieval [11]. Substitution trees designed for unification have
been used to create tree-structured indices [12,27]. Descendants of an index tree
node contain expressions that unify with the parameterized expression stored
at the node (e.g. ‘f(1)’ unifies with ‘f(a),’ with substitution 1 → a). A

7 https://lucene.apache.org/.

https://lucene.apache.org/

28 R. Zanibbi and A. Orakwue

Fig. 8. Original Tangent Formula Search Engine [32]. The ‘Edit query’ links send a
search hit to the min search interface for editing and re-submission to Tangent or
other search engines. The ‘Search for this’ link supports browsing by allowing hits to
be submitted as new queries. Queries may be typed in LATEX into the text box shown
at top, or submitted from min (see Fig. 2, where Tangent is the selected search engine)

more recent technique adapts TF-IDF retrieval for vectors of subexpressions
and ‘generalized’ subexpressions where constants and variables are represented
by a single symbol [16]. Subtrees are normalized for commutative operators and
operator precedence, converting symbol layout trees to pseudo-operator trees.

An emerging class of ‘spectral’ tree-based approaches use sets of local struc-
tural representations rather then complete subtrees for retrieval. One system
converts sub-expressions in operator trees to words representing individual argu-
ments and operator-argument pairs [21]. A lattice over the sets of generated
words are used to define similarity, and a breadth-first search constructs a neigh-
bor graph traversed during retrieval. Another system employs an inverted index
over paths in operator trees from the root to each operator and operand, using
exact matching of paths for retrieval [8].

Over a number of years our group has developed a novel ‘spectral’ retrieval
model, and a search engine implementing the model [22,27,32]. We discuss these
in the next section.

Math Search for the Masses 29

4.2 The Tangent Math Search Engine

A screenshot of the Tangent search engine8 is shown in Fig. 8. The query ‘g(z) =
0’ is shown along with the top four matched expressions and their associated
Wikipedia articles. The goal with this interface design was to make it easy to
use retrieved expressions for editing and search. At the bottom of each hit is a
rank score, along with a link to send the hit to min for editing, and a second link
for using a hit to re-query the collection. This integration of min and Tangent
allows for both visual and textual editing of formula queries.

In Fig. 8 we see that Tangent retrieves formulae with structure similar to the
query, even when different symbols are used (e.g. ‘g’ replaced by ‘h,’ ‘z’ by ‘x’,
and ‘0’ by ‘z’). This is interesting, because here only exact matching is used for
retrieval [32]. Search results from this first version of Tangent often appear to
have performed unification of symbols, but no unification is carried out. This is
because the relative positions of symbols are used for matching.9

In Fig. 8, all four hits contain parentheses that are one symbol apart, with an
equals sign at right. Matching additional symbol pairs lead to a higher rank. In
this example, the first hit is an exact match, with score 1.0 (all symbol pairs are
matched), while the remaining three hits have the same rank score, differing by
the identity of exactly one symbol relative to the query. This causes relationships
with the non-matching symbol to be treated as unmatched. In each case, the
five pairs associated with the unmatched symbol are ‘misses,’ out of fifteen total
symbol pairs (for six symbols,

(
6
2

)
= 15 symbol pairs, 10/15 = 0.667).

More concretely, the spectral model used in Tangent represents symbol lay-
out trees by the relative position of each symbol with its descendants in the
tree. This is a ‘bag-of-words’ model, with ‘words’ representing relative symbol
positions. Note that tuples are not generated for all pairs of symbols when there
is branching in the layout tree, unlike the query and hits shown in Fig. 8 which
lie on a single baseline. Tuple generation is illustrated in Fig. 10a–c. The frac-
tion line has a relationship with every other symbol in the tree, each defined
by a pair of integers giving the path length from the line to the symbol in the
tree (shown as Dist. in Fig. 10c), and change in baseline position. The baseline
position change is initially 0, increasing by one for each superscript/above rela-
tionship and decreasing by one for each subscript/below relationship along the
path between two symbols (shown as Vert. in Fig. 10c [32]).

Tuples in Tangent Version 2 [22]. Later, changes were made to the tuple
generation model, adding tuples for symbols in the leaves of layout trees. In
Fig. 10c, we see that three tuples are defined for the symbols ‘2,’ ‘y’ and ‘z’ at
the leaves of the tree shown in Fig. 10b. This addition was made to allow single-
symbol queries to be represented in the index, particularly to allow matching for
matrix subexpressions comprised of a single symbol such as shown in Fig. 10d,
where three of the matrix entries are a single digit.

8 http://saskatoon.cs.rit.edu/tangent.
9 This approach was motivated by a ranking function that used sets of matching

symbols and symbol pairs to greatly improve initial retrieval results [27].

http://saskatoon.cs.rit.edu/tangent

30 R. Zanibbi and A. Orakwue

A representation for matrices and grid/array structures was also added, such
as for expressions shown in Figs. 9a and 10d. Each grid is represented by a symbol
named ‘matrix’ with its dimensions concatenated on the end (e.g. matrix2x2
in Fig. 10f). This ‘matrix’ symbol is then used to represent the entire matrix
contents. In Fig. 10f the structure of the expression treating the matrix as a unit
is contained in rows 6–12 of the table.

Cells/subexpressions in a matrix or grid are represented as independent
expressions; in Fig. 10f these are the last five rows of the table, representing
‘x2,’ ‘0,’ ‘0,’ and ‘1.’ The subexpression at each matrix location is represented
by a tuple giving a row and column location, with the subexpression represented
by its LATEX string (as shown in the top five rows of Fig. 10f). The idea in this
case was to be able to detect when a particular subexpression is present, and
also whether the subexpression is located at the correct location in the matrix.

Finally, to support participation in the NTCIR-11 math retrieval tasks [1,28],
the Tangent inverted index for tuples was expanded to include entries where one
of the two symbols are undefined (e.g. ‘x2’ would be represented concretely, and
by ‘?2’ and ‘x?’, where ‘?’ represents a wildcard). Figure 9a shows an example
of a query containing wildcards. In both tasks, symbols could be replaced by
wildcard symbols, which our group interpreted as being any individual symbol.
Relationships between two wildcard symbols are not indexed, as in some cases
this will match a vast number of entries in the index (for example, consider
‘something next to something’).

Retrieval. Formula retrieval is performed using an inverted index over symbol
pair relationship tuples, mapping tuples to the expressions that contain them.
Expressions are represented uniquely, with a separate table recording which doc-
uments contain an expression [22].

Queries are first converted to a set of unique tuples with associated counts.
Unique tuples are then used to locate matching expressions from the inverted
index, and determine the number of tuples from the query matched in each
retrieved expression. Matched expressions are ranked by the harmonic mean
of the percentage of pairs matched in the query, and the percentage of pairs
matched in the candidate. This may be understood as the f-measure for recall
of query tuples in the candidate, and precision of tuples in the candidate.
This ranking metric prefers larger query set tuple matches, while penalizing
unmatched tuples.

In the second version of Tangent, the engine was modified to support both
text and multiple formulae in queries. Lucene was used for text retrieval, and
formulae were retrieved using Tangent’s formula search engine. The formula
match score for a document was computed as the sum of the highest formula
match scores located for each query expression in a document, each weighted
by the relative size of each expression [22]. The final rank score for a document
was a linear combination of the Lucene-based keyword score and the formula
match score. With this, Tangent was now able to handle combined text and
formula queries.

Math Search for the Masses 31

Formula Query: P[X ≥ t] ≤ E[X]

t
Keyword: Markov inequality

µ(A) =

{
1 if 0 ∈ A

0 if 0 /∈ A.

a) Math-2 #39 b) Wikipedia #49

Fig. 9. Sample Queries from NTCIR-11. Query (a) contains four wildcard symbols
(shown in boxes), and two keywords. Queries for the Wikipedia subtask were single
expressions. Query (b) has no wildcards and includes a tabular/matrix layout

Results. A human evaluation compared search results returned by the original
Tangent and a Lucene (text-based) retrieval model [32]. Precision-at-k is the
percentage of hits in the top-k results deemed ‘relevant’ to a query. In this
case, participants were asked to rate hits by their similarity to the query using
a 5-point Likert scale from ‘Very dissimilar’ to ‘Very similar,’ with ratings of
‘Similar’ or ‘Very Similar’ treated as relevant. The average precision-at-1 and
precision-at-10 values for Tangent were 99 % and 60 %, and 60 % and 39 % for
the text-based system. This confirms that using more tree structure produces
search results that are perceived as more similar, a result also confirmed in the
recent NTCIR math retrieval tasks [1].

The second version Tangent was entered in the NTCIR-11 Math Main Task
[1] and the NTCIR-11 Wikipedia formula retrieval subtask [28]. Queries from
each task are shown in Fig. 9. The Main task had 50 combined formula and
text queries, for a subset of the arXiv containing 100,000 technical papers with
substantial mathematics broken up at paragraphs into 8.3 million segments,
treated as the documents for the task. Two human evaluators judged hits for
the main task to produce precision and related metrics. Tangent produced the
highest precision-at-5 measure (92 %), using a 50 % weighting for combining the
text and formula match scores.

The Wikipedia subtask was a query-by-expression task with 100 queries for
35,000 articles from Wikipedia [28]. This task used an automated evaluation pro-
tocol, ranking system by specific-item retrieval measures (e.g. the rank at which
the article from which query expressions are taken were located, and the num-
ber of exact matches returned in the top-k hits), without measures for relevance
or similarity. For the Wikipedia task, the formula retrieval engine matched the
highest top-1 score (68 %, obtained by three systems), and overall was amongst
the best performing systems in the competition, hampered primarily by queries
that contained a large fraction of wildcard symbols (e.g. ?

?). Considering the
manner in which keyword searches are often carried out using a small number
of concrete terms, to us it is unclear how frequently queries with a large number
of wildcards would be used in a practical setting vs. copying or creating con-
crete expressions for inclusion in queries. That said, we believe that re-ranking
initial results so that variable-variable relationships are not ignored can be used
to mitigate this issue.

32 R. Zanibbi and A. Orakwue

Fig. 10. Tangent: symbol pair-based layout representation in for two expressions

Fig. 11. User interface for evaluating image-based query-by-expression using handwrit-
ten queries [38]

4.3 Image-Based Formula Retrieval

For space we will cover this topic just briefly, but we believe that this is an
important future direction for research. Figure 11 shows an evaluation interface
for the first image-based handwritten math retrieval system [38].

In this system layout and contour features measured from an image of a
handwritten mathematical expression are used to search document images for

Math Search for the Masses 33

similar expressions. Formulae are indexed using X-Y cutting trees [20], with
Dynamic Time Warping of upper and lower image contours used to produce the
final ranking (adapting an earlier handwritten word spotting technique [24]). We
were very surprised that our first prototype allowed 10 participants to locate the
page from which handwritten queries were taken 63 % of the time in the top 10
on average (20 queries). If the original query images were used, then 90 % of the
original queries could be located in the top 10 results.

Related work is currently underway, using image-based retrieval of math in
lecture videos using snapshots [6] and handwritten queries [4].

5 Conclusion: Text + Diagram Search for the Masses

We have summarized our work on creating interfaces and search engines that
support math retrieval using the appearance of mathematical expressions. Our
aim in doing this is to help all persons, mathematical non-experts and experts, to
retrieve mathematical information naturally using the appearance of expressions,
in combination with keywords when appropriate.

A key direction for future research is the creation of intuitive, fast interfaces
for diagram copying, editing and inclusion in search queries. min has made a start
in this direction, but much remains to be done. Related to this, we believe that
an important future line of research is redefining the conventional text ‘search
box’ to include formulae directly.

Currently, spectral approaches to matching structure in trees appear to be
the most promising for appearance-based formula retrieval, such as that used in
Tangent. In addition to opportunities defined earlier, identifying ways to reduce
index sizes and accelerate retrieval will be important for producing engines
that will scale to very large collections, and ideally, internet search engine-scale
collections.

In closing, there have been many advances in Mathematical Information
Retrieval in recent years, and we believe that progress in searching for dia-
grammatic notations will dramatically alter the way in which people search for
technical information. It will allow queries to move from “documents with words
similar to these” to also include “documents with diagrams similar to these.”

Acknowledgements. We thank George Nagy, Maria Zemankova, Christian Viard-
Gaudin, Harold Mouchère, Frank Tompa and Andrew Kane for helpful discussions.
This material is based upon work supported by the National Science Foundation (USA)
under Grant Numbers IIS-1016815 and HCC-1218801.

References

1. Aizawa, A., Kohlhase, M., Ounis, I., Schubotz, M.: NTCIR-11 Math-2 task
overview. In: Proceedings of the 11th NTCIR Conference, Tokyo, Japan, pp. 99–
102, December 2014

34 R. Zanibbi and A. Orakwue

2. Baker, J.B., Sexton, A.P., Sorge, V.: A linear grammar approach to mathematical
formula recognition from PDF. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M.
(eds.) Calculemus/MKM 2009. LNCS, vol. 5625, pp. 201–16. Springer, Heidelberg
(2009)

3. Blostein, D., Zanibbi, R.: Processing mathematical notation. In: Doermann, D.,
Tombre, K. (eds.) Handbook of Document Image Processing and Recognition, pp.
679–702. Springer, London (2014)

4. Chatbri, H., Kwan, P.W., Kameyama, K.: A modular approach for query spotting
in document images and its optimization using genetic algorithms. In: Proceedings
of the IEEE Congress on Evolutionary Computation, Beijing, China, pp. 2085–
2092, July 2014

5. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program.
61(3), 190–10 (2006)

6. Davila, K., Agarwal, A., Gaborski, R., Zanibbi, R., Ludi, S.: AccessMath: Indexing
and retrieving video segments containing math expressions based on visual similar-
ity. In: Proceedings of the IEEE Western New York Image Processing Workshop,
Rochester, NY, pp. 14–17 (2013)

7. Davila, K., Ludi, S., Zanibbi, R.: Using off-line features and synthetic data for
on-line handwritten math symbol recognition. In: Proceedings of the Interna-
tional Conference Frontiers in Handwriting Recognition, Crete, Greece, pp. 323–
328 (2014)

8. Hiroya, H., Saito, H.: Partial-match retrieval with structure-reflected indices at
the NTCIR-10 math task. In: Proceedings of the NII Testbeds and Community for
Information Access Research, Tokyo, Japan, pp. 692–695, June 2013

9. Hu, L., Zanibbi, R.: HMM-based recognition of online handwritten mathemati-
cal symbols using segmental k-means initialization and a modified pen-up/down
feature. In: Proceedings of the International Conference Document Analysis and
Recognition, pp. 457–462 (2011)

10. Kamali, S., Tompa, F.W.: A new mathematics retrieval system. In: Proceedings of
the 19th ACM International Conference on Information and Knowledge Manage-
ment, CIKM 2010, pp. 1413–1416. ACM, New York (2010)

11. Kamali, S., Tompa, F.W.: Structural similarity search for mathematics retrieval.
In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM
2013. LNCS, vol. 7961, pp. 246–62. Springer, Heidelberg (2013)

12. Kohlhase, M., Sucan, I.: A search engine for mathematical formulae. In: Calmet,
J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–53.
Springer, Heidelberg (2006)

13. Lamport, L.: : A Document Preparation System. Addison-Wesley Reading,
MA (1986)

14. Landy, D., Goldstone, R.: Formal notations are diagrams: Evidence from a pro-
duction task. Mem. Cogn. 35(8), 2033–40 (2007)

15. Landy, D., Goldstone, R.: How abstract is symbolic thought? J. Exp. Psychol.
Learn. Mem. Cogn. 35(8), 720–33 (2007)

16. Lin, X., Gao, L., Hu, X., Tang, Z., Xiao, Y., Liu, X.: A mathematics retrieval
system for formulae in layout presentations. In: Proceedings of the ACM SIGIR,
pp. 697–706 (2014)

17. MacLean, S., Labahn, G.: A new approach for recognizing handwritten mathemat-
ics using relational grammars and fuzzy sets. Int. J. Doc. Anal. Recogn. (IJDAR)
16(2), 1–25 (2012)

Math Search for the Masses 35

18. Miller, B.R., Youssef, A.: Technical aspects of the digital library of mathematical
functions. Ann. Math. Artif. Intell. 38, 121–36 (2003)

19. Mouchére, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.: ICFHR 2014 competi-
tion on recognition of on-line handwritten mathematical expressions (CROHME
2014). In: Proceedings of the International Conference Frontiers in Handwriting
Recognition, Crete, Greece, pp. 791–796 (2014)

20. Nagy, G., Seth, S.: Hierarchical representation of optically scanned documents.
In: Proceedings of the Seventh International Conference on Pattern Recognition,
Montreal, Canada, pp. 347–349 (1984)

21. Nguyen, T.T., Hui, S.C., Chang, K.: A lattice-based approach for mathematical
search using formal concept analysis. Expert Syst. Appl. 39(5), 5820–8 (2012)

22. Pattaniyil, N., Zanibbi, R.: Combining TF-IDF text retrieval with an inverted
index over symbol pairs in math expressions: The Tangent math search engine at
NTCIR 2014. In: Proceedings of the 1st NII Testbeds and Community for Infor-
mation access Research (NTCIR), Tokyo, Japan (2014) (online, p. 8)

23. Pollanen, M., Wisniewski, T., Yu, X.: Xpress: A novice interface for the real-
time communication of mathematical expressions. In: Proceedings of the Workshop
Mathematical User-Interfaces, Linz, Austria, June 2007

24. Rath, T., Manmatha, R.: Word spotting for historical documents. Int. J. Doc.
Anal. Recogn. 9(2–4), 139–52 (2007)

25. Reichenbach, M., Agarwal, A., Zanibbi, R.: Rendering expressions to improve accu-
racy of relevance assessment for math search. In: Proceedings of the ACM SIGIR,
Gold Coast, Australia, pp. 851–854 (2014)

26. Sasarak, C., Hart, K., Pospesel, R., Stalnaker, D., Hu, L., LiVolsi, R., Zhu, S.,
Zanibbi, R.: min: a multimodal web interface for web search. In: Symp. Human-
Computer Interaction and Information Retrieval, Cambridge, MA, pp. (online, p.
4), Oct 2012

27. Schellenberg, T., Yuan, B., Zanibbi, R.: Layout-based substitution tree index-
ing and retrieval for mathematical expressions. In: Proceedings of the Document
Recognition and Retrieval XVIII, pp. OI:1–8 (2012)

28. Schubotz, M.: Challenges of mathematical information retrieval in the NTCIR-11
Math Wikipedia Task. In: Proceedings of the SIGIR (2015, to appear)

29. Smithies, S., Novins, K., Arvo, J.: A handwriting-based equation editor. In: Pro-
ceedings of the Graphics Interface, Kingston, ON, June 1999

30. Sojka, P., Ĺı̌ska, M.: Indexing and searching mathematics in digital libraries. In:
Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM
2011. LNCS, vol. 6824, pp. 228–43. Springer, Heidelberg (2011)

31. Pavan Kumar, P., Agarwal, A., Bhagvati, C.: A structure based approach for math-
ematical expression retrieval. In: Sombattheera, C., Loi, N.K., Wankar, R., Quan,
T. (eds.) MIWAI 2012. LNCS, vol. 7694, pp. 23–34. Springer, Heidelberg (2012)

32. Stalnaker, D., Zanibbi, R.: Math expression retrieval using an inverted index over
symbol pairs. In: Proceedings of the Document Recognition and Retrieval XXII.
Proc. SPIE, San Francisco, USA, vol. 9402, pp. 940207–1:12, Feb 2015

33. Suzuki, M., Kanahori, T., Ohtake, N., Yamaguchi, K.: An integrated OCR software
for mathematical documents and its output with accessibility. In: Miesenberger,
K., Klaus, J., Zagler, W.L., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp.
648–55. Springer, Heidelberg (2004)

34. Uchida, S., Nomura, A., Suzuki, M.: Quantitative analysis of mathematical docu-
ments. Int. J. Doc. Anal. Recogn. 7(4), 211–8 (2005)

36 R. Zanibbi and A. Orakwue

35. Wangari, K., Zanibbi, R., Agarwal, A.: Discovering real-world use cases for a mul-
timodal math search interface. In: Proceedings of the ACM SIGIR, Gold Coast,
Australia, pp. 947–950, July 2014

36. Youssef, A.S.: Methods of relevance ranking and hit-content generation in
math search. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 393–406. Springer, Hei-
delberg (2007)

37. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions.
Int. J. Doc. Anal. Recogn. (IJDAR) 15(4), 331–57 (2012)

38. Zanibbi, R., Yu, L.: Math spotting: Retrieving math in technical documents using
handwritten query images. In: Proceedings of the International Conference on Doc-
ument Analysis and Recognition, Beijing, China, pp. 446–451, September 2011

39. Zanibbi, R., Yuan, B.: Keyword and image-based retrieval of mathematical expres-
sions. In: Proceedings of the Document Recognition and Retrieval XVIII, pp.
78740I–78740I (2011)

40. Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical expressions using
tree transformation. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1455–1467
(2002)

41. Zanibbi, R., Novins, K., Arvo, J., Zanibbi, K.: Aiding manipulation of handwritten
mathematical expressions through style-preserving morphs. In: Proceedings of the
Graphics Interface, Ottawa, ON, June 2001

42. Zhao, J., Kan, M.Y., Theng, Y.L.: Math information retrieval: user require-
ments and prototype implementation. In: JCDL 2008: Proceedings of the 8th
ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 187–196. ACM, New
York (2008)

43. Zhu, S., Hu, L., Zanibbi, R.: Rotation-robust math symbol recognition and retrieval
using outer contours and image subsampling. In: Proceedings of the Document
Recognition and Retrieval XX, San Francisco, CA, pp. 5:1–5:12, Feb 2013

Calculemus

Towards Formal Fault Tree Analysis
Using Theorem Proving

Waqar Ahmad(B) and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{waqar.ahmad,osman.hasan}@seecs.nust.edu.pk

Abstract. Fault Tree Analysis (FTA) is a dependability analysis tech-
nique that has been widely used to predict reliability, availability and
safety of many complex engineering systems. Traditionally, these FTA-
based analyses are done using paper-and-pencil proof methods or com-
puter simulations, which cannot ascertain absolute correctness due to
their inherent limitations. As a complementary approach, we propose to
use the higher-order-logic theorem prover HOL4 to conduct the FTA-
based analysis of safety-critical systems where accuracy of failure analy-
sis is a dire need. In particular, the paper presents a higher-order-logic
formalization of generic Fault Tree gates, i.e., AND, OR, NAND, NOR,
XOR and NOT and the formal verification of their failure probability
expressions. Moreover, we have formally verified the generic probabilistic
inclusion-exclusion principle, which is one of the foremost requirements
for conducting the FTA-based failure analysis of any given system. For
illustration purposes, we conduct the FTA-based failure analysis of a
solar array that is used as the main source of power for the Dong Fang
Hong-3 (DFH-3) satellite.

Keywords: Higher-Order logic · Probabilistic analysis · Theorem prov-
ing · Satellite’s solar arrays

1 Introduction

With the increasing usage of engineering systems in safety-critical domains, their
dependability and failure analysis [1] has become a dire need to predict their
reliability, availability and safety. One of the most widely used dependability and
failure analysis techniques is the Fault Tree Analysis (FTA) method [2]. It is a
graphical technique consisting of internal nodes, which are represented by gates
like OR, AND and XOR, and the external nodes, that model the events which
are associated with the occurrence of faults in sub-systems or components of the
given system. The generic nature of these gates and events allows us to construct
an efficient and accurate fault tree (FT) model for any given system. This FT

The original version of this chapter was revised. The spelling of the author
Waqar Ahmad has been corrected. The erratum to this chapter is available at
DOI: 10.1007/978-3-319-20615-8 28

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 39–54, 2015.
DOI: 10.1007/978-3-319-20615-8 3

http://dx.doi.org/10.1007/978-3-319-20615-8_28

40 W. Ahmad and O. Hasan

can in turn be used to investigate the potential causes of a fault occurrence
in a system and the calculation of minimal number of events that contribute
towards the occurrence of a top event, i.e., a critical event, which can cause the
whole system failure upon its occurrence. Some noteworthy applications of FTA
include the failure analysis of transportation systems [3], healthcare systems [4]
and aerospace systems [5].

Traditionally, FTA is carried out by using paper-and-pencil proof methods,
computer simulations and computer algebra systems. The first step in the paper-
and-pencil proof methods is the construction of the FT of the given system on a
paper. This is followed by the identification of the Minimal Cut Set (MCS) failure
events, which contribute in the occurrence of the top event. These MCS failure
events are generally modeled in terms of the exponential or weibull random
variables and the Probabilistic Inclusion-Exclusion (PIE) principle [6] is then
used to evaluate the exact probability of failure of the given system. However,
this method is prone to human errors when it comes to the MCS and failure
probability assessment of large safety-critical systems. For instance, in nuclear
plants, where a fault tree model involves 50 to 130 levels of logic gates between
the top event and the lowest basic events that are contributing to the top event
[7]. So, there is a possibility, that many of these basic failure events may be
overlooked while calculating MCS and thus not further incorporated in the FTA,
which may lead to erroneous designs.

The FTA-based computer simulators, such as Relia-Soft [8] and ASENT Reli-
ability analysis tools [9], provide graphical editors for the construction of FTs
and the analysis is carried out by generating samples from the exponential and
Weibull random variables that are associated with the events of the FT. These
samples are then processed to evaluate the reliability and the failure probabil-
ity of the complete system using computer arithmetic and numerical techniques.
Although, these tools provide a more scalable alternative to the paper-and-pencil
proof methods but the computational requirement increases drastically as the
size of the FT increases. For example, if there are q terms involves in the MCS
of a given FT then the total number of terms in the corresponding PIE principle
will be 2q − 1. In addition, these tools cannot ascertain absolute correctness or
error-free analysis because of the involvement of pseudo random numbers and
numerical methods and the inherent sampling-based nature of simulation.

Similarly, computer algebra systems (CAS), such as Mathematica [10], pro-
vide extensive features for FT-based failure analysis. For instance, the MCS
expressions for any given system can be validated with failure distributions,
such as Exponential or Weibull, by using symbolic and numerical algorithms.
However, due to the presence of these unverified simplification algorithms, the
analysis provided by CAS cannot be termed as sound and accurate.

Formal methods can overcome the above-mentioned inaccuracy limitations
of the traditional techniques and thus have been used for FTA. The Interval
Temporal Logic (ITS), i.e., a temporal logic that supports first-order logic, has
been used, along with the Karlsruhe Interactive Verifier (KIV), for formal FTA
of a rail-road crossing [11]. The work presented in [12] describes a deductive

Towards Formal Fault Tree Analysis Using Theorem Proving 41

method for FT construction, in contrast to the intuitive approach followed in
[11], by using the Observational Transition Systems (OTS) [12] and then the
formal analysis of this FT is carried out using CafeOBJ [13], which is a formal
specification language with interactive verification support. One of the main lim-
itations of all the above-mentioned formal methods based works is the inability
to conduct a probability theoretic FTA. The COMPASS tool-set [14], which is
developed at RWTH Achen University in collaboration with the European Space
Agency (ESA), caters for this problem and supports the formal FTA specifically
for aerospace systems using the NuSMV and MRMC model checkers. However,
the scope of these tools is somewhat limited in terms of handling failure analysis
of large FTs, due to the inherent state-space explosion problem of model check-
ing, and the fact that the computation of probabilities in these methods involve
numerical methods, which compromises the accuracy of the results.

An accurate MCS calculation and exact failure probability assessment in the
FTA is very important specially while dealing with safety-critical systems used in
domains like transportation, aerospace or medicine. In order to achieve an accu-
rate and precise FTA, we propose to conduct the formal FTA within the sound
core of a higher-order-logic theorem prover [15]. Higher-order logic provides a
precise deductive mechanism that can be used to model any mathematically
expressive behavior including recursive definitions, random variables, fault tree
events, which are the foremost building blocks for modeling FTs. Once the FTs
are modeled in higher-order logic, we can deduce an accurate MCS by using
formal reasoning based on the set-theoretic foundations. Moreover, FT proper-
ties, such as the probability of failure, can be formally verified using interactive
theorem provers based on the PIE principles.

The foremost requirement for reasoning about reliability and failure related
properties of a system in a theorem prover is the availability of the higher-
order-logic formalization of probability theory. Hurd’s formalization of measure
and probability theories [16] is a pioneering work in this regard. Building upon
this formalization most of the commonly-used continuous random variables [17]
and some reliability theory fundamentals [18] have been formalized using the
HOL theorem prover. However, Hurd’s formalization of probability theory [16]
only supports the whole universe as the probability space. This feature lim-
its its scope in many aspects [19] and one of the main limitations, related to
FTA-based analysis, is the nonability to reason about multiple continuous ran-
dom variables [17]. Some recent probability theory formalizations [19,20] allow
using any arbitrary probability space that is a subset of the universe and thus
are more flexible than Hurd’s formalization of probability theory. Particularly,
Mhamdi’s probability theory formalization [19], which is based on extended-real
numbers (real numbers including ±∞), has been recently used to reason about
the Reliability Block Diagram (RBD)-based analysis of a series pipelines struc-
ture [21], which involves multiple exponential random variables. The current
paper is mainly inspired from this development as we use Mhamdi’s formalized
probability theory [19] for the formalization of all the commonly used FTA gates
and the formal verification of their probabilistic properties. Moreover, we have

42 W. Ahmad and O. Hasan

also formally verified the PIE principle, which provides the foremost foundation
for formal reasoning about the accurate failure analysis of any FT.

In order to illustrate the effectiveness of the proposed FTA approach, the
paper presents a formal failure analysis, by taking a FT model, of a solar array
that has been used in the DFH-3 Satellite, which was launched by the People’s
Republic of China on May 12, 1997 [5]. Solar arrays are one of the most vital
components of the satellites because the mission success heavily depends upon
the continuous reliable source of power [22]. Over the last ten years, 12 out of
the 117 satellite’s solar array anomalies, documented by the Airclaims Ascend
SpaceTrak database, led to the total satellite failure [22,23]. Thus the absolute
accuracy of the failure analysis of a solar array is a dire need in satellite missions
and, to the best of our knowledge, it is the novelty of the proposed technique to
meet this requirement. The satellite’s solar array is a mechanical system, which
mainly consists of various mechanisms, including: deployable, synchronization,
locking and orientation. The FT of the solar array contains the failure events
of these mechanisms and their interrelationships regarding the overall system
failure. The paper presents the higher-order-logic modeling of this FT and the
formal verification of the probability of failure of satellite’s solar array system
based on the probability of occurrence of the above-mentioned mechanism faults.

2 Probability Theory in HOL

In this section, we provide a brief overview of the HOL4 formalization of the
probability theory [19], which we build upon in this paper. Based on the mea-
sure theoretic foundations, a probability space is defined as a triple (Ω,Σ,Pr),
where Ω is a set, called the sample space, Σ represents a σ-algebra of subsets
of Ω, where the subsets are usually referred to as measurable sets, and Pr is a
measure with domain Σ and is 1 for the whole sample space. In the HOL4 proba-
bility theory formalization [19], given a probability space p, the functions space
and subsets return the corresponding Ω and Σ, respectively. Based on this
definition, all the basic probability axioms have been verified. Now, a random
variable is a measurable function between a probability space and a measurable
space, which essentially is a pair (S,A), where S denotes a set and A represents
a nonempty collection of sub-sets of S. A random variable is termed as discrete
if S is a set with finite elements and continuous otherwise.

The cumulative distribution function (CDF) is defined as the probability of
the event where a random variable X has a value less than or equal to some value
x, i.e., Pr(X ≤ x). This definition characterizes the distribution of both discrete
and continuous random variables and has been formalized [21] as follows:

� ∀ p X x. CDF p X x = distribution p X {y | y ≤ Normal x}
The function Normal takes a real number as its input and converts it to its
corresponding value in the extended-real data-type, i.e., it is the real data-type
with the inclusion of positive and negative infinity. The function distribution
takes three parameters: a probability space p, a random variable X and a set of

Towards Formal Fault Tree Analysis Using Theorem Proving 43

extended-real numbers and returns the probability of the given random variable
X acquiring all the values of the given set in probability space p.

The unreliability or the probability of failure F (t) is defined as the proba-
bility that a system or component will fail by the time t. It can be described in
terms of CDF, known as the failure distribution function, if the random variable
X represent a time-to-failure of the component. This time-to-failure random
variable X usually exhibits the exponential or weibull distribution.

The notion of mutual independence of n random variables is a major require-
ment for reasoning about the failure analysis of most of the FT gates. According
to this notion, if we have N mutually independent failure events then

Pr(
N⋂

i=1

Li) =
N∏

i=1

Pr(Li) (1)

This concept has been formalized as follows [21]:

� ∀ p L. mutual indep p L = ∀ L1 n. PERM L L1 ∧
1 ≤ n ∧ n ≤ LENGTH L ⇒
prob p (inter list p (TAKE n L1)) =

list prod (list prob p (TAKE n L1))

The function mutual indep accepts a list of events L and probability space p
and returns True if the events in the given list are mutually independent in
the probability space p. The predicate PERM ensures that its two list arguments
form a permutation of one another. The function LENGTH returns the length of
the given list. The function TAKE returns the first n elements of its argument
list as a list. The function inter list performs the intersection of all the sets
in its argument list of sets and returns the probability space if the given list of
sets is empty. The function list prob takes a list of events and returns a list of
probabilities associated with the events in the given list of events in the given
probability space. Finally, the function list prod recursively multiplies all the
elements in the given list of real numbers. Using these functions, the function
mutual indep models the mutual independence condition such that for any 1
or more events n taken from any permutation of the given list L, the property
Pr(

⋂N
i=1 Li) =

∏N
i=1 Pr(Li) holds.

3 Formalization of Fault Tree Gates

In this section, we describe a generic formalization of commonly used FT gates
given in Table 1. Our formalizations are generic in terms of the number of inputs
n, i.e., our definitions can be used to model arbitrary-input FT gates.

3.1 Formal Definitions of Fault Tree Gates

If the occurrence of the output failure event is caused by the occurrence of all the
input failure events then this kind of behavior can be modeled by using the AND

44 W. Ahmad and O. Hasan

Table 1. HOL4 formalization of fault tree gates

FT gate. The function AND FT gate, given in Table 1, models this behavior as
it accepts an arbitrary probability space p and returns the intersection of input
failure events, given in the list L, by using the recursive function inter list.

In the OR FT gate, the occurrence of the output failure event depends upon
the occurrence of any one of its input failure event. The function OR FT gate,
given in Table 1, models this behavior as it returns the union of the input failure
list L by using the recursive function union list. The NOR FT gate can be
viewed as the complement of the OR FT gate and its output failure event occurs
if none of the input failure event occurs.

The NAND FT gate models the behavior of the occurrence of an output
failure event when at least one of the failure events at its input does not occur.
This type of gate is used in FTs when the non-occurrence of the failure event in
conjunction with the other failure events causes the top failure event to occur.
This behavior can be expressed as the intersection of complementary and nor-
mal events [1], where the complementary events model the non-occurring failure
events and the normal events model occurring failure events. It is important
to note that the behavior of the NAND FT gate is usually not captured by
the complement of the AND FT gate in the FTA literature [1]. The function
NAND FT gate accepts a probability space p and two list of failure events L1 and
L2. The function returns the intersection of non-occurring failure events, which
in turn is modeled by passing the list of failure events L1 to the recursive func-
tion compl list, and occurring failure events, which are given in the list L2, by
utilizing the recursive function inter list. The function compl list returns a
list of events such that each element of this list is the difference between the
probability space p and the corresponding element of the given list.

The output failure event occurs in the 2-input XOR FT gate if only one,
and not both, of its input failure events occur. The HOL representation of the
behaviour of the XOR FT gate is presented in Table 1. The function NOT FT gate

Towards Formal Fault Tree Analysis Using Theorem Proving 45

accepts an arbitrary failure event A along with probability space p and returns
the complement to the probability space p of the given input failure event A.

3.2 Formal Verification of Failure Probability of Fault Tree Gates

The function AND FT gate, given in Table 1, can be used to evaluate the failure
probability of the output failure event of the AND FT gate. If Ai represents
the ith failure event with failure probability Fi at time t among the n mutually
independent failure events of the AND FT gate then the generic mathematical
expression for the failure probability of a n-input AND FT gate is as follows:

FAND gate(t) = Pr(
N⋂

i=2

Ai(t)) =
N∏

i=2

Fi(t) (2)

We formally verified this expression as the following theorem in HOL4:

Theorem 1. � ∀ p L. prob space p ∧
2 ≤ LENGTH L ∧ mutual indep p L ⇒

(prob p (AND gate p L) = list prod (list prob p L))

The first assumption ensure that p is a valid probability space based on the
probability theory in HOL4 [19]. The next two assumptions guarantee that the
list of failure events must have at least two failure event and the failure events
are mutually independent, respectively. The conclusion of the theorem represents
Eq. (2). The proof of Theorem 1 is primarily based on some probability theory
axioms and the mutual independence definition.

Similarly, if Ai represents the ith with failure event failure probability Fi at
time t among the n mutually independent failure events of an OR FT gate then
its failure probability expression is as follows:

FOR gate(t) = Pr(
N⋃

i=2

Ai(t)) = 1 −
N∏

i=2

(1 − Fi(t)) (3)

In order to formally verify the above equation, we first formally verify the
following lemma that provides an alternate expression for the failure probability
of an OR FT gate in terms of the failure probability of an AND FT gate:

Lemma 1. � ∀ L p. (prob space p) ∧
(∀ x’. MEM x’ L ⇒ x’ ∈ events p) ⇒

(prob p (OR gate L) =

1 - prob p (AND gate p (compl list p L))

Now, we can formally verify Eq. (3) in HOL4 as follows:

Theorem 2. � ∀ p L. (prob space p) ∧
(2 ≤ LENGTH L) ∧ (mutual indep p L) ∧
(∀ x’. MEM x’ L ⇒ x’ ∈ events p) ⇒
(prob p (OR gate L) =

1 - list prod (one minus list (list prob p L)))

46 W. Ahmad and O. Hasan

Where the function one minus list accepts a list of real numbers
[x1, x2, · · · , xn] and returns the list of real numbers such that each element
of this list is 1 minus the corresponding element of the given list, i.e., [1−x1, 1−
x2, · · · , 1 − xn]. The proof of Theorem 2 is primarily based on Lemma 1 and
Theorem 1 along with the fact that given the list of n mutually independent
events, the complement of these n events are also mutually independent.

Similarly, we also verified the failure probability theorems for other FT gates,
given in Table 1, and the corresponding mathematical expressions and theorems
are given in Table 2. All these results are verified under the same assumptions
as the ones used in Theorems 1 and 2.

Table 2. Probability of failure of fault tree gates

The proof script [24] of the above-mentioned formalization is composed of
4000 lines of HOL script and took about 200 man-hours. The main outcome of
this exercise is that the definitions, given in Table 1, can be used to capture the
behavior of most of the FTs in higher-order logic and the Theorems of Table 2
can then be used in conjunction with the formalization of the PIE principle,
explained next, to formally verify the corresponding failure probabilities.

4 Formalization of Probabilistic Inclusion-Exclusion
Principle

The probabilistic inclusion-exclusion principle (PIE) forms an integral part of
the reasoning involved in verifying the failure probability of a FT. In FTA,
firstly all the basic fault events are identified that can cause the occurrence
of the system failure event. These fault events are then combined to model

Towards Formal Fault Tree Analysis Using Theorem Proving 47

the overall fault behavior of the given system by using the fault gates. These
combinations of basic failure events, called cut sets, are then reduced to minimal
cut sets (MCS) by using some set-theory rules, such as idempotent, associative
and commutative [25]. At this point, the PIE principle is used to evaluate the
overall failure probability of the given system based on the MCS events.

If Ai represent the ith basic failure event or a combination of failure event
then the failure probability of the given system can be expressed in terms of the
probabilistic inclusion-exclusion principle as follows:

P(
n⋃

i=1

Ai) =
∑

t�={},t⊆{1,2,...,n}
(−1)|t|+1

P(
⋂

j∈t

Aj) (4)

The above equation can be formalized in HOL4 is as follows:

Theorem 3. � ∀ p L1 L2. prob space p ∧
(∀ x. MEM x L ⇒ x ∈ events p) ⇒

(prob p (union list L) =

sum set {t | t ⊆ set L ∧ t 	= {} }
(λt. -1 pow (CARD t + 1) * prob p (BIGINTER t)))

The assumptions of the above theorem are the same as the ones used in The-
orem 1. The function sum set takes an arbitrary set s with element of type α
and a real-valued function f . It recursively sums the return value of the func-
tion f , which is applied on each element of the given set s. In the above the-
orem, the set s is represented by the term {x|C(x)} that contains all the val-
ues of x, which satisfy condition C. Whereas, the λ abstraction function (λ
t. -1 pow (CARD t + 1) * prob p (BIGINTER t))models (−1)|t|+1

P(
⋂

j∈t Aj), such
that the functions CARD and BIGINTER return the number of elements and the
intersection of all the elements of the given set, respectively. Thus, the conclusion
of the theorem represents Eq. (4).

The formal reasoning about Theorem 3 is based upon the following lemma:

Lemma 2. � ∀ P. (∀ n. (∀ m. m < n ⇒ P m) ⇒ P n) ⇒ ∀ n. P n

Where n in our case is the length of the list L and m represent another list
whose length is less then the length of the list L. The predicate P represents the
conclusion of Theorem 3. The above property brings an important hypothesis in
the assumption list, which has the same form as that of the conclusion of Theo-
rem 3. Then, by utilizing induction and some properties of the function sum set
along with some fundamental axioms of probability, we can verify Theorem 3.

The proof script [24] for Theorem 3 is composed of 1000 lines of HOL code and
involved 50 man-hours of proof effort. To the best of our knowledge, this is the
first formal verification of the probabilistic inclusion exclusion principle, which,
besides being used in FTA, is a widely used mathematical result in analyzing
various bio-informatics [26] and telecommunication [27] systems.

48 W. Ahmad and O. Hasan

5 Application: Satellite’s Solar Array

The solar arrays used in satellite missions are usually in a folded position during
the launch phase [5]. Once the satellite is deployed in the corresponding orbit
then the solar arrays are unfolded and the goal is to keep them oriented towards
the sun all the time to maximize the power generation for the satellite [5]. The
faults in the solar array are mainly caused by the mechanical components that
drive these mechanisms associated with the driving, deployment, synchroniza-
tion, locking and orientation. For example, the solar array is usually driven by
using a torsion spring [5]. Whereas, the closed cable loop (CCL) and the stepping
or servo motors are used during the synchronization and orientation phases [5].
A FT can thus be constructed by considering the faults in these mechanical com-
ponents, which are the fundamental causes of satellite’ solar array mechanisms
failure The FT for the solar array of the DFH-3 Satellite that was launched by
the People’s Republic of China on May 12, 1997 [28] is depicted in Fig. 1 and we
formally analyze this FT in this paper.

The failure events, A, B, C, D in Fig. 1, represent the failures in the unlock
mechanism, deployment process, locking process and orientation process, respec-
tively. Whereas, the failure event E represents the failures in the corresponding
mechanical parts of the system. These failure events are combined either by
using the OR or AND FT gates by considering the behavior of the faults.

In order to formalize the solar array FT of Fig. 1, we first present the formal
modeling of list of failure events that are associated with each corresponding
fault of the solar array FT.

Definition 1. � ∀ p x. fail event list p [] x = [] ∧
∀ p x h t. fail event list p (h::t) x =

PREIMAGE h {y | y ≤ Normal x } ∩ p space p ::

fail event list p t x

The function fail event list accepts a probability space p, a list of random
variables, representing the failure time of individual components, and a real
number x, which represents the time index at which the failure of the component
occurs. It returns a list of events, representing the failure of all the individual
components at time x. The formal definitions of FT gates, given in Sect. 3, along
with Definition 1 can be utilized to formally represent the FT of satellite’s solar
array in terms of its cut-set failure events. The HOL4 formalization of satellite’s
solar array FT is as follows:

Definition 2. � ∀ p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x12 x13 x14 t.

Solar FT p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 t =

OR FT gate [OR FT gate (fail event list p [x1; x2] t);

OR FT gate [OR FT gate (fail event list p [x3; x4] t);

AND FT gate p (fail event list p [x5; x6] t); OR FT gate

(fail event list p [x3; x7; x8] t)];

OR FT gate (fail event list p [x3; x9] t);

OR FT gate (fail event list p [x10; x11] t);

Towards Formal Fault Tree Analysis Using Theorem Proving 49

OR FT gate [PREIMAGE x12 {y | y ≤ Normal t };
PREIMAGE x13 {y | y ≤ Normal t };
OR FT gate (fail event list p[x3; x14]t)]]

Fig. 1. FT of the Solar Array of the DFH-3 Satellite [5]

Where the random variables x1−x14 model the time-to-failure of the solar array
processes and components as depicted in Fig. 1. However, the cut-set failure
events in the above definition is not minimal [5], i.e., there are some redundant
failure events. For example, x3 is part of more than one OR FT gates. These
kind of redundant failure events can be removed by verifying an accurate equiv-
alent but reduced representation, i.e., the MCS, by using set theory laws, like
idempotent, commutative and associative, as follows:

Lemma 2. � ∀ p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 t.

prob space p ⇒
(Solar FT p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 t =

OR FT gate [OR FT gate (fail event list p [x1; x2; x3; x4] t);

AND FT gate p (fail event list p [x5; x6] t);

OR FT gate

(fail event list p [x7; x8; x9; x10; x11; x12; x13; x14]t)])

50 W. Ahmad and O. Hasan

We consider that random variables, associated with the failure events of the
solar array FT, exhibit the exponential distribution, which can be formalized in
HOL4 as follows:

Definition 3. � ∀ p X l. exp dist p X l =

∀ x. (CDF p X x = if 0 ≤ x then 1 - exp (-l * x) else 0)

The function exp dist guarantees that the CDF of the random variable X is
that of an exponential random variable with a failure rate l in a probability
space p. We classify a list of exponentially distributed random variables based
on this definition as follows:

Definition 4. � ∀ p L. list exp p [] L = T ∧
∀ p h t L. list exp p (h::t) L =

exp dist p (HD L) h ∧ list exp p t (TL L)

The function list exp accepts a list of failure rates, a list of random variables
L and a probability space p. It guarantees that all elements of the list L are
exponentially distributed with the corresponding failure rates, given in the other
list, within the probability space p. For this purpose, it utilizes the list functions
HD and TL, which return the head and tail of a list, respectively. Now, the failure
probability of satellite’s solar array can be verified as the following theorem:

Theorem 4. � ∀ p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 t c1

c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14.

(0 ≤ t) ∧ (prob space p) ∧
(∀ x’. MEM x’ (fail event list p

([x1; x2; x3; x4; x5;

x6; x6; x7; x8; x9; x10; x11; x12; x13; x14]) t)) ⇒ x’ ∈ events p) ∧
(mutual indep p ((fail event list p

([x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12; x13; x14]) x))) ∧
list exp p

([c1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12; c13; c14])

([x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12; x13; x14]) ⇒
(prob p (Solar FT p

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 t) =

(1 - (exp -(t*(list sum [c1;c2;c3;c4])))) +

list prod(one minus exp t [c5;c6;c7]) +

(1 - (exp -(t*(list sum

[c7; c8; c9; c10; c11; c12; c13; c14])))) -

(1 - list prod(one minus exp prod t

[[c1;c5;c6];[c2;c5;c6];[c3;c5;c6];[c4;c5;c6]])) -

(1 - (exp -(t*(list sum [c1;c2;c3;c4])))) *

(1 - (exp -(t*(list sum

[c7; c8; c9; c10; c11; c12; c13; c14])))) -

(1 - list prod(one minus exp prod t

[[c5;c6;c7];[c5;c6;c8];[c5;c6;c9];[c5;c6;c10];

[c5;c6;c11];[c5;c6;c12];[c5;c6;c13];[c5;c6;c14]])) +

(1 - list prod(one minus exp prod t

[[c1;c5;c6];[c2;c5;c6];[c3;c5;c6];[c4;c5;c6]])) *

Towards Formal Fault Tree Analysis Using Theorem Proving 51

(1 - (exp -(t*

(list sum [c7; c8; c9; c10; c11; c12; c13; c14])))))

The first assumption ensures the variable t that models time can acquire positive
values only. The second assumption ensure that p is a valid probability space
based on the probability theory in HOL4 [29]. The next two assumptions ensure
that the events corresponding to the failures modeled by the random variables
x1 to x14 are valid events from the probability space p and they are mutually
exclusive. Finally, the last assumption characterizes the random variables x1 to
x14 as exponential random variables with failure rates c1 to c14, respectively.
The conclusion of the Theorem 4 represents the failure probability of the given
solar array in terms of the failure rates of its components as follows:

(1 − e−(c1+c2+c3+c4)t) +
6∏

i=5

(1 − e−(cit))+

(1 − e−(c7+c8+c9+c10+c11+c12+c13+c14)t) − (1 −
4∏

i=1

(1 −
6∏

j=5

[(1 − e−cit)(1 − e−cjt)]))−

(1 − e−(c1+c2+c3+c4)t) ∗ (1 − e−(c7+c8+c9+c10+c11+c12+c13+c14)t)−

(1 −
14∏

i=7

(1 −
6∏

j=5

[(1 − e−cit)(1 − e−cjt)]))+

(1 −
4∏

i=1

(1 −
6∏

j=5

[(1 − e−cit)(1 − e−cjt)])) ∗ (1 − e−(c7+c8+c9+c10+c11+c12+c13+c14)t)

(5)

where the function exp represents a exponential function, the function list sum
is used to sum all the element of the given list of failure rates, the function
one minus exp accepts a list of failure rates and returns a one minus list of expo-
nentials and the function one minus exp prod accepts a two dimensional list of
failure rates and returns a list with one minus product of one minus exponentials
of every sub-list. For example, one minus exp prod[[c1; c2; c3]; [c4; c5]; [c6; c7; c8]]
x = [1 − ((1 − e−(c1)x) ∗ (1 − e−(c2)x) ∗ (1 − e−(c3)x)); (1 − (1 − e−(c4)x) ∗ (1 −
e−(c5)x)); (1 − (1 − e−(c6)x) ∗ (1 − e−(c7)x) ∗ (1 − e−(c8)x))].

The proof of the above theorem utilizes the failure probabilities of AND
and OR FT gates, given in Table 2, along with Lemma 2 and Theorem 3 and
some fundamental facts and axioms of probability theory. Due to the universally
quantified variables in Theorem 3, the proof of Theorem 4 is quite straight-
forward (about 800 lines of HOL code) as compared to that of Theorem 3. The
distinguishing features of the formally verified Theorem 4 includes its generic
nature, i.e., all the variables are universally quantified and thus can be specialized
to obtain the failure probability for any given failure rates, and its guaranteed
correctness due to the involvement of a sound theorem prover in its verification,
which ensures that all the required assumptions for the validity of the result are
accompanying the theorem.

A fuzzy reasoning Petri Net (FRPN), which is a combination of fuzzy logic
[30] and Petri Nets [31], based failure analysis for the above-mentioned solar

52 W. Ahmad and O. Hasan

array is presented in [5]. In this work, the FT of Fig. 1 is first represented as a
Petri Net such that the gates are represented by transitions and the failure events
are modeled as places. The possibility of fault occurrence is then evaluated by
using fuzzy degree of truth on the basis of petri nets transitions. However, the
truth degree values evaluated using these FRPN models cannot be regarded as
precise and sound as the formally verified expression using the HOL theorem
prover due to the involvement of numerical techniques and pseudo randomness.
On the other hand, our analysis result, i.e., Theorem 4, is based on a probabil-
ity theoretic formal reasoning, verified in a sound theorem prover and is valid
for all possible values of the failure rates. These features constitute the main
motivations of the work presented in this paper.

6 Conclusion

The accuracy of failure analysis is a dire need for safety and mission-critical
applications, where an incorrect failure analysis may lead to disastrous situations
including the loss of human lives or heavy financial setbacks. In this paper,
we presented an accurate FTA approach, based on higher-order-logic theorem
proving, to tackle the analysis of such critical systems. In particular the paper
presents a formalization of commonly used FT gates and the PIE principle, which
are the foremost foundations for formal reasoning about FTA within a sound core
of theorem prover. As a case-study, the paper also presents the formal failure
analysis of a satellite’s solar array.

Building upon the results, presented in this paper, other FT gates, such as
priority AND and voting OR gate, can also be formally modeled and thus the
scope of FTA-based formal reliability analysis [32] can be further enhanced.
Some interesting real-world applications that can benefit from our work include
transportation systems [3], healthcare systems [4] and avionics [33]. Moreover,
we also plan to further facilitate the formal FT-based failure analysis by incor-
porating the automatic simplification capabilities of CAS, such as Mathmatica,
for MCS calculation. This obtained MCS can then be validated within the sound
environment of the HOL theorem prover.

References

1. IEC: International Electrotechnical Commission, 61025 Fault Tree Analysis (2006)
2. Roberts, N.H., Vesely, W.E.: Fault Tree Handbook. Government Printing,

Washington (1987)
3. Huang, H.Z., Yuan, X., Yao, X.S.: Fuzzy fault tree analysis of railway traffic safety.

In: Conference on Traffic and Transportation Studies, American Society of Civil
Engineers, pp. 107–112 (2000)

4. Hyman, W.A., Johnson, E.: Fault tree analysis of clinical alarms. J. Clin. Eng.
33(2), 85–94 (2008)

5. Wu, J., Yan, S., Xie, L.: Reliability analysis method of a solar array by using
fault tree analysis and fuzzy reasoning Petri net. Acta Astronaut. 69(11), 960–968
(2011)

Towards Formal Fault Tree Analysis Using Theorem Proving 53

6. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer
Science Applications, 2nd edn. Wiley, New York (2002)

7. Epstein, S., Rauzy, A.: Can we trust PRA? Reliab. Eng. Syst. Saf. 88(3), 195–205
(2005)

8. ReliaSoft (2015). http://www.reliasoft.com/
9. ASENT (2015). https://www.raytheoneagle.com/asent/rbd.htm

10. Long, W., Sato, Y., Horigome, M.: Quantification of sequential failure logic for
fault tree analysis. Reliab. Eng. Syst. Saf. 67(3), 269–274 (2000)

11. Ortmeier, F., Schellhorn, G.: Formal Fault Tree Analysis-Practical Experiences,
vol. 185, pp. 139–151. Elsevier, Amsterdam (2007)

12. Xiang, J., Futatsugi, K., He, Y.: Fault tree and formal methods in system safety
analysis. In: Computer and Information Technology, pp. 1108–1115. IEEE (2004)

13. Futatsugi, K., Nakagawa, A.T., Tamai, T.: CAFE: An Industrial-Strength Alge-
braic Formal Method. Elsevier, Amsterdam (2000)

14. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009)

15. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, Cambridge (2009)

16. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, University
of Cambridge, UK (2002)

17. Hasan, O., Tahar, S.: Formalization of continuous probability distributions. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 3–18. Springer,
Heidelberg (2007)

18. Abbasi, N., Hasan, O., Tahar, S.: An approach for lifetime reliability analysis using
theorem proving. J. Comput. Syst. Sci. 80(2), 323–345 (2014)

19. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 387–402. Springer, Heidelberg (2010)

20. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: Eekelen,
M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp.
135–151. Springer, Heidelberg (2011)

21. Ahmed, W., Hasan, O., Tahar, S., Hamdi, M.S.: Towards the formal reliability
analysis of oil and gas pipelines. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 30–44. Springer,
Heidelberg (2014)

22. Brandhorst Jr., H.W., Rodiek, J.A.: Space Solar Array Reliability: A Study and
Recommendations, vol. 63, pp. 1233–1238. Elsevier, Amsterdam (2008)

23. Airclaims Ascend Spacetrak Database (2015). www.ascendspacetrak.com/Home
24. Ahmad, W.: Formal fault tree analysis of Satellite’s Solar Array (2015). http://

save.seecs.nust.edu.pk/projects/fta.html
25. Halmos, P.R.: Naive Set Theory. Springer, Heidelberg (1960)
26. Todor, A., Gabr, H., Dobra, A., Kahveci, T.: Large scale analysis of signal reach-

ability. Bioinformatics 30(12), 96–104 (2014)
27. Gao, F., Liu, X., Liu, H.: A rapid algorithm for computing ST reliability of radio-

communication networks. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007,
Part II. LNCS (LNAI), vol. 4693, pp. 167–174. Springer, Heidelberg (2007)

28. Jianing, W., Shaoze, Y.: Reliability analysis of the solar array based on fault tree
analysis. J. Phys. 305, 012006 (2011). IOP Publishing

http://www.reliasoft.com/
https://www.raytheoneagle.com/asent/rbd.htm
www.ascendspacetrak.com/Home
http://save.seecs.nust.edu.pk/projects/fta.html
http://save.seecs.nust.edu.pk/projects/fta.html

54 W. Ahmad and O. Hasan

29. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the Lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 387–402. Springer, Heidelberg (2010)

30. Zadeh, L.A.: Toward a Theory of Fuzzy Information Granulation and its Centrality
in Human Reasoning and Fuzzy Logic, vol. 90. Elsevier, Amsterdam (1997)

31. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall,
Englewood Cliffs (1981)

32. Volkanovski, A., Čepin, M., Mavko, B.: Application of the fault tree analysis for
assessment of power system reliability. Reliab. Eng. Syst. Saf. Elsevier 94(6), 1116–
1127 (2009)

33. Lefebvre, A., Simeu-Abazi, Z., Derain, J.P., Glade, M., et al.: Diagnostic of the
avionic equipment based on dynamic fault tree. In: IFAC-CEA Conference (2007)

Optimizing a Certified Proof Checker
for a Large-Scale Computer-Generated Proof

Lúıs Cruz-Filipe(B) and Peter Schneider-Kamp

Department of Mathematics and Computer Science,
University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

{lcf,petersk}@imada.sdu.dk

Abstract. In recent work, we formalized the theory of optimal-size sort-
ing networks with the goal of extracting a verified checker for the large-
scale computer-generated proof that 25 comparisons are optimal when
sorting 9 inputs, which required more than a decade of CPU time and
produced 27 GB of proof witnesses. The checker uses an untrusted oracle
based on these witnesses and is able to verify the smaller case of 8 inputs
within a couple of days, but it did not scale to the full proof for 9 inputs.
In this paper, we describe several non-trivial optimizations of the algo-
rithm in the checker, obtained by appropriately changing the formaliza-
tion and capitalizing on the symbiosis with an adequate implementation
of the oracle. We provide experimental evidence of orders of magnitude
improvements to both runtime and memory footprint for 8 inputs, and
actually manage to check the full proof for 9 inputs.

1 Introduction

Sorting networks are hardware-oriented algorithms to sort a fixed number of
inputs using a predetermined sequence of comparisons between them. They are
built from a primitive operator – the comparator –, which reads the values on
two channels, and interchanges them if necessary to guarantee that the smallest
one is always on a predetermined channel. Comparisons between independent
pairs of values can be performed in parallel, and the two main optimization
problems one wants to addressed are: how many comparators do we need to sort
n inputs (the optimal size problem); and how many computation steps do we
need to sort n inputs (the optimal depth problem).

In previous work [2], we proposed a generate-and-prune algorithm to show
size optimality of sorting networks, and used it to show that 25-comparator
sorting networks have optimal size for 9 inputs. The proof was performed on a
massively parallel cluster and consumed more than 10 years of computational
time. During execution we recorded the results of successful search routines that
allowed for reduction of the search space, resulting in approx. 27 GB of witnesses.

Subsequently [5], we formalized the relevant theory of sorting networks in
Coq, therefrom extracting a certified checker able to confirm the validity of our
informal computer-generated proof. The checker bypasses the original search
steps by means of an untrusted oracle, implemented by reading the log file
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 55–70, 2015.
DOI: 10.1007/978-3-319-20615-8 4

56 L. Cruz-Filipe and P. Schneider-Kamp

produced by the original program, and could verify the proof for the smaller
case of 8 inputs, thereby constituting the first computer-validated proof of the
results in [6]. However, due to the much larger dimension of the oracle, veri-
fying the full proof for 9 inputs was estimated to require approx. 20 years of
(non-parallelizable) computation.

In this paper, we show how careful optimizations of the formalization result in
runtime improvement of several orders of magnitude, as well as drastic reductions
of the memory footprint for the checker. Throughout the paper, we benchmark
the impact of the individual improvements using the feasible case of 8 inputs,
until we are able to check the full proof for 9 inputs using around one week of
computation on a single thread on an Intel Xeon E5 clocked at 2.4 GHz with
64 GB of RAM.

Section 2 shortly introduces the basic of sorting networks, the generate-and-
prune algorithm from [2], and our formalization from [5] to the degree necessary
to understand the improvements. In Sect. 3 we change the checker algorithm
in the formalization in order to bring runtime down by at least an order of
magnitude, while we reduce memory footprint by a factor of 3 in Sect. 4. Further
substantial improvements to runtime and memory footprint are described in
Sects. 5 and 6, respectively. We conclude in Sect. 7 with a summary of the results
and an outlook to possible future work.

1.1 Related Work

The Curry–Howard correspondence states that every constructive proof of an
existential statement embodies an algorithm to produce a witness of the required
property. This correspondence has been made more precise by the development
of program extraction mechanisms for the most popular theorem provers. In this
paper, we focus on extracting a program from a Coq formalization, using the
mechanism described in [11].

Early experiments of program extraction from a large-scale formalization
that was built from a purely mathematical perspective showed however that it is
unreasonable to expect efficient program extraction as a side result of formalizing
textbook proofs [4]. In spite of that, one can actually develop mathematically-
minded formalizations that yield efficient extracted programs with only minor
attention to definitions [9,12]. This is in contrast with formalizations built with
extraction as a primary goal, such as those in the CompCert project [10], or with
strategies that potentially compromise the validity of the extracted program
(e.g. using imperative data structures as in [13]).

In this work we go one step further, and show that if the extracted program
does not perform well enough, we can optimize it by tweaking the formalization
without significantly changing it. The latter means less work reproving lemmas
and theorems and ensures that the formalization remains understandable, in
turn giving us confidence that we actually prove what we wish to prove.

Our contributions rely on the idea of an untrusted oracle [7,10], where the
extracted program checks the result of computations obtained through the ora-
cle. More specifically, we use an offline untrusted oracle, where computation and

Optimizing a Certified Proof Checker 57

checking are separated by logging the results of computations to a file. This
separation allows the use of massively parallel clusters for computation and the
cheap reuse of the results during the development of the formalization and the
checker. In particular, we capitalize on the ability to pre-process the computa-
tional results offline to optimize the checker.

This offline approach to untrusted oracles is found in work on termination
proofs [3,15], where the separation is necessary as informal proof tools and check-
ers are modular programs developed by different research units. The difference to
our work is the scale of the proofs: typical termination proofs have 10–100 proof
witnesses and total at most a few MB of data. Recent work mentions that prob-
lems were encountered when considering proofs of “several hundred megabytes”
[14]. In contrast, verifying the proof of size-optimality of sorting networks with
9 inputs uses nearly 70 million proof witnesses, totalling 27 GB of oracle data.

2 Background

We briefly summarize the key notions relevant to this work. The interested reader
is referred to [8] for a more extensive introduction to sorting networks, and to [2]
for a detailed description of the proof we verify.

A comparator network C with n channels and size k is a sequence of com-
parators C = (i1, j1); . . . ; (ik, jk), where each comparator (i�, j�) is a pair of
channels 1 ≤ i� < j� ≤ n. If C1 and C2 are comparator networks with n chan-
nels, then C1;C2 denotes the comparator network obtained by concatenating
C1 and C2. An input x = x1 . . . xn ∈ {0, 1}n propagates through C as fol-
lows: x0 = x, and for 0 < � ≤ k, x� is the permutation of x�−1 obtained by
interchanging x�−1

i�
and x�−1

j�
whenever x�−1

i�
> x�−1

j�
. The output of the net-

work for input x is C(x) = xk, and outputs(C) =
{
C(x)

∣
∣x ∈ {0, 1}n

}
. The

comparator network C is a sorting network if all elements of outputs(C) are
sorted (in ascending order). The zero-one principle [8] implies that a sorting
network also sorts sequences over any other totally ordered set, e.g. integers.
The image on the right depicts a sorting network on 4 channels,
consisting of 6 comparators. The channels are indicated as hor-
izontal lines (with channel 4 at the bottom), comparators are
indicated as vertical lines connecting a pair of channels, and input values prop-
agate from left to right. The sequence of comparators associated with a picture
representation is obtained by a left-to-right, top-down traversal. For example,
the network depicted above is (1, 2); (3, 4); (1, 4); (1, 3); (2, 4); (2, 3).

The optimal-size sorting network problem is about finding the smallest size,
S(n), of a sorting network on n channels. In 1964, Floyd and Knuth presented
sorting networks of optimal size for n ≤ 8 and proved their optimality [6].
For nearly fifty years there was no further progress on this problem, until we
established that S(9) = 25 [2] and, consequently, using a theoretical result
on lower bounds [16], that S(10) = 29. Currently, the best known bounds for
S(n) are:

58 L. Cruz-Filipe and P. Schneider-Kamp

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Upper bound for S(n) 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Lower bound for S(n) 0 1 3 5 9 12 16 19 25 29 33 37 41 45 49 53

Our proof relies on a program that checks that there is no sorting network
on 9 channels with only 24 comparators. The algorithm exploits symmetries in
comparator networks, in particular the notion of subsumption. Given two com-
parator networks on n channels Ca and Cb and a permutation π on {1, . . . , n},
we say that Ca subsumes Cb by π, and write Ca ≤π Cb, if there exists a permu-
tation π such that π(outputs(Ca)) ⊆ outputs(Cb). We will write simply Ca � Cb

to denote that Ca ≤π Cb for some π.
Subsumption is a powerful mechanism for reducing candidate sequences of

comparators when looking for sorting networks: if Ca and Cb have the same
size, Ca � Cb and there is a sorting network Cb;C of size k, then there also
is a sorting network Ca;C ′ of size k. This motivated the generate-and-prune
approach to the optimal-size sorting network problem: starting with the empty
network, alternately add one comparator in all possible ways and reduce the
result by eliminating subsumptions. More precisely, the algorithm iteratively
builds two sets Rn

k and Nn
k of n channel networks of size k. First, it initializes

Rn
0 to contain only the empty comparator network. Then, it repeatedly applies

two types of steps, Generate and Prune.

1. Generate: Given Rn
k , construct Nn

k+1 by adding one comparator to each ele-
ment of Rn

k in all possible ways.
2. Prune: Given Nn

k+1, construct Rn
k+1 such that every element of Nn

k+1 is sub-
sumed by an element of Rn

k+1.

The algorithm stops when a sorting network is found, in which case |Rn
k | = 1.

Soundness of the algorithm relies on the fact that Nn
k (and Rn

k) are complete
for the optimal size sorting network problem on n channels: if there exists an
optimal size sorting network on n channels, then there exists one of the form
C;C ′ for some C ∈ Nn

k (or C ∈ Rn
k), for every k.

Computationally, the big bottleneck is the pruning step, where to find
subsumptions we test all pairs of networks by looking at 9! ≈ 3.6 × 105

permutations – and at the peak the set N9
k contains around 1.8 × 107 networks,

so there are potentially 3.2 × 1014 tests. By extending generate-and-prune with
the optimizations and extensive parallelization described in [2], we were able to
show that S(9) = 25 in around three weeks of computation on 288 threads.

However, the same optimizations that made the program work made it less
trustworthy. Therefore, we formalized the soundness of generate-and-prune in
the theorem prover Coq with the goal of extracting a provenly correct checker of
the same result [5] to Haskell.1 In order to eliminate the search step in Prune, this

1 The choice of Haskell as target language is pragmatic: preliminary experiments sug-
gested that it was the fastest one for this project.

Optimizing a Certified Proof Checker 59

formalization is parameterized on an oracle, which produces triples 〈Ca, Cb, π〉
such that Ca ≤π Cb. This oracle is untrusted, so the checker will validate this
subsumption and discard it if it cannot do so; but using it allows us to remove
all search, while simultaneously making the number of tests linear in Nk

n , rather
than quadratic. It is implemented by reading the logs produced by the origi-
nal execution of generate-and-prune, in which all successful subsumptions were
recorded. They amount to a total of 27 GB, making this one of the largest
computer-generated proofs ever.

The formalization defines comparator to be a pair of natural numbers and
the type CN of comparator networks to be list comparator. We then specify
what it means for a comparator network to be a sorting network on n channels,
and show that this is a decidable predicate. The details of the formalization of
the theory of sorting networks can be found in [5]. The formalization itself is
available online at http://imada.sdu.dk/∼petersk/sn/.

This part of the formalization was developed closely following the mathemat-
ical sources. Yet several results yield meaningful extracted functions that will be
used in the development of the checker; for example, the result stating decidabil-
ity of whether a comparator network is a sorting network on n channels yields a
function sN dec such that sN dec n C evaluates to True iff C represents a sort-
ing network on n channels. In this sense, we are taking serious advantage of the
Curry–Howard isomorphism, unlike in the next stage, where we will implement
the checker in Coq and prove its soundness.

The implementation of generate-and-prune proceeds in several steps.We
translate Generate directly into Coq code, which we omit since it is straight-
forward and we will not discuss it further. As for Prune, we closely follow the
original pseudo-code in [2].2

Definition Oracle := list (CN * CN * (list nat)).

Function Prune (O:Oracle) (R:list CN) (n:nat)

{measure length R} : list CN := match O with

| nil => R

| cons (C,C’,pi) O’ => match (CN_eq_dec C C’) with

| left _ => R

| right _ => match (In_dec CN_eq_dec C R) with

| right _ => R

| left _ => match (pre_permutation_dec n pi) with

| right _ => R

| left A => match (subsumption_dec n C C’ pi’ Hpi) with

| right _ => R

| left _ => Prune O’ (remove CN_eq_dec C’ R) n

end end end end end.

Prune processes each subsumption 〈C,C ′, π〉 given by the oracle sequentially
and makes all the relevant checks: that C 	= C ′ (left extracts as True, right as

2 Throughout this presentation we will always show transcribed Coq code, which is
almost completely computational and preserved by extraction.

http://imada.sdu.dk/~petersk/sn/

60 L. Cruz-Filipe and P. Schneider-Kamp

False), that C ∈ R, that π represents a valid permutation, and that C ≤π C ′. If
all checks succeed, C ′ is removed from R, otherwise the subsumption is discarded.
For legibility, we write pi’ for the translation of π into our representation of
permutations, and Hpi for the proof term needed for the subsumption test.

Both Generate and Prune are proven to take complete sets of filters into
complete sets of filters, as well as to satisfy some aditional properties necessary
for the soundness of the algorithm. These functions are then incorporated in a
larger loop that applies them alternately. The code uses OGenerate, an optimized
version of Generate that removes some networks using known results about
redundant comparators that were implemented in the original algorithm and that
are easily shown to be sound [2,8]. This loop receives as inputs the number of
channels m and the number of iterations n, and returns an answer: (yes m k) if a
sorting network of size k was found; (no m k R) if a set R of comparator networks
of size k is constructed that is complete and contains no sorting network; or maybe
if an error occurs. The answer no contains some extra proof terms necessary for
the correctness proof. These are removed in the extracted checker, and since
they make the code quite complex to read, we replace them by below.

Fixpoint Generate_and_Prune (m n:nat) (O:list Oracle) : Answer :=

match n with

| 0 => match m with

| 0 => yes 0 0

| 1 => yes 1 0

| _ => no m 0 (nil :: nil) _ _ _

end

| S k => match O with

| nil => maybe

| X::O’ => let GP := (Generate_and_Prune m k O’) in match GP with

| maybe => maybe

| yes p q => yes p q

| no p q R _ _ _ => let GP’ := Prune X (OGenerate R p) p in

match (exists_SN_dec p GP’ _) with

| left _ => yes p (S q)

| right _ => no p (S q) GP’ _ _ _

end end end end.

Here Answer is the suitably defined inductive type of answers. The elimina-
tion over exists SN dec uses the fact that we can decide whether a set contains
a sorting network. Correctness of the result is shown in the two theorems below.
In these, the oracle O is universally quantified, reflecting that they hold regardless
of whether the oracle is giving right or wrong information.

Theorem GP_yes : forall m n O k, Generate_and_Prune m n O = yes m k ->

(forall C, sorting_network m C -> length C >= k) /\

exists C, sorting_network m C /\ length C = k.

Theorem GP_no : forall m n O R HR0 HR1 HR2,

Generate_and_Prune m n O = no m n R HR0 HR1 HR2 ->

forall C, sorting_network m C -> length C > n.

Optimizing a Certified Proof Checker 61

100 MB

200 MB

300 MB

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 1. Memory usage (MB/min) during the verification of the proof for 8 channels.

The extracted code for Generate and Prune is a function that takes two
natural numbers m and n and a list of oracles, applies generate-and-prune on
m channels for n iterations using the oracles, and returns yes m k or no m k
R. The soundness theorems guarantee that these answers have a mathematical
meaning.

3 Reducing Runtime of the Pruning Step

Figure 1 displays the memory usage during the validation of the proof for 8 chan-
nels. The exact values are immaterial, but we can very easily trace the execution
of the algorithm by noting that every upwards jump corresponds to Generate,
whereas the descending curve corresponds to Prune. The picture shows that
the three most costly iterations account for almost 90% of the execution time.
For 9 channels, there are four costly iterations, and the imbalance will be even
greater, as the differences in size between the sets N9

k are much more significant.
The biggest cost in the execution of the checker is in the pruning step, as

was already the case with the original, uncertified program. The use of the oracle
allows us to bypass the original search, but the algorithm is still very inefficient:
for every subsumption, it iterates through the set being pruned to verify that the
subsuming network is there and to remove it. Due to lazy evaluation in Haskell,
these verifications are made in a single pass; but execution time is still quadratic
on the number of generated networks.

In this section we take advantage of the offline nature of our oracle, and show
that we can greatly improve the algorithm using the fact that we already know
all the subsumptions we will make. Indeed, we need to do three things.

1. Check that all subsumptions are valid.
2. Remove all subsumed networks.
3. Check that all networks used in subsumptions are kept.

Each subsumption in step 1 is checked individually, so this step scales linearly
in the number of networks. The other two steps can be significantly improved.

3.1 Optimizing the Removal Step

In theory, step 2 could be substantially optimized by delaying the removals until
all subsumptions have been read: if we obtained the networks to be removed from

62 L. Cruz-Filipe and P. Schneider-Kamp

the oracle in the same order as we generate them in the checker, then we could
remove all subsumed networks with one single pass over the whole set, instead
of having to iterate through the set of networks for each subsumed network.

This is the first time that the symbiosis between the prune algorithm and
the implementation of the untrusted oracle becomes a key ingredient for opti-
mization. As we use an offline oracle [5], we can actually reorder the oracle
information to suit the needs of the checker with an efficient (untrusted) pre-
processor. An inspection of the definition of Generate shows that comparators
are added in lexicographic order, and we can pre-process the oracle information
such that the subsumptions are provided in the same order.

Then we can define a function remove all to complete step 2 in linear time
by simultaneously traversing the list of subsumed networks and the list of all
networks and removing all elements of the former from the latter.

3.2 Optimizing the Presence Check

Unfortunately, one cannot do a similar optimization to step 3 immediately, since
sorting the oracle information by the subsumed networks will yield an unsorted
sequence of subsuming networks. However, we can proceed in a different way:
rather than checking that the subsuming networks are kept at each step, only
check that they are present in the final (reduced) set. This will still be a quadratic
algorithm, but relative to the size of the final set – which, in the most time-
consuming steps, is only around 5% of the size of the original one.

This idea again requires an important change to the oracle implementation,
this time in the subsumptions presented by the oracle. As it happens, there are
often chains of subsumptions C1 � C2 � . . . � Cn, which pose no problem for
the original algorithm, but would result in a false negative result of the checker,
if we were to check the presence of the subsuming networks in the final set.
Consider e.g. C2, which is used to remove C3, but which is itself removed by C1.

However, we can benefit from the offline character of the oracle and use
the transitivity of subsumption to transform such chains of subsumptions into
“reduced” subsumptions C1 � C2, C1 � C3, . . . , C1 � Cn. This again requires
pre-processing the oracle information, identifying such chains and computing
adequate permutations for the new resulting subsumptions.

In order to achieve this, we implemented a data structure in the pre-processor
that we term a subsumption graph: a labeled directed graph whose nodes are
comparator networks, and where there is a edge from C ′ to C labeled by π if
C ≤π C ′. Once we have built the full graph for one pruning step, we can obtain
the reduced oracle information as follows: (i) find all non-empty paths in the
graph ending in a node without outgoing edges; (ii) starting with the identity
permutation, traverse each such path while composing the permutations on the
edges; (iii) the start- and end-node of each path, together with the resulting
permutation, describe one reduced subsumption. The oracle then provides the
reduced subsumptions instead of the original ones.

Optimizing a Certified Proof Checker 63

The formalized definitions for the improved pruning step now look as follows.
Functions oracle ok 1 and oracle ok 2 perform steps 1 and 3 above, and Prune
uses remove all to perform step 2.

Fixpoint oracle_ok_1 (n:nat) (O:Oracle) : bool := match O with

| nil => true

| (C,C’,pi) :: O’ => match (pre_permutation_dec n pi) with

| right _ => false

| left A => match (subsumption_dec n C C’ pi’ Hpi) with

| right _ => false

| left _ => oracle_ok_1 n O’

end end end.

Fixpoint oracle_ok_2 (O:Oracle) (R:list CN) : bool := match O with

| nil => true

| (C,_,_)::O’ => match (In_dec CN_eq_dec C R) with

| left _ => oracle_ok_2 O’ R

| right _ => false

end end.

Definition Prune (O:Oracle) (R:list CN) (n:nat) : list CN :=

match (oracle_ok_1 n O) with

| false => R

| true => let R’ := remove_all CN_eq_dec (map snd (map fst O)) R in

match (oracle_ok_2 O R’) with

| false => R

| true => R’

end end.

This approach is completely modular: after we reprove the lemmas regarding
the correctness of Prune, the proofs for the whole algorithm mostly go through
unchanged, and where tweaking of the proofs is necessary, the changes are trivial
and require no deep insights into the proofs.

3.3 Practical Impact on Runtime

With these optimizations, we essentially eliminate the dominating quadratic
step of the original algorithm. The presence check (step 3) is still quadratic, but
on such a smaller set of networks that the overall behaviour of the algorithm
becomes linear for practical purposes.

In the following table, we compare the runtime of the original implementaton
of the proof checker with the improved one presented in this section. We focus
on the case of 8 inputs, the largest case that we can systematically handle.

Configuration Original algorithm Improved algorithm

Runtime 1863 m 167 m

64 L. Cruz-Filipe and P. Schneider-Kamp

Clearly, we see an order of magnitude improvement for 8 inputs. We also ran the
first 10 pruning steps of 9 and infer an even larger improvement for 9 inputs,
bringing down the expected runtime from two decades to several months. The
much lower weight of Prune is patent in the new memory trace (Fig. 2).

4 Reducing Memory Footprint by Tuning the Extraction

The contributions of the previous section left us with a checker that was nearly
fast enough, but that had too large memory requirements due to reading all sub-
sumptions at once, rather than processing them one by one. Our attempts to run
the checker for 9 inputs quickly drained the available computing resources, and
we estimated that more than 200 GB of RAM would be needed. Profiling showed
that most of the memory was being taken up by lists and natural numbers – not
surprising, since the checker is producing millions of comparator networks. But
when, at the peak, we potentially need to store 18 million networks×15 com-
parators ×2 channels, the Peano representation of natural numbers in Coq is
extremely expensive, even with all numbers ranging from 0 to 8.

The most natural idea was to extract natural numbers to Haskell native types.
In general, this loses the guaranteed correctness of the extracted program; but
in this particular example it not pose significant risks, as natural numbers are
identifiers for channels and not objects with which to do computations. This
means that only five Haskell functions are needed: succ, (=), (<), (-) and max,
besides the recursor

(\ fO fS n -> if n==0 then (fO __) else fS (n-1))

(Function max is used only in the definition of predecessor, while {-} is used only
in the recursor.) Furthermore, they only operate on the numbers 0 to 8 (except
for succ, which goes up to 25), so it is easy to verify exhaustively that they are
correct. As a side-effect, we also need to extract booleans to the native Bool
type (which has exactly the same definition as extracting from the Coq type),
and since we do not use any functions on Bool this is also not a problem.

4.1 Practical Impact on Memory Usage

In the following table, we compare the memory usage of the extracted Peano
numerals (an algebraic data structure with constructors 0 and S) against several
native representations. Once again, we consider the case of 8 inputs.

1000 MB

2000 MB

3000 MB

0 20 40 60 80 100 120 140 160 180

Fig. 2. Memory usage (MB/min) verifying the proof for 8 channels, after optimizations.

Optimizing a Certified Proof Checker 65

Representation Peano naturals 64-bit integers 8-bit integers Enum

Memory usage (MB) 2536 844 1669 999

We clearly see that native 64-bit integers (int) take significantly less mem-
ory than the algebraic data structure for Peano numerals. Interestingly, other
datatypes perform worse: although enum or int8 in general use less memory than
int, the Haskell compiler keeps a small store of “reusable” integers in the heap.
This means that all comparators are pointers to the same location, whereas by
using int8 or enum they become different copies of the same number. For this
reason, int actually performs better, memory-wise, than either int8 or enum.

We also experimented using Haskell lists instead of extracted Coq lists, but
this does not help: these datatypes are isomorphic, and we still use a recursor
instead of pattern-matching.

5 Optimizing Data Structures

With all these optimizations in place, the task of checking the full proof for
9 inputs became just beyond reachable. Experiments that the memory con-
sumption for each iteration of generate-and-prune was linear on the number
of comparators in the subsumptions in the oracle; this allowed us to estimate
the total memory required at 80−90 GB. Likewise, the execution times for the
first 12 steps showed a linear dependency on the total number of generated nets
(which seemed reasonable and hard to improve, since we need to generate them
explicitly and then prune them) and a quadratic dependency on the size of the
pruned set (due to the check that all networks used in subsumptions are kept).
A rough estimate based on a least squares fit of the data yielded around four
months for the whole execution.

We therefore focused on more localized aspects of the formalization in order
to bring these requirements down and actually verify the complete proof. Our
decision on what constitutes “reasonable” is directly related to the available
resources: 500 h of computation on a computer with 64 GB of RAM memory. In
this section we focus on runtime.

5.1 Using Binary Search Trees to Decide Membership

The step that we felt was most inefficient was the verification in oracle ok 2,
where we iterate over all networks used in subsumptions and check that they
occur in the pruned set.

There are two reasons why the implementation of this step is not satisfactory.
First, since we are iterating over all subsumptions, we repeatedly test the same
network many times: at peak, there are about 20 times as many subsumptions
as networks in the pruned set. Secondly, these subsumptions are unordered, but
the list of pruned networks is ordered; however, since Coq lists do not have
direct access, we are still forced to look for them in linear time. This means that

66 L. Cruz-Filipe and P. Schneider-Kamp

this step takes time proportional to both the number of subsumptions and the
number of pruned networks, and is thus roughly quadractic on the latter.

Ideally, we would like to do something similar to the optimization of the
pruning step itself, where by ensuring the list of all networks and the list of
networks to be removed are ordered in the same way we can solve the problem
in linear time. However, the trick we used before is no longer applicable, since
we cannot change the order of the oracle.

Instead, we pursued the idea of sorting the networks used in subsumptions
(and removing duplicates as we do so). In order to do this efficiently, we changed
the data structure storing these networks, from a list to a search tree. This
required enriching our formalization with a type of binary trees and operations
for adding and retrieving the minimum element of such a tree.

In keep with the remainder of the formalization [5], we defined binary trees
without any restrictions, together with a predicate stating that a binary tree is a
search tree. This is similar to the formalization of binary trees in Chap. 11 of [1];
however, that formalization only considered trees over Coq integers, whereas we
formalize binary trees over an arbitrary type T over which we have a comparison
function. This straightforward generalization poses no difficulties.

Inductive BinaryTree (T:Type) : Type :=

nought : BinaryTree

| node : Tree -> BinaryTree -> BinaryTree -> BinaryTree.

We then define predicates BT in to test that an element occurs in a binary
tree, BT wf to check that a binary tree is a search tree, and the usual function
BT add to add an element to a tree. For efficiency, we also define a function
BT split that simultaneously computes the minimum element of a search tree
and the tree obtained by removing it.

Fixpoint BT_split (T:Type) (BT:BinaryTree T) (val:T) : T * BinaryTree :=

match BT with

| nought => (val,nought)

| node t nought R => (t,R)

| node t L R => let (t’,L’) := BT_split L val in (t’,node t L’ R)

end.

We show that the functions defined work correctly on search trees; in partic-
ular, any object of type BinaryTree built from nought by repeated application
of BT add satisfies BT wf. Then, we changed the implementation of oracle ok 1
to return also a binary tree, proved that this is a search tree containing all net-
works used in the subsumptions given by the oracle, and rewrote oracle ok 2
to run in only slightly superlinear time.

Fixpoint oracle_ok_2 (BT:BinaryTree CN) (R:list CN) := match BT,R with

| nought, _ => true

| _, nil => false

| _, C’ :: R’ => let (C,BT’) := (BT_split BT nil) in

match (OCN_eq_dec C C’) with

| left _ => oracle_test BT’ R’

Optimizing a Certified Proof Checker 67

| right _ => oracle_test BT R’

end end.

Some of the proofs in the pruning step required a bit of adaptation, since
they now rely on lemmas over BinaryTrees instead of lists, but the changes
were localized to this part of the formalization.

The recursive call in oracle ok 2 is on the remainder of the list, so the
total execution time depends on the length of this list and the depth of the
search tree BT. Before experimenting with the newly extracted program, we
exhaustively ran the oracle sources through a small Java program to check how
balanced the constructed search trees would be. The maximum depth is only 94
(corresponding to a very unbalanced tree, but much better than the previous
list), and for the two biggest sets of subsumptions we actually obtain trees of
depth 69, storing 848,914 networks, in one case, or 568,287, in the other.

5.2 Using Binary Search Trees for Subsumption Checking

The availability of binary trees unexpectedly opened the door to yet another
improvement in the program: the subsumption test itself. As we mentioned,
Lemma subsumption dec states that C ≤π C ′ is decidable, and the proof simply
proceeds by computing outputs(C) and outputs(C ′) and directly checking that
π(outputs(C)) ⊆ outputs(C ′). Since the number of outputs is fixed, this check
takes almost constant time (computing the outputs becomes slightly more time-
consuming as the networks grow bigger, but this is not noticeable), but on 9
channels the lists of outputs contain 512 elements, and again they have many
repetitions and are reasonably unordered.

Therefore, we experimented with reproving subsumption dec by storing the
computed outputs in a search tree rather than in a list. The impact on per-
formance was stunning: since the execution time was now dominated by the
validation of all the subsumptions, we were able to check the proof for 8 inputs
in less than half the time.

5.3 Practical Impact on Runtime

The following table summarizes the impact of the contributions in this section
on the verification of the proof for 8 inputs.

Configuration Original Tree-based presence check Everything tree-based

Runtime 126 m 111 m 48 m

Using trees for checking for the presence of subsuming networks has a moder-
ate impact on 8 inputs. However, this impact becomes greater as the number
of inputs grows: experiments with the initial pruning steps for 9 inputs gave

68 L. Cruz-Filipe and P. Schneider-Kamp

an estimated runtime reduction of 30%. Experiments suggest that using both
optimizations yields approx. 70% reduction of runtime on 9 inputs.

One might wonder whether we could not use search trees in the original for-
malization and gain a similar speedup. The answer is negative: the improvement
stems both from the numerous repetitions among the subsuming networks and
from their failure to be ordered. The generation step produces networks that are
both ordered and without repetitions, whence the result of storing them in a
search tree would be isomorphic to a list.

6 Gödelizing Comparators to Reduce Memory Footprint

At this point, the remaining bottleneck was memory, and we again shifted focus
from runtime to reducing the memory footprint. We decided to take advantage
of Haskell’s caching of small integers by using a Gödelization of comparators:
represent each comparator (a pair of natural numbers) by a single natural num-
ber, using the bijection ϕ(i, j) = 1

2j × (j − 1) + i. This happens to map very
nicely to the function all st comps described earlier, since the comparator (i, j)
is exactly the ϕ(i, j)-th element of all st comps n (as long as i, j < n).

We then defined a type OCN := list nat of optimized comparator net-
works and a mapping to CN. Using this mapping, it was possible to reimplement
Generate and Prune to run on lists of OCN, while reusing all the old theory
about comparator networks. From a formalization point of view, it was also the
most reasonable option, as it keeps a consistent theory of comparator networks
formalized according to intuition, and uses a more efficient representation only
for implementation purposes.

The following table compares memory usage of representing comparators by
a pair of int or by one Gödelized int, for the case of 8 inputs.

Comparators Explicit Gödelized

Memory usage (MB) 844 541

Assymptotically, this change reduces memory consumption to just over one half:
for each comparator we are now just storing one number instead of a pair of num-
bers. Again, experiments suggest that the improvement for 9 inputs is greater
than for the case detailed. There is some overhead of mapping from CN to OCN
to test subsumptions, but it is offset by an improvement in pruning times due
to testing for equality directly on OCN.

With all these optimizations in place, our checker was able to verify the
original proof of optimality of 25 comparators for sorting 9 inputs, using the
available proof witnesses. The verification took 163.8 h, or just under one week,
required a maximum of 50.05 GB of RAM, and returned the answer yes 9 25.
The formalization, extracted code and oracle source files (before and after pre-
processing) can be found at http://imada.sdu.dk/∼petersk/sn/.

http://imada.sdu.dk/~petersk/sn/

Optimizing a Certified Proof Checker 69

7 Conclusion

The contributions of Sects. 3–6 allowed us to run a formal validation of the proof
from [2] that 25 comparators suffice for sorting 9 inputs, using the formalization
of the theory of sorting networks described in [5].

We also showed that it is feasible to optimize extracted code without signif-
icantly changing the underlying formalized theory, and therefore the latter can
be developed without excessive concerns about the extracted code. Indeed, the
original formalization closely follows Knuth [8], with the new theoretical results
from [2] and a straightforward implementation of the algorithm therein proposed.
While this theory took three months to formalize, each of the changes described
in this paper required only around one day, as they amounted to changing local-
ized parts of the checker and reproving their properties. In other words, the
optimizations were obtained by concentrating on the computational aspects of
the checker without needing to worry about the underlying theory.

These results support our choice of an offline untrusted oracle for the original
formalization [5] as it allows for a nice separation between the development of
the theory and the optimization of the checker, as well as giving us the possibily
of exploring the interplay between the checker and oracle.

The cornerstone of our work is that having an offline oracle makes it possible
to validate such proofs much more efficiently by bypassing the search steps –
using the well-known principle that checking the correctness of a witness is usu-
ally much easier than finding it. We plan to test this principle and use our app-
roach to validate other search-intensive, large-scale computer-generated proofs.

Acknowledgements. We would like to thank Pierre Letouzey for suggesting and
helping with extracting to Haskell native types, Søren Haagerup for helping with pro-
filing, and Michael Codish for his support and his enthusiasm about sorting networks.

The authors were supported by the Danish Council for Independent Research,
Natural Sciences. Computational resources were generously provided by the Danish
Center for Scientific Computing.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Texts in Theoretical Computer Science. Springer, Heidelberg (2004)

2. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five compara-
tors is optimal when sorting nine inputs (and twenty-nine for ten). In: ICTAI 2014,
pp. 186–193. IEEE (2014)

3. Contejean, E., Courtieu, P., Forest, J., Pons, O.: Automated certified proofs with
CiME3. In: Schmidt-Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10, pp. 21–30. Schloss
Dagstuhl, Germany (2011)

4. Cruz-Filipe, L., Letouzey, P.: A large-scale experiment in executing extracted pro-
grams. Electron. Notes Comput. Sci. 151(1), 75–91 (2006)

5. Cruz-Filipe, L., Schneider-Kamp, P.: Formalizing size-optimal sorting networks:
extracting a certified proof checker. In: Proceedings of ITP 2015, LNCS, Springer
(2015, Submitted for Publication). CoRR. abs/1502.05209

http://arxiv.org/abs/1502.05209

70 L. Cruz-Filipe and P. Schneider-Kamp

6. Floyd, R.W., Knuth, D.E.: The Bose-Nelson sorting problem. In: Srivastava, J.N.
(ed.) A Survey of Combinatorial Theory, pp. 163–172. North-Holland, Amsterdam
(1973)

7. Fouilhe, A., Monniaux, D., Périn, M.: Efficient generation of correctness certificates
for the abstract domain of polyhedra. In: Logozzo, F., Fähndrich, M. (eds.) Static
Analysis. LNCS, vol. 7935, pp. 345–365. Springer, Heidelberg (2013)

8. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley, Redwood City (1973)

9. Krebbers, R., Spitters, B.: Computer certified efficient exact reals in Coq. In:
Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Cal-
culemus 2011. LNCS, vol. 6824, pp. 90–106. Springer, Heidelberg (2011)

10. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

11. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008)

12. O’Connor, R.: Certified exact transcendental real number computation in Coq. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp.
246–261. Springer, Heidelberg (2008)

13. Oury, N.: Observational equivalence and program extraction in the Coq proof
assistant. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 271–285.
Springer, Heidelberg (2003)

14. Sternagel, C., Thiemann, R.: The certification problem format. In: Benzmüller, C.,
Paleo, B.W. (eds.) UITP 2014. EPTCS, vol. 167, pp. 61–72. ACM Press, New York
(2014)

15. Thiemann, R.: Formalizing bounded increase. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 245–260. Springer, Heidelberg
(2013)

16. van Voorhis, D.C.: Toward a lower bound for sorting networks. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations. The IBM Research
Symposia Series, pp. 119–129. Plenum Press, New York (1972)

A First Class Boolean Sort in First-Order
Theorem Proving and TPTP

Evgenii Kotelnikov1(B), Laura Kovács1, and Andrei Voronkov2

1 Chalmers University of Technology, Gothenburg, Sweden
{evgenyk,laura.kovacs}@chalmers.se

2 The University of Manchester, Manchester, UK
andrei@voronkov.com

Abstract. To support reasoning about properties of programs operating
with boolean values one needs theorem provers to be able to natively deal
with the boolean sort. This way, program pro perties can be translated
to first-order logic and theorem provers can be used to prove program
properties efficiently. However, in the TPTP language, the input lan-
guage of automated first-order theorem provers, the use of the boolean
sort is limited compared to other sorts, thus hindering the use of first-
order theorem provers in program analysis and verification. In this paper,
we present an extension FOOL of many-sorted first-order logic, in which
the boolean sort is treated as a first-class sort. Boolean terms are indis-
tinguishable from formulas and can appear as arguments to functions. In
addition, FOOL contains if-then-else and let-in constructs. We define
the syntax and semantics of FOOL and its model-preserving translation
to first-order logic. We also introduce a new technique of dealing with
boolean sorts in superposition-based theorem provers. Finally, we discuss
how the TPTP language can be changed to support FOOL.

1 Introduction

Automated program analysis and verification requires discovering and proving
program properties. Typical examples of such properties are loop invariants or
Craig interpolants. These properties usually are expressed in combined theories
of various data structures, such as integers and arrays, and hence require reason-
ing with both theories and quantifiers. Recent approaches in interpolation and
loop invariant generation [10,12,14] present initial results of using first-order the-
orem provers for generating quantified program properties. First-order theorem
provers can also be used to generate program properties with quantifier alter-
nations [12]; such properties could not be generated fully automatically by any
previously known method. Using first-order theorem prover to generate, and not

L. Kovács—The first two authors were partially supported by the Wallenberg Acad-
emy Fellowship 2014, the Swedish VR grant D0497701, and the Austrian research
project FWF S11409-N23.
A. Voronkov—Partially supported by the EPSRC grant “Reasoning in Verification
and Security”.

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 71–86, 2015.
DOI: 10.1007/978-3-319-20615-8 5

72 E. Kotelnikov et al.

only prove program properties, opens new directions in analysis and verification
of real-life programs.

First-order theorem provers, such as iProver [11], E [18], and Vampire [13],
lack however various features that are crucial for program analysis. For example,
first-order theorem provers do not yet efficiently handle (combinations of) theo-
ries; nevertheless, sound but incomplete theory axiomatisations can be used in a
first-order prover even for theories having no finite axiomatisation. Another dif-
ficulty in modelling properties arising in program analysis using theorem provers
is the gap between the semantics of expressions used in programming languages
and expressiveness of the logic used by the theorem prover. A similar gap exists
between the language used in presenting mathematics. For example, a standard
way to capture assignment in program analysis is to use a let-in expression,
which introduces a local binding of a variable, or a function for array assignments,
to a value. There is no local binding expression in first-order logic, which means
that any modelling of imperative programs using first-order theorem provers at
the backend, should implement a translation of let-in expressions. Similarly,
mathematicians commonly use local definitions within definitions and proofs.
Some functional programming languages also contain expressions introducing
local bindings. In all three cases, to facilitate the use of first-order provers, one
needs a theorem prover implementing let-in constructs natively.

Efficiency of reasoning-based program analysis largely depends on how pro-
grams are translated into a collection of logical formulas capturing the program
semantics. The boolean structure of a program property that can be efficiently
treated by a theorem prover is however very sensitive to the architecture of the
reasoning engine of the prover. Deriving and expressing program properties in
the “right” format therefore requires solid knowledge about how theorem provers
work and are implemented — something that a user of a verification tool might
not have. Moreover, it can be hard to efficiently reason about certain classes of
program properties, unless special inference rules and heuristics are added to the
theorem prover, see e.g. [8] when it comes to prove properties of data collections
with extensionality axioms.

In order to increase the expressiveness of program properties generated by
reasoning-based program analysis, the language of logical formulas accepted by
a theorem prover needs to be extended with constructs of programming lan-
guages. This way, a straightforward translation of programs into first-order logic
can be achieved, thus relieving users from designing translations which can be
efficiently treated by the theorem prover. One example of such an extension is
recently added to the TPTP language [19] of first-order theorem provers, resem-
bling if-then-else and let-in expressions that are common in programming
languages. Namely, special functions $ite t and $ite f can respectively be used
to express a conditional statement on the level of logical terms and formulas, and
$let tt, $let tf, $let ff and $let ft can be used to express local variable
bindings for all four possible combinations of logical terms (t) and formulas (f).
While satisfiability modulo theory (SMT) solvers, such as Z3 [6] and CVC4 [2],
integrate if-then-else and let-in expressions, in the first-order theorem prov-
ing community so far only Vampire supports such expressions. To illustrate the

A First Class Boolean Sort in First-Order Theorem Proving and TPTP 73

advantage of using if-then-else and let-in expressions in automated provers,
let us consider the following simple example. We are interested in verifying the
partial correctness of the code fragment below:

if (r(a)) {
a := a + 1

} else {
a := a + q(a)

}

using the pre-condition ((∀x)P (x) ⇒ x ≥ 0) ∧ ((∀x)q(x) > 0) ∧ P (a) and
the post-condition a > 0. Let a1 denote the value of the program variable a after
the execution of the if-statement. Using if-then-else and let-in expressions,
the next state function for a can naturally be expressed by the following formula:

a1 = if r(a) then let a = a + 1 in a
else let a = a + q(a) in a

This formula can further be encoded in TPTP, and hence used by a theorem
prover as a hypothesis in proving partial correctness of the above code snippet.
We illustrate below the TPTP encoding of the first-order problem correspond-
ing to the partial program correctness problem we consider. Note that the pre-
condition becomes a hypothesis in TPTP, whereas the proof obligation given by
the post-condition is a TPTP conjecture. All formulas below are typed first-order
formulas (tff) in TPTP that use the built-in integer sort ($int).

tff(1, type, p : $int > $o).
tff(2, type, q : $int > $int).
tff(3, type, r : $int > $o).
tff(4, type, a : $int).
tff(5, hypothesis, ! [X : $int] : (p(X) => $greatereq(X, 0))).
tff(6, hypothesis, ! [X : $int] : ($greatereq(q(X), 0))).
tff(7, hypothesis, p(a)).
tff(8, hypothesis,

a1 = $ite_t(r(a), $let_tt(a, $sum(a, 1), a),
$let_tt(a, $sum(a, q(a)), a))).

tff(9, conjecture, $greater(a1, 0)).

Running a theorem prover that supports $ite t and $let tt on this TPTP
problem would prove the partial correctness of the program we considered. Note
that without the use of if-then-else and let-in expressions, a more tedious
translation is needed for expressing the next state function of the program
variable a as a first-order formula. When considering more complex programs
containing multiple conditional expressions assignments and composition, com-
puting the next state function of a program variable results in a formula of size
exponential in the number of conditional expressions. This problem of computing
the next state function of variables is well-known in the program analysis com-
munity, by computing so-called static single assignment (SSA) forms. Using the
if-then-else and let-in expressions recently introduced in TPTP and already
implemented in Vampire [7], one can have a linear-size translation instead.

74 E. Kotelnikov et al.

Let us however note that the usage of conditional expressions in TPTP is
somewhat limited. The first argument of $ite t and $ite f is a logical formula,
which means that a boolean condition from the program definition should be
translated as such. At the same time, the same condition can be treated as a
value in the program, for example, in a form of a boolean flag, passed as an
argument to a function. Yet we cannot mix terms and formulas in the same way
in a logical statement. A possible solution would be to map the boolean type of
programs to a user-defined boolean sort, postulate axioms about its semantics,
and manually convert boolean terms into formulas where needed. This approach,
however, suffers the disadvantages mentioned earlier, namely the need to design
a special translation and its possible inefficiency.

Handling boolean terms as formulas is needed not only in applications of
reasoning-based program analysis, but also in various problems of formalisation
of mathematics. For example, if one looks at two largest kinds of attempts to for-
malise mathematics and proofs: those performed by interactive proof assistants,
such as Isabelle [16], and the Mizar project [21], one can see that first-order
theorem provers are the main workhorses behind computer proofs in both cases –
see e.g. [5,22]. Interactive theorem provers, such as Isabelle routinely use quan-
tifiers over booleans. Let us illustrate this by the following examples, chosen
among 490 properties about (co)algebraic datatypes, featuring quantifiers over
booleans, generated by Isabelle and kindly found for us by Jasmin Blanchette.
Consider the distributivity of a conditional expression (denoted by the ite func-
tion) over logical connectives, a pattern that is widely used in reasoning about
properties of data structures. For lists and the contains function that checks
that its second argument contains the first one, we have the following example:

(∀p : bool)(∀l : listA)(∀x : A)(∀y : A)
contains(l, ite(p, x, y)) .= (1)

(p ⇒ contains(l, x)) ∧ (¬p ⇒ contains(l, y))

A more complex example with a heavy use of booleans is the unsatisfiability of
the definition of subset sorted. The subset sorted function takes two sorted
lists and checks that its second argument is a sublist of the first one.

(∀l1 : listA)(∀l2 : listA)(∀p : bool)
¬(subset sorted(l1, l2)

.= p ∧
(∀l′2 : listA)¬(l1

.= nil ∧ l2
.= l′2 ∧ p) ∧

(∀x1 : A)(∀l′1 : listA)¬(l1
.= cons(x1, l′1) ∧ l2

.= nil ∧ ¬p) ∧
(∀x1 : A)(∀l′1 : listA)(∀x2 : A)(∀l′2 : listA)
¬(l1

.= cons(x1, l′1) ∧ l2
.= cons(x2, l′2) ∧

p
.= ite(x1 < x2, false,

ite(x1
.= x2, subset sorted(l′1, l′2),

subset sorted(cons(x1, l′1), l′2)))))

(2)

A First Class Boolean Sort in First-Order Theorem Proving and TPTP 75

Formulas with boolean terms are also common in the SMT-LIB project [3],
the collection of benchmarks for SMT-solvers. Its core logic is a variant of first-
order logic that treats boolean terms as formulas, in which logical connectives
and conditional expressions are defined in the core theory.

In this paper we propose a modification FOOL of first-order logic, which
includes a first-class boolean sort and if-then-else and let-in expressions,
aimed for being used in automated first-order theorem proving. It is the small-
est logic that contains both the SMT-LIB core theory and the monomorphic
first-order subset of TPTP. The syntax and semantics of the logic are given
in Sect. 2. We further describe how FOOL can be translated to the ordinary
many-sorted first-order logic in Sect. 3. Section 4 discusses superposition-based
theorem proving and proposes a new way of dealing with the boolean sort in
it. In Sect. 5 we discuss the support of the boolean sort in TPTP and propose
changes to it required to support a first-class boolean sort. We point out that
such changes can also partially simplify the syntax of TPTP. Section 6 discusses
related work and Sect. 7 contains concluding remarks.

The main contributions of this paper are the following:

1. the definition of FOOL and its semantics;
2. a translation from FOOL to first-order logic, which can be used to support

FOOL in existing first-order theorem provers;
3. a new technique of dealing with the boolean sort in superposition theorem

provers, allowing one to replace boolean sort axioms by special rules;
4. a proposal of a change to the TPTP language, intended to support FOOL

and also simplify if-then-else and let-in expressions.

2 First-Order Logic with Boolean Sort

First-order logic with the boolean sort (FOOL) extends many-sorted first-order
logic (FOL) in two ways:

1. formulas can be treated as terms of the built-in boolean sort; and
2. one can use if-then-else and let-in expressions defined below.

FOOL is the smallest logic containing both the SMT-LIB core theory and the
monomorphic first-order part of the TPTP language. It extends the SMT-LIB
core theory by adding let-in expressions defining functions and TPTP by the
first-class boolean sort.

2.1 Syntax

We assume a countable infinite set of variables.

Definition 1. A signature of first-order logic with the boolean sort is a triple
Σ = (S, F, η), where:

76 E. Kotelnikov et al.

1. S is a set of sorts, which contains a special sort bool. A type is either a sort
or a non-empty sequence σ1, . . . , σn, σ of sorts, written as σ1 × . . . × σn → σ.
When n = 0, we will simply write σ instead of → σ. We call a type assignment
a mapping from a set of variables and function symbols to types, which maps
variables to sorts.

2. F is a set of function symbols. We require F to contain binary function
symbols ∨,∧,⇒ and ⇔, used in infix form, a unary function symbol ¬, used
in prefix form, and nullary function symbols true, false.

3. η is a type assignment which maps each function symbol f into a type τ .
When the signature is clear from the context, we will write f : τ instead of
η(f) = τ and say that f is of the type τ .
We require the symbols ∨,∧,⇒,⇔ to be of the type bool × bool → bool, ¬ to
be of the type bool → bool and true, false to be of the type bool. 	

In the sequel we assume that Σ = (S, F, η) is an arbitrary but fixed signature.
To define the semantics FOOL, we will have to extend the signature and also

assign sorts to variables. Given a type assignment η, we define η, x : σ to be
the type assignment that maps a variable x to σ and coincides otherwise with
η. Likewise, we define η, f :τ to be the type assignment that maps a function
symbol f to τ and coincides otherwise with η.

Our next aim to define the set of terms and their sorts with respect to a type
assignment η. This will be done using a relation η � t:σ, where σ ∈ S, terms can
then be defined as all such expressions t.

Definition 2. The relation η � t : σ, where t is an expression and σ ∈ S is
defined inductively as follows. If η � t : σ, then we will say that t is a term of
the sort σ w.r.t. η.

1. If η(x) = σ, then η � x : σ.
2. If η(f) = σ1 × . . . × σn → σ, η � t1 : σ1, . . . , η � tn : σn, then η �

f(t1, . . . , tn) : σ.
3. If η � φ : bool, η � t1 : σ and η � t2 : σ, then η � (if φ then t1 else t2) : σ.
4. Let f be a function symbol and x1, . . . , xn pairwise distinct variables. If η, x1 :

σ1, . . . , xn : σn � s : σ and η, f : (σ1 × . . . × σn → σ) � t : τ , then η �
(let f(x1 : σ1, . . . , xn : σn) = s in t) : τ .

5. If η � s : σ and η � t : σ, then η � (s .= t) : bool.
6. If η, x : σ � φ : bool, then η � (∀x : σ)φ : bool and η � (∃x : σ)φ : bool. �

We only defined a let-in expression for a single function symbol. It is not hard
to extend it to a let-in expression that binds multiple pairwise distinct function
symbols in parallel, the details of such an extension are straightforward.

When η is the type assignment function of Σ and η � t : σ, we will say that t
is a Σ-term of the sort σ, or simply that t is a term of the sort σ. It is not hard
to argue that every Σ-term has a unique sort.

According to our definition, not every term-like expression has a sort. For
example, if x is a variable and η is not defined on x, then x is a not a term
w.r.t. η. To make the relation between term-like expressions and terms clear,

A First Class Boolean Sort in First-Order Theorem Proving and TPTP 77

we introduce a notion of free and bound occurrences of variables and function
symbols. We call the following occurrences of variables and function symbols
bound :

1. any occurrence of x in (∀x : σ)φ or in (∃x : σ)φ;
2. in the term let f(x1 : σ1, . . . , xn : σn) = s in t any occurrence of a variable

xi in f(x1 : σ1, . . . , xn : σn) or in s, where i = 1, . . . , n.
3. in the term let f(x1 : σ1, . . . , xn : σn) = s in t any occurrence of the func-

tion symbol f in f(x1 : σ1, . . . , xn : σn) or in t.

All other occurrences are called free. We say that a variable or a function symbol
is free in a term t if it has at least one free occurrence in t. A term is called
closed if it has no occurrences of free variables.

Theorem 1. Suppose η � t : σ. Then

1. for every free variable x of t, η is defined on x;
2. for every free function symbol f of t, η is defined on f ;
3. if x is a variable not free in t, and σ′ is an arbitrary sort, then η, x : σ′ � t : σ;
4. if f is a function symbol not free in t, and τ is an arbitrary type, then

η, f : τ � t : σ. �

Definition 3. A predicate symbol is any function symbol of the type σ1 × . . . ×
σn → bool. A Σ-formula is a Σ-term of the sort bool. All Σ-terms that are not
Σ-formulas are called non-boolean terms. �

Note that, in addition to the use of let-in and if-then-else, FOOL is a
proper extension of first-order logic. For example, in FOOL formulas can be used
as arguments to terms and one can quantify over booleans. As a consequence,
every quantified boolean formula is a formula in FOOL.

2.2 Semantics

As usual, the semantics of FOOL is defined by introducing a notion of interpre-
tation and defining how a term is evaluated in an interpretation.

Definition 4. Let η be a type assignment. A η-interpretation I is a map, defined
as follows. Instead of I(e) we will write [[e]]I , for every element e in the domain of I.

1. Each sort σ ∈ S is mapped to a nonempty domain [[σ]]I . We require [[bool]]I =
{0, 1}.

2. If η � x : σ, then [[x]]I ∈ [[σ]]I .
3. If η(f) = σ1 × . . . × σn → σ, then [[f]]I is a function from [[σ1]]I × . . . × [[σn]]I

to [[σ]]I .
4. We require [[true]]I = 1 and [[false]]I = 0. We require [[∧]]I , [[∨]]I , [[⇒]]I , [[⇔]]I

and [[¬]]I respectively to be the logical conjunction, disjunction, implication,
equivalence and negation, defined over {0, 1} in the standard way.

78 E. Kotelnikov et al.

Given a η-interpretation I and a function symbol f , we define Ig
f to be the

mapping that maps f to g and coincides otherwise with I. Likewise, for a variable
x and value a we define Ia

x to be the mapping that maps x to a and coincides
otherwise with I.

Definition 5. Let I be a η-interpretation, and η � t : σ. The value of t in I,
denoted as evalI(t), is a value in [[σ]]I inductively defined as follows:

evalI(x) = [[x]]I .
evalI(f(t1, . . . , tn)) = [[f]]I(evalI(t1), . . . , evalI(tn)).

evalI(if φ then s else t) =
{

evalI(s), if evalI(φ) = 1;
evalI(t), otherwise.

evalI(let f(x1 : σ1, . . . , xn : σn) = s in t) = evalIg
f
(t),

where g is such that for all i = 1, . . . , n and ai ∈ [[σi]]I , we have g(a1, . . . , an) =
evalIa1...an

x1...xn
(s).

evalI(s
.= t) =

{
1, if evalI(s) = evalI(t);
0, otherwise.

evalI((∀x : σ)φ) =

⎧
⎪⎨

⎪⎩

1, if evalIa
x
(φ) = 1

for all a ∈ [[σ]]I ;
0, otherwise.

evalI((∃x : σ)φ) =

⎧
⎪⎨

⎪⎩

1, if evalIa
x
(φ) = 1

for some a ∈ [[σ]]I ;
0, otherwise.

Theorem 2. Let η � φ : bool and I be a η-interpretation. Then

1. for every free variable x of φ, I is defined on x;
2. for every free function symbol f of φ, I is defined on f ;
3. if x is a variable not free in φ, σ is an arbitrary sort, and a ∈ [[σ]]I then

evalI(φ) = evalIa
x
(φ);

4. if f is a function symbol not free in φ, σ1, . . . , σn, σ are arbitrary sorts and
g ∈ [[σ1]]I × . . . × [[σn]]I → [[σ]]I , then evalI(φ) = evalIg

f
(φ). �

Let η � φ : bool. A η-interpretation I is called a model of φ, denoted by I |= φ,
if evalI(φ) = 1. If I |= φ, we also say that I satisfies φ. We say that φ is
valid, if I |= φ for all η-interpretations I, and satisfiable, if I |= φ for at least
one η-interpretation I. Note that Theorem 2 implies that any interpretation,
which coincides with I on free variables and free function symbols of φ is also a
model of φ.

3 Translation of FOOL to FOL

FOOL is a modification of FOL. Every FOL formula is syntactically a FOOL
formula and has the same models, but not the other way around. In this section

A First Class Boolean Sort in First-Order Theorem Proving and TPTP 79

we present a translation from FOOL to FOL, which preserves models of φ.
This translation can be used for proving theorems of FOOL using a first-order
theorem prover. We do not claim that this translation is efficient – more research
is required on designing translations friendly for first-order theorem provers.

We do not formally define many-sorted FOL with equality here, since FOL
is essentially a subset of FOOL, which we will discuss now.

We say that an occurrence of a subterm s of the sort bool in a term t is in
a formula context if it is an argument of a logical connective or the occurrence
in either (∀x : σ)s or (∃x : σ)s. We say that an occurrence of s in t is in a term
context if this occurrence is an argument of a function symbol, different from a
logical connective, or an equality. We say that a formula of FOOL is syntactically
first order if it contains no if-then-else and let-in expressions, no variables
occurring in a formula context and no formulas occurring in a term context.
By restricting the definition of terms to the subset of syntactically first-order
formulas, we obtain the standard definition of many-sorted first-order logic, with
the only exception of having a distinguished boolean sort and constants true and
false occurring in a formula context.

Let φ be a closed Σ-formula of FOOL. We will perform the following steps to
translate φ into a first-order formula. During the translation we will maintain a
set of formulas D, which initially is empty. The purpose of D is to collect a set of
formulas (definitions of new symbols), which guarantee that the transformation
preserves models.

1. Make a sequence of translation steps obtaining a syntactically first order
formula φ′. During this translation we will introduce new function symbols
and add their types to the type assignment η. We will also add formulas
describing properties of these symbols to D. The translation will guarantee
that the formulas φ and

∧
ψ∈D ψ ∧ φ′ are equivalent, that is, have the same

models restricted to Σ.
2. Replace the constants true and false, standing in a formula context, by

nullary predicates � and ⊥ respectively, obtaining a first-order formula.
3. Add special boolean sort axioms.

During the translation, we will say that a function symbol or a variable is fresh
if it neither appears in φ nor in any of the definitions, nor in the domain of η.

We also need the following definition. Let η � t : σ, and x be a variable
occurrence in t. The sort of this occurrence of x is defined as follows:

1. any free occurrence of x in a subterm s in the scope of (∀x : σ′)s or (∃x : σ′)s
has the sort σ′.

2. any free occurrence of xi in a subterm s1 in the scope of
let f(x1 : σ1, . . . , xn : σn) = s1 in s2 has the sort σi, where i = 1, . . . , n.

3. a free occurrence of x in t has the sort η(x).

If η � t : σ, s is a subterm of t and x a free variable in s, we say that x has a sort
σ′ in s if its free occurrences in s have this sort.

80 E. Kotelnikov et al.

The translation steps are defined below. We start with an empty set D and an
initial FOOL formula φ, which we would like to change into a syntactically first-
order formula. At every translation step we will select a formula χ, which is either
φ or a formula in D, which is not syntactically first-order, replace a subterm in
χ it by another subterm, and maybe add a formula to D. The translation steps
can be applied in any order.

1. Replace a boolean variable x occurring in a formula context, by x
.= true.

2. Suppose that ψ is a formula occurring in a term context such that (i) ψ is
different from true and false, (ii) ψ is not a variable, and (iii) ψ contains no
free occurrences of function symbols bound in χ. Let x1, . . . , xn be all free
variables of ψ and σ1, . . . , σn be their sorts. Take a fresh function symbol g,
add the formula (∀x1 : σ1) . . . (∀xn : σn)(ψ ⇔ g(x1, . . . , xn) .= true) to D and
replace ψ by g(x1, . . . , xn). Finally, change η to η, g : σ1 × . . . × σn → bool.

3. Suppose that if ψ then s else t is a term containing no free occurrences of
function symbols bound in χ. Let x1, . . . , xn be all free variables of this term
and σ1, . . . , σn be their sorts. Take a fresh function symbol g, add the formulas
(∀x1 : σ1) . . . (∀xn : σn)(ψ ⇒ g(x1, . . . , xn) .= s) and (∀x1 : σ1) . . . (∀xn :
σn)(¬ψ ⇒ g(x1, . . . , xn) .= t) to D and replace this term by g(x1, . . . , xn).
Finally, change η to η, g : σ1 × . . . × σn → σ0, where σ0 is such that η, x1 :
σ1, . . . , xn : σn � s : σ0.

4. Suppose that let f(x1 : σ1, . . . , xn : σn) = s in t is a term containing no
free occurrences of function symbols bound in χ. Let y1, . . . , ym be all free
variables of this term and τ1, . . . , τm be their sorts. Note that the variables
in x1, . . . , xn are not necessarily disjoint from the variables in y1, . . . , ym.

Take a fresh function symbol g and fresh sequence of variables z1, . . . , zn.
Let the term s′ be obtained from s by replacing all free occurrences of
x1, . . . , xn by z1, . . . , zn, respectively. Add the formula (∀z1 : σ1) . . . (∀zn :
σn)(∀y1 : τ1) . . . (∀ym : τm)(g(z1, . . . , zn, y1, . . . , ym) .= s′) to D. Let the term
t′ be obtained from t by replacing all bound occurrences of y1, . . . , ym by fresh
variables and each application f(t1, . . . , tn) of a free occurrence of f in t by
g(t1, . . . , tn, y1, . . . , ym). Then replace let f(x1 : σ1, . . . , xn : σn) = s in t by
t′. Finally, change η to η, g : σ1 × . . . × σn × τ1 × . . . × τm → σ0, where σ0 is
such that η, x1 : σ1, . . . , xn : σn, y1 : τ1, . . . , ym : τm � s : σ0.

The translation terminates when none of the above rules apply.
We will now formulate several of properties of this translation, which will

imply that, in a way, it preserves models. These properties are not hard to
prove, we do not include proofs in this paper.

Lemma 1. Suppose that a single step of the translation changes a formula φ1

into φ2, δ is the formula added at this step (for step 1 we can assume true = true
is added), η is the type assignment before this step and η′ is the type assignment
after. Then for every η′-interpretation I we have I |= δ ⇒ (φ1 ⇔ φ2). �

By repeated applications of this lemma we obtain the following result.

A First Class Boolean Sort in First-Order Theorem Proving and TPTP 81

Lemma 2. Suppose that the translation above changes a formula φ into φ′,
D is the set of definitions obtained during the translation, η is the initial type
assignment and η′ is the final type assignment of the translation. Let I ′ be any
interpretation of η′. Then I ′ |= ∧

ψ∈D ψ ⇒ (φ ⇔ φ′). �

We also need the following result.

Lemma 3. Any sequence of applications of the translation rules terminates. �

The lemmas proved so far imply that the translation terminates and the final
formula is equivalent to the initial formula in every interpretation satisfying
all definitions in D. To prove model preservation, we also need to prove some
properties of the introduced definitions.

Lemma 4. Suppose that one of the steps 2–4 of the translation translates a
formula φ1 into φ2, δ is the formula added at this step, η is the type assignment
before this step, η′ is the type assignment after, and g is the fresh function
symbol introduced at this step. Let also I be η-interpretation. Then there exists
a function h such that Ih

g |= δ. �

These properties imply the following result on model preservation.

Theorem 3. Suppose that the translation above translates a formula φ into φ′,
D is the set of definitions obtained during the translation, η is the initial type
assignment and η′ is the final type assignment of the translation.

1. Let I be any η-interpretation. Then there is a η′-interpretation I ′ such that
I ′ is an extension of I and I ′ |= ∧

ψ∈D ψ ∧ φ′.
2. Let I ′ be a η′-interpretation and I ′ |= ∧

ψ∈D ψ ∧ φ′. Then I ′ |= φ. �

This theorem implies that φ and
∧

ψ∈D ψ∧φ′ have the same models, as far as the
original type assignment (the type assignment of Σ) is concerned. The formula∧

ψ∈D ψ ∧ φ′ in this theorem is syntactically first-order. Denote this formula by
γ. Our next step is to define a model-preserving translation from syntactically
first-order formulas to first-order formulas.

To make γ into a first-order formula, we should get rid of true and false
occurring in a formula context. To preserve the semantics, we should also add
axioms for the boolean sort, since in first-order logic all sorts are uninterpreted,
while in FOOL the interpretations of the boolean sort and constants true and
false are fixed.

To fix the problem, we will add axioms expressing that the boolean sort has
two elements and that true and false represent the two distinct elements of
this sort.

∀(x : bool)(x .= true ∨ x
.= false) ∧ true � .= false. (3)

Note that this formula is a tautology in FOOL, but not in FOL.
Given a syntactically first-order formula γ, we denote by fol(γ) the formula

obtained from γ by replacing all occurrences of true and false in a formula
context by logical constants � and ⊥ (interpreted as always true and always
false), respectively and adding formula (3).

82 E. Kotelnikov et al.

Theorem 4. Let η is a type assignment and γ be a syntactically first-order
formula such that η � γ : bool.

1. Suppose that I is a η-interpretation and I |= γ in FOOL. Then I |= fol(γ) in
first-order logic.

2. Suppose that I is a ηη-interpretation and I |= fol(γ) in first-order logic.
Consider the FOOL-interpretation I ′ that is obtained from I by changing
the interpretation of the boolean sort bool by {0, 1} and the interpretations
of true and false by the elements 1 and 0, respectively, of this sort. Then
I ′ |= γ in FOOL. �

Theorems 3 and 4 show that our translation preserves models. Every model
of the original formula can be extended to a model of the translated formulas
by adding values of the function symbols introduced during the translation.
Likewise, any first-order model of the translated formula becomes a model of
the original formula after changing the interpretation of the boolean sort to
coincide with its interpretation in FOOL.

4 Superposition for FOOL

In Sect. 3 we presented a model-preserving syntactic translation of FOOL to
FOL. Based on this translation, automated reasoning about FOOL formulas
can be done by translating a FOOL formula into a FOL formula, and using an
automated first-order theorem prover on the resulting FOL formula. State-of-
the-art first-order theorem provers, such as Vampire [13], E [18] and Spass [23],
implement superposition calculus for proving first-order formulas. Naturally, we
would like to have a translation exploiting such provers in an efficient manner.

Note however that our translation adds the two-element domain axiom ∀(x :
bool)(x .= true ∨ x

.= false) for the boolean sort. This axioms will be converted
to the clause

x
.= true ∨ x

.= false, (4)

where x is a boolean variable. In this section we explain why this axiom requires
a special treatment and propose a solution to overcome problems caused by its
presence.

We assume some basic understanding of first-order theorem proving and
superposition calculus, see, e.g. [1,15]. We fix a superposition inference system
for first-order logic with equality, parametrised by a simplification ordering � on
literals and a well-behaved literal selection function [13], that is a function that
guarantees completeness of the calculus. We denote selected literals by underlin-
ing them. We assume that equality literals are treated by a dedicated inference
rule, namely, the ordered paramodulation rule [17]:

l
.= r ∨ C L[s] ∨ D

(L[r] ∨ C ∨ D)θ
if θ = mgu(l, s),

A First Class Boolean Sort in First-Order Theorem Proving and TPTP 83

where C,D are clauses, L is a literal, l, r, s are terms, mgu(l, s) is a most general
unifier of l and s, and rθ �� lθ. The notation L[s] denotes that s is a subterm of
L, then L[r] denotes the result of replacement of s by r.

Suppose now that we use an off-the-shelf superposition theorem prover to
reason about FOL formulas obtained by our translation. W.l.o.g, we assume that
true � false in the term ordering used by the prover. Then self-paramodulation
(from true to true) can be applied to clause (4) as follows:

x
.= true ∨ x

.= false y
.= true ∨ y

.= false

x
.= y ∨ x

.= false ∨ y
.= false

The derived clause x
.= y ∨x

.= false∨ y
.= false is a recipe for disaster, since

the literal x
.= y must be selected and can be used for paramodulation into every

non-variable term of a boolean sort. Very soon the search space will contain many
clauses obtained as logical consequences of clause (4) and results of paramod-
ulation from variables applied to them. This will cause a rapid degradation of
performance of superposition-based provers.

To get around this problem, we propose the following solution. First, we
will choose term orderings � having the following properties: true � false and
true and false are the smallest ground terms w.r.t. �. Consider now all ground
instances of (4). They have the form s

.= true ∨ s
.= false, where s is a ground

term. When s is either true or false, this instance is a tautology, and hence
redundant. Therefore, we should only consider instances for which s � true.
This prevents self-paramodulation of (4).

Now the only possible inferences with (4) are inferences of the form

x
.= true ∨ x

.= false C[s]
C[true] ∨ s

.= false
,

where s is a non-variable term of the sort bool. To implement this, we can remove
clause (4) and add as an extra inference rule to the superposition calculus the
following rule:

C[s]
C[true] ∨ s

.= false
,

where s is a non-variable term of the sort bool other than true and false.

5 TPTP Support for FOOL

The typed monomorphic first-order formulas subset, called TFF0, of the TPTP
language [20], is a representation language for many-sorted first-order logic. It
contains if-then-else and let-in constructs (see below), which is useful for
applications, but is inconsistent in its treatment of the boolean sort. It has a
predefined atomic sort symbol $o denoting the boolean sort. However, unlike
all other sort symbols, $o can only be used to declare the return type of pred-
icate symbols. This means that one cannot define a function having a boolean
argument, use boolean variables or equality between booleans.

84 E. Kotelnikov et al.

Such an inconsistent use of the boolean sort results in having two kinds of
if-then-else expressions and four kinds of let-in expressions. For example, a
FOOL-term let f(x1 : σ1, . . . , xn : σn) = s in t can be represented using one of
the four TPTP alternatives $let tt, $let tf, $let ft and $let ff, depending
on whether s and t are terms or formulas.

Since the boolean type is second-class in TPTP, one cannot directly represent
formulas coming from program analysis and interactive theorem provers, such
as formulas (1) and (2) of Sect. 1.

We propose to modify the TFF0 language of TPTP to coincide with FOOL.
It is not late to do so, since there is no general support for if-then-else and
let-in. To the best of our knowledge, Vampire is currently the only theorem
prover supporting full TFF0. Note that such a modification of TPTP would
make multiple forms of if-then-else and let-in redundant. It will also make
it possible to directly represent the SMT-LIB core theory.

We note that our changes and modifications on TFF0 can also be applied to
the TFF1 language of TPTP [4]. TFF1 is a polymorphic extension of TFF0 and
its formalisation does not treat the boolean sort. Extending our work to TFF1
should not be hard but has to be done in detail.

6 Related Work

Handling boolean terms as formulas is common in the SMT community. The
SMT-LIB project [3] defines its core logic as first-order logic extended with the
distinguished first-class boolean sort and the let-in expression used for local
bindings of variables. The core theory of SMT-LIB defines logical connectives
as boolean functions and the ad-hoc polymorphic if-then-else (ite) function,
used for conditional expressions. The language FOOL defined here extends the
SMT-LIB core language with local function definitions, using let-in expressions
defining functions of arbitrary, and not just zero, arity. This, FOOL contains both
this language and the TFF0 subset of TPTP. Further, we present a translation
of FOOL to FOL and show how one can improve superposition theorem provers
to reason with the boolean sort.

Efficient superposition theorem proving in finite domains, such as the boolean
domain, is also discussed in [9]. The approach of [9] sometimes falls back to enu-
merating instances of a clause by instantiating finite domain variables with all
elements of the corresponding domains. We point out here that for the boolean
(i.e., two-element) domain there is a simpler solution. However, the approach
of [9] also allows one to handle domains with more than two elements. One can
also generalise our approach to arbitrary finite domains by using binary encod-
ings of finite domains, however, this will necessarily result in loss of efficiency,
since a single variable over a domain with 2k elements will become k variables
in our approach, and similarly for function arguments.

A First Class Boolean Sort in First-Order Theorem Proving and TPTP 85

7 Conclusion

We defined first-order logic with the first class boolean sort (FOOL). It extends
ordinary many-sorted first-order logic (FOL) with (i) the boolean sort such that
terms of this sort are indistinguishable from formulas and (ii) if-then-else and
let-in expressions. The semantics of let-in expressions in FOOL is essentially
their semantics in functional programming languages, when they are not used for
recursive definitions. In particular, non-recursive local functions can be defined
and function symbols can be bound to a different sort in nested let-in expres-
sions.

We argued that these extensions are useful in reasoning about problems com-
ing from program analysis and interactive theorem proving. The extraction of
properties from certain program definitions (especially in functional program-
ming languages) into FOOL formulas is more straightforward than into ordinary
FOL formulas and potentially more efficient. In a similar way, a more straight-
forward translation of certain higher-order formulas into FOOL can facilitate
proof automation in interactive theorem provers.

FOOL is a modification of FOL and reasoning in it reduces to reasoning
in FOL. We gave a translation of FOOL to FOL that can be used for proving
theorems in FOOL in a first-order theorem prover. We further discussed a mod-
ification of superposition calculus that can reason efficiently in presence of the
boolean sort. Finally, we pointed out that the TPTP language can be changed
to support FOOL, which will also simplify some parts of the TPTP syntax.

Implementation of theorem proving support for FOOL, including its superpo-
sition-friendly translation to CNF, is an important task for future work. Further,
we are also interested in extending FOOL with theories, such as the theory of
integer linear arithmetic and arrays.

References

1. Bachmair, L., Ganzinger, H.: Resolution theorem proving. Handbook of Automated
Reasoning, pp. 19–99. Elsevier and MIT Press, Cambridge (2001)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. Technical
report, Department of Computer Science, The University of Iowa (2010). Available
at www.SMT-LIB.org

4. Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with
Rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp.
414–420. Springer, Heidelberg (2013)

5. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

6. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

www.SMT-LIB.org

86 E. Kotelnikov et al.

7. Dragan, I., Kovács, L.: Lingva: generating and proving program properties using
symbol elimination. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol.
8974, pp. 67–75. Springer, Heidelberg (2015)

8. Gupta, A., Kovács, L., Kragl, B., Voronkov, A.: Extensional crisis and proving
identity. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
185–200. Springer, Heidelberg (2014)

9. Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS, vol. 7788, pp. 68–100. Springer, Heidelberg (2013)

10. Hoder, K., Kovács, L., Voronkov, A.: Playing in the grey area of proofs. In: Pro-
ceedings of POPL, pp. 259–272 (2012)

11. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

12. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009)

13. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg
(2013)

14. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

15. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443.
Elsevier Science, Cambridge (2001). Chap. 7

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

17. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories
with equality. Mach. Intell. 4, 135–150 (1969)

18. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

19. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–362 (2009)

20. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-
order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012)

21. Trybulec, A.: Mizar. In: Wiedijk, F. (ed.) The Seventeen Provers of the World.
LNCS (LNAI), vol. 3600, pp. 20–23. Springer, Heidelberg (2006)

22. Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on
the Mizar mathematical library. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama,
N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 155–166. Springer, Heidelberg (2010)

23. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–
145. Springer, Heidelberg (2009)

Type Inference for ZFH

Steven Obua(B), Jacques Fleuriot, Phil Scott, and David Aspinall

School of Informatics, Edinburgh University, 10 Crichton Street,
EH8 9AB Edinburgh, Scotland, UK

steven.obua@googlemail.com

http://www.proofpeer.net

Abstract. ZFH stands for Zermelo-Fraenkel set theory implemented in
higher-order logic. It is a descendant of Agerholm’s and Gordon’s HOL-
ST but does not allow the use of type variables nor the definition of new
types. We first motivate why we are using ZFH for ProofPeer, the collab-
orative theorem proving system we are building. We then focus on the
type inference algorithm we have developed for ZFH. In ZFH’s syntax,
function application, written as juxtaposition, is overloaded to be either
set-theoretic or higher-order. Our algorithm extends Hindley-Milner type
inference to cope with this particular overloading of function application.
We describe the algorithm, prove its correctness, and discuss why prior
general approaches to type inference in the presence of coercions or over-
loading do not cover our particular case.

1 Introduction

The ProofPeer project [1,2] is our attempt to combine interactive theorem prov-
ing (ITP) and the modern web, making ITP technology more accessible than it
has been. We will first explain why we have chosen ZFH as the logic of ProofPeer,
and then introduce the problem this paper solves.

1.1 Why ZFH?

Despite a few prominent counter examples [3,4] it is particularly astonishing
how few mathematicians are aware of or even use ITP systems. We believe
that one reason for this is that traditionally the development and application
of ITP technology has been driven by computer scientists, not mathematicians.
Major successful ITP systems like Isabelle and Coq are based on variants of type
theory, while most mathematicians feel more familiar with set theory. Simple
mathematical standards like point set topology cannot be formalized in either
system without the result feeling alien to most mathematicians.

We have therefore decided that the logic used in the ProofPeer system should
be based on Zermelo-Fraenkel set theory which is more or less familiar to all
mathematicians. At the same time we want to build on the considerable technical
advances that contemporary ITP systems have achieved. Therefore we embed set
theory within simply-typed classical higher-order logic by introducing a special
type U which forms the universe of Zermelo-Fraenkel sets, additional constants
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 87–101, 2015.
DOI: 10.1007/978-3-319-20615-8 6

88 S. Obua et al.

like the element-of operator ∈: U → U → P, and additional axioms describ-
ing the properties of these new constants. The symbol P denotes the type of
propositions/booleans, and for any two types α and β we can form the type of
higher-order functions α → β. For a full list of all new constants and axioms see
theory root [9] in the ProofPeer system.

Because technically, all we have done is add an additional type together with
a few new constants and axioms, all of the machinery present in systems like
HOL-4 or Isabelle/HOL can be ported to work in our system. For example,
Isabelle/HOL’s facilities for defining partial and nested recursive functions [8]
could be translated to ProofPeer.

This approach was first advocated by Agerholm and Gordon [5]. They called
the resulting logic HOL-ST. A related approach is pursued by Isabelle/ZF
which embeds set theory within its intuitionistic higher-order meta logic [7].
The Isabelle/ZF approach seems more involved than our approach: it begins at
base with intuitionistic higher-order logic, over which first-order classical logic
is introduced, which in turn, is used to formalise set theory. We instead skip the
middle step and base set theory directly on classical higher-order logic, obtain-
ing a more powerful logic by simpler means. This is just how HOL-ST works as
well, but that opens up a new dilemma: HOL-ST is so powerful that often it is
not clear how concepts should best be formalised. Take for example the natural
numbers: should they be formalised as a type, or should they be formalised as a
set, i.e. as an element of U ? Or take lists: should they be formalised as a type
α list together with polymorphic operations like cons : α → α list → α list, or
should they be formalised as a constant list : U → U such that list α denotes
the set of lists over elements of α? Note how in the latter case we can extend
our discussion to the class of all (heterogeneous) lists by defining

isList l = ∃α. l ∈ list α

The type of cons would now be U → U → U and for reasonable definitions of
list we could prove theorems like

∀l. isList l → ∀x. isList(cons x l)
∀l α. l ∈ list α → ∀x ∈ α. cons x l ∈ list α

We want people to perceive ProofPeer as a system based on set theory; the only
reason we also employ simply-typed higher-order logic is because of its technical
convenience and simplicity. Therefore for us there is an easy and coherent way out
of the dilemma that HOL-ST has: we forbid the introduction of new types besides
the ones we already described, and we furthermore do not use type variables as
part of our internal term representation. The only polymorphic constants in our
logic are equality (=), universal quantification (∀) and existential quantification
(∃), and we do not provide any means for defining additional ones.

Abstaining from polymorphic terms in favour of monomorphic ones has a fur-
ther advantage noticed already by Gordon [6, Sect. 3]: We can treat theories as
simple (albeit large) theorems. The axioms of the theory become the antecedents
of the theorem, and constants declared in the theory can be treated as univer-
sally quantified variables. This doesn’t work in polymorphic simply-typed higher

Type Inference for ZFH 89

order logic because polymorphic constants can appear with different types in the
theory but variables must appear always with the same type in the theorem.

We choose the name ZFH for the logical system we obtain by embedding set
theory into classical higher-order logic in the way outlined above. ZFH represents
the same logic as HOL-ST minus type variables and minus a mechanism for
defining custom types. In particular this means that ZFH and HOL-ST are
equiconsistent, and that both HOL and ZFC can be formalized and proven to
be consistent within ZFH.

1.2 Set-Theoretic vs. Higher-Order Function Application

There are two kinds of function application in ZFH:

– application of a higher-order function f : α → β to its argument x : α, and
– application of a set-theoretic function f : U to its argument x : U .

In ZFH, set-theoretic functions are governed by two properties:

∀X f. fun X f = {(x, f x) | x ∈ X}
∀X f. ∀x ∈ X. apply (fun X f) x = f x

Here fun : U → (U → U) → U takes a domain X : U and a higher-order
function f : U → U as its arguments and produces the corresponding set-
theoretic function on that domain. Set-theoretic functions created thus can then
be applied via apply : U → U → U .

In the actual ProofPeer theory [9], the second property is written like this:

∀X f. ∀x ∈ X. fun X f x = f x

Instead of explicitly mentioning apply we write application of a set-theoretic func-
tion in exactly the same way as application of a higher-order function! This is pos-
sible because in the above fun X f is a set, which leads type inference to conclude
that set-theoretic function application must be meant, not higher-order function
application.

In general, the situation is not so clear-cut. Consider the following term:

∀x. ∃f. f x = x

Informally the above says that every x is the fixpoint of some function f . But
which types should we assign to f and x? There are infinitely many valid ones:

1. f : U and x : U
2. f : P → P and x : P
3. f : U → U and x : U
4. f : (U → U) → (U → U) and x : U → U
5. f : (P → U) → (P → U) and x : P → U

. . . and so on

90 S. Obua et al.

Even if we had type variables at our disposal to formulate the typing (which
we don’t) there would still be two equally valid typings to choose from:

1. f : U and x : U
2. f : α → α and x : α

Which one should we pick?
In the next section we will present a type inference algorithm for ZFH with

the following properties:

– If there is a valid typing at all, the algorithm will find one, and will otherwise
fail. In particular, all function applications will be resolved to be either set-
theoretic or higher-order.

– Preference is given to the type U over all other types, and to set-theoretic
function application over higher-order function application.

Note that the second property is a desirable one in our case, as this again empha-
sises the set theory focus of ProofPeer.

In our above example the algorithm yields then the typing f : U and x : U .

2 The Type Inference Algorithm

We first introduce the types and terms our algorithm operates on. Then we
introduce the type equations which guide the algorithm, and recall how to solve
type equations. After highlighting the basic difficulties of the problem we state
the algorithm. Finally we prove that the algorithm terminates, that it is sound,
and in what sense it is complete.

2.1 Types and Terms

Although we do not allow type variables as part of proper ZFH terms, we do
allow them for type inference purposes. In particular a pretype τ is either the
universal type U , the propositional/boolean type P, a function type τ1 → τ2, or
a type variable α:

τ ::= U | P | τ1 → τ2 | α.

A type is a pretype which does not contain any type variables. A preterm t
is either a constant c, a polymorphic constant p[τ], an explicit typing t : τ ,
a higher-order function x : τ1 �→ t : τ2, a variable x, a higher-order function
application t1 �H t2 : τ , a set-theoretic function application t1 �ZF t2 : τ , or a
function application t1 �? t2 : τ where it is unspecified if it is of higher-order or
set-theoretic kind:

t ::= c | p[τ] | t : τ | x : τ1 �→ t : τ2 | x | t1 �H t2 : τ | t1 �ZF t2 : τ | t1 �? t2 : τ.

A term is a preterm which does not contain any type variables, nor any function
applications of unspecified kind.

Type Inference for ZFH 91

Example 1. Our introductory example ∀x. ∃f. fx = x corresponds to the preterm:

∀[α1] �H (x : α2 �→ (∃[α3] �H
(f : α4 �→ ((= [α5] �H (f �? x : α6) : α7) �H x : α8) : α9) : α10) : α11) : α12.

Note that everywhere our preterm format requires a type, we simply used a fresh
type variable.

2.2 Type Equations

A substitution σ associates every type variable α with a pretype σα. Applying
a substitution to a pretype τ means replacing every type variable in τ by its
associated pretype (Fig. 1), and applying a substitution to a preterm t means
applying the substitution to every pretype in t (Fig. 2).

With each constant c a fixed type C(c) is associated, e.g. C(apply) = U →
U → U . Assuming also a partial map V from variables to pretypes we can
associate with each preterm t its type ΓC,V(t) and a set of equations between
pretypes EC,V(t) as shown in Fig. 3. In the following we will assume an implicitly
given C and define

E(t) = EC,∅(t)

where ∅ in this context denotes the empty map.
A substitution σ is a unifier of a set E of equations of pretypes iff for all

equations l ≡ r ∈ E the left hand side and the right hand side of the equation
become identical after substitution, i.e. σ(l) = σ(r) holds. We call E solvable if
it has a unifier. Defining σ(E) = {σ(l) ≡ σ(r) | l ≡ r ∈ E} allows the following
rephrasing: σ is a unifier of E iff σ(E) is a set of identities.

Fig. 1. Applying a substitution σ to a pretype

Fig. 2. Applying a substitution σ to a preterm

92 S. Obua et al.

Fig. 3. Definition of ΓC,V and EC,V

Substitutions can be composed. The composition δ ◦ σ of a substitution σ
with a substitution δ is defined via

(δ ◦ σ)α = δ(σα).

A unifier σ1 is called more general than a unifier σ2, in symbols σ1 ≥ σ2, iff there
is a substitution δ such that σ2 = δ ◦ σ1.

Lemma 1. If E is solvable then it has an idempotent most general unifier mguE ,
i.e. the following two properties hold for mguE :

1. mguE ≥ σ for any unifier σ of E, and
2. mguE ◦ mguE = mguE .

Proof. See [10, Sect. 4.5]. �
If E(t) is solvable for a given preterm t, then we define

S(t) = mguE(t)(t).

Note that S(t) is unique up to a renaming of type variables. Computation of
S(t) is known as Hindley-Milner type inference [11].

Type Inference for ZFH 93

Example 2. Given the preterm t from Example 1, the type equations E(t) are:

(α1 → P) → P ≡ (α2 → α11) → α12

α10 ≡ α11

(α3 → P) → P ≡ (α4 → α9) → α10

α8 ≡ α9

α7 ≡ α2 → α8

α5 → α5 → P ≡ α6 → α7

A most general unifier for these equations of pretypes is given by

mguE(t)(αi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α if i ∈ {1, 2, 5, 6}
β if i ∈ {3, 4}
α → P if i = 7
P if i ∈ {8, 9, 10, 11, 12}

and therefore

S(t) = ∀[α] �H (x : α �→ (∃[β] �H
(f : β �→ ((= [α] �H (f �? x : α) : α → P) �H x : P) : P) : P) : P) : P.

2.3 A First Attempt

An obvious first attempt to solve our type inference problem for a given preterm
t would be to single out all n occurrences of �? in t and to form all 2n possibilities
ti by replacing �? with either �H or �ZF.

If none of the sets of type equations E(ti) is solvable, type inference fails.
Otherwise let tj denote those ti for which E(ti) is solvable. This gives us up to
2n almost-solutions sj where

sj = S(tj).

Because the sj possibly contain type variables, but proper ZFH terms may not
contain type variables, we need to somehow eliminate all type variables from the
sj . One rather arbitrary way of doing so would be to replace all type variables
by U , i.e. to form

rj = U(sj)

where U is the substitution which replaces all type variables by U :

Uα = U for all type variablesα.

This leaves us finally with up to 2n possible solutions rj to our type inference
problem. Computing all of these solutions is not practical for obvious perfor-
mance reasons; furthermore, even if we did compute all of them, it is not clear
which one among them we should pick as the result of the type inference.

94 S. Obua et al.

2.4 The Algorithm

In our above attempt at a type inference algorithm we computed S(ti) only for
preterms ti which did not contain any occurrences of �?. This was an arbitrary
choice we made and it did not pay off.

Instead, given a preterm t which may still contain occurrences of �?, let us
directly compute t0 = S(t) if E(t) is solvable. If t contained any occurrences of
�?, then so will t0, but we now might have more type information available to
decide whether an occurrence of �? should really be replaced by �H or �ZF!

To exploit type information present in a preterm t we define a function D(t)
which is able to decide in certain situations whether an occurrence of �? in t
should be converted into �H or into �ZF (Fig. 4). Analogously to the definition of
E(t) in terms of EC,V(t) we define D(t) in terms of DC,V(t). The main work in D
is done by the function

�(τ1, τ2, τ3) ∈ {�H, �ZF, �?}
which takes three pretypes τ1, τ2, τ3 as arguments and tries to determine which
kind of function application fx must be when the type of f is known to be
τ1, the type of x is known to be τ2 and the type of fx is known to be τ3. If
any of the τi cannot be the type U , in symbols ¬U (τi), then we know that
fx cannot be set-theoretic function application and therefore can only be (if
any at all) higher-order function application. On the other hand, if the type of
τ1 cannot be a function type, in symbols ¬→(τ1), then fx cannot be higher-
order function application and can therefore be only (if any at all) set-theoretic
function application (Fig. 5).

We have now gathered all the pieces to formulate our type inference algorithm
as shown in Fig. 6.

Example 3. Continuing Example 2 we compute now TypeInfer(t). Having already
computed s = S(t) we now need to compute D(s). There is only one occurrence
of �? in s and the corresponding invocation of � yields

�(β, α, α) = �?

Fig. 4. Definition of D

Type Inference for ZFH 95

Fig. 5. Definition of �(τ1, τ2, τ3)

Fig. 6. The Type Inference Algorithm

and thus D(s) = s. This means that no recursive call to TypeInfer is necessary
and therefore

TypeInfer(t) = D(U(s)) = ∀[U] �H (x : U �→ (∃[U] �H
(f : U �→ ((= [U] �H (f �ZF x : U) : U → P) �H x : P) : P) : P) : P) : P.

2.5 Termination

Let us first show that our algorithm actually terminates. There are only finitely
many occurrences of �? in a preterm t, let us denote the number of such occur-
rences by N(t). For two preterms s and t let us write s � t if s arises from t
by replacing some (or none) of the occurrences of �? in t by either �H or �ZF.
Obviously s � t together with s �= t implies N(s) < N(t).

Lemma 2. TypeInfer(t) terminates for every preterm t.

Proof. Given some preterm s, D(s) � s holds. Therefore s �= D(s) implies

N(D(s)) < N(s).

96 S. Obua et al.

We also know that N(t) = N(S(t)) because S only possibly instantiates type
variables and leaves occurrences of �? unchanged. Together this means that for
each recursive call to TypeInfer its argument strictly decreases as measured by
N and therefore the algorithm must terminate. �

2.6 Soundness and Completeness

Given two preterms t and t′ we say that t′ is an instance of t, in symbols

t′ ≤ t

iff there is a substitution σ such that t′ � σ(t).
What does it mean for our type inference algorithm to be sound? Given a

preterm t as input it should output a preterm t′ such that

1. t′ is a term,
2. t′ ≤ t, and
3. E(t′) is solvable.

If there is no such t′ the algorithm should fail. If there are several possible
candidates for t′ it would also be good to have a simple and sensible criterion
for which of the candidates the algorithm will pick. Our algorithm fulfills such a
criterion: it will pick the unique candidate t′ which is minimal with respect to the
relation � which is first defined on types (Fig. 7) and then lifted to terms (Fig. 8).
The reflexive, transitive and antisymmetric relation � expresses formally what
we referred to earlier as “U is preferred over any other type, and set-theoretic
function application is preferred over higher-order function application”.

Fig. 7. Definition of � for Types

Lemma 3. Let σ be a substitution and t a preterm. Then E(σ(t)) = σ(E(t)).

Proof. Immediate from the definitions. �
Lemma 4. Let t be a preterm such that E(t) is solvable. Then E(S(t)) is a set
of identities.

Proof. E(S(t)) = E(mguE(t)(t)) = mguE(t)(E(t)). �
Lemma 5. Let t be a preterm such that E(t) is solvable and S(t) = t. Then
mguE(t) = id and E(t) is a set of identities.

Proof. id(E(t)) = E(t) = E(S(t)) �
Lemma 6. Let s and t be preterms such that s � t. Then E(t) ⊆ E(s). In
particular, if E(s) is solvable then so is E(t).

Type Inference for ZFH 97

Fig. 8. Definition of � for Terms

Proof. Immediate from the definitions. �
Lemma 7. If t is a preterm without any type variables then D(t) is a term.

Proof. If τ1 does not contain any type variables then either ¬U (τ1) or ¬→(τ1)
is true, and therefore �(τ1, τ2, τ3) ∈ {�H, �ZF}. �
Lemma 8. If t is a preterm without any type variables, and t′ is a term such
that E(t′) is solvable and t′ � t then t′ = D(t).

Proof. The terms t′ and D(t) could only possibly differ in places where t has an
occurrence of �?. In those places, choosing differently from D would make the
resulting equations unsolvable; however, E(t′) is solvable. �
Lemma 9. For any preterm t and any substitution σ

D(σ(t)) � σ(D(t)).

Proof. This follows from the fact that �(τ1, τ2, τ3) ∈ {�H, �ZF} implies

�(σ(τ1), σ(τ2), σ(τ3)) = �(τ1, τ2, τ3). �
Lemma 10. Let t be a preterm and t′ a term such that t′ ≤ t and E(t′) is
solvable. Then E(t) is solvable and both t′ ≤ S(t) and t′ ≤ D(t) hold.

Proof. Because t′ ≤ t there exist σ and t′′ such that t′′ = σ(t) and t′ � t′′.
Because E(t′) is solvable so is E(t′′). Because t′ is a term, neither t′ nor t′′

contain any type variables and thus S(t′′) = t′′ which implies that E(t′′) =
E(σ(t)) = σ(E(t)) are all sets of identities, and therefore σ is a unifier of E(t).
This means there is a substitution δ such that σ = δ ◦ mguE(t) which implies
t′′ = σ(t) = δ(S(t)). Thus t′ ≤ S(t). Furthermore,

t′ = D(t′′) = D(σ(t)) � σ(D(t)),

and thus t′ ≤ D(t). �

98 S. Obua et al.

Lemma 11. TypeInfer is sound. It is also complete in the sense that it will
compute the unique �-minimal solution if there is any solution at all.

Proof. Given a preterm t, TypeInfer will check if E(t) is solvable.
If it is not, it will fail; this is correct, because then there can be no solution

t′ with t′ ≤ t and E(t′) solvable because otherwise E(t) would be solvable as well
because of Lemma 10.

If on the other hand E(t) is solvable it will either recursively call itself with
argument d where d = D(S(t)) or perform a final calculation and return the
result. In the case of a recursive call, we know because of Lemma 10 that every
solution t′ of t is also a solution of d.

So let us look at the final calculation now. We know that d = s holds where
s = S(t). In other words, d is a fixpoint of D which means that

�(τ1, τ2, τ3) = �?
holds for all invocations of � during the computation of D(d) which implies
that all of τ1, τ2 and τ3 are either equal to U or equal to a type variable. The
substitution U will therefore make all τi in those invocations equal to U and
thus the effect of applying D to U(d) is to switch all occurrences of �? to �ZF. In
particular, E(D(U(d))) is solvable because E(d) is a set of identities and

E(D(U(d))) = U(E(d)) ∪ {U ≡ U }.

That means that t0 is a solution where t0 = D(U(d)). Furthermore t0 is minimal
with respect to � because for any solution t′ we know t′ ≤ d and because for
any term a and any preterm b such that a ≤ b it follows that DZF(U(b)) � a
where DZF replaces all occurrences of �? in its argument by �ZF. Because of the
antisymmetry of �, minimality implies uniqueness. �

2.7 Examples

We present three more examples of applying TypeInfer. We will use abbreviated
notations for preterms in the following.

Example 4. Let t be the preterm ∀x : α. ∃f : β. f �? x : γ. Then

S(t) = ∀x : α. ∃f : β. f �? x : P.

Because of �(β, α,P) = �H we know

t′ = D(S(t)) = ∀x : α. ∃f : β. f �H x : P �= S(t)

Computing TypeInfer(t′) yields first S(t′) = ∀x : α. ∃f : α → P. f �H x and then

TypeInfer(t) = TypeInfer(t′) = U(S(t′)) = ∀x : U . ∃f : U → P. f �H x.

Type Inference for ZFH 99

Example 5. Let t be a : α �→ b : β �→ c : γ �→ d : δ �→ a �? b �? c �? d. Then

t′ = D(S(t)) = a : α �→ b : β �→ c : γ �→ d : δ �→ a �? b �? c �? d

TypeInfer(t) = D(U(t′)) = a : U �→ b : U �→ c : U �→ d : U �→ a �ZF b �ZF c �ZF d.

Example 6. Let us modify the previous example and infer the type of

a : α �→ b : β �→ c : γ �→ d : δ �→ a �? b �? c �? d ∧ d.

This time the algorithm needs three recursive calls and yields finally

a : U → U → P → P �→ b : U �→ c : U �→ d : P �→ a �H b �H c �H d ∧ d

This example can be generalized to produce for any n an example with n occur-
rences of �? such that TypeInfer needs n recursive calls.

3 Related Work

In HOL-ST [5], set-theoretic and higher-order function application have different
syntax; in particular, higher-order function application is written fx and set-
theoretic function application is denoted by f � x. Because HOL-ST has type
variables and capabilities for defining new types, the type U is just one type
besides many others; our type inference algorithm does not yield a desirable
result in such a setting. Of course, as HOL-ST is a strict superset of ZFH, one
could work in it as one works in ZFH; our type inference algorithm can be
directly translated to HOL-ST to support such a scenario.

Isabelle/ZF [7] also uses two different notations, fx for higher-order and f ‘x
for set-theoretic function application. Although Isabelle/ZF is embedded in poly-
morphic intuitionistic higher-order logic it is used in an essentially monomorphic
way using an identical type system to ZFH. Isabelle has a flexible mechanism for
syntax extension by adding context-free grammar rules so it should be possible
to introduce syntax to write set-theoretic function application via juxtaposition
as well. Type information is used in Isabelle to disambiguate between several
possible parse trees. Using this built-in mechanism would lead to a situation
similar to what we described in Sect. 2.3: whenever there are multiple possi-
ble typings parsing would fail. But in principle it should be possible to write a
system-level Isabelle extension which implements our type inference algorithm
for Isabelle/ZF.

Our operator for set-theoretic function application apply : U → U → U
could be viewed as a coercion from U to U → U . There has been previous work
with regard to the general problem of extending Hindley-Milner type inference
in the presence of coercions. In [12] coercions between types which only differ in
their base types but not in their type constructors are considered; because U
does not contain the type constructor → but U → U does, their work is not
applicable to our case. In [13] more general coercions are considered but their
algorithm has the property that no coercions are inserted if Hindley-Milner type

100 S. Obua et al.

inference alone already yields a valid typing; this is not what we would like in
our setting as this property means that their algorithm would choose the typing
f : α → α and x : α over the typing f : U and x : U in our introductory
example. And then there would still be the question of how that polymorphic
type should be converted into a monomorphic one.

Another way of looking at our scenario is from an overloading point of view
where the generic operator �? of type α → β → γ has two different instances
�ZF : U → U → U and �H : (α → β) → α → β. But typical algorithms which
extend Hindley-Milner to take overloading into account like in [14] compute a
principal type of which all other possible valid typings are instances. This is not
what our algorithm does; instead we minimize a preference relation � which is
different from the is-an-instance-of relation a principal type maximizes.

4 Conclusion

We have implemented TypeInfer as part of the implementation of ProofScript,
the proof language of ProofPeer. Combining the strengths of set theory with
the strengths of higher-order logic has always had a certain appeal to ITP
researchers. We believe that the answer has been staring into our faces for quite
some time now in the form of ZFH; all we had to do to arrive at ZFH was to
take HOL-ST and take away powers which HOL practitioners take for granted
but which are of little use in the context of set theory. The existence of TypeInfer
which allows us to fuse the notations for higher-order function application and
set-theory function application into a single one because of the absence of those
powers supports our belief.

References

1. ProofPeer. http://www.proofpeer.net
2. Obua, S., Fleuriot, J., Scott, P., Aspinall, D.: ProofPeer: Collaborative Theorem

Proving. http://arxiv.org/abs/1404.6186
3. Hales, T., et al.: A formal proof of the Kepler conjecture. http://arxiv.org/abs/

1501.02155
4. Homotopy Type Theory. http://homotopytypetheory.org/
5. Agerholm, S., Gordon, M.: Experiments with ZF set theory in HOL and Isabelle.

In: Schubert, E.T., Alves-Foss, J., Windley, P. (eds.) HUG 1995. LNCS, vol. 971.
Springer, Heidelberg (1995)

6. Gordon, M.: Set theory, higher order logic or both? In: von Wright, J., Harrison,
J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125. Springer, Heidelberg (1996)

7. Paulson, L.C.: Set theory for verification: I. from foundations to functions. J.
Autom. Reasoning 11(3), 353–389 (1993). Springer

8. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
J. Autom. Reasoning 44(4), 303–336 (2010). Springer

9. ProofPeer Root Theory. http://proofpeer.net/repository?root.thy
10. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,

Cambridge (1999)

http://www.proofpeer.net
http://arxiv.org/abs/1404.6186
http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155
http://homotopytypetheory.org/
http://proofpeer.net/repository?root.thy

Type Inference for ZFH 101

11. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17, 348–375 (1978)

12. Traytel, D., Berghofer, S., Nipkow, T.: Extending hindley-milner type inference
with coercive structural subtyping. In: Yang, H. (ed.) APLAS 2011. LNCS, vol.
7078, pp. 89–104. Springer, Heidelberg (2011)

13. Luo, Z.: Coercions in a polymorphic type system. Math. Struct. Comput. Sci.
18(04), 729–751 (2008). Cambridge Journals

14. Odersky, M., Wadler, P., Wehr, M.: A second look at overloading. In: Proceedings
of the Seventh International Conference on Functional Programming Languages
and Computer Architecture. ACM (1995)

Generic Literals

Florian Rabe(B)

Jacobs University, Bremen, Germany
f.rabe@jacobs-university.de

Abstract. Mmt is a formal framework that combines the flexibility
of knowledge representation languages like OpenMath with the formal
rigor of logical frameworks like LF. It systematically abstracts from the-
oretical and practical aspects of individual formal languages and tries to
develop as many solutions as possible generically.

In this work, we allow Mmt theories to declare user-defined liter-
als, which makes literals as user-extensible as operators, axioms, and
notations. This is particularly important for framework languages, which
must be able to represent any choice of literals. Theoretically, our liter-
als are introduced by importing a model that defines the denotations of
some types and function symbols. Practically, Mmt is coupled with a
programming language, in which these models are defined.

Our results are implemented in the Mmt system. In particular, lit-
erals and computation on them are integrated with the parser and type
checker.

1 Introduction and Related Work

Even though literals (e.g., for booleans, integers, or strings) are a common feature
of formal systems, there appears to be no general definition of what they are.
Most languages simply use a fixed set of primitive types with built-in literals,
which appear explicitly in the grammar, the semantics, and the implementation.
To our knowledge, there is no system that is systematically parametric in the
choice of literals – while users can declare new constants, functions, axioms, and
notations, etc., the set of literals is usually fixed.

A fixed set of literals is often a reasonable choice. But it has some weird
effects. For example, OpenMath [BCC+04] is meant to subsume the languages
of all other formal systems. But it fixes a set of literals and thus cannot represent
any system that uses different literals. Another example, the proof assistant HOL
Light [Har96] relegates as much as possible to its library, including, e.g., the
definition of the type of natural numbers. But support for natural number literals
must be built into the base system, anticipating the library’s type definition.

The same observations apply to interpreted constants, which usually go along
with literals. For example, languages with natural number literals “0”, “1”, . . . :
nat usually also provide built-in constants such as + : nat → nat → nat. When
applied to literals, their values can be directly computed, e.g., “1” + “1” � “2”.
(To clarify the presentation, we will enclose all literals in quotes throughout this

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 102–117, 2015.
DOI: 10.1007/978-3-319-20615-8 7

Generic Literals 103

paper.) In higher-order languages, we can think of these as literals of function
type, but the general case requires a distinction between literals and interpreted
functions.

State of the Art. We speak of primitive literals if a language fixes sets LA for
types A and adds the rule schema

� “l” : A
for l ∈ LA

Note that LA may be infinite, e.g., we could put Lnat = 0, 1, Sets of (usually
finitely many) interpreted constants are supplied accordingly.

This is typical for programming languages and computer algebra systems.
Often the types A include booleans, bounded integers, floating point numbers,
characters, and strings. Computer algebra systems prefer unlimited precision
integers and rational numbers. Mathematica [Wol12] offers many primitive lit-
erals, e.g., for images, which users input as files.

Logics, on the other hand, use primitive literals very sparingly: firstly, because
the interplay between reasoning and computation (when interpreted functions
are applied to non-literals) is very difficult; secondly, because unverified com-
putation endangers logical consistency. Martin-Löf type theory [ML74] uses a
primitive type for natural numbers. Nuprl [CAB+86] uses a primitive type of
integers. Recently, the TPTP family of interchange logics added support for
primitive literals for integer, rational, and real numbers [SSCB12].

We speak of literals as constants if every literal is declared as a constant.
This makes literals extensible but is only feasible for very small sets of literals.
The most common example are the boolean constants true and false.

We speak of enumeration literals if languages allow defining new finite
types by listing fresh identifiers for their elements. This is supported by C or
any language with inductive data types. It is less impractical than literals as
constants but still impractical in general.

We speak of derived literals if literals appear only in the concrete syntax
and are converted into other representations in the abstract syntax. For example,
we can use constants 0 and succ for the abstract representation of derived natural
number literals. Then interpreted constants are not needed at all because they
can be defined on the abstract representations, e.g., via induction or rewriting.

Examples of derived literals are strings in C (converted to character arrays)
or XML literals in Scala (converted to objects). They are also used in various
proof assistants. HOL Light [Har96] uses derived natural number literals, which
are represented as (essentially) lists of bits. Somewhat similarly, Mizar [TB85]
uses 16-bit integer literals as natural numbers.

Derived literals allow reducing a lot of the technical difficulties to logical
reasoning (of course, at the expense of efficiency). However, they are still not
extensible in practice because users are usually not able to modify the parser
and printer that perform the conversion. That makes it difficult for users to add
new derived literals themselves.

104 F. Rabe

Literals present a particular challenge for knowledge representation
languages like OpenMath because there is no good canonical choice which lit-
erals to support. For example, OpenMath [BCC+04] somewhat arbitrarily uses
primitive literals for unbounded decimal integers (OMI), decimal or hexadeci-
mal IEEE floating point numbers (OMF), strings (OMSTR), and bytearrays
(OMB), and literals as constants for booleans (CD logic1). It lacks, e.g., literals
for bounded or arbitrary-base integers as well as characters (not to mention more
exotic types like URIs, dates, or colors).

They are also a challenge for logical frameworks like LF [HHP93], which
represent other languages as theories. Because these other languages may use
different literals, a logical framework should not fix any literals but allow theories
to declare flexibly which literals are used. The Twelf system [PS99] supports
constraint domains for this purpose, which subsume primitive literals. However,
only developers but not users can add new constraint domains.

Contribution. We give a general definition of literal and interpreted con-
stants. We base our definition on the Mmt language [RK13], which already
gives extremely general definitions of theory, declaration, and expression. Our
Mmt literals are extensible and context-specific: Mmt theories can declare
new primitive literals and new interpreted constants, and every theory sees only
the ones it declares (or imports). We implement our literals as a part of the
Mmt system [Rab13].

We hold that this is the only feasible design for generic languages such
as OpenMath-style representation languages or logical frameworks.

Our key idea is to extend the Mmt syntax with a single constructor for
literals: “l” where l is an arbitrary element of some semantic domain. Clearly,
in a declarative formal language, we cannot easily use a set theoretical domain.
Therefore, in practice, we use the Scala programming language, which underlies
the Mmt system, as the semantic domain.

Building on the correspondence between the Mmt module system and Scala
inheritance [KMR13], we let Mmt theories and Scala classes import each
other. Then a typical use of our system proceeds in three steps:

1. We axiomatize an Mmt theory T , e.g., with a type nat and a constant plus.
2. T behaves like an abstract Scala class. We implement it in a concrete Scala

class C, e.g., using the positive integers for nat and addition for plus.
3. C behaves like an Mmt theory that includes T and adds a definiens to every

constant in T . The respective definiens is the literal representing the Scala
value assigned by C. Mmt theories including C may use the literals and the
interpretations of the constants into scope. For example, that would make
natural number literals available, and add addition to the Mmt simplifier.

Our primary motivation is to use our extensible literals sparingly: The choice of
literals will usually be made at the beginning of a development, and most users
will never add new literals.

However, if used more aggressively, our approach also offers a framework
in which we can combine deduction (which guarantees correctness) and

Generic Literals 105

computation (which is much more efficient) and investigate their interplay.
Our new Mmt theories can mediate between the two paradigms by combining
logical theories T and computational theories C. Even without further insights
into how to verify the correctness of computations, this can help make them more
trustworthy: Just putting the two side by side in a common formal framework
is a step up compared to some current systems.

Therefore, we do not simply design our system as a foreign function inter-
face to Mmt (even though it can be seen as such). Instead, we first develop
the semantics of combined theories for arbitrary models C, and then specialize
to the case where C is an effectively given model, i.e., a set of computations.
This can help ensure the correctness of the computations because it ties them
closer to their expected logical properties. Moreover, this situation can serve as
a good starting point for a rigorous treatment that would formally verify the
implementations.

Finally, because Mmt already includes a generic type-checker, our approach
allows integrating computation not only with deduction but also with type-
checking. Indeed, the combination of dependent types with literals allows defin-
ing languages in Mmt where type-checking is carried out up to computational
equality.

Overview. We recap the existing Mmt language in Sect. 2. Then we extend it
with a general notion of literals in Sect. 3 and specialize to Scala-based computa-
tional literals in Sect. 4. We present the practical aspects of our implementation
in Sect. 5. In Sect. 6, we discuss further related work and conclude.

2 Preliminaries: The MMT Language

The Mmt language and module system were originally introduced in [RK13].
The recap here follows the formulation of [Rab14] and focuses on a very small,
non-modular fragment.

Fig. 1. Mmt grammar

Grammar. The grammar for basic Mmt
theories is given in Fig. 1. A theory Σ
is a list of constant declarations. These
are of the form c[: A][= t][#N] where
c is an identifier, A is its type, t its
definiens, and N its notation, all of
which are optional. A context Γ is very
similar to a theory and declares typed variables.

Constant declarations subsume the most common declarations of formal sys-
tems including built-in symbols, universes, function/predicate/type symbols, and
(by using propositions as types) axioms, theorems, and inference rules.

Type and definiens are terms, and terms are formed from constants c, vari-
ables x, and complex terms c(Γ ; t1, . . . , tn). Complex terms bind the variables of
Γ in the arguments ti. This includes OpenMath-style binding and application:

106 F. Rabe

Γ = · yields application (OMA) of c to the ti, and Γ �= · and n = 1 yields binding
(OMBIND) with binder c. Like OpenMath objects, Mmt terms subsume most
expressions of formal systems such as terms, types, formulas, and proofs.

Like OpenMath, Mmt’s syntax is generic in the sense that there are no
predefined constants in the grammar. Therefore, to represent any language L
in Mmt, we first have to declare a special theory (which we usually also call
L for convenience) with one untyped constant for each built-in symbol of L.
Then we define L-theories as the Mmt theories of the form L,Σ such that all
Σ-constants have a type.

We usually think of L as a logical framework that is used to define other
languages as L-theories. As running examples, we will use the dependently typed
λ-calculus LF [HHP93] as a logical framework and the natural numbers as an
LF-theory:

Example 1 (An Mmt Theory for LF). LF is the theory shown on the left of Fig. 2.
For example, the abstract syntax for a λ-abstraction is lambda(x : A; t) where
x : A the single bound variable, and t the single argument. The notation declares
both the arity and binding-arity and the concrete syntax. So the concrete syntax of
lambda(x : A; t) is [x : A]t. Similarly, in an application apply(·; f, t), no variables
are bound, and f and t are the arguments. The concrete syntax is f t.

The theory Nat on the right of Fig. 2 extends LF with some example declara-
tions for the natural numbers. We can also represent axioms in the usual LF-style,
but do not do that here because we do not need them later on.

Fig. 2. LF in Mmt (left) and natural numbers in LF (right)

Fig. 3. Judgments of Mmt

Inference System. The main judgments of
Mmt are given in Fig. 3. There is no need to
introduce the type system in detail here, and
we refer to [Rab14] instead. For our purposes,
it is sufficient to know that the type system is
generic as well: Mmt itself only provides the
structural rules for declarations, congruence, α-equality, and constants.

All other rules are provided separately when representing a logical framework:

Example 2 (The Logical Framework LF). For LF, we add the usual rules for
λ-abstraction including

Γ �Σ A : type Γ, x : A �Σ B : type
Γ �Σ {x : A}B : type

Generic Literals 107

Γ, x : A �Σ t : B

Γ �Σ [x : A]t : {x : A}B

Γ �Σ f : {x : A}B Γ �Σ t : A

Γ �Σ f t : B[x/t]

where B[x/t] denotes substitution of x with t in B. We do not need any rules
for the LF-theory Nat because it inherits all rules from LF.

Once a logical framework L is represented in this way, we never have to add
rules again – we represent further languages declaratively as L-theories.

Finally, consider an L-theory Σ = . . . , ci : Ai[= ti], . . . and let Σi = . . . , ci−1 :
Ai−1[= ti−1]. Σ is valid if �L,Σi : Ai [and �L,Σi ti : Ai] for all i.

Implementation. The Mmt system [Rab13] implements the above concepts. This
includes generic implementations of parsing (according to the notations) and
type reconstruction (according to the supplied rules). It adds a module system
for theories, of which we will make modest use in some examples.

3 Literals as Semantic Values

We first introduce some general semantic notions for Mmt before we define
literals. The main intuition is that models are collections of values and functions,
which we want to reflect into the syntax.

3.1 Models of MMT Theories

A semantic domain is a triple (U, :̂, =̂) where U is any collection of objects, and
:̂ and =̂ are binary relations on U such that =̂ is an equivalence and congruent
with respect to :̂.

Example 3 (Set Theory). To obtain a semantic domain for set theory, we put U
to be the collection of all classes (in the sense of set theory). Then :̂ is the ∈
relation, and =̂ is extensional equality of classes.

Let us now fix a logical framework L represented in Mmt and a semantic domain
(U, :̂, =̂). Given an L-theory Σ, a Σ-model M is a function that maps every Σ-
constant c to an element cM of U . Assignments α interpret the free variables
of a context accordingly.

Example 4 (Standard Natural Numbers). Given the LF-theory for the natural
numbers from Example 1, we define the standard model StdNat in set theory in
the obvious way: natStdNat = N, propStdNat = {0, 1}, and succStdNat, plusStdNat,
equalStdNat are defined as usual.

A semantics for an Mmt theory L consists of a semantic domain and a set of
interpretation rules. The interpretation rules must extend every Σ-model M to
a (usually partial) interpretation function �−�M that maps closed Σ-terms to
elements of U .

We do not spell out the general shape of these interpretation rules, and
instead only give a concrete example for the standard set theoretical semantics
of LF. In fact, if we use LF as a logical framework in which other languages are
specified, we only need to define the semantics of LF anyway:

108 F. Rabe

Example 5 (Set Theoretical Semantics of LF). We use the domain from
Example 3. Given a model M of an LF-theory Σ and an assignment α for the
context Γ , we use the following interpretation rules to define �t�M

α ∈ U for terms
t in context Γ :

�type�M
α = SET �A → B�M

α = (�B�M
α)�A�M

α

�[x : A]t�M
α = �A�M

α � u �→ �t�M
α,x�→u �f t�M

α = �f�M
α (�t�M

α)

We omit the analogous rule for terms constructed using Pi.

Finally, a model M is sound if it preserves typing and equality, i.e.,

if Γ �Σ t : A then �t�M
α :̂ �A�M

α

if Γ �Σ t ≡ t′ then �t�M
α =̂ �t′�M

α

In particular, soundness requires models to interpret Σ-constants c : A[= t] as
values cM :̂ �A�M [such that cM =̂ �t�M] (†). We call the semantics as a whole
sound if the inverse holds too, i.e., if every model satisfying (†) is sound. This
is the case for the semantics of Example 5.

3.2 Internalizing Models

We fix a logical framework L and a sound semantics for L that uses a semantic
domain (U, :̂, =̂). We will now internalize the semantic domain, the semantics,
and individual models into Mmt. The main idea is to treat every element of
l ∈ U as a literal that may occur as a term “l”. Of course, this may yield an
uncountable set of terms, or even a proper class if we use the semantic domain
from Example 3. However, this level of abstraction is well-suited to define the
general concepts even if practical systems must be much more restricted.

To internalize the semantic domain, we extend the Mmt grammar from
Fig. 1 with one new production “l”:

t : := c | x | c(Γ ; t∗) | “l” for l ∈ U

Moreover, we add two new inference rules to Mmt:

�Σ “l” : “l′”
for l :̂ l′ �Σ “l” ≡ “l′”

for l =̂ l′ (∗)

Because we extended the grammar, we also need to extend the semantics with
a new interpretation rule – models interpret every literal as itself:

�“l”�M = l (∗∗)

We call t a value if �Σ t ≡ “l” for some l. Then we have the following inverse
of (∗∗):

Theorem 1. If t is a value and M is a sound Σ-model, then �Σ “�t�M” ≡ t.

Generic Literals 109

Proof (Outline). Assume �Σ t ≡ “l”. The key step is to use soundness, (∗∗), and
(∗) to obtain �Σ “l” ≡ “�t�”.

At this point, there are no typing rules that relate literals to non-literal terms.
Thus, our literals are logically inconsequential. That changes with the next defin-
ition: We internalize the semantics by adding its interpretation rules as Mmt
typing rules. Again, it is sufficient for our purposes to give only an example for LF:

Example 6. We use the following typing rules to internalize the interpretation
rules from Example 5:

�Σ type ≡ “SET ”
�Σ a ≡ “A” �Σ b ≡ “B”

�Σ a → b ≡ “BA”

�Σ f ≡ “F” �Σ t ≡ “T”

�Σ f t ≡ “F (T)”

�Σ a ≡ “A” �Σ t[“u”] ≡ “Tu” for all u ∈ A

�Σ [x : A]t ≡ “A � u �→ Tu”

Finally, we can internalize models. For an L-theory Σ and a Σ-model M ,
the Mmt theory “M” contains for every Σ-constant c : A[= t] the constant
c : A = “cM”. Intuitively, in “M”, every constant is equal to its interpretation,
and via the internalized semantics, so is every interpretable term. The following
theorem shows that we can indeed treat models as special theories:

Theorem 2. Consider a valid L-theory Σ = c1 : A1, . . . , cn : An. If all Ai are
values, then a Σ-model M is sound iff “M” is a valid L-theory.

Proof. Because we assume that Σ is valid, the validity of “M” is equivalent to
�“M” “cM” : A for every Σ-constant c : A.

Assume M is sound. Then cM :̂ �A�M and thus �“M” “cM” : “�A�M”. Then
validity follows using Theorem1.

Conversely, assume “M” is valid. We show that M is sound by induction
on the declarations in Σ. For c : A = “cM” in “M”, the induction hypothesis
implies �“cM”�M :̂ �A�M . Then (∗∗) yields cM :̂ �A�M .

3.3 Literals Through Internalized Models

We can now show how Mmt theories can declare specific sets of literals. First
we give an L-theory Σ, which declares all types for which we want to supply
literals and all function symbols for which we want to fix an interpretation. Then
we give a Σ-model M , which supplies the literals and interpretations. Finally
any theory of the form “M”, Θ includes these literals and interpretations. In
particular, every theory may use different literals.

Example 7. We work with the internalized semantics of LF from Example 6. Let
Vec be the LF-theory of Fig. 4. It uses the Mmt module system to include the
theory “StdNat” from Example 4 (and thus also includes Nat from Example 1).
The left part introduces vecn as the type of vectors of length n over a fixed
type a (with a dummy value c : a). The right part introduces an operation for

110 F. Rabe

Fig. 4. Vectors in LF with natural number literals

concatenation (whose axioms we omit) and declares some example constants
that use natural number literals.

Note that the example declarations are well-typed in LF only because the inter-
nalization of the semantics implies that �Vec vec “2” ≡ vec (succ(succ(“0”)))
and �Vec vec “4” ≡ vec (“2” + “2”). Such an integration of interpreted constants
into a dependent type theory is non-trivial even for a fixed set of literals.

It remains to define theories like “StdNat” in practice. Obviously, this is only
possible if we can internalize the semantics in a computationally effective way.
We look at that in the next section.

4 Literals as Computational Values

4.1 Models as Implementations

While set theory is interesting theoretically, in practice we need to use a pro-
gramming language or computer algebra system to define models. To do that,
we can reuse all concepts from Sect. 3 – we only have to use a different semantic
domain. As a concrete example, we will use the simply-typed functional pro-
gramming language Scala [OSV07], but we could use any other computational
language analogously:

Example 8 (Scala as a Semantic Domain). Scala permits top level declarations
of new types (classes) and values (objects). Therefore, the set of Scala expressions
depends on the top level declarations that are in scope. So let us fix a set G of
top level declarations. We further assume all classes are immutable (which is the
only case we need anyway).

Then we obtain a semantic domain (U, :̂, =̂) as follows. U consists of the
symbol type, all Scala types over G, and all typed Scala expressions over G. :̂
relates all types to type and all expressions to their type. =̂ relates type to itself,
two types if they expand to the same normalized type, and two expressions if
they evaluate to the same value.

Scala is not dependently typed. Therefore, we use a straightforward type erasure
translation to interpret LF in Scala – it interprets LF functions as Scala functions
but removes all arguments from dependent types:

Generic Literals 111

Example 9 (Semantics of LF in Scala). Using the semantic domain from Exam-
ple 8, we define the following interpretation rules:

�type�M = type �A → B�M = �A�M ⇒ �B�M �{x : A}B�M = �A�M ⇒ �B�M

for terms : �[x : A]t�M = (x : �A�M) ⇒ �t�M,x �→x �f t�M = �f�M (�t�M)

for types : �[x : A]t�M = �t�M �f t�M = �f�M

where ⇒ is Scala’s syntax for both function types and λ-abstraction.

Of course, the type erasure translation loses some precision if an LF-theory
makes use of dependent types. More precisely, this semantics is not sound. This
is harmless, however, because most interpreted functions that we want to imple-
ment in practice are simply-typed, usually even first-order. And the semantics
is sound if we restrict attention to simply-typed models.

Giving models relative to this semantics means to implement Mmt theories
in Scala. Moreover, a model of a theory T has the same structure as a Scala
object that implement an abstract class T . Therefore, we can directly use Scala
syntax to write the models:

Example 10 (Integers in Scala). We give the abstract Scala class obtained by
applying the interpretation rules from Example 9 to the theory Nat from Exam-
ple 1, and a model of it:

ab s t r a c t c l a s s Nat {
type nat
type prop
de f succ(x : nat) : nat
de f plus(x : nat , y : nat) : nat
de f equal(x : nat , y : nat) : Boolean

}
ob j e c t StdInt extends Nat {

type nat = BigInt
type prop = Boolean
de f succ(x : nat) = x+1
de f plus(x : nat , y : nat) = x+y
de f equal(x : nat , y : nat) = x == y

}
Here, we modeled the type nat as Scala’s unbounded integers BigInt. We get
back to that in Example 12.

Example 11 (OpenMath Literals). It is now straightforward to recover the 4
types of literals used by OpenMath as special cases. StdInt already implements
OMI, along with some interpreted constants. Floating point numbers, strings,
and byte arrays are equally simple.

112 F. Rabe

4.2 Types as Partial Equivalence Relations

We can generalize the semantic domain from Example 8 substantially if we use
partial equivalence relations (PERs) instead of types. A PER consists of a Scala
type A and a symmetric and transitive binary relation r on A.

It is well-known that a PER r on A defines a quotient of a subtype of A. To
see that, let As be the subtype of A containing all elements that are in relation
to any other element. Then the restriction of r to As is reflexive and thus an
equivalence. The postulated quotient arises as the quotient of As by r.

This results in a more expressive semantic domain in which we can take
subtypes and quotients to build the exact type we need for our literals:

Example 12 (Scala PER Domain). We define PERs using the Scala class:

ab s t r a c t c l a s s PER {
type univ
de f valid(u : univ) : Boolean
de f normal(u : univ) : univ

}
valid defines the subtype, and normal(x) = normal(y) defines the relation r.

Then we obtain a semantic domain (U, :̂, =̂) as follows. U contains PER, all
expressions p : PER, and all pairs (p, u) for p : PER and u : p.univ.

Then we put p :̂ PER if p : PER; and p =̂ p′ if p and p′ evaluate to the same
value.

And we put (p, u) :̂ p if p.valid(u); and (p, u) =̂ (p, v) if p.normal(u) =
p.normal(v).

We can now refine Example 10 by interpreting the type nat as a subtype of
BigInt:

Example 13 (Natural and Rational Numbers). We use the semantic domain from
Example 12 to define literals for natural numbers:

ob j e c t StdNat extends PER {
type univ = BigInt
de f valid(u : univ) = u >= 0
def normal(u : univ) = u

}
Similarly, we can define rational numbers e/d using pairs (e, d) of integers:

ob j e c t StdRat extends PER {
type univ = (BigInt , BigInt)
de f valid(u : univ) = u . 2 != 0
de f normal(u : univ) = {

va l (e , d) = u
va l g = (e gcd d) ∗ d . signum
return (e/g , d/g)

}
}

Generic Literals 113

Here validity ensures that the denominator is non-zero, and normalization
cancels by the greatest common divider.

It is straightforward to adapt the semantics from Example 9 to this new semantic
domain. The only subtlety are function types: Given two PERs p on A and q
on B, it is easy to define the needed PER p ⇒ q on A ⇒ B in theory. However,
validity and normalization in p ⇒ q are not in general computable anymore,
and the soundness of models that use functions on PERs is undecidable. This is
acceptable because users anyway have to verify the correctness of their imple-
mentations manually.

5 Implementing Literals in the MMT System

5.1 Internalizing a Computational Semantics

Now we internalize the semantics of LF in Scala using the semantic domain of
Example 12. Our reason for using Scala is that it underlies our implementation
of Mmt. Therefore, we can extend it with Scala-based literals seamlessly. We
make the following changes to the Mmt implementation:

(1) We add a feature to the Mmt build tool: It exports all LF-theories T as
abstract Scala classes T ∗. Now the Scala-models of T are the Scala objects
M that implement T ∗ (as in Example 10).

(2) Conversely, we allow include declarations that include Scala objects M (as in
Example 7). If an Mmt theory includes “M”, Mmt locates the Scala object
M and dynamically adds its definitions to the type system.

(3) We implement the term constructor “l” for the special case where l is an
element of the Scala PER domain from Example 12. In particular, l can be
of the form (p, u).

At this point, we do not add concrete syntax for constructing Scala expres-
sions u to the Mmt grammar (but see Sect. 5.2). Therefore, users can ref-
erence these new terms only indirectly: If c is a constant in T and we have
included a model “M” of T , then we can use c to refer to the Scala value
“cM”.)

This restriction has two desirable effects: (i) Scala expressions can appear
in Mmt terms only if they have been explicitly imported. (ii) It remains
transparent how a model M implements the theory T .

(4) We internalize the Scala semantics by adding the following rules to the Mmt
type checker:

p = cM for some “M” imported into T p.valid(u) = true

�T “(p, u)” : c
p.normal(u) = p.normal(u′)

�T “(p, u)” ≡ “(p, u′)”
l = cM (l1, . . . , ln) “M” imported into Σ

�Σ c “l1” . . . “ln” ≡ “l”

This fully integrates literals and computation with Mmt’s type recon-
struction. (If computations in M do not terminate, then type reconstruction
times out.)

114 F. Rabe

Notably, the models M can be written and included by users at run time just
like normal Mmt theories. In particular, the generated classes T ∗ hide details
specific to the Mmt code base, and users do not have to rebuild Mmt after
implementing M .

5.2 Lexing Rules

The changes of Sect. 5.1 only allow supplying interpreted function constants.
They do not modify the parser, which is a major hurdle towards extensibility.
However, Mmt systematically uses rule-based lexing and parsing algorithms,
whose rules are provided by the context. That makes it possible (and easy) to
couple every type of literals with an appropriate lexing rule.

In our implementation, the Scala class PER actually has one additional field,
which provides an optional lexing rule. Such a rule is a function that takes an
input stream and returns either nothing or a literal that occurs at the beginning
of the stream. We also provide some parametric lexing rules that can be instan-
tiated to quickly create lexing rules for the most important cases. In particular,
these include quoted and digit-based literals.

Fig. 5. Vectors in LF using Scala-based natural number literals

Example 14. Figure 5 shows a variant of Example 7, which used set theory to
define the natural number literals. Now we use the model from Example 13
extended with an appropriate lexing rule for digit-based literals.

Figure 5 shows the concrete syntax that can be processed by Mmt. In par-
ticular the interpreted functions of “StdNat” are integrated with the dependent
type system. Note that we can also omit some of the arguments to cons and
concat because they can be inferred by Mmt.

5.3 Inversion Rules

A central difficulty of combining deduction and computation lies in terms that
use both the usual function symbols and variables on the one hand and inter-
preted function symbols and literals on the other hand.

Example 15 (Unification). We extend Example 14 with the following declara-
tions for the head of a non-empty vector:

head : {n : nat}vec (succn) → a test2 : a = head test0

Generic Literals 115

Type-checking the declaration test2 leads to the unification problem vec
(succX) = vec 2 and thus succX = 2, where X is a meta-variable representing
the omitted first argument of head.

Without further help, the type checker is unable to solve this problem. In fact,
because Mmt knows nothing about how succStdNat is implemented, it cannot
even tell if the problem is solvable at all.

This is a general problem, for which we do not claim a complete solution. It
is also related to the more general unification problems addressed by canonical
structures in Coq and unification hints in Matita [ARCT09].

However, the rule-based and highly extensible type reconstruction algorithm
of Mmt provides a good setting for investigating possible solutions. As a first
step, we allow Scala models to couple an interpretation cM with a (possibly
partial) implementation of the inverse function cM −1. If provided, Mmt adds
the following rule to the type checker:

(l1, . . . , ln) = cM −1(l) �Σ ti ≡ “li”
�Σ c t1 . . . tn ≡ “l”

This is already sufficient to solve many special cases in practice. For example, if
we extend Example 15 with an implementation of succStdNat−1 as the predecessor
function, we can solve the above meta-variable as X = succStdNat

−1(2) = 1.

6 Conclusion and Further Related Work

Based on Mmt, we have developed the syntax, semantics, and implementation of
a formal language for mathematical content that offers extensible literals. Thus,
no literals have to be built-in, and individual languages defined in Mmt can
fine-tune the set of literals freely. Our implementation uses partial equivalence
relations on Scala types, which is expressive enough to cover all types of literals
we are aware of.

Moreover, users can add interpreted functions that provide computation on
literals. This computation is integrated into the equational theory of the Mmt
type system, including the use of computation in dependent types. Literals, inter-
preted functions, and the associated lexing and computation rules are subject to
the Mmt module system in the same way as constants, axioms, and notations.
In particular, each Mmt theory sees only the literals it declares or imports.

The applications of our work may go beyond our present focus on literals. Our
design is a candidate for combining logical reasoning with efficient computation
in the style of computer algebra systems. This is particularly interesting if we
can generalize the concepts to allow structured literals (literals that may contain
other terms as subterms). This would allow supplying literals for complex types
such as polynomials over an arbitrary ring. Structured literals for functions would
correspond to normalization by evaluation [BS91].

116 F. Rabe

Related Work. The theoretical aspect of our work shares a basic idea with biform
theories [FvM03]. In a theory “M”, Θ, we can think of Θ as the axiomatic/in-
tensional and of “M” as the algorithmic/extensional form of a theory. This
corresponds to the distinction made in biform theories. More specifically, our
Σ-models M mapping constants c to interpretations cM can be seen as a set
of transformers (c, cM) in the sense of [Far07], in which case the axioms of Σ
correspond to the meaning formulas of [Far07]. Thus, our work can be seen as
generalizing biform theories to the Mmt-level and providing an implementation
and a module system for them.

In the context of rewrite systems, a similar idea was realized in [KN13]. There,
sorted first-order rewrite theories consist of an interpreted and a free part, and
computation on the interpreted part is relegated to an arbitrary model.

Our literals are also intriguingly similar to quotation in the sense of [Far13].
If we use the Mmt language itself as the semantic domain, we obtain literals
“t” for terms t, which can be seen as quoted terms. Structured literals would
correspond to quasi-quotation.

References

[ARCT09] Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: Hints in unification.
In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 84–98. Springer, Heidelberg (2009)

[BCC+04] Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase,
M.: The Open Math Standard, Version 2.0. Technical report, The Open
Math Society (2004). http://www.openmath.org/standard/om20

[BS91] Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for
typed λ-Calculus. In: Kahn, G. (ed.) Logic in Computer Science, pp. 203–
211. IEEE Computer Society Press, Los Alamitos (1991)

[CAB+86] Constable, R., Allen, S., Bromley, H., Cleaveland, W., Cremer, J., Harper,
R., Howe, D., Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J.,
Smith, S.: Implementing Mathematics with the Nuprl Development Sys-
tem. Prentice-Hall, Upper Saddle River (1986)

[Far07] Farmer, W.M.: Biform theories in chiron. In: Kauers, M., Kerber, M., Miner,
R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI),
vol. 4573, pp. 66–79. Springer, Heidelberg (2007)

[Far13] Farmer, W.M.: The formalization of syntax-based mathematical algorithms
using quotation and evaluation. In: Carette, J., Aspinall, D., Lange, C.,
Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 35–50.
Springer, Heidelberg (2013)

[FvM03] Farmer, W., von Mohrenschildt, M.: An overview of a formal framework for
managing mathematics. Ann. Math. Artif. Intell. 38(1–3), 165–191 (2003)

[Har96] Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A.
(eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg
(1996)

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
Assoc. Comput. Mach. 40(1), 143–184 (1993)

[KMR13] Kohlhase, M., Mance, F., Rabe, F.: A universal machine for biform theory
graphs. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W.
(eds.) CICM 2013. LNCS, vol. 7961, pp. 82–97. Springer, Heidelberg (2013)

http://www.openmath.org/standard/om20

Generic Literals 117

[KN13] Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine,
P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp.
343–358. Springer, Heidelberg (2013)

[ML74] Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Pro-
ceedings of the 1973 Logic Colloquium, pp. 73–118. North-Holland (1974)

[OSV07] Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima (2007)
[PS99] Pfenning, F., Schürmann, C.: System description: twelf - a meta-logical

framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999.
LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

[Rab13] Rabe, F.: The MMT API: a generic MKM system. In: Carette, J., Aspinall,
D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol.
7961, pp. 339–343. Springer, Heidelberg (2013)

[Rab14] Rabe, F.: How to identify, translate, and combine logics? J. Logic Comput.
(2014). doi:10.1093/logcom/exu079

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1),
1–54 (2013)

[SSCB12] Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed
first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-
18 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012)

[TB85] Trybulec, A., Blair, H.: Computer assisted reasoning with MIZAR. In:
Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pp. 26–28. Morgan Kaufmann, Los Angeles (1985)

[Wol12] Wolfram. Mathematica (2012)

http://dx.doi.org/10.1093/logcom/exu079

Ranking/Unranking of Lambda Terms
with Compressed de Bruijn Indices

Paul Tarau(B)

Department of Computer Science and Engineering,
University of North Texas, Denton, TX, USA

tarau@cse.unt.edu

Abstract. We introduce a compressed de Bruijn representation of
lambda terms and define its bijections to standard representations. Our
compressed terms facilitate derivation of size-proportionate ranking and
unranking algorithms of lambda terms and their inferred simple types.
We specify our algorithms as a literate Prolog program.

Keywords: Lambda calculus · de Bruijn indices · Lambda term com-
pression · Combinatorics of lambda terms · Ranking and unranking of
lambda terms · Bijective Gödel numberings of lambda terms

1 Introduction

Lambda terms [1] provide a foundation to modern functional languages, type
theory and proof assistants and have been lately incorporated into mainstream
programming languages including Java 8, C# and Apple’s newly designed pro-
gramming language Swift. Ranking and unranking of lambda terms (i.e., their
bijective mapping to unique natural number codes) has practical applications to
testing compilers that rely on lambda calculus as an intermediate language, as
well as in generation of random tests for user-level programs and data types. At
the same time, several instances of lambda calculus are of significant theoretical
interest given their correspondence with logic and proofs.

Of particular interest are lambda term representations that are canonical
up to alpha-conversion (variable renamings) among which are de Bruijn’s indices
[2], representing each bound variable as the number of binders to traverse to the
lambda abstraction binding this variable.

A joke about the de Bruijn indices representation of lambda terms is that it can
be used to tell apart Cylons from humans [3]. Arguably, the compressed de Bruijn
representation that we introduce in this paper is taking their fictional use one
step further. To alleviate the legitimate fears of our (most likely, for now, human)
reader, these representations will be bijectively mapped to conventional ones.

A merit of our compressed representation is to simplify the underlying com-
binatorial structure of lambda terms, by exploiting their connection to the Cata-
lan family of combinatorial objects [4]. This leads to algorithms that focus
on their (bijective) natural number encodings - known to combinatorialists as
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 118–133, 2015.
DOI: 10.1007/978-3-319-20615-8 8

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices 119

ranking/unranking functions [5] and to logicians as Gödel numberings [6]. Among
the most obvious practical applications, such encodings can be used to gener-
ate random terms for testing tools like compilers or source-to-source program
transformers. At the same time, as our encodings are “size-proportionate”, they
provide a compact serialization mechanism for lambda terms. To derive a bijec-
tion to N that is size-proportionate we will first extract a “Catalan skeleton”
abstracting away the recursive structure of the compressed de Bruijn term, then
implement a bijection from it to N. The “content” fleshing out the term, rep-
resented as a list of natural numbers, will have its own bijection to N by using
a generalized Cantor tupling/untupling function, that will also help pairing/
unpairing the code of the skeleton and the code of the content of the term.

The paper is organized as follows. Section 2 introduces the compressed de
Bruijn terms and bijective transformations from them to standard lambda terms.
Section 3 describes mappings from lambda terms to Catalan families of combi-
natorial objects, with focus on binary trees representing their inferred types and
their applicative skeletons. These mappings lead in Sect. 4 to size-proportionate
ranking and unranking algorithms for lambda terms and their inferred types.
Section 5 discusses related work and Sect. 6 concludes the paper. The code in
the paper has been tested with SWI-Prolog 6.6.6 and YAP 6.3.4. It is also avail-
able at http://www.cse.unt.edu/∼tarau/research/2015/dbr.pro.

2 A Compressed de Bruijn Representation of Lambda
Terms

We represent standard lambda terms [1] in Prolog using the constructors a/2 for
applications and l/2 for lambda abstractions. Variables bound by the lambdas
as well as their occurrences are represented as logic variables. As an example,
the lambda term λx0.(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))) will be represented
as l(A,a(l(B,a(A,a(B,B))),l(C,a(A,a(C,C))))).

2.1 De Bruijn Indices

De Bruijn indices [2] provide a name-free representation of lambda terms. All
terms that can be transformed by a renaming of variables (α-conversion) will
share a unique representation. Variables following lambda abstractions are omit-
ted and their occurrences are marked with positive integers counting the number
of lambdas until the one binding them is found on the way up to the root of
the term. We represent them using the constructor a/2 for application, l/1 for
lambda abstractions (that we will call shortly binders) and v/1 for marking the
integers corresponding to the de Bruijn indices.

For instance, the term l(A,a(l(B,a(A,a(B,B))),l(C,a(A,a(C,C))))) is
represented as l(a(l(a(v(1),a(v(0),v(0)))),l(a(v(1),a(v(0),v(0)))))),
corresponding to the fact that v(1) is bound by the outermost lambda (two
steps away, counting from 0) and the occurrences of v(0) are bound each by the
closest lambda, represented by the constructor l/1.

http://www.cse.unt.edu/~tarau/research/2015/dbr.pro

120 P. Tarau

From de Bruijn to Lambda Terms with Canonical Names. The predicate
b2l converts from the de Bruijn representation to lambda terms whose canoni-
cal names are provided by logic variables. We will call them terms in standard
notation.

b2l(DeBruijnTerm,LambdaTerm):-b2l(DeBruijnTerm,LambdaTerm,_Vs).

b2l(v(I),V,Vs):-nth0(I,Vs,V).

b2l(a(A,B),a(X,Y),Vs):-b2l(A,X,Vs),b2l(B,Y,Vs).

b2l(l(A),l(V,Y),Vs):-b2l(A,Y,[V|Vs]).

Note the use of the built-in nth0/3 that associates to an index I a variable
V on the list Vs. As we initialize in b2l/2 the list of logic variables as a free
variable Vs, free variables in open terms, represented with indices larger than the
number of available binders will also be consistently mapped to logic variables.
By replacing Vs with [] in the definition of b2l/2, one could enforce that only
closed terms (having no free variables) are accepted.

From Lambda Terms with Canonical Names to De Bruijn Terms. Logic
variables provide canonical names for lambda variables. An easy way to manipu-
late them at meta-language level is to turn them into special “$VAR/1” terms -
a mechanism provided by Prolog’s built-in numbervars/3 predicate. Given that
“$VAR/1” is distinct from the constructors lambda terms are built from (l/2
and a/2), this is a safe (and invertible) transformation. To avoid any side effect
on the original term, in the predicate l2b/2 that inverts b2l/2, we will uniformly
rename its variables to fresh ones with Prolog’s copy term/2 built-in. We will
adopt this technique through the paper each time our operations would mutate
an input argument otherwise.

l2b(StandardTerm,DeBruijnTerm):-copy_term(StandardTerm,Copy),

numbervars(Copy,0,_),l2b(Copy,DeBruijnTerm,_Vs).

l2b(‘$VAR’(V),v(I),Vs):-once(nth0(I,Vs,‘$VAR’(V))).

l2b(a(X,Y),a(A,B),Vs):-l2b(X,A,Vs),l2b(Y,B,Vs).

l2b(l(V,Y),l(A),Vs):-l2b(Y,A,[V|Vs]).

Note the use of nth0/3, this time to locate the index I on the (open) list of
variables Vs. By replacing Vs with [] in the call to l2b/3, one can enforce
that only closed terms are accepted.

2.2 Going One Step Further: Compressing the Blocks of Lambdas

Iterated lambdas (represented as a block of constructors l/1 in the de Bruijn
notation) can be seen as a successor arithmetic representation of a number that
counts them. So it makes sense to represent that number more efficiently in
the usual binary notation. Note that in de Bruijn notation blocks of lambdas
can wrap either applications or variable occurrences represented as indices. This
suggests using just two constructors: v/2 indicating in a term v(K,N) that we

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices 121

have K lambdas wrapped around variable v(N) and a/3, indicating in a term
a(K,X,Y) that K lambdas are wrapped around the application a(X,Y).

We call the terms built this way with the constructors v/2 and a/3 com-
pressed de Bruijn terms.

2.3 Converting Between Representations

We can make precise the definition of compressed deBruijn terms by providing
a bijective transformation between them and the usual de Bruijn terms.

From de Bruijn to Compressed. The predicate b2c converts from the usual
de Bruijn representation to the compressed one. It proceeds by case analysis
on v/1, a/2, l/1 and counts the binders l/1 as it descends toward the leaves
of the tree. Its steps are controlled by the predicate up/2 that increments the
counts when crossing a binder.

b2c(v(X),v(0,X)).

b2c(a(X,Y),a(0,A,B)):-b2c(X,A),b2c(Y,B).

b2c(l(X),R):-b2c1(1,X,R).

b2c1(K,a(X,Y),a(K,A,B)):-b2c(X,A),b2c(Y,B).

b2c1(K, v(X),v(K,X)).

b2c1(K,l(X),R):-up(K,K1),b2c1(K1,X,R).

up(From,To):-From>=0,To is From+1.

From Compressed to de Bruijn. The predicate c2b converts from the com-
pressed to the usual de Bruijn representation. It reverses the effect of b2c by
expanding the K in v(K,N) and a(K,X,Y) into K l/1 binders (no binders when
K=0). The predicate iterLam/3 performs this operation in both cases, and the
predicate down/2 computes the decrements at each step.

c2b(v(K,X),R):-X>=0,iterLam(K,v(X),R).

c2b(a(K,X,Y),R):-c2b(X,A),c2b(Y,B),iterLam(K,a(A,B),R).

iterLam(0,X,X).

iterLam(K,X,l(R)):-down(K,K1),iterLam(K1,X,R).

down(From,To):-From>0,To is From-1.

A convenient way to simplify defining chains of such conversions is by using
Prolog’s Definite Clause Grammars (DCGs), which transform a clause defined
with “-->” like

a0 --> a1,a2,...,an.

into

a0(S0,Sn):-a1(S0,S1),a2(S1,S2),...,an(Sn-1,Sn).

122 P. Tarau

For instance, the predicate c2l/2 which can be seen as specifying a composition
of two functions, expands to something like c2l(X,Z):-c2b(X,Y),b2l(Y,Z) The
predicate converts from compressed de Bruijn terms and standard lambda terms
using de Bruijn terms as an intermediate step, while l2c/2 works the other way
around.

c2l --> c2b,b2l.

l2c --> l2b,b2c.

2.4 Open and Closed Terms

Lambda terms might contain free variables not associated to any binders. Such
terms are called open. A closed term is such that each variable occurrence is
associated to a binder. Closed terms can be easily identified by ensuring that
the lambda binders on a given path from the root outnumber the de Bruijn index
of a variable occurrence ending the path. The predicate isClosed does that for
compressed de Bruijn terms.

isClosed(T):-isClosed(T,0).

isClosed(v(K,N),S):-N<S+K.

isClosed(a(K,X,Y),S1):-S2 is S1+K,isClosed(X,S2),isClosed(Y,S2).

3 Catalan Approximations of Lambda Terms

We can see our compressed de Bruijn terms as binary trees decorated with
integer labels. The underlying binary trees provide a skeleton that describes the
applicative structure of the terms.

The Catalan Family of Combinatorial Objects. Binary trees are among
the most well-known members of the Catalan family of combinatorial objects
[4], that has at least 58 structurally distinct members, covering several data
structures, geometric objects and formal languages.

3.1 Type Inference with Logic Variables

Simple types - seen as binary trees built by the constructor “->/2” with empty
leaves (representing the unique primitive type “o”) can be seen as a “Catalan
approximation” of lambda terms, centered around ensuring safe and terminating
evaluation (strong normalization) of lambda terms.

While in a functional language inferring types requires implementing unifi-
cation with occur check, as shown, for instance, in [7], this is readily available in
Prolog. The predicate extractType/2 works by turning each logical variable X
into a pair :TX where TX is a fresh variable denoting its type. As logic variable
bindings propagate between binders and occurrences, this ensures that types are
consistently inferred.

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices 123

extractType(_:TX,TX):-!.

extractType(l(_:TX,A),(TX->TA)):-

extractType(A,TA).

extractType(a(A,B),TY):-

extractType(A,(TX->TY)),

extractType(B,TX).

Instead of using unification with occurs-check at each step, we ensure that
at the end, our term is still acyclic, with the built-in ISO-Prolog predicate
acyclic term/1.

hasType(CTerm,ExtractedType):-

c2l(CTerm,LTerm),

extractType(LTerm,ExtractedType),

acyclic_term(LTerm),

bindType(ExtractedType).

At this point, most general types are inferred by extractType as fresh variables,
similar to multi-parameter polymorphic types in functional languages. However,
as we are only interested in simple types, we will bind uniformly the leaves of
our type tree to the constant “o” representing our only primitive type, by using
the predicate bindType/1.

bindType(o):-!.

bindType((A->B)):-bindType(A),bindType(B).

We can also define the predicate typeable/1 that checks if a lambda term is
well typed, by trying to infer and then ignore its inferred type.

typeable(Term):-hasType(Term,_Type).

Example 1. Illustrates typability of the term corresponding to the S combinator
λx0. λx1. λx2.((x0 x2) (x1 x2)) and untypabilty of the term corresponding to
the Y combinator λx0.(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))), in de Bruijn form.

?- hasType(a(3,a(0,v(0,2),v(0,0)),a(0,v(0,1),v(0,0))),T).

T = ((o->o->o)-> (o->o)->o->o).

?- hasType(

a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),T).

false.

3.2 Generating Closed Well-Typed Terms of a Given Size

One can derive, along the lines of the type inferrer hasType, a generator working
directly on de Bruijn terms with a given number of internal nodes, by controlling
their creation with the predicate down/2.

The predicate genTypedB/5 relies on Prolog’s DCG notation to thread
together the steps controlled by the predicate down. Note also the nondeterminis-
tic use of the built-in nth0 that enumerates values for both I and V ranging over
the list of available variables Vs, as well as the use of unify with occurs check
to ensure that unification of candidate types does not create cycles.

124 P. Tarau

genTypedB(v(I),V,Vs)-->

{

nth0(I,Vs,V0),

unify_with_occurs_check(V,V0)

}.

genTypedB(a(A,B),Y,Vs)-->down,

genTypedB(A,(X->Y),Vs),

genTypedB(B,X,Vs).

genTypedB(l(A),(X->Y),Vs)-->down,

genTypedB(A,Y,[X|Vs]).

Two interfaces are offered: genTypedB that generates de Bruijn terms of with
exactly L internal nodes and genTypedBs that generates terms with L internal
nodes or less.

genTypedB(L,B,T):-genTypedB(B,T,[],L,0),bindType(T).

genTypedBs(L,B,T):-genTypedB(B,T,[],L,_),bindType(T).

As expected, the number of solutions of genTypedB, 1, 2, 9, 40, 238, 1564, . . . for
sizes 1, 2, 3, . . ., matches entry A220471 in [8].

Example 2. Generation of all well-typed closed de Bruijn terms of size 2.

?- genTypedB(2,Term,Type).

Term = l(l(v(0))),Type = (o->o->o);

Term = l(l(v(1))),Type = (o->o->o).

Coming with Prolog’s unification and non-deterministic search, is the ability to
make more specific queries by providing a type pattern, that selects only terms
of a given type.

The predicate queryTypedTerm finds closed terms of a given type of size
exactly L.

queryTypedB(L,Term,QueryType):-

genTypedB(L,Term,Type),

Type=QueryType.

Example 3. Terms of type x>x of size 4.

?- queryTypedB(4,Term,(o->o)).

Term = a(l(l(v(0))), l(v(0)));

Term = l(a(l(v(1)), l(v(0))));

Term = l(a(l(v(1)), l(v(1)))).

?- queryTypedB(10,Term,((o->o)->o)).

false.

Note that the last query, taking about half a minute, shows that no closed terms
of type (o->o)->o exist up to size 10. Generating closed terms that match a
specific type is likely to be useful for combinatorial testing.

We will explore next a mechanism for generating terms and types by defining
a bijection to N.

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices 125

3.3 Size-Proportionate Encodings

In the presence of a bijection between two, usually infinite sets of data objects,
it is possible that representation sizes on one side or the other are exponentially
larger that on the other. Well-known encodings like Ackerman’s bijection for
hereditarily finite sets to natural numbers fall in this category.

We will say that a bijection is size-proportionate if the representation sizes
for corresponding terms on its two sides are “close enough” up to a constant
factor multiplied with at most the logarithm of any of the sizes.

Definition 1. Given a bijection between sets of terms of two datatypes denoted
M and N , f : M → N , let m(x) be the representation size of a term x ∈ M and
n(y) be the representation size of y ∈ N . Then f is called size-proportionate if
|m(x) − n(y)| ∈ O(log(max(m(x), n(y)))).

Informally we also assume that the constants involved are small enough such
that the printed representation of two data objects connected by the bijections
is about the same.

3.4 The Language of Balanced Parentheses

Binary trees are in a well-known size-proportionate bijection with the language
of balanced parentheses [4], from which we will borrow an efficient ranking/
unranking bijection. The reversible predicate catpar/2 transforms between
binary trees and lists of balanced parentheses, with 0 denoting the open paren-
theses and 1 denoting the closing one.

catpar(T,Ps):-catpar(T,0,1,Ps,[]).

catpar(X,L,R) --> [L],catpars(X,L,R).

catpars(o,_,R) --> [R].

catpars((X->Xs),L,R)-->catpar(X,L,R),catpars(Xs,L,R).

Example 4. Illustrates the work of the reversible predicate catpar/2.
?- catpar(((o->o)->o->o),Ps),catpar(T,Ps).

Ps = [0, 0, 0, 1, 1, 0, 1, 1],T = ((o->o)->o->o).

Note the extra opening/closing parentheses, compared to the usual definition of
Dyck words [4], that make the sequence self-delimiting.

3.5 A Bijection from the Language of Balanced
Parenthesis Lists to N

This algorithm follows closely the procedural implementation described in [5].
The code of the helper predicates called by rankCatalan and unrankCatalan

is provided in http://www.cse.unt.edu/∼tarau/research/2015/dbr.pro. The
details of the algorithms for computing localRank and localunRank are
described at http://www.cse.unt.edu/∼tarau/research/2015/dbrApp.pdf.

The predicate rankCatalan uses the Catalan numbers computed by cat in
rankLoop to shift the ranking over the ranks of smaller sequences, after calling
localRank.

http://www.cse.unt.edu/~tarau/research/2015/dbr.pro
http://www.cse.unt.edu/~tarau/research/2015/dbrApp.pdf

126 P. Tarau

rankCatalan(Xs,R):-

length(Xs,XL),XL>=2,

L is XL-2, I is L // 2,

localRank(I,Xs,N),

S is 0, PI is I-1,

rankLoop(PI,S,NewS),

R is NewS+N.

The predicate unrankCatalan uses the Catalan numbers computed by cat
in unrankLoop to shift over smaller sequences, before calling localUnrank.

unrankCatalan(R,Xs):-

S is 0, I is 0,

unrankLoop(R,S,I,NewS,NewI),

LR is R-NewS,

L is 2*NewI+1,

length(As,L),

localUnrank(NewI,LR,As),

As=[_|Bs],

append([0|Bs],[1],Xs).

The following example illustrates the ranking and unranking algorithms:

?- unrankCatalan(2015,Ps),rankCatalan(Ps,Rank).

Ps = [0,0,1,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1],Rank = 2015

3.6 Ranking and Unranking Simple Types

After putting together the bijections between binary trees and balanced paren-
theses with the ranking/unranking of the later we obtain the size-proportionate
ranking/unranking algorithms for simple types.

rankType(T,Code):-

catpar(T,Ps),

rankCatalan(Ps,Code).

unrankType(Code,Term):-

unrankCatalan(Code,Ps),

catpar(Term,Ps).

Example 5. Illustrates the ranking and unranking of simple types.

?- I=100, unrankType(I,T),rankType(T,R).

I = R, R = 100,T = (((o->o)-> (o->o->o)->o)->o).

As there are O(4n

n
3
2
)) binary trees of size n corresponding to 2n natural numbers

of bitsize up to n and our ranking algorithm visits them in lexicographic order,
it follows that:

Proposition 1. The bijection between types and their ranks is size-proportionate.

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices 127

3.7 Catalan Skeletons of Compressed de Bruijn Terms

As compressed de Bruijn terms can be seen as binary trees with labels on their
leaves and internal nodes, their “Catalan skeleton” is simply the underlying
binary tree. The predicate cskel/3 extracts this skeleton as well as the list of
the labels, in depth-first order, as encountered in the process.

cskel(S,Vs, T):-cskel(T,S,Vs,[]).

cskel(v(K,N),o)-->[K,N].

cskel(a(K,X,Y),(A->B))-->[K],cskel(X,A),cskel(Y,B).

The predicates toSkel and fromSkel add conversion between this binary tree
and lists of balanced parenthesis by using the (reversible) predicate catpar.

toSkel(T,Skel,Vs):-

cskel(T,Cat,Vs,[]),

catpar(Cat,Skel).

fromSkel(Skel,Vs, T):-

catpar(Cat,Skel),

cskel(T,Cat,Vs,[]).

Example 6. Illustrates the Catalan skeleton Skel and the list of variable labels
Vs extracted from a compressed de Bruijn term corresponding to the S combinator.

?- T = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))),

toSkel(T,Skel,Vs),fromSkel(Skel,Vs,T1).

T = T1, T1 = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))),

Skel = [0,0,0,1,1,0,1,1],Vs = [3,0,0,2,0,0,0,0,1,0,0].

3.8 The Generalized Cantor k-tupling Bijection

As we we have already solved the problem of ranking and unranking lists of bal-
anced parentheses, the remaining problem is that of finding a bijection between
the lists of labels collected from the nodes of a compressed de Bruijn term and
natural numbers.

We will use the generalized Cantor bijection between N
n and N as the first

step in defining this bijection. The formula, given in [9] p.4, looks as follows:

Kn(x1, . . . , xn) =
n∑

k=1

(
k − 1 + sk

k

)
where sk =

k∑

i=1

xi (1)

Note that
(
n
k

)
represents the number of subsets of k elements of a set of n

elements, that also corresponds to the binomial coefficient of xk in the expansion
of (x + y)n, and Kn(x1, . . . , xn) denotes the natural number associated to the
tuple (x1, . . . , xn). It is easy to see that the generalized Cantor n-tupling function
defined by Eq. (1) is a polynomial of degree n in its arguments.

128 P. Tarau

The Bijection Between Sets and Sequences of Natural Numbers. We
recognize in the Eq. (1) the prefix sums sk incremented with values of k start-
ing at 0. It represents the “set side” of the bijection between sequences of n
natural numbers and sets of n natural numbers described in [10]. It is imple-
mented in the online Appendix as the bijection list2set together with its
inverse set2list. For example, list2set transforms [2,0,1,5] to [2, 3, 5, 11]
as 3=2+0+1,5=3+1+1,11=5+5+1 and set2list transforms it back by computing
the differences between consecutive members, reduced by 1.

3.9 The N
n → N Bijection

The bijection Kn : Nn → N is basically just summing up a set of binomial coef-
ficients. The predicate fromCantorTuple implements the the N

n → N bijection
in Prolog, using the predicate fromKSet that sums up the binomials in formula
1 using the predicate untuplingLoop, as well as the sequence to set transformer
list2set.

fromCantorTuple(Ns,N):-

list2set(Ns,Xs),

fromKSet(Xs,N).

fromKSet(Xs,N):-untuplingLoop(Xs,0,0,N).

untuplingLoop([],_L,B,B).

untuplingLoop([X|Xs],L1,B1,Bn):-L2 is L1+1,

binomial(X,L2,B),B2 is B1+B,

untuplingLoop(Xs,L2,B2,Bn).

3.10 The N → N
n Bijection

We split our problem in two simpler ones: inverting fromKSet and then applying
set2list to get back from sets to lists.

We observe that the predicate untuplingLoop used by fromKSet implements
the sum of the combinations

(
X1
1

)
+

(
X2
2

)
+ . . .+

(
XK

K

)
= N , which is nothing but

the representation of N in the combinatorial number system of degree K due to
[11]. Fortunately, efficient conversion algorithms between the conventional and
the combinatorial number system are well known, [12].

We are ready to implement the Prolog predicate toKSet(K,N,Ds), which,
given the degree K, indicating the number of “combinatorial digits”, finds and
repeatedly subtracts the greatest binomial smaller than N. It calls the predicate
combinatoriallDigits that returns these “digits” in increasing order, providing
the canonical set representations that set2list needs.

toKSet(K,N,Ds):-combinatoriallDigits(K,N,[],Ds).

combinatoriallDigits(0,_,Ds,Ds).

combinatoriallDigits(K,N,Ds,NewDs):-K>0,K1 is K-1,

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices 129

upperBinomial(K,N,M),M1 is M-1,

binomial(M1,K,BDigit),N1 is N-BDigit,

combinatoriallDigits(K1,N1,[M1|Ds],NewDs).

upperBinomial(K,N,R):-S is N+K,

roughLimit(K,S,K,M),L is M // 2,

binarySearch(K,N,L,M,R).

The predicate roughLimit compares successive powers of 2 with binomials
(
I
K

)

and finds the first I for which the binomial is between successive powers of 2.

roughLimit(K,N,I, L):-binomial(I,K,B),B>N,!,L=I.

roughLimit(K,N,I, L):-J is 2*I,

roughLimit(K,N,J,L).

The predicate binarySearch finds the exact value of the combinatorial digit in
the interval [L,M], narrowed down by roughLimit.

binarySearch(_K,_N,From,From,R):-!,R=From.

binarySearch(K,N,From,To,R):-Mid is (From+To) // 2,binomial(Mid,K,B),

splitSearchOn(B,K,N,From,Mid,To,R).

splitSearchOn(B,K,N,From,Mid,_To,R):-B>N,!,

binarySearch(K,N,From,Mid,R).

splitSearchOn(_B,K,N,_From,Mid,To,R):-Mid1 is Mid+1,

binarySearch(K,N,Mid1,To,R).

The predicates toKSet and fromKSet implement inverse functions, mapping
natural numbers to canonically represented sets of K natural numbers.

?- toKSet(5,2014,Set),fromKSet(Set,N).

Set = [0, 3, 4, 5, 14], N = 2014.

The efficient inverse of Cantor’s N-tupling is now simply:

toCantorTuple(K,N,Ns):-

toKSet(K,N,Ds),

set2list(Ds,Ns).

Example 7. Illustrates the work of the generalized cantor bijection, on some
large numbers:

?- K=1000,pow(2014,103,N),toCantorTuple(K,N,Ns),fromCantorTuple(Ns,N).

K = 1000, N = 208029545585703688484419851459547264831381665...567744,

Ns = [0, 0, 2, 0, 0, 0, 0, 0, 1|...].

As the image of a tuple is a polynomial of degree n it means that the its bitsize is
within constant factor of the sum of the bitsizes of the members of the tuple, thus:

Proposition 2. The bijection between N
n and N is size-proportionate.

130 P. Tarau

4 Ranking/Unranking of Compressed de Bruijn Terms

We will implement a size-proportionate bijective encoding of compressed de
Bruijn terms following the technique described in [13]. The algorithm will split
a lambda tree into its Catalan skeleton and the list of atomic objects labeling its
nodes. In our case, the Catalan skeleton abstracts away the applicative structure
of the term. It also provides the key for decoding unambiguously the integer
labels in both the leaves (two integers) and internal nodes (one integer). Our
ranking/unranking algorithms will rely on the encoding/decoding of the Cata-
lan skeleton provided by the predicates rankCatalan/2 and unrankCatalan/2
as well as for the encoding/decoding of the labels, provided by the predicates
toCantorTuple/3 and fromCantorTuple/2.

The predicate rankTerm/2 defines the bijective encoding of a (possibly open)
compressed de Bruijn term.

rankTerm(Term,Code):-

toSkel(Term,Ps,Ns),

rankCatalan(Ps,CatCode),

fromCantorTuple(Ns,VarsCode),

fromCantorTuple([CatCode,VarsCode],Code).

The predicate rankTerm/2 defines the bijective decoding of a natural number
into a (possibly open) compressed de Bruijn term.

unrankTerm(Code,Term):-

toCantorTuple(2,Code,[CatCode,VarsCode]),

unrankCatalan(CatCode,Ps),

length(Ps,L2),L is (L2-2) div 2, L3 is 3*L+2,

toCantorTuple(L3,VarsCode,Ns),

fromSkel(Ps,Ns,Term).

Note that given the unranking of CatCode as a list of balanced parentheses of
length 2*L+2, we can determine the number L of internal nodes of the tree and
the number L+1 of leaves. Then we have 2*(L+1) labels for the leaves and L
labels for the internal nodes, for a total of 3L+2, value needed to decode the
labels encoded as VarsCode.

It follows from Propositions 1 and 2 that:

Proposition 3. A compressed de Bruijn terms is size-proportionate to its rank.

Example 8. Illustrates the “size-proportionate” encoding of the compressed de
Bruijn terms corresponding to the combinators S and Y.

?- T = a(3,a(0,v(0,2),v(0,0)),a(0,v(0, 1),v(0,0))),

rankTerm(T,R),unrankTerm(R,T1).

T = T1,T1 = a(3,a(0,v(0,2),v(0,0)),a(0,v(0, 1),v(0,0))),

R = 56493141.

?- T=a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),

rankTerm(T,R),unrankTerm(R,T1).

T=T1,T1=a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),

R = 261507060.

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices 131

4.1 Generation of Lambda Terms via Unranking

While direct enumeration of terms constrained by number of nodes or depth
is straightforward in Prolog, an unranking algorithm is also usable for term
generation, including generation of random terms.

Generating Open Terms in Compressed de Bruijn Form. Open terms
are generated simply by iterating over an initial segment of N with the built-in
between/3 and calling the predicate unrankTerm/2.

ogen(M,T):-between(0,M,I),unrankTerm(I,T).

Reusing unranking-based open term generators for more constrained families
of lambda terms works when their asymptotic density is relatively high. The
extensive quantitative analysis available in the literature [7,14,15] indicates that
density of closed and typed terms decreasing very quickly with size, making
generation by filtering impractical for very large terms.

The predicate cgen/2 generates closed terms by filtering the results of ogen/2
with the predicate isClosed and tgen generates typeable terms by filtering the
results of cgen/2 with typeable/2.

cgen(M,IT):-ogen(M,IT),isClosed(IT).

tgen(M,IT):-cgen(M,IT),typeable(IT).

Generation of Random Lambda Terms. Generation of random lambda
terms, resulting from the unranking of random integers of a give bit-size, is
implemented by the predicate ranTerm/3, that applies the predicate Filter
repeatedly until a term is found for which the predicate Filter holds.

ranTerm(Filter,Bits,T):-X is 2^Bits,N is X+random(X),M is N+X,

between(N,M,I),

unrankTerm(I,T),call(Filter,T),

!.

Random open terms are generated by ranOpen/2, random closed terms by the
predicate ranClosed, random typeable term by ranTyped and closed typeable
terms by closedTypeable/2.

ranOpen(Bits,T):-ranTerm(=(_),Bits,T).

ranClosed(Bits,T):-ranTerm(isClosed,Bits,T).

ranTyped(Bits,T):-ranTerm(closedTypeable,Bits,T).

closedTypeable(T):-isClosed(T),typeable(T).

Open terms based on unranking random numbers of 3000 bits of size above 1000,
closed terms of size above 55 for 150 bits and closed typeable terms of size above
13 for 30 bits can be generated within a few seconds. The limited scalability for

132 P. Tarau

closed and well-typed terms is a consequence of their low asymptotic density, as
shown in [7,14]. We refer to [7] for algorithms supporting random generation of
large lambda terms.

Example 9. Illustrates generation of some closed and well-typed terms in com-
pressed de Bruijn form.

?- ranClosed(10,T).

T = a(1, a(0, v(0, 0), v(0, 0)), a(0, a(0, v(0, 0), v(0, 0)), v(1, 0))).

?- ranTyped(20,T).

T = a(3, v(3, 1), v(2, 0)).

5 Related Work

The classic reference for lambda calculus is [1]. Various instances of typed lambda
calculi are overviewed in [16]. De Bruijn’s notation for lambda terms is intro-
duced in [2]. The compressed de Bruijn representation of lambda terms proposed
in this paper is novel, to our best knowledge.

While Gödel numbering schemes for lambda terms have been studied in sev-
eral theoretical papers on computability, we are not aware of any size propor-
tionate bijective encoding as the one described in this paper.

The combinatorics and asymptotic behavior of various classes of lambda
terms are extensively studied in [7,14,15]. Distribution and density properties
of random lambda terms are described in [14].

6 Conclusions

The most significant contributions of this paper are the size-proportionate
ranking/unranking algorithm for lambda terms and the compressed de Bruijn
representation that facilitated it. The ability to encode lambda terms bijectively
can be used as a “serialization” mechanism in functional programming languages
and proof assistants using them as an intermediate language.

Besides the newly introduced compressed form of de Bruijn terms, we have
used ordinary de Bruijn terms as well as a canonical representation of lambda
terms relying on Prolog’s logic variables. We have switched representation as
needed, though bijective transformers working in time proportional to the size of
the terms. Our techniques, combining unification of logic variables with Prolog’s
backtracking mechanism and Definite Clause Grammar notation, suggest that
logic programming is a suitable meta-language for the manipulation of various
families of lambda terms and the study of their combinatorial and computational
properties.

Acknowledgement. We thank the anonymous referees of Calculemus’15 for their
constructive criticisms and valuable suggestions that have helped improving the paper.
This research was supported by NSF research grant 1423324.

Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices 133

References

1. Barendregt, H.P.: The Lambda Calculus Its Syntax and Semantics, vol. 103,
Revised edn. Elsevier, North Holland (1984)

2. Bruijn, N.G.D.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser Theorem.
Indag. Mathematicae 34, 381–392 (1972)

3. McBride, C.: I am not a number, I am a classy hack (2010). Blog entry: http://
mazzo.li/epilogue/index.html

4. Stanley, R.P.: Enumerative Combinatorics. Wadsworth Publishing Co., Belmont
(1986)

5. Kreher, D.L., Stinson, D.: Combinatorial Algorithms: Generation, Enumeration,
and Search. The CRC Press Series on Discrete Mathematics and its Applications.
CRC Press INC, US (1999)

6. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

7. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Pro-
gram. 23(5), 594–628 (2013)

8. Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2014). Published
electronically at https://oeis.org/

9. Cegielski, P., Richard, D.: On arithmetical first-order theories allowing encoding
and decoding of lists. Theor. Comput. Sci. 222(1–2), 55–75 (1999)

10. Tarau, P.: An embedded declarative data transformation language. In: Proceedings
of 11th International ACM SIGPLAN Symposium PPDP 2009, Coimbra, Portugal,
September 2009, pp. 171–182. ACM (2009)

11. Lehmer, D.H.: The machine tools of combinatorics. In: Edwin, F., Beckenbach,
R.E. (eds.) Krieger Applied combinatorial mathematics, pp. 5–30. Wiley, New
York (1964)

12. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 3: Generating
All Combinations and Partitions. Addison-Wesley Professional, Boston (2005)

13. Tarau, P.: Compact serialization of prolog terms (with Catalan skeletons, Cantor
tupling and Gödel numberings). Theory Prac. Logic Program. 13(4–5), 847–861
(2013)

14. David, R., Raffalli, C., Theyssier, G., Grygiel, K., Kozik, J., Zaionc,
M.: Some properties of random lambda terms. Logic. Methods Comput.
Sci. 9(1) (2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.244.
5073&rep=rep1&type=pdf

15. David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymp-
totically almost all λ-terms are strongly normalizing (2010). Preprint: arXiv:
math.LO/0903.5505v3

16. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. 2. Oxford Uni-
versity Press, New York (1991)

http://mazzo.li/epilogue/index.html
http://mazzo.li/epilogue/index.html
https://oeis.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.244.5073&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.244.5073&rep=rep1&type=pdf
http://arxiv.org/abs/math.LO/0903.5505v3

Digital Mathematics Libraries

A Flexiformal Model of Knowledge
Dissemination and Aggregation in Mathematics

Mihnea Iancu(B) and Michael Kohlhase

Computer Science, Jacobs University, Bremen, Germany
{m.iancu,m.kohlhase}@jacobs-university.de

Abstract. In the traditional knowledge dissemination process in math-
ematics and sciences, authors write semi-selfcontained articles which are
then published in journals, conference proceedings, preprint archives,
and/or given as talks. Other scientists read these, extract the new knowl-
edge, integrate it into their personal mental model of the field, and use
this as the basis for creating new knowledge which is disseminated in the
same form.

Somewhat surprisingly, this process has not been modeled from a for-
mal or content-based perspective even though it is at the heart of human
MKM and DML.

In this paper we tackle this problem starting from the practice of
beginning papers with a “recap”, which briefly introduces context, ter-
minology, and notations and thus ties the paper into the knowledge com-
mons. We propose a flexiformal model for knowledge dissemination and
its aggregation into a communal, shared knowledge commons based on
theory graphs and the newly introduced realms.

1 Introduction

Global mathematical knowledge grows – at least – at a rate 120,000 published
articles a year to a current crop of about 3.5 Million articles. Even though these
articles are scattered over several thousand journals they – together with papers
in conferences, preprints in online or local archives, and talks given in semi-
nars – function as a coherent scientific commons of communal knowledge about
the various domains of mathematics. Other scientists read these documents,
extract the new knowledge, integrate this into their personal mental model of
the domain, and use this as the basis for creating new knowledge. This, in turn,
is disseminated again through articles, conference papers, preprints, and talks,
itself contributing to the knowledge commons.

In this process of knowledge dissemination and aggregation, scientific docu-
ments (articles, papers, preprints, and talks) play a great role: they have evolved
from printed pamphlets or books and from postal letters in which a mathemati-
cian described progress to a colleague – and were then passed around by the latter
among colleagues. Documents are assembled into topical journals and conference
proceedings volumes, which are in turn assembled into libraries (physical and
virtual ones), which give researchers and practitioners access to the scientific doc-
ument commons – modulo physical distribution methods like inter-library loan
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 137–152, 2015.
DOI: 10.1007/978-3-319-20615-8 9

138 M. Iancu and M. Kohlhase

and access right restrictions like membership or commercial constraints. Doc-
uments are even classified into a domain-based classification schemes like the
Math Subject Classification (MSC), and disseminated in information systems
like Math Reviews and Zentralblatt Math.

Today’s mathematical documents have a specific conventionalized structure
and metadata which not only supports the production/dissemination processes
outlined above, but also – we claim – the individual and communal aggregation
processes which turn the document collections into a (virtual) knowledge space
which mathematicians can operate on to find and apply existing knowledge and
create new insights and knowledge.

In formalized mathematics, the situation is very different. Even though col-
lections of formalized mathematics call themselves “libraries”, the concept of a
“formal document” does not exist or degenerates to a “file” which contains the
formal development and possibly includes other files. Explanations for humans
are generally relegated to comments or the informal literature described above
(publishing about formalizations).

Notable exceptions are the Mizar Mathematical Library [MizLib] and the
Mizar-inspired ISAR format in Isabelle [Wen07]. Both of these contain enough
information to generate conventionally structured documents for publication,.
e.g. Mizar articles in the Journal of Formalized Mathematics [JFM]. Dissemi-
nation, quality control, and “marketing” of results and developments is usually
ad-hoc in formalized mathematics. Aggregation of developments into a knowl-
edge space is ephemeral and executed by loading files with formal developments
into the memory of a theorem prover or proof checker.

On the other hand, libraries of formalized mathematics directly represent the
structure of a mathematical knowledge commons, usually in graph of files and
file inclusions or a graph of theories and theory morphisms (see [RK13a] for a
survey). The respective graphs supply identifiers for knowledge items and detail
their relations to each other.

It stands to reason that the two dissemination and aggregation approaches
can profit from each other. The scientific publication process can profit from
a more explicitly represented knowledge commons, which enables added-value
services for finding, understanding, and applying relevant knowledge items –
after all the document/knowledge space even in mathematics is much too large
and complex for a single human to process. Of course a prerequisite for this is
computer support in the aggregation of the knowledge space. Conversely, formal
libraries can profit from a dissemination process based on the publication of self-
contained documents to scale the secondary aspects (quality control, checkpoint-
ing, citation stability, persistence, attention management) of assembling large
bodies of knowledge. Even though formal developments are machine-checkable,
their authoring, maintenance, refactoring, . . . are processes that need at least
some human intervention.

To reap these benefits we need a joint generalization of the two approaches
to dissemination and aggregation that combines their advantages. But before
we design such a system, we need a content-oriented model of the informal

A Flexiformal Model of Knowledge Dissemination 139

publication process. Somewhat surprisingly, such a model does not exist, even
though knowledge dissemination and next-generation publication systems are a
the heart of MKM and DML.

In this paper we propose a content-oriented model for knowledge dissemina-
tion and its aggregation into a communal, shared knowledge commons. As we
make use of our previous development of the flexiformal – i.e. supporting flexible
degrees of formality [Koh13] – OMDoc format [Koh06], which can represent for-
mal and informal mathematical documents and developments, we think of this
as a flexiformal model.

We use the practice of starting mathematical documents with a “recap”,
which briefly introduces context, terminology, and notations and thus ties the
paper into the knowledge commons as a starting point and model it based on
OMDoc/MMT theory graphs and the newly introduced realms [CFK14].

In Sect. 2 we briefly review the structure of mathematical documents and
build our intuitions about “recaps” by looking at some examples. We discuss
how to represent them using theory graphs in Sect. 3. Section 4 concludes the
paper and discusses future work.

2 Common Ground in Mathematical Documents

With dissemination we mean the process of assembling a mathematical doc-
ument for the purpose of publication. We use the term aggregation for the
process of an individual integrating the knowledge gained from reading or expe-
riencing the respective document into their mental model of the domain. For now
we will use these two concepts intuitively only, it is the purpose of this paper
to propose a more rigorous model for them. As a first step, we will now have a
closer look at the practices in formal and informal mathematics.

2.1 The Structure of Informal Mathematical Documents

Mathematical documents traditionally have:

1. A front/backmatter and page margins, which identify the scientific
metadata: (i) author’s names, affiliations, and addresses, (ii) publication
venue, date, and fragment identifiers (e.g. page numbers), (iii) classification
data, e.g. keywords or MSC codes, (iv) acknowledgements of contributions
of other researchers or funding agencies. (v) access conditions, e.g. copyright,
confidentiality designations, or licenses.

2. An abstract that gives an executive overview over the document.
3. An introduction that leads the reader into the topic, discusses the problems

solved in the document and their relation to the “real world”, and generally
argues that reading the paper is worth the reader’s attention.

4. A preview, which outlines the structure of, the contributions in, and meth-
ods used in the document.

5. A discussion of the state of the art on the topic of document.

140 M. Iancu and M. Kohlhase

6. The establishment of a common ground between the reader and the
author, which (i) recapitulates or surveys concepts and results from the
documents/knowledge commons to make the document self-contained (for
its intended audience) (ii) identifies any assumptions and gives the ensuing
contributions a sound terminological basis.

7. The contributions part, which contains the development of new knowl-
edge in form of e.g. new insights, new interpretations of known concepts,
new theorems, new proofs, new applications/examples or new techniques of
achieving results.

8. An evaluation of the contributions in terms of applicability or usability.
9. A discussion of related work which reviews the contributions and their

relation to existing approaches and results from the literature.
10. A conclusion which summarizes the contribution with the benefit of hind-

sight and relates it to the claims made in the introduction.
11. Literature references, an index, a glossary, etc. and possibly appendices that

contain material deemed supplementary to the contributions.

Even though the form or order of the structural elements may vary over publi-
cation venues, and certain elements may be implicit or even missing altogether,
the overall structure is generally stable.

It may be surprising that only one in eleven parts of a mathematical document –
the “contributions” – arguably the largest – is fully dedicated to transporting the
payload of the paper. All other contribute to either the dissemination1, under-
standing2 and aggregation processes. We will see that the latter is mainly driven
by the common ground (point 6. above), which we will analyze in more detail next.

2.2 Common Ground/Recapitulation in Mathematical Research

To get an overview over recaps in the literature, we randomly selected 30 papers
from the new submissions to http://arxiv.org/archive/math and analyzed their
structure. All had a significant common ground section that recapitulates the
central notions and fixes notations. We show two examples where the mathe-
matics involved is relatively elementary.

Example 1. Reference [HK15] discusses covers of the multiplicative group of an
algebraically closed field which are formally introduced in the beginning of the
paper as follows:

Definition 1.1. Let V be a vector space over Q and let F be an
algebraically closed field of characteristic 0. A cover of the multi-
plicative group of F is a structure represented by an exact sequence
0 → K → V → F → 1, where the map V → F ∗ is a surjective
group homomorphism from (V,+) onto (F, ·) with kernel K. We
will call this map exp.

(1)

1 1. for referencing, 2. for determining interest.
2 3. and 10. for broader context, 5. and 9. for problem context, 4. for document naviga-
tion, 8. for assessment of value, and 11. for further reading.

http://arxiv.org/archive/math

A Flexiformal Model of Knowledge Dissemination 141

However, later, the authors source the concept origin to an earlier paper (“[13]”)
and effectively import the terminology, definitions and theorems. For instance,
when establishing results, [HK15] mentions “Moreover, with an additional axiom
(in Lω1ω) stating K ∼= Z, the class is categorical in uncountable cardinalities. This
was originally proved in [13] but an error was later found in the proof and corrected
in [2]. Throughout this article, we will make the assumption K ∼= Z.”.

In the second example, the situation is a bit more complex, since the import of
the terminology and definitions is not direct, but involves a choice.

Example 2. Reference [Bar15] studies the properties of multinets. In the prelim-
inaries section they are introduced with the following definition:

Definition 2.1. The union of all completely reducible fibers (with
a fixed partition into fibers, also called blocks) of a Ceva pencil of
degree d is called a (k, d) − multinet where k is the number of
the blocks. The base X of the pencil is determined by the multinet
structure and called the base of the multinet.

(2)

Later in that section some properties of multinets are introduced with the phrase
“Several important properties of multinets are listed below which have been collected
from [4,10,12]”. The referenced papers all use slightly different definitions of
multinets but they are assumed to be equivalent so that the properties hold.
In fact, in this paper [Bar15] the assumption is made explicit – although not
proved – from the start: “There are several equivalent ways to define multinets.
Here we present them using pencils of plane curves.”

The next example is not from our 30 examples, since we want to show an even
more complex situation.

Example 3. Reference [CS09] studies the halting problem for accelerated Turing
machines and starts off the discussion with an informal introduction of the topic.

An accelerated Turing machine (sometimes called Zeno machine)
is a Turing machine that takes 2−n units of time (say seconds)
to perform its nth step; we assume that steps are in some sense
identical except for the time taken for their execution.

(3)

This is a telegraphic version of the full definition, which is given in the litera-
ture. Actually [CS09] continues with an overview of the literature, citing no less
than 12 papers, which address the topic of accelerated Turing machines. One
of these supposedly contains the formal definition, which involves generalizing
Turing machines to timed ones, introducing computational time structures, and
singling out accelerating ones, e.g. using (4).

Definition 1.3. An accelerated Turing machine is a
Turing machine M = 〈X,Γ, S, so,�, δ〉 working with with a
computational time structure T = 〈{ti}i, <,+〉 with T ⊆ Q+ (Q+

is the set of non-negative rationals) such that
∑

i∈N
ti < ∞.

(4)

Note that the definition of an ATM [CS09] is an instance of Definition 1.3, which
allows arbitrary time structures.

142 M. Iancu and M. Kohlhase

2.3 Secondary Literature: Education/Survey

A similar effect can be observed with educational materials or survey articles,
whose concern is not to make an original contribution to the knowledge com-
mons, but to prepare a document that helps an individual or group study or bet-
ter understand a body of already established knowledge. Consider for instance,
slides and background materials (lecture notes, text books, encyclopaedias),
where the slides often have telegraphic versions of the real statements, which
verbalize more rigorous definition.

This is illustrated in Example 4 which is inspired from the notes of a first year
computer science course taught by the first author. The example is a simplified
and self-contained version of the original which in itself is only one instance of
a commonly occurring pattern in the course notes.

Example 4 (A Course grounded in a Formal Library). A course which introduces
(naive) set theory informally, but grounds itself in a formal, modular definition.
In the cited source, we have a careful introduction in the form of a modular theory
graph starting at a theory that introduces membership relation and the axioms
of existence, extensionality, and separation and defines the set constructor {·|·}
from these axioms. In the course notes we have a theory that “adopts” the
symbols ∈ and {·|·} but not the associated axioms. Instead it “defines” them by
alluding to the intuitions of the students. Then the course notes continue with
introducing set operations ranging from set union to the power set.

We observe that course notes in Example 4 are self-contained in the sense that
they can be understood without knowing about the formal development. This
self-containedness is important intra-course didactics. But it also has the problem
that the courses become insular; how are students going to communicate with
mathematicians who have learned their maths from other courses? This is where
alluding to the literature comes in, by connecting the course notes with it.

Example 5. The situation in mathematical textbooks is similar in structure to
that in research papers –perhaps more pronounced. Consider the following pas-
sage from Rudin’s classical introductory textbook to Functional Analysis [Rud73,
p.6f].

1.5 Topological spaces A topological space is a set S in which a
collection τ of subsets (called open sets) has been specified, with
the following properties: S is open, ∅ is open, [. . .] Such a collection
is called a topology on S. [. . .]

(5)

This is continued later – vector spaces have been recapped earlier in Sect. 1.4 –
with:

1.6 Topological vector spaces Suppose τ is a topology on a vector
space X such that

(a) every point of X is a closed set, and
(b) the vector space operations are continuous with respect to τ

Under these conditions, τ is said to be a vector topology on X,
and X is a topological vector space.

(6)

A Flexiformal Model of Knowledge Dissemination 143

Note that Rudin does not directly cite the literature in these quotes, but in the
preface he mentions the vast literature on function analysis and in Appendix
B he cites the original literature for each chapter. The situation in textbooks
is also different from research articles in that textbooks – like survey articles,
and by their very nature – do not add new knowledge or new results, but aggre-
gate and organize the already published ones, possibly reformulating them for a
more uniform exposition. But still, one can distinguish recap parts – as the ones
above – which are much more telegraphic in nature from the primary material
presented in the textbook.

2.4 Common Ground in Formal Mathematics

Where applicable, common ground in formal mathematics is typically estab-
lished via direct imports of symbols, theorems, notations, etc. Formal documents
emphasize correctness and do not focus on human readability so they do not re-
introduce concepts or provide, verbalizations of definitions.

For instance, In Isabelle and Coq knowledge is organized in Theories and
Modules which are effectively named sets of declarations. The incremental devel-
opment process is enabled via the imports and, respectively, Require Import
statements that effectively opens a library module by name and enables its dec-
larations to be used in the current development.

In Mizar, formal documents (called articles) can be exported as PDF files in a
human readable format. The narrative documents contain a part that verbalizes
the imports from the source documents and the notation reservations which can
be seen as a common ground section.

Example 6. The common ground part for [RK13b]

The notation and terminology used in this paper have been intro-
duced in the following papers: [4], [11], [12], [19], [9], [3], [5], [6],
[21], [22], [1], [2], [7], [18], [20], [24], [25], [23], [16], [13], [14], [10],
[15], and [8]. [. . .] In this paper T , U are non empty topological
spaces, t is a point of T , and n is a natural number.

(7)

3 Publication and Dissemination in Theory Graphs

In this section we look more closely at the examples from Sect. 2 and how each
can be represented using theory graphs. But first, we look at the aspects common
to all examples to form an intuition of the theory graphs structures that are
needed.

The examples in Sect. 2 are each slightly different but they have fundamental
common aspects. First, each paper starts with establishing a common ground on
which the results of the paper are built. This leverages the literature in two ways.

– Firstly, concepts from the literature are used to conveniently build up the local
definitions. From the theory graphs perspective this functions as a (possibly
partial) import.

144 M. Iancu and M. Kohlhase

– Secondly, properties of locally introduced concepts are adopted from the litera-
ture. Mathematically, this is justified by and (implicit or explicit) subsumption
between the local definition and that used by the referenced theorem. From
the theory graph perspective this function as a theory morphism that induces
the properties locally due to its truth-preserving semantics.

Therefore, a paper corresponds, not to a single theory, but to a theory pattern
that leads to a theory of the main contribution of the paper.

Secondly, the notion of “literature” and the existence of concepts beyond a
particular definition (so that equivalent definitions imply one is talking about
the same platonic concept) are common to all examples. We believe that what
happens in mathematical practice is that definition and foundational choices are
abstracted away as implementation details and the important concepts and their
properties are used as an interface to each theory (in the mathematical sense,
e.g. group theory). But this is precisely the situation that realms try to capture
in theory graphs. Therefore, we maintain that, from a theory graph perspec-
tive, informal mathematical papers refer (and contribute to) realms rather than
individual theories.

3.1 Realms

Intuitively, a realm [CFK14] is a theory structure in a theory graph G (i.e. a
subgraph of G) that abstracts from the development and provides practitioners
with the useful symbols and theorems via an interface theory.

We briefly introduce realms and the background concepts below and refer to
[CFK14] for details.

First, in the following, theories are named sets of declarations (i.e. symbols,
axioms or theorems). Additionally, theory morphisms (or views) are truth-
preserving mappings from a source theory to a target theory and formalize
inheritance and applicability of theorems. Theories can access and use decla-
rations from other theories by importing them, either directly (plain includes),
or via a translation (structures).

Fig. 1. The architecture of a realm

An important concept for realms is
that of a conservative extension which
usually occurs when a theory includes
another and contains only theorems and
derived symbols (i.e. adds no axioms or
primitive symbols). An essential property
of conservative extensions is that if S′ is a
conservative extension of S then there is
view v between T and S iff there is a view
between T and S′ in the same direction. In
fact, we will often talk about views mod-
ulo conservativity below. Figure 1 shows a
prototypical realm with F as its interface
theory (also called a face) and n pillars

A Flexiformal Model of Knowledge Dissemination 145

each representing a different (yet equivalent) development of the concepts in the
face. Common examples are the different ways to define natural or real numbers.
Each pillar is a conservative development in the sense that all theories in a pillar
are conservative extensions of a bottom theory (denoted with ⊥). A top theory
(denoted with �) aggregates all symbols, axioms and theorems declared within
the pillar. The view pairs at the bottom establish the equivalence of the pillars
and the n views Ik capture the relation of interface-implementation between the
face and each pillar.

3.2 Realms as a Model for Dissemination and Aggregation

Figure 2 shows the general case for the representation of a paper as part of a
theory graph. The “literature” for the mathematical theory to which the paper
contributes is represented as a realm with a face and several pillars. The paper
references a document within the field, that is naturally part of a pillar and
grounds the recap theory. The contribution of the paper is a theory in itself that
includes the recap theory and is a conservative extension of it. Again, the fact
that we are representing the contribution in a single theory is a simplification for
presentational simplicity which does not lead to a loss of generality. The view v
ensures that the paper can make use of concepts and theorems from the realm,
as they can be accessed via v.

In our analysis we first restrict ourselves to the case where there is a single
recap for simplicity and expositional clarity. This already covers the majority of
research papers we have analyzed; they mainly build on one earlier paper and
extend it. Indeed, all three examples from Sect. 2.2 fall into this category, they
import the definitions and terminology from a central cited paper, but call on
others from the same realm for results, context, and support.

Fig. 2. General case for recaps

We recognize four special cases for (single) recaps based on the nature of r
and discuss each individually below. First we have to decide the home theory

146 M. Iancu and M. Kohlhase

of the symbols that the recap introduces. If the home is the cited theory then
r is an import and we have a plain recap (Sect. 3.3). Otherwise, we have new
symbols in the recap theory that are somehow related with the ones in the
cited one. In that situation we have three sub-cases depending on the relation
between the recap and cited theory: equivalence recap (Sect. 3.4), specialization
recap (Sect. 3.5) and, in the informal case, postulated recap (Sect. 3.6).

Finally, we have the case where the paper builds on several others and, there-
fore, has multiple recaps (Sect. 3.7).

3.3 Special Case: Plain Recaps

One situation is that of plain recaps where the relation r is an inclusion into the
recap from the cited paper. Typically the include r is a conservative extension
of the cited paper. For instance the “covers of the multiplicative group” from
Example 1 directly uses the concept from the cited paper (CPaper), but gives a
concise verbalization of its definition. This allows it to make use of the results in
two other papers higher up in the pillar of the cited paper. The situation is shown
in Fig. 3a. Note that, if r is conservative, then we have a pillar extension for
the realm which justifies the new paper becoming part of the realm’s literature
(see Fig. 3b). It also makes v exist as induced by v1 modulo conservativity.

Fig. 3. Plain recaps (Example 1)

Plain recaps can also model the formal examples (e.g. Example 6) but in that
situation it is not too interesting as we have the degenerate case for the realm
itself.

A Flexiformal Model of Knowledge Dissemination 147

3.4 Special Case: Equivalence Recap

Another common situation is that of equivalence recaps where the relation r is
an equivalence (isomorphism) between the two theories. We can represent the
relation r, in this case, as two views vto and vfrom, one in each direction between
the recap and the cited paper that ensure their isomorphism. Then, the view v
is induced by vfrom ◦ v1 modulo conservativity. Moreover, the contribution of
the paper carries over to the realm via the view vto.

This occurs, for instance, in Example 2 where this intuition is explicitly writ-
ten down in the paper as “There are several equivalent ways to define multinets.”
(although not proved). In fact it is the most common situation in the sample
papers we studied.

Note that adding an equivalent definition corresponds to a realm extension,
where the face is fixed, and the view from the face to the current theory can be
postulated. Therefore, in Fig. 4a the paper effectively extends the realm (or the
current pillar) as introduced in Sect. 3.1. This corresponds to the mathematical
practice of “contributing to” a field (or mathematical theory). This resulting
realm after knowledge aggregation is shown in Fig. 4b, where the new paper
contributes a new pillar to the realm. The equivalence is ensured by vfrom and
vto as we take into account conservativity to reduce them to the ⊥ theory.

Fig. 4. Equivalence recaps (Example 2)

3.5 Special Case: Specialization Recap

Thirdly, we have the case where r is a specialization relation that can be rep-
resented as a view vfrom from the cited theory to the recap. Same as in the
previous case, this ensures the existence of v as vfrom ◦ v1 modulo conservativ-
ity. However it does not directly contribute the results of the paper back to the
(same) realm as they concern only a special case of the concepts in the realm.

148 M. Iancu and M. Kohlhase

This is the case in Example 3 where the definition from the paper is a special-
ization of the one in the literature. In [CS09], the definition of the accelerated
Turing machine involves a concrete step size (2−n), whereas the definition it
recaps allows arbitrary sequences of step sizes as long as their sum remains
finite. Thus we have the situation in Fig. 5. Theory ATM contains the (opaque)
sentence (3), but there cannot be a view from ATM to atm as that is more gen-
eral. But we do have a view to atm(2−n), which naturally arises in treatments of
accelerated Turing machines as an example. That special case can form a realm
of its own, namely the realm of accelerated Turing machines with step size 2n.
Then we can talk about aggregation with that realm (via the view vto) but
we omit that here for simplicity – the aggregation is similar as for equivalence
recaps, except with the specialization realm.

Fig. 5. Publication graph for specialization recaps (Example 3)

3.6 Postulated Recap/Adoption

Finally, we have the case for educational material such as the one in Example 4
where r cannot be directly modeled as either an include or a view. This is caused
by the constraint of self-containedness of such materials. Normally, in the case
where a more formal development is used we could represent it as an include and
be in the case for plain recaps. However, the home theory of the new symbols
must be the current development in order for it to be self-contained, so we
cannot use an include. Instead we envision a special kind of import that adopts
the included symbols effectively changing their home theory to the current one.
But, then the view v is not justified so we must also assert its existence. In that
case we call v a postulated view and the relation r is an adoption (see Fig. 6).
We leave working out the precise details of postulated views and adoptions in
flexiformal theory graphs for future work.

This is the situation in Example 4 where the recap theory SET includes only
the symbols ∈ and {·, ·} from the formal development ZFset, but not their axioms.

A Flexiformal Model of Knowledge Dissemination 149

Instead the symbols are “defined” by alluding to the literature (common knowl-
edge). We claim this verbalization effectively postulates the existence of v, by
implying that the semantics of the two symbols is compatible with that given in
the literature (which we represent as a realm).

Fig. 6. Publication graph for Generalization/Unspecified recaps (Example 4)

Note that we omit the aggregation part for this case as the purpose of such
educational or survey material is typically to provide a concise overview of a
realm rather than to contribute to it.

3.7 Multiple Recaps

Up to now we have only treated cases with single recaps to ease the exposition.
But papers and especially textbooks often recap from different realms and base
the rest of the exposition on them.

This is the situation in Fig. 7a inspired by Example 5 from Rudin’s book.
Note that the two recaps import directly from the faces rather than from a
specific pillar or paper. This is intended and covers the typical case of recaps
in textbooks and survey articles. For instance, as mentioned in Sect. 2.3, Rudin
does not directly cite literature in the recaps, but aggregates the vast literature
in an appendix.

For the aggregation phase the multiple recaps situation begs the question of
where the contribution should be placed. In the recap in Example 5 we have
separate recaps of vector spaces and topological spaces (5), and we analyze
them as theory morphisms from their respective realms. In this case, there is
the realm of topological vector spaces (6) which imports from both realms, this
is the natural place for the contributions. In the case such a realm does not
exist yet, the paper can be used as the natural starting point for (first pillar
of) the realm. Actually, the “union realm” concept in Fig. 7b is a bit simplified.
The contribution of the paper will usually add some conditions – like conditions

150 M. Iancu and M. Kohlhase

Fig. 7. Multiple recaps (Example 5)

(a) and (b) in (6) – and use that for the base theories of the realms. This does
not invalidate our claim that there is always a natural realm – which may have
to be created – for the contribution of the “paper”.

4 Conclusion and Future Work

We have presented a flexiformal model of the mechanics of paper-based dis-
semination of research results and their aggregation into a structured knowl-
edge commons. We model the latter as an underlying theory graph structured
by inclusions and views that is further structured into a graph of realms to
abstract from details of the particular low-level developments of the mathemat-
ical domains.

We identify the recap+contribution structure in mathematical papers as the
mechanism by which papers can at the same time be made self-contained for
human readers and by which the contribution can be integrated into the knowl-
edge commons: the recap anchors the contribution in the commons. It is the
realms structure with its equivalent pillars and abstraction capabilities that gives
the recaps the necessary flexibility to adequately model the variety of anchors
we see in mathematical documents.

We have validated our model by identifying the recaps and their types in
30 recent papers randomly selected from a preprint archive. To obtain a more
scientific evaluation of the model, we need a much larger and more varied sample.
We are currently developing an annotation ontology for realms and recaps for
the KAT annotator [Dum+14] as a basis for a more principled and sustainable
analysis. This will also give us the data to develop our model further.

In the future we want to look into the communication-enabling partial isomor-
phisms postulated in Sect. 3.6 and see whether [KRSC11] is directly applicable.

We believe that the realms-based model can be extended to handle recaps
from multiple realms in one document. For the document model, this is not a
problem, since we would just have multiple bases for the conservative develop-
ment. For the aggregation things become more complex. Intuitively, the contri-
bution must be integrated into a realm that is the “union” of the realms, and if
that does not exist yet, the realm can be initialized with the paper at hand.

A Flexiformal Model of Knowledge Dissemination 151

An implementation of realms in the Mmt API [Rab13] is under way, this will
allow us to validate the model proposed in this paper from the synthetic direc-
tion: If we have a realm-structured knowledge commons, then we may be able to
auto-generate recaps and common ground sections to obtain narrative presen-
tations of fragments that are more self-contained and readable to the human
reader. This is particularly interesting for the concept of “guided tours” in
content-based eLearning systems: auto-generated explanatory narratives lead-
ing to a given mathematical concept by topologically sorting the dependency
relation given by the theory graph in the content commons. For the “early”
parts on the border to the estimated common ground, recaps might be more
suitable than direct copies of the definitions.

Acknowledgements.. This work has been supported by the Leibniz Association
under grant SAW-2012-FIZ KA-2 and the German Research Foundation (DFG) under
grant KO 2428/13-1.

References

[Bar15] Bartz, J.: Induced and Complete Multinets. In: ArXiv e-prints (February
2015). arXiv:1502.02059 [math.AG]

[CFK14] Carette, J., Farmer, W.M., Kohlhase, M.: Realms: a structure for consoli-
dating knowledge about mathematical theories. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543,
pp. 252–266. Springer, Heidelberg (2014)

[CS09] Calude, C., Staiger, L.: A note on accelerated turing machines. CDMTCS
Research Report 350. Centre for Discrete Mathematics and Theoretical
Computer Science, Auckland University (2009). http://www.cs.auckland.
ac.nz/CDMTCS/researchreports/350cris.pdf

[Dum+14] Dumitru et al. M.A.: System description: KAT an annotation tool for
STEM documents (2014). http://kwarc.info/kohlhase/submit/cicm14-kat.
pdf

[HK15] Hyttinen, T., Kangas, K.: On model theory of covers of algebraically
closed fields (2015) (visited on 16 February 2015). http://arxiv.org/pdf/
1502.01042.pdf

[JFM] J. Formalized Math. JFM (visited on 27 September 2012). http://www.
mizar.org/

[Koh06] Kohlhase, Michael: A development graph for elementary algebra. In:
Kohlhase, Michael (ed.) OMDoc – An Open Markup Format for Mathemat-
ical Documents [version 1.2]. LNCS (LNAI), vol. 4180, pp. 59–63. Springer,
Heidelberg (2006)

[Koh13] Kohlhase, M.: The flexiformalist manifesto. In: Voronkov, A. et al. (eds.)
14th International Workshop on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC 2012), Timisoara, Romania, pp. 30–36. IEEE
Press, California (2013). http://kwarc.info/kohlhase/papers/synasc13.pdf

[KRSC11] Rabe, F., Kohlhase, M., Sacerdoti Coen, C.: A foundational view on inte-
gration problems. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe,
F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp. 107–122.
Springer, Heidelberg (2011)

http://arxiv.org/abs/1502.02059
http://www.cs.auckland.ac.nz/CDMTCS/researchreports/350cris.pdf
http://www.cs.auckland.ac.nz/CDMTCS/researchreports/350cris.pdf
http://kwarc.info/kohlhase/submit/cicm14-kat.pdf
http://kwarc.info/kohlhase/submit/cicm14-kat.pdf
http://arxiv.org/pdf/1502.01042.pdf
http://arxiv.org/pdf/1502.01042.pdf
http://www.mizar.org/
http://www.mizar.org/
http://kwarc.info/kohlhase/papers/synasc13.pdf

152 M. Iancu and M. Kohlhase

[MizLib] Mizar mathematical library (visited on 27 September 2012). http://www.
mizar.org/library

[Rab13] Rabe, F.: The MMT API: a generic MKM system. In: Carette, J., Aspinall,
D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol.
7961, pp. 339–343. Springer, Heidelberg (2013)

[RK13a] Rabe, F., Kohlhase, M.: A scalable module system. In: Information and
Computation 0.230, pp. 1–54 (2013). http://kwarc.info/frabe/Research/
mmt.pdf

[RK13b] Riccardi, M., Kornilowicz, A.: Fundamental group of n-sphere for n ≥ 2.
Formalized Math. 20(2), 97–104 (2013). doi:10.2478/v10037-012-0013-1

[Rud73] Rudin, W.: Functional Analysis. McGraw Hill (1973)
[Wen07] Wenzel, M.: Isabelle/Isar - a generic framework for human- readable proof

documents. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof:
Festschrift in Honour of Andrzej Trybulec, vol. 10(23). Studies in Logic,
Grammar and Rhetoric. University of Bia lystok, pp. 277–298 (2007).
http://mizar.org/trybulec65/

http://www.mizar.org/library
http://www.mizar.org/library
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://dx.doi.org/10.2478/v10037-012-0013-1
http://mizar.org/trybulec65/

Mathematical Knowledge Management

Structure Formation in Large Theories

Serge Autexier and Dieter Hutter(B)

German Research Center for Artificial Intelligence,
Bibliothekstr. 1, 28359 Bremen, Germany

{serge.autexier,dieter.hutter}@dfki.de

Abstract. Structuring theories is one of the main approaches to reduce
the combinatorial explosion associated with reasoning and exploring
large theories. In the past we developed the notion of development graphs
as a means to represent and maintain structured theories. In this paper
we present a methodology and a resulting implementation to reveal the
hidden structure of flat theories by transforming them into detailed
development graphs. We review our approach using plain TSTP-
representations of MIZAR articles obtaining more structured and also
more concise theories.

1 Introduction

It has been long recognized that the modularity of specifications is an indis-
pensable prerequisite for an efficient reasoning in complex domains. Algebraic
specification techniques provide appropriate frameworks for structuring complex
specifications and the authors introduced the notion of an development graph
[1,5,6] as a technical means to work with and reason about such structured
specifications. While its use presupposes the development of theories having the
intended structures already in mind, there are various applications of Formal
Methods in which theories are automatically generated in an entirely unstruc-
tured representation. Thus, there is a need for a computer-aided structure for-
mation for large theories, which allows for an efficient reasoning in such theories.

In this paper we present an initial approach to support structure formations
in large unstructured specifications. The idea is to provide a calculus and a corre-
sponding methodology to crystalize intrinsic structures hidden in a specification
and represent them explicitly in terms of development graphs. Step by step, the
specification is split into different nodes resulting in increasingly richer develop-
ment graphs. On the opposite, common concepts that are scattered in different
specifications are identified and unified in a common theory.

We start with a discussion on syntactical properties to measure the appropri-
ateness of a structuring and specify invariants underlying a structure formation
process. Based on this general framework we present a calculus (and heuristics
to guide this calculus) to transform development graphs in order to enrich the
explicitly given structure. We review our framework with the help of the Mizar
Mathematical Library (http://www.mizar.org/) providing hundreds of articles
which are subject to our structure formation process.
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 155–170, 2015.
DOI: 10.1007/978-3-319-20615-8 10

http://www.mizar.org/

156 S. Autexier and D. Hutter

2 Development Graphs for Structure Formation

We base our framework on the notions of development graphs (and thus on the
notion of institutions [4]) to specify and reason about structured specifications.
Development graphs D are acyclic, directed graphs 〈N ,L〉, the nodes N denote
individual theories and the links L indicate theory inclusions with respect to
signature morphisms attached to the links. Each node N ∈ N of the graph is
a tuple (sigN , axN , lemN) such that sigN is called the local signature of N , axN

a set of local axioms of N , and lemN a set of local lemmas of N . L is a set of
global definition links M

σ �� N. Each link imports the mapped theory of M
(by the signature morphism σ) as part of the theory of N . A node N is globally
reachable from a node M via a signature morphism σ, D � M ��

σ �� N for short,

iff 1. either M = N and σ = id,or 2. M
σ′

�� K ∈ L, and D � K ��
σ′′

�� N ,
with σ = σ′′ ◦ σ′. The global signature (global axioms and global lemmata,
respectively) of a node N ∈ N is the union of its local signature (local axioms
and local lemmata) and the mapped global signatures of all nodes from which
N is globally reachable. A node is valid if all signature symbols occurring in its
global axioms and lemmata are declared in its global signature. A development
graph is well-defined, if all its nodes are valid.

The maximal nodes (root nodes) �D� of a graph D are all nodes without
outgoing links. DomD(N) := SigD(N) ∪ AxD(N) ∪ LemD(N) is the set of all
signature symbols, axioms and lemmata visible in a node N . The local domain
of N , domN := sigN ∪ axN ∪ lemN is the set of all local signature symbols,
axioms and lemmata of N . The imported domain ImportsD(N) of N in D is
the set of all signature symbols, axioms and lemmata imported via incoming
definition links. DomD =

⋃
N∈N DomD(N) is the set of all signature symbols,

axioms and lemmata occurring in D. Analogously we define SigD, AxD, and
LemD. Dom�D� =

⋃
N∈�D� DomD(N) is the set of all signature symbols, axioms

and lemmata occurring in the maximal nodes of D.
Given a node N ∈ N its associated class ModD(N) of models (or N -models

for short) consists of those SigD(N)-models n for which (i) n satisfies the local
axioms axN , and (ii) for each K

σ �� N ∈ S, n|σ is a K-model. In the following
we denote the class of Σ-models that fulfill the Σ-sentences Ψ by ModΣ(Ψ).

Given a signature Σ and Ax,Lem ⊆ Sen(Σ), a support mapping Supp for
Ax and Lem assigns each lemma ϕ ∈ Lem a subset H ⊆ Ax ∪ Lem such that
(i) Mod〈sym(H)∪sym(ϕ)〉Σ

(H) |= ϕ1 (ii) The relation �⊆ (Ax ∪Lem)×Lem with
Φ � ϕ ⇔ (Φ ∈ Supp(ϕ) ∨ ∃ψ.Φ ∈ Supp(ψ) ∧ ψ � ϕ) is a well-founded strict
partial order. If D is a development graph, then a support mapping Supp is a
support mapping for D iff for all N ∈ D Supp is a support mapping for AxD(N)
and LemD(N).

We will now formalize the requirements on development graphs that reflect
our intuition of an appropriate structuring for formal specifications in the fol-
lowing principles.
1 Where 〈S〉Σ denotes the smallest valid sub-signature of Σ containing S.

Structure Formation in Large Theories 157

The first principle is semantic appropriateness, saying that the structure of
the development graph should be a syntactical reflection of the relations between
the various concepts in our specification. This means that different basic spec-
ifications are located in different nodes of the graph and the links of the graph
reflect the logical relations between these specifications. The second principle is
closure saying, for instance, that deduced knowledge should be located close to
the axioms guaranteeing the proofs. Also the specification defined by the the-
ory of an individual node of a development graph should have a meaning of
its own and provide some source of deduced knowledge. The third principle is
minimality saying that each concept (or part of it) is only represented once in
the graph. When splitting a monolithic theory into different theories common
foundations for these theories should be (syntactically) shared between them by
being located at a unique node of the graph.

We now translate these principles into syntactical criteria on development
graphs and into procedures of how to transform or refactor development graphs.
In a first step we formalize technical requirements to enforce the minimality-
principle in terms of development graphs. Technically, we demand that each
signature symbol, each axiom and each lemma has a unique location in the
development graph. When we enrich a development graph with more structure
we forbid to have multiple copies of the same definition in different nodes. We
therefore require that we can identify for a given signature entry, axiom or lemma
a minimal theory in a development graph and that this minimal theory is unique.
We define:

Definition 1 (Providing Nodes). Let 〈N ,L〉 be a development graph. An
entity e is provided in N ∈ N iff e ∈ Dom〈N ,L〉(N) and ∀M

σ �� N. e �∈
Dom〈N ,L〉(M). Furthermore,

1. e is locally provided in N iff additionally e ∈ domN holds.
2. e is provided by a link l : M

σ �� N iff e is not locally provide in N and ∃e′ ∈
Dom〈N ,L〉(M). σ(e′) = e holds. In this case we say that l provides e from e′. e
is exclusively provided by l iff e is not provided by any other link l′ ∈ L.

The closure-principle demands that there are no spurious nodes in the graph not
contributing anything new. We combine these requirements into the notion of
location mappings:

Definition 2 (Location Mappings). Let D = 〈N ,L〉 be a development graph.
A mapping locD : DomD → N is a location mapping for D iff

1. locD is surjective (closure)
2. ∀N ∈ N . ∀e ∈ domN . locD(e) = N
3. ∀e ∈ DomD. locD(e) is the only node providing e (minimality)

For a given locD we define loc−1
D : N → 2DomD by

loc−1
D (N) := {e ∈ DomD|locD(e) = N}.

We write loc and loc−1 instead of locD and loc−1
D if D is clear from the context.

158 S. Autexier and D. Hutter

Based on the notion of location mappings we formalize our intuition of a struc-
turing. The idea is that the notion of being a structuring constitutes the invariant
of the structure formation process and guarantees both, requirements imposed
by the minimality-principle as well as basic conditions on a development graph
to reflect a given formal specification.

Definition 3 (Structuring). Let D = 〈N ,L〉 be a valid development graph,
loc : DomD → N , Σ ∈ |Sign|, Ax,Lem ⊆ Sen(Σ) and Supp be a support
mapping for D. Then (D, loc,Supp) is a structuring of (Σ,Ax,Lem) iff

1. loc is a location mapping for D.
2. let Dom�D� = Σ′ ∪ Ax′ ∪ Lem′ then Σ = Σ′, Ax = Ax′ and Lem ⊆ Lem′.
3. ∀φ ∈ LemD . ∀ψ ∈ Supp(φ). ∃σ. loc(ψ) ��

σ �� loc(φ) ∧ σ(ψ) = ψ.

3 Refactoring Rules

In the following we present the transformation rules on development graphs that
transform a structuring again into a structuring. Using these rules we are able to
structure the initially trivial development graph consisting of exactly one node
that comprises all given concepts step by step. This initial development graph
consisting of exactly one node satisfies the condition of a structuring provided
that we have an appropriate support mapping at hand.

We define four types of structuring-invariant transformations: (i) horizontal
splitting and merging of development graph nodes, (ii) vertical splitting and
merging of development graph nodes, (iii) factorization and multiplication of
development graph nodes, and (iv) removal and insertion of specific links. Split-
ting and merging as well as factorization and multiplication are dual operations.
For lack of space and because we are mainly interested in rules increasing the
structure of a development graph we will omit the formal specification of the
merging and multiplication rules here.

Horizontal Split. The first refactoring rule aims at the separation of specifications
in independent theories. In terms of the development graph a node is replaced
by a series of independent nodes; each of them contains a distinct part from a
partitioning of the specification of the original node. In order to ensure a valid
new development graph, each of the new nodes imports the same theories as the
old node and contributes to the same theories as the old node did. To formalize
this rule we need constraints on how to split a specification in different chunks
such that local lemmata are always located in a node which provides also the
necessary axioms and lemmata to prove it (Fig. 1).

Definition 4. Let S = (D, loc,Supp) be a structuring of (Σ,Ax,Lem) and N ∈
ND. A partitioning P for N is a set {N1, . . . , Nk} with k > 1 such that 1.
sigN = sigN1 � . . . � sigNk , axN = axN1 � . . . � axNk , lemN = lemN1 � . . . � lemNk

2. sigNi ∪axNi ∪lemNi �= ∅ for i = 1, . . . , k. A node Ni ∈ P is lemma independent
iff Supp(ψ) ∩ (axN ∪ lemN) ⊆ (axNi ∪ lemNi) for all ψ ∈ lemNi .

Structure Formation in Large Theories 159

N

θ1
θ
n

. . .

σ 1
σ
m

. . .

N1 Nk

θ1 θnθ1 θn

σ1
|DomN1

σ
m
|DomN1

σ 1
|Dom

N
k

σm
|DomNk

. . .

. . .

Horizontal Split

Horizontal Merge

Fig. 1. Horizontal split and Merge

Definition 5 (Horizontal Split). Let S = (〈N ,L〉, loc,Supp) be a structuring
of (Σ,Ax,Lem), P = {N1, . . . , Nk} be a partitioning for some node N ∈ N such
that each Ni ∈ P is lemma independent and loc−1(N) = domN . The horizontal
split of S wrt. N and P is S ′ = (D′, loc′,Supp) with D′ = 〈N ′,L′〉 where

1. N ′ := {N1, . . . , Nk} � (N \ N)
2. L′ := {M

σ �� M ′ ∈ L|M �= N ∧ M ′ �= N}
∪ {M

θ �� Ni|M θ �� N ∈ L, i ∈ {1, . . . , k}}

∪ {Ni

τ|DomNi�� M|N τ �� M ∈ L, i ∈ {1, . . . , k}}
3. loc′(e) := Ni if e ∈ domNi for some i ∈ {1, . . . , k} and loc′(e) := loc(e)

otherwise.

such that SigD′(Ni) are valid signatures and axi, lemi ⊆ Sen(SigD′(Ni)) for
i = 1, . . . , k.

Vertical Split. Similar to a horizontal split we introduce a vertical split which
divides a node into two nodes and locates one node on top of the other. While
all outgoing links start at the top node, we are free to reallocate incoming links
to either node (Fig. 2).

Definition 6 (Vertical Split). Let S = (〈N ,L〉, loc,Supp) be a structuring
of (Σ,Ax,Lem) and P = {N1, N2} be a partitioning for some N ∈ N such
that N1 is lemma independent. Then, the vertical split S wrt. N and P is S ′ =
(D′, loc′,Supp) with D′ = 〈N ′,L′〉 where

N ′ :={N1, N2} � (N \ N)

L′ :={M
σ �� M ′ ∈ L|M �= N ∧ M ′ �= N} ∪ {N1

id �� N2}
∪ {M

σ �� N1 | M
σ �� N ∈ L} ∪ {N2

σ �� M | N
σ �� M ∈ L}

loc′(e) =

⎧
⎨

⎩

N2 if loc(e) = N and e ∈ DomD′(N2)
N1 if loc(e) = N and e �∈ DomD′(N2)
loc(e) otherwise

such that SigD′(Ni), i = 1, 2, are valid signatures and axi, lemi ⊆ Sen(SigD′(Ni)),
i = 1, 2. Conversely, S is a vertical merge of N1 and N2 in S ′.

160 S. Autexier and D. Hutter

N

M1 Mp

σ1 σl

. . .
ρ1 ρm

. . .

N2

N1

M1 Mp

ρ1 ρm

. . .

id

σ1
σl

. . .

Vertical Split

Vertical Merge

Fig. 2. Vertical split and Merge

Example 1. We illustrate the horizontal and vertical split rules by considering
a single theory axiomatizing a Field with binary operations + and × consist-
ing of a Distributivity axiom (ΦD := ∀x, y, z.x × (y + z) = x × y + x × z)
and the axioms of an Abelian Group for + and ×, respectively (Φ+

AG :=
∀x, y, z . x+(y+z) = (x+y)+z,∀x, y . x+y = y+x,∀x . x+0 = x,∀x . x+−(x) = 0
and Φ×

AG := ∀x, y, z . x× (y × z) = (x× y)× z,∀x, y . x× y = y ×x,∀x . x× 1 =
x,∀x . x× inv(x) = 1). Assume axioms are contained in a single node Field, which
forms a trivial structuring. In a first step we can split that node vertically by
separating the distributivity axiom from the other axioms. In a second step we
can separate the Abelian Group axioms for + and × by a horizontal split. This
is shown in the following Figure:

ΦD

Φ+
AG

Φ×
AG

(0) (1)
Vertical Split

(2)
Horizontal Split

ΦD

Φ+
AG, Φ×

AG

id

ΦD

Φ+
AG Φ×

AG

id id

Factorization. The factorization rule allows one to merge equivalent specifica-
tions into a single generalized specification and then to represent the individual
ones as instantiations of the generalized specification. A precondition of this
rule is that all individual specifications inherit the same (underlying) theories
(Fig. 3).

Definition 7 (Factorization). Let S = (〈N ,L〉, loc,Supp) be a structuring of
(Σ,Ax,Lem). Let K1, . . . , Kn,M1, . . . , Mp ∈ N with p > 1 such that sigMj ∪
axMj �= ∅ and ∃σi,j . Ki

σi,j �� Mj ∈ L for i = 1, . . . , n, j = 1, . . . , p.
Suppose there are sets sig, ax and lem with (sig ∪ ax ∪ lem) ∩ DomD = ∅ and

signature morphisms θ1, . . . , θp and σ1, . . . , σn such that

– ∀e ∈ DomD(Ki). θj(σi(e)) = σi,j(e) and σi,j(e) = e ∨ σi,j(e) �∈ DomD

Structure Formation in Large Theories 161

M1 Mp. . .

K1 Kn

σ
1
,1 σ

n
,1σ 1

,p σ
n
,p

. . .

.

N

K1 Kn

N1 Np. . .
θ
1 θp

σ1

σ
n

. . .

.

Factorization

Fig. 3. Factorization (with σi,j := θj ◦ σi)

– sigMj ⊆ θj(sig) ⊆ DomD(Mj), axMj ⊆ θj(ax) ⊆ DomD(Mj)
– ∀e ∈ lem holds ∃l ∈ {1, . . . p}. θl(e) ∈ lemMl , θi(e) = θj(e) implies i = j and

θj(e) ∈ DomD implies loc(θj(e)) ∈ Mj

– there is a support mapping SuppN for ax ∪ ⋃
i=1,...,n σi(DomD(Ki)) and lem.

Then S ′ = (〈N ′,L′〉, loc′,Supp′) is a factorization of S wrt. M1, . . ., Mp and
SuppN iff

N ′ :={N} ∪ {Nj |j ∈ {1, . . . p}} ∪ N \ {M1, . . . Mp}
with N = 〈sig, ax, lem〉, Nj = 〈∅, ∅, lemMj \ θj(lem)〉

L′ :={K
σ �� K ′ ∈ L|K,K ′ �∈ {M1, . . . Mp}

∪ {Ki
σi �� N|Ki

σi,j �� Mj, j ∈ {1, . . . p}, i ∈ {1, . . . n}}

∪ {N
θj �� Nj|j ∈ {1, . . . p}}

∪ {K
τ �� Nj|K τ �� Mj ∧ (∀i ∈ {1, . . . n}.K �= Ki ∧ τ �= σi,j)

∪ {Nj
τ �� K|Mj

τ �� K ∈ L, j ∈ {1, . . . p}}

loc′(x) :=

⎧
⎪⎨

⎪⎩

N if x ∈ DomD′(N) \ ⋃
i=1,...,n DomD′(Ki)

Nj if x ∈ DomD(Nj) and ∀K
σ �� Nj. x �∈ DomD′(K)

loc(x) otherwise.

Supp′ :=Supp ∪ SuppN .

Example 2. Consider again our example a Field axioms, which we have trans-
formed into the structuring (3) (p. 6). On the last structuring (3) we can apply
the factorization rule to extract the general abelian group axioms (Φ◦

AG :=
∀x, y, z . x ◦ (y ◦ z) = (x ◦ y) ◦ z,∀x, y . x ◦ y = y ◦ x,∀x . x ◦ e = x,∀x . x ◦ i(x) =
e) and obtain the respective axioms for + and × by morphisms σ1 := ◦ �→ +, e �→
0, i �→ − and σ2 := ◦ �→ ×, e �→ 1, i �→ inv. This is illustrated in the following
diagram and the final structuring contains 5 axioms and the initial structuring
contained 9 axioms.

162 S. Autexier and D. Hutter

ΦD

Φ+
AG Φ×

AG

id id

ΦD

∅ ∅
id id

Φ◦
AG

σ1 σ2

(3) (4)
Factorization

The factorization rule only covers a sufficient criterion demanding that each
theory imported by a definition link to one specification is also imported via
definition links by all other specifications. The more complex case in which a
theory is imported via a path of links can be handled by allowing one to shortcut
a path in a single global link. This results in the following rule.

Definition 8 (TransitiveEnrichment). Let S = (〈N ,L〉, loc,Supp) be a struc-
turing of (Σ,Ax,Lem), K,N ∈ N and there is a path K ��

σ �� N between both.
Then, S ′ = (〈N ,L ∪ {K

σ �� N}〉, loc,Supp) is a transitive enrichment of D.

Definition links in a development graph can be redundant, if there are alter-
natives paths which have the same morphisms or if they are not used in any
reachable node of the target. We formalize these notions as follows:

Definition 9 (Removable Link). Let S = (D, loc,Supp) (D = 〈N ,L〉) be a
structuring of (Σ,Ax,Lem). Let l ∈ L and D′ = 〈N ,L\{l}〉. l is removable from
S and S ′ = (D′, loc,Supp) is a reduction of S iff

1. ∀l′ : M
σ �� N. if l′ provides exclusively σ(e) from some e ∈ DomD(M)

then e ∈ DomD′(N) and l �= l′;
2. ∀e ∈ DomD.∀M ∈ �D�. if loc(e) ��

σ �� M then there exists M ′ ∈ �D′� such
that loc(e) ��

σ �� M ′;
3. ∀φ ∈ LemD. Supp(φ) ⊆ DomD′(N) and ∀Sigloc

D (N) ⊆ DomD′(N).

Theorem 1 (Structuring Preservation). Let S := (D, loc,Supp) (D = 〈N ,
L〉) be a structuring of (Σ,Ax,Lem). Then

1. every horizontal split of S wrt. some N ∈ N and partitioning P of N ,
2. every vertical split of S wrt. some N ∈ N and partitioning P of N ,
3. every factorization of S wrt. nodes M1, . . . Mp ∈ N ,
4. every transitive enrichment of S, and
5. every reduction of S
is a structuring of (Σ,Ax,Lem).

The theorem follows from the soundness proofs for each rule given in Appendix 6.

Structure Formation in Large Theories 163

4 Refactoring Process

In order to evaluate the refactoring rules on real theories we have implemented
the development graphs and the rules in Scala2 and added support to read for-
mulas in TSTP format [9] using the Java parser from [8]. The support mapping
is given as an extra datastructure representing the information which formula
has been used in the proof of a theorem. In the case of TSTP we extract that
information from the files by using the names of the formulas. Since the TSTP
format does not include signature declarations, we add declarations for all occur-
ring symbols in a TSTP file in an initialization step. We used the untyped part
of TSTP and hence the declarations only contain arity information but no types.

The refactoring rules are parameterized over the theories and possibly the
subsets of the local signature, axioms and lemmata to split over. To compute
the parametric information we provided some basic heuristic tactics. Using the
support mapping, we define that an axiom (resp. lemma) depends on a sym-
bol declaration, if the symbol occurs in the axiom (resp. lemma) and a lemma
depends on another axiom or lemma, if the latter is in its support mapping. A
symbol declaration is always independent. This dependency relation induces a
partial order on the local domain of each node in a development graph.

Tactic for Horizontal Split. This rule requires the partitioning of the local sig-
nature, axioms and lemmas for a given theory into independent parts such that
given the same imports than the original node, each part is a valid theory and
lemma independent of the other part. We implemented a heuristic that given a
local domain of some node, searches for a largest subset which has a non-empty
intersection of its occurring symbols and supporting axioms and lemmata. If
such a set exists, the largest such set is used to split the theory horizontally into
that set and the rest.

Tactics for Vertical Split. The rule requires to find a subset of the local domain,
which is independent of the rest and use it as the content of the lower theory.
We implemented two heuristics to search for this subset. First, we consider all
maximal elements wrt. the dependency relation and use that as content for the
new upper theory constructed by vertical split. Second, we consider all minimal
elements and use it as content for the lower theory constructed by vertical split.
These two tactics allow one to incrementally split a theory into layered slices of
the dependency relation.

Tactic for Factorization. This rule requires to find isomorphic subsets in two
different theories to factorize over. The notion of isomorphism between formulas
is very strict, as we only search for renamings. Furthermore, we extended the
isomorphism to the support mapping such that lemmata can only be identified
with isomorphic lemmata which supporting axioms and lemmata are also iso-
morphic wrt. the same renaming. Thus, an axiom can never be factorized with a
lemma and vice-versa. Even with that strict notion, computation of such subsets
is already expensive. If the entire local domain of a given node is isomorphic to
2 http://www.scala-lang.org/.

http://www.scala-lang.org/

164 S. Autexier and D. Hutter

the local domain of the second node, both nodes are factorized according the
definition of the factorization rule. If the identified subset in the first node does
not cover the complete second node, we first try to split the second node to
isolate the subset. To this end we first try to split the second node horizontally
using the identified subset. If that fails, we first try to split vertically using the
subset for the upper part and finally as the lower part. If one of these splittings
was successful, the factorization is applied on the isolated part. Otherwise the
factorization fails.

In addition to these main tactics, we have implemented the tactics to delete
superfluous links as well as deletion of empty nodes which technically corresponds
to vertically merging the empty node with their importing theories.

Automatic Procedure. In order to automate the theory formation process we have
implemented the usual tacticals to describe more complex search behaviors. The
tactic language is defined as follows starting from the basic tactics described
above:

T ::= SplitHorizontal |SplitV erticallyMaximal |SplitV erticallyMinimal
| Factorize |RemoveSuperfluousEmptyTheories
| T ∗ |T + |T ;T |T onfail T

The tactics take as argument a structuring and if they could be applied,
return a new structuring and otherwise fail. The tacticals for as many as possible
iteration (∗), as many as possible but at least one (+) and sequencing (;) are
standard. The tactical onfail executes the second tactic expression only if the
first failed. Using this language we have implemented the following automatic
procedure. The goal of the procedure is starting from an unstructured graph,
i.e. a single theory containing all declarations, axioms and lemmata, to search
for possibilities to factorize common patterns. Factorization is only possible if
at least one application of the horizontal split rule was possible, which in turn
may require the application of a preparatory vertical split. Following that initial
part, we try to split further vertically using the maximal elements of the theory
and finally removing the superfluous links and empty theories. Hence, the initial
phase of the automation consists of

inittac ≡̇ ((SplitV erticallyMinimalEntries+;SplitHorizontally∗)
onfail SplitHorizontally+);
SplitV erticallyMaximalEntries∗;
RemoveSuperfluousEmptyTheories∗

That initialization tactic succeeds only if at least one vertical split or one hori-
zontal split could be done. Following that, we start to factorize. If at least one
factorization was possible, we first clean up the structuring by removing super-
fluous links and empty theories before trying again to split vertically. The overall
tactic is thus

inittac; (Factorize+;RemoveSuperfluousEmptyTheories∗;
SplitV erticallyMinimalEntries∗)∗

Structure Formation in Large Theories 165

Article Axioms Theorems Reduction Timeout
binop_2.top.rated 21 / 19 28 / 28 5% yes
bintree1.top.rated 62 / 61 16 / 16 2% no
cfuncdom.top.rated 25 / 24 40 / 40 2% no
ff_siec.top.rated 52 / 51 32 / 32 2% no
finsub_1.top.rated 38 / 37 16 / 16 2% no
heine.top.rated 96 / 95 13 / 13 1% no
membered.top.rated 17 / 17 36 / 16 38% no
mssubfam.top.rated 84 / 83 55 / 55 1% no
msualg_1.top.rated 49 / 48 13 / 13 2% no
power.top.rated 103 / 102 61 / 61 1% yes
qc_lang1.top.rated 86 / 85 23 / 23 1% no
rsspace.top.rated 46 / 45 20 / 20 2% no
setfam_1.top.rated 51 / 48 44 / 44 4% no

Fig. 4. Factorization results on TSTP versions of the Mizar articles

5 Evaluation

We have applied the factorization procedure presented in the previous section
to TSTP versions of the Mizar library articles www.mizar.org, which have been
created by Joseph Urban and are available at http://www.cs.miami.edu/∼tptp/
MizarTPTP/TPTPArticles/. This is a collection of 922 files in TSTP format
(www.cs.miami.edu/∼tptp/TSTP) where theorems are annotated by informa-
tion which theorems and axioms have been used in their proofs. The files consist
of the axioms and theorems of each article including all directly included articles,
but without transitive expansion of all inclusions. Hence, the knowledge in each
file is already quite tailored to the knowledge necessary to define the additional
mathematical concepts and to enable the proofs of the theorems. We have run
the procedure on all examples with a timeout of 5 min each. The environment
was a virtual machine with 4 virtual CPUs, 16 GB RAM, under openSuSE 12.2
64-bit, running on a host with 2 Intel Xeon Westmere E5620 QuadCore CPUs,
2,4 GHz, 96 GB RAM and VMware ESXi 4.1.

For most articles no factorization has been found. However, there are 13
articles where factorization was possible, which are presented in the table Fig. 4.
The results are summarized in the following format: for each file we indicate
in the Axioms column the number of axioms in the initial development graph
and the final development graph. Analogously, the Theorems column indicates
the number of theorems respectively in the initial and the final development
graph. The Reduction column indicates how much the factorization reduced
the overall number of axioms and theorems. The last column indicates if the
automatic procedure had terminated within the 5 min time frame or timeout
was reached.

www.mizar.org
http://www.cs.miami.edu/~tptp/MizarTPTP/TPTPArticles/
http://www.cs.miami.edu/~tptp/MizarTPTP/TPTPArticles/
www.cs.miami.edu/~tptp/TSTP

166 S. Autexier and D. Hutter

10

11

4

6 8

1

2

7

9

3

5

Fig. 5. Resulting DG

While reducing the number of axioms by factorization
is already interesting in order to reduce the search space
for automatic provers, reducing the number of theorems is
more interesting as it means less theorems to prove. For
all but one file where factorizations have been found, only
axiom factorization have been found. However, in the arti-
cle membered. top.rated obtained from the Mizar arti-
cle [10] “On the Sets Inhabited by Numbers” we could fac-
torize 36 theorems into 16 theorems. On closer inspection
this is not surprising because it concerned theorems about
sets of reals, sets of rationals, sets of integers, sets of nat-
urals and sets of complex numbers, all defined and proved
according to the same schema. The resulting development
graph is shown on the right side of Fig. 4, and the factor
theory containing the 5 theorems, from which all others
are obtained by renaming, is node 9 in gray/orange. The
factorization is visible via the 5 outgoing edges towards
node 11 which are annotated with the respective mor-
phisms (Fig. 5).

6 Related Work and Conclusion

Related to the structuring of theories, there is a large work on anti-unification,
i.e. computing common generalizations of different formuala or theories (e.g.
[2,3,7]). The resulting structuring approach is primarily botton-up and driven
by the pure existence of anti-unifiers. In contrast, our approach is top-down as it
introduces measures for the intended structuring (i.e. semantic appropriateness,
closure and minimality) to guide the formation process. For example, we split
up theories in smaller ones but that are still self-contained in the sense that
each theorem of the original theory can be proven in one of the new (smaller)
ones. Anti-unification is an important technique to test the applicability of the
factorization rule, for instance, but applicability of a rule is not the driving force
of the formation process.

In this paper we were concerned with trying to reveal shared definitions,
axiomatizations and theorems in a given formal theory. Based on structurings
which extend development graphs with notions to exclude redundancies and
include dependency information, we presented a set of rules on structurings. We
implemented the rules with simple heuristics to detect isomorphic subsets which
are sufficient to find simple factorization and applied it to the TSTP formulations
of the Mizar articles. Not surprisingly, not many factorizations could be found,
which is due to Mizar’s non-transitive reuse principle of other articles and the fact
that these were chosen carefully by the authors of the Mizar article. Moreover,
the heuristics to compute isomorphic axioms and theorems was very restricted.
However, a few factorizations could be found, and especially one were the number
of theorems could be halved. This indicates that adding theory morphisms to the

Structure Formation in Large Theories 167

Mizar language may be useful, but that needs to be confirmed by further analysis
of larger subsets. On the other hand the non-transitive import mechanisms of
Mizar already seems to allow for a good organization of the knowledge. That
kind of mechanism is typically not implemented in specification languages, but
exists in development graphs in form of local axiom links.

Future work will consist of analyzing larger subsets of the whole Mizar library,
i.e. sets of Mizar articles, for possible factorizations. We also plan to apply it to
libraries of other proof assistants assuming we can get the dependency informa-
tion which axioms/theorems have been used in which proof. Also other automa-
tion tactics and especially heuristics to identify isomorphic formulas need to
be explored, as well as heuristics to identify subsets for horizontal and vertical
splits. On a more theoretical level, we will investigate how axioms and theorems
could be identified, in order to allow to factorize alternative axiomatizations of
the same theory without losing information, such as, e.g., alternative forms to
axiomatize groups. Finally, the whole system can be applied to any untyped
first-order subset of TPTP theories to search for redundancies. However, the
resulting development graphs cannot be saved as TPTP theories, as it does not
support renaming. Hence, we propose to extend the TPTP language in that
respect.

Proof of Theorem1 (Structure Preservation)

Horizontal Split

It holds trivially that DomD = DomD′ .

– loc′ is surjective because by construction each Ni, i = 1, . . . , k has a local
entity. Furthermore, for each Ni and each e ∈ domNi holds loc′(e) = Ni by
construction. Furthermore, since loc−1(N) = domN , none of the incoming
links into N provided any entity, and consequently none of the incoming links
into N1, . . . , Nk do. Hence, loc′−1(Ni) = domNi , i = 1, 2 and since domN :=
domN1 � . . . � domNk , loc′(e) is unique for e ∈ domN .

– If N is not a top-level node in D, then Dom�D′� = Dom�D� = Σ � Ax �
Lem because the domains of nodes reachable from N are not affected by the
horizontal split. If N is a top-level node, then all Ni with 1 ≤ i ≤ k are
top-level nodes. Since domN = domN1 � . . . � domNk and ImportsD(N) =
ImportsD′(N1) = . . . = ImportsD′(Nk), it holds

DomD(N) = domN ∪ ImportsD(N) = domN1 ∪ . . . domNk ∪ ImportsD(N)
= domN1 ∪ . . . domNk ∪ ImportsD′(N1) ∪ . . . ∪ ImportsD′(Nk)
= domN1 ∪ ImportsD′(N1) ∪ . . . ∪ domNk ∪ ImportsD′(Nk)
= DomD′(N1) ∪ . . . ∪ DomD′(Nk)

Thus, Dom�D′� = Dom�D� = Σ � Ax � Lem.

168 S. Autexier and D. Hutter

– Assume φ ∈ LemD and ψ ∈ Supp(φ). If locD(ψ) �= N and locD(φ) �= N , then
both locD(ψ), locD(φ) are in D′ and we consider p : locD(ψ) ��

σ �� locD(φ). If

N ∈ p then p := [p1, M
θ �� N

τ �� M ′, p2] and by construction the path

[p1, M
θ �� Ni

τ|DomNi�� M ′, p2] are in D′ for 1 ≤ i ≤ k. Since locD(ψ) �= N ,
each τ|DomNi

behaves equivalently on the image of ψ imported in Ni and hence

locD′(ψ) ��
σ′

�� locD′(φ) for some σ′ such that σ′(ψ) = σ(ψ). If N �∈ p, then p

is also a path in D′ and locD′(ψ) ��
σ �� locD′(φ) holds trivially.

If locD(φ) = N then since all Ni are mutually lemma independent, without
loss of generality we can assume φ ∈ axN1 ∪ lemN1 and this loc′

D′(φ) = N1.
If locD(ψ) = N , then ψ′ ∈ axN1 ∪ lemN1 because N1 is lemma independent.

Thus, loc′
D′(ψ) = N1 and loc′

D′(ψ) = N1
��

id �� N1 = loc′
D′(φ) holds trivially.

Otherwise, locD(ψ) = loc′
D′(ψ) and since N was reachable from locD(ψ) by

construction N1 is also reachable from loc′
D′(ψ).

Vertical Split

– First, we have to prove that loc′ is a location mapping. loc′ is surjective
because by construction each node Ni (with i = 1, 2) has some local entity
e ∈ domNi . Thus loc′(e) = Ni and Ni is in the range of loc′. Furthermore,
∀e ∈ domNi . loc′(e) = Ni holds by definition. Finally, let e ∈ DomD′ =
DomD: loc′(e) = Ni implies loc(e) = N and therefore there is no node in

N \ {N} which provides e. Furthermore, since N1
id �� N2 ∈ L′, N1 and N2

cannot provide the same entity e.
– By definition ∀e ∈ domNi implies loc′(e) = Ni for i = 1, 2 in D′. For all

other nodes in D′ \ {N1, N2} the property is inherited by (D, loc,Supp) being
a structuring and loc(e) = loc′(e) if loc(e) �= N .

– Since DomD(N) = DomD′(N2) and N ��
σ �� M ∈ D iff N2

��
σ �� M ∈ D′

Dom�D� = Dom�D′�.
– Suppose φ ∈ LemD, ψ ∈ Supp(φ) with loc(φ) = M and loc(ψ) = M ′. If N �∈

{M,M ′} then loc′(φ) = M , loc′(ψ) = M ′ and M ��
σ �� M ′ in D′ trivially. If

M = N and M ′ �= N then loc′(φ) ∈ {N1, N2}, and again Ni
��

σ �� M ′ in D′.
The case of M �= N and M ′ = N is proven analogously. We are left with the
case of M = M ′ = N .

Since N1 is independent of N2 , it holds that for all φ′ ∈ axN1 ∪
lemN1 . Supp(φ) ∩ (axN2 ∪ lemN2) = ∅.

Thus φ ∈ axN1 ∪ lemN1 implies that ψ ∈ axN1 ∪ lemN1 as well and

N1
��

id �� N1 holds trivially. ��

Factorization

– We have to prove that loc′ is a location mapping. First, we prove that loc′

is surjective. For any node K ∈ N ′ \ {N,N1, . . . Np} loc−1(K) = loc−1(K)

Structure Formation in Large Theories 169

holds. Since sigN ∪ axN �= ∅ but (sigN ∪ axN) ∩ DomD = ∅ it holds that
sigN ∪axN ⊆ loc′−1(N). Furthermore, sigMj ∪axMj ⊆ loc′−1(Nj) since sigMj ∪
axMj ⊆ θj(sigN ∪ axN) and θj(sigN ∪ axN) ∩ (sigN ∪ axN) = ∅.

Second we have to prove ∀K ∈ N ′. ∀e ∈ domK . loc′(e) = K holds. If K �∈
{N,N1, . . . Np} then loc′(e) = loc(e) = K. If K = N then domN ∈ DomD′(N)
and domN �∈ DomD(Ki) for i = 1, . . . , n because domN ∩ DomD = ∅. Thus
∀e ∈ domN . loc′D′(e) = N . Finally, if K = Nj then domNj = lemMj \ θj(lem)
In particular, domNj ∩ DomD′(N) = ∅ implying that loc′D′(e) = Nj for all
e ∈ domNj .

Third, we prove that all e ∈ DomDG′ are provided by a unique node. The
only interesting case is that e is provided by N or some Nj . In case of N both
domN and also entries provided by some link from Ki are by definition not
in DomD and thus not provided by any node already in D but by definition
also not provided by Nj . It remains the case that an entry e is provided by
two nodes Ni and Nj . Since all e ∈ DomDG were provided by a unique node,
this implies that e has to be a mapped lemma of N but that violates the
precondition that each θi has to map e into a different entity.

– Next we prove that D and D′ coincide in the entities they provide at their
maximal nodes. Since N is not a maximal node, it is sufficient to prove that
Nj and Mj coincide in their provided entities:

DomD′(Nj) = lemMj \ θj(lem) ∪
⋃

{σ(DomD′(K)) | K
σ �� Nj}

= lemMj \ θj(lem) ∪
⋃

{σ(DomD′(K)) | K
σ �� Nj, K �= N}

∪ θj(sig) ∪ θj(ax) ∪ θj(lem) ∪
⋃

{σi,j(DomD(Ki,j))|i = 1...n}
= lemMj ∪ sigMj ∪ axMj

∪
⋃

{σ(DomD(K)) | K
σ �� Mj, K �= Ki, σ �= σi,j}

∪
⋃

{σi,j(DomD(Ki,j)) | i = 1...n} ∪ θj(lem)

= DomD(Mj) ∪ θj(lem).

– Suppose φ ∈ LemD′ and ψ ∈ SuppD′(φ). If loc′(φ), loc′(ψ) �∈
{N,N1, . . . Np} then loc′(φ) = loc(φ) and loc′(ψ) = loc(ψ) and therefore,

∃σ. loc(ψ) ��
σ �� loc(φ) with σ(ψ) = ψ in D. Since D′ inherits all links away

from M1, . . . Mp and paths travesing some Ki and Mj can be mapped to paths

traversing Ki, N , and Nj . ∃σ. loc′(ψ) ��
σ �� loc′(φ) with σ(ψ) = ψ also in D′-

Next, let loc′(φ) = Nj : by definition we know that φ ∈ Mj and Supp(φ) ⊆
DomD(Mj). Since DomD(Mj) ⊆ DomD′(Nj) we know that Supp′(φ) =

Supp(φ) ⊆ DomD′(Nj) and thus ∀ψ ∈ Supp′(φ). loc′(ψ) ��
σ �� Nj with

σ(ψ) = ψ. Finally, let loc′(φ) = N . Then SuppN ⊆ Supp′ is a support mapping
for φ in particular.

170 S. Autexier and D. Hutter

Transitive Enrichment

Obviously, the inclusion of the global link does not affect the visibility (e.g.
Dom) of any node in N nor the local entities provided by the individual nodes
(i.e. dom). Hence, all properties of a structuring are trivially forwarded to the
enriched structuring.

Removable Link

– We have to prove that loc is also a location mapping for D′. It holds that
∀N ∈ N . locD(N) = locD′(N) since dom(N) remains unchanged and also
all e ∈ locD(N) that are exclusively provided by some link in D are still
provided exclusively in D′. Thus, loc is also surjective in D′, also ∀N ∈ N .∀e ∈
domN . locD′(e) = locD(e) = N and ∀e ∈ DomD′ . locD′(e) is the only node
providing e.

– D′ and D′ coincide in the entities they provide at their maximal nodes, which
is an immediate consequence of condition (2) of Definition 9.

– Also ∀φ ∈ LemD′ . ∀ψ ∈ Supp(φ). ∃σ. loc(ψ) ��
σ �� loc(φ) ∧ σ(ψ) = ψ is

implied by condition (3) of Definition 9. ��

References

1. Autexier, S., Hutter, D.: Mind the gap - maintaining formal developments in
MAYA. In: Siekmann, J.H. (ed.) LNCS 2605. Springer, Heidelberg (2005)

2. Frisch, A.M., David Page Jr., C.: Generalization with taxonomic information. In:
8th National Conference on Artificial Intelligence, pp. 775–761. AAAI-Press (1990)

3. Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt, S.M.,
Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol.
8543, pp. 267–281. Springer, Heidelberg (2014)

4. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. Assoc. Comput. Mach. 39(221–256), 95–146 (1992). Prede-
cessor in: LNCS 164(221–256) (1984)

5. Hutter, D.: Management of change in verification systems. In: Proceedings 15th
IEEE International Conference on Automated Software Engineering, ASE-2000,
pp. 23–34. IEEE Computer Society (2000)

6. Mossakowski, T., Autexier, S., Hutter, D.: Development graphs - proof manage-
ment for structured specifications. J. Logic Algebr. Program. Special Issue Algebr.
Specif. Dev. Tech. 67(1–2), 114–145 (2006)

7. Normann, I., Kohlhase, M.: Extended formula normalization for ε-retrieval and
sharing of mathematical knowledge. In: Kauers, M., Kerber, M., Miner, R.,
Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573,
pp. 356–370. Springer, Heidelberg (2007)

8. Riazanov, A., Tchaltsev, A.: Reusable TPTP parser in java (2007). http://www.
freewebs.com/andrei ch/TPTP 2007.01.30.tgz

9. Sutcliffe, G.: The TPTP world – infrastructure for automated reasoning. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12. Springer,
Heidelberg (2010)

10. Trybulec, A.: On the sets inhabited by numbers. J. Formaliz. Math. 15 (2003).
http://mizar.uwb.edu.pl/JFM/Vol15/membered.html

http://www.freewebs.com/andrei_ch/TPTP_2007.01.30.tgz
http://www.freewebs.com/andrei_ch/TPTP_2007.01.30.tgz
http://mizar.uwb.edu.pl/JFM/Vol15/membered.html

Formal Logic Definitions for Interchange
Languages

Fulya Horozal(B) and Florian Rabe

Jacobs University Bremen, Bremen, Germany
fulyahorozal@gmail.com

Abstract. System integration often requires standardized interchange
languages, via which systems can exchange mathematical knowledge.
Major examples are the MathML-based markup languages and TPTP.
However, these languages standardize only the syntax of the exchanged
knowledge, which is insufficient when the involved logics are complex
or numerous. Logical frameworks, on the other hand, allow representing
the logics themselves (and are thus aware of the semantics), but they
abstract from the concrete syntax.

Maybe surprisingly, until recently, state-of-the-art logical frameworks
were not quite able to adequately represent logics commonly used in for-
mal systems. Using a recent extension of the logical framework LF, we
show how to give concise formal definitions of the logics used in TPTP.
We can also formally define translations and combinations between the
various TPTP logics. This allows us to build semantics-aware tool sup-
port such as type-checking TPTP content.

While our presentation focuses on the current TPTP logics, our app-
roach can be easily extended to other logics and interchange languages.
In particular, our logic representations can be used with both TPTP
and MathML. Thus, a single definition of the semantics can be used
with either interchange syntax.

1 Introduction

Interchange Languages. System integration is one of the biggest challenges con-
cerning formal systems. One major line of research has been the development of
interchange languages that allow exchanging mathematical knowledge in stan-
dardized formats.

Two languages have been particularly successful: the MathML family (which
we use here to group together MathML [1], OpenMath [4], and OMDoc [13])
developed in the CICM community and the TPTP family [21] developed in the
deduction community.

It may be surprising to some readers that we consider these two families to
be very similar. Indeed, TPTP was originally introduced for benchmark prob-
lems for first-order logic (FOL) provers, whereas MathML is meant to support
all mathematical content. But TPTP syntax is becoming more and more expres-
sive, including typing [22], higher-order logic (HOL), [2], polymorphism [3] and
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 171–186, 2015.
DOI: 10.1007/978-3-319-20615-8 11

172 F. Horozal and F. Rabe

arithmetic [22]. As a consequence, the two languages share a central property:
Both are primarily defined by an extremely expressive context-free grammar
and use only informal descriptions of the fragment of well-formed, meaningful
content. MathML is broader, allowing users to define and document well-formed
fragments in content dictionaries. TPTP is deeper, slowly specifying individual
fragments in an ongoing series of papers (which is barely keeping up with user
demand for specifying more expressive languages – the most recent extension
proposal [15] appears in the same volume as our present paper). But in both
cases, a formal description (e.g., with a context-sensitive inference system) is
lacking.

Maybe provocatively, we can say that both MathML and TPTP standardize
the syntax but not the semantics. Because successful system integration usually
requires a common understanding of the semantics, and because the number and
complexity of formal systems is growing, this is becoming an important issue for
interface languages.

Moreover, it is not always obvious what the relations are between the var-
ious well-formed fragments used in different applications. For example, there
are intuitive sublanguage relations between TPTP’s untyped FOL, typed FOL,
and HOL. But these can be difficult to specify precisely, e.g., when the larger
language introduces new concepts and then recovers the smaller language as a
special case. Moreover, it is desirable to specify language fragments modularly so
that they can be combined flexibly. For example, arithmetic should be combin-
able with any typed logic, and the extension of FOL with polymorphism should
be consistent with a future extension of higher-order logic with polymorphism.

Logical Frameworks. Logical frameworks [17] such as Twelf [18] or Isabelle [16],
in some sense, suffer from the opposite problem: They allow very concise def-
initions of the well-formed fragments (often with tool-support to decide which
expressions are meaningful) but have little-to-no bearing on the actual syntax
used in communication between systems. In fact, logics specifications in logical
frameworks tend to be idealized and not in sync with those implicitly used in
the above interchange languages.

Moreover, state-of-the-art logical frameworks are surprisingly unable to fully
specify standard logics: They allow specifying the well-formed objects but not
the well-formed theories. For example, it is not possible to specify in LF that
a first-order theory should not declare higher-order function symbols. Similarly,
Isabelle cannot specify the shape of HOL type definitions. This problem was
remedied recently in [10], which develops a logical framework that extends LF
with declaration patterns [11], which specify the shape of declarations in well-
formed theories.

Contribution. We apply the framework of [10] to give concise, fully formal,
human- and machine-readable specifications of a set of logics commonly used
with interchange languages. We focus on the logics in the TPTP family, whose
practical value is well-documented, but our approach is applicable to most other

Formal Logic Definitions for Interchange Languages 173

logics. Because our specifications are modular, we can combine features con-
veniently. We demonstrate this by defining TPTP’s polymorphic HOL (which
has not been described previously) by taking a pushout of HOL and polymor-
phic FOL.

Our specifications are tightly integrated with both TPTP and MathML.
Firstly, the framework’s syntax can match the TPTP syntax almost exactly
(the necessary minor transformation is maintained by Geoff Sutcliffe and the
second author). In fact, our specifications have quasi-official status because they
are now used by Sutcliffe to type-check the TPTP library. Secondly, the logical
framework we use is implemented within Mmt [20]. Thus, our specifications dou-
ble as content dictionaries (which Mmt internally maintains in OMDoc syntax),
which Mmt uses to check MathML content.

Thus MathML and TPTP become alternative concrete encodings, and a sin-
gle logic specification defines well-formed MathML and TPTP content at the
same time.

Overview. We summarize the logical framework we use in Sect. 2. Then we spec-
ify the logics and their relations in Sects. 3 and 4, respectively. We describe
implementation aspects in Sect. 5 and conclude in Sect. 6.

2 The Logical Framework

Technically, our logical framework arises in a rather complex way using four
different features: We use (i) the foundation-independent module system Mmt
[20] (ii) extended with the declaration patterns of [10] and (iii) instantiated with
a version of LF [8] with (iv) sequences [10,12]. We will refer to the resulting
framework as LFS. Below we give the fragment of LFS that is sufficient for our
purposes as a self-contained grammar in Fig. 1:

Modules M ::= theory T = {Σ} | view v : T1 → T2 = {σ}
Theories Σ ::= c : E | include T | pattern p = P

Views σ ::= c := E | include v | pattern p := P

Expressions E ::= c | x | {x : E} E | [x : E] E | E E

| · | E, E | [E]Ei=1 | EE | nat | 0 | succ(E) | typeE
Patterns P ::= p | {Σ} | [x : E] P | P E

Fig. 1. Grammar

Module System. Modules are the toplevel declarations. Their semantics is
defined in terms of the category of MMT theories and theory morphisms. We
call the latter views.

A non-modular theory Σ declares a list of typed constants c. Correspondingly,
views from a theory T1 to a theory T2 consist of assignments c := E, which

174 F. Horozal and F. Rabe

map T1-constants to T2-expressions. Views extends homomorphically to a (type-
preserving) map of T1-expressions to T2-expressions.

To this, the module system adds the ability for theories and views to include
other theories and views, respectively.

LF. Expressions are formed from constants c, bound variables x, dependent
function types (Π-types) {x : E}E, λ-abstraction [x : E]E, and application
E E. As usual, we write E1 → E2 instead of {x : E1}E2 if x does not occur
in E2.

As an example, consider the following
declarations of the theory Forms, which we
will use for our representations in Sect. 3.
It declares an LF-type $o of propositions
and an $o-indexed type family �. This type
family exemplifies how logic encodings in
LF follow the Curry-Howard correspondence
to represent judgments as types and proofs
as terms: Terms of type � F represent
derivations of the judgment “F is true”. Fur-
thermore, Forms declares all propositional
connectives, among which we give & as an example. It also has one declaration
pattern axiom, which we explain below.

Declaration Patterns. Declaration patterns formalize the shape of well-
formed theories of a logic L: In a well-formed L-theory, each declaration must
match one of the L-patterns. For example, in a well-formed first-order theory,
each symbol declaration must match one of these patterns: (i) n-ary first-order
function symbols, (ii) n-ary first-order predicates symbols and (iii) axioms.

But in LF, nothing stops users from writing theories that contain non-first-
order declarations such as f : ($i → $i) → $i or g : $o → $i (where $i
is the LF-type of first-order terms). These are still well-typed in LF even in
the context of first-order logic. But in LFS, we can formalize the above three
declaration patterns, and LFS will reject declarations that do not match one of
the patterns.

Declaration patterns P are formed from pattern constants p, theories {Σ}, λ-
abstractions [x : E] P , and applications of patterns P to expressions E. Further
details on declaration patterns are given in [10].

Example 1. The declaration pattern axiom in Forms formalizes the shape of
axiom declarations. These must be of the form m : � F for some proposition F ,
which matches the declaration pattern axiom F .

Adequacy. Representations of logics in LF are well-known to be adequate.
However, technically, that is only true for the representation of expressions.
Representations in LF are not actually adequate with respect to theories because
the LF type theory cannot rule out declarations that do not match a pattern. The

Formal Logic Definitions for Interchange Languages 175

declaration patterns of LFS are exactly what is needed to obtain an adequate
representation of the theories of a logic.

Moreover, for all logics L we consider, all well-formed L-theories in LFS
simplify to theories in the LF fragment of LFS. Therefore, we can inherit the
adequacy for expressions from LF.

Sequences. Even though most logics do not use sequences, it turns out that
sequences are usually necessary to write down declaration patterns. For example,
in theories of typed first-order logic, function symbol declarations use a sequence
of types – the argument types of the function symbol. Therefore, our language
also uses expression sequences and natural numbers. These are formed by the
underlined productions for expressions:
– for the empty sequence,
– E1, E2 for the concatenation of two sequences,
– En for the n-th element of E,
– [E(x)]nx=1 for the sequence E(1), . . . , E(n) where n has type nat and E(x)

denotes an expression E with a free variable x : nat; we write this sequence
as En if x does not occur free in E,

– nat for the type of natural numbers,
– 0 and succ(n) for zero and the successor of a given natural number n,
– typen for the kind of a sequence expression of length n.

We avoid giving the type system for this extension of LF and refer to [10] for
the details. Intuitively, natural numbers and sequences occur only in pattern
expressions, and fully applied closed pattern expressions normalize to expressions
of the form {Σ} where Σ is an LF theory. We will give examples below when
we introduce specific declaration patterns.

A powerful feature of our sequences is that we can elegantly extend the
primitives of LF to flexary operators. In particular, for a sequence A of types
that normalizes to A1, . . . , An and for a type B, the type A → B normalizes
to A1 → . . . → An → B. Correspondingly, for a function f of that type and
a sequence E that normalizes to E1, . . . , En, the expression f E normalizes to
(. . . (f E1) . . . En).

Finally, we also extend views from T1 to T2 to map pattern constants to
pattern expressions. The semantics of such a view is a functor mapping well-
formed T1-theories to well-formed T2-theories. We will give examples when we
introduce specific views.

3 Representing Logics

In this section, we represent the TPTP languages in our logical framework.
Specifically, we present the untyped first-order (FOF), the typed first-order
(TF0) and its extension with arithmetic (TFA), the polymorphic first-order
(TF1) and the typed higher-order (TH0) languages of TPTP.

Our representations form a diagram of LFS-theories as shown in Fig. 2, where
↪→ denotes inclusion. Where compatible with Twelf’s concrete syntax, we will
use the same symbol names as TPTP.

176 F. Horozal and F. Rabe

FOF

Forms Types

TF

TH0TF0 TF1

TFA

Fig. 2. TPTP logics

Untyped First-Order Language. The the-
ory FOF is given on the right. It includes
the auxiliary theory Forms from Sect. 2 and
adds the LFS-type $i : type for the universe
of first-order individuals. Moreover, it declares
the first-order universal (!) and existential (?)
quantifiers using higher-order abstract syntax,
and the binary predicate symbol == for equal-
ity of individuals.

FOF contains two declaration patterns,
fun and pred. These allow n-ary function and
predicate symbols in FOF -theories, respec-
tively. Recall that here $in abbreviates the
sequence $i, . . . , $i of length n and that
($i, . . . , $i) → $i normalizes to $i → . . . →
$i → $i. This includes the case n = 0 of constant declarations. FOF addition-
ally has the declaration pattern axiom, which is inherited from Forms.

Typed First-Order Languages. To max-
imize reuse, we use two additional auxil-
iary LFS-theories, Types and TF , which
contain the respective shared components of
the typed first-order languages of TPTP.

Types is a base theory for all the typed
TPTP languages. It declares an LFS-type
$tType that represents the universe of all TPTP types. It also declares a distin-
guished base type $i : $tType. We also use an LFS-type family $tm, which is
an artifact of our Church-style, intrinsically typed representation and does not
have an analog in TPTP. $tm assigns to each TPTP-type A an LFS-type $tmA
which contains the TPTP-terms of A. For example, the TPTP-terms of type $i
are represented as LFS-terms of LFS-type $tm $i.

Formal Logic Definitions for Interchange Languages 177

TF contains all the shared components
of TF0 and TF1 . Besides typing and propo-
sitions, which are included from Types and
Forms, respectively, it declares the logical
symbols that are polymorphic over all TPTP
types. These are the typed quantifiers ! (uni-
versal) and ? (existential) and typed equal-
ity ==. These cannot be declared in Forms,
because they take a type argument A : $tType. Note that here we make A an
implicit argument in the style of Twelf that is automatically inferred from the
context.

We extend TF to obtain the languages TF0 and TF1 . TF already declares
all logical symbols of TF0 so that we only have to add the three declaration
patterns:

theory TF0 = {
include TF
pattern baseType = {

t : $tType
}
pattern typedFun = [n : nat] [A : $tTypen] [B : $tType] {

f : [$tmAi]ni=1 → $tmB
}
pattern typedPred = [n : nat] [A : $tTypen] {

p : [$tmAi]ni=1 → $o
}

}
These patterns specify the form of the declarations of non-logical symbols

that are allowed in TF0 -theories:

– baseType allows the declaration of TF0 -types t,
– typedFun allows the declaration of typed function symbols f that take argu-

ments of TF0 -type A1, . . . , An and return an expression of type B,
– typedPred allows the declaration of typed predicate symbols p with arguments

of TF0 -types A1, . . . , An.

Note that our representation of TF0 uses an LFS-type $o : type in order to
distinguish formulas from terms. This is different from the description in [22],
where a TPTP-type $o : $tType is used. Our representation has the advantage
that we do not need case distinctions in order to avoid $o as an argument of a
function or predicate symbol or of a quantifier.

Example 2 (TF0-Theories). Assume that a base type nat : $tType has already
been declared (using the pattern baseType). Then the declaration of a
binary function symbol on nat matches the pattern expression typed
Fun 2 (nat, nat)nat. The latter β-reduces to {f : [$tm (nat ,nat)i]2i=1 →
$tmnat}, which can be simplified to {f :

(
$tm (nat ,nat)1, $tm (nat ,nat)2

) →
$tmnat} and eventually normalizes to {f : $tmnat → $tmnat → $tmnat}.

178 F. Horozal and F. Rabe

Interestingly, the logical symbols of TF1 are almost the same as those of TF0 .
It only adds the universal (!◦) and existential (?◦) quantifiers over types. In
the TPTP syntax, these are identified with ! and ?, but in LFS their types are
different so that they must be distinguished.

The crucial difference between the representations of TF0 and TF1 is in the
legal declarations: TF1 -theories may declare n-ary type operators and polymor-
phic function and predicate symbols. This shows the importance of declaration
patterns in our framework as this difference could not be captured in LF.

theory TF1 = {
include TF
!◦ : ($tType → $o) → $o
?◦ : ($tType → $o) → $o

pattern typeOp = [n : nat] {
t : $tTypen → $tType

}
pattern polyFun = [m : nat] [n : nat] [A : ($tTypem → $tType)n]

[B : $tTypem → $tType] {
f : {a : $tTypem} [$tm (Ai a)]ni=1 → $tm (B a)

}
pattern polyPred = [m : nat] [n : nat] [A : ($tTypem → $tType)n] {

p : {a : $tTypem} [$tm (Ai a)]ni=1 → $o
}

}
The pattern typeOp in TF1 describes type operators t of arity n.

polyFun describes polymorphic function symbols f , which take m type
arguments a1, . . . , am and then n term arguments of types A1(a1, . . . , am), . . . ,
An(a1, . . . , am) and return an expression of type B(a1, . . . , am). Note that we
use higher-order abstract syntax in the style of LF to represent expressions
of type A : $tType with m free variables of type $tType as terms of type
$tTypem → $tType.

Finally, polyPred describes polymorphic predicate symbols p, which
take m type arguments a1, . . . , am and then n term arguments of types
A1(a1, . . . , am), . . . , An(a1, . . . , am).

Note that via the inclusion of TF , TF1 inherits the declaration pattern
axiom of Forms that allows axioms of LFS-type � F for some TF1 -formula F .

Example 3 (TF1-Theories). Consider a unary type operator list has already
been declared (using the pattern expression typeOp 1). Then the declaration of
the cons operation on lists matches the pattern expression

polyFun 1 2
(
([a : $tType1]a), ([a : $tType1]list a)

)
([a : $tType1]list a)

which normalizes to {f : {a : $tType} a → list a → list a}.

Formal Logic Definitions for Interchange Languages 179

Higher-Order Language. TH0 is based on the one in [2]. Like TF0 and TF1 ,
it is based on the theory Types. It adds the logical symbols > for function type
formation, ˆ for λ-abstraction, and @ for application. As usual, we will write >
and @ as right and left-associative infix operators, respectively.

TH0 is not based on the theory Forms, which introduced the LFS-type
$o : type of formulas. Instead, it treats formulas as terms using a TPTP type
$o : $tType. Consequently, the logical connectives and quantifiers and the truth
judgment are declared based on $o. Here we give only some example declarations.

Finally, TH0 uses three declara-
tion patterns:

– baseType allows the declaration of
TH0 -base types t,

– typedCon allows the declaration
of typed constants c of type A for
some TH0 -type A,

– axiom allows the declaration
of axioms F for some TH0 -
formula F .

Using the declaration patterns in
TH0 , we are able to define the theo-
ries of TH0 precisely. This is impor-
tant because a number of different
definitions are plausible. For exam-
ple, the original higher-order logic of
[5] arises if we drop the declaration
pattern baseType. Another option is
to use the pattern

pattern neBaseType = {t : $tType, noempty :� ? @ (̂ [x : $tm t] $true)}

so that every base type t is nonempty. Type definitions in the style of [7] can be
obtained similarly.

Arithmetic. To add arithmetic as described in [22], we extend TF0 with arith-
metic operations in the theory TFA below. We only give a representative frag-
ment of the encoding. Arithmetic domains are added as elements of the type
$adom, and $atype includes the arithmetic domains into the universe $tType of
types. This indirection is useful to quantify over exactly the arithmetic domains:
It permits declaring the polymorphic operations $sum, $less, etc. for an arbi-
trary arithmetic domain D.

180 F. Horozal and F. Rabe

theory TFA = {
include TF0
$adom : type
$atype : $adom → $tType
$int : $adom
$rat : $adom
$real : $adom
$sum : $tm ($atypeD) → $tm ($atypeD) → $tm ($atypeD)
$less : $tm ($atypeD) → $tm ($atypeD) → $o
...

}

Other Syntactic Features. There is a variety of further syntactic variants,
which can be seen as orthogonal features that can be added to a logic on demand.
These include product types, choice operators, conditional terms, let-expressions,
etc. We separate these into individual modules to gain fine-grained control over
the strength of a logic. Akin to [6], we call this the little logics approach.

Semantic Variants. The above has specified well-formed formulas. But we
can also specify the valid formulas by formalizing appropriate calculi. For each
logical operator, we formalize natural deduction proof rules. These rules are
straightforward, and we refer to our formalizations in [14].

We explicitly mention only some axioms, which are important because they
distinguish semantic variants of the same syntax. As a guiding principle, we make
the base calculi as weak as possible and define axioms in separate modules, which
can be included on demand.

For first-order logics, only one semantic variant
is of major importance: the one between classical
and intuitionistic logic. Therefore, we use the mod-
ule on the right for the axiom of excluded middle.

The situation is more complicated for higher-
order logic. The theory MinHOL defines the minimal proof theory of HOL
using only (i) β-conversion for λ-abstraction and (ii) congruence rules for equal-
ity. All further rules are added in separate modules that extend MinHOL as
introduced in Fig. 3: PropExt (propositional extensionality) identifies equality
on booleans with logical equivalence. Xi provides the ξ-rule, a weak form of func-
tional extensionality that can also be seen as a congruence rule for λ-abstraction.
Eta provides η-conversion. FuncExt and BoolExt are functional and boolean
extensionality. ExclMidHOL states excluded middle. NonEmptyTypes makes
all types non-empty.

By combining these and if necessary other extensions of MinHOL, we obtain
the various incarnations of higher-order logics. Of particular importance is the
logic BaseHOL, which combines MinHOL, Xi, and PropExt: It is the weakest

Formal Logic Definitions for Interchange Languages 181

Theory Added axioms/rules

PropExt (� F → � G) → (� G → � F) → � F == G
Xi {x : $tmA} � (S x) == (T x)

) → � ˆ[x] (S x) == ˆ[x] (T x)
FuncExt {x : $tmA} � (S @ x) == (T @ x)

) → � S == T
Eta � ˆ[x] (F @ x) == F
BaseHOL PropExt , Xi
BoolExt BaseHOL, � F $true → � F $false → � ! @ F
ExclMidHOL BaseHOL, � | @ F@ (∼ @ F)
NonEmptyTypes BaseHOL, � ? @ (̂ [x : $tmA] $true)

Fig. 3. Modules extending MinHOL

reasonable variant of HOL that is strong enough to define all first-order connec-
tives and quantifiers and their (intuitionistic) natural deduction rules. We use
it as a base logic for all BoolExt, ExclMidHOL, and NonEmptyTypes, which
can only be formulated in the presence of some logical connectives.

Note that Eta and FuncExt are equivalent, and so are BoolExt and Excl
MidHOL. These relations can be formalized concisely as views between the
respective signatures; these are given in [14].

4 Translating and Combining Logics

We will now relate the logics from the previous section to each other using
views and combine them to create a new logic TH1 (polymorphic higher-order
logic), resulting in the diagram in Fig. 4. Because each view induces a theory

FOF TF0 TH0

TF1 TH1

f2t t2h

t2p
p2ph

h2ph

FOF TF0 TH0

TF1 TH1

f2t t2h

t2p
p2ph

h2ph

Fig. 4. Translating TPTP logics

translation functor, this permits moving
theories between the TPTP logics. We
will focus on the most important views
representing sublanguage relations; there
are also (possibly partial) translations in
the opposite directions, but they are sub-
stantially more complicated to formalize.

Notably, users working with imple-
mentations of higher-order logic have
already started using ad hoc variants of
TH1 (independent of our work) in expectation of an eventual adoption as an
official TPTP logic. This shows that our work offers an efficient way for TPTP
to keep up with the growing demand for reference definitions of logics.

Translating Logics. The view f2t from FOF to TF0 is given below. Since
FOF and TF0 share the theory Forms, the view implicitly includes the identity
translation of Forms.

182 F. Horozal and F. Rabe

The main characteristic of the
translation is that the individ-
uals of FOF are interpreted as
the individuals of TF0 of the dis-
tinguished base type $i. This is
expressed as an assignment of the
type $i of FOF -individuals to
the type $tm $i in TF0 . Corre-
spondingly, FOF -quantifiers and
equality are interpreted as the TF0 -quantifiers and equality on the type $tm $i.
Therefore, we map, for instance, ! to the expression [f] ! [x : $tm $i](f x) that
takes a TF0 -formula f with a free variable x : $tm $i and returns the universally
quantified TF0 -formula ! [x : $tm $i](f x).

For each FOF -pattern p, the pattern translation maps every FOF declara-
tion that matches p to a TF0 declaration. This is defined by two assignments to
the FOF -patterns fun and pred. For instance, fun is mapped to the pattern
expression [n : nat]{f : ($tm $i)n → $tm $i} so that every n-ary FOF -function
symbol declaration is translated to the TF0 -declaration of an n-ary function on
$tm $i.

Note that our framework enforces that all views preserve typing. For example,
the FOF -symbol ==: $i → $i → $o must be mapped to a TF0 -expression
of type $tm $i → $tm $i → $o. Similarly, the FOF -pattern fun, which takes
a natural number and returns a theory, must be mapped to a TF0 -pattern
expression, which takes a natural number and returns a theory.

We give the view t2p from TF0 to TF1 below. Since TF0 and TF1 share
TF and TF0 only adds declaration patterns, the view only consists of declaration
pattern assignments.

view t2p : TF0 → TF1 = {
baseType := typeOp 0
typedFun := [n : nat] [A : $tTypen] [B : $tType] polyFun 0nAB
typedPred := [n : nat] [A : $tTypen] polyPred 0nA

}
Every TF0 -type is interpreted as a nullary type operator in TF1 . This is

given as an assignment of the pattern baseType of TF0 to the pattern typeOp
supplied with 0 as the argument for the number of type arguments. Note that
β-reducing typeOp 0 results in the pattern expression {t : $tType0 → $tType},
where $tType0 normalizes to the empty sequence so that the whole type nor-
malizes to $tType.

Every n-ary typed function symbol of TF0 is interpreted as an n-ary poly-
morphic function symbol that does not take type arguments. This is given as an
assignment from the pattern typedFun to the pattern expression [n : nat][A :
$tTypen][B : $tType]polyFun 0nAB, which takes the arity n of the function
symbol, the sequence A of argument types, and the return type B and returns
the corresponding monomorphic TF1 -declaration. Note that after η-contraction,

Formal Logic Definitions for Interchange Languages 183

this pattern expression is equal to polyPred 0. The pattern typedPred is trans-
lated accordingly.

Example 4 (Translating Theories). Consider a TF0 -theory T containing the two
declarations from Example 2. Applying the view t2p to it yields a TF1 -theory
T ′. Due to the assignment to baesType, t2p translates the T -type nat to a T ′-
type of the same name. Due to the assignment to typedFun, t2p translates the
pattern expression typedFun 2 (nat, nat)nat to

(
[n : nat][A : $tTypen][B : $tType]polyFun 0nAB

)
2 (nat ,nat)nat

which simplifies to {f : {x : type0} $tmnat → $tmnat → $tmnat}. Here
$tType0 normalizes to the empty sequence of types so that the binding {x :
type0} binds no variables and disappears, yielding the expected declaration.

The view t2h from TF0 to TH0 interprets the TF0 type $o : type in
terms of the TH0 constant $o : $tType and translates the connectives to their
higher-order analogues. Function and predicate symbols declared in terms of →
over TF0 are translated to the respective declarations in terms of > over TH0 .
The translation of axioms is straightforward.

view t2h : TF0 → TH0 = {
$o := $tm $o
� := [F : $tm $o] � F
& := [A : $tm $o] [B : $tm $o] & @A@B
! := [f : $tm $i → $tm $o] ! @ (̂ f)
...
typedFun := [n : nat] [A : $tTypen] [B : $tType]

{
f ′ : $tm (A >∗ B)

}

typedPred := [n : nat] [A : $tTypen]
{
p′ : $tm (A >∗ $o)

}

axiom := [F : $tm $o] axiom F
}
Note that >∗ : $tTypen → $tType → type is the flexary operator derived

from > (in LFS, the flexary version of a binary operator is definable, see [12]).

TF0 TH0

TFA THA

t2h

Fig. 5. TPTP logics with
arithmetic

Combining Logics. A particular strength of a logi-
cal framework like ours is the ability to combine logics
using colimits as studied in [9]. In the simplest case,
this is just taking the union of two logics. More gener-
ally, we can use pushouts in the category of theories.
We will give two interesting examples how our frame-
work guides the design of new TPTP logics.

Firstly, we obtain THA, the extension of TH0 with
arithmetic, by applying the theory translation functor
induced by the view t2h. It maps the TF0 -theory TFA
to the corresponding TH0 -theory. This construction is obtained automatically
from our framework and results in the commuting diagram in Fig. 5.

Secondly, we combine TF1 and TH0 into a new logic: polymorphic higher-
order logic TH1 . This construction uses the commuting diagram in Fig. 6.

184 F. Horozal and F. Rabe

TF0 TH0

TF1 TH1

t2h

t2p

p2ph

h2ph

Fig. 6. Constructing TH1

If we ignore the patterns and consider only
the underlying LF-theories, this diagram is
obtained automatically as a pushout. However,
we have to add the patterns of TH1 – which
merge the patterns of TH1 and TH0 in a non-
trivial way – manually. The relevant fragments
of the LFS-theory for TH1 is given below where
TH0′ represents TH0 without its patterns. We
omit the straightforward views p2ph and h2ph.

theory TH1 = {
include TH0 ′

!◦ : ($tType → $tm $o) → $tm $o
?◦ : ($tType → $tm $o) → $tm $o

pattern typeOp = [n : nat] {
t : $tTypen → $tType

}
pattern typedPolyCon = [m : nat] [A : $tTypem → $tType] {

c : {a : $tTypem} $tm (Aa)
}

}

5 Practical Aspects

Processing Content. Declaration patterns are implemented as a part of Mmt
[19]. Our specifications are written in Mmt instantiated with LF and sequences.
Mmt can check the logic specifications and generates content dictionaries (in
the form of OMDoc theories) from them. As the namespaces for these content
dictionaries, we use URIs derived from http://www.tptp.org/.

If theories or objects of these logics are given in OMDoc/MathML syntax,
they can be read and type-checked natively by Mmt.

If theories or objects are given in TPTP syntax, we use the fact that Mmt
is closely integrated with the Twelf tool [18]. In particular, we obtain a Twelf
signature for our logics. The TPTP distribution includes a converter from TPTP
to Twelf syntax, and Sutcliffe uses Twelf to type-check TPTP content relative
to this signature. (This works even though Twelf only supports LF and not
sequences because sequences never occur in TPTP theories, only in the logic
specifications.) Twelf in turn can export its input as OMDoc, which can be used
for further processing by Mmt or other tools. Twelf can also act as a reference
proof checker if systems produce proofs.

Logic Ascription in TPTP Content. Mmt and OMDoc require content to ref-
erence the logic it is written in, but TPTP does not. Indeed, users can mix and
match language features in the same TPTP file. Therefore, the above-mentioned

http://www.tptp.org/

Formal Logic Definitions for Interchange Languages 185

converter actually translates all content into the largest logic, i.e., polymorphic
HOL with arithmetic.

We propose adding a value to the header of a TPTP theory, which is a list of
strings and defines the target logic to be used during type checking. The meaning
of the value L1 . . . Ln would be that the theory is formed over the union of the
logics L1, . . . , Ln. Incidentally, it could be used by problem authors and system
implementers to determine whether an ATP system is applicable to a specific
problem. For example, this information could be included in the value of the
existing SPC header field.

Our proposal is also the best solution to the problem of semantic variants:
The status of a problem (i.e., whether it is a theorem) may depend on the
chosen logic. So far, TPTP has side-stepped this issue because it mostly occurred
in the form of intuitionistic vs. classical FOL. (The official TPTP policy is that
intuitionistic provers are welcome but incomplete.) But with higher-order provers
becoming more sophisticated, it is likely to become necessary to record which
logic a problem is supposedly provable in.

6 Conclusion

We observed that interchange languages commonly used for system integration –
like MathML or TPTP – focus on standardizing the context-free syntax. But
they do not formalize the context-sensitive language fragments corresponding to
the well-formed expressions of individual logics. By formalizing these logics in a
logical framework, it becomes possible to concisely specify these fragments.

We systematically applied this approach to obtain a suite of formal specifi-
cations of logics commonly used in formal systems. We focused on the TPTP
logics, the quasi standard for automated deduction systems, but further logics
can be defined easily, possibly reusing existing ones. We applied this modular
design to obtain a new TPTP-style logic for polymorphic higher-order logic.

Our specifications are both human- and machine-readable. And they are
tightly integrated with the concrete syntax and tool support of the MathML
and TPTP interchange languages, inducing type checkers and serving as con-
tent dictionaries. Therefore, we propose them as reference definitions of these
logics. In fact, TPTP has effectively adopted our proposal already by using our
specifications for type-checking.

References

1. Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A.,
Froumentin, M., Hunter, R., Ion, P., Kohlhase, M., Miner, R., Poppelier, N., Smith,
B., Soiffer, N., Sutor, R., Watt, S.: Mathematical Markup Language (MathML)
Version 2.0 (2nd edn.) (2003). See http://www.w3.org/TR/MathML2

2. Benzmüller, C.E., Rabe, F., Sutcliffe, G.: THF0 – the core of the TPTP language
for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)

http://www.w3.org/TR/MathML2

186 F. Horozal and F. Rabe

3. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-
1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 414–
420. Springer, Heidelberg (2013)

4. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.:
The Open Math Standard, Version 2.0. Technical report, The Open Math Society
(2004). See http://www.openmath.org/standard/om20

5. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1),
56–68 (1940)

6. Farmer, W., Guttman, J., Thayer, F.: Little theories. In: Kapur, D. (ed.) Confer-
ence on Automated Deduction, pp. 467–581. Saratoga Spings, NY (1992)

7. Gordon, M., Pitts, A.: The HOL logic. In: Gordon, M., Melham, T. (eds.) Intro-
duction to HOL, Part III, pp. 191–232. Cambridge University Press, New York
(1993)

8. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc.
Comput. Mach. 40(1), 143–184 (1993)

9. Harper, R., Sannella, D., Tarlecki, A.: Structured presentations and logic repre-
sentations. Ann. Pure Appl. Logic 67, 113–160 (1994)

10. Horozal, F.: A Framework for Defining Declarative Languages. Ph.D. thesis. Jacobs
University Bremen (2014)

11. Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM formats at the statement
level. In: Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel,
M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 65–80. Springer, Heidelberg
(2012)

12. Horozal, F., Rabe, F., Kohlhase, M.: Flexary operators for formalized mathematics.
In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM
2014. LNCS, vol. 8543, pp. 312–327. Springer, Heidelberg (2014)

13. Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Docu-
ments (Version 1.2). Lecture Notes in Artificial Intelligence, vol. 4180. Springer
Heidelberg (2006)

14. Kohlhase, M., Mossakowski, T., Rabe, F.: The LATIN Project (2009). see https://
trac.omdoc.org/LATIN/

15. Kotelnikov, E., Kovacs, L., Voronkov, A.: A first class boolean sort in first-order
theorem proving and TPTP. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F.,
Sorge, V. (eds.) Intelligent Computer Mathematics. Springer, Stockholm (2015)

16. Paulson, L.: Isabelle: A Generic Theorem Prover. Lecture Notes in Computer Sci-
ence, vol. 828. Springer, Heidelberg (1994)

17. Pfenning, F.: Logical frameworks. In: Robinson, J., Voronkov, A. (eds.) Handbook
of Automated Reasoning, pp. 1063–1147. Elsevier, The Netherlands (2001)

18. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol.
1632, pp. 202–206. Springer, Heidelberg (1999)

19. Rabe, F.: The MMT API: a generic MKM system. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp.
339–343. Springer, Heidelberg (2013)

20. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54
(2013)

21. Sutcliffe, G.: The TPTP problem library and associated infrastructure. The FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

22. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-
order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012)

http://www.openmath.org/standard/om20
https://trac.omdoc.org/LATIN/
https://trac.omdoc.org/LATIN/

Math Literate Knowledge Management
via Induced Material

Mihnea Iancu(B) and Michael Kohlhase

Computer Science, Jacobs University, Bremen, Germany
{m.iancu,m.kohlhase}@jacobs-university.de

Abstract. Mathematicians integrate acquired knowledge into a mental
model. For trained mathematicians, the mental model seems to include
not just the bare facts, but various induced forms of knowledge, and the
amount of this and the ability to perform all reasoning and knowledge
operations taking that into account can be seen as a measure of math-
ematical training and literacy. Current MKM systems only act on the
bare facts given to them; we contend that they – their users actually –
would profit from a good dose of mathematical literacy so that they
can better complement the abilities of human mathematicians and thus
enhance their productivity.

In this paper we discuss how we can model induced knowledge natu-
rally in highly modular, theory-graph based, mathematical libraries and
establish how to access it to make it available for applications, creating
a form of mathematical literacy. We show two examples of math-literate
MKM systems – searching for induced statements and accessing a knowl-
edge via induced theories – to show the utility of the approach.

1 Introduction

There is an interesting duality between the forms and extents of mathemat-
ical knowledge that is verbally expressed (published in articles, scribbled on
blackboards, or presented in talks/discussions) and the forms that are needed
to successfully extend mathematical knowledge and/or apply it. To “do mathe-
matics”, we need to extract the relevant knowledge structures from documents
and reconcile them with the context of our existing knowledge – recognizing
parts as already known and identifying those that are new to us. In this process
we may abstract from syntactic differences, chain together known and acquired
facts, and even employ interpretations via non-trivial mappings as long as they
are meaning-preserving. We will call the ability to do all of this relatively effort-
lessly mathematical literacy as it is a prerequisite for doing mathematics
effectively. Mathematical literacy is a distinguishing characteristic of a trained
mathematician.

Current MKM systems are essentially illiterate mathematically as they only
act on the bare facts given to them; this may be one of the reasons why they are
not routinely used to support mathematics: mathematicians expect math literacy
in their discussion partners. For a query of “binomial coefficient” a math-literate
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 187–202, 2015.
DOI: 10.1007/978-3-319-20615-8 12

188 M. Iancu and M. Kohlhase

search engine would also find formulae of the form
(
3
5!

)
and C(n, k), instances of

the formula n!
(n−k)! , and even “choice without repetition” or “Pascal’s triangle”.

A math-literate proof checker would try to recognize an idempotent monoid
as Abelian and extend its repertoire of applicable theorems accordingly. And
finally, a math-literate eLearning system would pose the same exercises, but
generate different explanations for students who know groups as axiomatized
via an associative composition operation ◦ that admits units and inverses and
defined a division operation x/y := x ◦ y−1 and students to whom groups were
introduced by axioms for a division operation and composition, unit, and inverses
were defined from them. As these examples show, mathematical literacy would
make the interaction with MKM systems more natural and effective (Fig. 1).

induced

rep.

Fig. 1. MKS

We contend that a large part of mathematical literacy is a
function of having at our disposal – or being able to gener-
ate on demand – a large space of knowledge that is induced
in some way by the explicitly represented knowledge we have
acquired previously. We call this the Mathematical Knowl-
edge Space (MKS).

In this paper, we will show two ways of how knowledge items
can systematically be induced from existing representations to
arrive at more mathematically literate services. The first is based
on the mathematical practice of viewing an object of class A as one of class
B – which we call framing. Following [KK09] we model framing via theory
morphisms in modular theory graphs – which act as the MKS – and extend our
MathWebSearch engine [KMP12] so that it answer queries “modulo framing”.
The second case study takes up the notion of realms that structure theory graphs
in a more human-oriented fashion. The various user roles identified in [CFK14]
allow us to induce special versions of the underlying theory graph for different
roles. Indeed, we show that the realm faces – which were assumed to be hand-
curated in [CFK14] – can be induced from the developments in the realms. We
regard these two systems as initial case studies that show what math literate
MKM could look like only; more case studies are certainly needed and more
forms of induced knowledge need to be identified.

We will introduce the two forms of induced knowledge in the next two sec-
tions: Sect. 2 interprets the knowledge space as a Mmt [Rab08,RK13] theory
graph, the induced statements are computed by flattening (see Sect. 3). The
realms case study is presented in Sect. 4, where we discuss how realm faces
(induced theories) can be generated and pillars can be opened for inspection
from the faces. Section 5 shows an application of induced material: we can use
flattening to make a math search engine literate, and correspondingly, Sect. 6
discusses how realm-based access can be used in a library of formalizations.
Section 7 concludes the paper.

2 Induced Statements in Theory Graphs

To build math literate MKM services as defined in Sect. 1 we need to first
address the issues of generating (part of) the mathematical knowledge space and

Math Literate Knowledge Management via Induced Material 189

then accessing the induced knowledge in order to make it available for MKM
applications.

We use the (theory-graph enabled) Mmt language and system as a basis of
discussion and we briefly introduce it below. Mmt [RK13] is a generic, formal
module system for mathematical knowledge. We will only give a brief introduc-
tion to Mmt here and then discuss the concepts using examples in the following
sections. We refer to [RK13] for further details.

The central notion is that of a theory graph containing theories and views.
Theories S are formed from a set of constant declarations which have a name and
an optional type and definition. Due to the Curry-Howard isomorphism, MMT
constants can be used to declare not only symbols but also axioms and theorems
describing their properties. Views v : S → T are structure-preserving mappings
(morphisms) from the source to the target theory which are also truth-preserving
in the sense that they map axioms of the source theory to theorems in the target
theory. These properties ensure that all theorems of the source theory induce
theorems in the target theory. In addition to views, the module level structure
in Mmt theory graphs is given by theory inheritance. The most general kind
of inheritance in Mmt is represented by structures which are (possibly partial)
named imports (and defined using theory morphisms). We will use the term
includes to refer to the trivial structures which are unnamed and total.

Every Mmt declaration is identified by a canonical, globally unique URI.
Theories and views can be referenced relative to the URI G of the theory
graph (document) that contains them by G?〈〈theory-name〉〉 and G?〈〈view-name〉〉,
respectively. Constant declarations can be referenced relative to the URI of their
containing theory T by T?〈〈constant-name〉〉. Similarly, assignment declarations
can be referenced relative to the URI of their containing view v by v?〈〈constant-
name〉〉.

Note that the names of constants, theories and views can have multiple /-
separated fragments and are of the general form f1/ . . . /fn. This makes Mmt
URIs much more expressive and, in particular, allows the following additional
access methods:

– if theory T contains structure s1, (the target of) s1 contains structure s2, . . .,
and sn contains constant const then we can use the constant name s1/. . ./sn/
const, to refer to const (as translated over the assignments from the structures)
from T.

– if there is a view v1 : T1 → T and a view v2 : T2 → T1, . . ., and a view vn : Tn →
Tn−1 where Tn contains constant const then we can use the constant name
[G?v1]/ . . . /[G?vn]/const, to refer to const (as translated over the assignments
from the views) from T.

– if T1 is a nested module in T, . . . , and Tn is a nested module in Tn−1 we can
use the theory name T/T1/ . . . /Tn to refer to theory Tn.

The Mmt system provides an API to the Mmt data structures described above
and the Mmt implementation [Rab08,RK13] provides a Scala-based [OSV07]
open source implementation of the Mmt API.

190 M. Iancu and M. Kohlhase

Generating Induced Knowledge. In the context of theory graphs we model the
process of generating the knowledge space as an operation on theory graphs.
Specifically, one that takes a theory graph G and return an enriched graph G
where a new part of the mathematical knowledge space is explicitly represented.
We call G the induced theory graph.

Accessing Induced Knowledge. A key aspect of Mmt is that it’s URI language is
expressive enough to produce URIs for the induced statements that are not only
unique but also informative. Specifically, we can compute the induced knowledge
entities from the induced theory graph by their URI and the original graph alone,
and furthermore, we can generate explanations for the existence of each induced
statement in terms of the original theory graph. We call this property of Mmt
URIs information completeness.

3 Flattening Theory Graphs

To better understand the concept of framing in modular libraries, consider the
theory graph U in Fig. 2. The right side of the graph introduces the elementary
algebraic hierarchy building up algebraic structures step by step up to rings; the
left side contains a construction of integer arithmetics. In this graph, the nodes
are theories1, the solid edges are structures (imports) and the wavy edges are
views.

As discussed in Sect. 2, Mmt structures can carry a name, and inherited
constants can be disambiguated by the name of the structure that induced them.
An application of this is in the definition of the ring theory, which inherits all of
its operators (and their axioms) via the two structures m (for the multiplicative
operations) and a (for the additive operations). To complete the ring we only
need to add the two distributivity axioms in the inherited operators m/◦ and a/◦.

Furthermore, since structures are defined using morphisms (just like views)
they can carry an assignment which maps symbols and axioms from the source
theory to terms in the target theory. We see this in the view e from Monoid
to NatArith, which assigns N to the base set G, multiplication (·) to ◦ and
the number 1 to the unit e. To satisfy the obligations of the theory morphism
property, e also contains proofs for all Monoid axioms in NatArith. It is a special
feature of Mmt that assignments can also map morphisms into the source theory
to morphisms into the target theory. We use this to specify the morphism c
modularly (in particular, we can re-use the proofs from e and c).

Note that already in this small graph, there are a lot of induced statements.
For instance, the associativity axiom is inherited in seven times (via inclusions;
twice into Ring) and induced four times (via views; twice each into NatArith and
IntArith). All in all, we have more than an hundred induced statements from
the axioms alone. If we assume just 5 theorems proven per theory (a rather
1 We have left out the quantifiers for the variables x, y, and z from the axioms to reduce
visual complexity. The always range over the respective base set. Furthermore, all
axioms are named; but we only state the names we actually use in the examples.

Math Literate Knowledge Management via Induced Material 191

Magma

G, ◦
x◦y∈G

SemiGrp

assoc:(x◦y)◦z=x◦(y◦z)

Monoid

e

e◦x=x

Group

i :=λx.τy.x◦y=e

∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G.∀y:G.x◦y �=e

CGroup

comm:x◦y=y◦x

Ring

x m/◦ (y a/◦ z)=(x m/◦ z) a/◦ (y m/◦ z)

x a/◦ (y m/◦ z)=(x a/◦ z)(y a/◦ z)

NatNums

N, s, 0

P1,. . . P5

NatPlus

+

n+0=n,
n+s(m)=s(n+m)

NatArith

·
n·1=n,
n·s(m)=n·m+n

IntArith

−
Z := N ∪ −N
−0=0

ϕ =

⎧⎨
⎩

G �→ N

·→�◦
e �→ 1

⎫⎬
⎭

ψ =

⎧⎨
⎩

G �→ N

→�◦ +
e �→ 0

⎫⎬
⎭

ψ′ =
{

i −→�
g �→ f

}
ϑ =

{
m �→ e
a �→ c

}

e:ϕ

f:ψ

d:ψ′

g

c:ϕ

ng

a

m

i:ϑ

Fig. 2. A Mmt graph for elementary algebra

conservative estimation), then we obtain a number of induced statements that
is an order of magnitude higher.

Another important property of Mmt is that, as discussed in Sect. 2, Mmt
URIs are expressive enough to supply names for all induced statements. In fact,
we can already access the induced statements in Fig. 2 in Mmt. For example,
the statement ∀x, y, z : Z.(x + y) + z = x + (y + z) induced by the view c in
IntArith has the Mmt URI U?IntArith?c/g/assoc. Still, for external applications,
it is essential to have the induced statements explicitly represented.

Generating Induced Statements. We already hinted in Sect. 2 that generating
the induced statements is a theory graph operation i.e. it takes a theory graph as
input and returns a different one, specifically the induced theory graph. Below,
we define theory graph flattening as an instance of such a generation procedure
that produces those statements induced by framing.

Definition 1. Given a theory graph G the flattening of a theory T in G is a
theory T with the same URI as T containing:

192 M. Iancu and M. Kohlhase

– all constant declarations that are in T.
– all constant declarations that are imported into T.
– for every view v : S → T the projection of every S-based declaration over view

v. Here, by S-based declaration we refer to the declarations in S and in theories
that import S.

The URIs of the induced declarations are based on the definition of Mmt URIs
from Sect. 2 (see also the assoc example above) and permit recovering the origin
of the induced declarations (i.e. are information complete as defined in Sect. 2).
Specifically, constant declarations from T or imported in T by an include preserve
their name. Meanwhile constant declarations imported in T by a structure or
induced by a view are additionally qualified with the name of that structure or
view.

Definition 2. The flattening of theory graph G is a theory graph G with the
same URI as G containing the following module declarations:

– for every theory T in G the theory T
– a copy of every view v : S → T from G

Note that, since theory flattening preserves theory URIs and doesn’t add new
axioms (only new theorems), every view v in G is also a view in G.

4 Inducing Realm Faces/Flattening Realms

face

pi
lla

r
1

pi
lla

r
2

· · ·

pi
lla

r
n

Fig. 3. Realm schema

In [CFK14] we introduce the concept of realms to con-
solidate knowledge about mathematical theories. This is
motivated by the intuition that users of a knowledge col-
lection can have different roles and therefore want to see
different kinds of materials. In a nutshell, a realm – pic-
tured schematically on the right – is super-structure of a
fragment of a theory graph that singles out a set of con-
servative developments called pillars and extends them
with a theory called the face of the realm that abstracts
from all development details in the pillars, which are
required to be linked by a chain of views that makes them isomorphic.

The idea of [CFK14] is that practitioners only need access to the face that
supplies all the useful facts about a mathematical domain, whereas the student
also wants to know how these are established and needs to access the “develop-
ment history” in one (or more) pillar. The developer finally wants to develop the
knowledge about the domain by extending one (or more) pillar, the development
of the face is just regarded as a side effect.

In Fig. 4, we have refined the schematic of Fig. 3 by graying out the parts of
the realms the users in their respective roles will not be able to see. We can see the
restricted theory/realm graphs as induced material adapted to particular users:
(i) the face graph – the faces inherit the graph structure of the developments –
for the practitioners, (ii) the graph of faces with selectively opened developments

Math Literate Knowledge Management via Induced Material 193

practitioner student/developer UDLM librarian

· · · · · · · · ·

Fig. 4. Realms and user roles

for the student (iii) the developments with their faces for the developers, and
(iv) the original theory graph for the knowledge librarian – a “user” of the
library who maintains the library, e.g. refactoring theories, renaming theorems
to avoid name clashes, etc. For the developer and the librarian, the realm faces
are secondary objects which have to be maintained without being the primary
object of study. For them it would be very convenient to let them be computed
from the developments automatically as induced material. Indeed this can be
done, as we will show in the rest of this section.

4.1 Generating Realm Faces as Induced Theories

realm r = {
pillar p1 = {tp1

1 , tp1
2 , . . . , tp1

k1
}

pillar p2 = {tp2
1 , tp2

2 , . . . , tp2
k2

}
...
pillar pn = {tpn

1 , tpn

2 , . . . , tpn

kn
}

equivcyc = {v1, . . ., vn}}

Fig. 5. A realm specification

For realms we consider their face as inducible
from the pillars and discuss in the following
how that can be mechanized.

Firstly, if faces are induced, we can define a
realm by just giving it a name, specifying the
pillars, and listing the cycle of views that shows
that the pillars are equivalent. Figure 5 on the
right gives the general form of the specification.

For the induced face, the URI g of the file
with the realm specification induce the Mmt
URI of the face, and the Mmt URIs of the symbols inside are induced from the
pillar names. To induce the face we need to solve three main issues:

1. select which symbols from each pillar should be in the face
2. merge equivalent symbols (such as the e in Fig. 6)
3. resolve naming conflicts (equivalent symbols with different names and distin-

guishable symbols with same name)

Before we formalize this in Definition 4 below, let us adapt the groups realm
from [CFK14] to the Mmt setting for intuitions.

Example 1. Figure 6 shows a realm with two pillars for the equivalent group
definitions based on composition ◦ and, respectively, division/in the usual way.
The corresponding realm specification is in Fig. 7. We have added the unit e

194 M. Iancu and M. Kohlhase

group◦
G : type, ◦ : G → G → G
e : G, inv : G → G

assoco, eleft, eright, invax

group/

G : type, / : G → G → G, e : G

eax1 , eax2 , /ax1 , /ax2

slash◦
/ : G → G → G = λa, b.a ◦ (inv b)

circ/

◦ : G → G → G = λa, b.a/(e/b)
inv : G → G = λa.(e/a)

inv thm◦
inv thm : � (inv e)

.
= e = trans eright invax

inv thm/

inv thm : � (inv e)
.
= e = eax2 e

group

G : type, ◦ : G → G → G, e : G, inv : G → G, / : G → G → G
circ/inv thm : � (inv e)

.
= e, slash/inv thm : � (inv e)

.
= e

assoco, eleft, eright, invax, eax1 , eax2 , /ax1 , /ax2

v/
v◦

i◦ i/

Fig. 6. A realm of groups

with its axiom eax1 , eax2 to group/ even though it is mathematically redundant –
e = x/x for all x in G – because that allows us to show all aspects of the face
generation algorithm below.

realm group = {
pillar circ = {group◦, slash◦}
pillar slash = {group/, circ/}
equivcyc = {v◦,v/}}

Fig. 7. A group realm spec.

Theories slash◦ and inv thm◦ as well as circ/
and inv thm/are each conservative developments
of group◦ and group/ respectively as they only
introduce defined symbols. The views v◦ and v/
ensure the equivalence of the two pillars with the
obvious assignments. The proofs that the axioms
hold (i.e. the assignments for them in the views)
are all straightforward and omitted for simplicity. The face for the realm is
shown in theory group and has the intuitive shape, containing all the important
concepts as primitive symbols and all their properties as axioms. We explain
how the face was produced below.

Definition 3. We define the following partial ordering on symbols in a realm
r. Let t and s be symbols in theories T and S respectively such T and S are in
different pillars. If there is an assignment s := t in one of the pillar equivalence
views then we write s ≤r t. If there is also an assignment t := s in such a view
then we write. s =r t, otherwise s <r t. We call a symbol essential in r if it is
<r-minimal.

The intuition behind Definition 3 is that if there is an assignment s := t then
there is an equivalence between s and t at the realm level and we need to decide
which should appear in the face. Then, the ordering captures the fact that s

Math Literate Knowledge Management via Induced Material 195

is a primitive concept in its realm while t is derived, possibly only to give the
equivalence view. In Fig. 6 the symbols inv and ◦ from theory circ/ are derived.

Definition 4. Let r be a realm as specified in Fig. 5. Then, we generate a face for
r by adding copies of all essential symbols (with type but no definition – following
the definition of a realm face from [CFK14]) with the following provisions:

1. If two essential symbols in different pillars have the same name we prefix
them with the pillar name (to ensure unique URIs)

2. If n essential symbols s1, . . . , sn are equal (with respect to =r) we add the
later ones as aliases of the first (order is irrelevant but must be consistent).
An exception occurs when (some) of the equal symbols have the same name
in which case we only add them once and effectively merge them (instead of
prefixing the names with the pillar name as usual).

Example 2. The face group from Fig. 6 is generated following Definition 4. The
essential symbols (omitting axioms for simplicity) are G, ◦, e, inv, inv thm for the
first pillar and G, /, e, inv thm for the second. We have two name clashing pairs:
group◦?e and group/?e as well as inv thm◦?inv thm and inv thm/?inv thm. For
the first pair (e) we have an equality since v◦ and v/ assign them to each other
so we merge. Then, for the second pair (inv thm) we prefix with the realm name
producing circ/inv thm and slash/inv thm to obtain the face shown in Fig. 6.

4.2 Curating Realms Through Alignments

The problem with Definition 4 is that we can have duplicate symbols that are
actually equivalent but appear as different because of slightly different formal-
izations. A common example is theorems with different proofs as is the case of
inv thm in Example 2.

In [CFK14] realm faces are meant to be manually generated and curated to
avoid such issues. However, we propose an alternative method of curating faces
by giving alignments between pillar theories to establish symbols as being equiv-
alent. This idea is inspired from [KRSC11], but has not been made formal before.

Definition 5 (Alignment). An alignment is a view pair v1 : Ŝ → T and
v2 : T̂ → S, where Ŝ is the abstraction of S: Ŝ omits all definitions in S.

The abstraction operation ·̂ is needed to allow us to assign a new interpretation
for defined symbols which would otherwise be translated via definition expansion.
We will concentrate on the case where S and T are in different pillars here.

For instance, take the situation in Fig. 6 where the (trivial) theorem inv thm
proving that e is its own inverse appears in each pillar. Still, the proofs are
different over the translation so that both symbols appear different at the Mmt
level. However, we can fix the problem by giving an alignment between the two
theories containing the theorem. Listing 1.1 below shows the alignment and the
resulting, curated face.

196 M. Iancu and M. Kohlhase

Listing 1.1. Alignment Example

view a/ : ̂inv thm◦ → inv thm/ = {inv thm := inv thm}
view a◦ : ̂inv thm/ → inv thm◦ ={inv thm := inv thm}
theory group = {G : type, e : G, . . ., / : G→G→G . . ., inv thm : � (inv e) .= e}

4.3 Opening a Pillar

For the student/developer view described above we need the operation of opening
a pillar that allows the developer to access the internals of the symbols and
axioms in the face as formalized in one of the pillars. We model this by creating
a new theory for each pillar that combines the symbol aggregation and name
abstraction of the face theory with the implementation details of that pillar.

group◦ group/

slash◦ circ/

inv thm◦ inv thm/

group/circ group/slash

group

v/v◦

i◦ i/

f◦ f/

s◦ s/

Fig. 8. Opening a pillar

Concretely, given a realm r and a pillar p
we induce a theory r/p that is generated follow-
ing the same procedure as the face (i.e. from
Definition 4) but without omitting the defini-
tions. For symbols in a different pillar we gen-
erate the definition by translating it over the
view from that pillar into p. Effectively, we
obtain the symbol definitions as seen from p
which corresponds to the intuition of opening
a pillar.

In the theory graph, we represent this as
1. a structure s from the pillar p that adds its
symbols to r/p but with the renamings used in
the face generation and, 2. a view v : r → r/p

that formalizes the relation that r/p is an implementation for the face.

theory group/circ = {
G : type, ◦ : G → G → G, e : G, inv : G → G,
/ : G → G → G = λa,b.a ◦ (inv b),
circ/inv thm : � (inv e) .= e = trans eright invax,
slash/inv thm : � (inv e) .= e = eax2 e,
...

}

Fig. 9. Developer view example

Figure 9 shows the the-
ory group/circ representing
the opening of pillar circ in
the realm of groups above.
It has the same symbols as
the face but with all sym-
bols that are non-primitive
in circ having a definition.
For the two symbols origi-
nating in the second pillar
(/ and slash/inv thm) their
definition is obtained by translating over v◦.

The resulting theory graph is shown in Fig. 8 where the content of each theory
is omitted. Note that the theories group, group/circ, group/slash as well as the
structures s◦ and s/ and the views i◦, i/, f◦ and f/ are all induced.

Math Literate Knowledge Management via Induced Material 197

5 Searching the Knowledge Space of the LATIN
Logic Atlas

As a first application of the concepts described in this paper we build a system
for searching the knowledge space (i.e. flattened theory graph) of the highly
modular LATIN [Cod+11] library.

MathWebSearch. For searching, we use our MathWebSearch system
[KMP12], which is a content-oriented search engine for mathematical expres-
sions that indexes formula-URL pairs and provides a web interface querying the
formula index via unification. The implementation of a math-literate web ser-
vice that conducts such searches is very simple: instead of harvesting formulae
from a formal digital library directly as in [Ian+13], we flatten the library first,
and then harvest formulae. As discussed in Sect. 2, Mmt flattening gives the
induced constants information complete Mmt URIs which we directly use for
formula harvests. Then, we need to replace the human-oriented search front-end
of MWS, i.e. the input of search queries and the presentation of search results.
This can be used for:

Instance Search. E.g. to find all instance of associativity we can issue the query
∀x, y, z : S .(x op y) op z = x op (y op z), where the - are query variables
that can be instantiated in the query. In the library from Fig. 2 we would
find the associativity axiom SemiGrp/assoc, its directly inherited versions in
Monoid, to Ring and in particular the version U?IntArith?c/g/assoc.

Applicable Theorem Search. Where universal variables in the index can be
instantiated as well; this was introduced for a non-modular formal library
in [Ian+13]. Here we could search for 3 + 4 = R and find the induced
statement U?IntArith?c/comm with the substitution R 	→ 4+3, which allows
the user to instantiate the query and obtain the equation 3 + 4 = 4 + 3
together with the justification U?IntArith?c/comm that can directly be used
in a proof.

Induced Statements in the LATIN Library. The LATIN atlas is written in an
extension of the TWELF encoding [RS09] of LF [HHP93], so it is natural to
use an extension of LF notation with query variables for input. Therefore, we
use the Mmt notation language and interpretation service described in [IR12] to
transform LF-style input into Mmt objects and subsequently to MWS queries.

We implemented library flattening as described in Sect. 3 in Mmt and applied
it to the LATIN library. The flattening (once) of the LATIN library increases
the number of declarations from 2310 to 58847 (a factor of 25.4) and the total
size of the library from 123.9 MB to 1.8 GB (a factor of 14.8). As expected,
the multiplication factor depends on the level of modularity of the library. For
instance, the highly modular math sub-library containing mainly algebraic struc-
tures increases from 2.3 MB to 79 MB thus having a multiplication factor of
34.3, more than double the library average. The size of the MWS harvests also
increases considerably, from 25.2 MB to 539.0 MB.

198 M. Iancu and M. Kohlhase

Explaining URIs of Induced Statements. The presentation of the Mmt URIs
requires some work as well: while the Mmt system can directly dereference the
Mmt URI and thus be used to present the induced statement, humans want
a justification that is more understandable than a Mmt URI. Fortunately, this
can be generated from the Mmt URI by a simple template-based algorithm. Let
us consider the search result U?IntArith?c/g/assoc from the instantiation search
above, where we take U to be http://cds.omdoc.org/cds/elal. The first step
is to localize the result in the theory U?IntArith with the sentence

Induced statement ∀x, y, z : Z.(x + y) + z = x + (y + z)
found in http://cds.omdoc.org/cds/elal?IntArith (subst,
justification).

(1)

Here the underlined fragments carry hyperlinks, the second pointing to the jus-
tification:

IntArith is a CGroup if we interpret ◦ as + and G as Z. (2)

which can be directly inferred from the information associated to the morphism
c in the Mmt URI. Then we skip over g, since its assignment is trivial and
generate the sentence.

CGroups are SemiGrps by construction (3)

and finally we ground the explanation by the sentence

In SemiGrps we have the axiom
assoc : ∀x, y, z : G.(x ◦ y) ◦ z = x ◦ (y ◦ z) (4)

The sentences (1) to (4) can be generated from templates, since the Mmt system
gives access to the necessary information: source and target theory as well as
the assignment ψ′ for (2), the fact that the path from SemiGrp to CGroup2

only consists of inclusion that triggers the template for (3) and the original
formulation of the axiom assoc.

The resulting search interface is shown in Fig. 10 and is available at [FS]. Note
that we make use of another peculiarity of the Mmt system in this explanation:
all constants in the theory graph carry notation declarations [KMR08], which can
be used to generate human-readable presentations of arbitrary formal objects in
the graph.

2 In fact these theory identifiers are not adequate for explanations. We conjecture
that verbalization of the primary symbol of the respective theory would be the right
choice here – see [Koh14] for these concepts – but leave studying this to future work.

Math Literate Knowledge Management via Induced Material 199

Fig. 10. The FlatSearch web interface for LATIN

6 Future Work: Realm-Supported Workflows in the Open
Archive of Formalizations

A natural application area for induced realms as described in Sect. 4 is the inte-
gration of formal libraries, so that results in any of them can be used to prove
new theorems in any other. This is the aim of the Open Archive of Formaliza-
tions [OAF] which integrates several, large, formal mathematical libraries. It uses
the LATIN logic atlas [Cod+11] as a logical basis and imports the libraries as
based on a dedicated LATIN meta-logic. Views between the base logics relate the
libraries themselves at the foundational level but at a higher level, the important
mathematical concepts remain unassociated.

Even though the underlying domains should form realms straddling the
libraries, in practice, different libraries define core concepts (e.g. real numbers,
functions, etc.) differently. Therefore, even after importing them to a common
foundation, libraries remain effectively segregated. To achieve genuine interop-
erability we need to associate the equivalent concepts from each library with
each other and establish a new library containing the merged concepts. This is a
direct application of the ideas from Sect. 4. First, we can associate concepts by
declaring realms. Then, we can generate the induced faces graph that provides
the interface to the merged, integrated library. The operation of opening a pillar
described in Sect. 4.3 allows access to the implementation details of each indi-
vidual library where needed. Finally, the resulting interface can be refined via
alignments.

The different induced realm graphs in Fig. 4 can be seen as special lenses
that allow users with different roles to see the underlying archive according to
their preferences and needs. This is similar to how an experienced human would
present the materials if she were aware of the user role; therefore we can see the
induced realms as a form of mathematical literacy.

Applying the above to the OAF is still future work but the challenges encoun-
tered during the project provided the main motivation for the work described in
this paper.

200 M. Iancu and M. Kohlhase

7 Conclusion and Future Work

One of the characteristic abilities and practices of trained mathematicians is
the ability to integrate new mathematical knowledge into their mental model,
interpret it via non-trivial semantic mappings, and take a conceptual and deduc-
tive closure of the acquired knowledge in all the processes of “doing mathemat-
ics”. Current MKM systems that want to support “doing mathematics” directly
act on the represented mathematical knowledge they are fed with and there-
fore fall short of humans which make them less useful as tools and interaction
counterpart.

The main hypothesis of the work presented here is the idea that running
classical MKM algorithms on a suitably structured “mathematical knowledge
space” (MKS) which extends the represented knowledge by a class of “induced
knowledge items” will let them approximate mathematical literacy. We test this
hypothesis on two classes of knowledge items in the context of theory graphs.

In a first case study we extend a theory graph with statements induced by
views in the theory graph of the formal LATIN library. Indexing this in the
math-specific, but otherwise illiterate MathWebSearch engine turns it into the
FlatSearch engine that gives us results that approximate mathematical liter-
acy. In the second case study, we build on a realm-structured knowledge collec-
tions and turn it into a MKS by inducing realm faces and into a personal MKS
by opening pillars as needed. Here the induced knowledge items are theories,
structures, and views in the theory graph.

In both cases much of the heavy lifting has been done by special URIs, that
serve as systematic identifiers of induced elements. In the case of FlatSearch,
these URIs are the Mmt URIs already introduced in [RK13]. They are all we
need to explain the results in terms of the original LATIN graph. In the realms
case study we took great care to introduce new URIs for all induced knowledge
items. It speaks for the strength and versatility of the Mmt design that the
realm-based URIs can be interpreted and justified in the Mmt framework.

In the future, we plan to extend the “math literacy via induced knowledge
structures” approach proposed in this paper with more facets and applications.
We conjecture that the crucial step in such extensions will be the availability
of some form of systematic naming scheme that uses the structural parts of the
original knowledge to name induced knowledge items.

One extension that seems immediately profitable is to extend flattening and
realms to flexiformal representations (representations of mathematical knowl-
edge at flexible levels of formality; see [Koh13]) and apply it to traditional math-
ematical documents. [Lau07] revealed a theory graph of 51 theory nodes and
107 theory morphisms of which 12 were views, but 63 had non-trivial assign-
ments in the first 35 pages of Bourbaki’s Algebra. Applying FlatSearch to
this graph would solve of the problems readers face with the Bourbaki books –
which are otherwise well-liked for their structured approach: particular mathe-
matical structures and objects can only be understood if one already knows all
the material they depend on. One author even said that

Math Literate Knowledge Management via Induced Material 201

Bourbaki was a dinosaur, the head too far away from the tail. Explaining:
[. . .] You could say “Dieudonné what is the result about so and so?” and
he would go to the shelf and take down the book and open it to the right
page. After Dieudonné retired no one was able to do this. So Bourbaki
lost awareness of his own body [Ric]

A flexiformalization of the Bourbaki books together with an extension of MMT
that can deal with flattening of informal texts would go a long way to alleviate
these problems.

Acknowledgments. This work has been supported by the German Research Council
(DFG) under grant KO 2428/13-1.

References

[CFK14] Carette, J., Farmer, W.M., Kohlhase, M.: Realms: a structure for
consolidating knowledge about mathematical theories. In: Watt, S.M.,
Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM
2014. LNCS, vol. 8543, pp. 252–266. Springer, Heidelberg (2014).
http://kwarc.info/kohlhase/submit/cicm14-realms.pdf

[Cod+11] Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe,
F.: Project abstract: logic atlas and integrator (LATIN). In:
Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM/Cal-
culemus 2011. LNCS, vol. 6824, pp. 289–291. Springer, Heidelberg (2011).
https://kwarc.info/people/frabe/Research/CHKMR latinabs 11.pdf

[FS] FlatSearch Demo. http://cds.omdoc.org:8181/search.html (Accessed on 23
April 2015)

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
Assoc. Comput. Mach. 40(1), 143–184 (1993)

[Ian+13] Iancu, M., et al.: The Mizar mathematical library in OMDoc: translation
and applications. J. Autom. Reasoning 50(2), 191–202 (2013)

[IR12] Iancu, M., Rabe, F.: (Work-in-Progress) An MMT-based user- interface.
In: Kaliszyk, C., Lüth, C. (eds.) Workshop on User Interfaces for Theorem
Provers (2012)

[KK09] Kohlhase, A., Kohlhase, M.: Spreadsheet interaction with frames: explor-
ing a mathematical practice. In: Carette, J., Dixon, L., Coen, C.S.,
Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625, pp.
341–356. Springer, Heidelberg (2009). http://kwarc.info/kohlhase/papers/
mkm09-framing.pdf

[KMP12] Kohlhase, M., Matican, B.A., Prodescu, C.-C.: MathWebSearch 0.5: scal-
ing an open formula search engine. In: Campbell, J.A., Jeuring, J.,
Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM
2012. LNCS (LNAI), vol. 7362, pp. 342–357. Springer, Heidelberg (2012).
http://kwarc.info/kohlhase/papers/aisc12-mws.pdf

[KMR08] Kohlhase, M., Müller, C., Rabe, F.: Notations for living mathematical
documents. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki,
M., Wiedijk, F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol.
5144, pp. 504–519. Springer, Heidelberg (2008). http://omdoc.org/pubs/
mkm08-notations.pdf

http://kwarc.info/kohlhase/submit/cicm14-realms.pdf
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
http://cds.omdoc.org:8181/search.html
http://kwarc.info/kohlhase/papers/mkm09-framing.pdf
http://kwarc.info/kohlhase/papers/mkm09-framing.pdf
http://kwarc.info/kohlhase/papers/aisc12-mws.pdf
http://omdoc.org/pubs/mkm08-notations.pdf
http://omdoc.org/pubs/mkm08-notations.pdf

202 M. Iancu and M. Kohlhase

[Koh13] Kohlhase, M.: The flexiformalist manifesto. In: Voronkov, A., et al. (eds.)
14th International Workshop on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC 2012), Timisoara, Romania, pp. 30–36. IEEE
Press (2013).http://kwarc.info/kohlhase/papers/synasc13.pdf

[Koh14] Kohlhase, M.: A data model and encoding for a semantic, multilin-
gual terminology of mathematics. In: Watt, S.M., Davenport, J.H.,
Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp.
169–183. Springer, Heidelberg (2014). http://kwarc.info/kohlhase/papers/
cicm14-smglom.pdf

[KRSC11] Rabe, F., Kohlhase, M., Sacerdoti Coen, C.: A foundational view
on integration problems. In: Davenport, J.H., Farmer, W.M.,
Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011.
LNCS (LNAI), vol. 6824, pp. 107–122. Springer, Heidelberg (2011).
https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2007/blaubner.
pdf

[Lau07] Laubner, B.: Using Theory Graphs to Map Mathematics: A Case Study and
a Prototype. MA thesis. Bremen: Jacobs University, August 2007. https://
svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2007/blaubner.pdf

[OAF] The OAF Project & System. http://oaf.mathhub.info (Accessed on 23 April
2015)

[OSV07] Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima (2007)
[Rab08] Rabe, F.: The MMT system. https://svn.kwarc.info/repos/MMT/doc/

html/index.html.2008
[Ric] Émilie Richter. Nicolas Bourbaki. http://planetmath.org/NicolasBourbaki.

html
[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54

(2013). http://kwarc.info/frabe/Research/mmt.pdf
[RS09] Rabe, F., Schürmann, C.: A practical module system for LF. In: Cheney,

J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks:
Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press, New York
(2009)

http://kwarc.info/kohlhase/papers/synasc13.pdf
http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2007/blaubner.pdf
https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2007/blaubner.pdf
https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2007/blaubner.pdf
https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2007/blaubner.pdf
http://oaf.mathhub.info
https://svn.kwarc.info/repos/MMT/doc/html/index.html.2008
https://svn.kwarc.info/repos/MMT/doc/html/index.html.2008
http://planetmath.org/NicolasBourbaki.html
http://planetmath.org/NicolasBourbaki.html
http://kwarc.info/frabe/Research/mmt.pdf

Strategies for Parallel Markup

Bruce R. Miller(B)

Applied and Computational Mathematics Division,
National Institute of Standards and Technology, Gaithersburg, MD, USA

bruce.miller@nist.gov

Abstract. Cross-referenced parallel markup for mathematics allows the
combination of both presentation and content representations while asso-
ciating the components of each. Interesting applications are enabled by
such arrangements: interaction with parts of the presentation to manip-
ulate and query the corresponding content; enhanced search indexing.
Although the idea of such markup is hardly new, effective techniques for
creating and manipulating it are more difficult than it appears. Since the
structures and tokens in the two formats often do not correspond one-to-
one, decisions and heuristics must be developed to determine in which
way each component refers to and is referred to by components of the
other representation. Conversion between fine and coarse-grained paral-
lel markup complicates xml identifier (ID) assignments. In this paper,
we will describe the techniques developed for LATExml, a TEX/LATEX
to xml converter, to create cross-referenced parallel MathML. While
not yet considering LATExml’s content MathMLto be truly useful, the
current effort is a step towards that continuing goal.

1 Introduction

Parallel markup for mathematics provides the capability of providing alternative
representations of the mathematical expression, in particular, both the presen-
tation form of the mathematics, i.e. its appearance, along with the content form,
i.e. its meaning or semantics. Cross-linking between the two forms provides the
connection between them such that one can determine the meaning associated
with every visible fragment of the presentation and, conversely, the visible man-
ifestation of each semantic sub-expression. Thus cross-linked parallel markup
provides not only the benefits of the presentation and content forms, individu-
ally, but support many other applications such as: hybrid search where both the
presentation and content can be taken into account simultaneously; interactive
applications where the visual representation forms part of the user-interface, but
supports computations based on the content representation.

Of course, the idea of parallel markup is hardly new. The m:semantics element
has been part of the MathML specification [1] since the first version, in 1998! What
seems to be missing are effective strategies for creating, manipulating and using this

The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

c© Springer International Publishing Switzerland 2015 (outside the US)
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 203–210, 2015.
DOI: 10.1007/978-3-319-20615-8 13

204 B.R. Miller

markup. Fine-grained parallelism is when the smallest sub-expressions are represented
in multiple forms, whereas with coarse-grained parallelism the entire expression appears
in several forms. Fine-grained parallelism is generally easier to create initially, and
particularly when one deals with complex ‘transfix’ notations, or wants to preserve the
appearance, but can infer the semantic intent of each sub-expression. Coarse-grained is
often required by applications which may understand only a single format, or are unable
to disentangle the fined-grained structure. html5 [3] only just barely accepts coarse-
grained parallel markup, for example, by ignoring all but the first branch. Conversion
from fine to coarse-grained is not inherently difficult, it can be carried out by a suitable
walk of the expression tree for each format. But what isn’t so clear is how to maintain
the associations between the symbols and structures in the two trees. Indeed, there
is typically no one-to-one correspondence between the elements of each format. Fine-
grained parallelism, by itself, doesn’t guarantee a clear association between all the
symbols between the branches.

Our context here is LATExml, a converter from TEX/LATEX to xml, and thence to
web appropriate formats such as html, MathML and OpenMath. Input documents
range from highly semantic markup such as sTeX [4], to intermediate such as used in the
Digital Library of Mathematical Functions (DLMF) [6], to fairly undisciplined, purely
presentational, markup as found on arXiv [8]. TEX induces high expectations for quality
formatting forcing us to preserve the presentation of math. Meanwhile, the promise of
global digital mathematics libraries and the potential reuse of a legacy of mathematics
material encourages us to push as far as possible the extraction of content from such
documents. At the very least, we should preserve whatever semantics is available in
order to enable other technologies and research, such as LLaMaPuN [2], to resolve
the remaining ambiguities. Getting ahead of ourselves, our first ‘mini’ strategy is just
that: create fine-grained parallel markup at the first opportunity that presentation and
semantics are available, in order to preserve them both.

In this paper, we describe the markup used in LATExml both for macros with known
semantics, and for the result of parsing, and strategies for conversion to cross-linked,
parallel markup combining Presentation MathML (pMML) and Content MathML
(cMML). It should be noted that this does not mean that LATExml is producing useful
quality cMML; the current work is a stepping stone towards that long-term goal.

Even in situations where only presentation markup is used, such as (currently)
DLMF1 where most symbols have always been hyper-linked to their definitions and
the presentation-based search indexing is enhanced by the corresponding semantic con-
tent [7], the proposed strategies create a proper association between presentation and
content resulting in a much cleaner implementation than the ad-hoc methods previ-
ously employed. Moreover, it is more complete, allowing the linkage to definitions to
be extended to less textual operators such as binomials, floor, 3-j symbols, etc.

2 Motivation

Before diving into examples, a brief introduction to LATExml’s internal mathematics
markup, informally called XMath, is in order. This markup, inspired by OpenMath and
both pMML and cMML, is intentionally hybrid in order to capture both the presen-
tation and content properties of the mathematical objects throughout the step-wise
processing from raw TEX markup, through parsing and, ultimately, semantic annota-
tion. The main elements of concern are:

1 http://dlmf.nist.gov/.

http://dlmf.nist.gov/

Strategies for Parallel Markup 205

Listing 1.1. Internal representation of a + F (a, b), after parsing to XMath (assuming
F as a function)

<XMApp>
<XMTok meaning=” p l u s ” r o l e=”ADDOP”>+</XMTok>
<XMTok r o l e=”ID” f on t=” i t a l i c ”>a</XMTok>
<XMDual>

<XMApp>
<XMRef i d r e f=”m1. 1 ”/>
<XMRef i d r e f=”m1. 2 ”/>
<XMRef i d r e f=”m1. 3 ”/>

</XMApp>
<XMApp>

<XMTok r o l e=”FUNCTION” xm l : i d=”m1. 1 ” f on t=” i t a l i c ”>F</XMTok>
<XMWrap>

<XMTok r o l e=”OPEN” s t r e t c h y=” f a l s e ”>(</XMTok>
<XMTok r o l e=”ID” xm l : i d=”m1. 2 ” f on t=” i t a l i c ”>a</XMTok>
<XMTok r o l e=”PUNCT”> ,</XMTok>
<XMTok r o l e=”ID” xm l : i d=”m1. 3 ” f on t=” i t a l i c ”>b</XMTok>
<XMTok r o l e=”CLOSE” s t r e t c h y=” f a l s e ”>)</XMTok>

</XMWrap>
</XMApp>

</XMDual>
</XMApp>

XMApp generalized application (think m:apply or om:OMA);
XMTok generalized token (think m:mi, m:mo, m:mn, m:csymbol);
XMDual parallel markup container of the content and presentation branches;
XMRef shares nodes between branches of XMDual, via xml:id and idref attributes;
XMWrap container of unparsed sequences of tokens or subtrees (think m:mrow).

(Please see the online manual2 for more details.)
By way of motivation, consider the simple example in Listing 1.1. The role attribute

on tokens indicates the syntactic role that it plays in the grammar; in this case, we’ve
asserted that F is a function, allowing the expression to be parsed. At the top-level,
the sum requires no special parallel treatment since the presentation for infix operators
is trivially derived from the content form (i.e. the application of ‘+’ to its arguments).
The application of F to its arguments benefits somewhat from parallel markup. This is
a typical situation with the fine-grained XMDual: the content branch is the application
of some function or operator (here F) to arguments (here a, b), but they are repre-
sented indirectly using XMRef to point to the corresponding sub-expressions within the
presentation. While one could represent the delimiters and punctuation as attributes
(as in MathML’s m:mfenced), that loses attributes of those attributes such as stretch-
iness, size or even color. A more compelling case is made by complex transfix notations
or semantic macros, as we will shortly see.

However, this simple example already hints at a hidden complexity. Converting to
either pMML and cMML is straightforward (given rules for mapping XMath elements
to MathML): simply walk the tree, depth-first, following each XMRef to the referenced
node and choosing the first or second branch of XMDual for content or presentation,
respectively. Even cross-linking is straightforward in the absence of XMDual, when the
generated content or presentation nodes are ‘sourced’ from the same XMath node (F , a,
and b, in the example): simply assign ID’s to the source XMath node and the generated

2 http://dlmf.nist.gov/LaTeXML/manual/.

http://dlmf.nist.gov/LaTeXML/manual/

206 B.R. Miller

Listing 1.2. MathML representation of a + F (a, b)

<math d i s p l a y=” b l o ck ” a l t t e x t=”a+F(a , b) ” c l a s s=” l t x Math ” i d=”m1”>
<s eman t i c s i d=”m1a”>

<mrow x r e f=”m1 . 7 . cmml” i d=”m1. 7 ”>
<mi x r e f=”m1 . 4 . cmml” i d=”m1. 4 ”>a</mi>
<mo x r e f=”m1 . 5 . cmml” i d=”m1. 5 ”>+</mo>
<mrow x r e f=”m1 . 6 . cmml” i d=”m1. 6 d”>

<mi x r e f=”m1 . 1 . cmml” i d=”m1. 1 ”>F</mi>
<mo x r e f=”m1 . 6 . cmml” i d=”m1. 6 e”>&App lyFunct ion ;</mo>
<mrow x r e f=”m1 . 6 . cmml” i d=”m1. 6 c”>

<mo x r e f=”m1 . 6 . cmml” i d=”m1. 6 ” s t r e t c h y=” f a l s e ”>(</mo>
<mi x r e f=”m1 . 2 . cmml” i d=”m1. 2 ”>a</mi>
<mo x r e f=”m1 . 6 . cmml” i d=”m1. 6 a”> ,</mo>
<mi x r e f=”m1 . 3 . cmml” i d=”m1. 3 ”>b</mi>
<mo x r e f=”m1 . 6 . cmml” i d=”m1. 6 b” s t r e t c h y=” f a l s e ”>)</mo>

</mrow>
</mrow>

</mrow>
<annota t i on−xml i d=”m1b” encod ing=”MathML−Content ”>

<app l y x r e f=”m1. 7 ” i d=”m1 . 7 . cmml”>
<p l u s x r e f=”m1. 5 ” i d=”m1 . 5 . cmml”/>
<c i x r e f=”m1. 4 ” i d=”m1 . 4 . cmml”>a</ c i>
<app l y x r e f=”m1. 6 d” i d=”m1 . 6 . cmml”>

<c i x r e f=”m1. 1 ” i d=”m1 . 1 . cmml”>F</ c i>
<c i x r e f=”m1. 2 ” i d=”m1 . 2 . cmml”>a</ c i>
<c i x r e f=”m1. 3 ” i d=”m1 . 3 . cmml”>b</ c i>

</ app l y>
</ app l y>

</ annota t i on−xml>
<anno t a t i on i d=”m1c” encod ing=” a p p l i c a t i o n /x−t e x ”>a+F(a , b)</ anno t a t i on>

</ s eman t i c s>
</math>

nodes; record the association between them; afterwards, the presentation and content
nodes that were sourced from the same ID are connected by getting an xref attribute
referring each to the other. But with XMDual one has not only to determine when the
generated nodes are related, one has to contend with extra tokens; in the example,
the parentheses and comma appear only in the presentation. Presumably, those tokens
should be associated with the application of F , as would the containing m:mrow. The
desired result is shown in Listing 1.2.

A fuller illustration of the issues encountered in typical LATEX markup combines
complex transfix notations and semantic macros, such as:

\left\langle\Psi\middle|\mathcal{H}\middle|\Phi\right\rangle

+ \defint{a}{b}{F(x)}{x}

This example, whose internal form is shown in Listing 1.3, involves quantum-mechanics
notations, which LATExml’s parser is happily able to recognize. Additionally, we’ve
introduced a semantic macro \defint to represent definite integration, which will be
transformed to so-called ‘Pragmatic’ Content MathML form, to enhance the illus-
tration with a many-to-many correspondence. (The implementation of \defint is not
difficult, but outside the scope of this article)

3 Main Strategies

We will see that a key part of the method is determining which nodes are visible to
presentation, to content or to both branches. This is easily determined by an algorithm

Strategies for Parallel Markup 207

Listing 1.3. Internal representation of 〈Ψ |H|Φ〉 +
∫ b

a
F (x)dx as XMath

<XMApp>

<XMTok meaning=” p l u s ” r o l e=”ADDOP”>+</XMTok>

<XMDual>

<XMApp>

<XMTok meaning=”quantum−ope ra to r−produc t ”/>

<XMRef i d r e f=”m2. 5 ”/>

<XMRef i d r e f=”m2. 6 ”/>

<XMRef i d r e f=”m2. 7 ”/>

</XMApp>

<XMWrap>

<XMTok r o l e=”OPEN”>〈</XMTok>

<XMTok r o l e=”ID” xm l : i d=”m2. 5 ”>Ψ</XMTok>

<XMTok r o l e=”CLOSE” s t r e t c h y=” t r u e ”>|</XMTok>

<XMTok r o l e=”ID” xm l : i d=”m2. 6 ” f on t=” c a l i g r a p h i c ”>H</XMTok>

<XMTok r o l e=”OPEN” s t r e t c h y=” t r u e ”>|</XMTok>

<XMTok r o l e=”ID” xm l : i d=”m2. 7 ”>Φ</XMTok>

<XMTok r o l e=”CLOSE”>〉</XMTok>

</XMWrap>

</XMDual>

<XMDual>

<XMApp>

<XMTok meaning=”hack−d e f i n i t e−i n t e g r a l ” r o l e=”UNKNOWN”/>

<XMRef i d r e f=”m2. 1 ”/>

<XMRef i d r e f=”m2. 2 ”/>

<XMRef i d r e f=”m2. 3 ”/>

<XMRef i d r e f=”m2. 4 ”/>

</XMApp>

<XMApp>

<XMApp>

<XMTok r o l e=”SUPERSCRIPTOP” s c r i p t p o s=” pos t2 ”/>

<XMApp>

<XMTok r o l e=”SUBSCRIPTOP” s c r i p t p o s=” pos t2 ”/>

<XMTok math s t y l e=” d i s p l a y ” meaning=” i n t e g r a l ” r o l e=”INTOP”>
∫
</XMTok>

<XMTok r o l e=”ID” xm l : i d=”m2. 1 ” f on t=” i t a l i c ”>a</XMTok>

</XMApp>

<XMTok r o l e=”ID” xm l : i d=”m2. 2 ” f on t=” i t a l i c ”>b</XMTok>

</XMApp>

<XMApp>

<XMTok meaning=” t imes ” r o l e=”MULOP”></XMTok>

<XMDual xm l : i d=”m2. 3 ”>

<XMApp>

<XMRef i d r e f=”m2 . 3 . 1 ”/>

<XMRef i d r e f=”m2 . 3 . 2 ”/>

</XMApp>

<XMApp>

<XMTok r o l e=”FUNCTION” xm l : i d=”m2 . 3 . 1 ” f on t=” i t a l i c ”>F</XMTok>

<XMWrap>

<XMTok r o l e=”OPEN” s t r e t c h y=” f a l s e ”>(</XMTok>

<XMTok r o l e=”UNKNOWN” xm l : i d=”m2 . 3 . 2 ” f on t=” i t a l i c ”>x</XMTok>

<XMTok r o l e=”CLOSE” s t r e t c h y=” f a l s e ”>)</XMTok>

</XMWrap>

</XMApp>

</XMDual>

<XMApp>

<XMTok meaning=” d i f f e r e n t i a l −d” r o l e=”DIFFOP” f on t=” i t a l i c ”>d</XMTok>

<XMTok r o l e=”UNKNOWN” xm l : i d=”m2. 4 ” f on t=” i t a l i c ”>x</XMTok>

</XMApp>

</XMApp>

</XMApp>

</XMDual>

</XMApp>

208 B.R. Miller

like mark-and-sweep garbage collection. Simply traverse the tree from the root following
the first branch of each XMDual to mark all nodes as visible to presentation, and repeat
for the second branch to mark content visibility. The analogy is apt, as this also allows
pruning of nodes that are not visible at all, as sometimes occurs with complex macro
usage — another mini-strategy.

A few definitions will also be relevant. During the depth-first tree traversal trans-
forming XMath into either pMML or cMML, the current node is the XMath node being
transformed. The current container is the XMDual node (if any) containing the current
node; in the context of this discussion, an XMath container is always the application
of some function or operator. We’ll call the latter the current operator.

We will ascribe to each generated target node (pMML or cMML) an XMath source
node that can be considered ‘responsible’ for the target node. In the common, simplest
case, a current node that is visible to both branches and generates a token node in the
target can be used as the source node.

A special case occurs when the target MathML element is a container; these gen-
erally do not correspond to symbols, and ought to be associated with the nearest
application (think m:apply or m:mrow)3. In this case, the source should be the nearest
ancestor XMDual of the current node, that is the current container.

Similar reasoning applies when a token (non-container) symbol is generated from
an XMath token which is not visible to the opposite branch; typically the notational
icing of some transfix. We presume that is the only visible manifestation of the current
operator, and so that is taken as the source node. In the example, the angle brackets
and vertical bars are thus ascribed to the quantum-operator-product operator.

In pseudo-code, the source node for a given target is thus:

if target is a container
if current container exists
current container

else
current

else if target is visible in both branches
current

else if current container exists
if current operator is hidden from presentation
current operator

else
current container

else
current

Once this ascription of source nodes is done, the cross-referencing between the gen-
erated targets is easily established: the xref of a pMML (cMML) node is the cMML
(pMML, respectively) node that was ascribed to the same source XMath node; if mul-
tiple nodes were ascribed to that source node, the first target node, in document order,
is the sensible choice. Applying this method to the example from Listing 1.3 yields
Listing 1.4, where we can see, for example, that the angle brackets and vertical bars

3 Exceptions are m:msqrt or m:menclose where they tend to represent both the appli-
cation of an operation and yet are the only visible manifestation of the operator!
However, we also note that a common use of cross-linking in html is to turn them
into href links; but html does not allow nested links!.

Strategies for Parallel Markup 209

Listing 1.4. MathML representation of 〈Ψ |H|Φ〉 +
∫ b

a
F (x)dx

<math d i s p l a y=” b l o ck ” a l t t e x t=” . . . ” c l a s s=” l t x Math ” i d=”m2”>

<s eman t i c s i d=”m2a”>

<mrow x r e f=”m2 . 1 3 . cmml” i d=”m2.13 ”>

<mrow x r e f=”m2 . 9 . cmml” i d=”m2. 9 ”>

<mo x r e f=”m2 . 8 . cmml” i d=”m2. 8 ”>&Le f tAng l eB ra ck e t ;</mo>

<mi mathva r i an t=”normal ” x r e f=”m2 . 5 . cmml” i d=”m2. 5 ”>&Ps i ;</mi>

<mo x r e f=”m2 . 8 . cmml” i d=”m2. 8 a” s t r e t c h y=” t r u e ” f e n c e=” t r u e ”>|</mo>

<mi x r e f=”m2 . 6 . cmml” i d=”m2. 6 ” c l a s s=” l t x f o n t m a t h c a l i g r a p h i c ”>&H i l b e r t S p a c e ;</mi>

<mo x r e f=”m2 . 8 . cmml” i d=”m2. 8 b” s t r e t c h y=” t r u e ” f e n c e=” t r u e ”>|</mo>

<mi mathva r i an t=”normal ” x r e f=”m2 . 7 . cmml” i d=”m2. 7 ”>&Phi ;</mi>

<mo x r e f=”m2 . 8 . cmml” i d=”m2. 8 c”>&Righ tAng l eBracke t ;</mo>

</mrow>

<mo x r e f=”m2 . 1 0 . cmml” i d=”m2.10 ”>+</mo>

<mrow x r e f=”m2 . 1 2 . cmml” i d=”m2.12 c”>

<msubsup x r e f=”m2 . 1 2 . cmml” i d=”m2.12 ”>

<mo x r e f=”m2 . 1 1 . cmml” i d=”m2.11 ” symmetr ic=” t r u e ” l a r g e op=” t r u e ”>&i n t ;</mo>

<mi x r e f=”m2 . 1 . cmml” i d=”m2. 1 ”>a</mi>

<mi x r e f=”m2 . 2 . cmml” i d=”m2. 2 ”>b</mi>

</msubsup>

<mrow x r e f=”m2 . 1 2 . cmml” i d=”m2.12 b”>

<mrow x r e f=”m2 . 3 . cmml” i d=”m2. 3 c”>

<mi x r e f=”m2 . 3 . 1 . cmml” i d=”m2 . 3 . 1 ”>F</mi>

<mo x r e f=”m2 . 3 . cmml” i d=”m2. 3 d”>&App lyFunct ion ;</mo>

<mrow x r e f=”m2 . 3 . cmml” i d=”m2. 3 b”>

<mo x r e f=”m2 . 3 . cmml” i d=”m2. 3 ” s t r e t c h y=” f a l s e ”>(</mo>

<mi x r e f=”m2 . 3 . 2 . cmml” i d=”m2 . 3 . 2 ”>x</mi>

<mo x r e f=”m2 . 3 . cmml” i d=”m2. 3 a” s t r e t c h y=” f a l s e ”>)</mo>

</mrow>

</mrow>

<mo x r e f=”m2 . 1 1 . cmml” i d=”m2.11 a”>&I n v i s i b l e T im e s ;</mo>

<mrow x r e f=”m2 . 1 2 . cmml” i d=”m2.12 a”>

<mo x r e f=”m2 . 1 1 . cmml” i d=”m2.11 b”>d</mo>

<mi x r e f=”m2 . 4 . cmml” i d=”m2. 4 ”>x</mi>

</mrow>

</mrow>

</mrow>

</mrow>

<annota t i on−xml i d=”m2b” encod ing=”MathML−Content ”>

<app l y x r e f=”m2.13 ” i d=”m2 . 1 3 . cmml”>

<p l u s x r e f=”m2.10 ” i d=”m2 . 1 0 . cmml”/>

<app l y x r e f=”m2. 9 ” i d=”m2 . 9 . cmml”>

<csymbol x r e f=”m2. 8 ” i d=”m2 . 8 . cmml” cd=” l a t e xm l ”>quantum−ope ra to r−produc t</ csymbol>

<c i x r e f=”m2. 5 ” i d=”m2 . 5 . cmml”>normal−&Ps i ;</ c i>

<c i x r e f=”m2. 6 ” i d=”m2 . 6 . cmml”>&H i l b e r t S p a c e ;</ c i>

<c i x r e f=”m2. 7 ” i d=”m2 . 7 . cmml”>normal−&Phi ;</ c i>

</ app l y>

<app l y x r e f=”m2.12 c” i d=”m2 . 1 2 . cmml”>

<i n t x r e f=”m2.11 ” i d=”m2 . 1 1 . cmml”/>

<bvar x r e f=”m2.12 c” i d=”m2.12 a . cmml”>

<c i x r e f=”m2. 4 ” i d=”m2 . 4 . cmml”>x</ c i>

</ bvar>

<l o w l i m i t x r e f=”m2.12 c” i d=”m2.12 b . cmml”>

<c i x r e f=”m2. 1 ” i d=”m2 . 1 . cmml”>a</ c i>

</ l ow l i m i t>

<u p l im i t x r e f=”m2.12 c” i d=”m2.12 c . cmml”>

<c i x r e f=”m2. 2 ” i d=”m2 . 2 . cmml”>b</ c i>

</ u p l im i t>

<app l y x r e f=”m2. 3 c” i d=”m2 . 3 . cmml”>

<c i x r e f=”m2 . 3 . 1 ” i d=”m2 . 3 . 1 . cmml”>F</ c i>

<c i x r e f=”m2 . 3 . 2 ” i d=”m2 . 3 . 2 . cmml”>x</ c i>

</ app l y>

</ app l y>

</ app l y>

</ annota t i on−xml>

<anno t a t i o n i d=”m2c” encod ing=” a p p l i c a t i o n /x−t e x ”> . . .</ anno t a t i o n>

</ s eman t i c s>

</math>

210 B.R. Miller

are associated with the quantum-operator-product operator while the various m:bvar,
m:lowlimit, etc., are properly associated with the integral, not the integral operator.

4 Outlook

We have described a set of strategies for generating parallel markup with cross-references
consisting of encouraging fine-grained parallel structures, mark-and-sweep to detect
nodes visible to presentation or content and to garbage-collect, and a method to deter-
mine related nodes within each branch of the parallel markup.

Parallel markup must also be adapted to larger structures such as eqnarray, and
AMS alignments with intertext containing multiple formula and/or document-level
text markup. While the fundamental issue is the same — separating presentation and
content forms — this seems to demand a distributed markup that separates the pre-
sentation and content forms into distinct math containers. LATExml currently has an
ad-hoc, but not entirely satisfactory solution for this, but we will experiment with
adapting the methods described here. However, it remains to be seen whether cross-
referencing across separate math containers can be made useful.

And, now that generating Content MathML is more fun, we must continue work-
ing towards generating good Content MathML. Ongoing work will attempt to estab-
lish appropriate OpenMath Content Dictionaries, probably in a FlexiFormal sense [5],
improved math grammar, and exploring semantic analysis.

References

1. Ausbrooks, R., Buswell, S., Carlisle, D., Chavchanidze, G., Dalmas, S., Devitt,
S., Diaz, A., Dooley, S., Hunter, R., Ion, P., Kohlhase, M., Lazrek, A., Libbrecht,
P., Miller, B., Miner, R., Sargent, M., Smith, B., Soiffer, N., Sutor, R., Watt, S.:
Mathematical Markup Language (MathML) version 3.0. W3C Recommendation,
World Wide Web Consortium (W3C) (2010). http://www.w3.org/TR/MathML3

2. Ginev, D., Jucovschi, C., Anca, S., Grigore, M., David, C., Kohlhase, M.: An archi-
tecture for linguistic and semantic analysis on the arXMLiv corpus. In: Applica-
tions of Semantic Technologies (AST) Workshop at Informatik 2009 (2009)

3. Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O’Connor, E.,
Pfeiffer, S.: HTML5. W3C Recommentation, World Wide Web Consortium (W3C)
(2014). http://www.w3.org/TR/html5/

4. Kohlhase, M.: Using LATEX as a semantic markup format. Math. Comput. Sci.
2(2), 279–304 (2008)

5. Kohlhase, M.: The flexiformalist manifesto. In: Voronkov, A., Negru, V., Ida,
T., Jebelean, T., Petcu, D., ane Daniela Zaharie, S.M.W. (eds.) 14th Interna-
tional Workshop on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2012), pp. 30–36. IEEE Press, Timisoara (2013)

6. Miller, B.R., Youssef, A.: Technical aspects of the digital library of mathematical
functions. Ann. Math. Artif. Intell. 38(1–3), 121–136 (2003)

7. Miller, B.R., Youssef, A.: Augmenting presentation MathML for search. In: Autex-
ier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC/Cal-
culemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 536–542. Springer, Heidelberg
(2008)

8. Stamerjohanns, H., Kohlhase, M., Ginev, D., David, C., Miller, B.: Transforming
large collections of scientific publications to XML. Math. Comput. Sci. 3(3), 299–
307 (2010)

http://www.w3.org/TR/MathML3
http://www.w3.org/TR/html5/

Readable Formalization of Euler’s Partition
Theorem in Mizar

Karol Pąk(B)

Institute of Informatics, University of Bialystok, Bialystok, Poland
pakkarol@uwb.edu.pl

Abstract. We present a case study on formalization of a textbook the-
orem in a form that is as close to the original textbook presentation as
possible. Euler’s partition theorem, listed as #45 at Freek Wiedijk’s list
of “Top 100 mathematical theorems”, is taken as the subject of the study.
As a result new formal concepts including informal flexary (i.e. flexible
arity) addition are created and existing ones are extended to go around
existing limitations of the Mizar system, without modification of its core.
Such developments bring more flexibility of informal language reasoning
into the Mizar system and make it useful for wider audience.

Keywords: Operations on languages · Legibility of proofs · Euler’s
partition

1 Introduction

Famous mathematical theorems rarely occur with only one proof in informal
mathematical practice. In the mathematical literature we can often find several
formulations or even conceptually different proofs of the same theorem. How-
ever, the reader can easily compare proofs that have the same main idea. Such
situations are not so popular in repositories of formal mathematical knowledge.
Usually, one version of a theorem with one proof only is stored there. Addition-
ally, comparing proofs created in different formal proof systems is not so trivial.
Even, if we consider two declarative environments or two procedural ones, this
problem does not seem much easier.

It comes as no surprise that the main idea of the formal proof is often different
from all known informal proof variants of the theorem, even if the author tried
to create a formal equivalent of a particular informal development. The experi-
ence of big proof formalization developments shows that proof script authors can
often, given the set of definitions and theorems collected in the Mizar Mathemat-
ical Library (MML) [3], obtain a new, so far unknown, and sometimes simpler,
proof of a particular statement [8,9]. Therefore, many authors compare informal
proof variants to check the possible use of collected resources before starting
their formalization effort.

The paper has been financed by the resources of the Polish National Science Center
granted by decision n◦DEC-2012/07/N/ST6/02147.

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 211–226, 2015.
DOI: 10.1007/978-3-319-20615-8_14

212 K. Pąk

To illustrate such situations we can consider the development of Brouwer’s
fixed-point theorem [5]. This theorem has been used in the formalization of Jor-
dan curve theorem in the Mizar [7]. But for this purpose, the 2-dimensional case
was enough. Therefore, this statement has been provided by A. Korniłowicz,
only for this case using basic arguments concerning the fundamental groups of
the respective spaces [13]. Note that this approach for higher-dimensional cases
requires incomparably more difficult facts about these groups. The same theo-
rem was proved in a combinatorial way in the HOL Light by J. Harrison for n-
dimensional case, based on Sperner’s lemma [10]. The original approach to prove
this lemma is based on intuitively clear facts about the standard n-dimensional
simplex and its arbitrarily small subdivision. However, these facts are not so easy
if we consider them formally. Therefore, he chose an alternative justification of
this lemma, wherein the simplex structure is replaced by the cubic one. Note
that simplex structure is explored in one of the approaches to prove Brouwer’s
invariance of the domain theorem that was selected to formalize in Mizar by
K. Pąk [18]. Therefore, having a large collection of facts about simplices,
Brouwer’s fixed-point theorem has been redeveloped to the general case based
on Sperner’s lemma in the original approach.

In this paper, we present the results of an experiment where we formalize
Euler’s partition theorem in the original approach [1,6,22]. Obviously, we can
obtain a very slick proof using definitions and theorems collected in the MML
that looks more or less similar to the original proof. However, the point of this
exercise was not to obtain “a formalization”, but to see how a natural language
proof can be expressed in the Mizar format. Therefore our aim was to recreate
the main idea and steps of reasoning as closely as possible, sometimes work
around the system’s limitations, however without a modification of its core, to
obtain the result that looks almost the same as the informal one. Furthermore,
as a measure of “closeness”, we consider also the sketch of the proof that is
generated automatically from the Mizar proof scripts and is published in the
journal Formalized Mathematics.

Structure of the Paper. In Sect. 2 we discuss several conceptually different proofs
of Euler’s partition theorem. We focus our attention on three approaches: the
original one that was presented by L. Euler [6], the Euler’s bijective proof that
was presented by G.E. Andrews [1], and the approach basing on Sylvester’s
bijection created by J.J. Sylvester, and choose one. In Sect. 3 we analyze infor-
mal mathematical constructions that are used in the selected approach, and we
propose an adaptation method of this construction to the formal language in
a way that the obtained visual effect is as closely as possible to the informal
one. In Sect. 4 we present a formalization of the proof in the selected approach
written in the Mizar system. Finally, in Sect. 5 we conclude the paper and we
discuss future work. Note additionally that each fragment of the Mizar proof
scripts contained in this paper comes from Mizar theory files FLEXARY1.miz,
EULRPART.miz available in the Mizar distribution.

Readable Formalization of Euler’s Partition Theorem in Mizar 213

2 Informal Proofs of Euler’s Partition Theorem

Generally, a partition of a natural number n is a way of writing n as a sum
of positive integers where the arrangement of the addends does not need to be
determined. Denote by On the set of partitions of n into odd parts and similarly
denote by Dn the set of partitions of n into distinct parts. Then Euler’s partition
theorem states that the cardinality of On is equal to the cardinality of Dn for all
natural n. Euler presented a very slick proof in 1748 [6] by generating functions
that can be sketched as follows:

1 +
∞∑

n=1

|Dn|xn = (1 + x) · (1 + x2) · (1 + x3) · (1 + x4) · (1 + x5) · . . .

=
1− x2

1− x
· 1− x4

1− x2
· 1− x6

1− x3
· 1− x8

1− x4
· 1− x10

1− x5
· . . .

=
1

1− x
· 1
1− x3

· 1
1− x5

· . . .
= (1 + x + x2 + x3 + . . .) · (1 + x3 + (x3)2 + (x3)3 + . . .)

· (1 + x5 + (x5)2 + (x5)3 + . . .) · . . .
= 1 +

∞∑

n=1

|On|xn

(1)

However, in such an analytical proof, information that describes the relationship
between relevant partitions of n is implicit and hard to grasp. Obviously, without
this information the proof is complete, but there are many people who prefer
to compare the cardinality of sets based on an explicit mapping that associates
their elements. Such a bijective proof has also been described by Euler. It has
been given by G.E. Andrews [1, pp. 149–150], and also by H.S. Wilf [22, p. 10]
in the following form:

n = d1 + d2 + . . . + dk.

di 2
n = 2a1O1 + 2a2O2 + 2a3O3 + . . . + 2akOk Oi

n = (2α1 + 2α2 + . . .) · 1 + (2β1 + 2β2 + . . .) · 3 + (2γ1 + 2γ2 + . . .) · 5 + . . .
= μ1 · 1 + μ3 · 3 + μ5 · 5 + . . .

(2α1 + 2α2 + . . .) αi
μj n

μ1 1 μ3 3 �

Fig. 1. A bijective proof of Euler’s partition theorem that is used in [22].

In this constructive proof only several simple facts are used (implicite): the
existence and the uniqueness of conversion between a natural number and its
binary equivalent; a positive number decomposition as the product of a power
of two and an odd number.

214 K. Pąk

It is also possible to prove this result by another partition transformation,
where correspondence is visually apparent by some modification of the Ferrers
diagram, called a bent graph. The construction of this graph is based on the
observation that we can represent every odd number 2i+1 as one central point,
and a column and a row that are built with i points. Then we may arrange the
configurations of points in such a way that the central points are inserted into
a diagonal line. In this way we obtain what we call the bent graph (see Fig. 2).
Additionally, the symmetrical parts of this graph, located above and below the
diagonal line, are called regular graphs. Sylvester’s bijection that is defined on
bent graphs has been presented in [20, pp. 287–288] and is formulated as follows:
Each of these graphs will be bounded by lines inclined to each other at an angle
one-half of that contained between the original bounding lines, and each may be
regarded as made up of bends fitting into one another. The original proof also
contains a sketch of a justification that the resulting partition consists of pairwise
different numbers (see to the example presented in Fig. 2 as an illustration).
Obviously, the justification presented in this form shows in a simple way the
proof idea, but only the idea. Therefore, a formalization of such a reasoning
could not reflect the original proof at a very high level of similarity.

11 11 9 11

9

6

5 5 5 2 8 10

Fig. 2. An example that illustrates Sylvester’s bijection, which maps a partition of 46
into odd numbers (5, 5, 5, 9, 11, 11) to a partition of 46 into pairwise different numbers
(2, 6, 8, 9, 10, 11), used in [20].

Analysis of well-known justifications of Euler’s partition theorem for the pur-
poses of formal transcription shows that reflecting the original proof is possible
in two mentioned approaches. However, the second justification, presented in
Fig. 1, contains a more interesting informal construction, namely flexary (i.e.
flexible arity, see [12]) addition with visible lower and upper bounds of summa-
tion, but also with only a lower bound available. Additionally, the formalization
of this theorem in the HOL system imitates also the main idea of the second
approach1.
1 For more details see https://code.google.com/p/hol-light/source/browse/trunk/

100/euler.ml?r=2.

https://code.google.com/p/hol-light/source/browse/trunk/100/euler.ml?r=2
https://code.google.com/p/hol-light/source/browse/trunk/100/euler.ml?r=2

Readable Formalization of Euler’s Partition Theorem in Mizar 215

3 Formal Introduction of Informal Notations

To reflect the informal reasoning in the Mizar language, we discuss in this section
definitions and notations used in the reasoning presented in Fig. 1. We divide
this discusion into three subsections. In Subsect. 3.1 we choose concepts of a
partition definition. Next, in Subsect. 3.2 we define operators that reflect in the
Mizar system the informal flexary plus in both cases, finite and infinite. At the
end, in Subsect. 3.3 we define a special kind of a matrix generalization to realize
the rearrangement of the values of a finite sequence into a sequence of sequences
that is used in the considered reasoning.

3.1 The Formal Definition of a Partition

The reasoning presented in Fig. 1 uses a partition of a natural number n (see (3))
defined as a finite sequence of positive integers that sum up to n. Note also that
the order of the addends is not indicated. However, to count partitions of a
number we need to opt for some type of arrangement, non increasing or non
decreasing. The alternative solution is to represent a partition as a sequence
of addends frequency, i.e. a sequence (a1, a2, . . .) that represent the partition
{1, 1, . . . , 1
︸ ︷︷ ︸

a1

, 2, 2, . . . , 2
︸ ︷︷ ︸

a2

, . . .}. Obviously, we find this approach in the formulation

“the partition that contains μ1 1’s, μ3 3’s” where the non-decreasing arrangement
is suggested. Therefore, to simplify, we use only one method of arrangement in
the definition of partition, which is formulated as a non-decreasing finite sequence
of non-zero natural numbers that sum up to n, thus obtained by writing (in
Mizar).

definition
let n be Nat;
mode a_partition of n -> non-zero non-decreasing natural-valued

FinSequence means
Sum it = n;

end;

(2)

Obviously, such a definition is adapted to represent simple modifications of parti-
tions in an intuitive way, but requires a special attention in the formal approach.
Note that we can neither simply include elements to a partition, nor modify its
existing elements, without violating the arrangement. Such problems do not
occur if we consider the frequency representation of partitions. In this case the
realization of the mentioned operations on a partition is reduced to a simple
modification that increases or reduces by one the value of one element in the
frequency sequence. This approach has been used in the formalization of Euler’s
theorem in HOL, where the partition is defined as follows:

let partitions = store_name "partitions" new_definition
‘p partitions n <=> (!i. ~(p i = 0) ==> 1 <= i /\ i <= n) /\

nsum(1..n) (\i. p(i) * i) = n‘;;

216 K. Pąk

3.2 The Flexary Plus

Analyzing the first sentence of the proof, we find the Eq. (3) where we face
two formalization problems. Obviously, the informal mathematical operators are
present here, i.e. the flexary plus. This formula is usually formalized in the

equivalent form n =
k∑

i=1

di. It can be written in the Mizar language as n = sum

d, if we additionally assume that k is the length of d, or it can be written as
n = sum (d|k), where k is an arbitrary natural number, d is a finite sequence of
natural numbers, and d|k is the restriction of d to the set {1, 2, . . . ,k}. However,
in our experiment we want to obtain a similar term represented as:

(d,2)+...+(d,k). (4)

Note also that the informal expression d2+. . .+dk contains a hidden information
that the finite sequence d has a second, a third, and up to a k-th element in
the domain. The method of hiding this information in a term as (4) or getting
around this problem is the second formalization problem. In the Mizar language
we can resolve this, e.g. by creating a definition by cases or summarizing only
these values that correspond to arguments in the domain of a finite sequence. In
our experiment, we use a solution that gives the greater flexibility. The solution
is based on the concept developed in the MML: a permissive definition of the
function value, where it is assumed that the empty set is the value of a function
outside its field, and also on the Peano number approach, where the empty set
equals 0. However, this solution can be applied to summation of such D-valued
sequence if D contains 0. We define the flexary plus as follows:

definition
let k,n;
let f,g be complex-valued Function;
func (f,k) +...+ (g,n) -> complex number means

h.(0+1) = f.(0+k) & ... & h.(n-’k+1) = f.(n-’k+k)
implies

it = Sum (h| (n-’k+1)) if f = g & k <= n
otherwise it = 0;

end;

(5)

where h is a complex valued finite sequence, the operation -’ is the limited
substraction of natural numbers, i.e. a-’b is equal to max{a− b, 0}, & ... & is
the flexary logical conjunction (for more details see [11]). Note that the Mizar
system’s limitations prohibit the repetition of a locus in an operator expression
when it is defined. Therefore, we cannot eliminate the function g, even if we
want to consider only the case f = g.

The value of the defined above flexary plus is a complex number, but in the
reasoning presented in Fig. 1 only the natural valued finite sequences are used,
for which this value should be a natural number. To obtain such information
about the value, the sufficient solution is to have the following registration in
the environment of the Mizar article:

Readable Formalization of Euler’s Partition Theorem in Mizar 217

registration
let n,k;
let f be natural-valued FinSequence;
cluster (f,k) +...+ (f,n) -> natural;

end;

(6)

Based on the flexary plus definition, we can formulate and prove the first equal-
ity presented in Fig. 1 as n = d.1 + (d,2)+...+(d,len d) for an arbitrary
partition d of n, where len d is the length of d. Additionally, if we consider
finite sequences a, O that represent the unique decomposition of d as a power of
2 times an odd number, we can formalize also the second equality as:

n = 2|^(a.1) * O.1 + 2|^(a.2) * O.2 +
(O (#) 2|^a,3) +...+ (O (#) 2|^a,len d), (7)

where (#) represents the product of functions and a, O have already been intro-
duced to the reasoning in the preceding step which reads as follows:

consider O be odd-valued FinSequence,
a be natural-valued FinSequence such that

A1: len O = len d = len a & d = O (#) 2|^a and
A2: d.1 = O.1*(2|^a.1) &...& d.len d = O.len d*(2|^a.len d);

(8)

Observe that the formula labeled by A2 is an equivalent formulation of the
statement d = O (#) 2|^a. This statement has been added only for improving
the readability of dependencies occurring between d, O, and a. Note also that
we could prove the equality (7) without the restriction on the length of d (that
is equal to the length of O and a), e.g. for len O equal 0 we obtain simply that
O.1 = O.2 = 0, since 1, 2 do not belong to the domain of O, but also n = 0,
since 0-length sequence can be only the partition of 0.

Analyzing the next part of the reasoning presented in Fig. 1 we can observe
that the flexary plus is used also in an unbounded form, without the upper bound
of summation. Generally, this operation is used in the informal mathematical
practice to speak conveniently about the sum of the terms of a sequence, where
basing on several first terms we can precisely predict the others elements by anal-
ogy. Additionally, according to a popular informal convention, the information
about the convergence of a sequence is often assumed a priori. However, this
issue does not concern the reasoning presented in Fig. 1, where the unbounded
flexary plus is used only in the context of finite sequences. For such kind of
sequence, we can define this operator as the flexary plus with an upper bound,
where the upper bound is greater than or equal to the maximum of the domain
of the sequence. It is obtained by writing:

definition
let n;
let f be complex-valued Function;
assume dom f /\ NAT is finite;
func (f,n)+... -> complex number means

for k st for i st i in dom f holds i <= k holds
it = (f,n) +...+ (f,k);

end;

(9)

218 K. Pąk

Note that in the considered reasoning, only finite sequences are used, where
the intersection of the domain and N is finite. Therefore, the introduction of
such a definition to our experiment seems to be redundant. However, without
this assumption, we cannot use this operator in the Mizar system if we need to
substitute a term that is a priori a finite sequence on f, but we have not proved
this statement yet. Obviously, such a possibility is very useful, if we want to
formulate similarly a formal equivalents of an informal term. Moreover, we can
reinforce the Mizar checker in such a way that the equality

(f,n)+... = (f,n) +...+ (f,len f); (10)

is automatically generated and added to every justification of a step, where the
expression +... is used and a term substituted for f is a finite sequence. For
this purpose we create the following redefinition:

definition
let n;
let f be complex-valued FinSequence;
redefine func (f,n)+... -> complex number equals

(f,n) +...+ (f,len f);
end;

(11)

We are aware that a definition that can generate automatically the summed
sequence based only on the terms on endpoints (in a finite case) or two consec-
utive terms (in an infinite case) is a more interesting solution. However, such a
solution requires a modification of the core Mizar system, as it has been done in
the case of flexary logical operators for generalized conjunction and alternative
(for more details see [11]). Such a solution goes beyond the point of this study.

3.3 Regrouping the Values of Sequence

In the considered reasoning, we come across another interesting informal proce-
dure that consists of grouping the odd number. Obviously, partitioning of a set
into non-empty subsets, according to some properties of its members is noth-
ing new. However, to improve the readability of the defined partition, the proof
authors add to the reasoning some exemplifications or even write elements of
several members in such a way that the reader can easily find out other mem-
bers by analogy. Note that such kind of exemplification is important for humans,
but generally is unnecessary for the Mizar checker, except from the case where
the existence of some kind of partition is proved.

Therefore, specially for our experiment, we define a specific kind of a finite
sequence of finite sequences (a matrix generalization) over an odd valued finite
sequence O, denoted in the Mizar language by odd_organization of O. This
map is defined in such a way that the first sequence contains all arguments of O
for which the value equal 1, the second sequence contains all arguments of O for
which the value equal 3, etc., where the number of finite sequences is sufficient
to cover the domain of O. Obviously, odd_organization of O is not uniquely
determined by O, but we can use the global choice [14] (for more details see [7]).

Readable Formalization of Euler’s Partition Theorem in Mizar 219

Note that we can define odd_organization “directly”, i.e. without sub-
types and attributes. However, if another user of the MML will need to regroup
the values in a different way, then probably he would have to provide some anal-
ogous properties. To avoid such situations in the MML, new types are defined
as a restricted version of existing, more general types, if only the last ones exist.
Therefore, we define the odd_organization in the following way. First we
note that individual finite sequences in odd_organization have to be injec-
tive and determined, disjoint sets of values. Hence we introduce the following
attribute:

definition
let F be Function-yielding Function;
attr F is double-one-to-one means

for x1,x2,y1,y2 be object st
x1 in dom F & y1 in dom (F.x1) &
x2 in dom F & y2 in dom (F.x2) & F_(x1,y1)=F_(x2,y2)

holds x1 = x2 & y1 = y2;
end;

(12)

and a mode that reorganizes a finite set D into a finite sequence of finite
sequences:

definition
let D be finite set;
mode DoubleReorganization of D -> double-one-to-one FinSequence of D*

means Values it = D;
end;

(13)

Then we define a type where we have that in every individual finite sequence, ele-
ments are mapped to the same value, and such values in different finite sequences
are different:

definition
let f be finite Function;
mode valued_reorganization of f -> DoubleReorganization of dom f means
(for n ex x st

x = f.it_(n,1) & ... & x = f.it_(n,len (it.n))) &
for n1,n2,i1,i2 be Nat st

i1 in dom (it.n1) & i2 in dom (it.n2) &
f.it_(n1,i1) = f.it_(n2,i2)

holds n1 = n2;
end;

(14)

and finally we define odd_organization as follows:

definition
let f be odd-valued FinSequence;
mode odd_organization of f -> valued_reorganization of f means
2*n-1 = f.it_(n,1) & ... & 2*n-1 = f.it_(n,len (it.n));

end;

(15)

Based on this approach, we can prove in a more general form the properties of
odd_organization that are needed to justify steps in the considered theorem.

220 K. Pąk

Obviously this approach is much more difficult, but is consistent with the pop-
ularized direction of the development of the MML. According to this direction,
the legible formulation and proving of a theorem is an important and challeng-
ing aim, when proof scripts are created for further development of the MML.
However, no less important in this direction is extraction of definitions, creation
of auxiliary theorems and notations in such a way that MML users will be able
to adapt this knowledge for their own purposes.

4 The Theorem Formalization

In the reasoning presented in Fig. 1 the first and also the biggest part is the
description of the transformation that maps a partition of a number into odd
parts to a partition of the number into distinct parts. To adapt this fragment in
a Mizar proof script we define this transformation as follows:

definition
let n be Nat;
let p be one-to-one a_partition of n;
func Euler_transformation p -> odd-valued a_partition of n means

(16)

where the value denoted by it can be determined by the condition:

for O be odd-valued FinSequence,a be natural-valued FinSequence,
sort be odd_organization of O st
len O = len p = len a & p = O (#) 2|^a

for j holds card Coim(it,j*2-1) = ((2|^a)*.sort.j,1)+...

(17)

However, we decided on a more descriptive definition, where several formulas
occur that describe some “exemplifications”, only to improve the legibility of
obtained condition. Note that the equivalence of such extended definition, pre-
sented below, with above ones is provided [15, (12)].

for j be Nat,O1 be odd-valued FinSequence,a1 be natural-valued FinSequence st
len O1 = len d = len a1 & d = O1 (#) 2|^a1

for sort1 be DoubleReorganization of dom d st
(1 = O1.sort1_(1,1) & ... & 1 = O1.sort1_(1,len (sort1.1))) &
(3 = O1.sort1_(2,1) & ... & 3 = O1.sort1_(2,len (sort1.2))) &
(3 = O1.sort1_(3,1) & ... & 5 = O1.sort1_(3,len (sort1.3))) &

for i holds
2*i-1 = O1.sort1_(i,1) & ... & 2*i-1 = O1.sort1_(i,len (sort1.i))

holds
card Coim(it,1) = (2|^a1).sort1_(1,1) +((2|^a1)*.sort1.1,2)+... &
card Coim(it,3) = (2|^a1).sort1_(2,1) +((2|^a1)*.sort1.2,2)+... &
card Coim(it,5) = (2|^a1).sort1_(3,1) +((2|^a1)*.sort1.3,2)+... &
card Coim(it,j*2-1) = (2|^a1).sort1_(j,1) +((2|^a1)*.sort1.j,2)+...

(18)

Obviously to prove the correctness of this definition in the Mizar system,
we have to justify that such a value exists and is unique. We selected the proof
of the first conditions [15, (11)] to formally represent the informal description
of Euler’s transformation. For this aim, we constructed a reasoning, wherein

Readable Formalization of Euler’s Partition Theorem in Mizar 221

all steps that are located on the first level of nesting (for more details see [7])
correspond to the selected fragments of the informal proof. Additionally, as a
measure of correspondence we can analyze the generated automatically sketch
of this reasoning presented in Fig. 3. Note that the full proof contains about 300
lines (for the full description see [15]), therefore we hide all nested reasonings
and every list of statements that is used in a justification.

d n
e n j

O1 a1 lenO1 = len d = len a1

d = O1 ·2a1 τ dom d 1 = O1(τ1,1)
1 = O1(τ1,len(τ(1))) 3 = O1(τ2,1) 3 = O1(τ2,len(τ(2))) 5 = O1(τ3,1)

5 = O1(τ3,len(τ(3))) i 2 · i − 1 = O1(τi,1) 2 · i − 1 =

O1(τi,len(τ(i))) Coim(e, 1) = 2a1 (τ1,1) + ((2a1 � τ)(1), 2)+ . . . Coim(e, 3) =

2a1 (τ2,1) + ((2a1 � τ)(2), 2)+ . . . Coim(e, 5) = 2a1 (τ3,1) + ((2a1 � τ)(3), 2)+ . . .

Coim(e, j · 2 − 1) = 2a1 (τj,1) + ((2a1 � τ)(j), 2)+ . . .
n = d(1) + ((d, 2)+ . . .+(d, len d)) O

a lenO = len d = len a
d = O · 2a d(1) = O(1) · 2a(1) d(len d) = O(len d) · 2a(len d) n =

2a(1)·O(1)+2a(2)·O(2)+((O·2a, 3)+ . . .+(O·2a, len d))
σ = O dom2a μ
(2 · lenσ) N j μ(2 · j) = 0

μ(2 · j − 1) = 2a(σj,1) + ((2a � σ)(j), 2)+ . . . α = a · σ(1) β = a · σ(2)

γ = a · σ(3) n = (2α(1) + (2α, 2)+ . . .) · 1 + (2β(1) + (2β , 2)+ . . .) · 3 + (2γ(1) +
(2γ , 2)+ . . .) · 5 + ((iddom μ · μ), 7)+ . . . n =
μ(1)·1+μ(3)·3+μ(5)·5+((iddom μ ·μ), 7)+ . . . e

e i Coim(e, i) = μ(i)

n = Coim(e, 1) ·1+ Coim(e, 3) ·3+ Coim(e, 5) ·5+((iddom μ ·μ), 7)+ . . . n =
∑

C
j 1 ≤ j ≤ len d O(j) = O1(j) a(j) = a1(j)

j Coim(e, j · 2 − 1) = 2a1 (τj,1) + ((2a1 � τ)(j), 2)+ . . .
�

Fig. 3. The sketch generated automatically of proof [15, (11)] that justifies the existence
of Euler_transformation. The content of the sketch has not been changed with
the exception of the order of bibliography items.

At the beginning, we introduce a partition d of n into distinct parts and
represent that its elements sum up to n:

let d be one-to-one a_partition of n;
n = d.1 + (d,2)+...+(d,len d) proof...

(19)

Then we introduce two finite sequences that describe a decomposition of every
element of partition p as the product of a power of two and an odd number. We
formalize also the informal connection between these finite sequences and the
number n that occur in the considered reasoning.

222 K. Pąk

consider O be odd-valued FinSequence,a be natural-valued FinSequence such that
len O = len d = len a & d = O (#) 2|^a and
d.1 = O.1 * (2|^a.1) & ... & d.len d = O.len d * (2|^a.len d) by...

n = 2|^(a.1) * O.1 + 2|^(a.2) * O.2 + (O (#) 2|^a,3) +...+(O (#) 2|^a,len d)
proof...

(20)

As it has been mentioned in Sect. 3.3 to select a method that groups together
values of O we use the global choice: the odd_organization of O. Note that
the same method is used to reorganize the values of 2|^a. It can be done since
lengths of 2|^a and O are equal. However, we have to include this information
in the type of this reorganization. In the Mizar system, such modification of the
type can be realized as follows:

len (2|^a)=len O by...
then reconsider sort = the odd_organization of O as

DoubleReorganization of dom (2|^a) by...
(21)

To formalize the unlabelled equality presented in Fig. 1 we have to introduce a
finite sequence and three sets:

consider mu be (2*len sort)-element FinSequence of NAT such that
for j holds mu.(2*j) = 0 &

mu.(2*j-1) = (2|^a). sort_(j,1) + ((2|^a)*.sort.j,2)+... by...
set alpha = a*(sort.1), beta = a*(sort.2), gamma = a*(sort.3);

(22)

Then this equality can be formally formulated as follows:

n = ((2|^alpha).1+ (2|^alpha,2)+...) * 1 + ((2|^beta).1+ (2|^beta,2)+...) * 3 +
((2|^gamma).1+ (2|^gamma,2)+...) * 5 + ((id dom mu)(#)mu,7)+... proof...

n = mu.1 * 1 + mu.3 * 3 + mu.5 * 5 + ((id dom mu)(#)mu,7) +... proof...
(23)

Finally, to finish the informal contraction of value of p in Euler’s transformation,
we use the following 5 steps:

consider e be odd-valued FinSequence such that
e is non-decreasing & for i holds card Coim(e,i) = mu.i by...

n = card Coim(e,1) * 1 + card Coim(e,3) * 3 +
card Coim(e,5) * 5 + ((id dom mu)(#)mu,7) +... proof...

n = Sum e proof...
then reconsider e as odd-valued a_partition of n by...
take e;

(24)

However, these steps are not sufficient to finish a formal proof of the existence.
For this purpose we need also to provide that the choice of e does not depend
on a, O and sort. In the considered reasoning a part of this information is
mentioned as “di can be uniquely expressed as a power of 2 times an odd number”.
We recreate this information proving that for every pair of finite sequences a1,
O1 that satisfies d = O1 (#) 2|^a1 holds for j st 1 <= j & j <= len d holds
O.j = O1.j & a.j = a1.j. Whereas the influence of sort selection for obtained
value e is omitted. Therefore, to finish the proof, we provide this influence as an

Readable Formalization of Euler’s Partition Theorem in Mizar 223

external auxiliary theorem [15, (5)] and only refering to this information from
nesting reasoning that justifies the following proof step:

for j holds
card Coim(e,j*2-1) = (2|^a1).sort1_(j,1) + ((2|^a1)*.sort1.j,2)+...

(25)

where sort1 is an arbitrary odd_organization of O1.
Obviously, in the situation described above, where only several steps at the

first level of nesting do not have their informal counterparts in the text book
proof, it has a negative consequence, i.e. the size of the full proof. There are
three main reasons for that. Firstly, note that to obtain such a proof we encap-
sulate less important fragments of reasoning at the deeper levels of nesting as
subreasonings. Additionally, if steps in two different nesting subreasonings refer
to the same auxiliary fact, then to avoid duplication, generally, we try to locate
this fact in a common top level of nesting in such a way that this fact is avail-
able from these subreasonings (for more details see [17]). However, this solution
is inconsistent with our goal, where we try to remove auxiliary facts form the
first level of nesting. The second reason is the consequence of faithfully repro-
ducing the informal term without any restrictions that are a priori assumed in
the informal context. Note that to resolve the problem of a priori assumptions
we have to provide several facts for different cases, that are completely redun-
dant if we resign from the mirroring. Let us focus on the term 2α1 + 2α2 + . . .
that occurs in Fig. 1 and can be formalized simply as sum (2|^alpha). But
according to our purpose, we would like to obtain the term 2|^(alpha.1) +
(2|^alpha,2)+... that unfortunately is equal to 1 (= 2|^0), if alpha is the
empty finite sequence, where at the same time sum (2|^alpha)=0. Therefore,
to resolve this problem we use (2|^alpha).1 instead of 2|^(alpha.1) in
(23). The third reason is related to the previous one. Note that premises where
we extract first few terms of summations are easily readable for a human, but
difficult to use as premises. Often to use such premises we have to insert back
these extracted terms and consider again the above-mentioned redundant cases.

This shows that the adaptation of the main idea from an informal proof to
a formal one is not so trivial if we want to recreate it in a very precise way.

Since we defined Euler_transformation, we can prove that this trans-
formation is a bijection. Note that the textbook proof contains only very
sketchy justification of this property, that is formulated as follows: In each series
(2α1+2α2+. . .), the αi’s are distinct (why?). We provide this fact in the following
form [15, (13)]:

for O be odd-valued FinSequence, a be natural-valued FinSequence,
s be odd_organization of O st len O = len a & O (#) 2|^a is one-to-one

holds a*.s.i is one-to-one
(26)

We remind that s.i is the finite sequence of all elements of the domain of O, for
which the value under O is equals to 2*i-1. Then a*.s.i is the image of the
elements of s.i under a. Based on this fact and the uniqueness of the binary
number representation we provide in [15, (14)] that Euler_transformation
is an injection:

224 K. Pąk

for p1,p2 be one-to-one a_partition of n st
Euler_transformation p1 = Euler_transformation p2

holds p1 = p2
(27)

Obviously, we provide also in [15, (15)] that Euler_transformation is a
surjection, based on the existences of the binary number representation.

for e be odd-valued a_partition of n
ex p be one-to-one a_partition of n st

e = Euler_transformation p
(28)

Based on the two above-described statements we can “easily” prove that the
set of all natural valued finite sequences that are partitions of n into odd parts has
the same size as the set of all natural-valued finite sequences that are partitions
of n into distinct parts. This statement can be represented as follows:

card {p where p is Element of NAT*:p is odd-valued a_partition of n}
=card {p where p is Element of NAT*:p is one-to-one a_partition of n}

(29)

However, if we register in the Mizar environment, that there exists a set of all
a_partition of n (for more details see [7]), we can represent (29) in more
elegant form, used in [15, (16)], presented below:

card the set of all p where p is odd-valued a_partition of n
= card the set of all p where p is one-to-one a_partition of n

(30)

We can compare the obtained formulation of Euler’s partitions theorem in the
Mizar system with the formulation used in the HOL system:

let EULER_PARTITION_THEOREM = prove
(‘FINITE {p | p partitions n /\ !i. p(i) <= 1} /\

FINITE {p | p partitions n /\ !i. ~(p(i) = 0) ==> ODD i} /\
CARD {p | p partitions n /\ !i. p(i) <= 1} =
CARD {p | p partitions n /\ !i. ~(p(i) = 0) ==> ODD i}‘

5 Conclusion

In this paper we presented a formalization of a textbook theorem where we not
only proved this theorem, but primarily tried to reflect the main idea of the
informal proof with expressions that are available in a formal environment. We
have created more expressive definitions and we extended existing ones to mirror
informal mathematical language constructions in formal terms, working around
the Mizar system’s limitations, without modification of the core Mizar system.
We have showed that an accurate formal reflection of informal terms obliges not
only to introduce new concepts in our library, but also to conduct reasoning in
a more difficult way. Our studies highlighted the differences between the way of
conducting human legible reasoning and reasoning that is acceptable for a proof
checker.

We have showed that appropriate use of flexary operators in formal reasonings
can increase the legibility of obtained proof scripts, in effectively the same way
as in mathematical textbook. However, based on the same example we have

Readable Formalization of Euler’s Partition Theorem in Mizar 225

also showed a negative consequence of this method, namely the growth of the
reasoning length. Obviously, going beyond the point of this study and modifying
the core of the Mizar system, we can obtain a more natural definition of flexary
operators, where we do not have to explicitly use the summed sequence.

Our effort allowed us to formulate similarly formal equivalents of the great
majority of informal terms. Still a number of corner cases resisted our efforts.
In particular handling sequences of length zero was problematic and we had
to fall back to non-uniform treatment of the zero-length case for the sequence
2α1 + 2α2 + . . .

We believe that this study brings us closer to the situation that informal
reasonings can be conducted in systems such as Mizar.

References

1. Andrews, G.E.: Number Theory, Dover edn. W. B. Saunders Company,
Philadelphia (1971)

2. Bancerek, G.: Countable sets and Hessenberg’s theorem. Formalized Math. 2(1),
65–69 (1991)

3. Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, A.,
Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 119–
131. Springer, Heidelberg (2003)

4. Byliński, C.: Functions and their basic properties. Formalized Math. 1(1), 55–65
(1990)

5. Engelking, R.: General Topology. PWN - Polish Scientific Publishers, Warsaw
(1977)

6. Euler, L.: Introduction to the Analysis of the Infinite Book I Translated by John
D. Blanton. Springer, New York (1988)

7. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reasoning 3(2), 153–245 (2010)

8. Grabowski, A., Schwarzweller, C.: On duplication in mathematical repositories. In:
Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton,
A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 300–314. Springer, Heidelberg (2010)

9. Grabowski, A., Schwarzweller, C.: Improving representation of knowledge within
the mizar library. Stud. Logic Grammar Rhetoric 18(31), 35–50 (2009)

10. Harrison, J.V.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

11. Korniłowicz, A.: Tentative experiments with ellipsis in mizar. In: Campbell, J.A.,
Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM
2012. LNCS, vol. 7362, pp. 453–457. Springer, Heidelberg (2012)

12. Horozal, F., Rabe, F., Kohlhase, M.: Flexary operators for formalized mathematics.
In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM
2014. LNCS, vol. 8543, pp. 312–327. Springer, Heidelberg (2014)

13. Korniłowicz, A., Shidama, Y.: Brouwer fixed point theorem for disks on the plane.
Formalized Math. 13(2), 333–336 (2005)

14. Leisenring, A.C.: Mathematical Logic and Hilbert’s ε-Symbol. Gordon and Breach,
New York (1969)

15. Pąk, K.: Euler’s partition theorem. Formalized Math. 23(2), 91–98 (2015). doi:10.
2478/forma-2015-0009

http://dx.doi.org/10.2478/forma-2015-0009
http://dx.doi.org/10.2478/forma-2015-0009

226 K. Pąk

16. Pąk, K.: Flexary operations. Formalized Math. 23(2), 79–90 (2015). doi:10.2478/
forma-2015-0008

17. Pąk, K.: Methods of lemma extraction in natural deduction proofs. J. Autom.
Reasoning 50(2), 217–228 (2013)

18. Pąk, K.: Topological manifolds. Formalized Math. 22(2), 179–186 (2014)
19. Rudnicki, P., Trybulec, A.A.: Abian’s fixed point theorem. Formalized Math. 6(3),

335–338 (1997)
20. Sylvester, J.J., Franklin, F.: A constructive theory of partitions, arranged in three

acts, an interact and an exodion. Amer. J. Math. 5, 251–330 (1882)
21. Trybulec, W.A.: Non-contiguous substrings and one-to-one finite sequences. For-

malized Math. 1(3), 569–573 (1990)
22. Wilf, H.S.: Lectures on Integer Partitions (2000)

http://dx.doi.org/10.2478/forma-2015-0008
http://dx.doi.org/10.2478/forma-2015-0008

Automating Change of Representation
for Proofs in Discrete Mathematics

Daniel Raggi1(B), Alan Bundy1, Gudmund Grov2, and Alison Pease3

1 School of Informatics, University of Edinburgh, Edinburgh, Scotland
danielraggi@gmail.com

2 School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh, Scotland

3 School of Computing, University of Dundee, Dundee, Scotland

Abstract. Representation determines how we can reason about a spe-
cific problem. Sometimes one representation helps us find a proof more
easily than others. Most current automated reasoning tools focus on
reasoning within one representation. There is, therefore, a need for the
development of better tools to mechanise and automate formal and log-
ically sound changes of representation.

In this paper we look at examples of representational transformations
in discrete mathematics, and show how we have used Isabelle’s Transfer
tool to automate the use of these transformations in proofs. We give a
brief overview of a general theory of transformations that we consider
appropriate for thinking about the matter, and we explain how it relates
to the Transfer package. We show our progress towards developing a
general tactic that incorporates the automatic search for representation
within the proving process.

Keywords: Change of representation · Transformation · Automated
reasoning · Isabelle proof assistant

1 Introduction

Many mathematical proofs involve a change of representation from a domain in
which it is difficult to reason about the entities in question to one in which some
aspects essential to the proof become evident and the proof falls out naturally.

Many times the transformation makes it explicitly into the written proof, but
sometimes it remains hidden as part of the esoteric process of coming up with
the proof in the mathematician’s mind. For a formal, mechanical proof, this can
be problematic, not only because we need to account for the logical validity of
the transformation, but because if we want a computational system to find a
proof like a mathematician would, we need to be able to incorporate something

D. Raggi—This work has been supported by a scholarship from the Mexican Council
of Science and Technology (CONACYT).

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 227–242, 2015.
DOI: 10.1007/978-3-319-20615-8 15

228 D. Raggi et al.

like the esoteric transformations going on inside the mathematician’s mind into
the mechanical search.

The importance of representational changes in mathematics is evidenced in
historically notable works like Kurt Gödel’s incompleteness theorems, where the
proof involves matching (or encoding) meta-theoretical concepts like ‘sentence’
and ‘proof’ as natural numbers, or more recently Andrew Wiles’ proof of Fer-
mat’s Last Theorem, which involves matching the Galois representations of ellip-
tic curves with modular forms. This phenomenon is also seen in refinement based
formal methods (e.g. VDM and B): one starts with a highly abstract represen-
tation that is easy to reason with, and then it is step-wise refined to a very
concrete representation that can be implemented as a computer program. All of
these transformations are justified by a general notion of morphism.

In this paper we give an overview of a general mathematical framework suit-
able for reasoning about representational changes in type-theoretic higher-order
logics (these are transformations/morphisms between structures that land us in
different theories). We see that the operation of Isabelle’s transfer methods [6] fit
into this notion of transformation. It is a way of mechanising inference between
two domains, if the system is provided with a transformation by the user. We
present a set of transformations we have identified as essential for reasoning in
discrete mathematics, and show how we have used the transfer tool to imple-
ment mechanical proofs in Isabelle that use these transformations. We show our
work towards automating the search for representation as a tactic for use within
proofs in discrete mathematics in Isabelle.

2 Background

Isabelle/HOL is a theorem proving framework based on a simple type-theoretical
higher-order logic [9]. It is one of the most widely used proof assistants for the
mechanisation of proofs. Apart from ensuring the correctness of proofs written in
its formal language, Isabelle has powerful automatic tactics like simp and auto,
and through time it has been enriched with some internally-verified theorem
provers like metis [7] and smt [11], along with a connection from the internal
provers to some very powerful external provers like E, SPASS, Vampire, CVC3
and Z3 through the Sledgehammer tool [10].

The Transfer package was first released for Isabelle 2013-1 as a general mech-
anism for defining quotient types and transferring knowledge from the old ‘rep-
resentation’ type into the new ‘abstract’ type [6]. However, their generalisation
is not restricted to the definition of new quotient types, but allows the user to
relate any two types by theorems of a specific shape called transfer rules. Some
of these rules can be defined automatically when the user defines a new quotient
type, but the user is free to add them manually, provided that they prove a
preservation theorem. Central to this package, the transfer and transfer ′ tactics
try to automatically match the goal sentence to a new one related by either
equivalence or implication, inferring this relation from the transfer rules.

We have taken full advantage of the generality of the transfer package as a
means of automating the translation between sentences across domains which

Automating Change of Representation for Proofs in Discrete Mathematics 229

are related by what we consider an appropriate and general notion of structural
transformation. In Sect. 4 we give an overview of our notion of transformation
and how the tactics of the transfer package are useful mechanisms for exploiting
the knowledge of a structural transformation.

3 Overall Vision

The worlds of mathematical entities are interconnected. Numbers can be repre-
sented as sets, pairs of sets, lists of digits, bags of primes, etc. Some representa-
tions are only foundational and the reasoner often finds it more useful to discard
the representation for practical use (e.g., natural number 3 is represented by
{∅, {∅}, {∅, {∅}}} in the typical ZF foundations, but this representation is rarely
used in practice), and some are emergent ; they only come about after a fair
amount of accumulated knowledge about the objects themselves, but are more
helpful as reasoning tools (e.g., natural numbers as bags of primes). Overall, we
think that there is no obvious notion of ‘better representation’, and it’s up to the
reasoner to choose, depending on the task at hand. Thus, we envision a system
where the representation of entities can be fluidly transformed.

We have looked at problems in discrete mathematics and the transforma-
tions commonly used for solving them. Below, we give one motivating exam-
ple and show how we have mechanised the transformation in question inside
Isabelle/HOL. Other motivating examples are briefly mentioned.

3.1 Numbers as Bags of Primes

Let us start with an example of the role of representation in number theory.
Consider the following problem:

Problem 1. Let n be a positive integer. Assume that, for every prime p, if p
divides n then p2 also divides n. Prove that n is the product of a square and a
cube.

A standard solution to this problem is to take a set of primes pi such that
n = pa1

1 pa2
2 · · · pak

k . Then we notice that the condition “if p divides n then p2 also
divides n” means that ai �= 1, for each ai. Then, we need to find x1, x2, . . . , xk

and y1, y2, . . . , yk where

(px1
1 px2

2 · · · pxk
n)2(py1

1 py2
2 · · · pyk

n)3 = pa1
1 pa2

2 · · · pak
n

or simply

2(x1, x2, . . . , xk) + 3(y1, y2, . . . , yk) = (a1, a2, . . . , ak).

Thus, we only need to prove that for every ai �= 1 there is a pair xi, yi such that
2xi + 3yi = ai. The proof of this is routine.

The kind of reasoning used for this problem is considered standard by mathe-
maticians. However, it is not so simple in current systems for automated theorem

230 D. Raggi et al.

proving. The non-standard step is the ‘translation’ from an expression containing
various applications of the exponential function into a simpler form in a linear
arithmetic of lists, validated by the fundamental theorem of arithmetic.

The informal nature of the argument, in the usual mathematical presenta-
tion, leaves it open whether the reasoning is best thought as happening in an
arithmetic of lists where the elements are the exponents of the primes, or per-
haps a theory of bags (multisets) where the elements are prime numbers. The
reader might find it very easy to fluidly understand how these representations
match with each other and how they are really just different aspects of the same
thing. Such ease supports our overall argument and vision: that to automate
mathematical reasoning, we require a framework in which data structures are
linked robustly by logically valid translations, where the translation from one to
another is easily conjured up.

The numbers-as-bags-of-primes transformation that links each positive inte-
ger to the bag of its prime factors is valid because there are operations on
each side (numbers and multisets) that correspond to one another. For example,
‘divides’ corresponds to ‘sub(multi)set’, ‘least common multiple’ corresponds to
‘union’, ‘product’ corresponds to ‘multiset addition’, etc. Furthermore, all the
predicates used in the statement of Problem 1 have correspondences with well-
known predicates regarding bags of primes. Thus, the problem can be translated
as a whole. Other representations may not be very productive, e.g., try thinking
about exponentiation in terms of lists of digits.

Table 1 shows more examples of number theory problems with their corre-
sponding problem about multisets.

Table 1. Number theory problems and their multiset counterparts.

Problem in N Problem in multisets

Prove that there is a unique set {x, y, z}
with different x, y, z greater than 1,
such that xyz = 100.

Prove that there is a unique way to
partition {2, 2, 5, 5} into three
different non-empty parts.

Prove that in a set of 9 natural numbers,
where none is divided by a prime
larger than 6, there is a pair whose
product is a perfect square.

Take 9 multisets whose only elements are
2, 3 and 5. Prove that two of the
multisets have multiplicities with the
same parity.

3.2 Numbers as Sets

Many numerical problems have combinatorial proofs. Theses are proofs where
numbers are interpreted to be cardinalities of sets, and the whole problem can
be converted to a problem about sets.

Enumerative combinatorics studies how sets relate to their cardinalities. As
such, its theorems provide the link that allows us to translate numerical problems
into finite set-theoretical problems.

Automating Change of Representation for Proofs in Discrete Mathematics 231

Table 2 shows examples of arithmetic problems with their corresponding finite
set theory problems. While the proofs of the numerical versions are not obvious
at all (some of which are important results in basic combinatorics), the proofs
of their finite set versions can be considered routine.

Table 2. Numerical problems and their set counterparts.

Problem in N Problem in sets
(
n + 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
The set {x ⊆ {0, 1, . . . , n} : |x| = k + 1} can be

partitioned into 2 parts: those that contain
element n and those that don’t

n(n+1)
2

= 1 + 2 + · · · + n The set {x ⊆ {0, 1, . . . , n} : |x| = 2} can be
partitioned into n parts X1, X2, . . . , Xn where the
largest element of each x ∈ Xi is i

2n+1 − 1 =

n∑

i=0

2i
The power set of {0, 1, . . . , n}, excluding the empty

set, can be partitioned into n parts X1, X2, . . . , Xn

where the largest element of each x ∈ Xi is i

2n =
n∑

i=0

(
n

i

)
The power set of {1, . . . , n} can be partitioned into

n + 1 parts X0, X1, . . . , Xn where |x| = i for every
x ∈ Xi

3.3 Interconnectedness

We want to stress the importance of having fluidity of representations. For
example, we talked about the ease with which we could think that the numbers-
as-bags-of-primes transformation is actually a transformation of numbers to a
theory of lists, where elements of the list are the exponents of the ordered prime
factors. Inspired by this, we have mechanised many other simple transformations,
but whose composition allows us to translate fluently from one representation
to another. Our global vision of transformations useful in discrete mathematics,
which we have mechanised1, is represented in Fig. 1. It is worth mentioning that
the diagram is not commutative and that it abstracts logical relations (informa-
tion may be lost, so some paths can only be traversed in one direction).

In the next section we show how a notion of transformation that accounts for
this kind of correspondence between structures can be applied in formal proofs
using Isabelle’s Transfer tool.

4 On Transformations and the Transfer Tool

In this section we give a brief overview of a very general theory of transforma-
tions. We do not claim originality of the essence of this theory. However, we
believe that the presentation we give brings clarity to the problem. We explain
how Isabelle’s Transfer tool relates to it. Consider the following definitions:
1 These can be found in http://homepages.inf.ed.ac.uk/s1052074/AutoTransfer/.

They are updated regularly.

http://homepages.inf.ed.ac.uk/s1052074/AutoTransfer/

232 D. Raggi et al.

Fig. 1. Nodes stand for theories connected by transformations useful in discrete mathe-
matics. Apart from the aforementioned transformations, it includes other simpler ones.
Actually, some of these transformations, such as that connecting N list and N set, are
polymorphic, but presented in the diagram as relating only to type N. This is because
the numbers-as-bags-of-primes transformation is not polymorphic.

Definition 1. A domain is a class of entities and a set of types, where each
entity of the domain corresponds to exactly one type.

Definition 2. A transformation from a domain X to a domain Y is a col-
lection R where every R ∈ R is a relation R : X → Y → B between a type X of
domain X and a type Y of domain Y .2

This relational notion of a transformation makes it possible to account for partial
and multivalued mappings in a logic like Isabelle’s HOL.

We consider a structure to be the class conformed by all the entities of the
closure of a domain under a set of type constructors. In this work, we focus on
structures containing type B, generated with the function type constructor →,
because the basis of a higher order logic can be fully expressed under such a
structure. Then, if our domain has entities of types A and B, its structure under
→ has all the entities of types A → B, A → B → A, etc.

Preservation of structure is captured with the use of structural relators,
which can be thought of as rules for extending relations (transformations) to
the structures of their domains. In particular, given that our work is based on
Isabelle/HOL and on the Transfer package, we focus on one relator.

Definition 3. The standard functional extension of two relations RA : A →
A′ → B and RB : B → B′ → B (written RA �⇒ RB) is a relation that relates
two functions f : A → B and f ′ : A′ → B′ whenever they satisfy the following
property:

∀ a : A. ∀ a′ : A′. [RA a a′ −→ RB (f a) (f ′ a′)]

We call the operator �⇒ the standard function relator. Intuitively, (RA �⇒
RB) f g means that f and g send arguments related by RA to values related by
RB. This relator allows us to express how functions (and by extension relations)
map to each other in a way that the structure of the domain is preserved.
2
B stands for type of booleans.

Automating Change of Representation for Proofs in Discrete Mathematics 233

For the numbers-as-bags-of-primes transformation, consider relation F : N →
N multiset → B, that relates every positive integer with the multiset of its
prime factors.

Example 1. Let ∗ : N → N → N be the usual multiplication and 	 : N multiset
→ N multiset → N multiset the ‘addition’ of multisets (in which the multi-
plicities are added per element). Then we have (F �⇒ (F �⇒ F)) ∗ 	 (also written
(F �⇒ F �⇒ F) ∗).

Note that, by expanding the definition of �⇒ in (F �⇒ (F �⇒ F)) ∗ 	 we get

∀n1.∀N1. F n1 N1 −→ (∀n2.∀N2. F n2 N2 −→ F (n1 ∗ n2) (N1 	 N2))

which is equivalent to

∀n1, n2. ∀N1, N2. (F n1 N1 ∧ F n2 N2) −→ F (n1 ∗ n2) (N1 	 N2)

This demonstrates how nesting the operator �⇒ preserves its intuitive definition:
‘related arguments map to related values’. In this particular case, this is true
due to the law of exponents papb = pa+b.

Furthermore, the matching of relations can also be expressed with the help of �⇒,
using a boolean relation, as demonstrated by the example below with equivalence
(boolean equality) eq : B → B → B.

Example 2. Let div : N → N → B be the relation such that div nm whenever
n divides m (also written n|m), and ⊆: N multiset → N multiset → B the
relation such that a ⊆ b whenever the multiplicity of each element of a is lesser
or equal to its multiplicity in b. Then, we have (F �⇒ F �⇒ eq) div ⊆, because
n divides m if and only if every prime is contained at least as many times in the
multiset-factorisation of m as it is in n.

Logical matches (preservation of truth values) can also be expressed across struc-
tures, e.g., (eq �⇒ eq �⇒ eq) imp imp represents that implication imp preserves
truth if its arguments are replaced by equivalent ones. Other interesting logical
matches can be expressed as well.

The general notion of transformation above tells us how theories will relate to
one another. Isabelle’s Transfer method is an algorithm for transforming a sen-
tence using knowledge about one of these transformations. The simple standard
function relator is at the basis of the method. We give a short introduction next.

4.1 Transforming Sentences with the Transfer Tool

When trying to prove a sentence β we want to find another sentence α such that
α −→ β, along with a proof for α. In particular, if β talks about a domain B
and we know a structural transformation from a domain A to B, we might be
able to find an α about A, such that α −→ β.

Isabelle’s Transfer tool provides a method for finding such α. The user has
to provide theorems of the forms R1 a b or (R1 �⇒ R2) f g (and their proofs), i.e.,

234 D. Raggi et al.

instances of a structural transformation, and the tactics transfer and transfer′

will try to automatically infer a sentence α such that α ←→ β (in the case of
transfer), or a weaker one such that α −→ β (in the case of transfer′).

Recall that the intuitive interpretation of (R1 �⇒ R2) f g is ‘arguments related
by R1 are mapped to values related by R2 by f and g. Thus, the first step of the
transfer method is to search for a theorem of the structural transformation with
the shape (R1 �⇒ eq) p q in the case of transfer and (R1 �⇒ imp) p q in the case
of transfer′, where q is the property wrapping the sentence we want to prove.
Finding it would imply that we can replace q by p provided that we can find
that their arguments are related by R1. Thus, the method searches recursively for
rules in the structural transformation to prove this. The algorithm is analogous
to type inference. It is based on the following derivation rules:

A ∗
C (R1 �⇒ R2) f g A ∗

C R1 x y

A ∗
C R2 (f x) (g y)

elim

A ∗
C , R1 x y R2 (f x) (g y)

A ∗
C (R1 �⇒ R2) (λx. f x) (λy. g y)

intro

where A ∗
C represents knowledge about the structural transformation. Practically,

the user provides knowledge specific to this transformation (a set of theorems
called transfer rules), and the algorithm includes in the search other general
transfer rules such as (eq �⇒ eq �⇒ eq) imp imp. For more details of the actual
implementation of the algorithm see [6].

5 Mechanising Transformations in Isabelle’s HOL

In Sect. 3.1 we presented some problems in discrete mathematics which involve
structural transformation. We have mechanised the transformations by proving
the necessary transfer rules. The transfer tool allows us to use the transforma-
tions in proofs.

In this section we present a couple of examples from a larger catalogue of the
transformations we have mechanised in Isabelle. The transformations we have
formalised, as suggested in Fig. 1, are the following:

1. Numbers-as-bags-of-primes, where each natural number is related to the
multiset of its prime factorisation.

2. Numbers-as-sets, where numbers are related to sets by the cardinality
function.

3. Sets-as-B-functions, where sets are seen as boolean-valued functions.
4. Multisets-as-N-functions, where multisets are seen as natural-valued func-

tions3.
3 This one is actually by construction using typedef and the Lifting package, which

automatically declares transfer rules from definitions lifted by the user from an old
type to the newly declared type.

Automating Change of Representation for Proofs in Discrete Mathematics 235

5. Sets-as-lists, where sets are related to lists of their elements.
6. Bits-from-integers, where type bit is created as an abstract type from the

integers.
7. Bits-as-booleans, where bits are matched to booleans.
8. Q-automorphisms, where rational numbers are stretched and contracted,

parametric on a factor.
9. Zero-or-some, where natural 0 is related to bit 0 and positive natural num-

bers are related to bit 1.
10. Multisets-as-lists, where multisets are related to lists of their elements.
11. Set-to-multiset, where the functional representations of multisets and sets

are related (this one, we get it for free from the zero-or-some transformation).
12. Naturals-as-integers, where naturals are matched to integers (this one was

built by the developers of the transfer package, not us).
13. Integers-as-rationals, where integers are matched to rational numbers.

Notice that composition of transformations leads to other natural transfor-
mations, like the simple relation between sets and multisets.4

Every transformation starts with a declaration and proof of transfer rules, which
are sentences satisfied by the structural transformation.

5.1 Numbers as Bags of Primes

The relation at the centre of this transformation is F : N → N multiset → B,
which relates every positive number to the multiset of its prime factors. It is
defined as follows: F nM holds if and only if

(∀x. countM x > 0 −→ primex) ∧ n =
∏

x∈M

xcount M x

The most basic transfer rules (instances of the structural transformation) are
theorems such as F 6 {2, 3}, whose proof are trivial calculations. Moreover, from
the Unique Prime Factorisation theorem we know that F is bi-unique. Thus, we
know that

(F �⇒ F �⇒ eq) eq eq

i.e., that equality is preserved by the transformation.
From the fact that every positive number has a factorisation we have

((F �⇒ revimp) �⇒ revimp) ∀>0 ∀ ((F �⇒ revimp) �⇒ revimp) ∃ ∃p

((F �⇒ eq) �⇒ eq) ∀>0 ∀p ((F �⇒ eq) �⇒ eq) ∃>0 ∃p

where revimp is reverse implication, ∀p is the bounded quantifier representing
‘for every multiset where all its elements are primes’ and ∀>0 is the bounded
quantifier representing ‘for every positive number’, and similarly for ∃p and ∃>0.

4 The mechanisation of these transformations have been submitted to the Archive of
Formal Proofs, along with some examples of their use.

236 D. Raggi et al.

The mechanised proofs of these sentences follow relatively straightforward from
the Unique Prime Factorisation theorem which is already part of Isabelle’s
library of number theory.

Furthermore, we proved the following correspondences of structure:

(F �⇒ F �⇒ F) ∗ 	 (F �⇒ F �⇒ F) lcm ∪
(F �⇒ F �⇒ F) gcd ∩ (F �⇒ F �⇒ eq) div ⊆
(F �⇒ eq �⇒ F) exp smult (F �⇒ eq) prime sing

Application in Proofs. We formalised the proof of Problem 1.

Let n be a positive integer. Assume that, for every prime p, if p divides n
then p2 also divides it. Prove that n is the product of a square and a cube.

Formally, we state this as

∀n > 0. (∀ p > 0. prime p ∧ p div n −→ p2 div n)

−→ (∃ a > 0. ∃ b > 0. a2 ∗ b3 = n)

Notice that the quantifiers of n p, a and b are bounded (greater than 0). This
is not necessary (e.g., p is prime, so it is redundant to say that it is positive),
but it is convenient for the proof. If we want a proof for the unbounded version
(which is also a theorem) we can divide in cases, when n = 0 and when n > 0.
The case for n = 0 is trivial because then a = 0 and b = 0 are solutions. Thus,
we prove prove directly the case for n > 0.

When we apply the transfer method to the sentence we get the following
sentence about multisets:

∀p n. (∀p p. sing p ∧ p ⊆ n −→ 2 · p ⊆ n) −→ (∃p a. ∃p b. 2 · a + 3 · b = n)

where ∀p is the universal quantifier bounded to prime numbers, and operator ·
represents the symmetric version of the multiplication previously referred to as
smult (we present it as we do for reading ease).

The premise (∀p p. sing p ∧ p ⊆ n −→ 2 · p ⊆ n) is easily proved to be
equivalent to ∀ q. countn q �= 1. Then it is sufficient to show

∀p n. (∀ q. countn q �= 1) −→ (∃p a. ∃p b. 2 · a + 3 · b = n)

With a bit of human interaction, this can further be reduced to proving that, for
every element of n, its multiplicity ni (which the premise says is different from
1) can be written as 2ai + 3bi, or formally:

∀ni : N. ni �= 1 −→ ∃ ai. ∃ bi. 2ai + 3bi = ni

This problem can actually be solved in a decidable part of number theory
(Presburger arithmetic), for which there is a method implemented in Isabelle.

Automating Change of Representation for Proofs in Discrete Mathematics 237

5.2 Numbers as Sets

At the centre of this transformation is the relation C where C An holds if and
only if finiteA ∧ cardA = n.

We first prove trivial cardinality properties like C {1 · · · n}n, which allows us
to consider standard representatives of numbers.

This relation is right-total but not left total, so we have the following two
rules:

((C �⇒ imp) �⇒ imp) ∀ ∀ ((C �⇒ eq) �⇒ eq) ∀fin ∀

where ∀fin is the universal quantifier restricted to finite sets. Furthermore, the
relation is left-unique but not right-unique, so we have

(C �⇒ C �⇒ imp) eq eq (C �⇒ C �⇒ eq) eqp eq

where eqp is the relation of being equipotent, or bijectable.
Then, we have the following rules for the structural correspondence:

(C �⇒ C) Pow (λx. 2x)

(C �⇒ eq �⇒ C) n-Pow
(
λ n m.

(
n
m

))

(C �⇒ C �⇒ imp) ⊆ ≤
(C �⇒ C �⇒ C �⇒ imp) disjU plus

where n-PowS n is the operator that takes the set of subsets of S that have
cardinality n. Also, disjU a b c means disjoint a b ∧ a ∪ b = c and plus is the
predicative form of operator +.

We have mechanised combinatorial proofs, like the ones for the problems
given in Table 2, of theorems using this transformation.

6 Automated Change of Representation

We have built a tactic that searches within the space of representations given a
set of transformations. Then it tries to reason about each representation. Our
goal is for it to embody our vision presented in Sect. 3. This is work in progress,
but we address some simple requirements that we have already implemented and
present our observations.

6.1 Transformations as Sets of Transfer Rules

As described in Sect. 4, we consider a transformation as a set of ‘base’ rela-
tions, and a structural extension of them. Then, knowing a transformation means
knowing instances where the relations and their extensions (with respect to rela-
tors such as �⇒) hold. These instances of knowledge are what the Transfer pack-
age calls transfer rules. They are theorems that the user has to prove and, with

238 D. Raggi et al.

enough of them provided, the transfer method will transform the goal to an
equivalent, or stronger sentence in another domain.

In the traditional use of the Transfer method, there is a single attribute that
encompasses all transfer rules. Given a goal, the Transfer method will try to
derive an equivalent or stronger subgoal using all the rules with such attribute,
with a simple inference mechanism (described in briefly in Sect. 4.1 and more
detailed in [6]). We have packaged each of the transformations described in
Fig. 1 as a set of transfer rules. Then, our tactic applies the transfer method one
transformation at a time.

Transformation-Specific Language. Each transformation has a set of defin-
itions that are linked by the transfer package. Some of them are defined only for
use of the transformation, like disjU and plus (the predicative version of disjoint
union of sets and addition of natural numbers, respectively), or bounded quanti-
fiers. These are necessary for the transfer method to find matches, but theorems
will not generally be stated in such terms. Our tactic normalises the language
of the goal to suit the specific transformation that is going to be applied.

6.2 Reversing Transformations

We have implemented a tool to automatically reverse transformations. Let us
explain this.

If we want to transform a sentence p a to an equivalent one, the Transfer
method will search for transfer rules (R �⇒ eq) q p and R b a for some R, q and b.
If found, it will transform the sentence to the equivalent one q b. The fact that
the sentences are equivalent means that if we had started with q b as a goal, it
would have been valid to transform it to p a. This means that, in theory, the
same transfer rules can be used to do inference in one direction or the other, at
least when the rules are regarding equivalence. The Transfer method does not do
so: if one wants to use a transformation in both directions one has to define two
distinct transformations, i.e., two distinct sets of transfer rules (in our example
above one needs transfer rules (R′ �⇒ eq) p q and R′ a b, where R′ is the reverse
of R). A transfer rule always has a ‘reverse’ version (although only equivalent
ones retain full information), so we should be able to get these automatically.
We have built a conversion tool that, given a set of transfer rules, will generate
all their reverse rules (in a logically valid way, i.e., the reverse version is always
equivalent to the original).

Our program uses the following rewrite rules:

R a b ⇒ (swapR) b a

swap (R1 �⇒ R2) ⇒ (swapR1 �⇒ swapR2)

where swap simply swaps the place of the arguments of a function. It is easy to
see that these rules are valid. Moreover, swapR equals R when R is symmetric,
which means that in some relations we can drop the swap function. Thus, our

Automating Change of Representation for Proofs in Discrete Mathematics 239

program drops swap from eq and turns swap imp and swap revimp into revimp
and imp, respectively.

By reversing every transformation we can traverse every path in Fig. 1 in any
direction (which does not mean that every sentence has a transformation to an
equivalent one).

6.3 Search Between Representations

Our tactic searches the space of representations by applying each transformation,
then reasoning within the theory where it arrived, and, if there are still open
subgoals it will repeat the process iteratively.

Recall that transformations are relational. As such, the process is non-
deterministic for each transformation, so there will be many branches per trans-
formation. Apart from being non-deterministic, the transfer method will allow
transformations of a sentence where some matches are left open, i.e., in the
place of some constant we get a schematic variable that the user can instanti-
ate manually, and prove their validity with the new instantiation. This can be
handy, but our tactic favours branches with the lowest number of open subgoals,
thus favouring complete matches; e.g., matches that will not leave any proof
obligations open.

We have also noticed that the order in which the transformations are searched
is crucial and have set an ad hoc order that favours the transformations we
consider more interesting. Heuristics deserve further work, but that remains as
a task for the future.

Discarding False Representations. Recall that our transformations do not
necessarily yield equivalent sentences when applying the transfer algorithm
(unless we restrict it to do so). Actually, the numbers-as-sets transformation
can only be applied in useful ways if we allow the reduction of the goal to a
strictly stronger subgoal (because, e.g., A ⊆ B implies that |A| ≤ |B|, but not
the other way around, meaning that we can prove |A| ≤ |B| by showing first
A ⊆ B, but we cannot prove A ⊆ B by showing |A| ≤ |B|). This can lead to
false subgoals. Thus, our tactic calls the counterexample checker nitpick [1] and
discards branches where a counterexample is found for one of its goals.

6.4 Overview

In a single step in the search, our tactic does the following:

1. Normalise to transformation-specific language.
2. Apply transformation.
3. If working with a transformation that generates a stronger subgoal, search

for counterexamples and discard if they are found.
4. Apply auto tactic to transformed sentence.

240 D. Raggi et al.

The tactic can be applied recursively to search for a transformation to a domain
more than one step away. When searching, the obvious stop condition is that
the theorem has been proved, although there can be other good reasons to stop
in a domain to allow the user to reason interactively.

Each of the 4 steps mentioned can have plenty of branches, so there is search
involved. Branches with the least number subgoals are favoured, and the order in
which the transformations are applied matters, but there are no clever heuristics
involved.

Even though our observations about the trace of the search have led us to the
current design and implementation of the tactic, the design is not yet complete
and its implementation (although functional) is very much subject to change.
There are still open questions regarding what search strategies, stop conditions,
and reasoning tactics (between transformations) are the best, because these are
subject to what evaluation criterion we should use. In Sect. 8 we discuss why
this is problematic and how we are confronting it.

7 Related Work

Although representation is widely recognised as a crucial aspect of reasoning, to
our knowledge there has been no attempt to incorporate the automatic search
of representation into reasoning tools.

7.1 Institutions and HETS

The concept of Institution was introduced to as a general notion of logical system
[5]. The Heterogeneous Tool Set (HETS) [8] was developed mainly to manage
and integrate heterogeneous specifications. Based on the theory of Institutions,
it links various logics, including Isabelle’s HOL and FOL, and provides a way
of translating between them. The uses of HETS have been to bring together
various aspects of complex systems where different programming languages and
reasoning tools are used for different parts of the system. We do not know of any
uses of HETS where heterogeneity is taken advantage of as a means of finding
proofs in one representation where other representations fail.

7.2 Little Theories and IMPS

“Little Theories” is the notion that reasoning is best done when it is modular [3].
IMPS is a an interactive proof system implemented based on the principles of
Little Theories [4]. The modules, or ‘little theories’ of IMPS are small axiomatic
theories connected by theory interpretation. Thus, it concerns different levels of
abstraction of a theory, and not directly representation of the entities of the
theory.

7.3 Uses of the Transfer Package

The use of the Transfer package has changed how new quotient types and sub-
types are defined. This is what the Lifting package does [6]. As part of the lifting

Automating Change of Representation for Proofs in Discrete Mathematics 241

package, there is a way of automatically transferring definitions from an old type
to a new type (e.g., multisets are defined as an abstract type from the type of
N-valued functions).

The Lifting package has been the main application of the Transfer package,
although the generality of their approach is acknowledged by the developers.
Embodying this generality, they have built an Isabelle theory of transference
from integers to natural numbers, very much in the spirit of the various trans-
formations we have built ourselves.

8 Evaluation, Future Work and Conclusion

The main contributions presented in this paper are:

– We mechanised various useful transformations observed in proofs of discrete
mathematics.

– We have proved example theorems using these transformations.
– We have identified some requirements for search over the space of represen-

tations, and implemented both a tool (for reversing transformations) and a
tactic fulfilling the requirements.

Our tactic has yet to be evaluated properly. Below we examine some of the
difficulties associated with this task.

What makes one proof better than another? There is no definite answer for
this question. Simple measures, such as length, are important, but unsatisfactory
as a whole. At the very least, we can agree that some proof is better than no
proof. Thus, the simplest scenario for evaluation would be that in which our
tactic that reasons within many representations finds proofs which cannot be
found otherwise. Unfortunately, the current state of automatic theorem provers
does not seem to be conducive to this. All the examples in which we have tested
our techniques belong to either of the following classes:

1. They are so simple that they can be proved automatically5 without the need
of a transformation.

2. They are too complicated and require an intervention from the user to com-
plete the proof, even after automatically applying a transformation.6

Thus, the proof-or-no-proof criterion is not applicable. Then, it is necessary to
work on close analysis of interactive proofs with transformations and without
them.

A venture for future research is the potential application of this framework
for the transformation of geometric problems into algebraic representations, e.g.,
Gröbner bases [2], where there has been plenty of success in automated reasoning,
or into SAT/SMT, which also have been an area of success in automation.7

5 using Isabelle tactics like auto.
6 The examples of this second (more interesting) class have been selected from either

maths textbooks for undergraduate students, or from training material for contests
such as the Mathematical Olympiads.

7 We thank the anonymous referees of this paper for suggested these possibilities.
They remain as future work.

242 D. Raggi et al.

Interestingly, we have an example (Pascal’s theorem) that belongs to the
class of problems where Isabelle’s automatic tactics can find a proof, but where
its proof using a transformation deserves attention. It is provable automatically
(from the definition of the choose operator included in Isabelle’s combinatorics
library by its developers), but can be transformed using the numbers-as-sets
transformations and proved only interactively there. Arguably, a combinatorial
proof could be highly valued by mathematicians (or a scientist who analyses
proofs), making this an example where the interactive proof deserves equal, or
even more, attention than the automatic proof.

Furthermore, even in the case in which we had automatic proofs using the
usual tactics (like Pascal’s theorem, mentioned above), we have to consider that
these tactics depend on background knowledge (in our case, this amounts to
Isabelle’s libraries, which have been vastly populated by users). This raises the
question: are there ways in which we can measure success independently of the
background theories? We think that this is partially achievable by building sim-
pler theories, with some equal level of measurable simplicity, and testing tactics
that incorporate representational change there. Even if impractical by itself, this
might bring some scientific insight that might lead to better reasoning tactics
and theorem provers in the future.

References

1. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

2. Buchberger, B., Winkler, F.: Gröbner Bases and Applications, vol. 251. Cambridge
University Press, Cambridge (1998)

3. Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little theories. In: Kapur, D. (ed.)
CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)

4. Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: an interactive mathematical
proof system. J. Autom. Reason. 9(11), 213–248 (1993)

5. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM (JACM) 39(1), 95–146 (1992)

6. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Heidelberg (2013)

7. Hurd, J.: System description: the Metis proof tactic. In: ESHOC, pp. 103–104
(2005)

8. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007)

9. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2013)

10. Paulson, L.C., Blanchette, J.C.: Three years of experience with sledgehammer,
a practical link between automatic and interactive theorem provers. Practical
Aspects of Automated Reasoning (PAAR), 5th International Joint Conference on
Automated Reasoning (IJCAR) (2010)

11. Weber, T.: SMT solvers: new oracles for the HOL theorem prover. Int. J. Softw.
Tools Tech. Transf. 13(5), 419–429 (2011)

Performance Evaluation and Optimization
of Math-Similarity Search

Qun Zhang(B) and Abdou Youssef

Department of Computer Science,
The George Washington University, Washington, DC 20052, USA

qzhang@gwmail.gwu.edu

Abstract. Similarity search in math is to find mathematical expres-
sions that are similar to a user’s query. We conceptualized the similarity
factors between mathematical expressions, and proposed an approach to
math similarity search (MSS) by defining metrics based on those similar-
ity factors [11]. Our preliminary implementation indicated the advantage
of MSS compared to non-similarity based search. In order to more effec-
tively and efficiently search similar math expressions, MSS is further
optimized. This paper focuses on performance evaluation and optimiza-
tion of MSS. Our results show that the proposed optimization process
significantly improved the performance of MSS with respect to both rel-
evance ranking and recall.

Keywords: Optimization · Performance evaluation · Math similarity
search · Relevance ranking · Recall

1 Introduction

Math is a symbolic language layered in abstractions, rich in structure, and full of
synonymy and polysemy among expressions. These characteristics make math
search especially challenging, and call for similarity search. In a recent paper
[11], we proposed an approach to math similarity search (MSS) for Strict Con-
tent MathML encoded math expressions. We identified conceptual factors of
math similarity, and deduced a math similarity metric. For a query, MSS was
designed to help us find math expressions with taxonomically similar functions,
hierarchically similar structure, and/or semantically similar data types. It was
found to be able to greatly improve the performance of a math search system.

Ideally, search performance evaluation requires a benchmark infrastructure.
However, since math search is still young and evolving, initiatives to create such
benchmarks have barely started, most notably the NTCIR [7] math task led
by Aizawa and Kohlhase, et al. However, to the best of our knowledge, there
is not yet a standard Strict Content MathML encoded math query benchmark
infrastructure available to us. To create a full benchmark that can be agreed upon
requires significant expertise. However, we do need some ground truth for our
performance evaluation and system optimization. So for our research purpose,
we leverage the DLMF [2] repository.
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 243–257, 2015.
DOI: 10.1007/978-3-319-20615-8 16

244 Q. Zhang and A. Youssef

The rest of the paper starts with a brief summary of the related work in
Sect. 2. It then presents a recap of the conceptual similarity factors and the
similarity metric of MSS [11] in Sect. 3. Section 4 gives in detail the process of
performance evaluation and optimization, and Sect. 5 presents the performance
results. Finally, the conclusions are drawn in Sect. 6.

2 Background

An important aspect of search is relevance ranking. Therefore, comparison
between ranking schemes is a significant piece of the search system performance
evaluation. The various existing ranking comparison metrics can be classified
into two categories: subjective metrics and statistical metrics.

The former is purely based on human judgment [5,10]. It is good for judging
the ranking produced by a specific search tool.

Statistical comparison metrics are often based on correlation measurement,
which is an extension of the distance measure between two permutations [1,3].
These works leverage some classical metrics such as Kendall’s τ [6], and the stan-
dard correlation coefficient, also known as Spearman’s ρ [9]. This type of ranking
comparison metric can be automated. Thus, the statistical ranking comparison
approach is selected for our research.

As mentioned earlier, search performance evaluation demands benchmarks.
The NTCIR-11 Math-2 task [7] and its optional Wikipedia subtask [8] are the
only significant ones for math search evaluation, as far as we know. The tar-
get dataset of NTCIR-11 Math-2 consists of about 100,000 scientific articles in
ArXiv that are converted from LaTeX to XHTML. NTCIR-11 Math-2 provides
some sample queries, but there are no expected results as reference for system-
atic evaluation. Rather, a pooling based relevance judgment is proposed to run
manually by human reviewers’ subjective assessment.

The NTCIR-11-Math-Wikipedia-Task uses the English Wikipedia as a test
collection, which is more suitable for general users compared with the NTCIR-
11 Math-2. It also provides a number of sample queries which include 2 content
queries that are encoded in Content MathML. However, there are no expected
results for participants to do self-evaluation, or any formal evaluation con-
ducted by the organizers except a final judgment based on participants’ oral
presentations.

Both of the above research initiatives encode their dataset in XHTML,
while our MSS is for Strict Content MathML encoded math expressions only.
This makes it challenging for us to participate in these collective efforts at this
moment. Additionally, none of the above tasks provides any reference results
for us to use as ground truth to do performance evaluation; instead, the assess-
ment is either done by their organizers in a pooling based manual process or not
available at all. This prevents us from gaining performance evaluation benefits
as of now. However, it is anticipated that these resources can be leveraged in
the future once the Strict Content MathML encoded dataset and the full set of
ground truth with both queries and expected results become available, so that
more thorough and more objective performance evaluation can be done.

Performance Evaluation and Optimization of Math-Similarity Search 245

3 Math-Similarity Search (MSS)

The goal of MSS is, given a math expression that is encoded in Strict Content
MathML, to identify a list of structurally and semantically similar math expres-
sions from a library of Strict Content MathML encoded math expressions, and
sort the list by similarity according to some similarity measure. In [11], we iden-
tified conceptual factors that capture aspects of math similarity, and came up
with a similarity metric that takes all those factors into consideration.

3.1 Math Similarity Factors

We identified five major factors to math similarity measure, with focus on the
structural and semantic aspects of math expression.

1. Data Type. This factor captures the superiority of functions and operators
over arguments or operands (for our research purpose, there is no distinction
between function and operator), and of structure over notation. For example,
query F = Gm1m2

r2 , is more similar to F = ke q1q2
r2 , than to a hypothetical

expression F = G·m1+ m2
r2 , containing the same set of operands and notations

as the query.
2. Taxonomic Distance of Functions. Taxonomies of functions are avail-

able to us through the content dictionary (CD) attribute of Strict Content
MathML. Functions in the same CD are assumed to be more similar than
functions in different CDs.

3. Match-Depth. The higher in the parse tree an operator is, the more impor-
tant it is. Hence, the more deeply nested a query is in a hit-expression, the less
relevant the hit is. Therefore, match-depth is used as a similarity decaying
multiplicative factor. One can utilize different models for this decay factor,
such as the exponential model, the linear model, the quadratic model, or the
logarithmic model.

4. Query Coverage. How much of the query is covered in the returned expres-
sion is important. In general, the greater the query coverage is, the greater
the significance is to the similarity measure.

5. Formula vs. Non-formula Expression. Typically, formulas carry more
weight than non-formula expressions, and equality more than inequalities.
Therefore, formulas and equalities will be accorded more relevance weights.
Note this factor is not a similarity factor, but it is included because of its
effect on relevance ranking.

3.2 Math Similarity Metric

MSS takes Strict Content MathML parse trees as the primary model represent-
ing math expressions. The similarity between two math expressions is defined
recursively based on the height of the corresponding parse trees. In the defini-
tions below, various parameters will be utilized and later optimized. Note that
the parameters δ, ζ, μ, and θ are all non-negative and < 1.

246 Q. Zhang and A. Youssef

When the height is 0, the parse tree is a single node which can represent a
constant, a variable, or a function. The similarity between two parse trees, T1

and T2 are defined as:

– If T1 and T2 are constants: sim(T1, T2) = 1, if T1 = T2; δ, otherwise.
– If T1 and T2 are variables: sim(T1, T2) = 1, if T1 = T2; ζ, otherwise.
– If T1 and T2 are functions:

• sim(T1, T2) = 1, if T1 and T2 are the same function
• sim(T1, T2) = μ, if T1 and T2 are different functions of the same category in

the taxonomy
• sim(T1, T2) = 0, if T1 and T2 are different functions of different categories

– If T1 and T2 are not of the same data type:
• sim(T1, T2) = θ, if one is constant and the other is a variable
• sim(T1, T2) = 0, if one is a function and the other is either constant or

variable

Note that δ, ζ, μ, and θ are parameters that will be optimized experimentally.

Fig. 1. Illustration of two trees T1 and T2 of height h ≥ 1

When the heights of the two trees T1 and T2 are ≥ 1, each of them is composed
of function apply operator as root, a leftmost child representing the function
name, followed by a list of arguments which are sub-trees, as illustrated in Fig. 1.
The similarity between T1 and T2 is defined as a weighted sum of the similarity
between the two functions f1 and f2, and the similarity between the two lists of
arguments:

sim(T1, T2) = α · sim(f1, f2) + β · sim({SubT11, SubT12, . . . , SubT1p},

{SubT21, SubT22, . . . , SubT2q}),

where α = ω
p+ω , and β = 1

p+ω are weighting factors, ω(>1) is a boost value
(for boosting functions over arguments), and 0 ≤ sim({SubT11, . . . , SubT1p},
{SubT21, . . . , SubT2q}) ≤ p.

The similarity measurement between the two lists of arguments depends
on whether the two functions, f1 and f2, are commutative. If both are non-
commutative functions, the order of the arguments is observed. The similarity
between the two lists of arguments is the sum of the similarities between the
corresponding available pairs of argument sub-trees with one from each tree:

sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q}) =
∑min(p,q)

i=1
sim(SubT1i, SubT2i)

Performance Evaluation and Optimization of Math-Similarity Search 247

Otherwise, the similarity between the two lists of arguments is the similarity of
the best match between the two lists:

sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q}) =
max{(

∑p
i=1(sim(SubT1i, SubT2t(q,p,i))))|t(q, p, i) is the i-th element of a

p-permutation of q}
≈ ∑min(p,q)

i=1 max{sim(SubT1i, SubT2ϕ(i))| applying greedy approximation,
ϕ(i) = 1, 2, . . . , q and ϕ(i) /∈ {ϕ(1), ϕ(2), . . . , ϕ(i − 1)}}

For partial match consideration, not only the similarity between T1 and T2

at their root level is measured, but also the similarity between entire tree T1 and
each single sub-tree of T2, as well as the similarity between entire tree T2 and
each single sub-tree of T1 are measured in order to find the best match among
all of these possibilities. The final form of the similarity measure between T1 and
T2, where T1 is the parse tree of the query, is:

sim(T1, T2) = max{
(α·sim(f1, f2) + β·sim({SubT11, . . . , SubT1p}, {SubT21, . . . , SubT2q})),
dp·max{sim(T1, f2), sim(T1, SubT21), sim(T1, SubT22), . . . , sim(T1, SubT2q)},
cp·max{sim(f1, T2), sim(SubT11, T2), sim(SubT12, T2), . . . , sim(SubT1p, T2)}}.

In the similarity measure, dp and cp are the match-depth penalty factors, dp
corresponds to the depth of T1 in T2, and cp corresponds to the depth of T2 in T1.
The parametrized values of dp and cp under the four match-depth decay models
are of the form: (1) ak for the exponential model; (2) max(1−b·k, ε) for the linear
model; (3) max(1−c·k2, ε) for the quadratic model; and (4) max(1−d·ln(k+1), ε)
for the logarithmic model; where k is the match-depth, ε is a small positive
constant to ensure that the value of the decay factor stays positive, and a, b, c,
and d are parameters to be determined experimentally for each of dp and cp.
Also, the values of each of a, b, c, and d will differ depending on whether T1

and/or T2 are equality-formulas, inequality-formulas, or non-formulas.

4 Performance Evaluation and Optimization

Even though the preliminary implementation of MSS showed some promising
advantages over the non-similarity based search, the many parameters of the
MSS similarity metric must be optimized.

4.1 Evaluation Methodology

As the DLMF math digital library is among the few available and easily acces-
sible for us, this research leverages the DLMF as the source for mathematical
expressions repository, and we compare our similarity search to the DLMF search
system. Since there is no Strict Content MathML encoding of the DLMF, we
leveraged the first 4 chapters of the DLMF to create a test database of 600 equa-
tions, which we hand-encoded in Strict Content MathML. Then a cross-section

248 Q. Zhang and A. Youssef

Table 1. The test queries

of 40 queries with varying degrees of mathematical complexity and length were
created and encoded in Strict Content MathML. They are listed in Table 1.

For each query in the test set, we identify the expected relevant expressions
from the subset of DLMF source repository used as a test database, and further
rank them manually in a relevancy based order by a group of human experts,
which are then used as a ground truth. Each query is compared with the expres-
sions in the test database, and a similarity value is computed with the MSS
similarity metric described in Sect. 3. The full list of the expressions is then
sorted in descending order of similarity. Depending on the number of relevant
expressions in the ground truth for this particular query, the top “N” number
of expressions is selected to form the MSS hit list for this query.

Up to this point, for any given query, there are three hit lists: one from the
ground truth, another from the DLMF site returned by DLMF search, and a
third from the similarity search MSS. We compare both the MSS hit list and

Performance Evaluation and Optimization of Math-Similarity Search 249

the DLMF hit list with the ground truth list, based on the performance metric
described in Sect. 4.2. The output of such comparison shows the alignment of a
hit list with the ground truth.

4.2 Performance Metric

We evaluate the performance with respect to both recall and relevance ranking.
The evaluation is done for each sample query, before the final average across all
of the sample queries is computed.

The recall measure is fairly standard. In addition to the recall of all of the
results in the ground truth hit list, we also measure the recall of the top 10
results relative to the ground truth.

For relevance ranking comparison, we measure the correlation between the
ranked list that is returned from each search system, and the ground truth list
for each sample query. The correlation is measured by the standard correlation
coefficient Spearman’s ρ, and Kendall’s τ . Note that ρ focuses more on absolute
order, i.e. where each hit is ranked, whereas τ focuses more on relative order of
the hits, i.e. which comes before which. These two correlation metrics comple-
ment each other in serving as performance indicators.

Following the standard practice for correlation analysis, for both ρ and τ ,
we refer to their critical value tables to judge statistical significance of the cor-
relation under evaluation. For any given sample query, depending on the size
of its ground truth, i.e. the number of similar expressions expected to return,
the corresponding critical value is looked up and compared with the computed
correlation measure. The correlation appears statistically significant with the
specific level of confidence only if the correlation measure reaches or exceeds the
critical value of that confidence level. In our research, two different confidence
levels are considered: 95 % and 99 %.

4.3 Optimization Concerns and Motivation

In [11] many parameters of the MSS metric need be optimized, such as taxo-
nomic distance values (e.g. μ) between functions, function nodes type booster
value ω, query coverage factor, etc. In the early implementation of the MSS
metric, intuitive but still random values were used to initialize the parameters.
After preliminary experimentation, some reasonable values were obtained, so
that the MSS showed some performance advantage over non-similarity based
math search. This was indicated in [11]. In this paper, we conduct a system-
atic experimentation based optimization to arrive at optimal values of all the
parameters.

One of the similarity factors, the match-depth, is represented as a similarity-
decaying multiplicative factor in our MSS metric. Several alternative models can
be used for such decay, such as exponential decay, linear decay, quadratic decay,
or logarithmic decay. Which of these decay models performs better for MSS
metric, and how to configure these decay models along with other parameters
of the MSS metric, become part of the concerns that motivate us to start the
optimization process.

250 Q. Zhang and A. Youssef

In the preliminary evaluation conducted in [11], the number of results in the
ground truth for each sample query was normalized to 20. However, in reality
the actual number of expressions in the test database that are similar to each
query may not be the same - if less than 20, then the ground truth was padded
with “weeds”; and if larger than 20, then normalizing the ground truth size to
20 would limit the view or window of expressions to examine. Either case can
impact the overall system performance, e.g. recall. For this reason, we choose to
remove the ground truth size normalization across all the queries, and leave the
ground truth of all the sample queries as is.

4.4 The Optimization Process

As the number of parameters is quite large, and the metric to be optimized is
non-linear, an exhaustive search of the solution space is prohibitive, and no fast
technique that is guaranteed to converge to a global optimum of the parame-
ters is available. Therefore, we resorted to a suboptimal, iterative optimization
approach, which converged after a reasonable number of generations. The whole
optimization process is outlined in Fig. 2.

Each generation has its own optimal trial value for each of the parameters,
and its own best model for the match-depth factor. Within one generation, all the
parameters are to be optimized. For each parameter, we step through different
trial values with equal increments. For each selected trial value, we measure the
MSS system performance for each sample query by using the performance metric
to measure the recall and correlation between the MSS hit list and the ground
truth list for that query. After that, an average of those recall and correlation
measurements from each query execution is obtained, and referenced for the
selection of best trial value for that specific parameter.

To decide when to stop the generational evolution, we need a “convergence”
criterion, i.e. a measurement of the overall system performance across all of the
queries for a given system configuration. This is similar to the best trial value
selection for a specific parameter within a generation. Once such overall system
performance of a generation does not show any improvement compared to the
previous generation, the generational evolution terminates for the given match-
depth model. However, the full optimization process does not stop until the
above generational evolution is done for each the different match-depth models,
and then the best model is identified at the end. Although the convergence
values of the parameters may be only a local optimum, the resulting search
performance, as shown in the next section, is a considerable improvement over
the preliminary performance results [11] where the parameters were set to rough,
intuitive estimates.

5 Optimization Results

In this section we show the findings of the optimization described in the previous
section. Figures 3 and 4 show the recall of MSS, under the four different match-
depth models, and the recall of DLMF, over the sample queries. Figure 3 shows

Performance Evaluation and Optimization of Math-Similarity Search 251

Fig. 2. Illustration of MSS optimization process

the overall recall, and Fig. 4 shows the recall relative to the top ten results.
Both Figs. 3 and 4 indicate that (1) the logarithmic model is best among all the
match-depth models, and (2) MSS with the logarithmic model outperforms the
DLMF significantly in terms of recall: the overall recall and the top-10 recall of
MSS are 0.8251 and 0.9075 (on average), which are quite high and 137 % and
109 % higher than those of DLMF search, respectively.

Similarly, Figs. 5 and 6 show the relevance ranking of MSS, under the four
different match-depth models, and the relevance ranking of DLMF, over the
same queries, where Fig. 5 shows the τ metric, and Fig. 6 shows the ρ metric.
Both Figs. 5 and 6 have reference critical values marked out, where the green
solid line indicates the critical values at 95 % confidence level, and the purple
dotted line indicates the critical values at 99 % confidence level. The fact that
the MSS’s correlation measures are mostly above the critical values indicate
that the improvement over DLMF search is statistically significant. Interestingly,
both Figs. 5 and 6 indicate that the logarithmic match-depth model performs
the best among all the match-depth model: its correlation measurements at the
optimal setting are all higher than those of the other three match-depth models.
Furthermore, MSS under the logarithmic match-depth model outperforms the
DLMF in terms of relevance ranking: the average τ and ρ correlation measures
(across all the 40 queries) are 0.4737 and 0.4928, respectively, which are 136 %
and 207 % higher than those of DLMF search. In addition, as Figs. 3, 4, 5, and 6
show, MSS with the logarithmic match-depth model shows not only significantly
greater relevance ranking and recall, but also more performance consistency than
the DLMF across the sample queries.

252 Q. Zhang and A. Youssef

Fig. 3. Overall recall of MSS (with different Match-Depth models) vs. DLMF

Fig. 4. Top 10 recall of MSS (with different Match-Depth models) vs. DLMF

The MSS with the logarithmic match-depth model shows its optimal per-
formance after ten generations of optimization. The optimal values of the MSS
parameters are listed in Table 2. Figure 7 shows the recall improvement through-
out the optimization process, with respect to both the overall recall and the
top-10 recall. Figure 8 shows the relevance ranking improvement throughout the
optimization process, in terms of the τ and ρ correlation measures. Both of these
figures also show the performance data of DLMF search, which appears constant

Performance Evaluation and Optimization of Math-Similarity Search 253

Fig. 5. ρ Correlation of MSS (with different Match-Depth models) vs. DLMF

Fig. 6. τ Correlation of MSS (with different Match-Depth models) vs. DLMF

across the different generations of optimization of MSS. As shown in both Figs. 7
and 8, the performance improvement over the evolution of the initial five genera-
tions is more significant than that of the later five generations. Over the complete
ten generations of the optimization process, all of the four performance metrics
data improved substantially with more than 20 % improvement (over the non-
optimized preliminary results of [11]), with the ρ correlation measure more than
doubling.

254 Q. Zhang and A. Youssef

Table 2. The optimal values of MSS parameters under the logarithmic model

Fig. 7. Recall improvement across the optimization stages of MSS with logarithmic
Match-Depth model

In order to avoid the problem of over-fitting of the parameters to the training
data, and to obtain a more objective assessment of performance, we conducted
cross-validation-based optimization and performance evaluation.

Generally in cross-validation, we train (optimize) a system on a dataset called
the “training set”, and perform testing on a different dataset called the “valida-
tion set” or “test set”. To adopt the cross-validation technique in optimization
and performance evaluation of MSS system, we partition all of the 40 sample
queries randomly into two disjoint subsets of equal size, one of which is used as
the training set for optimization and the other as test set for performance evalu-
ation. Such cross validation is applied to MSS system with all the four different
match-depth models. The performance results are shown in Table 3.

Performance Evaluation and Optimization of Math-Similarity Search 255

Fig. 8. Relevance ranking across the optimization stages of MSS with logarithmic
Match-Depth model

Table 3. Performance result Without vs. With cross validation

As shown in Table 3, with cross-validation the performance results of MSS
largely agree with those obtained without cross-validation. Particularly, both
with and without cross-validation, it turns out that the logarithmic match-depth
decaying model is the best model of all the four alternatives, and under that
model, all of our four performance metrics achieve the same level with as without
cross-validation. Also, the same parameter values are reached with as without

256 Q. Zhang and A. Youssef

cross-validation. This lends more confidence to the robustness of the optimized
values of the parameters, and more validation to our results.

It is curious to know why the logarithmic match-depth model delivers the
best performance among all four competing models. While we have no theory
about the reason, we note a similar phenomenon of objective stimulus vs. sub-
jective response in human perception, of music and sound in general. The human
perception of sound frequency, known as pitch, has been found in psychoacoustics
to be proportional to the logarithm of the fundamental frequency of the sound
[4]. As recall and relevance are subjective notions of (objective) hits, perhaps the
same logarithmic laws prevail. Alternatively, the explanation may be much sim-
pler: the degree of nested-ness of a match does matter but only to a sub-linear
extent, and the only sub-linear model among the four models considered is the
logarithmic one.

6 Summary and Conclusions

MSS takes structural aspects of math expressions into serious consideration, hon-
ors the greater significance of function over argument, and further differentiates
functions by their taxonomic distance. With MSS, partial match of query can
be detected and weighted based on the coverage. Additionally, equations (a.k.a.
formulas) are differentiated from expressions (non-formulas) in MSS, and ranked
higher. All of these make MSS discover more effectively the math expressions
that are similar to queries, and rank them better.

In order to quantitatively evaluate the performance of MSS, relevance ranking
and recall based performance metrics were used. Furthermore, a systematic opti-
mization process was conducted which improved the performance of MSS sub-
stantially. Our experiments show that the MSS with a logarithmic match-depth
decay model performs better than the MSS with other match-depth decay mod-
els. Finally, cross-validation was applied to the optimization and performance
evaluation, and obtained the results that agreed with the conclusions drawn
through the prior experiments. The performance data after optimization vali-
date more sufficiently the advantage of math similarity search over non-similarity
based search typified by the DLMF.

References

1. Bar-Ilan, J.: Comparing rankings of search results on the web. Inf. Process. Manag.
41, 1511–1519 (2005). Elsevier

2. The Digital Library of Mathematical Functions (DLMF), the National Institute of
Standards and Technology (NIST). http://dlmf.nist.gov/

3. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. ACM-SIAM J. Dis-
crete Math. 17(1), 134–160 (2003)

4. Hartmann, W.: Signals, Sound, and Sensation. Springer, New York (1997)
5. Hawking, D., Craswell, N., Bailey, P., Griffiths, K.: Measuring search engine quality.

Inf. Retr. 4, 33–59 (2001). Springer Netherlands

http://dlmf.nist.gov/

Performance Evaluation and Optimization of Math-Similarity Search 257

6. Kendall, M.: Rank Correlation Methods. Hafner Publishing Co., New York (1955)
7. The 11th National Institute of Informatics Testbeds and Community for Informa-

tion Access Research Workshop (2013–2014). http://ntcir-math.nii.ac.jp/
8. An optional free subtask of the NTCIR-11 Math-2 Task (2014). http://

ntcir11-wmc.nii.ac.jp
9. Spearman, C.: The proof and measurement of association between two things. Am.

J. Psychol. 15, 72–101 (1904)
10. Vaughan, L.: New measurements for search engine evaluation proposed and tested.

Inf. Process. Manag. 40(4), 677–691 (2004). Elsevier
11. Zhang, Q., Youssef, A.: An approach to math-similarity search. In: Watt, S.M.,

Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol.
8543, pp. 404–418. Springer, Heidelberg (2014)

http://ntcir-math.nii.ac.jp/
http://ntcir11-wmc.nii.ac.jp
http://ntcir11-wmc.nii.ac.jp

Projects and Surveys

Mizar: State-of-the-Art and Beyond

Grzegorz Bancerek1, Czes�law Byliński2, Adam Grabowski3,
Artur Korni�lowicz3, Roman Matuszewski4, Adam Naumowicz3(B),

Karol Pa̧k3, and Josef Urban5

1 Association of Mizar Users, Bia�lystok, Poland
bancerek@mizar.org

2 Section of Computer Systems and Teleinformatic Networks,
University of Bia�lystok, Bia�lystok, Poland

bylinski@mizar.org
3 Institute of Informatics, University of Bia�lystok, Bia�lystok, Poland

{adam,arturk,adamn,karol}@mizar.org
4 Department of Applied Linguistics, Faculty of Philology, University of Bia�lystok,

Bia�lystok, Poland
romat@mizar.org

5 Radboud University, Nijmegen, The Netherlands
josef.urban@gmail.com

Abstract. Mizar is one of the pioneering systems for mathematics
formalization, which still has an active user community. The project
has been in constant development since 1973, when Andrzej Trybulec
designed the fundamentals of a language capable of rigorously encod-
ing mathematical knowledge in a computerized environment which
guarantees its full logical correctness. Since then, the system with its
feature-rich language devised to approximate mathematics writing has
influenced other formalization projects and has given rise to a number of
Mizarmodes implemented on top of other systems. However, the infor-
mation about the system as a whole is not readily available to developers
of other systems. Various papers describing Mizar features have been
rather incremental and focused only on particular newly implemented
Mizar aspects. The objective of the current paper is to give a survey of
the most important Mizar features that distinguish it from other popu-
lar proof checkers. We also go a step further and describe most important
current trends and lines of development that go beyond the state-of-the-
art system.

1 Introduction

The Mizar [21,38] project is a long-term effort originally aimed at developing
a computer environment to support mathematicians in preparing papers. Around
1973, Andrzej Trybulec, the leader of the project, has designed a language for
writing formal mathematics. The implemented processor was intended to check
written texts for logical consistency and correctness. For fifteen years numerous
implementations of the system were developed in order to choose suitable under-
lying logic and expressive power of the language (PC – propositional calculus,
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 261–279, 2015.
DOI: 10.1007/978-3-319-20615-8 17

262 G. Bancerek et al.

MSE – multi-sorted with equality, QC – quantifier calculus, etc.). An impor-
tant issue was also to find the proper technology of automated cross-referencing
between papers. The history of the first 30 years of Mizardevelopment has been
described in [32]. All these experiments resulted in choosing the principles of the
current Mizar. The logical structure of the language is based on a variant of
the classical first-order logic natural deduction system proposed by Jaśkowski
[27]. The texts written in the language (called Mizar articles) are organized into
a data base – the MizarMathematical Library, MML. The Tarski-Grothendieck
set theory, which is basically ZFC set theory with the axiom of infinity replaced
by Tarski’s axiom of existence of arbitrarily large, strongly inaccessible cardinals
forms the basis of doing mathematics in contemporary Mizar.

Today there are a number of other projects committed to address prob-
lems related to computerized theorem proving developed at various research
centers around the world. Most significantly: the HOL Light theorem prover1,
Isabelle2, the Coq Proof Assistant3, Metamath4, ProofPower5, Nqthm/ACL26,
the PVS Specification and Verification System7, and the Nuprl/PRL Project8.
Each project is characterized by its own specifics implied by an assumed theo-
retical basis (e.g., type theory or set theory, classical logic versus intuitionistic
logic or higher order logic) and main goals, towards which the project is geared
(extracting programs from proofs, program verification, formalization of mathe-
matics, automated theorem proving) [59]. Thanks to the discussions and research
collaboration stemming from the QED [7] initiative, there has been a significant
interplay between the projects. To name the most important cases of Mizar’s
influence on other systems we can mention the Declare system developed by
D. Syme [42], the Mizar mode for HOL by J. Harrison [25], the Isar language
for Isabelle by M. Wenzel [56], Mizar-light for HOL Light by F. Wiedijk [57], the
declarative proof language (DPL) for Coq by P. Corbineau [16] and finally the
miz3 proof interface for HOL Light [61] that combines both the procedural and
declarative style of writing proofs. The Mizar way of writing proofs was also
the model for the notion of ’formal proof sketches’ developed by F. Wiedijk [58].

However, the information about the fundamental aspects of the Mizar sys-
tem as a whole has not been readily available. To have a better understanding
of Mizar, the developers of other systems have had to collect the information
scattered in scarce user reference materials or various Mizar research papers
describing particular newly implemented Mizar aspects. With this paper we
intend to give a concise survey of the most important Mizar features that
distinguish it from other popular proof checkers and show its current lines of
development. Hopefully, this will become beneficial for further collaboration with
1 http://www.cl.cam.ac.uk/∼jrh13/hol-light/.
2 http://www.cl.cam.ac.uk/research/hvg/Isabelle/.
3 http://coq.inria.fr.
4 http://us.metamath.org.
5 http://www.lemma-one.com/ProofPower/index/.
6 http://www.cs.utexas.edu/users/moore/acl2/.
7 http://pvs.csl.sri.com.
8 http://www.nuprl.org.

http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://coq.inria.fr
http://us.metamath.org
http://www.lemma-one.com/ProofPower/index/
http://www.cs.utexas.edu/users/moore/acl2/
http://pvs.csl.sri.com
http://www.nuprl.org

Mizar: State-of-the-Art and Beyond 263

other similar projects. The work is organized as follows. In Sect. 2 we present
the basics of the Mizar language, in Sect. 3 we describe the main software com-
ponents of the system. Section 4 presents the organization of MML. Next, we
present the current Mizar development in Sect. 5 and conclude with a vision of
the project for the near future in Sect. 6.

2 Language

The Mizar language encompasses both the grammar constructions that make
use of a standardized list of reserved words and also the notation introduced by
the authors of formalizations to encode concepts and notions.

In total, the current version of the language comprises 112 reserved words
and 29 special symbols. However, the language is open in the sense that authors
are allowed to extend it by introducing their own new symbols for the notions
they define. Currently there are 8239 symbols used in the Mizar Mathemati-
cal Library, including 722 predicate symbols, 1771 attribute symbols, 854 mode
symbols, 4501 functor symbols, 36 left and right bracket symbols, 159 selector
symbols, and 160 structure symbols9. In the Mizar terminology, predicates are
constructors of formulas, attributes are constructors of adjectives, modes are
constructors of types, functors are constructors of terms. Selector and structure
symbols are used to declare structural types and their fields. Symbol overload-
ing is highly used in Mizar to enable re-use of the symbols to denote different
notions in much the same way it is done in pen-and-paper mathematics. For
example the symbols * and + are used to denote 193 and 143 different opera-
tions in various fields of mathematics, respectively. The grammar of the Mizar
language10 provides means to formulate mathematical statements in a way that
resembles a formal exposition in the natural language. There are constructs to
represent various kinds of formulas (quantifiers, standard logical connectives),
reasoning methods (straightforward and diffused reasoning, proof by exhaus-
tion) and all sorts of natural deduction proof steps (assumptions, conclusions,
references, etc.).

However, there are numerous examples of constructs that mathematicians
employ in their works to make the text more concise and less explicit in the
number of trivial details. The so-called de Bruijn factor of the present formal-
izations, that measures the ratio between the length of the formal text and its
informal counterpart, is still too high (it has been calculated as around 4 for
typical examples and higher in the case of more complicated texts) [33]. Still,
making the formal text as short as possible is not the ultimate goal, the read-
ability of the formalization is equally important. Notable examples of informal
constructs that are responsible for the discrepancy between informal and formal
mathematics are the use of analogy, references to the reader’s intuition, or vari-
ous forms of ellipses. We will be seeking for new useful constructions extending
9 Generated with MML Query, http://mmlquery.mizar.org.

10 The description of the Mizar grammar can be found at http://mizar.uwb.edu.pl/
language/.

http://mmlquery.mizar.org
http://mizar.uwb.edu.pl/language/
http://mizar.uwb.edu.pl/language/

264 G. Bancerek et al.

the formal language that would help to represent such linguistic structures. At
this stage of the project, different sorts of ellipses, particularly those related to
indexed variables, appear to be of high importance. Another open problem is
how to introduce a convenient syntax for binding operators like integrals, sums,
etc. The open, author-defined part of the Mizar language poses a number of
separate research questions. Although the authors are allowed to use different
constructs supported by the language to express the same notions, the choice
they make can be crucial. This concerns in particular the use of predicates,
attributes, and modes that is most natural and closest to mathematical tradi-
tion. To some extent, they can be used interchangeably, and using each of them
might present specific benefit. For example, the use of attributes offers a lot of
simplification in reasoning. Modes allow to express predicative statements about
objects that can be categorized in a natural way. On the other hand, predicates
are most primitive and generic, and can be used to expand any notion of the
three kinds. The current Mizar language permits also the use of adjectives with
visible arguments, e.g. n-dimensional (for an n-dimensional space), X-defined
(for a function defined on some set X), x-convergent (for a sequence convergent
to x) etc. In connection with the attribute clusters rounding-up automation [34],
this enables a powerful Prolog-like computation mechanism.

3 Software

The heart of the Mizar system is its proof checker, but it is rarely used today as
a standalone program. Over the years, Mizar has evolved into a complex proof
assistant system [21] composed of many components that are used together to
assist the user in various tasks related to formalizing mathematics. Apart from
the core verification software, dedicated utilities support building the library
and importing data from it for formalizations based on top of previous develop-
ments. A number of utilities distributed in the system’s package help the users
improve the quality of their formalizations by eliminating unnecessary or redun-
dant parts. Several web-based services that allow to browse the available library
as a semantically linked knowledge base, search its content with a dedicated
query language, gather proof advice from automated theorem provers, or dis-
play the effects of the formalization in an automatically generated journal-style
natural language representation. And although Mizar texts can in principle be
prepared with the aid of any ASCII text editor, several dedicated editors have
been independently implemented, with Mizar mode for Emacs being the most
widely used and best integrated with the system’s other elements [47]. Below
we summarize the basic information about all these interlinked proof assistant
components.

The Mizar verifier consists of several modules responsible for checking vari-
ous aspects of the correctness of Mizar articles in a compiler-like manner. They
are: Scanner, Parser, Analyzer, Reasoner, Checker, Schematizer.

Scanner reads the source file and slices it into tokens. Parser checks the
syntactic correctness with respect to the grammar of the stream of tokens given

Mizar: State-of-the-Art and Beyond 265

by Scanner and produces the abstract representation of the article in the form
of stacked blocks and items, to be used by Analyzer which identifies construc-
tors and notations used on the basis of the type information imported from
the environment. Reasoner is responsible for checking if a proof tactic used
by the author corresponds to the formula being proved. The checking is based
on the internal representation of formulas in a simplified “canonical” form –
their semantic correlates. Checker works as a classical disprover, additionally
taking into account the type information associated with all terms, the prop-
erties of the employed constructors, equality calculus, etc. Checker also uses
special built-in automation procedures for processing selected objects like e.g.
complex numbers (direct computation) or boolean operations on sets. Schema-
tizer processes schemes – statements that go beyond first-order logic, using free
second-order variables to form infinite families of theorems, e.g. the scheme of
mathematical induction.

Before Checker can start its work the text should be run through Accom-
modator which imports knowledge either from the MML or a locally created
data base. After the verification, the contents of an article can be extracted by
Exporter and possibly incorporated into the MML.

3.1 XML Layer

MML is one of the largest corpora of nontrivial computer-understandable math-
ematics. This makes it into a unique resource for all sorts of semantic experi-
ments and assistance tools that go beyond shallow natural-language treatment of
mathematical texts. Such tools include database-like semantic search as done by
MMLQuery [12], full automated theorem proving (ATP) over MML as done by
the MPTP export [45,49] and the MizAR system based on it [28,52], or subsump-
tion search based on ATP indexing data structures as used in MoMM [48] and in
MathWebSearch [26]. Semantic parsing is also very useful for various functions
provided by the Emacs authoring environment for Mizar (MizarMode) [47],
and e.g. its linking with MML Query [13].

Since parsing the advanced human-like Mizar language is notoriously
hard [15], a natural solution taken in 2004 was to make a complete and well-
described separation between the parsing and semantic analysis stages (Parser
and Analyzer) on the one hand, and proof checking and all kinds of other (pos-
sibly external) utilities and tools on the other hand. This resulted in a large reim-
plementation of Mizar described in [46]. Mizar started to use XML natively as
its internal format produced by the early parsing and analysis processing stages.
This format has been gradually extended, and now it contains a very complete
semantically disambiguated form of a Mizar article, as well as a description
of the presentation-level syntax that allows various HTML-based presentations
combining semantic information and tools with deeply hyperlinked Mizar texts.
The whole Mizar internal library (items reusable in other articles) is now dis-
tributed in this format, and complete articles are translated to the format just
by running the Mizar verifier. An additional suite of open-source XSL-based

266 G. Bancerek et al.

translators from the native MizarXML format to richer or more targeted for-
mats such as MPTP and HTML is developed and maintained by the XSL4Mizar
project.11

3.2 MPTP and MizAR

There are several goals of the MPTP – MizarProblems for Theorem Proving –
project [45,49], translating the MML to ATP formats. In short, the coopera-
tion of modern ATP systems with large libraries of formalized mathematics is
good both for the formalization efforts, providing strong proof assistance, cross-
verification, automated theory refactorings, etc., and also for the ATP research,
providing a large number of testing problems, allowing research of automated
optimization on various mathematical domains and dealing with large knowl-
edge bases, etc. Such cooperation is also the best candidate for merging the
deductive (e.g., ATP) and inductive (e.g., machine learning) methods of Arti-
ficial Intelligence, because mathematics is (by definition) the most deductively
developed science, and once we have a sufficient amount of such data, inductive
methods can be applied too and combined with the deductive methods in novel
ways [29,50,54,55].

The MPTP translation starts with the native MizarXML layer, which is
first by XSL programs transformed to the extended TPTP (MPTP) Prolog-like
format, which adds to TPTP Mizar-like dependent types with attributes and
subtyping, second-order constructs such as Fraenkel terms, and supposition-style
proofs [44] based on Jaśkowski’s natural deduction. The Prolog utilities then
process this format, producing TPTP problems and proofs in various ways, typ-
ically either for large-scale ATP experiments over the whole translated MML, or
in a fast interactive way used by the MizAR (Automated Reasoning for Mizar)
system.

MizAR is an online “cloud-based” remote-solving system which integrates
several automated reasoning, artificial intelligence, and presentation tools with
Mizar and its authoring environment. The service provides ATP assistance
to Mizar authors in finding and explaining proofs, and offers generation of
Mizarproblems as challenges to ATP systems. The system can be used on
Mizar goals directly from MizarMode just by typing by; after a goal that needs
to be solved. This triggers the fast MPTP processing on the server and its paral-
lellized solving using a combination of AI and ATP systems that give the author
a 40 % chance of proving a top-level Mizar theorem without any interactive
assistance [28]. Another common way how to work with the system is via its
web interface12, where articles can be uploaded, remotely verified, hyperlinked,
explored and interactively used for ATP experiments. Such remote-processing
functionality is already close to the ideas of formal wikis for Mizar [4,51], whose
proper merging with MizAR is one of our next goals.
11 http://github.com/JUrban/xsl4mizar.
12 http://mizar.cs.ualberta.ca/∼mptp/MizAR.html.

http://github.com/JUrban/xsl4mizar
http://mizar.cs.ualberta.ca/~mptp/MizAR.html

Mizar: State-of-the-Art and Beyond 267

3.3 MML Query

MML Query is based on semantic on-line tool for searching, browsing and pre-
sentation of the evolving MML content [10]. The tool offers functionality that
outranks commonly used grep-based utilities that often fail because of homonyms
and overloading of symbols (and formats) heavily used in the MML. MML Query
can also be used to build monographs – the uniform ordered semantic presen-
tation of a specified piece of a theory which may be spread over the MML.
The MML Query system also provides a text transformation processor MMLQT
(MML Query Templates or MML Query Transformation) which is able to inter-
pret the MML Query language to create ordered queries, version queries, and
metadata queries, and to make searching with MML Query somewhat easier
(non-expert searching, rough queries).

3.4 Formalized Mathematics Preview

Automatically generated natural language renderings of Mizar articles can be
previewed using a dedicated on-line service13, which is also used for proof-
reading papers in the Formalized Mathematics journal, see Sect. 4.3. The trans-
lation process [9] might be considered as a rewriting system, where the original
Mizar text is first reduced into an abstract form, which is later augmented
with the information coming from the semantic analysis, and then the pattern
translation of formulas and formats follows. The translation works on the basis
of general and specific patterns. Several alternative patterns might be used for
a given translation object. The current implementation of the translation sys-
tem supports theorems, definitions, schemes, reservations and skeletal proof steps
with references to selected most important facts. Finally, some metadata (a user
provided summary in English and division into named sections) are incorporated
to produce a form that resembles a standard journal paper.

Although the process of generating the journal papers is mechanized, the
final result depends on the author or editor. The authors are encouraged to use
the previewing facility and suggest any changes to the way their new notions are
automatically translated using default patterns.

4 Mizar Mathematical Library

MML is a repository of articles covering various branches of mathematics and
computer science. As of now, it contains over 1200 articles, over 10 thousand
definitions, and approximately 50 thousand theorems. This collection has been
written by over 250 authors. The acquired repository of formalized mathematics
is considered one of the largest databases of this type [60]. All articles have been
verified by the Mizar checker and contain mathematical notions systematically
defined on top of common axiomatics based on the Tarski-Grothendieck set
theory. TG is a non-conservative extension of Zermelo-Fraenkel set theory and is
13 http://fm.uwb.edu.pl/proof-read/.

http://fm.uwb.edu.pl/proof-read/

268 G. Bancerek et al.

distinguished from other axiomatic set theories by the inclusion of Tarski’s axiom
which states that for each set there is a Grothendieck universe it belongs to.
Tarski’s axiom implies the existence of strongly inaccessible cardinals, providing
a richer ontology than that of conventional set theories such as ZFC.

4.1 Notable Formalizations

Through the years, when the Mizarproject evolved, the development of the
repository of Mizar texts (including the Mizar language itself) was stimulated
by large formalization projects. Among them, the most notable one was the
formalization of Compendium of Continuous Lattices by Gierz et al. (mentioned
in the second edition of the book issued under the title Continuous Lattices
and Domains) in the years 1995–2003. This collective work of over a dozen of
Mizar authors resulted in 36 articles from the WAYBEL series reflecting faithfully
the content of the book and 22 articles in the YELLOW series bridging the gap
between the existing and desired state of the MML [11].

Another example of long-lasting cooperative work of a bigger group of authors
was the formalization of the proof of the Jordan Curve Theorem continued from
the very beginnings of MML until its successful finale – Artur Korni�lowicz’s
“Jordan Curve Theorem” [30]. This may be considered as a part of a more general
project: a formal encoding of general topology – also influential throughout the
years. Among recently growing parts of mathematics represented in the MML
we can list also functional analysis, lattice theory, and group theory.

The challenge which is stimulating not only for the Mizar system, but also
for other proof-assistants is the “Top 100 mathematical theorems” – the collec-
tion of important or interesting facts proposed at the edge of centuries by Paul
and Jack Abad as “The Hundred Greatest Theorems”. On the page maintained
by Freek Wiedijk http://www.cs.ru.nl/F.Wiedijk/100/ one can find systems of
computer formalization of mathematics ordered by the number of the items
from that list which have been proven in these systems’ libraries, covering 91 %
of items altogether. Currently, among nine systems listed on the Wiedijk’s page,
the Mizar system comes in second place with the total number of 62 items
formalized.

4.2 MML Structure

The articles composing the library can be roughly divided into five parts.
Although the parts are not formally separate, each of them requires slightly
different management procedures:

– the axiomatics – currently containing three files with MML identifiers HIDDEN
(introducing primitive notions: the root type object, membership relation
in), TARSKI 0 and TARSKI A – basically axioms of Tarski-Grothendieck set
theory (actually Tarski’s axiom A is the only exportable item in TARSKI A);

– classical part, currently 323 items, not using the notion of a structure – pure
set-theoretic part;

http://www.cs.ru.nl/F.Wiedijk/100/

Mizar: State-of-the-Art and Beyond 269

– structural part – all the other articles; this part deals with the notion of
a structure, e.g. algebraic structures such as groups, fields, vector spaces,
lattices, etc.;

– Encyclopedia of Mathematics in Mizar (EMM) – currently 14 files with MML
identifiers starting with X; a collection of monographs;

– the formal model of random access Turing machines, started by Andrzej Try-
bulec and Yatsuka Nakamura in 1992.

The division into MML’s classical and structural parts is an ongoing process as
some “classical” items are still being formalized. The process of such changes of
the library, called library revisions [23], is coordinated by the Library Committee
of the Association of MizarUsers [5].

4.3 Formalized Mathematics

Although the Mizar language is developed to be as close as possible to the lan-
guage used in mathematical papers [22], it is still an artificial language, limited
in scope by a preset list of reserved words and allowed grammar constructions.
For a more complete popularization of formalized results, it is beneficial to make
the content of the repository accessible also in the form of conversational (collo-
quial or erudite) English, which would enable access to the base by persons not
familiar with the Mizar language. An example of such accessibility is generating
articles for the journal Formalized Mathematics (ISSN 1426–2630, established in
1990) from the formalized articles contained in the MML [9]. Every submission
to MML is first reviewed in a standard journal manner by at least two (usu-
ally three) independent specialists; the reviews are on the double-blind basis.
Mizar articles accepted to the Mizar library are then automatically translated
into more human-readable LATEX format and published in Formalized Mathemat-
ics. The journal is published quarterly – with thirty as the approximate number
of Mizar articles per volume.

5 Current Developments

All of the project’s components undergo implementation and design changes
directed towards creating a better proof assistant environment. Most impor-
tantly, the verification system is being made stronger, the language more user-
friendly, the library better-organized and presentation methods more semantically
oriented.

5.1 Stronger Checker

The principal method of verification of informal mathematical papers is peer
review. The reviewers, who work in the same field, are capable of understanding
the mathematical text even if parts, deemed by the author obvious, are omitted,
or the author refers to an analogy to other examples of reasoning. The review-
ers are also willing to accept minor errors (e.g., typographical) or imprecisions

270 G. Bancerek et al.

stemming from the impossibility of attaining a coherent presentation of many
notions and facts scattered throughout the vast literature. Nevertheless, from
a computer system perspective, whose task is to semantically represent a given
mathematical text, the above mentioned imprecisions are not acceptable.

In Mizar automation is used to fill the gaps in the user provided declara-
tive proofs, and its main role is to justify proof steps considered trivial by the
human being. The current version of the checker provides several mechanisms
that increase automation: reductions that reduce terms to their proper sub-
terms [31]; identifications that identify notions defined within different theories;
properties of functors that generate particular equalities representing chosen
properties of terms (e.g. involutiveness, projectivity, commutativity, idempo-
tence); properties of predicates that generate particular formulas representing
chosen properties of relations (e.g. reflexivity, irreflexivity, symmetry, asymme-
try, connectedness) [37]; and definitional and functional expansions. Moreover,
there are attempts interfacing external dedicated computational systems (com-
puter algebra systems, solvers, automated theorem provers) to strengthen the
Mizarnotion of obviousness [2,35,36].

5.2 Improving Language Readability

The readability of Mizarproof scripts is considered one of the most important
factors of the formalization quality, but in practice enlargement of the database
is rather orthogonal to the improvement of the formalization quality. Considering
the current size of the library, manual editorial work on improving its legibil-
ity becomes infeasible. Therefore several aspects of proof legibility have been
identified that can be approached in an automated fashion. Examples of such
tasks include finding and removing inessential reasoning fragments or redundant
premises in the justification of proof steps, analyzing the order of proof steps and
reorganizing proof scripts in the MML according to a consistent style [40], or
extracting fragments of reasoning in the form of lemmas or encapsulated nested
proofs [24,39].

5.3 Library Reorganization

Initially, the MML development was mainly geared towards volume parameters.
Of prime importance was the mathematical result and the growth of the collec-
tion of the formalized theorems and proofs. First of all, attention was paid to the
local quality of formalization, not to preserving the integrity of the knowledge
in the whole base [41]. This approach permitted the accumulation of knowl-
edge, but it did not guarantee taking full advantage of its amount. Currently,
the MML development focuses on deciding the structure of the repository in
such a way as to enable natural expansions while continuing easy access to the
entire accumulated knowledge. The basic problems encountered while managing
the development of this large repository are related to the preservation of the
integrity of the information it contains [41]. For example:

Mizar: State-of-the-Art and Beyond 271

– independently introducing by different authors different (sometimes incom-
patible) notations to denote the same (semantically equivalent) notions;

– independently developing the same theory by means of different notion appa-
ratus;

– thematic dispersion of related knowledge in various sections of the repository.

Methods of finding out this type of situations in the Mizar library are being
worked on [39]. Integrity criteria and dedicated algorithms are implemented to
assist error detection and the process of refactoring the database [23]. The need
for database refactoring complies with the principles of database creation, where
duplication and redundancy of information is avoided. At the initial stages of the
MML creation, the focus was mainly on collecting as much formalized knowledge
as possible to test various aspects of the system. Processing diverse data involved
various modules of the system, which was crucial for determining directions of
its further development by pointing out its stronger and weaker features. It also
allowed to accumulate a considerable amount of formal knowledge. With the
present size of the database, managing the library and also its applicability for
users, especially new ones, requires developing and adopting a new approach.

In particular, methods to identify notations independently introduced by
different authors that denote semantically equivalent notions are investigated.
There are known cases of such definitions in the current library. For example, the
notion of the exponentiation operation for numbers is denoted in separate for-
malizations as ’power(x, n)’, ’x to power n’, ’x | ∧ n’. In principle, the authors
should be allowed to use the notation they prefer. However, this is a typical
source of confusion, duplication, redundancy and an obstacle to efficient search
for applicable facts in the library for other authors. Exploring more such cases
requires statistical analysis as well as semantic matching of information. The
considerations are based on the analysis of definitions in the simplest cases, but
also on the analysis of the usage of selected notions in common contexts.

Mizardevelopers have also detected cases where the same theories were inde-
pendently developed by means of a different notion apparatus and have found
ways for the best utilization of the independently developed results. For exam-
ple, in the current library the group is a triple structure with its carrier, a binary
operation and a pre-selected element serving as the group’s unity. On the other
hand, there is also the corresponding theory based on the ordered pair struc-
ture (the carrier and an operation) and the group’s unity definable by means of
an attached extra axiom expressed as an adjective (‘unital’). A more complicated
case is e.g. the development of lattice theory in terms of ordered sets on the one
hand, and as an algebraic theory with two lattice operations on the other hand.
For resolving such cases we can consider approaches based on selecting one from
the concurrent developments and applying it to eliminate the rest, but also, as
in the latter example, with finding ways to provide interoperability of different
methods by identifying and encapsulating core components of all developments.

The development of the MML knowledge base has been incremental in its
nature. Over two hundred authors who have contributed to its current con-
tent represent different backgrounds and skill levels (from students to university

272 G. Bancerek et al.

professors). As a result, the library suffers from thematic dispersion of related
knowledge in various sections of the repository. For instance, numerous facts
concerning simple set theory have been developed while proving some properties
of digital circuits in a series of articles loosely connected with basic Boolean
properties of sets. Responsible for that is partly the size of the library which
makes it difficult for a researcher to grasp it as a whole, but also the authors’
tendency or preference for specific approaches to developing mathematics. We
investigate new methods based on knowledge exploration that can alleviate the
problems. The research is directed towards more efficient, semantics based meth-
ods of searching for the information contained in the knowledge base. The main
goal is to find ways how to unify (and generalize if needed) all relevant facts once
a case of such dispersed knowledge is found in the library. This can be achieved
by creating new specialized articles in selected fields, to enrich the repository and
to test new language constructions and system properties, and also to define new
directions of the development of the base.

5.4 More Semantic Representations

For the needs of the many forms of presenting the contents of the Mizar library,
used to popularize formalized knowledge within the mathematical community
and on the Internet [22], translation rules that concern the improvement of the
quality of article presentation, are being developed. Current research includes:
the development of the system of transformation rules for the translation process
using the XML/XSLT technology which will result in the design of a more flexi-
ble and easier modifiable software tool chain; forming a richer base of translation
patterns including new categories for subjected phrases, patterns of mathemati-
cal formulae for new constructions, and variations of translation patterns depen-
dent on the mathematical context; working out methods of presentation that take
full advantage of the semantically linked information contained in Mizar articles;
an improvement of translation of proofs by extracting the references from proofs
and a shallow translation of the proof (with the extraction applied for subproofs);
the automatic generation of preliminaries for an article and each of its sections
based on statistic analysis of the notation and terminology used and the theorems
referred to and the subject classification automatically developed for the MML.

Currently, the Mizar language and logic is mainly oriented at human users.
The large number of human-friendly linguistic and logical features makes it
unsuitable as a direct input for today’s automated theorem systems, which work
in relatively simple formalisms such as untyped first-order logic, and use simple
Prolog-style languages such as the TPTP standard. Suitable layers and inter-
faces for correct bi-directional communication with such automated systems are
being worked on, in particular we can mention the work with the TPTP for-
mat and its Mizar-oriented MPTP extension [49]. Since 2005 Mizarhas been
using an XML-based semantic internal layer, and this layer has been gradually
enhanced to serve also a number of external applications. Objects on this layer
are fully semantically disambiguated, i.e., there is no use of overloading, all term
and formula constructors are linked to their definitions, and full types of terms

Mizar: State-of-the-Art and Beyond 273

are computed. This layer is already used for exporting the Mizar formulas to
ATP systems, but it is machine-oriented and so far cannot be used for import-
ing the ATP proofs and for writing human-readable texts. Another issue is that
this layer so far does not contain complete information about how proofs were
done in Mizar. This makes it difficult to replay the Mizarproofs in other sys-
tems, and also to learn from such proofs. Many Mizarmechanisms, such as the
use of registrations, identities, requirements, and sometimes also definitions, are
implicit, and they become explicit only during the process of verification.

The Mizardevelopers have started research focused on producing a ver-
sion of a “strict” semantic Mizar layer [14], where no variables are reserved,
all implicit mechanisms (registrations, identities, definitional expansions, etc.)
used in the proofs can be made explicit before each proof (or even formula),
and overloaded symbols are replaced by their unique synonyms. Such unique
synonyms will be introduced either automatically, analogously to the current
semantic names, or by suitable syntactic conventions in the Mizar language.

This should allow at least an initial import of the ATP proofs and their verifi-
cation in Mizar, which is currently not possible, because such proofs may merge
very different parts of the MML. Such different parts of the library are currently
only mutually consistent on the semantic level, but it is a very nontrivial task
(similar, e.g., to merging the notation of two different mathematical theories) to
combine such parts also with respect to the overloaded notational mechanisms.
Such a layer should in turn allow to construct a chain of Mizarpresentation
improving utilities (similar to those that already exist for maintaining the MML)
that will work on the verified proofs in this layer, and try to make the proofs
more human-readable and mathematical by introducing common (possibly over-
loaded) notation, common names for variables (using reservations), common type
mechanisms (such as registrations) for multiple proofs, etc.

Such an approach seems useful not just for importing the semantically
encoded proofs produced by ATP systems, but also as a method for automatic
merging of different parts of the MML. This is a common task that naturally
arises when maintaining a large mathematical library like the MML, and which
currently requires a lot of human effort, again because of clashing notational
conventions. Such merged developments may first be exported into the “strict”
semantic layer and verified there for correctness. After that, the presentation-
improving utilities can attempt to automatically construct a common human-
friendly notational layer for such merged articles.

Apart from importing and merging the semantically encoded mathematical
parts produced by ATP systems, another application of such a layer is in split-
ting articles and producing a small independent article for each Mizar theorem
and definition. This is currently difficult to do automatically, due to mecha-
nisms like reservations, etc. Having a small separate article for each Mizar item
again means that such small articles can be subjected to the number of existing
Mizarutilities, in particular those that detect the minimal set of (both nota-
tional and semantic) dependencies of an article [1,6]. Detecting such a minimal
set is useful for various applications, ranging from training of premise-selection

274 G. Bancerek et al.

tools for large theory ATP systems, to experimental reverse mathematics assisted
by ATP systems and automatically producing the strongest possible version of
the theorems in the MML.

6 Future Mizar

Based on the successful long-term development of the Mizarproject, we are
encouraged to believe that the project will eventually evolve into a widely-used
computerized environment which could make the accumulated formalized math-
ematical knowledge accessible to a broad spectrum of users and in the future
become a modern encyclopedia of mathematics.

For the realization of this long-term goal, it is imperative that first an effec-
tive information system for mathematics is formed, bridging the existing knowl-
edge with computer capabilities of processing and searching for information. The
fundamental element of this system is a language to represent mathematics in
a computerized form. The specifics of the project is to define this language in
such a way as to fulfill the above function. It is essential for this language to
allow a uniform style in which mathematics will be done, at the same time not
restricting the freedom of terminology usage and diverse methods of formal-
ization. Furthermore, the formalization language should be close to the natural
language, which would allow additional control of correctness of formalized texts,
in particular the definitions of notions.

The key consideration will be defining criteria of readability of mathematical
texts and proofs in a formalized form enabling the development of the base of
mathematical knowledge, its accessibility and processing at various levels by
a possibly wide group of users. To illustrate the readability of developments
carried out with the use of the most popular state-of-the-art systems we can
look e.g. at the statement of the Fundamental Theorem of Algebra and compare
it to its Wikipedia entry: Every non-constant single-variable polynomial with
complex coefficients has at least one complex root.

Coq:
forall f : CCX, nonConst _ f -> {z : CC | f ! z [=] Zero}.

HOL Light:
|- !a n. a(0) = Cx(&0) \/ ~(!k. k IN 1..n ==> a(k) = Cx(&0))

==> ?z. vsum(0..n) (\i. a(i) * z pow i) = Cx(&0)
Isabelle:

~constant(poly p) ==> z::complex. poly p z = 0
Mizar:

for p being Polynomial of F_Complex st len p > 1 holds
p is with_roots;

From the above samples it can be seen that, no matter which system we consider,
there is still a significant difference in the readability of the formal and infor-
mal (natural language) representation. Improving the readability of formalized
texts would allow better communication with the mathematical community and

Mizar: State-of-the-Art and Beyond 275

their greater engagement in the project. The participation of active mathemati-
cians is particularly important for validating and standardizing the definitions
of notions deposited in the base [43]. Involving more working mathematicians,
who would be able to share their firsthand experience with using the language
of mathematical publications on a daily basis, would result in the development
and accessibility of a better language and system to formalize mathematics, and
several forms of access to a wider audience of mathematical knowledge collected
in the MizarMathematical Library [18,19,33]. The accomplishment would be
for diverse fields of science and education to benefit from such computer verified
knowledge. The pre-processed database will also be used for research aimed at
developing automated theorem proving systems (provers).

The ultimate, long-term goal, towards which the work on Mizar is directed,
is to construct a modern encyclopedia of mathematics. We believe that the
Mizarproject is well positioned to start a new generation of encyclopedia. All
major scientific encyclopedias are available in an electronic form and many,
such as Wikipedia or Scholarpedia, solicit input from independent contribu-
tors, but the entered data is not verified. The information contained in the
huge MizarMathematical Library repository, verified, checked and cross-linked,
can be used to build an encyclopedia, which is mathematical at first and later
expanded to other sciences, an encyclopedia of entirely different merit, with
exclusively formalized and verified data. As a source for citations of mathemat-
ical definitions and theorems, an MML based encyclopedia would be invaluable
and unique for human users. On the other hand, the rich source of formal math-
ematical knowledge contained in the MML can be used to develop automated
theorem proving methods and systems trained over the mathematics data, and
to assist further development of mathematics over such large formal corpora
[52,53]. Such automated methods can help with searching the large library, con-
structing new proofs automatically [20], finding alternative proofs [3], and help
with re-structuring the proofs and theories.

References

1. Alama, J.: Mizar-items: exploring fine-grained dependencies in the Mizar mathe-
matical library. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.)
MKM/Calculemus 2011. LNCS, vol. 6824, pp. 276–277. Springer, Heidelberg
(2011). http://dx.doi.org/10.1007/978-3-642-22673-1 19

2. Alama, J.: Escape to Mizar from ATPs. In: Fontaine, P., Schmidt, R.A., Schulz, S.
(eds.) Third Workshop on Practical Aspects of Automated Reasoning, PAAR-2012,
Manchester, UK, 30 June–1 July 2012. EPiC Series, vol. 21, pp. 3–11. EasyChair
(2012). http://www.easychair.org/publications/?page=1559779348

3. Alama, J.: Eliciting implicit assumptions of Mizar proofs by
property omission. J. Autom. Reasoning 50(2), 123–133 (2013).
http://dx.doi.org/10.1007/s10817-012-9264-3

4. Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: issues
and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.)
MKM/Calculemus 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg
(2011). http://dx.doi.org/10.1007/978-3-642-22673-1

http://dx.doi.org/10.1007/978-3-642-22673-1_19
http://www.easychair.org/publications/?page=1559779348
http://dx.doi.org/10.1007/s10817-012-9264-3
http://dx.doi.org/10.1007/s10817-012-9264-3
http://dx.doi.org/10.1007/978-3-642-22673-1

276 G. Bancerek et al.

5. Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.:
Licensing the Mizar mathematical library. In: Davenport, J.H., Farmer, W.M.,
Urban, J., Rabe, F. (eds.) MKM 2011/Calculemus 2011. LNCS, vol. 6824, pp. 149–
163. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-22673-1 11

6. Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathemat-
ics: applications and extraction for Coq and Mizar. In: Campbell, J.A.,
Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V.
(eds.) CICM 2012. LNCS, vol. 7362, pp. 1–16. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-31374-5 1

7. Anonymous: the QED manifesto. Bundy, A. (ed.) CADE 1994. LNCS, vol. 814.
Springer, Heidelberg (1994)

8. Strotmann, A.: The categorial type of OpenMath objects. In: Asperti, A.,
Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 378–392.
Springer, Heidelberg (2004)

9. Bancerek, G.: Automatic translation in formalized mathematics. Mech. Math.
Appl. 5(2), 19–31 (2006)

10. Bancerek, G.: Information retrieval and rendering with MML query. In: Borwein,
J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 266–279.
Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11812289 21

11. Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in Mizar: formal-
izing recent mathematics. J. Autom. Reason. 29(3–4), 189–224 (2002)

12. Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, A.,
Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 119–
132. Springer, Heidelberg (2003)

13. Bancerek, G., Urban, J.: Integrated semantic browsing of the Mizar mathematical
library for authoring Mizar articles. In: Asperti, A., Bancerek, G., Trybulec, A.
(eds.) MKM 2004. LNCS, vol. 3119, pp. 44–57. Springer, Heidelberg (2004)

14. Bylinski, C., Alama, J.: New developments in parsing Mizar. In: Campbell, J.A.,
Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM
2012. LNCS (LNAI), vol. 7362, pp. 427–431. Springer, Heidelberg (2012)

15. Cairns, P.: Informalising formal mathematics: searching the Mizar library with
latent semantics. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004.
LNCS, vol. 3119, pp. 58–72. Springer, Heidelberg (2004)

16. Corbineau, P.: A declarative language for the Coq proof assistant. In: Miculan,
M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84.
Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-68103-8 5

17. Botana, F.: A symbolic companion for interactive geometric systems. In:
Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Cal-
culemus 2011. LNCS, vol. 6824, pp. 285–286. Springer, Heidelberg (2011)

18. Futa, Y., Okazaki, H., Shidama, Y.: Formalization of definitions and theorems
related to an elliptic curve over a finite prime field by using Mizar. J. Autom.
Reason. 50(2), 161–172 (2013). http://dx.doi.org/10.1007/s10817-012-9265-2

19. Gow, J., Cairns, P.: Closing the gap between formal and digital libraries of mathe-
matics. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift
in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, Univer-
sity of Bia�lystok, vol. 10(23), pp. 249–263 (2007). http://mizar.org/trybulec65/

20. Grabowski, A.: Efficient rough set theory merging. Fundamenta Informaticae
135(4), 371–385 (2014). http://dx.doi.org/10.3233/FI-2014-1129

21. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz.
Reason. Spec. Issue: User Tutor. I 3(2), 153–245 (2010)

http://dx.doi.org/10.1007/978-3-642-22673-1_11
http://dx.doi.org/10.1007/978-3-642-31374-5_1
http://dx.doi.org/10.1007/978-3-642-31374-5_1
http://dx.doi.org/10.1007/11812289_21
http://dx.doi.org/10.1007/978-3-540-68103-8_5
http://dx.doi.org/10.1007/s10817-012-9265-2
http://mizar.org/trybulec65/
http://dx.doi.org/10.3233/FI-2014-1129

Mizar: State-of-the-Art and Beyond 277

22. Grabowski, A., Schwarzweller, C.: Translating mathematical vernacular into knowl-
edge repositories. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp.
49–64. Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11618027 4

23. Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathe-
matical repositories. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 235–249. Springer, Hei-
delberg (2007). http://dx.doi.org/10.1007/978-3-540-73086-6 20

24. Grabowski, A., Schwarzweller, C.: Towards automatically categorizing mathemat-
ical knowledge. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings
of Federated Conference on Computer Science and Information Systems - FedCSIS
2012, Wroclaw, Poland, 9–12 September 2012, pp. 63–68 (2012)

25. Harrison, J.: A Mizar mode for HOL. In: von Wright, J., Harrison, J.,
Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125. Springer, Heidelberg (1996).
http://dl.acm.org/citation.cfm?id=646523.694700

26. Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar mathematical library in
OMDoc: translation and applications. J. Autom. Reason. 50(2), 191–202 (2013).
http://dx.doi.org/10.1007/s10817-012-9271-4

27. Jaśkowski, S.: On the Rules of Suppositions in Formal Logic. Stu-
dia Logica, Nak�ladem Seminarjum Filozoficznego Wydzia�lu Matematyczno-
Przyrodniczego Uniwersytetu Warszawskiego (1934). http://books.google.pl/
books?id=6w0vRAAACAAJ

28. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40 (2013). CoRR abs/1310.2805
29. Kaliszyk, C., Urban, J., Vyskočil, J.: Machine learner for automated reasoning 0.4

and 0.5 (2014). Accepted to PAAR 2014, CoRR abs/1402.2359
30. Korni�lowicz, A.: Jordan curve theorem. Formaliz. Math. 13(4), 481–491 (2005)
31. Korni�lowicz, A.: On rewriting rules in Mizar. J. Autom. Reason. 50(2), 203–210

(2013). http://dx.doi.org/10.1007/s10817-012-9261-6
32. Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. In: Mechanized Mathe-

maticsand Its Applications, Special Issue on 30 Years of Mizar, vol. 4, no. 1, pp.
3–24 (2005)

33. Naumowicz, A.: An example of formalizing recent mathematical results in
Mizar. J. Appl. Logic 4(4), 396–413 (2006). http://www.sciencedirect.com/
science/article/pii/S1570868305000686

34. Naumowicz, A.: Enhanced processing of adjectives in Mizar. In: Grabowski, A.,
Naumowicz, A. (eds.) Computer Reconstruction of the Body of Mathematics. Stud-
ies in Logic, Grammar and Rhetoric, University of Bia�lystok, vol. 18, no. 31, pp.
89–101 (2009)

35. Naumowicz, A.: Interfacing external CA systems for Grobner bases compu-
tation in Mizar proof checking. Int. J. Comput. Math. 87(1), 1–11 (2010).
http://dx.doi.org/10.1080/00207160701864459

36. Naumowicz, A.: SAT-enhanced Mizar proof checking. In: Watt, S.M.,
Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM
2014. LNCS, vol. 8543, pp. 449–452. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-319-08434-3 37

37. Naumowicz, A., Byliński, C.: Improving Mizar texts with properties
and requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.)
MKM 2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004).
http://dx.doi.org/10.1007/978-3-540-27818-4 21

38. Naumowicz, A., Korni�lowicz, A.: A brief overview of Mizar. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
67–72. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-03359-9 5

http://dx.doi.org/10.1007/11618027_4
http://dx.doi.org/10.1007/978-3-540-73086-6_20
http://dl.acm.org/citation.cfm?id=646523.694700
http://dx.doi.org/10.1007/s10817-012-9271-4
http://books.google.pl/books?id=6w0vRAAACAAJ
http://books.google.pl/books?id=6w0vRAAACAAJ
http://arxiv.org/abs/1310.2805
http://arxiv.org/abs/1402.2359
http://dx.doi.org/10.1007/s10817-012-9261-6
http://www.sciencedirect.com/science/article/pii/S1570868305000686
http://www.sciencedirect.com/science/article/pii/S1570868305000686
http://dx.doi.org/10.1080/00207160701864459
http://dx.doi.org/10.1007/978-3-319-08434-3_37
http://dx.doi.org/10.1007/978-3-319-08434-3_37
http://dx.doi.org/10.1007/978-3-540-27818-4_21
http://dx.doi.org/10.1007/978-3-540-27818-4_21
http://dx.doi.org/10.1007/978-3-642-03359-9_5

278 G. Bancerek et al.

39. Pa̧k, K.: Methods of lemma extraction in natural deduction proofs. J. Autom.
Reason. 50(2), 217–228 (2013). http://dx.doi.org/10.1007/s10817-012-9267-0

40. Pa̧k, K.: Improving legibility of natural deduction proofs is not trivial.
Logic. Methods Comput. Sci. 10(3), 1–30 (2014). http://dx.doi.org/10.2168/
LMCS-10(3:23)2014

41. Rudnicki, P., Trybulec, A.: On the integrity of a repository of formal mathematics.
In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol.
2594, pp. 162–174. Springer, Heidelberg (2003)

42. Syme, D.: DECLARE: a prototype declarative proof system for higher order logic.
Technical report, University of Cambridge (1997)

43. Trybulec, A., Korni�lowicz, A., Naumowicz, A., Kuperberg, K.: Formal math-
ematics for mathematicians. J. Autom. Reason. 50(2), 119–121 (2013).
http://dx.doi.org/10.1007/s10817-012-9268-z

44. Urban, J., Sutcliffe, G., Trac, S., Puzis, Y.: Combining Mizar and TPTP semantic
presentation and verification tools. Stud. Logic Gramm. Rhetor. 18(31), 121–136
(2009)

45. Urban, J.: MPTP - motivation, implementation, first experiments. J. Autom. Rea-
son. 33(3–4), 319–339 (2004)

46. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML
easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.
Springer, Heidelberg (2006)

47. Urban, J.: MizarMode – an integrated proof assistance tool for the Mizar way of
formalizing mathematics. J. Appl. Logic 4(4), 414–427 (2006). http://dx.doi.org/
10.1016/j.jal.2005.10.004

48. Urban, J.: MoMM – fast interreduction and retrieval in large libraries of
formalized mathematics. Int. J. Artif. Intell. Tools 15(1), 109–130 (2006).
http://ktiml.mff.cuni.cz/urban/MoMM/momm.ps

49. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reason. 37(1–2), 21–43 (2006). http://dx.doi.org/10.1007/s10817-006-9032-3

50. Urban, J.: BliStr: The Blind Strategymaker (2014). Accepted to PAAR 2014, CoRR
abs/1301.2683

51. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: motivation,
considerations, and initial prototype. In: Autexier, S., Calmet, J., Delahaye, D.,
Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol.
6167, pp. 455–469. Springer, Heidelberg (2010)

52. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar for-
malizations. J. Autom. Reason. 50(2), 229–241 (2013). http://dx.doi.org/10.1007/
s10817-012-9269-y

53. Urban, J., Sutcliffe, G.: ATP-based cross-verification of Mizar proofs: method,
systems, and first experiments. Math. Comput. Sci. 2(2), 231–251 (2008).
http://dx.doi.org/10.1007/s11786-008-0053-7

54. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner
for automated reasoning with semantic guidance. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer,
Heidelberg (2008)

55. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection
prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793,
pp. 263–277. Springer, Heidelberg (2011)

56. Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Autom. Reason.
29(3–4), 389–411 (2003). http://dx.doi.org/10.1023/A:1021935419355

http://dx.doi.org/10.1007/s10817-012-9267-0
http://dx.doi.org/10.2168/LMCS-10(3:23)2014
http://dx.doi.org/10.2168/LMCS-10(3:23)2014
http://dx.doi.org/10.1007/s10817-012-9268-z
http://dx.doi.org/10.1007/s10817-012-9268-z
http://dx.doi.org/10.1016/j.jal.2005.10.004
http://dx.doi.org/10.1016/j.jal.2005.10.004
http://ktiml.mff.cuni.cz/urban/MoMM/momm.ps
http://dx.doi.org/10.1007/s10817-006-9032-3
http://arxiv.org/abs/1301.2683
http://dx.doi.org/10.1007/s10817-012-9269-y
http://dx.doi.org/10.1007/s10817-012-9269-y
http://dx.doi.org/10.1007/s11786-008-0053-7
http://dx.doi.org/10.1023/A:1021935419355

Mizar: State-of-the-Art and Beyond 279

57. Wiedijk, F.: Mizar light for HOL light. In: Boulton, R.J., Jackson, P.B. (eds.)
TPHOLs 2001. LNCS, vol. 2152, pp. 378–394. Springer, Heidelberg (2001)

58. Wiedijk, F.: Formal proof sketches. In: Berardi, S., Coppo, M., Damiani, F. (eds.)
TYPES 2003. LNCS, vol. 3085, pp. 378–393. Springer, Heidelberg (2004)

59. Gamboa, R.: ACL2. In: Wiedijk, F. (ed.) The Seventeen Provers of the World.
LNCS (LNAI), vol. 3600, pp. 55–66. Springer, Heidelberg (2006)

60. Wiedijk, F.: Formal proof–getting started. Not. Am. Math. Soc. 55(11), 1408–1414
(2008)

61. Wiedijk, F.: A synthesis of the procedural and declarative styles of interactive
theorem proving. Logic. Methods Comput. Sci. 8(1:30), 1–26 (2012)

Growing the Digital Repository of Mathematical
Formulae with Generic LATEX Sources

Howard S. Cohl1(B), Moritz Schubotz2, Marjorie A. McClain1,
Bonita V. Saunders1, Cherry Y. Zou3, Azeem S. Mohammed3,

and Alex A. Danoff4

1 Applied and Computational Mathematics Division,
National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

{howard.cohl,marjorie.mcclain,bonita.saunders}@nist.gov
2 Database Systems and Information Management Group,

Technische Universität, Berlin, Germany
schubotz@tu-berlin.de

3 Poolesville High School, Poolesville, MD, USA
{chzou2009,azeemsm}@gmail.com

4 Wootton High School, Rockville, MD, USA
aadanoff@gmail.com

Abstract. One initial goal for the DRMF is to seed our digital com-
pendium with fundamental orthogonal polynomial formulae. We had
used the data from the NIST Digital Library of Mathematical Func-
tions (DLMF) as initial seed for our DRMF project. The DLMF input
LATEX source already contains some semantic information encoded using
a highly customized set of semantic LATEX macros. Those macros could
be converted to content MathML using LATExml. During that conver-
sion the semantics were translated to an implicit DLMF content dic-
tionary. This year, we have developed a semantic enrichment process
whose goal is to infer semantic information from generic LATEX sources.
The generated context-free semantic information is used to build DRMF
formula home pages for each individual formula. We demonstrate this
process using selected chapters from the book “Hypergeometric Orthog-
onal Polynomials and their q-Analogues” (2010) by Koekoek, Lesky and
Swarttouw (KLS) as well as an actively maintained addendum to this
book by Koornwinder (KLSadd). The generic input KLS and KLSadd LATEX
sources describe the printed representation of the formulae, but does not
contain explicit semantic information. See http://drmf.wmflabs.org.

1 Introduction

Formula home pages are the principal conceptual objects for the DRMF project.
These should contain the full context-free semantic information concerning indi-
vidual orthogonal polynomial and special function (OPSF) formulae. The DRMF

The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

c© Springer International Publishing Switzerland 2015 (outside the US)
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 280–287, 2015.
DOI: 10.1007/978-3-319-20615-8 18

http://drmf.wmflabs.org

Growing the Digital Repository of Mathematical Formulae 281

plain
LATEX
source

DLMF and DRMF
macro

replacement

Formula
metadata

incorporation

DLMF LATEX source

Review and
Packaging
Process

Wiki
xml
Dump

Fig. 1. Data flow of seeding projects. For most of the input LATEX source distributions,
DLMF and DRMF macros are not incorporated. For the DLMF LATEX source, the
DLMF macros are already incorporated.

is designed for a mathematically literate audience and should (1) facilitate inter-
action among a community of mathematicians and scientists interested in com-
pendia formulae data for orthogonal polynomials and special functions; (2) be
expandable, allowing the input of new formulae from the literature; (3) repre-
sent the context-free full semantic information concerning individual formulae;
(4) have a user friendly, consistent, and hyperlinkable viewpoint and authoring
perspective; (5) contain easily searchable mathematics; and (6) take advantage
of modern MathML tools for easy-to-read, scalably rendered content driven
mathematics. In this paper we will discuss the DRMF seeding projects whose
goal is to import data, for example, from traditional print media (cf. Fig. 1).

We are investigating various sources for seed material in the DRMF [3]. We
have been given permission to use a variety of input resources to generate our
online compendium of mathematical formulae. The current sources that we are
incorporating into the DRMF are given as follows: (1) NIST Digital Library of
Mathematical Functions (DLMF1) [1,6]; (2) Chaps. 1, 9, and 14 (a total of 228
pages with about 1800 formulae) from the Springer-Verlag book “Hypergeomet-
ric Orthogonal Polynomials and their q-Analogues” (2010) by Koekoek, Lesky
and Swarttouw (KLS) [7]; (3) Tom Koornwinder’s Additions to the formula lists
in “Hypergeometric orthogonal polynomials and their q-Analogues” by Koekoek,
Lesky and Swarttouw (KLSadd) [10]; (4) Wolfram Computational Knowledge of
Continued Fractions Project (eCF); and the Bateman Manuscript Project (BMP)
[4,5] (see Table 1). Note that the DLMF, KLS, KLSadd, and eCF datasets are cur-
rently being processed within our pipeline. For the BMP dataset, we have furnished
high-quality print scans to Alan Sexton and are currently waiting on the math
OCR generated LATEX output for this dataset which is currently being generated.
In this paper we focus on DRMF seeding of generic LATEX sources, namely those
which do not contain explicit semantic information.

2 Seeding with Generic LATEX Sources

DRMF seeding projects collect and stream OPSF mathematical formulae into
formula pages. Formula pages are classified into those which list formulae in a
1 We use the typewriter font in this document to refer to our seeding datasets.

http://dlmf.nist.gov
http://blog.wolframalpha.com/2013/05/16/computational-knowledge-of-continued-fractions/

282 H.S. Cohl et al.

Table 1.Overview of the first three stages of the DRMF project. Note that the numbers
which are given are rough estimates.

Stage 1 Stage 2 Stage 3

Started in 2013 2014 2015

Dataset DLMF, semantic

LATEX
KLS, plain

LATEX
eCF: Mathematica

BMP: book images

Semantic
enrichment

Identify
constraints,
substitutions,
notes, names,
proofs, . . .

Add new
semantic
macros

Image recognition
macro suggestion

Technologies Manual review,
rule-based
approaches

Improved rules Natural language
processing and
machine learning

Number of
formula home
pages

500 1500 5000

Human time per
formula
homepage

10min 5min 1min

Test corpora
contribution

Gold standard
for constraint
and proof
detection

Gold standard
for macro
replacement

Evaluation metrics

broad category, and the individual formula home pages for each formula. Gener-
ated formula home pages are required to contain bibliographic information and
usually contain a list of symbols, substitutions and constraints required by the
formulae, proofs and formula names if available, as well as related notes. Every
semantic formula entity (e.g., function, polynomial, sequence, operator, constant
or set) has a unique name and a link to its definition or description.

For LATEX sources which are extracted from the DLMF project, the semantic
macros are already incorporated [11]. However, for generic sources such as the
KLS dataset, the semantic macros need to be inserted in replacement for the
LATEX source which represents that mathematical object.

Here we give representative examples for the trigonometric sine function,
gamma function, Jacobi polynomial and little q-Laguerre/Wall polynomials,
which are rendered respectively as sin z, Γ(z), P (α,β)

n (x), and pn(x; a|q). These
functions and orthogonal polynomials have LATEX presentations given respec-
tively by \sin z, \Gamma(z), P n^{(\alpha,\beta)}(x), and p n(x;a|q). The
semantic representations for these functions and orthogonal polynomials are
given respectively by \sin@@{z}, \EulerGamma@{z}, \Jacobi{\alpha}{\beta}
{n}@{x}, \littleqLaguerre{n}@{x}{a}{q}. The arguments before the @ or @@

Growing the Digital Repository of Mathematical Formulae 283

symbols are parameters and the arguments after the @ or @@ symbol are in the
domain of the functions and orthogonal polynomials. The different between the
@ or @@ symbols indicates a specified difference in presentation, such as the
inclusion of the parentheses or not in our trigonometric sine example. For the
little q-Laguerre polynomials, one has three arguments within parentheses. These
three arguments are separated by a semi-colon and a vertical bar. Our macro
replacement algorithm indentifies these polynomials, and then extracts the infor-
mation about what the contents of each argument is. Furthermore there are many
ways in LATEX to represent open and close parenthese, our algorithm identifies
these. Also, since the vertical bar in LATEX can be represented by ‘|’ or ‘\mid’,
we search for both of these patterns. Our algorithm, for instance, also searches
for and removes all LATEX white-space characters such as those given by \, \! or
\hspace{}. There are many other details about making our search and replace
work, which we will not mention here.

3 KLS Seeding Project

In this section we describe how we augment the input KLS LATEX source in order
to generate formula pages (see Fig. 1). We are developing software processes
input LATEX source to generate output LATEX source with semantic mathemat-
ical macros incorporated. The semantic LATEX macros that we are using (664
total with 147 currently being used for the DRMF project) are being developed
by NIST for use in the DLMF and DRMF projects. Whenever possible, we use the
standardized definitions from the NIST Digital Library of Mathematical Func-
tions [6]. If the definitions are not available on the DLMF website, then we link to
definition pages in the DRMF with included symbols lists. One main goal of this
seeding project is to incorporate mathematical semantic information directly into
the LATEX source. The advantage of incorporating this information directly into
the LATEX source is that mathematicians are capable of editing LATEX whereas
human editing of MathML is not feasible. This enriched information can be
further modified by mathematicians using their regular working environment.

For the 3 chapters of the KLS dataset plus the KLSadd dataset, a total number
of 89 semantic macros were replaced a total of 3308 times. That’s an average of
1.84 macros replaced per formula. Note that the KLSadd dataset is actively being
maintained, and when a new version of it is published, in an automated fashion,
incorporate this new information into the DRMF. This fraction will increase
when more algebraic substitution formulae are included as formula metadata.
The most common macro replacements are given as follows. The macro for
the cosine function, Racah polynomial, Pochhammer symbol, q-hypergeometric
function, Euler gamma function, and q-Pochhammer symbol were converted a
total number of times equal to 117, 205, 237, 266, and 659. Our current con-
versions, which use a rule based approach, can be quite complicated due to the
nature of the variety of combinations of LATEX input for various OPSF objects.
In LATEX there are many ways of representing parentheses which are usually used
for function arguments. Also, there are many ways to represent spacing delim-
iters which can mostly be ignored as far as representing the common semantic

284 H.S. Cohl et al.

information for a mathematical function call. Our software canonicalizes these
additional meaningless degrees of freedom and generates easy-to-read semantic
LATEX source and improves the rendering. Developing automatic software which
performs macro replacements for OPSF functions in LATEX is a challenging task.
The current status of our rule-based approach is highly tailored to our specific
KLS and KLSadd input LATEX source.

Historically, the desired need for formal consistency has driven mathemati-
cians to adopt consistent and unique notations [2]. This is extremely beneficial
in the long run. We have interacted on a regular basis with the authors of the
KLS and KLSadd datasets. They agree that our assumptions about consistent
notations are correct and they consider using our semantic LATEX macros in
future volumes. Certainly the benefit of using these macros in communicating
with different computer systems is clear.

Once semantic macros are incorporated, the next task is to identify formula
metadata. Formula metadata can be identified within and must be associated
with formulae. One must then identify semantic information for the formula
within the surrounding text to produce formula annotations which describe this
semantic information. There are annotations which can be summarized as con-
straints, substitutions, proofs and formula names if available, as well as related
notes. The automated extraction of formula metadata is a challenging aspect
of the seeding project and future computer implementations might use machine
learning methods to achieve this goal. However, we have built automated algo-
rithms to extract formula metadata. We have for instance identified substitutions
by associating definitions for algebraic or OPSF functions which are utilized
in surrounding formulae. The automation process continues by merging these
substitution formulae as annotations in the original formulae which use them.
Another extraction algorithm we have developed is the identification of related
variables, understanding their dependencies and merging corresponding annota-
tions with the pre-existing formula metadata. We have manually reviewed the
printed mathematics to identify formula metadata. After we have exhausted our
current rule-based approach for extracting the formula annotations, we will per-
form the manual insertion of the missing identified annotations into the LATEX
source. This will then be followed by careful checking and expert editorial review.
This also evaluates the quality of our rule-based approach and creates a gold
standard for future programs.

Once the formula metadata has been completely extracted from the text, then
the remainder of the text should be removed and one is left with a list of LATEX
formulae with associated metadata. From this list (at the current stage of our
project), we use this semantic LATEX source to generate Wikitext. One of the fea-
tures of the generated Wikitext is that we use a glossary that we have developed
of our DLMF and DRMF macros to identify semantic macros within a formula
and its associated metadata. Presentation and meaningful content MathML is
generated from the DLMF and DRMF macros using a customized LATExml server
(http://gw125.iu.xsede.org) hosted by the XSEDE project that includes all gen-
erated semantic macros. From this glossary, we generate symbols lists for each

http://dlmf.nist.gov/LaTeXML
http://gw125.iu.xsede.org

Growing the Digital Repository of Mathematical Formulae 285

formula which uses recognized symbols. The generated Wikitext is converted
to the MediaWiki xml-Dump format, which is then bulk imported to our wiki
instance. Our DRMF Wiki has been optimized for MathML-output. Because
we are using Mathoid to render mathematical expressions [14], browsers with-
out MathML-support can display DRMF formulae within MediaWiki. However,
some MathML-related features (such as copying parts of the MathML output)
are not available on these browsers.

At the moment, There are 1282 KLS and KLSadd wikitext pages. The current
number of KLS and KLSadd formula home pages is 1219 and the percentage of
non-empty symbols lists in formula home pages is given by 98.6 percent. This
number will increase as we continue to merge substitution formulae into asso-
ciated metadata and as we continue to expand our macro replacement effort.
We have detected 208 substitutions which originally appeared as formulae. We
inserted these in an automated fashion into 515 formulae. The goal of our learn-
ing is to obtain a mostly unambiguous content representation of the mathemat-
ical OPSF formulae which we use.

4 Future Outlook

The next seeding projects which we will focus on are those which correspond
to image and Mathematica inputs (see Table 1). We have been given permission
from Caltech to use the BMP dataset within the DRMF. In the BMP dataset, the
original source for data are printed pages of books. We are currently collabo-
rating on the development of mathematical optical character recognition (OCR)
software [15] for use in this project. We plan to utilize this math OCR software
to generate LATEX output which will be incorporated with the DLMF and DRMF
semantic macros using our developed macro replacement software.

We are already developing for our next source, namely the incorporation of
the Wolfram eCF dataset into the DRMF. We have been furnished the Mathemat-
ica source (also known as Wolfram language) for this dataset and we are currently
developing software which translates in both directions from the Wolfram lan-
guage to our semantic LATEX source with DRMF and DLMF macros incorporated
(cf. Table 1).

For the DLMF source, due to the hard efforts of the DLMF team for more
than the past ten years, we already have semantic macros implemented, and all
that remains is to extract the metadata from the text associated with formulae,
removing the text after the content has been transferred, converting formu-
lae information in tables to lists of distinct formulae, and generating formula
home pages. We already have mostly achieved this for DLMF Chap. 25 on the
Riemann Zeta function and are currently at work on Chaps. 5 (gamma func-
tion), 15 (hypergeometric function), 16 (generalized hypergeometric functions),
17 (q-hypergeometric and related functions) and 18 (orthogonal polynomials)
which will ultimately be merged with the KLS and KLSadd datasets. Then we
will continue to the remainder of the DLMF chapters.

Once semantic information has been inserted into the LATEX source, there is
a huge number of possibilities on how this information can be used. Given that

286 H.S. Cohl et al.

our datasets are collections of OPSF formulae, we plan on taking advantage
of the incorporated semantic information as an exploratory tool for symbolic
and numerical experiments. For instance, one may use this semantic content to
translate to computer algebra system (CAS) computer languages such as those
used by Mathematica, Maple or Sage. One could then use the translated formulae
while taking advantage of any of the features available in those software packages.
We should also mention that the DRMF seeding projects generate real content
MathML. This has been a huge problem for Mathematics Information Retrieval
research for many years [9,12]. One major contribution of the DRMF seeding
projects is that they offer quite reasonable content MathML.

From a methodological point of view, we are going to develop evaluation
metrics that measure the degree of semantic formula enrichment. These should
be able to evaluate new approaches such as mathematical language processing
[13] and/or machine learning approaches based on the created gold standard.
Additionally, we are considering the use of sTeX [8], in order to simplify the defi-
nition of new macros. Eventually, we can also develop a heuristic which suggests
new semantic macros based on statistical analysis.

Acknowledgements. (The mention of specific products, trademarks, or brand names
is for purposes of identification only. Such mention is not to be interpreted in any way
as an endorsement or certification of such products or brands by the National Institute
of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose. All trademarks mentioned herein belong
to their respective owners.) We are indebted to Wikimedia Labs, the XSEDE project,
Springer-Verlag, the California Institute of Technology, and Wolfram Research Inc. for
their contributions and continued support. We would also like to thank Roelof Koekoek,
Tom Koornwinder, Roberto Costas-Santos, Eric Weisstein, Dan Lozier, Alan Sexton,
Bruce Miller, Abdou Youssef, Charles Clark, Volker Markl, George Andrews, Mourad
Ismail, and Dmitry Karp for their advice, invaluable assistance, and support.

References

1. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov, Release
1.0.9 of 2014–08-29. Online companion to [6]

2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathemat-
ics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

3. Cohl, H.S., McClain, M.A., Saunders, B.V., Schubotz, M., Williams, J.C.: Dig-
ital repository of mathematical formulae. In: Watt, S.M., Davenport, J.H.,
Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 419–422.
Springer, Heidelberg (2014)

4. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral
Transforms, vol. 1-2. McGraw-Hill Book Company Inc., New York-Toronto-London
(1954)

5. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental
Functions, vol. 1-3. Robert E. Krieger Publishing Co., Inc., Melbourne (1981)

6. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook
of Mathematical Functions. Cambridge University Press, New York (2010). Print
companion to [1]

http://dlmf.nist.gov

Growing the Digital Repository of Mathematical Formulae 287

7. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomi-
als and their q-analogues. Springer Monographs in Mathematics. Springer, Berlin
(2010). With a foreword by Tom H. Koornwinder

8. Kohlhase, M.: Using LaTeX as a semantic markup format. Math. Comput. Sci.
2(2), 279–304 (2008)

9. Kohlhase, M., Sucan, I.: A search engine for mathematical formulae. In: Calmet,
J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–253.
Springer, Heidelberg (2006)

10. Koornwinder, T.H.: Additions to the formula lists in “Hypergeometric orthog-
onal polynomials and their q-analogues” by Koekoek, Lesky and Swarttouw.
arXiv:1401.0815v2 (2015)

11. Miller, B.R., Youssef, A.: Technical aspects of the digital library of mathematical
functions. Ann. Math. Artif. Intell. 38(1–3), 121–136 (2003)

12. Nghiem, M.-Q., Kristianto, G.Y., Topić, G., Aizawa, A.: Which one is better:
presentation-based or content-based math search? In: Watt, S.M., Davenport, J.H.,
Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 200–212.
Springer, Heidelberg (2014)

13. Pagel, R., Schubotz, M.: Mathematical language processing project. In: England,
M., Davenport, J.H., Kohlhase, A., Kohlhase, M., Libbrecht, P., Neuper, W.,
Quaresma, P., Sexton, A.P., Sojka, P., Urban, J., Watt, S.M. (eds.) Joint Pro-
ceedings of the MathUI, OpenMath and ThEdu Workshops and Work in Progress
track at CICM co-located with Conferences on Intelligent Computer Mathematics
(CICM 2014). CEUR Workshop Proceedings, Coimbra, Portugal, 7–11 July, vol.
1186 (2014). http://CEUR-WS.org

14. Schubotz, M., Wicke, G.: Mathoid: robust, scalable, fast and accessible math ren-
dering for wikipedia. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P.,
Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 224–235. Springer, Heidelberg
(2014)

15. Sexton, A.P.: Abramowitz and stegun – a resource for mathematical document
analysis. In: Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wen-
zel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 159–168. Springer,
Heidelberg (2012)

http://arxiv.org/abs/1401.0815v2
http://CEUR-WS.org

Formalizing Physics: Automation, Presentation
and Foundation Issues

Cezary Kaliszyk1, Josef Urban2(B), Umair Siddique3, Sanaz Khan-Afshar3,
Cvetan Dunchev4, and Sofiène Tahar3

1 University of Innsbruck, Innsbruck, Austria
2 Radboud University, Nijmegen, The Netherlands

Josef.Urban@gmail.com
3 Concordia University, Montreal, Canada

4 University of Bologna, Bologna, Italy

Abstract. In this paper, we report our first experiments in using
learning-assisted automated reasoning for the formal analysis of phys-
ical systems. In particular, we investigate the performance of automated
proofs as compared to interactive ones done in HOL for the verification
of ray and electromagnetic optics. Apart from automation, we also pro-
vide brief initial exploration of more general issues in formalization of
physics, such as its presentation and foundations.

1 Introduction: Formalization, Automation and Physics

Twenty years after the QED Manifesto [1], there is an encouraging progress in
building computer-understandable and formally verified mathematical corpora.
Large projects in mathematics include the completed formal proofs of the Kepler
conjecture (Flyspeck) [8], the Odd Order theorem [7], the Four Color theorem [6],
and verification of more than a half of the Compendium of Continuous Lattices
textbook [3]. Verification of the seL4 kernel [15] and the CompCert compiler [17]
show comparable progress in full-scale verification of complicated software. Such
projects are often linked to advances in verification technology, and in particu-
lar to strong automation [9,11,16] that allows less verbose formal proofs and
increases the general understanding intelligence of the formal proof assistants.

This ongoing progress brings closer the possibility of eventually expressing
in a computer-understandable form all of today’s scientific knowledge, and in
particular the vast knowledge accumulated by exact sciences such as physics.
Such a Formalization of Physics (FOP) project raises a number of interesting
issues, ranging from philosophical and theoretical to very practical ones, on a
scale that may eventually dwarf the current applications of formal verification.
Just optical components are today a basis of a growing multi-billion business,
technologies involving quantum-level phenomena become more and more impor-
tant, the safety of space/air flight and other means of transport (particularly
self-driving) may greatly benefit from formal treatment, and perhaps even more
some of the big and dangerous “prides” of modern physics such as nuclear power

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 288–295, 2015.
DOI: 10.1007/978-3-319-20615-8 19

Formalizing Physics: Automation, Presentation and Foundation Issues 289

plants, tokamaks, and large hadron colliders. An interesting multidisciplinary
problem is the formal analysis of engineering systems which requires formalized
theories of Physics, Probability and Information Theory.

One of the first practical hurdles in FOP is the unfamiliarity with theo-
rem proving in the Physics community. An attractive step that may reduce this
gap is to wrap the internal complexities of tactical theorem proving systems
in powerful high-level automation, user-friendly interfaces, collaborative reason-
ing platforms and proof advice systems. The main concrete contribution of this
paper is to describe the first experiments in deploying and using such strong
automation – the HOLyHammer system [12] – over the first formal physics devel-
opments. Section 2 briefly describes such projects in the area of Formal Optics
(Formalization of Physics) and Sect. 3 describes first steps and experiments in
using HOLyHammer for these developments. This initial experience leads us to
discuss in Sect. 4 some wider and more concrete issues related to the present and
future FOP project(s).

2 Formal Optics

Optical systems are becoming increasingly important by resolving many bot-
tlenecks in todays communication, aerospace and biomedical systems. However,
given the continuous nature of optics, the inability to efficiently analyze opti-
cal system models using traditional paper-and-pencil and computer simulation
approaches sets limits especially in safety-critical applications.

In 2009, a project1 was started at the Hardware Verification Group (HVG) of
Concordia University in order to build a comprehensive framework for the formal
analysis of optical systems. The project can be divided into three sub-projects:

– Formalization of Ray Optics in which light is considered as a ray, i.e., a simple
geometrical line.

– Formalization of Electromagnetic Optics in which light is characterized as
electromagnetic waves.

– Formalization of Quantum Optics in which light is characterized as a stream
of photons.

Currently, fundamentals of ray optics, electromagnetic optics and quantum
optics have been formalized [14] in HOL Light. This allowed the formal veri-
fication of some interesting and safety-critical optical systems such as optical
resonators [19], laser resonator [13] and optical quantum flip gate [18]. In the
sequel, we explore automation and presentation issues of these projects.

3 HOLyHammer and Formal Optics

HOLyHammer [12] is a recently developed online AI/ATP system for assisting
formal (computer-understandable) verification done in HOL Light. The service
1 http://hvg.ece.concordia.ca/projects/optics/.

http://hvg.ece.concordia.ca/projects/optics/

290 C. Kaliszyk et al.

allows its users to upload and automatically process an arbitrary formal devel-
opment (project) based on HOL Light, and to attack arbitrary conjectures that
use the concepts defined in some of the uploaded projects. The service uses sev-
eral automated theorem provers (ATPs) combined with several premise selec-
tion methods trained on all the project proofs. The ITP (interactive theorem
prover) and ATP proof data and theorems from different (possibly incompatible)
projects and their versions are pooled together using a recursive content-based
(MD5) naming of symbols and theorems, providing a large base of proofs to learn
from. Authorized users can upload a new project against an arbitrary existing
project (saved as standard and proof-recording checkpointed images), allowing
fast processing of HOL Light projects that import large libraries such as the
Multivariate Analysis. The system also provides version control and heuristic
HTML-ization (cross-linking) of the uploaded projects. Users can ask parallel
asynchronous queries to the service either from its web interface or directly from
the HOL Light mode for Emacs. Below we describe the steps to deploy and test
HOLyHammer for Formal Optics.

3.1 Deployment

We have streamlined the HOLyHammer installation and deployed it on a faster
dedicated machine with 12 hyperthreading 2.6 GHz Xeons in Canada (U. of
Alberta), which was serving so far the users of the similar online service for
Mizar [9]. The HVG members were given access rights to upload their devel-
opments there, to update them, and their Emacs mode was configured to ask
queries to this server. Such a dedicated/local HOLyHammer installation is now
quite easy and we hope that more users will use this option and we will even-
tually build a network of such online “hammer” installations that will further
synchronize between them their proof data, projects, CPU-load, etc., in the spirit
of large distributed formal wikis [2].

3.2 Experiments with Complete Automation

We have measured the strength of the HOLyHammer automation on the Ray (Ray
Optics) and EMF (Electromagnetic Optics) formalizations. These two projects
are both based on HOL Light’s Complex Multivariate Analysis, and they together
contain 482 proved toplevel theorems and 125 definitions.2 Table 1 shows the
performance of 11 ATPs in proving the 482 theorems from their recorded HOL
Light dependencies, and Table 2 shows the performance of various strategies that
combine the three best ATPs with premise selection using learning from previous
proofs3. The learning method used in all cases was distance-weighted k-nearest
neighbor with IDF-weighted normalized term-based features [10]. The results
are encouraging: the combined strength of the methods reaches nearly 50 % (239

2 Many definitions are just abbreviations introducing proper physics terminology.
3 The complete set of ATP inputs generated by HOLyHammer and the corresponding
ATP outputs are available at http://cl-informatik.uibk.ac.at/∼cek/cicm15/data.tgz.

http://cl-informatik.uibk.ac.at/~cek/cicm15/data.tgz

Formalizing Physics: Automation, Presentation and Foundation Issues 291

problems solved) in the first scenario when the premises are chosen by the user.
236 of these problems are already solved by one of the best three ATPs (Epar,
Vampire 3.0, and Z3 4.0). The performance is 45 % (217 problems solved) in
the fully automated mode when the relevant premises are chosen automatically
by machine learning, and seven different combinations of premise selection and
ATPs are needed for this. Note that there are 105 problems that Paradox found
counter-satisfiable. This means that the incompleteness of the currently used
HOL-to-FOL translation shows quite considerably on these problems, making
more complete encodings an interesting problem to address in this context.

Table 1. ATP re-proving with 300 s time limit on the 482 Emf and Ray top-level
problems

Prover Theorem (%) CounterSat (%)

Epar 219 (45.436) 0

Vampire 3.0 210 (43.568) 0

Z3 4.0 210 (43.568) 0

CVC4 1.3 201 (41.701) 0

Vampire 2.6 198 (41.079) 0

E 1.8 189 (39.212) 0

SPASS 3.5 154 (31.950) 0

Metis 2.3 152 (31.535) 0

iProver 1 116 (24.066) 0

Prover9 09.11a 114 (23.651) 0

Paradox 4.0 0 (0.000) 105 (21.784)

any 239 (49.585) 105 (21.784)

A brief review of the fully automatically solved problems shows that
HOLyHammer is particularly useful in automating proofs about complex vec-
tors (used in the representation of planar waves) in Electromagnetic Optics, for
example the following relation4 between collinearity and orthogonality of com-
plex vectors is proved by Epar using 17 other previous theorems:

∀x y:complex^N.

collinear_cvectors x y ∧ ¬(x=cvector_zero) ∧ ¬(y=cvector_zero)
=⇒ ¬(corthogonal x y)

An example of a fully automatically proved lemma in Ray Optics is a statement5

about the stability of an optical resonator (represented by its ray transfer matrix)
under certain conditions. In this case the AI/ATP found a relevant special lemma
where most of the hard proving work was done, and which together with six
auxiliary lemmas can be used to automatically prove the more general statement:

http://mizar.cs.ualberta.ca/hh/ses/Emf202/cvectors.html#CORTHOGONAL_COLLINEAR_CVECTORS
http://mizar.cs.ualberta.ca/hh/ses/Emf202/cvectors.html#CORTHOGONAL_COLLINEAR_CVECTORS
http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html#STABILITY_LEMMA_GENERAL_SYM
http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html#STABILITY_LEMMA_GENERAL_SYM

292 C. Kaliszyk et al.

Table 2. ATP proving with k-NN premise selection and 300 s time limit on the 482
Emf and Ray top-level problems

Prover Premises Theorem (%)

Epar 1024 170 (35.565)

Epar 128 155 (32.158)

Vampire 3.0 128 121 (25.104)

Vampire 3.0 1024 119 (24.895)

E 1.8 128 104 (21.577)

Z3 4.0 128 103 (21.369)

Epar 32 102 (21.162)

Vampire 3.0 32 92 (19.087)

E 1.8 32 91 (18.880)

Z3 4.0 32 89 (18.465)

E 1.8 1024 68 (14.226)

Z3 4.0 1024 64 (13.389)

any 217 (45.021)

∀ (M:real^2^2) xi thetai.

(det (M) = &1) ∧ (−&1 < (M$1$1 + M$2$2) / &2) ∧ (M$1$1 + M$2$2)/&2 < &1

=⇒ ∃(Y:real^2). ∀n.
abs (((M pow 2) pow n ** vector [xi; thetai])$1) ≤ Y$1

∧ abs (((M pow 2) pow n ** vector [xi; thetai])$2) ≤ Y$2

3.3 Linking to Informal Physics Explanations

Formal mathematics as a science enjoys a remarkable property: it is in some
sense fully “understood” by machines. Computers can correctly parse the for-
mal definitions and statements, verify the proofs, and sometimes even find proofs
independently of humans, regardless of any possible motivation and underlying
intuition ivolved in proposing the definitions, theorems, proofs and theories. In
this sense, formal mathematics is completely self-explanatory. While (physical)
intuition may play varied part in formulation of various theories, such theories
as formal mathematical objects are independent and decoupled from their (pos-
sible) underlying intuition. It is not unusual that for some abstract theory a new
application is found, which has very little in common with the original intuition.
Similarly, the popular term “abstract nonsense” refers to abstract arguments
(e.g., in category theory) which are hard to link to any particular intuition.
While some physicists (notably Feynman) criticized such decoupling from phys-
ical intuition as harmful, it is a fact that many mathematicians (to say nothing
about computers) do mathematics without such links.

We believe that here is a real difference between (formal/abstract) mathemat-
ics and physics, and this difference really needs to be addressed by appropriate

Formalizing Physics: Automation, Presentation and Foundation Issues 293

tools assisting formalization of physics. In physics, there is always first some
underlying intuition about (part of) the real world, and this intuition is more or
less perfectly captured by various abstract mathematical models. An important
part of physics is the informal understanding of the (intended) correspondence
between the physical phenomena and their formal models. This understanding
however is not (yet) part of the actual formal code. In particular, those of us who
are not experts in optics have found it significantly harder to understand some
of the formal definitions modelling the physical systems and phenomena. While
abstract concepts like sets, quasigroups, categories and topological spaces are
acceptable to mathematicians as just such abstract concepts described by their
formal definitions, taking an “optical resonator” to be just its formal definition
does not seem to be right, because it forgets the “real” physical phenomenon
that is linked to (and motivating) the particular choice of the formal model.

A solution that does not require much work from the formalizers (and which
can even be done later by others) is to allow special comments in the formal text,
that are during the HTML-ization turned into cross-links to informal explana-
tions, in our case to Wikipedia. Such cross-links can be also harvested from
the formalizations, thus providing an informal overview (and in some sense also
high-level semantic anchors) of the physics topics dealt with in the formal code.
About 20 such Wikipedia annotations have been inserted into the Ray Optics
formalization,6 making the resulting HTML presentation considerably easier to
understand for some of us. Another very interesting informal resource that could
provide such semantic anchors are the three volumes of Feynman’s lectures that
have been recently published online in a form that makes use of state-of-the-art
informal presentation technologies such as MathJax.7

4 Some Issues and Considerations in Formal Physics

The tighter link between the formal mathematical theory and its underlying
(physical) intuition is likely just one of several interesting differences between
formalization of physics and formalization of mathematics. Clearly, the most
obvious theoretical issue is whether it is possible to consistently formalize the
whole of physics at all, and what should be the ultimate foundational framework
for such formalization. For example, Beeson in [4] briefly derives (what he calls) a
contradiction between quantum theory and general relativity that is apparently
well-known to physicists, and which can perhaps be understood as quantum
physics breaking some of the assumptions of general relativity about all possible
worlds being regular solutions to Einstein’s equations. There are probably several
answers to this famous problem by current theoretical physics, the best-known
involving various string and superstring theories for which we still lack enough
experimental evidence.

This however just brings up the main issue with physics: it is about mod-
elling the real world “well enough” which we do not fully know and probably
6 See, e.g., http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html.
7 http://www.feynmanlectures.caltech.edu/.

http://mizar.cs.ualberta.ca/hh/ses/Ray203/resonator.html
http://www.feynmanlectures.caltech.edu/

294 C. Kaliszyk et al.

never will. As already the several approaches to the formalization of optics show,
there are typically several models of the same phenomena. These models will
often be “almost compatible” in terms of their predictions when used on their
intended domain, e.g., the more complicated electromagnetic optics model will
largely agree with the simpler ray optics model on an important class of optics
problems. As one goes farther away from this class of problems, the predic-
tions of these two models will disagree more and more. Some models designed
for very different phenomena, such as the quantum-theoretical and relativistic,
might quickly yield hard contradictions as soon as one tries to use both of them
at once. A proper foundational framework should make such relations between
the models as explicit as possible (e.g., by theorems exhibiting the asymptotic
relations between the models and/or their incompatibilities and scope, perhaps
enhancing by such explicit relations formalization frameworks such as Little The-
ories and Realms [5]), so that one can consistently and automatically combine
the knowledge contained in them in the same way as the current large-theory
AI/ATP methods do over large mathematical corpora.

An interesting related issue is to what extent such careful “theory engineer-
ing” could assist, emulate, or even replace “proper” mathematical solutions to
inconsistencies in physics, such as the Dirac delta “function” (made consistent
later by Schwartz’s distributions), the physics way of treating the infinitesimals
(made consistent by Robinson’s ultraproduct models) or various approaches to
counting with infinities (regularization, renormalization) in Feynman’s diagrams.

There are also many practical issues and tasks that are already visible in our
experiments. Physics is a heavy user of computation, and the pragmatic app-
roach used sometimes by the HVG group is to just trust the results of computer
algebra systems (e.g., using Mathematica to compute the numerical eigenvalues
of the waveguide when there is no closed form solution [14]), temporarily adding
them as axioms [14]. This is going to be a rich source of research problems for
Calculemus-style projects, SMT solving, systems like MetiTarski, etc. In short,
we suggest FOP as a rather exciting and very large and rewarding research topic
whose automation, foundations and presentation issues will keep the formaliza-
tion community busy in the next years, hopefully greatly expanding its current
borders and methods.

Acknowledgements. Kaliszyk was supported by the Austrian Science Fund (FWF)
grant P26201.

References

1. Boyer, R., et al.: The QED Manifesto. In: Bundy, Alan (ed.) CADE 1994. LNCS,
vol. 814, pp. 238–251. Springer, Heidelberg (1994)

2. Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: issues
and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.)
MKM/Calculemus 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg (2011)

3. Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in MIZAR. J.
Autom. Reasoning 29(3–4), 189–224 (2002)

Formalizing Physics: Automation, Presentation and Foundation Issues 295

4. Beeson, M.: Constructivity, computability, and the continuum. In: Essays on the
Foundations of Mathematics and Logic, Polimetrica, Milan, vol. 2 (2005)

5. Carette, J., Farmer, W.M., Kohlhase, M.: Realms: A structure for consolidat-
ing knowledge about mathematical theories. In: Watt, S.M., Davenport, J.H.,
Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 252–266.
Springer, Heidelberg (2014)

6. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)

7. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In:
Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2013, Rome, Italy, 23–25
January, pp. 1–2. ACM (2013)

8. Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs. London Math-
ematical Society Lecture Note Series, vol. 400. Cambridge University Press,
Cambridge (2012)

9. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR, abs/1310.2805 (2013)
10. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting

and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC
Series, vol. 14, pp. 87–95. EasyChair (2013)

11. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning 53(2), 173–213 (2014)

12. Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL Light.
Math. Comput. Sci. 9(1), 5–22 (2015)

13. Khan-Afshar, S., Hasan, O., Tahar, S.: Formal analysis of electromagnetic optics.
In: Proceedings of SPIE, vol. 9193, pp. 91930A–91930A-14 (2014)

14. Khan-Afshar, S., Siddique, U., Mahmoud, M.Y., Aravantinos, V., Seddiki, O.,
Hasan, O., Tahar, S.: Formal analysis of optical systems. Math. Comput. Sci. 8(1),
39–70 (2014)

15. Klein, G., Huuck, R., Schlich, B.: Operating system verification. J. Autom. Rea-
soning 42(2–4), 123–124 (2009)

16. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning
for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

17. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

18. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formal verification of optical quan-
tum flip gate. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp.
358–373. Springer, Heidelberg (2014)

19. Siddique, U., Aravantinos, V., Tahar, S.: Formal stability analysis of optical res-
onators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871,
pp. 368–382. Springer, Heidelberg (2013)

A Survey on Retrieval of Mathematical
Knowledge

Ferruccio Guidi and Claudio Sacerdoti Coen(B)

Department of Computer Science and Engineering – DISI,
University of Bologna, Bologna, Italy

{ferruccio.guidi,claudio.sacerdoticoen}@unibo.it

Abstract. We present a short survey of the literature on indexing and
retrieval of mathematical knowledge, with pointers to 72 papers and
tentative taxonomies of both retrieval problems and recurring techniques.

1 Purpose Driven Taxonomy of Retrieval Problems

Retrieval of mathematical knowledge is always presented as the low hanging
fruit of Mathematical Knowledge Management, and it has been addressed in
several papers by people coming either from the formal methods or from the
information retrieval community. The problem being resistant to classical content
search techniques [LRG13], it is usually addressed combining a small set of new
ideas and techniques that are recurrent in the literature. Despite the amount of
work, however, there is not a single solution that is the clearly winning on the
others, nor convincing unbiased benchmarks to compare solutions. Some authors
like [KK07] also suggest that the community should first better understand the
actual needs of mathematicians from an unbiased perspective to improve the
MKM technology as a whole. In this paper we collect a hopefully comprehensive
bibliography, and we roughly classify the papers according to novel taxonomies
both for the problems and the techniques employed. The only other surveys
on the same topic are [AZ04], now outdated and focused mostly on (European)
research projects that contributed to the topic in the 6th Framework Programme,
[ZB12], which covers less literature in much greater detail without attempting
a classification, [L13], which is focused on evaluation of mathematics retrieval,
and [L10], which is written in Slovak.

We begin our discussion with a purpose driven taxonomy made of three dif-
ferent retrieval problems that deal with mathematical knowledge. Each problem
is characterised by its own set of expectations and constraints, and adopting a
solution to another problem may be infeasible or yield poor results. In the next
sections we classify the papers according to an encoding based taxonomy (pre-
sentation vs. content vs. semantics) and to a taxonomy of techniques employed.
Finally we point to the rich literature relative to the problem of ranking, and
we touch the problem of evaluation of systems. We conclude with some notes on
the availability of math retrieval systems.

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 296–315, 2015.
DOI: 10.1007/978-3-319-20615-8 20

A Survey on Retrieval of Mathematical Knowledge 297

1.1 Problem 1: Document Retrieval

Objective: A human is interested in recalling a set of mathematical documents
(or fragments) that are related to a particular mathematical topic. Typically it
is not the case that only one document provides the correct answer; on the con-
trary the user may be interested in a corpora of different documents that yield
different, only partially overlapping information. In [Koh14] and other papers
there are attempts at a classification of the information needs of users. However,
at the moment only the system described in [ZKT08] tries to use the classifica-
tion to improve the user experience.

Input: The human composes a query combining keywords (e.g. for topics
[ACK08]), free text and mathematical formulae. Often the mathematical for-
mulae are intended as examples of expressions related to the topic of interest.
For example, a user interested in trigonometric identities can just enter one iden-
tity to retrieve them all. Or a formula showing a particular property of a special
function can be used to disambiguate the special function among the ones with
similar names.

The query can be composed using a very simple, Google-inspired, single
line interface, or written using an ad-hoc query language (see [AY07b,AY08b,
YA07] for some proposals), or by filling in some form. The first solution is the
one preferred in the literature. In [Koh14] a comparison of the behaviour of
mathematicians vs. other users highlighted that the professional mathematician
is more interested in the precision of the output than the effort put into the input.
Therefore mathematicians may use and appreciate more complex interfaces. On
the contrary, other users are likely to prefer a simple, modern search interface.

Formulae can be entered in some textual syntax (e.g. LATEX, MathML),
maybe with the help of on-the-fly formulae rendering [LSR14], or using graphical
editors [MM06], or they can be acquired from hand-written snippets [AY08a].
The formula is likely to contain errors and ambiguities, for example if it is
encoded at the presentational level (e.g. in Presentation MathML or LATEX), if it
is acquired from hand-written text, or if the user only remembers it partially or
in a wrong way. Errors and ambiguities are not a critical problem because for-
mulae are just used to retrieve documents that contain similar formulae accord-
ing to some similarity criterion. In [AY08a] the authors address the problem of
combining and ranking results from different queries generated from ambiguous
formulae due to errors in the recognition process. See also [ZB12] for a survey on
the interaction between mathematical information retrieval and mathematical
document recognition. Some authors [KT09] suggest that the visual presenta-
tion of the formula may sometimes be important in the definition of similarity,
whereas in other situations it is the mathematical content of the formula that
matters. Logically equivalent formulae whose content encoding is highly different
are better considered less similar.

Once the search engine returns the result, the user may be given the oppor-
tunity to enhance the query by further filtering.

298 F. Guidi and C.S. Coen

Output: The output is a ranked list of matching documents or document frag-
ments (e.g. a chapter of a book, or a section of an article). When the query
involves mathematical formulae, the ranking is determined by the similarity
relation. The user must be given the possibility to quickly determine whether
the matched document is interesting or not. Therefore the problem of how to
present summaries of the selected documents in the result list is of fundamental
importance [LSLM11,LSR14,MG08b,WG10,You05,You06,You07,You08]. Even
highlighting correctly the bits of the summary that matches the query can make a
significant difference in the user experience [LSLM11,LSR14,You05,You06]. The
list of results must be the starting point for further investigations by the user.
At least, all results must contain hyperlinks or other ways to retrieve the original
document the summary points to. A study of user requirements in [ZKT08] sug-
gests that results should be presented after clustering them according to their
resource type (research paper, tutorial, slides, course, book, etc.). For example,
a student may immediately decide to skip research papers, and a researcher may
skip websites and tutorials.

Constraints: A balance must be obtained between precision (the fraction of
retrieved documents that are relevant) and recall (the fraction of relevant doc-
uments that are retrieved). To maximise recall, precision is affected and many
out of topic documents (false positives) are retrieved, penalising performance.
Too many results are overwhelming and the user is likely to give attention only
to the first ones in the list. Therefore, the search engine does not have to rank
and produce summaries of documents with low scores. The ranking function is
ultimately the one responsible for the perceived quality of the search engine.

Since the query is intended to be issued by a human, the performance of
the search engine is not a critical requirement and up to a few seconds (or even
minutes in some particular situations) may be acceptable. Nevertheless, modern
textual search engines like Google are extremely fast, and the user is likely to
expect the queries to be solved in less than a second.

1.2 Problem 2: Formula Retrieval

Objective: A program — more rarely a human — is interested in retrieving
all formulae that are in some relation R with a query formula E. Sometimes
the formula E can actually be a set of formulae. For example, E can be a
goal to be proved automatically, and T RE when T is the conclusion of the
statement of a theorem that can be instantiated to prove E. More precisely, T
contains metavariables to be instantiated and R is one-sided unification up to
some equational theory. The dual query is also used in the literature: E is a
property (a statement containing metavariables), R is unification and the query
finds all operations that satisfy the property E. By using several properties at
once, the query can find all models of a given theory (e.g. all semirings in the
library) [NK07], also up to renaming of constants and properties. An interesting

A Survey on Retrieval of Mathematical Knowledge 299

application presented in [GK14], that uses techniques similar to [NK07], con-
sists in matching concepts across libraries by first computing properties of an
object in one library (i.e. patterns like commutativity of a binary operator) and
then looking for objects in the other library that satisfy the same properties.
To be more effective, properties are extracted from all libraries and concepts are
matched according to a similarity measure to identify objects that satisfy a simi-
lar set of properties. A third example is obtained by choosing logical implication
for R. The query looks for all formulae that imply E.

Input: One or more formulae E that may or may not contain metavariables to
be instantiated. Rarely, additional constraints can be expressed using keywords,
classifications, free text, authors, etc. Formulae are not supposed to be ambigu-
ous or contain errors. In [AGSC+06] ambiguity is resolved before performing the
query using type checking and interaction with the user.

Some dedicated query languages are proposed to specify the structure of the
formulae E [Ban06,BR03,BU04,GS03,KT10,Rab12]. They are implemented on
top of relational databases or ad-hoc in-memory indexes.

Output: The query is meant to retrieve a set of formulae that satisfy a certain
property. When the search is performed by a program, there is no need to present
summaries of the document the formula occurs in. Even when a human issued
the search, an hyperlink to the document may be sufficient.

In many situations the relation R can be extended to a ternary relation
T Rρ E meaning that T is related to E with score ρ, and the results can be
ranked according to ρ. For example, if R reduces a proof of E to a proof of T ,
then the T ’s may receive a higher score if they are judged easier to prove.

Constraints: Maximisation of the recall is fundamental. The query should
return all formulae that satisfy the query, even if they rank very low. Because
searches are often basic operations of complex algorithms (e.g. automatic provers),
speed is also critical. In several situations, the searches need to be performed in
milliseconds.

To speed up the searches or when the relation R is undecidable, the search
engine may use a second decidable relation R′ such that R⊆R′. Using R′, the
query can return false positives, i.e. formulae T such that T R′ E but not T RE.
For example, when E is a pattern and R is unification, R′ may ignore the struc-
ture of the two formulae E and T and conclude E R′ T when all symbols in E
are also in T . Example: f(xz, y + z)R f(?, ?+?) and f(y + z, xz)R′ f(?, ?+?),
but not f(y + z, xz)R f(?, ?+?).

1.3 Problem 3: Document Synthesis

Objective: Composing a new mathematical document assembling fragments to
be retrieved from a library. The most common occurrence is in educational soft-
ware where a learning object must be assembled according to the expertise of

300 F. Guidi and C.S. Coen

the user, the topic of interest, etc. [BF03,LDM+08,LM06]. An unrelated exam-
ple is the automatic generation of summaries and statistics for a mathematical
library [BR03]. A final example is mining of formalised libraries, for example
to build visual representations of the graph of dependencies over an axiom (to
understand its implications) or a definition/statement (to understand the prop-
agation of changes).

A variant is to solve a mathematical problem by composing mathemati-
cal (Web) services [CDT04]. Each service exposes metadata about the problem
solved, the algorithm implemented, and its preconditions and postconditions.

Input: The query is not likely to involve mathematical formulae, and it is usu-
ally expressed using a query language over ontologies. A high level interface may
hide the underlying query language. Sometimes the query is fixed once and for
all, and needs to be run at regular periods.

Output: The expected output depends on the particular use case and it is usu-
ally made of a single result in place of a ranked list. The result may consist of a
graph of objects and relations between them, or it may consist of the minimal
information to build the expected document or solve the algorithmic problem.

Constraints: The constraints depend on the particular use case.

After an initial screening of the literature, we decided to analyse only papers
about the first two problems, where formulae play a central role. Indeed, at a first
glance most solutions to Document Synthesis employ standard query languages
for ontologies, and only the ontologies themselves are math-specific (e.g. [CDT04,
LDM+08]). Logic programming languages are also employed to represent what
the user knows/ignores and the inference rules to assemble documents [BF03].

Moreover, we did not find in the literature convincing examples for the need
of very expressive query languages to solve the Document Retrieval and the
Formula Retrieval problems, where the kinds of queries are essentially fixed a
priori. Moreover, evaluation of queries expressed in these languages are reported
to be too slow to be used for Formula Retrieval. Sometimes additional techniques
are employed for Document Synthesis, like semantical query reduction to relax
the user provided query by allowing additional topics close to the one specified
by the user [Lib13]. These techniques too seem to be very general and applicable
to domains very different from that of mathematics.

Despite the strong interest of the community in the use of formulae in queries,
studies on the behaviour of users [KK07,ZKT08] conclude that the added value
may be low, and the finding is confirmed in [LM06,Mil13] where the logs of
the DLMF and of ActiveMath search engines are analysed concluding that only
few queries contain mathematical formulae, most are very simple ones, and such
queries do not yield satisfactory results.

A Survey on Retrieval of Mathematical Knowledge 301

2 Encoding Based Taxonomy

Mathematical information can be encoded in a library at three different lev-
els. The most shallow one is presentation. Presentation markup uses a finitary
language to express the bi-dimensional layout of a formula, useful to present
it to the reader. The standard XML language for presentation is Presentation
MathML, and several tools can generate Presentation MathML from LATEX (e.g.
LaTeXML, Tralics), PDF files (e.g. Maxtract), handwritten text (e.g. InfTy
Reader), digitised documents (e.g. InfTy Reader) or content markup (e.g. via
XSLT stylesheets). We can therefore assume that the totality of the documents
to be indexed are available in Presentation MathML.

The next level is content. At the content level, the structure of the for-
mula is described, and symbols and operators appearing in it are linked to their
entry in an ontology, called content dictionary in OpenMath terminology. The
markup language is finitary, but the ontology is not since new mathematical
entities can always be defined. The relation between content and presentation
is one-to-many: the same presentation markup may represent different content
expressions (ambiguity), and a content expression can be given different presen-
tations according to the conventions of the community of readers, the language
of the reader, but also for purely aesthetic reasons like constraints on the size
of the formula. OpenMath and Content MathML are the two standard XML
language for formulae at the content level. OMDoc is an attempt at standar-
dising at the content level whole mathematical documents, comprising proofs.
Content markup is currently mostly used for the exchange of formulae between
systems, in particular CAS. There are no significant examples of large libraries of
documents natively written using content markup. Nevertheless, there are tools
like SnuggleTeX based on heuristics to semantically enrich (annotated) LATEX
documents or even MathML Presentation documents to content.

The last level is semantics and it is specific to libraries of formalised math-
ematical knowledge. The semantics level refines the content level by picking for
every content level object one particular definition in a given logic. The defin-
ition chosen embeds the object with additional properties, e.g. computational
properties. For example, addition over natural numbers can be defined in the
Calculus of Inductive Constructions as a non-computable ternary predicate in
logic programming style, or as a recursive function on the first argument — such
that 0+x and x become logically indistinguishable — or as a recursive function
on the second argument — so that 0 + x and x are not indistinguishable, but
only provably equal. Interactive theorem provers often provides an XML dump
of their internal semantics representation.

Formula Retrieval is always formulated either on semantics markup or on
content markup. Even when the semantic markup is available, it may be conve-
nient to convert the library to content level by identifying alternative definitions
of the same mathematical notion. In this way, it becomes possible to retrieve
useful theorems on mathematically equivalent definitions, in the hope to reuse
them after conversion to the definitions in use. One application of this technique
is reuse of libraries across different systems based on the same logic.

302 F. Guidi and C.S. Coen

The Document Retrieval problem is formulated in a way that is agnostic
of the encoding. However, the user is likely to enter formulae in the query
using a presentation language (mostly LATEX, even if MathML starts to be used
[LSLM11,LSR14,MG08b]). Some authors have provided evidence that precision
is improved when exploiting parallel markup, even when the content part is
automatically generated from the presentation part [NKTA14]. See [MY08] for
motivations against content/parallel markup and in favour of a more lightweight
encoding of content information in Presentation MathML. Other authors claim
that precision can be lost by embracing content because sometimes the actual
layout used in a presentation or the name used for variables are significant.
Reference [GPBB14] in retrospect also described the choice of using Content
MathML as a bad decision. Other authors dismiss indexing of Content MathML
because of the non-availability of libraries or because of conversion from presen-
tation to content being approximative and unreliable. Finally, [NKTA14] reports
that automatic conversion of large formulae from Presentation to Content may
be computationally unfeasible, and propose to limit the conversion to small ones.

Recently, the debate on presentation only vs. parallel markup seems to be
solved in favour of the latter. For example, the system that scored better at the
last NTCIR task reports better scores when applied to content markup generated
from LATEX w.r.t. presentation only markup [RSL14]. The authors second this
observation already in [LSR13].

Moreover, several works in the literature that deal with presentation markup
enrich it — in the document itself or in the indexes — with additional annota-
tions to make explicit additional semantics that is latent in the library [Cai04]
or in the text surrounding the formulae [GPBB14,KTHA14]. For example, in
[KTHA14] artificial intelligence is applied to the whole document to recover from
the text surrounding the formulae the name associated to the mathematical enti-
ties in the formula (e.g. “posterior probability”, “derivative of f”). Reference
[GPBB14] uses a cheaper approach by considering only one sentence around
a formula, but it later observes that one sentence is often not sufficient and
many relevant results are therefore missed. Another example is an analysis of
co-occurrence of symbols in the corpus to identify related ones. It is shown that
these techniques are important to augment recall or, sometimes, precision. In
our view, like the heuristic based presentation-to-content translation, these are
attempts to infer and store partial semantics of mathematical expressions. It may
be questioned (see for example [MY08]) if the current content markups (Open-
Math and Content MathML) are the right instruments to augment presentation
markup with partial, approximate semantics, and if such additional semantics
makes only sense in the indexes of search systems, or it may be serialised to an
XML format for being reused by third parties.

Systems based on Content MathML, parallel markup or semantics
appear in [Ban06,BR03,BU04,GK14,HS13,HKP14,KP13,L13,LSLM11,LSR13,
LSR14,MG08a,MG08b,MM06,NCH12,NK07,Rab12,SLM13,YA09,ZY14].

A Survey on Retrieval of Mathematical Knowledge 303

3 Taxonomy of Techniques for Mathematical Retrieval

Implementations of solutions to mathematical search problems can be obtained
combining one of the main techniques that will be presented in Sect. 3.2 with
a choice of modular enhancement techniques from Sect. 3.1 used to improve
precision, recall or both.

3.1 Modular Enhancement Techniques

The following techniques are general enough to be applied to solve both the
Document and the Formula Retrieval problems, and by analysing the literature
it seems that every system eventually applies all of them.

Segmentation. A preliminary step to indexing is segmentation of documents
into chunks. Chunks are the unit of information to be returned to the user, with
pointers to the parent document. Segmentation is trivial on formal mathematical
documents, hard on web-pages, and intermediate on other resources like books
or papers. See, for example, [ZKT08] for a discussion. Several systems imple-
ment segmentation; however, the last NTCIR competition has provided a data
set of already segmented documents [AKO14] and that may hinder the study of
segmentation techniques in the future.

Normalisation. To improve recall, both formulae in the query and the formulae
in the library are put in normal form before indexing them. Having the same
normal form is an equivalence relation ≡, and the query retrieves formulae up to
≡. For Formula Retrieval it is necessary that ≡R≡⊆ R. For Document Retrieval
the ≡ relation must be compatible with the similarity and ranking functions.
When this is not the case, precision can be critically lowered.

Uses of normalisation include: repairing of broken XML/MathML gener-
ated by automatic conversion tools [MM07] (e.g. when the structure imposed
by < mrows > is not compatible with the mathematical structure); removal of
information that does not contribute to the semantics like comments, layout
elements (spaces, phantoms and linebreaks), XML/MathML attributes (color,
font, elements in other namespaces) [FLRS12,HHN08,MM07]; picking canonical
representations of the same presentation/content when different MathML encod-
ings are possible (e.g. msubsup vs. msup and msub, mfenced vs. use of two paren-
theses, applications of trigonometric functions with/without using parentheses,
etc.) [AY07a,FLRS12,MM07]; replacing names of bound variables with unique
numerical indexes (e.g. De Brujin indexes) to search up to α-conversion [MM07,
NK07]; ignoring parentheses and ordering of arguments of associative/commu-
tative operators [AY07a,MG08a,MG08b,NK07,SY07,SL11,YS06]; expressing
derived notions exposing the derivation (e.g. replacing x ≥ y with y ≤ x, x �≤ y
with ¬(x ≤ y), arcsin with sin−1, etc.) [AY07a,MM07]; capturing logical equiv-
alence/type isomorphisms (e.g. writing formulae in prenex normal form, currifi-
cation of functions) [Del00,GK14,NK07].

A normalised formula can be quite different from the original one, and that
can be a symptom that the formula is not significant. Therefore in [RSL14]

304 F. Guidi and C.S. Coen

normalised formulae are weighted according to their similarity to the initial one,
and weights are considered during the ranking phase with great results.

Approximation. Normalisation does not lose information, converting a docu-
ment to an equivalent one. Many papers call “normalisation” an approximation
phase where subformulae are replaced with constrained placeholders to allow
the formula to be matched by similarity. For example: names of variables or
constants can be replaced by a single name [GWHT14]; all numeric constants
by a single identifier [GWHT14,MM07,SL11]; subformulae may be replaced by
their type. For example, in [HKP14] type information is used to retrieve formu-
lae by sorted unification, i.e. by constraints with type placeholders in patterns.
Approximation improves recall. To limit the loss of precision, systems that
approximate index both the original and the approximated formula (or even
several instances at different levels of approximation). The effects of approxima-
tion are similar to those of query reduction, but approximation is more efficient
because it works at indexing time.

Enrichment. Enrichment works on the library or on the query to augment the
information stored/looked for in the index by inferring new knowledge from exist-
ing one. It can contribute to the solution of both the Document Retrieval and the
Formula Retrieval problems. Typical examples of enrichment are: heuristically
generating and storing content metadata from Presentation MathML [MY08];
automatic/interactive disambiguation of formulae in the queries to perform a
precise query at the content or semantics level [AGSC+06,Ban06,BR03,BU04];
automatic inference of metadata from context analysis or usage analysis (latent
semantics) [Cai04,KTHA14,WG10].

The most impressive application of enrichment is presented in [HQ14]. The
aim is to search for geometrical constructions that are described using a proce-
dural language (e.g. draw the segments connecting A with B, B with C, and
A with C). Enrichment consists in replacing the procedural with a declarative
description (e.g. ABC is a triangle). The same declarative description can be
obtained by multiple procedural ones, and thus recall is greatly improved. The
technique can also be seen as a form of normalisation (see Sect. 3.1) where the
normal form is not unique (e.g. it may be the case that by analysing the hypoth-
esis one could deduce that ABC is also an equilateral triangle even if that is not
stated in the procedural description).

Query Reduction. Query reduction trades precision for recall by selectively
dropping or weakening some of the constraints present in the query. Results
obtained from reduced queries can be ranked after results from precise queries. In
the literature it occurs in many forms in solutions to both the Formula Retrieval
and the Document Retrieval problems: a constant can be weakened to other
constants that co-occur frequently with the given one; constants that occur too
frequently can be dropped from the queries; a formula may be required to match
only the toplevel structure of the formula given as a query.

A Survey on Retrieval of Mathematical Knowledge 305

3.2 Main Techniques

The following techniques are mutually exclusive. Moreover, each technique per-
forms better on only one of the two problems.

Reduction to Full-text Searches.The technology to perform full-text searches
is very advanced and there are popular open software implementations with good
performance like Apache Lucene/Solr and ElasticSearch. The benefits of reduc-
ing search for formulae to full-text searches are speed of execution of the queries
and the combination of formula based and textual searches almost for free. The
main drawback is that the precise structure of a formula is partially lost in the
translations proposed in the literature, and that it is impossible or very hard to
capture precisely the kind of relations R used for Formula Retrieval, unless R is
approximated by a much coarser relation R′. Therefore the technique has been suc-
cessfully applied so far only to Document Retrieval [ACK08,GWHT14,GPBB14,
HHN08,KTHA14,LM06,LSLM11,LSR14,Mil13,MY03,MM07,MG08a,MG08b,
PZ14,MM06,SL11,You05,You07,You08].

All the proposals employ vectors to represent features, and compare features
with weighted cosine distance. The usual approach consist in turning an expres-
sion into a (large) set of “sentences” that partially describe the formula. For
example, in [KTHA14,TKNA13] a sentence is the set (ordered or not) of sym-
bols found in either a path from the root of the formula to a leaf, or as children
of the same node. Matching is then performed by a disjunctive query and results
are ranked using TF-IDF and length normalisation. As the authors claim, the
system “is too flexible: it is difficult to say where the relevant results stop and
random matches begin; thus we predict higher recall but lower precision rates
than exact match systems”. Other authors extract sentences or n-grams that
capture the formula more precisely. As a general remark, the clear impression
we got from the literature is that the fewer features extracted, the lower the
precision. All kinds of techniques can be used to extract the features, comprising
regular expressions [ACK08] and finite state automata [NCH12].

Some systems cluster documents at indexing time (e.g. [ACK08]), and
retrieve documents comparing the feature vector of the query with the centroid
of the cluster. For example, documents about trigonometric functions are likely
to be automatically clustered together. However most systems do not seem to
cluster in advance, and prefer the flexibility of weights to capture similarity of
features (e.g. similarity of occurrences of trigonometric functions).

According to the set of features extracted, the weighting function used, and
the other modular techniques used in combination, the accuracy achieved by
systems based on this technique range from extremely low to extremely high
(see, for example, [AKO14]).

Structure-Based Indexing via Tries/Substitution Trees. Formula Retrie-
val can be solved with the data structures developed for automatic theorem
proving to store libraries of lemmas and quickly retrieve formulae up to instan-
tiation/generalisation. Pointers to all the statements are stored in the leaves of

306 F. Guidi and C.S. Coen

a tree that precisely encodes in its paths the statements. To match a formula,
the tree is recursively traversed using the formula to drive the descent. The rela-
tions R that can be captured are only instantiation and generalisation of whole
formulae. MathWebSearch [HKP14,KP13,KT10] are based on this approach.
Retrieval of formulae is very fast, assuming that the index can be entirely stored
in main memory.

This approach consistently maximises precision but presents poor recall. To
accept larger relations, or to be applied to Document Retrieval, or to cope with
too rigid queries, the technique needs to be integrated with other ideas. For
example: to match subtrees of formulae in the library, every subtree of a lemma
needs to be stored as well in the index; to solve unification problems up to
an equational theory that admits normal forms, all formulae are normalised;
to allow queries that use keywords or free text, a free-text search engine must
be run in parallel and the results need to be combined in the ranking phase
[HKP14,LDM+08].

Reduction to SQL or ad-hoc Queries. The third approach consists in
approximating formulae via relations to be stored in a relational DB [AS04,
GS03]. An alternative consists in storing the relations in ad-hoc indexes in mem-
ory, and it is employed when the indexes already exists for other purposes (typi-
cally in libraries of formalised knowledge) [Ban06,BR03,BU04]. The technique is
applied to Formula Retrieval and the database can be reused for Document Syn-
thesis without modifications. Approximated queries up to generalisation/instan-
tiation can be made efficient [AS04] without requiring an index stored in main
memory for Structure-Based Indexing (see page 10). Recall can be maximised
by relaxing the representation of formulae as relations or by employing normal-
isation. Ad-hoc inverted indices for paths and to map each Content MathML
node to its parent have also been used in [HS13]: the search engine is very fast,
but the precision obtained is low.

Reduction to XML-based Searches. Some systems [AY07b,AY08b,YA07]
that index MathML documents at the content level, base their searching capa-
bilities on the existing XPath/XQuery technology. The system described in
[SLM13], which is based on Stratosphere, is batch oriented, trades flexibility
with performance, and it is essentially math-unaware (for example, it does not
normalise the input in any way). Other systems [CDT04,LDM+08], that deal
with ontologies indexed in the Ontology Web Language, rely on third-party OWL
search engines implementing graph matching.

4 Ranking

Because users only inspect the first results returned by a query, precision when
solving Document Retrieval is strongly determined by the ranking function.
Ranking is also of paramount importance for Formula Retrieval: when the search
retrieves the candidates for progressing in a proof, correctly ranking the results

A Survey on Retrieval of Mathematical Knowledge 307

may dramatically cut the number of wrong proof attempts and backtracks. The
ranking criterion for the two Problems is, however, very different: for the first
problem similarity of formulae in the query and in the results should contribute
significantly to the score; for the second problem the score should be determined
by the intended use of the results. For example, a lemma L1 that exactly matches
the goal to prove and has no premise should always score better than a lemma L2

that also exactly matches the goal, but that has hypotheses to be proved later.
Ranking according to the intended use for Formula Retrieval has received

very little interest in the literature we examined. On the other hand, several
papers explicitly address ranking for Document Retrieval. The consensus seem
to be that a good ranking function needs to be sophisticated and that the usual
metrics induced by reduction to textual searches are completely inadequate (see,
for example, [You07]). All the proposed ranking techniques are strongly based
on heuristics and, unfortunately, most of them are incomparable and hard to
combine.

One class of metrics takes into consideration also the structure of the formu-
lae involved and the enriched semantics, when available. For example, [ZY14]
heavily exploits Content MathML to rank results by considering the taxonomic
distance of constants (where close is approximated to being defined in the same
content dictionary), the data type hierarchical level (matching a function is
more significant than matching a numerical constant), matching depth (par-
tially matching the formula at the top level is more significant than matching
a deeply nested subformula), coverage (percentage of formula matched), kind of
matched expression (formula vs. term). All this information needs to be com-
puted and amalgamated employing some kind of heuristic algorithm. A second
paper [SYM+14] confirmed that each one of the listed similarity feature factors
significantly improves the ranking, but the last one, that still contributes, has
lower relevance.

In [SL11] ranking is determined by the weights used during matching, and
the authors claim that each document base and scientific field should have its
own weighting function. Nevertheless, they “tried to create a complex and robust
weighting function that would be appropriate to many fields”.

In [You07] the author proposes a parameterised ranking function that works
on mathematical documents (not only formulae), that seems applicable to
enriched presentation and that weights a lot of additional information includ-
ing keywords, the number of cross-references and their kind (e.g. definitional vs.
propositional). Ranking employs a hybrid of scalarisation and vectorisation.

In [KT13] the authors propose to adopt tree edit distance to measure similar-
ity of formulae. Most of the paper is about optimisations to improve efficiency
of ranking because tree edit distance is hard to compute. The final proposal
combines some clever memoisation and a procedure to quickly prune documents
bounding their similarity scores with a lightweight computation. The paper also
shows benchmarks comparing the processing time and success rate of most search
and ranking algorithm in the literature, reimplemented by the authors and run
on the same dataset. From the benchmarks the method proposed seems to be

308 F. Guidi and C.S. Coen

superior, but the implementations do not exploit relevant enriched information
like cross-references, semantic proximity of definitions, etc. The benchmarks are
therefore non conclusive.

In [NCH12] the authors employ a continuous learning ranking model after
having extracted features from Content MathML mathematical formulae using
a finite state automata. Benchmarks show their ranking to be superior than
the ones used in classical ranking of textual documents. However, they do not
compare with [KT13] or [You07] (that work on Presentation MathML).

Simpler approaches to ranking can be found in [YA09] (based on Subpath
Set, reported to work well only on “simplified” Content MathML) and [KT09]
that works on Presentation MathML and measures similarity as a function
of the size of subtrees in common. The ranking metric used in [ACK08] is a
TF-IDF modified with weights to assign more importance to some operators,
but the details given to determine the weights are insufficient.

Ranking algorithms can be too complex to be incorporated in the search
phase, for example when using Lucene technology. Moreover, they are typically
slower than the search phase. Therefore several authors suggest to re-rank only
the first results of the query, that employs a simpler ranking measure to deter-
mine the interesting candidates to be ranked more accurately [KT13,You07].

An algorithm to automatically categorise documents is presented in [ZKT08],
where it is argued that clustering documents according to their category greatly
improves the usefulness of the tool for the user.

5 Evaluation of Math Information Retrieval

Several papers present benchmarks on the systems proposed, and rarely com-
pare them with reimplementations of the algorithms found in the literature (e.g.
[KT13]). The significance of most of these benchmarks is unclear, because con-
flicting results are found in the literature, most techniques are not presented in
sufficient details in the papers to be exactly reproduced, and systems are very
sensitive to the kind of queries examined. The only alternative is to compare
different tools on unbiased, standard benchmarks that are currently lacking.

The main issue is not to come up with large corpora of documents: at
least for Document Retrieval on enriched Presentation MathML documents, a
large corpus can be easily obtained converting documents from ArXiV, DLMF,
PlanetMath, Wikipedia, etc. For Formula Retrieval, the existing libraries of
interactive theorem provers, like Mizar and Coq, can be directly used after con-
version. The problem is to determine large sets of real world, interesting queries,
and to evaluate the results. Automatic evaluation is particularly hard in the
domain of mathematics, whereas manual evaluation is limited to a tiny number
of queries and runs. Formulating good sets of queries is also complex, because
users with different mathematical background and motivations are likely to issue
different queries. Moreover, what makes a query hard can just be the use of non
standard mathematical notations, errors in the encoding of formulae, or formu-
lation at the wrong level of abstraction. Reference [L13] discusses the problem

A Survey on Retrieval of Mathematical Knowledge 309

at length and reviews the state of the art of evaluation of Math Information
Retrieval before 2013, including the experience of the MIR workshop at CICM
2012 were two systems were compared on about ten hard queries proposed by
the judges, and the conclusion was that the systems were too sensitive to the
formulation of the query.

The situation is improving since 2013 with the creation of a math oriented task
in the NTCIR initiative [AKO13,AKO14] that is attracting a small, but increas-
ing number of participants [GWHT14,GPBB14,HS13,HKP14,KP13,KTHA14,
LRG13,LAP+14,LSR13,PZ14,RSL14,SLM13,SYM+14,TKNA13]. The initia-
tive is too young to come to definite conclusions and the current choice of tasks
and queries is not granted yet to have significant coverage and to be unbiased. For
example, in [KTHA14] the authors report that despite several improvements to
the tool (quantified via NTCIR-11 runs), their tool scored lower than in NTCIR-
10. They justify the phenomenon by noticing that “in NTCIR-11, query variables
get much bigger emphasis, most topics feature complete and very particular for-
mulae, and sub-formulae matching is not nearly as useful as before”. Indeed, as
reported in [AKO14] “the design decision . . . to exclusively concentrate on for-
mula/keyword queries and use paragraphs as retrieval units . . . has also focused
research away from questions like result presentation and user interaction. . . . few
of the systems has invested into further semantics extraction from the data set.
. . . We feel that this direction should be addressed more in future challenges”. An
effect of the bias towards search up to unification w.r.t. search up to similarity is
observable in [PZ14] too: the system proposed works very well even if it works on
Presentation MathML only and the set of features extracted is very simple (bag-
of-symbol-pairs model, where a pair is made of two symbols in a father-son rela-
tion). The reason why it works well is that the authors also index approximated
pairs where the child is a wildcard, and in the future works they are thinking at
improving even more the handling of wildcards to score better. In comparison,
most other systems based on feature vectors just replace wildcards in the query
with < m : ci > identifiers. The emphasis on formula queries is also to be evalu-
ated considering the already cited works that conclude that users do not see (yet?)
much value in them [KK07,ZKT08].

Finally, the NTCIR task does not cover distinctly the Document Retrieval
and the Formula Retrieval problems, but only Document Retrieval with an
emphasis on exact pattern matching of formulae that should be more distinctive
of Formula Retrieval.

6 Availability of Math Retrieval Systems

Most of the systems described in the literature are research prototypes, and the
majority of them are no longer working or no longer accessible. At the time this
paper was written, the only ones for Document Retrieval with a running Web
interface or code that can be downloaded are: (1) Design Science’s MathDex
(formerly MathFind) (2) NIST DMLF (3) MathWebSearch (4) MiAS (Math
Indexer and Searcher), also used to search the EuDML (5) the system described

310 F. Guidi and C.S. Coen

in [PZ14]. In addition to those, the following commercial systems are also acces-
sible: (a) Springer LaTeXSearch (b) Wolfram Alpha. Systems (a), (1), (2) and
(5) are based on Presentation MathML; systems (3) and (4) can use either Pre-
sentation MathML or Content MathML/parallel markup, but work better on
the latter; finally system (b) actually generates on the fly most of the result of
the query, for example by plotting functions, computing their Taylor expansion,
etc. It does not really qualify then as a search engine.

Most interactive theorem provers also have their own implementation of a
search engine to solve Formula Retrieval. Most of the time, the implementation
is embedded in the system and does not work on the whole library at once, with
the exception of MML Query for Mizar.

7 Conclusions

Mathematical knowledge retrieval, the low hanging fruit of Mathematical Knowl-
edge Management, is still far from being grasped. Despite the significant amount
of work dedicated to the topic in the last 12 years, only a few systems are still
available, and their precision and recall scores compared to other knowledge
retrieval fields are low. Moreover, usability and user requirement studies suggest
that queries containing formulae — the main focus of the majority of papers —
are perceived by users as not very useful (yet?).

The main contributions of this paper have been providing an hopefully com-
prehensive bibliography on the subject, and presenting taxonomies for both
mathematical retrieval problems and techniques. We believe that our purpose
driven taxonomy can be useful in classifying papers, in clarifying the scope
of application of techniques and in the much needed development of unbiased
benchmarks for mathematical retrieval.

References

ACK08. Adeel, M., Cheung, H.S., Khiyal, S.H.: Math GO! prototype of a content
based mathematical formula search engine. J. Theor. Appl. Inf. Technol.
4(10), 1002–1012 (2008)

AGSC+06. Asperti, A., Guidi, F., Coen, C.S., Tassi, E., Zacchiroli, S.: A content based
mathematical search engine: Whelp. In: Filliâtre, J.-C., Paulin-Mohring,
C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 17–32. Springer,
Heidelberg (2006)

AKO13. Aizawa, A., Kohlhase, M., Ounis, I.: NTCIR-10 math pilot task overview.
In: Proceedings of the 10th NTCIR Conference, Tokyo, Japan, pp. 654–661
(2013)

AKO14. Aizawa, A., Kohlhase, M., Ounis, I.: NTCIR-11 math 2 task overview. In:
Proceedings of 10th NTCIR Conference, Tokyo, Japan, pp. 88–98 (2014)

AS04. Asperti, A., Selmi, M.: Efficient retrieval of mathematical statements. In:
Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol.
3119, pp. 17–31. Springer, Heidelberg (2004)

A Survey on Retrieval of Mathematical Knowledge 311

AY07a. Altamimi, M.E., Youssef, A.: A more canonical form of content MathML
to facilitate math search. In: Proceedings of Extreme Markup Languages
(2007)

AY07b. Altamimi, M.E., Youssef, A.S.: Wildcards in math search, implementa-
tion issues. In: Proceedings of the ISCA 20th International Conference on
Computer Applications in Industry and Engineering, CAINE 2007, San
Francisco, California, USA, 7–9 November, pp. 90–96 (2007)

AY08a. Ahmadi, S.A., Youssef, A.: Lexical error compensation in handwritten-
based mathematical information retrieval. In: Proceedings of Towards Dig-
ital Mathematics Library, DML 2008, Birmingham, UK, 27 July, pp. 43–54.
Masaryk University, Brno (2008)

AY08b. Altamimi, M.E., Youssef, A.S.: A math query language with an expanded
set of wildcards. Math. Comput. Sci. 2(2), 305–331 (2008)

AZ04. Asperti, A., Zacchiroli, S.: Searching mathematics on the web: state of the
art and future developments. In: Karlsruhe, F (ed.) Proceedings of New
Developments in Electronic Publishing of Mathematics, pp. 9–18 (2004)

Ban06. Bancerek, G.: Information retrieval and rendering with MML query. In:
Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108,
pp. 266–279. Springer, Heidelberg (2006)

BF03. Baumgartner, P., Furbach, U.: Automated deduction techniques for the
management of personalized documents. Ann. Math. Artif. Intell. 38(1–
3), 211–228 (2003)

BR03. Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, A.,
Buchberger, B., Davenport, J.H. (eds.) Mathematical Knowledge Manage-
ment, pp. 119–132. Springer, Bertinoro (2003)

BU04. Bancerek, G., Urban, J.: Integrated semantic browsing of the mizar math-
ematical library for authoring mizar articles. In: Asperti, A., Bancerek,
G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 44–57. Springer,
Heidelberg (2004)

Cai04. Cairns, P.: Informalising formal mathematics: searching the mizar library
with latent semantics. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.)
MKM 2004. LNCS, vol. 3119, pp. 58–72. Springer, Heidelberg (2004)

CDT04. Caprotti, O., Dewar, M., Turi, D.: Mathematical service matching using
description logic and OWL. In: Asperti, A., Bancerek, G., Trybulec, A.
(eds.) MKM 2004. LNCS, vol. 3119, pp. 73–87. Springer, Heidelberg (2004)

Del00. Delahaye, D.: Information retrieval in a Coq proof library using type iso-
morphisms. In: Coquand, T., Nordström, B., Dybjer, P., Smith, J. (eds.)
TYPES 1999. LNCS, vol. 1956, pp. 131–147. Springer, Heidelberg (2000)

FLRS12. Formánek, D., Ĺı̌ska, M., Růžička, M., Sojka, P.: Normalization of digi-
tal mathematics library content. In: Davenport, J., Jeuring, J., Lange, C.,
Libbrecht, P. (eds.) Joint Proceedings of the 24th OpenMath Workshop,
the 7th Workshop on Mathematical User Interfaces (MathUI), and the
Work in Progress Section of the Conference on Intelligent Computer Math-
ematics. CEUR Workshop Proceedings, vol. 921, pp. 91–103. Neuveden,
Aachen (2012)

GK14. Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In:
Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS, vol. 8543, pp. 267–281. Springer, Heidelberg (2014)

GPBB14. Pinto, J.M.G., Barthel, S., Balke, W.-T.: QUALIBETA at the NTCIR-11
math 2 task: an attempt to query math collections. In: Proceedings of the
10th NTCIR Conference, Tokyo, Japan, pp. 103–107 (2014)

312 F. Guidi and C.S. Coen

GS03. Guidi, F., Schena, I.: A query language for a metadata framework about
mathematical resources. In: Asperti, A., Buchberger, B., Davenport, J.H.
(eds.) Mathematical Knowledge Management, pp. 105–118. Springer,
Bertinoro (2003)

GWHT14. Gao, L., Wang, Y., Hao, L., Tang, Z.: ICST math retrieval system for
NTCIR-11 math-2 Task. In: Proceedings of the 10th NTCIR Conference,
Tokyo, Japan, pp. 99–102 (2014)

HHN08. Hashimoto, H., Hijikata, Y., Nishida, S.: Incorporating breadth first search
for indexing MathML objects. In: IEEE International Conference on Sys-
tems, Man and Cybernetics, SMC 2008, pp. 3519–3523, October 2008

HKP14. Hambasan, R., Kohlhase, M., Prodescu, C.: MathWebSearch at NTCIR-
11. In: Proceedings of the 10th NTCIR Conference, Tokyo, Japan, pp.
114–119 (2014)

HQ14. Haralambous, Y., Quaresma, P.: Querying geometric figures using a con-
trolled language, ontological graphs and dependency lattices. In: Watt,
S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM
2014. LNCS, vol. 8543, pp. 298–311. Springer, Heidelberg (2014)

HS13. Hagino, H., Saito, H.: Partial-match retrieval with structure-reflected
indices at the NTCIR-10 math task. In: Proceedings of the 10th NTCIR
Conference, Tokyo, Japan, pp. 692–695 (2013)

KK07. Kohlhase, A., Kohlhase, M.: Reexamining the MKM value proposition:
from math web search to math web ReSearch. In: Kauers, M., Kerber,
M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS
(LNAI), vol. 4573, pp. 313–326. Springer, Heidelberg (2007)

Koh14. Kohlhase, A.: Search interfaces for mathematicians. In: Watt, S.M.,
Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014.
LNCS, vol. 8543, pp. 153–168. Springer, Heidelberg (2014)

KP13. Kohlhase, M., Prodescu, C.: MathWebSearch at NTCIR-10. In: Proceed-
ings of the 10th NTCIR Conference, Tokyo, Japan, pp. 675–679 (2013)

KT09. Kamali, S., Tompa, F.W.: Improving mathematics retrieval. In: Proceed-
ings of Towards Digital Mathematics Library, DML 2009, Grand Bend,
Ontario, Canada, 8–9 July, pp. 37–48. Masaryk University, Brno (2009)

KT10. Kamali, S., Tompa, F.W.: A new mathematics retrieval system. In: Pro-
ceedings of the 19th ACM International Conference on Information and
Knowledge Management, CIKM 2010, pp. 1413–1416. ACM, New York
(2010)

KT13. Kamali, S., Tompa, F.W.: Structural similarity search for mathematics
retrieval. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 246–262. Springer, Heidelberg
(2013)

KTHA14. Kristianto, G.Y., Topić, G., Ho, F., Aizawa, A.: The MCAT math retrieval
system for NTCIR-11 math track. In: Proceedings of the 11th NTCIR
Conference, Tokyo, Japan, pp. 120–126 (2014)

L10. Ĺı̌ska, M.: Searching Mathematical Texts (2010)
L13. Ĺı̌ska, M.: Evaluation of Mathematics Retrieval (2013)

LAP+14. Lipani, A., Andersson, L., Piroi, F., Lupu, M., Hanbury, A.: TUW-IMP
at the NTCIR-11 Math-2. In: Proceedings of the 11th NTCIR Conference,
Tokyo, Japan, pp. 143–146 (2014)

A Survey on Retrieval of Mathematical Knowledge 313

LDM+08. Libbrecht, P., Desmoulins, C., Mercat, C., Laborde, C., Dietrich, M.,
Hendriks, M.: Cross-curriculum search for intergeo. In: Autexier, S., Camp-
bell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008,
Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 520–535.
Springer, Heidelberg (2008)

Lib13. Libbrecht, P.: Escaping the trap of too precise topic queries. In: Carette,
J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013.
LNCS, vol. 7961, pp. 296–309. Springer, Heidelberg (2013)

LM06. Libbrecht, P., Melis, E.: Methods to access and retrieve mathematical con-
tent in ActiveMath. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006.
LNCS, vol. 4151, pp. 331–342. Springer, Heidelberg (2006)

LRG13. Ray R. Larson., Chloe J. Reynolds., Fredric C. Gey.: The Abject Failure
of Keyword IR for Mathematics Search: Berkeley at NTCIR-10 Math. In:
Proceedings of the 10th NTCIR Conference, Tokyo, Japan, pp. 662–666
(2013)

LSLM11. Ĺı̌ska, M., Sojka, P., Ĺı̌ska, M., Mravec, P.: Web interface and collection for
mathematical retrieval: WebMIaS and MREC. In: Proceedings of Towards
Digital Mathematics Library, DML 2011, Bertinoro, Italy, 20–21 July, pp.
77–84. Masaryk University, Brno (2011)

LSR13. Ĺı̌ska, M., Sojka, P., Růžička, M.: Similarity search for mathematics:
Masaryk university team at the NTCIR-10 math task. In: Proceedings
of the 10th NTCIR Conference, Tokyo, Japan, pp. 686–691 (2013)

LSR14. Ĺı̌ska, M., Sojka, P., Růžička, M.: Math indexer and searcher web interface.
In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS, vol. 8543, pp. 444–448. Springer, Heidelberg (2014)

MG08a. Misutka, J., Galambos, L.: Mathematical extension of full text search
engine indexer. In: 3rd International Conference on Information and Com-
munication Technologies: From Theory to Applications, ICTTA 2008, pp.
1–6, April 2008

MG08b. Mǐsutka, J., Galamboš, L.: Extending full text search engine for mathe-
matical content. In: Proceedings of Towards Digital Mathematics Library,
DML 2008, Birmingham, UK, 27 July, pp. 55–67. Masaryk University,
Brno (2008)

Mil13. Miller, B.R.: Three years of DLMF: web, math and search. In: Carette,
J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013.
LNCS, vol. 7961, pp. 288–295. Springer, Heidelberg (2013)

MM06. Munavalli, R., Miner, R.: Mathfind: a math-aware search engine. In: Pro-
ceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 735–735. ACM
(2006)

MM07. Miner, R., Munavalli, R.: An approach to mathematical search through
query formulation and data normalization. In: Kauers, M., Kerber, M.,
Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS
(LNAI), vol. 4573, pp. 342–355. Springer, Heidelberg (2007)

MY03. Miller, B.R., Youssef, A.: Technical aspects of the digital library of math-
ematical functions. Ann. Math. Artif. Intell. 38(1–3), 121–136 (2003)

MY08. Miller, B.R., Youssef, A.M.: Augmenting presentation MathML for search.
In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk,
F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI),
vol. 5144, pp. 536–542. Springer, Heidelberg (2008)

314 F. Guidi and C.S. Coen

NCH12. Nguyen, T.T., Chang, K., Hui, S.C.: A math-aware search engine for math
question answering system. In: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, pp. 724–733.
ACM (2012)

NK07. Normann, I., Kohlhase, M.: Extended formula normalization for ε-retrieval
and sharing of mathematical knowledge. In: Kauers, M., Kerber, M.,
Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS
(LNAI), vol. 4573, pp. 356–370. Springer, Heidelberg (2007)

NKTA14. Nghiem, M.-Q., Kristianto, G.Y., Topić, G., Aizawa, A.: Which one is
better: presentation-based or content-based math search? In: Watt, S.M.,
Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014.
LNCS, vol. 8543, pp. 200–212. Springer, Heidelberg (2014)

PZ14. Pattaniyil, N., Zanibbi, R.: Combining TF-IDF text retrieval with an
inverted index over symbol pairs in math expressions: the tangent math
search engine at NTCIR 2014. In: Proceedings of the 11th NTCIR Con-
ference, Tokyo, Japan, pp. 135–142 (2014)

Rab12. Rabe, F.: A query language for formal mathematical libraries. In: Camp-
bell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M.,
Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 143–158. Springer,
Heidelberg (2012)

RSL14. Růžička, M., Sojka, P., Ĺı̌ska, M.: Math indexer and searcher under the
hood: history and development of a winning strategy. In: Proceedings of
the 11th NTCIR Conference, Tokyo, Japan, pp. 127–134 (2014)

SL11. Sojka, P., Ĺı̌ska, M.: The art of mathematics retrieval. In: Proceedings of
the 11th ACM Symposium on Document Engineering, pp. 57–60. ACM
(2011)

SLM13. Schubotz, M., Leich, M., Markl, V.: Querying large collections of mathe-
matical publications: NTCIR10 math task. In: Proceedings of 10th NTCIR
Conference, Tokyo, Japan, pp. 667–674 (2013)

SY07. Shatnawi, M., Youssef, A.: Equivalence detection using parse-tree normal-
ization for math search. In: Proceedings of the Second IEEE International
Conference on Digital Information Management (ICDIM), Lyon, France,
11–13 December, pp. 643–648 (2007)

SYM+14. Schubotz, M., Youssef, A., Markl, V., Cohl, H.S., Li, J.J.: Evaluation of
similarity-measure factors for formulae based on the NTCIR-11 math task.
In: Proceedings of 10th NTCIR Conference, Tokyo, Japan, pp. 108–113
(2014)

TKNA13. Topić, G., Kristianto, G.Y., Nghiem, M.-Q., Aizawa, A.: The MCAT math
retrieval system for NTCIR-10 math track. In: Proceedings of 10th NTCIR
Conference, Tokyo, Japan, pp. 680–685 (2013)

WG10. Wolska, M., Grigore, M.: Symbol declarations in mathematical writing. In:
Proceedings of Towards Digital Mathematics Library, DML 2010, Paris,
France, 7–8 July, pp. 119–127. Masaryk University, Brno (2010)

YA07. Youssef, A.S., Altamimi, M.E.: An extensive math query language. In:
Proceedings of the 16th International Conference on Software Engineering
and Data Engineering (SEDE-2007), 9–11 July, Imperial Palace Hotel Las
Vegas, Las Vegas, Nevada, USA, pp. 57–63 (2007)

YA09. Yokoi, K., Aizawa, A.: An approach to similarity search for mathematical
expressions using MathML. In: Proceedings of Towards Digital Mathe-
matics Library, DML 2009, Grand Bend, Ontario, Canada, 8–9 July, pp.
27–35. Masaryk University, Brno (2009)

A Survey on Retrieval of Mathematical Knowledge 315

You05. Youssef, A.: Search of mathematical contents: issues and methods. In: Pro-
ceedings of the ISCA 14th International Conference on Intelligent and
Adaptive Systems and Software Engineering, 20–22 July, Novotel Toronto
Centre, Toronto, Canada, pp. 100–105 (2005)

You06. Youssef, A.M.: Roles of math search in mathematics. In: Borwein, J.M.,
Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 2–16.
Springer, Heidelberg (2006)

You07. Youssef, A.S.: Methods of relevance ranking and hit-content generation
in math search. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W.
(eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 393–406.
Springer, Heidelberg (2007)

You08. Youssef, A.S.: Relevance ranking and hit description in math search. Math.
Comput. Sci. 2(2), 333–353 (2008)

YS06. Youssef, A., Shatnawi, M.: Math search with equivalence detection using
parse-tree normalization. In: The 4th International Conference on Com-
puter Science and Information Technology (2006)

ZB12. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical
expressions. Int. J. Doc. Anal. Recogn. (IJDAR) 15(4), 331–357 (2012)

ZKT08. Zhao, J., Kan, M.-Y., Theng, Y.L.: Math information retrieval: user
requirements and prototype implementation. In: Proceedings of the 8th
ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 187–196. ACM
(2008)

ZY14. Zhang, Q., Youssef, A.: An approach to math-similarity search. In: Watt,
S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM
2014. LNCS, vol. 8543, pp. 404–418. Springer, Heidelberg (2014)

Towards the Formalization of Fractional
Calculus in Higher-Order Logic

Umair Siddique1(B), Osman Hasan2, and Sofiène Tahar1

1 Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, Canada

{muh sidd,tahar}@ece.concordia.ca
2 School of Electrical Engineering and Computer Science,

National University of Sciences and Technology, Islamabad, Pakistan
osman.hasan@seecs.nust.edu.pk

http://save.seecs.nust.edu.pk/projects/fc.html

Abstract. Fractional calculus is a generalization of classical theories
of integration and differentiation to arbitrary order (i.e., real or complex
numbers). In the last two decades, this new mathematical modeling app-
roach has been widely used toanalyze a wide class of physical systems
in various fields of science and engineering. In this paper, we describe
an ongoing project which aims at formalizing the basic theories of frac-
tional calculus in the HOL Light theorem prover. Mainly, we present the
motivation and application of such formalization efforts, a roadmap to
achieve our goals, current status of the project and future milestones.

Keywords: Fractional calculus · Higher-Order logic · Theorem proving

1 Motivation and Background

Physical and engineering systems are classified as continuous, discrete or hybrid
depending upon the nature of underlying system parameters. The rich theo-
ries of mathematics provide the necessary tools to study the behaviour of such
systems ranging from very small biological organisms to the modern Quantum
mechanical phenomenons. Generally, differential equations [39] and difference
equations [12] are used to characterize the dynamics of these systems. Conse-
quently, the concept of higher-order differentiation and integration are widely
studied in diverse disciplines of science and engineering. For example, it is well
understood that the first derivative (d

dtf(t)) and second derivative (d2

dt2 f(t)) of
a function describe the rate of change and measure of concavity, respectively.
However, we rarely think what if the order (n) of higher-order derivative (dn

dtn)
becomes a real, complex or an irrational number? One immediate question arises
in our minds is the existence or possibility of such a concept in mathematics.
Interestingly, this seemingly new concept dates back to 1695 when L’Hôpital
asked Leibniz regarding his notation dny

dxn : “what if n is 1
2”. In reply, Leibniz [20]

prophesied in his letter, “. . .Thus it follows that d
1
2 x will be equal to x

√
dx : x.

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 316–324, 2015.
DOI: 10.1007/978-3-319-20615-8 21

Towards the Formalization of Fractional Calculus in Higher-Order Logic 317

This is an apparent paradox from which, one day, useful consequences can be
drawn . . . ”. Leibniz’s initial work on the problem of defining the derivative of
arbitrary order gave birth to a new field of research in mathematics (called
fractional calculus) and attracted the attention of many physicists, engineers
and geometers. Some of the great mathematicians and physicists who touched
the field of fractional calculus are Riemann, Liouville, Laurent, Heaviside and
Riesz [24].

The concept of fractional calculus has great potential to change the way we
model and analyze the systems. It provides good opportunity to scientists and
engineers for revisiting the origins. We briefly outline some of the the main appli-
cations of fractional calculus in Table 1. The importance of fractional calculus
can be realized by the following quote from Miller and Ross [24]. They stated:

“. . .The fractional calculus finds use in many fields of science and engi-
neering, including fluid flow, rheology, diffusive transport akin to
diffusion, electrical networks, electromagnetic theory, and probabil-
ity. . . . It seems that hardly a field of science or engineering has
remained untouched by this topic . . . ”

Nowadays engineering systems exhibiting fractional order dynamics are
increasingly used in some safety-critical applications such as control systems,

Table 1. Applications of fractional calculus

Field Applications

Control engineering - System identification [17]

- Biomimetic (bionics) control [7]

- Trajectory control [11]

- Temperature control [30]

- Fractional PIα controller [23]

Signal processing - Fractional order integrator [19]

- Fractional order FIR differentiator [37]

- IIR-type fractional order differentiator [38]

- Modeling of speech signals [18]

Image processing - Image restoration and edge detection [29]

- Satellite image classification [6]

Electromagnetics - Fractional curl operators [13,25]

- Fractional rectangular waveguides [14]

Communication - Secure chaotic communication [1]

- Informational network traffic modeling [40]

Biology - Neuron modeling [5]

- Biophysical processes [8]

- Modeling of complex dynamics of tissues [22]

318 U. Siddique et al.

signal processing, electromagnetics and electrical networks (as listed in Table 1).
For example, fractional meta-materials based devices are used to build sensitive
military and defence equipments and electromagnetic stealth technology [21].
Considering these facts, it is quite interesting and important to build a logical
reasoning framework which can be used to formally verify such sophisticated
applications within the sound core of a proof assistant. In fact, proof assistants
have been successfully used to formalize and verify some challenging and para-
doxical mathematical results, e.g., the formal proofs of the Kepler Conjecture
(Flyspeck project) [16] and the Odd Order Theorem [15].

In this paper, we present details of an ongoing project1 to develop a formal
reasoning support for fractional calculus in higher-order-logic theorem prover.
This project was originally started at the System Analysis and Verification
(SAVe) lab2 in 2010. Earlier formalization was done in the HOL4 theorem prover
with the main focus on fractional operators for real-valued functions and the
verification of fractional order electrical components. Later on, the scope of the
project was expanded to formalize fractional calculus involving complex-valued
functions due to its various engineering applications (as listed in Table 1). Cur-
rently, we are using the HOL Light theorem prover due to the availability of
rich multivariate analysis libraries including Harrison’s recent formalization of
complex-valued Gamma function3 as well as the interesting related projects like
Flyspeck [16] and the formalization of optics theories (i.e., ray, wave, electro-
magnetic and quantum) [2].

The rest of the paper is organized as follows: In Sect. 2, we briefly review some
commonly used notations and definitions of fractional order operators. We pro-
vide an outline of the proposed formalization framework in Sect. 3. Consequently,
the current status of the formalization and future milestones are discussed in
Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Mathematical Framework of Fractional Calculus

There are different notations available for fractional derivatives and integrals. We
use Jv

af(x) and Dvf(x) for fractional integral and fractional derivative, respec-
tively. In these notations, v is the order of integration or differentiation and a is
the lower limit of integration.

For every function (f : C → C); and for every number v ∈ R or C, Jv
a and

Dv should be related to f by the following criteria [10].

1. If f(x) is an analytic function, then Jv
af(x) and Dvf(x) must also be an

analytic function of the variable x and of the order v of integration or differ-
entiation.

2. The operations Jv
af(x) and Dvf(x) must produce the same result as ordinary

integration/differentiation when v is a positive integer.

1 http://save.seecs.nust.edu.pk/projects/fc.html.
2 http://save.seecs.nust.edu.pk.
3 https://code.google.com/p/hol-light/source/browse/trunk/Multivariate/gamma.ml.

http://save.seecs.nust.edu.pk/projects/fc.html
http://save.seecs.nust.edu.pk
https://code.google.com/p/hol-light/source/browse/trunk/Multivariate/gamma.ml

Towards the Formalization of Fractional Calculus in Higher-Order Logic 319

3. The fractional operators must be linear.

Jv
a [αf(x) + βg(x)] = αJv

af(x) + βJv
ag(x) (1)

Dv[αf(x) + βg(x)] = αDvf(x) + βDvg(x) (2)

4. The operation of order zero must leave the function unchanged.

J0
af = f and D0f = f (3)

5. The law of exponents must hold for integration and differentiation of arbitrary
order under sufficient conditions on function f .

Ju
a (Jv

af) = Ju+v
a f and Du(Dvf) = Du+vf (4)

Fractional integrals and fractional derivatives are also referred to as Differinte-
grals [27] and there are more than ten well-known definitions for Differintegrals
[9]. We describe here two of them, which are most widely used in analyzing
real-world problems. These are the Riemann-Liouville and Grünwald-Letnikov
definitions, which are also equivalent for a wide class of functions [31].

Riemann-Liouville (RL) Definition:

Jv
af(x) =

1
Γ (v)

∫ x

a

(x − t)v−1f(t)dt (5)

where Jv
af(x) represents fractional integration with order v and lower integration

limit a. The parameter a = 0 gives the Riemann definition and a = −∞ gives the
Liouville definition of fractional integration. Indeed Eq. (5) is the generalization
of Cauchy’s repeated integration formula to non-integer v [32]. Where Γ (.) in
the above definition denotes the Gamma function which is defined using the
well-known improper integral as follows:

Γ (z) =
∫ ∞

0

tz−1e−tdt (6)

for Re(z) > 0.
The fractional differentiation is given as follows:

Dvf(x) = (
d

dx
)mJm−v

a f(x) (7)

where m represents the ceiling of v, i.e., �v�.

320 U. Siddique et al.

Gamma Function

Riemann–Liouville
Integral

Finite Fractional
Difference

Laplace Transform Z-Transform R-Transform

Fractional Order
Control Systems

Fractional
Electromagnetics

Fractional Signal
Processing

Electrical Networks

HOL Light
Multivariate

Libraries

Complexes

Integrals

Derivatives

Vectors

Fig. 1. Formalization framework for fractional calculus

Grünwald-Letnikov (GL) Definition:

cD
v
xf(x) = lim

h→0
h−v

[x−c
h]∑

k=0

(−1)k
(

v

k

)
f(x − kh) (8)

Grünwald-Letnikov definition caters for both fractional differentiation and inte-
gration, as positive values of v give fractional differentiation and negative values
of v give fractional integration. Here,

(
v
k

)
represents the binomial coefficients,

which are described in terms of the Gamma function.

3 Formal Analysis Framework

The proposed framework, given in Fig. 1, outlines the main ideas and roadmap
to formalize the basic theory behind fractional calculus. The whole framework
can be decomposed mainly into three major parts which are the formalization
of the core definitions of fractional order operators, formalization of supporting
transformations (i.e., Laplace transform [26], Z-Transform [28] and R-Transform
[3]) and engineering applications. The first part heavily relies upon the Gamma
function as mentioned in Sect. 2. So the core step is to formalize the Gamma
function in higher-order logic (HOL) and verify its important properties. Conse-
quently, any definition of fractional order operators can be formalized in HOL.
However, our focus is two main definitions, i.e., Riemann-Liouville (RL) and
fractional difference which indeed represent continuous and discrete versions
of fractional order operators, respectively. This step also involves the validation
of all the properties mentioned in Sect. 2. This requires some important results of

Towards the Formalization of Fractional Calculus in Higher-Order Logic 321

multivariate calculus such as the notion of Lebesgue measurability and Fubini’s
theorem which provides the reasoning support for iterated and double integrals.
Interestingly, both of these requirements are available in the multivariate analysis
libraries of HOL Light. The second step is the formalization of important integral
transforms which are necessary to analytically solve linear fractional differen-
tial and difference equations. We mainly focus on three transforms, namely the
Laplace transform, the Z-Transform, and the recently introduced R-Transform
[4]. All of these transformations are used to transform complicated fractional
differential (or difference) equations to algebraic equations which are easier to
manipulate and to deduce interesting properties. Building upon these funda-
mentals, our ultimate goal is to formally verify a variety of engineering systems
including control systems, signal processing, electromagnetics and electrical net-
works. All formalization steps make use of different multivariate theories of HOL
Light, e.g., derivatives, integrals, complex vectors and measure spaces. Finally,
the developed libraries of this project will become part of the existing HOL Light
libraries.

4 Current Status and Future Milestones

As mentioned earlier, the project initially considered only real-order fractional
operators in the HOL4 theorem prover. The main difficulty was the little sup-
port to handle improper integrals which was required to formalize the real-valued
Gamma function. Therefore, we extended the integration theory of HOL4 by for-
malizing a variant of improper integrals using sequential limits. This was then
used to formalize the Gamma function and verify some of its main properties,
such as the pseudo-recurrence relation (Γ (z + 1) = zΓ (z)), the functional equa-
tion (Γ (1) = 1) and the factorial generalization (Γ (k +1) = k!) [34]. We utilized
these foundations to formalize Differintegrals, given in Eqs. (5) and (7), which in
turn can be used to represent the dynamics of fractional order systems in higher-
order logic. We also verified theorems corresponding to some commonly used
properties of Differintegrals namely Identity and Linearity. Consequently, we
conducted the formal analysis of a fractional order electrical component namely
resistoductor, a fractional integrator and a fractional differentiator circuit [33].
Later on, the scope of the project was revised to include complex-valued functions
and complex order fractional operators in HOL Light. The main requirement was
to formalize the complex-valued Gamma function, Laplace and Z-Transforms.
However, the Gamma function4 was formalized by Harrison in early 2014. In
the meantime, we formalized the basic theories of the Laplace transform [36]
and the Z-Transform [35]. Currently, we are working on three main topics which
include: (1) formal proofs of the uniqueness of Laplace and Z-Transforms which
are required to formally verify the inverses of these transforms; (2) vectorial
Z-Transform, which extend the simple Z-Transform over complex vectors; and
(3) fractional difference equations, which are mainly based on Gamma function,

4 https://code.google.com/p/hol-light/source/browse/trunk/Multivariate/gamma.ml.

https://code.google.com/p/hol-light/source/browse/trunk/Multivariate/gamma.ml

322 U. Siddique et al.

infinite summations and products over complex functions. Finally, we outline
the major tasks to achieve the future milestones as follows:

– Formalization of R-Transform.
– Formalization of Differintegrals for complex-valued functions. This is mainly

the generalization of the formalization which was developed in HOL4.
– Formalization of linear fractional differential and difference equations with

support to analytical solutions using the transform methods.

During the course of this project, two master and two Ph.D. students have
contributed to the formalization. Interestingly, all of them are mainly electrical
engineers without prior background of formal methods and higher-order-logic
theorem proving. Given the complexity and interdisciplinarity of this research
project, it is quite encouraging to see people with an engineering (or physics)
background to use proof assistants as a complementary tool. The formalization
of the fractional calculus is quite challenging as it requires advanced mathe-
matical concepts of vector integration and Lebesgue measurable functions, etc.
So expertise in formal reasoning about these complex mathematical phenomena
is required for this formalization, which is quite unique compared to reason-
ing about software and digital hardware systems. The learning curve of HOL
Light varies from student to student. Generally, students start proving basic
math equations after a couple of months and the pace of formalization increases
over time. Learning HOL Light libraries is not difficult once the basic concepts
have been grasped by the user. The formalization of the improper integrals,
the Gamma function, the fractional calculus, the Z-Transform and the Laplace
transform is approximately 15,000 lines of HOL Light code. One of the major
obstacles in the formalization was the identification of suitable mathematical
definitions and models. Sometimes, textbook proofs do not follow due to various
reasons (corner cases, or the proof steps are too abstract, etc.) and they needed
to be re-proved on paper with subtle details. Consequently, we have to modify
the definitions and thus change the proofs. But now the current formalization
seems quite stable as most of the classical properties have been formally veri-
fied for our definitions. We believe that future developments can be built on the
foundations that have been formalized as most of the work is for general sys-
tems. Finally, another important aspect of this project is the potential to apply
developed theories to various applications other than fractional calculus. For
example, we demonstrated the use of the Gamma function in probability theory
[34], the Z-Transform in signal processing [35], and the Laplace transform in
power electronics [36].

5 Conclusion

In this paper, we mainly presented the motivation and ongoing activities of our
long term project about the formalization of fractional calculus in the HOL
Light theorem prover. The main contribution of this project is a comprehensive
framework of formal definitions and theorems about fractional calculus which

Towards the Formalization of Fractional Calculus in Higher-Order Logic 323

can be used to verify modern control, signal processing and electromagnetic
systems. Some future directions and recommendations for HOL Light are the
improvements in the visualization of proofs, better automation and more acces-
sible tutorials with examples from different engineering/physics topics.

References

1. Pariz, N., Kiani-B, A., Fallahi, K., Leung, H.: A Chaotic secure communication
scheme using fractional chaotic systems based on an extended fractional kalman
filter. Commun. Nonlinear Sci. Numer. Simul. 14, 863–879 (2009)

2. Afshar, S.K., Siddique, U., Mahmoud, M.Y., Aravantinos, V., Seddiki, O., Hasan,
O., Tahar, S.: Formal analysis of optical systems. Math. Comput. Sci. 8(1), 39–70
(2014)

3. Atici, F.M.: A transform method in discrete fractional calculus. Int. J. Diff. Equ.
2(2), 165–176 (2007)

4. Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc.
Am. Math. Soc. 137(3), 981–989 (2009)

5. Auastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor
neurons. Biol. Cybern. 72(1), 69–79 (1994)

6. Cuestab, E., Quintanoa, C.: Improving satellite image classification by using frac-
tional type convolution filtering. Int. J. Appl. Earth Obs. Geoinf. 12(4), 298–301
(2010)

7. Chen, Y.Q., Xue, D., Dou, H.: Fractional calculus and biomimetic control. In:
Robotics and Biomimetics, pp. 901–906. IEEE (2004)

8. Maŕın, M., Domı́nguez, D.M., Camacho, M.: Macrophage ion currents are fit by
a fractional model and therefore are a time series with memory. Eur. Biophys. J.
38(4), 457–464 (2009)

9. Dalir, M., Bashour, M.: Application of fractional calculus. Appl. Frac. Calc. Phys.
4(21), 12 (2010)

10. Das, S.: Functional Fractional Calculus for System Identification and Controls.
Springer, Heidelberg (2007)

11. Duarte, F.B.M., Machado, J.A.T.: Pseudoinverse trajectory control of redundant
manipulators: a fractional calculus perspective. In: International Conference on
Robotics and Automation, pp. 2406–2411. IEEE (2002)

12. Elaydi, S.: An Introduction to Difference Equations. Springer, New York (2005)
13. Engheta, N.: Fractional curl operator in electromagnetics. Microw. Opt. Technol.

Lett. 17(2), 86–91 (1998)
14. Faryad, M., Naqvi, Q.A.: Fractional rectangular waveguide. Progr. Electromagn.

Res. PIER 75, 383–396 (2007)
15. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,

S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev,
A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp.
163–179. Springer, Heidelberg (2013)

16. Hales, T.C.: Introduction to the Flyspeck project. In: Mathematics, Algorithms,
Proofs, volume 05021 of Dagstuhl Seminar Proceedings, pp. 1–11 (2005)

17. Hartley, T.T., Lorenzo, C.F.: Fractional system identification: an approach using
continuous order distributions. Technical report, National Aeronautics and Space
Administration, Glenn Research Cente NASA TM (1999)

324 U. Siddique et al.

18. Ahmad, W.M., Assaleh, K.: Modeling of speech signals using fractional calculus.
In: International Symposium on Signal Processing and Its Applications, pp. 1–4.
IEEE (2007)

19. Krishna, B.T., Reddy, K.V.V.S.: Design of digital differentiators and integrators
of order 1

2
. World J. Model. Simul. 4, 182–187 (2008)

20. Leibnitz, G.W.: Leibnitzens Mathematische Schriften. SIGDA News Lett. 2, 301–
302 (1962)

21. Lurie, K.A.: An Introduction to the Mathematical Theory of Dynamic Materials.
Springer, US (2007)

22. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues.
Comput. Math. Appl. 59, 1586–1593 (2010)

23. Maione, G., Lino, P.: New tuning rules for fractional piα controllers. Nonlinear
Dyn. 49(1–2), 251–257 (2007)

24. Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Dif-
ferential Equations. Willey, New York (1993)

25. Naqvi, Q.A., Abbas, M.: Complex and higher order fractional curl operator in
electromagnetics. Opt. Commun. 241, 349–355 (2004)

26. Ogata, K.: Modern Control Engineering. Prentice Hall, Boston (2010)
27. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York

(1974)
28. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing.

Prentice Hall, Upper Saddle River (1999)
29. Mathieu, B., Melchior, P., Oustaloup, A., Ceyral, C.: Fractional differentiation for

edge detection. Signal Process. 83, 2421–2432 (2003)
30. Petrás, I., Vinagre, B.M.: Practical application of digital fractional-order controller

to temperature control. Acta Montan. Slovaca 7(2), 131–137 (2002)
31. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
32. Ross, B.: A brief history and exposition of the fundamental theory of fractional

calculus. In: Ross, B. (ed.) Fractional Calculus and Its Applications. Lecture Notes
in Mathematics, vol. 457, pp. 1–36. Springer, Heidelberg (1975)

33. Siddique, U., Hasan, O.: Formal analysis of fractional order systems in HOL. In:
Formal Methods in Computer Aided Design, pp. 163–170. IEEE (2011)

34. Siddique, U., Hasan, O.: On the formalization of gamma function in HOL. J.
Autom. Reason. 53(4), 407–429 (2014)

35. Siddique, U., Mahmoud, M.Y., Tahar, S.: On the formalization of Z-Transform in
HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 483–498.
Springer, Heidelberg (2014)

36. Taqdees, S.H., Hasan, O.: Formalization of laplace transform using the multivari-
able calculus theory of HOL-light. In: McMillan, K., Middeldorp, A., Voronkov, A.
(eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013)

37. Tseng, C.C.: Design of fractional order digital FIR differentiators. IEEE Signal
Process. Lett. 8(3), 77–79 (2001)

38. Vinagreb, B.M., Chena, Y.Q.: Fractional differentiation for edge detection. Signal
Process. 83, 2359–2365 (2003)

39. Yang, X.S.: Mathematical Modeling with Multidisciplinary Applications. Wiley,
New Jersey (2013)

40. Zaborovsky, V., Meylanov, R.: Informational network traffic model based on frac-
tional calculus. In: Proceedings of the International Conference Info-tech and Info-
net, pp. 58–63. IEEE (2001)

LeoPARD — A Generic Platform
for the Implementation of Higher-Order

Reasoners

Max Wisniewski(B), Alexander Steen, and Christoph Benzmüller

Department of Mathematics and Computer Science,
Freie Universität Berlin, Berlin, Germany

{max.wisniewski,a.steen,c.benzmueller}@fu-berlin.de

Abstract. LeoPARD supports the implementation of knowledge rep-
resentation and reasoning tools for higher-order logic(s). It combines
a sophisticated data structure layer (polymorphically typed λ-calculus
with nameless spine notation, explicit substitutions, and perfect term
sharing) with an ambitious multi-agent blackboard architecture (sup-
porting prover parallelism at the term, clause, and search level). Further
features of LeoPARD include a parser for all TPTP dialects, a com-
mand line interpreter, and generic means for the integration of external
reasoners.

1 Introduction

LeoPARD (Leo’s Parallel ARchitecture and Datastructures) is designed as a
generic system platform for implementing higher-order (HO) logic based knowl-
edge representation, and reasoning tools. In particular, LeoPARD provides the
base layer of the new HO automated theorem prover (ATP) Leo-III, the suc-
cessor of the well known provers LEO-I [4] and LEO-II [7].

Previous experiments with LEO-I and the OAnts mechanism [5] indicate
a flexible, multi-agent blackboard architecture is well-suited for automating HO
logic [6]. However, (due to project constraints) such an approach has not been
realized in LEO-II. Instead, the focus has been on the proof search layer in
combination with a simple, sequential collaboration with an external first-order
(FO) ATP. LEO-II also provides improved term data structures, term indexing,
and term sharing mechanisms, which unfortunately have not been optimally
exploited at the clause and the proof search layer. For the development of Leo-
III the philosophy therefore has been to allocate sufficient resources for the
initial development of a flexible and reusable system platform. The goal has
been to bundle, improve, and extend the features with the highest potential of
the predecessor systems LEO-I, LEO-II and OAnts.

The result of this initiative is LeoPARD1, which is written in Scala and
currently consists of approx. 13000 lines of code. LeoPARD combines a sophis-
ticated data structure layer [21] (polymorphically typed λ-calculus with nameless

This work has been supported by the DFG under grant BE 2501/11-1 (Leo-III).
1 LeoPARD can be download at: https://github.com/cbenzmueller/LeoPARD.git.

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 325–330, 2015.
DOI: 10.1007/978-3-319-20615-8 22

https://github.com/cbenzmueller/LeoPARD.git

326 M. Wisniewski et al.

spine notation, explicit substitutions, and perfect term sharing), with a multi-
agent blackboard architecture [25] (supporting prover parallelism at the term,
clause, and search level) and further tools including a parser for all TPTP [22,23]
syntax dialects, generic support for interfacing with external reasoners, and a
command line interpreter. Such a combination of features and support tools is,
up to the authors knowledge, not matched in related HO reasoning frameworks.

The intended users of the LeoPARD package are implementors of HO knowl-
edge representation and reasoning systems, including novel ATPs and model
finders. In addition, we advocate the system as a platform for the integration
and coordination of heterogeneous (external) reasoning tools.

2 Term Data Structure

Data structure choices are a critical part of a theorem prover and permit reliable
increases of overall performance when implemented and exploited properly. Key
aspects for efficient theorem proving have been an intensive research topic and
have reached maturity within FO-ATPs [19,20]. Naturally, one would expect an
even higher impact of the data structure choices in HO-ATPs. However, in the
latter context, comparably little effort has been invested yet – probably also
because of the inherently more complex nature of HO logic.

Term Language. The LeoPARD term language extends the simply typed λ-
calculus with parametric polymorphism, yielding the second-order polymor-
phically typed λ-calculus (corresponding to λ2 in Barendregt’s λ-cube [3]).
In particular, the system under consideration was independently developed by
Reynolds [16] and Girard [14] and is commonly called System F today. Further
extensions, for example to admit dependent types, are future work.

Thus, LeoPARD supports the following type and term language:

τ, ν ::= t ∈ T (Base type)
| α (Type variable)
| τ → ν (Abstraction type)
| ∀α. τ (Polymorphic type)

s, t ::= Xτ ∈ Vτ | cτ ∈ Σ (Variable / Constant)
| (λxτ sν)τ→ν | (sτ→ν tτ)ν (Term abstr. / appl.)
| (Λα sτ)∀α τ | (s∀α τ ν)τ [α/ν] (Type abstr. / appl.)

An example term of this language is:

ΛαλPα→o ((f∀β (β→o)→o→o α) (λYα P Y)) To.

Nameless Representation. Internally, LeoPARD employs a locally nameless rep-
resentation (both at the type and term level), that extends de-Bruijn indices to
(bound) type variables [15]. The definition of de-Bruijn indices [11] for type vari-
ables is analogous to the one for term variables. Thus, the above example term
is represented namelessly as

LeoPARD — A Generic Platform for the Implementation 327

(
Λλ1→o ((f∀(1→o)→o→o 1) (λ1 2 1)) To

)

where de-Bruijn indices for type variables are underlined.

Spine Notation and Explicit Substitutions. On top of nameless terms, Leo
PARD employs spine notation [12] and explicit substitutions [1]. The first tech-
nique allows quick head symbol queries, and efficient left-to-right traversal, e.g.
for unification algorithms. The latter augments the calculus with substitution
closures that admit efficient (partial) β-normalization runs. Internally, the above
example reads

Λλ1→o f∀(1→o)→o→o · (1;λ1 2 · (1);T)

where · combines function heads to argument lists (spines) in which ; denotes
concatenation of arguments.

Term Sharing/Indexing. Terms are perfectly shared within LeoPARD, meaning
that each term is only constructed once and then reused between different occur-
rences. This does not only reduce memory consumption in large knowledge bases,
but also allows constant-time term comparison for syntactic equality using the
term’s pointer to its unique physical representation. For fast (sub-)term retrieval
based on syntactical criteria (e.g. head symbols, subterm occurrences, etc.) from
the term indexing mechanism, terms are kept in β-normal η-long form.

Suite of Normalization Strategies. LeoPARD comes with a number of differ-
ent (heuristic) β-normalization strategies that adjust the standard leftmost-
outermost strategy with different combinations of strict and lazy substitution
composition resp. normalization and closure construction. η-normalization is
invariant wrt. β-normalization of spine terms and hence η-normalization (to
long form) is applied only once for each freshly created term.

Evaluation and Findings. A recent empirical evaluation [21] has shown that there
is no single best reduction strategy for HO-ATPs. More precisely, for different
TPTP problem categories this study identified different best reduction strategies.
This motivates future work in which machine learning techniques could be used
to suggest suitable strategies.

3 Multi-agent Blackboard Architecture

In addition to supporting classical, sequential theorem proving procedures,
LeoPARD offers means for breaking the global ATP loop down into a set of sub-
tasks that can be computed in parallel. This also includes support for subprover
parallelism as successfully employed, for example, in Isabelle/HOL’s Sledgeham-
mer tool [8]. More generally, LeoPARD is construed to enable parallalism at
various levels inside an ATP, including the term, clause, and search level [9]. For
this, LeoPARD provides a flexible multi-agent blackboard architecture.

Blackboard Architecture. Process communication in LeoPARD is realized indi-
rectly via a blackboard architecture [24]. The LeoPARD blackboard [25] is a

328 M. Wisniewski et al.

collection of globally shared and accessible data structures which any process,
i.e. agent, can query and manipulate at any time in parallel. From the black-
board’s perspective each process is a specialist responsible for exactly one kind
of problem. The blackboard is generic in the data structures, i.e. it allows the
programmer to add various kinds data structures for any kind of data. Insertion
into the data structures is handled by the blackboard. Hence, each specialist can
indeed by specialized on a single data structure.

The LeoPARD blackboard mechanism and associated data structures pro-
vide specific support for nested and-or search trees, meaning that sets of formu-
lae can be split into (nested) and-or contexts. Moreover, for each supercontext
respective TPTP SZS status [22] information is automatically inferred from the
statuses of its subcontexts.

Agents. In LeoPARD specialist processes can be modeled as agents [25]. Clas-
sically, agents are composed of three components: environment perception, deci-
sion making, and action execution [24].

The perception of LeoPARD agents is trigger-based, meaning that each
agent is notified by a change in the blackboard. LeoPARD agents are to be
seen as homomorphisms on the blackboard data together with a filter when to
apply an action. Depending on the perceived change of the resp. state of the
blackboard an agent decides on an action it wants to execute.

Auction Scheduler. Action execution in LeoPARD is coordinated by an auction
based scheduler, which implements an own approximation algorithm [25] for
combinatorical auctions [2]. More precisely, each LeoPARD agent computes
and places a bid for the execution of its action(s). The auction based scheduler
then tries to maximize the global benefit of the particular set of actions to choose.

This selection mechanism works uniformly for all agents that can be imple-
mented in LeoPARD. Balancing the value of the actions is therefore crucial for
the performance and the termination of the overall system. A possible generic
solution for the agents bidding is to apply machine learning techniques to opti-
mize the bids for the best overall performance. This is future work.

Note that the use of advanced agent technology in LeoPARD is optional.
A traditional ATP can still be implemented, for example, as a single, sequential
reasoner instantiating exactly one agent in the LeoPARD framework.

Agent Implementation Examples. For illustration purposes, some agent imple-
mentations have been exemplarily included in the LeoPARD package. For
example, simple agents for simplification, skolemization, prenex-form, negation-
normal-form and paramodulation are provided. Moreover, the agent-based inte-
gration of external ATPs is demonstrated and their parallelization is enabled by
the LeoPARD agent framework. This includes agents embodying LEO-II and
Satallax [10] running remotely on the SystemOnTPTP [22] servers in Miami.
These example agents can be easily adapted for other TPTP compliant ATPs.

Each example agent comes with an applicability filter, an action definition
and an auction value computation. The provided agents suffice to illustrate
the working principles of the LeoPARD multi-agent blackboard architecture

LeoPARD — A Generic Platform for the Implementation 329

to interested implementors. After the official release of Leo-III, further, more
sophisticated agents will be included and offered for academic reuse.

4 Other Components

The LeoPARD framework provides useful further components. For example, a
generic parser is provided that supports all TPTP syntax dialects. Moreover, a
command line interpreter supports fine grained interaction with the system. This
is useful not only for debugging but also for training and demonstration purposes.
As pointed at above, useful support is also provided for the integration of external
reasoners based on the TPTP infrastructure. This also includes comprehensive
support for the TPTP SZS result ontology. Moreover, ongoing and future work
aims at generic means for the transformation and integration of (external) proof
protocols, ideally by exploiting results of projects such as ProofCert2.

5 Related Work

There is comparably little related work to LeoPARD, since higher-order the-
orem provers typically implement their own data structures. Related systems
(mostly concerning term representation) include λProlog and Teyjus [17], the
Abella interactive theorem prover [13], and the logical framework Twelf [18].

Acknowledgements.. We thank the reviewers for their valuable feedback. Moreover,
we thank Tomer Libal and the students of the Leo-III project for their contributions
to LeoPARD.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Levy, J.-J.: Explicit substitutions. In: Pro-
ceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1990, pp. 31–46, ACM, New York (1990)

2. Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)
3. Barendregt, H.P.: Introduction to generalized type systems. J. of Funct. Program.

1(2), 125–154 (1991)
4. Benzmüller, C.E., Kohlhase, M.: System description: LEO - a higher-order theorem

prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421,
p. 139. Springer, Heidelberg (1998)

5. Benzmüller, C., Sorge, V.: OANTS - combining interactive and automated the-
orem proving. In: Kerber, M., Kohlhase, M. (eds.) Symbolic Computation and
Automated Reasoning, pp. 81–97. A.K.Peters, Massachusetts (2001)

6. Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Combined reasoning by auto-
mated cooperation. J. Appl. Log. 6(3), 318–342 (2008)

2 See https://team.inria.fr/parsifal/proofcert/.

https://team.inria.fr/parsifal/proofcert/

330 M. Wisniewski et al.

7. Benzmüller, C., Paulson, L., Theiss, F., Fietzke, A.: LEO-II - a cooperative auto-
matic theorem prover for classical higher-order logic (System description). In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 162–170. Springer, Heidelberg (2008)

8. Blanchette, J., Böhme, S., Paulson, L.: Extending sledgehammer with SMT solvers.
J. Autom. Reason. 51(1), 109–128 (2013)

9. Bonacina, M.P.: A taxonomy of parallel strategies for deduction. Ann. Math. Artif.
Intell. 29(1–4), 223–257 (2000)

10. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer,
Heidelberg (2012)

11. De Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
INDAG. MATH 34, 381–392 (1972)

12. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688
(2003)

13. Gacek, A.: The Abella interactive theorem prover (System description). In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 154–161. Springer, Heidelberg (2008)

14. Girard, J.Y.: Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph.D. thesis, Paris VII (1972)

15. Kfoury, A.J., Ronchi Della Rocca, S., Tiuryn, J., Urzyczyn, P.: Della Rocca, J.
Tiuryn, and P. Urzyczyn. Alpha-conversion and typability. Inf. Comput. 150(1),
1–21 (1999)

16. Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Sympo-
sium on Programming. LNCS, vol. 19, pp. 408–423. Springer, Heidelberg (1974)

17. Liang, C., Mitchell, D.: System description: Teyjus - a compiler and abstract
machine based implementation of λProlog. In: Ganzinger, H. (ed.) CADE 1999.
LNCS (LNAI), vol. 1632, pp. 287–291. Springer, Heidelberg (1999)

18. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol.
1632, pp. 202–206. Springer, Heidelberg (1999)

19. Riazanov, A.: Implementing an efficient theorem prover. Ph.D. thesis, University
of Manchester (2003)

20. Sekar, R., Ramakrishnan, I.V., Voronkov, A.: Term indexing. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1853–1964. Elsevier
Science Publishers B.V., Amsterdam (2001)

21. Steen, A.: Efficient data structures for automated theorem proving in expres-
sive higher-order logics. Master’s thesis, Freie Universität Berlin (2014). http://
userpage.fu-berlin.de/∼lex/drop/steen datastructures.pdf

22. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–362 (2009)

23. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)

24. Weiss, G. (ed.): Multiagent Systems. MIT Press, Cambridge (2013)
25. Wisniewski, M.: Agent-based blackboard architecture for a higher-order theorem

prover. Master’s thesis, Freie Universität Berlin (2014). http://userpage.fu-berlin.
de/∼lex/drop/wisniewski architecture.pdf

http://userpage.fu-berlin.de/~lex/drop/steen_datastructures.pdf
http://userpage.fu-berlin.de/~lex/drop/steen_datastructures.pdf
http://userpage.fu-berlin.de/~lex/drop/wisniewski_architecture.pdf
http://userpage.fu-berlin.de/~lex/drop/wisniewski_architecture.pdf

Systems and Data

TIP: Tons of Inductive Problems

Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone(B)

Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

{koen,jomoa,danr,nicsma}@chalmers.se

Abstract. This paper describes our collection of benchmarks for induc-
tive theorem provers. The recent spur of interest in automated inductive
theorem proving has increased the demands for evaluation and compar-
ison between systems. We expect the benchmark suite to continually
grow as more problems are submitted by the community. New challenge
problems will promote further development of provers which will greatly
benefit both developers and users of inductive theorem provers.

1 Introduction

We have recently seen increased interest in inductive theorem proving, both with
specialised provers such as IsaPlanner, Zeno and HipSpec [3,5,13], SMT-solvers
such as CVC4 [11], the auto-active prover Dafny [10], recent work on the first-
order SPASS prover [14], as well as some support in proof assistants [8,9].

To ease evaluation and development, and compare the relative strengths of
the different systems, it is important to have good standard benchmarks. The
contribution of this paper is an accessible standard benchmark suite for inductive
theorem provers which can be extended by users and developers. The benchmarks
are publicly available at: https://github.com/tip-org/benchmarks.

We have so far collected 340 problems in our benchmark suite, which we
have called “TIP”, for Tons of Inductive Problems—so named in the hope of
attracting many more problems! We invite the community to submit additional
problems and challenges and expect the collection to continuously grow and
provide new challenges for developers.

2 The Benchmark Format

The benchmarks are expressed in a variant of SMT-LIB [1], extended with sup-
port for algebraic datatypes and higher-order functions. The format is described
in detail in [4]. Starting from the basic SMT-LIB format, we import the following
features from existing systems:

– Algebraic datatypes, which are declared using the declare-datatypes syntax
as supported in Z3 and CVC4.

– Recursive function definitions, which use the define-funs-rec syntax imple-
mented in CVC4 and proposed for SMT-LIB 2.5 [1].

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 333–337, 2015.
DOI: 10.1007/978-3-319-20615-8 23

https://github.com/tip-org/benchmarks

334 K. Claessen et al.

– Polymorphic functions, using the proposed par syntax [2], which is imple-
mented in a version of CVC4.

We then add more features of our own, which are specific to TIP:

– In the standard declare-datatypes syntax, functions over algebraic
datatypes are defined using projection functions like head and tail. We add
a pattern-matching syntax, which is more convenient for many provers.

– Many of our benchmark problems use higher-order functions, such as map. We
add syntax for lambda functions and higher-order functions.

– Many inductive provers treat the goal specially, as opposed to SMT-
LIB which expresses the goal as a negated axiom. We add a construct
(assert-not p) which declares p as the goal; it is semantically equivalent
to (assert (not p)).

We do not necessarily expect every prover to support TIP natively. Instead, we
have made a tool which can translate TIP problems to and from a variety of other
formats. Currently our tool can translate TIP problems to a CVC4-compatible
version of SMT-LIB or to WhyML, and can compile Haskell programs into TIP
properties. It can also perform a number of transformations for tools which do
not support the full TIP language, such as removing higher-order functions by
defunctionalisation [12]. Our aim is to support many different source and target
formats in this tool.

2.1 Example

As an example of what the benchmarks look like, we show property 12 from the
IsaPlanner benchmark set (see Sect. 3.1 below), which states that the functions
drop and map distribute over one another:

drop n (map f xs) = map f (drop n xs).

We declare two simple algebraic datatypes representing natural numbers and
polymorphic lists.

(declare -datatypes (a)
((list (nil) (cons (head a) (tail (list a))))))

(declare -datatypes () ((Nat (Z) (S (p Nat)))))

Next, we declare two recursive functions: map, which is a higher-order function
applying a unary function f to each element of a list, and drop, which recursively
drops a given number of elements from the front of the list.

(define -funs -rec
((par (a b) (map ((f (=> a b)) (xs (list a))) (list b))))
((match xs

(case nil (as nil (list b)))
(case (cons y ys) (cons (@ f y) (map f ys))))))

TIP: Tons of Inductive Problems 335

(define -funs -rec
((par (a) (drop ((n Nat) (xs (list a))) (list a))))
((match n

(case Z xs)
(case (S m)

(match xs
(case nil xs)
(case (cons y ys) (drop m ys)))))))

These definitions illustrate several features of TIP:

– Polymorphism: par introduces type variables.
– Higher-order functions: (=> a b) is the type of functions from a to b, and @

applies first-class functions to their arguments.
– Pattern-matching using match and case, which binds new variables.
Finally, the benchmark problem itself is declared with the keyword assert-not:

(assert -not
(par (a b)

(forall ((n Nat) (f (=> a b)) (xs (list a)))
(= (drop n (map f xs)) (map f (drop n xs))))))

(check -sat)

Each benchmark file is stand-alone and only contains one property.

3 Sample Benchmarks

In this section we give a short overview of some the benchmark problems cur-
rently available in the repository. At the moment, there are three different main
sources of problems. We expect more to be added.

3.1 IsaPlanner’s Rippling and Case-Analysis Benchmarks

This set of 85 problems comes from the evaluation of IsaPlanner’s rippling-
heuristic for guiding rewriting in inductive proofs in the context of functions
with case- and if-statements [7]. It has been used in the evaluation of many of
the recent inductive theorem provers and includes theorems about lists, natural
numbers and binary trees. The problems are relatively easy, most of the theorems
can be proved by structural induction using only the function definitions and
only 15 require auxiliary lemmas to be discovered.

3.2 Productive Use of Failure Benchmarks

This is another benchmark suite which has been used to evaluate several recent
provers. It consists of 50 theorems about lists and natural numbers and originates
from evaluation of techniques for discovering auxiliary lemmas in the CLAM
prover [6]. The original paper did not provide definitions for the functions used
in the benchmarks, so the definitions provided here come from the evaluation
of the HipSpec system [3]. These proofs are generally a bit harder, and may
require additional lemmas to be found and proved (by another induction) or
generalisation of the conjecture in order to strengthen the inductive hypothesis.

336 K. Claessen et al.

3.3 New TIP Benchmarks

This set contains 205 new benchmarks including, amongst others, properties of
the Agda standard library1 implementation of integers on top of natural num-
bers, problems about natural numbers in binary representation, various sorting
functions with correctness properties expressed in alternative ways, problems
about regular expressions, binary search trees, grammars and skew heaps. The
problems about sorting, regular expressions, grammars and heaps have to our
knowledge not all been fully automated yet and are offered as challenges!

4 Contribute to TIP

We invite the theorem proving community to contribute additional inductive
benchmarks and challenge problems to TIP. Instructions for how to submit prob-
lems can be found in the README file for the repository (https://github.com/
tip-org/benchmarks).

We are developing a toolchain for translating to and from our format. The
development is in its own repository (https://github.com/tip-org/tools). The
tool can currently read in problems in TIP format or Haskell, and output TIP,
SMT-LIB and WhyML, with some caveats:

– The generated SMT-LIB uses declare-datatypes, define-funs-rec and
polymorphism.

– The generated WhyML makes no special effort to pass Why3’s termination
checker.

We encourage the community to request and contribute additional input and
output formats to our tool chain.

5 Conclusion and Further Work

TIP is intended to be a standard benchmark suite for developers and users of
inductive theorem provers. We hope that this initiative will ease comparison
and evaluation of systems and spur further collaboration and development by
attracting submissions of additional challenge problems from the community.

In addition to serving as a standard benchmark suite for inductive provers,
the TIP benchmarks may also be useful for developers of theory exploration
systems. Theory exploration is a technique for automatically discovering inter-
esting conjectures about a given set of functions and datatypes, and is used in
for example the HipSpec prover to discover lemmas. The TIP benchmarks can
be compared to the output from the theory explorer in precision/recall analysis
to assess the quality and interestingness of the conjectures generated. A good
theory exploration system may also be used to generate new benchmarks for TIP.

Another aim is to also support non-theorems, for evaluation of tools for
counter-example finding. This requires no extension to the format at all, but

1 https://github.com/agda/agda-stdlib.

https://github.com/tip-org/benchmarks
https://github.com/tip-org/benchmarks
https://github.com/tip-org/tools
https://github.com/agda/agda-stdlib

TIP: Tons of Inductive Problems 337

it requires a standardization on how to annotate problems with their expected
answer (theorem or non-theorem), as well as a common solution format.

It is important to have good tool support if TIP is to be used by the com-
munity. Our tool is currently in active development, in order to support more
input and output formats, as well as various strategies for encoding features of
TIP for provers that do not support the full language.

In the future, we may want to extend the language to support a richer variety
of problems. For example, we may want to include problems about lazy functions
and co-datatypes.

References

1. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard - version 2.0. In: Pro-
ceedings of the 8th International Workshop on Satisfiability Modulo Theories (SMT
2010), Edinburgh, Scotland, July 2010

2. Bobot, F.: [RFC] Add adhoc polymorphism. https://github.com/CVC4/CVC4/
pull/51

3. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol.
7898, pp. 392–406. Springer, Heidelberg (2013)

4. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: The TIP language. http://
tip-org.github.io/format.html

5. Dixon, L., Johansson, M.: IsaPlanner 2: A proof planner in Isabelle. Technical
report, University of Edinburgh (2007)

6. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. J. Automated
Reasoning 16, 79–111 (1996)

7. Johansson, M., Dixon, L., Bundy, A.: Case-analysis for rippling and inductive
proof. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp.
291–306. Springer, Heidelberg (2010)

8. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory
exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 108–122. Springer,
Heidelberg (2014)

9. Kaufmann, M., Panagiotis, M., Moore, J.S.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Publishers, Norwell (2000)

10. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer,
Heidelberg (2012)

11. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015)

12. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference, ACM 1972, vol. 2, pp. 717–740.
ACM, New York (1972)

13. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for prop-
erties of recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 407–421. Springer, Heidelberg (2012)

14. Wand, D., Weidenbach, C.: Automatic induction inside superposition. https://
people.mpi-inf.mpg.de/dwand/datasup/draft.pdf

https://github.com/CVC4/CVC4/pull/51
https://github.com/CVC4/CVC4/pull/51
http://tip-org.github.io/format.html
http://tip-org.github.io/format.html
https://people.mpi-inf.mpg.de/dwand/datasup/draft.pdf
https://people.mpi-inf.mpg.de/dwand/datasup/draft.pdf

Semantic Enrichment of Mathematics via
‘tooltips’

Ross Moore(B)

Macquarie University, Sydney, Australia
ross.moore@mq.edu.au

Abstract. A package mathsem for pdf-LATEX implements a way to pro-
vide semantic meaning to symbols, without adding a large syntactical
burden to the specification of a mathematical expression. It uses a con-
cept of ‘active comment’, allowing the ‘%’ character at the beginning of
a new line to become an active token under highly-controlled circum-
stances. With a strictly defined syntax, words to express the semantic
meaning of a variable (‘x’ say) can be associated with each occurrence of
‘x’ in the expression following. The words become content of a tooltip,
that ‘pops-up’ by the symbol in a PDF document. The idea extends to:

1. allow multiple instances of the same symbol have distinct meanings;
2. attach semantics to macro-names as well as character symbols;
3. allow nested tooltip rectangles, for sub-expressions;
4. assign defaults to be attached to symbols and macros, at either global

or local levels, to maintain consistency of meaning within extended
portions of a document.

It is planned to use the same syntactical constructions to provide words
for spoken ‘alternative text’, in the context of fully-tagged, accessible,
mathematical content within PDF documents

Thanks to Michael Kohlhase for ideas suggesting such a package.

1 Introduction

Mathematical notation has been refined over centuries into a very succinct syn-
tax, particularly for input to computer programs, where input such as \(a + b\)
using LATEX, produces the typeset visual form: a + b. — Call this Example A.
However, such an expression contains no real semantics describing what the
mathematics actually represents. How can an author provide such information
conveniently, without compromising the high-quality visual representation?

To address this we take a lead from computer software interfaces, where use
of ‘tooltips’, small windows containing a short textual description that pop-up,
has become common-place. An extra benefit of tooltips is that their content
is, according to the PDF Reference specifications [1,3], intended to be vocalised
(e.g., by Adobe Reader’s ‘Read Out Loud’) as a replacement for the content which
lies under the tooltip’s Button annotation, or by other means. Thus through-
out this paper the term ‘semantics’ could be taken to mean a ‘well-structured,
meaningful, vocal or extra rendition’ of mathematical content, understandable
without the need to see the visual form of the expression.
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 338–342, 2015.
DOI: 10.1007/978-3-319-20615-8 24

Semantic Enrichment of Mathematics via ‘tooltips’ 339

Several LATEX packages1 support tool-tips, with all employing rather verbose
coding. For example, in a linguistics context, one might want something like
S + O using coding2 as follows — call this Example B : (Test it3 yourself.)

\pdftooltip{S}{S,Subject}\pdftooltip{+}{plus,Verb}\pdftooltip{O}{O,Object}

This puts quite a heavy burden on a document’s author to keep both the visual
form of the mathematics, and associated semantics, fully correct during editing.

This kind of ‘low-level’ semantic enrichment of mathematical content is
different to, but need not be incompatible with, using LATEX to semantically
enrich documents for a ‘Semantic Web’ as described in [2]. These use the
collection of LATEX macro packages [6]; see Example F below for relevant remarks.

2 Adding Semantics to Math Environments

To help alleviate the burden, the mathsem package4 employs a concept of ‘active
comment’ (or ‘semantic comment’). This allows extra words to be introduced
into the TEX-based processing and stored for later use. These can appear as text
in a tooltip, or be used in other ways such as ‘alternative text’ for vocalisation
purposes. We use the term ‘tagging’ to refer to addition of such information, with
symbols and expressions becoming ‘tagged’. Without the package, the comments
are simply ignored, thus giving the correct visual form with no edits required.

A series of examples follow, in sequence with A and B above. Each intro-
duces concepts and explains syntax used in the package. Example D shows how
user-defined macros overcome an inherent difficulty. This opens up great flexi-
bility allowing semantics to be applied to not just individual symbols, but sub-
expressions and the environment as a whole; see Examples E and F .

Example C. At the simplest level, meanings of symbols are passed using TEX
comments, without interrupting the coding of the mathematical expression.

1 pdfcomment, fancytooltips, cooltooltips. Click for links to CTAN.
2 This uses the \pdftooltip command from the pdfcomment package [7].
3 Not all PDF readers support tooltips; Adobe Reader is recommended.
4 . . . downloadable from https://rutherglen.science.mq.edu.au/∼maths/CICM/.

https://www.ctan.org/tex-archive/macros/latex/contrib/pdfcomment?lang=en
https://www.ctan.org/tex-archive/macros/latex/contrib/fancytooltips?lang=en
https://www.ctan.org/tex-archive/macros/latex/contrib/cooltooltips?lang=en
https://acrobat.adobe.com/au/en/products/pdf-reader.html
https://rutherglen.science.mq.edu.au/~maths/CICM/

340 R. Moore

TEXnical Note. This works using TEX’s category-code mechanism [8] to adjust
the roles of ‘%’ and end-of-line, so that lines beginning with ‘%’ no longer need
be ignored. Such ‘semantic comment’ lines are parsed to identify characters to
which semantics can be attached. Valid syntax is lines of the following forms:

% 〈token〉 $ 〈semantics〉 〈line-end〉
% $〈keyword〉 〈line-end〉

with spaces allowed either side of the 〈token〉 and ‘$’ delimiter, chosen since
‘$’ can never occur within a math-environment. The 〈semantics〉 can specify a
list, delimited with ‘;’ (semi-colon), of text snippets to be used with succes-
sive instances of the same character with the final one persisting for continued
use. (See the line for ‘b’ in Example C). The $semantics keyword is optional,
reminding an author of the purpose of semantic comments which follow.

After reading a semantic comment and storing its 〈semantics〉, TEX ‘looks
ahead’5 to see whether the next line also starts with ‘%’. If so, this is scanned for
a semantic comment; otherwise the scope terminates. Any line beginning with
an active ‘%’ followed by nothing, ‘$endsemantics’, an unrecognised keyword or
other violation of the strict syntax, is treated as an ordinary comment; the scope
for active ‘%’ terminates. Next, any found 〈token〉 characters are ‘activated’, by
having their \catcode set to 13, before actual mathematical content starts. Such
‘active’ characters behave as a single-letter name for a macro, which expands to
produce the tooltip before placing an (unactive) character into the math-list for
normal processing. A single-digit exponent must be enclosed within braces (e.g.,
..^{b^{2}} in Example C), since the ‘2’ now expands into more than just a
single character being superscripted. This active nature of characters is carefully
controlled; in particular, being restricted to just a single math-environment.

Example D. Use of active characters, as outlined in the TEXnical Note, has one
drawback; but there is an easy work-around. When a letter variable, ‘a’ say,
is activated for semantic enrichment, this letter cannot be used in any macro
names employed directly within the same math-environment.

\(
%$semantics
% + $ added to
% a$ complex number a; a; a conjugate
%$endsemantics
\Re a = \tfrac12(a + \bar{a})
\)

The result can be surprising, pro-
ducing either wrong output or a TEX
error, or both: �a = ac12(a+ara)

! Undefined control sequence.
l.331 \Re a = \tfr

ac12(a + \bar{a})

A warning message also is issued; viz.

LaTeX Warning: Command \b invalid in math mode on input line 331.

The reason is that the letter ‘a’ cannot be used within macro names, as it no
longer has the category code of a letter when it is later used as part of the
mathematics. User-defined macros provide the solution as in the next example.
5 Using TEX’s \futurelet primitive command.

Semantic Enrichment of Mathematics via ‘tooltips’ 341

Example E.
\DeclareRobustCommand{\HALFOF}%

{\tfrac12}%
\DeclareRobustCommand

{\ACONJUGATE}{\bar{a}}%
\(
%$semantics
%\Re $ real part of
% a $ a complex number a ; a
% = $ equals
%\HALFOF $ half of
% ($ open bracket
% + $ added to
%\ACONJUGATE$ its complex conjugate
%) $ close bracket
%$endsemantics
\Re a = \HALFOF (a + \ACONJUGATE)

\)

Existing macro names can also
be enriched with semantics, pro-
vided the macro-name does not
use any letters that are to be
made active; in this example \Re
is ‘safe’, but \tfrac and \bar are
not, because of the active letter
‘a’. An ‘unsafe’ macro is protected
within the expansion of a previously
defined ‘safe’ macro. Since most
usual TEX and LATEX commands use
only lowercase letters to form the
name, we employ just uppercase let-
ters in the new names used here.

Non-tagged: �a = 1
2 (a + ā)

Tagged: �a = 1
2 (a + ā)

Being already active, the existing macro expansion is first saved under an inter-
nal name. Just as with active characters, a new expansion creates the tooltip
before placing the actual mathematics using this saved expansion. Macro names
themselves are best chosen to correspond to the semantic meaning, as in [2,5,6].
\DeclareRobustCommand allows for better log-messages and safe captions, etc.

Example F. This final example is based upon Example 1 in the documen-
tation [6], using macros \CsumLimits and \Cpower (incorrectly stated as \Cexp
in [6]), as defined for .

To indicate the available flexibility, this example uses the character ‘k’ both
tagged, via \vark, and untagged in the lower limit of the sum. The upper limit
of ‘∞’ is tagged, whereas the lower limit ‘1’ is not — but could have been. Being
provided internally by the macro \CSumLimits, it is not possible to tag the ‘=’
(equals sign). This would be possible if had used a macro, \EqualsSign
say, in its definition for \CSumLimits.

342 R. Moore

3 Possible Future Developments

With ‘active comments’ being a viable way to include extra (semantic) informa-
tion into the processing of math-environments, one can envisage other places to
use this; e.g., chemical formulæ, chess layouts, contexts where single letters repre-
sent complicated objects. More keywords can be implemented; e.g., to add mean-
ingful /Alt text for PDF tagging (using /Formula<</Alt(...)...>> BDC) of
complete mathematical formulae, in documents conforming to the PDF/UA [4]
standard. All formulæ must have alternative text for the benefit of screen-readers
and other assistive technology. Code for Example B might then start as follows.

\(
% $all
% "S + O" representing "Subject, Verb, Object"
% $semantics

Such tagging of structure with /Alt text applies to “Tagged PDF” generally, as
in the author’s earlier work [9–11]. Those methods need an interface to allow
a document’s author to supply words to override built-in defaults, where the
meaning of a mathematical symbol can be dependent on context.

References

1. Adobe Systems Inc.; PDF Reference 1.7, November 2006. Also available as [3].
http://www.adobe.com/devnet/pdf/pdf reference.html

2. Groza, Tudor, Handschuh, Siegfried, Möller, Knud, Decker, Stefan: SALT - Seman-
tically Annotated for Scientific Publications. In: Franconi, Enrico, Kifer,
Michael, May, Wolfgang (eds.) ESWC 2007. LNCS, vol. 4519, pp. 518–532.
Springer, Heidelberg (2007)

3. ISO 32000–1:2008; Document management – Portable document format (PDF 1.7);
Technical Committee ISO/TC 171/SC 2, July 2008

4. ISO 14289–1:2012; Document management applications - Electronic document file
format enhancement for accessibility - Part 1: Use of ISO 32000–1 (PDF/UA-1);
Technical Committee ISO/TC 171/SC 2. Corrected version, December 2014

5. Kohlhase, M.: Using as a Semantic Markup Format, Mathematics in Com-
puter Science (2:2), pp. 279–304. Birkhäuser (2008). https://svn.kwarc.info/repos/
stex/doc/mcs08/stex.pdf

6. Kohlhase, M.: : Semantic Markup in . Documentation of the
packages. https://trac.kwarc.info/sTeX/export/2430/trunk/sty/stex.pdf

7. Kleber, J.: pdfcomment – A user-friendly interface to pdf annotations. pack-
age; available from CTAN; version 2.3a, September 2012

8. Knuth, D.E.: The . Addison Wesley (1984, 1986 and later revisions)

9. Moore, R.R.: Ongoing efforts to generate “tagged PDF” using , Muni Press,
2009. Reprinted as: TUGboat, Vol. 30, No. 2, pp. 170–175 (2009)

10. Moore, R.R.: Tagged mathematics in PDFs for accessibility and other purposes.
In: CICM-WS-WiP 2013. CEUR Workshops Proceedings, vol. 1010, paper-01.pdf
(2013)

11. Moore, Ross: PDF/A-3u as an Archival Format for Accessible Mathematics. In:
Watt, Stephen M., Davenport, James H., Sexton, Alan P., Sojka, Petr, Urban, Josef
(eds.) CICM 2014. LNCS, vol. 8543, pp. 184–199. Springer, Heidelberg (2014)

http://www.adobe.com/devnet/pdf/pdf_reference.html
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
https://trac.kwarc.info/sTeX/export/2430/trunk/sty/stex.pdf

Documentation Generator Focusing on Symbols
for the HTML-ized Mizar Library

Kazuhisa Nakasho(B) and Yasunari Shidama

Shinshu University, Matsumoto, Japan
13st205f@shinshu-u.ac.jp, shidama@cs.shinshu-u.ac.jp

Abstract. The purpose of this project is to collect symbol information
in the Mizar Mathematical Library and manipulate it into practical and
organized documentation. Inspired by the MathWiki project and API ref-
erence systems for computer programs, we developed a documentation
generator focusing on symbols for the HTML-ized Mizar library. The
system has several helpful features, including a symbol list, incremen-
tal search, and a referrer list. It targets those who use proof assistance
systems, the volume of whose libraries has been rapidly increasing year
by year.

Keywords: Mizar · Mathematical knowledge management · Search sys-
tem · Documentation generator

1 Motivation

In mathematical knowledge management (MKM), expanding of the fields covered
by formal methods has led to the rapid growth of formal mathematical libraries.
For instance, the Mizar Mathematical Library (MML) [5–7] has grown to more
than 2.7 million lines in 2015, and it has been increasing by approximately 0.1
million lines per year.

The development of formal mathematical libraries facilitates the reuse of
mathematical symbols and theorems, thereby improving the efficiency of writing
formal proofs. However, the increased volume of the libraries makes it difficult
for users to grasp what and where symbols and theorems are defined. In recent
years, developers of formal proofs have spent considerable time on search tasks
in large-scale libraries, thereby decreasing the productivity of formal verification.
Therefore, searching and browsing efficiency in large-scale libraries has been a
crucial issue in MKM.

2 Survey and Design Decision

We analyze some existing tools for searching and browsing the Mizar library. The
HTML-ized Mizar library [1,12] is one of the most successful documentation tools
for formal mathematical libraries. The HTML-linked MML was first developed
c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 343–347, 2015.
DOI: 10.1007/978-3-319-20615-8 25

344 K. Nakasho and Y. Shidama

in the late 1990 s for the former “Journal of Formalized Mathematics”1 and then
re-implemented by Dr. Josef Urban using the XML/XSLT technology. This new
HTML-ization was also used in the MathWiki Project.2 The system is capable
of intuitive and rapid browsing as a result of hyperlinks being embedded into
symbols, enabling users to jump from symbol occurrences to their definitions
by clicking them. The system has been widely used by Mizar users because
of its effectiveness and user-friendly design. However, because this system does
not have retrieval functions, users are frequently obliged to grep symbols in the
MML using text editors. Moreover, although the hyperlinks allow users to jump
to their definitions, it is still difficult to, inversely, enumerate the symbols that
include a particular symbol in their definitions.

MML Query [3,4] is the most flexible and sophisticated search system for the
MML. This system has its own query language, and users can input more detailed
information regarding search objects than is possible using grep. However, users
must learn and master the query language, thus this is a burden for beginners.

Conversely, in software development, most widely used programming lan-
guages have several types of API documentation generators, and almost all of
the widely used libraries have their own online API documentation systems.
Those API reference systems have common features, such as incremental search
and a list of symbols that is automatically created by API documentation gener-
ators during library updates. Many documentation generators, such as Doxygen3

and RDoc4, have contributed to the acceleration of software development.
We apply the software development approach to developing a documentation

generator that works on the MML in order to overcome the drawback of existing
search and browsing systems.

3 Application

Using the programming language Python,5 we developed a documentation gen-
erator6 that comprises the following three steps:

1. Parse the HTML-ized MML and collect symbols and their mutual relation-
ships.

2. Clean and arrange those data.
3. Output reference documents in HTML format. Each file corresponds to one

symbol.

These steps take only a few minutes in total.7

1 http://mizar.org/JFM.
2 http://www.ru.nl/foundations/research/projects/mathwiki/.
3 http://www.doxygen.org/.
4 https://github.com/rdoc/rdoc.
5 https://www.python.org/.
6 https://github.com/aabaa/mmlfrontend.
7 Windows 7, CPU: AMD A10-5800K 3.8 GHz (4-core), Memory: 16.0 GB.

http://mizar.org/JFM
http://www.ru.nl/foundations/research/projects/mathwiki/
http://www.doxygen.org/
https://github.com/rdoc/rdoc
https://www.python.org/
https://github.com/aabaa/mmlfrontend

Documentation Generator Focusing on Symbols 345

Fig. 1. Screenshot of the reference system.

The latest reference system produced by the generator is available at a web-
site.8 Figure 1 shows a screenshot of the system.

The reference system offers the following helpful features:

Symbol List: There are nearly 9,000 symbols (predicate, mode, structure, func-
tor, and attribute) in the MML, all of which are listed in the left pane of the
system. The type of each symbol can be distinguished by the icon next to the
symbol. Clicking a symbol in the list causes the corresponding page to be loaded
into the main frame in left pane.

Incremental Search: An incremental search function is located at the top of
the left pane. When several search words separated by blanks are input, the
system combines the symbol list into symbols that contain all of the indicated
words. As the system has an original search table, the function returns search
results immediately. Users can quickly look up symbols defined in the MML,
even without knowing the correct spelling.

Source Code: The symbol definition source code is imported from the HTML-
ized MML. Symbols in bold font are hyperlinked to their definitions. Internal
links pointing to their definitions in this reference system are in blue. External
links pointing to their definitions in the original HTML-ized MML are in red.

Referrer List: Although the HTML-ized MML enables users to jump from
symbol occurrences to their definitions by clicking them, it does not have a
function to enumerate symbols that are used in the definitions of particular
symbols. The new system organizes the list of referrers for each symbol, and
users can check them easily.

8 http://webmizar.cs.shinshu-u.ac.jp/mmlfe/current/.

http://webmizar.cs.shinshu-u.ac.jp/mmlfe/current/

346 K. Nakasho and Y. Shidama

4 Conclusion and Future Work

We utilized the API documentation technique from the field of software develop-
ment to develop a new documentation generator that works on the MML. This
system enables users to retrieve symbols quickly and intuitively using an incre-
mental search function. Furthermore, users can easily check the types of symbols
allowed to be used together by referrer lists. These functions have contributed
considerably to improving the efficiency of formal proof development, and the
system has gained a good reputation among the Mizar community. Additionally,
the approach of the system is not specific to Mizar and the MML, thus all formal
libraries would benefit from such a system. Therefore, the future versions of the
system should support other formal languages and libraries.

We mention three remaining issues regarding the system:

Reimplementation with the XML-ized MML: The current documentation
generator parses the HTML-ized MML instead of the XML-ized Mizar [9]. This is
because the former represents relationships between symbols and their definitions
as embedded hyperlinks, whereas it is difficult to collect these relationships from
the latter. However, the extra process required to generate the HTML-ized MML
takes considerable time. Therefore, we would like to change the system to work
with the XML-ized MML in the future.

Theorem Search: A theorem search system requires semantic analysis, and
machine learning would be a promising approach. Because this research is under-
way for automated reasoning [2,11], we would like to apply the technique to an
interactive search engine.

Tagged Comments: In software development, most documentation generators
collect tagged comments, such as authors, purposes, and usages, and reflect them
in API documents, whereas the current Mizar library does not have any tagged
comments. Although Mizar is a comparatively readable formal language, it is
sometimes difficult to discern a writer’s intention from a source code. Conse-
quently, such a function would work beneficially, if it were implemented. Fur-
thermore, there is no standard for tagged comments in formal libraries, such
a format should be developed in future work and then adopted by all formal
libraries.

We also suggest a possible application of the system:

Code Completion: Other major proof assistants have developed graphical
interfaces, such as the jEdit plugins for Coq and Isabelle [8,13,14]. Although
the Mizar system provides an Emacs plugin [10], some users hope that a newer
one will be offered on a modern integrated development environment (IDE).
The incremental function of the system would assist in implementation of code
completion for those IDE systems.

Acknowledgment. The authors wish to thank the members of the MathWiki Project
for their preceding work. Our research is deeply dependent on their product. We espe-
cially express our gratitude to Dr. Josef Urban, who is well known as a member of the

Documentation Generator Focusing on Symbols 347

MathWiki Project, for giving us some beneficial advice for the study. We would also
like to thank to Dr. Adam Naumowicz for helping us improve our paper.

References

1. Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: issues and solu-
tions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calcule-
mus/MKM 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg (2011)

2. Alama, J., Heskes, T., Kuhlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2014)

3. Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, Andrea,
Buchberger, Bruno, Davenport, James H. (eds.) MKM 2003. LNCS, vol. 2594, pp.
119–132. Springer, Heidelberg (2003)

4. Bancerek, G., Urban, J.: Integrated semantic browsing of the mizar mathematical
library for authoring mizar articles. In: Asperti, A., Bancerek, G., Trybulec, A.
(eds.) MKM 2004. LNCS, vol. 3119, pp. 44–57. Springer, Heidelberg (2004)

5. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reasoning 3(2), 153–245 (2010)

6. Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mechanized Math. Appl.
4(1), 3–24 (2005)

7. Naumowicz, A., Korni�lowicz, A.: A brief overview of Mizar. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
67–72. Springer, Heidelberg (2009)

8. Carst Tankink: PIDE for Asynchronous Interaction with Coq. UITP 2014: 73–83
9. Urban, J.: XML-izing mizar: making semantic processing and presentation of MML

easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.
Springer, Heidelberg (2006)

10. Urban, J.: MizarMode - an integrated proof assistance tool for the Mizar way of
formalizing mathematics. J. Appl. Logic 4(4), 414–427 (2006)

11. Urban, J.: Momm - fast interreduction and retrieval in large libraries of formalized
mathematics. Int. J. Artif. Intell. Tools 15(1), 109–130 (2006)

12. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: motivation,
considerations, and initial prototype. In: Autexier, S., Calmet, J., Delahaye, D.,
Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol.
6167, pp. 455–469. Springer, Heidelberg (2010)

13. Wenzel, M.: Isabelle/jEdit – a prover IDE within the PIDE framework. In:
Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge,
V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 468–471. Springer, Heidelberg (2012)

14. Wenzel, M.: PIDE as front-end technology for Coq. CoRR abs/1304.6626 (2013)

Tools for MML Environment Analysis

Adam Naumowicz(B)

Institute of Informatics, University of Bia�lystok, Bia�lystok, Poland
adamn@mizar.org

Abstract. In this paper we describe a collection of tools used to support
the management of the Mizar Mathematical Library (MML). The tools
handle the dependencies between the texts collected in MML based on
the information stored in every article’s environment declaration. The
application of these tools helps reduce redundant information in the
library and speed up its regeneration after revisions.

1 Introduction

Mizar is a proof assistant system accompanied by a large database of interre-
lated mathematical developments (articles) that contain formalizations of theo-
rems and their proofs [4,11]. The meaning of all notions used in a Mizar proof
script can be traced back to the few primitive notions of the set-theoretic axiom
system (TG), which forms the basis of the Mizar Mathematical Library (MML).
The information about all the facts a user wants to import from the available
database goes into an article’s environment part. Therefore, the actual semantics
of each article depends on the content of the imported ones.

The contents of the MML is available for experimentation as open source
documents [2]. The current Mizar licensing policy is that the proof checking
system is freely distributed in pre-compiled binary form for most major plat-
forms, but only the members of the Association of Mizar Users can actually
have access to the system’s source code repository if they want to develop their
own Mizar tools using the shared code base. That is why some functionality of
the system has been developed independently from that code base to allow wider
access. The task of analyzing the dependencies between MML articles indeed
does not require too much special Mizar functionality and can be accomplished
by means of popular open source tools [3]. In this paper we briefly describe a col-
lection of easily adaptable and self-documenting Perl scripts sharing a common
code that can be applied to perform several tasks connected with analyzing the
environment of Mizar articles. The tools should work with the current official
Mizar version (8.1.021). All the tools and accompanying scripts can be down-
loaded from the author’s web site: http://mizar.uwb.edu.pl/∼softadm/envtools.

1 ftp://mizar.uwb.edu.pl/pub/system/i386-linux/mizar-8.1.02 5.22.1191-i386-linux.
tar.

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 348–352, 2015.
DOI: 10.1007/978-3-319-20615-8 26

http://mizar.uwb.edu.pl/~softadm/envtools
http://www.ftp://mizar.uwb.edu.pl/pub/system/i386-linux/mizar-8.1.02_5.22.1191-i386-linux.tar
http://www.ftp://mizar.uwb.edu.pl/pub/system/i386-linux/mizar-8.1.02_5.22.1191-i386-linux.tar

Tools for MML Environment Analysis 349

2 The Toolbox

The environment of a typical Mizar article contains a series of directives
importing various sorts of notions from articles previously available in the
MML (or a local data base). More detailed information about each directive
can be found in the user’s manual [4]. Let us only recall that the directives
are vocabularies, notations, constructors, registrations, requirements,
definitions, equalities, expansions, theorems and schemes. Each directive
contains a list of (usually a couple dozen) article names whose data should be
imported to give a certain meaning to the newly developed formalization.

2.1 The clearenv.pl Script

A typical Mizar development usually draws information from many articles
available in the mathematical knowledge base, so it is a common practice that
authors simply try to merge the environment of the articles they want to use.
Although the Mizar verifier points out all repetitions that may be encountered,
but that is about all it offers as far as the optimization of the environment is
concerned. Therefore the first tool developed to help users and MML maintain-
ers generate relatively simple environments was an environment cleaning utility.
In this Perl-based toolset, the program is called clearenv.pl. Given an article,
the tool tries to remove one by one all imports in a round-robin manner as far
as the article verifies without error (using the -s command line option to stop
immediately on first error encountered), so it is necessary for the cleared arti-
cle to be free of any errors (any still missing gaps in the proof steps should be
commented out or marked with appropriate pragmas to suppress error report-
ing). This simple tool can therefore eliminate all unnecessary imported articles
from the environment, replacing the functionality of dedicated Mizar parser’s-
based tools like irrvoc and irrths, see [4]. The resulting article’s environment
is then simplified, easier to expand, but also in many cases makes the overall
verification time of the article significantly shorter. Please note that some of
the directives are connected with each other, so the order in which we try to
eliminate them matters. The script must obviously take this into account. For
example, notations depend on vocabularies and constructors. Moreover,
because of constructors’s recursive nature, it is possible that the needed con-
structor is already imported by another article’s constructors even if it does not
explicitely appear in the environment.

2.2 The sortenv.pl Script

The next script in this collection, sortenv.pl, helps to keep the article’s envi-
ronments in sync with the natural ordering of how the MML has been built from
the axiomatic notions. In every MML version, such a reference list is available in
the mml.lar file, which lists all the processable MML articles, starting from the
axiomatic tarski. Preserving the ordering is useful to avoid errors caused by the
overloading of popular symbols heavily used in the library. However, there might

350 A. Naumowicz

be cases of overly complicated environments, that the current state of the library
may not allow to apply this normalization. So, users are generally encouraged to
construct their environments in accordance with this ordering, if it can be done
without difficulty. It should be noted that for some environment directives the
order is irrelevant, e.g. vocabularies, or requirements [10], so there is little
sense in sorting them (they are left out in the script); for others it may be rel-
evant because of the concrete implementation limitations, e.g. registrations
of adjectives [9] and reductions [7] or equalities [8]; and for notations and
definitions the ordering is meaningful by design.

2.3 The lastenv.pl Script

The script lastenv.pl can be used to display the last article (according to an
order provided in a given list, e.g. mml.lar) that the article depends on. Simi-
larly to the above, the users can use the tool to sort out any overloading related
problems more easily. But another important usage is for the library develop-
ers to check whether some library refactoring (revision) involving environment
changes [5] does not disturb the ordering, e.g. we try to make an article precede
another one it depends on according to current environment. An example of such
a situation when the check is always needed are revisions over the division of
MML into its classical (not requiring structures) and abstract part (based on
some structural types, e.g. topology, geometry, algebra etc.). The tool can also
be helpful for automatic categorizing the MML knowledge [6].

2.4 The makeenv.pl Script

The makeenv.pl2 tool can be used to generate a GNU make rules out
of the dependence structure of Mizar articles. Another utility shell script,
makemake.sh, can then be applied to create a complete working Makefile
prepending to it a stub file Makefile0 containing a customized environment
and general rules. Once the Makefile is created, one can use it to process the
contents of the MML in the order which is not linear, but reflects the net of
MML dependencies. This allows parallelizing some routine tasks that are usually
done in a serial manner, such as a complete regeneration of the whole database
e.g. as a consequence of a thorough refactoring. Most time-consuming tasks of
Mizar processing are connected with Checker verification and this task has
been successfully parallelized [12]. The library generation is less time consuming,
but on the other hand it has to be performed repeatedly many times during a
library revision, so parallelizing this process can also be very useful. For instance,
the complete run of three Mizar environment utilities3: accom, exporter and

2 Should not be confused with the makeenv binary from the Mizar distribution [4] that
serves a slightly different purpose (checking whether the environment of a currently
verified document has changed since last accommodation).

3 To try it with the exemplary customized Makefile from the author’s website, one
should invoke the process like this: make iniprel; make -j all.

https://www.makeenv.com
https://www.Makefile.com

Tools for MML Environment Analysis 351

transfer needed to locally re-create the prel directory on a commodity Linux
machine with Intel(R) Core(TM)2 Quad CPU at 2.83 GHz takes about 29 min.
With 2 CPU cores, the runtime reduces to 15 min., and with 4 cores it needs
9 min. to complete the task. Obviously, this scaling stops when we reach the
maximal number of processes which can be simultaneously run because of the
dependencies based on the net of Mizar articles in the current MML. The
processes can also be slowed down by too many simultaneous I/O operations.
These factors are no longer an issue if we make the test on a system with a big
enough number of CPU cores available and a high-throughput storage. In such
an environment we can observe performance close to the theoretical ideal, where
each processing operation can be done as soon as its dependencies have been
fulfilled. So, we can also experimentally evaluate the best runtime that can be
achieved in practice and show what number of CPU cores are needed for it. An
experiment on a cluster machine running single image Kerrighed SMP kernel on
16 nodes with double Intel(R) E5-2650v2 CPU at 2.60 GHz (16 physical cores
each, which accounts to 256 virtual cores) allowed to check that the number of
Mizar processes did not exceed 42 (14.699 on average) and in consequence the
runtime was only reduced to about 5 min. But let us note that during MML
revisions, a complete rebuild from scratch is rarely required. Much more often
the refactoring is applied only to a part of the net of articles, so the parallelized
library regeneration in such cases still can be close to interactive.

3 Conclusions

We have presented examples of Mizar tools implemented in the Perl scripting
language for better portability, flexibility and adaptability. Their functionality
is useful for end users as well as maintainers of the centralized Mizar Mathe-
matical Library. Such tools can be further developed to support more involved
tasks related to the dependency of formalized documents, for example to the
exploration and reverse mathematics on top of MML [1] or in projects like the
Wiki for Mizar [13] where interactive regeneration of some parts of the library
is among the basic requirements.

References

1. Alama, J.: mizar-items: exploring fine-grained dependencies in the Mizar mathemat-
ical library. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM
2011 and Calculemus 2011. LNCS, vol. 6824, pp. 276–277. Springer, Heidelberg
(2011). http://dx.doi.org/10.1007/978-3-642-22673-1 19

2. Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.:
Licensing the Mizar mathematical library. In: Davenport, J.H., Farmer, W.M.,
Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp.
149–163. Springer, Heidelberg (2011). http://dl.acm.org/citation.cfm?id=2032713.
2032726

http://dx.doi.org/10.1007/978-3-642-22673-1_19
http://dl.acm.org/citation.cfm?id=2032713.2032726
http://dl.acm.org/citation.cfm?id=2032713.2032726

352 A. Naumowicz

3. Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics: applica-
tions and extraction for Coq and Mizar. In: Campbell, J.A., Jeuring, J., Carette,
J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol.
7362, pp. 1–16. Springer, Heidelberg (2012)

4. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reasoning 3(2), 153–245 (2010). Special Issue: User Tutorials I

5. Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathe-
matical repositories. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 235–249. Springer,
Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-73086-6 20

6. Grabowski, A., Schwarzweller, C.: Towards automatically categorizing mathemat-
ical knowledge. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings
of the Federated Conference on Computer Science and Information Systems - Fed-
CSIS 2012, Wroclaw, Poland, 9–12 September 2012, pp. 63–68 (2012)

7. Korni�lowicz, A.: On rewriting rules in Mizar. J. Automated Reasoning 50(2), 203–
210 (2013). http://dx.doi.org/10.1007/s10817-012-9261-6

8. Korni�lowicz, A.: Equalities in Mizar. In: Gomolińska, A., Grabowski, A.,
Hryniewicka, M., Kacprzyk, M., Schmeidel, E. (eds.) Trends in Contemporary
Computer Science, Podlasie 2014, pp. 59–69 (2014)

9. Naumowicz, A.: Enhanced processing of adjectives in Mizar. In: Grabowski, A.,
Naumowicz, A. (eds.) Computer Reconstruction of the Body of Mathematics,
Studies in Logic, Grammar and Rhetoric, vol. 18(31), pp. 89–101. University of
Bia�lystok (2009)

10. Naumowicz, A., Byliński, C.: Improving Mizar texts with Properties and Require-
ments. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol.
3119, pp. 290–301. Springer, Heidelberg (2004)

11. Naumowicz, A., Korni�lowicz, A.: A brief overview of Mizar. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 67–
72. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-03359-9 5

12. Urban, J.: Parallelizing Mizar. CoRR abs/1206.0141 (2012)
13. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: motivation,

considerations, and initial prototype. In: Autexier, S., Calmet, J., Delahaye, D.,
Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol.
6167, pp. 455–469. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-540-73086-6_20
http://dx.doi.org/10.1007/s10817-012-9261-6
http://dx.doi.org/10.1007/978-3-642-03359-9_5

Enabling Symbolic and Numerical Computations
in HOL Light

Ons Seddiki(B), Cvetan Dunchev, Sanaz Khan-Afshar, and Sofiène Tahar

Department of Electrical and Computer Engineering, Concordia University,
1455 de Maisonneuve W., Montreal, QC H3G 1M8, Canada

{o sed,dunchev,s khanaf,tahar}@ece.concordia.ca

Abstract. Verifying mathematical statements by interactive theorem
provers often requires algebraic computation. Since many Mechanized
Mathematical Systems (MMS) support the OpenMath standard, we pro-
pose to link the HOL Light theorem prover to other MMSs via Open-
Math. In particular, we present an interface between HOL Light and
Mathematica enabling HOL Light users to evaluate arithmetic, tran-
scendental and linear algebraic expressions, using Mathematica.

1 Introduction

Theorem proving is a technique which proves or checks the validity of logical
statements. It is based on sequential applications of sound inference rules to a
given axiomatic system. The statements proved by the theorem prover, accept-
ing that its core is sound, are absolutely accurate in contrast to paper-and-pencil
methods or computer simulations. Often in the process of interactive theorem
proving one needs to perform a symbolic computation which might be a tedious
task requiring hundreds of inference rules. For example, computing the value
of a polynomial over R needs many inference rules and auxiliary theorems over
the theory of real numbers. Furthermore, computing the roots of the same poly-
nomial by the theorem prover is a very hard task. To avoid such limitations,
one may make use of a Computer Algebra System (CAS) which has the needed
functionality to perform the computation. The result of the CAS is transformed
to an axiom which is added to the list of axioms and used by the theorem prover.

Many researchers have addressed the issue of combining symbolic/numeric
computation with logical reasoning. One solution is building a CAS inside a
theorem prover (e.g., [7]) or building a theorem prover inside a CAS (e.g., [2,10]).
The second approach implements a bridge between theorem provers and CAS
(e.g., PVS and Maple [1], Isabelle and Maple [3], and HOL and Maple [6]). This
connection involves a master-slave relation in which the theorem prover is usually
considered as a master and the CAS as a slave, with the assumption that there
is no trust in the CAS. The third approach (e.g. Mathscheme1) is to build an
integrated framework that provides the functionalities of both CAS and theorem
proving integrating them into a single tool without sacrificing the soundness
1 http://www.cas.mcmaster.ca/research/mathscheme/.

c© Springer International Publishing Switzerland 2015
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, pp. 353–358, 2015.
DOI: 10.1007/978-3-319-20615-8 27

http://www.cas.mcmaster.ca/research/mathscheme/

354 O. Seddiki et al.

and without using an intermediate language. Finally, the fourth approach is
to define a framework using a standard for mathematical information (such as
MathML2 and OpenMath3) that can be exchanged between different Mechanized
Mathematical Systems (MMS). For instance, in [4] the authors used OpenMath
to develop a Java client-server applet between Maple as a client and the Lego
theorem prover as a server.

In this paper, we propose a tool linking HOL Light4 to Mathematica5 through
the OpenMath standard. In contrast to [4] where the authors present a Java
applet which takes a Maple expression as input and returns a Lego expression
through the translation to OpenMath, our work is a combination between two
external tools where OpenMath is used as a middleware. Another difference
between our approach and [4] is that we do not rely on the communication layer
established between the client and the server, but on the direct translation of
a HOL Light statement to a Mathematica term and vice-versa. Therefore, the
performance of the computation is increased.

The proposed tool is part of a general framework providing a heterogeneous
problem-solving environment, which connects HOL Light to any MMS. Figure 1
illustrates the general approach of this framework which encompasses a variety of
MMSs that support OpenMath such as the theorem provers LEGO6 and COQ7,
the CASs Maple8, Gap9 and Mathematica, or the numerical solver Mupad10

with the intention of solving and reasoning over larger sets of problems.

Fig. 1. Connecting Different MMS to HOL Light using OpenMath

2 http://www.w3.org/Math/.
3 http://www.openmath.org/overview/index.html.
4 http://www.cl.cam.ac.uk/∼jrh13/hol-light/.
5 http://www.wolfram.com/.
6 http://www.dcs.ed.ac.uk/home/lego/.
7 https://coq.inria.fr/.
8 http://www.maplesoft.com/products/maple/.
9 http://www.gap-system.org/.

10 http://de.mathworks.com/discovery/mupad.html.

http://www.w3.org/Math/
http://www.openmath.org/overview/index.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://www.wolfram.com/
http://www.dcs.ed.ac.uk/home/lego/
https://coq.inria.fr/
http://www.maplesoft.com/products/maple/
http://www.gap-system.org/
http://de.mathworks.com/discovery/mupad.html

Enabling Symbolic and Numerical Computations in HOL Light 355

2 Tool Description

The proposed linkage tool starts by translating the HOL Light statement into
an OpenMath object. Then, a Java phrasebook [5], which is a collection of
encoding/decoding methods between OpenMath and Mathematica, converts the
OpenMath object into an expression, that is passed to Mathematica. The com-
putation of Mathematica is translated back to an OpenMath object using again
the Java phrasebook. Finally, the latter is parsed by our tool and converted to
a HOL Light axiom. We developed a translator from HOL Light to OpenMath
and visa-versa, which enables HOL Light users to access Mathematica’s kernel
using the Phrasebook OpenMath-Mathematica proposed by Caprotti [5]. After
the computation, the returned result from Mathematica is represented as an
axiom in HOL Light tagged by Mathematica in the form Mathematica � Ψ ,
where Ψ is the expression performed by Mathematica. Moreover, each theorem
derived from this axiom inherits the tag Mathematica. This procedure helps to
easily trace the axioms created from the interaction with an external tool. After
the computation, the returned result can also be represented in another form as
a sub-goal and added to the assumption of a main goal. One needs to prove it
in order to pursue further proofs. Figure 2 depicts the structure of the tool con-
necting HOL Light to Mathematica, which is comprised of the following three
modules:

Fig. 2. Tool structure

The Parser & Splitter transforms the HOL Light statement into a corre-
sponding OpenMath object as understood by means of the Content Dictionaries
(CDs)11. First, it parses the HOL Light expression according to a grammar [9]
which converts a HOL Light expression to the corresponding OpenMath object.
Then, it decomposes the HOL Light input statement into a list of operations and
operands. Thereafter, it maps each element of the list with the corresponding
OpenMath symbol as understood by means of the related CDs. Finally, it stores
the description of the OpenMath object in an XML file.
11 http://www.openmath.org/cd/.

http://www.openmath.org/cd/

356 O. Seddiki et al.

The OpenMath-Mathematica Phrasebook12 defines a collection of Java classes,
which provide two sets of methods. The first set represents the encoding and
decoding methods between OpenMath and Mathematica based on the declara-
tion of the corresponding CDs. The second one describes the built-in Mathe-
matica call function with the tag already specified by the user. The phrasebook
translates the XML file that describes the OpenMath input object into a Math-
ematica statement, which is then passed to the Mathematica kernel through a
Mathematica service. (See footnote 12) This service allows users to remotely call
the Mathematica kernel as a computational engine using MathLink.13 This con-
nection is established via the TCP/IP protocol. Once the result is computed, the
Mathematica output statement is translated back to OpenMath and an XML
file is generated.

The Parser & Collector translates the OpenMath object which encodes the
output of Mathematica into the corresponding HOL Light symbols in the rel-
evant CDs. Then, it collects all the HOL Light symbols and returns an axiom
tagged by the name of the CAS (i.e., Mathematica). In other cases, we can gen-
erate the returned result as a sub-goal and prove it in HOL Light. This provides
some kind of a determinism to the proof process, because when one knows the
result of the computation, finding the proof is more straightforward rather than
searching for the result during the whole process of proof derivation.

The above process is sound in the sense that it preserves the types during the
parsing and passing of the data. The HOL Light statements are by definition well
typed. For example, the HOL Light expression “x pow 3 + (&2 * x) pow 2 +
x” represents the polynomial “x3+(2x)2+x” over the field of the reals. Based on
this fact, the Parser & Splitter module converts the HOL Light expression into
the corresponding OpenMath object preserving the types. The Java Phrasebook
also preserves the types. Finally, the OpenMath object obtained from Mathe-
matica is converted to a HOL Light axiom and all types are preserved because
we know in advance the types of all supported functions.

3 Applications

We have used our tool on several examples like solving or evaluating non-closed
form formulas such as arithmetic or polynomial manipulations or matrix opera-
tions, simplifying integrals, derivatives and transcendental functions, computing
eigenvectors, checking inequalities, finding roots and factorization of complex
polynomials. In the following, we give two simple examples. The input is a string
which represents an expression given to HOL Light. The expression consists of
two parts. The first part is an ordinary HOL Light expression, whereas the second
part represents the built-in Mathematica symbol such as “Factor”, “Simplify”,
etc. The output is an axiom in HOL Light. For example, using the built-in sym-
bol “FullSimplify” we show the computation of the integral

∫ 10

1
(x + 1) dx:

12 http://mathdox.org/new-web/index.html.
13 http://reference.wolfram.com/mathematica/tutorial/IntroductionToMathLink.

html.

http://mathdox.org/new-web/index.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToMathLink.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToMathLink.html

Enabling Symbolic and Numerical Computations in HOL Light 357

Input:
#call mathematica “real integral (real interval [&1,&10]) (\x.x + &1)”
“FullSimplify”;;
The computed result, 117/2, is returned to HOL Light as an axiom:
Output:
val it: thm = Mathematica � real integral (real interval [&1,&10])
(\x.x + &1) = &117/&2
The next example shows the factorization of the polynomial x3 + 2.x2 + x:
Input:
#call mathematica “x pow 3 + &2 ∗ (x pow 2) + x” “Factor”;;
The expected result, x.(x + 1)2, is returned as a HOL Light axiom:
Output:
val it: thm = Mathematica � x pow 3+&2∗(x pow 2) +x = x∗(&1+x) pow 2

We have conducted several more comprehensive experiments, which can be
found in [9]. Moreover, our tool was successfully applied in the formal verifica-
tion of optical systems [8], where we send from HOL Light the expression of a
boundary condition of an optical interface described with electromagnetic fields
to Mathematicia in order to be simplified. Details of these experiments can be
found in [9]. These examples emphasize not only the benefits of computing such
Mathematica expressions within HOL Light but also the efficient performance of
our tool in terms of execution time. Our tool, called HolMatica, is implemented
in a way that we can easily adapt it to any other CAS or theorem provers that
support OpenMath. The HolMatica tool and running examples can be down-
loaded from http://hvg.ece.concordia.ca/research/tools/holmatica/

References

1. Adams, A., Dunstan, M.N., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S.:
Computer algebra meets automated theorem proving: integrating maple and PVS.
In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 27–42.
Springer, Heidelberg (2001)

2. Bauer, A., et al.: Analytica - an experiment in combining theorem proving and
symbolic computation. JAR 21(3), 295–325 (1998)

3. Ballarin, C., et al.: Theorems and Algorithms: An Interface between Isabelle and
Maple. In: ISSAC, pp. 150–157. ACM (1995)

4. Caprotti, O., Cohen, A.M.: Integrating computational and deduction systems using
OpenMath. ENTCS 23(3), 469–480 (1999)

5. Caprotti, O., Cohen, A.M., Riem, M.: Java phrasebooks for computer algebra and
automated deduction. SIGSAM Bulltin 34, 33–37 (2000)

6. Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and maple. JAR
21, 279–294 (1998)

7. Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive
theorem prover. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 94–105. Springer,
Heidelberg (2007)

8. Afshar, S.K., et al.: formal analysis of optical systems. MCS 8(1), 39–70 (2014)

http://hvg.ece.concordia.ca/research/tools/holmatica/

358 O. Seddiki et al.

9. Seddiki, O.: Linking HOL Light to Mathematica using OpenMath. Master’s thesis,
Concordia University, Montreal, QC, Canada, October 2014

10. Windsteiger, W.: Theorema 2.0: a graphical user interface for a mathematical
assistant system. CEUR Workshop Proceedings, vol. 118, pp. 73–81 (2012)

Erratum to: Towards Formal Fault Tree
Analysis Using Theorem Proving

Waqar Ahmad(&) and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{waqar.ahmad,osman.hasan}@seecs.nust.edu.pk

Erratum to:
Chapter “Towards Formal Fault Tree Analysis Using
Theorem Proving” in: M. Kerber et al. (Eds.):
Intelligent Computer Mathematics, LNAI,
DOI: 10.1007/978-3-319-20615-8_3

The original version of this chapter contained an error. The name of the author
Waqar Ahmad was spelled incorrectly as Waqar Ahmed in the original publication.
The original chapter was corrected.

The updated original online version for this chapter can be found at
DOI: 10.1007/978-3-319-20615-8_3

© Springer International Publishing Switzerland 2017
M. Kerber et al. (Eds.): CICM 2015, LNAI 9150, p. E1, 2015.
DOI: 10.1007/978-3-319-20615-8_28

http://dx.doi.org/10.1007/978-3-319-20615-8_3
http://dx.doi.org/10.1007/978-3-319-20615-8_3

Author Index

Ahmad, Waqar 39
Aspinall, David 87
Autexier, Serge 155

Bancerek, Grzegorz 261
Benzmüller, Christoph 325
Blanchette, Jasmin Christian 3
Bundy, Alan 227
Byliński, Czesław 261

Claessen, Koen 333
Cohl, Howard S. 280
Cruz-Filipe, Luís 55

Danoff, Alex A. 280
Dunchev, Cvetan 288, 353

Fleuriot, Jacques 87

Grabowski, Adam 261
Grov, Gudmund 227
Guidi, Ferruccio 296

Hasan, Osman 39, 316
Haslbeck, Maximilian 3
Horozal, Fulya 171
Hutter, Dieter 155

Iancu, Mihnea 137, 187

Johansson, Moa 333

Kaliszyk, Cezary 288
Khan-Afshar, Sanaz 288, 353
Kohlhase, Michael 137, 187
Korniłowicz, Artur 261
Kotelnikov, Evgenii 71
Kovács, Laura 71

Matichuk, Daniel 3
Matuszewski, Roman 261
McClain, Marjorie A. 280
Miller, Bruce R. 203

Mohammed, Azeem S. 280
Moore, Ross 338

Nakasho, Kazuhisa 343
Naumowicz, Adam 261, 348
Nipkow, Tobias 3

Obua, Steven 87
Orakwue, Awelemdy 18

Pąk, Karol 211, 261
Pease, Alison 227

Rabe, Florian 102, 171
Raggi, Daniel 227
Rosén, Dan 333

Sacerdoti Coen, Claudio 296
Saunders, Bonita V. 280
Schneider-Kamp, Peter 55
Schubotz, Moritz 280
Scott, Phil 87
Seddiki, Ons 353
Shidama, Yasunari 343
Siddique, Umair 288, 316
Smallbone, Nicholas 333
Steen, Alexander 325

Tahar, Sofiène 288, 316, 353
Tarau, Paul 118

Urban, Josef 261, 288

Voronkov, Andrei 71

Wisniewski, Max 325

Youssef, Abdou 243

Zanibbi, Richard 18
Zhang, Qun 243
Zou, Cherry Y. 280

	Preface
	Organization
	Abstracts of Invited Talks
	Formalizing Mathematics with the LeanTheorem Prover
	Mining the Archive of Formal Proofs
	Math Search for the Masses: Multimodal SearchInterfaces and Appearance-Based Retrieval

	Contents
	Invited Talks
	Mining the Archive of Formal Proofs
	1 Introduction
	2 Sizes
	2.1 Definitions vs. Lemmas vs. Proofs
	2.2 Proof Depth

	3 The Imports Graph
	3.1 Weakly Connected Components
	3.2 The Most Productive Contributors
	3.3 Library Theories

	4 Lemma Statement Size vs. Proof Size
	4.1 Previous Work
	4.2 Analysis Against the AFP

	5 Lemma Statement Complexity
	6 Proof Automation with Sledgehammer
	7 Conclusion
	References

	Math Search for the Masses: Multimodal Search Interfaces and Appearance-Based Retrieval
	1 Introduction: Why Math Search Pertains to the Masses
	2 Math Encodings: Symbol Layout Trees and Operator Trees
	3 : A Multimodal Math Search Interface
	3.1 Human Studies: Formula Entry Operations and Recognition Visualization
	3.2 System Architecture and Recognition Modules
	3.3 Symbol Entry and Correction
	3.4 Parsing Symbol Layout and Generating LaTeX

	4 Appearance-Based Math Retrieval
	4.1 Query-by-Expression for Symbolic Encodings (LaTeX, MathML)
	4.2 The Tangent Math Search Engine
	4.3 Image-Based Formula Retrieval

	5 Conclusion: Text + Diagram Search for the Masses
	References

	Calculemus
	Towards Formal Fault Tree Analysis Using Theorem Proving
	1 Introduction
	2 Probability Theory in HOL
	3 Formalization of Fault Tree Gates
	3.1 Formal Definitions of Fault Tree Gates
	3.2 Formal Verification of Failure Probability of Fault Tree Gates

	4 Formalization of Probabilistic Inclusion-Exclusion Principle
	5 Application: Satellite's Solar Array
	6 Conclusion
	References

	Optimizing a Certified Proof Checker for a Large-Scale Computer-Generated Proof
	1 Introduction
	1.1 Related Work

	2 Background
	3 Reducing Runtime of the Pruning Step
	3.1 Optimizing the Removal Step
	3.2 Optimizing the Presence Check
	3.3 Practical Impact on Runtime

	4 Reducing Memory Footprint by Tuning the Extraction
	4.1 Practical Impact on Memory Usage

	5 Optimizing Data Structures
	5.1 Using Binary Search Trees to Decide Membership
	5.2 Using Binary Search Trees for Subsumption Checking
	5.3 Practical Impact on Runtime

	6 Gödelizing Comparators to Reduce Memory Footprint
	7 Conclusion
	References

	A First Class Boolean Sort in First-Order Theorem Proving and TPTP
	1 Introduction
	2 First-Order Logic with Boolean Sort
	2.1 Syntax
	2.2 Semantics

	3 Translation of FOOL to FOL
	4 Superposition for FOOL
	5 TPTP Support for FOOL
	6 Related Work
	7 Conclusion
	References

	Type Inference for ZFH
	1 Introduction
	1.1 Why ZFH?
	1.2 Set-Theoretic vs. Higher-Order Function Application

	2 The Type Inference Algorithm
	2.1 Types and Terms
	2.2 Type Equations
	2.3 A First Attempt
	2.4 The Algorithm
	2.5 Termination
	2.6 Soundness and Completeness
	2.7 Examples

	3 Related Work
	4 Conclusion
	References

	Generic Literals
	1 Introduction and Related Work
	2 Preliminaries: The MMT Language
	3 Literals as Semantic Values
	3.1 Models of MMT Theories
	3.2 Internalizing Models
	3.3 Literals Through Internalized Models

	4 Literals as Computational Values
	4.1 Models as Implementations
	4.2 Types as Partial Equivalence Relations

	5 Implementing Literals in the MMT System
	5.1 Internalizing a Computational Semantics
	5.2 Lexing Rules
	5.3 Inversion Rules

	6 Conclusion and Further Related Work
	References

	Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices
	1 Introduction
	2 A Compressed de Bruijn Representation of Lambda Terms
	2.1 De Bruijn Indices
	2.2 Going One Step Further: Compressing the Blocks of Lambdas
	2.3 Converting Between Representations
	2.4 Open and Closed Terms

	3 Catalan Approximations of Lambda Terms
	3.1 Type Inference with Logic Variables
	3.2 Generating Closed Well-Typed Terms of a Given Size
	3.3 Size-Proportionate Encodings
	3.4 The Language of Balanced Parentheses
	3.5 A Bijection from the Language of Balanced Parenthesis Lists to N
	3.6 Ranking and Unranking Simple Types
	3.7 Catalan Skeletons of Compressed de Bruijn Terms
	3.8 The Generalized Cantor k-tupling Bijection
	3.9 The Nn N Bijection
	3.10 The NNn Bijection

	4 Ranking/Unranking of Compressed de Bruijn Terms
	4.1 Generation of Lambda Terms via Unranking

	5 Related Work
	6 Conclusions
	References

	Digital Mathematics Libraries
	A Flexiformal Model of Knowledge Dissemination and Aggregation in Mathematics
	1 Introduction
	2 Common Ground in Mathematical Documents
	2.1 The Structure of Informal Mathematical Documents
	2.2 Common Ground/Recapitulation in Mathematical Research
	2.3 Secondary Literature: Education/Survey
	2.4 Common Ground in Formal Mathematics

	3 Publication and Dissemination in Theory Graphs
	3.1 Realms
	3.2 Realms as a Model for Dissemination and Aggregation
	3.3 Special Case: Plain Recaps
	3.4 Special Case: Equivalence Recap
	3.5 Special Case: Specialization Recap
	3.6 Postulated Recap/Adoption
	3.7 Multiple Recaps

	4 Conclusion and Future Work
	References

	Mathematical Knowledge Management
	Structure Formation in Large Theories
	1 Introduction
	2 Development Graphs for Structure Formation
	3 Refactoring Rules
	4 Refactoring Process
	5 Evaluation
	6 Related Work and Conclusion
	References

	Formal Logic Definitions for Interchange Languages
	1 Introduction
	2 The Logical Framework
	3 Representing Logics
	4 Translating and Combining Logics
	5 Practical Aspects
	6 Conclusion
	References

	Math Literate Knowledge Management via Induced Material
	1 Introduction
	2 Induced Statements in Theory Graphs
	3 Flattening Theory Graphs
	4 Inducing Realm Faces/Flattening Realms
	4.1 Generating Realm Faces as Induced Theories
	4.2 Curating Realms Through Alignments
	4.3 Opening a Pillar

	5 Searching the Knowledge Space of the LATIN Logic Atlas
	6 Future Work: Realm-Supported Workflows in the Open Archive of Formalizations
	7 Conclusion and Future Work
	References

	Strategies for Parallel Markup
	1 Introduction
	2 Motivation
	3 Main Strategies
	4 Outlook
	References

	Readable Formalization of Euler's Partition Theorem in Mizar
	1 Introduction
	2 Informal Proofs of Euler's Partition Theorem
	3 Formal Introduction of Informal Notations
	3.1 The Formal Definition of a Partition
	3.2 The Flexary Plus
	3.3 Regrouping the Values of Sequence

	4 The Theorem Formalization
	5 Conclusion
	References

	Automating Change of Representation for Proofs in Discrete Mathematics
	1 Introduction
	2 Background
	3 Overall Vision
	3.1 Numbers as Bags of Primes
	3.2 Numbers as Sets
	3.3 Interconnectedness

	4 On Transformations and the Transfer Tool
	4.1 Transforming Sentences with the Transfer Tool

	5 Mechanising Transformations in Isabelle's HOL
	5.1 Numbers as Bags of Primes
	5.2 Numbers as Sets

	6 Automated Change of Representation
	6.1 Transformations as Sets of Transfer Rules
	6.2 Reversing Transformations
	6.3 Search Between Representations
	6.4 Overview

	7 Related Work
	7.1 Institutions and HETS
	7.2 Little Theories and IMPS
	7.3 Uses of the Transfer Package

	8 Evaluation, Future Work and Conclusion
	References

	Performance Evaluation and Optimization of Math-Similarity Search
	1 Introduction
	2 Background
	3 Math-Similarity Search (MSS)
	3.1 Math Similarity Factors
	3.2 Math Similarity Metric

	4 Performance Evaluation and Optimization
	4.1 Evaluation Methodology
	4.2 Performance Metric
	4.3 Optimization Concerns and Motivation
	4.4 The Optimization Process

	5 Optimization Results
	6 Summary and Conclusions
	References

	Projects and Surveys
	Mizar: State-of-the-Art and Beyond
	1 Introduction
	2 Language
	3 Software
	3.1 XML Layer
	3.2 MPTP and MizAR
	3.3 MML Query
	3.4 Formalized Mathematics Preview

	4 Mizar Mathematical Library
	4.1 Notable Formalizations
	4.2 MML Structure
	4.3 Formalized Mathematics

	5 Current Developments
	5.1 Stronger Checker
	5.2 Improving Language Readability
	5.3 Library Reorganization
	5.4 More Semantic Representations

	6 Future Mizar
	References

	Growing the Digital Repository of Mathematical Formulae with Generic LaTeX Sources
	1 Introduction
	2 Seeding with Generic LaTeX Sources
	3 KLS Seeding Project
	4 Future Outlook
	References

	Formalizing Physics: Automation, Presentation and Foundation Issues
	1 Introduction: Formalization, Automation and Physics
	2 Formal Optics
	3 HOLyHammer and Formal Optics
	3.1 Deployment
	3.2 Experiments with Complete Automation
	3.3 Linking to Informal Physics Explanations

	4 Some Issues and Considerations in Formal Physics
	References

	A Survey on Retrieval of Mathematical Knowledge
	1 Purpose Driven Taxonomy of Retrieval Problems
	1.1 Problem 1: Document Retrieval
	1.2 Problem 2: Formula Retrieval
	1.3 Problem 3: Document Synthesis

	2 Encoding Based Taxonomy
	3 Taxonomy of Techniques for Mathematical Retrieval
	3.1 Modular Enhancement Techniques
	3.2 Main Techniques

	4 Ranking
	5 Evaluation of Math Information Retrieval
	6 Availability of Math Retrieval Systems
	7 Conclusions
	References

	Towards the Formalization of Fractional Calculus in Higher-Order Logic
	1 Motivation and Background
	2 Mathematical Framework of Fractional Calculus
	3 Formal Analysis Framework
	4 Current Status and Future Milestones
	5 Conclusion
	References

	LeoPARD --- A Generic Platform for the Implementation of Higher-Order Reasoners
	1 Introduction
	2 Term Data Structure
	3 Multi-agent Blackboard Architecture
	4 Other Components
	5 Related Work
	References

	Systems and Data
	TIP: Tons of Inductive Problems
	1 Introduction
	2 The Benchmark Format
	2.1 Example

	3 Sample Benchmarks
	3.1 IsaPlanner's Rippling and Case-Analysis Benchmarks
	3.2 Productive Use of Failure Benchmarks
	3.3 New TIP Benchmarks

	4 Contribute to TIP
	5 Conclusion and Further Work
	References

	Semantic Enrichment of Mathematics via `tooltips'
	1 Introduction
	2 Adding Semantics to Math Environments
	3 Possible Future Developments
	References

	Documentation Generator Focusing on Symbols for the HTML-ized Mizar Library
	1 Motivation
	2 Survey and Design Decision
	3 Application
	4 Conclusion and Future Work
	References

	Tools for MML Environment Analysis
	1 Introduction
	2 The Toolbox
	2.1 The clearenv.pl Script
	2.2 The sortenv.pl Script
	2.3 The lastenv.pl Script
	2.4 The makeenv.pl Script

	3 Conclusions
	References

	Enabling Symbolic and Numerical Computations in HOL Light
	1 Introduction
	2 Tool Description
	3 Applications
	References

	Erratum to: Towards Formal Fault Tree Analysis Using Theorem Proving
	Erratum to: Chapter “Towards Formal Fault Tree Analysis Using Theorem Proving” in: M. Kerber et al. (Eds.): Intelligent Computer Mathematics, LNAI, DOI: 10.1007/978-3-319-20615-8_3

	Author Index

