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Preface

Applying formal methods may involve the usage of different formalisms and different
analysis techniques to validate a system, either because individual components are most
amenable to one formalism or technique, because one is interested in different prop-
erties of the system, or simply to cope with the sheer complexity of the system. The
iFM conference series seeks to further research into hybrid approaches to formal
modeling and analysis; i.e., the combination of (formal and semi-formal) methods for
system development, regarding both modeling and analysis. The conference covers all
aspects from language design through verification and analysis techniques to tools and
their integration into software engineering practice.

These proceedings document the outcome of the 12th International Conference on
Integrated Formal Methods, iFM 2016, on recent developments toward this goal. The
conference was held in Reykjavik, Iceland, during June 1–5, 2016, hosted by Reyk-
javik University. Previous editions of iFM were held in York, UK (1999), Schloss
Dagstuhl, Germany (2000), Turku, Finland (2002), Kent, UK (2004), Eindhoven, The
Netherlands (2005), Oxford, UK (2007), Düsseldorf, Germany (2009), Nancy, France
(2010), Pisa, Italy (2012), Turku, Finland (2013), and Bertinoro, Italy (2014).

The conference received 99 submissions of authors from 34 countries. Papers were
submitted in four categories: research papers, regular tool papers, short tool papers, and
case study papers. All papers were reviewed by at least three members of the Program
Committee. After careful deliberations, the Program Committee selected 30 papers for
presentation.

In addition to these papers, this volume contains contributions of three invited
keynote speakers: Reiner Hähnle, TU Darmstadt, Germany; Laura Kovács, Chalmers
University of Technology, Sweden, and TU Wien, Austria; and Marsha Chechik,
University of Toronto, Canada:

– Martin Hentschel, Reiner Hähnle, and Richard Bubel: “Can Formal Methods
Improve the Efficiency of Code Reviews?”

– Laura Kovács: “Symbolic Computation and Automated Reasoning for Program
Analysis”

– Marsha Chechik, Michalis Famelis, and Rick Salay: “Perspectives of Model
Transformation Reuse”

Invited presentations are always the highlights of a conference; these contributions
are therefore gratefully acknowledged.

iFM was accompanied by the following satellite events, managed by the workshop
chairs, Marcel Kyas, University of Reykjavik, Iceland, and Wojciech Mostowski,
Halmstad University, Sweden:

– The 6th International Symposium on Unifying Theories of Programming (UTP
2016)

– Workshop on Pre- and Post-Deployment Verification Techniques (PrePost)



– Workshop on Formal Methods for and on the Cloud (iFMCloud 2016)
– Workshop on Verification and Validation of Cyber-Physical Systems (V2CPS)
– PhD Symposium at iFM 2016 on Formal Methods: Algorithms, Tools and Appli-

cations (PhD-iFM 2016)

The conference would not have been possible without the enthusiasm and dedica-
tion of the iFM general chair, Marjan Sirjani, and the support of the School of Com-
puter Science at Reykjavik University, Iceland. For the work of the Program
Committee and the compilation of the proceedings, Andrei Voronkov’s EasyChair
system was employed; it freed us from many technical matters and allowed us to focus
on the program, for which we are grateful. Conferences like iFM rely on the will-
ingness of experts to serve on the Program Committee; their professionalism and their
helpfulness were exemplary. Finally, we would like to thank all the authors for their
submissions, their willingness to continue improving their papers, and their
presentations!

March 2016 Erika Ábrahám
Marieke Huisman
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Can Formal Methods Improve the Efficiency
of Code Reviews?

Martin Hentschel, Reiner Hähnle(B), and Richard Bubel

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{hentschel,haehnle,bubel}@cs.tu-darmstadt.de

Abstract. Code reviews are a provenly effective technique to find
defects in source code as well as to increase its quality. Industrial software
production often relies on code reviews as a standard QA mechanism.
Surprisingly, though, tool support for reviewing activities is rare. Exist-
ing systems help to keep track of the discussion during the review, but do
not support the reviewing activity directly. In this paper we argue that
such support can be provided by formal analysis tools. Specifically, we
use symbolic execution to improve the program understanding subtask
during a code review. Tool support is realized by an Eclipse extension
called Symbolic Execution Debugger. It allows one to explore visually a
symbolic execution tree for the program under inspection. For evaluation
we carefully designed a controlled experiment. We provide statistical evi-
dence that with the help of symbolic execution defects are identified in
a more effective manner than with a merely code-based view. Our work
suggests that there is huge potential for formal methods not only in the
production of safety-critical systems, but for any kind of software and as
part of a standard development process.

Keywords: Code review · Symbolic execution · Empirical evaluation

1 Introduction

Writing and reading source code is the daily business of software developers.
Whenever the behavior of a program is not well understood or a program does
not behave as expected, then an interactive debugger becomes an important
tool. In interactive debugging, first concrete input values must be found that
bring program execution to a point of interest, for example, by setting suitable
breakpoints. Now the developer interactively controls execution and studies each
execution step until the program behavior is fully understood.

Suitable input values are sometimes provided by failed test cases or by bug
reports. In general, however, it can be challenging to determine input conditions
under which the code under inspection exhibits faulty behavior. Another limiting
factor in conventional interactive debugging is the fact that only one particu-
lar execution path is inspected per debugging session. To inspect a different
execution path, debugging needs to start over with different input values.

c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-33693-0 1



4 M. Hentschel et al.

In addition to debugging and testing, source code can be studied in a (static)
code review. Goals of a review include to find defects or to improve design and
code quality. A review can be performed either by a team or by a single person.
An important category of team review is an inspection [1,2] where people with
different roles study the source code according to aspects defined by their role.
Even a single developer can review source code as part of his or her personal
software process (PSP) [3,4] to ensure that he or she is satisfied with the achieved
quality. Checklists are often used to guide a review and to define the criteria
under which the source code is reviewed.

Reviews can be performed on all kinds of documents without the need for
tool support. However, we believe that symbolic execution [5–8] nurtures pro-
gram understanding and that its use for bug finding is promising. To validate this
claim we take an empirical approach that is standard in experimental software
engineering [9]. We compare source code reviews with and without having a sym-
bolic execution tree available. For tool support we use the Symbolic Execution
Debugger (SED) [10], an Eclipse extension for interactive symbolic execution
of Java into which any symbolic execution engine for Java can be integrated.
In our work we use KeY [11] as the underlying symbolic execution engine.

The SED visualizes a symbolic execution tree representing all possible behav-
iors of a given program until a certain point. The SED’s visual output is a tree
where each node represents an execution step of the program under inspection.
The user can interact with the visualization, for example, one can inspect and
visualize the symbolic state at an execution point to help comprehension of pro-
gram behavior. Standard symbolic execution explores only finite fragments of
an execution which is a serious limitation in the presence of loops with symbolic
bounds, method calls with unknown implementations, and recursive calls. The
SED is able to process formal specifications in the form of method contracts and
loop invariants during symbolic execution. This guarantees that the full program
behavior is explored for any possible execution path of the program [12].

The purpose of our experiment is to evaluate the effectiveness and efficiency
of a source code review with and without the SED. Traditional debugging is
explicitly allowed in a direct code review (DCR) without the SED. The exper-
iment is run from the research perspective to find out if the SED significantly
improves the review quality. During the evaluation Java source code is shown to
the participants and they are asked questions about it to measure their perfor-
mance. Each code example realizes a small, but functionally complete program
and is inspired by the literature or other interesting problems. The expected
behavior is always described by comments and sometimes additionally by Java
Modeling Language (JML) [13] specifications. The questions asked are a form
of checklist used to review the source code. The experiment was performed with
engineers at Bosch Engineering GmbH and was announced in public on the KeY
website, also on the JML and KeY mailing lists. We summarize the scope of the
experiment:
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Analyze code review with and without the SED
for the purpose of evaluation

with respect to effectiveness and efficiency
from the point of view of the researcher

in the context of Java developers in industry and research.

The paper is organized as follows: Sect. 2 discusses related work. Then we
describe the planning and setup of the experiment. The measured variables are
determined in Sect. 3, the hypotheses to test in Sect. 4. Section 5 lays out the
design of the experiment and Sect. 6 presents the instrumentation. We conclude
experiment planning by discussing threats to validity in Sect. 7. The execution
of the experiment is presented in Sect. 8. Collected data are analyzed in Sect. 9
before discussing the results in Sect. 10. We conclude the paper with Sect. 11.

2 Related Work

In [1,2] software inspection is introduced and its impact is confirmed by experi-
ence reports. The effectiveness of inspections has been confirmed in many case
studies and experience reports, for example, [14,15].

Systems like Gerrit1 organize the information that is accumulated during a
review such as comments. A comparison of early computer support systems for
software inspection is in [16]. For some roles assumed during a team review tool
support exists. For instance, the moderator can be assisted by decision support
facilities [17]. The defect detection step itself is targeted by [18]: they realize
learning from the experience encoded in checklists and automatic scans of the
source code for violations of checklist items.

To the best of our knowledge, no tool support targeting the interactive defect
detection step in a source code review exists. In addition, the effectiveness of
reviews is usually confirmed by experience reports whereas in this paper a con-
trolled experiment is performed to draw conclusions with statistical relevance.

3 Variable Selection

First we need to determine and classify the variables of the experiment.
We distinguish two kinds of variables: independent variables and dependent vari-
ables. The independent variables are those which can be varied or at least con-
trolled by us and whose influence and effect on the outcome of the experiment
we intend to study. Dependent variables are those that are measured during the
course of the experiment and which we want to study. A value of an independent
variable that was changed during the experiment is called treatment.

Table 1 lists the variables of our experiment. The independent variables which
can be varied by us are M (with treatments SED and DCR) and S (with the six
code examples to review). The subset of independent variables that are merely

1 www.gerritcodereview.com.

www.gerritcodereview.com
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Table 1. Variables of the experiment

controlled are called EJava|JML|SE |SED . Their values provide an answer to the
question about a participant’s experience level. The separation between less and
more than two years is made to separate beginners from experienced users assum-
ing that this is roughly the time needed to master Java, JML and symbolic execu-
tion well enough for the evaluation. As the SED is rather new, it is assumed that
participants have not much experience with it. For this reason, the separation
between beginners and experienced users is set to one year.

The dependent variables are used to quantify efficiency and effectiveness of
the different methods. Efficiency is measured by the time Ttm spend to answer
the questions using method tm ∈ M . Effectiveness is measured in the number of
correctly answered questions and the confidence in the given answers. Questions
are single or multiple choice questions to enable an automatic analysis. Each
question lists a number of correct and wrong answers from which the participant
has to choose. For a given method tm, a multiple choice question is answered
correct (measured by Qtm) if all and only the correct answers are selected.

A correctness score is used to give credit for partially correct answers. The
correctness score QS tm =

∑
q∈tm qs(q) is the sum of the scores over all questions

of treatment tm. For a single question q the score qs(q) is defined as:

qs(q) =

{
#corSelAnsw(q)−#wrgSelAnsw(q)

#corSelAnswers if #corSelAnsw(q) > #wrgSelAnsw(q)
#corSelAnsw(q)−#wrgSelAnsw(q)

#wrgSelAnswers if #corSelAnsw(q) ≤ #wrgSelAnsw(q)

Intuitively, the question score qs(q) is the difference between the number
of selected correct answers #corSelAnsw(q) and the number of selected wrong
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Table 2. Confidence ratings c(q), cs(q) of a single question q

Correct answer of q Wrong answer of q

or qs(q) > 0 or qs(q) ≤ 0

Sure 2 −2

Educated Guess 1 −1

Unsure −1 1

answers #wrgSelAnsw(q) of question q. But each question has a different number
of correct (wrong) answers. To achieve comparability between questions, the
difference between correct and wrong answers is divided by the total number of
correct (wrong) answers.

For each question we asked the participants about the confidence in their
answers. Available confidence levels are sure (My answer is correct!), educated
guess (As far as I understood the content, my answer should be correct.) and
unsure (I tried my best, but I don’t believe that my answer is correct.).

For each question q (each question score qs(q)) a confidence rating c(q) (cs(q))
is computed according to Table 2. A participant who is sure the answer is correct
when it is actually correct (the confidence score is positive) obtains maximal
points. If the answer is wrong, but the participant was sure that it is correct
(the confidence score is positive), he or she gets the lowest possible rating.
If the answer is based on an educated guess, which is weaker than certainty,
the participant gets less (or loses less) points. If the participant is unsure and
thinks the answer is wrong, and it is actually wrong (the confidence score is not
positive), then still one score point is assigned, because the intuition was correct.
If the participant thinks the answer is wrong but it is right (the confidence score
is positive), he or she loses one score point for the same reason. Finally, the
confidence score Ctm =

∑
q∈tm c(q) is the sum of the confidence ratings over all

questions answered for treatment tm. The confidence score based on question
scores CStm =

∑
q∈tm cs(q) · qs(q) takes partially correct answers into account.

4 Hypothesis Formulation

From our experiment we want to gain statistical evidence that the SED increases
effectiveness and efficiency of a code review. To this extent we formulate
for each dependent variable (see Table 1) an alternative hypothesis H1Q –H1T

(see Table 3). As usual [9] the claims of these hypotheses are confirmed by ruling
out each corresponding null hypothesis H0Q –H0T .

5 Choice of Experiment Design Type

An important design decision of the experiment is to ensure that participants
benefit from their participation. To achieve this, each participant uses both meth-
ods resulting in a paired comparison design (see Table 4). In case participants are
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Table 3. Hypotheses

Name Hypothesis Def. of μVtm for dependent variable V , treatment tm

H0Q μQSED = μQDCR with μQtm = Qtm
#questionsOfTmnt

∈ {x ∈ Q|0 ≤ x ≤ 1}
H0QS μQSSED

= μQSDCR
with μQStm

= QStm
#questionsOfTmnt

∈ {x ∈ Q|0 ≤ x ≤ 1}
H0C μCSED = μCDCR with μCtm = Ctm

#questionsOfTmnt
∈ {x ∈ Q| − 2 ≤ x ≤ 2}

H0CS μCSSED = μCSDCR with μCStm = CStm
#questionsOfTmnt

∈ {x ∈ Q| − 2 ≤ x ≤ 2}
H0T μTSED = μTDCR with μTtm = Ttm

timeOfAllTmnts
∈ {x ∈ Q|0 ≤ x ≤ 1}

H1Q μQSED > μQDCR

H1QS μQSSED
> μQSDCR

H1C μCSED > μCDCR

H1CS μCSSED > μCSDCR

H1T μTSED < μTDCR

Table 4. Paired comparison design

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

SED Subjectn Subjectn Subjectn Subjectn+1 Subjectn+1 Subjectn+1

DCR Subjectn+1 Subjectn+1 Subjectn+1 Subjectn Subjectn Subjectn

unfamiliar with the SED, this allows them to try it out and to decide whether
it is helpful for their work.

We applied the general experiment design principles randomization, blocking
and balancing [9] to avoid biases, to block out effects in which we are not inter-
ested in, and to simplify and strengthen hypothesis testing. We randomized the
order of code examples presented to the participants to avoid that, for instance,
differences in the level of difficulty can influence the result of the experiment.

The first three code examples are always to be reviewed using the same
method and the next three code examples with the other one (recall that we
have six code examples to review). The decision which method is used for the
first three code examples is random. This avoids multiple switches between meth-
ods which could confuse the participant. Additionally, a participant who is not
familiar with a reviewing method has more experience in the later tasks. The
server used to collect evaluation results guarantees that all possible permutations
of example orders will be evaluated equally often as well as all other constraints.

The performance of the participants may depend on their experience with
Java which is used for blocking. Grouping the participants according to their
experience level with Java allows us to interpret the results for the different
groups separately. Balancing is automatically achieved by the chosen design,
because each participant uses both methods and reviews all six code examples.
Thus the number of participants is the same for each treatment. The number of
participants who reviewed a source code example might be not balanced in case
participants decided not to review all of them.
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6 Instrumentation

We did not want to limit the group of participants to people familiar with sym-
bolic execution, JML or the SED. The only hard requirement on the participants
was basic knowledge in Java (or a similar language). To accommodate this deci-
sion, the evaluation had to be self-explanatory. We achieved this by showing
three instructional videos: an introduction to the evaluation itself and one to
each method. A brief textual introduction was given on how to read and write
JML specifications (the JML specifications used in the evaluation do not use
advanced concepts).

During the evaluation participants reviewed source code with and without
using the SED. As the SED is available within Eclipse, the evaluation itself is
implemented as an Eclipse wizard which is opened in an additional window so
that the functionality of Eclipse is not impaired.

The evaluation setup consists of two phases during which information is col-
lected and sent to the server. The first phase collects background knowledge
on the participant and determines the order of code examples and the method
assignment. The actual evaluation is performed in the second phase. A partici-
pant who cancels the evaluation during the second phase is asked to send partial
results to the server. When that participant opens the evaluation wizard the next
time, he or she is offered to recover the previous state to continue the already
started evaluation. The evaluation workflow in detail is as follows:

1. Initialization Phase
(a) Terms of Use: Terms of use need to be accepted.
(b) Background Knowledge: Information about background knowledge is

gathered (Java, JML, symbolic execution, SED).
(c) Extent : Participant chooses between reviewing four or six code examples.
(d) Sending Data: Data is sent and order of code examples is received.

2. Evaluation Phase
(a) Evaluation Instructions: A video explaining how to answer questions.
(b) JML: A textual documentation introducing the features of JML necessary

for the evaluation.
(c) SED/DCR Instruction: A video explaining needed features and best prac-

tices to review a code example with and without the SED (depending on
order).

(d) Code Examples 1 and 2 (and 3): The first two/three code examples and
the questions that test the understanding.

(e) The complementary SED/DCR Instruction: The remaining video.
(f) Code Examples 4 and 5 (and 6): As above
(g) Feedback about SED and Evaluation: The participant is asked to rate the

usefulness of SED features (mentioned in the videos).
(h) Sending Data and Acknowledgment : Data is sent and the successful com-

pletion of the evaluation is acknowledged.

We summarize the six code examples2 to be reviewed and the defects the
participants were supposed to identify:
2 Available at http://www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/

examples.

http://www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/examples
http://www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/examples


10 M. Hentschel et al.

BankUtil implements a stair-step table lookup, inspired by [19, p. 427]. The
source code does not adhere to its documentation because a wrong value is
returned for an age above 35.

IntegerUtil is inspired by [20, p. 255]. The challenge is to find the mistake that
in one case y is returned instead of x.

MathUtil can throw an uncaught ArrayIndexOutOfBoundsException caused
by overflow. Such an overflow was present in Java’s binary search implemen-
tation, see bug item JDK-50455823.

ValueSearch contains unreachable code, namely statement return false. The
surrounding method accept is only called within the loop in method search.
The loop guard already ensures that the then branch of accept is never taken.
Such issues are difficult to detect by test case generation tools based on
symbolic execution: when unrolling the loop further there might be a future
loop iteration in which the then branch will be taken after all. Further, there
is a defect in method find. The parameter value is never used. Finally, in
case the array is null, an uncaught NullPointerException is thrown.

ObservableArray is inspired by [21, p. 265]. The class constructor and the
method setArrayListeners behave according to the documentation. But
method set has several problems: (i) in case the index is outside the array
bounds an uncaught ArrayIndexOutOfBoundsException is thrown, (ii) in
case the element is not compatible to the component type of the array an
ArrayStoreException is thrown, (iii) not all observers that exist at call
time are informed about the change in case an observer changes the available
observers during the event, and (iv) if an observer sets arrayListeners to
null, an uncaught NullPointerException is thrown.

Stack is inspired by [21, p. 24]. The first constructor which creates a new stack
throws an uncaught NegativeArraySizeException if the maximal size is
negative. The second constructor which clones a stack does not behave as
documented, because the clone shares the same elements array and is thus
not independent. Further, it throws a NullPointerException if the existing
stack is null. Method push behaves as documented, but method pop does
not remove the top element from the stack which violates the class invariant.

We designed questions and answers for each code example according to the fol-
lowing schema: The participant is asked (i) for each method/constructor to review
whether the implementation behaves as documented, (ii) in case a class invariant
is present to review whether it is preserved/established, (iii) for methods with a
return value to choose which claims from a given list are valid and (iv) to determine
which statements can be reached. In case a participant answers that the source
code does not behave as documented, all applicable reasons why this is the case
from a predefined list of potential causes had to be chosen. In case an undocu-
mented exception is thrown, the participant is asked which one. When a partici-
pant answers that an invariant is violated, the invalid parts have to be identified.
Entering free text with additional reasons is always possible.

3 http://bugs.java.com/bugdatabase/view bug.do?bug id=5045582.

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=5045582
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For the code examples to be reviewed with the SED we asked participants to
rate the helpfulness of the symbolic execution view. For DCR, we asked whether
the conventional Java debugger was used and if so, how helpful debugging was.

In every review using the SED the fully explored symbolic execution tree is
shown. Interactive symbolic execution is avoided to ensure that all participants
review the source code under the same conditions. In DCR a main method with a
call of the code to review is provided. Required values of parameters are missing
and have to be provided by the participant. The code is there to help participants
without or little Java experience to start a debugging session.

7 Validity Evaluation

In this section we discuss threats to the validity of our experiments and the
drawn conclusions. For each threat we provide a mitigation strategy.

“Conclusion validity concerns the statistical analysis of results and the com-
position of subjects.” [9, p. 185] The hypotheses of this experiment are tested
with well known statistical techniques. Threats to conclusion validity are the low
number of samples and the quality of the answers. Subjects may fake answers to
compromise the experiment. However, several participants are people we know
(colleagues, project partners, students, etc.), in addition, some were monitored
during the evaluation. We consider the motivation of subjects to compromise
the experiment to be very low.

“Internal validity concerns matters that may affect the independent variable
with respect to causality, without the researcher’s knowledge.” [9, p. 185] Review-
ing source code is time intensive and the participation time is up to 90 min;
hence, participants may get tired or bored. There is a risk that participants lack
motivation and thus answer questions not seriously. However, participation is
voluntary and can be done at any time convenient for the subject.

Maturation is a threat to internal validity as each method is applied to
three code examples and participants may learn how to use it, which is desired.
We consider this non-critical as randomization is applied to the order of treat-
ments. Participants have most likely no experience with the SED which is uncrit-
ical as the instrumentation introduces all relevant features and best practices of
both review methods. There might be a threat that some participants are not
willing to learn how to use the SED. However, SED is designed to support the
reviewing process. A potential bias about the experience with the SED would
only contribute against our claim that SED improves upon efficiency and effec-
tiveness and not in its favor. Other threats are considered to be uncritical.

“Construct validity concerns generalisation of the experiment result to con-
cept or theory behind the experiment.” [9] A threat to construct validity is that
the chosen code examples are not be representative. To mitigate the code exam-
ples were chosen from the standard literature or from widely discussed problems.
Other threats to construct validity are considered uncritical. Even though a par-
ticipant might guess the expected outcome from the general motivation of the
experiment (a comparison between a code review with and without the SED)
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and that SED is a new tool, we consider it uncritical as the exact hypotheses
and related measurements are unknown to them. In addition, the participants
do not have any advantage or disadvantage from the outcome of the experiment.

“External validity concerns generalisation of the experiment result to other
environments than the one in which the study is conducted.” [9, p. 185] A threat
to external validity is that the source code is kept to a minimum—in some cases
only one method. This is required to reduce the time participants need to review
the source code and to read its documentation. Real Java code is much more
complex. On the other hand, symbolic execution with specifications is modular,
only a small part of the source code needs to be considered. The participants are
selected randomly and their experience varies from none to expert. Consequently,
the selection of participants is not a threat to external validity.

We state that there are threats to the validity of the experiment, and hence,
the drawn conclusions are valid within the limitations of the threats.

8 Execution

The experiment started in September 2015 with the staff of the Software Engi-
neering group at TU Darmstadt. It included students, PhD students and post-
docs. Each participant was monitored during the evaluation to improve the
instructions and answers. Questions and answers remained stable after the first
participant. For this reason, the results of the first participant were excluded,
but the others were kept.

The evaluation was then performed with engineers at Bosch Engineering
GmbH. None of the engineers use Java in their daily business and the Java
experience was none or less then a year. However, participants were interested
in new methods and liked to try out the SED. In total, 11 engineers started
the evaluation. One participant canceled the evaluation and three participants
did not submit the answers. Additionally, one participant did not follow the
instructions and used the SED for all code examples. Consequently, the results
of six participants are considered as valid.

The evaluation went public in October 2015. It was announced on the KeY
website, as well as the KeY and JML mailing lists. The evaluation is available
as a preconfigured Eclipse product. Installation instructions and download links
are available on the KeY website.4 Main steps are to download and run the
Eclipse product and to perform the evaluation. An installation is not required,
the participants’ system is unaffected. Until mid January 2016, 27 participants
started the evaluation, of these 19 completed it. Twelve of the participants were
monitored during the evaluation (with their approval).

The distribution of background knowledge of participants is shown in Fig. 1.
The experience of participants with knowledge in JML and symbolic execution
is fairly distributed. Most of the participants had more than two years of Java
experience and none with the SED.

4 http://www.key-project.org/eclipse/SED/ReviewingCode.html.

http://www.key-project.org/eclipse/SED/ReviewingCode.html
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Fig. 1. Knowledge of participants

Table 5. Java vs SED experience

SED

None < 1 year ≥ 1 year

None 3 0 0

Java < 2 years 6 0 0

≥ 2 years 3 6 1

Fig. 2. Correct Answers

The relation between the Java and the SED experience is shown in Table 5.
It shows that all participants with SED experience have at least two years of
Java experience.

9 Analysis

Now we visualize the collected data to get a first impression about their distrib-
ution and to identify possible outliers, before we test our hypotheses. Interpre-
tation and discussion of the results is done in Sect. 10.

To visualize data we use boxplots (Figs. 2, 3, 4, 5 and 6). The middle ver-
tical bar in the rectangle of a boxplot indicates the median of the data. The
left border represents the lower quartile lq and the right border represents the
upper quartile uq . The left and right whiskers indicate the theoretical bounds of
the data assuming a normal distribution. Data points outside the whiskers are
outliers. The left whisker is defined as lq − 1.5 (uq − lq) and the right whisker as
uq + 1.5 (uq − lq). Additionally, whiskers are truncated to the nearest existing
value within the bounds to avoid meaningless values. The constant 1.5 is chosen
following [22].

The boxplots in Fig. 2 show the distribution of the correctly answered ques-
tions with the lower bound 0 meaning that no question was answered correctly
and the upper bound 1 attained when all answers were correct. The boxplots
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Fig. 3. Correctness Score

Fig. 4. Confidence Score

in Fig. 2a show the distribution for all participants for the treatments SED and
DCR, whereas Fig. 2b–d show the distribution of correct answers broken down
to different levels of Java experience. In all boxplots, the achieved correctness is
better using SED.

The distribution of the measured correctness scores (taking partially correct
answers into account, see Sect. 3) is shown in Fig. 3. In each case the correctness
score is at least as high as in the distribution of correct answers (Fig. 2). Again,
the achieved correctness is always better using SED. In the class of participants
without Java experience, the achieved correctness using SED varies considerably.

The distributions of the confidence score are similar to those of the cor-
rectness score. As Figs. 4 and 5 show, the confidence is higher with SED. An
exception is the class of participants without Java experience which achieved
slightly better confidence without using the SED. In each case the confidence
score increases (the boxplot “moves right”) when taking partially correct answers
into account.
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Fig. 5. Confidence Score of Partially Correct Answers

Fig. 6. Time

The measured time5 is shown in Fig. 6. A value of 1 means that a partici-
pant spent all the time using one reviewing method. The opposite is 0 when a
participant spent no time with a reviewing method. In all boxplots, the review
time is less using SED.

The null hypotheses of Table 3 can be rejected without assuming a normal
distribution using a one sided Wilcoxon Signed Rank Test or a one sided Sign
Test, see [9]. As basis for the tests we used the results of all participants and did
not test each experience level separately, because there are too few participants
in each class to apply any test method. The significance level is set to 0.05
meaning that there is a 5 % chance at which a hypotheses is wrongly rejected.
The results of the tests are shown in Table 6.

All tests reject the correctness-related hypothesis H0Q and the Wilcoxon
Signed Rank Test rejects in addition the confidence-related hypothesis H0C .
Looking at the promising boxplots we expect to reject the other hypotheses as
well once more people participate in the experiment.

5 The times measured for three of the participants were invalid and, therefore,
excluded.
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Table 6. Results from the One Sided Tests with α = 0.05

Hypothesis Wilcoxon Signed Rank Test Sign Test

W-value p-value rejected p-value rejected

H0Q 176,5 0,0002 true 0,0012 true

H0QS 119,5 0,1660 false 0,5000 false

H0C 151 0,0115 true 0,0835 false

H0CS 119 0,1762 false 0,1796 false

H0T 82 0,1147 false 0,1509 false

10 Interpretation

10.1 Correctness of Answers

The analysis of our experiment permits to conclude that participants performed
significantly better in code reviewing tasks when the SED is used. Also the
participant’s confidence in the given answers is higher when the SED is involved.

To answer the question whether the SED performs universally better or only
in a specific code reviewing situation, we look at how often an expected correct
answer was given using each of the methods. We summarize now the results.6

Questions whether the implementation behaves as documented and whether
a constructor establishes an invariant were answered more often correctly in a
direct code review without using the SED, particularly, in the examples Stack
and ValueSearch. In traditional debugging sessions the explored execution path
shows only symptoms of a defect. This is also true for symbolic execution paths
visualized by the SED. To locate the defect in the program logic causing the
observed symptom (at runtime) the source code needs to be reviewed. This
relation between debugging and reviews is also discussed in [3]. However, the
SED shows source code and symbolic execution tree at the same time.

Questions about the reason for a misbehavior were only answered by partic-
ipants when they had realized before that something is wrong. As participants
using the SED often failed to identify a problem, it is not surprising that the cor-
rect reasons were also more often identified in a direct code review. Interestingly,
participants identified more often that an exception is thrown and the correct
type of the thrown exception using the SED. Thrown exceptions are explicitly
visualized in the SED by special symbolic execution tree nodes.

In addition to the symbolic execution tree, the SED highlights the statements
that were reached during symbolic execution. This seems to be helpful as the
reachable statements were more often correctly identified using the SED.

Participants were also asked to identify valid claims about a method’s return
value from a given list of options. The SED visualizes symbolic values that can
be potentially returned as part of the method return node. In the MathUtil

6 Detailed results are available at http://www.key-project.org/eclipse/SED/Reviewing
CodeEvaluation/results.

http://www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/results
http://www.key-project.org/eclipse/SED/ReviewingCodeEvaluation/results
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and ValueSearch example the correct answers were more often selected using
SED, whereas in the BankUtil, Stack and IntegerUtil example the direct code
review achieved better results.

In total correct answers were more often identified in the classes of partici-
pants with Java experience using the SED. In the class without Java experience
correct answers were more often selected in a direct code review. Taking into
account that only three participants are in that class and that many questions
are never answered with both methods, no meaningful conclusions can be drawn.
Overall, a few more correct answers were identified in a direct code review.

We conclude that the SED helps to answer questions about aspects that are
represented in the symbolic execution tree. According to the given answers, the
SED seems not to increase the understanding of the program logic.

10.2 Perceived Usefulness of Features

For the SED, nearly all participants considered the symbolic execution tree view
and the highlighting of source code reached during symbolic execution as helpful
or very helpful. The variable view used to visualize the symbolic state of a
symbolic execution tree node as well as the properties view showing additional
information like path conditions were in many cases not used by the participants.
But those who used them considered them mostly as (very) helpful.

Participants had the opportunity to use the Java debugger in a direct code
review. But the source code required to do so was often not written and if it
was, its helpfulness varies from very to somewhat helpful.

Several participants provided constructive suggestions for improvement: first,
source code reached in the currently selected execution path as well as the cor-
responding symbolic execution nodes should be highlighted. Following further
suggestions we plan to visualize additional information, including the path con-
dition and selected memory locations within symbolic execution tree nodes.

Participants were also asked whether they prefer a code review with or with-
out using the SED (as the SED is designed to support a review and not to replace
it). Our evaluation shows, that the SED effectively helps to discover information
about feasible execution paths. Studying a symbolic execution tree, however, is
not sufficient to understand the program logic. It is, therefore, not surprising
that roughly two thirds of the participants would consider the SED depending
on the nature of the given source code.

11 Conclusion

We described an experiment comparing the effectiveness and efficiency of a code
review with and without using the SED. The result provides statistically signif-
icant evidence for increased effectiveness when a symbolic execution tree view is
used during code reviews.

Very few formal methods are evaluated with user studies. Usually, perceived
advantages are simply claimed or, in the best case, validated against a case study.
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As far as we know, this is the first comparative experimental user case study of its
kind. We strongly believe that more work like it is needed to convince industrial
stakeholders about the value of formal methods. The advantages of case studies
are obvious: effectivity claims get empricially substantiated which is a solid basis
for decision makers. In addition, researchers obtain valuable feedback from the
field and can make better usage of resources.

One must also clearly state that user studies mean a lot of work. Statistical
techniques most researchers in formal methods are unfamiliar with have to be
mastered. Designing and carrying out the actual study is very time consuming.
To sustain further studies, participants must be reimbursed. But we think that
the increased credibility of our claims and the insights we gained are well worth
the effort.

Acknowledgment. We thank all participants of the evaluation for their valuable time
and feedback.
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Laura Kovács1,2(B)

1 Chalmers University of Technology, Gothenburg, Sweden
laura.kovacs@chalmers.se
2 TU Wien, Vienna, Austria

Abstract. This talk describes how a combination of symbolic com-
putation techniques with first-order theorem proving can be used for
solving some challenges of automating program analysis, in particular
for generating and proving properties about the logically complex parts
of software. The talk will first present how computer algebra methods,
such as Gröbner basis computation, quantifier elimination and algebraic
recurrence solving, help us in inferring properties of program loops with
non-trivial arithmetic. Typical properties inferred by our work are loop
invariants and expressions bounding the number of loop iterations. The
talk will then describe our work to generate first-order properties of pro-
grams with unbounded data structures, such as arrays. For doing so,
we use saturation-based first-order theorem proving and extend first-
order provers with support for program analysis. Since program analysis
requires reasoning in the combination of first-order theories of data struc-
tures, the talk also discusses new features in first-order theorem proving,
such as inductive reasoning and built-in boolean sort. These extensions
allow us to express program properties directly in first-order logic and
hence use further first-order theorem provers to reason about program
properties.

1 Introduction

The successful development and application of powerful verification tools such as
model checkers [3,18], static program analyzers [5], symbolic computation algo-
rithms [2], decision procedures for common data structures [16], as well as theo-
rem provers for first- and higher-order logic [17] opened new perspectives for the
automated verification of software systems. In particular, increasingly common
use of concurrency in the new generation of computer systems has motivated the
integration of established reasoning-based methods, such as satisfiability modulo
theory (SMT) solvers and first-order theorem provers, with complimentary tech-
niques such as software testing [8]. This kind of integration has however imposed
new requirements on verification tools, such as inductive reasoning [13,15], inter-
polation [9], proof generation [7], and non-linear arithmetic symbolic computa-
tions [6]. Verification methods combining symbolic computation and automated
reasoning are therefore of critical importance for improving software reliability.
c© Springer International Publishing Switzerland 2016
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In this talk we address this challenge by automatic program analysis. Pro-
gram analysis aims to discover program properties preventing programmers from
introducing errors while making software changes and can drastically cut the
time needed for program development, making thus a crucial step to auto-
mated verification. The work presented in this talk targets the combination of
symbolic computation techniques from algorithmic combinatorics and computer
algebra with first-order theorem proving and static analysis of programs. We
rely on our recent symbol elimination method [13]. Although the symbol elimina-
tion terminology has been introduced only recently by us, we argue that symbol
elimination can be viewed as a general framework for program analysis. That is,
various techniques used in software analysis and verification, such as Gröbner
basis computation or quantifier elimination, can be seen as application of symbol
elimination to safety verification of programs.

In a nutshell, symbol elimination is based on the following ideas. Suppose we
have a program P with a set of variables V . The set V defines the language of
P . We extend the language P to a richer language P0 by adding functions and
predicates, such as loop counters. After that, we automatically generate a set Π
of first-order properties of the program in the extended language P0, by using
techniques from symbolic computation and theorem proving. These properties
are valid properties of the program, however they use the extended language P0.
At a last step of symbol elimination we derive from Π program properties in the
original language P , thus “eliminating” the symbols in P0 \ P .

The work presented in this talk describes symbol elimination in the combina-
tion of first-order theorem proving and symbolic computation. Such a combina-
tion requires the development of new reasoning methods based on superposition
first-order theorem proving [14], Gröbner basis computation [2], and quantifier
elimination [4]. We propose symbol elimination as a powerful tool for program
analysis, in particular for generating program properties, such as loop invariants
and Craig interpolants. These properties express conditions to hold at interme-
diate program locations and are used to prove the absence of program errors,
hence they are very important for improving automation of program analysis.

Since program analysis requires reasoning in the combination of first-order
theories of data structures, the talk also presents new features in first-order
theorem proving, such as inductive reasoning and built-in boolean sort. These
extensions allow us to express program properties directly in first-order logic and
hence use further first-order theorem provers to reason about program properties.

The algorithms described in this talk are supported by the development of
the world-leading theorem prover Vampire [14], and its extension to support
program analysis. Thanks to the full automation and tool support of our work,
researchers and software engineers/developers are able to use our results in their
work, without the need to become experts in first-order theorem proving and
symbolic computation.

The work presented here is structured as follows. We first describe the use of
symbol elimination in symbolic computation for generating polynomial program
properties (Sect. 3). We then extend symbol elimination to its use in first-order
theorem proving and present how arbitrarily quantified program properties can
be inferred using symbol elimination (Sect. 4).
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2 Motivating Example

Fig. 1. Motivating example.

Let us first motivate
the work described in
this talk on a small
example. Consider the
program given in Fig. 1,
written in a C-like syn-
tax. The program fills
an integer-valued array
B by the positive val-
ues of a source array A
added to the values of a
function call h, and an
integer-valued array C
with the non-positive
values of A. In addi-
tion, it computes the sum s of squares of the visited positions in A. A safety
assertion, in first-order logic, is specified at the end of the loop, using the assert
construct. The program of Fig. 1 is clearly safe as the assertion is satisfied when
the loop is exited. However, to prove program safety we need additional loop prop-
erties, i.e. invariants, that hold at any loop iteration. It is not hard to derive that
after any iteration k of the loop (assuming 0 ≤ k ≤ n), the linear invariant relation
a = b+c holds. It is also not hard to argue that, upon exiting the loop, the value of
a is n. However, such properties do not give us much information about the arrays
A, B, C and the integer s. For proving program safety, we need to derive that each
B[0], . . . , B[b − 1] is the sum of a strictly positive element in A and the value of f
at the corresponding position of B. We also need to infer that s stores the sum of
squares of the first n non-negative integers, corresponding to the visited positions
in A. Formulating these properties in first-order logic yields the loop invariant:

(∀p)(0 ≤ p < b =⇒
(∃q)(0 ≤ q < a ∧ A[q] > 0 ∧ B[p] = A[q] + h(p)) ∧
6 ∗ s = a ∗ (a + 1) ∗ (2 ∗ a + 1))

(1)

The above property requires quantifier alternations and polynomial arith-
metic and can be used to prove the safety assertion of the program. This loop
property in fact describes much of the intended behavior of the loop and can
be used to analyze properties of programs in which this loop is embedded. Gen-
erating such loop invariants requires however reasoning in full first-order logic
with theories, in our example in the first-order theory of arrays, polynomial
arithmetic and uninterpreted functions. Our work addresses this problem and
proposes symbol elimination for automating program analysis.

3 Symbol Elimination in Symbolic Computation

The first part of this talk concerns the automatic generation of loop invariants
over scalar variables. This line of research implements the general idea of symbol
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Fig. 2. Symbol Elimination in Symbolic Computation on Fig. 1.

elimination by using techniques from symbolic computation, as follows. Given
a loop, we first extend the loop language by a new variable n, called the loop
counter. Program variables are then considered as functions of n. Next, we apply
methods from algorithmic combinatorics and compute the values of loop vari-
ables at arbitrary loop iterations as functions of n. Finally, we eliminate n using
computer algebra algorithms, and derive polynomial relations among program
variables as loop invariants.

In our work, we identified a certain family of loops, called P-solvable loops
(to stand for polynomial-solvable) with sequencing, assignments and condi-
tionals, where test conditions are ignored [11]. For these loops, we developed
a new algorithm for generating polynomial loop invariants. Our method uses
algorithmic combinatorics and algebraic techniques, namely solving linear
recurrences with constant coefficients (so-called C-finite recurrences) or hyper-
geometric terms, computing algebraic relations among exponential sequences,
and eliminating variables from a system of polynomial equations. More pre-
cisely, the key steps of using symbol elimination in symbolic computa-
tion are as follows. Given a P-solvable loop with nested conditionals, we
first rewrite the loop into a collection of P-solvable loops with assignments
only. Next, polynomial invariants of all sequences of P-solvable loops with
assignments only are derived. These invariants describe polynomial relations
valid after the first iteration of the P-solvable loop with nested condition-
als, however they might not be valid after an arbitrary iteration of the
P-solvable loop with nested conditionals. Therefore, from the ideal of polynomial
relations after the first iteration of a P-solvable loop with nested conditionals,
we keep only those polynomial relations that are polynomial invariants of the
P-solvable loop with nested conditionals. In the process of deriving polynomial
invariants for a (sequence of) P-solvable loop(s) with assignments only, we pro-
ceed as follows. We introduce a new variable n denoting the loop counter. Next,
recurrence equations over the loop counter are constructed, describing the behav-
ior of the loop variables at arbitrary loop iterations. These recurrence relations
are solved, and closed forms of loop variables are computed as polynomials of the
initial values of variables, the loop counter, and some new variables in the loop
counter so that we infer polynomial relations among the new variables. The loop
counter and variables in the loop counter are then eliminated by Gröbner basis
computation to derive a finite set of polynomial identities among the program
variables as invariants. From this finite set any other polynomial identity that is
an invariant of the P-solvable loop with assignments only can be derived.
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To illustrate the workflow proposed above, consider Fig. 2. Figure 2(i)
describes the system of recurrence equations corresponding to the updates over
a and s in Fig. 1, where s(k) and a(k) denote the values of s and a at the kth loop
iteration of Fig. 1. That is, program variables become functions of loop iterations
k. The closed form solutions of Fig. 2(i) is given in Fig. 2(ii). After substituting
the initial values of a and s, Fig. 2(iii) shows a valid polynomial identity among
the values of a and s at any loop iteration k.

Our invariant generation method using symbol elimination in symbolic com-
putation is proved to be complete in [12]. By completeness we mean that our
method generates the basis of the polynomial invariant ideal, and hence any other
polynomial invariant of the P-solvable loop can be derived from the basis of the
invariant ideal. For doing so, we generalised the invariant generation algorithm
of [11] for P-solvable loops by iteratively computing the polynomial invariant
ideal of the loop. We proved that this generalisation is sound and complete.
That is, our method infers a basis for the polynomial invariant ideal of the
P-solvable loop in a finite number of steps. Our proof relies on showing that the
dimensions of the prime ideals from the minimal decomposition of the ideals gen-
erated at an iteration of our algorithm either remained the same or decreased
at the next iteration of the algorithm. Since dimensions of ideals are positive
integers, our algorithm terminates after a finite number of iterations.

4 Symbol Elimination in First-Order Theorem Proving

In the second part of our talk, we describe the use of symbol elimination in
first-order theorem proving. The method of symbol elimination using a first-
order theorem prover has been introduced in [13]. Unlike all previously known
techniques, our method allows one to generate first-order invariants containing
alternations of quantifiers for programs with arrays.

When using symbol elimination for generating loop invariants of programs
with arrays, the method is based on automatic analysis of the so-called update
predicates of loops. An update predicate for an array expresses updates made to
the array. We observe that many properties of update predicates can be extracted
automatically from the loop description and loop properties obtained by other
methods such as a simple analysis of counters occurring in the loop, recurrence
solving and quantifier elimination over loop variables. In the first step of loop
analysis we introduce a new variable n denoting the loop counter, and use the
symbolic computation framework from Sect. 3 to generate polynomial invariants
over the scalar loop variables. Scalar and array variables of the loop are consid-
ered as functions of n and the language P of the loop is extended by these new
function symbols. Further, the loop language is also extended by the update pred-
icates for arrays and their properties are added to the extended language too. The
update predicates make use of n and essentially describe positions at which arrays
are updated, iterations at which the updates occur and the update values of the
arrays. For example, we may write upd(B, k, p, x) to express that an array B was
updated at loop iteration k and array position p by the value x. For our running
example from Fig. 1, upd(B, k, p, x) is defined as:
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upd(B, k, p, x) ⇐⇒ 0 ≤ k ≤ n∧A(k)[a(k)] > 0∧p = b(k)∧x = A(k)[a(k)]+h(b(k)),

expressing that k is a loop iteration value at which the array B was updated
(the true-branch of the conditional of Fig. 1 was visited). As before, A(k) denotes
the value of the array A at the kth loop iteration (A is actually unchanged
throughout the loop of Fig. 1).

As a result of this step of symbol elimination, a new, extended loop language
P0 is obtained, and a collection Π of valid first-order loop properties expressed
in P0 is derived. For example, a first-order property of Fig. 1 in the extended
loop language P0 derived by our work is:

(∀i, j, p, x)
(
upd(B, i, p, x) ∧ (upd(B, j, p, x) =⇒ j = i) =⇒ B(n)[p] = x

)
(2)

Property (2) expresses that if the array B is updated only once at a position p,
the value x associated with this update is the final value in B.

Formulas in Π cannot be used as loop invariants, since they use symbols not
occurring in the loop, and even symbols whose semantics is described by the loop
itself. Note that, while the property (2) is a valid loop property, it is not yet a
loop invariant as it uses the update predicates upd(B, i, p, x) and upd(B, j, p, x)
and B(n) to express the final value of array B as function of n. These symbols
are in P0 but are not part of the loop language P ; and hence a loop invariant
expressed in the loop language P cannot make use of them, Nevertheless, the
formulas in Π, such as (2), are valid properties of the loop and have a useful
property: all their consequences are valid loop properties too. The second phase
of symbol elimination therefore tries to generate logical consequences of Π in
the original language of the loop. Any such consequence is also a valid property
of the loop, and hence an invariant of the loop. Logical consequences of Π are
generated by running a first-order saturation theorem prover on Π in a way that
it tries to eliminate the newly introduced symbols P0 \P from the extended loop
language P0. As a result of symbol elimination, a loop invariant generated for
Fig. 1 is the first-order formula expressed in (1).

The main obstacle to the experimental evaluation of symbol elimination lied
in the fact that all existing first-order theorem provers lacked several features
essential for implementing our procedure for invariant generation. These features
included reasoning with various theories and procedures for eliminating symbols.
In our work we addressed these limitations as follows: we changed the term order-
ing used by theorem provers to make symbol elimination generate loop invariants
and we added incomplete, but sound axiomatizations of first-order theories to
first-order theorem provers, in particular to the Vampire theorem prover. To this
end, Vampire has now built-in support for the first-order theories of integers,
rationals and rationals. We have also extended Vampire with the polymorphic
theory of arrays with extensionality and added the boolean sort as first-class sort
in Vampire [10]. With these new features at hand, Vampire now supports auto-
matic program analysis and invariant generation for programs with arrays [1].
We believe the new extension in Vampire increase the expressivity of first-order
reasoners and facilitate reasoning-based program analysis and verification.
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Abstract. Model Transformations have been called the “heart and
soul” of Model-Driven software development. However, they take a lot
of effort to build, verify, analyze, and debug. It is thus imperative to
develop good reuse strategies that address issues specific to model trans-
formations. Some of the effective reuse strategies are adopted from other
domains, specifically, programming languages. Others are custom devel-
oped for models. In this paper, we survey techiques from both categories.

Specifically, we present two techniques adoped from the PL world:
subtyping and mapping, and then two techniques, lifting and aggregat-
ing, that are novel in the modeling world. Subtyping is a way to reuse
a transformation for different - but similar - input modelling languages.
Mapping a transformation designed for single models reuses it for model
collections, such as megamodels. Lifting a transformation reuses it for
aggregate representations of models, such as product lines. Aggregating
reuses both transformation fragments (during transformation creation)
and partial execution results (during transformation execution) across
multiple transformations.

We then point to potential new directions for research in reuse that
draw on the strengths of the programming and the modeling worlds.

1 Introduction

Model-Driven Engineering (MDE) is a powerful approach used in industry for
managing the complexity of large scale software development. MDE helps man-
age this complexity by using models to raise the level of abstraction at which
developers build and analyze software and transformations to automate the var-
ious engineering tasks that apply to models. Model Transformations have been
called the “heart and soul” of Model-Driven software development [30], and they
are used to perform various manipulations on models, such as adding detail,
refactoring, translating to a different formalism, generating code, etc. They have
certain particular characteristics: (1) They are aimed, at least in principle, to
accomplish a well-defined one-step “task” with a specific intent. Transformations
are often chained together to form more complex tasks, much like pipelining
processes in Unix. (2) They are also strongly typed, by the types of models they
c© Springer International Publishing Switzerland 2016
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take as input and produce as output. (3) Since models are essentially typed
graphs, transformations are often implemented using specialized languages that
allow easy manipulation of graphs.

Because transformations are central to success of MDE, it is imperative to
develop good reuse strategies for them. Since transformations are specialized
programs, any attempt to study transformation reuse must answer the question:
how is transformation reuse different from or similar to program reuse? This
implies two perspectives of model transformation reuse. On the one hand, we
can approach it as a problem of adapting, generalizing and/or “reinventing”
techniques already understood in the context of program reuse. On the other
hand, we can identify areas in which the MDE setting provides opportunities for
creating novel reuse techniques, specific to the kinds of abstractions and usage
scenarios found in modelling.

In this paper, we attempt to study transformation reuse from both of these
perspectives, by illustrating examples of reuse mechanisms in each one. We show
two examples of techniques, namely subtyping and mapping, that are adapted
from program reuse. Specifically: (1) subtyping is a way to reuse a transforma-
tion for different – but similar – input modelling languages; and (2) mapping a
transformation designed for single models reuses it for model collections, such
as specialized model collections used in MDE called megamodels. We then show
two MDE-specific reuse techniques, namely, lifting and aggregating that leverage
the unique way in which MDE represents variability. Specifically: (3) lifting a
transformation reuses it for aggregate representations of models, such as product
lines; and (4) aggregating reuses both transformation fragments (during transfor-
mation creation) and partial execution results (during transformation execution)
across multiple transformations. To our best knowledge, these techniques do not
have any correspondences in programming.

A detailed survey of the state of the art in model transformation reuse can
be found in [16]. Our specific aim is to explore the different ways of approaching
the problem of transformation reuse and to study its differences and similar-
ities from well-understood approaches in program reuse. We assume that the
reader is familiar with standard MDE concepts such as models, meta-models
and transformations. For a good reference on these, please see [27].

The rest of this paper is organized as follows: In Sect. 2, we describe an exam-
ple transformation which will be used to illustrate the different reuse strategies.
In Sect. 3, we describe approaches that are adapted from program reuse. In
Sect. 4, we describe novel reuse approaches that arise from the unique character-
istics of MDE. We conclude in Sect. 5 with a discussion of how further progress
can be achieved in research on transformation reuse.

2 Example Transformation

We begin with the following example transformation called “Fold Entry
Action” [23] referring to it as FoldEntry. Figure 1(a) shows the signature of
the transformation. It takes a state machine as input and refactors it by moving



30 M. Chechik et al.

Fig. 1. (a) The signature of transformation FoldEntry; (b) The signature of transfor-
mation SMmatch.

Fig. 2. The rule implementing the FoldEntry transformation to refactor a state
machine.

common actions on incoming transitions to a state into the entry action for the
state to produce the output state machine. Figure 2 shows a graph transforma-
tion rule that implements FoldEntry. Specifically, the rule is applied to a state
machine by attempting to match it to the location where some state, x, has two
incoming transitions with a common action, a, as depicted in the LHS of the
rule in the middle of Fig. 2. Then the matched portion is replaced with the RHS
of the rule (on the right of the figure) which deletes action a from the transitions
and makes it the entry action of state x. The negative application conditions
(NACs, on the left of Fig. 2) prevent the rule from being applied when state x
already has an entry action (NAC1) or when there are more than two incoming
transitions to it (NAC2)1. The transformation is executed by applying the rule
RF to the given state machine G until it can no longer be applied, resulting in
a new state machine H; we symbolize this as G

RF=⇒ H.
FoldEntry is the simplest type of model transformation – it takes only a single

model and produces a single model; however, more complex transformation signa-
tures are possible. For example, Fig. 1(b) shows the signature of SMmatch (imple-
mentation not shown) that takes two state machines as input as produces a model
relationship (i.e., a mapping) between them as output. In the rest of this paper,
we illustrate transformation reuse scenarios using these example transformations.

3 Reuse from Programming Languages

In this section, we describe reuse mechanisms that are well understood for pro-
grams and were adapted for model transformations.
1 The general case allows moving the action if it is present in all incoming transitions

but we limit it to two transitions for simplicity.
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3.1 Subtyping

In this section, we discuss model transformation reuse through subtyping.
Subtyping is common a reuse mechanism defined through programming type

theory [19]. For example, Int is a subtype of Real, so any function written to
accept Reals should also work for Ints. The simplest form of subtyping seman-
tically defines a subset of values. This is the case with Int and Real. A more
sophisticated form of subtyping is called coercive subtyping. Here, one type can
count as a subtype of another if there exists an implicit type conversion func-
tion. For example, using an Int expression directly in a print statement may be
possible by coercing the Int into a String using a conversion.

The adaption of simple subset-based approaches for model subtyping to sup-
port transformation reuse has been studied. Given a transformation F : T → T ′,
if we know that another type S is a subtype of T then F should be reusable for
inputs of type S. Generally speaking, this works whenever an S model contains
all information that F relies on to operate correctly. Interestingly, S need not
be a subset of T and we illustrate this below. With model types, we require a
relation S <: T between metamodels (metamodel of a type is indicated by bold
font) that ensures that S is a subtype of T .

Kuehne [14,15] has studied the subtype relation from a theoretical perspec-
tive. Several works provide practical definitions for the subtype relation. Steel
[31] was the first to propose a set of syntactic matching rules between metamod-
els. To maximize reuse, Sen et al. [28,29] recognized the importance of identifying
the effective model type of a transformation: the minimal subset of the elements
of the input metamodel that is needed for the transformation to function cor-
rectly. They present an algorithm for deriving effective model types through
static analysis of a model transformation’s code. In later work, Guy et al., [12]
improved on Steel’s matching rules as well as defining a number of variants of
the subtype matching relationship (which they call isomorphic model subtyping).
Non-isomorphic sub-typing allows the definition of an explicit model adaptation
function to translate instances of S into instances of T. Of particular interest
are bi-directional model adaptations. The paper further distinguishes (on a sep-
arate dimension) total and partial sub-typing. Total subtyping corresponds to
the usual case. Partial subtyping allows the subtype to reuse only a subset of
transformations by satisfying the subtyping relation only for the effective model
types of these transformations.

To illustrate transformation reuse through simple subtyping, consider the
state machine metamodels shown in Fig. 3. We define subtyping matching rules
as follows: S <: T iff (1) all component (i.e., element, attribute and edge) types
in S are also found in T; and (2) the multiplicities on component types in S are
no less constraining than those in T.

Rule (1) means that S models have all components of T models but may have
more. Rule (2) means that the number of occurrences of components in S models
conforms to the constraints on the number of occurrences of these components
allowable in T models. The intuition is that if S <: T and a transformation
written for T inputs is given an S model, it will still run since it has access to
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Fig. 3. A state machine metamodel M0 and three variants.

all component types it expects (Rule 1) and the number of occurrences of these
components it expects (Rule 2).

If we check these rules on Fig. 3, we find that M1 is a valid subtype of M0
while neither M2 (violates Rule (2) on number of transition actions) nor M3
(violates Rule (2) on number of start states) are valid subtypes of M0. Indeed,
our example transformation FoldEntry (written for M0) works for M1 models but
not for M2 models because the rule (see Fig. 2) assumes at most a single transition
action and will behave unpredictably when faced with multiple transition actions.
Interestingly, FoldEntry would work correctly on an M3 model despite that fact
that it violates the subtyping rules. This is because it doesn’t “care” about
the number of start states. This points to a weakness of the simple subtyping
approach – it is overly conservative and may disallow reuse for transformations
that can tolerate specific violations.

Coercive Model Subtyping. The existing work on model subtyping focuses
on a simple notion of subtype in which the subtype can be directly substituted
for the supertype in a transformation. In our work [10], we have developed the
more general notion of coercive model subtyping.

Definition 1 (Coercive Model Typing System). A model typing system is
coercive iff it contains a distinguished subset of unary operators called conversion
operators satisfying the following properties:

1. For every type T , the identity operator idT : T → T defined as ∀x ∈ T ·
idT (x) = x is a conversion operator.

2. For every pair F : T → T ′ and G : T ′ → T ′′ of conversion operators, the
sequential composition (F ;G) : T → T ′′ is a conversion operator.

In any coercive subtyping scheme, there may be different sequences of conver-
sions that can lead from one type to another. Thus, a set of conversion functions
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Fig. 4. A coercive subtyping scenario.

is desired to be coherent, i.e., yielding the same outcome regardless of which con-
version sequence is taken. In general, coherence is defined for pairs F : T → T ′,
G : T → T ′ of conversion transformations, requiring that F is behaviorally
equivalent to G, that is, ∀x : T · F (x) = G(x).

For example, in Fig. 4 we show the three model types from Fig. 3. Type M1
is related to M0 by the subtyping relation discussed above, and FoldEntry is
shown as taking M0 both as input and output. In addition, the transformation
ComposeActions takes M2 models as input and produces M0 models. The trans-
formation composes the set of actions on each transition into a single combined
action. The dashed ovals are used to indicate that this is a designated conver-
sion transformation, to be used for type coercions. Specifically, this means that
FoldEntry can be used directly with inputs of type M2 because the coercion
system will precompose it with ComposeActions. Coherence is not an issue in
this small example since there is only one way coerce M2 into M0. This exam-
ple illustrates how coercive subtyping can allow for more transformation reuse
opportunities than simple subtyping alone. In fact, simple subtyping can be
viewed as a special case of coercive subtyping where the conversion transforma-
tion is automatically generated from the subtyping relation. In the case of M1,
this means that the conversion retypes FinalState elements as State elements.

We have implemented a coercive model typing system within our type-
driven interactive model management tool called Model Management INTer-
active (MMINT ) [10]. The tool assists the user in reusing transformations by
providing a dynamically generated list of usable transformations for a given
input model by computing all possible coercions using conversion transforma-
tions. In addition, runtime checking for coherence is performed by ensuring that
all possible coercion paths produce the same output for the given input.

3.2 Mapping

In this section, we show how the map (sometimes called fold) operator provided
in many modern programming languages to reuse functions for collections such
as lists can also allow the reuse of transformations in MDE [24].

A megamodel [3] is a kind of model that is used to represent collections of
models and their relationships at a high level of abstraction. Here the nodes
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Fig. 5. Mapping FoldEntry and then SMmatch over the megamodel CarControl of
state machines.

represent models, and edges represent relationships between the models. For
example, the bottom left box in Fig. 5 is the megamodel CarControl of state
machine models in a hypothetical automotive system. Megamodels are used in
the activity of Model Management [2] – a field that has emerged to help deal with
the accidental complexity caused by the proliferation of models during software
development.

The usual behaviour of the map operation is to traverse a collection (e.g.,
list, tree, etc.) and apply a function to the value at each node in the collection.
The result is a collection with the same size and structure as the original with
the function output value at each node. For example, given the list of integers
L = [10, 13, 4, 5] and the function Double that takes an integer and doubles it,
applying map with Double to L yields the list [20, 26, 8, 10]. If the function has
more than one argument, the mapped version can take a collection (with the
same size and structure) for each argument, and the function is applied at a
given node in the collection using the value at that node in each argument in
the collection.

We have adapted this operator to allow model transformations to be reused
for megamodels [24]. Since a transformation signature is a graph, applying a
transformation to each node of a megamodel is not possible. Instead, the map
operator for megamodels applies the transformation for every possible binding
of the input part of the signature in the input megamodel(s). The collection of
outputs from these applications forms the output megamodel.

When the transformation signature consists of a single input and output
type and uses a single input megamodel which happens to be a set (i.e., no
relationships) of instances of the input type, then our map produces the same
result as a “programming language” map operator applied to a set.

However, in the general case, map is more complex and differs from the behav-
iour of the standard map. In particular,

(1) The output megamodel may not have the same structure as the input
megamodel since the structure is dependent on the output signature of the trans-
formation.

(2) The size of the output may not be equal to the size of the input. For
example, if a transformation takes two models as input and produces one as its
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output, applying map to it on a megamodel with n models will produce as many
as n × (n − 1) output models since each pair of input models may be matched
in a binding. At the other extreme, if no input models form a binding then the
output will be the empty megamodel.

(3) When there are multiple input megamodels, each binding of the input
signature is split across the input megamodels in a user-definable way.

(4) When the transformation is commutative (i.e., the order of inputs does
not affect the result), we want to avoid replication in the output due to isomor-
phic bindings.

Some of these principles are illustrated in Fig. 5 showing the use of map to
first apply FoldEntry and then SMmatch to megamodel CarControl. Mapping
FoldEntry binds to each of the four state machines in CarControl and produces a
new megamodel CarControl′ with corresponding refactored state machines. Then
mapping SMmatch over CarControl′ binds it to every pair of state machines to pro-
duce CarControl′′. Although there are twelve possible ways to bind the inputs of
SMmatch to the content of CarControl′, the result shows only four relationships.
This is because SMmatch is commutative (eliminating six possible bindings), and
only four of the remaining six applications produced a non-empty result.

We have implemented map for megamodels in our MMINT model manage-
ment tool [10] along with two other common operators: filter for extracting
subsets of a megamodel satisfying a given property and reduce for aggregat-
ing the models in a megamodel using a given model merge transformation. We
have shown that many common model management scenarios can be accom-
plished using these three operators in different combinations. The details are
given in [24].

3.3 Other Approaches

Generic programming [18] is a technique in which parts of a concrete algorithm
are abstracted as parameters to an abstract algorithm. This way, the same algo-
rithm can be reused in many contexts with minimal variation. A classical exam-
ple is an abstract Sort routine that can sort any type of object as long as it
implements a lessThan operator.

De Lara et al. [7] and Rose et al. [21] proposed an idea they call model con-
cepts. The idea of this model transformation reuse approach, inspired by generic
programming, is to first define an abstract version of a transformation on a
generic metamodel that represents the minimal context in which the transfor-
mation could possibly be defined. Then the transformation can be reused for
specific concrete metamodels by mapping the concrete metamodel to the generic
metamodel and using this mapping to automatically specialize the abstract
transformation.

4 Novel Reuse Mechanisms

In this section, we describe reuse mechanisms that were created specifically for
model transformations.
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Fig. 6. Example washing machine controller product line W .

4.1 Lifting

In this section, we discuss the approach of reusing transformations for different
products within a software product line.

Software Product Line Engineering (SPLE) is an approach to manage large
sets of software product variants. This is done by modelling explicitly the vari-
ants’ commonalities and variabilities as a single conceptual unit [4]. Most existing
transformations (refactoring, code generation, etc.) are developed for individual
product models, not taking SPLE variability constructs into account.

Consider the example product line W for washing machine controllers, shown
in Fig. 6. W is an annotative product line [5,13,22], defined using three parts:

(a) The feature model defines the set of features in W . Specifically, it defines
three optional features that can be added to a basic washing machine: Heat adds
hot water washing, Dry adds automatic drying, and Delay adds the ability to
delay the start time of the wash. In addition, the feature model defines relation-
ships between features, which determine the set of valid configurations ρ of W ,
denoted by Conf(W ). In W , Heat and Delay are mutually exclusive (shown by
the Excludes constraint), and so ρ1 ={Wash, Heat, Dry}, ρ2 ={Wash, Dry}
and ρ3 ={Wash} are some of its valid configurations. Formally, the seman-
tics of the feature model of W is a propositional formula ΦW over the feature
variables [6], specifically the formula ΦW =Wash∧ ¬(Heat∧Delay).

(b) The domain model of W is a UML state machine which specifies that
after initiating and locking the washer, a basic wash begins or a waiting period
is initiated, either for heating the water or for a delayed wash. Then the washing
takes place, followed, optionally, by drying. If drying or heating was used, the
clothes are cooled and the washer is unlocked, terminating the process.

(c) Depending on which of the features have been selected, only some parts
of this process are available. The propositional formulas in boxes throughout the
domain model indicate the presence conditions [5] for different model elements,
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i.e., the configurations of features under which the element is present in a prod-
uct. For example, the transition from Locking to Waiting is only present if
Heat or Delay is selected; it is guarded by heatingEnabled and has action
HeaterOn() only when Heat is selected, while it is guarded by delayEnabled
only if Delay is selected. A particular product can be derived from W by setting
the variables in the presence conditions according to some valid configuration
and discarding any elements for which the presence condition evaluates to false.
For example, the product derived using only the feature Wash will go through
the states Locking, Washing and Unlocking, while the product derived using the
features Wash and Dry will go through the states Locking, Washing, Drying
and Unlocking.

In [23], we proposed a method of lifting transformations, in order to make
them variability-aware. The method applies to arbitrary transformations and
model-based product lines. Adapting a transformation R, such as the one in
Fig. 2, so that it can be applied to product lines, such as W , results in its lifted
version, denoted by R↑. Applying R↑ to a source product line should result in a
target product line with the same set of products as it would if R were applied
separately to each product in the source product line. Formally:

Definition 2 (Correctness of lifting). Let a rule R and a product line P be

given. R↑ is a correct lifting of R iff (1) for all rule applications P
R↑
=⇒ P ′,

Conf(P ′) = Conf(P ), and (2) for all configurations ρ in Conf(P ), M
R=⇒ M ′,

where M is derived from P , and M ′ is derived from P ′ under ρ.

Transformations are lifted automatically, i.e., no manual changes are required
to enable them to apply to entire product lines. Instead, we reinterpret the
semantics of the transformation engine. Lifting is described in detail in [23].
Here, we illustrate it by applying the lifted version R↑

F of the rule in Fig. 2 to the
example product line W . The result is shown in Fig. 7, with shading indicating
changed presence conditions. There are two matching sites for the rule: K1 is the
match on the two incoming transitions to state Washing with common action
wash.Start() and K2 matches on the incoming transitions to state UnLocking
with common action QuickCool().

Given a matching site, the first step is to check the applicability condition,
i.e., to make sure that at least one product can be derived from W such that the
non-lifted transformation can be applied at K. For example, there is no valid
configuration of W that contains the entire matching site K2 since QuickCool()
cannot appear on both incoming transitions to Unlocking at once. Therefore,
even though there exists a match, the lifted rule is not applied.

For K1, the applicability condition is satisfied only in those products that
have Wash, Delay and not Heat. This is because when Heat is selected, the
entry action TempCheck() occurs, and this triggers NAC1, so the rule is not
applicable. Since Delay and Heat are mutually exclusive, the configurations of
W that satisfy the above condition are uniquely characterized by the formula
Φapply =Delay. In other words, the transformation is applicable for those con-
figurations where Φapply is true. Thus, elements added by the transformation,
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Fig. 7. The result of applying the lifted rule R↑
F from Fig. 2 to the product line W in

Fig. 6.

i.e., the new entry action wash.Start() for state Washing, should have Φapply

as their presence condition, i.e., Delay. Conversely, elements deleted by the
transformation should only be deleted in configurations where Φapply is true and
kept for others. Thus, the presence condition of the action on the transition
out of Locking when Delay is changed to ¬Φapply, i.e., to ¬Delay. Similarly,
the presence condition of the one out of Waiting becomes Heat∧¬Φapply, i.e.,
Heat∧¬Delay. The resulting domain model is shown in Fig. 7.

Lifting has been implemented for transformations expressed in the
Henshin graph transformation language [1], using the Z3 SMT solver [9] to do the
applicability condition checks. Moreover, we have lifted a subset of DSLTrans, a
full-fledged model transformation language that combines graph-rewriting with
advanced language constructs and is rich enough to implement real-world trans-
formations [17]. Using the lifted version of the DSLTrans engine, we were able
to execute an industrial-grade model transformation of product lines from the
automotive domain [11].

4.2 Aggregating

In this section, we discuss the approach of reusing transformation fragments to
create transformations with variability, and show how variability-based transfor-
mation can reuse intermediate execution artifacts [32,33].

While lifting addresses variability at the transformation’s inputs and out-
puts, aggregating helps capture and leverage variability in the transformation
itself. We distinguish two points in time where variability in transformations is
encountered: (a) during transformation creation, and (b) during transformation
execution.

When building large transformation systems to perform tasks such as refac-
toring and code generation, developers often end up creating rules that are sim-
ilar but different to each other. SPLE techniques offer a typical solution for
effectively managing and maintaining such sets of transformation rules, repre-
senting them in a single conceptual artifact. Individual variants can then be
obtained by configuring this artifact. We illustrate this using the example of a
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Fig. 8. Variability-based transformation R̂F , encoding two refactoring variants:
foldEntry, shown in Fig. 2, and foldExit, shown in the bottom.

team that wants to create a transformation system for refactoring UML state
machines. Among other refactorings, the team wants to create the transforma-
tion foldEntry, described in Sect. 2, that moves common actions on incoming
transitions to a state into the entry action for the state. The team also wants
to create the transformation foldExit, that moves common actions on outgoing
transitions from a state into the exit action for the state. The two transforma-
tions are similar enough to be considered variants of each other. In order to reuse
their common parts, the team can thus employ SPLE techniques to create the
transformation R̂F in Fig. 8, expressed using the annotative approach described
in Sect. 4.1. Its feature model defines two mutually exclusive features: foldEntry
and foldExit. The two variants are then encoded using presence conditions on
the elements of the domain model of R̂F . Configuring R̂F for ρ1 = {foldEntry}
results in the transformation foldEntry, shown in Fig. 2, whereas configuring
it for ρ2 = {foldExit} results in the transformation foldExit, shown at the
bottom of Fig. 8.

SPLE techniques thus allow developers to reuse model fragments across trans-
formation variants at creation time. For example, the pattern made up of the
states x, x1, x2 is reused in both variants encoded by R̂F . Transformations with
variability, such as R̂F , are called variability-based transformations.

However, variability can be also leveraged at transformation execution time.
To motivate the need for this, consider an aggregate rule such as R̂F used
with an arbitrary input. In order to execute R̂F , each variant must be matched
and applied individually, using the classic graph-rewriting approach. Effectively,
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executing an aggregate transformation requires configuring all variants and
applying them individually. “Plain” SPLE of transformations thus addresses
the concern of maintainability, without offering any benefits to performance.

In [33], we proposed a technique that lifts the execution of variability-based
transformations. The technique applies a variability-based transformation rule
R̂, such as R̂F , to an input model G without variability. The result should be
an output model H, also without variability, that would be the same as if the
variants encoded by R̂ had been individually applied to G, ordered from largest
to smallest. Formally:

Definition 3 (Correctness of Aggregation). Let a variability-based trans-

formation rule R̂ and a model G be given. It holds that G
R̂=⇒ H is isomorphic

to Trans(Flat(R̂),G), where: (a) G
R̂=⇒ H is the set of direct applications of R̂

to G, (b) Flat(R̂) is a function that produces the set R of classical rules that is
encoded by R̂, partially ordered based on the implication of their presence con-
ditions, and (c) Trans(R, G) is a function that applies a set of partially ordered
classical rules R to G.

The direct application of R̂F on an input state machine works in three steps.
First, application sites for the base rule are determined. The base rule comprises
all parts of R̂F without annotations, that is, nodes x1, x2, and x without their
adjacent edges. Consequently, all combinations of three states in the input state
machine are application sites for the base rule. Second, configurations are enu-
merated systematically, which allows augmenting the original application sites
with the variant-specific nodes and edges, yielding full matches. A full match for
the foldEntry variant would bind its two edges, in addition to the node bindings
of a base application site. Third, these full matches are filtered to yield largest
ones. Since both variants of R̂F are equally large, this set is trivial to obtain.
Applying R̂F at all of these largest matches yields the set of direct applications.
Note that the NACs of R̂F cannot be evaluated incrementally. Since their par-
tial checking would lead to false negatives, they have to be checked on the full
matches after the second step (systematic enumeration of configurations).

This application process can offer considerable performance savings since it
considers shared patterns just once. In the case of R̂F , first binding the state
nodes without considering their interrelating edges may produce a potentially
large set of base matches that have to be extended individually. In more sizable
examples, the benefit of considering large common patterns becomes more sig-
nificant. In our experiments on larger rule sets, we were able to show speed ups
between a factor of 4 and 158 [32].

Aggregate rules such as R̂F do not have to be created from scratch. They can
also be derived automatically, using a technique called rule merging. Rule merg-
ing takes a set of rules, identifies similar variants among these rules and unifies
each set of variants into an aggregate rule. In the example, R̂F is the result of
merging the FoldEntry and FoldExit rules. To create R̂F , the common state
nodes from these rules are unified, whereas variant-specific edges and attributes
are annotated with presence conditions using names derived from the input rules.
The details for this process are described in [32].
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We have implemented variability-based rules and their application as an
extension to the Henshin model transformation language [1]. In addition, in our
recent work [34], we have devised a tool environment to address the usability of
variability-based rules. As known from the SPLE domain, the use of annotative
representations poses challenges at design time. Rules with annotations tend to
be larger and contain a greater amount of visual information, which may impair
their readability. Editing presence conditions manually might also give rise to
an increased proneness to errors. Inspired by the paradigm of virtual separation
of concerns [13], our tool environment allows users to view and edit the variants
expressed in an aggregate rule individually, allowing us to mitigate these issues.

4.3 Other Approaches

Some other novel approaches to model transformation reuse focus on composing
transformations either by chaining [36] or by weaving transformation specifica-
tions more invasively [37]. More recently, De Lara et al. [8] have defined a way
of reusing transformations across families of related domain-specific modeling
languages by specifying the transformation at the meta-modeling level used to
define these languages. Kusel et al. [16] provide a good overview and empirical
evaluation of some of these approaches.

5 Discussion and Future Directions

We have explored two perspectives on model transformation reuse: one the one
hand, program reuse techniques can be adapted for model transformations; on
the other hand, MDE offers opportunities for novel reuse techniques that leverage
the specific affordances of its higher level of abstraction. For each perspective,
we have discussed two such approaches: subtyping and mapping, and lifting and
aggregating, respectively.

How can these two perspectives guide research in the area of model transfor-
mation reuse, as well as program reuse in general? Reflection on the four reuse
approaches presented in this paper points us to some directions.

Transformation Intent. Since transformations are specialized programs, any
attempt to study transformation reuse must answer the question: how is trans-
formation reuse different from or similar to program reuse? Programs are clearly
more general and thus more complex. But transformations, being Unix-like in
the sense that they are typically intended for a one-step “task”, typically have
clearly identified intents. We observe that the preservation of intent is a common
and central concern for all reuse techniques presented here: (1) subtyping aims
to preserve intent when applied to subtypes of the original input/output model
types of the transformation, (2) mapping aims to have the same intended effect
to a collection of models, (3) lifting affects a set of variants in the same way,
while (4) the main goal of aggregation is to preserve the intent of individual
sub-structures of transformations. In this last case, intent is in fact explicitly
captured in the aggregate rule’s feature model. We have investigated the effect
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of intent for subtyping-based reuse in [26]. We are currently developing a general
strategy for analyzing the soundness and completeness of a given transformation
reuse mechanism with respect to the preservation of transformation intent [25].

Domain Specificity. Progress in model transformation reuse research can also
be achieved by considering the specific requirements for reuse in different soft-
ware engineering disciplines. The techniques presented earlier follow this pat-
tern. Specifically, subtyping and mapping are reuse techniques inspired by the
requirements for reuse in the field of model management [2]; lifting and aggre-
gating specifically tackle issues arising from the need to model variability and
make extensive use of software product line theory [20]. New reuse strategies can
therefore be identified by combining model transformations with the concerns
of other software engineering disciplines. An excellent recent work in this direc-
tion is from Juan De Lara et al. [8], where domain-specificity is used to reuse
transformations defined at the meta-modeling level.

Adapting MDE Techniques to Programs. Some of the special-purpose tech-
niques developed for model transformation reuse can be ported back to the world
of programming languages. For example, Christian Kästner and his colleagues
(see, e.g., [35]) extended static and dynamic program analysis techniques to
handle programs with variability. Yet correctness of the approach needs to be
established for each extension. It would be tremendously exciting to be able to
lift a variety of program analyses (with minimal modifications to their imple-
mentations!) developed for individual projects to apply to product families.

A Parting Thought. Interdisciplinary research can yield interesting insights
and we hope we have demonstrated it somewhat in the exciting field of model
transformation reuse.
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Abstract. A Software Product Line (SPL) is a set of similar pro-
grams generated from a common code base. Delta Oriented Programming
(DOP) is a flexible approach to implement SPLs. Efficiently type check-
ing an SPL (i.e., checking that all its programs are well-typed) is chal-
lenging. This paper proposes a novel type checking approach for DOP.
Intrinsic complexity of SPL type checking is addressed by providing early
detection of type errors and by reducing type checking to satisfiability
of a propositional formula. The approach is tunable to exploit automati-
cally checkable DOP guidelines for making an SPL more comprehensible
and type checking more efficient. The approach and guidelines are for-
malized by means of a core calculus for DOP of product lines of Java
programs.

1 Introduction

A Software Product Line (SPL) is a set of similar programs, called variants, with
a common code base and well documented variability [6]. Delta-Oriented Pro-
gramming (DOP) [5,18,19] is a flexible transformational approach to implement
SPLs. A DOP product line is described by a Feature Model (FM), a Configura-
tion Knowledge (CK), and an Artifact Base (AB). The FM provides an abstract
description of variants in terms of features: each feature represents an abstract
description of functionality and each variant is identified by a set of features,
called a product. The AB provides language dependent code artifacts that are
used to build the variants: it consists of a base program (that might be empty or
incomplete) and of a set of delta modules, which are containers of modifications
to a program (e.g., for Java programs, a delta module can add, remove or mod-
ify classes and interfaces). The CK connects the code artifacts in the AB with
the features in the FM (thus defining a mapping from products to variants): it
associates to each delta module an activation condition over the features and
specifies an application ordering between delta modules [19]. DOP supports the
automatic generation of variants based on a selection of features: once a user
selects a product, the corresponding variant is derived by applying the delta
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modules with a satisfied activation condition to the base program according to
the application ordering.

DOP is a generalization of Feature-Oriented Programming (FOP) [4,9,22]:
the artifact base of a FOP product line consists of a set of feature modules
which are delta modules that correspond one-to-one to features and do not con-
tain remove operations. Hence FOP product line development always starts from
base feature modules corresponding to mandatory features. Instead, DOP allows
to use arbitrary code as a base program. For example, the base program can
be empty and different variants can be used as base delta modules with pair-
wise disjoint activation conditions [20]. Therefore, DOP supports both proactive
SPL development (i.e., planning all products/variants in advance) and extrac-
tive SPL development [15] (i.e., starting from existing programs). Moreover (see,
e.g., [5]), the decoupling between features and delta modules allows to counter
the optional feature problem [13], where additional glue code is needed in order
to make optional features to cooperate properly. Due to the additional flexibility,
in DOP it is more challenging than in FOP to efficiently type check a product
line [5]. Type checking approaches for DOP have already been studied [5,8], and
implemented [1] for the ABS modeling language [12]. Although these approaches
do not require to generate any variant, they involve an explicit iteration over the
set of products, which becomes an issue when the number of products is large
(a product line with n features can have up to 2n products).

In this paper we propose a novel type checking approach for DOP by build-
ing on ideas proposed for FOP [9,22]. Our approach represents an achievement
over previous type checking approaches for DOP [5,8] since it provides earlier
detection of some type errors and does not require to iterate over the set of prod-
ucts. Like the techniques in [9,22], our approach requires to check the validity
of a propositional formula (which is a co-NP-complete problem) and can take
advantages of the many heuristics implemented in SAT solvers (a SAT solver can
be used to check whether a propositional formula is valid by checking whether
its negation is unsatisfiable)—[9,22] report that the performance of using SAT
solvers to verify the propositional formulas for four non-trivial product lines
was encouraging and that, for the largest product line, applying the approach
was even faster than generating and compiling a single product. Moreover, our
approach is designed to be tunable to take advantage of automatically check-
able DOP guidelines that make a product line more comprehensible and type
checking more efficient. We formalize the approach and guidelines by means of
Imperative Featherweight Delta Java (IFΔJ) [5], a core calculus for DOP
product lines where variants are written in an imperative version of Feather-
weight Java (FJ) [11].

Section 2 introduces an example that will be used through the paper and
recalls IFΔJ. Section 3 introduces two DOP guidelines (no-useless-operations
and type-uniformity). Section 4 gives a version of the approach tuned to exploit
type-uniformity. Section 5 outlines a version that exploits no guidelines. Section 6
proposes other guidelines. Section 7 discusses related work. Section 8 concludes
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the paper by outlining planned future work. Proofs of the main results and a
prototypical implementation are available in [2] (currently only the version of
the approach in Sect. 4 is supported).

2 Model

In this section we introduce the running example of this paper and briefly recall
the IFΔJ [5] core calculus. A product line L consist of a feature model, a con-
figuration knowledge, and an artifact base. In IFΔJ there is no concrete syntax
for the feature model and the configuration knowledge. We use the following
notations: L.features is the set of features; L.products specifies the products
(i.e., a subset of the power set 2L.features); L.activation maps each delta mod-
ule name d to its activation condition; and L.order (or <L, for short) is the
application ordering between the delta modules. Both the set of valid products
and the activation condition of the delta modules are expressed as propositional
logic formulas Φ where propositional variables are feature names ϕ (see [3] for a
discussion on other possible representations):

Φ :: = true | ϕ | Φ ⇒ Φ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ.

As usual, we say that a propositional formula Φ is valid if it is true for all values
of its propositional variables. To avoid over-specification, the order <L can be
partial. We assume unambiguity of the product line, i.e., for each product, any
total ordering of the activated delta modules that respects <L generates the
same variant. We refer to [5,16] for a discussion on an effective means to ensure
unambiguity.

The running example of this paper is a version of the Expression Product
Line (EPL) benchmark [17] (see also [5]) defined by the following grammar
which describes a language of numerical expressions:

Exp ::= Lit | Add Lit ::= <non-negative-integers> Add ::= Exp ‘‘+’’ Exp

Each variant of the EPL contains a class Exp that represents an expression
equipped with a subset of the following operations: toInt, which returns the
value of the expression as an integer (an object of class Int); toString, which
returns the expression as a String; and eval, which in some variants returns the
value of the expression as a Lit (the subclass of Exp representing literals) and
in the other variants returns it as an Int. The EPL has 6 products, described by
two feature sets: one concerned with data—fLit, fAdd—and one concerned with
operations —fToInt, fToString, fEval1, fEval2. Features fLit and fToInt are manda-
tory. The other features are optional with the two following constraints: exactly
one between fEval1 and fEval2 must be selected; and fEval1 requires fToString.
The EPL is illustrated in Fig. 1. The partial order L.order is expressed as a total
order on a partition of the set of delta modules. To make the example more read-
able, in the artifact base we use the Java syntax for operations on strings and
sequential composition —encoding in IFΔJ syntax is straightforward (see [5]
for examples). Note that, in the method Test.test (in the base program), the
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EPL.features = {fLit, fAdd, fToInt, fToString, fEval1, fEval2}
EPL.products = fLit ∧ fToInt ∧ (fEval1 ⇒ fToString) ∧ (fEval1 ∨ fEval2) ∧ ¬(fEval1 ∧ fEval2)

EPL.order = {dAdd} <L {d notTostr, dAdd notTostr} <L {dEval1, dEval2}
EPL.activation = dAdd → fAdd,

d notTostr → (¬fToString), dAdd notTostr → (fAdd ∧ ¬fToString),
dEval1 → fEval1, dEval2 → fEval1

// Base program
class Exp extends Object { // To be used only as a type (i.e., not to be instantiated)
Int toInt() { return new Int(); }
String toString() { return ””; }

}
class Lit extends Exp {
Int val;
Lit setLit(Int x) { this.val=x; return this; }
Int toInt() { return this.val; }
String toString() { return this.val.toString(); }

}
class Test extends Object {
String test(Exp x) { return x.eval().toString(); }

}
// Delta Modules
delta dAdd {
adds class Add extends Exp {
Exp a; Exp b;
Int toInt() { return this.a.toInt().add(this.b.toInt()); }
String toString() { return this.a.toString() + ”+” + this.b.toString(); }

}
}
delta d notTostr {
modifies class Exp { removes toString; }
modifies class Lit { removes toString; }

}
delta dAdd notTostr { modifies class Add { removes toString; } }
delta dEval1 { modifies class Exp { adds Lit eval() {return (new Lit()).setLit(this.toInt());} } }
delta dEval2 { modifies class Exp { adds Int eval() {return this.toInt();} } }

Fig. 1. Expression Product Line: FM (top), CK (middle), AB (bottom)

expression x.eval() has type Lit if feature fEval1 is selected (for this reason
feature fEval1 requires feature fToString) and type Int otherwise.

In the following, we first introduce the IFJ calculus, which is an imperative
version of FJ [11], and then we introduce the constructs for variability on top of
it. The abstract syntax of IFJ is presented in Fig. 2 (top). Following [11], we use
the overline notation for (possibly empty) sequences of elements: for instance
e stands for a sequence of expressions. Variables x include the special variable
this (implicitly bound in any method declaration MD), which may not be used
as the name of a method’s formal parameter. A program P is a sequence of
class declarations CD. A class declaration class C extends C′ { AD } comprises
the name C of the class, the name C′ of the superclass (which must always be
specified, even if it is the built-in class Object), and a list of field and method
declarations AD. All fields and methods are public, there is no field shadowing,
there is no method overloading, and each class is assumed to have an implicit
constructor that initializes all fields to null. The subtyping relation <: on classes,
which is the reflexive and transitive closure of the immediate subclass relation
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P ::= CD Program

CD ::= class C extends C { AD } Class
AD ::= FD | MD Attribute (Field or Method)
FD ::= C f Field
MD ::= C m(C x) {return e; } Method
e ::= x | e.f | e.m(e) | new C() | (C)e | e.f = e | null Expression

L ::= FM CK AB Product Line

AB ::= P Δ Artifact Base

Δ ::= delta d { CO } Delta Module

CO ::= adds CD | removes C | modifies C [extends C ] { AO } Class Operation
AO ::= adds AD | removes a | modifies MD Attribute Operation

Fig. 2. Syntax of IFJ (top) and of IFΔJ (bottom)

(given by the extends clauses in class declarations), is assumed to be acyclic.
Type system, operational semantics, and type soundness for IFJ are given in [5].

The abstract syntax of the language IFΔJ is given in Fig. 2 (bottom). An
IFΔJ program L comprises: a feature model FM , a configuration knowledge
CK, and an artifact base AB. Recall that we do not consider a concrete syntax
for FM and CK and use the notations L.features,L.products,L.activation,
and L.order (<L for short) introduced above. The artifact base comprises a
possibly empty or incomplete IFJ program P, and a set of delta modules Δ.

A delta module declaration Δ comprises the name d of the delta module
and class operations CO representing the transformations performed when the
delta module is applied to an IFJ program. A class operation can add, remove, or
modify a class. A class can be modified by (possibly) changing its super class and
performing attribute operations AO on its body. An attribute name a is either
a field name f or a method name m. An attribute operation can add or remove
fields and methods, and modify the implementation of a method by replacing its
body. The new body may call the special method original, which is implicitly
bound to the previous implementation of the method and may not be used as the
name of a method. The class operations in a delta module must act on distinct
classes, and the attribute operations in a class operation must act on distinct
attributes. The operational semantics of IFΔJ variant generation is given in [5].

We conclude this section with some notations and definitions. First, in the
rest of the document, we will use the term module to refer to the base program
or a delta module: we denote with p the name of the base program, and extend
L.activation by convention, stating that L.activation(p) = true. Second,
the projection of a product line on a subset S of its products is the product line
obtained by restricting the L.products formula to describe only the products in
S and by ignoring delta modules that are never activated. Third, the following
definitions introduce auxiliary structures and getters that are useful to type
check an IFΔJ product line.

Definition 1 (FCST). A Class Signature (CS) is a class declaration deprived
of the bodies of its methods, it comprises the name of the class and of its



52 F. Damiani and M. Lienhardt

superclass, and a mapping from attribute names to types. A Family Class Signa-
ture (FCS) is a more liberal version of class signature that may extend multiple
classes and associate more than one type to each attribute name. A Family Class
Signature table (FCST) is a mapping that associates to each class name C an
FCS for C. The subtyping relation <: described by an FCST can be cyclic. A
Class Signature Table (CST) is a FCST that contains only class signatures and
has an acyclic subtyping relation.

To simplify the notation, except when stated otherwise, we always assume in
the following a fixed product line L = FM CK AB. The FCST of L, denoted
by L.FCST, contains for each class C declared in AB all superclasses of C and all
types of all attributes of C. Note that the FCST of L is defined only in terms of
AB and it can be computed by a straightforward inspection of it. The FCST of
a set of IFJ programs (or of a subset of AB) is defined similarly.

Definition 2 (Getters on AB). add(C) is the set of modules that add the
class C; remove(C) is the set of modules that remove the class C; modifyWEC(C)
is the set of modules that modify the class C without changing its extends clause;
modifyAEC(C) is the set of modules that modify the class C also by changing
its extends clause; modify(C) is modifyWEC(C) ∪ modifyAEC(C); add(C.a) is the
set of modules that add the attribute C.a; remove(C.a) is the set of modules
that remove the attribute C.a; modify(C.a) is the set of modules that modify
the attribute C.a; replace(C.m) is the set of modules that modify the method C.m
without using calls to original (i.e., replace its body); and wrap(C.m) is the set
of modules that modify the method C.m by also using calls to original (i.e., wrap
its body).

Definition 3 (Getter on FM and CK). Let Φ be extended to include module
names d as propositional variables. The formula L.FMandCK � L.products ∧∧

d(d ⇔ L.activation(d)) specifies the products and binds each variable d to the
activation condition of module d (i.e., it specifies which modules are activated
for each product).1

3 Two Delta-Oriented Programming Guidelines

The first guideline is to avoid useless operations, i.e., declarations in P and adds
or modifies in Δ that introduce code that is never present in any of the variants.

G1. Ensure that the product line does not contain useless operations.

For instance, in the product line obtained by projecting the EPL on the products
described by ¬fToString, the declarations of the methods with name toString in
the base program and in the adds class operation in the delta module dAdd are
useless. The notion of useless operation is formalized as follows (thus making
Guideline G1 automatically checkable).
1 The last occurrence of d in L.FMandCK is not used as a variable: it is used as argument

of the map L.activation to obtain the activation condition of module d.
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Definition 4 (Useless operation and module). The declaration, addi-
tion or modification of an attribute C.a in a module d is useless iff the
formula (L.FMandCK ∧ d) ⇒ ∨

d′ d′ (with d′ ∈ remove(C.a) ∪ remove(C) ∪
replace(C.a) and (d <L d′)) is valid. An extends clause introduced in a class
C by a module d is useless iff the formula (L.FMandCK ∧ d) ⇒ ∨

d′ d′ (with d′ ∈
remove(C) ∪ modifyAEC(C) and (d <L d′)) is valid. A module d is useless iff
L.products ⇒ ¬L.activation(d) is valid.

The second guideline is to have consistent declarations over the whole SPL
(the FOP case-studies presented in [22] adhere to this guideline). For IFΔJ
(since IFJ has no method overloading and field shadowing), this means that two
declarations of the same attribute (of the same class) in two different modules
must have the same type.2 We call this property type-uniformity. It can be
straightforwardly formalized by exploiting the family class signature table of the
product line.

Definition 5 (Type-uniformity). A FCST FCST is type-uniform iff:

– ∀C ∈ dom(FCST),∀a ∈ dom(FCST(C)) the set FCST(C.a) is a singleton; and
– ∀C1, C2, C3 ∈ dom(FCST) such that C1 <: C2 and C1 <: C3, we have:

∀a ∈ dom(FCST(C2)) ∩ dom(FCST(C3)), FCST(C2.a) = FCST(C3.a)

An IFΔJ product line (or a subset of its artifact base, or a set of IFJ programs)
is type-uniform iff its FCST is type-uniform.

Our second guideline is thus stated as follows (and it can automatically be
checked by a straightforward inspection of the FCST).

G2. Ensure that the product line is type-uniform.

The EPL is not type-uniform, because of the method eval of class Exp, that
is added with two different types by delta modules dEval1 and dEval2, respec-
tively. Instead, both its two projections respectively described by the mutually
exclusive features fEval1 and fEval2 are type-uniform.

We say that an IFΔJ product line is variant-type-uniform to mean that: (i)
its variants can be generated; and (ii) the FCST of the set of its variants is
type-uniform. The following proposition illustrate how type-uniformity relates
to variant-type-uniformity.

Proposition 1. Let L be an IFΔJ product line such that its variants can be
generated. If L is type-uniform, then it is variant-type-uniform. If L satisfies
Guideline G1 and is variant-type-uniform, then it is type-uniform.

4 Type Checking for Type-Uniform IFΔJ

This section presents a version of the type checking approach tuned to exploit
Guideline G2 and states its correctness and completeness. Type-uniformity
makes type checking more efficient. The approach is modularized in three inde-
pendent parts: partial typing, applicability, and dependency. All the parts rely
on the FCST of the product line (see Definition 1).
2 Note that, since the type system of IFJ is nominal, a class may have different sets

of attributes in different variants.
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Product Line Partial Typing. Partial typing checks that all fields, methods
and classes in AB type-check with respect to the product line FCST (i.e., with
respect to declarations made in AB). Partial typing does not use any knowledge
about valid feature combinations (it does not use FM and CK), so it does not
guarantee that variants are well-typed, as delta modules may be activated or not.
However, it guarantees that variants that have their inner dependencies satisfied
(i.e., all used classes, methods and fields are declared) are well-typed.

The IFΔJ partial-type-system is a straightforward extension of the (stan-
dard) IFJ type system [5] that: (i) includes rules for the new syntactic con-
structs of IFΔJ; (ii) checks well-typedness with respect to the product line FCST
(instead of the program CST); and (iii) allows to introduce a same class or
attribute in different modules of AB (e.g., a class of name C may be added by
different delta modules).

The projection of the EPL described by feature fEval1 is type-uniform. Its
artifact base (which is obtained from the EPL artifact base in Fig. 1 by dropping
the delta module dEval2) is accepted by partial typing, even if the method Exp.eval

might not be available in some variant (in principle the delta module dEval1

might not be selected). This is because the way the method Exp.eval is used in
the method Test.test in the base program is correct with respect to its definition
in the delta module dEval1 (it takes no parameters and returns a Lit object).

Product Line Applicability. Applicability ensures that variants can actually
be generated (variant generation fails if, e.g., a delta module that adds a class
C is applied to an intermediate variant that already contains a class named C).
It is formalized by a constraint ensuring that, during variant generation, each
delta operation is applied to an intermediate variant on which that operation is
defined. For instance, for adding a class C, this class must not be present in the
intermediate variant (either it never was added, or it was removed at some point).
The applicability constraint comprises three validation parts: element addition
(either a class or an attribute), element removal, and element modification.

In the following we use ρ to denote either a class name C or a fully qualified
attribute name C.a. The constraint for checking that an element ρ can be added
is as follows:

appADD(ρ) �
∧

d �=d′
d ∧ d′ ⇒

∨

d′′
d′′ with

{
d, d′ ∈ add(ρ), d′′ ∈ remove(ρ)
and d <L d′′ <L d′

It ensures that all adds operations are performed on a partial variant that does
not contain the added element: basically, it requires that if two delta modules
d and d′ add the same element, then there must be another delta module d′′ in
between that removes it.

The constraint for removal of an element ρ is slightly more complex:

appRM(ρ) �
∧

d

d ⇒ (
∨

d1

d1∧
∧

d′
(d′ ⇒

∨

d2

d2)) with

{
d, d′ ∈ remove(ρ), d1, d2 ∈ add(ρ)
d1 <L d <L d2 <L d′
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In comprises two parts: the first part (d ⇒ ∨
d1

) ensures that the element ρ is
added to the partial variant (by some d1) before it is removed (by d); the second
part ensures that if two delta modules d and d′ remove ρ, then there is another
delta module d2 in between that adds it.

The constraint for modification of an element ρ simply ensures that ρ is
present for the modification:

appMOD(ρ) �
∧

d

d ⇒ (
∨

d′
d′ ∧

∧

d′′
¬d′′) with

{
d ∈ modify(ρ), d′′ ∈ remove(ρ)
d′ ∈ add(ρ), d′ <L d′′ <L d

Basically, it checks that there is a delta module d′ that adds the element before it
is modified by d, and that there is no delta module d′′ in between that removes it.

The formula app(L) �
∧

ρ∈add(L) appADD(ρ) ∧ appRM(ρ) ∧ appMOD(ρ) combines
the constraints described above, and the formula ac(L) � L.FMandCK ⇒ app(L)
associates to each product of L its applicability constraints. Applicability-
consistency (i.e., the fact that variants of L can be generated) is therefore for-
malized as follows.

Definition 6 (Applicability-consistency). A product line L is applicability-
consistent iff the formula ac(L) is valid.

Product Line Dependency. Dependency ensures that no generated variant
has a missing dependency, which can be straightforwardly expressed by means
of constraints on attributes and classes. For instance, the dependencies induced
by “class C extends class C′” could be encoded with the constraint decl(C) ⇒
(decl(C′) ∧ ¬sub(C′, C)), as the declaration of C requires that the declaration of
C′ is present and that C′ is not a subtype of C (to ensure that the inheritance
graph has no loops). In DOP, since each declaration is made in a module that
can be activated or not, dependency constraints must be lifted at the module
level. For instance, if the fact that C extends C′ is declared in the module d,
then the previous constraint becomes: d ⇒ ¬rm(d, C) ⇒ ¬modifyEC(d, C) ⇒
(decl(C′)∧¬sub(C′, C)), basically stating that if the module d is activated and no
other module that removes C or changes its extends clause is activated afterward,
then the class C′ must be present in the generated variant and must not be a
subtype of C.

The product line dependency constraint is generated by exploiting the rules
in Figs. 3 and 4, which infer a dependency constraint for each expression and
declaration, respectively. It is based on the following atomic constraints: rm(d, C)
(resp. rm(d, C.a)) ensures that the class C (resp. attribute C.a) added by the delta
module d will be removed afterward; modifyEC(d, C) ensures that the class C
added or modified by the delta module d will have its extends clause modified
by another delta module afterward; replace(d, C.m) ensures that the method
C.m added or modified by the delta module d will be replaced by another delta
module afterward; sub(T, C′) ensures that T (either a class or null) is a subtype
of C′; decl(C) (resp. decl(C.a)) ensures that the class C (resp. the attribute a)
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E:Var

Γ (x) = C

Γ x : C | true

E:Field

Γ e : C | Φ FCST(C.f) = C

Γ e.f : C | Φ ∧ decl(C.f)

E:Null

Γ null : ⊥ | true

E:Meth

Γ e : C | Φ FCST(C.m) = C (C1, . . . , Cn)
Γ ei : Ti | Φi Φi = sub(Ti, Ci)

Γ e.m(e1, . . . , en) : C |
i

(Φi ∧ Φi) ∧ Φ ∧ decl(C.m)

D:New

Γ new C() : C | decl(C)

E:Cast

Γ e : T | Φ

Γ (C)e : C | Φ ∧ (sub(T, C) ∨ sub(C, T ))

E:Assign

Γ e.f : C | Φ1 Γ e : T | Φ2

Γ e.f = e : C | Φ1 ∧ Φ2 ∧ sub(T, C)

Fig. 3. Dependency generation for expressions

D:field

d, C C f : ¬rm(d, C.f) ⇒ decl(C )

D:Meth

this : C; xi : Ci e : C | Φ

d, C C0 m(C1 x1, . . . , Cn xn) {return e}
: ¬(rm(d, C.m) ∨ replace(d, C.m)) ⇒ (

i
decl(Ci) ∧ Φ ∧ sub(C , C0))

D:Class

d, C ADi : Φi

d class C extends C {AD1 . . .FDn}
: ¬rm(d, C) ⇒

i

Φi ∧ (¬modifyEC(d, C) ⇒ decl(C ) ∧ ¬sub(C , C))

D:ModMD

d, C MD : Φ

d, C modifies MD : Φ

D:AddAtt

d, C AD : Φ

d, C adds AD : Φ

D:RmAtt

d, C removes a : true
D:RmClass

d removes C : true

D:AddClass

d CD : Φ

d adds CD : Φ

D:ModClass1

d, C AOi : Φi

d modifies C {AO1 . . .AOn}
: ¬rm(d, C) ⇒

i
Φi

D:ModClass2

d, C AOi : Φi

d modifies C extends C {AO1 . . .AOn}
: ¬rm(d, C) ⇒

i
Φi ∧ (¬modifyEC(d, C) ⇒ decl(C ) ∧ ¬sub(C , C))

D:Delta

d COi : Φi

delta d {CO1 . . .COn} : d ⇒
i

Φi

D:P

true CDi : Φi Δj : Φj

Φ Δ1 . . . Δn CD1 . . .CDm :
i

Φi ∧
j

Φj

Fig. 4. Dependency generation for declarations

is present in the generated variant (resp. is an attribute of the class C, possibly
through inheritance).

Dependency generation rules for expressions perform a type analysis to know
what is the type of each expression, which is used to compute the appropriate
dependency. They have judgments of the form Γ 
 e : T | Φ, where: Γ is an
environment giving the type of each variable; e is the parsed expression; T is its
type; and Φ is the generated dependency constraint. The rules for expressions are
quite direct: accessing a variable (rule (E:Var)) does not raise any dependency,
while accessing a field requires for this field to be accessible (rule (E:Field));
method calls (rule (E:Meth)) require that the method is accessible and that the
parameters have a type consistent with the method’s declaration; object creation
requires for the class of the object to be defined (rule (E:New)); and null does not
raise any dependency (rule (E:Null)), while casting and assignment generate
constraints ensuring that the right inheritance relation holds (rules (E:Cast)
and (E:Assign)).
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Dependency generation rules for declarations have judgments of the form
Ω 
 A : Φ where Ω can either be empty, d (meaning that we are parsing the
content of the module d), or d, C (meaning that we are parsing the content of the
class C inside d); A is the parsed declaration (e.g., an attribute, a class opera-
tion); and Φ is the generated constraint. Rules (D:Field) for field and (D:Meth)
for method declarations are quite direct: if the attribute is not removed after-
ward, the dependencies it generates must be validated. The rule (D:Class) for
class declaration is similar (if the class is not removed, its inner dependencies
must be validated), with an additional clause for the extends clauses (as previ-
ously discussed). Rules (D:ModMD) for modifying methods and (D:AddAtt)
and (D:AddClass) for adding attributes and classes simply forward the con-
straints generated from the inner declaration, while removing an attribute or
a class (rules (D:RmAtt) and (D:RmClass)) does not generate any depen-
dency. The rules (D:AddClass1) and (D:AddClass2) for modifying a class
are simple variations on the rule for class declaration. Finally, the dependen-
cies of a delta module body are activated only if the delta module is activated
(rule (D:Delta)), and the dependencies of a whole program is the conjunc-
tion of the dependencies of all its parts (rule (D:P)). The resulting constraint
thus has the form

∧
i di ⇒ Φi, giving for all module di its dependencies Φi. Let

then dep(L) be the constraint generated for the product line L. The formula
dc(L) � L.FMandCK ⇒ dep(L) associates to each product of L its dependency
constraints. Dependency-consistency (i.e., variants of L have all their dependen-
cies fulfilled) is therefore formalized as follows.

Definition 7 (Dependency-consistency). A product line L is dependency-
consistent iff the formula dc(L) is valid.

Correctness and Completeness of the Approach. The following theorem
states that, if the product line follows Guideline G2, then the presented IFΔJ
product line type checking approach is correct with respect to generating variants
and checking them using the IFJ type system. The approach is complete (i.e.,
if the check performed by the approach fails then at least one variant is not a
well-typed IFJ program) if also Guideline G1 is followed.

Theorem 1. Let L be a type-uniform product line. Consider the properties:

i. L is well partially-typed, applicability- and dependency-consistent.
ii. Variants of L can be generated and are well-typed IFJ programs.

Then: (i) implies (ii); and if L has no useless operations then (ii) implies (i).

5 Type Checking for IFΔJ Without Guidelines

In this section we outline how the type checking approach presented in Sect. 4
can be tuned to non type-uniform product lines (i.e., not to exploit any guide-
lines). This modification is quite straightforward, although it involves many
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technical details. Partial typing must be adapted since the product line FCST
maps attribute names to sets of types with possibly more than one element, and
expressions can have more than one type. E.g., a method call expression e.m(e′)
can use any declaration of the method C.m (considering that e is typed C) whose
type accepts a combination of types of the call’s arguments. So partial typing
may carry a combinatorial explosion.

Applicability does not need any modification to analyze non-uniform pro-
grams. This is due to the fact that the applicability criteria focuses on the
interplay between delta operations and do not consider attribute types.

Dependency is the part that changes more: it now has to be type-aware, and
thus subsumes partial typing. We illustrate it on the rule that generates the
dependency for field usage (second rule in Fig. 3). This rule must be extended
in two ways to manage non-uniform programs: (i) e can have more than one
type; (ii) the field type lookup FCST(C.f) can return different possible types for
C.f, depending on which modules are activated. Consequently, the dependency
generation judgment for expressions now has the form Γ 
 e : [Φi �→ Ti]i∈I

where Ti are the possible types of e, and Φi is the condition (i.e. which module
must or must not be activated) for e to have the type Ti in the final product.

Γ � see : Φi �→ Ci]i ∪ [Φi′ �→ ⊥]i′FCST(Ci.f) = [Φi,j �→ Ci,j ]j

Γ � see. : [Φi ∧ Φi,j �→ Ci,j ]i,j

Hence, the rule becomes
as displayed on the right,
where Φi,j is the formula that enforces that the field f accessible from the class
Ci has the type Ci,j in the final product.

Correctness and completeness are stated as in Theorem 1 by dropping the
assumption that the product line is type-uniform.

6 Three Other Guidelines

Our type-checking approach is modularized in three parts: (i) partial typing
performs a preliminary type analysis that can be exploited by an IDE for prompt
notification of type-errors and auto-completing code; (ii) applicability ensures
that variants can be generated; and (iii) dependency completes the analysis done
by the partial typing. The approach is tunable to exploit DOP guidelines that
enforce structural regularities in product line implementation. In Sect. 4 we have
presented a version tuned to exploit type-uniformity. In this section we briefly
discuss three other automatically checkable guidelines (other useful guidelines
could be devised).

First, whenever it is possible to enforce the following guideline (satisfied by
the EPL), the dependency analysis can be simplified, as it is no longer needed to
check the absence of inheritance loop in the generated variant (cf. dependency
generation for class declaration and modification in Fig. 4).

G3. Ensure that the product line FCST subtyping relation is acyclic.

If a product line cannot be made variant-type-uniform, then guideline G2
cannot be enforced (see Proposition 1), and understanding the structure of the
SPL may become an issue. The following guideline (satisfied by the EPL) aims at
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helping the understanding of an SPL implementation by decoupling the sources
of non type-uniformity.

G4. Ensure that, for all distinct modules d1 and d2, if the set comprising d1 and
d2 is not type-uniform then their activation conditions are mutually exclusive.

Consider for instance a module d that declares an attribute C.a with a type t.
Then, if the SPL follows G3, we are sure that each variant using d in its con-
struction will have C.a typed t when it contains this attribute.

We introduce our final guideline with the following consideration: imple-
menting or modifying a product line involves editions of the feature model, the
configuration knowledge and the artifact base that may affect only a subset of
the products. For example, adding, removing or modifying a delta module d and
its activation condition will affect only the products that activate d. Therefore,
only the projection of the product line on the affected products needs to be
re-analyzed. If such a projection is type-uniform, then the more efficient type
checking technique of Sect. 4 can be used (even if the whole product line is not
type-uniform). The following guideline naturally arises.

G5. (i) Ensure that the set of products is partitioned in such a way that: each
part S is type-uniform (i.e., the projection of the SPL on S is type uniform),
and the union of any two distinct parts is not type-uniform.
(ii) If the number of parts of such a partition is “too big”, then merge some
of them to obtain a “small enough” partition where only one part is not
type-uniform.

The goal of this guideline is to allow to use as much as possible the version of the
approach presented in Sect. 4. For the EPL the partition that satisfies Guideline
G5.i is unique: the two products with feature fEval1 and the four products with
feature fEval2. However, in general, such a partition may be not unique and
tool support for identifying a partition that satisfies G5.i and further conditions
(e.g., having a minimal number of parts) or G5.ii and other conditions (e.g., the
number of products in the non type-uniform part is as small as possible) would
be valuable.

7 Related Work

Product line analysis approaches can be classified into three main categories [23]:
Product-based analyses operate only on generated variants (or models of vari-
ants); Family-based analyses operate only on the AB by exploiting the FM and
the CK to obtain results about all variants; Feature-based analyses operate on
the building blocks of the different variants (feature modules in FOP and delta
modules in DOP) in isolation (without using the FM and the CK) to derive
results on all variants. We refer to [23] for a survey on product line type check-
ing. Here we discuss previous type checking approaches for DOP [5,8] and the
two approaches for FOP that are closets to our proposal [9,22].
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The type checking approach for DOP in [5] comprises: a feature-based analy-
sis that uses a constraint-based type system for IFJ to infer a type abstraction for
each delta module; and a product-based step that uses these type abstractions to
generate, for each product of the SPL, a type abstraction (of the associated vari-
ant) that is checked to establish whether the associated variant type checks. The
approach of [5] is enhanced in [8] by introducing a family-based step that builds a
product family generation tree which is then traversed in order to perform opti-
mized generation and check of type abstractions of all variants. The approach
proposed in this paper, which is feature-family-based, represents an achievement
over [5,8] since it does not require to iterate over the set of products (cf. Sect. 1)
and supports earlier detection of errors via partial typing.

The paper [22] informally illustrates the implementation of a family-based
approach for the AHEAD system [4]. The approach comprises: (i) a family-
feature-based step that computes for each class a stub (all stubs can be under-
stood as a type-uniform FCST for the product line) and compiles each feature
module in the context of all stubs (thus performing checks corresponding to our
type-uniformity and partial-typing); and (ii) a family-based step that infers a
set of constraints that are combined with the FM to generate a formula (corre-
sponding to our type-uniform applicability and dependency) whose satisfiability
should imply that all variants successfully compile.

The paper [9] formalizes a feature-family-based approach for the Light-
weight Feature Java (LFJ) calculus, which models FOP for the Light-
weight Java (LJ) [21] calculus. The approach comprises: (i) a feature-based
step that uses a constraint-based type system for LFJ to analyze each feature
module in isolation and infer a set of constraints for each feature module; and
(ii) a family-based step where the FM and the previously inferred constraints
are used to generate a formula whose satisfiability implies that all variants type
check. The applicability and dependency analyses presented in Sect. 5 provide an
extension to DOP of these two steps. Moreover, our approach provides partial
typing for early error detection and is tunable to exploit different programming
guidelines.

8 Conclusions and Future Work

We have proposed a modular and tunable approach for type checking DOP
product lines. A prototypical implementation is available [2] (currently only the
version of the approach exploiting type-uniformity is supported).

In future work we plan to: implement our approach for both DeltaJ 1.5 [14]
(a prototypical implementation of DOP that supports full Java 1.5) and ABS [12]
(this would allow experimental comparison with the approaches of [5,8], which
have been implemented for ABS [1]); to develop case studies to evaluate the
effectiveness of the approach and of the proposed guidelines; to investigate fur-
ther DOP guidelines; and to develop tool support to allow the programmer to
choose the guidelines to be automatically enforced. We also plan to investigate
whether the proposed DOP guidelines (or other guidelines) could be useful for
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other kind of product line analyses. In particular, we would like to consider for-
mal verification (proof systems for the verification of DOP product lines of Java
programs have been recently proposed [7,10]).
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about how to classify SPL type checking approaches. We also thank the iFM 2016
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21. Strnǐsa, R., Sewell, P., Parkinson, M.: The Java module system: core design and
semantic definition. In: 2007 Proceedings of OOPSLA, pp. 499–514. ACM (2007)

22. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines.
In: Proceedings of GPCE 2007, pp. 95–104. ACM (2007)
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Abstract. Safety-Critical Java (SCJ) is a version of Java suitable for
programming real-time safety-critical systems; it is the result of an inter-
national standardisation effort to define a subset of the Real-Time Spec-
ification for Java (RTSJ). SCJ programs require the use of specialised
virtual machines. We present here the result of our verification of the
scheduler of the only SCJ virtual machine up to date with the stan-
dard and publicly available, the icecap HVM. We describe our approach
for analysis of (SCJ) virtual machines, and illustrate it using the icecap
HVM scheduler. Our work is based on a state-rich process algebra that
combines Z and CSP, and we take advantage of well established tools.

Keywords: Java · SCJ · Circus · Process algebra · FDR

1 Introduction

There has been an international effort to make Java and its Runtime Envi-
ronment (RTE) suitable for safety-critical systems. All proposed extensions to
Java have an associated Java Specification Request (JSR), a Reference Imple-
mentation (RI) and a Technology Compatibility Kit (TCK). The Safety-Critical
Java (SCJ) specification (JSR 302) is an Open Group Standard [20], based on a
subset of the Real-Time Specification for Java (RTSJ) [35]. It defines Java ser-
vices designed for applications requiring certification. It replaces Java’s memory
model with support for memory regions [34], and its execution model is based
on missions and event handlers with a predictable scheduler.

The goal of an RI is to demonstrate the feasibility of implementing a proposed
JSR and to illustrate its impact on the standard Java RTE. The RI for JSR 302
consists of the addition of the javax.safetycritical package and a modified
JVM. Together these make up the SCJ RTE.

The TCK is a suite of test programs that check that an implementation
conforms to a JSR. The SCJ TCK, when available, will provide a degree of
confidence in the correctness of an SCJ RTE. It is unlikely, however, that this will
be adequate for systems with the highest certification level. For SCJ to become
a viable technology, certified runtime environments must become available.
c© The Author(s) 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 63–78, 2016.
DOI: 10.1007/978-3-319-33693-0 5
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The constraints embedded in the SCJ design makes programs amenable
to formal analysis. Schedulability analysis techniques [3] can be used to pro-
vide evidence that programs meet their deadlines. Ongoing effort to support
development, validation, and verification of SCJ programs has already produced
results [6,7,16,24,33]. The work presented here uses formal methods to increase
confidence and provide evidence that an SCJ RTE satisfies its requirements.

SCJ programs cannot run on a standard JVM; they require specialised sup-
port for memory regions and preemptive priority-based scheduling. The SCJ
RI is under development and will be based on JamaicaVM [18]. To our knowl-
edge, there are currently five SCJVM (virtual machines that support SCJ): Fiji
VM [28], icecap HVM (Hardware near Virtual Machine) [32], Ovm (Open Virtual
Machine) [1], HVMTP [21] and PERC Pico [2,29]. Of these, Fiji VM and Ovm
are not specific for SCJ, PERC Pico does not conform to the current version of
SCJ, and HVMTP is based on the icecap HVM.

As far as we know, the only SCJVM that is up to date with the SCJ standard
and publicly available is the icecap HVM. Here, we consider the verification of its
single-processor scheduler, a core component of an SCJVM. We present a formal
model, and establish some of its properties by model checking and theorem
proving. This is part of a larger effort to produce a completely verified SCJ RTE.
We also present the general approach to construct and analyse formal models of
an SCJVM that we use in the verification of the icecap HVM scheduler.

An identification of requirements for an SCJVM and an associated formal
model are presented in [4]. The modelling uses Circus [26], a state-rich process
algebra that combines Z and CSP. Circus is a notation for refinement and can
be used to compare the requirements in [4] with models of implementation.

In our work, we use Circus processes to specify components of the icecap tools
and their integration. Circus has an extension to deal with object-orientation [5];
it is helpful here, since the icecap tools are implemented in Java. We pursue a
close match to the implementation structure to provide accurate low-level Circus
models. In our approach, the Circus processes define the boundaries of each
component of an SCJVM implementation, and their dependencies. Due to the
compositionality of refinement, we can analyse these components in isolation.
We tackle here a central component of an SCJVM, the scheduler, and identify
the assumptions it makes about management of SCJ processes.

In summary, our contributions in this paper are a modelling and analysis
technique tailored for an SCJVM, and its application to the scheduler of the
only up to date SCJVM publicly available. The discussion of the technique sum-
marises the lessons we have learned in carrying out this case study. In addition,
the Circus model itself is of interest for documentation of the icecap tools and for
fostering reuse of the icecap scheduler in the implementation of other SCJVMs.

Next, we present background material for our work: SCJ and the icecap tools,
and Circus. Section 3 describes our modelling approach. Sections 4 and 5 present
our scheduler model and its analysis. We consider related work in Sect. 6, and
conclude in Sect. 7 considering also future work.
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2 Preliminaries

We present SCJ and the icecap tools in Sect. 2.1, and Circus in Sect. 2.2.

2.1 SCJ and the Icecap Tools

SCJ places restrictions on the features of Java that can be used, and defines
different scheduling and memory models. SCJ has three compliance levels of
increasing complexity; the icecap tools support all levels.

An SCJ program is structured as a series of missions, executed sequentially
in an order determined by a program-supplied mission sequencer. Each mission
manages various schedulable objects: asynchronous event handlers (at levels 0
and 1), and real-time threads and nested mission sequencers (at level 2). A
mission execution goes through several phases shown in Fig. 1. First, each of the
schedulable objects and any data that may be required for the duration of the
mission are initialised. Afterwards, the mission runs until requested to terminate,
and then each of the schedulable objects are terminated, any required cleanup
is performed, and the mission sequencer runs the next mission.

Start HaltMission
Cleanup

Mission
Execution

Select
Mission Initialization

Mission

MissionSequencer

Fig. 1. A diagram showing the phases of mission execution

Asynchronous event handlers can be released periodically at set intervals or
aperiodically in response to software requests. Schedulable objects are managed
by a priority-based preemptive scheduler. Priority ceiling emulation, whereby a
thread has its priority elevated upon taking a lock, prevents problems arising
from priority inversion in locking [35]. Support for multiprocessor systems allows
schedulable objects to be associated with allocation domains that define the
processors in which they are allowed to run.

The icecap tools target embedded systems and precompiles Java bytecode
to C, in addition to supplying a lightweight bytecode interpreter. The running
of SCJ programs is supported by an implementation of the SCJ API, tightly
coupled to the SCJVM. The API implementation and the code that supports it
are written in Java, with only the most low-level components written in C and
assembly. In the scheduler, only the task of process switching is written in C and
assembly, with the code to determine which process should run written in Java.

The structure of the scheduler implementation is shown in Fig. 2. The sched-
uler is triggered by the clock interrupt handler, a singleton instance of Clock-
InterruptHandler, which implements the interfaces InterruptHandler and
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Fig. 2. UML class diagram showing the classes that make up the icecap HVM scheduler

Runnable. A process executing the run() method of the ClockInterrupt-
Handler instance is created when the clock interrupt handler is initialised. Upon
receiving a clock interrupt, the icecap HVM calls the clock interrupt handler’s
handle() method, which switches to the clock interrupt handler’s process. The
clock interrupt handler then calls the scheduler’s getNextProcess() method.

The scheduler itself is an instance of PrioritySchedulerImpl, which calls
the move() method of PriorityScheduler to choose the next process. The
move() method wakes any sleeping processes that have passed their wake-up
time and pops the next process from a priority queue of processes that are ready
to run. The work of switching to the new process is then performed via a native
method call to the low-level virtual machine (written in C, rather than Java).

In Sect. 4, we present a model of this scheduler: a network of Circus processes
interacting with the SCJ API implementation and the operating system.

2.2 Circus

Circus [26] is a formal notation that combines the style for data modelling of the
Z [36] notation with that for process specification of CSP [17,30]. Like a CSP
model, a Circus specification defines processes that communicate over channels,
but that, unlike CSP processes, may contain internal state defined in Z. The
internal state is encapsulated so that it can only be updated and accessed via
communication on the channels of the process.

A Circus process is defined as a series of Z paragraphs and Circus actions,
which are written using a combination of CSP constructs and Z operations. The
process definition ends with a main action that defines the behaviour of the
process using the actions defined previously in the process. Most CSP operators
can be used in Circus actions, including external and internal choice, parallel
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Table 1. A summary of the Circus notation used in this paper

Operator Circus Symbol

Prefixing of signal on channel c to action A c −→ A

Prefixing of input on c of value x to A c?x −→ A

Prefixing of output on c of value of expression e to A c!e −→ A

Guarding of A with predicate g g � A

Termination Skip

External choice of actions A and B A � B

Sequential composition of A and B A ; B

Interrupt of A by B A� B

Parallel composition A and B synchronising on the
intersection of channel sets cs1 and cs2

A cs1||cs2 B

Parallel interleaving of A and B A � B

Hiding of channel set cs in A A \ cs

composition, sequential composition, and the interrupt operator. Additionally,
Circus includes assignment, if statements, loops, and variable declarations, as well
as permitting the use of Z schema data operations in Circus actions. Processes
can also be combined using CSP operators: parallelism, hiding, and so on.

Circus has several extension, to cater for time, mobility, synchronicity and so
on. Here, we use classes, included the object-oriented extension OhCircus [5].

A detailed account of Circus can be found in [26]. Examples are presented in
Sect. 4. Table 1 summarises the action notation that we use here.

3 Verification Approach

In this section, we present our approach to verification of an SCJVM. This
arises from previous experiences on modelling and verification of large existing
systems [9–11]. It is, however, tailored for the needs of a VM and of an SCJVM, in
particular. In this respect, this is our distillation of the lessons learned in applying
Circus to reason about the icecap HVM and its scheduler. The application of the
approach presented here to the scheduler is the subject of the next section.

Our technique, first of all, creates a model for a piece of code implementing
a VM or a component of a VM, like a scheduler, written in any imperative or
object-oriented language. Having identified the modules or classes that imple-
ment the component, our approach to modelling is in three phases: (a) data,
(b) control-flow, and (c) integration modelling. These are described below.

a. Define a Z Data Model.i In this phase, we formalise the data types used in the
program, via the four steps below. The data types may be in the program in one
of three forms: types available in the programming language, types available via
a library, like the collection API of Java, or just as pieces of data not necessarily
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identified as a data type in the program. For the latter, identification of data
types in the model is a matter of convenience for verification.

1. Define the state to capture the variables used in the program, creating appro-
priate datatypes where necessary.

2. Capture invariants that are expected. These are properties of the data model
we expect the program to satisfy, even if not explicitly checked (but see b.4).

3. Define the procedures (methods, functions, and so on) of the program that
manipulate the data types defined above.

4. Identify their error cases and totalise the data operations. We use theorem
proving to reveal the preconditions of the operations, and extend the model
to totalise those whose precondition are not just true.
By modelling errors to totalise the operations, we achieve a better under-
standing of the data types of the program. Its precise behaviour, which may
not include checking error conditions, is captured in the next phase.

The model may be seen as a suggestion for improving the code structure (like
error checking). Information from the environment of the component may also
need to be identified as a type whose values are communicated in channels.

b. Capture the Control Flows Through the VM. Using the Z model, we construct
a Circus model following the steps below. Roughly, each module (that is, a class,
in the case of a Java program) is modelled by a Circus process or class, and its
procedures by actions and methods in Circus.

1. Define channels corresponding to the services of the component. For each
provided or internal service, we define a pair of channels to model calls and
returns of invocations. For each required external service, we have a single
channel, because we do not model its behaviour.

2. Use processes and classes to capture the modular structure of the program. A
Java class should be modelled by an OhCircus class, if it includes only passive
methods, that is, methods that can be modelled using only data operations
without the use of channel communications, and by a process, otherwise.

3. Define the actions for the services corresponding to the channels above. In this
step, we use the data operations defined in the previous phase, and capture
the control flows in the definition of each action.

4. Eliminate the error cases in the Z data operations that are not handled in the
code, transforming the remaining cases to guards in order to enable identifi-
cation of mistakes in use of data operations via deadlock checks. In this way,
we ensure that the model is not more robust than the code, and any invalid
assumptions about the use of the data can be revealed by analysis.

5. Define in the main action how the services are to be provided. In principle,
all actions could be combined in an external choice, so that their services are
available for use one at a time. A call graph, however, may identify services
that are needed in parallel because they are part of different lines of execution.
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c. Generate a Circus model of the component. We use the processes defined in
phase (b) to produce a model of the component as a network of processes.

1. Introduce processes to reflect the parallel design (if any) of the code.
2. Combine the various processes to define the component.

In this phase, we need to make the case that the model is closely related to the
program. The argument should explain how the program modules are reflected
in the structure of the Z data model and of processes in the network of phase (b).
We need to explain how the model can be refined back to the code, and that
needs to be relatively simple. For Java programs, a strong argument includes a
class diagram and a mapping from the Circus processes to that diagram.

A truly faithful model defines the modelled procedures of the program as
actions in Circus using programming constructs (assignments, loops, and so on)
just like in the code. For reasoning, however, it is convenient to use a predicative
specification of the procedures in Z. This is the reason for the abstraction in
phase (a), followed by the argument constructed here. As a consequence, we
catch integration problems via formal analysis, but not necessarily programming
errors. The modelling effort, however, may well reveal programming errors in
phases (a) and (b.4–5). In our case study, we found missing error checks.

With a model produced as described above, we open the possibility of the use
of a multitude of analysis techniques. We distinguish the following possibilities
as particularly useful in the case of SCJVM analysis.

1. Prove that the Circus model is deadlock free
2. Use refinement to prove more general properties.

For the icecap case study, we carry out proof of properties of the Z data model
using Z/Eves [25], and translate the Circus model to CSP to use the FDR3
model checker [14]. In the translation, we lose the expressiveness of Z, but gain
the ability to use automatic analysis of the process network.

More details about our approach to modelling and analysis are in [12].

4 Formal Model Overview

We next give an overview of our model of the icecap HVM scheduler. The com-
plete model can be found in [12, Ch. 5]; its components are shown in Fig. 3.
There is a Circus process for each Java class in Fig. 2. The environment includes
the low-level virtual machine written in C, the operating system, and other com-
ponents of the SCJVM, including the SCJ API. These components communi-
cate with the scheduler to initialise it and to obtain information. PrioScheduler ,
corresponding to the PriorityScheduler class, receives requests to move and
stop SCJVM processes from PrioSchedulerImpl . It also communicates with the
ClockInterruptHandler to enable and disable interrupts, and to register and start
the clock handler. ClockInterruptHandler communicates with PrioSchedulerImpl
to obtain the next SCJVM process to run. PrioSchedulerImpl is a bridge between
ClockInterruptHandler and PrioScheduler , using services of PrioScheduler to
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Fig. 3. SCJ VM components

determine the next process. ClockInterruptHandler also sends requests to trans-
fer between processes to the low-level virtual machine.

Next, we describe how our model is obtained using the approach in the previ-
ous section. In phase (a), we define a Z data model. The most interesting types
come from the class PriorityScheduler. Its state (a.1) has four parts: (i) the
current time, the identifier of a ClockInterruptHandler, and a reference to an
unique instance of PriorityScheduler itself ; (ii) the references to the processes
managed by the scheduler; (iii) the scheduling queues containing the processes
that are ready, sleeping/blocked, locked/waiting, and so on; and (iv) the SCJ
event handlers managed by the scheduler. The managed processes are identified
by unique elements of a set PID of identifiers used by the operating system.

The managed event handlers are modelled by the schema HandlerSet . It con-
tains PID sets representing the different categories of handlers: periodic (peh),
aperiodic (aeh), and one shot (oseh), as well as sets of allocated (meh) and
free (freeHS ) handlers. It also includes a dummy identifier idle, used to avoid
management of empty queues: it is queued, when the ready queue is emptied.

HandlerSet
peh, aeh, oseh,meh, freeHS : P PID
idle : PID

idle ∈ peh ∧ 〈peh, aeh, oseh〉 partition meh
〈meh, freeHS 〉 partition PID

The state invariant (a.2) establishes that the idle process is a periodic event
handler, and that the allocated managed event handlers partition the different
categories. Similarly, all values in PID correspond to managed processes: the
allocated (meh) and free (freeHS ) identifiers partition PID .

The methods corresponding to HandlerSet operations are captured as Z oper-
ations (a.3). They are simple and involve adding and removing various handlers
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from the corresponding sets, for example. Proving that the state invariant is pre-
served by these operations shows whether or not they are feasible. This is part
of the totalisation process (a.4) that identifies error conditions to be dealt with.
For example, there are operations in the scheduler that take a handler as input.
There is, however, no check in the code that the input is a handler managed by
the scheduler. This is an example of where we have uncovered possible issues, or
hidden assumptions, of the code through modelling and proof.

In phase (b), the SCJVM-specific control-flow is captured using Circus
processes. We cater for the scheduling-specific features. For illustration, we
describe below theCircus basic process representing thePriorityScheduler class.

To identify the services (b.1), we perform a call-graph analysis of the non-
private methods and create corresponding channels. As shown in Fig. 3, the
scheduler interacts with the SCJ API and the operating system. A path in the call
graph involving the public method transfer is as follows. Although transfer is
a method of Process, because we model Process as a data type, conceptually,
we regard transfer as a method of ClockInterruptHandler.

ClockInterruptHandler.run, PrioritySchedulerImpl.getNextProcess,
ClockInterruptHandler.disable, PriorityScheduler.move,
PriorityScheduler.stop, ClockInterruptHandler.transfer

The path above is part of a line of execution (and is public). So, we have a
channel transfer corresponding to uses of this service. The types of the channels
depend on the associated method’s parameter and return types.

We follow a naming convention to identify what method call and return we are
capturing. For instance, the channel KPSreleaseCall represents the package (K )
method of the PriorityScheduler class (PS ) named release that is being called.
Public methods follow a similar naming, and private methods are represented
with subsidiary actions, so there are no channels associated with them.

As already mentioned, for each class of the scheduler, we define a
process (b.2). In defining actions (b.3), we also take advantage of the call
graph. As an example, we present below the action for the release method.

Release =̂ KPSreleaseCall?apeh−→
PCIHdisableCall −→ PCIHdisableRet−→
(preReleaseHandler � ReleaseHandler);
PCIHenableCall −→ PCIHenableRet−→

KPSreleaseRet −→ Skip

It is triggered by a call via KPSreleaseCall , and concludes with a synchronisa-
tion on KPSreleaseRet . Its body contains a call to disable followed by a data
operation ReleaseHandler of HandlerSet and by a call to enable. The precondi-
tion pre ReleaseHandler of ReleaseHandler is used as a guard (b.4); the input
apeh is used in ReleaseHandler and its guard pre ReleaseHandler .

Another example is the action SCJStop corresponding to the method Stop.
It takes an input curr , with the guard curr �= nullpid , which corresponds to the
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precondition of the method.

SCJStop =̂ KPSstopCall?curr : (curr �= nullpid)−→
PVMtransfer !curr !mainProcess−→

KPSstopRet −→ Skip

The input curr is passed on, along with the state component mainProcess corre-
sponding to an inherited field of the class PriorityScheduler, to the lower-level
virtual machine using a channel PVMtransfer .

To conclude phase (b), we identify the services of the API that are provided
in choice and in interleaving (b.5). Following the structured indicated in Fig. 3,
we define that the PriorityScheduler API has three separate groups, which
we name SCJApi , SCJRTE , and CIHApi , containing services provided to the
SCJ infrastructure, the runtime environment and the ClockInterruptHandler.
The three groups of services are combined in interleaving, with each of its con-
stituent services in external choice. Thje choice is external, since it provides to
the environment of the PriorityScheduler (see Fig. 3) the choice of which service
to execute. The interleaving defines an action Run.

CIHApi =̂ Move � SCJStop
SCJRTE =̂ Start � Release � AddOuterMostSeq · · ·
SCJApi =̂ GetHWPrio � GetPrio

Run =̂ SCJApi � SCJRTE � CIHApi

In the main action of PriorityScheduler , which is distinguished below by a
preceding • symbol, after an initialisation using an action Init , another action
Execute uses Run to provide the services of the scheduler.

Catch =̂ PCIHcatchError?e −→ Skip
Execute =̂ Run � Catch
• Init ; Execute

Low-level (VM) exceptions might interrupt the control flow. These exceptions
may occur as a result of user-code runtime exceptions, VM-generated excep-
tions from environmental assumption violations (like out of memory), or residual
design errors. They are indicated via a channel PCIHcatchError as defined in
the action Catch, used in Execute to define the possible interruption of Run.

Finally, in phase (c) we define the Circus processes network linking together
all processes representing classes from Fig. 2; it is as follows.

process IcecapVM =̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ClockInterruptHandler CihPsInterface
‖
PrioScheduler PSIInterface
‖
PrioSchedulerImpl ScjPInterface
‖
ScjProcess ScjInterface

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

\ csSCJRTE
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Channel sets CihPsInterface, PSIInterface, ScjPInterface, and ScjInterface are
defined to include all channels used in each process. A final set containing the
internal channels identified in (b.1) is used in a hiding: csSCJRTE above.

5 Evaluation

The icecap classes PrioScheduler and ClockInterruptHandler are modelled as
processes. For other infrastructure classes, like PriorityFrame, for example, only
a data model is provided, because their provided services are support operations
over such data, rather than active lines of execution or SCJ provided services.

The icecap Java code associated with the component in Figs. 2 and 3 amounts
to about 1600 lines of code. Following the modelling technique in Sect. 3, and
illustrated in Sect. 4, we obtain a Circus model presented in its entirety in [12].
There, we also find Z/Eves proofs of the totalisation of various Z schema oper-
ations, as well as a CSP version of the Circus model used for refinement and
deadlock freedom checks. Table 2 provides a summary of numbers of definitions
and proofs, to provide an overall total of 755. The nature of the actual proofs
using Z/Eves and FDR3 is discussed in the sequel.

Table 2. Summary of all Circus declarations.

Z Declarations Total Circus Declarations Total

Unboxed items 84 Channel declarations 51

Axiomatic definitions 28 Channel set declarations 13

Generic axiomatic definitions 2 Process declarations 12

Schemas 77 Actions 83

Generic schemas 1

Theorems 202

Proofs 202

5.1 Z/Eves Proofs

We have used the CZT tools [23]1 to develop the Circus model. These tools
include Circus as an extension of Z within its Eclipse interface. CZT also inte-
grates the Z/Eves theorem prover [31] and its proof language as an extension.

Within CZT, we have typeset (in LaTEX), typechecked and proved well-
formedness conditions of the whole model. This involves theorems about func-
tions being applied within their domain, axiomatic definitions soundness, type
non-emptiness, and so on. These proofs ensure that the model is consistent.

1 See also http://czt.sourceforge.net.

http://czt.sourceforge.net
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The CZT tools also have a verification-condition generator for Z and Circus.
These include well-formedness checks (for instance, functions are called within
their domains), and other consistency checks like feasibility of Z schema opera-
tions and race-freedom of Circus parallel actions. We have performed mechanised
proofs in Z/Eves of each of these generated verification conditions.

Of greater interest are the (21) precondition proofs: they are directly related
to the totalisation of operations as described by our approach (a.4). It is useful
to discover the various conditions to feature in the Circus model as guards for
communications. As explained, this introduces deadlocks whenever they are not
satisfied. Other proofs are for well-formedness (12) and various lemmas (169)
about involved types to make the precondition proofs viable.

5.2 FDR Refinement Checks

The Circus model is translated to CSP for automatic analysis using FDR3 [14]: a
powerful refinement checker for CSP enabling automatic checking for deadlock
and livelock freedom, as well as other properties of interest.

The translation strategy from Circus to CSP is beyond the scope of this
paper; details about it can be found in [27]. It involves representing the Z data
model within FDR’s rich functional language, whereas the Circus CSP constructs
are almost in one-to-one correspondence with those of CSP-M. Access to process
state is done via channel communication and appropriate parallelism with its
corresponding process main action representation in CSP.

Details about this translation for the icecap HVM scheduler model can be
found in [12]. Key decisions about data abstraction and simplification of type
domains are necessary to avoid state explosion. Even so, FDR can handle quite
complex processes and enabled us to perform important consistency checks.

We have checked for deadlock and livelock freedom the processes related
to components in Figs. 2 and 3. As expected, deadlock counterexamples occur
on either events external to the components, for example, required services from
the operating system, or failed precondition proofs modelled as CSP guards. The
required services are for handling exceptions thrown by design or at runtime. The
guards highlight hidden assumptions the icecap HVM scheduler code makes. For
instance, the priority scheduler implicitly expects all processes to be known to
the scheduler, and yet we can call the scheduler with “rogue” processes.

The CSP model has 540 lines excluding comments, and contains 4 top-level
processes with a total of around 100 implicitly declared processes through let
expressions. We use such expressions to encode Circus actions as well as state. We
are still working on the process network to deal with complex state invariants,
and prove more specific properties of a scheduler and of SCJ.

6 Related Work

There are other works on verification of real-time schedulers. Ferreira et al. [8]
have worked on formal verification of the FreeRTOS scheduler using Hip/Sleek.
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They use separation logic to verify memory safety as the FreeRTOS scheduler
uses a lot of pointers, which make the use of more traditional formal verification
techniques difficult. In our work, memory safety is partially guaranteed by Java’s
memory model and our challenges arise instead from the complex control flow
of the icecap HVM scheduler. On the other hand, it has to be shown that icecap
tools generate C code that is memory safe. This is a separate problem of compiler
correctness, which is part of our agenda for future work.

A comprehensive verification of the seL4 microkernel is reported in [19]. This
includes verification of the scheduler and other areas of the kernel, and a proof
that the binary code of the kernel correctly implements the C source code. The
verification of the functional properties of the system is machine-checked using
a C semantics in Isabelle/HOL. While we focus on the icecap HVM scheduler,
we expect that the icecap tools can be completely verified in the future.

For larger kernels, a major challenge in verification is the complex interdepen-
dency between the scheduler and the rest of the kernel. Gotsman and Yang [15]
have developed an approach for verifying such kernels modularly using separation
logic. It is also relevant to embedded systems where size and speed constraints
necessitate tight coupling between operating system components. Indeed, Klein
et al. [19] note that the call graph of seL4 shows high levels of interdependency
between components. Gotsman and Yang demonstrate their approach by verify-
ing a scheduler based on the Linux 2.6.11 scheduler.

We face similar challenges as the icecap tools also target embedded systems,
leading to tight coupling between components, but, as said before, our challenges
concern the communication between components rather than sharing of pointers.
We tackle our challenges by identifying the components and specifying their
interfaces. We define them as Circus processes and specify their interaction via
parallel networks. Compositional reasoning and refinement can then be used.

The work of Ludwich and Fröhlich [22] verifies a system-level model of a
scheduler by annotating its functions with preconditions and postconditions.
These annotations constitute a formal specification that the scheduler must fulfil,
which is checked using the C/C++ model checker CMBC. This work is perhaps
most similar to ours due to its use of preconditions and postconditions, but
our approach involves constructing a formal model from the code rather than
presenting the requirements as annotations to the code.

Finally, the great value of applying formal methods in the area of scheduling
is shown in [13], which reports a verification of the GCC scheduler using a model
in Isabelle/HOL. This effort has uncovered a bug in the GCC Itanium scheduler
that caused programs to be compiled incorrectly.

7 Conclusion

For SCJ to become a viable technology for use in safety-critical systems, certified
runtime environments are essential. The most advanced implementation of an
SCJ RTE is provided by the icecap tools. The implementation is complex. A
formal model is a major step in the development of a verified RTE for SCJ.
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Developing a formal model of existing software is a major challenge. This is
made more difficult with the SCJ RTE as we have to model both high and low-
level abstractions. We have presented an approach that produces a Circus model
for Java and C source code. Automatic construction of models is not possible,
but support can be made available for encoding Java types in Z, calculation of
preconditions of data operations, and extraction of call graphs, for instance.

Our experience with the icecap tools implementation has been largely posi-
tive. Although the code can be hard to fathom in places, we have found just a
few bugs, mainly as the result of studying the code in sufficient depth to produce
the model. There are also places where there appears to be unreachable code
and where more defensive programming techniques can be employed to catch
errors that can be introduced during development and maintenance.

Our experience with Circus has also been largely positive. The lack of process
inheritance in Circus, however, has hindered some of our efforts. For example,
for the ScjProcess class representing the abstraction for a low-level vm.Process
within the SCJ paradigm, we need the gotoNextState method, which is rede-
fined in subclasses of ScjProcess that represent periodic and aperiodic han-
dlers and so on. Since we do not have process inheritance in Circus, in our
model we have a single process ScjProcess, in which the action corresponding to
gotoNextState uses a conditional to model the dynamic binding.

Our future work includes: (1) more analysis of the scheduler, for example, to
show it always dispatches the highest priority SCJ event handler; (2) improve-
ment to the code to take into account our results; (3) the analysis of other
components of the icecap tools RTE, in particular the memory management
module; and (4) extensions of Circus with process inheritance.
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Abstract. The verification systems Boogie and Why3 use their respec-
tive intermediate languages to generate verification conditions from high-
level programs. Since the two systems support different back-end provers
(such as Z3 and Alt-Ergo) and are used to encode different high-level
languages (such as C# and Java), being able to translate between their
intermediate languages would provide a way to reuse one system’s fea-
tures to verify programs meant for the other. This paper describes
a translation of Boogie into WhyML (Why3’s intermediate language)
that preserves semantics, verifiability, and program structure to a large
degree. We implemented the translation as a tool and applied it to 194
Boogie-verified programs of various sources and sizes; Why3 verified 83 %
of the translated programs with the same outcome as Boogie. These
results indicate that the translation is often effective and practically
applicable.

1 Introduction

Intermediate verification languages (IVLs) are intermediate representations used
in verification technology. Just like compiler design has benefited from decoupling
front-end and back-end, IVLs help write verifiers that are more modular: the
front-end specializes in encoding the rich semantics of a high-level language (say,
an object-oriented language such as C#) as a program in the IVL; the back-end
generates verification conditions (VCs) from IVL programs in a form that caters
to the peculiarities of a specific theorem prover (such as an SMT solver).

Boogie [3] and WhyML [6] are prime examples of popular IVLs with differ-
ent, often complementary, features and supporting systems (respectively called
Boogie and Why3). In this paper we describe a translation of Boogie programs
into WhyML programs and its implementation as the tool b2w. As we illustrate
with examples in Sect. 3, using b2w increases the versatility brought by IVLs:
without having to design and implement a direct encoding into WhyML, users
can take advantage of some of the best features of Why3 when working with
high-level languages that translate to Boogie.
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Boogie vs. WhyML. While the roles of Boogie and WhyML as IVLs are similar,
the two languages have different characteristics that reflect a focus on comple-
mentary challenges in automated verification. Boogie is the more popular lan-
guage in terms of front-ends that use it as IVL, which makes a translation from
Boogie more practically useful than one into it; it has a finely tuned integration
with the Z3 prover that results from the two tools having been developed by
the same group (Microsoft Research’s RiSE); it combines a simple imperative
language with an expressive typed logic, which is especially handy for encoding
object-oriented or, more generally, heap-based imperative languages. In contrast,
WhyML has a more flexible support for multiple back-end provers it translates
to, including a variety of SMT solvers as well as interactive provers such as Coq;
it can split VCs into independent goals and dispatch them to different provers;
if offers limited imperative constructs within a functional language that belongs
to the ML family, which brings the side benefit of being able to execute WhyML
programs—a feature quite useful to debug and validate verification attempts.

Goals and Evaluation. The overall goal of this paper is devising a translation T
from Boogie to WhyML programs. The translation, described in Sect. 4, should
preserve correctness and verifiability as much as possible. Preserving correctness
means that, given a Boogie program p, if its translation T (p) is a correct WhyML
program then p is correct (soundness); the converse should also hold as much
as possible: if T (p) is incorrect then p is too (precision). Preserving verifiability
means that, given a Boogie program p that verifies in Boogie, its translation
T (p) is a WhyML program that verifies in Why3.

The differences, outlined above, between Boogie and WhyML and their sup-
porting systems make achieving correctness and verifiability challenging. While
we devised T to cover the entire Boogie language, its current implementation
b2w does not fully support a limited number of features (branching, the most
complex polymorphic features, and bitvectors) that make it hard to achieve
verifiability in practice. In fact, while replacing branching (goto) with looping
is always possible [9], a general translation scheme does not produce verifiable
loops since one should also infer invariants (which are often cumbersome due to
the transformation). Polymorphic maps are supported to the extent that their
type parameters can be instantiated with concrete types; this is necessary since
WhyML’s parametric polymorphism cannot directly express all usages in Boo-
gie, but it may also introduce a combinatorial explosion in the translation; hence,
b2w fails on the most complex instances that would be unmanageable in Why3.
Boogie’s bitvector support is much more flexible than what provided by Why3’s
libraries; hence b2w may render the semantics of bitvector operations incorrectly.

These current implementation limitations notwithstanding (see Sect. 4 for
details), we experimentally demonstrate that b2w is applicable and useful in
practice. As Sect. 5 discusses, we applied b2w to 194 Boogie programs of different
size and sources; most of the programs have not been written by us and exercise
Boogie in a variety of different ways. For 83 % (161) of these programs, b2w
produces a WhyML translation that Why3 can verify as well as Boogie can verify
the original, thus showing the feasibility of automating translation between IVLs.
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Tool Availability. For lack of space this paper omits some details that are avail-
able as a technical report [1]. The tool b2w is available as open source at: https://
bitbucket.org/michael ameri/b2w/

2 Related Work

Translations and Abstraction Levels. Translation is a ubiquitous technique in
computer science; however, the most common translation schemes bridge dif-
ferent abstraction levels, typically encoding a program written in a high-level
language (such as Java) into a lower-level representation which is suitable for
execution (such as byte or machine code). Reverse-engineering goes the oppo-
site direction—from lower to higher level—for example to extract modular and
structural information from C programs and encode it using object-oriented con-
structs [19]. This paper describes a translation between intermediate languages—
Boogie and Why3—which belong to similar abstraction levels. In the context of
model transformations [15], so-called bidirectional transformations [18] also tar-
get lossless transformations between notations at the same level of abstraction.

Intermediate Verification Languages. The Spec# project [4] introduced Boogie
to add flexibility to the translation between an object-oriented language and
the verification conditions. Since its introduction for Spec#, Boogie has been
adopted as intermediate verification language for numerous other front-ends
such as Dafny [13], AutoProof [21], Viper [10], and Joogie [2]; its popularity
demonstrates the advantages of using intermediate verification languages.

While Boogie retains some support for different back-end SMT solvers, Z3
remains its primary target. By contrast, supporting multiple, different back-ends
is one of the main design goals behind the Why3 system [6] Why3 also fully
supports interactive provers, which provide a powerful means of discharging the
most complex verification conditions that defy complete automation.

In all, while the Boogie and WhyML languages belong to a similar abstraction
level, they are part of systems with complementary features, which motivates this
paper’s idea of translating one language into the other.

Other intermediate languages for verification are Pilar [17], used in the
Sireum framework for SPARK; Silver [10], an intermediate language with native
support for permissions in the style of separation logic; and the flavor of
dynamic logic for object-oriented languages [16] used in the KeY system. Another
approach to generalizing and reusing different translations uses notions from
model transformations to provide validated mappings for different high-level
languages [5]. Future work may consider supporting some of these intermediate
languages and approaches.

3 Motivating Examples

Verification technology has made great strides in the last decade or two, but a
few dark corners remain where automated reasoning shows its practical limita-
tions. Figure 1 provides three examples of simple Boogie programs that trigger

https://bitbucket.org/michael_ameri/b2w/
https://bitbucket.org/michael_ameri/b2w/


82 M. Ameri and C.A. Furia

incorrect or otherwise unsatisfactory behavior. We argue that translating these
programs to WhyML makes it possible to verify them using a different, somewhat
complementary verification tool; overall, confidence in the results of verification
is improved.

Procedure not verify in Fig. 1 has a contradictory postcondition (notice
N < N, N is a nonnegative constant, and the loop immediately terminates).
Nonetheless, recent versions of Boogie and Z3 successfully verify it1. More gen-
erally, unless the complete toolchain has been formally verified (a monumental
effort that has only been performed in few case studies [11,12,14]), there is the
need to validate the successful runs of a verifier. Translating Boogie to Why3
provides an effective validation, since Why3 has been developed independent of
Boogie and uses a variety of backends that Boogie does not support. Procedure
not verify translated to Why3 (Fig. 2) does not verify as it should.

Procedures lemma yes and lemma no in Fig. 1 demonstrate Boogie’s support
for mathematical real numbers, which is limited in the way the power operator
** is handled. Boogie vacuously verifies both properties 23 > 0 and 23 < 0, even
though Z3 outputs some unfiltered errors that suggest the verification is spurious.
Why3 provides a more thorough support for real arithmetic; in fact, it verifies
the translated procedure lemma yes but correctly fails to verify lemma no.

The loop in procedure trivial inv in Fig. 1 includes an invariant asserting
that i takes only even values. Even if this is clearly true, Boogie fails to check it;
pinning down the precise cause of this shortcoming requires knowledge of Boo-
gie’s (and Z3’s) internals, although it likely is a manifestation of the “triggers”
heuristics that handle (generally undecidable) quantified expressions. However,
if we insist on verifying the program in its original form, Why3 can dispatch
verification conditions to interactive provers, where the user provides the crucial
proof steps2. Cases such as the loop invariant of trivial inv where a proof is
“obvious” to a human user but it clashes against the default strategies to handle
quantifiers are prime candidate to exploit interactive provers.

Fig. 1. Three simple Boogie programs for which automated reasoning is limited.

1 https://github.com/boogie-org/boogie/issues/25.
2 Why3 can also check the invariant automatically by relying on the CVC4 SMT

solver.

https://github.com/boogie-org/boogie/issues/25
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4 Boogie-to-Why3 Translation

Intermediate languages for verification combine programming constructs and a
logic language. When used to encode programs written in a high-level language,
the programming constructs encode program behavior, and the logic constructs
encode specifications, constrain the semantics to conform to the high-level lan-
guage’s (typically through axioms), and support other kinds of annotations (such
as triggers).

Both Boogie and WhyML provide, as logic language, a typed first-order
logic with arithmetic. Boogie’s programming constructs are a simple impera-
tive language with both structured (while loops, procedures) and unstructured
(jumps, global variables) statements. WhyML’s programming constructs com-
bine an ML-like functional language with a few structured imperative features
such as mutable variables and loops.

Correspondingly, we define a translation T : Boogie → WhyML of Boogie to
WhyML as the composition E ◦ D of two translations: D : Boogie → Boogie is a
desugaring3 which rewrites away the Boogie constructs, such as call-forall, that
have no similar construct in WhyML by expressing them using other features of
Boogie. Then, E : Boogie → WhyML encodes Boogie programs simplified by D
as WhyML programs. For simplicity, the presentation does not sharply separate
the two translations D and E but defines either or both of them as needed to
describe the translation of arbitrary Boogie constructs.

A single feature of the Boogie language significantly compounds the com-
plexity of the translation: polymorphic maps. For clarity, the presentation of the
translation initially ignores polymorphic maps. Then, Sect. 4.8 discusses how the
general translation scheme can be extended to support them.

Fig. 2. The translation to WhyML of the three Boogie programs in Fig. 1.

3 This is unrelated to Boogie’s built-in desugaring mechanism (option /print

Desugared).
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As running examples, Fig. 2 shows how T translates the examples of Fig. 1.
For lack of space, we focus on describing the most significant aspects of the
translation that are also implemented; see [1] for the missing details.

4.1 Types

Primitive Types are int (mathematical integers), real (mathematical reals),
and bool (Booleans). T translates primitive types into their Why3 analogues
as shown in Table 1.

Table 1. Translation of primitive types, and Why3 libraries supplying the necessary
operations.

Type Constructors. A Boogie type declaration using the type constructor syntax
introduces a new parametric type T. T translates it to an algebraic type with
constructor T: T ( type T a1. . .am ) = type T’a1. . .’am for m ≥ 0, where
ticks ’ identify type parameters in WhyML.

Map Types. A Boogie map type M declared as: type M = [T1, . . . Tn] U
defines the type of a mapping from T1 × · · · × Tn to U, for n ≥ 1. Why3 supports
maps through its library map.Map; hence, T (M) = map (T (T1), . . . ,T (Tn))T (U),
where an n-tuple encapsulates the n-type domain of M.

4.2 Constants

The translation of constant declarations is generally straightforward, following
the scheme:

T (const c : T) = constant c: T (T)

T expresses unique constants and order constraints by axiomatization.

4.3 Variables

Why3 supports mutable variables through the reference type ref from theory
Ref. Boogie global variable declarations become global value declarations of type
ref; Boogie local variable declarations become let bindings with local scope.
Thus, if v is a global variable and l v is a local variable in Boogie:

global variable T (var v : T) = val v: ref T (T)
local variable T (var l_v : T) = let l_v = ref (any T (T)) in

The expression any T provides a nondeterministic value of type T.
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4.4 Functions

Boogie function declarations become WhyML function declarations:

T
(
function f(x1 : T1, . . . , xn : Tn) returns (U)

)
(1)

= function f (x1:T (T1)) · · · (xn:T (Tn)): T (U)

WhyML function definitions require, unlike Boogie’s, a variant to ensure that
recursion is well-formed. Therefore, Boogie function definitions are not translated
into WhyML function definitions but are axiomatized4.

4.5 Expressions

Variables. Since a Boogie variable v of type T turns into a value v of type
ref T (T ), occurrences of v in an expression translate to v.contents, which
represents the value attached to reference v.

Map Expressions. T translates map selection and update using functions get
and set from theory Map. If m is a map of type M defined in Sect. 4.1, then:

E T (E)
selection m[e1, . . ., en] get T (m) (T (e1),. . .,T (en))
update m[e1, . . ., en := f] set T (m) (T (e1),. . .,T (en)) T (f)

Lambda Expressions. The translation desugars lambda expression into
constant maps: D(λ x1: T1, . . . ,xn: Tn• e) = lmb, where const lmb :
[T1, . . . ,Tn]τ(e) is axiomatized by axiom (∀ x1 : T1, . . . ,xn : Tn

• lmb[x1, . . . ,xn] = e), and τ(e) is e’s type.

4.6 Procedures

Boogie procedures have a declaration (signature and specification) and zero or
more implementations. The latter follow the general syntax of Fig. 3 (left). For
simplicity of presentation, p has one input argument, one output argument, and
one local variable, but generalizing the description to an arbitrary number of
variables is straightforward.

The specification of procedure p consists of preconditions requires , frame
specification modifies , and postconditions ensures . Specification elements
marked free are assumed without being checked.

T translates a generic procedure p as shown in Fig. 3 (right). The declaration
of p determines val p, which defines the semantics of p for clients: the free
precondition fR does not feature there because clients don’t have to satisfy it,
whereas both free and non-free postconditions are encoded as returns
conditions. The implementation of p determines let p_impl0 , which triggers

4 To take advantage of Why3’s well-formedness checks, we plan to offer translations
of Boogie functions to WhyML functions as a user option in future work.
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Fig. 3. Translation of a Boogie procedure (left) into WhyML (right).

the verification of the implementation against its specification: both free and
non-free preconditions are encoded, whereas the free postcondition fE does
not feature there because implementations don’t have to satisfy it. The body
introduces let bindings for the local variable l and for a new local variable u
which represents the returned value; these declarations are translated as dis-
cussed in Sect. 4.3. Then, a series of assume encode the semantics of Boogie’s
where clauses, which constrain the nondeterministic values variables can take
(Wg comes from any global variables, which are visible everywhere); p’s body B
is translated and wrapped inside an exception-handling block try, which does
not do anything other than allowing abrupt termination of the body’s execu-
tion upon throwing a Return exception (see Sect. 4.7 for details). Regardless
of whether the body terminates normally or exceptionally, the last computed
value of u is returned in the last line, and checked against the postcondition in
returns . In all, the modular semantics of Boogie’s procedure p is preserved.

4.7 Statements

Assignments. Assignments involve variables (global or local), which become
mutable references in WhyML: T (v := e) = v.contents ← T (e). Boogie
parallel assignments become simple assignments using let bindings of limited
scope:

T (v1, . . . ,vm := e1, . . . ,em) =
{
let e’1=T (e1),. . .,e’m=T (em) in

T (v1 := e’1);· · · ;T (vm := e’m) (2)

Havoc. An abstract function val havoc ():’a provides a fresh, nondeter-
ministic value of any type ’a. It translates Boogie’s havoc statements following
the scheme:

T (havoc u, v) = T (u)←havoc ();T (v)←havoc (); assume { T (Wu) }; assume { T (Wv) }
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where Wu and Wv are the where clauses of u’s and v’s declarations; the gen-
eralization to an arbitrary number of variables is obvious. It is important that
the assume statements follow all the calls to havoc : since Wv may involve u’s
value, havoc u, v is not in general equivalent to havoc u; havoc v; the
translation reflects this behavior.

Return. The behavior of Boogie’s return statement, which determines the
abrupt termination of a procedure’s execution, is translated to WhyML using
exception handling. An exception handling block wraps each procedure’s body, as
illustrated in Fig. 3, and catches an exception Return ; thus, T (return) =
raise Return .

Loops. Figure 4 shows the translation of a Boogie loop into a WhyML loop.
An invariant marked as free can be assumed but need not be checked; cor-
respondingly, the translation adds assumptions that ensure it holds at loop
entrance and after every iteration. The exception handling block surrounding
the loop in WhyML emulates the semantics of the control-flow breaking state-
ment break : T (break) = raise Break .

Fig. 4. Translation of a Boogie loop (left) into WhyML (right).

4.8 Polymorphic Maps

We now consider polymorphic map types, declared in Boogie as:

type pM = 〈α 〉 [T1, . . . ,Tn] U (3)

where α is a vector α1, . . . , αm of m > 0 type parameters, and some of the types
T1, . . . , Tn, U in pM’s definition depend on α. In the next paragraph, we explain
why polymorphic maps cannot be translated to WhyML directly. Instead, we
replace them with several monomorphic maps based on a global analysis of the
types that are actually used in the Boogie program being translated. The result
of this rewrite is a Boogie program without polymorphic maps, which we can
translate to Why3 following the rules we previously described. The shortcoming
of this approach is that it gives up modularity : verification holds only for the
concrete types that are used (closed-word assumption); this seems to be neces-
sary to express Boogie’s extremely liberal polymorphism without resorting to
intricate “semantic” translations, which would likely fail verifiability.
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Boogie Vs. WhyML Polymorphism. While WhyML also supports generic
polymorphism, its usage is more restrictive than Boogie’s. The first differ-
ence is that mutable maps cannot be polymorphic in WhyML. The second
difference is that, in some contexts, a variable of polymorphic map type in
Boogie effectively corresponds to multiple maps. Consider, for example, a
type Mix = 〈α 〉 [α]α of maps from generic α to α; Boogie accepts formulas
such as axiom (∀ m : Mix • m[0] = 1 ∧ m[true]) where m acts as
a map over int in the first conjunct and as a map over bool in the second.
WhyML, in contrast, always makes the type parameters explicit; hence, a logic
variable of type map ’a ’a denotes a single map of a generic type that can only
feature in expressions which do not assume anything about the concrete type
that will instantiate ’a.

Besides type declarations and quantifications, polymorphic maps can appear
within polymorphic functions and procedures, declared as:

function pF 〈α 〉 (x1: T1, . . . ,xn: Tn) returns (U) (4)
procedure pP 〈α 〉 (x1: T1, . . . ,xn: Tn) returns (u : U) (5)

Type Analysis. We have seen that a Boogie polymorphic map may correspond
to multiple monomorphic maps in certain contexts. The translation reifies this
idea based on global type analysis: for every item (constant, program or logic
variable, or formal argument) pm of polymorphic map type pM as in (3), it deter-
mines the set types(pm) of all actual types pm takes in expressions or assignments,
as outlined in Table 2. This in turn determines the set types(pM) as the union of
all sets types(p) for p of type pM.

The types in types(pM) include in general both concrete and paramet-
ric types. For example, the program of Fig. 5 (left) determines types(m) =
{[int]int, [β]β}, types(n) = {[bool]bool}, and types(M) = types(m) ∪
types(n), where β is procedure p’s type parameter (since p is not called any-
where, that’s the only known actual type of x). Let conc(pM) denote the set of
all concrete types in types(pM).

Fig. 5. An example of how polymorphic maps (left) translate to monomorphic (right).
Procedure p translates to 3 procedures p int, p bool, and p a, each with argument of
type int, bool, or a.
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Table 2. Each occurrence of an item pm of polymorphic map type pM determines the
set types(pm) of actual types. (x::t denotes that x has type t.)

Desugaring Polymorphic Maps. To describe how the translation replaces
polymorphic maps by monomorphic maps, we introduce a pseudo-code nota-
tion that allows tuples (in round brackets) of program elements where nor-
mally only a single element is allowed. The semantics of this notation corre-
sponds quite intuitively to multiple statements or declarations. For example, a
variable declaration var (x, y) : (int , bool) is a shorthand for declar-
ing variables x : int and y : bool ; a formula (x, y) = (3, true) is a
shorthand for x = 3 ∧ y; and a procedure declaration using the tuple nota-
tion procedure (p_int , p_bool )(x : (int , bool)) is a shorthand
for declaring two procedures p_int(x : int) and p_bool(x : bool).

We also use the following notation: given an n-vector a = a1, . . . , an and a
type expression T parametric with respect to α, Ta denotes T with ak substi-
tuted for αk, for k = 1, . . . , n. If T is a set of types obtained from the same type
expression T , such as types(pM) with respect to pM’s definition, and id is an iden-
tifier, let (T) denote T as a tuple, and (id T) denote the tuple of identifiers id t
such that Tt is the corresponding type in T. In the example of Fig. 5, if T = [α]α
then Tint = [int]int, (types(m)) = ([int]int ,[β]β), and (j types(m)) =
(j int, j β). Throughout, we also assume that an uninterpreted type ak is
available for k = 1, . . . , n, that Ma denotes the type expression [T1, . . . ,Tn] U
in (3) with each αk replaced by ak, and that conc+(pM) = conc(pM) ∪ {Ma}.

Declarations. Type declaration (3) desugars to several type declarations:

type (pM_conc+(pM))) = (conc+(pM)) (6)

The declaration of an item pm: pM, where pm can be a constant, or a program or
logic variable, desugars to a declaration (pm conc+(pM))): (conc+(pM)) of mul-
tiple items of the same kind. The declaration of a procedure or function g with an
(input or output) argument x: pM desugars to a declaration of multiple proce-
dures or functions (g conc+(pM))(x: (conc+(pM))—multiple declarations each
with one variant of x ; if g has multiple arguments of this kind, the desugaring is
applied recursively to each variant. Figure 5 (right) shows how the polymorphic
map type M and each of the items m and n of type M become 3 monomorphic
types and 3 items of these monomorphic types.
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For every polymorphic function or procedure g with type parameters β,
also consider any one of their arguments declared as x : X. If X is a type
expression that depends on β, and there exists a map type [V1, . . . ,Vn]V0

in types(pM) such that X = Vk for some k = 0, . . . , n, then g becomes
(g Vk)(x: (Vk))—corresponding to multiple g’s each with one argument,
where Vk =

{
V k | [V 1, . . . ,V n]V 0 ∈ conc+(pM)

}
is the set of all concrete types

that instantiate the kth type component. This transformation enables assigning
arguments to polymorphic maps inside polymorphic functions or procedures that
have become monomorphic. Figure 5 (right) shows how argument x: β becomes
an argument of concrete type int, bool , or a, since [β]β ∈ types(M). (As
procedure p does not use β elsewhere, we drop it from the signature.)

Expressions. Every occurrence—in expressions, as l-values of assignments, and
as targets of havoc statements—of an item w of polymorphic type W whose
declaration has been modified to remove polymorphic map types is replaced by
one or more of the newly introduced monomorphic types as follows. If w’s actual
type within its context is a concrete type C, then we replace w with w c such
that Wc = C; otherwise, w’s actual type is a parametric type, and we replace w
with the tuple (w X), including all variants of w that have been introduced.
In Fig. 5 (right), n[true] rewrites to just n_bool[true] since the concrete
type is bool ; the assignment in p’s body, whose actual type is parametric with
respect to β, becomes an assignment involving each of the three variants of m
corresponding to the three variants of p that have been introduced.

5 Implementation and Experiments

5.1 Implementation

We implemented the translation T described in Sect. 4 as a command-line tool
b2w implemented in Java 8. b2w works as a staged filter: (1) it parses and type-
checks the input Boogie program, and creates a Boogie AST (abstract syntax
tree); (2) it desugars the Boogie AST according to D; (3) it transforms the Boo-
gie AST into a WhyML AST according to E ; (4) it outputs the WhyML AST
in the form of code.

Stage (1) relies on Schäf’s parsing and typechecking library Boogieamp5,
which we modified to support access using the visitor pattern, AST in-place
modifications, and the latest syntax of Boogie (e.g., for integer vs. real division).
Stages (2) and (3) are implemented by multiple AST visitors, each taking care
of a particular aspect of the translation, in the style of [20]; the overhead of
traversing the AST multiple times is negligible and improves modularity: han-
dling a new construct (for example, in future versions of Boogie) or changing the
translation of one feature only requires adding or modifying one feature-specific
visitor class.

5 https://github.com/martinschaef/boogieamp.

https://github.com/martinschaef/boogieamp
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5.2 Experiments

The goal of the experiments is ascertaining that b2w can translate realistic Boo-
gie programs producing WhyML programs that can be verified taking advantage
of Why3’s multiple back-end support. The experiments are limited to fully-
automated verification, and hence do not evaluate other possible practical ben-
efits of translating programs to WhyML such as support for interactive provers
and executability for testing purposes.

Programs. The experiments target a total of 194 Boogie programs from three
groups according to their origin: group nat (native) includes 29 programs that
encode algorithmic verification problems directly in Boogie (as opposed to trans-
lating from a higher-level language); group obj (object-oriented) includes 6 pro-
grams that are based on a heap-based memory model; group tes (tests) includes
159 programs from Boogie’s test suite. Table 3 summarizes the sizes of the pro-
grams in each group.

Table 3. A summary of the Boogie programs used in the experiments, and their
translation to WhyML using b2w. For each program group, the table reports how
many programs it includes (#), the minimum m, mean μ, maximum M , and total Σ
length in non-comment non-blank lines of code (loc) of those Boogie programs and
of their WhyML translations.

LOC BOOGIE LOC WHYML
GROUP # m μ M Σ m μ M Σ
NAT 29 20 73 253 2110 62 128 318 3716
OBJ 6 44 146 385 878 90 208 446 1245
TES 159 3 21 155 3272 36 64 290 10180
Total : 194 3 34 385 6260 36 106 446 15141

The programs in nat, which we developed in previous work [7,8], include
several standard algorithms such as sorting and array rotation. The programs
in obj include 2 simple examples in Java and 1 in Eiffel, encoded in Boogie by
Joogie [2] and AutoProof [21] (we manually simplified AutoProof’s translation
to avoid features b2w doesn’t support), and 3 algorithmic examples adapted from
nat to use a global heap in the style of object-oriented programs. Among the
515 programs that make up Boogie’s test suite6 we retained in tes those that
mainly exercise features supported by b2w.

Setup. Each experiment targets one Boogie program b: it runs Boogie with
command boogie b and a timeout of 180 seconds; it runs b2w to translate b to
w in WhyML; for each SMT solver p among Alt-Ergo, CVC3, CVC4, and Z3,
it runs Why3 with command why3 prove -P p w, also with a timeout of 180
seconds. For each run we collected the wall-clock running time, the total number
of verification goals, and how many of such goals the tool verified successfully.

6 https://github.com/boogie-org/boogie/tree/master/Test.

https://github.com/boogie-org/boogie/tree/master/Test
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Table 4. A summary of how Boogie performs in comparison with Why3. For each
program group, the table reports how many programs it includes (#), for how many of
the programs Boogie verifies as many goals (b = w), more goals (b > w), or fewer goals
(b < w) than Why3 with any of the SMT solvers; for how many of the programs both
Boogie and Why3 verify none (0=0), some but not all (50=50), or all (100=100) of
the goals; the last column (spurious) indicates that b2w’s translation never introduces
spurious goals that are proved by Why3 (that is, if Boogie’s input has zero goals, so
does WhyML’s translation).

GROUP # B = W B > W B < W 0=0 50=50 100=100 SPURIOUS

NAT 29 19 10 0 1 0 18 0
OBJ 6 5 0 1 1 2 2 0
TES 159 137 21 1 71 21 45 0
Total: 194 161 31 2 73 23 65 0

All the experiments ran on a Ubuntu 14.04 LTS GNU/Linux box with 8-core
Intel i7-4790 CPU at 3.6 GHz and 16 GB of RAM, with the following tools: Alt-
Ergo 0.99.1, CVC3 2.4.1, CVC4 1.4, Z3 4.3.2, Mono 4.2.2, Boogie 2.3.0.61016,
and Why3 0.86.2. To account for noise, we repeated each verification three times
and report the mean value of the 95th percentile of the running times.

Results. Table 4 shows a summary of the results where we compare Why3’s
best performance, with any one of the four SMT solvers, against Boogie’s. The
most significant result is that the WhyML translation produced by b2w behaves
like the Boogie original in 83 % (161, b=w) of the experiments. This means
that Boogie may fail to verify all goals (column 0=0), verify some goals and
fail on others (column 50=50), or verify all goals (column 100=100); in each
case, Why3 consistently verifies the same goals on b2w’s translation. Indeed,
many programs in tes are tests that are supposed to fail verification; hence,
the correct behavior of the translation is to fail as well. We also checked the
failures of programs in nat and obj to ascertain that b2w’s translation preserves
correctness. Table 4 does not show this, but we also found another 2 programs in
nat where Why3 proves the same goals as Boogie only by combining the results
of multiple SMT solvers.

Boogie verifies more goals than Why3 in 16 % (31, b > w) of the experi-
ments, where it is more effective because of better features (default triggers,
invariant inference, SMT encoding) or simply because of some language features
that are not fully supported by b2w (examples are Z3-specific annotations, which
b2w simply drops, and goto , which b2w encodes as assert false to ensure
soundness). In 1 % (2, b < w) of the experiments, Why3 even verifies more goals
than Boogie. One program in obj is a genuine example where Why3’s Z3 encod-
ing is more effective than Boogie’s; the one program in tes should instead be
considered spurious, as it deploys some trigger specifications that are Boogie-
specific (negated triggers) or interact in a different way with the default triggers.
As this was the only program in our experiments that introduced clearly spuri-
ous behavior, the experiments provide convincing evidence that b2w’s translation
preserves correctness and verifiability to a large degree.
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Table 5. For each program group the table reports how many programs it includes
(#) and, for both Boogie and Why3 for each choice of SMT solver among Alt-Ergo,
CVC3, and Z3: the mean percentage of goals verified in each program (outcome μ),
how many programs were completely verified (outcome ∀), and how many were not
verified at all (outcome � ∃), the mean μ and total Σ verification time in seconds, and
how many programs timed out.

Table 5 provides data about the experiments’ running times, and differenti-
ates the performance of each SMT solver with Why3. Z3 is the most effective
SMT solver in terms of programs it could completely verify (columns ∀), fol-
lowed by Alt-Ergo. While CVC3 is generally the least effective, it has the advan-
tage of returning very quickly (only 0.2 s of average running time), even more
quickly than Z3 in Boogie. CVC4 falls somewhere in the middle, in terms both
of effectiveness and of running time. Boogie’s responsiveness remains excellent
if balanced against its effectiveness; a better time-effectiveness of Why3 with
Alt-Ergo and Z3 could be achieved by setting tight per-goal timeouts (in most
cases, verification attempts that last longer than a few seconds do not eventually
succeed).

6 Discussion

The current implementation of the translation T has some limitations that some-
what restrict its applicability. As we already mentioned in the paper, some fea-
tures of the Boogie language are not supported (bitvectors, gotos), or only par-
tially supported (polymorphic mappings); and frame specifications are assumed.
All of these are, however, limitations of the current prototype implementation
only, and we see no fundamental hurdles to extending b2w along the lines of the
definition of T in Sect. 4.

Since b2w also takes great care to confine the effect of translating Boogie
programs that include unsupported features, and to fail when it cannot produce
a correct translation, it still largely preserves correctness (soundness, in particu-
lar). On the other hand, our experiments also demonstrate that the translation
T , as implemented by b2w, largely meets the other goal of preserving verifiabil-
ity : even if the experimental subjects all are idiomatic Boogie programs written
independent of the translation effort, 83 % of the translated programs behave in
Why3 as they do in Boogie.

In future work, we will address the features of Boogie that are still not sat-
isfactorily supported by b2w. We will also devise strategies to take advantage
of Why3’s multi-prover support. Other possible directions include formalizing



94 M. Ameri and C.A. Furia

the translation to prove that it preserves correctness; and devising a reverse
translation from WhyML to Boogie.
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Abstract. The verification of probabilistic timed automata involves
finding schedulers that optimise their nondeterministic choices with
respect to the probability of a property. In practice, approaches based
on model checking fail due to state-space explosion, while simulation-
based techniques like statistical model checking are not applicable due
to the nondeterminism. We present a new lightweight on-the-fly algo-
rithm to find near-optimal schedulers for probabilistic timed automata.
We make use of the classical region and zone abstractions from timed
automata model checking, coupled with a recently developed smart sam-
pling technique for statistical verification of Markov decision processes.
Our algorithm provides estimates for both maximum and minimum prob-
abilities. We compare our new approach with alternative techniques, first
using tractable examples from the literature, then motivate its scalability
using case studies that are intractable to numerical model checking and
challenging for existing statistical techniques.

1 Introduction

Probabilistic timed automata (PTA) [17] are a popular modelling formalism for
the analysis of real-time systems. As a generalisation of timed automata (TA) [1],
they support (discrete) nondeterministic choices as well as (continuous) non-
deterministic timing with hard bounds. As a generalisation of Markov decision
processes (MDP), they additionally allow (discrete) probabilistic choices. A PTA
model can thus combine hard real-time aspects (using fixed or nondeterministic
time bounds) with soft real-time features (using probabilistically chosen delays).
PTA also permit abstraction, introducing nondeterminism to reduce the model’s
size, and allow choices between enabled events to be specified as probabilistic
if information on the frequency of their occurrence is available, or as nonde-
terministic otherwise. Examples of verification questions that can be answered
with PTA include “what is the worst-case probability of the modelled process
meeting its deadline?”, “can it terminate with probability greater than p?”, and
“is the probability to spend more than 2 s in an unsafe state greater than zero?”
c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 99–114, 2016.
DOI: 10.1007/978-3-319-33693-0 7
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All PTA verification questions include a quantification over schedulers, i.e.
over resolutions of the nondeterministic decisions: the “worst-case probability”
is the lowest probability achievable for any scheduler; when we ask whether
something “can happen with probability greater than p”, we need to find at least
one scheduler that makes the probability greater than p. The key challenge in
PTA verification thus lies in finding optimal schedulers, i.e. those that maximise
or minimise the probability for the question of interest. If all time constraints
in a PTA rely on integer bounds, optimal schedulers can be found by analysing
an MDP abstraction of the PTA’s semantics using probabilistic model checking.
Whether using regions [17], digital clocks [16] or zones [17,18] for the abstraction,
this approach inevitably fails for large models due to state-space explosion. While
the number of extra states needed to capture information about time can be
small when using zones, realistic PTA models use compact model descriptions
with a parallel composition operator and discrete state variables, both of which
already cause the underlying state spaces to be intractably large in practice.

For the analysis of purely stochastic systems, such as Markov chains, an alter-
native to traditional model checking with exhaustive state-space exploration is
statistical model checking (SMC, [10,20]): a number of simulation runs is per-
formed on the model, generating traces that can be used to statistically estimate
the probability of a given path formula with some level of confidence. By defin-
ition, however, nondeterministic decisions cannot be simulated, so SMC cannot
be applied directly to models like MDP or PTA. For the former, some SMC-like
approaches have recently been developed. They either work by iteratively opti-
mising the decisions of an explicitly-stored scheduler [4,9], or by sampling from
the scheduler space and iteratively improving a set of candidate near-optimal
schedulers [5]. The former are heavyweight techniques because the size of the
description of the (memoryless) scheduler is significant, and in the worst case is
the size of the state space. The latter is a lightweight approach that uses O(1)
memory to represent each (history-dependent) scheduler.

Uppaal-smc [7] implements a stochastic model of timed automata that can
be used to perform SMC on PTA. By instantiating invariants as either uniform
or exponential distributions over time, it can estimate the expected probability
of a PTA property under a specific stochastic scheduler. Making use of the
same model, Uppaal Stratego [6] handles a more general model than PTA.
It combines a scheduler synthesis phase with a subsequent SMC analysis of
the model under this scheduler, but is limited by an explicit representation of
schedulers.

In this paper we develop a lightweight technique to approximate optimal
schedulers for PTA, based on the lightweight approach for MDP of [5]. While
PTA can be abstracted to MDP, allowing the approach of [5] to be applied
directly, the need to explicitly simulate many small delay steps has a catastrophic
affect on performance. In addition, the region and digital clocks abstractions are
often unnecessarily fine grained, resulting in an explosion of possible schedulers
and potentially making near-optimal schedulers very rare. As simulation is inher-
ently a forwards exploration technique, of the zone-based approaches only the
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one of [17] would be applicable. Unfortunately, it admits unrealistically powerful
schedulers, and thus delivers upper bounds on maximum and lower bounds on
minimum probabilities. This is fundamentally incompatible with sampling sched-
ulers as in [5], which delivers lower bounds on maximum and upper bounds on
minimum probabilities. Our technique nevertheless uses zones on-the-fly to per-
form a forwards exploration, but selects a single target region after each discrete
jump. This avoids the problems of [17], while the conceptual blow-up of state
space does not affect our technique because it simulates a trace by storing only
one state in memory at a time.

We report on a prototype implementation of our new technique. We test
it with standard models from the literature that are tractable for probabilistic
model checking, in order to compare the near-optimal schedulers that we find
with the optimal schedulers computed by Prism [15]. We then show that our
technique works well for some intractably large examples. We also compare our
results with those produced by the single-scheduler approach of Uppaal-smc.

2 Preliminaries

N is { 0, 1, . . . }, the set of natural numbers. R
+ is (0,∞), the set of positive

real numbers. R
+
0 is [0,∞), the set of nonnegative real numbers. a.b denotes the

concatenation of two sequences a and b or of two objects interpreted as bitstrings.

Definition 1. A (discrete) probability distribution over a set Ω is a function
μ ∈ Ω → [0, 1] such that support(μ) def= {ω ∈ Ω | μ(ω) > 0 } is countable and∑

ω∈support(μ) μ(ω) = 1. Dist(Ω) is the set of all probability distributions over Ω.

We write D(s) for the Dirac distribution for s, defined by D(s)(s) = 1.

Definition 2. A uniform pseudo-random number generator (PRNG) is a an
object U that, once initialised with a seed i ∈ N (denoted U := PRNG(i)),
can be iterated (denoted U()) to produce a new value that is pseudo-uniformly
distributed in [0, 1) and pseudo-statistically independent of previous iterates. U is
deterministic if, for a given seed, the sequence of iterates is always the same.

We only consider deterministic PRNG. Determinism is standard in commonly
used PRNG [12]. We denote by U(μ) the pseudo-random selection of a value
from support(μ) according to a value sampled from U and the probabilities in
μ. In what follows, when we write “random” w.r.t. a choice made by a PRNG
we implicitly mean “pseudo-random” unless qualified otherwise.

2.1 Markov Decision Processes

Markov decision processes combine nondeterminism and probabilistic choices: to
move from one state to another, first a transition is chosen nondeterministically;
each transition then leads into a probability distribution over successor states.
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Definition 3. A Markov decision process (MDP) is a 4-tuple 〈S,A, T, sinit〉
where S is a countable set of states, A is a countable set of transition labels,
T ∈ S → 2A×Dist(S) is the transition function with T (s) countable for all s ∈ S,
and sinit ∈ S is the initial state.

A triple 〈s, a, μ〉 such that 〈a, μ〉 ∈ T (s) is called a transition. We also write
s a−→ μ for the transition 〈s, a, μ〉.

2.2 Probabilistic Timed Automata

Probabilistic timed automata deal with time through clocks: variables whose
domain is R

+
0 that advance synchronously with rate 1 over time. Given a set of

clocks C, the valuation 0 ∈ Val (with Val = C → R
+
0 ) assigns zero to every clock

c ∈ C. For v ∈ Val and t ∈ R
+
0 , we denote by v + t the valuation where all clock

variables have been incremented by t, and by v[X] the one where all clocks in
X ⊆ C have been reset to zero. Clock constraints are expressions of the form

CC ::= true | false | CC ∧ CC | c ∼ n | c1 − c2 ∼ n

where ∼ ∈ {>,≥, <,≤}, c, c1, c2 ∈ C and n ∈ N. The form c1 − c2 ∼ n is
called a diagonal, and a clock constraint without diagonals is diagonal-free. If all
comparison operators used in a clock constraint are in {≥,≤}, it is closed. [[e]]
for e ∈ CC is the set of valuations v ∈ Val such that e evaluated in v is true.

Definition 4. A probabilistic timed automaton (PTA for short) is a 6-tuple
〈Loc, C, A,E, linit, Inv〉 where Loc is a countable set of locations, C is a finite set
of clocks, A is a countable set of edge labels, E ∈ Loc → 2CC×A×Dist(2C×Loc) is
the edge function with E(l) finite for all l ∈ Loc, linit ∈ Loc is the initial location,
and Inv ∈ Loc → CC is the invariant function.

A 4-tuple 〈l, g, a, μ〉 such that 〈g, a, μ〉 ∈ E(l) is called an edge. It consists of the
guard g, the label a and the probability distribution μ over sets of clocks to reset
and target locations. We also write l g,a−−→ μ for the edge 〈l, g, a, μ〉. Using PTA to
directly build models of complex systems is cumbersome. Instead, higher-level
formalisms such as Prism’s [15] guarded command language are used. Aside from
a parallel composition operator, they add to PTA variables that take values
from finite domains. In a PTA with variables (VPTA), guards and invariants
can include Boolean expressions over the variables, the set of clock resets is
extended by assignments of new values to variables, and the probabilities of
target locations can be computed based on the current valuation. The semantics
of a VPTA M is a PTA whose locations are pairs 〈l, v〉 of a location of M and
a valuation v for the variables. VPTA can compactly describe very large PTA.

The semantics of a PTA is as follows: When in location l, time can pass as
long as the invariant Inv(l) remains satisfied. An edge e ∈ E(l) as above can be
taken if its guard is satisfied at the current point in time. When this happens, a
target 〈X, l′〉 is chosen according to the probability distribution μ, the clocks in
X are reset, and we move to the successor location l′.
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Example 1. An example PTA is shown in Fig. 1. It has two clocks x and y. The
edge labelled a from location l0 has guard x ≤ 1 and leads into the probability
distribution { 〈∅, l1〉 �→ 1

2 , 〈{ y }, l2〉 �→ 1
2 }. The invariant of l2 is y ≤ 0, thus no

time can pass while the system is in that location.

l0
true

l1
true

l2
y ≤0

l3
true

x≤1
1
2 ∅

1
2 {y}

x≥1

{x}
true {x}

Fig. 1. Example PTA
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Fig. 2. The region MDP of the example PTA

Definition 5. A timed probabilistic transition system (TPTS for short) is a 4-
tuple 〈S,A, T, sinit〉 where S is a set of states, A = R

+ A′ is a set of transition
labels partitioned into delays in R

+ and jump labels in A′, T ∈ S → 2A×Dist(S)

is the transition function, and sinit ∈ S is the initial state. The delay-labelled
transitions must lead into Dirac distributions and be time-deterministic and
time-additive.

TPTS can be seen as uncountably infinite-state, uncountably-branching Markov
decision processes. We use them to formally define the semantics of PTA:

Definition 6. The semantics of a well-formed PTA M = 〈Loc, C, A,E, linit,
Inv〉 is the TPTS [[M ]] = 〈Loc × Val, R+  A, TM , 〈linit,0〉〉 where TM is the
smallest function such that the following two inference rules are satisfied:

l g,a−−→E μ v ∈ [[g]]
〈l, v〉 a−→TM

μv
M

(jump)
t ∈ R

+ ∀ t′ ≤ t : (v + t′) ∈ [[Inv(l)]]
〈l, v〉 t−→TM

D(〈l, v + t〉) (delay)

where μv
M (〈l′, v′〉) = μ(〈X, l′〉) if v′ = v[X] and μv

M (s) = 0 otherwise.

We refer to the transitions resulting from the respective inference rules as jumps
and delays. It is undesirable to be able to jump into a location l′ such that
Inv(l′) is immediately violated. If this is not possible in a PTA, we say that it
is well-formed. Non-well-formed PTA need to be rejected as modelling errors.

2.3 Probabilistic Timed Reachability

A behaviour of a TPTS M = 〈S,A  R
+, T, sinit〉 is a path π ∈ Paths(M):

an infinite sequence 〈s0, a0〉〈s1, a1〉 · · · ∈ (S × A  R
+)ω of states and actions

or delays. The system starts in the initial state s0 = sinit. Assuming that the
current state is si, the choice of the next transition si

ai−→ μi is nondeterministic.
Such a choice is made by a scheduler:
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Definition 7. For a TPTS as above, a (memoryless deterministic) scheduler is
a function S ∈ S → A × Dist(S) s.t. S(s) ∈ T (s) for all s ∈ S.

Once the scheduler has chosen S(si) = si
ai−→ μi, the next state si+1 is selected

randomly according to μi. Using the usual cylinder set construction [17], every
scheduler S defines a probability measure PS over the set of all paths. Let δ(π) be
the sum of all transition labels in R

+ on path π. Following the standard approach,
we restrict to time-divergent schedulers, i.e. we only consider schedulers S where
PS({π ∈ Paths(M) | δ(π) = ∞}) = 1.

Given a PTA M , we are interested in the verification of probabilistic timed
reachability properties, which are queries of the form “starting from the initial
state, what is the maximum/minimum probability of eventually/within time
t reaching a location l ∈ L when c holds” (quantitative form) resp. “is this
probability less/greater than or equal to p” (qualitative form) for L ⊆ Loc, c ∈
CC, and t ∈ R

+
0 . The time-bounded questions can be turned into unbounded ones

by adding a new clock ct to M that is never reset, and using the clock constraint
ct ≤ t∧c in place of c. It thus suffices to consider the time-unbounded questions,
which is why we do not need history-dependent schedulers. L and c together
characterise a set F of states of [[M ]]. We are thus interested in the extremal
probabilities supS PS(ΠF ) (the maximum probability) and infS PS(ΠF ) (the
minimum probability) where ΠF is the set of paths containing a state in F . If
we can compute them, we can also compute e.g. the probabilities of linear-time
(safety) path properties by running M in parallel with a finite state machine
observer and using its final states for L. If schedulers exist that realise the
sup (inf) above (which is always the case for MDP), we call them optimal or
maximising (minimising) schedulers.

Example 2. Two properties of interest on the PTA of Example 1 are (1) the
maximum probability to reach l1 with x < 1, which is 1

2 , and (2) the minimum
probability to reach a location in { l1, l2 }, which is 0 (since we can stay in l0
forever).

2.4 Digital Clocks, Regions and Zones

To compute reachability probabilities for a (finite) PTA, we cannot construct its
semantics since this is an uncountably infinite object. However, three countable
(finite) abstractions have been developed to be used for model checking:

Digital clocks. We can replace the clock variables by bounded integers and add
self-loop edges to increment them synchronously as long as the location invari-
ant is satisfied. If all clock constraints are closed and diagonal-free, this turns a
PTA into a (finite) MDP with variables, while preserving reachability probabili-
ties [16]. The number of states of the underlying digital clocks MDP is exponen-
tial in the number of clocks and the maximum constants they are compared to.
In practice, however, it is often small enough to be amenable to model checking.
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Fig. 3. The zone MDP
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Fig. 4. The digital clocks MDP of the example PTA

Regions. The region MDP is a (finite) abstraction that preserves reachability
probabilities for any (finite) PTA [17]. Like the region graph for TA, it is the
quotient of the TPTS semantics of a PTA under the equivalence relation that
groups the states that cannot be distinguished by any clock constraint (up to the
largest value any clock is compared with in the PTA). Its states are thus pairs
〈l, [v]C〉 of a location l and a clock equivalence class [v]C . In this paper we write
region to refer to a clock equivalence class, i.e. a set of valuations. The region
graph construction suffers from the same blow-up as the digital clocks approach,
but region graphs are almost always too large to be useful for model checking.

Zones. A PTA’s behaviour often is the same for many regions. This observation
has already led to the development of zone-based approaches for TA. A zone
is a set of valuations characterised by a clock constraint, or equivalently, it is
a convex union of regions. Using zones we can construct significantly smaller
MDP abstractions of PTA than with individual regions. However, if the standard
TA forwards reachability procedure is used for PTA, the resulting zone MDP
admits schedulers that are too powerful, and thus the reachability probabilities
computed in this abstraction are upper/lower bounds on the PTA’s respective
maximum/minimum probabilities only [17]. To obtain compact zone graphs that
do not exhibit this problem, a backwards analysis is needed [18].

In the zone-based algorithms that we present later in this paper, we will write
z1 � z2 for the convex union of the two zones z1 and z2, i.e. the minimal zone
that contains both z1 and z2, z↑ for the delay zone { v + t | v ∈ z ∧ t ∈ R

+
0 }, and

Reg(z) for the set of regions in zone z.

Example 3. For the PTA of Example 1, we show the region MDP in Fig. 2, the
digital clocks MDP in Fig. 4, and the zone MDP in Fig. 3. Transitions represent-
ing delays are labelled δ. If we compute the probabilities of Example 2 on these
abstractions, we find that we obtain the correct values with regions and digital
clocks. For the former, this was not guaranteed since property (1) contains a non-
closed clock constraint. On the zone MDP, however, we obtain probability 1 for
property (1). This is because in the original PTA the delay chosen in l0 determines
whether l1 can be reached from l2 after the probabilistic jump. In the zone MDP,
however, this choice is effectively moved to l2, giving schedulers extra power.
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Input: MDP 〈S, A, T, sinit〉, path property φ, scheduler id σ ∈ Z

Output: Sampled path π

1 s := sinit, π := sinit
2 while φ(π) = undecided do
3 Und := PRNG(H(σ.s)) // use hash of σ and s as seed for Und

4 if T (s) = ∅ then break // end of run due to deadlock
5 〈a, μ〉 := �Und() · |T (s)|�-th element of T (s) // use Und to select transition
6 s′ := Upr(μ) // use Upr to select target according to μ
7 π := π.s′, s := s′ // append the new state s to π

8 return π

Algorithm 1. Path generation for an MDP and a fixed scheduler

3 Lightweight Verification of MDP

We briefly recall the lightweight verification technique for MDP of [5] that under-
pins our new approach for PTA. As a statistical model checking (SMC) tech-
nique, it is based on generating a number of simulation runs through the MDP
and then statistically estimating the (reachability) probability of interest. When
simulating a fully stochastic model, e.g. a Markov chain, the individual prob-
abilistic decisions are resolved randomly, and thus a run is sampled faithfully
from the probability measure over all runs of the system. However, in MDP,
the nondeterministic choices need to be resolved, too. The lightweight approach
of [5] addresses this problem by also sampling individual schedulers from the
overall space of all schedulers. An adapted SMC analysis is performed for each
scheduler, and a set of candidate near-optimal schedulers is iteratively refined
by keeping those that deliver the highest (lowest) probabilities. An iterative
“smart sampling” technique [5] maximises the probability of finding an optimal
scheduler with a finite simulation budget.

To avoid storing schedulers as explicit mappings, our lightweight approach
constructs them on-the-fly using pseudo-random number generators. It uses two
independent PRNG Upr and Und to resolve the probabilistic and nondetermin-
istic choices, respectively. A single integer σ ∈ Z of bσ bits identifies and fully
specifies a scheduler. At its core, the adapted SMC analysis uses Algorithm 1 to
perform simulation runs. We assume that the MDP is given in some compact
representation, e.g. as a network of MDP with variables, where a state of the
concrete MDP can be seen as a valuation for the system variables vi with the
value of each vi being represented by a number of bits bi. A state can thus be
represented by the concatenation of the bits of the system variables. In line 3, the
scheduler identifier σ is concatenated to the bits representing the current state s
(denoted σ.s). Und is then initialised using the hash code h = H(σ.s). H maps σ.s
to a seed that is deterministically dependent on the state and the scheduler. Und

maps the seed to a value that is uniformly distributed but also deterministically
dependent on the trace and the scheduler (line 5). For the fixed σ, this use of
Und thus results in exactly the behaviour of a memoryless scheduler.
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In an outer loop, the lightweight approach performs multiple SMC analyses
with different sampled values for σ to estimate the property’s probability for
different schedulers, keeping track of the highest (lowest) overall estimate, which
results from the scheduler closest to optimality that has been sampled so far.
In a typical implementation on current hardware, a hash function and PRNG
may span ∼1019 schedulers. This is usually orders of magnitude more than the
number of schedulers sampled. To avoid a cumulative error when choosing a
single probability estimate from a number of alternatives, [5] defines a Cher-
noff bound for multiple estimates. Note that this ensures that the statistical
confidence w.r.t. individual estimates is well-defined, but does not provide con-
fidence w.r.t. the optimality of the overall estimate: For maximum (minimum)
reachability probabilities, the overall estimate is a lower (upper) bound on the
actual probability.

4 Lightweight Verification of PTA

To adapt the lightweight approach described in the previous section to work for
PTA, we could use it as-is on the digital clocks or region abstraction. While this
works, we find that such a naive adaptation is inefficient: Letting time pass within
a location corresponds to a sequence of states and δ-transitions within the digital
clocks or region MDP. This makes simulation dependent on the absolute value of
delays, reducing performance in models with longer delays because many more
transitions need to be simulated. It also means that there are exponentially more
schedulers to consider and that they are more likely to pick short delays. These
phenomena have the potential to make near-optimal schedulers infeasibly rare.

Example 4. Consider using the region MDP of Fig. 2 with Algorithm 1, and let
s be the initial state. Und is used to select one of the outgoing transitions in
line 5. Given a fixed σ, i.e. scheduler, this is a deterministic selection. σ is fixed
within one SMC analysis, but uniformly randomly chosen for each analysis. The
probability of using a scheduler that chooses a given transition from s is thus 1

2 ,
so the probability to pick one that delays up to the top-rightmost state is only
1
8 . However, for property (2) of Example 2, these schedulers are the only ones
that lead to the actual minimum probability of 0, while all others (which have
probability mass 7

8 ) lead to probability 1, a correct but useless upper bound.

The example shows that we would prefer schedulers for every delay to be equally
likely. This can be achieved with zones: every state of the zone MDP has an
outgoing jump for each edge that ever becomes enabled over time in the cor-
responding location (cf. Fig. 3). However, as we have already observed, a zone
MDP’s optimal schedulers may lead to true upper (lower) bounds on maximum
(minimum) probabilities. If we were to use the lightweight approach on the zone
MDP, we would get lower bounds on upper bounds on maximum probabilities
(and vice versa for minimum), i.e. some value whose relation to the actual prob-
ability is unknown, which is arguably of little use for formal verification.
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Input: PTA M = 〈Loc, C, A, E, linit, Inv〉, path property φ, scheduler id σ ∈ Z

Output: Simulation trace ω

1 l := linit; z := {0 }; ω := 〈linit, z〉
2 while φ(ω) = undecided do
3 if z ∩ [[Inv(l)]] is empty then raise error // check that M is well-formed
4 J := ∅; zJ := z; z′ := z↑ ∩ [[Inv(l)]] // let time pass as the invariant allows
5 foreach 〈g, a, μ〉 ∈ E(l) where z′ ∩ [[g]] 	= ∅ do
6 J := J ∪ { 〈μ, z′ ∩ [[g]]〉 } // store edge distr., zone where it is enabled
7 zJ := zJ � (z′ ∩ [[g]]) // zJ always eventually has an enabled edge

8 if J = ∅ then ω := ω.〈l, z′〉; break // can only delay into deadlock
9 if z′ 	= zJ then J := J ∪ { D(〈∅, l〉), z′ \ zJ } // possible delay into deadlock

10 Und := PRNG(H(σ.l.z′)) // use hash of σ, l and z′ as seed for Und

11 〈μ, zµ〉 := �Und() · |J |�-th element of J // use Und to select one of the edges
12 〈X, l′〉 := Upr(μ) // use Upr to select resets, target according to μ
13 r :=�Und()·|Reg(zµ)|�-th element of Reg(zµ) // use Und to select region in zµ
14 r′ := r[X] // reset the clocks in X
15 ω := ω.〈l, z � r〉.〈l′, r′〉, l := l′, z := r′ // append delay and jump to trace ω

16 return ω

Algorithm 2. Trace generation for a PTA and a fixed scheduler using zones

To avoid this problem, after deciding to perform a particular jump, we also
select the concrete region from which the jump takes place, using Und again since
this is resolving nondeterminism. Doing so does conceivably blow up the state
space compared to the zone MDP, but this is irrelevant because we only ever
construct the state space local to a simulation. Note that it does not introduce
extra transitions that could lead to the problems we encountered with regions or
digital clocks. Furthermore, we distinguish between being allowed to delay into a
deadlock situation vs. having an enabled edge at the upper bound of a location’s
invariant. In effect, we thus simulate the region MDP, but exploit zones to do so
in a way suitable for the lightweight approach. Algorithm2 shows the concrete
zone-based simulation that we use for PTA in place of Algorithm 1 for MDP.
Otherwise, the lightweight approach remains as described previously.

Algorithm 2 computes the set of edges that become enabled while time passes
in the current location, subject to the invariant, in lines 4 to 7. Additionally, the
maximum delay after which there is still an enabled edge is computed as zJ .
This is necessary to allow the scheduler to choose delaying into a deadlock, like
delaying beyond x = 1 in l1 in Fig. 1, when this is possible (line 9, implemented
by a self loop into a situation where line 8 will apply). Und is then initialised for
the current scheduler identifier σ together with the current location l and zone z′,
and used in line 11 to select one of the edges. Subsequently, a concrete region
needs to be chosen out of the range of delays allowed by that edge’s guard, which
is done by Und in line 13. The simulation trace is updated in lines 8 and 15, taking
care to include every relevant intermediate state since the property at hand may



Statistical Approximation of Optimal Schedulers 109

refer to clocks as described in Sect. 2.3. In our implementation, the trace is never
stored explicitly, instead the evaluation of φ occurs on-the-fly and incrementally.

In line 13 of Algorithm2, one region is selected from a zone, using Und to
choose a region pseudo-randomly with respect to all possible schedulers (the
choice made by an individual scheduler is of course deterministic). Since we do
not know which region is optimal, we require the choice to be uniformly random.
To maintain efficiency, we also require to select directly from the data structure
defining the zone, without enumerating all the regions. To achieve this we have
implemented two algorithms, one using rejection sampling, to guarantee uniform
coverage, the other using conditional sampling, to maximise efficiency.

Both algorithms assume that the increasing integer and fractional values of
clocks, corresponding to the division of regions, are represented by a monoton-
ically increasing set of integers. A region is then uniquely identified by a tuple
of indices. Some zones are unbounded above, so the maximum region the algo-
rithms consider is the minimum region that exceeds the maximum clock bound
in the model. All choices are thus made from a finite range of indices. Neither
algorithm considers clocks that are not constrained by bounds within the model,
such as the global clock used by the time bounded properties.

The rejection sampling algorithm works by first selecting a value “uniformly
at random” (i.e., using Und) from a cube that encloses the range of indices of the
zone. This is achieved by selecting a value uniformly at random from the range
of indices corresponding to each clock. As each individual ordinate is chosen,
the feasibility of the tentative region is checked against the constraints of the
zone. If at any point the region is judged to be infeasible, the sampling process
is restarted.

Given that the initial zone is non-empty, the rejection sampling algorithm will
eventually terminate with a valid selection, however the execution time scales
exponentially with the number of clocks. The conditional sampling algorithm
avoids this complexity by ensuring that every choice is made from a feasible
interval. Using Und, the algorithm first chooses a “random” order of clocks. This
is necessary because the order in which the clocks are sampled may bias the
choices. Then, for each clock in order, an index is chosen uniformly at random
with respect to the current range of permissible values. After each choice the
data structure representing the zone is updated to reflect the choice, restricting
the bounds of the remaining clocks and thus the range of permissible indices.

Note that while our case studies do not motivate the use of the less efficient
algorithm (i.e., we found no benefit in terms of optimality), we nevertheless
consider efficient uniform region selection a subject of ongoing research.

5 Experiments

We have created a prototype implementation of our new approach for lightweight
PTA analysis. It is intended to become part of the Plasma toolset for statis-
tical model checking [3,11], to take advantage of Plasma’s integrated develop-
ment environment and distribution algorithms [3]. We use the name Plasma
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Seta (Statistical Estimation of Timed Automata) to identify our results in the
figures. The tool is written in Java and uses its own implementation of the
standard difference-bound matrix (DBM) data structure to represent invariants,
clock constraints, zones and regions in memory. Operations on DBM are used to
advance the state of a simulation and check whether the current state satisfies
a property. We use a textual modelling language that mirrors the annotated
graph-based structure traditionally used to describe timed automata and that
facilitates simple conversion between existing graphical and textual formalisms.
In contrast to SMC for Markov chain-based models, a state of our simulations
represents a set of feasible schedulings (cf. Algorithm 2), whose value with respect
to optimality is dependent on the context of whether a minimum or maximum is
sought. It is therefore not sufficient to use the standard Monte Carlo estimator
and bounded time linear temporal logic. Accordingly, we have implemented a
simple continuous time logic that expresses non-nested time-bounded properties
of the syntactic forms �≤t φ, ♦≤t φ and φU≤t φ.

We have applied our implementation to PTA models from the Prism bench-
mark suite [13], in order to evaluate its effectiveness (can it solve examples that
are intractable to related tools?), its efficiency (what is the performance com-
pared to related tools?), and its usefulness (what is the quality of the results,
i.e. the bounds on extremal probabilities that we obtain, and how do these
results compare with those of related tools?). Where possible we compare with
(a) Prism’s default game-based engine [14] for traditional exhaustive PTA model
checking, with (b) Uppaal-smcas a statistical model checker that uses a single
stochastic scheduler, and with (c) the original lightweight approach (as described
in Sect. 3) on a digital clocks abstraction of the PTA.

All experiments were performed on an Intel Xeon 2.8 GHz system running
Ubuntu 15.04 with 8 GB of memory. We used Prism 4.3 with default settings and
Uppaal 4.1.19 with statistical parameter ε = 0.01. Uppaal’s estimates are thus
given ± ≤ 0.01 with probability ≥ 0.95, w.r.t. the value being estimated. For the
original lightweight technique and our new approach, we used smart sampling
with a per-iteration simulation budget of 3 × 104 and parameters ε = δ = 0.01.
This guarantees that the computed results are ± ≤ 0.01 with probability ≥ 0.99,
w.r.t. the values being estimated.

Firewire. We first look at the firewire abst Prism PTA benchmark, which
models the IEEE 1394 FireWire root contention protocol in an abstract man-
ner. The property we check is ♦≤tdone, for deadline t ∈ {0.4, 0.8, 1.2, . . . , 10}µs
and where done signifies that both stations have completed their transmis-
sions. The results are shown in Fig. 5. The shaded regions denote a ±0.01 error
interval around the values calculated by Prism, corresponding to our specified
confidence. The circles show the probability estimates for the best maximis-
ing/minimising scheduler found by our new approach. The crosses mark the
single probability estimated by Uppaal-smc.

We see that our approach finds schedulers that are very close to the optimal
schedulers found by model checking. For deadlines of 5µs or less, the estimates
produced by our approach are within the specified statistical confidence, noting
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Fig. 5. Firewire results
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Fig. 6. CSMA-2 results

that this confidence is not with respect to optimality. For greater deadlines our
minimising estimates are less accurate with respect to the true minima, but
are nevertheless clearly discernible from the maximising estimates. By contrast,
the estimates produced by Uppaal-smclie arbitrarily between the maxima and
minima. Very approximately, Uppaal-smc’s results denote the performance of
the “average” scheduler found by our approach.

CSMA-2 and CSMA-3. We now turn to larger and more challenging models.
The first is the csma Prism PTA benchmark, which models the IEEE 802.3
CSMA/CD protocol for shared medium access with two senders (CSMA-2). The
second is a new model that adds a third sender (CSMA-3). We also consider a
digital clocks version of CSMA-2. For both, we seek the maximum and minimum
probability that all senders successfully finish sending one message within t ms.
The experimental results for CSMA-2 are shown in Fig. 6. Once again our app-
roach finds schedulers that very closely approximate the optima calculated by
Prism. In this case all the results are within the specified statistical confidence.
As before, the single estimates produced by Uppaal-smclie arbitrarily between
minimum and maximum: for deadlines less than ∼ 1.9 ms they lie close to the
minimum, while above this deadline they lie close to the maximum.

CSMA-2 is tractable for Prism using values of t from 0 to 3 ms and well
beyond. With CSMA-3, however, Prism runs out of memory with even the lowest
interesting deadline. Our approach remains tractable with CSMA-3 and arbitrary
deadlines, albeit with increased running time. We report the following results
for CSMA-3, although we currently have no means to independently verify their
accuracy:

deadline (ms) 2 3 4 6 8

max. prob 0.0 0.544 0.640 0.650 0.671

min. prob 0.0 0.192 0.246 0.249 0.244
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Performance. Our results have been produced using a single execution thread,
but a significant benefit of statistical approaches is that they may be easily
parallelised to give near-linear speedup with additional threads. For the spec-
ified confidence and interesting deadlines, we need about the same time to
generate a result as Prism (between 400 and 500 s) for CSMA-2. With par-
allelisation, we expect one or two orders of magnitude improvement with our
statistical approach.

To further motivate our new approach, we consider a digital clocks version
of the CSMA-2 model, which is possible because its non-closed clock constraints
can be worked around for the property we consider. We can thus use the original
lightweight technique for MDP. The use of discrete time, however, incurs the
penalty of having to explicitly consider every delay step in the time bound of
the property. Our results with CSMA-2 suggest that this penalty leads to at least
an order of magnitude increase in computational time.

We have also profiled our implementation using the CSMA-2 model. We find
that around 56% of the total runtime is spent on DBM operations excluding
region selection (as described at the end of Sect. 4), which account for a fur-
ther 10%. Around 32% is used by the simulation loop to enumerate choices
and compute synchronisations in the model. Profiling with the more challenging
CSMA-3 model reveals that DBM operations continue to account for around 55%
of the execution time, while the amount of time dedicated to region selection is
approximately doubled to 22%. Synchronising and selecting actions accounts for
a further 22%. It is clear that optimising all DBM operations, including those
for region selection, will be a profitable direction of future work to improve
performance.

6 Conclusion

We have provided the first algorithm and implementation for statistical approx-
imation of optimal schedulers for PTA. This enables statistical model checking
of PTA with proper consideration of nondeterminism. Our algorithm is built on
top of the smart sampling technique [5] using zones first, for selecting an enabled
edge, and then regions to define the particular (abstract) moment in which
the scheduler determines the execution of a transition. This two-step technique
minimises possible bias towards selecting fast or slow schedulers. Using zones
improves performance compared to a digital clocks or region-based techniques.

Our experiments have validated our technique, reporting near-optimal esti-
mates that are close to the true optima calculated via probabilistic model check-
ing with Prism. As a simulation-based tool, our technique can report results
when probabilistic model checking runs out of memory, as shown for the CSMA-

3 example. We have also compared it with Uppaal-smc, the only other tool that
can simulate PTA. Uppaal-smcassumes that the sojourn time at a location is
either uniformly distributed, if the invariant limits it, or exponentially distrib-
uted otherwise. It thus uses a single fully stochastic scheduler and reports only a
single estimated value. As we have seen in the experiments, this value can occur
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at any point within the interval bounded by the actual minimum and maximum
probabilities. We cannot in general quantify how close our approximations are to
the true optima, however they must lie within the interval spanned by the true
optimal values or else lie outside with quantified statistical confidence. Thus
the reported values can always be used to reject the model when the desired
maximum (minimum) probability is smaller (greater) than the estimated one.

Future work. This work opens new directions of possible research. We could
consider priced PTA to estimate e.g. energy consumption or financial costs.
Ideas in this direction have already been reported in [19] for non-timed mod-
els. If extended to stochastic timed automata (STA) [2], our approach could
be useful in combination with the STA model checking technique of [8], which
delivers upper/lower bounds, while we obtain lower/upper bounds on maxi-
mum/minimum probabilities. We would also like to reduce the sample space
of schedulers to increase the likelihood of choosing near-optimal schedulers in
our algorithm.
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M., Parker, D., Ujma, M.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Heidelberg (2014)

5. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for light-
weight verification of Markov decision processes. STTT 17(4), 469–484 (2015)

6. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
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Abstract. Evaluation and redesign of user-intensive mobile applications
is challenging because users are often heterogeneous, adopting different
patterns of activity, at different times. We set out a process of integrat-
ing statistical, longitudinal analysis of actual logged behaviours, formal,
probabilistic discrete state models of activity patterns, and hypotheses
over those models expressed as probabilistic temporal logic properties to
inform redesign. We employ formal methods not to the design of the
mobile application, but to characterise the different probabilistic pat-
terns of actual use over various time cuts within a population of users.
We define the whole process from identifying questions that give us
insight into application usage, to event logging, data abstraction from
logs, model inference, temporal logic property formulation, visualisation
of results, and interpretation in the context of redesign. We illustrate the
process through a real-life case study, which results in a new and princi-
pled way for selecting content for an extension to the mobile application.

1 Introduction

Evaluation and redesign of deployed user-intensive mobile applications (apps) is
challenging because users are often heterogeneous and adopt different patterns
of activity, at different times. Good redesign must support users’ different styles
of use, and should not be based solely on static attributes of users, but on
those styles, which may be dynamic. This raises many questions, including: what
characterises the usage of a user, how should we identify the different styles of
use, how does that characterisation evolve, e.g. over an individual user trace,
and/or over days and months, and how do properties of usage inform evaluation
and redesign? This paper attempts to answer these questions, setting out a
novel process of integrating statistical analysis of logged behaviours, probabilistic
formal methods and probabilistic temporal logic with rewards.

Our approach is based on integrating three powerful ingredients: (1) infer-
ence of admixture probabilistic Markov models (called activity patterns) from
automatically logged data on user sessions, (2) characterisation of the activity
patterns by probabilistic temporal logic properties using model checking tech-
niques, and (3) longitudinal analysis of usage data drawn from different time
cuts (e.g. the first day, first month, second month, etc.). Our contribution is
c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 115–129, 2016.
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defining the whole process from identifying questions that give us insight into
an app usage, to event and attribute logging, data pre-processing and abstrac-
tion from logs, model inference, temporal logic property formulation using the
probabilistic temporal logic PCTL with rewards [1], visualisation of results and
interpretation in the context of redesign. Our work provides new insights into
app usage and affords new redesign ideas that are solidly grounded in observed
activity patterns. We apply scientific and formal methods in a novel way to the
observed use of artefacts that have been engineered. We illustrate throughout
with a case study of AppTracker [2], a freely available mobile, personal produc-
tivity app that allows users to collect quantitative statistics about the usage of
all apps installed on their iOS devices, i.e., iPhones, iPads, or iPods.

Initially, we instrument the app of interest to log usage behaviours and process
them into sets of user traces expressed in terms of higher level actions. These
actions are carefully selected, jointly by analysts and developers, to relate to the
intended analysis: they determine the scope of properties and the dimensions of
the state space underlying the model. We segment the sets of traces into different
time cuts so that we can determine how activity patterns evolve over time.

For each time cut of user traces we infer admixture bigram models of activ-
ity patterns, where activity patterns are discrete-time Markov chains. We use
admixture models because we are not classifying users into a single prototypical
behavioural trait (or usage style), but we have complex behavioural traits where
individuals move between patterns during an observed user trace. Bigrams, which
provide the conditional probability of an action given the preceding action, are
one of the most successful models for language analysis (i.e. streams of sym-
bols) and are good representations for populations of dynamic, heterogeneous
users [3]. We characterise each user trace as an admixture of K activity patterns
shared within the population of users. K is an important exploratory tool, and
rather than assuming or finding an optimal value for K, we use it to explore the
variety of usage styles that are meaningful to redesign. We typically start with
low K values, but the choice may be dependent on factors intrinsic to the app.
For a given K value, the parameters of the inferred model are the probabilities of
a given action (from a preceding action), for each activity pattern, as well as the
probabilities of transitioning between activity patterns. It is important to note
that we are not inferring the underlying system topology, which is determined
by the functionality of the app. We are investigating an artefact that has been
engineered, but there may be differing generating processes of use. We employ a
standard local non-linear optimisation algorithm for parameter estimation – the
Expectation-Maximisation (EM) algorithm [4]. We use EM, as opposed to say
MCMC, because it is fast and computationally efficient for our kind of data. EM
converges provably to a local optimum of the criterion, in this case the likelihood
function, and as such validation is not an issue. To the best of our knowledge,
inferring such temporal structures has not been described outside our group.

We then hypothesise temporal probabilistic properties, expressed in PCTL
extended with rewards [1,5] to explore the activity patterns, considering various
admixture models, values for K, and time cuts. We compare the distribution of
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patterns in the population of users longitudinally and structurally drawing on all
the formal analysis to provide new, grounded insights into possible redesign. In
our case study, our analysis mitigates against a simple partitioning of different
versions, specific to each activity, but rather offers a new and principled way of
selecting glanceable information as an extension of the app.

Three AppTracker designers were involved in this paper, guiding the inte-
gration of formal analysis with hypotheses about user behaviours. This is our
second application of formal analysis to models of inferred user behaviour: in [6]
we defined activity patterns for an individual user as a user metamodel with
respect to a population of users, and analysed a mobile game app. This work
differs substantially in that here our goal is redesign in the context of a different
app, we use the parameter K as an exploratory tool, employ completely different
temporal properties (e.g. using rewards) and longitudinal analysis, and analyse
the whole population of users, comparing distributions of activity patterns across
the user population longitudinally for a fixed and different values for K.

2 Technical Background

We assume familiarity with Markov models, PCTL, PRISM probabilistic model
checking, bigram models and Expectation-Maximisation algorithms.
A Discrete-Time Markov chain (DTMC) is a tuple D = (S, s̄, P, l) where:
S is a set of states; s̄ ∈ S is the initial state; P : S × S → [0, 1] is the tran-
sition probability function (or matrix) such that for all states s ∈ S we have∑

s′∈S P(s, s′) = 1; and l : S → 2A is a labelling function associating to each
state s in S a set of valid atomic propositions from a set A. A path (or execution)
of a DTMC is a non-empty sequence s0s1s2 . . . where si ∈ S and P(si, si+1) > 0
for all i ≥ 0. A transition is also called a time-step.
Probabilistic Computation Tree Logic (PCTL) [1] allows expression of a
probability measure of the satisfaction of a temporal property. The syntax is:

State formulae φ ::= true | a | ¬φ | φ ∧ φ | P�� p[ψ]
Path formulae ψ ::= Xφ | φU≤n φ | F≤n φ

where a ranges over a set of atomic propositions A, ��∈ {≤, <,≥, >}, p ∈ [0, 1],
and n ∈ N ∪ {∞}. State formulae are also called temporal properties. The usual
semantics apply, with U and F standing for until and eventually, respectively.

PRISM [7] computes a satisfaction probability, e.g. P=? [ ψ ], allowing also
for experimentation when the range and step size of the variable(s) are speci-
fied. PRISM supports a reward-based extension of PCTL, called rPCTL, that
assigns non-negative real values to states and/or transitions. R{x}=?

[
C≤N

]
com-

putes the reward named x accumulated along all paths within N time-steps,
R{x}=? [F φ ] computes the reward named x accumulated along all paths until
φ is satisfied. Filtered probabilities check for properties that hold from sets of
states satisfying given propositions. Here we use state as the filter operator:
e.g., filter(state, φ, condition) where φ is a state formula and condition a
Boolean proposition uniquely identifying a state in the DTMC.
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Inference of Admixture Bigram Models. Given a vocabulary V of size
n, a trace over V is a finite non-empty sequence of symbols from V . Let S =
{0, 1, . . . , n} be the set of states and consider a bijective mapping V 	→ S. Let
x be a data sample of M traces over V , x = {x1, . . . , xM}. Each trace xm can
be represented as a DTMC: the set of states S = {0, 1, . . . , n}, the initial state
is 0, the transition probability matrix is the n × n transition-occurrence matrix
such that xmij on position (i, j) gives the number of times the pair (xmi, xmj)
occurs in the trace xm. Consider K n × n transition matrices denoted Φk over
the states in S, for k = 1, . . . , K, such that Φkij denotes the probability of
moving from state i to state j. Also consider a M × K matrix Θ such that
at any point in time Φk is used by the trace xm with probability Θmk. Let
λ = {Φk, Θmk | k = 1, . . . , K; m = 1, . . . , M} be the parameters of the statistical
model. We use the EM algorithm [4] to find maximum likelihood parameters λ of
observing each trace xm, restarting the algorithm whenever the log-likelihood has
multiple-local maxima. The result is an admixture bigram model: a Θ-weighted
mixture of the K DTMCs Φk. The model is bigram because only dependencies
between adjacent symbols in the trace are considered.

3 Case Study: AppTracker

AppTracker is an iOS application that provides a user with information on the
usage of their device. It operates on iPhones/iPads/iPods, running in the back-
ground and monitoring the opening and closing of apps as well as the locking
and unlocking of the device. It was released in August 2013 and downloaded
over 35,000 times. The interface displays a series of charts and statistics to give
insight into how long one is spending on their device, the most used apps, how
these stats fluctuate over time, etc. Fig. 1 shows three views from the app. The
main menu screen offers four main options (Fig. 1(a)). The first menu item, Over-
all Usage, contains quick summaries of all the data recorded since AppTracker
was installed opening the views TopApps and Stats (Fig. 1(b)). The second menu
item, Last 7Days, displays a chart limited to the activity recorded over the last
7 days. The third menu item, Select by Period, shows statistics for a selected
period of time. For example, one could investigate which apps one used the most
last Saturday, see how the time one spent on Facebook varied each day across
last month, or examine patterns of use over a particular day (Fig. 1(c)). The
final menu option, Settings, allows a user to start and stop the tracker, or to
reset their recorded data. A Terms and Conditions screen is shown to a user on
first launch that describes all the data that will be recorded during its use and
provides contact details to allow the user to opt out at any time.
Preparing Raw Logged Data. Data is collected within the SGLog frame-
work [8]. Each log, stored in a MySQL database, contains information about the
user, the device, and the event that took place. For our analysis, we are interested
in the events resulting in a switch between views within the app. The raw data is
extracted and processed using JavaScript to obtain user traces of views (for each
user). A special view denotes when the user leaves the app (UseStop) and we
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(a) Main menu (b) Overall stats (c) Device usage for one
day

Fig. 1. Screenshots from AppTracker

2:TopApps

14:Task 11:Feedback

8:Stats 1:Main 4:SelectorPeriod

9:UsageBarChartTopApps

6:Settings 13:Info0:TermsAndConditions

3:Last7Days10:UsageBarChartStats 12:UsageBarChartApps7:UseStop

5:AppsInPeriod

Fig. 2. AppTracker state diagram

define a session as the event sequence delimited by two UseStop states, except
the initial session which starts from the TermsAndConditions. This results in a
total of 15 unique views, with transitions, illustrated in Fig. 2 with the following
meaning: (0) TermsAndConditions is the terms and conditions page; (1) Main is
the main menu screen; (2) TopApps shows the summary of all recorded data; (3)
Last7Days shows the last 7 days of top 5 apps used; (4) SelectPeriod shows app
usage stats for a selected time period; (5) AppsInPeriod shows apps used for a
selected period; (6) Settings shows the settings options; (7) UseStop stands for
closing/sending to background the AppTracker; (8) Stats shows statistics of app
usage; (9) UsageBarChartTopApps shows app usage when picked from TopApps;
(10) UsageBarChartStats shows app usage when picked from Stats; (11) Feedback
shows a screen for giving feedback; (12) UsageBarChartApps shows app usage
when picked from AppsInPeriod; (13) Info shows information about the app; (14)
Task shows a feedback question chosen from the Feedback view. The 15 views
relate directly to the underlying atomic propositions used later in the DTMCs
and we map user traces to 15 × 15 transition-occurrence matrices.
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Fig. 3. The DTMCs of the activity patterns for K = 4 and first month of usage.

Data for this Study. All data was gathered between August 2013 and May
2014, from 489 users. The average time spent within the app per user is 626 s
(median 293 s), the average number times going into the app is 10.7 (median 7),
the average user trace length is 73.6 view transitions (median 46). We segment
the user traces into time cuts of the interval form [d1, d2), which includes the
user traces from the d1-th up to the d2-th day of usage.

4 Inferring Admixture Bigram Models

For each chosen value of K and time cut of the logged data we obtain K DTMCs
with 15 × 15 transition matrices called activity patterns and an M × K matrix
Θ, where M is the number of user traces, and with each row a distribution over
the K activity patterns. For each activity pattern APk , for k = 1, . . . , K, we
generate automatically a PRISM model with one variable x for the views of
the app with values ranging from 0 to 14. For each state value of x we have a
PRISM command defining all possible 15 probabilistic transitions where Φkij is
the transition probability from state x = i to the updated state x′ = j in activity
pattern APk, for all i, j = 0, . . . , 14. For each state value we associate the label
corresponding to a higher level state in AppTracker (see the mapping in Fig. 2)
as well as a reward structure which assigns a reward of 1 to that state. The
PRISM file for each activity pattern also includes a reward structure assigning
a rewards of 1 to each transition (or time step) in the DTMC. All our PRISM
models have at most 15 states and at most 51 transitions.

We implemented the EM algorithm in Java, applying the algorithm to data
sets with 100 iterations maximum and 200 restarts maximum. Running the EM
algorithm takes about 119 s for K = 2, 162 s for K = 3, and 206 s for K = 4 on
a 2.8 GHz Intel Xeon. Timings are obtained by running the algorithm 90 times.
The algorithm is single threaded and runs on one core.

As example, Fig. 3 illustrates state-transition diagrams of all the K = 4
activity patterns, the thickness of the transitions corresponding to ranges of
probability: the thicker the line, the higher the probability of that transition.
Note this illustration does not include the distribution over the activity patterns.
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Table 1. rPCTL properties Prop1–Prop5

ID Formula and informal description

Prop1 P=?[ ! �U≤N � ]: Probability of visiting a �-labelled state for the first time from
the initial state within N time steps

Prop2 R{“r �′′}=?[C≤N ]: Expected number of visits to a �-labelled state from the initial
state within N time steps

Prop3 R{“r Steps′′}=?[F �]: Expected number of time steps to reach a �-labelled state
from the initial state

Prop4 filter(state,R{“r Steps′′}=?[F �1], �2): Expected number of time steps to
reach a �1-labelled state labelled from a �2-labelled state

Prop5 filter(state,P=?[((! �1)&(! ”UseStop”)) U≤N �1], �2): Probability of reaching
for the first time a �1-labelled state from a �2-labelled state during a session

5 Analysing rPCTL Properties

We have found that most patterns for logic properties (e.g. probabilistic response,
probabilistic precedence, etc.) relate to the design of reactive systems and are
not generally helpful for evaluation of user-intensive apps. However, a study of
which patterns would be useful is beyond the scope of this paper. Table 1 lists
the rPCTL properties we used, with state labels 	, 	1, 	2. Prop1, Prop2, and
Prop3 are the properties we investigated initially; Prop4 and Prop5 were iden-
tified later, prompted by designers’ hypotheses and inconclusive initial results.
Prop4 generalises Prop3 by analysing traces starting with a chosen state, not
necessarily the initial one.

We inferred models for K ∈ {2, 3, 4} for various time cuts and performed
analysis of rPCTL properties Prop1 – Prop5 on all activity patterns. For brevity,
here we show only properties concerning the states: TopApps, Stats, SelectPeriod,
Last7Days, UseStop. These five states showed significant results and differences
across time cuts and temporal properties and the designers showed particular
interest in them when formulating hypotheses about the actual app usage.

We adopt the following interpretations of model checking results for Prop1,
Prop2, and Prop3 in our case study for the same value of N . We say that a pair
of state and activity pattern (	, APi) scores a better (resp. worse) result than
(	′, APj), for all 1 ≤ i 
= j ≤ K, where either 	 
= 	′ or i 
= j, if: Prop1 returns
a higher (resp. lower) value, Prop2 a higher (resp. lower) value, and Prop3 a
positive lower (resp. higher) value for (	, APi) than for (	′, APj).
Analysing rPCTL Properties for K = 2. We verify Prop1, Prop2, and
Prop3 on the two activity patterns AP1 and AP2 for six time cuts: first day
[0, 1), first week minus the first day [1, 7), the first month minus the first week
[7, 30), the first month [0, 30), the second month [30, 60) and the third month
[60, 90), and for N ranging from 10 to 150 with step-size 10. Here we only show
the results for N = 50 in Table 2. The best results with respect to the property
checked across the two patterns are in bold font: we can easily see that the
two patterns correspond to different behaviours (results) with respect to the
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Table 2. Prop1 (the probability of reaching a given state for the first time within
N steps), Prop2 (the expected number of visits to a given state within N steps),
and Prop3 (the expected number of time steps to reach a given state) checked for
different states and time cuts, and for N = 50 steps. The best results with respect to
the property checked across the two patterns are in bold font.

Property Time cut TopApps Stats SelectPeriod Last7Days UseStop

AP1 AP2 AP1 AP2 AP1 AP2 AP1 AP2 AP1 AP2

Prop1 [0, 1) 0.99 0.99 0.99 0.83 0.47 0.79 0.49 0.96 0.99 0.99

[1, 7) 0.99 0.99 0.98 0.80 0 0.93 0 0.98 0.99 0.99

[7, 30) 0.99 0.99 0.99 0.64 0.01 0.94 0.84 0.96 0.99 0.99

[0, 30) 0.99 0.99 0.99 0.75 0.21 0.92 0.44 0.98 0.99 0.99

[30, 60) 0.99 0.99 0 0.90 0.73 0.83 0.56 0.98 1 0.99

[60, 90) 1 0.95 0.96 0.72 0 0.94 0 0.97 1 0.99

Prop2 [0, 1) 13.94 7.44 7.63 2.15 0.79 1.82 0.70 3.13 11.41 6.17

[1, 7) 17.22 5.77 4.00 2.31 0 3.97 0 4.03 12.91 6.30

[7, 30) 14.93 7.15 5.43 1.47 0.01 4.61 1.78 3.41 12.86 5.74

[0, 30) 14.67 6.48 5.08 1.90 0.24 3.58 0.58 3.99 11.00 6.51

[30, 60) 13.40 6.83 0 3.76 4.41 2.04 0.85 4.54 12.46 5.61

[60, 90) 17.30 5.83 2.94 2.60 0 3.26 0 4.43 13.96 5.63

Prop3 [0, 1) 3.31 8.41 8.18 28.67 79.32 32.46 74.87 15.56 4.86 7.88

[1, 7) 2.05 10.70 12.44 31.90 ∞ 19.12 ∞ 12.38 3.85 7.55

[7, 30) 2.52 9.68 9.70 48.61 ∞ 17.78 26.61 14.58 3.88 8.44

[0, 30) 3.05 9.73 11.01 36.03 209.68 19.94 87.54 12.19 4.67 7.43

[30, 60) 4.04 10.34 ∞ 22.33 38.21 28.28 61.74 11.08 1 8.82

[60, 90) 2.02 15.28 16.53 39.68 ∞ 17.41 ∞ 11.56 3.57 8.90

five states to be more likely, more often, and more quickly reached. Note that
looking at the analysis results for UseStop, on average we see twice as many
sessions under AP1 than under AP2 and the average session length in terms of
time steps under AP2 is double the average session length under AP1.

If we overlook (for now) the results for the time cut [30, 60), we conclude
that there are two distinct activity patterns:

AP1:Overall Viewing pattern corresponds to more likely, more often, and more
quickly to reach TopApps and Stats, thus more higher level stats visualisations
and shorter sessions.

AP2: In-depth Viewing pattern corresponds to more likely, more often, and
more quickly to reach Last7Days and SelectPeriod, thus more in-depth stats
visualisations and longer sessions.

Now considering the time cut [30, 60), on Table 2 we note slightly different results
for this time cut compared to the more consistent results for the other five time
cuts: a high number of visits to and a relative low number of time steps to reach
Stats no longer belongs to AP1, but to AP2; Prop1 and Prop2 for SelectPeriod
no longer discriminate clearly between AP1 and AP2 due to very close results.
As a consequence we analyse the additional rPCTL properties (see Table 3) for
the time cut [30, 60). We colour-code the results to correspond to the Over-
all Viewing pattern in blue-coloured, bold font and to the In-depth Viewing
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Table 3. Properties Prop4 (expected number of time steps to reach a row state
from a column state for each pattern) and Prop5 (probability of reaching for
the first time a row state from a column state during a session for each pat-
tern) verified for K = 2, time cut [30, 60). Blue-coloured, bold font results are
characteristic to the Overall Viewing pattern, while red-coloured font results to the
In-depth Viewing pattern; default text colour means inconclusive.
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TopApps AP1 – 3.62 11.09 2.22
AP2 – 10.56 14.89 9.347

Last7Days AP1 61.83 – 68.68 59.56
AP2 14.01 – 15.61 10.08

SelectPeriod AP1 38.30 36.69 – 36.03
AP2 31.21 28.77 – 27.28

UseStop AP1 1.49 3.61 9.23 3.33
AP2 11.74 6.24 11.51 7.82
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TopApps AP1 – 0.66 0.26

AP2 – 0.26 0.30

Last7Days AP1 0.006 – 0.02
AP2 0.49 – 0.38

SelectPeriod AP1 0.008 0.08 –

AP2 0.23 0.15 –

in red-coloured font. Except for two inconclusive pairs of results (default text
colour), Table 3 tells us that the two activity patterns learned from the time cut
[30, 60) are respectively similar to the two activity patterns identified for the rest
of time cuts analysed previously. The difference in the behaviour around Stats
could be explained by a new usage behaviour of the AppTracker around the 30th

day of usage due to approximately a full month worth of new statistics, leading
to a spurt of more exploratory usage of AppTracker. We note that for the time
cut [60, 90) the results listed in Table 2 make again a clear distinction between
the two activity patterns with respect to the states SelectPeriod and Last7Days.
We might say that in the third month the exploratory usage of AppTracker set-
tles down and users know exactly what to look for and where. A finer-grained
longitudinal analysis based on one-week time cuts could reveal additional insight
into the behaviour involving Stats around the 30th day of usage.

Our conclusion concerning the two types of activity patterns meets the devel-
opers’ hypothesis about two distinct usages of the apps. However they expected
also to see one pattern revolving around TopApps and Stats, one around SelectPe-
riod and another one around Last7Days. Since we analysed the admixture model
for K = 2, we only got two distinct patterns, the last two patterns conjectured by
developers being aggregated into a single one. As a consequence, we investigate
higher values for K.

Analysing rPCTL Properties for K = 3. We analyse Prop1, Prop2, and
Prop3 on the admixture model inferred for K = 3, time cut [0, 30) and N = 50.
For brevity, we omit the details, and based on the results we characterise the
three patterns as follows:
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– AP1 is an Overall Viewing pattern because TopApps and Stats have best results
for all three properties. SelectPeriod and Last7Days are absent. The sessions are
twice as short and twice more frequent than for the In-depth Viewing pattern.

– AP2 is a ‘weaker’ Overall Viewing pattern than AP1 because TopApps has worse
results, and better results than Stats and Last7Days; SelectPeriod is absent.

– AP3 is an In-depth Viewing pattern because SelectPeriod has the best results,
followed closely by TopApps and Last7Days.

Analysing rPCTL Properties for K = 4. We analyse Prop1, Prop2, and
Prop3 on the admixture model inferred for K = 4, time cut [0, 30) and for
N = 50. Again, details are omitted and we characterise the patterns as follows:

– AP1 is mainly a TopApps Viewing activity pattern because it has the best
results for TopApps, compared to Stats, SelectPeriod, and Last7Days which
score very low results.

– AP2 is a Stats – TopApps Viewing activity pattern, with very low results from
Last7Days; SelectPeriod is absent.

– AP3 is an In-depth Viewing pattern with dominant Last7Days followed closely
by TopApps and SelectPeriod; Stats is absent.

– AP4 is mainly a TopApps Viewing pattern because TopApps has the best
results, while all other states need on average an infinite number of time
steps to be reached. The fact that it takes on average an infinite number of
time steps to reach the end of a session (i.e., the state UseStop) motivated us
to analyse this pattern with other temporal properties and for other states.
As a consequence we saw that UsageBarChartTopApps has similar properties
as TopApps, meaning that this pattern corresponds to repeatedly switching
between TopApps and UsageBarChartTopApps.

Based on the results obtained for UseStop we observe: twice as many sessions
for AP1 than for AP2 and AP3, only a couple of sessions on average for AP4,
fewer views per session (i.e., shorter sessions) for AP1 than for AP2 and AP3.
Longitudinal Θ-Based Comparison. In addition to analysing rPCTL prop-
erties, we also compare how the distribution Θ of the two activity patterns for
the entire population of users changes in time. For each time cut considered for
the rPCTL analysis above and activity pattern AP2, we order non-decreasingly
the second column of Θ and re-scale its size to the interval [0, 1] to represent the
horizontal axis, while the ordered Θ values are projected on the vertical axis.
Figure 4 shows the Θ values for AP1 and AP2 for the population of users across
the first three months of usage. We conclude that during the first day of usage,
up to 40 % of users exhibit exclusive In-depth Viewing behaviour (probability
close to 1 on the y-axis) corresponding to an initial exploration of the app with
significant number of visits to TopApps, Stats, SelectPeriod, and Last7Days. Also,
at most 10 % of the users exhibit exclusive Overall Viewing behaviour maybe
because they feel less adventurous in exploring the app, preferring mostly the
first menu option of looking at TopApps and subsequently at Stats. We note that
the distributions of the two activity patterns in the population of users are sim-
ilar for the time cuts [0, 1) and [30, 60) – probably because more users exhibit
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(a) Overall Viewing AP (b) In-depth Viewing AP

Fig. 4. Longitudinal comparison of the activity pattern distributions Θ over the pop-
ulation of users for K = 2 and time cuts [0, 1), [1, 7), [7, 30), [30, 60), [60, 90)

(a) K = 2 (b) K = 3 (c) K = 4

Fig. 5. Pattern distributions for K = 2 (Overall Viewing, In-depth Viewing), K = 3
(Overall Viewing, weak Overall Viewing, In-depth Viewing,) and K = 4 (mainly TopApps
Viewing, equally Stats and TopApps Viewing, In-depth Viewing with no Stats, exclusive
TopApps and UsageBarChartTopApps), time cut [0, 30).

a more exploratory behaviour during these times (new types of usage statistics
become available after one month of usage). At the same time, the plots for
the time cuts [1, 7), [7, 30), and [60, 90) are also similar, and we think that they
correspond to a settled (or routine) usage behaviour.
Structural Θ-Based Comparison. In Fig. 5 we plot the weightings of all users
for each activity patterns for K ∈ {2, 3, 4} and the time cut [0, 30). Figure 5(a)
tells us that for K = 2 the In-depth Viewing has higher weightings across the
user population with almost 25 % of the users using the app exclusively like this,
hence either exploring the app or genuinely interested in in-depth usage statis-
tics. Figure 5(b) tells us that almost 10 % of the users are exclusively interested
in TopApps, Stats and Last7Days but not SelectPeriod; this behaviour is the most
popular among users. From Fig. 5(c) we see that almost 50 % of the users do not
behave according to AP4 – switching repeatedly between TopApps and Usage-
BarChartTopApps. Note that for K = 3 and K = 4 no pattern stands out as very
different from the others.
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6 Formal Analysis Informs Redesign

We now consider how our results provide insights for redesign, in the context
of the case study. Our initial analysis uncovered two activity patterns, charac-
terised by the type of usage stats the user is examining: Overall Viewing – more
high-level usage statistics for the entire recorded period, or In-depth Viewing –
more in-depth usage statistics for specific periods of interest. Neither is signifi-
cantly dominant over the other: for the majority of users, usage is fairly evenly
distributed between the two patterns. This suggests that a revised version of
AppTracker should continue to support both patterns.

We note the two patterns identified for K = 2 correspond closely to options
presented on AppTracker’s main menu (see Fig. 1(a)), as follows. Overall Viewing
indicates a greater likelihood of using TopApps and Stats, which are interface
screens accessed through the Overall Usage menu item. In-depth Viewing indicates
a greater likelihood of reaching SelectPeriod and Last7Days, which are accessed
through Select by Period and Last 7 Days, but also some usage of TopApps
and Stats. Our results indicate that sessions corresponding to Overall Viewing
are generally shorter: meaning that users are performing fewer actions between
launching AppTracker and exiting back to the device’s home screen. These two
different patterns suggest that, in a future version of AppTracker, if developers
want to keep the two major styles of usage separated between different screens,
they could design explicitly for the glancing-like short interactions in Overall
Usage and longer interactions in a new Select by Period screen along with the
initial Last 7Days screen. Also more filtering and querying tools could be added
to Select by Period.

We wondered if users are simply following the paths suggested by the main
menu (Fig. 1(a)). We therefore probed further, considering K ∈ {3, 4, 5} (details
are omitted for K = 5). For K = 3, if the analysis was merely mirroring the
menu structure, we might expect to see one pattern centred around each of the
first three main menu items. Although we see the pattern AP2 centred around
TopApps, Stats, and Last7Days but no SelectPeriod, we do not see a pattern
centred around SelectPeriod and not including Last7Days. For K = 4 we find
Last7Days and SelectPeriod together in a pattern, with the former view slightly
more popular than latter one; this combination also occurred for K = 2 and
K = 5. For K = 4 we see a distinct new pattern showing users repeatedly switch-
ing between TopApps and UsageBarChartTopApps. TopApps is an ordered list of
the user’s most used apps; selecting an item from this list opens UsageBarChart-
TopApps, a bar chart showing daily minutes of use of this app. This persistent
switching suggests a more investigatory behaviour, which is more likely to be
associated with the In-depth Viewing. Yet this behaviour is occurring under the
Overall Usage menu item, which we hypothesised and then identified as being
associated with more glancing-like behaviour. This suggests that our results are
providing more nuanced findings than simple uncovering of existing menu struc-
ture. We therefore suggest that if developers want to separate the two types of
usage between different menu items even more, they could move the TopApps –
UsageBarChartTopApps loop from Overall Usage to Select by Period.
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Glancing Activity Patterns. Discovering a glancing activity pattern pro-
vides significant benefits for app redesign. Since the release of the iOS 8 SDK in
2014, Apple has allowed the development of ‘Today widgets’ – extensions to apps
comprising small visual displays and limited functionality appearing in the Noti-
fication Centre. Beyond the advice from Apple’s Human Interface Guidelines1,
developers struggle to decide which pieces of their app’s contents would best suit
inclusion in a Today widget: few conventions have built since the release. Devel-
opers have to rely on their own judgement to select appropriate content from
their app to populate this view. In our analysis, we have uncovered explicitly the
specific screens that people look at when they are undertaking short sessions of
glancing-type behaviour, i.e. the typical glancing patterns for AppTracker – the
Overall Viewing pattern and the TopApps-centred patterns. In identifying such
activity patterns, our approach provides a more principled method of selecting
content appropriate for an app extension such as a Today widget.

7 Discussion

Related Work. Logging software is frequently used to understand program
behaviours, and typically to aid program comprehension – building an under-
standing of how the program executes [9]. There are various techniques that
use logs of running software, such as visualising logs (e.g. [10]) and capture and
replay (e.g. [11]), with the aims of failure analysis, evaluating performance, and
to better understand the system behaviour (as it executes). In contrast, we are
interested in ways users interact with software, and we do so by analysing logs
captured during actual use. The difference is important. In the case of program
comprehension, log analysis is used to understand better what is going on within
the code and how the artefact is engineered (in order to be better prepared
for improvements and maintenance). In our case, log analysis provides insights
about distinct styles of use and informs improvements of the high-level design.
For example, in [12] the authors infer FSMs for modelling a system’s behav-
iour, while we infer DTMC of different actual usage behaviours, and admixtures
thereof, to model populations of users. There is complementarity with the app-
roach of [13], which employs usage logs and applies temporal logical analysis,
but a key difference is their models are based on static user attributes (e.g. city
location of user) rather than on inferred behaviours. Their approach assumes
within-class use to be homogeneous, whereas our research demonstrates within-
class variation.
Methodological Issues. Our approach is a collaboration between developers
familiar with app development and instrumentation, and analysts familiar with
statistics and formal modelling. We note some methodological issues.

First, our approach gains from having significant volumes of log data to work
on, for reliable application of statistical methods. However, neither the volume

1 https://developer.apple.com/library/ios/documentation/UserExperience/
Conceptual/MobileHIG/AppExtensions.html.

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/AppExtensions.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/AppExtensions.html
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of log data nor number of users is relevant for the probabilistic model checking,
only the number of higher level states for analysis selected from the raw data
determines the complexity. Therefore our approach scales because it does not
depend on the number of activity patterns or the number of users/data size, but
on the state space of the abstract model of the app. The AppTracker case study
involved a vocabulary of 15 views/states, which was comfortably manageable,
but our approach would have difficulty with very large vocabularies.

Second, the issue of what to log is not trivial. The collection of log entries can
include anything from a button press, to the change of WiFi signal of the device,
and so on. In the case of AppTracker, we decided to use states corresponding to
individual screens possible to transition to within the app. This highlights the
rather simple nature of AppTracker – it is essentially a browser of information.
In contrast, a game such as Angry Birds allows the user to perform a much more
complex set of actions. Even after pruning the logs to include only user actions
(rather than lower level device events), one still needs to decide how to model
these actions as a state space. The chosen state space will ultimately influence
what activity patterns become prominent. We therefore suggest that discussion
and preliminary analysis be done early in the development process, so that the
decisions about what to log and what the state space should be are made by
developers and analysts jointly in a well-informed way.

Third, the activity patterns and their number (i.e. K) are key to analysis. The
patterns are inferred by various standard statistical methods based on non-linear
optimisation. We do not model for predictability, there is no true model of the
generating process, but one that is posited based on known characteristics such as
the sequential nature of issuing app events. We study the time-series behaviour
that has been logged from a probabilistic perspective. The admixture model
is important because we are defining a complex behavioural trait where the
individual moves between patterns during an observed user trace. The number
of patterns K is an important exploratory tool, there is no optimal value for K.

8 Conclusions and Future Work

We have outlined an approach to exploring and gaining insight into usage pat-
terns that informs redesign based on probabilistic formal analysis of actual app
usage. Our approach is a combination of bottom up statistical inference from
user traces, and top down probabilistic temporal logic analysis of inferred mod-
els. We have illustrated this via the mobile app AppTracker, and discussed how
the results of this analysis inform redesign that is grounded in existing patterns
of usage. A notable conclusion of our work is that, while our analysis of App-
Tracker’s use identifies several clearly distinct activity patterns, it also reveals
the distribution of activity patterns over the population of users and over time.
For AppTracker, this mitigates against a simple partitioning of the app into two
different versions, each specific to one activity pattern. In addition, our analysis
offers a more principled way of selecting glanceable information.

AppTracker developers are currently implementing a redesign based on our
analysis, and we eagerly await new data sets of logged behaviours for further
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analysis. Future work will involve that analysis, as well as patterns for logic
properties and generalisation of our approach to a principled way of providing
software redesign guidelines as part of a user-centered design process.
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Abstract. We present a practically appealing extension of the probabilis-
tic model checker PRISM rendering it to handle fixed-delay continuous-time
Markov chains (fdCTMCs) with rewards, the equivalent formalism to the deter-
ministic and stochastic Petri nets (DSPNs). fdCTMCs allow transitions with
fixed-delays (or timeouts) on top of the traditional transitions with exponential
rates. Our extension supports an evaluation of expected reward until reaching a
given set of target states. The main contribution is that, considering the fixed-
delays as parameters, we implemented a synthesis algorithm that computes the
epsilon-optimal values of the fixed-delays minimizing the expected reward. We
provide a performance evaluation of the synthesis on practical examples.

1 Introduction

PRISM [10] is an efficient tool for probabilistic model-checking of stochastic systems
such as Markov decision processes (MDPs), discrete-time Markov chains (DTMCs), or
continuous-time Markov chains (CTMCs). The PRISM community frequently raises
requests to incorporate the possibility to express delays with deterministic durations in
a CTMC.1 The standard PRISM recommendation is to approximate the deterministic
durations using a phase-type technique [12] and thus obtaining a CTMC. This works
for some models, however there are models for which such approximation can cause
either a large error or a state space explosion (see, e.g. [2,7]). However, there is a for-
malism called fixed-delay CTMCs (fdCTMCs) [1,4,7] that is the requested extension of
CTMCs by fixed-delay (fd) events, modeling the deterministic transitions or timeouts.
Recent result [1] came up with new synthesis algorithms working directly on fdCTMCs
(rather than approximating them with CTMCs). Here we provide the first attempt to
experimental evaluation of such synthesis algorithms and show that they are practically
applicable. In the following running example we demonstrate the fdCTMC semantics
as well as the parameters and objectives of the synthesis.

Example 1. The figure bellow depicts fdCTMC of a slightly modified model of
dynamic power management of a Fujitsu disk drive taken from the PRISM case studies2

[14]. The disk has three modes idle, busy, and sleep. In the idle and sleep modes the

1 http://www.prismmodelchecker.org/manual/FrequentlyAskedQuestions/PRISMModelling#
det_delay.

2 http://www.prismmodelchecker.org/casestudies/power_ctmc3.php.
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disk receives requests, in the busy mode it also serves them. The disk is equipped with
a bounded buffer, where it stores requests when they arrive. The requests arrive with
an exponential inter-arrival time of rate 1.39 and increase the current size of the buffer.
The requests are served in an exponential time of rate 12.5, what decreases the buffer
size. Note that restricting the model to the idle and busy modes only, we obtain a CTMC
model of an M/M/1/n queue.

Moreover, the disk can move from the idle mode to the sleep mode where it saves
energy. Switching of the disk to the sleep mode is driven by timeout. This is modeled
by an fd event f1 moving the state from (idle, 0) to (sleep, 0) when the disk is steadily
idle for a specified amount of time (e.g. 1 s). The disk is woken up by another timeout
modeled by an fd event f2, which is active in all sleep states. After staying in the sleep
mode for, e.g. 2 s, f2 changes the state according to the dashed arrows.

idle 0

sleep 0

busy 1

sleep 1

busy 2

sleep 2

busy n

sleep n

1.39

12.5

1.39

12.5

1.39

12.5

1.39

12.5

1.39

1.39 1.39 1.39 1.39 1.39

f1 f2 f2 f2 f2

Additionally, every state is given a rate cost that specifies an amount of energy con-
sumed per each second spent there. Optionally, an impulse cost can be specified, e.g.,
say that the change from (idle, 0) to (sleep, 0) consumes 0.006 energy units instanta-
neously. Now, one might be interested in how much energy on average is consumed
before emptying the buffer, i.e. to compute the expected energy consumed until reach-
ing target that is a new successor of (busy, 1) instead of the initial state (idle, 0). But,
being a developer of the disk, can we set better timeouts for f1 and f2? Hence, we con-
sider timeouts as parameters and synthesize them in order to minimize the expected
amount of consumed energy.

Our Contribution is as follows. 1. We provide an extension of the PRISM language
and of the internal data structures to support specification of fdCTMC with impulse
and rate costs (or equivalently rewards). Hence, our version of PRISM is now ready for
other experiments with fdCTMC algorithms including the possibility to support model-
checking options as for CTMCs and DTMCs. 2. We added an evaluation of expected
reward until reaching a given set of target states. 3. We analyzed the synthesis algorithm
from [1], derived exact formulas and implemented the algorithm. 4. Additionally, we
accelerated the implementation by few structural changes, that significantly improved
the running time and the space requirements of the synthesis implementation. 5. We
provide a performance evaluation proving that current implementation is practically
applicable to a complex model from the PRISM case-study.

Related Work. There are many papers that contain models with fd events suitable for
synthesis such as deterministic durations in train control systems [16], time of server
rejuvenation [3], timeouts in power management systems [14], etc. Some of the models
already contain specified impulse or rate costs.
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In [15] authors compute the optimal value of webserver timeout using impulse and
rate costs. The implementation can dynamically change the optimal value of timeout
based on the current inter-arrival times of requests. It works on the exact fdCTMC
model and cannot be easily applied to the more general fdCTMC models our imple-
mentation can handle.

The formalism of deterministic and stochastic Petri nets (DSPNs) is equivalent to
fdCTMCs. DSPNs have been extensively studied and many useful results are directly
applicable to fdCTMCs. To the best of our knowledge the synthesis of fd events has
not been studied for DSPNs. The most useful tools for DSPNs are ORIS [6] and
TimeNET [17].

There was also an option to implement the synthesis algorithm as an extension of
ORIS. However, PRISM is much more used in practice and contains solution methods
for MDPs, that we needed for our implementation. Thus, we decided to implement the
synthesis into PRISM, even thought we had to extend the PRISM language and data
structures. Therefore, the ORIS and TimeNET algorithms can be now reimplemented
for fdCTMCs in PRISM easily, exploiting its efficient symbolic structures and algo-
rithms for CTMCs or MDPs.

In the rest of the paper we first formally define the fdCTMC and explain the exten-
sion of PRISM language. Then we discuss the implemented algorithms and the perfor-
mance results. Due to space constraints, the full version of this paper including appen-
dices is provided in [8].

2 Preliminaries

We use N0, R≥0, and R>0 to denote the set of all non-negative integers, non-negative
real numbers, and positive real numbers, respectively. Furthermore, for a countable set
A, we denote by D(A) the set of discrete probability distributions over A, i.e. functions
μ : A→ R≥0 such that

∑
a∈A μ(a) = 1.

Definition 1. A fixed-delay CTMC (fdCTMC) C is a tuple (S ,Q, F,
A,N, d, sin) where

– S is a finite set of states,
– Q : S × S → R≥0 is a rate matrix,
– F is a finite set of fixed-delay (fd) events,
– A : S → 2F assigns to each state s a set of active fd events in s,
– N : S × F → D(S ) is the successor function, i.e. assigns a probability distribution

specifying the successor state to each state and fd event that is active there,
– d : F → R>0 is a delay vector that assigns a positive delay to each fd event,
– sin ∈ S is an initial state.

Note that fdCTMC C with empty set of fd events is a CTMC. The fdCTMC formal-
ism can be understood as a stochastic event-driven system, i.e. the amount of time spent
in each state and the probability of moving to the next state is driven by the occurrence
of events. In addition to the fd events of F, there is an exponential event E that is active
in all states s where

∑
s′∈S Q(s, s′) > 0. During an execution of an fdCTMC all active
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events keep one timer, that holds the remaining time until the event occurs. The execu-
tion starts in the state sin. The timer of each fd event f in A(sin) is set to d( f ). The timer
of the exponential event is set randomly according to the exponential distribution with
a rate

∑
s′∈S Q(sin, s′). The event e with least3 timer value t occurs and causes change

of state. In case e is an fd event, the next state is chosen randomly according to the dis-
tribution N(sin, e), otherwise e is an exponential event and the probability of choosing
s as a next state is Q(sin, s)/

∑
s′∈S Q(sin, s′). In the next state s, the timers of all newly

active fd events (i.e. A(s) \ A(sin)), the occurred event e, and the exponential event are
set in the same way as above. Observe that the timers of the remaining active fd events
decreased by time t spent in the previous state. The execution then proceeds in the same
manner.

We illustrate the definition on the fdCTMC model from Example 1. The execution
starts in (idle, 0). The events f1 and E are active and their timers are set to 1 and e.g. 1.18,
respectively. Hence, after 1 s f1 occurs and changes the state to (sleep, 0) with probabil-
ity 1. The timers of newly active event f2 and E are set to 2 and e.g. 1.5, respectively.
Now, E occurs and changes the state to (sleep, 1). Here f2 is still active and thus its timer
holds the original value subtracted by the time spent in (sleep, 0), i.e. 2− 1.5 = 0.5. The
timer of the exponential event is set, etc.

A run of the fdCTMC is an infinite sequence (s0, e0, t0)(s1, e1, t1) . . . where s0 = sin

and for each i ∈ N0 it holds that si ∈ S is the i-th visited state, ei ∈ {E} ∪ F is the event
that occurred in si, and ti ∈ R≥0 is the time spent in si. For the formal definition of the
semantics of fdCTMC and the probability space on runs see [9].

Total Reward Before Reaching a Target. To allow formalization of performance prop-
erties we enrich the model in a standard way with rewards or costs (see, e.g. [13]).
For an fdCTMC C with a state space S we additionally define a set of target states T ,
reward rates R, and impulse rewards I. Formally, the target state T is a subset of S \ sin,
R : S → R≥0 assigns a reward rate to every state, and I : S × ({E} ∪ F) × S → R≥0

assigns an impulse reward to every change of state. Now the reward assigned to a
run (s0, e0, t0)(s1, e1, t1) . . . is the reward accumulated before reaching a state of T , i.e.
∑n−1

i=0 (ti · R(si) + I(si, ei, si+1)) where n > 0 is the minimal index such that sn ∈ T . We
set the reward to infinity whenever there is no such n. The reward of a run can be viewed
as a random variable, say CostC,T,R,I. By EC,T,R,I (or simply EC) we denote the expected
value of CostC,T,R,I.

Synthesis. Given a delay vector d′, let (parametric) fdCTMC C(d′) be the fdCTMC C
where the delay vector is changed to d′. Our aim is to find a delay vector d such that the
expected reward EC(d) is minimal. Formally, given an error bound ε > 0 the synthesis
algorithm computes delay vector d, such that EC(d) ≤ Val [C]+ε, where Val [C] denotes
the optimal reward infd′ EC(d′).

3 For the sake of simplicity, when multiple events X = {e1, . . . , en} occur simultaneously, the
successor is determined by the minimal element of X according to some fixed total order on F.



134 L’. Korenčiak et al.

3 PRISM Language and User Interface Extension

Each fdCTMC model file must begin with the keyword fdctmc. For the purpose of
our synthesis and expected reward implementation, the set of target states has to be
specified by label "target", e.g.

label "target" = s=2;

The exponential event (the matrix Q) is specified the same way as in CTMC models of
PRISM. The fd events are local to a module and must be declared immediately after the
module name. E.g. the fdelay f = 1.0 defines the fd event f with delay of a double
value 1.0. For an fd event f we specify its set of active states (i.e. A−1( f )) and transition
kernel (i.e. N(·, f )) by PRISM commands where the identifier f is in the arrow, e.g.

[L] s=1 --f-> 0.3:(s’=0) + 0.7:(s’=2)

specifies that the fd event f is active in all states where s=1 and whenever it occurs, the
next state is derived from the original one by changing variable s to 0 with probability
0.3 and to 2 with probability 0.7. The probabilities in each command have to sum to
one. Observe that fd event commands are similar to DTMC commands in PRISM. The
synchronization labels are used only to impose impulse rewards as for CTMC, e.g.

rewards [L] true : 1.0; endrewards

The rate rewards are specified the same way as for CTMC in PRISM. The PRISM
source code for the fdCTMC of Example 1 is in [8]. The implementation details con-
cerning the fdCTMC structure are provided in [8] as well.

Users can run the implemented algorithms from both the graphical and the
command-line interfaces of PRISM. The expected reward and synthesis implementa-
tions are available in menu Model -> Compute -> Exp. reachability reward and
Model -> Compute -> FD synthesis, respectively or using the command-line option
-expreachreward and -fdsynthesis, respectively. The error bound ε is specified
in Options -> Options -> Termination epsilon or in the command-line option
-epsilon.

4 Implementation Issues

Implementation of the expected reward computation was a straightforward application
of existing PRISM methods. For the synthesis we implemented the unbounded opti-
mization algorithm from [1]. The algorithm is based on discretization, i.e. we provide
discretization bounds and restrict the uncountable space of delay vectors into a finite
space. Instead of an exhaustive search through the finite space, we use the idea of [1]
and transform the parametric (discretized) fdCTMC into an MDP where actions corre-
spond to the choices of fd event delays. Now, the minimal solution of the MDP yields
the optimal delay vector.

The discretization bounds consist of the discretization step δ, the upper bound on
fd event delay d and the precision κ for computation of action parameters. They are
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computed for each fd event separately from the error bound ε, the number of states,
the minimal transition probability, and other fdCTMC model attributes. For more detail
see [8]. Note that in every fdCTMC model, the delays for all fd events have to be speci-
fied. Applying these delays, we compute the corresponding expected reward Val which
is used as an upper bound for the optimal reward. Then Val is employed when comput-
ing the discretization bounds. The lower the Val is, the faster the synthesis implementa-
tion performs. Thus it is worth to think of good delays of fd events when specifying the
model.

Given the discretization bounds one has to compute the transition probabilities and
expected accumulated reward for each action in the MDP corresponding to the dis-
cretized delay of fd event. This can be done using the transient analysis of subordinated
CTMCs [11].

Prototype Implementation. In the first implementation we used straightforward app-
roach to call built-in methods of PRISM to compute the required quantities for each
discretized fd event delay separately. This is reasonable since the built-in methods are
correctly and efficiently programmed for all PRISM engines and methods of computing
transient analysis. However, we experienced that most of the time was spent comput-
ing the transient analysis rather than solving the created MDP, e.g. 520 s out of 540 s of
total time.4 One of the reasons is that in each iteration a small portion of memory is allo-
cated and freed by built-in PRISM methods. Since there is a large number of actions, the
amount of reallocated memory was slowing down the computation. Thus we decided to
reimplement the computation of transient probabilities applying principles of dynamic
programming.

Iterative Computation of Transient Analysis. The transient probabilities can be very effi-
ciently approximated up to an arbitrary small error using the uniformization technique.
The problem is that we have to compute the transient probabilities for each value of a
very large set {i · δ | i ∈ N0 and 0 < i ≤ d/δ} and allow only fixed error κ for each com-
putation. The transient probability vector π(δ) of a CTMC C at time δ can be computed
using uniformization by

π(δ) =
J∑

j=0

1sin · Pj · (λ · δ) j

j!
· e−λ·δ, (1)

where 1sin is the initial vector of C, λ is the uniformization rate of C, and P is the
transition kernel of the uniformized C. The choice of number J influences the error of
the formula. It is easy to compute the value of J such that the error is sufficiently small.

However, for time i ·δ we can use the previously computed transient probabilities as

π(i · δ) =
J∑

j=0

π((i − 1) · δ) · Pj · (λ · δ) j

j!
· e−λ·δ. (2)

It is again easy to compute J such that the overall allowed error is not exceeded. Instead
of performing naïve computation for each number in {i ·δ | i ∈ N0 and 0 < i ≤ d/δ} with

4 Computed for the rejuv model and the error bound 0.001, see Sect. 5.
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according number of steps J1, . . . , Jd/δ to cause error bounded by κ in each computation,
we compute the transient probabilities iteratively with sufficiently large J to cause small
error in all computations. For example, if we have δ = 0.1, d/δ = 1000, rate λ = 1.0
and κ = 0.01 using the naïve method we have to do J1 + · · · + Jd/δ = 66, 265 steps and

using the iterative method J · d/δ = 3, 000 steps. This is significant difference since
a vector matrix multiplication is performed in each step. Thus we hard-programmed
the iterative computation of transient probabilities and accumulated rewards in CTMC
what caused a dramatic speedup thanks to the smaller number of arithmetic operations
and better memory management.

Precomputation. Careful reader may have noticed that (2) can be further simplified to

π(i · δ) = π((i − 1) · δ) · e−λ·δ ·
J∑

j=0

Pj · (λ · δ) j

j!
. (3)

Hence, the matrix e−λ·δ ·∑J
j=0 Pj · (λ · δ) j/ j! can be easily precomputed beforehand and

used for computation of each π(i · δ) to increase the savings even more. However, this is
not true. J is small and the matrix P is sparse for the most reasonable models and error
bounds. But e−λ·δ ·∑J

j=0 Pj · (λ · δ) j/ j! is not sparse for almost each error bound, P, and
λ, what is known as “fill-in” phenomenon. Thus using (2) is typically more efficient
than using (3). Similar observations were discussed in [5].

Implementing the synthesis algorithm of [1], we inherited the following restrictions
on the input fdCTMC models. There is at most one concurrently active fd event in each
state, i.e. ∀s ∈ S : |A(s)| ≤ 1. For each fd event there is at most one state where its timer
is set. Every state has a positive rate reward, i.e. ∀s ∈ S : R(s) > 0. Moreover, we add
that all fd events have positive impulse rewards, i.e. ∀ f ∈ F ∧ s, s′ ∈ S : N(s, f )(s′) >
0 =⇒ I(s, f , s′) > 0. For the expected reward implementation only the first two
restrictions are valid.

5 Experimental Results

We tested the performance of our synthesis implementation on the model from Exam-
ple 1 for various sizes of the queue (2, 4, 6, and 8) and the rejuvenation model provided
in [8]. The considered error bounds are 0.005, 0.0025, 0.0016, 0.00125, and 0.001. The
following table shows the expected rewards and the computation times for a given error
bound. As the expected rewards are very similar for different error bounds, we show
their longest common prefix, instead of listing five similar long numbers.

Note that the computed values of the expected reward are of a much better preci-
sion than required. This indicates that there might even be a space for improvements
of the synthesis algorithm, e.g. by computation of tighter discretization bounds. It is
worth mentioning that the longest computation (dpm8 for error 0.001) took only 1 h
and 30 min of real clock time thanks to the native parallelism of Java (the table shows
the sum for all threads). Our experiments show that the implementation retains the theo-
retical complexity bounds saying that the computation time is exponential to the number
of states and polynomial to 1/ε.
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Model CPU time [s] Longest

ε: 0.005 0.0025 0.0016 0.00125 0.00100 common prefix

1/ε: 200 400 600 800 1000 of exp. rewards

rejuv 5.87 12.09 14.71 21.60 23.84 0.94431314832

dpm2 58.22 121.15 195.61 234.58 248.52 0.336634754

dpm4 156.02 354.35 509.19 2197.10 2652.05 0.337592724

dpm6 259.76 532.47 2705.45 3026.77 5124.10 0.337583980

dpm8 616.47 3142.44 6362.79 22507.55 27406.62 0.337537611

The computations were run on platform HP DL980 G7 with 8 64-bit processors
Intel Xeon X7560 2.26 GHz (together 64 cores) and 448 GiB DDR3 RAM, but only
304 GB was provided to Java. The time was measured by the Linux command time.

6 Conclusions and Future Work

In this paper, we incorporated the fdCTMC models into PRISM and implemented
the expected reward computation and the synthesis algorithm. The tool is available
on http://www.fi.muni.cz/~xrehak/fdPRISM/. We have used the explicit state PRISM
engine. Based on the promising results, it is reasonable to (re)implement the synthe-
sis and other model checking algorithms for fdCTMCs in the more efficient PRISM
engines. Moreover, new effort can be put to reduce the number of current restrictions
on the fdCTMC models. For instance the method of stochastic state classes [6] imple-
mented in ORIS may be applied for computation of transient analysis instead of uni-
formization.
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work is partly supported by the Czech Science Foundation, grant No. P202/12/G061.
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Abstract. This paper addresses the monitoring of logic-independent
linear-time user-provided properties on multi-threaded component-based
systems. We consider intrinsically independent components that can be
executed concurrently with a centralized coordination for multiparty
interactions. In this context, the problem that arises is that a global
state of the system is not available to the monitor. A naive solution to
this problem would be to plug a monitor which would force the sys-
tem to synchronize in order to obtain the sequence of global states at
runtime. Such solution would defeat the whole purpose of having concur-
rent components. Instead, we reconstruct on-the-fly the global states by
accumulating the partial states traversed by the system at runtime. We
define formal transformations of components that preserve the semantics
and the concurrency and, at the same time, allow to monitor global-
state properties. Moreover, we present RVMT-BIP, a prototype tool
implementing the transformations for monitoring multi-threaded sys-
tems described in the BIP (Behavior, Interaction, Priority) framework,
an expressive framework for the formal construction of heterogeneous
systems. Our experiments on several multi-threaded BIP systems show
that RVMT-BIP induces a cheap runtime overhead.

1 Introduction

Component-based design is the process leading from given requirements and a
set of predefined components to a system meeting the requirements. Building
systems from components is essential in any engineering discipline. Components
are abstract building blocks encapsulating behaviour. They can be composed in
order to build composite components. Their composition should be rigorously
defined so that it is possible to infer the behaviour of composite components
from the behaviour of their constituents as well as global properties from the
properties of individual components.

The problem of building component-based systems (CBSs) can be defined as
follows. Given a set of components {B1, . . . , Bn} and a property of their product
state space ϕ, find multiparty interactions γ (i.e., “glue” code) s.t. the coor-
dinated behaviour γ(B1, . . . , Bn) meets the property ϕ. It is however generally
c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 141–159, 2016.
DOI: 10.1007/978-3-319-33693-0 10
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not possible to ensure or verify the desired property ϕ using static verification
techniques, either because of the state-explosion problem or because ϕ can only
be decided with runtime information. In this paper, we are interested in com-
plementary verification techniques for CBSs such as runtime verification. In [9],
we introduce runtime verification of sequential CBSs against properties referring
to the global states of the system, which, in particular, implies that properties
can not be “projected” and checked on individual components. From an input
composite system γ (B1, . . . , Bn) and a linear-time regular property, a compo-
nent monitor M and a new set of interactions γ′ are synthesized to build a new
composite system γ′ (B1, . . . , Bn,M) where the property is checked at runtime.

The underlying model of CBSs relies on multiparty interactions which consist
of actions that are jointly executed by certain components, either sequentially
or concurrently. In the sequential setting, components are coordinated by a sin-
gle centralized controller and joint actions are atomic. Components notify the
controller of their current states. Then, the controller computes the possible
interactions, selects one, and then sequentially executes the actions of each com-
ponent involved in the interaction. When components finish their executions,
they notify the controller of their new states, and the aforementioned steps are
repeated. For performance reasons, it is desirable to parallelize the execution
of components. In the multi-threaded setting, each component executes on a
thread and a controller is in charge of coordination. Parallelizing the execution
of γ (B1, . . . , Bn) yields a bisimilar [10] component [1] where each synchronized
action a occurring on Bi is broken down into βi and a′ where βi represents an
internal computation of Bi and a′ is a synchronization action. Between βi and a′,
a new busy location is added. Consequently, the components can perform their
interaction independently after synchronization, and the joint actions become
non atomic. After starting an interaction, and before this interaction completes
(meaning that certain components are still performing internal computations),
the controller can start another interaction between ready components.

The problem that arises in the multi-threaded setting is that a global steady
state of the system (where all components are ready to perform an interaction)
may never exist at runtime. Note that we do not target distributed but multi-
threaded systems in which components execute with a centralized controller,
there is a global clock and communication is instantaneous and atomic. We define
a method to monitor CBSs against linear-time properties referring to global
states. Our method preserves the concurrency and semantics of the monitored
system. It transforms the system so that global states can be reconstructed by
accumulating partial states at runtime. The execution trace of a multi-threaded
CBS is a sequence of partial states. For an execution trace of a multi-threaded
CBS, we define the notion of witness trace, which is intuitively the unique trace of
global states corresponding to the trace of the multi-threaded CBS if this CBS
was executed on a single thread. For this purpose, we define transformations
allowing to add a new component building the witness trace.

We prove that the transformed and initial systems are bisimilar: the obtained
reconstructed sequence of global states from a parallel execution is as the
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sequence of global states obtained when the multi-threaded CBS is executed
with a single thread. We introduce RVMT-BIP, a tool integrated in the BIP
tool suite.1 BIP (Behavior, Interaction, Priority) framework is a powerful and
expressive component framework for the formal construction of heterogeneous
systems. RVMT-BIP takes as input a BIP CBS and a monitor description which
expresses a property ϕ, and outputs a new BIP system whose behavior is moni-
tored against ϕ while running concurrently.

Figure 1 overviews our approach. Recall that according to [1], a BIP system
with global-state semantics Sg (sequential model), is (weakly) bisimilar with
the corresponding partial-state model Sp (concurrent model) noted Sg ∼ Sp.
Moreover, Sp generally runs faster than Sg because of its parallelism. Thus, if
a trace of Sg, i.e., σg, satisfies ϕ, then the corresponding trace of Sp, i.e., σp,
satisfies ϕ as well. Naive solutions to monitor Sp would be (i) to monitor Sg with
the technique in [9] and run Sp, which ends up with delays in detecting verdicts
or (ii) to plug the monitor proposed in [9] in Sp, which forces the components to
synchronize for the monitor to take a snapshot of the global state of the system.
Such approaches would completely defeat the purpose of using multi-threaded
models. Instead, we propose a transformation technique to build another system
Spg out of Sp such that (i) Spg and Sp are bisimilar (hence Sg and Spg are
bisimilar), (ii) Spg is as concurrent as Sp and preserves the performance gained
from multi-threaded execution and (iii) Spg produces a witness trace, that is
the trace that allows to check the property ϕ. Our method does not introduce
any delay in the detection of verdicts since it always reconstructs the maximal
(information-wise) prefix of the witness trace (Theorem1). Moreover, we show
that our method is correct in that it always produces the correct witness trace
(Theorem 2).

An extended version of this paper with more detail and proofs is available
as [13].

1 RVMT-BIP is available for download at [12].
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Running Example. We use a task system, called Task, to illustrate our approach
throughout the paper. The system consists of a task generator (Generator) along
with 3 task executors (Workers) that can run in parallel. Each newly generated
task is handled whenever two cooperating workers are available. A desirable
property of system Task is the homogeneous distribution of the tasks among the
workers.

2 Preliminaries and Notations

For two domains of elements E and F , we note [E → F ] the set of functions from
E to F . For two functions v ∈ [X → Y ] and v′ ∈ [X ′ → Y ′], the substitution
function noted v/v′, where v/v′ ∈ [X∪X ′ → Y ∪Y ′], is defined as v/v′(x) = v′(x)
if x ∈ X ′, and v(x) otherwise. Given a set of elements E, e1 · e2 · · · en is a
sequence or a list of length n over E, where ∀i ∈ [1, n] : ei ∈ E. Sequences of
assignments are delimited by square brackets for clarity. The empty sequence
is noted ε or [ ], depending on the context. The set of (finite) sequences over
E is noted E∗. E+ is defined as E∗ \ {ε}. The length of a sequence s is noted
length(s). We define s(i) as the ith element of s and s(i · · · j) as the factor of
s from the ith to the jth element. We also note pref(s), the set of prefixes of s
s.t. pref(s) = {s(1 · · · k) | k ≤ length(s)}. Operator pref is naturally extended
to sets of sequences. Function max� (resp. min�) returns the maximal (resp.
minimal) sequence w.r.t. prefix ordering of a set of sequences. We define function
last : E+ → E s.t. last(e1 · e2 · · · en) = en. For a sequence e = e1 · e2 · · · en over
E, and a function f : E → F , map f e is the sequence over F defined as
f(e1) · f(e2) · · · f(en) where ∀i ∈ [1, n] : f(ei) ∈ F .

3 Component-Based Systems with Multiparty
Interactions

An action of a CBS is an interaction i.e., a coordinated operation between cer-
tain atomic components. Atomic components are transition systems with a set of
ports labeling individual transitions. Ports are used by components to communi-
cate. Composite components are obtained from atomic components by specifying
interactions.

An atomic component is endowed with a finite set of local variables X taking
values in a domain Data, and it synchronizes with other components through
ports. A port p[xp], where xp ⊆ X, is defined by a port identifier p and some
variables in a set xp.

Definition 1 (Atomic Component). An atomic component is defined as a
tuple (P,L, T, X) where P is the set of ports, L is the set of (control) locations,
T ⊆ L × P × G(X) × F∗(X) × L is the set of transitions, and X is the set of
variables. G(X) denotes the set of Boolean expressions over X and F(X) the
set of assignments of expressions over X to variables in X. For each transition
τ = (l, p, gτ , fτ , l′) ∈ T , gτ is a Boolean expression over X (the guard of τ),
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fτ ∈ {x := fx(X) | x ∈ X ∧ fx ∈ F∗(X)}∗: the computation step of τ , a
sequence of assignments to variables.

The semantics of the atomic component is an LTS (Q,P,→) where Q =
L×[X → Data] is the set of states, and →= {((l, v), p(vp), (l′, v′)) ∈ Q×P ×Q |
∃τ = (l, p, gτ , fτ , l′) ∈ T : gτ (v) ∧ v′ = fτ (v/vp)} is the transition relation.

A state is a pair (l, v) ∈ Q, where l ∈ L, v ∈ [X → Data] is a valuation of the

variables in X. The evolution of states (l, v)
p(vp)−→ (l′, v′), where vp is a valuation

of the variables xp attached to port p, is possible if there exists a transition (l,
p[xp], gτ , fτ , l′), s.t. gτ (v) = true. As a result, the valuation v of variables is
modified to v′ = fτ (v/vp).

hold delivered

newtask

deliver

newtask

deliver

(a) Component Generator

free done

exec, x := x + 1

finish, (x 10)

reset , (x > 10), x := 0

exec

reset finish

(b) ComponentWorker

Fig. 2. Atomic components

We use the dot notation to denote the elements
of atomic components. e.g., for a component B,
B.P denotes the set of ports of the atomic compo-
nent B, etc. Figure 2 depicts atomic components
of system Task.

Definition 2 (Interaction). An interaction a is
a tuple (Pa, Fa), where Pa = {pi[xi] | pi ∈
Bi.P}i∈I is the set of ports s.t. ∀i ∈ I : Pa ∩
Bi.P = {pi} and Fa is a sequence of assignment
to the variables in ∪i∈Ixi.

Variables attached to ports are purposed to trans-
fer values between interacting components. When
clear from the context, in the following examples,
an interaction ({p[xp]}, Fa) consisting of only one
port p is noted p.

Definition 3 (Composite Component). A composite component γ(B1, . . . ,
Bn) is defined from a set of atomic components {Bi}n

i=1 and a set of interac-
tions γ.

A state q of γ(B1, . . . , Bn) is an n-tuple q = (q1, . . . , qn), where qi = (li, vi)
is a state of atomic component Bi. The semantics of the composite component
is an LTS (Q, γ,−→), where Q = B1.Q× . . .×Bn.Q is the set of states, γ is the
set of all possible interactions and −→ is the least set of transitions satisfying
the following rule:

a = ({pi[xi]}i∈I , Fa) ∈ γ ∀i ∈ I : qi
pi(vi)−→ i q′

i ∧ vi = Fai(v(X)) ∀i �∈ I : qi = q′
i

(q1, . . . , qn)
a−→ (q′

1, . . . , q
′
n)

X is the set of variables attached to the ports of a, v is the global valuation, and
Fai

is the restriction of F to the variables of pi.

A trace is a sequence of states and interactions (q0 · a1 · q1 · · · as · qs) s.t.: q0 =
Init ∧ (∀i ∈ [1, s] : qi ∈ Q ∧ ai ∈ γ : qi−1

ai−→ qi

)
, where Init ∈ Q is the initial

state. The sequence of interactions is then defined as interactions(q0 ·a1 ·q1 · · · as ·
qs) = a1 · · · as. The set of traces of composite component B is denoted by Tr(B).
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finish2reset2
Worker1
exec1

finish1reset1
Worker3
exec3

finish3reset3

Fig. 3. Composite component of system
Task

Example 1 (Interaction, Composite
Component). Figure 3 depicts the
composite component γ(Worker1,
Worker2, Worker3, Generator) of
system Task. The set of interactions
is γ = {ex12, ex13, ex23, r1, r2, r3,
f1, f2, f3, nt}. For instance, we have
ex12 = ({deliver, exec1, exec2}, [ ]).

One of the possible traces2 of sys-
tem Task is: (free, free, free, hold)·
ex12 · (done, done, free, delivered) · nt · (done, done, free, hold) s.t. from
the initial state (free, free, free, hold), where workers are at location free
and task generator is ready to deliver a task, interaction ex12 is fired and
Worker1 and Worker2 move to location done and Generator moves to loca-
tion delivered. Then, a new task is generated by the execution of interaction nt

so that Generator moves to location hold.

4 Monitoring Multi-threaded CBSs with Partial-State
Semantics

The semantics defined in Sect. 3 is referred to as the global-state semantics of
CBSs because each state of the system is defined in terms of the local states
of components, and, all local states are defined. In this section, we consider the
partial-state semantics where the states of a system may contain undefined local
states because of the concurrent execution of components.

4.1 Partial-State Semantics

To model concurrent behavior, we associate a partial state model to each atomic
component. In global-state semantics, one does not distinguish the beginning
of an interaction (or a transition) from its completion. That is, the interac-
tions and transitions of a system execute atomically and sequentially. Partial
states and the corresponding internal transitions are needed for modeling non-
atomic executions. Atomic components with partial states behave as atomic
components except that each transition is decomposed into a sequence of two
transitions: a visible transition followed by an internal β-labeled transition (aka
busy transition). Between these transitions, a so-called busy location is added.
Below, we define the transformation of a component with global-state semantics
to a component with partial-state semantics (extending the definition in [1] with
variables, guards, and computation steps on transitions).

Definition 4 (Components with Partial States). The partial-state version
of atomic component B = (P,L, T,X) is B⊥ = (P ∪{β}, L∪L⊥, T⊥, X), where

2 For the sake of simpler notation, we represent a state by its location.
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β /∈ P is a special port, L⊥ = {l⊥t | t ∈ T} (resp. L) is the set of busy locations
(resp. ready location) s.t. L⊥ ∩L = ∅, T⊥ = {(l, p, gτ , [ ], l⊥τ ), (l⊥τ , β, true, fτ , l′) |
∃τ = (l, p, gτ , fτ , l′) ∈ T} is a set of transitions.

Assuming some atomic components with partial-state semantics B⊥
1 , . . . , B⊥

n ,
we construct a composite component B⊥ = γ⊥(B⊥

1 , ..., B⊥
n ) where γ⊥ =

γ ∪ {{βi}}n
i=1, and {{βi}}n

i=1 is the set of busy interactions. The
notions and notation related to traces are lifted to components with
partial-state semantics in the natural way. We extend the definition of
interactions to traces in partial-state semantics s.t. βi∈[1,n] are filtered out.

hold delivered

⊥

⊥

β

β newtask

deliver

newtask

deliver

β

(a) Generator⊥

free done

⊥

⊥

⊥

β, x := x + 1

β

β, x := 0

finish
(x 10)

reset
(x > 10)

exec

exec

reset finish β

(b)Worker⊥

Fig. 4. Atomic components
of Task with partial-states

Example 2 (Composite Component with Partial
States). The corresponding composite component of
Task with partial-state semantics is γ⊥(Worker⊥

1 ,
Worker⊥

2 , Worker⊥
3 , Generator⊥), where each

Worker⊥
i for i ∈ [1, 3] is identical to the compo-

nent in Fig. 4b and Generator⊥ is the component
in Fig. 4a. We represent each busy location l⊥ as ⊥.

It is possible to show that the partial-state system
is a correct implementation of the global-state sys-
tem, that is, the two systems are (weakly) bisimilar
(cf. [1], Theorem 1). Weak bisimulation relation R
is defined between the set of states of the model
in global-state semantics (i.e., Q) and the set of
states of its partial-state model (i.e., Q⊥), s.t. R =

{(q, r) ∈ Q × Q⊥ | r
β∗

−→ q}. Any global state in
partial-state semantics model is equivalent to the
corresponding global state in global-state semantics
model, and any partial state in partial-state semantics model is equivalent to the
successor global state obtained after stabilizing the system by executing busy
interactions.

In the sequel, we consider a CBS with global-state semantics B and its
partial-state semantics version B⊥. Intuitively, from any trace of B⊥, we want
to reconstruct on-the-fly the corresponding trace in B and evaluate a property
which is defined over global states of B.

4.2 Witness Relation and Witness Trace

We define the notion of witness relation between traces in global-state seman-
tics and traces in partial-state semantics, based on the bisimulation between B
and B⊥. Any trace of B⊥ is related to a trace of B, i.e., its witness. The witness
trace allows to monitor the system in partial-state semantics (thus benefiting
from the parallelism) against properties referring to the global behavior of the
system.
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Fig. 5. Witness trace built using weak bisimulation (R)

(free, free, free, hold)

(free, free, free, hold)

(⊥, ⊥, free, ⊥) (⊥, ⊥, free, delivered) (⊥, ⊥, free, ⊥)

(done, done, free, delivered) (done, done, free, hold)

R

ex 12 β4 nt

ntex 12

R R R

Fig. 6. An example of witness trace in system Task

Definition 5 (Witness Relation). Given the bisimulation R between B and
B⊥, the witness relation W ⊆ Tr(B) × Tr(B⊥) is the smallest set that contains
(Init , Init) and satisfies the following rules: For (σ1, σ2) ∈ W,

• (σ1 · a · q1, σ2 · a · q2) ∈ W, if a ∈ γ and (q1, q2) ∈ R;
• (σ1, σ2 · β · q2) ∈ W, if (last(σ1), q2) ∈ R.

If (σ1, σ2) ∈ W, we say that σ1 is a witness trace of σ2.

Suppose that the witness relation relates a trace in partial-state semantics σ2

to a trace in global-state semantics σ1. The states obtained after executing the
same interaction in the two systems are bisimilar. Moreover, any move through
a busy interaction in B⊥ preserves the bisimulation between the state of σ2

followed by the busy interaction in B⊥ and the last state of σ1 in B.

Example 3 (Witness Relation and Trace). Figure 5 illustrates the witness rela-
tion. State q0 is the initial state of B and B⊥. In the trace of B⊥, gray circles
after each interaction represent partial states which are bisimilar to the global
state that comes after the corresponding trace of B.

Let us consider σ2 as a trace of system Task with partial-state semantics
depicted in Fig. 6 where σ2 = (free, free, free, hold) ·ex12 ·(⊥, ⊥, free, ⊥) ·β4 ·
(⊥, ⊥, free, delivered) ·nt · (⊥, ⊥, free, ⊥). The witness trace corresponding to
trace σ2 is (free, free, free, hold)·ex12 ·(done, done, free, delivered)·nt ·(done,
done, free, hold).

Property 1 states that any trace in partial-state semantics and its witness trace
have the same sequence of interactions. Property 2 states that any trace in the
partial-state semantics has a unique witness trace in the global-state semantics.

Property 1. ∀(σ1, σ2) ∈ W, interactions(σ1) = interactions (σ2).
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Property 2. ∀σ2 ∈ Tr(B⊥),∃!σ1 ∈ Tr(B), (σ1, σ2) ∈ W.

Following Property 2, we note W(σ2) = σ1 when (σ1, σ2) ∈ W.
Note that, when running a system in partial-state semantics, the global state

of the witness trace after an interaction a is not known until all the components
involved in a have reached their ready locations after the execution of a. Never-
theless, even in non-deterministic systems, this global state is uniquely defined
and consequently there is always a unique witness trace (that is, non-determinism
is resolved at runtime).

4.3 Construction of the Witness Trace

Given a trace in partial-state semantics, the witness trace is computed using
function RGT (Reconstructor of Global Trace).

Definition 6 (Function RGT). Function RGT : Tr(B⊥) −→ pref(Tr(B)) is
defined as RGT(σ) = discriminant(acc(σ)), where:

– acc : Tr(B⊥) −→ Q · (γ · Q)∗ · (γ · (Q⊥\Q))∗ is defined as:
• acc(Init) = Init,
• acc(σ · a · q) = acc(σ) · a · q for a ∈ γ,
• acc(σ · β · q) = map [x �→ upd(q, x)] (acc(σ)) for β ∈ {{βi}}n

i=1;
– discriminant : Q · (γ · Q)∗ · (γ · (Q⊥\Q))∗ −→ pref(Tr(B)) is defined as:

discriminant(σ) = max�({σ′ ∈ pref(σ) | last(σ′) ∈ Q})

with upd : Q⊥ × (Q⊥ ∪ γ) −→ Q⊥ ∪ γ defined as:

– upd((q1, . . . , qn), a) = a, for a ∈ γ,

– upd
(

(q1, . . . , qn), (q′
1, . . . , q

′
n)

)

= (q′′
1 , . . . , q′′

n),

where ∀k ∈ [1, n], q′′
k =

{
qk if (qk /∈ Q⊥

k ) ∧ (q′
k ∈ Q⊥

k )
q′
k otherwise.

Function RGT uses sub-functions acc and discriminant. First, acc takes as input
a trace in partial-state semantics σ, removes β interactions and the partial states
after β. Function acc uses the (information in the) partial state after β interac-
tions in order to update the partial states using function upd. Then, function
discriminant returns the longest prefix of the result of acc corresponding to a
trace in global-state semantics.

Note that, because of the inductive definition of function acc, the input trace
can be processed step by step by function RGT which can incrementally generate
the witness trace of a running system by monitoring interactions and partial
states of components.

Example 4 (Applying Function RGT). Table 1 illustrates Definition 6 on one
trace of system Task with initial state (free, free, free, hold) followed by inter-
actions ex12, β4, nt, β2, and β1. At step 0, the outputs of functions acc and
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Table 1. Values of function RGT for a sample input

Step Input trace in partial semantics, σ Intermediate step, acc(σ) Output trace in global semantics, RGT(σ)

0 (free, free, free, hold) (free, free, free, hold) (free, free, free, hold)

1
(free, free, free, hold) · ex12 ·

(⊥, ⊥, free, ⊥)
(free, free, free, hold) · ex12 ·

(⊥, ⊥, free, ⊥)
(free, free, free, hold) · ex12

2
(free, free, free, hold) · ex12 ·

(⊥, ⊥, free, ⊥) · β4·
(⊥, ⊥, free, delivered)

(free, free, free, hold) · ex12 ·
(⊥, ⊥, free, delivered)

(free, free, free, hold) · ex12

3

(free, free, free, hold) · ex12 ·
(⊥, ⊥, free, ⊥) · β4·

(⊥, ⊥, free, delivered) · nt·
(⊥, ⊥, free, ⊥)

(free, free, free, hold) · ex12 ·
(⊥, ⊥, free, delivered) · nt·

(⊥, ⊥, free, ⊥)
(free, free, free, hold) · ex12

4

(free, free, free, hold) · ex12 ·
(⊥, ⊥, free, ⊥) · β4·

(⊥, ⊥, free, delivered) · nt·
(⊥, ⊥, free, ⊥) · β2·
(⊥, done, free, ⊥)

(free, free, free, hold) · ex12 ·
(⊥, done, free, delivered) · nt·

(⊥, done, free, ⊥)
(free, free, free, hold) · ex12

5

(free, free, free, hold) · ex12 ·
(⊥, ⊥, free, ⊥) · β4·

(⊥, ⊥, free, delivered) · nt·
(⊥, ⊥, free, ⊥) · β2·

(⊥, done, free, ⊥) · β1·
(done, done, free, ⊥)

(free, free, free, hold) · ex12 ·
(done, done, free, delivered) · nt·

(done, done, free, ⊥)

(free, free, free, hold) · ex12 ·
(done, done, free, delivered) · nt

discriminant are equal to the initial state. At step 1, the execution of inter-
action ex12 adds ex12 · (⊥,⊥, free,⊥) to traces σ and acc(σ). At step 2, the
state after β4 has fresh information on component Generator which is used to
update the existing partial states, so that (⊥,⊥, free,⊥) is updated to (⊥,⊥,
free, delivered). At step 5, Worker1 becomes ready after β1, and the partial
state (⊥, done, free, delivered) in the intermediate step is updated to the global
state (done, done, free, delivered), therefore it appears in the output trace.

The following proposition states that applying function RGT on a trace in
partial-state semantics produces the longest possible prefix of the corresponding
witness trace with respect to the current trace of the partial-state semantics
model.

Theorem 1 (Computation of the Witness With RGT). ∀σ ∈ Tr(B⊥) :

last(σ) ∈ Q =⇒ RGT(σ) = W(σ)
∧ last(σ) /∈ Q =⇒ RGT(σ) = W(σ′) · a,with

σ′ = min�{σp ∈ Tr(B⊥) | ∃a ∈ γ,∃σ′′ ∈ Tr(B⊥) : σ = σp · a · σ′′ ∧ ∃i ∈ [1, n] :
(Bi.P ∩ a �= ∅) ∧ (∀j ∈ [1, length(σ′′)] : βi �= σ′′(j))}

Theorem 1 distinguishes two cases:

• When the last state of a system is a global state (last(σ) ∈ Q), none of
the components is in a busy location. Moreover, function RGT has sufficient
information to build the corresponding witness trace (RGT(σ) = W(σ)).

• When the last state of a system is a partial state, at least one component
is in a busy location and function RGT can not build a complete witness
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trace because it lacks information on the current state of such components.
It is possible to decompose the input sequence σ into two parts σ′ and σ′′

separated by an interaction a. The separation is made on the interaction
a occurring in trace σ s.t., for the interactions occurring after a (i.e., in
σ′′), at least one component involved in a has not executed any β transition
(which means that this component is still in a busy location). Note that it
may be possible to split σ in several manners with the above description. In
such a case, function RGT computes the witness for the smallest sequence
σ′ (w.r.t. prefix ordering) as above because it is the only sequence for which
it has information regarding global states. Note also that such splitting of σ
is always possible as last(σ) /∈ Q implies that σ is not empty, and σ′ can be
chosen to be ε.

In both cases, RGT returns the maximal prefix of the corresponding witness trace
that can be built with the information contained in the partial states observed
so far.

5 Model Transformation

5.1 Instrumentation of Atomic Components

Given an atomic component with partial-state semantics as per Definition 4, we
instrument this atomic component s.t. it is able to transfer its state through
port β, each time the component moves out from a busy location.

Definition 7 (Instrumenting an Atomic Component). Given an atomic
component in partial-state semantics B⊥ = (P ∪{β}, L∪L⊥, T⊥, X) with initial
location l0 ∈ L, we define a new component Br = (P r, L ∪ L⊥, T r,Xr) where:

• Xr = X ∪ {loc}, loc is initialized to l0;
• P r = P ∪ {βr}, with βr = β[Xr];
• T r = {(l, p, gτ , [ ], l⊥τ ), (l⊥τ , β, true, fτ ; [loc := l′], l′) | (l, p, gτ , [ ], l⊥τ ), (l⊥τ , β,

true, fτ , l′) ∈ T⊥}.

In Xr, loc is a variable containing the current location. Xr is exported through
port β. An assignment is added to the computation step of each transition to
record the location.

Example 5 (Instrumenting an Atomic Component). Figure 7 shows the instru-
mented version of atomic components in system Task (depicted in Fig. 4).

5.2 Creating a New Atomic Component to Reconstruct Global
States

Let us consider B⊥ = γ⊥(B⊥
1 , . . . , B⊥

n ) with partial-state semantics, s.t.:

• γ is the set of interactions in the corresponding composite component with
global-state semantics with γ = γ⊥ \ {{βi}}n

i=1, and



152 H. Nazarpour et al.

hold delivered

⊥

⊥

loc:= delivered
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β
loc:= hold

newtask

deliver

newtask
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(a) Instrumented component Generatorr

free done

⊥

⊥

⊥

β , x := x + 1
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β , x := 0
loc:= free

finish
(x 10)

reset
(x > 10)

exec

exec

reset finish β
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(b) Instrumented component Workerr

Fig. 7. Instrumented atomic components of system Task

• the corresponding instrumented atomic components Br
1 , . . . , B

r
n have been

obtained through Definition 7 s.t. Br
i is the instrumented version of B⊥

i .

We define a new atomic component, called RGT, which is in charge of accumu-
lating the global states of the system B⊥. Component RGT is an operational
implementation as a component of function RGT (Definition 6).

Definition 8 (RGT Atom). Component RGT is defined as (P , L, T , X)
where:

• X =
⋃

i∈[1,n]{Br
i .Xr}⋃

i∈[1,n]{Br
i .Xr

c } ∪ {gsa | a ∈ γ} ∪ {(z1, . . . , zn)} ∪
{V, v,m}, where Br

i .Xr
c is a set containing a copy of the variables in Br

i .Xr.
• P =

⋃
i∈[1,n]{βi[Br

i .Xr]} ∪ {pa[∅] | a ∈ γ} ∪ {p′
a[

⋃
i∈[1,n]{Br

i .Xc}] | a ∈ γ}.
• L = {l} is a set with one control location.
• T = Tnew ∪Tupd ∪Tout, where: Tnew = {(l, pa, true, new(a), l) | a ∈ γ}, Tupd =

{(l, βi,
∧

a∈γ(¬gsa), upd(i), l) | i ∈ [1, n]}, Tout = {(l, p′
a, gsa, get, l) | a ∈ γ}.

For space reasons, we only overview the description of atom RGT and do not
provide the internal algorithms. Full and formal details can be found in [13].
A global state is encoded as a tuple consisting of the valuation of variables and
the location for each atomic component. After a new interaction gets fired, com-
ponent RGT builds a new tuple using the current states of components. Com-
ponent RGT builds a sequence with the generated tuples. The stored tuples are
updated each time the state of a component is updated. Following Definition 7,
atomic components transfer their states through port β each time they move
from a busy location to a ready location. RGT reconstructs global states from
these received partial states, stores them in variable V and delivers them through
the dedicated ports.

Example 6 (RGT Atom). Figure 8 depicts the component RGT for system Task.
For space reasons, only one instance of each type of transitions is shown. At
runtime, RGT produces the sequence of global states in the right-most column
of Table 1.
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pintern , [print "bad"]
(¬e1 ∨ ¬e2 ∨ ¬e3)

pa, for a ∈ γ

Fig. 8. Monitored version of system Task

5.3 Connections

After building component RGT (see Definition 8), and instrumenting atomic
components (see Definition 7), we modify all interactions and define new interac-
tions to build a new transformed composite component. To let RGT accumulate
states of the system, first we transform all the existing interactions by adding
a new port to communicate with component RGT, then we create new interac-
tions that allow RGT to deliver the reconstructed global states of the system to
a runtime monitor.

Given a composite component B⊥ = γ⊥(B⊥
1 , . . . , B⊥

n ) with corresponding
component RGT and instrumented components Br = (P ∪ {βr}, L ∪ L⊥, T r,
Xr) s.t. Br = Br

i ∈ {Br
1 , · · · , Br

n}, we define a new composite component.

Definition 9 (Composite Component Transformation). For a composite
component B⊥ = γ⊥(B⊥

1 , . . . , B⊥
n ), we introduce a corresponding transformed

component Br = γr(Br
1 , . . . , B

r
n, RGT ) s.t. γr = ar

γ⊥ ∪ am where:

• ar
γ⊥ = {ar | a ∈ γ⊥} is the set of transformed interactions with:

∀a ∈ γ⊥, ar =

{
a ∪ {RGT.pa} if a ∈ γ,

a ∪ {RGT.βi} otherwise (a ∈ {{βi}}n
i=1).
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• am is a set of new interactions s.t. am = {a′ | a ∈ γ}, where ∀a ∈ γ, a′ =
{RGT.p′

a} is the corresponding unary interaction.

For each interaction a ∈ γ⊥, we associate a transformed interaction ar which
is the modified version of interaction a s.t. a corresponding port of component
RGT is added to a. Instrumenting interaction a ∈ γ does not modify sequence
of assignment Fa, whereas instrumenting busy interactions a ∈ {{βi}}n

i=1 adds
assignments to transfer attached variables of port βi to the component RGT.
The set am is the set of all unary interactions a′ associated to each existing
interaction a ∈ γ in the system.

Example 7 (Transformed Composite Component). Figure 8 shows the trans-
formed composite component of system Task. The goal of building a′ for each
interaction a is to enable RGT to connect to a runtime monitor. Upon the recon-
struction of a global state corresponding to interaction a ∈ γ, the corresponding
interaction a′ delivers the reconstructed global state to a runtime monitor.

5.4 Correctness of the Transformations and Monitoring

Combined together, the transformations preserve the semantics of the initial
model as stated by the following propositions. Intuitively, component RGT (cf.
Definition 8) implements function RGT (cf. Definition 6). Reconstructed global
states are transferable through the ports p′

a∈γ . If interaction a happens before
interaction b, then in component RGT, port p′

a which contains the reconstructed
global state after executing a will be enabled before port p′

b: the total order
between executed interactions is preserved.

Proposition 1 (Correctness of Component RGT). For any execution, at
any time, variable RGT .V encodes the witness trace of the current execution:
RGT .V is a sequence of tuples where each tuple consists of the state and the
interaction that led to this state, in the same order as they appear on the witness
trace.

For each trace in partial-state semantics, component RGT produces the witness
trace in the initial model, as stated by the following theorem.

Theorem 2 (Transformation Correctness). γ⊥(B⊥
1 , ..., B⊥

n ) ∼ γr(Br
1 , ...,

Br
n, RGT ).

Connecting a Monitor. Using [9], one can monitor a system with partial-state
semantics with the previous transformations by plugging a monitor to component
RGT through the dedicated ports. At runtime, such monitor will i) receive the
sequence of reconstructed global states corresponding to the witness trace, ii)
preserve the concurrency of the system, and iii) state verdicts on the witness
trace.
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Example 8 (Monitoring System Task). Figure 8 depicts the transformed system
Task with a monitor (for the homogeneous distribution of the tasks among the
workers) where e1, e2, and e3 are events related to the pairwise comparison of the
number of executed tasks by Workers. For i ∈ [1, 3], event ei evaluates to true
whenever |xi mod 3+1 − xi mod 3| is lower than 3 (for this example). Component
Monitor evaluates (e1 ∧ e2 ∧ e3) upon the reception of a new global state from
RGT and emits the associated verdict till reaching bad state ⊥. The global trace
(free, free, free, hold) · ex12 · (done, done, free, delivered) · nt (see Table 1) is
sent by component RGT to the monitor which in turn produces the sequence of
verdicts �c · �c (where �c is verdict currently good, see [3,8]).

6 Implementation and Performance Evaluation

We present some case studies on executable BIP systems conducted with RVMT-
BIP, a tool integrated in the BIP tool suite [2].

Case Study 1: Demosaicing. Demosaicing is an algorithm for digital image
processing used to reconstruct a full color image from the incomplete color sam-
ples output from an image sensor. The model contains ca. 1,000 lines of code,
consists of 26 atomic components interacting through 35 interactions. We con-
sider two specifications related to process completion: (i) Internal demosaicing
units should finish their process before post-demosaicing starts processing (ϕ1).
(ii) Internal demosaicing units should not start demosaicing process before pre-
demosaicing finishes its process (ϕ2).

Case Study 2: Task Management. We consider our running example system
Task and a specification of the homogeneous distribution of the tasks among the
workers (ϕ3).

Evaluation Principles. For each system, and all its properties, we synthesize
a BIP monitor following [9] and combine it with the CBS output from RVMT-
BIP. We obtain a new CBS with corresponding RGT and monitor components.
We run each system by using various number of threads and observe the exe-
cution time. Executing these systems with a multi-threaded controller results in
a faster run because the systems benefit from the parallel threads. Additional
steps are introduced in the concurrent transitions of the system. Note, these
are asynchronous with the existing interactions and can be executed in parallel.
These systems can also execute with a single-threaded controller which forces
them to run sequentially. Varying the number of threads allows us to assess the
performance of the (monitored) system under different degrees of parallelism. In
particular, we expected the induced overhead to be insensitive to the degree of
parallelism. For instance, an undesirable behavior would have been to observe a
performance degradation (and an overhead increase) which would mean either
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Table 2. Results of monitoring Demosaicing and Task with RVMT-BIP

that the monitor sequentializes the execution or that the monitoring infrastruc-
ture is not suitable for multi-threaded systems. We also extensively tested the
functional correctness of RVMT-BIP, that is whether the verdicts of the monitors
are sound and complete.

Results (cf. Table 2). Each time measurement is an average value obtained
after 100 executions. Column # interactions shows the number of functional
steps of system. Columns no monitor reports the execution time of the systems
without monitors when varying the number of threads. Columns with monitor
reports the execution time of the systems with monitors when varying the num-
ber of threads, the number of additional interactions and overhead induced by
monitoring. Column events indicates the number of reconstructed global states
(events sent to the associated monitor). As shown in Table 2, using more threads
reduces significantly the execution time in both the initial and transformed sys-
tems. Comparing the overheads according to the number of threads shows that
the proposed monitoring technique i) does not restrict the performance of par-
allel execution and ii) scales up well with the number of threads.

RV-BIP vs. RVMT-BIP. To illustrate the advantages of monitoring multi-
threaded systems with RVMT-BIP, we compared it to RV-BIP [9]. Table 3 shows
the results of a performance evaluation of monitoring Demosaicing and Task. RV-
BIP induces a cheap overhead of 6.91% with one thread and a huge overhead of
46.1% (which is mainly caused by globally-synchronous extra interactions intro-
duced by RV-BIP) with two threads, whereas according to Table 2, the overhead
induced by RVMT-BIP with two threads is 0.73%. The induced overhead is even
better than the overhead induced when monitoring the single-threaded version of
the system which is 2.67%. As can be seen in Table 3, RVMT-BIP outperforms
RV-BIP when monitoring Demosaicing. The latter does not take any advan-
tage of the parallel execution. This clearly demonstrates the advantages of our
monitoring approach over [9].

7 Related Work

Several approaches are related to the one in this paper, as they either target
CBSs or address the problem of concurrently runtime verifying systems.
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Table 3. Results of monitoring with RV-BIP

Runtime Verification of Single-Threaded CBSs. In [9], we proposed a first app-
roach for the runtime verification of CBSs. The approach takes a CBS and a
regular property as input and generates a monitor implemented as a compo-
nent which is then integrated within an existing CBS. At runtime, the monitor
consumes the global trace (i.e., sequence of global states) and yields verdicts
regarding property satisfaction. The technique in [9] only efficiently handles
CBSs with sequential executions: if applied to a multi-threaded CBS, the moni-
tor would sequentialize completely the execution. Hence, the approach proposed
in this paper can be used in conjunction with the approach in [9] when dealing
with multi-threaded CBSs: a monitor as synthesized in [9] can be plugged to
component RGT which is reconstructing the global states of the system.

Decentralized Runtime Verification. The approaches in [4,7] decentralize mon-
itors for linear-time specifications on a system made of synchronous black-box
components that cannot be executed concurrently. Moreover, monitors only
observe the outside visible behavior of components to evaluate the formulas
at hand. The decentralized monitor evaluates the global trace by considering
the locally-observed traces obtained by local monitors. To locally detect global
violations/satisfactions, local monitors need to communicate, because their trace
are only partial w.r.t. the global behavior of the system.

Monitoring Safety Properties in Concurrent Systems. The approach in [16]
addresses the monitoring of asynchronous multi-threaded systems against tem-
poral logic formulas expressed in MTTL. MTTL augments LTL with modalities
related to the distributed/multi-threaded nature of the system. The monitoring
procedure in [16] takes as input a safety formula and a partially-ordered execu-
tion of a parallel asynchronous system, and then predicts a potential property
violation on one of the causally-consistent interleavings of the observed execu-
tion. Our approach mainly differs from [16] in that we target CBSs. Moreover,
we assume a central scheduler and we only need to monitor the unique causally-
consistent global trace with the observed partial trace. Also, we do not place
any expressiveness restriction on the formalism used to express properties.

Parallel Runtime Verification of Monolithic Sequential Programs. Berkovich et
al. [5] introduce parallel algorithms to speed up the runtime verification of
sequential programs against complex LTL formulas using a graphics processing
unit (GPU). Monitoring threads directly execute on the GPU. The approach in
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[5] is not tailored to CBSs and is a complementary technique that adds signif-
icant computing power to the system to handle the monitoring overhead. Note
that, as shown by our experiments, our approach preserves the performance of
the monitored system. Finally, our approach is not bound to any particular logic,
and allows for Turing-complete monitors.

8 Future Work

A first direction is to consider monitoring for fully decentralized and distributed
models where a central controller does not exist. For this purpose, we intend
to make controllers collaborating in order to resolve conflicts in a distributed
fashion. This setting should rely on the distributed semantics of CBSs [6]. A lot
of work has been done in order to monitor properties on a distributed (mono-
lithic) systems; e.g., [15] for online monitoring of CTL properties, [11] for online
monitoring of LTL properties, [14] for offline monitoring of properties expressed
in a variant of CTL, and [17] for online monitoring of global-state predicates. In
the future, we plan to adapt these approaches to the context of CBSs. Another
possible direction is to extend the proposed framework for timed components
and timed specifications as presented in [2].
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Abstract. Interface theories allow systems designers to reason about
the composability and compatibility of concurrent system components.
Such theories often extend both de Alfaro and Henzinger’s Interface
Automata and Larsen’s Modal Transition Systems, which leads, however,
to several issues that are undesirable in practice: an unintuitive treat-
ment of specified unwanted behaviour, a binary compatibility concept
that does not scale to multi-component assemblies, and compatibility
guarantees that are insufficient for software product lines.

In this paper we show that communication mismatches are central to all
these problems and, thus, the ability to represent such errors semantically
is an important feature of an interface theory. Accordingly, we present
the error-aware interface theory EMIA, where the above shortcomings are
remedied by introducing explicit fatal error states. In addition, we prove
via a Galois insertion that EMIA is a conservative generalisation of the
established MIA (Modal Interface Automata) theory.

1 Introduction

Today’s software systems are increasingly composed from off-the-shelf compo-
nents. Hence, software developers desire to detect incompatibilities between com-
ponents early. This is supported by interface theories [1,2,4,6,7,9,17,20,21],
which may serve as specification theories for component-based design [2,4,8,15],
software product lines [17], web services [5] and the Internet of Things [19]. Inter-
face theories may also be employed as contract languages or behavioural type
theories when transitioning from software design to implementation [3,13].

Many interface theories [4,6,17,20,21] extend de Alfaro and Henzinger’s Inter-
face Automata (IA) [1,2] and Larsen’s Modal Transition Systems (MTS) [16,18].
In order to express compatibility assumptions of components on the communica-
tion behaviour of their environment, IA divides an interface’s action alphabet into
input (‘?’), output (‘!’) and an internal action τ . A communication mismatch, or
error, arises between parallelly composed components P and Q, if P may issue an
output a! while Q is not ready to receive the input a? in its current state. Orthog-
onally, MTS permits one to specify required and optional behaviour. Taking step-
wisedecisions on theoptional behaviour allows for a component-based, incremental
design, which is supported by a compositional refinement preorder.
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Unfortunately, interface theories combining IA and MTS have several issues
that impact their practical use. Issue (A): Forbidden inputs are preserved by the
resp. refinement preorder but are widely ignored by parallel composition, such
that behaviour that is forbidden in one component may be re-introduced in the
composed system if another component defies this prohibition. This unintuitive
treatment of communication mismatches and, in particular, unwanted behaviour,
is dangerous for safety-critical applications. Issue (B): Pairwise binary compati-
bility of multiple components does not guarantee their overall compatibility when
being considered as a multi-component assembly, and vice versa, even if paral-
lel composition is associative. To address this, Hennicker and Knapp [14] have
introduced assembly theories that extend interface theories by a separate level
of assemblies where multi-component compatibility is checked. However, these
assemblies have to be re-interpreted as interfaces to be of further use. Issue (C):
Optional behaviour, modelled via may-transitions as in MTS, may be employed
to express variability inherent in software product lines. In current interface the-
ories, two product families may be considered compatible only if all products of
one family are compatible with all products of the other. However, one would
prefer a more detailed set of guarantees, such that one may distinguish if all,
some or none of the product lines’ products are compatible [17]. Issue (D): MTS
and MTS-based interface theories have some subtle differences wrt. modalities,
resulting in different composition concepts: in MTS, components unanimously
agree on transitions of their composition; in interface theories, an error arises if
the components’ requirements do not match. Each theory makes a global choice
of a composition concept, which is tightly bound to a respective compatibility
notion and does not allow one to mix different compatibility and composition
concepts that are suitable for the application at hand.

This paper shows that communication mismatches are central to Issues (A)–
(D) above. Hence, the ability to represent such errors semantically is an important
feature that is missing in current interface theories. We illustrate this in Sect. 2
by an example wrt. Issue (A). In Sect. 3 we present our interface theory Error-
aware Modal InterfaceAutomata (EMIA), for which we remedy Issues (A)–(D) by
making communication mismatches explicit in form of fatal error states and by
employing an error-aware refinement preorder. In contrast, current interface the-
ories [1,2,4,6,7,9,17,20,21] remove such information about the causes and possi-
ble resolutions of communication mismatches. As is typical for interface theories,
EMIA also includes conjunction and disjunction operators, which enables systems
designers to combine operational and declarative specification styles. In Sect. 4 we
show that aGalois insertion [10] renders our refined semantics a conservative exten-
sion of the arguably most general interface theory to date, MIA (Modal Interface
Automata) [6]. Section 5 revisits the example of Sect. 2 in terms of EMIA, and dis-
cusses how fatal error states solve Issues (A)–(D). The resulting specification the-
ory tightly integrates MTS, interface theories and assembly theories, and allows
systems designers to combine the different composition concepts of these theories
within a single interface specification. Due to space constraints, the proofs of our
results are included in a technical report [12].
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2 Motivating Example

In this section we discuss compatibility problems of current interface theories by
means of an illustrative example highlighting Issue (A). Consider a driving assis-
tance system that enables a car to drive into and out of a garage autonomously.
Such a system must communicate with the garage in order to make it open and
close its door. In Fig. 1 we show specifications G and C of the garage’s and the
car’s interfaces, resp. Starting in state g0, the garage is ready to receive a passage
request (rqstPass?). After such a request, the garage opens its door (openDoor!),
waits for a car driving in or out (drive?) and, finally, closes the door (closeDoor!)
again. The car starts in state c0 waiting for a user’s request (rqstCar?). Upon
receiving such a request, the car requests passage from the garage (rqstPass!)
and then drives into or out of the garage (drive!), reaching state c0 again.

Specifications G and C have a communication mismatch due to the drive!-
transition at state c2 and the fact that no drive?-transition is specified at state
g1. Hence, in the parallel product G⊗ C shown in Fig. 2 (left), state 〈g1, c2〉 is
considered illegal. In pessimistic theories, e.g., [4,20], the parallel composition of
G and C is undefined, because the illegal state 〈g1, c2〉 is reachable from the ini-
tial state 〈g0, c0〉. Optimistic theories, e.g., [1,2,6,7,9,17,20,21], assume a helpful
environment that tries to steer away from communication mismatches by con-
trolling the composed system via its input transitions. A state is optimistically
illegal if a communication mismatch is reachable via uncontrollable actions, i.e.,
output- or τ -transitions. Parallel composition G ‖ C is obtained from G⊗ C by

G: g0 g1

g2g3

rqstPass?

o
p
en

D
o
o
r!

drive?

cl
o
se

D
o
o
r!

C: c0 c1

c2

rqstCar?

rq
st
P
as

s!drive!

Fig. 1. Example of a driving assistant system including a garage G and a car C.

G ⊗ C: 〈g0, c0〉 〈g0, c1〉

〈g1, c2〉

〈g3, c0〉

〈g2, c2〉

rqstCar?

rq
st

P
a
ss

!

openDoor!

drive!

closeDoor!

G ‖ C:

(IA)

〈g0, c0〉 G ‖ C:

(MIA)

〈g0, c0〉

u

rq
st

C
a
r?

Fig. 2. Parallel product in IA or MIA (left), and parallel composition in IA (middle)
and MIA (right) of the components depicted in Fig. 1.
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removing all illegal states. In our example, state 〈g1, c2〉 is illegal, just as state
〈g0, c1〉 from which 〈g1, c2〉 is reachable by an output (rqstPass!). This pruning
leaves a single state 〈g0, c0〉 with no transitions; all other states are unreach-
able. The rqstCar?-transition at state 〈g0, c0〉, which would allow one to reach
illegal states when triggered by the environment, is also removed. However, in
order to ensure compositionality of refinement, rqstCar? must be permitted with
arbitrary behaviour afterwards (cf. [6]); IA-based refinement [1,2,20] allows this
implicitly for all unspecified inputs (Fig. 2, middle). In MTS-based interface the-
ories, where unspecified transitions represent forbidden behaviour, composition-
ality is achieved by replacing pruned behaviour by an explicit optional transition
to a special, universally refineable state u (Fig. 2, right) [6].

Due to this possibility of introducing arbitrary behaviour in case of a com-
munication mismatch, stepwise refinement may re-introduce behaviour that has
previously been removed due to the mismatch. Hence, optimistic theories accept
a car driving into or out of the garage before the door is opened as a valid imple-
mentation of G ‖ C. This contradicts G’s sensible constraint that driving in or
out is only permitted after the door has been opened, i.e., the meaning of a car
crashing into the door can simply be ‘refined’ to not being an error. In other
words, the assumptions and guarantees expressible in current interface theories
are insufficient for expressing unwanted behaviour.

Bujtor and Vogler [7] have shown that keeping or removing illegal states on a
purely syntactic level are equivalent for IA wrt. preserving compatibility. In this
spirit, current interface theories [1,2,4,6,7,17,20,21] eliminate erroneous behav-
iour either by regarding it as undefined (pessimistic) or by pruning (optimistic);
all errors are treated semantically equivalent. Due to this equivalence, theories
combining IA and MTS cannot remove illegal states completely but must replace
them by a special, arbitrarily refinable behaviour as mentioned above. However,
because optional transitions (i.e., may-transitions) allow for underspecification
in MTS-based interface theories, one may distinguish potential errors that can be
resolved by a suitable refinement from actual, unresolvable errors that arise when
an output is required and the corresponding input is forbidden. That is, speci-
fications based on MTS contain more information wrt. compatibility, which we
make explicit in EMIA. EMIA guarantees that compatible specifications have
only compatible implementations, potential errors have both compatible and
erroneous implementations, and actual errors have only erroneous implementa-
tions (cf. Sect. 5, Issue (C)).

3 Error-Aware Modal Interface Automata

Our interface theory Error-aware Modal Interface Automata (EMIA), which we
present in this section, is equipped with a parallel composition operator mod-
elling concurrency and communication, a conjunction operator permitting the
specification of a component from different perspectives, and a compositional
refinement preorder enabling the substitution of an interface by a more concrete
version. In addition to these standard requirements on interface theories, EMIA
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solves Issues (A)–(D) of Sect. 1. We achieve this by introducing fatal error states,
which represent unresolvable incompatibilities between interfaces. This enables
EMIA to deal with errors on a semantic level, since forbidden behaviour can be
modelled by input transitions leading to a fatal error state.

Definition 1 (Error-Aware Modal Interface Automata). An Error-aware
Modal Interface Automaton (EMIA) is a tuple P := (SP , IP , OP ,−→P , P ,S

0
P, DP),

where SP is the set of states, IP , OP are the disjoint alphabets of input and output
actions not including the silent action τ (we define AP := IP ∪ OP and ΩP :=
OP ∪{τ}), −→P ⊆ SP × (AP ∪{τ})×P(SP ) is the disjunctive must-transition
relation (P denotes the power set operator), P ⊆ SP ×(AP ∪{τ})×SP is the

may-transition relation, S0
P ⊆ SP is the set of initial states, and DP ⊆ SP is the

set of fatal error states. We also adopt syntactic consistency from MTS, i.e., for
all α ∈ AP ∪ {τ} and p

α−→ P ′, we have ∀p′ ∈P. p
α

p′.

Our definition of weak transitions that abstract from internal behaviour is
adopted from the one in MIA [6]:

Definition 2 (Weak Transition Relations). Let P be an EMIA. We define
weak must- and may-transition relations, =⇒ and resp., as the smallest rela-
tions satisfying the following conditions, where we use P ′ α̂=⇒ P ′′ as a shorthand
for ∀p ∈ P ′ ∃Pp. p

α̂=⇒ Pp and P ′′ =
⋃

p∈P ′ Pp:

WT1. p
ε=⇒ {p} for all p ∈ P ,

WT2. p
τ−→ P ′ and P ′ α̂=⇒ P ′′ implies p

α̂=⇒ P ′′,
WT3. p

a−→ P ′ and P ′ ε=⇒ P ′′ implies p
a=⇒ P ′′,

WT4. p
ε

p,
WT5. p

ε
p′′ τ

p′ implies p
ε

p′,
WT6. p

ε
p′′ α

p′′′ ε
p′ implies p

α
p′.

We write a→ ε⇒ for transitions built up according to WT3 and call them trailing-
weak must-transitions. Similarly, a ε stands for trailing-weak may-transitions.

Our error-aware modal refinement preorder EA corresponds to standard
modal refinement from MTS [16,18] but reflects and preserves fatal error states.
Intuitively, P EA Q for an implementation P and a specification Q, enforces
that P ’s may-transitions are permitted by Q while for any of Q’s disjunctive
must-transitions at least one of the branches is implemented by P . In contrast
to DMTS [18], we require that all branches of a disjunctive transition have the
same label. This is sufficient for our purposes and does away with technical
complications of parallel composition in the presence of τ -transitions (cf. [12]).

Definition 3 (Error-Aware Modal Refinement). Let P and Q be EMIAs
with equal alphabets, i.e., IP = IQ and OP = OQ. A relation R ⊆ SP × SQ

is an error-aware modal refinement relation (EA-refinement) if, for all 〈p, q〉 ∈
R \ (DP × DQ), the following conditions hold:
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R2. q
i−→ Q′ implies ∃P ′. p i→ ε⇒ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. 〈p′, q′〉 ∈ R,

R3. q
ω−→ Q′ implies ∃P ′. p ω=⇒ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. 〈p′, q′〉 ∈ R,

R4. p
i

p′ implies ∃q′. q i ε
q′ and 〈p′, q′〉 ∈ R,

R5. p
ω

p′ implies ∃q′. q ω
q′ and 〈p′, q′〉 ∈ R.

R1. p �∈ DP and q �∈ DQ,

We write p EA q if there is an EA-refinement R with 〈p, q〉 ∈ R, and P EA Q
if, for each p ∈ S0

P , there is a q ∈ S0
Q with p EA q. If p EA q and q EA p, we

employ the symbol p �EA q, and similar for EMIAs P,Q.

The refinement relation EA is reflexive and transitive and, hence, a preorder.
Moreover, we have p ∈ DP iff q ∈ DQ for all 〈p, q〉 ∈ R due to R1. Optional
input-transitions, which may be refined to required or forbidden behaviour, are
expressed as a disjunctive must-transition containing a fatal error state in its set
of target states. For example, optional a?-transitions from a state p0 to states
p1 and p2 are modelled as p0

a?−→ {p1, p2, p3} for some fatal error state p3 ∈ DP .
IA’s parallel composition operator synchronises input and output transitions

to τ -transitions. In contrast, we define a multicast parallel composition, where
an output can synchronise with multiple input transitions, as in MI [21] and
MIA [6]. We leave out MIA’s separate hiding due to space constraints.

Definition 4 (Parallel Composition). Let P and Q be EMIAs. We call P
and Q composable if OP ∩ OQ = ∅. If P and Q are composable, the multicast
parallel composition P ‖ Q is defined by SP ‖ Q := SP ×SQ, IP ‖ Q := (IP ∪ IQ) \
OP ‖ Q, OP ‖ Q := OP ∪OQ, S0

P ‖ Q := S0
P ×S0

Q, DP ‖ Q := (DP ×SQ)∪(SP ×DQ),
and the transition relations are given by the following rules:

P1. 〈p, q〉 α−→ P ′ × {q} if p
α−→ P ′ and α �∈ AQ,

P2. 〈p, q〉 α−→ {p} × Q′ if α �∈ AP and q
α−→ Q′,

P3. 〈p, q〉 a−→ P ′ × Q′ if p
a−→ P ′ and q

a−→ Q′ for some a ∈ AP ∩ AQ.
P4. 〈p, q〉 α 〈p′, q〉 if p

α
p′ and α �∈ AQ,

P5. 〈p, q〉 α 〈p, q′〉 if α �∈ AP and q
α

q′,
P6. 〈p, q〉 a 〈p′, q′〉 if p

a
p′ and q

a
q′ for some a ∈ AP ∩ AQ.

We also write p ‖ q for 〈p, q〉. IA-based interface theories usually define a
communication mismatch for p at q as a situation where an action a ∈ OP ∩ IQ

is permitted at p and not required at q. In EMIA, such a situation is modelled
with the help of an a?-must-transition from q to a target set Q′ that includes
some fatal error state q′ ∈ DQ, as explained above. Parallel composition is
associative and commutative. Further, EA is a precongruence wrt. ‖:

Proposition 5 (Compositionality). If P1, P2, Q are EMIAs s.t. P1 EA P2

and P2, Q are composable, then P1 and Q are composable and P1 ‖ Q EA P2 ‖ Q.

Perspective-based specification is concerned with specifying a system compo-
nent from separate perspectives s.t. the component satisfies each of these perspec-
tive specifications; for example, each requirement for a component might describe
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a perspective. The component’s overall specification is the most general specifica-
tion refining all perspective specifications, i.e., it is the greatest lower bound wrt.
the refinement preorder. This conjunction operator is defined in two stages:

Definition 6 (Conjunctive Product). Let P , Q be EMIAs with equal alpha-
bets. The conjunctive product of P and Q is P & Q := (SP & Q, I, O,−→P & Q,

P & Q, S0
P & Q, DP & Q) with SP & Q := SP ×SQ, S0

P & Q := S0
P ×S0

Q, DP & Q :=
DP × DQ, and the transition relations are given by the following rules:

C1. 〈p, q〉 i−→ {〈p′, q′〉 | p′ ∈ P ′, q
i ε

q′} if p
i−→ P ′ and q

i ε ,
C2. 〈p, q〉 i−→ {〈p′, q′〉 | p

i ε
p′, q′ ∈ Q′} if p

i ε and q
i−→ Q′,

C3. 〈p, q〉 ω−→ {〈p′, q′〉 | p′ ∈ P ′, q
ω

q′} if p
ω−→ P ′ and q

ω ,
C4. 〈p, q〉 ω−→ {〈p′, q′〉 | p

ω
p′, q′ ∈ Q′} if p

ω and q
ω−→ Q′,

C5. 〈p, q〉 i 〈p′, q′〉 if p
i ε

p′ and q
i ε

q′,
C6. 〈p, q〉 ω 〈p′, q′〉 if p

ω
p′ and p

ω
q′,

C7. 〈p, q〉 τ 〈p′, q〉 if p
τ

p′,
C8. 〈p, q〉 τ 〈p, q′〉 if q

τ
q′.

A state 〈p, q〉 of P &Q is a candidate for refining both p and q. Because 〈p, q〉
cannot require and forbid the same action a or be at once fatal and non-fatal,
some states p and q do not have a common refinement. In such cases, 〈p, q〉 is
called inconsistent and has to be removed from the candidates, including the
removal of all states that require transitions leading to inconsistent states.

Definition 7 (Conjunction). The set F ⊆ SP & Q of logically inconsistent
states is defined as the smallest set satisfying the following rules:

F1. 〈p, q〉 ∈ (DP × (SQ \ DQ)) ∪ ((SP \ DP ) × DQ) implies 〈p, q〉 ∈ F ,

F2. 〈p, q ∈�〉 DP & Q, p
i−→ and q � i implies 〈p, q〉 ∈ F ,

F3. 〈p, q ∈�〉 DP & Q, p � i and q
i−→ implies 〈p, q〉 ∈ F ,

F4. 〈p, q ∈�〉 DP & Q, p
ω−→ and q �ω implies 〈p, q〉 ∈ F ,

F5. 〈p, q ∈�〉 DP & Q, p �ω and q
ω−→ implies 〈p, q〉 ∈ F ,

F6. 〈p, q〉 α−→ R and R ⊆ F implies 〈p, q〉 ∈ F .

The conjunction P ∧ Q is obtained from P & Q by deleting all states in F . This
deletes all transitions exiting deleted states and removes all deleted states from
targets of must-transitions. If S0

P ∧ Q = ∅, then P and Q are called inconsistent.

Fatal states are excluded in Rules F2 through F5 because we do not care
about consistency for fatal error states. Note that the states in D and F are dif-
ferent in nature: D-states represent states with possible but unwanted behaviour.
F -states represent contradictory specifications that are impossible to implement.
Conjunction is the greatest lower bound wrt. the refinement preorder EA:
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Proposition 8 (∧ is And). If P and Q are EMIAs with equal alphabets, then
(i) ∃R.R EA P and R EA Q iff P and Q are consistent. Further, if P and Q
are consistent, then, for any R, (ii) R EA P and R EA Q iff R EA P ∧ Q.

As a standard category theoretic result, Proposition 8 implies that ∧ is asso-
ciative:

Corollary 9 (Associativity of ∧). Conjunction is strongly associative, i.e.,
for all EMIAs P , Q, and R, if one of P ∧ (Q∧ R) and (P ∧Q)∧ R is defined,
then both are defined and P ∧ (Q∧ R) �EA (P ∧Q)∧ R.

We close this section with a remark on alphabet extension. Conjunction,
disjunction and refinement are defined for EMIAs with equal alphabets. For
perspective-based specification, it is of interest to consider EMIAs with different
alphabets [6]. Following the lines of MI and MIA, the operations on EMIAs can
be lifted to different alphabets by extending the alphabets of the operands by
their mutually foreign actions. When a specification’s alphabet is extended, the
least possible assumptions should be made on a new action a, while the same
specification wrt. known actions should hold before and after a. This can be
achieved by adding an optional a-loop to each state. For output actions this is
straightforward, but the exact meaning of optional input transitions depends on
the desired composition concept (cf. Sect. 1, Issue (D)). Therefore, a separate
alphabet extension operator has to be defined for unanimous, broadcast and
error-sensitive parallel composition. Besides this, there is nothing surprising to
expect from alphabet extension, and we leave out the formal definition here for
brevity.

4 Relation to Other Interface Theories

The majority of IA-based interface theories prune errors. Therefore, it is impor-
tant to investigate the relation between such error-pruning interface theories
and our non-pruning EMIA theory. We do this for MIA [6] because it is the
most general IA-based interface theory to date in that it is nondeterministic
rather than deterministic and optimistic rather than pessimistic, thus subsum-
ing MI [21] and MIO [4] (wrt. strong compatibility), resp. We establish here
a Galois insertion between MIA and EMIA, i.e., a Galois connection 〈γ, α〉
for which α ◦ γ = idMIA [10] (up to �MIA). Recall that states from which
a communication mismatch is reachable via output- or τ -transitions are called
illegal. Intuitively, α abstracts from EMIAs by considering all illegal states to
be equivalent, and γ concretises MIAs as EMIAs without any loss of informa-
tion. Note that γ is different from the error-completion presented in [22] that
is motivated by algorithmic considerations only. Error-completion preserves an
interface’s semantics when replacing missing inputs by transitions to an error
state. In contrast, EMIA refines the semantics of MIA by retaining error states.

Definition 10 (MIA [6]). Modal Interface Automata (MIA) are defined like
EMIAs (cf. Definition 1), except that, instead of DP , there is a universal state
uP that is only permitted as target of input may-transitions.
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An important difference between fatal error states and uP is revealed in the
different notion of refinement. While EMIA employs a variant of modal refine-
ment [18] that preserves and reflects fatal error states, MIA adopts (ordinary)
modal refinement in general but provides the possibility to employ IA-refinement
where necessary. This is achieved by state uP , which may be refined arbitrarily.

Definition 11 (MIA-Refinement [6]). Let P , Q be MIAs with equal alpha-
bets. R ⊆ SP × SQ is a MIA-refinement relation if, for all 〈p, q〉 ∈ R \ (SP ×
{uQ}), the rules of Definition 3 hold when replacing R1 by: p �= uP .

Parallel composition of MIAs is defined through reachability of illegal states:

Definition 12 (Backward Closure). Let P be a MIA or EMIA and S ⊆ SP .
The Ω-backward closure of S in P is the smallest set bclΩP (S) ⊆ SP s.t. S ⊆
bclΩP (S) and, for all ω ∈ ΩP and p′ ∈ bclΩP (S), if p

ω
p′

, then p ∈ bclΩP (S).

Definition 13 (MIA-Parallel Composition [6]). For composable MIAs P ,
Q, the parallel product P ⊗ Q is defined by ignoring fatal error states in Defin-
ition 4. We say that there is a communication mismatch for p at q, in symbols

mis(p, q), if there is an a ∈ OP ∩ IQ with p
a

and q � a . The set of illegal

states is defined as EP ⊗ Q := bclΩP ⊗ Q({〈p, q〉 | mis(p, q) or mis(q, p)} ∪ (SP ×
{uQ}) ∪ ({uP } × SQ)). The parallel composition P ‖ Q is the MIA given by the
state set SP ‖ Q := (SP ⊗ Q \ EP ⊗ Q) ∪ {uP ‖ Q}, the alphabets IP ‖ Q := IP ⊗ Q

and OP ‖ Q := OP ⊗ Q, and the transition relations obtained from P ⊗ Q by
replacing all i?-transitions of states 〈p, q〉 having an i?-transition to EP ⊗ Q by

a transition 〈p, q〉 i
uP ‖ Q. If S0

P ⊗ Q ⊆ EP ⊗ Q, then S0
P ‖ Q := {uP ‖ Q}, else

S0
P ‖ Q := S0

P ⊗ Q \ EP ⊗ Q.

The set bclΩP (DP )\DP of an EMIA P corresponds roughly to the set of illegal
states in IA, EIO, MI and MIA. In contrast to these theories, EMIA requires one
to match transitions of such states during refinement. The resulting refinement
relation is comparable to other refinement preorders for error-free interfaces, but
is more detailed for erroneous ones. Indeed, MIA can be seen as an abstraction of
EMIA, where all states in bclΩP (DP )\DP are deemed equivalent (cf. Theorem 19).

Definition 14 (MIA-Conjunction [6]). Let P and Q be MIAs with equal
alphabets. The MIA-conjunctive product is defined by ignoring fatal error states
in Definition 6 and adding the following rules for u:

CE1. 〈p, uQ〉 α−→ P ′ × {uQ} if p
α−→ P ′,

CE2. 〈uP , q〉 α−→ {uP } × Q′ if q
α−→ Q′,

CE3. 〈p, uQ〉 α 〈p′, uQ〉 if p
α

p′,
CE4. 〈uP , q〉 α 〈uP , q′〉 if q

α
q′.

The MIA-conjunction is obtained from the MIA-conjunctive product by pruning
logically inconsistent states according to Rules F2 through F6 of Definition 7.
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An input i forbidden at state p is modelled as a missing transition in MIA
and, equivalently, as an i-must-transition from p to a fatal error state in EMIA.
Hence, a MIA’s behaviour can be modelled by an EMIA where non-fatal states
are input-enabled. We write EMIA′ for the collection of such EMIAs.

The Galois insertion between MIA and EMIA consists of a concretisation
γ : MIA → EMIA′ and an abstraction α : EMIA′ → MIA s.t. 〈γ, α〉 is a Galois
connection and (α ◦ γ)(Q) �MIA Q. The main idea behind α is to consider the
states bclΩP (DP ) \ DP as equivalent, yielding equivalence classes of EMIAs; α
assigns a MIA to each of these equivalence classes. Vice versa, γ assigns to each
MIA the disjunction of an equivalence class of EMIAs.

Definition 15 (Abstraction Function from EMIA′ to MIA). Let P ∈
EMIA′ and CP := bclΩP (DP ) \ DP . The MIA-abstraction of P is the MIA
α(P ) := (Sα(P ), IP , OP ,−→α(P ), α(P ), S

0
α(P ), uα(P )) with the state sets

Sα(P ) := (SP \ (CP ∪ DP ))∪̇{uα(P )} and S0
α(P ) := S0

P ∩ Sα(P ). The transitions
of α(P ) are obtained from P by replacing all i?-transitions leading from a state
p to states in CP by p

i?
uα(P ). The kernel equivalence ≡α ⊆ EMIA′ × EMIA′,

which is defined by P ≡α Q iff α(P ) �MIA α(Q) and has equivalence classes
[P ]α, yields a canonical bijection ᾱ : EMIA′/≡α → MIA.

To define the concretisation function γ we need a disjunction operator:

Definition 16 (Disjunction). For a family of EMIAs P := (Pj)j∈J with equal
alphabets, we define the disjunction of P as the EMIA:
∨

j∈J Pj := (
⋃̇

j∈JSPj , I, O,
⋃̇

j∈J −→Pj ,
⋃̇

j∈J Pj
,
⋃̇

j∈JS0
Pj

,
⋃̇

j∈JDPj
).

Proposition 17 (∨ is Or). If Pj, for j ∈ J , and R are EMIAs with equal
alphabets, then

∨
j∈J Pj EA R iff Pj EA R for all j ∈ J .

Disjunction on MIAs is defined analogously by ignoring fatal error states and
replacing uP and uQ by uP ∨ Q. Obviously, α is homomorphic wrt. disjunction.

Definition 18 (Concretisation Function from MIA to EMIA′). The con-
cretisation function γ : MIA → EMIA′ is defined as γ(P ) :=

∨
ᾱ−1(P ).

The mappings α and γ defined in Definitions 15 and 18 are monotonic, which
is key to the proof of our main result that α and γ form a Galois insertion:

Theorem 19 (Galois Insertion). The maps α : EMIA′ → MIA and γ : MIA →
EMIA′ defined in Definitions 15 and 18 form a Galois insertion between MIA and
EMIA′ up to �MIA, i.e., P EA γ(Q) iff α(P ) MIA Q and (α◦γ)(Q) �MIA Q.

Proof (sketch). α ◦ γ = idMIA by homomorphicity of α wrt.
∨

; standard mono-
tonicity and extensivity arguments establish 〈γ, α〉 as a Galois connection. ��
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α is homomorphic wrt. parallel composition but not wrt. conjunction:
although α(P ∧Q) MIA α(P )∧ α(Q) holds for P,Q ∈ EMIA′ because α is
monotonic, the converse direction “�MIA” does not hold in general, because
MIA’s replacement of illegal states by u—which must be reproduced by α—is a
non-continuous operation. For the same reason, γ is not homomorphic wrt. par-
allel composition; however, γ satisfies the inequality γ(P ‖ Q) �EA γ(P ) ‖ γ(Q)
for MIAs P,Q.

5 Discussion

In this section we illustrate how the fatal error states employed in EMIA solve
Issues (A)–(D) criticised in Sect. 1. In particular, we establish that EMIA treats
unwanted behaviour more intuitively (Issue (A)), that EMIA, in contrast to
MIA, is an assembly theory (Issue (B)), that EMIA provides better support for
specifying product families (Issue (C)), and that EMIA unifies the composition
concepts of MTS and interface theories (Issue (D)). We do this mostly along
the example of Sect. 2 and also use this example to demonstrate the Galois
abstraction from EMIA to MIA.

Issue (A): In EMIA, the garage’s constraint that a car shall not drive in or out
in state g1 would be specified by a drive?-transition to a fatal error state ∗, which
represents an unresolvable error as is illustrated in specification G′ in Fig. 3. In
the resulting parallel composition G′ ‖ C, also shown in Fig. 3, driving in or out
too early in state 〈g1, c2〉, when the door is still closed, leads to the fatal error
state ∗, where the car crashes into the door. This information is not removed and

G′: g0 g1

g2g3

∗
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o
p
en

D
o
o
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drive?
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o
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D
o
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r!
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e?

drive?
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e?

G′ ‖ C: 〈g0, c0〉 〈g0, c1〉

〈g1, c2〉

∗〈g3, c0〉

〈g2, c2〉

rqstCar?
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P
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!
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drive!
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Fig. 3. Driving assistant system in EMIA and its Galois abstraction.
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Fig. 4. Corrected car C′, user interfaces U and V , and product families D and W .
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cannot be redefined to not being an accident by refining G′ ‖ C. Keeping this
information is essential for pinning down the location and the cause of the error
within the specification. Because G′ forbids action drive? between rqstPass? and
openDoor! but allows drive? after openDoor!, we can infer that specification C
must be aware of action openDoor! in order to be compatible with G′. This way,
a software design tool based on EMIA can propose possible specification changes
to the designer. For example, the tool may propose to add action openDoor? to
the car’s alphabet and to insert an openDoor?-transition between rqstPass! and
drive!, so as to avoid the fatal error state ∗ that is reachable from 〈g1, c2〉. The
resulting specification is shown as C ′ in Fig. 4.

Galois abstraction: Figure 3 (right) illustrates the abstraction function α of the
Galois insertion between MIA and EMIA. We have CG′ ‖ C := bclΩG′ ‖ C(DG′ ‖ C)\
DG′ ‖ C = {〈g1, c2〉, 〈g0, c1〉} (cf. Sect. 4). The rqstCar?-must-transition at 〈g0, c0〉
leading to CG′ ‖ C is replaced by a rqstCar?-may-transition to uα(G′ ‖ C). Due to
α being a homomorphism wrt. ‖, this result corresponds exactly to the MIA
shown in Fig. 2 (right).

Issue (B): When adding the specification of a simple user interface, shown as U
in Fig. 4, as a third component to the specifications G and C of Fig. 1, the three
components G, C and U are pairwise optimistically compatible. However, the
composed system G ‖ C ‖ U is incompatible, because the mismatch for action
drive! is reachable from the initial state 〈g0, c0, u0〉. In other words, MIA is not
by itself an assembly theory. A different but related problem arises in pessimistic
theories: the user interface specification V in Fig. 4 promises to never request a
car. The components G and C are pessimistically incompatible and (G ‖ C) ‖ V
is undefined. However, G ‖ (C ‖ V ) is a perfectly valid composition.

To lift their interface theory MIO to an assembly theory, Hennicker and
Knapp propose an enrichment EMIO of MIO by error states similar to our fatal
errors [14]. However, they do not develop EMIO into a full interface theory:
EMIOs are only employed to describe the result of a multi-component paral-
lel composition and to check the communication safety of such an assembly.
In addition, refinement is lifted to assemblies by providing an error-preserving
refinement relation for EMIOs, which is similar to EA-refinement. However,
no further operations like parallel composition or conjunction are defined for
assemblies; instead, EMIO forms a second layer on top of MIO, and an EMIO
is re-interpreted as MIO via an encapsulation function that removes all error-
information. In contrast to this loose integration, EMIA provides a uniform and
tight integration of interfaces and assemblies by directly including its canonical
assembly theory in the sense of [14]. In particular, EMIA does not need two
separate refinement relations for interfaces and assemblies.

Theorem 20 (Assembly Theory). EMIA induces a canonical assembly the-
ory (i.e., where encapsulation is equivalent to parallel composition).

The proof is straightforward by checking the conditions of the definitions
in [14] (cf. [12]). Because encapsulation corresponds to ‖ and the assembly refine-
ment preorder to EA, EMIA directly includes its canonical assembly theory.



172 S. Fendrich and G. Lüttgen

Translating the above examples of assemblies with U and V into EMIA, the
composition G′ ‖ C ‖ U resembles G′ ‖ C (Fig. 3), except that action rqstCar is an
output instead of an input. Further, (G′ ‖ C) ‖ V and G′ ‖ (C ‖ V ) are equivalent
in EMIA. In both examples, compatibility is checked via reachability of fatal
error states. However, it is up to the system designer to decide which error
behaviour yields an incompatibility, i.e., compatibility is not necessarily a global
concept as is the case for optimistic and pessimistic compatibility.

Issue (C): Consider specifications D and W of a car and a user interface prod-
uct family, resp., both of which are shown in Fig. 4. These specifications allow
product variations of a car and a user interface, which enable drivers to initiate
the automatic driving assistance manually (go!), e.g., when parking in a different
garage that is not equipped with an automatic door opener. Obviously, a user
interface that provides this feature is incompatible with a car that does not,
i.e., although some product combinations of D and W are compatible, some of
them are not. Hence, D and W are incompatible, and no information that might
help finding compatible product combinations is provided in current interface
theories (see also the discussion about actual and potential errors in Sect. 2). In
EMIA, the optional go?-transition at state d0 would be modelled as a disjunc-
tive go?-must-transition from d0 to {d3, ∗}, for a fatal error state ∗. We refer
to this specification as D′. The specified error information is still present in the
parallel composition of D′ and W, so that one may derive additional conditions
on the go-transitions. These conditions result in compatible refinements of D′

and W, which describe compatible sub-families of the original product families.
For example, refining the optional go?-transition into a mandatory one in D′, or
removing the optional go!-transition in W; both result in appropriate restrictions
to sub-families. The necessary error information is present in the EMIA parallel
composition of D′ and W (cf. Fig. 5).

Issue (D): MTS and interface theories combining IA with MTS share many
aspects of the modality semantics wrt. refinement. However, the meaning of
may- and must-modalities differs wrt. parallel composition. Required and for-
bidden actions never cause an error in a parallel composition in MTS: either
all components unanimously agree on implementing an action, or the action is
forbidden in the composed system. The possibility to disagree on transitions
enables an environment to control all transitions of an MTS, such that they

D′ ‖ W : 〈d0, w0〉 〈d1, w1〉

〈d2, w1〉〈d3, w1〉〈d0, w1〉

∗

rqstCar!

rqstPass!

openDoor?drive!

go!
go!

Fig. 5. Composition of product lines D′ and W in EMIA.
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may be interpreted as input-transitions from an interface theoretic view. How-
ever, the MTS parallel composition does not directly scale to output actions,
because these cannot be controlled by the environment. Consequently, previous
interface theories have adopted an IA-like error-aware parallel composition that
is tightly bound to a global compatibility concept. In contrast, EMIA’s explicit
error representation allows for a local description of compatibility that is inde-
pendent of composition. Thus, EMIA unifies unanimous and error-aware parallel
composition, i.e., it permits the mixing of these composition concepts within a
specification. As an aside, note that EMIA collapses to MTS when considering
input actions only.

6 Conclusions

Our interface theory EMIA is a uniformly integrated specification framework
that is applicable at different levels of abstraction, e.g., component-based design,
product line specification and programming with behavioural types. EMIA
bridges the gaps between MTS [18], interface theories [1,2,4,6,7,9,17,20,21]
and assembly theories [14]. It is based on a concept of error-awareness, whereby
EMIA’s refinement preorder reflects and preserves fatal error states. While recent
interface theories [6,21] considered the problem of how to enforce required behav-
iour, our finer-grained error semantics also solves the dual and previously open
problem of how to forbid unwanted behaviour.

We proved that EMIA is related to the IA-based interface theory MIA [6] via
a Galois insertion, rendering MIA into an abstraction of EMIA. In the abstract
theory, errors may be considered as models of unknown behaviour for which
no guarantees can be made, while in EMIA errors model unwanted behaviour
for which we know that it must not be implemented. This difference between
EMIA and related interface theories can be captured in a more concise way when
considering error states axiomatically. In related theories [6,21], an error state e
satisfies the laws e ‖ q = e, meaning that a composed system is in an erroneous
state if a component is, and e  p ⇒ p = e, meaning that an error cannot
be introduced when refining an ordinary state. In EMIA, the additional law
p  e ⇒ p = e is satisfied, i.e., refining cannot redefine an erroneous situation
to be non-erroneous.

Regarding future work we intend to add alphabet extension and quotienting,
and wish to capture differences and commonalities of different interface theories
via axiomatisations. We also plan to implement EMIA in a formal methods tool,
e.g., Mica [8], the MIO-Workbench [4] or MoTraS [15], and to adapt EMIA as
a behavioural type theory for the Go Programming Language [13]. Such tools
would enable us to evaluate EMIA on larger, more realistic examples, e.g., the
docking system studied in the context of IA in [11].

Acknowledgements. We are grateful to Ferenc Bujtor, Walter Vogler and the anony-
mous reviewers for their helpful suggestions.
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Abstract. We examine the challenges of implementing a framework
for automating Monitor-Oriented Programming in the context of actor-
based systems. The inherent modularity resulting from delineations
induced by actors makes such systems well suited to this style of pro-
gramming because monitors can surgically target parts of the system
without affecting the computation in other parts. At the same time,
actor systems pose new challenges for the instrumentation of the resp.
monitoring observations and actions, due to the intrinsic asynchrony and
encapsulation that characterise the actor model. We discuss a prototype
implementation that tackles these challenges for the case of Erlang OTP,
an industry-strength platform for building actor-based concurrent sys-
tems. We also demonstrate the effectiveness of our Monitor-Oriented
Programming framework by using it to augment the functionality of a
third-party software written in Erlang.

1 Introduction

Monitor-Oriented Programming (MOP) [9,10] (also termed monitoring [23,40]),
is a code design principle advocating for the separation of concerns between the
core functionality of a system and ancillary functionality that deals with aspects
such as safety, security, reliability and robustness. MOP organises code in a
layered onion-style architecture where the innermost core consists of the plain-
vanilla system, and the outer layers are made up of monitors — software entities
that observe the execution of the inner layers and react to these observations.
Monitor actions typically include basic notifications of detected behaviour (to
outer layers), the suppression of inner-layer observable behaviour, the filtering of
stimuli coming from outer layers, and adaptation actions that affect the structure
and future behaviour of the inner layers.

Software development and maintenance can benefit from MOP in various
ways. For instance, MOP facilitates an incremental deployment strategy where
outer layers may be added at a later stage, which may improve the time-to-market
of a development process (e.g., in the Simplex Architecture [42], monitoring was
proposed as an automated method for upgrade-control systems). Arguably, this
also fits better with real-world development processes, where requirements often
become apparent at later stages of development. Monitoring may also be used as
a means of software customisation, where every deployed system instance comes
c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 176–192, 2016.
DOI: 10.1007/978-3-319-33693-0 12
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with its own auxiliary requirements in terms of security practices, privacy poli-
cies and robustness requirements that are handled by dedicated monitors [16,40].
MOP is also used as a discipline for augmenting systems with a last line of defense,
so as to improve execution correctness and robustness. For instance, they can
shield the inner layers by filtering harmful external stimuli [6], or steer the exe-
cution of the inner system to remain within its “stability envelope”, from where a
system can be controlled using safe and well-understood procedures [9]. In fact,
monitors are the main mechanism used in formal techniques such as Runtime Ver-
ification (RV) [10,33] and Security/Edit Automata [34,40].

A restricted flavour of MOP is already used extensively in a number of
actor-based technologies for building reactive systems, such as the Erlang [8]
and Scala [27] programming languages, and the AKKA concurrency framework
for Java [1]. In particular, these actor systems — collections of self-contained,
asynchronously-executing, interacting processes called actors — are typically
organised in hierarchical fashion, where supervisor actors monitor other actors
at a lower layer through a mechanism called process linking. In the example of
Fig. 1 (left) the supervisor actor S is linked to three actors A, B and C; when
either child actor fails, a special exit() notification is sent to S who is set to
trap these exit messages1 and react to them [8,35]. Common coding practices for
such technologies then advocate for the fail-fast design pattern, whereby inner-
layer actors should focus on the core functionality of the system and not engage
in defensive programming that attempts to anticipate and handle errors locally
[8]; instead, actors should fail as soon as such errors are encountered, so as to
allow their abnormal termination to be detected and handled by the resp. super-
visor monitors. Once a (process) failure is detected, a supervisor may react in a
number of ways: in the case of the Erlang language, a supervisor may reinstate
the failed actor or replace it by a “limp-home” surrogate actor, terminate other
actors at the same layer that are potentially “infected” by the error, or even fail
themselves so as to allow the abnormal termination notification to percolate to
monitors in outer layers that are better equipped to handle the error.

In [7], the authors propose an abstract formal model for extending this mech-
anism (based on supervision trees and process linking) to a more comprehensive
MOP model:

1 Setting the trap exit flag to false causes linked actors to fail upon receiving an exit
message.
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1. They extend the events that are monitored for, from mere (actor) failures
to sequences of actor events that include message communication and actor
spawning. As depicted in Fig. 2, this allows monitors to react to a wider range
of behaviour and take preemptive action before actors fail. As is often the case
in MOP frameworks [10,37], the authors use a formal logic to rigorously spec-
ify the actor behaviour of interest to the monitor, namely the logic presented
in [26] and studied in [24].

2. They propose a range of adaptation actions that a monitor may take in
response to some observed behaviour, but also argue that for such adap-
tations to be effective, fine-tuned synchronisations between the monitor and
a subset of the actors are required. Thus, they define language extensions
to the logic of [24,26] that permit the specification of synchronisation strate-
gies and develop (sound) type-based analysis techniques to identity erroneous
synchronisation procedures.

In this paper, we follow up on this work and study implementability aspects
of the formal model proposed in [7]. In particular, we focus on one representative
actor-based technology — the Erlang platform [8,35] — and identify concrete
instances of monitorable events and adaptation actions that are useful to MOP in
such a setting. We then study the feasibility of such adaptation actions, together
with the implementability of the synchronisation mechanisms designed in [7] wrt.
the constraints of the runtime environment of the platform. In fact, we show that
we can build a tool that fully automates the synthesis of monitors observing and
reacting to the actor behaviour specified in the extended logic of [7]. Finally,
we demonstrate the effectiveness and utility of the implemented framework by
augmenting ancillary robustness functionality of a third-party software through
our MOP framework.

To our knowledge, this is the first prototype implementation of a MOP
framework for actor systems that allows programmers to add functionality in
an incremental and disciplined manner through layers of monitors (implemented
as actors themselves). Although the modular nature of actor-based systems facil-
itates the delineation of monitoring analysis and actions to a target subset of
the system, the model poses new challenges to MOP. In particular, the encap-
sulated nature of actor state (as defined by formal models such as [2,3] and
attested by the Erlang implementation [35]) makes it hard for the monitor to
access and change it. In addition, the asynchronous nature of actor executions
complicates the task of synchronising observed behaviour with timely adminis-
tration of monitor actions. In fact, our work appears to be one of the first to
introduce synchronous monitoring atop an inherently asynchronous computing
platform.

The rest of the paper is structured as follows. Section 2 reviews the logic used
for specifying the monitor behaviour for our MOP framework. Subsequently, in
Sects. 3 and 4 we discuss the implementation challenges for building an actor-
centric MOP framework for this logic. Section 5 validates this framework by
using it to administer MOP extensions to a third-party actor-based system.
Sect. 6 discusses related work and concludes.
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2 Monitor Specification Language

We adopt the specification language of [7] to describe monitor behaviour in
our study, restated here as the abstract syntax of Fig. 3. There are mild cos-
metic changes reflecting the syntax used in the implementation presented in this
paper: e.g., the guard constructs [p] rel�v. c and *[p] rel�v. c in Fig. 3 corre-
spond to the resp. necessity formulas [p] a

�v c and [p] b
�v c of the formal logic (in

[7], the qualifiers a and b differentiate between asynchronous (a) and blocking
(b) pattern matching), and the termination constructs flag and end correspond
to the resp. logic formulas ff and tt. In spite of these syntactic changes, the
construct semantics is identical to that in [7].

Fig. 3. Monitor specification syntax

The logic is defined over streams of visible events, α, generated by the mon-
itored system made up of actors — independently-executing processes that are
uniquely-identifiable by a process identifier, have their own local memory, and
can either spawn other actors or interact with other actors in the system through
asynchronous messaging; we use i, j, h ∈ Pid to denote the unique identifiers. For
the Erlang implementation we discuss in this paper, events monitored include
the sending of messages, i > j ! v, (containing the value v from actor with identi-
fier i to actor j), the receipt of messages, i ? v, (containing the value v received
by actor i), function calls, call(i, {m, f, l}), (at actor i for function f in mod-
ule m with argument list l) and function returns, ret(i, {m, f, a, v}) (at actor
i for function f in module m with argument arity a and return value v). Event
patterns, p, q ∈ Pat, follow a similar structure to that of events, but may con-
tain term variables x, y, z ∈ Var (in place of values) that are bound to values
v, u ∈ Val (where Pid ⊆ Val), at runtime through pattern matching (we use �v
to denote lists of values).

Example 1. The pattern x > j ! {y,true} describes an output event from an arbi-
trary actor x to a specific actor j, carrying a tuple value where the first item y is
unspecified but the second item must be the value true. It can match with the
event i > j ! {5,true} returning the substitution {i, 5/x, y}. However, the same
pattern does not match with either i ? {5,true} (different type of event) or
i >h ! {5,false} (same event type but the event argument j conflicts with h, as
does true with false). �

In addition to term variables, the abstract syntax in Fig. 3 also assumes a
distinct denumerable set of formula variables X,Y, . . . ∈ LVar, used to define
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recursive specifications. It is also parameterised by a set of decidable boolean
expressions, b, c ∈ Bool, and the aforementioned set of event patterns. Monitor
specifications include commands for flagging violations, flag, and terminating
(silently), end, conjunctions, c1 & c2, recursion, recX.c, and conditionals to rea-
son about data, if b then c1 else c2. The specification syntax in Fig. 3 includes
two guarding constructs, [p] rel�i. c and *[p] rel�i. c, instructing the resp. mon-
itor to observe system events that match pattern p, and progressing as c if
the match is successful. Following [7], these constructs encompass directives for
blocking and releasing actor executions, depending on the events observed. The
guarding construct *[p] rel�i. c is blocking, meaning that it suspends the execu-
tion the actor whose identifier is the subject of the event matched by the pat-
tern (e.g., actor i is the subject in the events i > j ! v, i < j ? v, call(i, {m, f, l})
and ret(i, {m, f, a, r})). By contrast, the guarding construct [p] rel�i. c does
not block any actor when its pattern is matched. However, for both constructs
[p] rel�i. c and *[p] rel�i. c, pattern mismatch terminates monitoring, but also
releases all the blocked actors in the list of identifiers �i. The syntax in Fig. 3
also specifies two adaptation constructs, A(j) rel�i. c and S(j) rel�i. c. Both
constructs instruct the monitor to administer an adaptation action (A and S)
on actor j, releasing the (blocked) actors in �i afterwards, then progressing as
c. The only difference between these two constructs is that the adaptation in
S(j) rel�i. c, namely S, expects the target actor j to be blocked (i.e., synchro-
nised with the monitor) when the adaptation is administered, and must therefore
be blocked by some preceding guarding construct.

Example 2. Consider the monitor script below. It instructs the monitor to
analyse two output events, first from actor i and then from actor j, sent to
the same destination x (which is pattern-matched and determined at runtime).
If the outputted values sent are equivalent, y == z, monitoring terminates. Oth-
erwise, the monitor terminates the execution of the recipient actor x, restarts
the two sender actors i and j, and recurses.

recX.*[i >x ! y] rel []. *[j >x ! z] rel [i]. if y == z then end else

kill(x) rel []. restart(i) rel []. restart(j) rel [i, j].X

The restart adaptation action is synchronous, requiring the actors i and j to be
blocked (the kill adaptation is not). Therefore, the script specifies an incremental
strategy for synchronising with actors i and j before the resp. adaptations are
administered: matching with pattern i >x ! y blocks actor i, whereas pattern-
matching with j >h ! z (for some actor h instantiated for x in j >x ! z by the
previous match) blocks actor j. However, mismatching with pattern j >h ! z
releases the previously blocked actor i, thereby allowing it to continue executing
as normal because the monitor would terminate and the adaptation would not be
administered. Importantly, if we assume that actor j’s behaviour does not depend
on communications from actor i, the temporary pause of actor i does not visibly
affect computation since actors execute asynchronously wrt. to one another. See
[7] for a complete formal description of the synchronisation mechanism. �
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3 Instrumenting Actors

In Erlang, actors limit the sharing of data by explicitly sending copies of this
data to the destination actor; identifiers act as unique actor addresses. These
asynchronous messages are received at the destination actor’s mailbox (a message
queue buffer) and can be exclusively read by this actor using pattern-matching,
which retrieves the first message in the mailbox matching a specified pattern;
this two-step communication mechanism allows the recipient actor to prioritize
certain messages over others by potentially reading them out-of-order of arrival.
Asynchronous actor execution is one of the tenets of the actor model and, in
the case of Erlang, has lead to systems that are more scalable, maintainable
and resilient — asynchronous actor computation is inherently modular, easier
to understand in isolation, and its failure can be readily quarantined [8,35].

By contrast, monitors (expressed as actors) require tighter synchronisations
wrt. the execution of actors they observe. Adequate MOP would occasionally
need to momentarily pause the execution of an actor — typically after observing
an event generated by it — while continuing to observe behaviour generated by
other (independently executing) actors; in the event that an aggregate behaviour
is detected, the monitor could then either issue notifications involving the paused
actor (thereby attaining timelier detections) or else administer adaptations on
the paused actor. Complex adaptations consisting of multiple operations often
require adaptee actors to be inactive for their correct administration. In our case,
the specifications of Fig. 3 necessitate an incremental synchronisation mechanism
whereby actors are cumulatively synchronised to (and desynchronised from) a
monitor during their execution, based on the observed behaviour.

Fig. 4. The runtime adaptation protocol between a system actor (left) and the monitor
(right)(Color figure online).



182 I. Cassar and A. Francalanza

The implementability of this synchronisation mechanism hinges on the capa-
bility of externally interrupting the execution of an actor. In order to encapsulate
the execution of an actor, the Erlang OTP libraries [35] (the layer of abstrac-
tion provided by the Erlang Virtual Machine) specifically limit external actor
interventions to either actor killing2 or asynchronous messaging. Neither method
provides the desired functionality: (actor) killing is too coarse of an intervention,
whereas sending an interrupt message to an actor does not guarantee that it will
be picked up or handled adequately by the receiving actor.

Our solution was to engineer an implementation that uses an Aspect-Oriented
Programming (AOP) framework to instrument injections at specific points of
interest in the the monitored actors’ code, and then use messaging (from the
monitor) to trigger synchronisation procedures at specific stages of the monitored
actor’s computation; see Fig. 4, where the red code constitutes the code injected
on the instrumented actors. The points of interest required by our aspect-based
instrumentation are derived automatically from the patterns of the guarding
constructs used in the specification scripts of Fig. 3. In particular, these patterns
provide the necessary information to generate advices for AOP injections that
match events at specific parts in the monitored system’s source code and report
back these events to the monitor for processing (first line of the injected code
in Fig. 4). In the case of a blocking guard, further code is injected implementing
the synchronisation protocol (injected code in Fig. 4, second line onwards).

In the actor code shown in Fig. 4 (left), specification script non-blocking
guards (Fig. 3) translate into reported events with null nonces whereas blocking
guards generate a fresh nonce uniquely identifying a blocking session (an actor
may be blocked multiple times during the course of a monitored execution).
Once the monitor — the code in Fig. 4 (right) — receives an event with a non-
null nonce, it creates a map entry linking the resp. actor ID to that nonce, and
uses it to send directives during that blocking session. The monitor may send
two kinds of directives: adaptation directives, instructing the actor to execute
some predefined function (cf. Sect. 4), or resumption directives which unblock
the monitored actor. After a blocking event (i.e., containing a non-null nonce)
is reported, the injected instrumentation code on the system-side enters a loop,
waiting for directive messages from the monitor: whereas adaptation directives
(e.g., restart and purge) cause the monitored actor to stay in this blocking
loop, the resumption directive (denoted by ack in Fig. 4) instructs the loop to
be exited.

Remark 1. We extended an AOP Framework for Erlang [32] to carry out the
necessary instrumentation (the tool did not support aspects for sends and
receives). Our instrumentation thus requires an aspect file that specifies the
actions requiring instrumentation, along with a purpose built module called
advices.erl containing three types of advices used by the AOP injections,
namely before advice, after advice and upon advice advices. Function call events

2 This may be either explicit using the BIF exit/2 or implicit through process linking
[8].
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specified in the aspect file generate before advice advices woven before the func-
tion invocation, whereas for outputs and function returns, the AOP weaves
after advice advices (after advice are necessary for function returns, since return
values are only known after the return of the call). For mailbox reading, the
resp. Erlang receive construct may contain multiple pattern-guarded clauses
i.e.,

recieve g1->exp1; g2->exp2; g3->exp3; . . . ;gn->expn end.

The AOP thus weaves upon advice advice for every guarded expression matching
the message pattern defined by the receive aspects, as specified in the aspect file.
E.g.,

recieve g1->upon advice(..), exp1; g2->exp2; g3->upon advice(..), exp3; . . . end.

4 Implementing Adaptations

The instrumentation setup outlined in Sect. 3 enables the implementation of a
wide range of adaptation actions that can be administered on individual actors
using their unique actor ID. We here discuss a number of these that were success-
fully implemented as pre-defined adaptations by our prototype implementation.
Following [7], these adaptations fall under two main categories, namely asyn-
chronous and synchronous adaptations.

Asynchronous adaptations may be applied to actors whose execution need
not necessarily be synchronised to that of the resp. effectuating monitor at the
time of the adaptation. This is permissible because the resp. administration can
execute correctly independently of the status of the adaptee’s execution, typi-
cally because the execution environment provides the necessary interface for the
adaptation to be effectuated externally from the monitor. Erlang OTP priori-
tises actor encapsulation and provides a limited interface for external interfer-
ence. Accordingly, our prototype implementation offers the following predefined
asynchronous adaptations: actor killing, using the OTP exit() library func-
tion, actor registering and deregistering with a global name, using register()
and deregister() OTP functions, actor memory optimisation using the OTP
garbage collect() function, exit message un/trapping setting using the OTP
process flag() function, and a composite adaptation that terminates the exe-
cution of all the actor linked to an actor (apart from itself), defined in terms of
the process info() and exit() OTP functions. These adaptations are generic
in nature and agnostic to the instrumentation infrastructure discussed in Sect. 3
— in fact, they can also be used in asynchronous monitoring setups such as
that of [26]. There are however scenarios where asynchronous adaptations would
need to be applied to synchronised actors (e.g., suspending the execution of an
actor before killing it may guarantee a more timely monitor intervention); our
prototype implementation allows this as well.
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By contrast, synchronous adaptations require the adaptee’s execution to be
synchronised to that of the effectuating monitor (i.e., temporarily suspended), as
outlined in Sect. 3. In the case of the Erlang, one major reason for this require-
ment is the limited set of handles offered to externally affect the adaptee’s exe-
cution — apart from the OTP functions mentioned above, messaging is the only
other way of influencing an actor’s execution. However, for a MOP framework
to be effective, some adaptations would ideally have access an actor’s internal
state, even though the OTP restricts this to the owning actor exclusively. In
our particular context (i.e., Erlang), the only plausible method of carrying out
such adaptations is that of sending a message instructing the recipient actor to
carry out the adaptation itself. Note, however, that sending such a message to
an actor that is not synchronised may either (i) be ignored by an adaptee that
does not block to perform a mailbox read, or be not picked up since messages
may be read out-of-order (ii) interfere abnormally with an actor’s execution,
either because the recipient actor does not know how to interpret the message
directive, or because the directive-message reaches the actor at an execution
point where it was expecting another type of message. The instrumentation in
Sect. 3 avoids these pitfalls by forcing the actor to (autonomously) relinquish
control (at specific execution points) to the observing monitor, which then sends
it a message with the appropriate directive. Synchronisations are required for
other reasons apart from those relating to Erlang OTP constraints. For instance,
an adaptation may consist of a number of smaller actions that need to appear
as one atomic action. Again, the instrumentation of Sect. 3 yields a straight-
forward implementation for this by suspending the adaptee’s execution at the
beginning and releasing it once the full list of sub-actions is completed. As a
proof-of-concept, our implementation offers the pre-defined synchronous actions
below:

– purge(x): This adaptation requires access to (part of) the internal state of an
actor (i.e., its mailbox). It is implemented as a loop of non-blocking receives
(using the receive after 0 construct) consuming all the messages in the mailbox.

– silent kill(x): This composite adaptation terminates the execution of the
argument actor x without informing the sibling actors to which it is linked.
It is implemented by first obtaining the list of actor IDs to which it is cur-
rently linked (using process info(self(), links)) and then unlinking it
from this list of actors (using unlink()) and finally killing the adaptee once
it is completely severed.

– restart(x): The main complication when implementing this adaptation is
that of preserving the identifier of the restarted adaptee, since other actors
may be using it; a naive implementation using killing and spawning would
yield a fresh identifier for the restarted actor. Our implementation keeps the
adaptee alive, empties its mailbox and process dictionary [8,35] can then calls
the original function with which it was spawned initially. This requires modi-
fying spawn functions through AOP instrumentation) so as to record the actor
spawn information (i.e., the function spawned and its arguments) in its process
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dictionary; this information is then retrieved when the restart adaptation is
invoked.

– untrace(x): This action makes events from actor x unmonitorable. It extends
the instrumented code of Fig. 4 with a flag indicating whether an actor should
report events or not. By default, the flag is set to true whereas the action
inverts it.

Remark 2. Other pre-defined adaptations can be added to the existing suite. For
instance, one can define a runtime-enforcement deletion operation in the form of
synchronous adaptations that intercept specific messages, using the message con-
sumption mechanism of the purge() adaptation discussed above but refined for
specific message patterns. One can also have an application-specific asynchronous
adaptation that sends messages as insertion operations in a runtime-enforcement
setup [34]. Since Erlang is higher-order and treats functions as first-class citizens,
the framework can also be easily extended to handle dynamic adaptations that
are not part of the predefined suite. �

5 Augmenting Functionality Through MOP

As a representative system for our evaluation we consider Yaws [30,43], a third-
party, (open source) HTTP webserver that uses actors to handle multiple client
connections. For every client connection, the server assigns a dedicated (concur-
rent) handler that services HTTP client requests, thereby parallelising processing
for multiple clients.

Figure 5 depicts the Yaws protocol for establishing client connections. Upon
creation, an acceptor component spawns a connection handler to be assigned
to the next client connection. The acceptor component waits for client connec-
tion requests while the unassigned handler waits for the next TCP connection
request. Clients send connection requests through standard TCP ports (1), which
are received as messages in the handler ’s mailbox. The current handler accepts
these requests by reading the resp. message from its mailbox and (2) sending a
message containing its own Id and the port of the connected client to the accep-
tor ; this acts as a notification that it is now engaged in handling the connection
of a specific client. Upon receiving the connection request message, the acceptor
records the information sent by the handler and (3) spawns a new handler listen-
ing for future connection requests. Once it is assigned a handler, the connected

Fig. 5. Yaws client connection protocol
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Fig. 6. Reinforced Yaws client connection protocol

client interacts directly with it using (4) standard HTTP requests; these nor-
mally consist of six (or more) HTTP headers containing the information such
as the client’s User Agent, Accept-Encoding and the Keep-Alive flag status.
In Yaws, HTTP request information is not sent in one go but follows a proto-
col of messages: it starts by sending the http req, followed by six http header
messages containing client information, terminated by a final http eoh message.
The dedicated connection handler inspects the client information received in the
headers, and services the HTTP request accordingly.

To asses the effectiveness of our framework, we used our MOP tool to define
Yaws extensions that augment its functionality. We here showcase one such
extension, strengthening Yaws against dot-dot-slash attacks that exploit a direc-
tory traversal vulnerability [29]. Through additional monitor layers, the extended
Yaws can detect malicious client requests (by comparing the requested URLs
against a white-list) and take the necessary remedial actions. For our exposition,
we define the monitoring script below assuming the following simplifications: (i)
we consider a simple white-list with two files (i.e., pic.png and site.html) and (ii)
we only vet the first request of every new client. Intuitively, the script specifies
that every time a client connects, and the handler actor assigned by the server
receives an HTTP GET request for a file stored on the server, followed by 6 HTTP
headers (h1 to h6) and the end-of-headers notification, then the requested file
can only refer to either for pic.png or site.html. If not the handler is killed, and
the mailbox contents of the server’s acceptor actor is purged.

1 rec X.(

2 ∗[acc?{hId,next,_}] rel [].

3 [ret(hId,{yaws,do_recv,3,{ok,{http_req,‘GET’,{abs_path,path},_}}})] rel [acc].

4 [ret(hId,{yaws,do_recv,3,{ok,h1}})] rel [acc].

5 . . .

6 [ret(hId,{yaws,do_recv,3,{ok,h6}})] rel [acc].

7 ∗[ret(hId,{yaws,do_recv,3,{ok,http_eoh}})] rel [acc].

8 if (path == ‘‘/pic.png’’ orelse path == ‘‘/site.html’’)

9 then untrace(hId) rel [acc, hId]. X

10 else silent_kill(hId) rel []. purge(acc) rel [acc,hId]. X

11 )
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Through pattern-matching, the script binds the assigned handler with variable
hId (line 2), which is then used for pattern-matching with the HTTP GET request,
the 6 HTTP headers, and the ending header http eoh (lines 3 to 7)3. On line 3,
the file requested is bound to the variable path and checked against the white-
list (line 8). The guard commands on lines 2 and 7 block acc and hId resp.
(whereas acc may be known prior deployment, the Id bound to hId can only be
determined at runtime). If the white-list check is successful, the script removes
hId from the list of traceable actors, releases it together with acc, and recurs
on the script variable X (line 9). Otherwise, a synchronous kill action is applied
on hId, the mailbox contents of the acc actor are purged, and the two adaptees
are released before recursing (line 10). If the HTTP message sequence is not
matched at any point, the blocked actor acc is also released (lines 3 to 7).

From this script, our prototype implementation generates the augmented
system depicted in Fig. 6. Our tool automates the necessary instrumentation
required for the acceptor actor and every dynamically created handler actor.
This instrumentation reports events to a monitor actor, also synthesised from
the above script, which processes events and reacts by administering adaptation
actions accordingly.

We also examined the overheads introduced by our MOP framework in terms
of our Yaws case study. We considered a number of monitor scripts (similar to the
one discussed earlier) and calculated the relative overheads when subjecting the
resulting (augmented) webserver to varying client loads (measured as number

3 These input operations are encapsulated by OTP library functions that are part
of the Erlang VM. To keep the VM standard, we instead instrumented on the call
returns of these functions.
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of server requests) in terms of (i) the average CPU utilization; (ii) the memory
required per client request; and (iii) the average time taken for the server to
respond to batches of simultaneous client request. The experiments were car-
ried out on an Intel Core 2 Duo T6600 processor with 4 GB of RAM, running
Microsoft Windows 7 and EVM version R16B03. For each script and client load,
we average out three sets of readings; since the variation between different mon-
itor scripts was not substantial we again averaged the results and reported them
in Fig. 7. The overheads obtained are at an acceptable level, especially since
that monitoring is not merely observing the system but adding functionality
(e.g., at the worst level, the Memory overhead averaged at 17.4%. Figure 7 does
show a sharp increase in CPU overheads (46.7% at 2000 requests). This is in
part attributed to the code serialisations introduced by the monitor synchronisa-
tions, which create inevitable bottlenecks and wasted CPU cycles when process-
ing multiple requests (e.g., in the previous script, blocking the acceptor process
prohibits it from servicing other client requests in waiting). However, such steep
overheads where not reflected in the average response times per client request
(e.g., we recorded 7.4% overheads at 2000 requests).

6 Conclusion

We present implementability results for a MOP framework targeting actor-based
systems of a representative, industry-strength platform. The concrete contribu-
tions are:

1. A prototype4 implementation that can fully automate the synthesis and
instrumentation of monitors from formal descriptions specifying the system
behaviour to be observed and the monitor actions to take in response. The
implementation gives fine-grained control for non-trivial monitor actions to
be carried out while imposing few system-monitor synchronisations (in accor-
dance with the actor computational model), affecting only the sub-system
targeted by the monitor actions.

2. A validation of the generality and effectiveness of the approach. We show
that the functionality of third-party software can indeed be extended (with
relative ease) by our framework, thereby attaining the MOP separation of
concerns described in Sect. 1. Moreover, we give evidence that this can also
be done feasibly, maintaining reasonable overheads when the extended system
is subjected to varying stress loads.

The implementation is backed up by a formal model describing the monitor
behaviour and a type system guaranteeing that synchronous monitor actions are
only applied to blocked actors, as previous presented in [7]. For future work, we
plan to incorporate techniques for lowering the monitor overheads (e.g., code
inlining [22]), and to extend our incremental synchronisation mechanisms to
other monitor specification logics.
4 The implementation can be downloaded from

https://bitbucket.org/casian/adapter.

https://bitbucket.org/casian/adapter
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Related Work. Monitoring can be either inlined [11,22,41] or consolidated a sep-
arate code unit; we opted for the latter option. In multithreaded settings, inlin-
ing of inter-thread monitoring requires a choreographed setup [25,41] whereas
we could afford an orchestrated solution whereby a centralised monitor analyses
events and issues remedial actions. Monitor inlining tends to yield lower over-
heads and is generally more expressive because it has full access of the system
code [22]. By contrast, having monitoring as a separate unit minimally alters
the code of the monitored system (all the decision branching is performed inside
the monitor), is less error-prone (orchestration tends to be easier to program
than monitor choreographies), allows monitor computation to be offloaded to
other machines [14], and facilitates compositional analysis whereby monitors are
treated in isolation [23,24].

As opposed to offline monitoring, which assumes complete execution traces
(logs) and executes after the system terminates its computation (e.g., [4,17,18]),
online monitoring executes alongside the system and has the ability to influence
its computation. The prevalently used online monitoring frameworks typically
employ synchronous instrumentation [5,11,14,19,31]. However, there are a few
tools relying exclusively on asynchronous monitoring [12,13,26], which is easier
to instrument since system components can be treated as black-boxes. In fact,
if the monitor adaptations of Sect. 4 are limited to the asynchronous ones, then
the less intrusive instrumentation setup of [26] (based on the tracing mechanism
offered by the Erlang VM [35]) would suffice.

There are also frameworks offering both synchronous and asynchronous mon-
itoring, such as MOP [10,11], JPAX [28,39] and DB-Rover [20,21]; in these tools,
the specifier can choose whether to monitor synchronously or asynchronously for
a property. By contrast, we offer finer-grained control that allows a monitor to
switch between synchronous and asynchronous modes (and vice-versa) within the
same property. We are aware of one other work that studies these fine-grained
monitor controls [15], proposing a model where decoupling between system and
monitor executions can be inserted, together with explicit mechanisms for paus-
ing the system while the lagging (asynchronous) monitor execution catches up.
There are nevertheless key differences between our work and that of [15]: (i) they
treat the monitored system as one monolithic entity whereas we have the facil-
ity of introducing synchronisations with parts of the system; (ii) they assume a
synchronous monitoring setup and introduce asynchrony at certain points of the
computation whereas, contrarily, our setting starts off with a completely decou-
pled system-monitor setup and introduces synchronisations when needed. Also,
we study adaptations in this setting whereas [15] limit themselves to detections.

MOP frameworks that support monitor adaptations typically lean more
towards giving full flexibility [36,37] by allowing the specifier to define recov-
ery procedures in the host language of the monitored system (e.g., Java code in
the case of JavaMOP [10]). Our current framework takes a different approach,
offering only a finite subset of pre-defined adaptations that are classified into
two groups (synchronous and asynchronous). Although less expressive, our app-
roach allows for a cleaner separation between the monitor specification logic and
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the implementation of the system (our adaptations are implementation-agnostic
abstract actions as opposed to actual Erlang code) which, in turn, facilitates the
analysis of monitor scripts (e.g., the type system presented in [7]).

EnforceMOP [36] is a JavaMOP extension for monitoring multithreaded com-
putation, where they also use a centralised monitor for analyses across threads.
However, as opposed to our setting, this centralised monitor does not have its
own thread of control and is implemented as a static Java object that is invoked
by inlined code in the resp. threads. Event reporting is thus necessarily syn-
chronous, whereas our non-blocking event reporting is asynchronous and free of
deadlock errors (the two-way handshake protocol of our blocking events amount
to synchronous monitoring). Since they give full expressive power when defin-
ing remedial monitor actions, EnforceMOP employs additional runtime checks
to avert errors introduced by the monitor itself; by contrast we offer predefined
monitor actions and check for errors prior to deployment.

The implementation solutions discussed in this paper can be potentially
applied to other MOP frameworks targeting asynchronous component-based
systems, such as Enterprise Service Bus (ESB) architectures [12,38]. BusMOP
[38] is an instance of the MOP suite of tools [37] where monitoring is used
for component-based systems (COTS - Components Off The Shelf) made up of
uniquely-identifiable devices connected to a bus. The tool treats components as
black-boxes which limits monitor actions that can be taken. On the contrary, our
framework adopts more of a grey-box approach for actors which allows for more
powerful instrumentation mechanism and a wider range of adaptation actions.
The monitoring in [38] is also completely synchronous and at a lower level of
abstraction than ours (e.g., they can monitor for low-level events such as memory
reads and writes on the bus). The work in [12] is another example of a black-box
monitor treatment of components; they study RV instrumentation alternatives
on an ESB; the instrumentations considered are exclusively asynchronous and
monitoring is limited to detections (i.e., they do not support monitor adapta-
tions).
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Abstract. Today, numerous elaborate algorithms for the effective syn-
chronization of concurrent processes operating on shared memory exist.
Of particular importance for the verification of such concurrent algo-
rithms are thread-local proof techniques, which allow to reason about
the sequential program of one process individually. While thread-local
verification of safety properties has received a lot of attention in recent
years, this is less so for liveness properties, in particular for liveness under
the assumption of fairness.

In this paper, we propose a new thread-local proof technique for starva-
tion freedom. Starvation freedom states that under a weakly fair schedule
every process will eventually make progress. We contrast our new proof
technique with existing global proof techniques based on ranking func-
tions, and employ it exemplarily for the proof of starvation freedom of
ticket locks, the standard locking algorithm of the Linux kernel.

1 Introduction

With the advent of multi-core systems, numerous new parallel algorithms oper-
ating on shared memory are being developed and come into use every year.
Verifying correctness of parallel algorithms is challenging due to the intricate
behavior caused by the various interleavings of processes. Moreover, such algo-
rithms are typically designed for use by an arbitrary number of processes (e.g.,
concurrent data structures), and the verification task is thus to show correctness
for any number of clients, i.e., we need to verify a parameterized system. More
specifically, we are given a parallel system

Par(N ) = Seq1 || . . . || SeqN

(where Seq1 to SeqN are sequential programs), and the verification task is to
prove a property ϕ for all N ≥ 1. In general, verification of parameterized
systems is undecidable [3]. Nevertheless, a number of approaches (being more or
less automatic) have been developed to show properties of parameterized systems
(see overview in [24]).

Our specific interest here is in liveness properties, specifically starvation free-
dom. The property of starvation freedom (see [9] for a definition and comparison
c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 193–209, 2016.
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of progress properties) states that in a concurrent system every process will even-
tually make progress. Starvation freedom assumes some fairness [17] constraint
(weak or strong): the scheduling of processes should not delay certain processes
infinitely long. The prevailing proof principle for liveness properties of parallel
(parameterized) systems is global reasoning: Early approaches for proving termi-
nation of parallel programs enhance local termination proofs of processes with
cross-checks of interference freedom wrt. all other processes [2,18] while later
approaches use global well-founded ranking functions estimating the distance to
a target state [7,15].

In this paper, we present a new local proof principle for liveness properties of
parameterized systems. More specifically, the method is tailored towards show-
ing starvation freedom under weak fairness. It is based on the principle of rely-
guarantee reasoning (RG) [10]: properties are shown locally for one process while
relying on certain assumptions for other processes. While rely-guarantee reason-
ing is a well-established technique for proving safety, this is less so for liveness.
The reason for this is that rely-guarantee reasoning for liveness properties needs
to be non-circular in order to be sound [1]. We build our new proof technique on
top of the existing framework RGITL [21,22], a program logic for reasoning about
interleaved programs. The technique uses standard rely-guarantee reasoning to
establish (safety) relies and guarantees of processes (including system invariants),
and then uses these to establish an admissible waits-for relation on processes. The
waits-for relation describes on which other processes a blocked process needs to
wait in order to make progress. Admissibility requires (among other properties)
that the waits-for relation is acyclic, thereby eventually guaranteeing progress.
Admissibility can be locally checked for single processes using the already estab-
lished relies and guarantees. We thus obtain a local proof technique for starvation
freedom which is proven sound using the interactive prover KIV [6].

We exemplify our new reasoning principle on the example of the ticket lock of
[16], the standard locking algorithm of the Linux kernel. To see how the local proof
principle compares to global techniques, we furthermore develop a global proof of
starvation freedom of the ticket lock using a proof rule of [15] employing ranking
functions. On this, we see that the local technique can more naturally capture the
principal reason for the ticket lock being starvation free in its proof obligations.

Related Work. Most closely related to us is the forthcoming paper [13] which
presents a (quite complex) program logic for proving liveness properties (star-
vation and deadlock freedom) of concurrent objects. The proofs for concrete
algorithms are done manually in [13] while ours are mechanized by a theorem
prover (as is the general theory). Their proof of the ticket lock example is sig-
nificantly more complex, e.g. we do not need to reason about lists of tickets.
Like us, [13] builds on a rely-guarantee reasoning principle using a combination
of separation logic and RG [23]. Slightly less related (because they treat dif-
ferent properties) are the compositional termination proofs for multi-threaded
programs in [20] (which have no direct support of fairness), the RG-proofs of
[8] for wait, obstruction and lock freedom (also no fairness support) and the
deadlock-freedom proofs of [4].
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2 Background

We start by describing the ticket lock algorithm used to illustrate our proof
technique. We will then go on with defining basic notations.

Ticket Lock. The ticket lock [16] is a synchronization mechanism employed to
achieve mutual exclusion of critical sections among parallel processes, and can be
viewed as an optimization of Lamport’s bakery algorithm [12]. In ticket locks,
processes take tickets in the order of their arrival before entering the critical
section. The process with the lowest ticket number not yet served is being served
next. Ticket locks guarantee starvation freedom: under weak fairness assump-
tions every process will eventually reach its critical section.

The ticket lock involves two global variables: served , the ticket of the process
currently being served, and next , the number of the next ticket to be taken.
Initially, served and next are 1. Furthermore, every process has a local variable
lnext in which to store its own ticket. The variable lnext is initially 0 for all
processes. We use the notation p.lnext to refer to the local variable lnext of
a process p. We assume an arbitrary but finite number N of processes with
identifiers from a set PId to concurrently execute the ticket lock. One execution
of the ticket lock algorithm involves executing the following piece of code (line
0 and 5 can be ignored for the moment):

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0: act:=true;
1: 〈lnext := next; next := next + 1〉;
2: while (lnext != served)
2a: skip;
3: skip; // critical section;
4: served:=served + 1;
5: act:=false
6:

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The brackets 〈. . .〉 embrace an atomic block: the ticket is taken and the next
counter increased atomically. The algorithm thus starts with atomically setting
lnext to next and incrementing next by 1. A process then spins until its local next
number equals served . Afterwards it will enter its critical section. Upon exit of the
critical section it increments served , thereby allowing the next process to enter.

More generally, we are interested in algorithms of the following shape. We
have a finite number N of processes with process identifiers p ∈ PId . Each
process executes a given algorithm Opp operating on variables x (x being a
sequence of variables) an arbitrary number of times. We equip every such algo-
rithm with an additional auxiliary local variable act indicating the activity of
a process (lines 0 and 5 above). This lets us state our liveness property in a
uniform way. Thus the code for a process p looks as follows:

Seqp(x , act) := ((act := true; Opp(x ); act := false) or skip)
∗

(1)
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Here, the star operator is used to denote finite or infinite iteration, including no
execution at all. The non-deterministic choice with skip indicates other irrele-
vant steps of the process in between calls of the algorithm. A parallel composition
of N processes is a program and is written as Seq1 || . . . || SeqN . In general, we
thus consider parameterized systems here and are interested in verifying proper-
ties of parameterized systems. Our parameter is the number N of processes, and
a property is true for a parameterized system if it holds for every N .

Starvation freedom in a program means that all processes currently running
(having set act to true) will eventually return to an idle state, i.e., a state in
which act is false. Starvation freedom stated in temporal logic (LTL) is thus

∀ p ∈ PId : �(p.act → ♦¬p.act)

Semantics. We define the semantics of programs as a set of traces (sequences
of states). Since one of our proof techniques uses rely-guarantee reasoning, we
assume any program to run in an environment, i.e., in a trace program alternate
with environment steps.

Definition 1. A state s : Var → Val from the set of states Σ is a (type-
consistent) mapping from variables to values. A trace tr = (s0, s ′

0, s1, s
′
1, . . .) is a

sequence of states. In this, transitions from si to s ′
i represent program steps and

transitions from s ′
i to si+1 environment steps. The length #tr ∈ N ∪ {∞} of a

trace tr may be finite or infinite, and it counts the number of program steps. A
finite trace with #tr = n consists of n + 1 unprimed and n primed states, with
the last state (last(tr)) being sn .

The first step is always a program step. Program and environment steps
are alternating. Later on, we also refer to variables after an environment step
as double primed variables, i.e., x refers to current variables, x ′ to variables
after the program, and x ′′ to variables after the environment step. The first
state of any trace tr , first(tr), is s0. An empty trace consists of just the state
first(tr) and has #tr = 0. We denote the suffix of tr starting in state si as tr [i ..]
where 0 ≤ i ≤ #tr . For the semantics of programs we assume that the program
variables x are a subset of Var .

The semantics of a program P is defined as a set runs(P) of traces (we
write tr ∈ runs(P) or tr |= P) where the program steps are determined by
the program, while the environment steps are arbitrary and will later on be
constrained by logic formulas. Finite runs correspond to terminating executions
of the program. For our second approach (Sect. 4) using rely-guarantee reasoning,
a direct definition of tr |= P (recursive over program structure) is possible, see
[21]. However, our first approach needs an encoding of P into a transition system.
This provides a temporal formula ϕP , and tr |= P is then defined as tr |= ϕP .
We use temporal logic formulas (inspired by LTL) to specify properties of runs
(and thus of programs), and to constrain environment steps.

Definition 2. The syntax of formulas ϕ and their validity on a trace tr is induc-
tively defined. A formula can be one of the following:
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– A predicate logic formula: Then tr |= ϕ iff first(tr) |= ϕ, where the latter is
defined as usual in predicate logic.

– A predicate logic formula using primed and double primed variables: The
semantics is as before, but x ′ is evaluated as s ′

0(x ) and x ′′ is evaluated as
s1(x ) whenever #tr �= 0. By convention, both x ′ and x ′′ are evaluated as s0(x )
for an empty trace.

– A next formula: tr |= �ϕ iff #tr �= 0 and tr [1..] |= ϕ.
– An until formula: tr |= ϕ1 until ϕ2 iff there exists some m ≤ #tr such that

tr [m..] |= ϕ2 and for all k < m: tr [k ..] |= ϕ1.
– A formula last characterizing empty traces: tr |= last iff #tr = 0.
– Propositional compositions of formulas with the usual semantics.

As usual in LTL, we use ♦ ϕ to stand for true until ϕ and �ϕ to be ¬♦ ¬ϕ.
We also use if ϕ then ϕ1 else ϕ2 as an abbreviation of (ϕ → ϕ1)∧ (¬ϕ → ϕ2).

Using primed and double primed variables allows for characterization of
program and environment steps. A predicate logic formula guar(x , x ′) using
a sequence of unprimed and primed variables (a guarantee) constrains program
steps. Semantically it can be viewed as a relation guar ⊆ Σ × Σ between two
states s and s ′. As an example x = x ′ constrains the first program step not to
change x , while temporal formula � x ′ = x ′′ constrains the environment never
to change x (a rely condition for all environment steps). Formula ♦ last is used
to characterize finite (terminating) runs.

To define the semantics of programs Par(N ) = Seq1 || . . . || SeqN , we encode
each process p ∈ PId into a set of transitions τi [p] ⊆ Σ ×Σ. To this end, we add
a new variable pc symbolizing the program counter to the set of variables. The
transitions are then defined as formulas τi [p](x , x ′) over unprimed and primed
versions of the program variables. Essentially we get a transition for i ranging
over every line of the algorithm, e.g. for line 1 of the ticket lock we get

τ1[p] := p.pc = 1∧ p.pc′ = 2∧ p.lnext ′ = next ∧next ′ = next + 1 .

To shorten notation, we implicitly assume that all program variables not men-
tioned (here: served , q .pc and q .lnext for q �= p) are unchanged1. A transition is
enabled for some variables x , written En(τi [p](x )) if there exists some succeeding
state for which the transition formula is satisfied.

The full transition relation τ [p] of one process p ∈ PId is the union of all
relations τk [p] (i.e., the disjunction of all formulas). The behavior of one process
p in an arbitrary environment therefore can be characterized by the formula

ϕp = initp(x )∧ � (if ¬ last then τ [p](x , x ′) else ¬En(τ [p](x ))

where initp describes the initial states of process p (here: p.lnext = 0). Note that
the formula characterizes runs, for which the transition relation is not enabled in
the last state, i.e., not only prefixes of runs. Note furthermore, that this formula
imposes no restrictions on the steps of the environment in a trace. The transition

1 The encoding in the theorem prover KIV does this explicitly.
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relation τ of the full program Par is the union of all τ [p] for p ∈ PId . Finally,
the semantics of the full program is given as

ϕPar := init ∧ � (if ¬ last then τ(x , x ′) else ¬En(τ(x )))

∧ ∀ p.� (�En(τ [p](x ))→ ♦ τ [p](x , x ′)))

Again init is a constraint on the initial states (here: the conjunction of all initp
together with served = next = 1). The second line gives the usual constraint for
weak fairness of scheduling between processes: if a process becomes continuously
enabled, it will eventually do a step (the direct semantics of the (fair) interleaving
operator in [21] also enforces this constraint). In our first approach (not using
rely-guarantee reasoning) we constrain the environment of the top-level program
to do nothing (formally �(x ′ = x ′′)), i.e., to prove a property ψ for the program
Par we prove

ϕPar ∧ �(x ′ = x ′′)→ ψ

The second approach uses a rely condition � rely(x ′, x ′′) for the top-level envi-
ronment that may even tolerate some nontrivial behavior of the environment.

3 Global Proofs of Starvation Freedom

In the following, we present two ways of proving starvation freedom of para-
meterized systems. The first approach given in this section is a standard global
proof technique employing ranking functions following [14,15]. The next section
will then introduce a new local proof technique.

Proof Principle. For proving the above property of starvation freedom, i.e., ∀ p ∈
PId . �(p.act → ♦ ¬p.act), we can use a variant of a proof rule from [15] called
WELL-JP (”parameterized well-founded response under justice”). The proof rule
considers response properties of the form �(ϕ → �ψ) for parameterized systems.
The following version is an adaption of WELL-JP to a setting where we assume
weak fairness for processes, not for specific transitions as usually assumed by
Manna and Pnueli.

The general idea of the proof rule is to define ranking functions δi : Σ → A,
i = 0..max , mapping states in Σ onto a well-founded ordering (A, <). The
proof rule involves a number of premises stating that the ranking functions
constantly decreases thereby guaranteeing the target state satisfying ψ to be
reached. Additionally, the proof rule involves a number of intermediate assertions
for processes ϕ0[q ], ϕ1[q ], . . . , ϕm [q ] (q being a process) which describe sets of
states reached while moving from a source state satisfying ϕ to the target state ψ.
Associated to every intermediate assertion ϕi [q ], we have a ranking function δi
and a helpful process proci [q ]. The helpful process is the process helping us
with the progress: when this process executes its next transition, the ranking is
decreased.

The proof rule WELL-JP is given in Fig. 1 (a formula ϕ′ standing for ϕ with
a prime added to all variables). As an explanation, the four premises of the proof
rule have the following meaning:
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Fig. 1. Proof rule WELL-JP

[J1] a ϕ-state (the source state) is either already a ψ-state (the target) or satisfies
one of the intermediate assertions for one of the processes;

[J2] executing the transition of the program in an intermediate assertion state
brings us to the state ψ, or we stay in the intermediate assertion and
keep the ranking function, or we go to another intermediate assertion and
decrease the ranking function;

[J3] when we are in an intermediate assertion i (belonging to process p) and
execute the transition of the helpful process proci , we either reach ψ or
definitely decrease rank; and

[J4] helpful processes proci [q ] are always enabled in states where the correspond-
ing intermediate assertion ϕi [q ] holds.

Together, this guarantees that we eventually reach the target state.

Application to Ticket Lock. Now to the ticket lock and the property �(p.act →
� ¬p.act) which we want to prove for all processes p. This property itself refers to
a process. In the following, we thus slightly rephrase the property to �(self .act →
� ¬self .act) as to distinguish the process in the property from those in the
proof rule. Again, we use the notation τi [q ] to refer to the transition of process
q associated to line number i in the program (given in Sect. 2).

For verifying starvation freedom with rule WELL-JP, we first of all need to
find ranking functions, intermediate assertions and helpful processes. The ranking
function has to somehow count the distance between the current state and our
target state which is one where ¬self .act holds. For this, we need to distinguish
four situations: (1) Process self has set its local variable act to true, but not yet
taken a ticket (then self .pc = 1 holds), and (2) process self has taken a ticket but
needs to wait because someone else is being served (i.e., ∃ q .q .lnext = served ∧q �=
self ), (3) self is currently being served (self .lnext = served) and finally (4) self
has been served but has not set the local variable act to false (self .pc = 5). We
put (2) and (3) together by simply stating that there exists a q (including possibly
self ) such that q .lnext = served and hasTicket(self ), i.e., self is at location 2, 2a,
3 or 4. This range, in which some process is currently being served (possibly self ),
needs to be further split into the four possible program lines.

These 6 different situations are captured in the intermediate assertions (i.e.,
max used in WELL-JP is 5). As stated by the proof rule, the intermediate
assertions are parameterized by process identifiers q (although not all of them
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have q occurring in the formula). Below we give all ϕi [q ]’s together with their
associated helpful processes proci [q ]. In this, we let hasTicket(p) =̂ p.pc = 2 ∨
p.pc = 2a ∨ p.pc = 3 ∨ p.pc = 4.

ϕ5[q ] = self .pc = 1 proc5[q ] = self
ϕ4[q ] = q .lnext = served ∧ q .pc = 2a ∧ hasTicket(self ) proc4[q ] = q
ϕ3[q ] = q .lnext = served ∧ q .pc = 2 ∧ hasTicket(self ) proc3[q ] = q
ϕ2[q ] = q .lnext = served ∧ q .pc = 3 ∧ hasTicket(self ) proc2[q ] = q
ϕ1[q ] = q .lnext = served ∧ q .pc = 4 ∧ hasTicket(self ) proc1[q ] = q
ϕ0[q ] = self .pc = 5 proc0[q ] = self

For these six intermediate assertions, we next need six ranking functions. The
well-founded ordering we use here is the set A = (N∪∞)×{5, 4, 3, 2, 1, 0} together
with the ordering (n1, c1) < (n2, c2) if n1 < n2 or n1 = n2 and c1 < c2. The basic
idea behind the ranking functions for the intermediate assertions ϕ4, ϕ3, ϕ2 and
ϕ1 is to count the number of processes queuing before self to get served (first
component in the pair) plus to record how far the process currently being served
is from increasing served at the end. In the last ranking function δ0, the value
of served is already increased and thus the distance is 0. The ranking functions
are thus

δ5 = (∞, 5) δi = (self .lnext − served , i) for i = 1..4 δ0 = (0, 0)

The first ranking function δ5 = (∞, 5) is the maximum distance. In intermediate
assertion ϕ5, process self has not even taken a ticket and thus has the maximal
distance to the target. The helpful process in this case is process self itself,
which needs to take the ticket. The other helpful processes are either the process
q currently served, or – in case of 0 – process self again which finally has to set
act to false again.

Having fixed helpful processes, intermediate assertions and ranking functions,
we next need to prove all the implications in the premises of the proof rule. To this
end, we need further invariants about the algorithm which we then use for proving
J1 to J4. We define noTicket(p) =̂ ¬hasTicket(p), and then use the invariants of
Fig. 2 where preds(p) =̂ |{q | hasTicket(q) ∧ q .lnext < p.lnext}| is the number

INV0 = served ≤ next ∧ served = 0 = next
INV1 = (∀ p. noTicket(p)) ∨ (∃ p. p.lnext = served ∧ hasTicket(p))
INV2 = ∀ n. served ≤ n < next → (∃ p. p.lnext = n ∧ hasTicket(p))
INV3 = ∀ p, p0. p = p0 ∧ hasTicket(p) ∧ hasTicket(p0) → p.lnext = p0.lnext
INV4 = ∀ p. p.lnext < next
INV5 = next = served + |{p | hasTicket(p)}|
INV6 = ∀ p. LINV(p)
INV7 = ∀ p. hasTicket(p) → p.lnext = served + preds(p)
INV8 = ∀ p. served ≤ p.lnext < next → hasTicket(p)
INV9 = ∀ p. noTicket(p) → |{p | hasTicket(p)}|= 0

Fig. 2. Invariants of ticket lock algorithm
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of predecessor processes of p, i.e., processes being served before p, and LINV is
some local invariant on the processes (which we elide due to lack of space).

With the help of these invariants we can prove all premises J1 to J4 within
the interactive theorem prover KIV [6]. The proof effort was approximately two
days to get an initial formalization of the algorithm and the proof obligations,
and another two to three days to get all proofs done (including revisions of our
initial formalization). See [11] for the mechanized proofs.

4 Local Proofs of Starvation Freedom

Our thread-local proof method is based on proving properties ϕp of the sequen-
tial program Seqp of one individual thread p, which can be written in RGITL [21]
(the rely-guarantee+temporal framework which we use) as Seqp → ϕp . Generic
theorems guarantee that the proof technique is compositional, i.e., the local
properties imply a global property ϕ of the whole system (under some predi-
cate logic side conditions), i.e., Par → ϕ. Our proofs always consist of two parts:
first, a classical rely-guarantee (RG) assertion is proved (see next paragraph)
that ensures that certain rely conditions hold for the environment steps of Seqp .
Building on the RG proof, we next develop local proof obligations for Seqp which
imply starvation freedom. We demonstrate the new technique on the ticket lock
algorithm. Furthermore, we have verified two other, more difficult case studies,
to demonstrate the generality of the method. Information on these case studies
can be found at the end of the section.

Rely-Guarantee Proofs. We use a variant of rely-guarantee calculus [10] similar
to the one in [5] as our basis, which establishes partial correctness assertions
of Par by decomposing them into assertions about each Seqp . For uniformity
of the approach we assume that the whole system Par is alternating its steps
with global environment steps, characterized by a predicate rely(x ′, x ′′) over the
program variables x . Proof obligations are formulated from the local view of one
process p. In this view, steps of Seqp alternate with steps of a local environment.
One local environment step collapses a finite sequence of steps of other processes
alternated with global environment steps into one local environment step, and
the rely predicate relyp(x ′, x ′′) describes its effect. Obviously, relyp therefore has
to be reflexive and transitive (denoted reflx and trans).

A rely-guarantee assertion is a partial correctness assertions for a program
P with program variables x . It uses a precondition pre(x ) and a postcondition
post(x ) for the initial and final state. Dually to the rely predicate rely , a guar-
antee predicate guar(x , x ′) characterizes steps of the program P . For readability
we drop the program variables x in the following, whenever they are clear from
the context. For a predicate pr(x ), we also shorten pr(x ′) and pr(x ′′) to pr ′ and
pr ′′. We write a rely-guarantee assertion2 as

〈R, I ,G〉 : {pre}P {post} (2)

2 The notation in KIV proofs is pre → [: x | R,G, I ,P ]post .
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Since in applications a significant part of the rely as well as of the guarantee
condition often is to preserve an invariant I (x ) (i.e. guar := G ∧ (I → I ′) and
rely := R ∧ (I ′ → I ′′)), we write 〈R, I ,G〉 instead of 〈rely , guar〉 as in [5].

Intuitively, assertion (2) means the following: when program P is started in a
state satisfying pre and all environment transitions up to some position j fulfill
rely , then the next program step, if it exists, will satisfy guar . If the step does
not exist (i.e., position j is the final one), then post holds. The program can only
invalidate its guarantee if the environment has invalidated the rely prior to this.
Since our logic is able to distinguish program and environment steps, and has
programs as formulas, (2) abbreviates

P ∧ pre → ¬ (rely until ¬(if last then post else guar)) (3)

and the rules we state for RG assertions can be derived from the more basic
laws about LTL formulas. In particular, for a program Par (parallel composition
of sequential programs) we can prove the following soundness theorem for RG
reasoning in the interactive prover KIV. This theorem allows to compose local
properties of components Seqp into a global property of Par .

Theorem 1 (Rely-Guarantee Rule for Parallel Composition). If a rely-
guarantee condition

〈Rp , Ip ,Gp〉 : {prep}Seqp{postp}
together with the six side conditions

(RG1) ∀ q ∈ Pid . q �= p ∧ guarp → relyq , (RG2) trans(Rp), (RG3) reflx (Gp),
(RG4) stable(prep ,Rp), (RG5) stable(postp ,Rp), (RG6) prep → Ip

holds for all p ∈ PId, then

〈∧

p∈PId
Rp ,

∧

p∈PId
Ip ,

∨

p∈PId
Gp〉 : {

∧

p∈PId
prep} Par {

∧

p∈PId
postp}

is true for Par = [Seq1 || . . . || SeqN ].

Proof: See [21], Sect. 7. �

Side condition stable(prep ,Rp) (and similar for postp) enforces, that any step
satisfying the rely must preserve prep , i.e. pre ′

p ∧Rp → pre ′′
p .

When Seqp is defined as in (1) of Sect. 2, then using a predicate idlep that
is valid in states where Seqp does not run Opp (in particular idlep will imply
¬p.act), the condition on the sequential processes can be simplified to

〈Rp , Ip ,Gp〉 : {idlep}Opp{idlep} (4)

(i.e., we omit the assignments to act) by setting prep = postp := idlep and
applying standard RG rules for sequential programs (see e.g. [5]). Thus, the rely-
guarantee calculus requires to prove (4) and all six side conditions to establish
that the whole system is partially correct. For our proof of starvation freedom
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it is important that a successful RG proof also establishes that all runs of Opp
in the context of Par satisfy

idlep ∧ �(Gp ∧Rp ∧ Ip ∧ I ′
p ∧ (last→ idlep))

States, where process p does not execute Opp satisfy idlep , all steps of p satisfy
Gp , all environment steps satisfy Rp , and all states the process passes through
satisfy the invariant Ip . We will make use of this knowledge in the next section
when defining proof obligations for starvation freedom.

Local Proof Principle. The new local proof principle for starvation freedom we
define here is based on the following observation: For a system not to be starva-
tion free, there must be a process p that has started an operation but is not able
to finish. Because of fair scheduling, this process is scheduled repeatedly, which
implies that there is a non-terminating run of Opp (which can assume relyp for
its environment steps). Now an infinite run of an algorithm trivially implies that
the algorithm must repeat one of its loops infinitely often3. Typically such crit-
ical loops are “spin” loops as in the example, where we cannot reason locally
that the loop decreases some well-founded measure and must therefore termi-
nate. Such a loop therefore waits for other processes to do suitable steps, that
enable process p to leave the loop. The essence of a proof for starvation freedom
is therefore, to show that p does not have to wait forever for some other process.

We therefore define a predicate waitsFor(p, q)(x ) such that s |=
waitsFor(p, q), if process p is waiting for process q in state s to provide some
help before it can leave one of its critical loops. From this predicate, the wait set
W (p) of process p is defined as W (p) = {q | waitsFor(p, q)}.

For a starvation free algorithm a definition of waiting that matches the intu-
ition above should have the following properties.

Definition 3. A predicate waitsFor is admissible for an algorithm Op if it has
the following properties for all processes p ∈ PId:

(W1) No waiting for and by idle processes:
idlep → ∀ q ∈ PId . ¬ waitsFor(p, q)∧ ¬ waitsFor(q , p)

(W2) No waits-for cycles:
waitsForis acyclic

(W3) While already waiting no further increase of wait set by local process steps:
W (p) �= ∅ ∧Gp ∧ Ip ∧ I ′

p → W (p) ⊇ W ′(p)
(W4) Empty wait sets guarantee progress:

idlep ∧ �(Rp ∧ Ip ∧ I ′
p)∧Opp ∧ �♦W (p) = ∅ → ♦ last

(W5) Transitivity of waits-for predicate:
trans(waitsFor)

(W6) No increase of wait sets by environment steps:
Rp ∧ I ′

p ∧ I ′′
p → W ′(p) ⊇ W ′′(p)

3 For simplicity, we assume the algorithm is not recursive. However, the argument of
getting stuck in a recursion is not really different.
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Property (W3) captures the fact that entering e.g. a critical loop should
determine the wait set. While the process waits, its own steps should not add
new processes q to it. Otherwise such a process q should have been included
right at the start. The progress property (W4) is the only temporal property
needed. It captures the intuition that not waiting is sufficient for termination of
the currently running operation. If at any point in time the environment of p
ensures that W (p) is emptied again in finite time, then p will be able to leave
any critical loop and the running operation will terminate (♦ last).

Together, properties (W3) and (W6) imply that every time a process starts
waiting by entering a critical loop, further steps will either keep its wait set
unchanged, or remove elements from the set. The latter case is not enforced, so
it still seems possible that the wait set could stay non-empty forever. However,
we will prove that this is not the case: the conditions already enforce that the
wait set becomes empty after finite time, such that any critical loop is left, and
starvation freedom is implied. This proves soundness of our new local reasoning
technique.

Theorem 2. Let Rp ,Gp be the rely and guarantee predicates and Ip the invari-
ant of a successful rely-guarantee proof (as formalized in Theorem 1) with
prep := idlep and postp := idlep, p ∈ PId. Then the following holds:

If an admissible waitsFor predicate exists, then the system Par is starvation
free, i.e.

Par ∧ idle → ∀ p ∈ PId . �(p.act → ♦ ¬p.act)

holds, where idle = (∀ p ∈ PId . idlep).

Proof: We prove the theorem indirectly. Assume there is a process p that is
active, but does not go back to an idle state in some global run. Then by fairness
this process is infinitely often scheduled, so we can find a local infinite run of
Opp , say (s0, s ′

0, . . .). By condition (W4) the wait set in this run does not become
repeatedly empty. It will be non-empty from some point in time n on. If Wm

denotes the wait set of p in state sm , then Wm �= ∅ for all m ≥ n. Conditions
(W3) and (W6) imply that Wn ⊇ Wn+1 ⊇ Wn+2 ⊇ . . .. Since none of the sets
is empty, and the initial set Wn is finite, the sequence will eventually (at some
time n0) become a constant, non-empty set S , i.e., Wm = S for all m ≥ n0.
Process p has to wait for the processes in S indefinitely.

Since waitsFor is acyclic, and every Wm is finite and non-empty we can find
for each m ≥ n0 one process qm ∈ Wm that does not have to wait in state sm ,
i.e. W (qm) = ∅. This process may be a different one for each state sm (and is of
course never p). However, since the sequence of states is infinite and the choice
is among the finitely many processes in S there is at least one process q that is
always in S and infinitely often has W (q) = ∅. We derive a contradiction for
this process q .

Since the local states of the run of p are part of the states of the global run, the
infinitely many states where q has an empty wait set also appear in the global run.
They also appear in the local run of q since steps other than the steps of q satisfy
relyq and therefore will leave the set empty by condition (W6). Since q repeatedly
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has an empty wait set, it must finish its currently running operation by condition
(W4), and thereby enter a state s with idleq . Since idleq is stable over relyq , a state
with idleq will also appear in the local run of p. However, this is a contradiction
as q cannot be in the wait set of p when q is idle by condition (W1). �

The proof relies on the fact, that the global runs of Par are interleavings of
local runs of the processes, and that for a fair interleaving each global run can
be decomposed into full runs of each process p (note, that for unfair scheduling
the decomposition gives an execution, but not a run for any process that is no
longer scheduled after some time).

We note that weakening the conditions (W3) and (W6) to the cardinality
of W (p) not increasing (thus getting closer to a rank function) is not possible.
While the cardinality of the sets still gets stable, it is no longer guaranteed that
there is a process q which is in every Wm for m ≥ n0. Instead two processes
q1 and q2 could then flip back and forth between one being idle and the other
forming W (p), thus starving p, while neither q1 nor q2 starves itself.

We have formalized the proof in RGITL, where the set of runs (i.e. the
semantics) of an interleaved program is directly defined as the interleaving of
individual runs of the components. Unfortunately, space limits prevent us from
detailing the mechanized proof documented on the Web [11] here. The proof
strategy follows the one we have used for deriving Theorem 1 and the proof rule
for lock-freedom (see Sect. 10 of [21]).

Application to the Ticket Lock. We define the waitsFor predicate as

waitsFor(p, q) := served ≤ q .lnext < p.lnext

Process p waits for process q , if q is served before p. This predicate is trivially
acyclic and transitive. Since processes q in idle state have q .lnext < served ,
condition (W1) is trivially satisfied. The proof thus reduces to the RG proof (4)
together with its side conditions, and the main (temporal) admissibility condition
of progress. We prove the RG conditions first, and to this end need to find rely,
guarantee and invariant predicates.

For the ticket lock, Ip is a subset of the invariants used for the global version,
namely Ip = INV0 ∧ INV2 ∧ INV3. It simply states served ≤ next and that
each ticket k with served ≤ k < next has a unique owner with p.lnext = k
(which implies mutual exclusion already). Note that since the thread local proof
is directly conducted over the program, it does (and can) not mention a program
counter like hasTicket does in the global approach. The rely condition is

Rp := served ′ ≤ served ′′ ∧next ′ ≤ next ′′ ∧ p.lnext ′ = p.lnext ′′

∧W ′′(p) ⊇ W ′(p)∧ (served ′ ≤ p.lnext ′ → served ′′ ≤ p.lnext ′′)

The properties of the first line should be obvious. The second line trivializes
condition (W6) and ensures that the other processes cannot do steps that skip
process p from being served by moving served from a value below p.lnext to one
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Prex0x ∧ Ix0x ∧ x1 = tx0x → G(x0, x1) ∧ Ix1x
R,G, I Prex0x ∧ x1 = tx0x ∧ R(x1, x) ∧ I} P {Post}

R, I,G Pre ∧ I} x := t; P {Post}
Prex0x ∧ x1 = tx0x ∧ R(x1, x) ∧ ( R) ∧ ( ♦W = ∅) ∧ P → ♦ last

Pre ∧ ( R) ∧ ( ♦W = ∅) ∧ x := t; P → ♦ last

Fig. 3. Symbolic execution rules for RG and (W4)

above it. The guarantee is defined as

Gp := ( next ′ = next ∧ p.lnext ′ = p.lnext
∨next ′ = next + 1∧ p.lnext ′ = next ∧ served = served ′)

∧ (served �= served ′ → p.lnext = served ∧ served ′ = served + 1)
∧ (served < p.lnext →W (p) ⊇ W ′(p))∧ (∀ q �= p. q .lnext ′ = q .lnext)

The first three lines give the obvious guarantees about acquiring and releas-
ing a lock. Again, the third line makes proving (W3) trivial (and it adds the
standard frame assumption for other processes). The predicate logic proof that
guarp implies relyq is simple. It finally remains to do the local RG proof (i.e.,
〈Rp , Ip ,Gp〉 : {idlep}Opp{idlep}) with these instances and to prove the main
condition (W4) of admissibility. Both proofs step through the algorithm using
symbolic execution (that computes strongest postconditions for each statement,
and uses invariants similar to Hoare-calculus). The rules for assignment used in
both proofs are exemplarily shown in Fig. 3. Note that KIV does not directly
implement these rules, instead they are derived from the general principle

(s0, s ′
0, s1, . . .) |= τ(x , x ′, x ′′)∧ �ψ ⇔ (s1, . . .) |= ∃ x0, x1.τ(x0, x1, x )∧ ψ

which removes the first step of a run, and is valid for predicate logic assertions
τ for the first step, fresh variables x0, x1 and temporal ψ. Unwinding rules like

ϕ until ψ ↔ ψ ∨ (¬ last∧ ϕ ∧ �(ϕ until ψ)) x := t ; P ↔ x ′ = t ∧ �P

are used to bring formulas into this form. This works for all LTL formulas
and programs (see [21] for a proof). For the (W4) goal both the assumption
�♦W (p) = ∅ as well as the termination goal ♦ last are preserved by program
steps. The proof4 of (W4) is slightly easier than the RG proof, since it does not
have to prove the guarantee as a side goal (first premise of the RG rule of Fig. 3).
It is however a bit longer, since each time a spin loop is reached, an induction
over the number of steps is needed, until W = ∅ holds. The RG proof has 83

4 Both proofs are done for a slight extension of the theory we do not discuss in this
paper. This extension establishes linearizability (simply due to mutual exclusion) for
an arbitrary operation in the critical section by using slightly enhanced versions of
Rp , Ip and Gp .
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steps and 43 interactions, the proof of (W4) has 163 steps and 61 interactions.
The proof effort is mainly in finding suitable relies and guarantees. With these
fixed, the proofs can be done in a day of work. For comparison, the mechanized
proofs for deriving Theorem 2 are much more complex (ca. 1100 steps with 700
interactions for ca. 40 theorems and lemmata).

Other Algorithms Verified. To ensure that our approach is not specific to one
example, we have verified two other more complex algorithms (see again [11] for
the mechanized proofs). The first is the so-called MCS lock [16], which uses a
pointer based queue, so the small-model theorem of [7] that allows to reduce a
proof to model checking finite instances (that is applicable for the ticket lock)
cannot be applied. The algorithm uses two spin loops: One for acquiring the
lock, and one for releasing the lock. Therefore W (p) is non-empty twice for two
different reasons: First when waiting for the processes in queue which get the
lock before p. This part is similar to the ticket lock. Second, when the lock is
released. Then p must wait for the next process q that still has to set the tail
pointer before p can transfer the lock to q .

The second algorithm is the Filter Lock of [19]. This algorithm uses an array
of as many elements (“levels”) as there are processes. Each level can store a
process id (the so-called “victim” of this level). The victim p must wait (in a
loop) on the level, until another process q overwrites the entry with q , thereby
declaring itself as victim. The wait set of p for this example is therefore non-
empty on each level while the process is a victim (and contains those process
q it still checks for in the loop). The algorithm is interesting, since it shows
that the method is not restricted to queue based algorithms, here every process
can be overtaken by all others on each level once. It also shows a limitation of
the approach presented here. We could only verify a slightly simplified version,
which increases the level and sets itself as victim in a single atomic step, while
the original algorithm uses two steps. The full version can be verified, but needs
an extension of the proof method that is beyond the scope of this paper.

5 Conclusion

In this paper, we have presented a novel technique for proving starvation free-
dom of processes in parameterized systems. The key difference between our and
other techniques5 is the ability to locally reason about a process (plus the full
mechanization of starvation freedom proofs of specific algorithms as well as the
proof of soundness of the new theory). This makes our proof technique more
natural since we reason about the code of a single process just assuming some
relies of other processes. Many thread-local progress arguments that would have
to be encoded using a global rank function are given locally in this approach
(e.g. termination of the loop of Filter Lock, that iterates over levels from 1..N).
Furthermore, we think that the idea of a waitsFor relation naturally formal-
izes a basic principle behind a large number of concurrent algorithms and their
5 With the exception of [13] discussed in the introduction.
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progress properties, and thus setting up a waitsFor relation for a concrete algo-
rithm is relatively easy. The definition of ranking functions, on the other hand,
involves giving a very precise upper bound on the distance to the target. As our
two proofs for the ticket lock show, the local proof also needs less invariants on
the algorithm.

So far, our new local technique still has one temporal proof obligation (con-
dition (W4) of admissibility). This is the one point where the global technique
improves over the local one. As future work, we want to study variations of the
current approach. We aim to make the proof technique applicable to other forms
of progress properties. Furthermore, we would like to identify the limitations of
our approach more accurately.
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Abstract. Code reuse is a fundamental aspect of object-oriented
programs, and in particular, the mechanisms of inheritance and late
binding provide great flexibility in code reuse, without semantical limita-
tions other than type-correctness. However, modular reasoning about late
binding and inheritance is challenging, and formal reasoning approaches
place semantical restrictions on code reuse in order to preserve prop-
erties from superclasses. The overall aim of this paper is to develop a
formal framework for modular reasoning about classes and inheritance,
supporting unrestricted reuse of code, as well as of specifications. The
main contribution is a Hoare-style logic supporting free reuse, worked
out for a high-level concurrent object-oriented language. We also show
results on verification reuse, based on a combination of Hoare-style logic
and static checking. An example illustrates the difference to comparable
reasoning formalisms.

1 Introduction

In the setting of object-oriented programs, it is desirable to support modular
reasoning, allowing separate reasoning of each class and allowing open programs
in the sense that the class hierarchy may be extended downwards. Code reuse
is a fundamental property of object-orientation, and flexible reuse implies that
a class should not put semantic restrictions on reuse in subclasses. However,
modular reasoning with flexible code reuse, late binding, and inheritance is an
unsolved challenge. Behavioral subtyping [15] is the most common reasoning
approach, restricting subclasses to obey the super-class specifications.

Behavioral subtyping is based on the substitution principle, i.e., an object
variable declared of class C may at run-time refer to an object of class C or a
subclass of C. By exploiting the notion of interfaces, this may be replaced by the
interface substitution principle: an object variable declared of interface F may
at run-time refer to an object supporting F or a subinterface of F . This property
can be guaranteed by type checking, but requires that all object variables are
declared of an interface, and that interface specifications are respected by a
subinterface [12,19]. Then reasoning about remote calls o.m(..) can be done
using the declared interface of o; however, it does not reduce the restrictions
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on self calls (or local calls) imposed by behavioral subtyping. Lazy behavioral
subtyping [10] relaxes this condition; only behavior that is needed to verify self
calls in a superclass must be respected by a subclass redefining the method.
This gives added flexibility, allowing a larger class of changes without violating
reasoning modularity, but reasoning about free code reuse is still not possible
without modifying superclass code or specifications.

Consider two classes A and B such that A is above B (i.e., B inherits A).
It may happen that B is not a behavioral subclass of A. Then an object vari-
able x declared of class A may at run-time point to a B object. This would be
problematic wrt. reasoning, and unexpected behavior may occur. Such cases are
non-trivial to detect [24] – and to solve: If all classes are code-wise as desired, one
can either weaken the specification of A or split the class hierarchy, for instance
redefining B without inheriting A. In the former case, reasoning made about
other classes depending on A must be redone, possibly weakening the specifica-
tions of these classes. In the latter case, one is giving up on reuse. Each case has
severe draw-backs. In the setting suggested in this paper we use separate hier-
archies for reuse and for behavior [2,6]. Classes A and B must be seen through
interfaces. Then the specifications of the classes A and B can be strong (give a
strong characterization), and A may implement several interfaces, say Ii, while
B may implement some of these. An object variable x of interface Ii can point
to a B object if and only if B implements Ii, which is checked by static typing.
Thus class reuse is possible even if B does not implement all behavior of A,
and the behavior of B can be decided independently of A. Reasoning control is
established by verifying each class and its implements clauses.

The contribution of this paper is the development of a reasoning framework
allowing reasoning about free code reuse. More specifically, we present a Hoare-
style logic for modular reasoning about inheritance, late binding, and free reuse
of code and specifications. We build on the general approach of behavioral inter-
face subtyping [18]. Each class is only required to satisfy its invariant and inter-
face specifications, as well as any other local specifications given in, or inherited
by, the class. This means that a method redefined in a subclass may break the
requirements of the superclass, even the minimal requirements imposed in the
case of lazy behavioral subtyping; and a subclass need not support the inter-
face(s) of the base class. As opposed to lazy behavioral subtyping, no superclass
requirements are imposed on a subclass. The consistency of a class is determined
by looking at the class itself, its interfaces, and reused code from superclasses.
The main idea of behavioral interface subtyping is that in order to reason about
self calls we need to be aware of the class of this object. For each class C we
reason about the requirements of that class under the assumption that the class
of this is exactly C. Thus if at run-time the class of an executing object is C,
we may rely on the reasoning about self calls done in the verification C, and
for remote calls we rely on the interface substitution principle. This gives rise to
sound reasoning, however, the soundness proof in [18] is presented at an abstract
level, without considering a specific calculus presenting the details of self calls
and late binding. We present here such a logic. In order to achieve reuse of
verification results, we combine the logic and static checking.
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Fig. 1. Core language syntax. F denotes an interface name, C a class name, m a
method name, p a formal interface parameter, cp a formal class parameter, w a field, x
a method parameter or local variable. We let [ ]∗, [ ]+ and [ ]? denote repeated, repeated
at least once, and optional parts, respectively; and e is a (possibly empty) expression
list. Expressions e are side-effect free. Assertions A are Boolean expressions (possibly
quantified) and may refer to the local history h. The specification [A] abbreviates
[ true,A].

We consider the setting of asynchronously communicating concurrent objects.
In this setting, verification of systems of concurrent objects can be done com-
positionally. We build on results for inheritance-fee reasoning [8,9], avoiding
here the complications of futures and recursion. The presented logic is oriented
towards automatic verification in the sense that for given class and interface
specifications, the generation of verification conditions can be mechanized.

2 A Core Language

For the purpose of this paper, we consider a strongly typed, high-level core
language inspired by Creol [12]. The syntax is given in Fig. 1. Several tools
including interpreters and compilers exist for versions of this language (http://

tools.hats-project.eu/). A program consists of interfaces and classes. A class C
may implement a number of interfaces. Class instances represent concurrent and
active objects, while local data structure is defined by data types (syntax not
given here). An interface may extend other (super)interfaces, adding declarations
of methods, requirements, and invariants. A class may extend a (super)class
while adding method definitions/redefinitions, requirements, and invariants.

http://tools.hats-project.eu/
http://tools.hats-project.eu/
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For simplicity we assume read-only access to method and class parameters, as
well as this for referring to the current object, and inside a method, caller for
referring to the calling object.

When an interface extends another (super)interface, all declarations and
specifications are inherited. When a class inherits another (super)class, all
code and specifications are inherited unless redefined, i.e., a pre/post pair is
inherited unless another is stated, and an invariant is inherited unless another is
stated, and a method body is inherited unless the method is redefined. Likewise,
the implementation clause of a superclass is inherited unless a new implemen-
tation clause is provided. Thus a subclass need not support all the interfaces
supported by the superclass, nor respect the superclass invariant. Note that this
is different from other specification/reasoning frameworks such as Eiffel, Spec#
[3], JML [4], and Boogie [14].

The language obeys the interface substitution principle, guaranteed through
type checking [12,19]. Object variables must be typed by interfaces (as opposed
to classes). A remote call v := o.m(e) is type correct if the interface of o supports
a method m such that the types of the actual parameters e are subtypes of (or
equal to) those of the formal parameters of m, and the result type of m is
a subtype of v. The self call v := this.m(e) is allowed when the class of this
supports a method m. For simplicity we assume type correctness, and assume
that a class does not offer multiple method declarations with the same name.
( Otherwise, we could index the method name by the input and output types.)
We assume late binding of methods called by dot-notation, i.e., for an object o
of run-time class C the execution of a remote call o.m(...) binds to the definition
of m in C, if any, or else that of the closest superclass with a definition of m.
Similarly, the self call this.m(e) binds to the closest superclass B with a definition
of m, starting with the the run-time class of this. This definition of m is denoted
B : m. The notation B :m may also be used in program code, resulting in static
binding to a superclass B (or above). We distinguish between exported methods,
those exported through an interface of the class, and private methods, those not
exported through any interface of the class. Private methods must be called by
the notations this.m (dynamic) or B : m (static).

Each object o has its own virtual processor and executes methods calls with o
as callee, and has a process queue with method instantiations caused by incoming
calls along with suspended method executions. An await statement puts the
current method execution on the object’s process queue, allowing an enabled
process to continue. A conditional await statement, await c, is enabled when
the condition c is enabled, and an await call statement, await v := o.m(e), is
enabled when the result of the remote call has arrived. In contrast, the current
method must wait while a blocking call, v := o.m(e), is executed, unless o = this,
in which case the call is executed as a normal stack-based local call.

Specifications are given by means of invariants, pre/post specifications of
methods, and implementation clauses. The class invariant must hold in all states
exposed through an interface, i.e., it must hold at suspension points and end of
public methods. Methods may be specified by pre/post specifications. This is
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needed for reasoning about self calls, in particular blocking self calls, when the
class invariant may be temporary violated. Multiple pre/post specifications of
a method are allowed, specifying complementary properties (see Sect. 3), and a
class may implement multiple interfaces. A class not stating nor inheriting an
implements clause, implements the empty interface Any, which is the super-
interface of all interfaces (and with no requirements).

Inheritance. To describe inheritance more precisely, we look at which items are
defined in a class and which items are inherited by a class, and from which super-
class. Let B be the direct superclass of C. Inheritance of methods, specifications,
and interfaces are explained by the semantic functions

• bind(C,m) = C, if C defines a body for m, otherwise bind(B,m).
• spec(C,m) = C, if C has a pre/post specification of m, otherwise spec(B,m).
• inv(C) = C, if C defines an invariant, otherwise inv(B).
• face(C) = C, if C includes an implements clause, otherwise face(B).

These functions are partial, being undefined if no superclass has the required
item. Inheritance corresponds to point-wise updates of the semantic functions.
For instance, spec(B,m) may be overridden by spec(C,m) even if bind(B,m)
is not, and spec(C,m) may even violate spec(B,m). In addition all fields are
inherited (if names clash, we use the class name to qualify).

History-Based Specification. The local history h of a class/interface is the
time sequence of communication events observed by this object, including

• method calls made by this object, denoted this → o.m(e)
• method calls received by this object, denoted o � this.m(e)
• method returns made by this object, denoted o ← this.m(e; e)
• method returns received by this object, denoted this � o.m(e; e), and
• creation events made by this object, denoted this → o.newC(e)

where o represents the other part in the communication. Note that these events
are not visible to o, when o �= this. Thus the local histories of different objects
are by definition disjoint. In the example of this paper histories will only be
concerned about method completions, i.e., ← and � events.

Sequence Notation. A sequence h is either empty or of the form h;x where
x is the last element. The notation h/s denotes the projection of h restricted to
elements in the set s, # denotes sequence length, and x before x′ in h denotes
that x appears before x′ in h, i.e., #(h′/{x}) ≤ #(h′/{x′}) for any sequence
prefix h′ of h. For a local history h we let h/F denote the projection to the
alphabet of F , given by events of the form this → o.newC(e), this → o.m(e), and
this � o.m(e; e), as well as events of the form o � this.m(e) and o ← this.m(e; e)
for m offered by F . Similar notation applies to classes C, thus � this.m and
← this.m events are restricted to methods defined or inherited in the class.

For a global history H we have that

(o→o′.m(e)) before (o�o′.m(e)) inH
(o�o′.m(e)) before (o←o′.m(e; e)) inH
(o←o′.m(e; e)) before (o�o′.m(e; e)) inH
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which is formalized by the wellformedness predicate used in the compositional
rule for global reasoning [26], which expresses that the global invariant is the
conjunction of the wellformedness predicate and all object interface invariants.
Since the alphabets of the objects are by definition disjoint, the wellformedness
predicate is needed to connect the different object invariants.

The invariant of a class C may refer to fields, h, and constants, including
this. The invariant must be maintained by each non-private method of the class
(possibly inherited), and a class must satisfy each implemented interface. A
method specification may in addition refer to the formal parameters (including
the caller) and the result (return). When seen from another class with a larger
alphabet, a C invariant must hold on the original alphabet of C.

The invariant of an interface F may refer to the local history h (and the
constant this) but not fields since these are not visible at the interface level.
An invariant I(h) of an interface F is understood as I(h/F ) in a subinterface
or class. Thus we define IF (h) as I(h/F ), and similarly for classes. Abstract
variables can be expressed by abstraction functions (say F ) over the history,
typically by inductive definitions with left hand sides of the form F (empty) and
F (h; e) for each kind of event e, as demonstrated in the example below.

A Small Example
Figure 2 defines a class BANK, a subclass BANKPLUS, and related interfaces, illustrating
typical code reuse, adding complexity to a simple base class. The purpose of
the (somewhat contrived) private method upd is to demonstrate the difference
between non-lazy and lazy behavioral subtyping. The subclass does not respect
the base class specification. Similar complications arise when adding transaction
fees or interest calculations, while other extensions, such as adding a transaction
history, would respect the base class specification. Code reuse is clearly useful
both when base class specifications are respected and not.

Interface Bank states that the balance (as returned by bal) is the sum of
amounts deposited (by add) or withdrawn (by sub) from the bank account, ignor-
ing unsuccessful add and sub calls, and that add calls always succeed. Interface
PerfectBank extends Bank by stating that all sub calls succeed, while interface
BankPlus extends Bank by stating that balance is always non-negative.

Interface and type names are capitalized while class names are in upper case
letters. The specification of interface Bank illustrates history-based specification.
The abstraction function sum calculates the balance from the local history. Note
that only method return events are used in the specification. In the inductive
definition of sum, others is used to match other cases, and underscore ( )
is used to match any expression. The keyword inv identifies invariants and
where identifies auxiliary function definitions. In assertions, inv refers to the
current invariant, while C : inv refers to the invariant of class C.

The class BANK uses a private method upd called by both add and sub. The
upd method is specified by two complementary pre/post pairs, each specifying
a property of the method. The invariant says that the value of the field bal
is the sum calculated over the local history. The subclass BANKPLUS inherits the
pre/post specifications of bal and add from BANK, but not the ones for upd and
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Fig. 2. A bank example, violating behavioral and lazy behavioral subtyping.

sub, which are redefined and therefore not inherited. In fact the subclass violates
the pre/post specifications for upd and sub in BANK. Likewise the implements
clause is redefined and therefore not inherited. In this example, the subclass
does not obey the requirements imposed by behavioral subtyping, since BANKPLUS

violates the BANK interface PerfectBank , nor by lazy behavioral subtyping since
BANKPLUS violates the BANK postcondition of upd, which is needed for the local upd
calls in the verification of BANK.
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For the sake of completeness a client class is included, showing also blocking
and non-blocking calls. The CLIENT invariant expresses that paid corresponds to
successful bill payments, calculated over the history by p(h), defined inductively.

3 Hoare-Style Reasoning

The considered core language is chosen with respect to simplicity of semantics,
avoiding the complexity of shared variables and low-level synchronization prim-
itives. We consider partial correctness, expressed by Hoare triples of the form
[P ] S [Q], meaning that the condition Q holds in any post-state of the statement
s provided the condition P holds in the pre-state [11]. The language satisfies the
classical Hoare axiom for assignment

� [Qx
e ] x := e [Q]

since there are no side-effects of expressions, remote access to fields, nor shared
variables (even though object variables give rise to aliasing). Here Qx

e denotes Q
with all (free) occurrences of x replaced by e. Rules for skip and if-statements
are standard, and so is the rule for sequential composition (see Fig. 3), because
there is no interference between objects since their local conditions are on disjoint
variables. In particular the histories of two objects do not share events.

Late binding implies that a method call may behave differently depending on
the class of the executing object. Also calls binding to the same body may behave
differently since self calls in the body may depend on the class of the execut-
ing object. For instance in the Bank example a call to sub binds to BANK :sub
(regardless of the class of the executing object), but the upd call in the body
of BANK :sub binds to either BANK :upd or BANKPLUS :upd depending on the class
of the executing object, BANK or BANKPLUS, respectively. For B above C, we use the
notation bodyC::B:m to refer to the execution of the body of m in class B (or
above) when this object is of class C. A late bound self call this.m(..) binds to
bodyC::C:m, and the static call B : m(..) binds to bodyC::B:m, and both are exe-
cuted as a stack-based local call. Given that class bind(B,m) contains a method
definition m(x){s; return e}, we define bodyC::B:m by

h :=(h; caller� this.m(x)); s; return := e;h :=(h; caller← this.m(x; return)) (1)

which incorporates the appropriate effects on the local history. It follows that

bodyC::B:m = bodyC::bind(B,m):m

And we have bodyC::B:m = bodyB::B:m if the execution of the former body does
not lead to suspension nor self calls below B. Such equivalences can be detected
(underestimated) by static checking following each execution path of the body
of m, following static calls and remote calls where the callee might be this. Such
equivalences can be exploited for verification reuse, as shown in the example.
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Type checking ensures that binding succeeds, i.e., for all method calls in
a type correct program each call binds to a body, apart from remote calls on
object variables that are null. Note that calls to null may appear in the history,
allowing specifications about the absence of such calls. We let bodyC::C:init denote
the initialization code of C.

Verification of a Class. According to the idea of behavioral interface subtyp-
ing, each class C is verified separately under the assumption that the class of
this object is exactly C. A major complication is that reasoning about reused
code from a superclass is in general different than the reasoning made in the
superclass. Hoare-style reasoning must be done relative to the class C of this
object. We use the notation �C [P ] s [Q], where C represent the class of this
object. And �C Q means that the assertion Q can be proved in the context
of the specification functions available in C. We write � [P ] s [Q] rather than
�C [P ] s [Q] when the class context of s is irrelevant for the reasoning.

The notation �C B : m(x)[P,Q] abbreviates �C [P ] bodyC::B:m [Q], and �C

m(x)[P,Q] abbreviates �C C : m(x)[P,Q]. This notation is convenient when
considering class specifications given by pre/postconditions. For a condition Q
we let the notation Q/F denote Qh

h/F where F is a class or interface.
Let IC denote the given invariant of class C. In order to verify a class C the

following verification conditions must be proved:

1. �C IC ⇒ (IF /F ), for each invariant IF of an interface F of class face(C)
2. �C init()[true, IC ] (i.e., the class initialization establishes IC)
3. �C m(x)[IC , IC ], for each public method m of C (i.e., maintenance of IC)
4. �C m(x)[IC ∧ (P/F ), Q/F ], if an interface F of face(C) contains m(x)[P,Q]
5. �C m(x)[P,Q], if C contains or inherits m(x)[P,Q] (bind(C,m) is defined).

Here 1 and 4 ensure that each interface of C is satisfied, 2 and 3 that the class
invariant is satisfied, and 5 ensures any additional pre/post specifications of C,
including inherited ones. Note that in 4 we assume the class invariant in the
precondition of a public method, since calls from other objects are started in an
invariant state. Only blocking self calls may start in non-invariant states.

Each class is verified separately in this way (considering inherited superclass
code). Together with correct typing of object variables, this ensures that each
object variable will satisfy its declared interfaces, and each object of (run-time)
class C will satisfy the interfaces of C. This implies that the compositional rule
for reasoning about concurrent object systems is sound, see [18]. Furthermore,
the reasoning about inherited code ensures that each late bound self call made
at run-time will satisfy the pre/post specifications given in C.

Reasoning Rules
Figure 3 presents all rules related to self calls and histories. For a class C we use
�C to express provability in the context of C as explained. For code in class C this
corresponds to normal class-based reasoning. For code inherited by C, reasoning
about suspension and self calls depends on C, as reflected in Rule static call, keep-
ing the C context when moving to a superclass B. The importance of the context
C is evident in the rule for await where it is essential that we use IC , and in the
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Fig. 3. Hoare style rules and axioms. Primed variables represent fresh logical variables,
fresh(v′,h) expresses that v′ does not occur in h, L denotes a local assertion, i.e., with-
out occurrences of fields, and LC::B:m denotes an assertion without fields (potentially)
modified by body bodyC::B:m (statically checked). In rule static call we assume for
simplicity that v does not occur in e.

call rules, where both C and B are used to get the relevant pre/postconditions.
In general the pre/postconditions of a method m vary both with respect to the
enclosing class B and the context class C.

Since we allow multiple pre/postconditions of a given method, we need the
entailment rule in order to derive implications of multiple pre/postconditions,
using the relational meaning of a pre/postcondition [P,Q] given by

[[P,Q]] � ∀z . Pw,h
win ,hin

⇒ Qw,h
wout ,hout

where z is the list of logical variables in [P,Q], xin denotes the pre-state (“in”)
value of a variable x, and xout denotes the post-state (“out”) value of x. (Con-
stants including parameters, this, and return are not quantified nor substituted.)
For instance, from the two pre/postconditions [bal ≥ x, return = true] and
[bal < x, return = false] we may derive [bal′ = bal, return = bal′ ≥ x]. And
the standard consequence rule can be derived from the entailment rule.

The effects on h from the side of a caller are reflected in the call rules, whereas
the effects on h from the side of the callee are reflected in the definition of body,
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see (1). Self calls give rise to both effects. Rule new is similar, with the additional
requirement that the generated object is locally fresh. (Global uniqueness follows
by including the parent object in the identity.) According to Rule call on this,
the call v := this.m(x) is equivalent to the static call v := C : m(x) where C is
the class of this object. The rules self call and blocking call treat blocking calls
according to whether the callee equals this. For a call such that the premise of
rule self call would not be type correct, we may conclude that o �= this. This
can be formalized by letting the type analysis rewrite a call v := o.m(e) to
v := o..m(e) whenever the call v := this.m(e) is not type correct, and adding the
Hoare axiom

� [∀v′ . Qv,h
v′,h;(this→o.m(e));(this�o.m(e;v′))] v := o ..m(e) [Q]

for such “external calls” (syntactically indicated by “..”), to improve reasoning.
This static analysis of object disjointness may be strengthened, for instance by
considering static parent-child connections or ownership.

Reasoning about a suspending call await v := o.m(e) is equivalent to rea-
soning about the pseudo-code

h := (h; this→o.m(e)); await true; v′ := some;h := (h; this�o.m(e; v′)); v := v′

where “some” represents a non-deterministic value, i.e., [∀x . Q] x := some [Q].
When o is this and m is non-public, one must add the premise �C m(x)[IC , IC ]
in order to ensure that the self call preserves the invariant of C.

New properties of a method B :m can be derived from old properties using
the entailment rule or by analysis of bodyC::B:m. Entailment is useful at the level
of method specifications since it is natural to keep track of verified properties at
this level. The proof of a pre/post specification of m in C will be based on the
invariant of C, which may differ from that of B. Thus a pre/post specification
of m in B cannot in general be guaranteed in a subclass C. The static call rule
reflects this by referring to both B and C.

Since each class is analyzed separately, typically in the order defined, we
obtain an open world and modular verification system. In the analysis of a
class C we may need to consider superclasses of C, but not subclasses. We
may reuse superclass verification results as follows: For code inherited from a
superclass B, we may derive �C B : m(x)[P,Q] from �B B : m(x)[P,Q] when
the body does not lead to suspension nor self calls of methods redefined below B.
Otherwise, new pre/post conditions for a method body can be established by new
analysis of the body. Thus �C B : m(x)[P,Q] follows from �B B : m(x)[P,Q]
and bodyC::B:m = bodyB::B:m. The latter condition can be guaranteed by static
analysis considering all possible self calls, which gives an integration of Hoare
logic and static checking.

Verification of the Example
Let B denote BANK and let IB denote the invariant of B. From our definition of
class verification we get the following verification conditions for class BANK
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1. �B IB ⇒IPerfectBank (h/PerfectBank) (entailment of interface invariant)
2. �B IB

h,bal
empty,0 (class initialization establishes IB)

3. �B bal(x)[IB, IB ] (implementation of bal maintains IB)
4. �B add(x)[IB , IB ] (implementation of add maintains IB)
5. �B sub(x)[IB , IB ] (implementation of sub maintains IB)
6. �B bal(x)[IB, return = sum(h/Bank)] (pre/post spec. from Bank)
7. �B bal(x)[true, return = bal] (pre/post spec. from B)
8. �B add(x)[true, return = true] (pre/post spec. from B)
9. �B sub(x)[true, return = true] (pre/post spec. from B)

10. �B upd(x)[true, return = true] (pre/post spec. from B)
11. �B upd(x)[IB , bal = sum(h) + x ∧ return = true] (pre/post spec. from B)

Here (1) is trivial since there is no PerfectBank invariant. Verification con-
ditions (2–5) state that IB is an invariant of B, and (6–11) ensure the stated
pre/post specifications. Note that (8) ensures the pre/post specification for add
from Bank , and (9) ensures the one for sub from PerfectBank . The verification
of the conditions is straight forward as it does not involve any superclass code.
For (6) the class invariant in the precondition is needed. History projections may
be ignored in this example due to the others clause in the definition of sum. Note
that the private method upd does not maintain the invariant.

According to the definition of class correctness, verification of class BANKPLUS

amounts to the following conditions (letting BP denote BANKPLUS)

1. �BP IBP ⇒ sum(h/BankP lus) ≥ 0 (implication of invariants)
2. �BP IBP

h,bal
empty,0 (establishment of BP inv.)

3. �BP B : bal(x)[IBP , IBP ] (maintenance of BP inv.)
4. �BP B : add(x)[IBP , IBP ] (maintenance of BP inv.)
5. �BP B : sub(x)[IBP , IBP ] (maintenance of BP inv.)
6. �BP B : bal(x)[IBP , return = sum(h)] (pre/post given in Bank)
7. �BP B : bal(x)[true, return = bal] (pre/post given in B)
8. �BP B : add(x)[true, return = true] (pre/post given in B)
9. �BP B :sub(x)[b′ =bal, return=b′ ≥x] (pre/post given in B)

10. �BP upd(x)[b′ =bal, return=b′+x≥0] (pre/post given in BP )
11. �BP upd(x)[IBP , bal≥0 ∧ bal=sum(h)+ if returnthenxelse 0] (BP)

Verification of these conditions can be summarized as follows: (1,2,3) are
trivial, (4,5) follow from (11), (6) follows from (3,7) by entailment, (8,9) follow
from (10), (7) follows from verification of BANK by observing that bodyBP ::B:bal

equals bodyB::B:bal since the body has no self calls nor suspension, and (10,11)
are straight forward, using bodyBP ::B:upd = bodyB::B:upd.

Again we notice that the private method upd does not maintain the invariant
(and is not required to), that the invariant is needed in the proof of (6), and
that significant reuse of proofs from the verification of BANK was possible (7–11).
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4 Related Work

Class inheritance is a central feature of object orientation which allows subclasses
to be designed by reusing and redefining the code of superclasses with a flexibil-
ity that goes beyond behavioral subtyping [4,25]. However, proof systems usually
restrict code reuse to behavioral subtyping [2,15]. For example, a recent survey of
challenges and results for the verification of sequential object-oriented programs
[13] relies on behavioral subtyping when reasoning about late binding and inher-
itance. In contrast, proof systems studying late bound methods without relying
on behavioral subtyping have been shown to be sound and complete by Pierik and
de Boer [21], but assume a closed world (i.e., all classes must be known).

Specification inheritance is used to enforce behavioral subtyping in [7], where
subtypes inherit specifications from their supertypes. Virtual methods [22] sim-
ilarly allow incremental reasoning by committing to certain abstract properties
about a method, which must hold for all its implementations. In particular, the
verification platforms for Spec#[3] and JML [4] rely on versions of behavioral
subtyping. Wehrheim [28] investigates behavioral subtyping for active, concur-
rent objects, classifying different notions of behavioral sybtyping.

The fragile base class problem emerges when seemingly harmless superclass
updates lead to unexpected behavior of subclass instances [17]. Many variations
of the problem relate to imprecise specifications and assumptions made in super-
or subclasses. By supporting static method calls one can refer to and reuse origi-
nal versions of methods, making method requirements and assumptions explicit,
which reduces the fragile base class problem.

Recently incremental reasoning, both for single and multiple inheritance,
has been considered in the context of separation logic [5,20]. These approaches
distinguish “static” specifications, given for each method implementation, from
“dynamic” specifications used to verify late-bound calls, somewhat similar to
the approach of lazy behavioral subtyping [10], discussed earlier.

In order to obtain a more flexible specification language, it has been suggested
to allow clauses like: this is C ⇒ I, which expresses that the clause only
needs to hold when the current object is exactly a C object (and not a subclass
object) [13]. This allows more complete invariant (or pre/post) specification of
a particular class without imposing such clauses on subclasses, since this is C
is false in a (proper) subclass of C. However, for reasoning about remote calls
with behavioral subtyping, the restrictions of behavioral subtyping remain.

Problems related to object patters have been studied recently. Designs with
collaborating objects pose problems with respect to modular reasoning about
common (non-local) invariants. [16,27] discuss reasoning when such invariants
may be temporarily broken. [27] controls reasoning about invariants that are
broken at certain points in the program. [16] provides specific constructs con-
trolling the invariants. A notion of global invariants for collaborating objects is
suggested in [23] considering sequential OO programs and patterns. For instance
in the observer/subject pattern, the invariant for the pattern is placed in the
observer class and its verification involves both classes. In our system, the invari-
ant would partly be in the subject class (say expressing that all subscribers
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have been notified about the current “value”) and partly in the observer class
(expressing that the local copy of the “value” has been updated according to
the notifications). Interfaces are not used, but the paper mentions reverification
of inherited code as a way to achieve better flexibility in inheritance. Another
typical example of non-local invariants is the handling of doubly-linked lists. In
our setting doubly-linked lists can be treated by ensuring that when a “previous”
pointer is set, the “next” pointer of the previous object is correct. This can be
expressed as a local property by means of an invariant saying that the setnext
call has ended before the matching setprevious call has ended.

When reasoning with class invariants, the framework should determine in
which states the invariant should hold (so-called invariant states). Clearly the
set of invariant states should be as small as possible without compromising
soundness, since this allows stronger invariants. Callbacks should only appear
in invariant states. Then any external call may assume the invariant. In our
approach the class invariant IC must hold in any state where suspension occurs
or where an externally called method is completed. This allows us to assume the
invariant after suspension. Therefore public methods must maintain the class
invariant. Blocking self calls to private or public methods need not be done in
invariant states; however, such calls may lead to suspension, in which case one
would need to prove �C [P ] s [IC ] where s is the path to the suspension point
and P is the condition at the point of the self call. And if the suspension is
a suspending call to a private method, one needs to verify that the method
maintains the invariant. The current analysis is able to detect this, as well as
the relevant class context, due to the �C notation. Thus in our system, class
verification guarantees that callbacks happen in invariant states. And there is
no need for pack/unpack operation to control class invariants [14].

5 Conclusions

We have presented a verification logic for modular reasoning of concurrent
object-oriented programs supporting free reuse of code and specifications. In
contrast to earlier approaches, the reasoning of a class does not impose restric-
tions on subclasses. Object variables are typed by interfaces and remote field
access is not supported. Each class C is verified separately, and reused super-
class code is re-analyzed under the assumption that this object is of class C.
We use history-based specifications, which allow compositional reasoning. The
main complication of our logic concerns reasoning about self calls and reused
superclass code, something which was not worked out in [18]. Our solution uses
a notion of proof context and a notation for static method binding. Our frame-
work considers all main aspects of object-orientation, and represents a general
solution that may be used for other object-oriented languages with late bind-
ing and inheritance, including sequential languages, but assumes typing with
interfaces and no remote field access.

The mechanism of static calls proved helpful for reuse of pre/postconditions
for superclass methods. It is also helpful in controlling the fragile base class prob-
lem [17]. The considered language involves some additional challenges caused by
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concurrency with suspension mechanisms and non-blocking calls. Nonetheless,
our reasoning system gives rise to quite simple Hoare-style reasoning, similar to
reasoning about sequential programs, with the addition of sequential effects on
the local history. Our notion of inheritance is flexible with respect to reuse of
both code and specifications (more flexible than [18]). The distinction of public
and private methods was essential in practice, as demonstrated in the example.

Apart from the (non-trivial) formulation of specifications, our system gives
rise to automatic generation of verification conditions, where left-constructive
Hoare analysis gives a verification condition at each suspension point and method
start. For verification of a method pre/post pair one may first check if it follows
from earlier results by the entailment rule, and if not, analyze the body. In
future work, we would like to build an automated verification system based on
our approach, for instance using the KeY system, which already has support for
a version of our language without inheritance [1].

The integration aspect of this work lies in the combination of a Hoare logic
and an equivalence over inherited and non-inherited code, which allows reuse of
verification results in subclasses. The example illustrates the value of verification
reuse, showing that all cases of reuse of a method together with its specification,
resulted in verification reuse. The equivalence of code (i.e., of method bodies) is
detected by static analysis and exploited in verification. In addition, the static
detection of o �= this gives simplification at the reasoning level.

In the reasoning system we have not considered loops and recursion, which
can be handled as usual. Extension to multiple inheritance is possible (for
instance solving the diamond problem as in [10]). A discussion of soundness
is beyond the scope of this paper. A main part of the soundness proof would be
to establish that the class context reflects the run-time class of the executing
object. Soundness for the language without inheritance can be done as in [9].
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Abstract. Safety-Critical Java (SCJ) introduces a new programming
paradigm for applications that must be certified. The SCJ specifica-
tion (JSR 302) is an Open Group Standard, but it does not include
verification techniques. Previous work has addressed verification for SCJ
Level 1 programs. We support the much more complex SCJ Level 2
programs, which allows the programming of highly concurrent multi-
processor applications with Java threads, and wait and notify mecha-
nisms. We present a formal model of SCJ Level 2 that captures the state
and behaviour of both SCJ programs and the SCJ API. This is the first
formal semantics of the SCJ Level 2 paradigm and is an essential ingre-
dient in the development of refinement-based reasoning techniques for
SCJ Level 2 programs. We show how our models can be used to prove
properties of the SCJ API and applications.

1 Introduction

Safety-Critical Java (SCJ) [20] is a version of Java that embeds a new program-
ming paradigm for applications that must be certified for example, using the
highest level of the avionics standard ED-12/DO-178 [4]. To aid certification,
SCJ is organised into three compliance levels. Level 0 applications are simple
single-processor programs executed by a cyclic executive. Level 1 applications
introduce concurrency and less-restricted release patterns. By contrast, Level 2
applications are highly concurrent, potentially multi-processor, and make use of
suspension and a variety of release patterns.

The verification of SCJ programs requires specific techniques, but these are
not covered by the SCJ specification. Verification has been addressed for Level 1,
but not Level 2. SCJ, and its Level 2 profile in particular, present several chal-
lenges for verification. The new programming paradigm of SCJ restricts the pro-
gram structure and provides a predictable memory model. The unique features
of Level 2 allow programming applications that may contain multiple modes
of operation or independently developed subsystems, and computations that
require non-standard release patterns or suspension [23].

In this paper, we provide support for verification of SCJ Level 2 programs
by modelling its programming paradigm using the state-rich process algebra
Circus [24]. This is a combination of Z [18] for modelling state, CSP [8] for mod-
elling behaviour, and Morgan’s refinement calculus [14]. A Circus program is
c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 226–241, 2016.
DOI: 10.1007/978-3-319-33693-0 15



A Formal Model of the Safety-Critical Java Level 2 Paradigm 227

Fig. 1. Mission phases

organised around processes, which contain variables and actions, to describe a
data model and reactive behaviours. Each process has a main action that defines
its behaviour, possibly using a combination of other actions in the process. Com-
munication between processes is achieved via channels. In our work we use the
Circus extensions OhCircus [2], which introduces object orientation and inheri-
tance, and Circus Time [16] to specify timers and deadlines.

Circus has already been used to model SCJ Level 1 [25]. Circus has also
been used to produce a refinement strategy [3] to derive SCJ programs that are
correct by construction. Our models provide the the possibility of extending the
refinement strategy to target SCJ Level 2 programs.

What we present in this paper is the first formalisation of SCJ Level 2. The
SCJ API covers approximatively 112 pages of the specification [20] as a collection
of approximately 36 classes and interfaces. Our work characterises a semantics
for SCJ Level 2 programs. To support its use, we have developed a tool that
generates Circus models from SCJ programs. We have used the models to prove,
via model checking, properties of both the SCJ API and of specific programs.

In Sect. 2 we describe the unique features of the SCJ Level 2 paradigm.
Section 3 describes our modelling approach, model structure, and how we model
Java synchronisation and suspension behaviour. Section 4 describes the direct
applications of our models for verification, including a brief account of our tool.
Section 5 presents related work. Finally, Sect. 6 concludes this paper with a sum-
mary of our contribution and a discussion of future work.

2 Safety-Critical Java Level 2 Paradigm

Safety-Critical Java (SCJ) is a version of Java that adopts a new program-
ming paradigm. SCJ programs have a specific concurrent design and use region-
based memory management (instead of garbage collection); specialised virtual
machines [15,17] are available to execute SCJ programs. SCJ also uses the real-
time constructs introduced in the Real-Time Specification for Java [21], but
enforces a more structured programming paradigm.

An SCJ program is controlled by a safelet object, which manages the top-
level mission sequencer. This is used to activate an application-defined sequence
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Fig. 2. Object diagram of the Flatbuffer

of missions. A mission encapsulates a particular function or phase of operation
as a set of schedulable objects to perform a particular task. An SCJ API supports
the programming of these components.

Each mission progresses through an initialisation, execution, and cleanup
phase, as shown in Fig. 1. During initialisation, a mission’s schedulable objects
are created and registered. These schedulables are activated simultaneously at
the start of the execution phase. A mission’s schedulables execute until one
of them requests termination, or they all terminate, when a cleanup phase is
performed. At the end of the cleanup phase, the mission may indicate that no
further missions should execute, in which case the sequence will terminate. If
not, and there are more missions to run, the next mission is prepared.

At Level 2, schedulable objects may adopt one of four release patterns. Peri-
odic event handlers execute once in a given time period, aperiodic event handlers
execute when triggered by a method call, one-shot event handlers execute once
after a time offset, and managed threads simply run to completion. Level 2
supports the execution of concurrent missions by allowing missions to manage
schedulable mission sequencers. Level 2 can also use Java suspension methods,
wait() and notify(), but they may only be called on this.

To illustrate some of the features of SCJ Level 2 programs we introduce
FlatBuffer, which is a simple solution to the Producer-Consumer Problem, using
a one-place buffer. FlatBuffer is structurally simple, only containing one mission
and two schedulables, but uses two of Level 2’s unique features: managed threads
and suspension. Larger examples of applications that use the unique features of
Level 2 can be found in [23].

Figure 2 shows an object diagram of the FlatBuffer program at the end of
its mission’s initialise phase. It is controlled by the safelet FlatBuffer, which
starts the top-level mission sequencer FlatBufferMissionSequencer. This mis-
sion sequencer starts the mission, FlatBufferMission, which starts the two
managed threads. The Writer is the producer and the Reader is the consumer.

The FlatBufferMission holds the buffer and controls access to it. The mis-
sion has a bufferEmpty() method to indicate if the buffer if empty or full, a
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read()

bufferEmpty()

wait()

write(update)

bufferEmpty()

buffer = update;

notify()

bufferEmpty()

notify()

return buffer;

Fig. 3. Sequence diagram of an example execution of FlatBuffer

read() method to control reading from and resetting the buffer, and a write()
method to control updating the buffer. The read() and write() methods both
use synchronisation to control access to the buffer.

In an example execution of FlatBuffer, illustrated in Fig. 3, the Reader runs
first, and calls the mission’s read() method. The method calls bufferEmpty()
on the mission, which returns a boolean indicating that the buffer is empty.
Because there is nothing to read, the method calls wait() to suspend the Reader.

Next, the Writer runs, calling the mission’s write() method. This method
calls bufferEmpty() on the mission, which still indicates that the buffer is empty,
prompting the Writer to update the buffer. Then, the method calls notify()
on the mission – which resumes the Reader. When the Reader resumes, it is still
inside the read() method. The method calls bufferEmpty(), which indicates
that the buffer is full, so the value is read and the buffer is reset. Since this is a
simple test program, the Writer terminates the mission after 5 writes.

Despite SCJ’s restricted infrastructure, the unique features of Level 2 mean
that its programs can become very complex. Providing the first semantics for
this paradigm and devising a model for Level 2 programs is, therefore, a chal-
lenging task. We need to deal with a variety of schedulable objects, a preemptive
scheduler that guarantees absence of priority inversion, a complex protocol for
termination of missions, and suspension in the context of all of these features.
We discuss our approach to modelling SCJ Level 2 in the next section.

3 Modelling Approach

We view the programming paradigm of SCJ separately from its realisation in
Java. We capture this paradigm, abstracting away from most of the details of
its Java implementation. Our modelling approach is agnostic of Java.
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Table 1. Summary of Circus operators

Action Syntax Description

Skip Skip A simple operator that terminates

Simple prefix c −→ A Simple synchronisation with no data

Input prefix c?x −→ A Synchronisation with a value bound to x

Output prefix c!x −→ A Synchronisation outputting the value of x

Parameter prefix c.x −→ A Synchronisation with some data x

Sequence A; B Executes A then B in sequence

External choice A � B Offers a choice between two actions A and B

Interrupt A � c −→ Skip Executes A unless c occurs, which terminates A

Recursion µX • A ; X A process X that executes A then X

Wait wait t Waits for t time units and then terminates

Chaos Chaos The action that immediately diverges

We model the state and behaviour of application objects in the program and
the use of suspension. We also capture exceptions, but not the Java exception
handling mechanism. We only capture exceptions where they indicate a misuse of
the paradigm. Specifically we capture exceptions when: a thread is interrupted,
a thread attempts to use suspension without holding the lock, a thread attempts
to lock an object with a priority lower than the thread’s, a method receives an
inappropriate argument, or a mission attempts to register a schedulable that is
already registered to another or the same mission.

Our models consist of two parallel components, following the approach in [25].
The framework component captures the behaviour of the library supporting the
SCJ API and is reused for all programs. The application component captures
the specific behaviour of a particular program. Each framework process has a
counterpart application process. The complete specification of the framework
model [12] comprises approximately 3700 lines of Circus over 11 processes.

Table 1 summarises the Circus action operators that we use in this paper.
Most of them are familiar to users of CSP. We describe them to support the
discussion of our model; a comprehensive account of Circus is in [24]. We note
that Circus processes can also be combined using most CSP operators.

We describe our models in Sect. 3.1 and present our approach in more detail
in Sect. 3.2 using the mission models as an example. Finally, in Sect. 3.3, we
discuss how we model synchronisation and suspension.

3.1 Model Overview

Each SCJ library class and application object is represented by a Circus process.
Each process retains the name of the class it models, suffixed with ‘FW ’ for
framework processes or ‘App’ for application processes. Methods are represented
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Fig. 4. Level 2 model structure

by an action in the relevant process. Method calls and returns are represented
by (usually pairs of) events; this allows method calls between processes.

Figure 4 shows the framework processes in our model and the channels that
they use to communicate. The channels with underscores in their names are
control signals (for example, start mission) and those in camel case represent
method calls (for example, initializeCall and initializeRet). Some of the channels
have been omitted for brevity, indicated by three dots. The layering indicates
potentially multiple instances in one model. Each of these framework processes
communicate with an application process; these are not shown in Fig. 4.

When a framework process encounters application-specific behaviour, it sig-
nals its application counterpart to take control and perform the behaviour. Con-
trol is returned to the framework with another signal. These signals are call-return
event pairs that retain the method name, suffixed with ‘Call ’, for the event mod-
elling the method call, or ‘Ret ’, for the event modelling its return.

Each application process is assigned a unique identifier, allowing framework
processes to communicate with their application counterparts. An exception is
the SafeletFW process, which only has one instance because there is only one
safelet in an SCJ program. If a program class has multiple instances in the
program, then each instance has its own Circus process identifier.

Our model uses OhCircus classes to capture non-reactive behaviour, such as
methods that are purely data operations. OhCircus classes are similar to Java
classes: they may hold variables, specify constructors, make use of inheritance,
and must be instantiated before use. Specifically, data operations are captured
in methods, which may be called from processes. In contrast to Circus processes,
OhCircus classes can be related by inheritance.

Instead of simply adding Level 2 features to the Level 1 model [25], we also cap-
ture Level 1 features not found in the previous model. Namely, we consider that
a period or deadline may be overrun and capture exceptions and synchronisation.
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Fig. 5. The FlatBufferMissionApp’s InitializePhase action

While Level 1 programs may not use suspension, they are allowed to use synchroni-
sation. In addition, in contrast to theLevel 1model, we provide separate framework
processes for each of the three kinds of event handlers, each encapsulating their
particular release pattern. This simplifies the application models considerably and
lessens the burden on translation. Further, as already mentioned, our model raises
an exception if a schedulable is registered twice.

Safelet. The framework process SafeletFW handles the operations of the
safelet. SafeletFW gets the identifier of the top-level mission sequencer from
its application counterpart and starts it. Additionally it raises an exception if
the program attempts to register a schedulable that is already registered. This
is the process that defines the main execution flow of the program.

Mission Sequencers. Two framework processes model mission sequencers. The
TopLevelMissionSequencerFW process models the top-level mission sequencer
and the SchedulableMissionSequencerFW models a mission sequencer used as a
schedulable. This simplifies both processes because they each only have to be
involved in events relevant to their context.

Both flavours of mission sequencer fetch the identifier of the next mission
from their application counterpart and start that mission. However, SafeletFW
starts TopLevelMissionSequencerFW , which signals to the entire model when it
is terminating, to indicate that the program is done.

SchedulableMissionSequencerFW is started by a mission and signals to that
mission once terminated. Since it is a schedulable, it must respond to termination
requests from either its controlling mission or the mission it is executing.

Mission. The MissionFW process is started by a mission sequencer process.
It then allows its application counterpart to register schedulables. It starts each
schedulable and deals with their termination and cleanup. If requested, it ter-
minates itself and its active schedulables, and signals to its controlling mission
sequencer that it has done. In Sect. 3.2 we describe the MissionFW process in
more detail and present the model of one of its actions.

Schedulables. Schedulables are modelled by PeriodicEventHandlerFW , for
periodic event handlers; AperiodicEventHandlerFW , for aperiodic event handlers;
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OneShotEventHandlerFW , for one-shot event handlers; ManagedThreadFW , for
managed threads; and SchedulableMissionSequencerFW , for mission sequencers
used as schedulables. Each is started by a mission, performs its behaviour, accepts
termination requests from its mission, and cleans up after it terminates.

Each event handler has actions that control its specific release pattern. Event
handlers may have deadlines associated with them, and periodic event handlers
have an associated period. Our models consider that periods may be overrun and
deadlines may be missed, and captures the response if this happens. This allows
our models to be used to check if, for example, an event handler may overrun its
deadline. Managed threads are simpler and begin their release as soon as they
are started. Mission sequencers used as schedulables are described above.

3.2 Mission Example

The Circus model of a mission is ideal to illustrate our modelling approach.
The FlatBuffer application in Sect. 2 contains one mission, FlatBufferMission,
which we model using three components described next.

As previously indicated, like every mission, an instance of MissionFW repre-
sents the behaviour of the mission prescribed by the SCJ paradigm. It is outlined
above. The non-reactive application-specific behaviour is captured in the OhCir-
cus class FlatBufferMissionClass. It contains the buffer variable, corresponding
to the buffer field of the FlatBufferMission, and the bufferEmpty() method,
because it is purely a data operation without any reactive behaviour.

The FlatBufferMissionApp process captures the reactive application-specific
behaviour of the mission. It has actions modelling the behaviour of the API
methods initialize() and cleanup() and actions modelling the application-
defined methods: writeSyncMeth, readSyncMeth, and bufferEmptyMeth. It stores
a reference to an instance of FlatBufferMissionClass, which contains the method
bufferEmpty(). The bufferEmptyMeth action wraps this method, so that it can
be called by other processes.

Channels on which the instance of MissionFW and FlatBufferMissionApp
communicate are parametrised by the mission identifier FlatBufferMission; this
ensures that the FlatBufferMissionApp communicates with the right frame-
work process. The FlatBufferMissionApp instantiates and communicates with
the FlatBufferMissionClass to call its bufferEmpty() method.

Fig. 6. The MissionFW ’s Register action
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In an SCJ program, the Mission’s initialize() method is overridden to
register the schedulables that this particular mission manages. In Fig. 5 we show
the InitializePhase action of the FlatBufferMissionApp process, which models
the initialize() method in FlatBufferMission. The events initializeCall and
initializeRet model the call to and return from initialize().

The registration of a schedulable is modelled by the event register .s.m, where
m is the identifier of the mission registering the schedulable and s is the iden-
tifier of the schedulable being registered. The order of registration shown in
Fig. 5 corresponds to the order in the program. After registration, all registered
schedulables are started simultaneously.

In MissionFW , initializeCall triggers the Register action (Fig. 6), which
accepts a register event, with any schedulable identifier as long as the mission
identifier is the same as this mission’s. The checkSchedulable event indicates, via
the variable check , if the schedulable may be registered.

If check is True, then Register can add the schedulable. If check is False,
then the schedulable is already registered and we use the throw channel to model
an exception being thrown and then diverge (Chaos). This allows the detection
of an attempt to register a schedulable more than once.

3.3 Synchronisation and Suspension

The synchronisation model of SCJ constrains that of Java. First, SCJ programs
cannot use synchronized blocks, only synchronized methods. Second, threads
queue for a lock in order of eligibility. In SCJ, the most eligible thread is the
thread at the highest priority level that has been waiting for the longest time.
We model this using the type PriorityQueue, which is a total function from
PriorityLevel to injective sequences of ThreadID . PriorityLevel is a free type
containing the priorities available to the system and ThreadID is the set of
thread identifiers.

Our models use extra processes to control synchronisation and suspension. In
SCJ, each schedulable is executed by a thread. In our model, schedulables that
call a synchronised method are associated with an instance of the ThreadFW
process. ThreadFW holds the thread identifier and keeps track of its priority
and interrupted status. Overall, the framework model of a schedulable that calls
a synchronised method is the parallel composition of its associated ThreadFW
process with the appropriate framework process, which depends on the type of
schedulable (event handler, managed thread, and so on).

Additionally, each object used as a lock is associated with an instance of the
ObjectFW process, which stores the threads waiting on this object and controls
the threads trying to lock this object. In the FlatBuffer, the mission is used
as a lock, so it has an associated instance of ObjectFW . Again, the overall
framework model of each object that represents a paradigm component and is
used as a lock is its framework process in parallel with an instance of ObjectFW .
Non-paradigm objects used as locks are modelled in the framework by just an
instance of ObjectFW .
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Fig. 7. The FlatBufferMission process’s readSyncMeth action

The FlatBuffer program uses synchronisation and suspension to control
access to the buffer in its mission. The synchronised read() method suspends
the calling thread (by calling wait()) if the buffer is empty. This is wrapped in
a loop that checks if the buffer is empty, to deal with spurious wake ups.

The FlatBufferMission’s read() method is modelled by the readSyncMeth
action in the FlatBufferMissionApp process (Fig. 7), which shows the pattern
we use for modelling all synchronised methods. The action begins and ends with
the familiar call-return event pair, readCall and readRet , which correspond to
the call to and return from the method. In this case, however, because this is a
synchronised method, these events take an extra parameter thread , which is the
identifier of the thread that is calling the method.

The ObjectFW process associated with the FlatBufferMissionApp process
controls the synchronisation and suspension behaviour using the startSyncMeth,
lockAcquired , and endSyncMeth events. The startSyncMeth event models the
beginning of a synchronized method and triggers the ObjectFW process to
request a lock on this object by the thread calling this action.

Because the lock may already be held by another thread, the readSyncMeth
action waits for the lockAcquired event (from the ObjectFW process) to signal
that it has the lock and can proceed. After the body of the method, the endSync
event signals that the synchronised method is complete, to trigger ObjectFW to
release the lock on the mission currently held by the calling thread. We note that
SCJ does not support Java’s ReentrantLock, however, SCJ does support reen-
trant locking by allowing synchronised methods to call other synchronised meth-
ods in the same object. The ObjectFW process provides this behaviour; to unlock
the object, after the first lockAquired event, each subsequent startSyncMeth event
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(which must be from the same thread) must be matched by a endSyncMeth event
from the locking thread.

We model the call to wait() using the call-return event pair waitCall and
waitRet . These events take the identifier of the associated ObjectFW instance
(FlatBufferMissionOID , in Fig. 7) and the identifier of the thread calling this
action. The instance of ObjectFW associated with the mission adds thread to
its queue of waiting threads. The process calling waitCall waits for waitRet to
communicate its identifier.

We model the call to notify() using the event notify . Like waitCall and
waitRet , this event also takes the identifier of the associated ObjectFW process
and the identifier of the thread calling this action. The notify event triggers the
ObjectFW process to resume the most eligible thread. If there are no waiting
threads, then ObjectFW allows the call to notify , but does nothing. To resume a
thread, ObjectFW calls waitRet with the identifier of the thread to be resumed.
SCJ Level 2 can also use notifyAll(), which resumes all the waiting threads. We
model a call to notifyAll() with the event notifyAll . It triggers the ObjectFW
to call waitRet with the identifier of each waiting thread in eligibility order.

The complete Circus models of the framework processes can be found in [12],
and the application processes of the FlatBuffer in [11]. In the next section, we
discuss the validation and application of our models.

4 Initial Evaluation

Our Circus model is written to closely correspond with the SCJ API. We have
frozen development of our model at version 0.100 of the SCJ language specifica-
tion. One of the authors is a member of the SCJ Expert Group, which helped
in clarifying ambiguities in the language specification.

Our model of Level 2 is based on the Circus model of Level 1 presented in [25],
which has been validated against the SCJ language specification. Our model adds
the features of Level 2 and updates the model to reflect recent changes in the
language specification.

Our modelling effort has influenced the development of SCJ. In [13], which
is under review, we present a model of the SCJ termination protocol and a pro-
posed simplified termination protocol. The comparison of these models shows
that our proposed protocol reduces the number of states in the system. This
simplified protocol is useful for improving programmer understanding and fur-
ther modelling efforts. Our simplified termination protocol was adopted by the
SCJ expert group from version 0.96.

We have, by hand, translated 10 SCJ programs to Circus using our approach;
the examples are summarised in Table 2. The programs are constructed to cover
the features of SCJ. They range from simple tests of SCJ’s features, such as
different release patterns or synchronisation and suspension, to more complex
programs that use nested mission sequencers to provide concurrent missions.
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Table 2. Summary of SCJ programs translated by hand

Name Description № classes

Mission1 A single mission with periodic event handler that
releases an aperiodic event handler

5

Mission2 A single mission with a managed thread and a
one-shot event handler

5

ThreeOneShots A single mission with three one-shot event
handlers

6

ThreeThreads A single mission with three managed threads 6

SequentialMissions Two sequential missions, each with two managed
threads

8

NestedSequencer1 A single mission with a single nested mission
sequencer

7

NestedSequencer2 A mission, with three nested mission sequencers.
Each has one mission controlling a periodic
event handler

14

NestedSequencer3 A mission, with a nested mission sequencer that
has two sequential nested missions, each with a
managed thread.

8

NestedSequencer4 A complicated example using two levels of nesting.
It contains 4 missions and 3 managed threads

12

NestedSequencer5 Extends NestedSequencer4, combines complex
nesting, all schedulable types, and sequential
missions

12

Further, we have developed a prototype tool1 to automatically generate the
Circus application models of a given SCJ application, called TightRope. We have
used this prototype to produce the application models of the FlatBuffer appli-
cation presented in this paper and a more complex example, both summarised
in Table 3. The 10 hand-translated examples, and more realistic programs, will
be considered for automatic translation as TightRope matures.

TightRope is a small Java program that compiles an SCJ application and
explores the resulting abstract syntax trees to extract the information required
for the translation. TightRope generates the Circus processes, OhCircus classes,
and Circus channels required to model the application-specific behaviour of the
input program. These are combined with the existing fixed models of the frame-
work previously described, to form a specification of the whole program.

To facilitate model checking and animation using FDR3 [5], we have translated
our models of the framework and of full programs into CSPm. This translation has
been optimised so that FDR3 can check specifications of even complex programs
in an acceptable amount of time. We have proved that the CSPm version of the

1 TightRope can be found at www.cs.york.ac.uk/circus/hijac/tools.html.

www.cs.york.ac.uk/circus/hijac/tools.html
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Table 3. Summary of SCJ programs translated by TightRope

Name Description № classes Translation time

(in seconds)

FlatBuffer Small program using managed threads
and synchronisation

6 1.2

Aircraft Program using a schedulable mission
sequencer to represent phases of
aircraft flight

25 2.3

framework model is deadlock- and divergence-free, which lends extra validation
to the framework. We have also proved that the models of the full programs that
we translated do not deadlock or diverge.

Using the version of the CSP animator ProBE that is included in FDR3, we
have animated the CSPm versions of the framework model and compared their
behaviour with that prescribed in the SCJ language specification. This gives us
confidence that the models capture the behaviour of the SCJ API. We have also
used ProBE to examine the behaviour of these full models, to compare them
to the running programs. We have compared the execution of our example SCJ
Level 2 programs, using the IceLab [9] implementation, to animations of our
models of these programs. These comparisons examined the behaviour and out-
put from the executing programs with the corresponding events in the animated
model to ensure that they have the same behaviour.

Future work in the analysis of our models includes extending the checks we
make to cover more SCJ-specific criteria. We intend to check that the program
does not attempt to register its top-level mission sequencer or throw any of the
exceptions that we model. Because we model exceptions using an event followed
by divergence, they are flagged by a divergence-freedom check. However, the
counter examples provided by a specific check would be more useful during SCJ
development. These SCJ-specific checks will be standardised for easy reuse.

In summary, because our framework model captures the behaviour of the
SCJ paradigm separately from the program-specific behaviour, we can reason
about it in isolation. We have used FDR3 to prove that the framework model
does not deadlock or diverge. Models of full SCJ Level 2 programs can be model
checked and animated in FDR3. Our formal semantics of the Level 2 paradigm
enables further areas of study for SCJ Level 2, such as theorem proving.

5 Related Work

This is the first work supporting verification for SCJ Level 2 programs. K-Java [1]
models a subset of SE Java 1.4 and produces executable specifications for model
checking. However, SCJ programs have features not included in SE Java. The
authors of [22] present a technique for translating SCJ programs into timed
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automata models. However, their technique appears to only be aimed at Lev-
els 0 and 1. Further, neither of these techniques provide support for top-down
refinement of SCJ Level 2 programs or refinement-based reasoning.

RSJ [10] is a adaptation of the Java PathFinder [7] that explores all possi-
ble schedulings of the threads within an SCJ program to check for scheduling-
dependent errors. It, however, does not cater for SCJ Level 2 programs.

Older versions of the SCJ specification define annotations for specifying com-
pliance level, behavioural, or memory restrictions. Previous approaches to ensur-
ing the safety of SCJ programs have used these annotations to provide run-time
checks [19] or to specify checkable program constraints [6]. However, the mem-
ory annotations have been moved to an appendix of the standard as they were
judged not ready for standardisation.

Our modelling approach is similar to that of [25] in capturing the paradigm
of SCJ Level 1. The underlying structure of programs written in Level 2 and
Level 1 is the same, however, Level 2 allows much more complicated program
hierarchies and provides more complicated features (such as suspension).

6 Conclusion

We have presented the first formal semantics of SCJ Level 2, using the Circus fam-
ily of specification languages. It is an essential ingredient to enable customised
top-down development of SCJ Level 2 programs that are correct by construction.
Our models provide this development process with a target for SCJ Level 2.

The features Circus provides make it a good fit for modelling object-orientated
languages, such as SCJ. A Circus process provides similar encapsulation to classes
and the language can capture variables and methods. This means that our models
correspond very closely to the programs they model.

We have validated our model of the SCJ API and Level 2 programs by
translating them into CSPm and model checking it using FDR3 to show that it
does not deadlock or diverge. Our prototype tool, called TightRope, has produced
Circus models of SCJ applications. Work is ongoing to update the tool, so that
it can generate the models for all of our example applications.

In addition to the further areas of study that our work enables, future work
includes the formalisation of the translation strategy that we use to derive the
application models from the SCJ programs. The translation strategy also needs
to be evaluated on more applications to further test our modelling approach.
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Abstract. Several automata models are each capable of describing all
ω-regular languages. The most well-known such models are Büchi, par-
ity, Rabin, Streett, and Muller automata. We present deeper insights and
further enhancements to a lesser-known model. This model was chosen
and the enhancements developed with a specific goal: Decide monadic
second order logic (MSO) over infinite words more efficiently.

MSO over various structures is of interest in different applications,
mostly in formal verification. Due to its inherent high complexity, most
solvers are designed to work only for subsets of MSO. The most notable
full implementation of the decision procedure is MONA, which decides
MSO formulae over finite words and trees.

To obtain a suitable automaton model, we further studied a rep-
resentation of ω-regular languages by regular languages, which we call
loop automata. We developed an efficient algorithm for homomorphisms
in this representation, which is essential for deciding MSO. Aside from
the algorithm for homomorphism, all algorithms for deciding MSO with
loop automata are simple. Minimization of loop automata is basically
the same as minimization of deterministic finite automata. Efficient min-
imization is an important feature for an efficient decision procedure for
MSO. Together this should theoretically make loop automata a well-
suited model for efficiently deciding MSO over ω-words.

Our experimental evaluation suggests that loop automata are indeed
well suited for deciding MSO over ω-words efficiently.

1 Introduction

Decidability of monadic second order logic (MSO) over ω-words, (alternative
names are: full MSO, S1S; MSO alone is also used sometimes for MSO over
ω-words) was shown in 1962 [3], using nondeterministic Büchi automata (NBA).
MSO has a central position in model checking as it subsumes some important
relevant specification languages, e.g. linear temporal logic (LTL) and Presburger
arithmetic. Nevertheless MSO is rather used for its rich theory than practically
as efficient implementations are missing for most variants of MSO; a gap this
paper helps to close.

This research was funded by the DFG (German Research Foundation), within the
Research Training Group 1480: Programm- und Modell-Analyse (PUMA).
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E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 245–259, 2016.
DOI: 10.1007/978-3-319-33693-0 16



246 S. Barth

The most mature implementation of any variant of MSO is MONA [8], an
implementation of the decision procedure for weak MSO over words and trees
(wMSO, also WS1S and WS2S), a variant of MSO deciable by the use of finite
automata. In MONA, minimization in every step is crucial for the efficiency [10],
We use this insight to handle MSO over ω-words efficiently. Beside technical
insights, the success of MONA also supports the relevance of decision procedures
for MSO.

1.1 State of the Art in Minimizing Automata

Within reasonable time, modern computers with state of the art minimization
procedures can handle automata of very different sizes. In case of deterministic
finite automata (DFA), automata with millions of states can be minimized, due
to its n log n-TIME minimization procedure [9]. Widespread models for ω-regular
languages have no well scaling complete minimization procedures. Hence, the
existing minimization procedures cannot handle more than 20 states.

We studied minimization of NBA in our own work. We failed to minimize
automata whose minimal automaton needs more than 10 states in reasonable
time [1].

Minimization of Deterministic Büchi automata (DBA) does not work well
over 20 states [5].

No minimization procedure is published for deterministic parity automata
(DPA). As DPA subsume DBA, it is unlikely, that a minimization procedure
based on the same principles will succed for automata with more than 20 states.

Even incomplete heuristics are used, that fail to minimize bigger automata,
for example [6], which fails to compute when used for automata with more than
30 states.

These comparable small numbers are not least due to the complexity of
these problems, PSPACE-complete for minimizing NBA (corollary from [11],
Lemma 3.2.3), NP-complete for DBA and DPA [12].

With more computational power only DFA would allow for minimization of
notably bigger automata. The other algorithms do not scale well.

Thus, mostly incomplete heuristics that miss much of opportunities for
minimization are used in applications. This situation is comparable to finite
automata, where minimization for nondeterministic finite automata (NFA) also
lacks efficiency, which is why MONA relies on DFA. Full minimization is not nec-
essary in the decision procedure, but some normalization of automata or other
procedures for preventing an unbounded amount of extra states are. There are
normalization procedures for Büchi automata [7], but they are not helpful for
deciding MSO as normalization is also PSPACE-complete; the normalization in
[7] is not successful for automata with more than 20 states.

1.2 Our Approach

In order to obtain a model well suited for deciding MSO, we have chosen a
lesser-known automata model for ω-regular languages only by the criterion how
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good it can be minimized. Then we developed the missing procedures that are
necessary for deciding MSO. The main ingredients of this model are an already
known method for representing ω-regular languages by regular ones [4]. Thus,
only an efficient minimization procedure for regular languages is needed.

To represent ω-regular languages by regular ones, we take the representation
introduced in [4]: for given ω-regular languages L, L$ := {u$v | uvω ∈ L} is
regular. We call L$ the loop language of L, an automaton for L$ loop automa-
ton, and L-X the loop automaton model that results from using the automaton
model X for loop languages. Algorithms for converting between NBA and loop
deterministic finite automata (L-DFA) were presented in 1994 [4]. For deciding
MSO, we investigate further to construct an algorithm to perform various oper-
ations directly on loop automata. Most notably, an algorithm for performing
homomorphisms is presented here.

First experimental results hint that the decision procedure with loop
automata is often considerably more efficient than a more classical NBA/DPA
approach, which can be considered state of the art. Though on few formulae the
NBA/DPA approach is a bit more efficient than L-DFA, our research hints that
they are the most appropriate model for deciding MSO among the known mod-
els. This result was to be expected considering the already-mentioned research
from the MONA team that minimization in every step is crucial in deciding
wMSO [10].

The main advantage of L-DFA is, that the minimization procedure of DFA
can be directly be applied, hence automata with millions of states can be mini-
mized, in contrast to the under 20 states for conventional ω-automata.

1.3 Related Work

[3] showed the decidability of MSO over ω-words. NBA were introduced to do so.
This procedure was very inefficient. Beside enhancements in complementation
of Büchi automata, this is still to consider state of the art, nevertheless.

[13] summarizes the current state of NBA complementation. Using the best
known complementation algorithm for NBA greatly enhances the efficiency of
the method from [3]. This is used as comparison in the experimental evaluation
in Sect. 4.

The MONA tool [8] is a successful implementation of wMSO. An analysis
by the MONA team is used as hint for what might contribute to efficiency [10].
For this paper, we focus on their result that minimization after every step is the
most important optimization in the decision procedure.

[4] introduces loop automata (albeit not given a name) and transformations
between them and NBA. However, they authors did not provide an algorithm
for performing homomorphisms, which are essential for deciding MSO.

[7] also uses loop automata, but only as intermediate device for normalizing
NBA. No algorithms for working directly on loop automata are presented.

[2] study ω-languages, which only consist of ultimate periodic words. In there,
the representation as loop automaton is used and some algorithms are workes
out, but only for the special case of these restricted languages.
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1.4 Main Contribution

The main contribution of this paper is a more efficient decision procedure for MSO
over ω-words. This consists of identifying loop languages as suitable automata
model and the homomorphism algorithm for loop languages in Theorem4. The
more detailed characterization of loop languages in Theorem2, may further help
to improve the handling of loop languages. Furthermore, the experimental evalu-
ation in Sect. 4 indicates, that this method is indeed more efficient than existing
ones.

2 Notion and Prerequisites

Definition 1 (Alphabet, Word). An alphabet is a finite set. A word w is a
finite or infinite series of elements of the alphabet. wi denotes the i-th element
of the series, also called the i-th letter of the word w.

Definition 2 (Büchi and Finite Automata, Path). The first letter in
the abbreviation determines whether deterministic (D) or nondeterministic (N)
automata are refered to. Büchi (DBA/NBA) and finite automata (DFA/NFA)
are tuples A = (Q,Σ, δ, q0, F ), where

– Q = {q0, . . . , qn−1} is a finite set of states;
– Σ is a finite set, the alphabet;
– δ is a function, in case of deterministic automata, δ : Q × Σ → Q, in case of

nondeterministic automata δ : Q × Σ → P(Q);
– q0 is the initial state and the first state of the canonical enumeration;
– F ⊆ Q is the set of final states.

To treat deterministic automata as nondeterministic, δ(q, a) with {δ(q, a)}.
In an automaton A, there is a path from q ∈ Q to q′ ∈ Q labeled with word

w, written as q w
> q′, when q = q′ ∧ w = ε or w starts with the letter a the

remainder of the word is v and there is a state q′′ with q′′ ∈ δ(q, a) and q′′ v
> q′.

A finite word w ∈ Σ∗ is considered to be accepted by a finite automaton, if
there is a state q ∈ F such that q0

w
> q. An infinite word w ∈ Σω is considered

to be accepted by a Büchi automaton, if there is a state q ∈ F such that w can be
split in subwords, each of finite length greater than zero w = uv0v1v2 . . . , such
that q0

u
> q and for all i ∈ N0 it holds that q vi > q.

Definition 3 (Monadic Second Order Logic). Monadic Second Order Logic
(MSO) formulae are of the form: ϕ,ψ: := x < y|x ∈ X|∃x.ϕ|∃X.ϕ|¬ϕ|ϕ ∨ ψ

MSO exists in several variants. The specific type of the first order (x, y) and
second order variables (X) in this definition depends on the variant of MSO
considered. MSO over ω-words means x, y ∈ N, X ⊆ N; this can be decided with
Büchi automata [3]; any other model for ω-regular languages can be used as well,
as long as algorithms for conjunction, complementation and homomorphisms are
known.
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Theorem 1 (MSO over ω-Words is Decidable, Büchi 1962 [3]). For a
MSO formula with no free variables it is decidable, whether it holds. For a for-
mula with free variables it is decidable whether the formula is satisfiable and
whether it is falsifiable.

Proof (sketch).
The values of the variable of the formula ψ are stored in an infinite word.

Herein the i-th letter encodes the relation between the number i and each vari-
able. That is, for each variable X we store, whether i ∈ X. First order variables
are encoded as second order variables that contain precisely one number. To
encode the values of the variables use an alphabet of 2number of variables letters,
each letter for one combination of variable values.

An automaton can be constructed by structural induction over the formula.
Most notable existential quantification corresponds to homomorphisms, which
are examined in Theorem 4. �	

3 Representation of ω-Regular Languages by Regular
Languages

Definition 4 (Loop Language). For a given ω-regular language L, L$ :=
{u$v | uvω ∈ L}.

We call L$ the loop language of L, an automaton for L$ loop automaton,
and L-X the loop automaton model that results from using the automaton model
X for loop languages. By Mω, we denote an ω-regular language for the regular
language M with the property that Mω$ = M . Note that not for every regular
language M a language Mω exists.

Transformations between nondeterministic Büchi automata (NBA) accept-
ing L and deterministic finite automata (DFA) accepting L$ were presented in
1994 [4].

Note that L$ and thus the minimal DFA are uniquely determined, hence the
known efficient minimization procedures for DFA work for L-DFA as well.

It is thus natural to base a decision procedure for MSO on loop automata.
However, in doing so, one faces the obstacle that homomorphism has to be
implemented on the level of loop automata.

It might be this obstacle has prevented other authors from following this
path. This is precisely the gap we are closing in this paper.

We present two example languages in the usual ω-style, as well as in loop
style in Table 1.

3.1 Properties of Loop Languages

Definition 5 (Representative). Given a finite alphabet Σ, a new letter $ 
∈
Σ, and an ultimately periodic ω-word w ∈ Σω, a finite word u$v, with uvω = w,
is called representative of w.
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Table 1. Two examples of languages for comparing the ω-regular language and its
corresponding loop language

ω-regular expression (a|b)∗bω (a|b)∗(ab)ω

notamotuaihcüB

b

a,b

b a

a,b

b

a

Loop regular expression (a|b)∗$b+ (a|b)∗$((ab)+|(ba)+)

Loop DFA
a,b b

$,a,b

$ b

$,a
$,a

a,b

$,a,b
$

b

a
$

$,b $,aa

b

$,a $,b

b

a

Definition 6 (Duplication and Rotation). For regular languages L ⊆ (Σ ∪
{$})∗, the following are defined

– up-duplication holds for L :⇔ ∀u, v ∈ Σ∗.(u$v ∈ L ⇒ ∀i ∈ N1.u$vi ∈ L)
– down-duplication holds for L :⇔ ∀u, v ∈ Σ∗.(u$v ∈ L ⇐ ∃i ∈ N1.u$vi ∈ L)
– up-rotation holds for L :⇔ ∀u, v ∈ Σ∗, a ∈ Σ.(u$av ∈ L ⇒ ua$va ∈ L)
– down-rotation holds for L :⇔ ∀u, v ∈ Σ∗, a ∈ Σ.(u$av ∈ L ⇐ ua$va ∈ L)

Theorem 2 (Characterization of Loop Languages). A language is loop if
and only if the following holds

– regular: L is regular
– wellformed: L ⊆ Σ∗$Σ+

– representative independence: for all words u, v, x, and y it holds that if uvω =
xyω, then u$v ∈ L ⇐⇒ x$y ∈ L
Representative independence is further equivalent to the conjunction of up-
duplication, down-duplication, up-rotation, down-rotation.

Proof. Regularity of loop languages has already been proven [4].
Wellformedness has to hold as only wellformed words represent ω-words. Rep-

resentative independence has to hold because L$ represents L and membership
cannot depend on the chosen representative. Furthermore, given representative
independence all four (up/down)-(rotation/duplication) properties have to hold,
as ∀i ∈ N1, a ∈ Σ.(uvω = u(vi)ω ∧ u(av)ω = ua(va)ω).

On the other hand, given these properties and any word in L, the representa-
tive of minimal length for the same ω-word has to be in the language as well (by
down-) and every representative of this word has to be in the language (by up-).

These properties are sufficient for loopness, as there exists an algorithm to
construct an ω-regular language Lω out of every language L$ with the stated
properties. That transformation algorithm was given in [4]. �	
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A minor remark here is that, except for the empty language, every loop
automaton has at least 4 states, resulting from wellformedness:

– q0: The starting state; must not be final;
– q1 = δ(q0, $): Different from q0, as no $ may ever occur in a word afterwards;

may not be final;
– δ(q1, $): Rejection sink; different from all states before; may not be final;
– at least one final state.

3.2 Homomorphism Closure of Loop Automata

Definition 7 (Homomorphism). Let L be a formal language over the finite
alphabet Σ, Γ another finite alphabet and f : Σ → Γ .

f(L) := {w | ∃v ∈ L.(|v| = |w| ∧ ∀i ∈ N0.wi = f(vi))} is called the homo-
morphism defined by f .

Applying homomorphisms on NBA is simple: replace all letters a by f(a).
The problem with loop automata is that given an homomorphism f it is

possible that f(L$) 
= (f(L))$. Hence applying the homomorphisms directly on
the regular language does not yield the correct result.

Example 1. Given L = a(ab)ω, f = {a �→ a, b �→ a} it holds that L$ =
a(ab)∗$(ab)+|aa(ba)∗$(ba)+, f(L$) = a(aa)∗$(aa)+|aa(aa)∗$(aa)+ = a+$(aa)+,
f(L) = aω, (f(L))$ = a∗$a+.

This results in f(L$) 
= (f(L))$.

Therefore, up till now the only known way to do so far was to convert the
L-DFA to an NBA (resulting in O(n5) states for an n state L-DFA), to perform
the homomorphism n the NBA and to convert it back to an L-DFA (resulting in
2O(n2) states for an n state NBA). This leads to a total state blowup of 2O(n10)

states. Our new construction does not need Büchi automata and results in a
smaller state blowup of 2O(n2) states.

It is not surprising that this operation is costly, as homomorphism on DFA
already results in up to 2n states for an n state automaton.

Lemma 1. Given a homomorphism f , it holds, that
(f(L))$ = {u$v | ∃i, j ∈ N1.uvi$vj ∈ f(L$)}

Proof. Note that $ �→ $ and no other letter maps to $, as $ is not part of the
ω-language.

f(L$)

– is regular: L$ is regular and homomorphisms map regular languages to regular
ones;

– is wellformed, as letters are mapped to letters by f and $ is kept unmodified;
– is not representative independent, but admits up-(duplication/rotation), as
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• up-duplication: u$v ∈ f(L$) ⇒ ∃u′$v′ ∈ L$.(u$v = f(u′$v′))
up-duplication of L$=⇒ ∃u′$v′ ∈ L$.(u$v = f(u′$v′) ∧ ∀i ∈ N1.u

′$v′i ∈ L$) ⇒
∀i ∈ N1.u$vi ∈ f(L$)

• up-rotation: u$av ∈ f(L$) ⇒ ∃u′$a′v′ ∈ L$.(u$av = f(u′$a′v′))
up-rotation of L$=⇒ ∃u′$a′v′ ∈ L$.(u$av = f(u′$a′v′) ∧ u′a′$v′a′ ∈ L$) ⇒
ua$va ∈ f(L$)

– contains at least one representative for every ultimate periodic word in f(L):
Given uvω ∈ f(L), there is some u′v′ω ∈ L with f(u′v′ω) = uvω. Note that
neither necessarily f(u′) = u, nor f(v′) = v. With u′v′ω ∈ L it also holds, that
u′$v′ ∈ L$, as well as f(u′$v′) ∈ f(L$). Consider that f(u′)(f(v′))ω = uvω.
f(u′$v′) ∈ f(L$) is hence a representative of uvω;

– contains no representatives for words not in f(L), as for every u$v ∈ f(L$),
there exists u′$v′ ∈ L$ with f(u′$v′) = u$v. As u′$v′ ∈ L$, u′v′ω ∈ L and
f(u′v′ω) ∈ f(L). Hence, u$v is a representative for a word in f(L).

Hence, if all words, which are down-(rotated/duplicated) variants of words
in f(L$) are added to the language, we obtain (f(L))$. It is sufficient to ensure
down-rotation of the form uv$v ∈ L ⇒ u$v ∈ L, as up-rotation holds. Therefore,
(f(L))$ = {u$v | ∃i, j ∈ N1.uvi$vj ∈ f(L$)}.

�	
Theorem 3. Given an NFA A with n states, {u$v | ∃i, j ∈ N1.uvi$vj ∈ L(A)}
can be accepted by a DFA with 2n · (2n2

+ 1) = 2n2+n + 2n = 2O(n2) states.

Proof. Given an NFA A = (Q = {q0, . . . , qn−1}, Σ,Δ, q0, F ), construct a DFA
B = (Q′, Σ, δ, q′

0, F
′) with

let ϑ(M,a) = {q | ∃p ∈ M.(p, a, q) ∈ Δ}

– Q′ = P(Q) × (P(Q)n ∪ {()})

– δ((M, ()), a) =
{

(ϑ(M,a), ()) if a 
= $
(M, ({q0}, . . . , {qn−1})) if a = $

δ((M, (M0, . . . , Mn−1)), a) =
{

(M, (ϑ(M0, a), . . . , ϑ(Mn−1, a))) if a 
= $
({}, ()) if a = $

– q′
0 = ({q0}, ())

– F ′ = {(M, (M0, . . . , Mn−1)) | Let (P,O) be the least fixpoint of the function
f(P,O) = (P ∪ M ∪ {q | ∃i.q ∈ Mi ∧ qi ∈ P}, O ∪ ϑ(P, $) ∪ {q | ∃i.q ∈
Mi ∧ qi ∈ O}), F ∩ O 
= ∅}

Let w = uvi$vj ∈ L(A). There are p0, . . . , pi, o0, . . . , oj ∈ Q such that
q0

u
> p0,∀0 ≤ k < i.pk

v
> pk+1, pi

$
> o0,∀0 ≤ k < j.ok

v
> ok+1 and

oj ∈ F , as w is accepted by A. The run of B on u$v includes one $-transition,
hence the state reached is of the form (M, (M0, . . . , Mn−1)). For every k, Mk con-
tains precisely the states that can be reached from qk with word v. Let (P,O) be
the least fixpoints as in the definition of F ′. p0 ∈ P , as p0 ∈ M . If pk ∈ P then
pk+1 ∈ P , hence pi ∈ P . This then leads to o0 ∈ O. If ok ∈ O then ok+1 ∈ O,
hence oj ∈ O. As oj ∈ F , F ∩ O 
= ∅.
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Conversely, if u$v if accepted by B, let (M, (M0, . . . , Mn−1)) ∈ F ′ be the
state reached at the end of the run of B. Let (P,O) be the least fixpoints as
in the definition of F ′. There is a final state r ∈ O. There is an l ∈ N and a
r′ ∈ ϑ(P, $) such that r′ vl

> r. Furthermore, there is m ∈ N and r′′ ∈ M such
that r′′ vm$

> r′. As q0
u

> r′′, uvm$vl is accepted by A.
�	

Theorem 4. The homomorphism of an L-DFA A with language L$ can be con-
structed with at most 2O(n2) states.

Proof. For doing so, perform the following steps

1. compute a nondeterministic finite automaton (NFA) B for f(L$) (keeps the
number of states)

2. transform the NFA into a DFA for the modified language as in Theorem3.
That is the required L-DFA (this transformation needs 2O(n2) states)

By Lemma 1, the language of this DFA is (f(L))$. All together, homomor-
phisms on loop automata can be computed in at most 2O(n2) states.

�	
Remark 1 (Proposed Decision Procedure for MSO over ω-Words with L-DFA).
Concluding we propose as decision procedure to encode the formulae quite like
it was done Büchi.

For x < y and x ∈ X two concrete automata have to be chosen.
Complementation, intersection, union, and minimization of L-DFA is rather

trivial given the algorithms for DFA: It is the same, but for the complement,
there the result has to be intersected with Σ∗$Σ+. This is used to handle ¬ϕ
and ϕ ∨ ψ.

The homomorphism from Theorem 4 is used to compute ∃x.ϕ and ∃X.ϕ.
With that, loop automata can be used for deciding MSO.

4 Experimental Evaluation

The base of this experimental evaluation is a set of hand crafted formulae, given
in AppendixA, and some random formulae. These are recursively computed by
form(1, {x, y}, {X}), where form is defined by the following expressions:

form(n, f, s) := randomly select line with probability proportional to its weight

formula weight
x < y 1
x ∈ X 1

z := freshname;∃z.form(n + 1, f ∪ {z}, s) 1
Z := freshname;∃Z.form(n + 1, f, s ∪ {Z}) 1

¬form(n + 1, f, s) 1
form(n + 1, f, s) ∨ form(n + 1, f, s) 5

n

form(n + 1, f, s) ∧ form(n + 1, f, s) 5
n
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The line used for the construction of the formula is randomly selected taking
the weight into account. For a call with the weights pi, i = 0, . . . , 6, each line
k is chosen with probability pk∑6

i=0 pi
. Variable names are randomly chosen with

equal probability out of the set f for first order and s for second order variables;
for x < y, x and y are different.

This formula generation was chosen such that it can generate every MSO-
formula, the generation terminates with probability 1, and generates reasonable
large formulae for experiments.

time (s)

states

0.0001

0.001

0.01

0.1

1

1

3 10

10

30 100

100

1000

Fig. 1. Runtime and maximal state count of the decision procedures for random for-
mulae

A scatterplot with maximal state count in the decision procedure and runtime
(Intel i5-2540M, 2.60 GHz) of our implementation with 5000 of these formulae
is given in Fig. 1. No formula lead to timeout or out of memory.

For comparing with state of the art, we use a more classical procedure using
NBA and DPA. Just the maximal state count in the run of the decision procedure
is compared, as it is more significant than the runtime, as the runtime depends
more on the quality of implementation than the count of states and both imple-
mentations are not optimized in regards to runtime. While in practice the runtime
is more important then the statecount, this comparison aims for comparing how
well suited the different automata models are for deciding MSO and not on how
well speed optimized the current implementations are; in fact both are more opti-
mized for simplicity and debugging the automata themselves than for runtime.
Especially the time efficiency of our NBA/DPA implementation is suboptimal so
using our implementation would not result in a meaningful comparison.
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A further advantage is that comparison can be done with a particularly
strong minimization heuristic in the NBA/DPA approach, which increases the
confidence in L-DFA to be better suited for deciding MSO as further advantages
might be able to reduce the state count for the NBA/DPA approach, while
L-DFA are already at their global minimum.

Complementation of NBA is done via transformation to DPA, as advised by
[13]. There are some widely used minimization heuristics for NBA and DPA.
The two heuristic in this experiment are: (1) In the DPA, for every pair of states
is checked whether merging these keeps the language the same. This heuristic
subsumes quite some widely used heuristics, but it is not frequently used as such,
as it is too slow for most applications.

(2) Additionally, on the NBA it is checked whether the automaton gets
smaller after complemented two times. Given the high complexity of the com-
plementation procedure, this sounds quite time intensive. Nevertheless, it even
speeds up the decision process in many cases.

L-DFA

NBA/DPA

1

1

3

3

10

10

30

30

100

100

300

300

1000 3000 10000 m/ot/o

Fig. 2. Comparison of maximal state count in the run of the decision procedures for
random formulae; arrowheads compare L-DFA against NBA/DPA with strong mini-
mization heuristic; arrowtails compare L-DFA against NBA/DPA with weak minimiza-
tion heuristic

On the other hand, there are formulae, for which the advantage from the
heuristical minimization (1) is not that big. In fact, there are even very few
counterintuitive examples, for which the state count is smaller when the state
merging heuristic is not used; AppendixA, second table entry gives an example
of such a formula.

The L-DFA approach indeed turns out to be a lot more efficient than the
NBA/DPA-approach for many formulae.
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Figure 2 contains the maximal automata sizes in the course of the decision pro-
cedure of 40 random formulae. Each formula is given as arrow. The size of the
L-DFA is given in y-direction. The size of the NBA/DPA with only minimization
heuristic (1) is given as arrow tail, the size with both heuristics is given as arrow-
head. If the sizes coincide, this is denoted as arrowof length zero, directingupwards.
Dashed arrows denote that at least one end is timeout (t/o) or memoryout (m/o).
All these sizes are the maximal state count in the run. L-DFA have a strong advan-
tage here. It becomes even bigger, the larger the resulting automata are.

5 Conclusion

We now have all necessary algorithms to decide MSO with loop automata. Hence,
we now have an automaton model for ω-regular languages that is suitable for
deciding MSO and allows for efficient minimization at the same time. Along with
its applicability for MSO, these deeper insights might offer further theoretical
and practical enhancements in the field of ω-languages.

On the experimental side, the first benchmarks hint that loop automata
are indeed superior to classical automata for ω-regular languages in efficiently
deciding MSO. The automata computed out of formulae are often smaller than
the corresponding NBA and DPA. Additionally, the word test for L-DFA is
simpler than for conventional ω-automata, hence even for automata of the same
size L-DFA are preferable. Furthermore, the implementation with L-DFA for
automata of the same size is more performant than the implementation with
NBA/DPA, which is mostly because of the more complex minimization heuristic,
but also because the transformation from NBA to DPA needs to compute more
per state than the homomorphism on L-DFA.

Furthermore, we collected further evidence that frequent minimization or at
least a minimization heuristic is indeed helpful for deciding MSO which supports
the observations in [10].

A full implementation of MSO over ω-words utilizing L-DFA with a stronger
focus on runtime and integration of other optimizations is under development.

A Automata Sizes for Various Formulae

In Table 2 formulae are enlisted together with the efficiency with the classical
NBA/DPA approach as well as with L-DFA.

The formulae are on the one hand formulae that appear often in model check-
ing, such as fairness. The formulae are collected in a random like manner, with
the goal to cover a broad part of the behaviour of the MSO solvers.

Efficiency is measured mainly in state count of the automata here. The result-
ing state count and the maximum state count for any subformula in the course
of the decision procedure are recorded. The two lines in each cell denote these.

Timeout (t/o) after more than at least an hour, and memory out (m/o)
when using more than 1 GB of RAM are stated in these cases. In some cases fine
tuning in the solving procedure allowed for a partial handguided solving. Some



Deciding Monadic Second Order Logic over ω-Words 257

Table 2. State count of automata from MSO formulae for biggest intermediate result
and end result

Formula NBA/DPA NBA/DPA L-DFA

Strong min Weak min

(x ∈ X ∧ ¬x ∈ Y ) ∨ (x ∈ Y ∧ ¬x ∈ X) 14/11 17/16 9

14/11 17/16 9

¬∃x.((x ∈ X ∧ ¬x ∈ Y )∨ 33/4 30/79 9

(x ∈ Y ∧ ¬x ∈ X)) 5/4 5/79 4

after(X, Y ) := ∀x.(x ∈ X ⇒ 18/5 33/11 9

∃y.(y > x ∧ y ∈ Y )) 6/3 27/11 7

fair(X, Y ) := after(X, Y ) ∧ after(Y, X) 42/27 288/313 9

42/27 288/313 9

∀X.(fair(X, Y ) ⇒ fair(Y, Z)) (14377)/ m/o 14

(6131)a 12

suc(x, y) := x < y∧ 20/32 26/41 10

∀z.(¬x < z ∨ ¬z < y) 6/5 14/17 6

suc2(x, y) := ∃z.(suc(x, z) ∧ suc(z, y)) 780/32 783/41 10

8/6 19/15 7

suc4(x, y) := ∃z.(suc2(x, z) ∧ suc2(z, y)) 780/32 783/41 10

12/8 29/20 9

suc8(x, y) := ∃z.(suc4(x, z) ∧ suc4(z, y)) 780/32 783/41 13

20/12 43/27 13

inf(X) := ∀u∃v.(u < v ∧ v ∈ X) 8/5 17/11 9

5/3 13/6 4

inf(X) ∨ inf(Y ) 9/5 25/290 9

7/5 25/290 4

(inf(U) ∨ inf(V )) ⇒ (inf(X) ∨ inf(Y )) 15/6 m/o 9

14/6 6

∃U.((inf(U) ∨ inf(V )) ⇒ 15/8 m/o 9

(inf(X) ∨ inf(Y ))) 15/8 6

infsuc(X, Y ) := ∀u∃x, y.(u < x∧ 394/31 397/41 18

suc(x, y) ∧ x ∈ X ∧ y ∈ Y ) 6/3 19/10 8

∃Y.(infsuc(X, Y ) ∧ infsuc(Z, Y )) 394/508 m/o 20

73/508 6

zeroin(X) := ∃u.(u ∈ X ∧ ¬∃v.(v < u)) 19/5 27/9 6

9/8 9/9 6

alter(X) := zeroin(X) ∧ ∀x, y. 53/90 61/719 12

(suc(x, y) ⇒ x ∈ X ⇐⇒ ¬y ∈ X) 4/3 11/11 9

offset(X, Y ) := ∀i∀j.(suc(i, j)∧ 28/31 31/169 11

i ∈ X ⇒ j ∈ Y ) 4/3 9/163 9
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Table 2. (Continued )

Formula NBA/DPA NBA/DPA L-DFA

Strong min Weak min

offset(X, Y ) ∧ offset(Y, Z) ∧ offset(Z, X) 49/40 81/163 107

49/40 81/163 107

offset(V, W ) ∧ offset(W, X)∧ 97/(444)b 161/444 2331

offset(X, Y ) ∧ offset(Y, Z) ∧ offset(Z, V ) 161/444 2331

∃Y.(offset(X, Y ) ∧ offset(Y, Z)) 28/31 41/163 29

21/14 29/26 29

insm(i, j, U, V, W ) := (j ∈ U ⇒ 7/13 8/23 15

i ∈ V ∨ i ∈ W ) 7/13 8/23 15

∀i∀j.(suc(i, j) ⇒ insm(i, j, U, V, Z)∧ t/oc m/o 198

insm(i, j, V, X, V ) ∧ insm(i, j, X, Y, V )∧ 16

insm(i, j, Y, Z, X) ∧ insm(i, j, Z, U, Y )

∀x∃y.(x < y ∧ y ∈ X ∧ y ∈ Y ) 12/5 21/13 9

5/3 16/7 4

∀x∃y.(x < y ∧ y ∈ X ∧ y ∈ Y )∧ 40/6 165/118 9

∀x∃y.(x < y ∧ y ∈ X ∧ y 	∈ Y ) 6/3 153/118 6

∀x∃y.(x < y ∧ y ∈ X ∧ y ∈ Y )∧ 641/44 m/o 18

∀x∃y.(x < y ∧ y ∈ X ∧ y 	∈ Y )∧ 85/44 18

∀x∃y.(x < y ∧ y 	∈ X ∧ y ∈ Y )∧
∀x∃y.(x < y ∧ y 	∈ X ∧ y 	∈ Y )
aTimeout in minimization of DPA. With weaker minimization, it ended up
in this result.
bMinimization of parity automaton did not finish in a day.
cComputation did not finish in over a day. When it was stopped, it was in
the process of computing a DPA out of an NBA and had already over 190000
states.

formulae needed too long the minimizing heuristics but got far more states with
general weaker minimization. In that case, the states are given in braces.
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Property Preservation for Extension Patterns
of State Transition Diagrams
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Abstract. In this paper, we consider extensions of state machines with
additional functionality. We analyze how typical safety or liveness prop-
erties are affected when extending or refining the model. We identify
several classes of extensions where properties are preserved. The exten-
sions include adding new transitions at a state, refining transitions, as
well as adding failure cases and adding additional, new functionality.
We propose new concepts for refinements based on elimination of added
behavior with context to capture property-preserving extensions in a
precise and (mostly) syntactic way.

1 Introduction

State transition diagrams (in short: SD) are used in various forms to design
software components, e.g., modeling a software component which interacts with
the environment based on events. In this paper, we consider property preserva-
tion when extending state transition diagrams by adding new functionality or
by adding implementation detail. The idea is to start with a high-level model
which is extended incrementally towards an actual implementation by refining
and adding appropriate features. Each extension step extends an SD by adding
new states and transitions. On a conceptual level, the approach is similar to work
on aspect- and feature-based programming languages, where generic results for
specific patterns exist (see [1]).

As an example consider the extension in Fig. 1, which adds a snooze feature
to an alarm clock. In the state machine, transitions are of the form i/o, where
i is an input event, and o is a sequence of output events. By convention, we
show the added elements of the new feature in bold text and thicker lines. In
this example, a typical property is that the alarm rings when it is set and that
it stops eventually. It is easy to see that the behavior of the original base SD is
preserved if no Snooze event occurs. Also, if the snooze feature is used, it will
eventually return to AlarmOff, unless the snooze feature is used infinitely often.

We start with a base model of a system, where the key properties of the
system can be captured formally, as in the example above. We use a behavioral
semantics based on the observable traces of input and output events, respectively.
Behavior preservation means that the resulting output trace is unchanged for all
input streams, possibly under some abstraction.

c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 260–274, 2016.
DOI: 10.1007/978-3-319-33693-0 17
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Fig. 1. Alarm extended by a snooze feature

The focus here is on extensions which add behavior, but do not change the
existing behavior. This means that the output behavior, which is defined explic-
itly in a SD, does not change under an extension. We do however permit addi-
tional behavior, both for the input and the output. This means that after some
period with new, added behavior, the system returns to the old behavior. For
this, we consider abstractions to eliminate such added behavior and identify
several new cases for this.

We identify here four classes of extensions where new behavior is added but
still some properties are preserved. The first class consists of extensions which
add behavior by new transitions at a state, as e.g. shown in Fig. 1. The second
pattern refines transitions, i.e. details the behavior of some event. The third
one is adding failure cases and the fourth one is adding other additional and
new functionality. The last one preserves the fewest properties but has broader
applicability.

Prior works on SD refinement has covered basic cases like adding states
or adding/removing transitions, e.g. [2–5]. Recent work on patterns for state
machine refinement considers simpler state machines without output events [6],
which considerably simplifies refinement compared to our setting. The work in [7]
has developed the case of the first pattern, yet in a simplified form where the
abstractions are easily recognized by specific events. Here, we generalize this and
also consider more patterns.

The main goal in this paper is to capture semantics-preserving extensions in
a syntactic way. To relate the extended SD and the base SD, we devise a new
abstraction mechanism to abstract from the behavior added by an extension.
While many existing approaches simply abstract from new events (e.g. [4,8,9]),
we need to carefully consider the context when an execution enters and leaves
an extension.

In particular, we cover extensions which modify or refine transitions and
consider the context of transitions to ensure refinement. For instance, in Fig. 1,
there is a transition from the new state DoSnooze to AlarmOff with event AlOff.
This is a refinement as there is a similar, corresponding transition from the state
DoAlarm. In this case, we can map the behavior of the extended SD to the
original. For this, we use context-based elimination on the trace level to ensure
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refinement, i.e. that the existing behavior is preserved under the abstraction.
This is, for instance, not possible in the above work, including [7]. Furthermore,
we permit to reuse events in extensions. For instance, in the example in Fig. 1,
the timer is reused via the StartAl event. This is also not possible in other
approaches which simply abstract from new events.

The paper is organized as follows. In the next section, we introduce the syntax
and semantics of SDs. Then, we define extensions on SDs and different classes
of extensions in Sect. 3. In Sect. 4, we introduce assumptions and refinement
relations for SDs. Refinement relations for the first two classes of extensions
are discussed in Sect. 4.1. In Sect. 5, we discuss what kinds of properties are
preserved by these classes of extensions.

2 State Transition Diagrams and Extensions

We model software systems by SDs, which are deterministic w.r.t. the input, as
defined below.

Definition 1. An SD is a tuple (St, s0, I, O, T ) consisting off

(i) a set of states St, with an initial state s0 ∈ St,
(ii) a set of input events I, which is disjoint from a set of output events O,
(iii) A partial transition function T : St × I �→ St × O∗.

For convenience, we often omit the initial state and just write (St, I,O, T ). We
denote transitions as i/o, where o is a sequence of output events.

Our semantic model employs an external black-box view of the system. It is
based on the events from the outside that trigger transitions. In other words,
only the observed input and output events are considered, not the internal states.
A possible execution can be specified by a trace, consisting of the sequence of
input events and the resulting output of the SD, as detailed below.

The set of all input sequences is denoted as the set of input streams Iω =
I∗∪I∞, including finite I∗ and infinite streams I∞. As each output of a transition
yields a sequence of events, we have (possibly infinite) sequences over finite
event sequences as output traces, which is defined as (O∗)ω. Traces of the form
(is, os) describe the behavior of an SD for an input sequence is ∈ Iω and the
corresponding output with os ∈ (O∗)ω.

We denote the empty stream as and write is : i′s to concatenate two streams,
where is is assumed to be finite. Similarly, a : is creates a stream from an element
a by appending the stream is. When clear from the context, we often write just
a instead of a : . We denote by I\In the elimination of elements of In from I
and by O + I the union of disjoint sets.

Assuming a stream is = i1 : i2 : i3, . . ., we write is[n] = in for the nth-
element, and is[n . . .] = in : in+1, . . . for the suffix at position n. We extend this
notation to traces accordingly, i.e. t[n] is defined as (is[n], os[n]). Thus, os[n] is
the corresponding sequence of output events for the input is[n].

For an SD S and a finite or infinite input stream is, we say S is defined for
is, if there is always a defined transition (specified by T ) for each input event in
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is when executing S with input is. This is written as Def (S, is). Note that we
use input-enabled semantics of SDs, which means any input is possible at any
time. Thus we use the notion of definedness and later use assumptions to limit
the input.

We write S(is) to denote the output of S for iS if S is defined for is. Two SDs
are considered equivalent if they behave equivalently for all inputs, i.e. produce
the same output.

In addition to the functional view, we also use the notation

t′ = (i1/o1) :: (i2/o2) :: . . .

to denote traces of elements with inputs ik and output sequences ok. We can
easily extract the corresponding input stream via In(t′) = i1 : i2 : . . . and
Out(t′) = o1 : o2 : . . .. Then, application of such a trace to a SD S is defined as
S(t′) iff S(In(t′)) = Out(t′).

For instance in Fig. 1, a possible trace tex, with input events above the cor-
responding output events, is shown in the table below.

Input SetTime StartA TimerEv Snooze TimerEv AlOff

Output setTimer StartAl
StopAl :
setTimer StartAl

2.1 Extensions of State Transition Diagrams

When adding new features to an SD, we use the following notion of syntactic
extensions of SDs. An extension is an SD over (St, I,O, T ), but without initial
states as extensions are not to be executed (before adding them to another
SD). While we permit any syntactically valid extensions in the definition below,
this will be restricted further below to analyze property preservation on the
behavioral level.

An SD S = (St, I,O, T ) is extended by a pure extension E = (St+St′, I+
I ′, O + O′, T ′) resulting in S′ = (St + St′, I + I ′, O + O′, T + T ′), assuming T
and T ′ are disjoint and S′ is a valid SD.

Thus extensions result from adding new states, transitions, events of E to S.
For convenience we treat T as a set of transitions, hence T + T ′ is the union of
transition sets. The transitions in E can use events in S, but they cannot redefine
or overwrite existing transitions in S, as for each state only one transition with
a specific input event i is permitted.

Examples of extensions are shown via the bold states and transitions, e.g. in
Fig. 1. An extension can be seen as a “partial SD” with states and transitions,
but no initial states. For instance, if an extension includes a transition from state
s to s′, these two states may be added by E or may be in S.

For transition refinement, we need to extend the above definition, as we also
need to change transitions. A transition extension is defined as a modification
of a transition which changes destination state and adds output events. Formally,
an SD S = (St, I,O, T ) with a transition i/o from state s is extended by a



264 C. Prehofer

(transition) extension E, if E is of the form E = (St+St′, I+I ′, O+O′, T ′ +
{(i/(o : e))}) and E is an extension of S = (St, I,O, T\{(i/o)}).

As above, we show in our graphical notation only the added events in bold
and only show the new destination state. An example of a transition refinement
is shown in Fig. 2, where the transition triggered by SetT ime is extended (wrt
the base SD in Fig. 1).

3 Extension Patterns of State Transition Diagrams

In the following, we introduce several patterns for extending SDs. The goal is to
identify classes of extensions for which we can determine that certain properties
are preserved, as discussed below.

We first define a property on extensions to identify an extension on the trace
level by trigger events. The simplest case is that an extension adds completely
new transitions, which are marked by entry and exit events (as in [7]). In addition
to the entry and exit events, we will also use a “context” of events, which is
shared by the original SD and the extension. This means that the extension only
modifies some transitions, e.g. via a transition refinement, for the entry event.
For exit events, we will also permit such a “shared transition”. In this case,
we need to ensure that the original and the extended SD end up in the same
state. This is needed to ensure the behavior after the traversal of the extension
is identical to the case of an execution in the base SD.

Definition 2. Assume an SD S = (St, I,O, T ) as well as an extension E with
events (I ′, O′). Assume further there is a set of disjoint entry end exit events
Een, Eex,⊆ (I ′\I) + (O′\O). We say that the extension E is entry-exit trig-
gered, if for each transition in E from a state s to state t with input event i
and output sequence o the following conditions hold:

– If s ∈ St, then i or o include an element from Een (entry transition).
– If t ∈ St, then i or o include an element from Eex (exit transition).

This definition essentially says that an extension is always entered with an
entry event and, correspondingly, returning to the old SD with exit events.

Fig. 2. Alarm with a refinement of transition SetT ime
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E.g. Snooze is an entry trigger in the example of Fig. 1. In this way, we will be
able to recognize extensions on the trace level. We also call a transition entry
transition, if it is triggered by an (entry) event. Similarly, an exit transition
must have an element of Eex as trigger event.

We introduce in the following four patterns of SD extensions of an SD S. For
these, we later consider refinement concepts and property preservation. The first
pattern, extension at state, adds transitions at one state s, which lead back to s
(within some context as detailed later). Thus, the behavior proceeds as before,
after the extension is traversed. There are cases where we can permit that the
extension leads to other states. A typical case is a transition extension, which is
the second pattern.

If an extension E of S does not lead back to the expected state s, but to a
different one, say s′, we can permit this in some case. This is the case if both S
and E have transitions to s′ with the same events, plus some exit trigger in E.
As an example consider the snooze example Fig. 1. Here, the event AlOff leads
to the AlarmOff state, both from the extension as well as in the original state.
Thus, we can achieve behavior preservation for this case, as both cases lead to
the same state. For this we define the following:

For a transition i/on from s to s′ in an SD S, we say that a transition
i/(on : e) is an exit transition with context from s with trigger e in E, if it
leads to state s′ as well.

Definition 3. Assume an SD S = (St, I,O, V, T ) and an entry-exit triggered,
pure extension E with events (I ′, O′). Then E is an extensions at a state s if
all entry transitions start at s and all exit transition must return to s, or have
a context in S from state s.

Extensions at a state s add new behavior local to some state s in St. This
means adding new transitions from s triggered by an entry event e, as well as
new states. For such extensions, behavior is local to the state as the control
flow in the extension may return only to s and does not change the control flow
beyond this. Such an extension typically adds optional behavior at some state,
which may however loop or terminate. Hence it may not return to the base SD.
For instance, in Fig. 1, the state DoAlarm is extended by the snooze feature.

A transition refinement, defined next, details the behavior of a transition from
state s to s′. Note that we will use the term refinement on SDs below in terms of
behavior preservation, which is different from the syntactic refinement presented
here. The idea is to refine a transition into several transitions. This is initiated
by an output event from the SD S itself, here e, in contrast to other cases which
are externally triggered. Based on this trigger, the external environment may
adapt to the new behavior. As an example for a transition refinement consider
the base SD in Figs. 1 and 2, where the transition triggered by SetT ime is refined
to enter hours (state Req-H) and minutes (state Req-M).

Definition 4. Assume an SD S = (St, I,O, T ) and an entry-exit triggered
extension E with an update of a transition tr ∈ T . Assume tr = i/o is a
transition from state s to s′ in S. Then S′ is a (syntactic) transition refine-
ment of S by E if
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Fig. 3. Alarm with added cancel transition

– the extension E includes a transition refinement for tr, concatenating a new
entry event e to the output o, and

– all exit transitions lead to the state s′ or they have a context in S from s′.

The next pattern adds failure cases.

Definition 5. Assume an SD S = (St, I,O, T ) and a pure extension E with
events (I ′, O′). Then E is adding failure cases if it adds one new transition,
triggered by a new event not in I. This transition must lead back to the initial
state s0.

For instance, in Fig. 3, a cancel transition is introduced. The other remaining
pattern of extensions adds other functionality, which must however be triggered
by new entry events. We only assume that this new behavior is initiated by new
events, after which the behavior may change. This means to add behavior which
is different from the original behavior.

Definition 6. Assume an SD S = (St, I,O, V, tr) and a pure extension E with
events (I ′, O′). Then E adds additional functionality, if all new transitions
which start at states of St are triggered with new events (not in I).

It is easy to see that the above three patterns are instances of this case. This
pattern has broader applicability, but will also preserve fewer properties. As an
example for an added functionality consider Fig. 4, where a new countdown (CD)
feature is added, which works alternatively to the alarm clock.

4 Assumptions on SDs and Refinement

Generally speaking, the goal of refinement is to extend an SD while preserving
behavior and compatibility. An important aspect of refinement is to consider
the permitted inputs. For instance, assume-guarantee specifications [10] can be
used to specify which “guarantees” hold for the permitted inputs (under the
assumptions).

Here, we use assumptions to specify the permitted input. In general, assump-
tions can be used for two different reasons. We can either exclude unwanted cases
or handle unspecified cases. Unspecified cases are cases which shall be defined in
a later phase by incremental refinement, while unwanted cases must be avoided



Property Preservation for Extension Patterns of State Transition Diagrams 267

by the environment and are not allowed. The main purpose of assumptions in
our treatment of extensions is to specify which inputs are allowed in what phase
of a SD execution. For instance, when traversing an extension, we may only
permit specific events.

We will use predicates over finite and infinite streams. We denote assumptions
as a predicate A where A(i) is a Boolean value over a stream i. Assuming an SD
S and an assumption A, we write

A/S

or A/Def (S), which then denotes that S is defined for inputs i, i.e. Def (is),
whenever A(is) holds.

Regarding refinement, we consider in the following a notion with equality of
the output traces: Assuming a specification A/S, then A′/S′ is a refinement of
A/S, if A(is) =⇒ A′(is) for all is, and A(is) implies S(is) = S′(is).

This means that S and S′ must behave identically for the input permitted
by A for S′, i.e. when A holds. In other words, when S′ is restricted to the input
for A for S, they behave the same. Internally, the two SDs may differ in states
and transitions.

A typical, basic case of refinement is what we call (backwards) compatibil-
ity: Assume A/S and S′ is an extension of S, then A/S′ is called (backwards)
compatibility, assuming that A only permits inputs over I. Backwards com-
patibility means that a system behaves identical to the original system, as long
as no new events occur in the input. In other words, the system behaves as before
for the “old” input specified by A.

4.1 Elimination-Based Refinement with Context

In the following, we detail our approach to refinement based on behavior elimi-
nation. The idea is to eliminate the behavior of the newly added features on the
trace level, in order to compare the extended SD with the original one. Many
typical notions of abstraction or refinement only abstract from newly added
events (e.g. [4,8,9]), which is very easy to define. Here, we eliminate larger trace
segments which correspond to the behavior of extensions.

Fig. 4. Alarm with added countdown functionality
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As discussed above, the point is that extensions can be recognized either by
new input events, or by adding additional output. This holds for both start and
end of a trace segment corresponding to a trace in an extension. These trace
segments may also share some “context” with the original system. We have two
cases here. The simple case is that the start and end of the trace segment are
identified by a new entry event. The other case is adding new output events. For
entry events, this corresponds to a transition refinement. For the exit case, this
may be the case of an exit transition with context.

To formalize the notion of extensions, we use partial traces with an empty
input event of the form ( , o). Note that these are not suitable for execution.
To merge streams with overlaps, we define + to merge two stream elements:
(i/o) + (i′/o′) = (i/(o : o′) if i′ = , and (i/o) :: (i′/o′) otherwise. Thus we
merge transitions with empty input with the subsequent transition. This merge
operations extends canonically to longer traces.

We assume in the following an SD S with events (I,O) is extended by E to
S′ with events (I ′, O′).

Definition 7 (Trace extension step). Assume a set of trigger events Ti from
I ′\I and To from O′\O. Let t = s :: c :: c′ :: s′ be a trace of S. Then a trace
extension of t over S′ is a trace

t′ = s :: (c + tr) :: e :: (c′ + tr′) :: s′,

with contexts c and c′, where (c+ tr) :: e :: (c′ + tr′) is a traversal in E, s and e
are finite traces, and c, c′ are finite, partial traces. We assume e has no trigger
events, and tr, tr′ are single transitions with a trigger event. If there is an infinite
traversal (c + tr) :: e in E, then also t′ = s :: (c + tr) :: e is a trace extension.

We call c and c′ contexts, as these are the parts which are shared in both S
and the extension E. Note that in a trace t, trace extensions do not overlap as
e has no trigger events. Hence, we define an elimination, denoted as

elim(t)

as the removal of all trace extensions. Similarly, the set ext(t) is defined as all
traversals of E in t, as defined above. Note that this set may be infinite.

As an example, we continue with the above trace tex from Sect. 2 for the
alarm SD in Fig. 1. The idea is to eliminate the effect of the new snooze feature,
which we show by underlined text:

Input: SetTime StartA TimerEv Snooze TimerEv AlOff

Output: setTimer StartAl
(stopAl

:setTimer
StartAl SnozzeOff

In this example, the elimination results in a corresponding trace of the base
SD. As an example of a transition refinement consider Fig. 2, where the transition
with input SetT ime is refined by several transitions. The elimination removes
the effect of the new transition, which we show by underlined text in the following
trace:
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Input: SetTime SetH SetM StartA TimerEv AlOff

Output: ReqH ReqM ok setTimer StartAl

Note that the elimination here removes only the event ReqM , which is the
trigger event, from the output sequence corresponding to the input SetT ime
(and the empty sequence remains). If an extension terminates under specific
assumptions, then we can establish a stronger property.

Definition 8 (Elimination-based Refinement). Assume S, S′ and an entry-
exit triggered extension E as above. The extended system A′/S′ is a weak
elimination-based refinement of A/S, if A(is) =⇒ A′(is) for all is, and
if for all traces t′ in A′/S′, elim(t′) is a trace in A/S. Furthermore, A′/S′ is
a (strong) elimination-based refinement of A/S, if any traversal in an
extension terminates in A′/S′.

The notion of elimination-based refinement states that elimination of traces
in S′ yields traces in S. We say property AA,AE preserves A and AE, if A
implies AA,AE and AA,AE(t) implies A(elim(t)) and AE holds for all elements
of ext(t).

For an extension E of S to S′, we say AE/E terminates if there is no infinite
traversal through E which is permitted by AE. For a property A over streams,
we say A is input-consistent, if A(is) implies A(i′s) for all prefixes i′s of is. This
assumption is needed for weak refinements, as an extension may not terminate.
Consider an input i which is permitted for the base SD. Then, in an extension
an entry event may occur at i′, which is a prefix of i. The elimination on the
trace of the extended SD will cut off the trace after i′ in case of divergence. For
the refinement to hold, i′ must then also be permitted in the assumptions for
the base SD. Based on this, we can now show the main refinement result:

Theorem 1 (Refinement). Assume S is extended to S′ with an extension
at state or transition refinement E, and A is an input-consistent property. If
A/S, AE/E and AA,AE is a property that preserves A and AE, then AA,AE/S

′

is a weak refinement of A/S. Furthermore, if there are no infinite sequences
of extension traversals in AA,AE/S

′ with empty entry and exit contexts, then
AA,AE/S

′ is a strong refinement of S.

We should note that assumptions are needed to ensure termination (for strong
refinement), and to ensure that the executions are defined. For weak refinement,
it is often possible to take all input streams where S′ is defined and which
preserve A. For strong refinement, termination must be ensured by assumptions,
if there are cases where extensions may loop.

5 SD Extensions and Property Preservation

In the last section, we have presented refinement results for the four classes of
SD extensions. These results are now used to show what kinds of properties are
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Table 1. Identified cases of property preservation under SD extensions

Simple
response
(liveness)

Simple
reachability
(liveness)

Invariants on
events (safety)

Compatibility

Extension at
states

In case of strong refinement
with Theorem 2

If holds for extension +

Transition
refinement

In case of strong refinement
with Theorem 2

If holds for extension o

Adding failures o + + +

Additional
functionality

o o If holds for extension +

preserved under such extensions. First, we discuss how to formalize properties
and then present a classification of properties. As we consider the externally
visible system behavior, we specify properties over the observed traces. For this
purpose, we use basic linear temporal operators, following [11].

We assume in the following traces of the form t = (i, o) over an SD S with
assumptions A over I and O and with A/S as above. Assume P,Q are predicates
over transitions or the form i/o, where we write P (i, o). Based on properties on
individual transitions or positions in a trace, we can introduce the usual temporal
operators. First, �P , or “always P” holds for a trace t at position n, if P holds
for t[n + m] for all m = 0, 1, 2, . . .. For an infinite trace t, ♦P , or “eventually
P”, holds at some position n, if P (t[m]) holds for some valid m ≥ n. For a finite
trace t, ♦P holds for a valid position n in t, if there is an execution of A/S with
a trace t′, such that t is a prefix of t′ (or identical) for which the property holds.

These temporal formulae express properties over traces, and easily extend to
sets of traces. We only use basic property patterns. For a full definition of linear
temporal logic we refer to related work [11]. For instance, �(P =⇒ ♦Q) means
that in any position of a traces, if P holds, Q will hold eventually.

In examples, we may just write the name of an event to denote the prop-
erty that this event occurs (at some position). As an example, we may write
�(setT imer =⇒ ♦AlOff ), which means that the event setT imer is always
followed by AlOff .

For properties, there is a very useful classification in [12], which also evaluates
how often these properties are used in practical applications. We focus on basic
“leads to” or response properties, as well as invariants, which cover a large class
of properties used in typical specifications as shown in [12]. As discussed in [12],
the property may occur in combination with different scopes, which define events
which limit the scope of the property. For simplicity and lack of space, we focus
on such basic properties without scopes. This is also why we do not introduce
full temporal logic in this section.

We show in the top line of Table 1 four typical classes of properties and
identify when all properties of a specific class are preserved. We first explain
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the column entries. In the first column, simple response refers to properties
of the form �(P =⇒ ♦Q), where some event specified by P is always followed
by some events specified by Q. This is also called “leads to” property. In the
second column, simple reachability refers to events which are reached from
the initial state. Formally, we have ♦Q. This is called existence in [12]. More
generally, universal reachability means that a property can be reached from
any position. This is formalized as �♦Q and is a typical liveness property. For
instance, in our alarm example �♦setT ime expresses that it is always possible
to set the time again, which means that the system does not stop.

In the following, we explain the entries in the table. Note that “+” means
property preservation and “o” means no generic results (individual case needs to
be considered). In the other cases, additional conditions for property preservation
are stated.

For simple response and reachability, the table expresses that strong refine-
ment based on Theorem 1 can be used for basic response and reachability prop-
erties, assuming that the extension terminates. This is shown in the following
theorem. The main point is that strong refinement can add new segments to a
trace t, but eventually the trace is completely executed (which does not hold for
weak refinement).

Theorem 2 (Property Preservation). Assume S = (St, I,O, T ) is extended
to S′ with extension at state or transition refinement E, A/S, AE/E and
AA,AE/S

′ is a strong refinement of A/S. Further, assume P and Q are proper-
ties over I and O. Then simple response (�(P =⇒ ♦Q)) and simple reachability
(�♦Q) properties hold for AA,AE/S

′, if they hold for A/S and AE/E.

For instance, for the alarm plus snooze example in Fig. 1, we have strong
refinement if we assume the termination of the added snooze feature. This avoids
the cases that the (terminating) feature is triggered infinitely often in the state
DoAlarm. Formally, consider an assumption predicate Pa for which the basic
alarm SD is defined. Furthermore, assume a predicate Ps for which the extension
snooze is defined and no infinite repetition of (Snooze : TimerEv) is permit-
ted. Under Ps and Pa, we can show that alarm extended by snooze is a strong
refinement of the alarm SD. The intuition is that only traces are possible where
there is no infinite loop in state DoAlarm. Then,

�(setT ime =⇒ ♦AlOff )

is preserved by this extension. Thus it holds for alarm plus snooze, if it holds for
the basic alarm SD. Note that the assumptions may not permit the stopalarm
event, and thus it may not hold for the base SD.

Furthermore, reachability is also preserved by our notion of adding failures,
as these extensions return to the initial state. For the basic alarm plus Cancel
Alarm example, this means that the following property is preserved:

�♦AlOff
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This means that it is always possible that the alarm is stopped, and this is
preserved by the extension.

By invariants on events we refer to safety properties which hold for all exe-
cutions, but can be identified on a local basis (not using implication as above)
This is typically of the form �P . An invariant on events can express that some
specific output event does not happen. In [12], this corresponds to universality
or absence patterns. Such invariants can be checked syntactically for extensions,
just by checking which events may occur. Thus, they are modular with respect
to conservative SD extensions. This also holds by construction for failure cases,
as these reset the variables and return to the initial state. Note that we assume
here that the invariant does not refer to the newly added error event. In that
case, an invariant could simply say that some error event (e.g. CancelAl) does
not occur, which is not preserved.

In the last column, (backwards) compatibility, as defined above, means that
the behavior is not changed if the extension is not used, i.e. there is no input
which triggers it. If the extension is triggered by an input event, it is easy to
see that properties are preserved. On the other hand transition refinements are
triggered internally by new outputs, thus properties may not be preserved.

For more complex properties, more detailed analysis may be needed. For
instance, in case a property says that a eventually happens, but always before
b, this may not be preserved by an extension of one of the first two kinds, as the
extension may add an output b. Also, assumptions can restrict inputs and can
hence ensure that certain properties hold; it is open if such generic results are
possible.

6 Related Work

There is recent work on refinement on algebraic state machine models, which
follows a similar approach by identifying some classes of refinements [6]. This
approach considers state machines (and traces) with input events only, i.e. no
output events. This clearly simplifies refinement and does not cover the cases of
extending or modifying transitions with new output events. Also, [6] does not
discuss what kind of properties may be preserved.

The contribution of this paper is a set of refinement patterns in a new formal
framework for elimination-based refinement, plus an analysis of property preser-
vation. Regarding the refinement patterns, this paper is more general as the
work in [7], which only covers refinement on states in a more limited form. The
work in [13] has considered transition refinement for non-deterministic SDs using
chaos-based semantics. In particular, this semantics makes it difficult to reason
about definedness and termination, as done here. In addition, we consider here
also failure cases, which were absent in [13]. Also, for both, no detailed analysis
of property preservation is presented.

There exists considerable work on refinement on various kinds of state-based
models. Most of these works performs abstraction by simple elimination of new
events, e.g. [4,8,9]. This concept is used in many other works on refinement, not
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limited only to state machines, and is often generalized to refinement mappings
of events or data structures. This permits refinement or simulation relations
based on abstraction from new events. Other such refinement and simulation
techniques for SD-like models can e.g. be found in [14,15]. For a more compre-
hensive handling of new events, we also refer to recent work in [16]. This work
is based on Event-B and discusses different ways of handling new events. It does
however not discuss refinement patterns on state machines nor preservation of
properties for such. Similarly, [17] provides general refinement concepts, but no
patterns and property preservation.

Earlier works on calculi for statechart refinement [2–4] have developed several
rules for refinement, which correspond to our case of adding additional function-
ality and thus do not address the other patterns.

7 Conclusions

The goal of this paper was to identify practical cases of SD extensions which do
not modify the behavior of the original SD, under some reasonable assumptions.
We have identified four patterns of typical SD extensions where we can capture
the impact of the extensions on the behavior of the SD for certain classes of
properties. A main point is that these patterns can be identified syntactically.

To establish property preservation, we have defined new refinement relations
for extensions at a state, transition refinement and failure cases. Furthermore,
we have formalized refinement in a common framework. The framework is based
on elimination-based refinement with contexts, which generalizes existing refine-
ment relations. In particular, we use context, i.e. overlaps of the base SD and
the extension on the trace level, for the abstraction relation. This is needed for
transition refinements and also in case the extension returns to other states.

While the examples and refinement cases may appear simple, existing pat-
terns in the literature do not cover the cases considered here. Existing, simpler
forms of abstraction and refinement do not easily cover the notion of refine-
ment here for several reasons. One reason is that extensions can reuse existing
events, which is useful for practical application but not permitted in many for-
malisms. Secondly, we allow modification and refinement of transitions, which
can be captured by elimination with context to relate the old and new, refined
behavior. Furthermore, we use assumptions to formalize under what conditions
an extension may diverge, thus permitting extensions to diverge or abort.

For these extensions, we have discussed property preservation for typical pat-
terns of properties in a systematic way. In many cases, specific kinds of properties
are preserved by an extension. In this way, behavior preserving refinements can
be created automatically based on simple, mostly syntactic criteria, which is
important for practical application in tools. If extensions may loop or diverge,
we may need assumptions to ensure that the traversals return to the base SD in
order to establish strong refinement. The idea is that a user can simply add an
extension, following the above classes, without the need to explicitly formalize
some abstraction or simulation relation.
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Abstract. We present a symbolic reachability analysis approach for
B that can provide a significant speedup over traditional explicit state
model checking. The symbolic analysis is implemented by linking ProB
to LTSmin, a high-performance language independent model checker.
The link is achieved via LTSmin’s Pins interface, allowing ProB to ben-
efit from LTSmin’s analysis algorithms, while only writing a few hundred
lines of glue-code, along with a bridge between ProB and C using ØMQ.
ProB supports model checking of several formal specification languages
such as B, Event-B, Z and Tla+. Our experiments are based on a wide
variety of B-Method and Event-B models to demonstrate the efficiency of
the new link. Among the tested categories are state space generation and
deadlock detection; but action detection and invariant checking are also
feasible in principle. In many cases we observe speedups of several orders
of magnitude. We also compare the results with other approaches for
improving model checking, such as partial order reduction or symmetry
reduction. We thus provide a new scalable, symbolic analysis algorithm
for the B-Method and Event-B, along with a platform to integrate other
model checking improvements via LTSmin in the future.

Keywords: B-Method · Event-B · ProB · LTSmin · Symbolic
reachability

1 Introduction

In this paper we describe the process, technique and design decisions we made for
integrating the two tooling sets: LTSmin and ProB. Bicarregui et al. suggested,
in a review of projects which applied formal methods [6], that providing useable
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Fig. 1. Modular Pins architecture of LTSmin [17]

tools remained a challenge. Recent use of the ProB tool in a rail system case
study [16], where model checking large industrial sized complex specifications
was performed, illustrated that there continues to be limitations with the tooling.
Model checking CSP‖B [28] specifications in ProB was the original motivator
for this research, and based on a promising initial exploration [30], this paper
defines a systematic integration of the two tooling sets.

LTSmin is a high-performance language-independent model checker that
allows numerous modelling language front-ends to be connected to various analy-
sis algorithms, through a common interface, as shown in Fig. 1. It offers a
wide spectrum of parallel and symbolic algorithms to deal with the state space
explosion of different verification problems. This connecting interface is called
the Partitioned Interface to the Next-State function (Pins), the basis of
which consists of a state-vector definition, an initial state, a partitioned suc-
cessor function (NextState), and labelling functions [17]. It is through Pins
that we have been able to leverage the ProB tool, therefore allowing us to take
advantage of LTSmin’s algorithmic back-ends. In this paper we focus on the
new ProB language front-end, the grouping of transitions, and the symbolic
back-end. In Sect. 5 we also briefly discuss state variable orders.

ProB [19] is an animator and model checker for many different formal lan-
guages [26], including the classical B-Method [2], Event-B [1], CSP, CSP‖B,
Z and Tla+. ProB can perform automatic or step by step animation of B
machines, and can be used to systematically verify the behaviour of machines.
The verification can identify states which do not meet the invariants, do not
satisfy assertions or that deadlock. At the heart of ProB is a constraint solver,
which enables the tool to animate and model check high-level specifications. The
built-in model checker is a straightforward, explicit state model checker (albeit
augmented with various features such as symmetry reduction [20] or partial
order reduction [11]). The explicit state model checker Tlc can also be used as
a backend [12].

The purpose of this paper is to make use of the advanced features of the
LTSmin model checker, such as symbolic reachability analysis, by linking the
ProB state exploration engine with LTSmin. This is achieved through a C
programming interface [4] within the ProB tool, allowing the representation of
a state to be compatible for LTSmin’s consumption. In this paper the integration
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focuses on what is required in order to perform symbolic reachability analysis
of B-Method and Event-B specifications. The contribution of this research is a
new tool integration, which can be used as a platform for further extensions.

The paper is structured as follows: Sect. 2 presents an overview of the B-
Method, a running example and an illustration of definitions of transition sys-
tems used by LTSmin. Section 3 details the symbolic reachability analysis and
Sect. 4 outlines the implementation details. Section 5 provides empirical results
from performing reachability analysis benchmarking examples in ProB alone
and using the new integration of the two tools. The paper concludes in Sect. 6
with reflections and future work.

2 Preliminaries: B-Method and Transition Systems

In this section we provide an overview of the B-Method and the foundations
used within LTSmin.

A B machine consists of a collection of clauses and a collection of operations.
The MACHINE clause declares the abstract machine and gives it its name.
The VARIABLES clause declares the variables that are used to carry the
state information within the machine. The INVARIANT clause gives the type
of the variables, and more generally it also contains any other constraints on
the allowable machine states. The INITIALISATION clause determines the
initial state(s) of the machine. Operations in a machine are events that change
the state of a machine and can have input parameters. Operations can be of the
form SELECT P THEN S END where P is a guard and S is the action part of
the operation. The predicate P must include the type of any input variables and
also give conditions on when the operation can be performed. When the guard
of an operation is true then the operation is enabled and can be performed.
If the guard is the simple predicate true then the operation form is simplified
to BEGIN S END. An operation can also be of the form PRE P THEN
S END so that the predicate is a precondition and if the operation is invoked
outside its precondition then this results in a divergence (we do not illustrate this
in our running example). Finally, the action part of an operation is a generalised
substitution, which can consist of one or more assignment statements (in parallel)
to update the state or assign to the output variables of an operation. Conditional
statements and nondeterministic choice statements are also permitted in the
body of the operation. The example in Fig. 2 illustrates the MutexSimple machine
with three variables and five operations. Its initial state is deterministic and wait
is set to MAXINT. For MAXINT=1 we get 4 states; the state space constructed
by ProB can be found in Fig. 3. From the initial state only the guards for Enter
and Leave are true. Following an Enter operation the value of the cs variable
is true which means that the guard of the CS Active operation is true and the
system can indicate that it is in the critical section by performing the CS Active
operation.

The example presented could also be considered as an Event-B example
since it is a simple guarded system. We do not elaborate further on the notation
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Fig. 2. MutexSimple B-Method machine example

Fig. 3. MutexSimple statespace for MAXINT=1

of Event-B in this paper but note that the results in the subsequent sections are
also applicable to Event-B.

As far as symbolic reachability analysis is concerned, a formal model is seen
to denote a transition system. LTSmin adopts the following definition:

Definition 1 (Transition System). A Transition System (TS) is a structure
(S ,→, I ), where S is a set of states, → ⊆ S × S is a transition relation and
I ⊆ S is a set of initial states. Furthermore, let →∗ be the reflexive and transitive
closure of →, then the set of reachable states is R = {s ∈ S | ∃ s ′ ∈ I . s ′ →∗ s}.

A B-Method and Event-B model induces such a transition system: initial
states are defined by the initialisation clause and the individual operations
together define the transition relation →. Figure 3 shows the transition system1

for the machine in Fig. 2. As can be seen in Fig. 3, the transition relation is
annotated with operation names. For symbolic reachability analysis it is actu-
ally very important that we divide the transition relation into groups, leading
to the concept of a partitioned transition system:
1 One subtle issue is that LTSmin actually only supports a single initial state; this is

solved by introducing the artificial root state linked to the initial states proper. We
ignore this technical issue in the paper.
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Definition 2 (Partitioned Transition System). A Partitioned Transition
System (PTS) is a structure P = (Sn,G ,→m, I n), where
– Sn = S1 × . . . × Sn is the set of states, which are vectors of n values,
– G = (→1, . . . ,→m) is a vector of M transition groups →i ⊆ Sn ×Sn (∀ 1 ≤

i ≤ m)
– →m =

⋃m
i=1 →i is the overall transition relation induced by G, i.e., the union

of the m transition groups, and
– I n ⊆ Sn is the set of initial states.
We write s →i t when (s, t) ∈ →i for 1 ≤ i ≤ m, and s →m t when (s, t) ∈ →m.

For example I n = {(FALSE ,MAXINT , 0)} in the running example. Note
that G in Definition 2 does not necessarily form a partition of →m, overlap is
allowed between the individual groups.

3 Symbolic Reachability Analysis for B

Computing the set of reachable states (R) of a transition system can be done
efficiently with symbolic algorithms if many transition groups →i touch only
a few variables. This concept is known as event locality [9]. Many models of
transition systems in the B-Method employ event locality. In the B-Method
event locality occurs in operations, where only a few variables are read from, or
written to. For example in Fig. 2 operation CS Active only reads from cs and
Leave only writes to cs. This event locality benefits the symbolic reachability
analysis, so that the algorithm is capable of coping with the well known state
space explosion problem. Since the B-Method employs event locality we build
on the foundations of earlier work on LTSmin [7,23] and extend it to ProB. To
perform symbolic reachability analysis of the B-Method, ProB should provide
LTSmin with read matrices and write matrices. These matrices inform LTSmin
about the locality of events in the B-Method.

Read independence is an important concept, it allows one to reuse the suc-
cessor states computed in one state s for all states s ′ which differ just by read-
independent variables from s, and vice versa.

Definition 3 (Read Independence). Two state vectors s, s ′ are equivalent
except on index j , denoted by s ≈j s ′, iff ∀ k 
= j : sk = s ′

k .
Transition group i is read-overwrite independent from state variable j , iff

∀ s, s ′, t ∈ Sn such that s ≈j s ′ and s →i t, we have that s ′ →i t.
Transition group i is read-copy independent from state variable j , iff

∀ s, s ′, t ∈ Sn such that s ≈j s ′ and s →i t, we have that s ′ →i

(t1, . . . , tj−1, s ′
j , tj+1, . . . , tn).

A transition group is read independent iff it is either read-overwrite or read-
copy independent.

If an event never reads but may write to a variable j it generally does not sat-
isfy the above definition. For example, the operation MayReset = IF cs = true
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THEN wait := 0 END would neither be read-copy nor read-overwrite indepen-
dent (for state vectors with cs = false it satisfies the definition of the former
and for cs = true the latter, but neither for all state vectors). LTSmin can also
deal with more liberal independence notions, but we have not yet implemented
this in the present paper.

Definition 4 (Write Independence). Transition group i is write-
independent from state variable j , if ∀ s, t ∈ Sn : (s1, . . . , sj , . . . , sn) →i

(t1, . . . , tj , . . . , tn) =⇒(sj = tj ), i.e. state variable j is never modified by tran-
sition group i.

We illustrate the above definitions below.

Definition 5 (Dependency Matrices). For a PTS P = (Sn,G ,→m, I n), the
write matrix is an m × n matrix WM (P) = WM P

m×n ∈ {0, 1}m×n, such that
(WMi,j = 0)=⇒ transition group i is write independent from state variable j.
Furthermore, the read matrix is an m×n matrix RM (P) = RM P

m×n ∈ {0, 1}m×n,
such that (RMi,j = 0)=⇒ transition group i is read independent from state
variable j.

In this paper we will use sufficient syntactic conditions to ensure Definitions 3
and 4 and obtain the read and write matrix from Definition 5. Indeed, we com-
pute for every operation syntactically which variables are read from and which
variables are written to.

– If an operation does not write to a variable, its transition group is write
independent according to Definition 4 and the corresponding entry in WM
is 0.

– If an operation does not read a variable, its transition group is read inde-
pendent according to Definition 3, unless it maybe written to (e.g., because
the assignment is in the branch of an if-then-else). In this case, we will mark
the variable as both write and read independent. Also, note that when the
assignment within an operation is of the form f(X) := E then the operation
should have a read dependency on the function f (in addition to the write
dependency).

For our example in Fig. 2 the syntactic read-write information is as follows:
From the matrices we can infer if a variable is read-copy or read-overwrite

independent: a variable that is read independent and not written to (i.e., write
independent) is read-copy independent, otherwise it is read-overwrite indepen-
dent.

We can thus infer that:

– the transition group of Enter is read-copy and write independent on finished.
– Exit is read-copy and write independent on wait.
– Leave is read-copy and write independent on wait and finished and read-

overwrite independent on cs.
– CS Active is read-copy and write independent on wait and finished and

write independent on cs (but not read-independent on cs).
– Leave is read-copy and write independent on cs.
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Fig. 4. Dependency matrices

3.1 Exploration Algorithm

We now present the core of the symbolic reachbility analysis algorithm of
LTSmin. Algorithm 1 computes the set of reachable states R (represented as
a decision diagram) and it uses the independence information to minimise the
number of next state computations that have to be carried out, i.e., re-using
the next states {t | s →i t} computed for a single state s for many other states
s ′ according to Definitions 3 and 4. Algorithm 1 will, while it keeps finding new
states, expand the partial transition relation with potential successor states, and
apply the expanded relation to the set of new states.

Four key functions that make Algorithm1 highly performant are the follow-
ing. 2 The (1) read projection πr

i = πRM
i and (2) write projection πw

i = πWM
i take

as argument a state vector and produce a state vector restricted to the read and
write dependent variables of group i , respectively. Furthermore these function are
extended to apply to sets directly, e.g., given the examples in Figs. 2 and 4, a read
projection for Leave is πr

3({(FALSE , 0, 0) , (FALSE , 0, 1) , (FALSE , 1, 0)}) =
{(FALSE )}. This is illustrated in Fig. 6 and used at Line 2 in Algorithm2. The
read projection prevents LTSmin from doing two unnecessary next state calls
to ProB, since Leave is read-copy independent on wait and finished.

cs = FALSE,wait = 1

cs = TRUE,wait = 0

Enter

Li    and i
p

cs = TRUE,wait = 0,

R

projection

next

Fig. 5. One iteration with Enter

The function (3) NextStatei
takes a read projected state and
projects (with πw

i ) all successor states
of transition group i . The partial tran-
sition relation ↪→p

i is learned on the fly,
and NextStatei is used to expand
↪→p

i . An example next state call for
Enter is NextState1((FALSE , 1)) =
{(TRUE , 0)}.

Lastly, (4) next takes a set of
states, a partial transition relation, a
row of the read and write matrix and outputs a set of successor states.
For example, applying the partial relation of Enter to the initial state
yields next({(FALSE , 1, 0)}, {((FALSE , 1) , (TRUE , 0))}, (1, 1, 0) , (1, 1, 0)) =

2 We refrain from giving their formal definitions; they can be found in [23].
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{(TRUE , 0, 0)}. Note that in this example Enter is read-copy independent on
finished and thus next will copy its value from the initial state.

The usage of these four key functions is also illustrated in Fig. 5. The figure
shows that first the projection is done for Enter, then ↪→p

i is expanded with a
NextStatei call, lastly relation ↪→p

i is applied to the initial state, producing
the first successor state.

Figure 6 shows for each operation the transition relation ↪→p
i and the pro-

jected states on which they are computed. Definition 3 ensures that the projected
state space shown in Fig. 6 can be used to compute the effect of each of these
operations for the entire state space (using next).

Algorithm 1. ReachBreadth-
First

Input : I n ⊆ Sn,M ∈ N,RM ,WM
Output: The set of reachable states R

1 R ← I n; L ← R;
2 for 1 ≤ i ≤ M do Rp

i ← ∅; ↪→p
i ← ∅;

3 while L 
= ∅ do
4 LearnTrans(); N ← ∅;
5 for 1 ≤ i ≤ M do
6 N ←N ∪ next(L, ↪→p

i ,RMi ,WMi );
7 L ← N − R; R ← R ∪ N ;

8 return R

Algorithm 2. LearnTrans

Description: Extends ↪→p
i

1 for 1 ≤ i ≤ M do
2 Lp ← πr

i (L);
3 for sp ∈ Lp − Rp

i do
4 ↪→p

i ← ↪→p
i ∪ {(sp, dp) |

5 dp ∈ NextStatei(sp)};
6 Rp

i ← Rp
i ∪ Lp;

cs = FALSE

cs = TRUE CS_Active

cs = FALSE,wait = 1

cs = TRUE,wait = 0

Enter

cs = FALSE,wait = 0

Exit

Restart

read-copy independent on cs

read-copy independent on wait

cs = FALSE

Leave

read-copy independent on

and read-overwrite
independent on cs

Fig. 6. MutexSimple, operations computed on their projected state space
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cs:BOOL

wait:NATURAL

finished:NATURAL

(a) Variables

FALSE

1

0

{ε}

(b) Iteration 1

TRUE FALSE

0 1

0

{ε}

(c) Iteration 2

TRUE FALSE

0 0 1

0 0 1

{ε}

(d) Iteration 3

Fig. 7. LDDs of the reachable states

3.2 List Decision Diagrams

The symbolic reachability algorithm in Sect. 3.1 uses List Decision Diagrams
(LDDs) to store the reachable states and transition relations. Similar to a Binary
Decision Diagram, an LDD [7] represents a set of vectors. Due to the sharing
of state vectors within an LDD, the memory usage can be very low, even for
very large state spaces. Three example LDDs for the running example are given
in Fig. 7. The LDDs represent the set of reachable states R in Algorithm 1 at
each iteration of Line 3. In an LDD every path from the top left node to {ε}
is a state, e.g., the initial state (FALSE , 1, 0) in Fig. 7b. A node in an LDD
represents a unique set of (sub) vectors, e.g., {ε} represents the set of zero-
length vectors and the right-most 0 of variable wait in Fig. 7d encodes the set
{(0, 0) , (0, 1) , (1, 0)}. Figure 7c shows that firing Enter will add (TRUE , 0, 0)
to R. In Fig. 7d (FALSE , 0, 0) and (FALSE , 0, 1) are added to R, by firing
Leave and Exit respectively. The benefit of using LDDs for state storage is
due to the sharing of state vectors. For example, the subvector (FALSE ) of the
states {(FALSE , 0, 0) , (FALSE , 0, 1) , (FALSE , 1, 0) , (FALSE , 1, 1)} in iteration
3 is encoded in the LDD with a single node. For bigger state spaces the sharing
can be huge; resulting in a low memory footprint for the reachability algorithm.

3.3 Performance: NextState Function

There are two big differences of Algorithm 1 with classical explicit state model
checking as used by ProB [19]. First, the state space is represented using an
LDD datastructure, which enables sharing amongst states. Second, independence
is used to apply the NextState function not state by state, but for entire
sets of states in one go. For each of the 4 states in Fig. 3, the explicit model
checking algorithm of ProB would check whether each of the 5 operations is
enabled; resulting in 20 next-state calls. With LTSmin’s symbolic reachability
Algorithm 1, only 12 NextState calls are made. This is shown in the following
table, where + means enabled, − means disabled, and C means that LTSmin
has reused the results of a previous call to ProB.

If we initialise wait with MAXINT = 500, the state space has 251,002 states.
The runtime with ProB is 70 s, with LTSmin+ProB 48 s and LTSmin performs
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State# cs wait finished Enter Exit Leave CS Active Restart

1 FALSE 1 0 + C C C −
2 TRUE 0 0 − + + + −
3 FALSE 0 0 − − C − C

4 FALSE 0 1 C − C C +

only 6012 NextState calls. The example does not have a lot of concurrency and
uses only simple data structures (and thus the overhead of the LTSmin’s ProB
front-end is more of a factor compared to the runtime of ProB for computing
successor states); other examples will show greater speedups (see Sect. 5). But
the purpose of this example is to illustrate the principles.

4 Technical Aspects and Implementation

We used a distributed approach to integrate ProB and LTSmin. Both tools
are stand-alone applications, so a direct integration, i.e., turning one of the
tools into a shared library would require considerable effort. We therefore
added extensions to both tools that convert the data formats and use sock-
ets to communicate with each other. A high level view of the integration is
shown in Fig. 8. We use the ØMQ [14] library for communication. ØMQ is ori-
ented around message queues and can be used as both, a networking library
with very high throughput and as a concurrency framework. We have chosen
ØMQ because it worked very well in previous work [4]. Although we do not

LTSMIN
Symbolic
Backend

ProB Link 
Library

Zero MQ
IPC SocketPINS LTSMIN

Extension
ProB

fastread/
fastwrite

LTSMIN Process ProB Process

Fig. 8. High level design showing the integration

(yet) have to care
about concurrency in
this work, the reac-
tor abstraction pro-
vided by ØMQ was
very handy in the
ProB extension. It
allows to implement
a server that receives
and processes mes-
sages without much effort. The communication is always initiated by LTSmin;
it sends a message and blocks until it receives the answer from ProB. We usu-
ally run both tools on a single computer using interprocess (IPC) sockets, but
it is only a matter of configuration to run the tools on different machines using
TCP sockets. We currently only support Linux and Mac OS. The communica-
tion protocol is straightforward. Reachability analysis is initiated from LTSmin
by sending an initialisation packet. ProB answers with a message containing
the relevant static information about a model, such as the dependency matrices
that LTSmin requires (see Sect. 3). Each matrix is encoded as a 2-dimensional
array, which is not optimal for a sparse matrix but is not an issue because we
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only send the matrices once. The packet also contains the list of variables, their
types, the list of transition groups, and the initial state.

States are represented as a list of so called chunks. A chunk is one of the
elements in the state vector according to Definition 2. In the case of B, each chunk
is a value of one of the state variables. Because LTSmin will not look inside the
chunks, we simply use the binary representation of ProB’s Prolog term that
represents the value of a variable. This has the advantage, that ProB does not
have to keep information about the state space. It can always recover a state
from the chunks that are sent by LTSmin. The transition groups correspond to
B operations as explained in Sect. 2. Like chunks the transition groups are only
used as names in LTSmin.

Once the initial setup is done, LTSmin will start to ask ProB for successor
states for specific transition groups. It will send a next-state message containing
a state and a transition group. The state, that LTSmin sends is a list of chunks
and ProB’s LTSmin extension can directly consume them and construct a Pro-
log term that internally represents a state. Using this constructed state and the
transition group, the extension will then ask ProB for all successor states. The
result is a list of Prolog terms, each representing a successor state. The extension
transforms the list of states into a list of lists of chunks and sends them back to
LTSmin. This is repeated until LTSmin has explored all necessary states and
sends a termination signal.

The next-state messaging is similar to Fig. 5, the projection is achieved by
replacing all read independent variables by a dummy value.

5 Experiments

To demonstrate that the combination of ProB and LTSmin improves the per-
formance of the reachability analysis and deadlock detection compared with the
standalone version of ProB, we use a wide range of B and Event-B models.
Our benchmark suite contains puzzles (e.g., towers of Hanoi) as well as specifi-
cations of protocols (e.g., Needham-Schroeder), algorithms (e.g., Simpson’s four
slot algorithm) and industrial specifications (e.g., a choreography model by SAP,
a cruise control system by Volvo and a fault tolerant automatic train protection
system by Siemens).3

The experiments were run on Ubuntu 15.10 64-bit, with 8 GB RAM, 120 GB
SSD and an Intel Sandybridge Mobile i5 2520M 2.50 GHz Dual core. The ver-
sion of ProB used in this paper is 1.5.1-beta3, and LTSmin tag LTSminProB-
iFM2016.4

Figure 9 summarises a selection of the experiments that we ran. The last two
models are Event-B models. In these experiments we used Breadth-First Search
(BFS) and looked for deadlocks. A deadlock was found only for the Philosophers
model (this is also why there are no next state call statistics for this model).
The table also contains the number of next state calls for ProB reachability
3 More detailed descriptions can be found in [5].
4 Reproduction notes at https://github.com/utwente-fmt/ProB-LTSmin-iFM16.

https://github.com/utwente-fmt/ProB-LTSmin-iFM16


286 J. Bendisposto et al.

Fig. 9. B and Event-B Machines, with BFS and deadlock detection

analysis on its own and when called from LTSmin’s symbolic reachability analy-
sis algorithm (i.e., our new integration see Sect. 3.3) without deadlock checking.
One can clearly see that we obtain a considerable reduction in wallclock time.
The ProB time is the walltime of the ProB reachability analysis and initial
state computation and does not include parsing and loading. The LTSmin CPU
time column shows how much time is spent in the LTSmin side of the symbolic
reachability analysis algorithm. The LTSmin wall time shows the total walltime,
and this also contains the time spent in the communication layer and waiting
for the ProB process to compute the next states. To compare the benefit of
our new algorithm we compute the speedup of the walltime in the last column
by dividing the ProB walltime from column 5 with the LTSmin walltime in
column 7.

We can see that for some of the smaller models the overhead of setting
up LTSmin does not pay off. However, for all larger models, except for the
Train1 Lukas POR model considerable speedups were obtained.

A major result we achieved with non default settings for LTSmin, is for ele-
vator12.eventb. This model is not listed in Fig. 9, because ProB runs out of
memory on the hardware configuration used for this experiment. LTSmin com-
puted in 34 s, with 96,523 NextState calls, that the model has 1,852,655,841
states. As reachability algorithm we chose chaining [27], and to compute a bet-
ter variable order, we ran Sloan’s bandwidth reduction algorithm [29] on the
dependency matrix.

As far as memory consumption is concerned; when performing reachabil-
ity analysis on CAN BUS, the ProB process consumes 370 MB real memory,
while the LTSmin process consumes 633 MB, with the default settings. With the
default settings LTSmin will allocate 222 elements (≈ 100 MB) for the node table
and 224 elements (≈ 500 MB) for the operations cache. If we choose a smaller
node table and operations cache for the LDD package (both 218 elements),
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LTSmin consumes only 22 MB. The default settings for LTSmin are geared
towards larger symbolic state spaces than that of CAN BUS. The default node
table and cache are too big for CAN BUS, and thus not completely filled during
reachability.

We have also run our new symbolic reachability analysis on Z and Tla+

models. For example, we successfully validated the video rental Z model from
[10]. For 2 persons and 2 titles and maximum stock level of 4, LTSmin generates
the 23009 states in 1.75 s compared to 52.4 s with ProB alone. The model con-
tained useless constants; after removing them ProB runs in 1.6 s; the runtime of
LTSmin stays unchanged. We were unable to use the output of z2sal [10] using
SAL [25] and its symbolic model checker for comparison.

In summary, Fig. 9 shows that for several non-trivial B and Event-B mod-
els, considerable improvements can be obtained using the symbolic reachability
analysis technique described in this paper.

Alternate Approaches. Other techniques for improving model checking for
B-Method and Event-B models have been developed and evaluated in the recent
years. We have run a further set of experiments using a selection of those meth-
ods; the complete results can be found in [5] For technical reasons, the experi-
ments were run on different hardware than above, a MacBook Air with 2.2 GHz
i7 processor and 8 GB of RAM. We summarise the findings here and compare
the results with our new symbolic model checking algorithm.

Benchmark ProB POR ProB Hash Tlc ProB no opt

ms Speedup ms Speedup sec Speedup ms

CAN BUS 138720 0.80 98390 1.12 3 37 110400

ConcurrentCounters 50 345.8 18400 1.06 1 17 17290

file system 2380 0.37 210 4.24 29 0.03 890

Simpson Four Slot 20860 0.70 9550 1.52 1 15 14530

Train1 Lukas POR 34030 0.75 28930 0.88 4 6 25740

nota 490 509.22 14780 16.88 10 25 249520

Ref5 Switch mch 215160 0.59 124500 1.01 6 21 126170

obsw M001 2150520 0.80 76190 22.53 55 31 1716770

The authors in [12] presented a translation from the B-Method to Tla+, with
the goal of using the Tlc model checker [32] as backend. Tlc has no constraints
solving capabilities, and as such that it can only deal with lower level models.
On the other hand, its execution can be considerably faster than ProB, and its
explicit state model checking engine (which stores fingerprints) is very efficient.
On the downside, there is a small probability that fingerprint collisions can occur.
The experiments show that Tlc does not deal well with benchmark programs
which require constraint solving (graph isomorphism, JobsPuzzle, . . . ), running
up to three orders of magnitude slower than ProB or LTSmin with ProB.



288 J. Bendisposto et al.

However, it does deal very well with lower level models, e.g., it is faster than
LTSmin for ConcurrentCounters. For many benchmark models, even those not
requiring constraint solving, our symbolic reachability analysis is faster.

For example, for the nota example, Tlc runs in about 10 s—faster than
ProB without any optimisation—but slower than LTSmin by less than a second.

Symmetry reduction [20] can be very useful; but exponential improvements
usually occur only on academic examples. Here we have experimented with the
hash marker symmetry reduction, which is ProB’s fastest symmetry method,
but is generally not guaranteed to explore all states. The method gives the
best results for certain models (e.g., file system). But for several of the larger,
industrial examples shown above, its benefit is not of the same scale as LTSmin.
In future, we will investigate combining ProB’s symmetry reduction with the
new LTSmin algorithm.

We have also experimented with partial order reduction. [11] uses a
semantic preprocessing phase to determine independence (different from our
purely syntactic determination; see Sect. 3). As such, it can induce a slow down
for some examples where this does not pay off (e.g., file system). ProB’s partial
order reduction obtains the best times for certain models with a large degree of
concurrency (ConcurrentCounters, SiemensMiniPilot Abrial, and nota). How-
ever, once we start doing invariant checking, [11] does not scale nearly as well
(e.g., it takes 134 s instead of 0.5 s for LTSmin checking the nota model). But
even without invariant checking, there are plenty examples where the symbolic
reachability analysis approach is better (e.g., Cruise finite1, Philosophers, Simp-
son Four Slot and almost two orders of magnitude for CAN BUS). In summary:

– Tlc is good for models not requiring constraint solving. It is a very efficient,
explicit state model checker. However, models often have to be rewritten (such
as CAN BUS), and there is a small chance of having fingerprint collisions.

– Symmetry reduction excels when models make use of deferred sets. However,
the hash marker method is not guaranteed to explore all states.

– Partial order reduction is very good for models with a large degree of con-
currency. However, it can cause slow downs and is less suited for invariant
checking.

– The new symbolic reachability analysis algorithm deals well with concurrency
and is by far the fastest method for certain larger, industrial models, such as
CAN BUS, obsw M001, elevator12, the ABZ landing gear model or Abrial’s
mechanical press. LTSmin is currently the only tool set that uses a symbolic
representation of the state space that is connected to ProB.

6 More Related Work, Future Work and Conclusion

We have already evaluated the use of Tlc [32] for model checking B. Another
explicit state model checker for B has been presented in [21], which uses lazy
enumeration. Symbolic model checking [8] has been used for railway applications
in [31]. The best known symbolic model checker is probably SMV [22], which uses
a low-level input language. Some comparisons between using SMV and ProB
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have been conducted in [15], where models were translated by hand. For abstract
state machines there is the AsmetaSMV [3] tool, which automatically translates
ASM specifications to SMV. It is our impression that the translation often leads
to a considerable blowup of the model, encoded in SMV’s low-level language, also
affecting performance. We did one experiment on a Tic-Tac-Toe model provided
for AsmetaSMV: NuSMV 2.6 took over 13 s to find a configuration where the
cross player wins; ProB (without LTSmin) took 0.2 s model checking time for
the same property on a similar B model. Another experiment involved puzzle
3 of the RushHour game: ProB solves this in 5 s, while NuSMV still had not
found a solution after 120 min.

Other symbolic model checkers that perform comparable well to LTSmin
include Marcie [13] and PetriDotNet[24].

The paper provides a stable architectural link between ProB and LTSmin
that can be extended. First, we plan to provide LTSmin with more fine-grained
information about the models, both statically and dynamically. Dynamically,
ProB will transmit to LTSmin which variables have actually been written by an
operation, enabling a more extensive independence notion to be used. Statically,
ProB will transmit the individual guards of operations and provide variable
read matrices for the guards. We will also transmit the individual invariants in
the same manner, to enable analysis of the invariants. (It is actually already
possible to check invariants using the present integration, simply by encoding
invariants as operations. We have done so with success for some of the examples,
e.g., the nota from Sect. 5.) When ProB transmits individual guards, we also
hope to use the guard-based partial order optimisations of LTSmin [18] and
enable LTL model checking with LTSmin.

These future directions will strengthen the capability of the verification tools
and hence further encourage the application of formal methods within industry
as identified in [6], for example to support complex railway systems verification in
CSP‖B. This will require both more fine-grained static and dynamic information.

In summary, we have presented a new scalable, symbolic analysis algorithm
for the B-Method and Event-B, along with a platform to integrate other model
checking improvements via LTSmin in the future.
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Abstract. We study a general class of distance metrics for deterministic
Mealy machines. The metrics are induced by weight functions that spec-
ify the relative importance of input sequences. By choosing an appropri-
ate weight function we may fine-tune a metric so that it captures some
intuitive notion of quality. In particular, we present a metric that is
based on the minimal number of inputs that must be provided to obtain
a counterexample, starting from states that can be reached by a given
set of logs. For any weight function, we may boost the performance of
existing model learning algorithms by introducing an extra component,
which we call the Comparator. Preliminary experiments show that use
of the Comparator yields a significant reduction of the number of inputs
required to learn correct models, compared to current state-of-the-art
algorithms. In existing automata learning algorithms, the quality of sub-
sequent hypotheses may decrease. Generalising a result of Smetsers et al.,
we show that the quality of hypotheses that are generated by the Com-
parator never decreases.

1 Introduction

In the platonic boolean world view of classical computer science, which goes
back to McCarthy, Hoare, Dijkstra and others, programs can only be correct
or incorrect. Henzinger [14] argues that this boolean classification falls short of
the practical need to assess the behaviour of software in a more nuanced fashion
against multiple criteria. He proposes to introduce quantitative fitness measures
for programs, in order to measure properties such as functional correctness, per-
formance and robustness. This paper introduces such quantitative fitness mea-
sures in the context of black-box testing, an area in which, as famously observed
by Dijkstra [10], it is impossible to establish correctness of implementations.

The scenario that we consider in this paper starts from some legacy software
component. Being able to retrieve models of such a component is potentially very
useful. For instance, if the software is changed or enriched with new functionality,
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one may use a learned model for regression testing. Also, if the source code is hard
to read and poorly documented, one may use a model of the software for model-
based testing of a new implementation, or even for generating an implementation
on a new platform automatically.

The construction of models from observations of component behaviour can
be performed using model learning (e.g. regular inference) techniques [8]. One
such technique is active learning [2,25]. In active learning, a so-called Learner
interacts with a System Under Learning (SUL), which is a black-box reactive
system the Learner can provide inputs to and observe outputs from. By interact-
ing with the SUL, the Learner infers a hypothesis, a state machine model that
intends to describe the behaviour of the SUL. In order to find out whether a
hypothesis is correct, we will typically use some conformance testing method.
If the SUL passes the test, then the model is deemed correct. If the outputs of
the SUL and the model differ, the test constitutes a counterexample, which may
then be used by the Learner to construct an improved hypothesis.

Active learning has been successfully applied to learn models of (and find
mistakes in) implementations of major protocols such as TCP [12] and TLS [9].
We have also used the approach to learn models of embedded control software
at Océ [21] and to support refactoring of software at Philips HealthTech [19].
A key issue in black-box model learning, however, is assessing the correctness of
the learned models. Since testing may fail to find a counterexample for a model,
we can never be sure that a learned model is correct. Hence there is an urgent
need for appropriate quantitative fitness measures.

Given a correct model S of the behaviour of the SUL, and a hypothesis model
H, we are interested in distance metrics d that satisfy the following three criteria:

1. d(H,S) = 0 iff H and S have the same behaviour.
2. For any ε > 0, there exists a finite test suite T such that if H and S behave

the same for all tests in T , it follows that d(H,S) < ε.
3. Metric d captures some intuitive notion of quality: the smaller d(H,S), the

better the quality of hypothesis H.

The first criterion is an obvious sanity property that any metric should satisfy.
The second criterion says that, even though we can never exclude that H and
S behave differently, we may, for any ε > 0, come up with a finite test suite T
to check whether d(H,S) < ε. By running all the tests in T we either establish
that H is a ε-approximation of S, or we find a counterexample that we can use
to further improve our hypothesis model H. The third criterion is somewhat
vague, but nevertheless extremely important. In practice, engineers will only
be willing to invest further in testing if this leads to a quantifiable increase of
demonstrated quality. They usually find it difficult to formalise their intuitive
concept of quality, but typically require that a refactored implementation of a
legacy component behaves the same for a set of common input sequences that
have been recorded in log files, or specified as part of a regression test suite.

In this paper, we introduce a new, general class of metrics for determinis-
tic Mealy machines that satisfy criteria (1) and (2). Our metrics are induced
by weight functions that specify the relative importance of input sequences.
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By choosing an appropriate weight function we may fine-tune our metric so that
it also meets criterion (3). In particular, we present metrics that are based on
the minimal number of inputs that must be provided to obtain a counterexample
starting from states that can be reached by a given set of logs. We also show that,
given any weight function, we may boost the performance of existing learning
algorithms by introducing an extra component, which we call the Comparator.
Preliminary experiments show that use of the Comparator yields a significant
reduction of the number of inputs required to learn a correct model for the SUL,
compared to a current state-of-the-art algorithm. Existing learning algorithms
do not ensure that the quality of subsequent hypotheses increases [23]. In fact,
we may have d(H ′, S) < d(H,S), even when hypothesis H is a refinement of
hypothesis H ′. Generalising a result of Smetsers et al. [23], we show that the
quality of hypotheses never decreases when using the Comparator.

Related Work. Our research is most closely related to work of Smetsers et al.
[23], which studies a simple distance metric, known from concurrency theory [3],
in the setting of active learning. This metric is based on the minimal number of
inputs required to obtain a counterexample: the longer this counterexample is,
the closer a hypothesis is to the target model. Our work generalises the results
of [23] to a much larger class of metrics, including log-based metrics that more
accurately capture intuitive notions of quality.

The area of software metrics [24] aims to measure alternative implemen-
tations against different criteria. While software metrics mostly measure the
quality of the software development process and static properties of code, our
work is more ambitious since it considers the dynamic behaviour of software.

Henzinger [14] presents a general overview of work on behaviour-based met-
rics. Most research in this area thus far has been concerned with directed metrics,
that is, metrics that are not required to be symmetrical. The idea is that for a
given system X and requirement r, the distance function d describes the degree
to which system X satisfies requirement r. Černỳ et al. [6], for instance, define
a metric that is applied to an implementation and a specification. It is based
on simulation relations between states of the two systems. If the specification
simulates the implementation, then the distance is 0. However, if there is a state
pair (q, q′), such that q does not simulate q′, then a ‘simulation failure game’
is played. At a point where the specification has no transition with the same
label as a transition of the implementation, the specification is allowed to choose
some transition, at the cost of one penalty point. The distance between the two
systems is then defined as the total number of penalty points reached when the
implementation maximises, and the specification minimises the average number
of penalty points. In our work we use metrics to compare hypotheses. Since
we compare hypotheses in both directions, we use undirected (symmetric) met-
rics in our work. Thrane et al. [26] study directed metrics between weighted
automata [11]. In contrast, our work shows how weighted automata can be used
to define undirected metrics between unweighted automata.
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De Alfaro et al. [1] study directed and undirected metrics in both a linear
time and a branching time setting. Most related to our work are the results on
undirected linear distances. The starting point for the linear distances is the dis-
tance ‖σ − ρ‖∞ between two traces σ and ρ, which measures the supremum of
the differences in propositional valuations at corresponding positions of σ and ρ.
The distance between two systems is then defined as the Hausdorff distance of
their sets of traces. De Alfaro et al. [1] provide a logical characterization of these
distances in terms of a quantitative version of LTL, and present algorithms for
computing distances over metric transition systems, in particular an O(n4) algo-
rithm for computing distances between states of a deterministic metric transition
system, where n is the size of the structure. The undirected linear distance met-
ric of De Alfaro et al. [1] does not meet our second criterion for distance metrics
(existence of finite test suites). However, the authors extend their results to a
discounted context in which distances occurring after i steps are multiplied by
αi, where α is a discount factor in [0, 1]. We expect that finite test suites do exist
for the discounted metrics of De Alfaro et al. [1], but it is not evident that the
O(n4) algorithm for computing distances generalizes to the metric setting.

There are intriguing relations between our results and the work of Brandán
Briones et al. [5] on a semantic framework for test coverage. In [5] also a general
class of weight functions is introduced, which are called weighted fault models,
which includes a finiteness condition in order to enable test coverage. However,
weighted fault models do not induce a metric (since they may assign weight 0
to certain sequences) and hence the resulting theory is quite different.

2 Preliminaries

Sequences. Let I be any set. The set of finite sequences over I is denoted I∗.
Concatenation of finite sequences is denoted by juxtaposition. We use ε to denote
the empty sequence. The sequence containing a single element e ∈ I is denoted
as e. The length of a sequence σ ∈ I∗, i.e. the number of concatenated elements
of σ, is denoted with |σ|. We write σ ≤ ρ to denote that σ is a prefix of ρ.

Mealy Machines. We use Mealy machines as models for reactive systems.

Definition 1. A Mealy machine is a tuple M = (Σ,Γ,Q, q0, δ, λ), where Σ is
a nonempty, finite set of inputs, Γ is a nonempty, finite set of outputs, Q is a
finite set of states, q0 ∈ Q is the initial state, δ : Q × Σ → Q is a transition
function, and λ : Q × Σ → Γ is a transition output function. Functions δ and λ
are extended to Q × Σ∗ by defining, for all q ∈ Q, i ∈ Σ and σ ∈ Σ∗,

δ(q, ε) = q , δ(q, iσ) = δ(δ(q, i), σ),
λ(q, ε) = ε , λ(q, iσ) = λ(q, i)λ(δ(q, i), σ).

Observe that for each state and input pair exactly one transition is defined.
The semantics of a Mealy machine are defined in terms of output functions:
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Definition 2. An output function over Σ and Γ is a function A : Σ∗ → Γ ∗

that maps each sequence of inputs to a corresponding sequence of outputs such
that, for all σ, ρ ∈ Σ∗, |σ| = |A(σ)|, and σ ≤ ρ ⇒ A(σ) ≤ A(ρ).

Definition 3. The semantics of a Mealy machine M are defined by the output
function AM given by AM (σ) = λ(q0, σ), for all σ ∈ Σ∗.

Let M1 = (Σ,Γ,Q1, q
0
1 , δ1, λ1) and M2 = (Σ,Γ,Q2, q

0
2 , δ2, λ2) be two Mealy

machines that share common sets of input and output symbols. We say M1 and
M2 are equivalent, denoted M1 ≈ M2, iff AM1 = AM2 . An input sequence σ ∈ Σ∗

distinguishes states q1 ∈ Q1 and q2 ∈ Q2 iff λ1(q1, σ) �= λ2(q2, σ). Similarly, σ
distinguishes M1 and M2 iff AM1(σ) �= AM2(σ).

3 Weight Functions and Metrics

The metrics that we consider in this paper are parametrized by weight functions.
Intuitively, a weight function specifies the importance of input sequences: the
more weight an input sequence has, the more important it is that the output it
generates is correct.

Definition 4. A weight function for a nonempty, finite set of inputs Σ is a
function w : Σ∗ → R>0 such that, for all t > 0, {σ ∈ Σ∗ | w(σ) > t} is finite.

The finiteness condition in the above definition asserts that, even though the
domain Σ∗ is infinite, a weight function may only assign a value larger than t
to a finite number of sequences, for any t > 0. Therefore, weight functions must
involve some form of discounting by which long input sequences get smaller
weights. This idea is based on the intuition that “a potential bug in the far-away
future is less troubling than a potential bug today” [7].

Example 5. Let us define a weight function w by w(σ) = 2−|σ|, for each σ ∈ Σ∗.
Let t ∈ R>0. In order to see that w is a weight function, observe that

w(σ) > t ⇔ 2−|σ| > t ⇔ |σ| < − log2 t.

Since Σ is finite, this implies that the set {σ ∈ Σ∗ | w(σ) > t} is finite, as
required.

Below we define how a weight function induces a distance metric on output
functions. Intuitively, the most important input sequence two output functions
disagree on, i.e. the sequence with maximal weight, determines the distance.

Definition 6. Let A,B be output functions over Σ and Γ , and let w be a weight
function over Σ. Then the distance metric d(A,B) induced by w is defined as:

d(A,B) = max{w(σ) | σ ∈ Σ∗ ∧ A(σ) �= B(σ)},

with the convention that max ∅ = 0. Sequence σ ∈ Σ∗ is a w-maximal distin-
guishing sequence for A and B if A(σ) �= B(σ) and w(σ) = d(A,B).
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Note that d(A,B) is well-defined: the set {w(σ) | σ ∈ Σ∗ ∧ A(σ) �= B(σ)} is
either empty or contains, by the finiteness restriction for weight functions, a
maximal element. Observe that for all output functions A and B with A �= B
there exists a w-maximal distinguishing sequence.

Theorem 7. Let Σ and Γ be nonempty, finite sets of inputs and outputs, and
let A be the set of all output functions over Σ and Γ . Then the function d of
Definition 6 is an ultrametric in the space A since, for any A,B,C ∈ A,

1. d(A,B) = 0 ⇔ A = B (identity of indiscernibles)
2. d(A,B) = d(B,A) (symmetry)
3. d(A,B) ≤ max(d(A,C), d(C,B)) (strong triangle inequality)

Proof

1. If A = B then d(A,B) = 0 by definition of d and the convention max ∅ = 0.
We prove the converse implication by contraposition. Assume A �= B. Then
there exists a σ ∈ Σ∗ such that A(σ) �= B(σ). Since, by definition of w,
w(σ) > 0 it follows, by definition of d, that d(A,B) �= 0.

2. Follows directly from the symmetry in the definition of d.
3. We consider four cases:

(a) If d(A,B) = 0 then d(A,B) ≤ max(d(A,C), d(C,B)) holds trivially.
(b) If d(A,C) = 0 then A = C by identity of indiscernibles and d(A,B) ≤

max(d(A,C), d(C,B)) holds trivially.
(c) If d(C,B) = 0 then C = B by identity of indiscernibles and d(A,B) ≤

max(d(A,C), d(C,B)) holds trivially.
(d) Assume d(A,B) �= 0, d(A,C) �= 0 and d(C,B) �= 0. Let σ1 be a

w-maximal distinguishing sequence for A and B, let σ2 be a w-maximal
distinguishing sequence for A and C, and let σ3 be a w-maximal dis-
tinguishing sequence for C and B. Let t1 = w(σ1), t2 = w(σ2), and
t3 = w(σ3). We prove t1 ≤ max(t2, t3) by contradiction. Suppose
t1 > max(t2, t3). By definition of d, we know that for all σ with w(σ) > t2,
A(σ) = C(σ). Similarly, we know that for all σ with w(σ) > t3,
C(σ) = B(σ). Thus, for all σ with w(σ) ≥ t1, A(σ) = C(σ) = B(σ).
This contradicts the fact that w(σ1) = t1 and A(σ1) �= B(σ1).

For any weight function w, we lift the induced distance metric from out-
put functions to Mealy machines by defining, for Mealy machines M and M ′,
d(M,M ′) = d(AM , AM ′). Observe that d(M,M ′) = 0 iff M ≈ M ′. Also, for each
ε > 0, the set {σ ∈ Σ∗ | w(σ) ≥ ε} is finite. Thus there exists a finite test suite
that we may apply to either find a counterexample that proves M �≈ M ′ or to
establish that d(M,M ′) < ε.

4 Log-Based Metrics

A log τ ∈ Σ∗ is an input sequence that has been observed during execution of
the SUL. We assume a finite set L ⊂ Σ∗ of logs that have been collected from
the SUL. For technical reasons, we require that ε is included in L.
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Let S be an unknown model of an SUL, and let H be a learned hypothesis
for S. Since S and H are Mealy Machines, we may associate to each log τ ∈ L
unique states q ∈ QS and q′ ∈ QH , that are reached by taking the transitions
for the input symbols of τ , starting from q0S and q0H respectively. In this case, we
say that τ visits the state pair (q, q′). Next, we can search for a sequence ρ that
distinguishes q and q′. Now, τρ distinguishes q0S and q0H , and hence S �≈ H. We
may define the distance of S and H in terms of the minimal number of inputs
required to distinguish any pair of states (q, q′) that is visited by some log τ ∈ L.

We will now formalize the above intuition by defining a weight function and
a distance metric. For this we need an auxiliary definition that describes how
to decompose any trace σ into a maximal prefix that is contained in L, and a
subsequent suffix.

Definition 8. Let σ ∈ Σ∗ be an input sequence. An L-decomposition of σ is
a pair (τ, ρ) such that τ ∈ L and τρ = σ. We say that (τ, ρ) is a maximal
L-decomposition if |τ | is maximal, i.e. for all L-decompositions (τ ′, ρ′) of σ we
have |τ ′| ≤ |τ |.

Observe that, since ε ∈ L, each sequence σ has a unique maximal L-
decomposition (τ, ρ). We can now define the weight function wL as a variant
of the weight function of Example 5 in which the weight is not determined
by the length of σ but rather by the length of the suffix ρ of the maximal
L-decomposition.

Definition 9. Let A be an output function over Σ and Γ , and let σ ∈ Σ∗. Then
the weight function wL is defined as wL(σ) = 2−|ρ|, where (τ, ρ) is the maximal
L-decomposition of σ. We write dL for the distance metric induced by wL.

In order to see that wL is indeed a proper weight function in the sense of
Definition 4, fix a t > 0 and derive:

{σ ∈ Σ∗ | wL(σ) > t} =
{σ ∈ Σ∗ | ∃τ, ρ : 2−|ρ| > t ∧ (τ, ρ) is a maximal L-decomposition of σ} ⊆

{τρ ∈ Σ∗ | 2−|ρ| > t ∧ τ ∈ L} =
{τρ ∈ Σ∗ | |ρ| < − log2 t ∧ τ ∈ L}

Since both Σ and L are finite the last set is finite, and therefore the first set is
finite as well.

Observe that the metric dL coincides with the metric of [3,23] if we take as
set L of logs the singleton set {ε}, as we then only take into account w-maximal
distinguishing sequences starting in the initial state.

Example 10. Let us illustrate our log-based metric with a simple coffee machine.
The machine is always used as follows. First, a coffee pod is placed, then the
machine is provided with water, then the button is pressed to obtain coffee,
and finally the machine is cleaned. The logs for the coffee machine consist
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(a) S
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clean/�

clean/�
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(b) H ′

1

23

4

5

pod/�

water/�

button/coffee

water/�

btn./�

pod/�

clean/�

clean/�

clean/�

(c) H

Fig. 1. Models of a coffee machine. The machine has one button (abbreviated as btn.
in state 2), can be provided with a pod and water, and can be cleaned. It can produce
coffee, or remain quiescent (�) after an input. The logged trace is displayed with bold
arrows. Some insignificant self-loops are not displayed.

of the sequence pod water button clean and all of its proper prefixes (i.e.,
pod water button, pod water , pod , and the empty sequence ε).

Figure 1 presents three models for the coffee machine. The model shown in
Fig. 1a is the correct model S, and the models shown in Fig. 1b and c, respec-
tively, are hypotheses H ′ and H for S. Observe that both hypotheses produce
correct output for all logs, but that they nevertheless have some incorrect tran-
sitions. In H ′, the clean transitions are incorrect in states 2, 3 and 4. In H only
the erroneous clean transition in state 3 remains.

Let us compute the distances of H ′ and H to S. A wL-maximal distinguishing
sequence to discover inequivalence of H ′ and S is pod water clean button. At the
end of this sequence, H ′ outputs coffee, while S remains quiescent, i.e., output �.
Despite that the sequence is of length four, it only takes two inputs to discover
the error starting from a state that can be reached via a log, since state 4 is
reached by pod water . Therefore, the distance between H ′ and S according to
our metric is 2−2.

A wL-maximal distinguishing sequence to discover the remaining error in H
is water clean pod button: H outputs coffee at the end of this sequence, where it
should remain quiescent. Since the prefix water has never been observed in logs,
it takes four inputs to discover this error starting from a state that has been
visited by a log: state 1 is known because it is reached by the empty sequence ε.
As a result, the distance between H and S according to our metric is 2−4.
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Observe that these distances capture the subtle improvement in H compared
to H ′ (as 2−4 < 2−2), despite that four inputs are required in both hypotheses
to discover an error. Both H ′ and H are wrong, but the problem with H ′ is more
serious, as the error is visible after two transitions starting from a state that is
reached during normal use of the system, instead of four transitions in H. In the
metric of [3,23], both hypotheses would be considered equally distant to S for
this reason.

Algorithm. Van den Bos [4] presents an algorithm for finding wL-maximal dis-
tinguishing sequences for two given models. As we will see, such an algorithm is
extremely useful as a component in model learning. The input of the algorithm
of Van den Bos [4] consists of two Mealy machines H and H ′ that agree on all
inputs from L, that is, AH(σ) = AH′(σ), for all σ ∈ L. (This can be realized,
for instance, by first checking for each hypothesis model whether it is consistent
with all the logs in L.) The key idea of the algorithm is that minimal length
distinguishing sequences (for pairs of states) are gathered by constructing a par-
tition of indistinguishable states. By processing the partition, a distinguishing
sequence of minimal length is found for each pair of states in QH × QH′ , or it is
established that the states are equivalent. After that, a wL-maximal distinguish-
ing sequence can be found by picking a minimal length distinguishing sequence
that is visited by some log in L. Intuitively, the time complexity of the search
for these sequences can be deferred from the fact that a table has to be filled for
all state pairs. Indeed, it follows that the algorithm is quadratic, i.e. of O(pn2),
where n is the sum of the number of states of H and H ′, and p is the number of
inputs. In [22] it is shown that minimal length distinguishing sequences for all
pairs of states can even be found in O(pn log n).

Weighted Automata. There are many possible variations of our log-based met-
rics. We may for instance consider variations in which the weight of a log is
partially determined by its frequency. We may also assign a higher weight to
logs in which certain “important” inputs occur. All such variations can be easily
defined using the concept of a weighted automaton [11], i.e., an automaton in
which states and transition carry a certain weight. Below we define a slightly
restricted type of weighted automaton, called weighted Mealy machine, which
only assigns weights to transitions.

Definition 11. A weighted Mealy machine is a tuple M = (Σ,Γ,Q, q0, δ, λ, c),
where (Σ,Γ,Q, q0, δ, λ) is a Mealy machine and c : Q × Σ → R>0 is a cost
function. Cost function c is extended to Q×Σ∗ by defining, for all q ∈ Q, i ∈ Σ
and σ ∈ Σ∗, c(q, ε) = 1 and c(q, iσ) = c(q, i) · c(δ(q, i), σ). The cost function
cM : Σ∗ → R>0 induced by M is defined as cM (σ) = c(q0, σ).

A cost function cM is not always a weight function in the sense of Definition 4,
since it may assign an unbounded weight to infinitely many sequences. However,
if the weight of any cycle in M is less than 1 then cM is a weight function.
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Definition 12. Let M = (Σ,Γ,Q, q0, δ, λ, c) be a weighted Mealy machine. A
path of M is an alternating sequence π = q0i0q1 · · · qn−1in−1qn of states in Q
and inputs in Σ, beginning and ending with a state, such that, for all 0 ≤ j < n,
δ(qj , ij) = qj+1. Path π is a cycle if q0 = qn and n > 0. The weight of path π is
defined as the product of the weights of the contained transitions:

∏n−1
j=0 c(qj , ij).

Theorem 13. Let M be a weighted Mealy machine, then cM is a weight function
iff all cycles have weight (strictly) less than 1.

Let L be a prefix closed set of logs (i.e. all prefixes of a log in L are also
included in L). Then the weight function wL of Definition 9 can alternatively
be defined as the weight function cM induced by a weighted automaton M with
states taken from L ∪ {⊥}, that is, the set of logs extended with an extra sink
state ⊥, initial state ε, and transition function δ and cost function c defined as:

δ(q, i) =
{

qi if q ∈ L ∧ qi ∈ L
⊥ otherwise c(q, i) =

{
1 if q ∈ L ∧ qi ∈ L
1
2 otherwise

Note that, by Theorem 13, cM is indeed a weight function.

5 An Adapted Learning Algorithm

In this section, we will explain how weight functions and their induced metrics
can be used to improve model learning.

Active learning is a learning framework in which a Learner can ask questions
(queries) to a Teacher, as visualized in Fig. 2a. We assume that the Teacher
is capable of answering queries correctly according to the Minimally Adequate
Teacher (MAT) model of Angluin [2]. The Teacher knows a Mealy machine S
which is unknown to the Learner. Initially, the Learner only knows the input
and output symbols of S. The task of the Learner is to learn S by asking two
types of queries:

– With a membership query (MQ), the Learner asks what the response is to an
input sequence σ ∈ Σ∗. The Teacher answers with the output sequence AS(σ).

– With an equivalence query (EQ), the Learner asks whether a hypothesized
Mealy machine H is correct, that is, whether H ≈ S. The Teacher answers
yes if this is the case. Otherwise it answers no and supplies a counterexample,
which is a sequence σ ∈ Σ∗ that produces a different output sequence for both
Mealy machines, that is, AH(σ) �= AS(σ).

Starting from Angluin’s seminal L∗ algorithm [2], many algorithms have been
proposed for learning a Mealy machine H that is equivalent to S via a finite
number of queries. We refer to [15] for an excellent recent overview. In applica-
tions in which one wants to learn a model of a black-box reactive system, the
Teacher typically consists of a System Under Learning (SUL) that answers the
membership queries, and a conformance testing (CT) tool [16] that approximates
the equivalence queries using a set of test queries (TQs). A test query consists
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Learner Teacher

MQs

input sequences

output sequences

EQ

hypothesis

counterexample

(a)

Learner TQs

SUL

CT

MQs

EQ

input sequences

output sequences

(b)

Fig. 2. Active learning framework (a) and implementation for black-box learning (b).

of asking the SUL what the response is to an input sequence σ ∈ Σ∗, similar to
a membership query. A schematic overview of such an implementation of active
learning is shown in Fig. 2b.

We will now explain how weight functions and the metrics they induce can
be used to enhance active learning. Our idea is to place a new “Comparator”
component in between the Learner and the Teacher, as displayed in Fig. 3. The
Comparator ensures that the distance of subsequent hypotheses to the target
model S never increases. Moreover, the Comparator may replace an equivalence
query by a single membership query. This speeds up the learning process, since a
Teacher typically answers an equivalence query by running a large number of test
queries generated by a conformance testing algorithm. In the printer controller
case study of [21], for instance, on average more than 270.000 test queries were
used to implement a single equivalence query.

Learner Teacher

Comparator

MQs

H

EQ

σ or τ

EQ

H

τ

σ

MQ

AS(σ)

prev. H ′

w-max σ = AH(σ)�= AH(σ)
σ is a cex.

Fig. 3. Active learning framework with the Comparator in the middle.

Assume we have a weight function w and an oracle which, for given models
H and H ′ with H �≈ H ′, produces a w-maximal distinguishing sequence, that is,
a sequence σ ∈ Σ∗ with d(H,H ′) = w(σ) and AH(σ) �= AH′(σ). The behavior
of the Comparator component can now be described as follows:
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– The first equivalence query from the Learner is forwarded to the Teacher, and
the resulting reply from the Teacher is forwarded again to the Learner.

– The Comparator always remembers the last hypothesis that it has forwarded
to the Teacher.

– Upon receiving any subsequent equivalence query from the Learner for the
current hypothesis H, the Comparator computes a w-maximal distinguishing
sequence σ for H and the previous hypothesis H ′, as described in the previous
section. The Comparator poses a membership query σ to the Teacher and
awaits the reply AS(σ). Depending on the reply, two things may happen:
1. AS(σ) �= AH(σ). The Comparator has found a counterexamples for hypoth-

esis H, and returns no together with σ to the Learner in response to the
equivalence query.

2. AS(σ) = AH(σ). The Comparator forwards the equivalence query to the
Teacher, waits for the reply, and forwards this to the Learner.

From the perspective of the Learner, the combination of a Comparator and
a Teacher behave like a regular Teacher, since all membership and equivalence
queries are answered appropriately and correctly. Hence the Learner will succeed
to learn a correct hypothesis H after posing a finite number of queries.

Conversely, from the perspective of the Teacher, the Comparator and the
Learner together behave just like a regular Learner that poses membership and
equivalence queries. A key property of the Comparator/Learner combination,
however, is that the quality of hypotheses never decreases. We claim that, when-
ever the Comparator first poses an equivalence query for H ′ and then for H,
we always have d(S,H) ≤ d(S,H ′). In order to see why this is true, observe
that when the Comparator poses the equivalence query for H it has found a
w-maximal distinguishing sequence σ for H and H ′. Therefore we know that
AH(σ) �= AH′(σ) and

w(σ) = d(H ′,H) (1)

Through a membership query σ the Comparator has also discovered that
AS(σ) = AH(σ). This implies AS(σ) �= AH′(σ) and thus

w(σ) ≤ d(S,H ′) (2)

Now we infer

d(S,H) ≤ (by the strong triangle inequality, Theorem 7)
max(d(S,H ′), d(H ′,H)) = (by equation (1))

max(d(S,H ′), w(σ)) = (by inequality (2))
d(S,H ′).

Hence, the distance between subsequent hypotheses and S never increases.
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6 Case Studies

In this section, we present two case studies in which we measure the effect of
a Comparator for the log-based metrics from Sect. 4. In the first case study,
we learn a model for the Engine Status Manager (ESM), a piece of industrial
software that controls the transition from one status to another in Océ printers.
In the second case study we learn a model for the Windows 8 TCP server.

Engine Status Manager. In [20], a first attempt was made to learn a model for
the ESM using the algorithm of Rivest and Schapire [18] as implemented in
LearnLib [17]. A manually constructed reference model was used to determine
the success of the learning algorithm. The author did not succeed in learning
the complete model, as it took the Teacher too long to find a counterexample at
some point. A second attempt was made in [21]. In this work, an adaptation of a
finite state machine testing algorithm by Lee and Yannakakis [16] was used by the
Teacher to find counterexamples. The authors succeeded in learning a complete,
correct model with 3410 states for the ESM through a sequence of more than
100 hypotheses. Particularly because of the large number of hypotheses, this
case study appeared to be a suitable case to test the impact of a Comparator.

Using the same setup for the Learner and the Teacher as in [21], we have
conducted twenty independent runs for each of the following three experiments.

(a) The classical setting without a Comparator.
(b) A setting with a Comparator and the trivial log set L = {ε}. This setup

resembles the algorithm presented by Smetsers et al. [23].
(c) A setting with a Comparator, using the aforementioned algorithm for finding

w-maximal distinguishing sequences on a nontrivial set of logs.

No real logs were available to us for setup (c), because no appropriate logging
method was in place to obtain real user logs from, and setting up such logging
would be tedious. Instead, we developed a method to generate logs that resemble
real logs. In [20], a couple of ‘paths’, directly inferred from the ESM, are given.
Such a path is a sequence of subsets of the input alphabet. An input sequence for
the ESM can be obtained by concatenating inputs from the subsequent subsets
of the path. More specifically, the algorithm for doing this keeps track of the
sequence σ it has constructed, the current state q, the set of already visited
states V , and the index k of the current subset of the path. Initially, σ = ε,
q = q0, V = {q0}, and k = 0. The algorithm extends σ with an input i from
subset k if δ(q, i) �∈ V . In that case, q and V are updated accordingly. Else, we
search for an input in subset k + 1. Only sequences with their last input in the
last subset of a path are included in the logs. In total, we have generated 9800
logs for each run.

Experimental results are shown in Table 1. On average over 20 runs, setup (c)
(with Comparator) requires 25.8% fewer inputs than setup (a) (no Comparator),
and 16.8% fewer inputs than setup (b) (the algorithm of [23]) to learn a correct
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Table 1. Number of inputs used to learn a model for the ESM (n = 20).

Setup Mean Std. dev. Median Min Max

(a) 416 519 487 119 015 166 404 307 465 109 781 273 686 385 316

(b) 371 248 375 57 005 155 377 724 597 290 072 340 545 535 231

(c) 308 928 853 50 719 369 295 863 646 243 197 179 430 523 416

Table 2. Number of inputs used to learn a model for a TCP server (n = 500).

Setup Mean Std. dev. Median Min Max

(a) 163 463 154 353 106 750 35 694 1 076 538

(b) 162 948 191 222 105 487 40 927 2 380 343

(c) 159 409 141 255 110 545 41 471 1 168 348

model for the ESM. A non-parametrical, distribution independent statistical test
was used to determine that this result is significant (p < 0.05, z = −4.15).

TCP. In [13], active learning was used to obtain a model for the Windows 8 TCP
server. Using the aforementioned Learner and Teacher algorithms, the authors
succeeded in learning a model of 38 states through a series of 13 hypotheses. We
have conducted 500 runs for each of the experimental setups described above,
using the model of [13] as an SUL. Experimental results are shown in Table 2.
Unfortunately, we found no significant reduction in inputs when using the Com-
parator. We conjecture that this is due to the inherent simplicity of the model.

7 Conclusions and Future Work

We have presented a general class of distance metrics on Mealy machines that
may be used to formalize intuitive notions of quality. Preliminary experiments
show that our metrics can be used to obtain a significant reduction of the num-
ber of inputs required to learn large black-box models. For smaller models, no
reduction was found. Therefore, we conjecture that the utility of our metrics
increases as models become more complex. In future work, we plan to perform
more experiments to verify these results. In addition, we wish to do experiments
with real logs, instead of generated ones. Another topic for future research is to
develop efficient algorithms for computing w-maximal distinguishing sequences
for the weight functions induced by weighted Mealy machines. Bounding the
distance between a hypothesis and the unknown target model during learning
remains a challenging problem. Our experiments have produced discouraging
results in this sense, since the quality of a hypothesis is hard to predict because
of the high variance for different experimental runs.
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Abstract. Many companies struggle with large amounts of legacy soft-
ware that is difficult to maintain and to extend. Refactoring legacy code
typically requires large efforts and introduces serious risks because often
crucial business assets are hidden in legacy components. We investigate
the support of formal techniques for the rejuvenation of legacy embed-
ded software, concentrating on control components. Model learning and
equivalence checking are used to improve a new implementation of a
legacy control component. Model learning is applied to both the old and
the new implementation. The resulting models are compared using an
equivalence check of a model checker. We report about our experiences
with this approach at Philips. By gradually increasing the set of input
stimuli, we obtained implementations of a power control service for which
the learned behaviour is equivalent.

1 Introduction

The high-tech industry creates complex cyber physical systems. The architec-
tures for these systems evolved over many decades through a constant stream of
product innovations. This usually leads to so-called legacy components that are
hard to maintain and to extend [24,25]. Typically, these components are based
on obsolete technologies, frameworks, and tools. Documentation might not be
available or outdated and the original developers are often no longer available.
In addition, the existing regression test set for validating the component will be
very limited in most cases.

Given these characteristics, innovations that require changes of legacy com-
ponents are risky. Many legacy components implicitly incorporate important
business knowledge, hence failures will lead to substantial losses. To avoid a risky
greenfield approach, starting from scratch, several techniques are being devel-
oped to extract the crucial business information hidden in legacy components
in a (semi-)automated way and to use this information to develop a refactored
version of the component.
c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 311–325, 2016.
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There are several approaches to extract this hidden information. Static analy-
sis methods concentrate on the analysis and transformation of source code. For
instance, the commercial Design Maintenance System (DMS)1 has been used in
several industrial projects to re-engineer code. DMS is based on abstract syntax
tree (AST) representations of programs [3].

Whereas static analysis techniques focus on the internal structure of compo-
nents, learning techniques aim at capturing the externally visible behaviour of
a component. Process mining extracts business logic based on event logs [23].
In [17], a combination of static analysis and process mining has been applied to a
financial management system, identifying tasks, actors, and their roles. Process
mining can be seen as a passive way of learning which requires an instrumenta-
tion of the code to obtain event logs.

Active learning techniques [4,22] do not require code instrumentation, but
need an adapter to interact with a running system. In this approach, a learning
algorithm interacts with a software component by sending inputs and observing
the resulting output, and uses this information to construct a state machine
model. Active learning has, for instance, been successfully applied to learn mod-
els of (and to find mistakes in) implementations of protocols such as TCP [12] and
TLS [8], to establish correctness of protocol implementations relative to a given
reference implementation [2], and to generate models of a telephone switch [18]
and a printer controller [21]. Learning-based testing [11] combines active learning
and model checking. In this approach, which requires the presence of a formal
specification of the system, model checking is used to guide the learning process.
In [11] three industrial applications of learning-based testing are described from
the web, automotive and finance domains.

In this paper, we report about a novel industrial application of active learning
to gain confidence in a refactored legacy component using formal techniques. In
the absence of any formal specification of the legacy system, the use of model
checking and learning-based testing was not possible. Instead we decided to use
a different combination of tools, similar to the approach of [2,13]. The model
learning tool LearnLib [15] was used to learn Mealy machine models of the legacy
and the refactored implementation. These models were then compared to check
if the two implementations are equivalent. Since the manual comparison of large
models is not feasible, we used an equivalence checker from the mCRL2 toolset
[7] for this task. In brief, our approach can be described as follows (see also
Fig. 1):

1. Implementation A (the legacy component) is explored by a model learner.
The output of the model learner is converted to an input format for the
equivalence checker, model MA.

2. Implementation B (the refactored component) is explored by a model learner.
The output of the model learner is converted to an input format for the
equivalence checker, model MB.

3. The two models are checked by the equivalence checker. The result of the
equivalence checker can be:

1 www.semanticdesigns.com.

www.semanticdesigns.com
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Fig. 1. Approach to compare legacy component and refactored version

– The two models are equivalent. In this case we are done.
– The two models are not equivalent and a counterexample is provided: a

sequence of inputs σ for which the outputs produced by the two models
are different. In this case we proceed to step 4.

4. Because models A and B have been obtained through a finite number of tests,
we can never be sure that they correctly describe implementations A and B,
respectively. Therefore, if we find a counterexample σ for the equivalence of
models MA and MB, we first check whether implementation A and model MA
behave the same for σ, and whether implementation B and model MB behave
the same for σ. If there is a discrepancy between a model and the correspond-
ing implementation, this means that the model is incorrect and we ask the
model learner to construct a new model based on counterexample σ, that is,
we go back to step 1 or 2. Otherwise, counterexample σ exhibits a difference
between the two implementations. In this case we need to change at least one
of the implementations, depending on which output triggered in response to
input σ is considered unsatisfactory behaviour. Note that also the legacy com-
ponent A might be changed, because the counterexample might indicate an
unsatisfactory behaviour of A. After the change, a corrected implementation
needs to be learned again, i.e., we go back to step 1 or 2.

Since the learning of an implementation can take a substantial amount of
time, we start with a limited subset of input stimuli for the model-learner and
increase the number of stimuli once the implementations are equivalent for a
smaller number of stimuli. Hence, the approach needs to be executed iteratively.

We report about our experiences with the described approach on a real
development project at Philips. The project concerns the introduction of a new
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hardware component, the Power Control Component (PCC). A PCC is used
to start-up and shutdown an interventional radiology system. All computers in
the system have a software component, the Power Control Service (PCS) which
communicates with the PCC over an internal control network during the exe-
cution of start-up and shutdown scenarios. To deal with the new hardware of
the PCC, which has a different interface, a new implementation of the PCS is
needed. Since different configurations have to be supported, with old and new
PCC hardware, the old and new PCS software should have exactly the same
externally visible behaviour.

The PCS is described in Sect. 2 to the extend needed for understanding this
paper. Section 3 describes the use of model-learning and model-checking to com-
pare the two PCS implementations for the old and the new PCC. The results of
testing the two PCS implementations are described in Sect. 4. Section 5 discusses
the scalability of our approach. Concluding remarks can be found in Sect. 6.

2 The Industrial Development Project

2.1 Power Control Service

For starting up and shutting down an interventional radiology system multiple
components are involved. The Power Control Component (PCC) is a hardware
component that gets the mains power input from the hospital. It conditions the
mains power, switches the power taps that are connected to system’s internal
components and acts as the master of the system when executing start-up and
shutdown scenarios. All computers in the system are powered by the PCC and
are controlled by the PCC via a Power Control Service (PCS) that connects to
the PCC via the system’s internal control network.

Figure 2 depicts the PCS in its context. The PCS is a software component
that is used to start and stop subsystems via their Session Managers (SMs).
In addition to the start-up and shutdown scenarios executed by the PCC, the
PCS is also involved during service scenarios such as upgrading the subsystem’s
software.

Fig. 2. Context power control service
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In a typical shutdown scenario, the user presses the off button and the shut-
down scenario is initiated by the PCC. The PCC sends an event to all PCSs. The
PCS stops the SMs. Once the SMs are stopped, the PCS triggers the Operating
System (OS) to shutdown. In the end, the OS will stop the PCS.

Another scenario is to switch from closed profile to open profile when the sys-
tem is in the operational state. In closed profile only the clinical application can
be executed by the user of the system. Open profile is used during development
for testing purposes. In this scenario, the service application triggers the PCS
to switch to open profile. The PCS will then stop the SMs. When the PCS is
ready, the service application reboots the PC. After the reboot, the OS starts up
the PCS and the PCS starts a subset of the SMs based on the SM’s capabilities.
In open profile, the service application can also start the clinical application by
providing the PCS with the OpenProfileStartApplication trigger.

2.2 Refactoring

The PCS implementation for the old PCC is event-based. An event is handled
differently based on the value of global flags in the source code. Hence, all state
behaviour is implicitly coded by these flags, which makes the implementation
unmaintainable. The development of a new implementation for supporting the
new PCC is an opportunity to create a maintainable implementation. The new
implementation makes the state behaviour explicit by a manually crafted state
machine.

To be able to support both the old and the new PCC, the PCS software has
been refactored such that the common behaviour for both PCCs is extracted.
Figure 3(a) depicts the PCS before refactoring. The Host implements the IHost
interface that is used by the service application. The implementation of the PCS
after refactoring is show in Fig. 3(b).

(a) Before refactoring (b) After refactoring

Fig. 3. Class diagrams of PCS design

The PcsCommon class implements the ISessionManager interface to control
the SMs. The OldPccSupport class contains the legacy implementation for the old
PCC whereas a NewPccSupport class deals with the new PCC. Both classes inherit
from the PcsCommon class to achieve the same internal interface for the Host.
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Depending on the configuration, the Host creates an instance of either the Old-
PccSupport or the NewPccSupport class.

The PCS as depicted in Fig. 3(b) is written in C++ and consists of a total
of 3365 Lines Of Code (LOC): Host has 741 LOC, PcsCommon has 376 LOC,
OldPccSupport has 911 LOC, and NewPccSupport has 1337 LOC.

The unit test cases were adapted to include tests for the new implementation.
It was known that the unit test set is far from complete. Hence, we investigated
the possibility to use model-learning to get more confidence in the equivalence
of the old and new implementations.

3 Application of the Learning Approach

To learn models of our implementations, we used the LearnLib tool [19], see
http://learnlib.de/. For a detailed introduction into LearnLib we refer to [22].
In our application we used the development 1.0-SNAPSHOT of LearnLib and
its MealyLearner which is connected to the System Under Learning (SUL) by
means of an adapter and a TCP/IP connection.

3.1 Design of the Learning Environment

Figure 4 depicts the design used for learning the PCS component. Creating an
initial version of the adapter took about 8 h, because the test primitives of the
existing unit test environment could be re-used.

Fig. 4. Design learning environment

With this design, the PCS can be learned for both the old and the new
PCC. The adapter automatically changes the configuration of the PCS such
that the PCS knows if it needs to instantiate the old or the new implementation.
Depending on the old or new PCC, the adapter instantiates a different PCC stub.

http://learnlib.de/
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3.2 Learned Output

The Mealy machine that is the result of a LearnLib session is represented as a
“dot” file, which can be visualized using Graphviz2. A fragment of a model is
shown in Table 1.

Table 1. Fragment of a learned dot-file

digraph g {
start0 [label=”” shape=”none”];

s0 [shape=”circle” label=”0”];
s1 [shape=”circle” label=”1”];
s2 [shape=”circle” label=”2”];
s3 [shape=”circle” label=”3”];
s4 [shape=”circle” label=”4”];
s5 [shape=”circle” label=”5”];
s6 [shape=”circle” label=”6”];
s7 [shape=”circle” label=”7”];
s8 [shape=”circle” label=”8”];
s0 -> s1 [label=”|PCC(StateSystemOn)| / |PCS(Running);SM1(Running);SM2(Running)|”];
s0 -> s2 [label=”|PCC(StateSystemOff)| / |PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|”];
s1 -> s2 [label=”|PCC(ButtonSystemOff)| / |PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|”];
s1 -> s3 [label=”|Host(goToOpenProfile)| / |PCS(Stopped);SM1(Stopped);SM2(Stopped);Dev(OpenProfile)|”];
...
start0 -> s0;
}

3.3 Checking Equivalence

For models with more than five states it is difficult to compare the graphical out-
put of LearnLib for different implementations. Therefore, an equivalence checker
is used to perform the comparison. In our case, we used the tool support for
mCRL2 (micro Common Representation Language 2) which is a specification
language that can be used for specifying system behaviour. The mCRL2 lan-
guage comes with a rich set of supporting programs for analysing the behaviour
of a modelled system [7].

Once the implementation is learned, a small script is used to convert the
output from LearnLib to a mCRL2 model. Basically, the learned Mealy machine
is represented as an mCRL2 process Spec(s:States). As an example, the two
transitions of state s0 in the dot-file

s0 -> s1 [label=”|PCC(StateSystemOn)| / |PCS(Running);SM1(Running);SM2(Running)|”];
s0 -> s2 [label=”|PCC(StateSystemOff)| / |PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|”];

are translated into the following process algebra construction:

(s==s0) -> (
(PCC(StateSystemOn) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +
(PCC(StateSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2))

)

A part of the result of translating the model of Table 1 to mCRL2 is shown in
Table 2.
2 www.graphviz.org/.

www.graphviz.org/
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Table 2. Fragment of mCRL2 model

sort States = struct s0 | s1 | s2 | s3 | s4 | s5 | s6 | s7 | s8;

OsStim = struct StartPcs | StopPcs;

PCCStim = struct StateSystemOn | StateSystemOff | ...;

HostStim = struct stopForInstallation | startAfterInstallation | ...;

ServiceStates = struct Running | Stopped;

DevStates = struct OpenProfile | Shutdown;

act OS:OsStim;

act PCC:PCCStim;

act Host:HostStim;

act PCS:ServiceStates;

act SM1:ServiceStates;

act SM2:ServiceStates;

act Dev:DevStates;

proc Spec(s:States)=

(s==s0) -> (

(PCC(StateSystemOn) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +

(PCC(StateSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2))

) +

(s==s1) -> (

(PCC(ButtonSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2)) +

(Host(goToOpenProfile) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Dev(OpenProfile) . Spec(s3)) +

(Host(goToClosedProfile) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Spec(s4)) +

(Host(openProfileStartApplication) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +

(Host(openProfileStopApplication) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +

(OS(StartPcs) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +

(OS(StopPcs) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Spec(s4))

) +

(s==s2) -> (

...

);

init Spec(s0);

Given two (deterministic) Mealy machines, the labelled transition systems
for the associated mCRL2 processes are also deterministic. Since the labelled
transition systems also do not contain any τ -transitions, trace equivalence and
bisimulation equivalence coincide, and there is no difference between weak and
strong equivalences [10]. Thus, two Mealy machines are equivalent iff the associ-
ated mCRL2 processes are (strong) trace equivalent, and the mCRL2 processes
are (strong) trace equivalent iff they are (strong) bisimulation equivalent.

3.4 Investigating Counterexamples

When the equivalence check indicates that the two models are not equivalent,
the mCRL2 tool provides a counterexample. To investigate counterexamples, we
created a program that reads a produced counterexample and executes this on
the implementations. In the design depicted in Fig. 4, the LearnLib component
has been replaced by the counterexample program. As before, switching between
the two implementations can be done by instructing the adapter. In this way,
the standard logging facilities of program execution are exploited to study the
counterexample.
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4 Results of Learning the Implementations of the PCS

In this section we describe the results of applying the approach of Sect. 1 to the
implementations of the PCS component.

4.1 Iteration 1

The first iteration was used to realize the learning environment as is described
in Sect. 3.1. An adapter was created to interface between the PCS and LearnLib.
Because the communication between the PCS and the adapter is asynchronous,
the adapter has to wait some time before the state of the PCS can be examined.
In this iteration we performed a few try runs to tweak the wait time needed before
taking a sample. In addition, the first iteration was used to get an impression on
how long learning the PCS takes with different numbers of stimuli. The necessary
waiting time of 10 second after a stimulus for learning the PCS is quite long,
and this greatly influenced the time needed for learning models.

4.2 Iteration 2

After a first analysis of the time needed for model learning in iteration 1, we
decided to start learning with 9 stimuli. These 9 stimuli were all related to basic
start-up/shutdown and service scenarios. We learned the PCS implementation
for the old PCC and the PCS implementation for the new PCC. The results are
presented in Table 3. The table has a column for the number of stimuli, for the
number of states and transitions found, and for the time it took for LearnLib to
learn the implementations.

Table 3. Results learning PCS with 9 stimuli

Stimuli States Transitions Time (in seconds)

PCS implementation for old PCC 9 8 43 32531

PCS implementation for new PCC 9 3 8 1231

Note that learning a model for the old implementation took 9 h. (This
excludes the time used to test the correctness of the final model.) As described
in Sect. 3.3, the learned models were converted to mCRL2 processes. Next, the
mCRL2 tools found a counterexample starting with:

PCC(StateSystemOn), PCS(Running), SM1(Running), SM2(Running), ...
We investigated this counterexample and found an issue in the PCS imple-

mentation for the new PCC. The new implementation did not make a distinction
between the SystemOff event, and the ServiceStop and ServiceShutdown events.

Note that before performing the learning experiment the new and old imple-
mentations were checked using the existing regression test cases. This issue was
not found by the existing unit test cases.
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4.3 Iteration 3

In the third iteration, the PCS implementation for the new PCC was re-learned
after solving the fix. Table 4 describes the results.

Table 4. Results learning PCS with 9 stimuli

Stimuli States Transitions Time (in seconds)

PCS implementation for old PCC 9 8 43 32531

PCS implementation for new PCC 9 7 36 8187

An equivalence check with the mCRL2 tools resulted in a new counterexam-
ple of 23 commands:

PCC(StateSystemOn), PCS(Running), SM1(Running), SM2(Running),
Host(goToOpenProfile), PCS(Stopped), SM1(Stopped), SM2(Stopped),
Dev(OpenProfile), OS(StartPcs), PCS(Running), SM1(Stopped),
SM2(Running), Dev(OpenProfile), Host(openProfileStopApplication),
PCS(Running), SM1(Stopped), SM2(Running), Dev(OpenProfile),
PCC(ButtonSystemOff), PCS(Running), SM1(Stopped), SM2(Running).

When we executed this counterexample on the PCS implementation for the
old PCC, we found the following statement in the logging of the PCS: “Off
button not handled because of PCS state (Stopping)”. A quick search in the
source code revealed that the stopSessionManagers method prints this statement
when the Stopping flag is active. This is clearly wrong, because this flag is set by
the previous stimulus, i.e., the openProfileStopApplication stimulus. The PCS
implementation for the old PCC was adapted to reset the Stopping flag after
handling the openProfileStopApplication stimulus.

4.4 Iteration 4

In the fourth iteration, the PCS implementation for the old PCC was re-learned
after solving the fix. Table 5 describes the results after re-learning. Note that,
after correcting the error, learning the model for the old implementation only
takes slightly more than one hour. When checking the equivalence, the mCRL2
tool reports that the two implementation are (strong) trace equivalent for these
9 stimuli.

Table 5. Results learning PCS with 9 stimuli

Stimuli States Transitions Time (in seconds)

PCS implementation for old PCC 9 7 36 4141

PCS implementation for new PCC 9 7 36 8187
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4.5 Iteration 5

As a next step we re-learned the implementations for the complete set of 12
stimuli; the results are shown in Table 6. Note that learning the new implemen-
tation takes approximately 3.5 h. The mCRL2 tools report that the two obtained
models with 12 stimuli are trace equivalence and bisimulation equivalent.

Table 6. Results learning PCS with 12 stimuli

Stimuli States Transitions Time (in seconds)

PCS implementation for old PCC 12 9 65 10059

PCS implementation for new PCC 12 9 65 12615

5 Scalability of the Learning Approach

Using model learning we found issues in both a legacy software component and in
a refactored implementation. After fixing these issues, model learning helped to
increase confidence that the old and the new implementations behave the same.
Although this is a genuine industrial case study, the learned Mealy machine
models are very small. Nevertheless, learning these tiny models already took
up to 9 h. For applying these techniques in industry there is an obvious need
to make model learning more efficient in terms of the time needed to explore a
system under learning. Clearly, our approach has been highly effective for the
PCC case study. But will it scale?

Below we present an overview of some recent results that make us optimistic
that indeed our approach can be scaled to a large class of more complex legacy
systems.

5.1 Faster Implementations

The main reason why model learning takes so long for the PCC case study is
the long waiting time in between input events. As a result, running a single
test sequence (a.k.a. membership query) took on average about 10 s. One of the
authors was involved in another industrial case study in which a model for a
printer controller was learned with 3410 states and 77 stimuli [21]. Even though
more than 60 million test sequences were needed to learn it, the task could be
completed within 9 h because on average running a single test sequence took only
0.0005 s. For most software components the waiting times can be much smaller
than for the PCS component studied in this paper. In addition, if the waiting
times are too long then sometimes it may be possible to modify the components
(just for the purpose of the model learning) and reduce the response times. For
our PCC case study such an approach is difficult. The PCS controls the Session
Managers (SMs), which are Windows services. After an input event we want to
observe the resulting state change of the SMs, but due to the unreliable timing
of the OS we need to wait quite long. In order to reduce waiting times we would
need to speed up Windows.
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5.2 Faster Learning and Testing Algorithms

There has been much progress recently in developing new algorithms for
automata learning. In particular, the new TTT learning algorithm that has
been introduced by Isberner [16] is much faster than the variant of Angluin’s
L∗ algorithm [4] that we used in our experiments. Since the models for the PCS
components are so simple, the L∗ algorithm does not need any intermediate
hypothesis: the first model that L∗ learns is always correct (that is, extensive
testing did not reveal any counterexample). The TTT algorithm typically gen-
erates many more intermediate hypotheses than L∗. This means that it becomes
more important which testing algorithm is being used. But also in the area of
conformance testing there has been much progress recently [9,21]. Figure 5 dis-
plays the results of some experiments that we did using an implementation of the
TTT algorithm that has become available very recently in LearnLib, in combina-
tion with a range of testing algorithms from [9,21]. As one can see, irrespective
of the test method that is used, the TTT algorithm reduces the total number of
input events needed to learn the final PCS model with a factor of about 3.

5.3 Using Parallelization and Checkpointing

Learning and testing can be easily parallelized by running multiple instances of
the system under learning (in our case the PCS implementation) at the same
time. Henrix [14] reports on experiments in which doubling the number of parallel
instances nearly doubles the execution speed (on average with a factor 1.83).
Another technique that may speed-up learning is to save and restore software
states of the system under learning (checkpointing). The benefit is that if the
learner wants to explore different outgoing transitions from a saved state q it only
needs to restore q, which usually is much faster than resetting the system and
bringing it back to q by an appropriate sequence of inputs. Henrix [14] reports
on experiments in which checkpointing with DMTCP [5] speeds up the learning
process with a factor of about 1.7.

5.4 Using Abstraction and Restriction

The number of test/membership queries of most learning algorithms grows lin-
early with the number of inputs. However, these algorithms usually assume an
oracle that provides counterexamples for incorrect hypothesis models. Such an
oracle is typically implemented using a conformance testing algorithm. In prac-
tice, conformance testing often becomes a bottleneck when the number of inputs
gets larger. Thus we seek methods that help us to reduce the number of inputs.

To get confidence that two implementations with a large number of stimuli
exhibit the same behaviour, a simple but practical approach is to apply model
learning for multiple smaller subsets of stimuli. This will significantly reduce the
learning complexity, also because the set of reachable states will typically be
smaller for a restricted number of stimuli. Models learned for a subset of the
inputs may then be used to generate counterexamples while learning models for
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Fig. 5. Experiments with TTT algorithm for final PCS implementation for new PCC.
The used test methods (W, Wp, hybrid adaptive distinguishing sequences, hybrid
UIOv) were all randomised. For each test method 100 runs were performed. In each
case 95 % of the runs were in the shaded area. The dotted lines give the median run
for a given test method.

larger subsets on inputs. Smeenk [20] reports on some successful experiments in
which this heuristic was used.

A different approach, which has been applied successfully in many case stud-
ies, is to apply abstraction techniques that replace multiple concrete inputs by
a single abstract input. One may, for instance, forget certain parameters of an
input event, or only record the sign of an integer parameter. We refer to [1,6]
for recent overviews of these techniques.

6 Concluding Remarks

We presented an approach to get confidence that a refactored software compo-
nent has equivalent external control behaviour as its non-refactored legacy soft-
ware implementation. From both the refactored implementation and its legacy
implementation, a model is obtained by using model learning. Both learned mod-
els are then compared using an equivalence checker. The implementations are
learned and checked iteratively with increasing sets of stimuli to handle scala-
bility. By using this approach we found issues in both the refactored and the
legacy implementation in an early stage of the development, before the compo-
nent was integrated. In this way, we avoided costly rework in a later phase of the
development. As future work, we intend to apply our approach to other software
components that will be refactored, including a substantially larger component.
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Abstract. Machine-learning-based Android malware classifiers perform
badly on the detection of new malware, in particular, when they take API
calls and permissions as input features, which are the best performing
features known so far. This is mainly because signature-based features are
very sensitive to the training data and cannot capture general behaviours
of identified malware. To improve the robustness of classifiers, we study
the problem of learning and verifying unwanted behaviours abstracted
as automata. They are common patterns shared by malware instances
but rarely seen in benign applications, e.g., intercepting and forwarding
incoming SMS messages. We show that by taking the verification results
against unwanted behaviours as input features, the classification perfor-
mance of detecting new malware is improved dramatically. In particular,
the precision and recall are respectively 8 and 51 points better than those
using API calls and permissions, measured against industrial datasets
collected across several years. Our approach integrates several methods:
formal methods, machine learning and text mining techniques. It is the
first to automatically generate unwanted behaviours for Android mal-
ware detection. We also demonstrate unwanted behaviours constructed
for well-known malware families. They compare well to those described
in human-authored descriptions of these families.

Keywords: Mobile security · Static analysis · Software verification ·
Machine learning · Malware detection

1 Introduction

Android malware, including trojans, spyware and other kinds of unwanted
software, has been increasingly seen in the wild and even on official app
stores [17,37]. To automatically detect Android malware, machine learning meth-
ods have been applied to train malware classifiers [5,8,21,22,36]. Among them,
the tool Drebin [8] extracts a broad range of features, such as permissions, com-
ponents, API calls and intents, then trains an SVM classifier. DroidAPIMiner [5]
c© Springer International Publishing Switzerland 2016
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uses refined API calls and relies on the KNN (k-nearest neighbours) algorithm.
Another interesting tool is CHABADA [22] which detects outliers (abnormal API
usage) within clusters of applications by exploiting OC-SVM (one-class SVM).
All of these classifiers were trying to obtain good fits to the training data by
using different methods and variant kinds of features. However, the robustness
of malware classifiers has received much less consideration. As we will show in
Table 2, the classification performance of detecting new malware is poor, in par-
ticular, when API calls and permissions are used as input features, which are
the most popular and the best performing features known so far.

On the other hand, researchers and malware analysts have organised malware
instances into hundreds of families [30,37], e.g., Basebridge, Geinimi, Ginmaster,
Spitmo, Zitmo, etc. These malware instances share certain unwanted behaviours,
for example, sending premium messages constantly, collecting personal infor-
mation, loading classes from hidden payloads then executing commands from
remote servers, and so on. Except for some inaccurate online analysis reports
[1–4,24] of identified malware families, however, people have no idea of what
exactly happens in these malware instances.

We want to learn unwanted behaviours exhibited in hundreds and thousands
of malware instances and verify the application in question, e.g., an application
submitted to an app store, to deny them. We will show that verifying these
unwanted behaviours can improve the robustness of Android malware classifiers.
Our approach integrates formal methods, machine learning, and text mining
techniques, and proceeds as follows.

– Formalisation. We approximate an Android application’s behaviours by a
finite-state automaton, that is, a set of finite control-sequences of events,
actions, and annotated API calls. Since different API calls might indicate
the same behaviour, we abstract the automaton by aggregating API calls into
permission-like phrases. We call it a behaviour automaton.

– Learning. An unwanted behaviour is a common behaviour which is shared
by malware instances and has been rarely seen in benign applications. We
develop a machine-learning-centred method to infer unwanted behaviours, by
efficiently constructing and selecting sub-automata from behaviour automata
of malware instances. This process is guided by the behavioural difference
between malware and benign applications.

– Refinement. To purify unwanted behaviours, we exploit the family names of
malware instances to help figure out the most informative unwanted behav-
iours. We compare unwanted behaviours with the human-authored descrip-
tions for malware families, to confirm that they match well with patterns
described in these descriptions.

– Verification. We check whether the application in question has any security
fault by verifying whether the intersection between its behaviour automaton
and an unwanted behaviour is not empty.

We take malware instances released in different years respectively as training,
validation and testing sets. They were collected from several industrial datasets.



328 W. Chen et al.

– Training and Validation. We collected 3,000 malware instances, which have
been discovered between 2011 and 2013, and 3,000 benign applications. They
include some famous benign applications, such as Google Talk, Amazon Kin-
dle, and Youtube, and so on; and all malware instances from Malware Genome
Project [37] and most malware instances from Mobile-Sandbox [30]. These
malware instances have been manually investigated and organised into around
200 families by third-party researchers and malware analysts. By reading their
online malware analysis reports [1–4,24], we learned what bad things would
happen in these malware instances. We divided them into a training set and
a validation set. Each of them consists of 1,500 malware instances across all
families and 1,500 benign applications.

– Testing. We test using a collection of 1,500 malware instances, which were
released in 2014, and 1,500 benign applications. These malware instances were
from Intel Security and have been investigated by malware analysts. But, there
is no family information or online analysis report for them. We have no idea of
their unwanted behaviours. The collection of benign applications, which was
collected in 2014, is disjoint from the collection of benign applications used
for training and validation, which was collected between 2011 and 2013. These
two collections were all supplied by Intel Security.

We use API calls, permissions, and the verification results against unwanted
behaviours as input features; then apply L1-Regularized Linear Regression [32]
to train classifiers. The evaluation on the testing set shows that the precision and
recall of using unwanted behaviours are respectively 8 and 51 points better than
those of using API calls and permissions. As shown in Table 2, using API calls
and permissions as input features, can achieve very good precision and recall
on the validation set, however, its classification performance on the testing set
is poor. That is, unwanted behaviours are more general than API calls and
permissions. This is needed in practice: to mitigate over-fitting and improve the
robustness of malware classifiers.

Our approach is the first to learn unwanted behaviours from Android malware
instances. The main contributions of this paper are to:

– demonstrate that it is hard to detect new malware for classifiers trained on
identified Android malware instances, by using signature-based features;

– show that using semantics-based features like unwanted behaviours dramati-
cally improves the classification performance of new malware detection;

– supply a static analysis tool to construct behaviour automata from the byte-
code, considering a broad range of features of the Android framework;

– apply a novel machine-learning-centred algorithm to efficiently choose salient
sub-automata to characterise unwanted behaviours;

– apply a refinement approach to look up the most informative unwanted behav-
iours, by making use of the family names of malware instances.

Related Work. The idea to abstract applications’ behaviours as automata is
similar with the behaviour abstraction in [11,34]. The behaviour automata are
close to permission-event graphs [16], and more compact than embedded call
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graphs [21] and behaviour graphs [35]. None of them has been exploited to
automatically generate verifiable properties.

The idea to learn unwanted behaviours is close to the methodology proposed
by Fredrikson et al. to synthesize malware specification [19]. In their work, a
data dependence graph with logic constraints on nodes and edges was used to
characterise an application’s behaviours. From the graphs of malware instances
and benign applications they constructed so-called significant subgraphs that
maximise the information gain. Then, the optimal collections of subgraphs were
selected using the formal concept analysis. The main drawback of this method is
its scalability. Also, the training and testing sets were very unbalanced, i.e., the
number of benign applications is much less than that of malware instances. We
overcome these limitations by using behaviour automata as the abstract model,
training and testing on large and balanced datasets.

The unwanted behaviours can be considered as instances of security
automata [28]. Our verification approach is the same as the automata-theoretic
model checking [33]. In total, 19 malicious properties for Android applications
were manually constructed and specified as first-order LTL formulae in [23]. Some
benign and malicious properties specified in LTL were verified against hundreds
of Android applications in [16]. But, none of these properties was automatically
constructed.

Among others, Angluin’s [7] and Biermann’s [12] algorithms were developed
to learn regular expressions from sample finite strings. To apply similar ideas in
unwanted behaviour construction, we have to extract enough finite strings from
applications to approximate their behaviours. Compared with our construction
of behaviour automata, this would be more complex and expensive.

2 An Example Unwanted Behaviour

Let us consider a malware family called Ggtracker. A brief human-authored
description of this family which was produced by Symantec [4] is as follows.

It sends SMS messages to a premium-rate number. It monitors received
SMS messages and intercepts SMS messages. It may also steal information
from the device.

One of the unwanted behaviours we have learned from malware instances in this
family can be expressed as the regular expression: SMS RECEIVED.SEND SMS.
The approach to learn these unwanted behaviours will be elaborated in Sect. 4.
It denotes the behaviour of sending an SMS message out immediately after an
incoming SMS message is received without the interaction from the user. Some
behaviours of the application in question are not the same as the unwanted
behaviours, but, they often have the unwanted behaviours as sub-sequences. For
example, the behaviour SMS RECEIVED.READ PHONE STATE.SEND SMS
contains SMS RECEIVED.SEND SMS as a subsequence. To capture behaviours
sharing the same patterns with the unwanted behaviours, if a behaviour contains
an unwanted behaviour as a sub-sequence, we consider this behaviour as unwanted
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as well. We call them extended unwanted behaviours. So, we generalise from the
above unwanted behaviour and construct the following automaton ψ:

�� �������	q0
SMS RECEIVED ��

Σ−{click}
��

�������	q1
SEND SMS ��

Σ−{click}
��

�������	
������q2

Σ−{click}
��

Here, we use the symbol Σ to denote the collection of events, actions, and
permission-like phrases and the word “click” to denote that there is no inter-
action from the user. In Sect. 4.2 we will show a method to refine unwanted
behaviours by making use of the family names of malware instances. To distin-
guish and compare these unwanted behaviours, we use respectively unwanted,
ext. unwanted, and ext. unwanted for families to denote them.

We now want to verify whether a target application has the above unwanted
behaviour. Let us consider the following behaviour automaton A:

�� �������	
������q0
MAIN ��

SMS RECEIVED

��

�������	
������q1
SEND SMS ��

click

��
�������	
������q2

SEND SMS

��

�������	
������q3
READ PHONE STATE

�� �������	
������q4

READ PHONE STATE

��

It is constructed from the bytecode of an Android application using static analy-
sis. Its source code and the method to construct behaviour automata will be given
in Sect. 3. It tells us: this application has two entries which are respectively spec-
ified by actions MAIN and SMS RECEIVED; it will collect information like the
phone state, then send SMS messages out; the behaviour of sending SMS mes-
sages can also be triggered by an interaction from the user, e.g., click a button,
touch the screen, long-press a picture, etc., which is denoted by the word “click”.
A string accepted by this automaton characterises a behaviour of this applica-
tion. All states in this automaton are accepting states since any prefix of an
application’s behaviours is one of its behaviours as well.

Because the intersection between A and ψ is not empty, we consider this
application is unsafe with respect to the unwanted behaviour ψ. In Sect. 5, we
will show that this verification against unwanted behaviours can improve the
classification performance of new malware detecting.

3 Behaviour Automata

We use a simplified synthetic application to illustrate the construction of behav-
iour automata.
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3.1 An Example Android Application

This application will constantly send out the device ID and the phone number
by SMS messages in the background when an incoming SMS message is received.
Its source code and part of its manifest file follow.
public class Main extends /* Main.java */

Activity implements View.OnClickListener {
private static String info = "";
protected void onCreate(Bundle savedInstanceState) {

Intent intent = getIntent();
info = intent.getStringExtra("DEVICE_ID");
info += intent.getStringExtra("TEL_NUM");
SendSMSTask task = new SendSMSTask();
task.execute(); }

public void onClick (View v) {
SendSMSTask task = new SendSMSTask();
task.execute(); }

private class SendSMSTask extends AsyncTask<Void, Void, Void> {
protected Void doInBackground(Void... params) {

while (true) {
SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage("1234", null, info, null, null); }

return null; }}}

public class Receiver extends BroadcastReceiver { /* Receiver.java */
public void onReceive(Context context, Intent intent) {

Intent intent = new Intent();
intent.setAction("com.main.intent");
TelephonyManager tm = (TelephonyManager)
getBaseContext().getSystemService(Context.TELEPHONY_SERVICE);
intent.putExtra("DEVICE_ID", tm.getDeviceId());
intent.putExtra("TEL_NUM", tm.getLine1Number());
sendBroadcast(intent); }}

/* AndroidManifest.xml */
<activity android:name="com.example.Main" >

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<action android:name="com.main.intent" />

</intent-filter>
</activity>
<receiver android:name="com.example.Receiver" >

<intent-filter>
<action android:name="android.provider.Telephony.SMS_RECEIVED" />

</intent-filter>
</receiver>

As specified in AndroidManifest.xml, the Main activity can handle a specific
Intent called “com.main.intent” and the Receiver will be triggered by an incom-
ing SMS message (SMS RECEIVED). After the Receiver collects the device ID
and the phone number, it will send them out by a broadcast with the intent
“com.main.intent”. This broadcast is then handled by the Main activity in the
method onCreate. Afterwards, SMS messages containing the device ID and the
phone number are sent out in the background in an AsyncTask.
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3.2 An Example Behaviour Automaton

From the bytecode of this application, we construct the following automaton.

�� �������	
������q0
MAIN ��

SMS RECEIVED

��

�������	
������q1
AsyncTask: sendTextMessage ��

click

��
�������	
������q2

AsyncTask: sendTextMessage

��

�������	
������q3
Receiver: getDeviceId

�� �������	
������q4

Receiver: getLine1Number

��

This automaton is constructed from finite traces of actions, events, and anno-
tated API calls using static analysis. Actions reflect what happens in the envi-
ronment and what kind of service an application requests for, e.g., an incoming
message is received, the device finishes booting, the application wants to send
an email by using the service supplied by an email-client, etc. Events denote the
interaction from the user, e.g., clicking a picture, pressing a button, scrolling
down the screen, etc. Annotated API calls tell us whether the application does
anything we are interested in. For instance, getDeviceID, getLine1Number, and
sendTextMessage are annotated API calls in the above example.

For a single behaviour there are often several related API methods. For exam-
ple, getDeviceId, getLine1Number, and getSimSerialNumber are all related to
the behaviour of reading phone state. We categorise API methods into a set
of permission-like phrases, which describe behaviours of applications, so as to
remove redundancy caused by API calls which indicate the same behaviour. This
results in an abstract automaton, so-called a behaviour automaton. It has several
advantages, including: more resilient to variants of behaviours, such as swapping
two API calls related to the same behaviour; more compact automata, which
are good for human-understanding and further analysis, by reducing the num-
ber of labels on the edges. For instance, the behaviour automaton for the above
example is the automaton A depicted in Sect. 2.

3.3 The Implementaion

In our implementation, we use an extension of permission-governed API meth-
ods generated by PScout [9] as annotations. The Android platform tools aapt
and dexdump are respectively used to extract the manifest information and to
decompile the bytecode into the assembly code, from which we construct the
automaton. It took around two weeks to generate automata for 10,000 applica-
tions using a multi-core desktop computer. More technical details are as follows.

– Multiple Entries. A class becomes an entry if a system action, e.g., MAIN and
SMS RECEIVED, has been declared as one of its intent-filters in the mani-
fest file. For developer-defined actions, e.g., “com.main.intent” in the earlier
example, their corresponding classes become entries only when an instance
of a class is explicitly created at some control-reachable point from a system
entry.
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– Class Exploration. Starting from an entry class, from the callbacks of each
visited class, we collect new classes by exploring the new-instance and start-
component relations.

– Component life-cycle. We organise the callbacks in each Android component
according to its life-cycle, e.g., the life-cycle of AsyncTask is modelled as:

• preExecute �� • doInBackground �� • onProgressUpdate �� • postExecute �� •

– Inter-Procedural Calls. We build an inter-procedural call graph for each call-
back in each reachable class.

– New-Instances and Start-Components. For each new-instance and each start-
component relation, we add an ε-transition from the entry-point of new-
instance or start-component statement to the entry-point of the call graph for
the target class. The original transitions for these statements in the caller’s call
graphs are replaced by ε-transitions. Intuitively, this models the asynchronisa-
tion by non-deterministic choices. For example, for the statement sendBroad-
cast in onReceive method, we have:

• icc:sendBroadcast:Main �� • =⇒ •
ε

��ε �� • Activity:Main �� •

– Callbacks. We collect the following functions as callbacks: overridden methods
of Android component classes, implementations of abstract functions declared
in listener interfaces, and callbacks defined in layout files.

– Inter-Component Communications. We search through all methods for start-
component API calls, e.g., startService, startActivity, sendBroadcast, etc. We
decide whether there is a data-flow from a register containing a constant to the
entry-point of a start-component statement, and if so, we decide whether this
constant is a system action, a developer-defined action, or a developer-defined
class name. For the first two, we search the manifest file for possible matched
components. The last one has been dealt as a start-component relation in the
class exploration.

We don’t model registers, fields, assignments, operators, pointer-aliases, arrays
or exceptions. The choice of which features to model is a trade-off between
efficiency and precision.

4 Learning and Refining Unwanted Behaviours

Once a behaviour automaton has been constructed for each malware instance,
we want to capture the common behaviour shared by malware, which is rarely
seen in benign applications, so-called an unwanted behaviour.



334 W. Chen et al.

4.1 Salient Sub-Automata

The space of candidate behaviours, which consists of the intersection and dif-
ference between behaviour automata, in theory, is exponential in the number of
sample applications. To combat this, we approximate this space by searching for
a “salient” subspace. The searching process is guided by the behavioural differ-
ence between malware and benign applications. We formalise this process as the
algorithm in Fig. 1.

The main process construct features takes a collection G of behaviour
automata as input and outputs a set F of salient sub-automata with their weights
W . Here, a sub-automaton is salient if it is actually used in a linear classifier,
i.e., its weight is not zero.

Function: construct features (G, α)

Input: G – a group of behaviour automata
α – the lower bound on the classification accuracy

Output: salient sub-automata and their weights
1: Gi∈[0..N−1] ← divide the set G into N groups
2: for i ∈ [0..N − 1]

3: Fi ← merge features (Gi, ∅)

4: for (s ← 2; s ≤ N ; s ← s × 2)

5: for i ∈ [s − 1..N − 1]

6: j ← i − (s/2)

7: (Fi, ), (Fj , ) ← diff features (Fi, α), diff features (Fj , α)

8: if (i + 1)%s = 0 then
9: Fi ← merge features (Fi, Fj)

10: elif (i + 1) > (N/s) × s and (i + 1)%(s/2) = 0 then
11: Fj ← merge features (Fi, Fj)

12: return diff features (Fs/2−1, α)

Function: merge features (E, F )

1: for e ∈ E

2: for f ∈ F

3: if f − e �= ∅ then F ← F ∪ {f − e}
4: if f ∩ e �= ∅ then F ← F ∪ {f ∩ e}
5: if f − e �= f and f ∩ e �= f then F ← F − {f}
6: e ← e − f

7: if e �= ∅ then F ← F ∪ {e}
8: return F

Function: diff features(F, α)

1: D ← add an equal number of randomly-chosen benign applications
2: into the set of malware instances from which F was collected
3: W, acc ← train (D, F )

4: if acc > α then F ← {f ∈ F | Wf �= 0}
5: return F, W

Fig. 1. The algorithm for the construction of salient sub-automata.
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We divide G into N groups: G0, . . . , Gi, . . . , GN−1. For each group, we
construct sub-automata by computing the intersection and difference between
automata within this group, i.e., merge features (Gi, ∅). This results in N fea-
ture sets F0, . . . , Fi, . . . , FN−1. The sub-automata in each set are disjoint. Then,
we merge sub-automata from different groups, i.e., merge features (Gi, Gj). This
process stops when all groups have been merged into a single group.

Before merging sub-automata from two different groups, for each group, we
train a linear classifier, i.e., train (D,F ), using a training set D and a feature set
F . This training set consists of behaviour automata of malware instances in the
group and an equal number of behaviour automata of randomly-chosen benign
applications. The input feature set F consists of disjoint sub-automata, which are
constructed from behaviour automata of malware instances in the group. Then,
if the classification accuracy acc on the training set is above a lower bound α, we
return sub-automata with non-zero weights. Otherwise, we return all features in
F . This process differentiates salient features by adding benign applications. It
is formalised as the function diff features.

In our implementation, we adopt L1-Regularized Logistic Regression [32] as
the training method. This is because this method is specially designed to use
fewer features. The lower bound α on the classification accuracy is set to 90%.
We put malware instances from the same malware family into one group so
that the searching process is more directed. We have also designed and imple-
mented a multi-process program to accelerate the construction, i.e., construct
sub-automata for each group simultaneously. It took around one week to process
4, 000 malware instances using a multi-core desktop computer. At the end of the
computation, we produced around 1, 000 salient sub-automata.

4.2 Refinement

We will use these salient sub-automata to characterise unwanted behaviours. A
straightforward way is to choose automata by their weights, for example, those
with negative weights, i.e., {f ∈ F | Wf < 0}. To purify unwanted behaviours,
we want to exploit the family names of malware instances to figure out the
most informative ones, that is, to choose a small set of salient sub-automata
to characterise unwanted behaviours for each family. Here are several candidate
methods.

– Top-n-negative. For a linear classifier, intuitively, a feature with a negative
weight more likely indicates an unwanted behaviour, and a feature with a
positive weight more likely indicates a normal behaviour. This observation
leads us to refine unwanted behaviours by using sub-automata with negative
weights, i.e., choose the top-n features from the set {f ∈ F | Wf < 0} by
ranking the absolute values of their weights.

– Subset-search. For each malware family, we choose a subset X of salient sub-
automata, such that it largely covers and is strongly associated with malware
instances in this family. Formally, we use Pr(f |X) to denote the probability
that a malware instance belonging to a family f if all automata in X are sub-
automata of the behaviour automaton of this instance, and Pr(X|f) to denote
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the probability that all automata in X are sub-automata of the behaviour
automaton of a malware instance if this instance belongs to f . We use their
F1-measure as the evaluation function to look up subsets. i.e., 2Pr(f |X)Pr(X|f)

Pr(f |X)+Pr(X|f) .
Since exhaustively searching a power-set space is expensive, we adopt Beam
Search [25, Chap. 6] to approximate the best K-subsets.

– TF-IDF. Another method is to consider features as terms, features from mal-
ware instances in a family as a document, and the multi-set of features as
the corpus. We rank features by their TF-IDF (term frequency and inverse
document frequency) and choose a maximum of m features to characterise
unwanted behaviours of each family.

We use the salient sub-automata produced in previous subsection and con-
struct unwanted behaviours for each family by combining all methods discussed
earlier. We list human-authored descriptions and learned unwanted behaviours
of 10 prevalent families in Table 1. These descriptions for families were collected
from their online analysis reports [1–4,24].

A subjective comparison shows that these learned unwanted behaviours com-
pare well to their human-authored descriptions. Also, they reveal trigger condi-
tions of some behaviours, which were often lacking in human-authored descrip-
tions. For example, the expression BOOT COMPLETED.SEND SMS denotes
that after the device finishes booting, this application will send a message out; the
expression UMS CONNECTED.LOAD CLASS means that when a USB mass
storage is connected to the device, this application will load some code from a
library or a hidden payload; and the unwanted behaviour for Droiddream shows
that if the phone state changes (PHONE STATE), this application will collect
information then access the Internet. Within the human-authored descriptions
displayed in Table 1, only two behaviours are not captured by learned unwanted
behaviours: “gain root access” for Droiddream and the behaviour of Spitmo.

5 Evaluation: Detecting New Malware

We are concerned with whether unwanted behaviours can help improve the
robustness of malware classification. As we will show in Table 2, a linear clas-
sifier using API calls and permissions as input features, which are the most
popular and the best performing input features for Android malware detec-
tors [5,8,10,14,22,36], performs badly on new malware instances (the testing
set), although it has a very good classification performance on the validation
set. In this section, we will show that unwanted behaviours improve the classifi-
cation performance of new malware detection.

The training, validation, and testing sets are the same as those described in
Sect. 1. Permissions and lists of API calls appearing in the code are extracted
from these applications as input features to train classifiers as baselines. We con-
struct behaviour automata for all applications, then apply methods discussed in
Sect. 4.1 to learn unwanted behaviours from malware instances in the training
set. We check whether the intersection between the behaviour automaton of the
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Table 1. Learned unwanted behaviours versus human-authored descriptions.

Human-authored description Learned unwanted behaviours in regular

expressions

Arspam. Sends spam SMS messages to

contacts on the compromised device [4]

1. BOOT COMPLETED.SEND SMS

Anserverbot. Downloads, installs, and executes

payloads [1].

1. UMS CONNECTED.LOAD CLASS∗.
(ACCESS NETWORK STATE |READ

PHONE STATE | INTERNET). (ACCE

SS NETWORK STATE |READ PHONE

STATE | INTERNET |LOAD CLASS)∗

Basebridge. Forwards confidential details

(SMS, IMSI, IMEI) to a remote server [2].

Downloads and installs payloads [1,4]

1. UMS CONNECTED.(INTERNET |
LOAD CLASS |READ PHONE STATE |
ACCESS NETWORK STATE)+

Cosha. Monitors and sends certain

information to a remote location [4]

1.MAIN.click.(click |ACCESS FINE

LOCATION |DIAL)∗.DIAL.(click |
ACCESS FINE LOCATION |DIAL)∗.
(INTERNET | ε)

2. SMS RECEIVED.(INTERNET |
ACCESS FINE LOCATION)+

Droiddream. Gains root access, gathers

information (device ID, IMEI, IMSI) from

an infected mobile phone and connects to

several URLs in order to upload this

data [1,2]

1. PHONE STATE.(ACCESS NETWORK

STATE |READ PHONE STATE+.

INTERNET).(ACCESS NETWORK

STATE | INTERNET)∗

Geinimi. Monitors and sends certain

information to a remote location [4].

Introduces botnet capabilities with clear

indications that command and control

(C&C) functionality could be a part of the

Geinimi code base [3]

1. ε |MAIN.click+.VIBRATE.(click |
VIBRATE)∗.RESTART PACKAGES.

(MAIN.(click |VIBRATE)∗.RESTART

PACKAGES)∗

2. BOOT COMPLETED.(ACCESS

NETWORK STATE | click | INTERNET |
RESTART PACKAGES |ACCESS FINE

LOCATION)+

Ggtracker. Monitors received SMS messages

and intercepts SMS messages [2]

1. MAIN.READ PHONE STATE

2. SMS RECEIVED.SEND SMS

Ginmaster. Sends received SMS messages to a

remote server [24]. Downloads and installs

applications without user concern [24]

1. BOOT COMPLETED.LOAD CLASS

2. MAIN.SEND SMS

Spitmo. Filters SMS messages to steal banking

confirmation codes [4]

1. NEW OUTGOING CALL.READ

PHONE STATE.INTERNET.(INTERNET | ε)

Zitmo. Opens a backdoor that allows a remote

attacker to steal information from SMS

messages received on the compromised

device [4]

1. SMS RECEIVED.SEND SMS

2. MAIN.READ PHONE STATE

3. MAIN.SEND SMS
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application in question and an (extended) unwanted behaviour is not empty. We
collect these verification results as input features to train the target classifiers.
For both baselines and target classifiers, we use L1-Regularized Logistic Regres-
sion [32] as the training method. The classification performance is reported in
Table 2. The precision and recall are calculated as follows:

precision =
tp

tp + fp
and recall =

tp

tp + fn
,

where tp, fp, and fn respectively denote the true positives, false positives, and
false negatives. This table confirms that:

– The unwanted behaviours dramatically improve the classification performance
on new malware instances. The classification performance using API calls
and permissions as input features is very good on the validation set, i.e.,
the precision and recall are respectively 93 % and 98 %. However, this is just
over-fitting to the training set, since its performance on the testing set is
bad, in particular, the precision is 65 % and recall is 15 %. This means that a
lot of new behaviours cannot be captured by API calls and permissions. By
using the verification results against unwanted behaviours as input features,
we improve the precision to 73 % and the recall to 66 %, as shown in the row
of “ext. unwanted for families”.

– The generalisation from the unwanted behaviours to the extended unwanted
behaviours helps improve the classification performance as well. We increase
the precision from 53 % (in the row of “unwanted”) to 69 % (in the row of
“ext. unwanted”). Although we lose several percent of recall, we get a better
F1-measure between precision and recall.

– Refining unwanted behaviours using the family names helps improve the classi-
fication performance of detecting new malware. The precision is increased from
69 % (in the row of “ext. unwanted”) to 73 % (in the row of “ext. unwanted

Table 2. The classification performance using different features.

Feature training (2011–13) Validation (2011–13) Testing (2014) #Salient/#feature

Precision Recall Precision Recall

Signature-based features (baselines)

Permissions 89% 99% 53% 21% 59/175

Apis 91% 98% 61% 15% 1443/52432

Apis & permissions 93% 98% 65% 15% 735/52607

Semantics-based features (targets)

Unwanted 66% 91% 53% 74% 634/886

Ext. unwanted 75% 87% 69% 66% 581/886

Ext. unwanted for families 72% 72% 73% 66% 131/131

Mixed features

All 95% 99.5% 65% 7.5% 870/61149
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for families”), while maintaining the same recall. This refinement also helps
reduce the number of features which are actually used in a linear classifier,
i.e., totally 131 features were used, rather than 581 features.

– Combining syntax-based and semantics-based features results in over-fitting to
the training dataset. By doing this, although the trained classifier can achieve
the best classification performance on the validation dataset, its classification
performance on the testing dataset is poor, in particular, the recall is as low
as 7.5 % (in the row of “all”).

6 Conclusion and Further Work

To learn compact and verifiable unwanted behaviours from Android malware
instances is challenging and has not yet been considered. Compared with
manually-composed properties, unwanted behaviours, which are automatically
constructed from malware instances, will be much easier to be updated on the
changes of behaviours exhibited in new malware instances. To the best of our
knowledge, our approach is the first to automatically construct temporal prop-
erties from Android malware instances. We show that unwanted behaviours help
improve the robustness of malware classifiers, in particular, they dramatically
increase the precision and recall of detecting new malware. These unwanted
behaviours can not only be used to eliminate potentially new instances of known
malware families, but also help people’s understanding of unwanted behaviours
exhibited in these families.

Some unwanted behaviours cannot be captured by our formalisation, e.g.,
gaining root access, in which specific commands are executed, and some are not
captured precisely enough, e.g., botnet controls, in which the communication
between the app and the remote server has to be modelled. In further work, we
want to extend the current formalisation to capture more sophisticated behaviours
precisely. We will also try to combine the output of dynamic analysis, e.g., traces
produced by CopperDroid [27] or MonitorMe [23], with that of static analysis to
approximate applications’ behaviours. It would be interesting to explore whether
properties expressed in LTL are needed in the practice of Android malware detec-
tion and whether it is possible to learn them from malware.

The verification method adopted in this paper is straightforward and simple.
More efficient and complex methods, e.g., the method discussed in [29] and model
checking pushdown systems [18], will be considered in future.

The applications in current datasets were released between 2011 and 2014.
More interesting comparison and study will be done when we get applications
released in 2015 as another testing set.

Except for the unwanted behaviours, it is worth investigating whether other
machine learning methods can help improve the robustness of malware classi-
fiers, e.g., semi-supervised learning [15], the ensemble learning [13], the adaptive
boosting [20], etc. We will also compare the robustness of popular machine meth-
ods, e.g., decision trees [26], SVM [31], naive Bayes, KNN [6], etc.

It is also interesting to study whether unwanted behaviours can convince
people of the automatic malware detection.
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Abstract. We build upon established techniques of deadlock analysis by
formulating a new sound but incomplete framework for deadlock freedom
analysis that tackles some sources of imprecision of current incomplete
techniques. Our new deadlock candidate criterion is based on constraints
derived from the analysis of the state space of pairs of components. This
new characterisation represents an improvement in the accuracy of cur-
rent incomplete techniques; in particular, the so-called non-hereditary
deadlock-free systems (i.e. deadlock-free systems that have a deadlock-
ing subsystem), which are neglected by most incomplete techniques, are
tackled by our framework. Furthermore, we demonstrate how SAT check-
ers can be used to efficiently implement our framework in a way that,
typically, scales better than current techniques for deadlock analysis.
This is demonstrated by a series of practical experiments.

1 Introduction

Deadlock freedom is usually an important goal when developing and verifying
a concurrent system. A system is deadlock free if and only if it cannot reach a
state in which it can perform no further actions. Moreover, many safety prop-
erties can be reduced to verifying deadlock freedom of modified systems [12].
Unsurprisingly, even when restricted to deadlock analysis, existing automated
verification techniques still suffer from the state explosion problem.

Incomplete techniques for deadlock analysis [6,14,15] have been proposed in
attempts to circumvent the state explosion problem. These frequently scale far
better than the full state analysis required by model checking, and are sound
in proving deadlock freedom, but (i) tend not to provide examples of deadlocks
when they fail and (ii) can fail even for some deadlock-free systems; the latter
is what is meant by “incomplete”. One can see this incompleteness as the price
to pay for achieving scalability.

Current incomplete techniques are typically built around the principle that
a deadlock state, under reasonable assumptions, always presents a cycle of
ungranted requests between components of the system1. An ungranted request

1 Depending on the properties of the underlying communicating system, one might
be able to restrict such cycles to proper cycles which have at least three nodes, and
where all the nodes are distinct.
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arises from a component to another if and only if the former is trying to commu-
nicate with the latter, but they cannot agree on any event. To prove the absence
of such a cycle, these methods rely on local properties of the system, derived
from the analysis of individual components or pairs of them, to construct (either
explicitly or implicitly) and analyse a dependency graph. These approaches have
two important sources of imprecision. Firstly, under our assumptions, a cycle is a
necessary condition for a deadlock state but not a sufficient one. So, despite being
deadlock free, some deadlock-free systems present these cycles and, as such, they
cannot be handled by these methods. For instance, non-hereditary deadlock-free
systems, namely, deadlock-free systems that have a subsystem that can deadlock,
cannot be tackled by current techniques using local analysis. Secondly, to keep
the analysis of these dependency graphs efficient, some local properties, which
could be used to improve accuracy, are ignored because they focus on proposing
polynomially checkable conditions in terms of the local information collected.

In this paper, we present a new incomplete method for establishing deadlock
freedom that alleviates these sorts of imprecision. Instead of looking for cycles, we
look for complete snapshots of the system that are fully consistent with derived
local properties. A complete snapshot is an assignment of component states
to components that depicts a possible state of the concurrent system. Unlike
others, our method uses a condition that is not known to be polynomially check-
able. While unsurprising in itself, this new criterion has proved to be efficiently
determinable using the power of SAT checking. Our work has been inspired by
Martin’s definition of the State Dependency Digraph [15] (see Sect. 3), and by
the successful use of SAT checkers for livelock analysis reported in [17].

Outline. Section 2 briefly introduces CSP’s operational semantics, which is the
formalism upon which our strategy is based. However, this paper can be under-
stood purely in terms of communicating systems of LTSs, and knowledge of CSP
is not a prerequisite. Section 3 presents some current incomplete techniques for
deadlock analysis. In Sect. 4, we introduce our technique. Section 5 outlines the
accuracy of our method. In the following section, we give an encoding of our
deadlock-freedom analysis as a SAT problem. Section 7 presents some experi-
ments conducted to assess the accuracy and efficiency of our framework. Finally,
in Sect. 8, we present our concluding remarks.

2 Background

Communicating Sequential Processes (CSP) [13,20] is a notation used to model
concurrent systems where processes interact, exchanging messages. Here we
describe some structures used by the refinement checker FDR3 [10] in imple-
menting CSP’s operational semantics. As this paper does not depend on the
details of CSP, we do not describe the details of the language or its semantics.
These can be found in [20].
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CSP’s operational semantics interpret language terms in a labelled transition
system (LTS)2.

Definition 1. A labelled transition system is a 4-tuple (S,Σ,Δ, ŝ) where:

– S is a set of states;
– Σ is the alphabet (i.e. a set of events);
– Δ ⊆ S × Σ × S is a transition relation;
– ŝ ∈ S is the starting state.

For the purposes of this paper, the events τ (the silent event) and � (the
termination signal) are considered members of Σ, since there is no difference
between them and regular events in the context of deadlock analysis, and their
behaviour can be accommodated in the supercombinator framework we use.

As a convention, Σ− =̂ Σ ∪ {−}, where − /∈ Σ. We write s
e−→ s′

if (s, e, s′) ∈ Δ. There is a path from s to s′ with the sequence of events

〈e1, . . . , en〉, represented by s
〈e1,...,en〉−−−−−−→ s′, if there exist s1, . . . , sn−1 such that

s
e1−→ s1 . . . sn−1

en−→ s′. A trace of a transition system is a path such that the
initial state is ŝ.

While CSP, in common with many other languages, can have its operational
semantics given in SOS (Structural Operational Semantics) style, FDR3 repre-
sents them as combinators, a notation which is itself compositional and allows
complex CSP constructs, including communicating systems, to be represented as
supercombinator machines. A supercombinator machine consists of a set of com-
ponent LTSs along with a set of rules that describe how the transitions should be
combined. A rule combines transitions of (a subset of) the components and deter-
mines the event the machine performs. We also use these machines to analyse the
behaviour of communicating systems. For simplicity in our analysis, we restrict
FDR3’s normal definition of supercombinator machines in a way that corre-
sponds to there being a static communicating system with all communication
between components being pairwise:

Definition 2. A triple-disjoint supercombinator machine is a pair (L,R) where:

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of rules of the form (e, a) where:

• e ∈ (Σ−)n specifies the event that each component must perform, where −
indicates that the component performs no event. e must also be triple-
disjoint, that is, at most two components must be involved in a rule.

* triple disjoint(e) =̂ ∀ i, j, k : {1 . . . n} | i 	= j ∧ j 	= k ∧ i 	= k •
ei = − ∨ ej = − ∨ ek = −

• a ∈ Σ is the event the supercombinator performs.

2 FDR3 uses a more general representation of a process called a generalised labelled
transition system (GLTS). Nevertheless, this extension can be simply converted into
a traditional LTS and working with LTS makes our definitions considerably simpler.
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This restriction is similar to ones adopted in related work to ours [6,15].
Henceforth, we omit the mention of triple-disjoint.

Given a supercombinator machine, a corresponding LTS can be constructed.

Definition 3. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi,Δi, ŝi). The LTS induced by S is the tuple (S,Σ,Δ, ŝ) such that:

– S = S1 × . . . × Sn;
– Σ =

⋃n
i=1 Σi;

– Δ = {((s1, . . . , sn), a, (s′
1, . . . , s

′
n)) | ∃((e1, . . . , en), a) : R • ∀ i : {1 . . . n} •

(ei = − ∧ si = s′
i) ∨ (ei 	= − ∧ (si, ei, s′

i) ∈ Δi)}
;

– ŝ = (ŝ1, . . . , ŝn).

From now on, we use system state (component state) to designate a state in
the system’s (component’s) LTS.

Definition 4. A LTS (S,Σ,Δ, ŝ) deadlocks in a state s if and only if
deadlocked(s) holds, where:

– deadlocked(s) =̂ reachable(s) ∧ blocked(s)
– reachable(s) =̂ ∃ tr : Σ∗ • ŝ

tr−→ s

– blocked(s) =̂ ¬∃ s′ : S ; e : Σ • s
e−→ s′

When considering the deadlock detection problem, for the sake of decidabil-
ity, we only analyse supercombinator machines with a finite number of compo-
nents, which are themselves represented by finite LTSs with finite alphabets.

3 Related Work

Two of the authors of this paper have previously investigated the role played by
local analysis in establishing deadlock freedom in [1,4,8,18]. These works intro-
duce a formalisation of design patterns that can be used for designing deadlock-
free systems. Despite being efficient, as these techniques analyse components in
isolation, they can be restrictive since only a handful of behavioural patterns are
available.

In [5,6,14,15], fully-automated but incomplete techniques for deadlock free-
dom are introduced. These techniques are proposed for different contexts and
types of concurrency: [6] proposes a method for analysing syntactically-restricted
shared-variable concurrent programs, [5] adapts [6] to a more general setting
meant to describe component-based message-passing systems, [14] proposes a
method for architecturally-restricted component-based systems interacting via
message passing, and [15] proposes a method for syntactically-restricted message-
passing concurrent systems. All these methods were designed, to some extent,
around the principle that under reasonable assumptions about the system,
any deadlock state would contain a proper cycle of ungranted requests. So, to
prove deadlock freedom, they would use local properties of the system, derived
from analysing individual components and communicating pairs of components,
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to construct an ungranted-requests graph and show that such a cycle cannot
arise in any conceivable state of the system.

To discuss in more detail how such approaches work, we present the SDD
framework3 developed by Martin in [15]. We regard our framework as a devel-
opment on the SDD. Martin’s analysis of SDDs is one of the most general prior
approaches to local deadlock analysis.

In that work [15], the local properties used to prove deadlock freedom are
derived from the analysis of pairs of components, or rather a projection of the
system over a pair of its components.

Definition 5. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
pairwise projection Si,j of the machine S on components i and j is given by:

Si,j = (〈Li, Lj〉, {((ei, ej), a)|(e, a) ∈ R ∧ (ei 	= − ∨ ej 	= −)})

In Martin’s approach, a dependency digraph is constructed and then analysed
for absence of cycles. The dependency digraph constructed has a node for each
state of each component, and an edge from a state s of component i to a state s′

of component j if and only if reachablei,j((s, s′)) and ungranted requesti,j(s, s′)
hold where: reachablei,j denotes the reachable predicate for the LTS induced
by Si,j ; ungranted requesti,j(s, s′) holds when, in their respective states (i in
s and j in s′), component i is willing to synchronise with j (according to Si,j),
but they cannot agree on any event.

Under the assumption that components neither terminate nor deadlock, a
cycle of ungranted requests is a necessary condition for a system deadlock. Hence,
the absence of cycles in the dependency digraph is a proof of deadlock freedom,
whereas a cycle represents a potential deadlock which we call a SDD candidate.

Definition 6. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, where
Li = (Si, Σi,Δi, ŝi). Let U be the disjoint union of all Si and si,j denotes
state j of the component i. A sequence of component states c ∈ U∗ is a
SDD candidate if and only if for all i ∈ {1 . . . |c|}, given that ci = sj,k and
ci⊕1 = sl,m, reachablej,l((sj,k, sl,m)) and ungranted requestj,l(sj,k, sl,m) hold,
where ⊕ denotes addition modulo the length of c.

This method can carry out deadlock-freedom verification very efficiently: a
digraph can be shown to have no cycles in linear time using a modified depth-
first-search. This efficiency, however, comes with a price as the use of a cycle as
a candidate makes this method imprecise in several ways. Firstly, a cycle might
not be consistent with basic sanity conditions such as it must have a single
node per component (after all no component can be in two different states in
a single deadlock). Secondly, a cycle is only partially consistent with the local
reachability and local blocking properties derived from the analysis of pairs of
components. Note that only adjacent elements in the cycle are guaranteed to
be pairwise reachable and pairwise blocked. So, there may be local properties of

3 SDD stands for State Dependency Digraph.
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non-adjacent component states not tested for that might eliminate some SDD
candidate. Finally, a cycle, as a necessary condition, is bound to arise in some
deadlock-free systems. Thus, in such cases, this framework is ineffective. The
reason why these sources of imprecision are not addressed is that these methods
look for polynomially checkable conditions for guaranteeing deadlock freedom
and tackling any of these sources of imprecision is likely to make the problem of
finding a candidate in the dependency digraph NP-complete.

4 A New Framework for Deadlock-Freedom Verification
Using Local Analysis

In this section, we propose a new way of detecting potential deadlocks. Instead
of looking for cycles, we look for complete snapshots of the system that are
fully consistent with the local reachability and blocking information. A complete
snapshot is a tuple containing a component state per component in the system.
So, a deadlock candidate for this framework, which we call a pair candidate, is
given as follows.

Definition 7. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,Δ, ŝ) its induced LTS. A state s = (s1, . . . , sn) ∈ S is a pair candidate if
and only if pair candidate(s) holds, where:

– pair candidate(s) =̂ pairwise reachable(s) ∧ blocked(s)
– pairwise reachable(s) =̂ ∀ i, j : {1 . . . n} | i 	= j • reachablei,j((si, sj))

This new characterisation creates a framework that uses more information
to disprove potential deadlock candidates if compared to prior techniques using
pairwise analysis of components. By analysing complete snapshots, only com-
plete states of the system are examined, and as a consequence, our framework
is able to prove that systems possessing ungranted-requests cycles are deadlock
free.

Two remarks about the blocked condition deserve mention. Firstly, the block-
ing condition seems to be global, but in fact, it can be validated using individ-
ual and pairwise component analyses. As systems are triple disjoint, a state is
blocked if and only if all components can neither perform an individual event
nor communicate with another component. Secondly, this blocking condition is
exact, so in our framework, false negatives can only arise from the fact that
the derived local reachability properties may not prove the unreachability of a
candidate.

Our framework is sound, as absence of pair candidates implies deadlock free-
dom. The following theorem follows from the fact that reachability implies pair-
reachability. Its proof can be found in [3].

Theorem 1. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine and
(S,Σ,Δ, ŝ) its induced LTS. For any s ∈ S,

¬pair candidate(s) =⇒ ¬deadlocked(s)
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Fig. 1. LTSs of components L1, L2 and L3, respectively.

This criterion will be shown to be more accurate than the SDD one, but it
remains incomplete because it relies on local analysis to approximate reachabil-
ity: there may well be pair candidates that are not actually reachable.

Example 1. Let S = (〈L1, L2, L3〉,R) be the supercombinator machine such that
the components are described graphically in Fig. 1 and they must synchronise
on shared events. That is, R = {((a,−, a), a), ((b, b,−), b), ((−, c, c), c)}.

For this system, the state (p0, q0, r3) is pairwise-reachable and blocked, but
not reachable. Thus, it constitutes a pair candidate but not a deadlock. ��

What we have done here is to use a characterisation of what a deadlock state
looks like in conjunction with an approximation to the reachability criterion
for states. What it searches for are not reachable deadlocks, but rather pair-
consistent deadlocks. Therefore, we call it Pair. One could easily imagine using
different local groups of components to determining consistency, or applying
similar approaches to analyse communicating systems for individual states that
have properties other than being deadlocked.

5 Accuracy of the Pair Framework

In this section, we shed light on the class of systems that can be successfully
proved deadlock free by Pair by comparing it to the SDD framework. In this
comparison, we first outline the class of systems tackled by SDD and then we
show that our approach tackles a strictly larger class of systems.

The SDD framework has been able to successfully prove deadlock freedom for
some relevant classes of system. Martin has shown that his framework can prove
deadlock freedom for systems designed using two well-known design rules: the
resource-allocation and client-server rules. The resource allocation rule has been
proposed initially as a mechanism for avoiding deadlocks when allocating the
resources of an operating system to programs [9], whereas client-server protocols
constitute a very common paradigm for the interaction of distributed system.
Both rules prevent cycles of ungranted requests from arising.

5.1 Pair Is at Least as Good as SDD

A deadlocked state is only guaranteed to exhibit a cycle of ungranted requests
if a system (or supercombinator machine) is live, namely all its components are
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pi,0 pi,1 pi,2 pi,3 pi,4 pi,5

sitsi picksupi,i picksupi,i⊕1 putsdowni,i putsdowni,i⊕1

getsupi

Fig. 2. LTS of philosopher i.

deadlock-free and termination-free. So, in this section, to compare Pair with
SDD, we limit ourselves to live systems.

In this restricted setting, we show that our approach can prove deadlock
freedom for a system whenever SDD can. This follows from the claim that for a
live system, a blocked state must exhibit a cycle of ungranted requests.

Lemma 1 (Theorem 1 in [15]). Let S be a live supercombinator machine,
(S,Σ,Δ, ŝ) its induced LTS, and U the disjoint union of all the component states
of each component.

∃ s : S • blocked(s) =⇒ ∃ c : U∗ • sdd candidate(c)

Theorem 2. Let S be a live supercombinator machine, (S,Σ,Δ, ŝ) its induced
LTS, and U the disjoint union of all the component states of each component.

¬∃ c : U∗ • sdd candidate(c) =⇒ ¬∃ s : S • pair candidate(s)

5.2 Pair Is More Accurate Than SDD

Even though SDD is accurate for a reasonably large and relevant class of systems,
it is unable to prove deadlock freedom for non-hereditary deadlock-free systems.
This is shown by Lemma 1: if a subsystem deadlocks then there must exist a
cycle of ungranted requests between the states of components in this subsystem
that constitutes a SDD candidate. Roughly speaking, SDD can be seen as a
method that tries to prove hereditary deadlock freedom (i.e. that no subsystem
can deadlock) using local analysis. On the other hand, our method can prove
deadlock freedom for both hereditary and non-hereditary deadlock-free systems,
such as the following example.

Example 2. This well-known example system is composed of three different com-
ponents: forks, philosophers and a butler. We parametrise our system with N ,
which denotes the number of philosophers in the system.

A philosopher has access to a table at which it can pick up two forks to eat:
one at its left-hand side and the other at its right-hand side. A fork is placed,
and shared, between philosophers sitting adjacently in the table. The behaviour
of philosopher (fork) i is depicted in Fig. 2 (3). ⊕ stands for addition modulo N .

Given that these components synchronise on their shared events, the philoso-
phers and forks can reach a deadlock state in which all philosophers have acquired
their left-hand side forks and, as a consequence, no right-hand side fork is left
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Fig. 3. LTS of fork i and transitions of the butler process.

to be acquired. The butler is introduced to prevent all the philosophers from
sitting at the table at the same time, thereby precluding this deadlock state. We
use bS to depict the state in which the butler has allowed the philosophers in
S to the table. So, the butler states space is given by the set of all bS where
S ∈ P({1 . . . N}) − {{1 . . . N}}. Its transitions are created as depicted in Fig. 3,
and its initial state is given by b∅.

The complete system has N philosophers, N forks and a butler, and these
components synchronise on their shared events. Despite being deadlock free, this
system has a cycle of component states that forms a SDD candidate, namely,
where all the philosophers have acquired their left-hand fork:

〈p0,2, f1,1, p1,2, f2,1, . . . , pN−2,2, fN−1,1, pN−1,2, f0,1〉

However, this SDD candidate cannot be extended to a pair candidate, because
the latter would have to include a butler state, and no butler state is consistent
with this combination of philosopher states. ��

This example shows that the Pair method is strictly more accurate than
SDD. Going a step further, this can be seen as representative of the class of non-
hereditary deadlock-free systems where one or more components prevent some
subsystem’s deadlock from being reached. Note that many concurrent systems
use components implementing mutual exclusion algorithms or semaphores to
prevent other components reaching undesired states such as a deadlock.

Moreover, our method has better accuracy than SDD even for hereditary
deadlock-free systems, thanks to the fact that we use local reachability and
blocking information to its full extent. This increase in accuracy, however, comes
with a price. The explicit exploration of, only, localised state spaces helps to
tame the complexity of checking our deadlock-freedom condition. Nevertheless,
by strengthening the candidate’s definition in relation to prior techniques, we
end up with an NP-complete problem [3].

6 Pair Candidate Detection Using a SAT Solver

In this section, we propose a procedure that encodes the pair-candidate detection
problem in terms of propositional satisfiability, which can later be checked by
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a SAT solver. Given a supercombinator machine as an input, our procedure
creates a propositional formula in conjunctive normal form (CNF). A satisfying
assignment for this formula gives a pair candidate: the variables assigned to true
correspond to a combination of component states that forms a pair candidate,
whereas a proof of unsatisfiability entails deadlock freedom for the input system.
The use of intermediate structures in our encoding procedure and the application
of a SAT solver in the process of deadlock checking was inspired by the success
of the SLAP tool [17], which uses SAT solvers for the verification of livelocks4.

We consider for the sake of presentation that we are translating the supercom-
binator machine S = (〈L1, . . . , Ln〉,R), where Li = (Si, Σi,Δi, ŝi). Additionally,
we assume component states are unique across the system and that si,j denotes
the state j of the component i. Our encoding procedure can be divided into
two parts: an initial one where intermediate structures are calculated from the
supercombinator machine, and a final one where the boolean formula is gener-
ated based on these intermediate structures.

The intermediate structures can be seen as storing information that is later
used to filter out combinations of component states that do not belong to a valid
pair candidate. The first intermediate structure created, RequireSynci, stores
for each component the states in which cooperation is required. So, it provides
information to filter out component states that can act independently and are,
therefore, trivially not blocked.

Definition 8. RequireSynci = {s|s ∈ Si ∧ ¬independenti(s)}
– independenti(s) =̂ ∃(e, a) : R • (ei 	= − ∧ ∀ k : {1 . . . n} | k 	= i • ek = −)

∧ (∃ s′ : Si • (s, ei, s′) ∈ Δi)

The structure CanSync stores blocking information about pairs of compo-
nents. It provides information to filter out pairs of component states in which
components can interact. The triple disjointness assumption means that this
pairwise information is enough to determine whether a system state is blocked.

Definition 9

CanSync =
⋃

i,j∈{1...n}∧i�=j

{

(s, s′)
∣
∣
∣
∣
s ∈ RequireSynci ∧ s′ ∈ RequireSyncj ∧
reachablei,j((s, s′)) ∧ synci,j(s, s′)

}

– synci,j(s, s′) = ∃(e, a) : R ; t : Si ; t′ : Sj • (s, ei, t) ∈ Δi ∧ (s′, ej , t′) ∈ Δj

The last structure NPR (Not Pairwise Reachable) collects local reachability
information and is used to filter out pairs of components that are not mutually
reachable.

4 There are some significant differences with SLAP: here the propositional formula
is satisfied by a possible deadlock, whereas in SLAP the propositional formula is
satisfied by a proof of livelock freedom. We might also note that livelock arises from
a sequence of states, whereas deadlock arises in a single one.
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Definition 10

NPR =
⋃

i,j∈{1...n}∧i�=j

{

(s, s′)
∣
∣
∣
∣
s ∈ RequireSynci ∧ s′ ∈ RequireSyncj ∧
¬reachablei,j((s, s′))

}

In the second phase of our encoding procedure, we construct a boolean for-
mula based on these derived structures. The formula generated is a conjunction
of three constraints; each of them uses the information encompassed in a derived
structure to filter out invalid combinations of component states. For the construc-
tion of our formula, we use our state representation si,j to denote the boolean
variable representing this state. So, the assignment si,j = true might be seen as
claiming that this state belongs to a pair candidate, whereas si,j = false means
it does not.

The first constraint, State, restricts the space of valid combinations of com-
ponent states to complete snapshots. As discussed, only states in RequireSync
structure are relevant.

Definition 11

State =̂
∧

i∈{1...n}
(

∨

s∈RequireSynci

s) ∧
∧

i∈{1...n}
(

∧

s,s′∈RequireSynci∧s �=s′
(¬s ∨ ¬s′))

The second constraint restricts the space of valid combinations of component
states to the ones respecting local reachability properties.

Definition 12. Reachable =̂
∧

(s,s′)∈NPR

(¬s ∨ ¬s′)

Finally, the last constraint ensures that the space of valid combinations of
component states are the ones respecting our blocking requirement.

Definition 13. Blocked =̂
∧

(s,s′)∈CanSync

(¬s ∨ ¬s′)

7 Practical Evaluation

In this section, we evaluate our framework in practice; we modified FDR3 to gen-
erate our SAT encoding which is then checked by the Glucose 4.0 solver [7]. Our
prototype and the models used in this section are available at [2]. We describe
two experiments in this section: the first one evaluates deadlock freedom for ran-
domly generated systems, the second one evaluates deadlock freedom for some
deadlock-free benchmark problems. The experiments were conducted on a ded-
icated machine with a quad-core Intel Core i5-4300U CPU @ 1.90 GHz, 8 GB of
RAM, and the Fedora 20 operating system. In these experiments, we compare our
prototype with the Deadlock Checker [16] and FDR3’s deadlock freedom asser-
tion [10]. Deadlock Checker implements the SDD framework, whereas FDR3
is a complete method that performs explicit space exploration. When appropri-
ate, we combine FDR3’s explicit state exploration with partial order reduction
(FDRp) [11] or compression techniques (FDRc) [19].
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In the first experiment, we verify models of randomly-generated live sys-
tems, but with fixed communication topologies. Our goal with this experiment
is to test our tool against scripts made by non-experts. We verify systems whose
communication topologies are grid-like, fully connected, or a pair of rings. The
parameter N is related to the size of these systems. The choice of these commu-
nication topologies was based on the fact that many CSP benchmark problems
use one of these or a variation. For each of topology and N , we generate 900
random systems.

Table 1. Accuracy comparison; the numbers
not in parentheses depict the percentages of
deadlock free systems proved as so. The num-
bers in parentheses represent the total number
of deadlock free systems proved as so.

Rings Grid Fully

N Pair SDD Pair SDD Pair SDD
3 99.13 64.34 100 34.44 93.98 18.67
4 99.67 68.19 (599) (106) 98.76 6.4
5 99.71 73.57 (635) (96) 98.11 1.8
6 98.98 77.41 (644) (92) 99.25 1.1
7 100 76.14 (771) (30) 99.28 0.1
8 (469) (385) (773) (57) 99.65 0
9 (500) (422) (779) (28) 99.83 0
10 (517) (444) (774) (8) 99.52 0
15 (590) (491) (900) (0) (692) (0)
20 (645) (547) (900) (0) (703) (0)
25 (680) (566) (887) (0) (742) (0)

In Table 1, we summarise the
accuracy results obtained. For
the accuracy comparison, we take
FDR3’s deadlock assertion out, as
it is a complete method. Also,
the reason why we sometimes
present the absolute number of
deadlock-free systems is that we
use FDR3 to get the exact num-
ber of deadlock-free systems, but
when FDR3 times out, this num-
ber is unavailable. In Table 2, for
FDR3, we present the figures for
the method that worked best. So,
for the pair of rings, applying par-
tial order reduction made FDR3
scale better, whereas for the other
two cases, explicit state explo-
ration was the best option.

Based on the data gathered in
this first experiment, we can con-
clude that our prototype provides
a far better compromise between
accuracy and speed than the Deadlock Checker for the systems checked. The
fact that hereditary deadlock freedom is more difficult to achieve than deadlock
freedom seems to be the reason why our approach is substantially more accurate.
In terms of efficiency, we see that our method scales fairly well for the gener-
ated systems. It fared better than FDR3 even when combined with sophisticated
techniques to combat the state space explosion problem. For most of the cases,
our method also fared better than the Deadlock Checker. For the cases in which
the Deadlock Checker scales better, we can see a considerable difference in the
accuracy of the two methods that justifies the difference in their speed.

Our second experiment consists of applying deadlock verification methods to
some benchmark problems that are carefully designed to be deadlock free. We
chose four benchmark problems that are proved deadlock free by Pair. These
problems are the sliding window protocol (SWP), a binary telephone switch
(Telephone), the mad postman routing algorithm (Routing), and the butler
solution to the dining philosophers (Butler). These problems are discussed in
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Table 2. Efficiency comparison; we measure in seconds the time taken to check dead-
lock freedom for the 900-systems batch, and * means that the methods has timed out.
We establish a time out of 2000 s for checking each batch.

Rings Grid Fully

N Pair SDD FDR3p Pair SDD FDR3 Pair SDD FDR3

3 37.38 66.04 40.91 40.47 71.01 70.27 37.39 65.64 42.74

4 37.88 67.65 42.89 44.89 76.57 * 39.04 70.02 43.36

5 39.00 68.30 51.60 52.67 90.50 * 39.74 74.19 43.97

6 39.67 69.97 103.83 60.85 104.07 * 42.46 83.18 48.96

7 41.07 71.69 788.03 70.39 113.95 * 45.50 92.91 61.47

8 41.12 73.11 * 84.67 128.41 * 49.24 103.08 118.78

9 41.90 73.71 * 101.18 142.65 * 53.91 115.87 415.87

10 42.67 75.31 * 124.80 157.76 * 60.32 125.60 1897.71

15 46.75 80.52 * 326.56 249.27 * 108.99 210.65 *

20 52.09 89.03 * 797.25 385.99 * 208.37 372.44 *

25 57.48 95.74 * 1745.72 566.27 * 382.89 645.74 *

detail in [20]. For each of these benchmarks, we vary a parameter N which
relates to the size of these systems. Table 3 presents the results of this second
experiment, which suggests that our method scales similarly to the combination

Table 3. Benchmark efficiency comparison. We measure in seconds the time taken to
check deadlock freedom for each system. * means that the methods has timed out; we
establish a time out of 40 s for checking each system. - means that the method is unable
to prove deadlock freedom for the system.

SWP

N FDR3 SDD Pair FDR3c FDR3p

3 0.29 0.88 0.14 0.24 0.21

4 2.83 40.83 0.58 1.13 3.57

5 42.79 * 3.23 4.62 *

6 * * 18.38 25.25 *

7 * * * * *

Telephone

N FDR3 SDD Pair FDR3c FDR3p

3 * - 0.06 0.17 *

4 * - 0.11 2.93 *

5 * - 0.32 * *

6 * - 1.34 * *

7 * - 6.27 * *

8 * - 31.68 * *

Butler

N FDR3 SDD Pair FDR3c FDR3p

3 0.06 - 0.06 0.09 0.06

4 0.07 - 0.6 0.10 0.07

5 0.26 - 0.6 0.10 0.43

6 0.11 - 0.7 0.12 0.08

7 0.32 - 0.9 0.14 0.13

8 1.91 - 0.12 0.17 0.22

9 16.80 - 0.19 0.22 0.52

Routing

N FDR3 SDD Pair FDR3c FDR3p

3 * 0.10 0.06 0.10 *

4 * 0.11 0.09 0.14 *

5 * 0.13 0.13 0.18 *

10 * 0.30 0.99 0.71 *

20 * 1.11 13.27 4.45 *

30 * 3.30 * 16.72 *
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of FDR3’s assertion techniques with compression techniques. We point out that
the effective use of compression techniques requires a careful and skilful appli-
cation of those, whereas our method is fully automatic. In fact, our strategy
seems to be the most efficient option for all but the Routing problem in which
both the Deadlock Checker and FDR3’s assertion with compression techniques
outperform us.

Unsurprisingly, for some other benchmark problems our method is not able
to prove deadlock freedom. The reason is that, for these cases, deadlock freedom
depends on some global invariant preserved by the system (or perhaps by larger
subsets of the system than the pairs used here), and as argued, this type of rea-
soning is beyond the capabilities of our method. For instance, proving deadlock
freedom for the Milner’s scheduler problem, which is a fairly simple benchmark
problem, is out of our method’s reach. The issue with Milner’s scheduler is that
it is essentially a token ring which depends on the fact that there is always pre-
cisely one token present; this latter property cannot be proved by local analysis
of the sort we employ.

8 Conclusion

We have introduced a new test for deadlock freedom that extends the capabili-
ties of current state-of-the-art incomplete approaches. To do so, we introduced a
stronger deadlock candidate definition and we brought the power of SAT check-
ing to bear on a style of local analysis of systems that reaches back decades. Like
other incomplete methods, we sacrifice completeness to achieve scalability. This
incomplete nature makes, for instance, our technique (and any other one that
uses local analysis) unable to prove deadlock freedom for systems in which this
property is guaranteed by some invariant on the global behaviour of systems.

Our method rivals the speed of current incomplete approaches but gives a
considerable increase in accuracy. For the systems tested, it appears to perform
strongly in terms of speed when compared to SDD, compression and partial order
techniques. As for accuracy, our method is strictly more accurate than SDD, and
in particular, it is able to tackle non-hereditary deadlock-free systems, a class
of systems neglected by most incomplete techniques. Our ambition is to have a
deadlock checker which can be used on systems developed by non-experts who do
not necessarily have any knowledge of established design patterns for deadlock
freedom, such as those previously proposed by two of the authors.

As a future work, we plan to improve accuracy, without excessively damag-
ing speed, by proposing methods to efficiently calculate some global invariants.
This should not make our method complete, but it should enable the handling
of systems which are deadlock free by some global property of the system. Addi-
tionally, we intend to extend our framework to produce counter-examples and/or
other useful debugging information.
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Abstract. We present an integration of the constraint solving kernel of
the ProB model checker with the SMT solver Z3. We apply the combined
solver to B and Event-B predicates, featuring higher-order datatypes and
constructs like set comprehensions. To do so we rely on the finite set logic
of Z3 and provide a new translation from B to Z3, better suited for con-
straint solving. Predicates can then be solved by the two solvers work-
ing hand in hand: constraints are set up in both solvers simultaneously
and (intermediate) results are transferred. We thus combine a constraint
logic programming based solver with a DPLL(T) based solver into a single
procedure. The improved constraint solver finds application in many val-
idation tasks, from animation of implicit specifications, to test case gen-
eration, bounded and symbolic model checking on to disproving of proof
obligations. We conclude with an empirical evaluation of our approach
focusing on two dimensions: comparing low and high-level encodings of
B as well as comparing pure ProB to ProB combined with Z3.

Keywords: B-Method · Event-B · SMT · Animation

1 Introduction and Motivation

B [1] and its successor Event-B [2] are two specification languages for the for-
mal development of software and systems following the correct-by-construction
approach. Both languages are rooted in set-theory and support different higher
order data types like relations, functions and sequences. ProB [19,20] is a model
checker for both languages featuring explicit state model checking as well as dif-
ferent constraint based techniques [13,18] for the analysis of specifications.

Originally, the ProB kernel has been tailored towards satisfiable formulas,
acting primarily as a model finder [19,20]. Recent additions to ProB have
extended the kernel in a different direction. With the introduction of ProB-
based (dis-)proving of Event-B proof obligations, detecting the unsatisfiability
of predicates shifted into focus [15].

ProB’s kernel is developed in SICStus Prolog [8]. The integer part of the
solver is mostly based on the CLP(FD) library. Custom extensions and solvers
are implemented for sets, relations and records. Furthermore, support for quan-
tifiers has been added on top of CLP(FD). The different solvers are integrated
c© The Author(s) 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 361–375, 2016.
DOI: 10.1007/978-3-319-33693-0 23
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Fig. 1. ProB kernel overview

using “waitflags” to control which constraints should be tackled. Truth values
between solvers are communicated using reification variables. Figure 1 gives an
overview.

This approach is fundamentally different from the DPLL(T) [12] approach
employed by modern SMT solvers like Z3 [9]. In [15] we already compared both
approaches for Event-B proof obligations and outlined that neither is able to
outperform the other: there are a considerable number of proof obligations that
can only be solved by one of them. Hence, our idea is to combine the particular
strengths into a single solving procedure. In Sect. 1.1 we will show some examples
for strengths and weaknesses and argue towards our integrated approach.

Our new translation from B to Z3 and its integration is included in the
latest nightly release of ProB. Information regarding installation and usage is
available at:

http://stups.hhu.de/ProB/Using ProB with Z3.

1.1 Small Experiments

To outline some of the weaknesses of the CLP(FD) based solving kernel, have
a look at the following predicate: X > 3 ∧ X < 7 ∧ X < Y ∧ Y < X. Classic
CLP(FD) style domain propagation first sets up the domains 4 .. 6 for X and
−∞ .. ∞ for Y . In a second step, all values that cannot be part of a solution
are removed from the domains. Both domains end up being empty. Hence, the
predicate is detected as unsatisfiable. As soon as we drop one of the constraints on
X, CLP(FD) is unable to do so and has to resort to enumeration. For example,
the predicate X < Y ∧ Y < X can not be proven unsatisfiable by ProB’s
CLP(FD) kernel alone, as both domains for X and Y are infinite (−∞ .. ∞).
Similarly, X < 7 ∧ X < Y ∧ Y < X leads to an infinite sequence of narrowed
down domains, never reaching inconsistency. Z3 on the other hand easily detects
the unsatisfiability.

The CLP(FD) based solver in ProB however can handle certain higher-order
constructs like set comprehensions better than the SMT solvers: look for example

http://stups.hhu.de/ProB/Using_ProB_with_Z3
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at the predicate (2 �→ 4) ∈ {y|∃(x).(y = (x �→ x + 2))}. It states that the pair
(2 �→ 4) is a member of the set of all pairs y that are of the form (x, x + 2). The
predicate is identified as true by ProB. Of course the performance of Z3 highly
depends on the translation. Choosing a low-level translation, the predicate can
be broken down to 4 = 2 + 2 and be solved by Z3. If we stay on the high-
level of set logics, the set comprehension has to be described using universal
quantification. If translated this way, Z3 runs into a timeout.

Additionally, the CLP(FD) based solver performs better for model finding
tasks that involve non-linear integer constraints. As an example take the verbal
arithmetic puzzle to find (non-equal) digits K, I, S, P,A,O,N such that KISS ∗
KISS = PASSION . In B this can be written as (1000 ∗ K + 100 ∗ I + 10 ∗ S +
S) ∗ (1000 ∗ K + 100 ∗ I + 10 ∗ S + S) = 1000000 ∗ P + 100000 ∗ A + 10000 ∗
S + 1000 ∗ S + 100 ∗ I + 10 ∗ O + N . As each letter should represent a single
digit, constraints like 0 ≤ K ≤ 9 are added for all the variables. Finally, we
add pairwise disequalities for all variables. The resulting predicate is solved by
ProB in milliseconds, while Z3 answers unknown.

In the following sections we suggest a possible integration between the
CLP(FD) and SMT approaches, trying to gain the advantages of both.

2 New High-Level Translation of B to Z3

The following section will explain both our new translation from B to Z3 and
how we integrated Z3 into ProB in order to solve constraints given in B or
Event-B. First, in Sect. 2.1 we outline a normal form for B that avoids certain
constructs that are hard to translate. Primarily, this is achieved by replacing
several expressions by equivalent ones using different operators. Following, in
Sect. 2.2 we translate constraints given in normalized B into the (set-)logic of
Z3. Lastly, Sect. 3 explains how ProB’s kernel and the SMT solver are integrated
in order to combine both solvers.

2.1 Normalizing B / Event-B

B and Event-B feature many constructs that are not directly available in Z3’s
input language. In preparation of the translation from B to SMT in Sect. 2.2,
we use rewrite rules to transform a B predicate into a normal form that is easier
to translate. All these transformation rules are meant to be applied repeatedly
until a fixpoint is reached.

In a first step, we replace certain negated operators available in B by the
negation of the regular operator. For instance, we replace x /∈ y by ¬(x ∈ y).
In addition, we have to rewrite set operations involving strict subsets to subsets
and (dis-)equalities. See Table 1 for the operators and their translations.

Currently, the set logics of SMT solvers have no direct support for intervals
or the bounded B integer sets NAT, NAT1, INT. We thus rewrite constraints
featuring membership in one of these to a conjunction of disequalities, e.g.,

x ∈ 1..5 ⇔ 1 ≤ x ∧ x ≤ 5.
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Table 1. Normalization of operators

B Normalized B

E �= S ¬(E = S)

E �∈ S ¬(E ∈ S)

E �⊂ S ¬(E ⊂ S)

E �⊆ S ¬(E ⊆ S)

E ⊂ S ¬(E = S) ∧ (E ⊆ S)

Membership in unions, intersections or set differences of these are handled by
decomposing into multiple conjuncts or disjuncts respectively, e.g.,

x ∈ −2..5 ∩ NAT ⇔ (−2 ≤ x ∧ x ≤ 5) ∧ (0 ≤ x ∧ x ≤ MAXINT).

ProB represents relations and functions as sets of tuples. Usually, the set
is computed exhaustively. For certain relations or functions, e.g., infinite ones,
ProB tries to keep the set symbolic. Furthermore, B allows set theoretic opera-
tors to be applied to functions as well. For these two reasons, we cannot simply
express B functions as uninterpreted functions in SMT-LIB. We represent func-
tions in SMT-LIB the same way we do in ProB. This makes it necessary to
rewrite some B expressions on functions. For instance, we rewrite the function
application using a temporary variable:

f = {(1 �→ 4), (2 �→ 2)} ∧ x = f(1)

becomes
f = {(1 �→ 4), (2 �→ 2)} ∧ ∃t.x = t ∧ (1 �→ t) : f.

During normalization, we have to keep in mind that well-definedness conditions
of a predicate might change. In the given examples, if we request the function
value of f at 3, the predicate is not well-defined:

f = {(1 �→ 4), (2 �→ 2)} ∧ x = f(3)

We have applied the function f outside of its domain. In contrast,

f = {(1 �→ 4), (2 �→ 2)} ∧ ∃t.x = t ∧ (3 �→ t) : f.

is well-defined and evaluates to false. In several cases, we add well-defined con-
ditions later on. We show an example, division, in Sect. 2.2. Note that Rodin
creates a separate proof obligation for well-definedness. Hence, one can assume
well-definedness to be handled by those proof obligations.

Several other operators like domain(restriction) or range(restriction) can be
rewritten to set comprehensions. For example, the following equality holds for
the domain of a function f :

dom(f) = {y|∃x.(x �→ y) ∈ f}.
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More definitions of (Event-)B operators in terms of set comprehension can be
found in the “reference” books on B [1,2,25].

B features record datatypes comparable to those supported by Z3. However,
using Z3 record types have to be introduced and typed before constraints can
be applied to the fields. In normalized B, the declaration of a constrained record
is hence split in the declaration of a general record conjoined with a predicate
constraining the fields. A record membership expression like

r : struct(f1 : 11..20, f2 : 12..30)

becomes

type of r ∧ r′f1 ≥ 11 ∧ 20 ≥ r′f1 ∧ r′f2 ≥ 12 ∧ 30 ≥ r′f2.

Some functions included in B, like the two arithmetic functions min and max
or the cardinality of a set, are not directly available in SMT-LIB. We hence add
temporary variables and supply certain axioms as we did to encode function
application. For instance, the expression min(S) is replaced by variable t and
the following additional constraints are added:

– ∀m.m ∈ S ⇒ t ≤ m, i.e., the temporary variable is less or equal to all members
of the set.

– ∃m.m ∈ S ∧ t = s, i.e., t is equal to one of the members of S.

We encode max using the same pattern. For the cardinality, we add a con-
straint stating that c is the cardinality of S if there exists a bijection between
the interval 1..c and S. For the empty set, this holds for any c ≤ 0. Hence, we
add c ≥ 0 to Z3, resulting in card(∅) = 0.

The choice of axioms supplied to Z3 in order to define the B functions influ-
ences the performance. We could provide more properties of max, e.g.,

max(S1) > max(S2) ⇒ ∀c.c ∈ S2 ∧ ∃s.s ∈ S1 ∧ s > c.

Additional axioms might aid Z3 in detecting unsatisfiable predicates. However,
they might also decrease performance as they have to be considered during
reasoning.

The rules above transform a B predicate into an equivalent B predicate. How-
ever, we could go even further, depending on how we employ Z3: For animation
and (explicit state) model checking, we have to use an equivalent formula, as we
rely on the models. In contrast, for certain symbolic model checking algorithms
or proof attempts, we could use rewriting rules that transform a B predicate
into an equisatisfiable predicate. The added freedom could be used to tailor the
formula towards the solvers’ strengths. We will address this in future work.

While nearly all complicated B constructs can be rewritten to set compre-
hensions, not all of the resulting predicates can be solved by Z3. So far, we did
not have any success with the following operators:
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– The general union, general intersection, general sum and general product. For
instance, the general union of U ∈ P(P(S)) could be rewritten as union(U) =
{x|x ∈ S ∧ (∃s.s ∈ U ∧ x ∈ s)}. However, the existential quantification inside
the set comprehension leads to highly involved constraints later on.

– The construction of (non-empty) powersets. Again we could translate
P(X) = {s|s ⊆ X}.

– The iteration and closure operators of classical B.

2.2 Translation Rules

We feed the normalized constraints generated in the previous section into the
C / C++ APIs of Z3. In particular we use logics including support for sets. Z3
realizes those using the techniques described in [23].

Any logic including integer arithmetic, sets and quantifiers already covers
most of the expressions occurring in our normalized constraints. Thus, we can
pass most of the constraints unmodified. There are however some exceptions:

– Some common operators have different semantics in B and SMT-LIB.
– SMT-LIB as well as Z3 do not support set comprehensions natively. We will

translate those by using a universal quantification constraining all members
of a set variable.

– User-given sets have to be mapped to SMT-LIB sorts.

For an approach that is based on translation to be both sound and complete we
have to ensure that semantical differences are taken into account. In particular, B
features a distinct concept of well-definedness, i.e., operators may only be applied
under certain conditions. This contrasts with SMT-LIB treating operators as
total functions that always return a result. Additionally, the results of applying
certain operators differ as well.

Integer division is a prominent example: B uses a division that rounds towards
zero. In contrast, SMT-LIB semantics define a division rounding towards −∞.
Furthermore, B does not allow division by zero while for SMT solvers division
is a total function, e.g., for the predicate x = 1/0 Z3 returns the solution x = 0.
In order to overcome these differences, we set up x = a/b using SMT-LIB’s
if-then-else as

ite(a > 0, a/b, ite(b > 0, (a/b) + 1, (a/b) − 1)) ∧ b �= 0.

For the sake of brevity we can not fully discuss the semantical differences between
B and SMT-LIB in this article.

Now, let us have a look at the translation of set comprehensions. A B expres-
sion like

¬(r ∈ {x|x mod 2 = 1})

is submitted to Z3 using a temporary variable and axiomatizing the set compre-
hension. The resulting constraint is

¬(∃tmp.(r ∈ tmp ∧ ∀v.v ∈ tmp ⇔ v mod 2 = 1)).
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So far we do not provide any additional hints like instantiation triggers to Z3.
In addition to given types likes INTEGER, the B method features user defined

types represented as deferred or enumerated sets. We translate those to custom
SMT-LIB sorts. For enumerated sets we additionally introduce the identifiers
and enforce their disequality using an additional constraint. Z3 natively supports
sorts with given cardinality. Hence, if the cardinality of a user-given type can be
computed statically by ProB we can submit said cardinality to Z3.

3 Integration of Solvers

We investigated different modes of using Z3 together with the ProB kernel:

– Use it alone without relying on ProB. This approach was quickly abandoned
due to the (currently) untranslatable predicates outlined in Sects. 2.1 and 2.2.
Additionally, some translations have to resort to quantification that hinders
proof efforts and model finding.

– Use Z3 solely for falsification of B predicates. If we only rely on the SMT
solvers for the detection of unsatisfiability, we can safely skip untranslatable
parts of the predicate without risking unsound results (as those parts will be
checked by ProB’s solver). However, many predicates cannot be disproven
once important parts are missing.

– We could employ a cooperative approach where parts of a predicate are given
to one or both of the SMT solvers, while other parts are handled by the ProB
kernel. In this case, we would translate partial assignments back and forth
between the two solvers in order to communicate intermediate results.

– Lastly, we could use a fully integrated approach where the whole predicate is
given to the ProB kernel and as much as is translatable is given to the SMT
solvers. In addition to partial assignments we could transport information
about inferred or learned clauses or unsatisfiable cores back and forth.

The first approach was quickly discarded, because the SMT solvers alone are
often too weak to solve interesting predicates. This is mostly due to cumbersome
translations of higher-order B expressions like set cardinality. The same holds
true for the second approach. Even though the SMT solvers are able to falsify
several predicates that ProB cannot falsify (see Sect. 1.1), much is left to be
desired. Hence, we investigated the integrated approaches more thoroughly.

The third approach is comparable to the one taken in [24], translating B to
SAT. The key problem to this approach is to decide which predicate to translate
and submit to Z3 and which ones to keep in ProB. In [24] the authors used a
greedy approach: every predicate that can be translate will be translated.

However, we integrated the two solvers further and set up constraints in both
simultaneously. We delay the call to Z3 until after the deterministic propagation
phase of ProB and also submit the information inferred so far. Additionally, we
use the unsat core found by Z3 to control backtracking on the ProB Prolog side
and to lift ProB from backtracking to backjumping. Details on both techniques
are given below.
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Data: Predicate P , (partial) State S
Result: fails iff P is unsat, succeeds with model iff P is sat; might time out
procedure boolean solve(P, S)

set up clpfd variables(S)
set up smt variables(S)
while exists conjunct C in P that has not been set up do

D = to clpfd solver(C) // domains D from clpfd propagation

smt result = to smt solver(C,D) // transfer C and domains

if smt result = unsat then
backjump using unsat core

end

end
while exists unbound variable V in S do

clpfd labeling(V ) // binds V to value

smt result = to smt solver(V ) // V now bound: transfer new value

if smt result = unsat then
backjump using unsat core

end

end
return S with all variables labeled

Algorithm 1. Integrated Constraint Solver

Transferring CLP(FD) Domains to the SMT Solvers. As can be seen in
Algorithm 1 communication with the SMT solver starts after the determinis-
tic propagation phase. During this phase, ProB tries to deterministically infer
knowledge about the values of the variables in a predicate. For instance, from
X > 3 ∧ Y > X ProB infers Y > 4. The underlying propagation rules are not
limited to arithmetic but support further B constructs like set theory. Before a
predicate is submitted to Z3, all the statically inferred information is added to it.

Controlled Backjumping Using the Unsat Core. In case Z3 detects unsat-
isfiability, we can use Z3’s unsat core computation in order to perform backjump-
ing inside ProB’s kernel. The unsat core contains a subset of the conjuncts C
taken from P as outline in Algorithm 1. Note that this subset does not necessarily
contain the conjunct submitted last. Inside ProB’s kernel we can now backjump
until at least one of the conjuncts inside the unsat core has been removed from
both the SMT solver and the CLP(FD) solver. After the backjump, ProB can
choose a different path inside case distinctions or decide on different heuristics.
Thus, the backjump has cut of parts of the search space ProB would have
explored otherwise.

4 Limitations

One key limitation of our approach is related to the type system of B. There is
no strict differentiation between functions, sets and sequences. For instance, one
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Table 2. Results of running provers

Model # POs SMT HL-SMT ProB ProB/SMT

prove disprove prove disprove prove disprove

Landing Gear System 1, Su, et al. 2328 1478 2196 0 2311 0 2303 0

Landing Gear System 2, Su, et al. 1188 548 741 0 1176 0 1152 0

Landing Gear System 3, Su, et al. 341 171 77 0 290 0 262 0

CAN Bus, Colley 534 296 316 0 276 0 340 1

Graph Coloring, Andriamiarina, et al. 254 119 51 0 0 0 51 0

Landing Gear System, Hansen, et al. 74 59 55 0 74 0 74 0

Landing Gear System, Mammar, et al. 433 265 212 0 400 0 413 0

Landing Gear System, André, et al. 619 263 77 0 567 5 533 4

Pacemaker, Neeraj Kumar Singh 370 198 369 0 354 0 370 0

Stuttgart 21 interlocking, Wiegard 202 46 18 0 125 2 123 0

can apply the set union operator to two functions leading to a result that might
not be a function.

For the same to be allowed in the SMT-LIB translation, we had to use a
common representation: we express relations and functions as sets of pairs con-
necting input and output values; sequences are encoded as sets of pairs consisting
of the sequence index and the value.

Using this common base representation, all B and Event-B operators can
be encoded. However, we cannot use more sophisticated SMT-LIB representa-
tions anymore. In particular, sequences could have been mapped to SMT-LIB
arrays, resulting in improved performance due to the usage of specialized decision
procedures.

Another limitation is the missing support for set cardinality in Z3’s set logic.
Although it was part of the initial proposal for the SMT-LIB finite set theory [16]
it has not yet been implemented in Z3. We thus encode c = card(S) as

∃t.t ∈ S �� [1, c]

i.e., we search for a total bijection from S to the interval [1, c]. This encoding
is quite cumbersome and often leads to Z3 answering “unknown”. Cardinality
constraints however have to be used in the translation of some B operators, e.g.,
to compute the next index of a sequence upon concatenation. Hence, those can
often not be solved as well.

5 Empirical Results

In this section we will evaluate two different aspects. First, we want to know
how our new high-level translation of set theory in Z3 compares to the more
low-level approach of the SMT translation outlined in [10,11]. Second, we want
to evaluate if it is it worthwhile to integrate Z3 into ProB and to communicate
back and forth. In order to find out, we compare the integrated solution to Z3
and ProB on their own.

We benchmarked the following configurations:
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Fig. 2. Performance on proof obligations

– SMT, the SMT solvers plugin for Rodin as presented in [10,11],
– HL-SMT, our high-level translation from Event-B to SMT featuring Z3’s set

theory, alone without ProB’s solver,
– ProB, a plain version of ProB’s constraint solving kernel, and
– ProB/SMT, ProB’s constraint solving kernel integrated with Z3.

For better comparability, we used the same set of benchmarks already
employed in [15]:

– Answers to the ABZ-2014 landing gear case study [6]. Beside our own ver-
sion [14], we also used the three models by Su and Abrial [26], a model
by André, Attiogbé and Lanoix [4], as well as a model by Mammar and
Laleau [21].

– A model of the Stuttgart 21 Railway station interlocking by Wiegard, derived
from Chap. 17 of [2] with added timing and performance modeling.

– A model of a controller area network (CAN) bus developed by Colley.
– A formal development of a graph coloring algorithm by Andriamiarina and

Méry. The graphs to be colored are finite, but unbounded and not fixed in the
model.

– A model of a pacemaker by Méry and Singh [22].

For the benchmarks, we have used Rodin 3.2, version 2.1.0 of the Atelier B
provers plugin and version 1.2.1 of the SMT plugin. For better comparability,
we did not use the bundled SMT solvers CVC3 and veriT. Instead, we relied
on Z3 version 4.4.1 as used in the ProB integration as well. ProB was used
in version 1.5.1-beta3, connected through the disprover plugin version 3.0.8. We
used a global timeout of 25 s for a single proof attempt.

All benchmarks were run on a MacBook Pro featuring a 2.6 GHz i7 CPU and
8 GB of RAM. We did not parallelize the benchmarks in order to avoid issues
due to hyper-threading or scheduling. Benchmarks were run using a dedicated
evaluation plugin1 for the Rodin platform. The data is presented as follows:
1 See https://github.com/wysiib/ProverEvaluationPlugin for sources and instruc-

tions.

https://github.com/wysiib/ProverEvaluationPlugin
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– Figure 2 shows a Venn diagram comparing the number of discharged proof
obligations by each of the configurations mentioned above.

– Table 2 shows how the individual configurations perform on the different mod-
els. In particular it distinguishes between proof and disprove.

– Table 3 shows how the individual configurations perform on different kinds of
proof obligations.

Regarding the different performance of the high-level vs. the low-level SMT
translation we have mixed results. Judging by the total numbers, the high-level
approach is superior: as can be seen in Fig. 2 it is able to discharge 4112 proof oblig-
ations, while the low-level approach only discharges 3443. However, there is also a
considerable amount of proof obligations that can be discharged with the low-level
approach but not with the high-level one. Since the original SMT plugin does not
support disprove of POs,we cannot say anything about the performance.The high-
level approach is unable to disprove a single of the defective obligations.

Comparing ProB solo and together with Z3 paints a similar picture. The
integrated solution is superior but the margin is small. Again, 149 proof obliga-
tions cannot be discharged anymore once the SMT integration is enabled. Vir-
tually all of these result in a timeout afterwards. Since a global timeout is used
and Z3 takes up to much time ProB misses the solution. We could indeed use a
local timeout for the integrated SMT solver. However, we did not find a sensible
heuristic to decide when to give time to Z3 vs. giving it to the ProB kernel.

Regarding disproving, integrating Z3 into ProB lead to the discovery of a
new counter-example. Despite our usage of the CAN Bus model in [15] the error
went unnoticed till now. Yet again, some counter-examples previously found
cannot be discovered by the integrated solver in the given timeframe.

Table 2 outlines for which models we see better or worse performance for
the high-level SMT translation. In particular the landing gear systems and the
Stuttgart 21 interlocking models show a decline in successfully discharged POs
when compared with the low-level SMT translation. This models feature a con-
siderable amount of concrete data that can easily be translated using the low-
level approach. We assume that some of these POs can be discharged on the
boolean level, without any higher-order reasoning. Table 2 also shows that these
are the models where ProB alone works well.

The high-level SMT approach, both with and without ProB integration
performs better for more abstract models like the CAN Bus, the graph coloring
algorithm and the pacemaker model. This stresses our assumption that integra-
tion the high-level SMT translation into ProB is worthwhile as they represent
orthogonal technologies that could benefit from one another.

6 Related Work

As mentioned above, in [10,11] the authors present an integration of SMT solvers
into Rodin [3], an IDE for Event-B development. In this scenario, the SMT
solvers are used as provers in order to discharge Event-B proof obligations. The
authors investigate two different ways of translating Event-B to SMT-LIB.
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Table 3. Performance of provers on different kinds of proof obligations

Kind of PO # POs SMT HL-SMT ProB ProB/SMT

Feasibility of non-det. action 59 40 (67.8%) 52 (88.1%) 44 (74.6%) 57 (96.6%)

Guard strengthening 300 13 (4.3%) 139 (46.3%) 258 (86.0%) 254 (84.7%)

Invariant preservation 4938 3106 (62.9%) 3741 (75.8%) 4488 (90.9%) 4552 (92.2%)

Natural number for a numeric variant 6 5 (83.3%) 6 (100.0%) 4 (66.7%) 6 (100.0%)

Action simulation 153 104 (68.0%) 86 (56.2%) 134 (87.6%) 142 (92.8%)

Theorem 97 29 (29.9%) 26 (26.8%) 66 (68.0%) 62 (63.9%)

Decreasing of variant 6 6 (100.0%) 6 (100.0%) 6 (100.0%) 6 (100.0%)

Well definedness 779 140 (18.0%) 56 (7.2%) 570 (73.2%) 539 (69.2%)

Feasibility of a witness 1 0 (0.0%) 0 (0.0%) 1 (100.0%) 1 (100.0%)

Well definedness of a witness 4 0 (0.0%) 0 (0.0%) 2 (50.0%) 2 (50.0%)

6343 3443 (54.3%) 4112 (64.8%) 5573 (87.9%) 5621 (88.6%)

For SMT solvers in general they suggest the ppTrans approach. Here, set the-
ory and arithmetic are broken down into first-order formulas using uninterpreted
functions for membership, etc. On the one hand, this approach is more flexible than
the one presented in this paper: it does not rely on the API of a specific SMT solver.
On the other hand, the resulting formulas only approximate the Event-B seman-
tics, as operators are replaced by uninterpreted functions. The authors thus add
certain set theoretic axioms to the SMT problem in order to recover from this.

A second approach, called λ-based relies on an extension to SMT-LIB pro-
vided by the veriT solver [7]. Set theoretic constructs are then translated into
λ-expressions. The major shortcoming of this approach is that sets of sets cannot
be handled.

Many of the rewrite rules presented here are similar to those in [10,11]. The
key difference is that we rely on the given set theory of Z3 instead of translating
further into first-order logic.

In addition to other SMT-based approaches, there are different ways of solv-
ing B and Event-B predicates. ProB itself mainly relies on constraint logic pro-
gramming. There is also the formerly mentioned backend [24] translating B to
Kodkod [27]. Kodkod then uses a SAT solver to find solutions to the given formulas.

7 Future Work

For the future, we have different directions in mind. First of all, we would like to
investigate whether using an equisatisfiable translation instead of an equivalent
one is of use. In particular for approaches like proving or disproving as discussed
in [15] we expect improved performance.

We also want to tighten the integration of the SMT solvers and ProB. Cur-
rently we are transporting partial assignments and we use the unsat core to con-
trol backjumping on the Prolog side. In future, we want to investigate, whether
we can access and use clauses learned on the SMT side in order to set up further
constraints on the Prolog side. For instance, we want to investigate whether we
can use interpolants or conflict clauses in case of unsatisfiable predicates.
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Regarding our translation to SMT-LIB, the benchmarks show that in particu-
lar the usage of quantifiers can be improved. One possibility to do so is to further
investigate how to set instantiation triggers for comprehensions typically occurring
in our scenarios. In [17] the authors already outlined a general approach that can
serve as a starting point. Another option is to try to reduce the amount of quan-
tifiers we use. This could be achieved by providing a custom theory to the SMT
solvers, i.e., including inference rules for min and max that avoid the quantifiers
introduced in Sect. 2.2. Changing the set of axioms we supply to Z3 in order to
define min and max is certainly another direction that should be evaluated.

Another technique we want to implement should help us to overcome some
of the limitations discussed in Sect. 4. As mentioned, the B type system allows
to use set operators on sequences. Hence, we had to encode sequence using the
a representation as sets of pairs. A static check could investigate, how operators
are applied in a B machine. It could determine, if sequences are only used with
sequence operators. In this case, we could employ a more efficient translation to
SMT-LIB, e.g., encode them as arrays.

Regarding benchmarks and applications, we would like to move from solving
predicates to explicit state model checking and later to symbolic model checking
and constrained based validation techniques.

8 Discussion and Conclusion

One motivation for the integration of SMT solvers into ProB was to overcome
the weaknesses we spotted in our previous work [15]: ProB should be enabled
to handle infinite domains and detection of unsatisfiability should be improved.

With the suggested high-level translation of B to SMT-LIB both goals could
be achieved. The integrated solution is able to discharge more proof obligations
than ProB alone. In many cases, translation into the high-level (set) logics of
Z3 seems advantageous over a low-level translation to predicate logic. Indeed,
in our experimental evaluation on Event-B proof obligations, our new high-level
translation discharges 4112 proof obligations in total, out of which 1475 cannot
be discharged by the previous SMT translation [10,11].

Our evaluation also showed, that there is not only a gain in the number of
proof obligations: the low-level translation discharges 806 proof obligations that
are not discharged by our new translation. Yet, it is not clear when to employ
a high-level and when to employ a low-level approach. A practical solution is to
use both in a solver portfolio.

It remains yet to be seen, how SMT solvers like Z3 will evolve regarding
high-level theories. The current version of the SMT-LIB standard only features
a “possible declaration for a theory of sets and relations” [5]. How and if different
possibilities are realized will certainly influence the impact SMT solvers have in
the formal methods community.

Summarizing, we provided new ways to tackle the complexity of constraints
in B and Event-B. We provided a new high-level translation of B to Z3’s input
language, which can be used on its own or integrated into ProB’s solver. This
high-level SMT based solver appears to be an orthogonal addition to the other
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solvers, solving many constraints that could not be solved by the previous low-
level translation and is better suited at finding models. Our evaluation also con-
firms that the integration of the ProB solver with Z3 provides the best overall
result, discharging 5621 proof obligations. We hope that these new capabilities
open up new applications, from synthesis to improved symbolic validation tech-
niques such as bounded model checking.
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Abstract. Clinical pathways are care plans which detail essential steps
in the care of patients with a specific clinical problem, usually a chronic
disease. A pathway includes recommendations of medications prescribed
at different stages of the care plan. For patients with three or more
chronic diseases (known as multimorbidities) the multiple pathways have
to be applied together. One common problem for such patients is the
adverse interaction between medications given for different diseases. This
paper proposes a solution for avoiding medication conflicts for patients
with multimorbidities through the use of formal methods. We introduce
the notion of a pharmaceutical graph to capture the medications asso-
ciated to different stages of a pathway. We then explore the use of an
optimising SMT solver (Z3) to quickly find the set of medications with
the minimal number and severity of conflicts which is assumed to be
the safest. We evaluate the approach on a well known case of an elderly
patient with five multimorbidities.

1 Introduction

There is an increasing number of people in Europe and in the UK with three
or more long term conditions, also known as multimorbidities. In Europe, the
current number of people with multimorbidities is estimated at around 50 million
[7], and in the UK it is currently around 1.9 million [8]. Chronic diseases often
develop simultaneously in response to common risk factors such as smoking,
diet, ageing, and inactivity [3,18]. The four most common chronic diseases are
cancer, chronic obstructive pulmonary disease (COPD), coronary heart disease,
and diabetes.

Despite the growing prevalence of chronic disease, strategies for improving
the management of patients with co-morbidities remain under-explored. In clin-
ical settings processes are complex and necessarily rely on a range of interacting
social agents including physicians, administrators and patients who in turn are
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c© Springer International Publishing Switzerland 2016
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influenced by a number of social, technical and organisational factors. This com-
plexity can result in variation in how physicians practice, appropriate care is
documented, and healthcare costs are managed [19]. To reduce inconsistencies
clinical guidelines have emerged which are based on the best existing evidence
and which aim to support clinical staff and improve the quality of healthcare.
There are currently around 180 clinical guidelines published by the National
Institute for Clinical Excellence (NICE)1. However, current guidelines almost
entirely focus on single conditions. As a result, applying multiple guidelines to
a patient may potentially result in conflicting recommendations for care. In the
UK and Europe there have been calls for improved integration of existing guide-
lines for patients with multimorbidities [7,12], but this is still very much an open
problem.

To encourage the translation of national guidelines into local protocols, and
subsequently clinical practice, clinical pathways have been developed. Clinical
pathways are care plans which detail essential steps in the care of patients with a
specific clinical problem, usually a chronic disease [6]. These pathways frequently
use graphical descriptions of evidence and options, and are typically represented
in a single or a series of flow charts [9,16]. A pathway includes recommenda-
tions of medications prescribed at different stages of the care plan. One common
problem for patients with multiple long term conditions is the adverse interac-
tion between medications given for different diseases. We concentrate on such
medication interactions in this paper, and introduce a notion of a pharmaceuti-
cal graph for a chronic disease as a formal representation of the medications and
medication groups underlying a clinical pathway. These pharmaceutical graphs
and the information on known adverse medication conflicts are used to answer
the fundamental question of what is the best care plan and what are the most
effective medications in the treatment of patients with multimorbidities?

The main contribution of our paper is a solution for avoiding medication
conflicts for patients with multimorbidities through the use of formal methods.
We explore the use of an optimising SMT solver (Z3) to quickly find the set of
medications with the minimal number and severity of conflicts which is assumed
to be the safest. We evaluate our approach with a very well known case in the
medical domain taken from [5] of a hypothetical 79-year-old woman with five
long term conditions: hypertension, diabetes mellitus (type 2), osteoarthritis,
osteoporosis and chronic obstructive pulmonary disease (COPD).

This paper is structured as follows. We start by setting the context of our
work and describing some of the most relevant existing related work in Sect. 2.
Section 3 introduces our notion of pharmaceutical graph which is extracted for
each disease from the corresponding documented clinical pathways. Since our
approach makes use of SMT solvers, in Sect. 4 we describe how to derive logical
formulae from the pharmaceutical graphs and medication conflicts. Our approach
is evaluated in Sect. 5, and its performance is compared with other possible solu-
tions. We conclude our paper in Sect. 6 with a discussion of current limitations
and ideas for future work.

1 NICE www.nice.org.uk.

www.nice.org.uk
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2 Related Work

The National Institute for Clinical Excellence (NICE) has a considerable num-
ber of documented pathways for care and treatment of diseases including the
most common chronic conditions such as cancer, chronic obstructive pulmonary
disease, coronary heart disease, diabetes, hypertension, osteoarthritis, chronic
heart failure, chronic kidney disease, depression and so on. The pathways are
nonetheless essentially single-disease descriptions, and there is little advice on
how to combine or consider two or more of them when addressing the needs of
patients with multimorbidities. Better approaches for integrated care are lacking
and urgently needed.

In clinical practice, the main suggestion is to enrich pathways with addi-
tional information. This includes recommendations regarding certain comorbidi-
ties, discussion of benefits and risks of treatment, and advice on treating elderly
patients [5,10,15].

More recently, the possibility of developing automated techniques for inte-
grated care has drawn attention from the computer science community. Several
approaches were introduced with the aim of formalising and merging existing
single-disease pathways to produce a treatment advice for patients with multi-
ple diseases. A few different approaches are described next.

One approach is to model pathways using ontologies [1,2,11]. The authors
focus on eliminating duplicated tasks across different pathways (e.g. blood
tests), reusing the results of common activities and avoiding medication con-
flicts. Although ontologies are an expressive modelling instrument, the automatic
merging of multiple ontologies seems problematic.

Another approach also making use of ontologies is carried out under the
project GLARE [17] which instead of automatically merging guidelines provides
an interactive interface for clinicians to analyse multiple guidelines at different
levels of detail.

A different approach is shown in [13] where the authors use rewriting rules
to eliminate conflicts in merged guidelines.

A research somewhat similar to ours is presented in [20]. The authors encode
individual pathways as sets of formulas in first-order logic and use an automated
theorem prover to find a combined treatment plan. The medication conflicts are
also represented as logical expressions, and if a conflict is detected then special
‘Revision Operators’ are invoked that rewrite fragments of logical expressions
so that the conflict may disappear. These operators correspond to some medical
actions that are performed to resolve a conflict (such as the co-prescription of
an additional medication). If the Revision Operators cannot resolve the conflict
then the algorithm fails to produce any treatment suggestion.

Our approach is similar in that we also transform medical knowledge into
logical expressions and use a tool (an SMT solver rather than a theorem prover)
to automatically produce treatment advice. However, unlike [20], we take into
account the medical utility of the produced advice, and try to generate not
just any possible advice, but the best and safest possible recommendation with
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respect to given knowledge on medication conflicts. The advantage of our app-
roach is that we will be able to provide a solution even if certain conflicts cannot
be avoided. In the case of patients with 5 or more multimorbidities, it is likely
that some conflicts are indeed unavoidable and the aim in such cases is to reduce
it to a more favourable alternative.

3 Pharmaceutical Graphs

The goal of our research is to help clinicians make more informed decisions, and
more concretely medication prescriptions that result in the minimal amount and
severity of medication conflicts. In other words, we would like to find the safest
set of medications for a patient with multiple diseases. We take into account
three types of conflicts:

– Drug-drug conflicts (when two medicines taken together have some negative
effect or decrease effectiveness of each other),

– Drug-disease conflicts (e.g. any medication that increases blood pressure con-
flicts with hypertension),

– Drug-patient conflicts (personal medication intolerances and allergies).

To detect and avoid these conflicts we need to know which medications can
be prescribed according to the clinical pathway. As the pathways are written
informally in natural language, we first need to create a formal representation
of a pathway. We developed a representation which we call a pharmaceutical
graph which is a directed acyclic graph with one initial node where the nodes
represent medication prescriptions. Normally a clinical pathway suggests several
alternative medications for the doctor to choose from. Likewise, in our pharma-
ceutical graph a node can contain multiple medications one of which should be
prescribed.

Examples of pharmaceutical graphs for Diabetes Melitus and Hypertension
are shown in Fig. 1. For clarity we included a dummy initial node with the disease
name that does not contain any medications. For Diabetes this dummy node is
also necessary for branching.

Often the pathways recommend not a single medication, but a medication
group such as Sulfonylurea. In this case we include all individual Sulfonylureas
into the node. In Fig. 1 for the medication groups the number of individual
medications is shown in brackets. It is important to list all the medications in a
group because they might have different conflicts.

Pharmaceutical graphs capture two features of the original pathways: the
structure (ordering and branching) and the advised medications. A maximal
path in a pharmaceutical graph (from the initial node to a leaf node) represents
a choice of medications in a treatment plan. For example, one maximal path
(prescription) in the Diabetes graph could be Metformin, Sitagliptin, Insulin.

Having such maximal paths for multiple pharmaceutical graphs, we can
detect the above mentioned three types of drug-related conflicts in them.
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Fig. 1. Pharmaceutical graphs for Diabetes and Hypertension based on NICE path-
ways. ACE - angiotensin-converting-enzyme, ARB - angiotensin receptor blocker,
CCB - calcium channel blocker. The numbers in brackets represent the number of
individual medications in a group.

Additionally, we consider the severity of medication conflicts and how suit-
able given medications are known to be for the treatment of certain conditions.
To distinguish between major and minor conflicts we assign negative integer
scores to them. Similarly, we assign positive scores to the medications depend-
ing on their efficacy. Our aim is to obtain a treatment plan with the highest
score considered to be the safest and most effective for a particular patient. In
this way we can produce a reasonable treatment advice even when certain con-
flicts cannot be avoided. Note that it is outside the scope of our work to assign
scores to drugs. The safety and effectiveness of drugs is subject to evaluations
carried out in clinical pharmacology and biopharmaceutics data research. Phar-
maceutical companies assign scores to drugs based on evidence-based safety and
effectiveness.

Our question is, therefore, formulated as follows: Having a set of pharmaceu-
tical graphs and a set of conflicts, what are the prescriptions (maximal paths)
for all the graphs that result in the highest total score? The total score here is
the sum of the positive scores of all the chosen medications and the negative
scores of the triggered conflicts. Thus, we have transformed a medical problem
into a computation problem. In the next section we show how we tackle it using
an optimising SMT (satisfiability modulo theories) solver.
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4 Transformation into an SMT Problem

SMT solvers extend the boolean satisfiability problem (SAT) with additional
theories for integers, arrays, etc. Given a predicate over boolean and integer
variables, an SMT solver can check if there exists an assignment for the variables
that turns the predicate into true. If such assignments exist, an SMT solver
produces one of these assignments.

We are using an SMT solver Z3 developed at Microsoft research [14] which
has a built-in optimisation functionality. In other words, Z3 can produce not
just any satisfying assignment but an optimal assignment with respect to some
objective function [4].

The core idea of our work is to translate the pharmaceutical graphs and
the medication conflicts into logical and arithmetic expressions and use Z3 to
generate maximal paths for the pharmaceutical graphs with the highest possible
total score.

There are two parts of this translation that we would like to discuss in the
following subsections - the representation of the graph structure and the repre-
sentation of the medications and conflicts along with their scores.

4.1 Translating the Graph Structure

We need to translate the structure of the pharmaceutical graphs into logical
expressions and make Z3 produce a maximal path.

First, we shrink the original pharmaceutical graph in order to reduce the
number of variables we need to represent its structure (see Fig. 2).

Fig. 2. Original pharmaceutical graph with branches shown in grey (left) and the
shrinked branch graph (right).

To do this, we divide the nodes of the pharmaceutical graph into different
branches. A branch here is the longest possible sequence of nodes where there
is a path between the first and the last node, and along this path all the nodes
except the last one have exactly one outgoing edge, and all the nodes except the
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first one have exactly one incoming edge. The branches are graphically shown in
Fig. 2 with grey regions.

An important property of such a branch is that for any maximal path in the
pharmaceutical graph either the whole branch is on the path or the whole branch
is not on the path. Therefore, we can treat a maximal path as a sequence of
branches. If we substitute each branch with a single node, we will get a shrinked
branch graph (see Fig. 2, right) that will have the same maximal paths as the
original pharmaceutical graph (in terms of branch sequences).

Our idea is to create a boolean variable for each branch and use Z3 to assign
these branch variables to true or false so that there will be one maximal path
consisting of ‘true’ branches and all the rest will be ‘false’. To do this, we specify
logical assertions that would filter out all the invalid assignments of the branch
variables (that do not make one maximal path). We tried and compared two
different approaches to produce these logical assertions.

The first and a more naive approach, which is taken in [20], is to explicitly
enumerate all the maximal paths. Illustrating this for the graph in Fig. 2, we
obtain the following logical statement:

(Br0 ∧ Br1 ∧ Br3 ∧ Br5 ∧ ¬Br2 ∧ ¬Br4 ∧ ¬Br6 )∨
(Br0 ∧ Br1 ∧ Br4 ∧ Br5 ∧ ¬Br2 ∧ ¬Br3 ∧ ¬Br6 )∨ . . .

For the second approach, we designed a set of branching rules that are applied
to every node in the graph and produce some logical statements. The rules are
as follows:

1. The initial branch is always true
2. If the current branch is true then one of its direct successors is true and the

other direct successors are false (if there are direct successors)
3. If all the direct predecessors of the current branch are false then the current

branch is false (if there are direct predecessors)

For example, for branches Br0, Br1 and Br4 in Fig. 2 the following state-
ments will be generated.

Br0 (rule 1 for Br0)
Br0 =⇒ (Br1 ∧ ¬Br2 ) ∨ (¬Br1 ∧ Br2 ) (rule 2 for Br0)

Br1 =⇒ (Br3 ∧ ¬Br4 ) ∨ (¬Br3 ∧ Br4 ) (rule 2 for Br1)
¬Br0 =⇒ ¬Br1 (rule 3 for Br1)

Br4 =⇒ (Br5 ∧ ¬Br6 ) ∨ (¬Br5 ∧ Br6 ) (rule 2 for Br4)
¬Br1 ∧ ¬Br2 =⇒ ¬Br4 (rule 3 for Br4)

We are interested in the variable assignments that turn these statements true
for all the nodes of a branch graph, so we pass these statements as assertions to
Z3, and get an assignment representing a maximal path.
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Proposition 1. The three branching rules ensure that exactly one maximal path
in a branch graph will consist of true nodes, and all the other nodes will be false.

Proof. First we will show that there will be a maximal path consisting of true
nodes. The initial node in the branch graph will be true (rule 1). This means
one of its direct successors will also be true (rule 2), one of the direct successors
of this true successor will be true as well (rule 2) and so on until a leaf node for
which rule 2 will not produce any statements. Therefore, there will be a path
starting in the initial node and finishing in a leaf node (i.e. a maximal path)
consisting of true branches.

We will now prove by contradiction that no other node can be true. Let us
assume there is a node A which is true and does not belong to this maximal path.
A is not the initial node (because otherwise it would belong to a maximal path
by definition). Therefore, A has some direct predecessor B. This predecessor
may or may not belong to the maximal path. If it belongs to the maximal path
it should have another direct successor C apart from A which is true and lies
on the path. Consequently, A cannot be true because according to rule 2 all the
other direct successors of B apart from C should be false.

If no direct predecessor of A belongs to the maximal path, at least one of
them should be true (otherwise A would be false according to rule 3). This true
predecessor should also have a true predecessor (rule 3) and so on, so there will
be a chain of true predecessors. Our graph is acyclic and has only one initial
node, so if we follow the edges backwards from any node we will always come
to the initial node which lies on the maximal path. Therefore, in this chain of
true predecessors there will be some node D which has a direct predecessor that
belongs to the chosen maximal path. As we already showed above, this node D
cannot be true. We have come to a contradiction, so a true node A that does
not belong to the maximal path cannot exist. ��

It is hard to tell whether the naive approach or the approach with the branch-
ing rules is more suitable for our task because it depends on how Z3 processes
the statements internally. We compare both approaches in Sect. 5.

4.2 Translating Medications, Conflicts and Scores

Aside from having a maximal path in the pharmaceutical graph we also need to
choose the individual medications in every node along this path. Therefore, if a
node belongs to a ‘true’ branch we want to pick one medication. Additionally,
as we already mentioned, every medication has an integer score which we also
need to pass to Z3.

For example, in the Diabetes graph shown in Fig. 1 there is a node ‘Metformin
or Sulfonylurea’. Let us assume this node has the identifier N1 and belongs to
a branch Br1, the score of Metformin is 100 and the score of Sulfonylurea is 70.
Sulfonylureas are a medication group rather than a single medication, but we
ignore this for the moment.
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The assertions we generate for this node are shown below.

Br1 =⇒ (Metformin ∧ ¬Sulfonylurea) ∨ (¬Metformin ∧ Sulfonylurea)
¬Br1 =⇒ ¬Metformin ∧ ¬Sulfonylurea
N1 Score= if(Metformin)then 100 else if(Sulfonylurea)then 70 else 0

For every medication we create a boolean variable that denotes whether it
is prescribed or not. If the node lies on the chosen maximal path (Br1 is true)
then one medication out of two will be set to true, otherwise both will be false.

We also introduce an integer variable N1 Score which will get different value
depending on which medication is picked (Z3 supports integers and if-then-else
expressions). We create score variables for every node of the pharmaceutical
graph and then sum them to get the total medication score.

As for the conflicts, we represent them as integer variables in the following
way.

Conflict1 Score = if (Nadolol ∧ Diabetes) then -5000 else 0
Conflict2 Score = if (Sitagliptin) then -1000 else 0
Conflict3 Score = if (Metformin ∧ Acarbose) then -100 else 0

Here Conflict1 is a major drug-disease conflict, Conflict2 is a moderate
allergy and Conflict3 is a minor drug-drug conflict.

The total score is then the sum of the medication scores (which are non-
negative) and the conflict scores which are negative when a conflict is triggered.

To put it all together, we start with a set of pharmaceutical graphs corre-
sponding to the diseases of a particular patient and a set of conflicts which may
arise. Then we generate Z3 code as explained above and run Z3 with the total
score as the objective function. The output of Z3 are the assignments of the
branch and medication variables that correspond to a treatment plan with the
highest score.

In the next section, we show an example of using this system and discuss the
results.

5 Evaluation

To evaluate our approach, we model a medically well known case from [5] of a
hypothetical 79-year-old woman with five diseases: hypertension, diabetes mel-
litus (type 2), osteoarthritis, osteoporosis, and chronic obstructive pulmonary
disease (COPD).

5.1 Medical Data Collection

We used two sources of medical information. We use the clinical pathways for
the diseases as documented by NICE and an online portal Drugs.com2 to get
the data on the medication groups and conflicts.
2 http://www.drugs.com.

http://www.drugs.com
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NICE pathways are available in the form of flowcharts with supporting text.
A fragment of the diabetes pathway is shown in Fig. 3. On the left side it shows
the graphical representation of the current aspect of the pathway (in the example
the therapy for lowering blood-glucose for patients with type 2 diabetes). Details
for the current node being highlighted (Metformin) are shown in the text on the
right side.

Fig. 3. Fragment of a NICE clinical pathway for type 2 diabetes.

Given such a documented pathway for a long term condition, the first step
is to extract the information about the medications and transform it into our
pharmaceutical graph. We did this manually for all five long term conditions
considered. The resulting pharmaceutical graphs are shown in Figs. 1 and 4.

When pathways recommended a medication group, we expanded it based
on the data from Drugs.com. In total for all five diseases, our pharmaceutical
graphs contain 127 medications.

To get all the possible drug-drug conflicts, we used an interaction checker of
Drugs.com3. To get the drug-disease conflicts, we examined the medication pro-
files on Drugs.com. We only considered drug-drug conflicts where both conflict-
ing medications appear in our pharmaceutical graphs and drug-disease conflicts
3 http://www.drugs.com/drug interactions.html.

http://www.drugs.com/drug_interactions.html
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Fig. 4. Pharmaceutical graphs for Osteoartritis, Osteoporosis and Chronic Obstructive
Pulmonary Disease (COPD) based on NICE pathways. NSAID - nonsteroidal anti-
inflammatory drug, COX-2 - Cyclooxygenase-2.

Table 1. Conflicts summary

Major Moderate Minor Total

Drug-drug 270 3038 178 3486

Drug-disease 47 33 0 80

Total 317 3071 178 3566

where the medication appears in the pharmaceutical graphs and the disease is
one of the considered five diseases. The summary of the conflicts is shown in
Table 1. As we can see, the number of conflicts is far too large to analyse man-
ually. We did not include any drug-patient conflict in our experiment.

As for the score values, we assigned medication scores according to the rating
on Drugs.com in the range from 0 to 100. For minor, moderate, and major
conflicts we assigned values −100, −1000, −5000 respectively.

Ideally we would like medical experts to assign score values, however, for
our experiment we just assigned values that seemed reasonable to us and in
accordance to the pharmaceutical ratings mentioned above.

5.2 Experiment Results

To run this experiment, we created a simple application which takes the phar-
maceutical graphs and the conflicts as an input, generates the corresponding Z3
code, runs it, parses Z3 output and renders the resulting optimal set of maximal
paths using Graphviz.

The output of our application for this experiment (with 5 diseases, 127 med-
ications, and 3566 conflicts) is shown in Fig. 5. As we can see, the best recom-
mendation still causes four moderate conflicts, and the total score is dominated
by the score of these conflicts. In this case the doctor might decide to exclude
some medications from the treatment, because the negative effect caused by the
conflicts may outweigh the benefits.
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Fig. 5. Optimal medication prescriptions for a hypotetical patient with five diseases
generated by Z3.

To evaluate the performance of the system, we ran the experiment on an
off the shelf laptop with 16 GB RAM and a quad-core 2.6 GHz processor. We
tried both approaches to produce logical assertions discussed in Subsect. 4.1. The
average run time with the explicit enumeration of maximal paths is 7.6 s, while
with the branching rules it is 8.1 s, so the explicit enumeration works marginally
faster for this case.

In our opinion, the system runs fast enough to be used in a clinical environ-
ment as a decision support tool.

The real run time is likely to be less because doctors might exclude medica-
tions that are not certified or that are known to have many negative interactions.
Additionally, doctors might pick a particular medication or branch manually
and therefore reduce the amount of computations required. Moreover, it is only
a minority of patients that will have five or more concomitant conditions.

5.3 Other Approaches

In addition to using optimising Z3, we evaluated several other approaches that
turned out to be less efficient.
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Before the optimising version of Z3 was released, we tried iterative SMT
solving using a hill-climbing and a dichotomy approaches. In a hill-climbing
approach we first obtained some initial solution with score S0, and then added
an assertion FinalScore > S0. The solver would return another solution with
score S1, S1 > S0. We then continued to get better and better solutions until we
hit ‘unsatisfiable’.

In the dichotomy approach we used the fact that the best score lies in a
bounded interval. It cannot be greater than the sum of all the medication scores
and cannot be less then the sum of all the negative conflict scores. We calculated
this interval and iteratively halved it by examining the mid-point. We used an
SMT solver to check if a solution existed with the score greater or equal to this
mid-point, and depending on the result took the upper or the lower half of the
interval until we reached an interval containing only the highest score.

These approaches are much slower than using the built-in optimising Z3
functionality (run time is over an hour for the experiment with five diseases
compared to under 10 s for the optimising Z3).

We also tried to find the optimal solution using A*. This worked compara-
tively well on smaller problems, but for the experiment with five diseases our A*
implementation ran out of memory (1 Gb) after a minute of calculation. This
was due to the growth of the set of visited states. We defined a state as a set of
incomplete or complete paths for the input pharmaceutical graphs. Every pos-
sible combination of medications resulted in a new state, leading to a very large
search space.

We conclude from this evaluation that the approach based on SMT solving
is more appropriate than A* for heavily constrained problems (in our case the
constraints are the numerous medication conflicts). For such problems it is hard
to define a good cost under-approximation function for A* which makes the
algorithm explore wrong directions.

6 Conclusions

Our work shows that a treatment advice for a patient with multimorbidities can
be produced automatically using an SMT solver. This approach can be used in
a clinical decision support tool as it works reasonably fast. Our work acts as a
proof of concept for a tool which is being developed for clinicians.

Additionally, the approach allows us to choose a certain medication or a
pathway branch manually. We believe that this kind of interactive analysis can
be useful to get some insight into the different treatment options and their
consequences.

Our current way of modelling the clinical pathways and underlying medica-
tion conflicts also has some limitations.

First of all, the dosages and the timing information for conflicts should be
taken into account. Some interactions may arise only when the medications are
taken simultaneously or if the dose is large enough.
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Secondly, it is not clear how to assign numerical scores to medications in
general, and especially in the case of branching. The branches may contain dif-
ferent number of medications, and a longer branch will likely get a higher score.
Therefore, the scores should be somehow balanced.

Finally, our current approach aims at avoiding, but not resolving conflicts.
For instance, sometimes it is necessary to co-prescribe additional medications in
order to mitigate a certain adverse interaction, and we currently do not consider
this issue.

In future work we aim to address these limitations, and eventually create
a tool that will help clinicians deliver better care for an increasing number of
patients suffering from multimorbidities.
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Abstract. With the rise of Big Data technologies, distributed stream
processing systems (SPS) have gained popularity in the last years.
Among them, Spark Streaming stands out as a particularly attractive
option with a growing adoption in the industry. In this work we explore
the combination of temporal logic and property-based testing for test-
ing Spark Streaming programs, by adding temporal logic operators to
ScalaCheck generators and properties. This allows us to deal with the
time component that complicates the testing of Spark Streaming pro-
grams and SPS in general. In particular we propose a discrete time linear
temporal logic for finite words, that allows to associate a timeout to each
temporal operator in order to increase the expressiveness of generators
and properties. Finally, our prototype is presented with some examples.

Keywords: Stream processing systems · Spark streaming · Property-
based testing · Random testing · Linear temporal logic · Scala · Big
data

1 Introduction

With the rise of Big Data technologies [14], distributed stream processing sys-
tems (SPS) [1,14,25] have gained popularity in the last years. These systems
are used to continuously process high volume streams of data, with applica-
tions ranging from anomaly detection [1], low latency social media data aggre-
gation [14], or the emergent IoT market. Although the first precedents of stream
processing systems come back as far as the early synchronous data-flow program-
ming languages like Lutin [18] or Lustre [10], with the boom of SPS a plethora of
new systems have arisen [12,20,25], characterized by a distributed architecture
designed for horizontal scaling. Among them Spark Streaming [25] stands out as
a particularly attractive option, with a growing adoption in the industry. In this
work we focus on Spark Streaming. Spark [24] is a distributed processing engine
that is quickly consolidating as an alternative to Hadoop MapReduce [14], due
to an extended memory hierarchy that allows for an increased performance in
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scala> val cs : RDD[Char] = sc.parallelize("let’s count some letters", numSlices=3)
scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()
res4: Array[(Char, Int)] = Array((t,4), ( ,3), (l,2), (e,4), (u,1), (m,1), (n,1), (r,1),

(’,1), (s,3), (o,2), (c,1))

Fig. 1. Letter count in spark

many situations, and a collection-based higher level API inspired in functional
programming that together with a “batteries included” philosophy accelerates
the development of Big Data processing applications. These “batteries” include
libraries for scalable machine learning, graph processing, a SQL engine, and
Spark Streaming. The core of Spark is a batch computing framework [24], that
is based on manipulating so called Resilient Distributed Datasets (RDDs), which
provide a fault tolerant implementation of distributed multisets. Computations
are defined as transformations on RDDs, that should be deterministic and side-
effect free, as the fault tolerance mechanism of Spark is based on its ability to
recompute any fragment (partition) of an RDD when needed. Hence Spark pro-
grammers are encouraged to define RDD transformations that are pure functions
from RDD to RDD, and the set of predefined RDD transformations includes typ-
ical higher-order functions like map, filter, etc., as well as aggregations by key
and joins for RDDs of key-value pairs. We can also use Spark actions, which
allow us to collect results into the program driver or store them into an external
data store. Spark actions are impure, but idempotent actions are recommended
in order to ensure a deterministic behavior even in the presence of recomputa-
tions triggered by the fault tolerance or speculative task execution mechanisms.1

Spark is written in Scala and offers APIs for Scala, Java, Python, and R; in this
work we focus on the Scala API. The example in Fig. 1 uses the Scala Spark shell
to implement a variant of the famous word count example that in this case com-
putes the number of occurrences of each character in a sentence. For that we use
parallelize, a feature of Spark that allows us to create an RDD from a local
collection, which is useful for testing. We start with a set of chars distributed
among 3 partitions, we pair each char with a 1 by using map, and then group by
first component in the pair and sum by the second by using reduceByKey and
the addition function ( + ), thus obtaining a set of (char, frequency) pairs. We
collect this set into an Array in the driver with collect.

These notions of transformations and actions are extended in Spark Stream-
ing from RDDs to DStreams (Discretized Streams), which are series of RDDs
corresponding to micro batches. These batches are generated at a fixed rate
according to the configured batch interval. Spark Streaming is synchronous in
the sense that given a collection of input and transformed DStreams, all the
batches for each DStream are generated at the same time as the batch interval
is met. Actions on DStreams are also periodic and are executed synchronously for
each micro batch. The code in Fig. 2 is the streaming version of the code in Fig. 1.
Here we want to process a DStream of characters, where batches are obtained by

1 See https://spark.apache.org/docs/latest/programming-guide.html for more details.

https://spark.apache.org/docs/latest/programming-guide.html
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object HelloSparkStreaming extends App {
val conf = new SparkConf().setAppName("HelloSparkStreaming")

.setMaster("local[5]")
val sc = new SparkContext(conf)
val batchInterval = Duration(100)
val ssc = new StreamingContext(sc, batchInterval)
val batches = "let’s count some letters, again and again"

.grouped(4)
val queue = new Queue[RDD[Char]]
queue ++= batches.map(sc.parallelize(_, numSlices = 3))
val css : DStream[Char] = ssc.queueStream(queue,

oneAtATime = true)
css.map{(_, 1)}.reduceByKey{_+_}.print()
ssc.start()
ssc.awaitTerminationOrTimeout(5000)
ssc.stop(stopSparkContext = true)

}

-----------------------
Time: 1449638784400 ms
-----------------------
(e,1)
(t,1)
(l,1)
(’,1)
...
-----------------------
Time: 1449638785300 ms
-----------------------
(i,1)
(a,2)
(g,1)
-----------------------
Time: 1449638785400 ms
-----------------------
(n,1)

Fig. 2. Letter count in spark streaming

splitting a String into pieces by making groups (RDDs) of 4 consecutive charac-
ters, using grouped. We use the testing utility class QueueInputDStream, which
generates batches by picking RDDs from a queue, to generate the input DStream
by parallelizing each substring into an RDD with 3 partitions. The program is
executed using the local master mode of Spark, which replaces slave nodes in a
distributed cluster by threads, which is useful for developing and testing.

The Problem of Testing. As the field has grown mature, several standard archi-
tectures for streaming processing like the Lambda Architecture [14] or reactive
streams [12] have been proposed for implementing a cost effective, always up-
to-date view of the data that allows the system to react on time to events.
These architectures deal in different ways with trade-offs between latency, per-
formance, and system complexity. The bar is also raised by the sophistication of
the algorithms involved. To keep up with the speed on the input data stream,
approximate algorithms with sublinear performance are used, even for otherwise
simple aggregations [8]. Similarly, specialized machine learning and data stream
mining algorithms are adapted to the stream processing context [15].

Moreover, dealing with time and events makes SPS-based programs intrin-
sically hard to test. There are several proposals in the literature that deal with
the problem of testing and modeling systems that deal with time. In this work,
we focus on Pnueli’s approach [17] based on the use of temporal logic for testing
reactive systems. Our final goal is facilitating the adoption of temporal logic as an
every day tool for testing SPS-based programs. But, how could we present tem-
poral logic in a way accessible to the average programmer? We propose exploring
how property-based testing (PBT) [7], as realized in ScalaCheck [16], can be the
answer, using it as a bridge between formal logic and software development prac-
tices like test-driven development (TDD) [5]. The point is that PBT is a testing
technique with a growing adoption in the industry, that already exposes first
order logic to the programmer. In PBT a test is expressed as a property, which
is a formula in a restricted version of first order logic that relates program input
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and output. The testing framework checks the property by evaluating it against
a bunch of randomly generated inputs. If a counterexample for the property is
found then the test fails, otherwise it passes. The following is a “hello world”
ScalaCheck property that checks the commutativity of addition:2

class HelloPBT extends Specification with ScalaCheck {

def is = s2"""Hello world PBT spec, where int addition is commutative $intAdditionCommutative"""

def intAdditionCommutative =

Prop.forAll("x" |: arbitrary[Int], "y" |: arbitrary[Int]) { (x, y) => x + y === y + x

}.set(minTestsOk = 100) }

PBT is based on generators (the functions in charge of computing the inputs)
and assertions (the formula to be checked), that together with a quantifier form
a property. In the example above the universal quantifier Prop.forAll is used to
define a property that checks the assertion x + y === y + x for 100 values for
x and y randomly generated by two instances of the generator arbitrary[Int].
Each of those pairs of values generated for x and y is called a test case, and a test
case that refutes the assertions of a property is called a counterexample. Here
arbitrary is a higher order generator that is able to generate random values for
predefined and custom types. Besides universal quantifiers, ScalaCheck supports
existential quantifiers — although these are not much used in practice [16,22]—,
and logical operators to compose properties. PBT is a sound procedure to check
the validity of the formulas implied by the properties, because if a counterex-
ample is found it gives a definitive proof that the property is false. However, it
is not complete, as there is no guarantee that the whole space of test cases is
explored exhaustively, so if no counterexample is found then we cannot conclude
that the property holds for all possible test cases that could had been generated.
PBT is a lightweight approach that does not attempt to perform sophisticated
automatic deductions, but it provides a very fast test execution that is suitable
for the TDD cycle, and empirical studies [7,21] have shown that in practice ran-
dom PBT obtains good results, with a quality comparable to more sophisticated
techniques. This goes in the line of assuming that in general testing of non trivial
systems is often incomplete, as the effort of completely modeling all the possible
behaviors of the system under test with test cases is not cost effective in most
software development projects, except for critical systems.

We already have programmers using first order logic to write the proper-
ties for the test cases. So to realize our proposal, all that is left is extending
ScalaCheck to be able to use temporal logic operators from some variant of
propositional LTL [6]. We will give the details for our temporal logic in the
next section; for the time being consider that we have temporal operators with
bounded time such as always ϕ in t, which indicates that ϕ must hold for the
next t instants, or ϕ until ψ in t, which indicates that ϕ currently holds and,
before t instants of time elapse, ψ must hold. That way we would obtain a propo-
sitional LTL formula extended with an outer universal quantifier over the test
cases produced by the generators. This temporal logic should use discrete time,
as DStreams are discrete. Also, the logic should fit the simple property checking

2 Here we use the integration of ScalaCheck with the Specs2 [21] testing library.
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mechanism of PBT, that requires fast evaluation of each test case. For this reason
we use a temporal logic for finite words, like those used in the field of runtime
verification [13], instead of using infinite ω-words as usual in model checking.
Although any Spark DStream is supposed to run indefinitely, so it might well
be modeled by an infinite word, in our setting we only model a finite prefix of
the DStream. This allows us to implement a simple and fast sound procedure
for evaluating test cases, because if a prefix of a DStream refutes a property
then the whole infinite DStream also refutes the property. On the other hand
the procedure is not complete because only a prefix of the DStream is evaluated,
but anyway PBT was not complete in the first place. Hence our test cases will
be finite prefixes of DStreams, that correspond to finite words in this logic. In
Sect. 2 there is a precise formulation of our logic LTLss , for now let’s consider a
concrete example in order to get a quick grasp of our proposal.

Example 1. We would like to test a Spark Streaming program that takes a
stream of user activity data and returns a stream of banned users. To keep
the example simple, we assume that the input records are pairs containing a
Long user id, and a Boolean value indicating whether the user has been hon-
est at that instant. The output stream should include the ids of all the users
that have been malicious now or in a previous instant. So, the test subject
that implement this has type testSubject : DStream[(Long, Boolean)] =>
DStream[Long]). Note that a trivial, stateless implementation of this behavior
that just keeps the first element of the pair fails to achieve this goal, as it is not
able to remember which users had been malicious in the past.

def statelessListBannedUsers(ds : DStream[(Long, Boolean)]) :

DStream[Long] = ds.map(_._1)

To define a property that captures this behavior, we start by defining a
generator for (finite prefixes of) the input stream. As we want this input to
change with time, we use a temporal logic formula to specify the generator. We
start by defining the atomic non-temporal propositions, which are generators
of micro batches with type Gen[Batch[(Long, Boolean)]], where Batch is a
class extending Seq that represents a micro batch. We can generate good batches,
where all the users are honest, and bad batches, where a user has been malicious.
We generate batches of 20 elements, and use 15L as the id for the malicious id:

val batchSize = 20

val (badId, ids) = (15L, Gen.choose(1L, 50L))

val goodBatch = BatchGen.ofN(batchSize, ids.map((_, true)))

val badBatch = goodBatch + BatchGen.ofN(1, (badId, false))

So far generators are oblivious to the passage of time. But in order to exer-
cise the test subject thoroughly, we want to ensure that a bad batch is indeed
generated, and that several arbitrary batches are generated after it, so we can
check that once a user is detected as malicious, it is also consider malicious in
subsequent instants. And we want all this to happen within the confines of the
generated finite DStream prefix. This is where timeouts come into play. In our
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temporal logic we associate a timeout to each temporal operator, that constrains
the time it takes for the operator to resolve. For example in a use of until with a
timeout of t, the second formula most hold before t instants have passed. Trans-
lated to generators this means that in each generated DStream prefix a batch for
the second generator is generated before t batches have passed, i.e. between the
first and the t-th batch. This way we facilitate that the interesting events had
enough time to happen during the limited fraction of time considered during the
evaluation of the property.

val (headTimeout, tailTimeout, nestedTimeout) = (10, 10, 5)

val gen = BatchGen.until(goodBatch, badBatch, headTimeout) ++

BatchGen.always(Gen.oneOf(goodBatch, badBatch), tailTimeout)

The resulting generator gen has type Gen[PDStream[(Long, Boolean)]],
where PDStream is a class that represents sequences of micro batches corre-
sponding to a DStream prefix. Here headTimeout limits the number of batches
before the bad batch occurs, while tailTimeout limits the number of arbitrary
batches generated after that. The output stream is simply the result of applying
the test subject to the input stream. Now we define the assertion that completes
the property, as a temporal logic formula.

type U = (RDD[(Long, Boolean)], RDD[Long])

val (inBatch, outBatch) = ((_ : U)._1, (_ : U)._2)

val formula : Formula[U] = {

val allGoodInputs = at(inBatch)(_ should foreachRecord(_._2 == true))

val badInput = at(inBatch)(_ should existsRecord(_ == (badId, false)))

val noIdBanned = at(outBatch)(_.isEmpty)

val badIdBanned = at(outBatch)(_ should existsRecord(_ == badId))

((allGoodInputs and noIdBanned) until badIdBanned on headTimeout) and

(always { badInput ==> (always(badIdBanned) during nestedTimeout) }

during tailTimeout) }

Atomic non-temporal propositions correspond to assertions on the micro-
batches for the input and output DStreams. That is expressed by the type alias
U for the universe of atomic propositions. The functions inBatch and outBatch
can be combined with at and a Specs2 assertion to define non-temporal atomic
propositions like allGoodInputs, that states that all the records in the input
DStream correspond to honest users. But we know that this will not be hap-
pening forever, because gen eventually creates a bad batch, so we combine the
atomic propositions using temporal operators to state things like “we have good
inputs and no id banned until we ban the bad id” and “each time we get a bad
input we ban the bad id for some time.” Here we use the same timeouts we used
for the generators, to enforce the formula within the time interval where the
interesting events are generated. Also, we use an additional nestedTimeout for
the nested always. Timeouts for operators that apply an universal quantification
on time, like always, limit the number of instants that the quantified formula
needs to be true for the whole formula to hold. In this case we only have to check



Temporal Random Testing for Spark Streaming 399

badIdBanned for nestedTimeout batches for the nested always to be evaluated
to true. Following ideas from the field of runtime verification [3,4], we consider a
3-valued logic where the third value corresponds to an inconclusive result used as
the last resort when the input finite word is consumed before completely solving
the temporal formula. Timeouts for universal time quantifiers help relaxing the
formula so its evaluation is conclusive more often, while timeouts for existential
time quantifiers like until make the formula more strict. We consider that it is
important to facilitate expressing properties with a definite result, as quantifiers
like exists, that often lead properties to an inconclusive evaluation, have been
abandoned in practice by the PBT user community [16,22].

Finally, we use our temporal universal quantifier forAllDStream to put
together the temporal generator and formula, getting a property that checks
the formula for all the finite DStreams prefixes produced by the generator:

forAllDStream(gen)(testSubject)(formula).set(minTestsOk = 20)

The property fails as expected for the faulty trivial implementation above,
and succeeds for a correct stateful implementation [19].

The rest of the paper is organized as follows: Sect. 2 describes our logic
for testing stream processing systems, while Sect. 3 presents its implementation
for Spark. Section 4 discusses some related work. Finally, Sect. 5 concludes and
presents some subjects of future work. An extended version of this paper can be
found in [19].

2 A Temporal Logic for Testing Spark Streaming
Programs

We present in this section a linear temporal logic for defining properties on
stream processing systems. We first define the basics of the logic and then show
some interesting properties to prove formulas in an efficient way.

2.1 A Linear Temporal Logic with Timeouts for Practical
Specification of Stream Processing Systems

We present in this section LTLss , a linear temporal logic that specializes LTL3 [3]
by allowing timeouts in temporal connectives. LTL3 is an extension of LTL for
runtime verification that takes into account that only finite executions can be
checked, and hence a new value ? (inconclusive) can be returned if a property
cannot be evaluated to either true (�) or false (⊥). These values form a lattice
with ⊥ ≤ ? ≤ �.

LTLss pays closer attention than LTL3 to finite executions by limiting the
scope of temporal connectives. This allows users (i) to obtain either � or ⊥ for
any execution given it has a given length, which can be computed beforehand,
and (ii) to define more precise formulas, since it is possible to indicate in an easy
way the period when it is expected to hold. Moreover, as we will see in Sect. 2.2,
we have devised an efficient algorithm for evaluating these formulas.
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Formulae Syntax. In line with [3], assume a finite set of atomic propositions
AP . We consider the alphabet Σ = P(AP ). A finite word over Σ is any u ∈ Σ∗,
i.e. any finite sequence of sets of atomic propositions. We use the notation u =
a1 . . . an to denote that u has length n and ai is the letter at position or time i
in u. Each letter ai corresponds to a set of propositions from AP that hold at
time i. LTLss is a variant of propositional lineal temporal logic where formulas
ϕ ∈ LTLss are defined as:

ϕ ::= ⊥ | � | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | Xϕ | ♦tϕ | �tϕ | ϕ Ut ϕ | ϕ Rt ϕ

for p ∈ AP , and t ∈ N+ a timeout. We will use the notation Xnϕ, n ∈ N+, as
a shortcut for n applications of the operator X to ϕ. The intuition underlying
these formulas, that are formally defined below, is:3

– Xϕ, read “next ϕ,” indicates that ϕ holds in the next state.
– ♦tϕ, read “eventually ϕ in t,” indicates that ϕ holds in any of the next t states

(including the current one).
– �tϕ, read “always ϕ in t,” indicates that ϕ holds in all of the next t states

(including the current one).
– ϕ1 Ut ϕ2, read “ϕ1 holds until ϕ2 in t,” indicates that ϕ1 holds until ϕ2 holds

in the next t states, including the current one. It is enough for ϕ1 to hold until
the state previous to the one where ϕ2 holds.

Note that if t = ∞ then LTLss would correspond to LTL3. However, since our
programs can only process finite words, we only work with t ∈ N+. In this case
it is possible to discard the inconclusive value and obtain only definite values if
some constraints hold between the word and the formula being tested.

Logic for Finite Words. The logic for finite words proves judgements u, i � ϕ : v
for u ∈ Σ∗, i ∈ N+, and v ∈ {�,⊥, ?}.

u, i � ♦tϕ :

⎧
⎨

⎩

� if ∃k ∈ [i,min(i + (t − 1), len(u))]. u, k � ϕ : ⊥
⊥ if i + (t − 1) ≤ len(u) ∧ ∀k ∈ [i, i + (t − 1)]. u, k � ϕ1 : ⊥
? otherwise

u, i � �tϕ :

⎧
⎨

⎩

� if i + (t − 1) ≤ len(u) ∧ ∀k ∈ [i, i + (t − 1)]. u, k � ϕ : �
⊥ if ∃k ∈ [i,min(i + (t − 1), len(u))]. u, k � ϕ : ⊥
? otherwise

u, i � ϕ1 Ut ϕ2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if ∃k ∈ [i,min(i + (t − 1), len(u))]. u, k � ϕ2 : � ∧
∀j ∈ [i, k). u, j � ϕ1 : �

⊥ if ∃k ∈ [i,min(i + (t − 1), len(u))]. u, k � ϕ1 : ⊥ ∧
∀j ∈ [i, k]. u, j � ϕ2 : ⊥

⊥ if i + (t − 1) ≤ len(u) ∧ ∀k ∈ [i, i + (t − 1)]. u, k � ϕ1 :� ∧
∀l ∈ [i,min(i + (t − 1), len(u))]. u, l � ϕ2 : ⊥

? otherwise
3 Due to space limitations, the results for release are available in [19].
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u, i � Xϕ :
{

? if i = len(u)
v if i < len(u) ∧ u, i + 1 � ϕ : v

The intuition underlying this definition is that, if the word is too short to
check all the steps indicated by a temporal operator and neither � or ⊥ can be
obtained before finishing the word, then ? is obtained. Otherwise, the formula
is evaluated to either � or ⊥ just by checking the appropriate sub-word. In the
following we say u � ϕ iff u, 1 � ϕ : �. Note that these formulas, when used as
generators, produce finite words that fulfill the formula. In our tool these words
are minimal in the sense that it stops as soon as the word fulfills the formula. By
using temporal logic not only for the formulas but also for the data generators,
we obtain a simple setting that is easy to grasp for average programmers.

Example 2. Assume the set of atomic propositions AP ≡ {a, b, c} and the word
u ≡ {b} {b} {a, b} {a} . Then we have the following results:

– u � (♦4 c) : ⊥, since c does not hold in the first four states.
– u � (♦5 c) : ?, since we have consumed the whole word, c did not hold in those

states, and the timeout has not expired.
– u � �4 (a ∨ b) : �, since either a or b is found in the first four states.
– u � �5 (a ∨ b) : ?, since the property holds until the word is consumed, but

the user required more steps.
– u � �5 c : ⊥, since the proposition does not hold in the first state.
– u � (b U2 a) : ⊥, since a holds in the third state, but the user wanted to check

just the first two states.
– u � (b U5 a) : �, since a holds in the third state and, before that, b held in all

the states.
– u � �4(a → Xa) : ?, since we do not know what happens in the fifth state,

which is required to check the formula in the fourth state (because of next).
– u � �2(b → ♦2 a) : ⊥, since in the first state we have b but we do not have a

until the third state.
– u � b U2 X(a ∧ Xa) : �, since X(a ∧ Xa) holds in the second state (that is,

a ∧ Xa holds in the third state, which can also be understood as a holds in
the third and fourth states).

Example 3. The generator defined by the formula �2(b → ♦2 a) above would
randomly generate words such as {b} {a, b} {a} , {a} {a} {a} , or
{a} {b} {a} , among others.

We need now a decision procedure for evaluating formulas. Although we
can use the formal definitions above to define it, we would obtain a procedure
that requires the whole stream to be traversed before taking the next step,
greatly worsening the performance of the tool. We propose in the next section
a transformation that allows us to implement a stepwise algorithm. Details on
the näıve procedure can be found in [19].
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2.2 A Transformation for Stepwise Evaluation

In order to define this stepwise evaluation, it is worth noting that all the prop-
erties are finite (that is, all of them can be proved or disproved after a finite
number of steps). It is hence possible to express any formula only using the
temporal operator X, which leads us to the following definition.

Definition 1 (Next Form). We say that a formula ψ ∈ LTLss is in next form
iff. it is built by using the following grammar:

ψ ::= ⊥ | � | p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ → ψ | Xψ

It is possible to obtain the next form of any formula ϕ ∈ LTLss as:

Definition 2 (Next Transformation). Given an alphabet Σ and a formula
ϕ ∈ LTLss , the function nt(ϕ) computes another formula ϕ′ ∈ LTLss , such that
ϕ′ is in next form and ∀u ∈ Σ∗.u � ϕ ⇐⇒ u � ϕ′.

nt(a) = a, a ∈ {�,⊥, p}
nt(¬ϕ) = ¬nt(ϕ)
nt(ϕ1 op ϕ2) = nt(ϕ1) op nt(ϕ2), with op either ∨ , ∧ , or → .
nt(Xϕ) = Xnt(ϕ)
nt(♦tϕ) = nt(ϕ) ∨ Xnt(ϕ) ∨ . . . ∨ Xt−1nt(ϕ)
nt(�tϕ) = nt(ϕ) ∧ Xnt(ϕ) ∧ . . . ∧ Xt−1nt(ϕ)
nt(ϕ1 Ut ϕ2) = nt(ϕ2) ∨ (nt(ϕ1) ∧ Xnt(ϕ2))∨

(nt(ϕ1) ∧ Xnt(ϕ1) ∧ X2nt(ϕ2)) ∨ . . . ∨
(nt(ϕ1) ∧ Xnt(ϕ1) ∧ . . . ∧ Xt−2nt(ϕ1) ∧ Xt−1nt(ϕ2))

for p ∈ AP and ϕ,ϕ1, ϕ2 ∈ LTLss .

It is easy to see that the formula obtained by this transformation is in next
form, since it only introduces formulas using the X operator. The equivalence
between formulas is stated in Theorem 1 (the proof is available in [19]):

Theorem 1. Given an alphabet Σ and formulas ϕ,ϕ′ ∈ LTLss , such that ϕ′ ≡
nt(ϕ), we have ∀u ∈ Σ∗.u � ϕ ⇐⇒ u � ϕ′.

Example 4. We show how to transform some of the formulas from Example 2:

– nt(♦4 c) = c ∨ Xc ∨ X2c ∨ X3c
– nt(b U2 a) = a ∨ (b ∧ Xa)
– nt(�2(b → ♦2 a)) = (b → (a ∨ Xa)) ∧ X(b → (a ∨ Xa))
– nt(b U2 X(a ∧ Xa)) = X(a ∧ Xa) ∨ (b ∧ X2(a ∧ Xa))

Once the next form of a formula has been computed, it is possible to evaluate
it for a given word just by traversing its letters. We just evaluate the atomic
formulas in the present moment (that is, those properties that does not contain
the next operator) and remove the next operator otherwise, so these properties
will be evaluated for the next letter. This method is detailed as follows:
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Definition 3 (Letter Simplification). Given a formula ψ in next form and
a letter s ∈ Σ, the function ls(ψ, s) simplifies ψ with s as follows:

– ls(�, s) = �.
– ls(⊥, s) = ⊥.
– ls(p, s) = p ∈ s.
– ls(¬ψ, s) = ¬ls(ψ).

– ls(ψ1 ∨ ψ2, s) = ls(ψ1) ∨ ls(ψ2).
– ls(ψ1 ∧ ψ2, s) = ls(ψ1) ∧ ls(ψ2).
– ls(ψ1 → ψ2, s) = ls(ψ1) → ls(ψ2).
– ls(Xψ, s) = ψ.

Using this function and applying propositional logic when definite values are
found it is possible to evaluate formulas in a step-by-step fashion.4 This trans-
formation gives also the intuition that inconclusive values can be avoided if we
use a word as long as the number of next operators nested in the transformation
plus 1. A formal definition for this property can be found in [19].

3 Temporal Logic for Property-Based Testing

Our prototype extends ScalaCheck to support LTLss formulas for testing Spark
Streaming programs. We use Spark’s local mode to execute the test locally, so
it is limited by the computing power of a single machine, but can be easily inte-
grated in a continuous integration pipeline (e.g. the one for this same project
https://travis-ci.org/juanrh/sscheck). Besides, our system is able to test pro-
grams without any modification. The system is available at https://github.com/
juanrh/sscheck/releases.

Mapping Spark Streaming Programs into LTLss . Instead of using wall-
clock time, like e.g. in Specs2’s future matchers [21], we consider the logical time
as discretized by the batch interval. At each instant, for each DStream we can see
an RDD for the current batch as it was computed instantaneously. In practice the
synchronization performed by Spark Streaming makes it appear like that, when
enough computing resources are available. We define our atomic propositions as
assertions over those RDDs. We have implemented an algebraic data type as a
Scala trait Formula, that is parameterized on a universe type for the alphabet.
The universe is a tuple of RDDs with one component for each DStream: e.g. in
the example at the end of Sect. 1 the universe was defined by the alias type U =
(RDD[Double], RDD[Long]), where the first component is the current batch for
the input DStream and the second the current batch for the output DStream.
Formula has a child case class for each of the constructions in LTLss , with a
couple of exceptions. ⊥, �, and atomic propositions are all represented by the
case class Now, which is basically a wrapper for a function from the universe
into a ScalaCheck Prop.Status value, that represents a truth value. We need
a function because we have to repeatedly apply it to each of the batches that
are generated for each DStream. We provide suitable Scala implicit conversions
for defining these functions more easily, using specs2 matchers: for example, at
the end of Sect. 1, the argument of the always used to define the value formula
is implicitly converted into a Now object. The other exception is Solved, that
4 Note that the value? is only reached when the word is consumed and this simplifi-
cation cannot be applied.

https://travis-ci.org/juanrh/sscheck
https://github.com/juanrh/sscheck/releases
https://github.com/juanrh/sscheck/releases
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is used to represented formulas that have been evaluated completely. Although
LTLss is a propositional temporal logic, in our prototype we add an additional
outer universal quantifier on the test cases, as usual in PBT, so the test passes
iff none of the generated test cases is able to refute the formula. Currently we do
not support nesting of first order ScalaCheck quantifiers inside LTLss formulas.

We have also implemented higher-order ScalaCheck generators correspond-
ing to temporal operators, where each generated test case represents a finite
prefix of a DStream. For that we use the classes Batch[A] and PDStream[A]—
that stands for prefix DStream—extending Seq[A] and Seq[Batch[A]] with
additional operations like batch-wise union of PDStream.

Evaluating Temporal Properties. We provide a trait DStreamTLProperty
with a method forAllDStream, as described in Sect. 1, for specifying properties
on functions that transform DStreams, using the logic LTLss . The class Formula
has methods for computing the next form, and for performing a step in the
letter simplification process from Definition 3 by consuming a value of the type
of the universe. On property evaluation we use TestInputStream from [11] to
transform each PDStream[A] into a DStream[A], and apply the test subject to
create a derived DStream. Then we register a foreachRDD action on the input
DStream that updates a Formula object for each new generated batch. For each
test case we create a fresh streaming context, which is important for test case
isolation in stateful transformations. We then start the Spark streaming context
to start the computation, and then run a standard ScalaCheck forall property
to generate the test cases. As soon as a Solved formula with failing status is
reached, we stop the streaming context and return a failing property, and so
ScalaCheck reports the current test case as a counterexample for the formula.

The resulting system has a reasonable performance. On a more realistic exam-
ple based on official Spark training (computing the most popular hastag in a
stream of tweets5), our system evaluates 50 test cases in 2 min and 4 s running
in an Intel i7-4810MQ CPU with 16 GB RAM. The batchDuration parameter
can be tuned according to the power of the machine: smaller values for faster
machines, to complete the test earlier, and bigger values for slower machines, so
the machine has more time to compute each of the batches.

4 Related Work

We can consider the system presented in this paper an evolution of the data-
flow approaches devised for reactive systems in the past decades; we focus here
in Lustre [10] and Lutin [18], since we consider they present a number of fea-
tures that are representative of this kind of systems. In fact, the idea underlying
both stream processing systems and data-flow reactive systems is very similar:

5 See https://github.com/juanrh/sscheck-examples/blob/master/src/test/scala/es/
ucm/fdi/sscheck/spark/demo/twitter/TwitterAmpcampDemo.scala and https://
github.com/juanrh/sscheck-examples/wiki/TwitterAmpcampDemo-execution for
the execution logs.

https://github.com/juanrh/sscheck-examples/blob/master/src/test/scala/es/ucm/fdi/sscheck/spark/demo/twitter/TwitterAmpcampDemo.scala
https://github.com/juanrh/sscheck-examples/blob/master/src/test/scala/es/ucm/fdi/sscheck/spark/demo/twitter/TwitterAmpcampDemo.scala
https://github.com/juanrh/sscheck-examples/wiki/TwitterAmpcampDemo-execution
https://github.com/juanrh/sscheck-examples/wiki/TwitterAmpcampDemo-execution
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precessing a potentially infinite input stream while generating an output stream.
Moreover, they usually work with formulas considering both the current state
and the previous ones, which are similar to the “forward” ones presented here.
There are, however, some differences between these two approaches, being an
important one that sscheck is executed in a parallel way using Spark.

Lustre is a programming language for reactive systems that is able to verify
safety properties by generating random input streams. The random generation
provided by sscheck is more refined, since it is possible to define some patterns
in the stream in order to verify some behaviors that can be omitted by purely
random generators. Moreover, Lustre specializes in the verification of critical sys-
tems and hence it has features for dealing with this kind of systems, but lacks
other general features as complex data-structures, although new extensions are
included in every new release. On the other hand, it is not possible to formally
verify systems in sscheck; we focus in a lighter approach for day-to-day programs
and, since it supports all Scala features, its expressive power is greater. Lutin is a
specification language for reactive systems that combines constraints with tem-
poral operators. Moreover, it is also possible to generate test cases that depend
on the previous values that the system has generated. First, these constraints
provide more expressive power than the atomic formulas presented here, and
thus the properties stated in Lutin are more expressive than the ones in sscheck.
Although more expressive formulas are an interesting subject of future work,
we have focused in this work in providing a framework where the properties are
“natural” even for engineers who are not trained in formal methods; once we
have examined the success of this approach we will try to move into more com-
plex properties. Second, our framework completely separates the input from the
output, and hence it is not possible to share information between these streams.
Although sharing this information is indeed very important for control systems,
we consider that stream processing systems usually deal with external data and
hence this relation is not so relevant for the present tool. Finally, note that an
advantage of sscheck consists in using the same language for both programming
and defining the properties.

In a similar note, we can consider runtime monitoring of synchronous systems
like Lola [9], a specification language that allows the user to define properties
in both past and future LTL. Lola guarantees bounded memory for monitoring
and allows the user to collect statistics at runtime. On the other hand, and
indicated above, sscheck allows to implement both the programs and the test
in the same language and provides PBT, which simplifies the testing phase,
although actual programs cannot be traced. TraceContract [2] is a Scala library
that uses a shallow internal DSL for implementing a logic for trace analysis.
That logic is a hybrid between state machines and temporal logic, that is able to
express both past time and future time temporal logic formulas, and that allows
a form of first order quantification over the events that constitute the traces. On
the other hand TraceContract is not able to generate test cases, and it is not
integrated with any standard testing library like Specs2.
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Regarding testing tools for Spark, the most clear precedent is the unit test
framework Spark Test Base [11], which also integrates ScalaCheck for Spark but
only for Spark core. To the best of out knowledge, there is no previous library
supporting property-based testing for Spark Streaming.

5 Conclusions and Ongoing Work

In this paper we have explored the idea of extending property-based testing with
temporal logic and its application to testing programs developed with a stream
processing system. Instead of developing an abstract model of stream processing
systems that could be applied to any particular implementation and performing
testing against a translation of actual programs into that model, we have decided
to work with a concrete system, Spark Streaming, in our prototype. In this way
the tests are executed against the actual test subject and in a context closer
to the production environment where programs will be executed. We think this
could help with the adoption of the system by professional programmers, as
it integrates more naturally with the tool set employed in disciplines like test
driven development. For this same reason we have used Specs2, a mature tool
for behavior driven development, for dealing with the difficulties integrating
of our logic with Spark and ScalaCheck. Along the way we have devised the
novel finite-word discrete-time linear temporal logic LTLss , in the line of other
temporal logics used in runtime verification. We think it allows to easily write
expressive and strict properties about temporal aspects of programs.

Our next movement will be showing the system to programmers and draw
conclusions from their opinions and impressions. There are many open lines
of future work. On the practical side our prototype still needs some work to
get a robust system. Also, adding support for arbitrary nesting of ScalaCheck
forall and exists quantifiers inside LTLss formula would be an interesting
extension. We also consider developing versions for other languages with Spark
API, in particular Python, or supporting other SPS, like Apache Flink. Besides,
we plan to explore whether the execution of several test cases in parallel minimize
the test suite execution time. In the theoretical side, we should give a formal
characterization of the language generated by our generators. Finally, we intend
to explore other formalisms for expressing temporal and cyclic behaviors [23].
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ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007)

5. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional,
Boston (2003)

6. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.
Elsevier, Philadelphia (2006)

7. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. ACM Sigplan Not. 46(4), 53–64 (2011)

8. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

9. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: Proceedings of the 12th International Symposium on Temporal Rep-
resentation and Reasoning, TIME, pp. 166–174. IEEE Computer Society (2005)

10. Halbwachs, N.: Synchronous programming of reactive systems. Springer Interna-
tional Series in Engineering and Computer Science, vol. 215. Kluwer Academic
Publishers, Dordrecht (1992)

11. Karau, H.: Spark-testing-base (2015). http://blog.cloudera.com/blog/2015/09/
making-apache-spark-testing-easy-with-spark-testing-base/

12. Kuhn, R., Allen, J.: Reactive Design Patterns. Manning Publications, Greenwich
(2014)

13. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

14. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime
Data Systems. Manning Publications Co., Stamford (2015)

15. Morales, G.D.F., Bifet, A.: SAMOA: Scalable advanced massive online analysis. J.
Mach. Learn. Res. 16, 149–153 (2015)

16. Nilsson, R.: ScalaCheck: The Definitive Guide. IT Pro, Artima Incorporated, Upper
Saddle River (2014)

17. Pnueli, A.: Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. In: de Bakker, J.W., de Roever, W.-P.,
Rozenberg, G. (eds.) Current Trends in Concurrency. LNCS, vol. 224, pp. 510–584.
Springer, Heidelberg (1986)

18. Raymond, P., Roux, Y., Jahier, E.: Lutin: a language for specifying and executing
reactive scenarios. EURASIP J. Emb. Syst. 2008, 1–11 (2008). Article ID: 753821
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24. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation, p. 2. USENIX Assoc
(2012)

25. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Proceedings of the 24th ACM
Symposium on Operating Systems Principles, pp. 423–438. ACM (2013)



Combining Static Analysis and Testing
for Deadlock Detection
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Abstract. Static deadlock analyzers might be able to verify the absence
of deadlock. However, they are usually not able to detect its presence.
Also, when they detect a potential deadlock cycle, they provide little
(or even no) information on their output. Due to the complex flow of
concurrent programs, the user might not be able to find the source of
the anomalous behaviour from the abstract information computed by
static analysis. This paper proposes the combined use of static analysis
and testing for effective deadlock detection in asynchronous programs.
When the program features a deadlock, our combined use of analysis and
testing provides an effective technique to catch deadlock traces. While
if the program does not have deadlock, but the analyzer inaccurately
spotted it, we might prove deadlock freedom.

1 Introduction

In concurrent programs, deadlocks are one of the most common programming
errors and, thus, a main goal of verification and testing tools is, respectively,
proving deadlock freedom and deadlock detection. We consider an asynchronous
language which allows spawning asynchronous tasks at distributed locations,
with no shared memory among them, and which has two operations for blocking
and non-blocking synchronization with the termination of asynchronous tasks.
In this setting, in order to detect deadlocks, all possible interleavings among
tasks executing at the distributed locations must be considered. Basically, each
time that the processor can be released, any of the available tasks can start its
execution, and all combinations among the tasks must be tried, as any of them
might lead to deadlock.

Static analysis and testing are two different ways of detecting deadlocks. As
static analysis examines all possible execution paths and variable values, it can
reveal deadlocks that could not manifest until weeks or months after releasing
the application. This aspect of static analysis is especially important in security
assurance – security attacks try to exercise an application in unpredictable and
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untested ways. However, due to the use of approximations, most static analyses
can only verify the absence of deadlock but not its presence, i.e., they can produce
false positives. Moreover, when a deadlock is found, state-of-the-art analysis tools
[6,7,12] provide little (and often no) information on the source of the deadlock.
In particular, for deadlocks that are complex (involve many tasks and locations),
it is essential to know the task interleavings that have occurred and the locations
involved in the deadlock, i.e., provide a concrete deadlock trace that allows the
programmer to identify and fix the problem.

In contrast, testing consists of executing the application for concrete input
values. Since a deadlock can manifest only on specific sequences of task inter-
leavings, in order to apply testing for deadlock detection, the testing process
must systematically explore all task interleavings. The primary advantage of sys-
tematic testing [4,14] for deadlock detection is that it can provide the detailed
deadlock trace. There are two shortcomings though: (1) Although recent research
tries to avoid redundant exploration as much as possible [1,3–5], the search space
of systematic testing (even without redundancies) can be huge. This is a threat
to the application of testing in concurrent programming. (2) There is only guar-
antee of deadlock freedom for finite-state terminating programs (terminating
executions with concrete inputs).

This paper proposes a seamless combination of static analysis and testing for
effective deadlock detection as follows: an existing static deadlock analysis [6] is
first used to obtain abstract descriptions of potential deadlock cycles which are
then used to guide a testing tool in order to find associated deadlock traces (or
discard them). In summary, the main contributions of this paper are:

1. We extend a standard semantics for asynchronous programs with information
about the task interleavings made and the status of tasks.

2. We provide a formal characterization of deadlock state which can be checked
along the execution and allows us to early detect deadlocks.

3. We present a new methodology to detect deadlocks which combines testing
and static analysis as follows: the deadlock cycles inferred by static analysis
are used to guide the testing process towards paths that might lead to a
deadlock cycle while discarding deadlock-free paths.

4. We have implemented our methodology in the SYCO system (see Sect. 6) and
performed a thorough experimental evaluation on some classical examples.

2 Asynchronous Programs: Syntax and Semantics

We consider a distributed programming model with explicit locations. Each loca-
tion represents a processor with a procedure stack and an unordered buffer of
pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its
own processor’s global storage, each task can post tasks to the buffers of any
processor, including its own, and synchronize with the termination of tasks.
The language uses future variables to check if the execution of an asynchronous
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Fig. 1. Macro-step semantics of asynchronous programs

task has finished. An asynchronous call m(z̄) spawned at location x is associ-
ated with a future variable f as follows f = x ! m(z̄). Instructions f.block and
f.await allow, respectively, blocking and non-blocking synchronization with the
termination of m. When a task completes, or when it is awaiting with a non-
blocking await for a task that has not finished yet, its processor becomes idle
again, chooses the next pending task, and so on. The number of distributed
locations need not be known a priori (e.g., locations may be virtual). Syntac-
tically, a location will therefore be similar to a concurrent object and can be
dynamically created using the instruction new. The program consists of a set
of methods of the form M ::=T m(T̄ x̄){s}, where statements s take the form
s::=s; s | x=e | if e then s else s | while e do s | return | b = new | f =
x ! m(z̄) | f.await | f.block. For the sake of generality, the syntax of expressions
e and types T is left open.

Figure 1 presents the semantics of the language. The information about ρ in
bold font is part of the extensions for testing in Sect. 4 and should be ignored
for now. A state or configuration is a set of locations and future variables
loc0 · · · locn · fut0 · · · futm. A location is a term loc(�, tk , h,Q) where � is the
location identifier, tk is the identifier of the active task that holds the location’s
lock or ⊥ if the location’s lock is free, h is its local heap, and Q is the set of tasks
in the location. A future variable is a term fut(id, �, tk ,m) where id is a unique
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future variable identifier, � is the location identifier that executes the task tk
awaiting for the future, and m is the initial program point of tk . A task is a
term tsk(tk ,m, l, s) where tk is a unique task identifier, m is the method name
executing in the task, l is a mapping from local variables to their values, and s is
the sequence of instructions to be executed or ε if the task has terminated. We
assume that the execution starts from a main method without parameters. The
initial state is St={loc(0, 0, ⊥, {tsk(0,main, l, body(main))} with an initial loca-
tion with identifier 0 executing task 0. Here, l maps local variables to their initial
values (null in case of reference variables) and ⊥ is the empty heap. body(m) is
the sequence of instructions in method m, and we can know the program point
pp where an instruction s is in the program as follows pp:s.

As locations do not share their states, the semantics can be presented as a
macro-step semantics [14] (defined by means of the transition “−→”) in which
the evaluation of all statements of a task takes place serially (without interleaving
with any other task) until it gets to an await or return instruction. In this case, we
apply rule mstep to select an available task from a location, namely we apply the
function selectLoc(S) to select non-deterministically one active location in the
state (i.e., a location with a non-empty queue) and selectTask(�) to select non-
deterministically one task of �’s queue. The transition � defines the evaluation
within a given location. newloc creates a new location without tasks, with a
fresh identifier and heap. async spawns a new task (the initial state is created
by buildLocals) with a fresh task identifier tk1, and it adds a new future to the
state. ini(m) refers to the first program point of method m. We assume � �= �1,
but the case � = �1 is analogous, the new task tk1 is added to Q of �. The
rules for sequential execution are standard and are thus omitted. Await1: If the
future variable we are awaiting for points to a finished task, the await can be
completed. The finished task t1 is only looked up but it does not disappear from
the state as its status may be needed later on. Await2: Otherwise, the task yields
the lock so that any other task of the same location can take it. Return: When
return is executed, the lock is released and will never be taken again by that
task. Consequently, that task is finished (marked by adding the instruction ε).
Block2: A y.block instruction waits for the future variable but without yielding
the lock. Then, when the future is ready, Block1 allows continuing the execution.

In what follows, a derivation or execution E ≡ St0 −→ · · · −→ Stn is a
sequence of macro-steps (applications of rule mstep). The derivation is complete
if St0 is the initial state and � Stn+1 �= Stn such that Stn −→ Stn+1. Since the
execution is non-deterministic, multiple derivations are possible from a state.
Given a state St, exec(St) denotes the set of all possible derivations starting at
St. We sometimes label transitions with �·tk , the name of the location � and task
tk selected (in rule mstep) or evaluated in the step (in the transition �). The
systematic exploration of exec(St) thus corresponds to the standard systematic
testing setting with no reduction of any kind.
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Fig. 2. Classical sleeping barber problem (left) and execution tree (right)

3 Motivating Example

Our running example is a simple version of the classical sleeping barber problem
where a barber sleeps until a client arrives and takes a chair, and the client
wakes up the barber to get a haircut. Our implementation in Fig. 2 has a main
method shown on the left and three classes Ba, Ch and Cl implementing the
barber, chair and client, respectively. The main creates three locations barber,
client and chair and spawns two asynchronous tasks to start the wakeup task
in the client and sleeps in the barber, both tasks can run in parallel. The
execution of sleeps spawns an asynchronous task on the chair to represent the
fact that the client takes the chair, and then blocks at line 11 (L11 for short)
until the chair is taken. The task taken first adds the task sits on the client,
and then awaits on its termination at L17 without blocking, so that another
task on the location chair can execute. On the other hand, the execution of
wakeup in the client spawns an asynchronous task cuts on the barber and one
on the chair, isClean, to check if the chair is clean. The execution of the client
blocks until cuts has finished. We assume that all methods have an implicit
return at the end.

Figure 2 summarizes the systematic testing tree of the main method by show-
ing some of the macro-steps taken. Derivations that contain a dotted node are
not deadlock, while those with a gray node are deadlock. A main motivation of
our work is to detect as early as possible that the dotted derivations will not lead
us to deadlock and prune them. Let us see two selected derivations in detail. In
the derivation ending at node 5, the first macro-step executes cl.wakeup and
then ba.cuts. Now, it is clear that the location cl will not deadlock, since the
block at L24 will succeed and the other two locations will be also able to com-
plete their tasks, namely the await at L17 of location ch can finish because the
client is certainly not blocked, and also the block at L11 will succeed because
the task in taken will eventually finish as its location is not blocked. However,
in the branch of node 4, we first select wakeup (and block client), then we select
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sleeps (and block barber), and then select taken that will remain in the await
at L17 and will never succeed since it is awaiting for the termination of a task of
a blocked location. Thus, we have a deadlock. Let us outline five states of this
derivation:

St1 ≡ loc(ini, ..)·loc(cl, .., {tsk(1, wk, ..)})·loc(ba, .., {tsk(2, sp, ..)})·loc(ch, ..)
cl,1−→

St2 ≡ loc(cl, .., {tsk(1, wk, f0.block)})·loc(ba, .., {tsk(3, cut, ..), ..})·fut(f0, ba, 3, 12)·.. ba,2−→
St3 ≡ loc(ba, .., {tsk(2, sp, f1.block)})·loc(ch, .., {tsk(5, tk, ..), ..})·fut(f1, ch, 5, 15)·.. ch,5−→
St4 ≡ loc(ch, .., {tsk(5, tk, f2.await), ..})·loc(cl, .., {tsk(6, st, ..), ..})·fut(f2, cl, 6, 25)·..
ch,4−→ St′4 ≡ loc(ch, ..{tsk(4, isClean, ε), ..})·..

Fig. 3. mstep2 rule for combined testing and analysis

The first state is obtained after executing the main where we have the initial
location ini, three locations created at L2, L3 and L4, and two tasks at L5
and L6 added to the queues. Note that each location and task is assigned a
unique identifier (we use numbers as identifiers for tasks and short names as
identifiers for locations). In the next state, the task wakeup has been selected
and fully executed (we have shortened the name of the methods, e.g., wk for
wakeup). Observe at St2 the addition of the future variable created at L22. In
St3 we have executed task sleeps in the barber and added a new future term.
In St4 we execute task taken in the chair (this state is already deadlock as we
will see in Sect. 4.2), however location chair can keep on executing an available
task isClean generating St′4. From now on, we use the location and task names
instead of numeric identifiers for clarity.

4 Testing for Deadlock Detection

The goal of this section is to present a framework for early detection of deadlocks
during systematic testing. This is done by enhancing our standard semantics with
information which allows us to easily detect dependencies among tasks, i.e., when
a task is awaiting for the termination of another one. These dependencies are
necessary to detect in a second step deadlock states.

4.1 An Enhanced Semantics for Deadlock Detection

In the following we define the interleavings table whose role is twofold: (1) It
stores all decisions about task interleavings made during the execution. This
way, at the end of a concrete execution, the exact ordering of the performed
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macro-steps can be observed. (2) It will be used to detect deadlocks as early as
possible, and, also to detect states from which a deadlock cannot occur, therefore
allowing to prune the execution tree when we are looking for deadlocks. The
interleavings table is a mapping with entries of the form t�,tk ,pp �→ 〈n, ρ〉, where:

– t�,tk ,pp is a macro-step identifier, or time identifier, that includes: the identi-
fiers of the location � and task tk that have been selected in the macro-step,
and the program point pp of the first instruction that will be executed;

– n is an integer representing the time when the macro-step starts executing;
– ρ is the status of the task after the macro-step and it can take three values as

it can be seen in Fig. 1: block or await when executing these instructions on
a future variable that is not ready (we also annotate in ρ the information on
the associated future); return that allows us to know that the task finished.

We use a function clock(n) to represent a clock that starts at 0, is increased
by one in every execution of clock, and returns the current value n. The initial
entry is t0,0,1 �→ 〈0, ρ0〉, 0 being the identifier for the initial location and task,
and 1 the first program point of main. The clock also assigns the value 0 as the
first element in the tuple and a fresh variable in the second element ρ0. The next
macro-step will be assigned clock value 1, next 2, and so on. As notation, we
define the relation t ∈ table if there exists an entry t �→ 〈n, ρ〉 ∈ table, and the
function status(t , table) which returns the status ρt such that t �→ 〈n, ρt 〉 ∈ table.
The semantics is extended by changing rule mstep as in Fig. 3. The function
deadlock will be defined in Theorem 1 to stop derivations as soon as deadlock
is detected. Function checkC should be ignored for now, it will be defined in
Sect. 5.2. Essentially, there are two new aspects: (1) The state is extended with
the status ρ, namely all rules include a status ρ attached to the state using the
symbol 
. The status is showed in bold font in Fig. 1 and can get a value in rules
block2, await2 and return. The initial value ρ0 is a fresh variable. (2) The state
for the macrostep is extended with the interleavings table table, and a new entry
t�,tk ,pp �→ 〈n, ρ〉 is added to table in every macrostep if there has been progress
in the execution, i.e., S′ �= S, n being the current clock time.

Example 1. The interleavings table below (left) is computed for the derivation in
Sect. 3. It has as many entries as macro-steps in the derivation. We can observe
that subsequent time values are assigned to each time identifier so that we can
then know the order of execution. The right column shows the future variables
in the state that store the location and task they are bound to.

St1 tini,main,1 �→ 〈0, return〉 ∅
St2 tcl,wakeup,21 �→ 〈1, 24:f0.block〉 fut(f0, ba, cuts, 12)

St3 tba,sleeps,9 �→ 〈2, 11:f1.block〉 fut(f1, ch, taken, 15)

St4 tch,taken,15 �→ 〈3, 17:f2.await〉 fut(f2, cl, sits, 25)
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4.2 Formal Characterization of Deadlock State

Our semantics can easily be extended to detect deadlock just by redefining func-
tion selectLoc so that only locations that can proceed are selected. If, at a given
state, no location is selected but there is at least a location with a non-empty
queue then there is a deadlock. However, deadlocks can be detected earlier. We
present the notion of deadlock state which characterizes states that contain a
deadlock chain in which one or more tasks are waiting for each other’s termina-
tion and none of them can make any progress. Note that, from a deadlock state,
there might be tasks that keep on progressing until the deadlock is finally made
explicit. Even more, if one of those tasks runs into an infinite loop, the deadlock
will not be captured using this naive extension. The early detection of deadlocks
is crucial to reduce state exploration as our experiments show in Sect. 6.

We first introduce the auxiliary notion of waiting interval which captures the
period in which a task is waiting for another one to terminate. In particular, it
is defined as a tuple (tstop, tasync, tresume) where tstop is the macro-step at which
the location stops executing a task due to some block/await instruction, tasync is
the macro-step at which the task that is being awaited is selected for execution,
and, tresume is the macro-step at which the task will resume its execution. tstop,
tasync and tresume are time identifiers as defined in Sect. 4.1. tresume will also be
written as next(tstop). When the task stops at tstop due to a block instruction,
we call it blocking interval, as the location remains blocked between tstop and
next(tstop) until the awaited task, selected in tasync, has already finished. The
execution of a task can have several points at which macro-steps are performed
(e.g., if it contains several await or block the processor may be lost several times).
For this reason, we define the set of successor macro-steps of the same task from a
macro-step: suc(t�,tk ,pp0 , table) = {t�,tk ,ppi

: t�,tk ,ppi
∈ table, t�,tk ,ppi

≥ t�,tk ,pp0}.

Definition 1 (Waiting/Blocking Intervals). Let St = (S, table) be a state,
I = (tstop, tasync, tresume) is a waiting interval of St, written as I ∈ St, iff:

1. ∃ tstop = t�,tk0,pp0 ∈ table, ρstop = status(tstop) ∈ {pp1 : x.await, pp1:
x.block},

2. tresume ≡ t�,tk0,pp1 , fut(x, �x, tkx, pp(M)) ∈ S,
3. tasync ≡ t�x,tkx,pp(M), � t ∈ suc(tasync, table) with status(t) = return.
If ρstop = x.block, then I is blocking.

In condition 3, we can see that if the task starting at tasync has finished, then
it is not a waiting interval. This is known by checking that this task has not
reached return, i.e., � t ∈ suc(tasync, table) such that status(t) = return. In
condition 1, we see that in ρstop we have the name of the future we are awaiting
(whose corresponding information is stored in fut, condition 2). In order to
define tresume in condition 2, we search for the same task tk0 and same location
� that executes the task starting at program point pp1 of the await/block, since
this is the point that the macro-step rule uses to define the macro-step identifier
t�,tk0,pp1 associated to the resumption of the waiting task.
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Example 2. Let us consider again the derivation in Sect. 3. We have the
following blocking interval (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24) ∈ St2 with
St2 ≡ (S2, table2), since tcl,wakeup,21 ∈ table2, status(tcl,wakeup,21, table2) =
[24:f.block], (f, ba, cuts, 12) ∈ St2 and tba,cuts,12 �∈ table2. This blocking
interval captures the fact that the task at tcl,wakeup,21 is blocked waiting for
task cuts to terminate. Similarly, we have the following two intervals in St4:
(tba,sleeps,9, tch,taken,15, tba,sleeps,11) and (tch,taken,15, tcl,sits,25, tch,taken,17).

The following notion of deadlock chain relies on the waiting/blocking intervals
of Definition 1 in order to characterize chains of calls in which intuitively each
task is waiting for the next one to terminate until the last one which is waiting
on the termination of a task executing on the initial location (that is blocked).
Given a time identifier t, we use loc(t) to obtain its associated location identifier.

Definition 2 (Deadlock Chain). Let St = (S, table) be a state. A chain
of time identifiers t0, ..., tn is a deadlock chain in St, written as dc(t0, ..., tn)
iff ∀ti ∈ {t0, ..., tn−1} s.t. (ti, t′i+1, next(ti))∈St one of the following conditions
holds:

1. ti+1 ∈ suc(t′i+1, table), or
2. loc(t′i+1) = loc(ti+1) and (ti+1, , next(ti+1)) is blocking.
and for tn, we have that tn+1 ≡ t0, and condition 2 holds.

Let us explain the two conditions in the above definition: In condition (1), we
check that when a task ti is waiting for another task to terminate, the waiting
interval contains the initial time t′i+1 in which the task will be selected. However,
we look for any waiting interval for this task ti+1 (thus we check that ti+1 is
a successor of time t′i+1). As in Definition 2, this is because such task may
have started its execution and then suspended due to a subsequent await/block
instruction. Abusing terminology, we use the time identifier to refer to the task
executing. In condition (2), we capture deadlock chains which occur when a task
ti is waiting on the termination of another task t′i+1 which executes on a location
loc(t′i+1) which is blocked. The fact that is blocked is captured by checking that
there is a blocking interval from a task ti+1 executing on this location. Finally,
note the circularity of the chain, since we require that tn+1 ≡ t0.

Theorem 1 (Deadlock state). A state St is deadlock, written deadlock(S), if
and only if there is a deadlock chain in St.

Derivations ending in a deadlock state are considered complete derivations.
We prove that our definition of deadlock is equivalent to the standard definition
of deadlock in [6] (proof can be found in [16]).

Example 3. Following Example 1, St4 is a deadlock state since there exists
a deadlock chain dc(tcl,wakeup,21, tba,sleeps,9, tch,taken,15). For the second ele-
ment in the chain tba,sleeps,9, condition 1 holds as (tba,sleeps,9, tch,taken,15,
tba,sleeps,11) ∈ St4 and tch,taken,15 ∈ suc(tch,taken,15, table4). For the first element
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tcl,wakeup,21, condition 2 holds since (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24)∈St4
and (tba,sleeps,9, tch,taken,15, tba,sleeps,11) is blocking. Condition 2 holds analo-
gously for tch,taken,15.

5 Combining Static Deadlock Analysis and Testing

This section proposes a deadlock detection methodology that combines static
analysis and systematic testing as follows. First, a state-of-the-art deadlock
analysis is run, in particular that of [6], which provides a set of abstractions
of potential deadlock cycles. If the set is empty, then the program is deadlock-
free. Otherwise, using the inferred set of deadlock cycles, we systematically test
the program using a novel technique to guide the exploration towards paths that
might lead to deadlock cycles. The goals of this process are: (1) finding concrete
deadlock traces associated to the feasible cycles, and, (2) discarding unfeasible
deadlock cycles, and in case all cycles are discarded, ensure deadlock freedom
for the considered input or, in our case, for the main method under test. As
our experiments show in Sect. 6, our technique allows reducing significantly the
search space compared to the full systematic exploration.

5.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [6] returns a set of abstract deadlock cycles of the

form e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1, where p1, . . . , pn are program points,

tk1, . . . , tkn are task abstractions, and nodes e1, . . . , en are either location abstrac-
tions or task abstractions. Three kinds of arrows can be distinguished, namely,
task-task (a task is awaiting for the termination of another one), task-location
(a task is awaiting for a location to be idle) and location-task (the location is
blocked due the task). Location-location arrows cannot happen. The abstrac-
tions for tasks and locations can be performed at different levels of accuracy
during the analysis: the simple abstraction that we will use for our formalization
abstracts each concrete location � by the program point at which it is created
�pp, and each task by the method name executing. They are abstractions since
there could be many locations created at the same program point and many
tasks executing the same method. Both the analysis and the semantics can be
made object-sensitive by keeping the k ancestor abstract locations (where k is
a parameter of the analysis). For the sake of simplicity of the presentation, we
assume k = 0 in the formalization (our implementation uses k = 1).

Example 4. In our working example there are three abstract locations, �2, �3 and
�4, corresponding to locations barber, client and chair, created at lines 2, 3 and
4; and six abstract tasks, sleeps, cuts, wakeup, sits, taken and isClean. The
following cycle is inferred by the deadlock analysis: �2

11:sleeps−−−−−−→ taken
17:taken−−−−−→

sits
25:sits−−−−→ �3

24:wakeup−−−−−−−→ cuts
12:cuts−−−−→ �2. The first arrow captures that the location

created at L2 is blocked waiting for the termination of task taken because of the
synchronization at L11 of task sleeps. Observe that cycles contain dependencies
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also between tasks, like the second arrow, where we capture that taken is waiting
for sits. Also, a dependency between a task (e.g., sits) and a location (e.g., �3)
captures that the task is trying to execute on that (possibly) blocked location.
Abstract deadlock cycles can be provided by the analyzer to the user. But, as
it can observed, it is complex to figure out from them why these dependencies
arise, and in particular the interleavings scheduled to lead to this situation.

5.2 Guiding Testing Towards Deadlock Cycles

Given an abstract deadlock cycle, we now present a novel technique to guide the
systematic execution towards paths that might contain a representative of that
abstract deadlock cycle, by discarding paths that are guaranteed not to contain
such a representative. The main idea is as follows: (1) From the abstract dead-
lock cycle, we generate deadlock-cycle constraints, which must hold in all states
of derivations leading to the given deadlock cycle. (2) We extend the execu-
tion semantics to support deadlock-cycle constraints, with the aim of stopping
derivations as soon as cycle-constraints are not satisfied. Uppercase letters in
constraints denote variables to allow representing incomplete information.

Definition 3 (Deadlock-cycle constraints). Given a state St = (S, table),
a deadlock-cycle constraint takes one of the following three forms:

1. ∃tL,T,PP �→ 〈N, ρ〉, which means that there exists or will exist an entry of this
form in table ( time constraint)

2. ∃fut(F,L,Tk , p), which means that there exists or will exist a future variable
of this form in S ( fut constraint)

3. pending(Tk), which means that task Tk has not finished (pending constraint)

The following function φ computes the set of deadlock-cycle constraints associ-
ated to a given abstract deadlock cycle.

Definition 4 (Generation of deadlock-cycle constraints). Given an

abstract deadlock cycle e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ . . .
pn:tkn−−−−→ e1, and two fresh vari-

ables Li,Tk i, φ is defined as φ(ei
pi:tki−−−→ ej

pj :tkj−−−−→ . . . ,Li,Tk i) =
⎧
⎨

⎩
{∃tLi,Tki, �→〈 , sync(pi,Fi)〉, ∃fut(Fi,Lj ,Tkj , pj)} ∪ φ(ej

pj :tkj−−−−→ . . . ,Lj ,Tkj) if ej=tkj

{pending(Tk i)} ∪ φ(ej
pj :tkj−−−−→ . . . ,Li,Tkj) if ej = �

Notation sync(pi, Fi) is a shortcut for pi:Fi.block or pi:Fi.await. Uppercase let-
ters appearing for the first time in the constraints are fresh variables. The first
case handles location-task and task-task arrows (since ej is a task abstraction),
whereas the second case handles task-location arrows (ej is an abstract location).
Let us observe the following: (1) The abstract location and task identifiers of
the abstract cycle are not used to produce the constraints. This is because con-
straints refer to concrete identifiers. Even if the cycle contains the same identifier
on two different nodes or arrows, the corresponding variables in the constraints
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cannot be bound (i.e., we cannot use the same variables) since they could refer
to different concrete identifiers. (2) The program points of the cycle (pi and
pj) are used in time and fut constraints. (3) Location and task identifier vari-
ables of fut constraints and subsequent time or pending constraints are bound
(i.e., the same variables are used). This is done using the 2nd and 3rd parameters
of function φ. (4) In the second case, Tk j is a fresh variable since the location
executing Tk i can be blocked due to a (possibly) different task. Intuitively,
deadlock-cycle constraints characterize all possible deadlock chains representing
the given cycle.

Example 5. The following deadlock-cycle constraints are computed for the cycle
in Example 4: {∃tL1,Tk1, �→〈 , 11:F1.block〉,∃fut(F1,L2,Tk2, 15),∃tL2,Tk2, �→〈 ,
17:F2.await〉,∃fut(F2,L3,Tk3, 25), pending(Tk3),∃tL3,Tk4, �→〈 , 24:F3.block〉,∃
fut(F3,L4,Tk5, 12), pending(Tk5)}. They are shown in the order in which they
are computed by φ. The first four constraints require table to contain a concrete
time in which some barber sleeps waiting at L11 for a certain chair to be taken
at L15 and, during another concrete time, this one waits at L17 for a certain
client to sit at L25. The client is not allowed to sit by the 5th constraint. Fur-
thermore, the last three constraints require a concrete time in which this client
waits at L24 to get a haircut by some barber at L12 and that haircut is never
performed. Note that, in order to preserve completeness, we are not binding the
first and the second barber. If the example is generalized with several clients and
barbers, there could be a deadlock in which a barber waits for a client which
waits for another barber and client, so that the last one waits to get a haircut
by the first one. This deadlock would not be found if the two barbers are bound
in the constraints (i.e., if we use the same variable name). In other words, we
have to account for deadlocks which traverse the abstract cycle more than once.

The idea now is to monitor the execution using the inferred deadlock-cycle con-
straints for the given cycle, with the aim of stopping derivations at states that
do not satisfy the constraints. The following boolean function checkC checks the
satisfiability of the constraints at a given state.

Definition 5. Given a set of deadlock-cycle constraints C, and a state St =
(S, table), check holds, written checkC(St), if ∀tLi,Tki,PP �→ 〈N, sync(pi, Fi)〉 ∈
C, fut(Fi,Lj ,Tk j , pj) ∈ C, one of the following conditions holds:

1. reachable(tLi,Tki,pi
, S)

2. ∃t�i,tki,pp �→ 〈n, sync(pi, fi)〉 ∈ table ∧ fut(fi, �j , tk j , pj) ∈ S ∧
(pending(Tk j) ∈ C ⇒ getTskSeq(tk j , S) �= ε)

Function reachable checks whether a given task might arise in subsequent states.
We over-approximate it syntactically by computing the transitive call relations
from all tasks in the queues of all locations in S. Precision could be improved
using more advanced analyses. Function getTskSeq gets from the state the
sequence of instructions to be executed by a task (which is ε if the task has
terminated). Intuitively, check does not hold if there is at least a time constraint
so that: (i) its time identifier is not reachable, and, (ii) in the case that the
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interleavings table contains entries matching it, for each one, there is an asso-
ciated future variable in the state and a pending constraint for its associated
task which is violated, i.e., the associated task has finished. The first condition
(i) implies that there cannot be more representatives of the given abstract cycle
in subsequent states, therefore if there are potential deadlock cycles, the asso-
ciated time identifiers must be in the interleavings table. The second condition
(ii) implies that, for each potential cycle in the state, there is no deadlock chain
since at least one of the blocking tasks has finished. This means there cannot be
derivations from this state leading to the given cycle, hence the derivation can
be stopped.

Definition 6 (Deadlock-cycle guided-testing (DCGT)). Consider an
abstract deadlock cycle c, and an initial state St0. Let C = φ(c,Linit,Tk init)
with Linit,Tk init fresh variables. We define DCGT, written execc(St0), as the
set {d : d ∈ exec(St0), deadlock(Stn)}, where Stn is the last state in d.

Example 6. Let us consider the DCGT of our working example with the
deadlock-cycle of Example 4, and hence with the constraints C of Exam-
ple 5. The interleavings table at St5 contains the entries tini,main,1 �→〈0, return〉,
tcl,wakeup,21 �→〈1, 24:f0.block〉 and tba,cuts,12 �→〈2, return〉}. checkC does not hold
since tL1,Tk1,24 is not reachable from St5 and constraint pending(Tk5) is violated
(task cuts has already finished at this point). The derivation is hence pruned.
Similarly, the rightmost derivation is stopped at St11. Also, derivations at St4,
St8 and St10 are stopped by function deadlock of Theorem 1. Since there are no
more deadlock cycles, the search for deadlock detection finishes with this DCGT.
Our methodology therefore explores 19 states instead of the 181 explored by the
full systematic execution.

Theorem 2 (Soundness). Given a program P, a set of abstract cycles C in P
and an initial state St0, ∀d ∈ exec(St0) if d is a derivation whose last state is
deadlock, then ∃c ∈ C s.t d ∈ execc(St0). (The proof can be found in App. A)

6 Experimental Evaluation

We have implemented our approach within the SYCO tool, a testing tool for
concurrent objects which is available at http://costa.ls.fi.upm.es/syco, where most
of the benchmarks below can also be found. Concurrent objects communicate via
asynchronous method calls and use await and block, resp., as instructions for
non-blocking and blocking synchronization. This section summarizes our exper-
imental results which aim at demonstrating the effectiveness and impact of the
proposed techniques. The benchmarks we have used include: (i) classical concur-
rency patterns containing deadlocks, namely, SB is an extension of the sleeping
barber, UL is a loop that creates asynchronous tasks and locations, PA is the
pairing problem, FA is a distributed factorial, WM is the water molecule making
problem, HB the hungry birds problem; and, (ii) deadlock free versions of some
of the above, named fX for the X problem, for which deadlock analyzers give
false positives. We also include here a peer-to-peer system P2P.

http://costa.ls.fi.upm.es/syco
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Table 1 shows, for each benchmark, the results of our deadlock guided test-
ing (DGT) methodology for finding a representative trace for each deadlock
compared to those of the standard systematic testing. Partial-order reduction
techniques are not applied since they are orthogonal. This way we focus on
the reductions obtained due to our technique per-se. For the systematic testing
setting we measure: the number of solutions or complete derivations (column
Ans), the total time taken (column T ) and the number of states generated
(column S ). For the DGT setting, besides the time and number of states
(columns T and S ), we measure the “number of deadlock executions”/“number
of unfeasible cycles”/“number of abstract cycles inferred by the deadlock analy-
sis” (column D/U/C ), and, since the DCGTs for each cycle are independent and
can be performed in parallel, we show the maximum time and maximum number
of states measured among the different DCGTs (columns Tmax and Smax). For
instance, in the DGT for HB the analysis has found five abstract cycles, we only
found a deadlock execution for two of them (therefore 3 of them were unfeasible),
44 s being the total time of the process, and 15 s the time of the longest DCGT
(including the time of the deadlock analysis) and hence the total time assuming
an ideal parallel setting with 5 processors. Columns in the group Speedup show
the gains of DGT over systematic testing both assuming a sequential setting,
hence considering values T and S of DGT (column Tgain for time and Sgain for
number of states), and an ideal parallel setting, therefore considering Tmax and
Smax (columns Tmax

gain and Smax
gain). The gains are computed as X/Y , X being the

measure of systematic testing and Y that of DGT. Times are in milliseconds
and are obtained on an Intel(R) Core(TM) i7 CPU at 2.3 GHz with 8 GB of
RAM, running Mac OS X 10.8.5. A timeout of 150 s is used. When the timeout
is reached, we write >X to indicate that for the corresponding measure we have
got X units in the timeout. In the case of the speedups, >X indicates that the
speedup would be X if the process finishes right in the timeout, and hence it is
guaranteed to be greater than X. Also, we write X∗ when DGT times out.

Our experiments support our claim that testing complements deadlock analy-
sis. In the case of programs with deadlock, we have been able to provide concrete
traces for feasible deadlock cycles and to discard unfeasible cycles. For deadlock-
free programs, we have been able to discard all potential cycles and therefore
prove deadlock freedom. More importantly, the experiments demonstrate that
our DGT methodology achieves a notable reduction of the search space over
systematic testing in most cases. Except for benchmarks HB and WM which are
explained below, the gains of DGT both in time and number of states are enor-
mous (more than three orders of magnitude in many cases). It can be observed
that the gains are much larger in the examples in which the deadlock analysis
does not give false positives (namely, in SB, UL and PA). In general, the gener-
ated constraints for unfeasible cycles are often not able to guide the exploration
effectively (e.g. in HB and WM). Even in these cases, DGT outperforms system-
atic testing in terms of scalability and flexibility. Let us also observe that the
gains are less notable in deadlock-free examples. That is because, each DCGT
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Table 1. Experimental results: deadlock-guided testing vs. systematic testing

Systematic DGT (deadlock-per-cycle) Speedup

Bm. Ans T S D/U/C T Tmax S Smax Tgain Sgain Tmax
gain Smax

gain

HB 35k 32k 114k 2/3/5 44k 15k 103k 34k 0.73 0.9 2.15 3.33

FA 11k 11k 41k 2/1/3 2k 759 3k 2k 5.5 13.7 15.1 22.2

UL >90k >150k >489k 1/0/1 133 133 5 5 >1.1k >2.5k >2.5k >98k

SB >103k >150k >584k 1/0/1 59 59 23 23 >2.5k >25k >2.5k >25k

PA >121k >150k >329k 2/0/2 42 4 12 6 >3.6k >27k >38k >55k

WM >82k >150k >380k 1/0/2 >150k >150k >258k >258k 1∗ 1.47∗ 1∗ 1.47∗

fFA 5k 7k 25k 0/1/1 5k 5k 11k 11k 1.61 2.35 1.61 2.35

fP2P 25k 66k 118k 0/1/1 34k 34k 52k 52k 1.96 2.28 1.96 2.28

fPA 7k 7k 30k 0/2/2 4k 2k 9k 4k 1.75 3.33 3.73 6.98

fUL >102k >150k >527k 0/1/1 410 410 236 236 >1k >2k >1k >2k

cannot stop until all potential deadlock paths have been considered. As expected,
when we consider a parallel setting, the gains are much larger.

All in all, we argue that our experiments show that our methodology com-
plements deadlock analysis, finding deadlock traces for the potential deadlock
cycles and discarding unfeasible ones, with a significant reduction.

7 Conclusions and Related Work

There is a large body of work on deadlock detection including both dynamic and
static approaches. Much of the existing work, both for asynchronous programs
[6,7] and thread-based programs [11,13], is based on static analysis techniques.
Static analysis can ensure the absence of errors, however it works on approx-
imations (especially for pointer aliasing) which might lead to a “don’t know”
answer. Our work complements static analysis techniques and can be used to
look for deadlock paths when static analysis is not able to prove deadlock free-
dom. Using our method, we try to find a deadlock by exploring the paths given
by our deadlock detection algorithm that relies on the static information.

Deadlock detection has been also studied in the context of dynamic testing
and model checking [4,9,10,15], where sometimes has been combined with sta-
tic information [2,8]. As regards combined approaches, the approach in [8] first
performs a transformation of the program into a trace program that only keeps
the instructions that are relevant for deadlock and then dynamic testing is per-
formed on such program. The approach is fundamentally different from ours: in
their case, since model checking is performed on the trace program (that over-
approximates the deadlock behaviour), the method can detect deadlocks that do
not exist in the program, while in our case this is not possible since the testing is
performed on the original program and the analysis information is only used to
drive the execution. In [2], the information inferred from a type system is used to
accelerate the detection of potential cycles. This work shares with our work that
information inferred statically is used to improve the performance of the testing
tool, however there are important differences: first, their method developed for
Java threads captures deadlocks due to the use of locks and cannot handle wait-
notify, while our technique is not developed for specific patterns but works on a
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general characterization of deadlock of asynchronous programs; their underlying
static analysis is a type inference algorithm which infers deadlock types and the
checking algorithm needs to understand these types to take advantage of them,
while we base our method on an analysis which infers descriptions of chains of
tasks and a formal semantics is enriched to interpret them.
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Abstract. JavaScript is one of the most wide-spread programming lan-
guages: it drives the web applications in browsers, it runs on server side,
and it gets to the embedded world as well. Because of its prevalence,
ensuring the correctness of its execution engines is highly important.
One of the hardest parts to test in an execution environment is the
API exposed by the engine. Thus, we focus on fuzz testing of JavaScript
engine APIs in this paper. We formally define a graph representation that
is suited to describe type information in an engine, explain how to build
such graphs, and describe how to use them for API fuzz testing. Our
experimental evaluation of the techniques on a real-life in-use JavaScript
engine shows that the introduced approach gives better coverage than
available existing fuzzing techniques and could also find valid issues in
the tested system.

1 Introduction

JavaScript (standardized as ECMAScript [3] but rarely referred to by that name)
is the de-facto standard programming language of web browsers, which have
evolved into one of the most important application platforms of our days –
in which evolution the language played a major role. However, it is not only
the client side of the web where JavaScript spreads: it is gaining popularity in
server-side scripting as well, thanks to the Node.js framework1. And recently
JavaScript has penetrated the embedded world as well: several engines (e.g.,
Duktape2, JerryScript3) and frameworks (e.g., IoT.js4) emerged that enable
the programming of highly resource-constrained Internet-of-Things devices in
JavaScript. Because of the prevalence of the language, ensuring the correctness
of its execution engines – both functionally and security-wise – is of paramount
importance.

One testing method that has a special focus on security is fuzzing [11] – or fuzz
testing, random testing. In fuzzing, a so-called test generator produces totally
random or partially randomized (‘fuzzed’) test inputs in a great volume, which

1 https://nodejs.org/.
2 http://duktape.org/.
3 http://www.jerryscript.net/.
4 http://www.iotjs.net/.
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are then given to a program (or system-under-test, SUT) for processing in the
hope that some of them cause malfunction. The most easily recognizable errors
are crashes, assertion failures, and unhandled exceptions, since they certainly
signal a design flaw in the application – quite often flaws that can be exploited
by a malicious attacker. Since fuzzing has the potential of uncovering such errors,
the technique is often used in internal security testing processes [8].

For a random test generation approach to be useful in practice, it should be
able to reach as ‘deep’ in the SUT as possible, i.e., generate test inputs that are
not discarded by early correctness (e.g., syntax or CRC) checks. For some input
formats or SUTs, even the simplest, random byte sequence generation or existing
test mutation (e.g., bit flipping) techniques may give satisfying results, but as
the format gets stricter such approaches tend to scratch the surface of the SUT
only. This is the case with JavaScript, too: even fuzzers with knowledge about the
language syntax (e.g., AST mutators or grammar-based generators) are mostly
exercising the parser of the engine-under-test only (i.e., whether language con-
structs are correctly recognized and transformed into internal representation).
The reason for this is that the execution of these fuzzed inputs often fails because
of mismatch between the generated operations and operands.

This is especially true for the application programming interfaces (APIs)
exposed by the engines: there are requirements regarding what method can
be invoked on what object with which arguments. Gathering this information
manually from the standards is both burdensome and error prone. Moreover,
both because of different stages in the implementation of (different versions of)
the standard and because of different application domains (e.g., web browsers,
server side, command line), the APIs exposed by existing engines differ (and will
change as they evolve). Thus, automatic means for modeling the exposed API are
heavily needed.

Existing approaches [1,10] that try to infer information – e.g., a type system –
about JavaScript, however, work on user source code. Since the execution engine
itself is rarely written in JavaScript, these methods cannot be used for engine
analysis. To deal with the issues outlined above, we present three major novel
contributions in this paper: first, we define a graph-based type representation
that is suited to describe the API of a JavaScript execution engine with different
precisions, then we describe two methods how to build such a graph, and finally,
we show an application of the graph representation, i.e., how it can be used in
fuzzing.

The rest of the paper is organized as follows: Sect. 2 gives the formal defin-
ition of the graph used throughout the paper. Section 3 formalizes API fuzzing
based on the introduced graph representation. Section 4 outlines two automated
methods to infer information about the API of an engine. Section 5 presents
experimental results from a prototype implementation of the graph representa-
tion, the analyses, and the fuzzing technique. Section 6 discusses related work,
and finally, Sect. 7 concludes the paper and forecasts future work.
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2 Graph Representation of Type Information
in JavaScript

It is a commonly known feature of JavaScript that although it has the concept of
objects, it lacks a strong type system. Some kind of inheritance exists, mimiced
by prototypes, but it is a relation between individual objects however. And the-
oretically, each object can be significantly different in terms of its prototype and
members. Nevertheless, objects in practice in an actual execution environment
tend to fall into similarity categories or ‘types’, i.e., they share the same pro-
totype chain and they have members with the same name, which in turn again
have the same ‘type’. Below, we define a graph, titled the Prototype Graph after
the prototype feature of the language, that can represent such type information.

Definition 1 (Prototype Graph). Let a Prototype Graph be a labeled
directed multigraph (a graph allowing parallel edges with own identity)

G = 〈V,E, s, t, lprop, lparam〉

such that

– V = Vtype ∪ Vsig, set of vertices, where the subsets are disjoint,
• Vtype vertices represent ‘types’, i.e., categories of similar objects,
• Vsig vertices represent ‘signatures’ of callable types, i.e., functions,

– E = Eproto ∪ Eprop ∪ Ecstr ∪ Ecall ∪ Eparam ∪ Eret, set of edges, where all
subsets are mutually disjoint,

• Eproto edges represent prototype relation (‘inheritance’) between types,
• Eprop edges represent the properties (‘members’) of types,
• Ecstr and Ecall edges connect callable types to their signatures and rep-

resent the two ways they can be invoked, i.e., the construct and call
semantics,

• Eparam edges represent type information on parameters of callable types,
• Eret edges represent return types of callable types,

– s : E → V assigns to each edge its source vertex, under the constraint that
∀e ∈ Eproto ∪ Eprop ∪ Ecstr ∪ Ecall ∪ Eparam : s(e) ∈ Vtype and ∀e ∈ Eret :
s(e) ∈ Vsig,

– t : E → V assigns to each edge its target vertex, under the constraint that
∀e ∈ Eproto ∪ Eprop ∪ Eret : t(e) ∈ Vtype and ∀e ∈ Ecstr ∪ Ecall ∪ Eparam :
t(e) ∈ Vsig,

– the 〈V,Eproto, s|Eproto
, t|Eproto

〉 directed sub-multigraph is acyclic,
– lprop : Eprop → Σ labeling function assigns arbitrary symbols (‘names’) to

property edges, under the constraint that ∀e1, e2 ∈ Eprop : s(e1) = s(e2) ⇒
lprop(e1) = lprop(e2) ⇐⇒ e1 = e2,

– lparam : Eparam → IN0 labeling function assigns numeric indices to para-
meter edges, under the constraint that ∀e1, e2 ∈ Eparam : t(e1) = t(e2) ⇒
lparam(e1) = lparam(e2) ⇐⇒ e1 = e2.
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Fig. 1. Example prototype graph manually constructed based on a portion of the
ECMAScript 5.1 standard [3, Sects. 15.2, 15.3]. Large and small nodes represent type
and sig vertices respectively. (The single black node on the left represents the type of
the global object, however, that is for identification and presentation purposes only.)
Thick lines with labels represent prop edges, thin lines with hollow arrows represent
proto edges, while dashed lines with double-bracketed labels represent cstr, call, param,
and ret edges.

Informally, a prototype graph is a collection of type and sig vertices connected
by six different kind of edges (and several edges can run between two vertices).
Proto and prop edges connect type vertices, while the others connect type and
sig vertices in one direction or the other. And finally, member name information
and function argument order is encoded in edge labels. (Note, that vertices have
no labeling; most information is stored in the existence of and labels of edges.)

As an example, Fig. 1 shows a prototype graph of 6 type and 2 sig ver-
tices, manually constructed based on a portion of the ECMAScript 5.1 stan-
dard. The graph contains the types of Object, Object.prototype, Function,
and Function.prototype objects, the global object, and also the constructor
signature for Object and the call signatures for three functions of it.

Finally, we define some useful notations on prototype graphs as follows.

Definition 2 (Notations). Let G = 〈V,E, s, t, lprop, lparam〉 be a prototype
graph, where V = Vtype∪Vsig and E = Eproto∪Eprop∪Ecstr∪Ecall∪Eparam∪Eret,
according to Definition 1. Then we introduce the following notations:

– Let v
e−−→
x

v′, denote the edge e of type x, where x ∈
{proto, prop, cstr, call, param, ret}, iff e ∈ Ex ∧ s(e) = v ∧ t(e) = v′.
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– Let v
e1...en−−−−→

X

∗
v′, denote the finite path e1 . . . en over X type of edges, where

X ⊆ {proto, prop, cstr, call, param, ret}, iff e1 . . . en is a sequence of edges,
with n ≥ 1, such that ∀1 ≤ i ≤ n : vi

ei−−→
xi

vi+1 ∧xi ∈ X, and v1 = v ∧ vn+1 =

v′.
– Let PG denote the set of all finite paths in G.

3 Valid API Call Expressions from a Graph
Representation

In this section, we present an application of the prototype graph, i.e., JavaScript
engine API fuzzing, as motivated in the introduction. Thus, given a built graph,
our goal is to generate call expressions that invoke functions on API objects
with type-correct arguments. Therefore, we formally define with graph terms
how such expressions can look like.

Definition 3 (Function Call Expressions). Let G = 〈V,E, s, t, lprop, lparam〉
be a prototype graph, where V = Vtype ∪ Vsig, E = Eproto ∪ Eprop ∪ Ecstr ∪
Ecall ∪ Eparam ∪ Eret, and lprop : Eprop → Σ, according to Def. 1. Let Λ :
P(V ) → P(Σ∗

+) be a function that maps a set of types to a set of literals
from an extended alphabet Σ+ ⊇ Σ ∪ { new , . , ( , , , ) }. Then we define
ΦG,Λ : Vtype → P(Σ∗

+) as a function that gives for some selected starting vertex
v0 a set of type-correct call expressions that are available from an object of that
type:

ΦG,Λ(v0) = ΓG,Λ(v0, Vsig)

ΦG,Λ is given with the help of several auxiliary functions, all of which are
defined below:

– The function ΓG,Λ : V × P(V ) → P(Σ∗
+) gives the set of type-correct expres-

sions available along a set of paths:

ΓG,Λ(v0, V
′) =⋃

e1...en∈ΠG(v0,V ′)

((
new · (

)|{ei∈Ecstr}|
· Λ({v0}) ·

n∏
i=1

)
[ei∈Ecstr ] · γG,Λ(v0, ei)

)

– The function γG,Λ : V × E → P(Σ∗
+) gives a set of sub-expressions for a step

(i.e., edge) along a path:

γG,Λ(v0, e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. · lprop(e) if e ∈ Eprop,

( ·
(

n∏

i=1

,
ΓG,Λ(v0,∇G(vi)) ∪ Λ(∇G(vi))

)

· )

if e ∈ Ecstr ∪ Ecall, where

n = |{e′ : ∃v′ : v′ e′
−−−−→
param

t(e)}| and

∀1 ≤ i ≤ n : vi
ei−−−−→

param
t(e) and

∀1 ≤ i < n : lparam(ei) < lparam(ei+1),
λ otherwise.
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– The function ΠG : V × P(V ) → P(PG) gives the set of all finite paths from a
vertex to a set of vertices over proto, prop, cstr, call, and ret edges:

ΠG(v, V ′) =
{

e1 . . . en : v
e1...en−−−−−−−−−−−−−−−→

proto,prop,cstr,call,ret

∗
v′ ∧ v′ ∈ V ′

}

.

– The function ∇G : V → P(V ) gives the set of all vertices reachable from a
given vertex backwards over proto edges:

∇G(v) =
{

v′ : ∃e1 . . . en : v′ e1...en−−−−→
proto

∗
v

}

.

– The ·, ∏
, and power notations denote concatenation of strings (or sets of

strings) over an alphabet, and λ is the empty word. The
∏

notation with an
additional superscript symbol denotes concatenation with a separator symbol:

n∏

i=1

σai =

⎧
⎪⎪⎨

⎪⎪⎩

(
n−1∏

i=1

σai

)

· σ · an if n > 1,

n∏

i=1

ai otherwise.

– [P ] denotes the Iverson bracket, i.e., gives 1 if P is true, 0 otherwise.

As visible from the definition above, the graph representation is capable
of describing how a property can be accessed (the first case of γG,Λ), how a
function can be parametrized to retrieve a type-correct value (the second case
of γG,Λ), and how a new object can be created with a constructor call (the
Ecstr-related parts of ΓG,Λ). There is one more way of creating an expression
of a given type, however: with literals. Since they fall outside the expressiveness
of the graph representation – mostly because a literal is more of a syntactic
entity while the concepts in the graph represent components of type information
– possible literals of a type (or some types) are represented by the Λ function
that complements the graph.

An actual implementation of the above formalism, e.g., a fuzzer, would most
probably not generate the (potentially infinite) set ΦG,Λ(v0) but may choose an
arbitrary element from it (and perhaps a different one on every execution). That
can be achieved by a random walk on the prototype graph based on the informal
concept behind the formal definition: “First walk forward on proto, prop, cstr,
call, and ret edges to a sig vertex, then walk backward on param and proto
edges, and so on...” Also, in an API fuzzer, v0 would most probably be the type
of global object, and Λ would map v0 to a literal referring to the global object.

As an example, below we give some expressions in ΦGex,Λex
(vex), where Gex

is the graph in Fig. 1, vex is the type of the global object in that graph (marked
with black), and Λex(V ′) =

⋃[vex∈V ′]
i=1 { this }:

– this.Object.getPrototypeOf(this.Function.prototype),
– new (this.Object)(this).
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4 Building a Prototype Graph

The most trivial way of building a prototype graph may seem to be by hand.
However, processing web standards manually – not only that of ECMAScript
but potentially others as well, e.g., HTML5 DOM bindings – may require huge
human efforts and is still heavily error prone, will be hard to maintain, and will
not know about any engine-specific extensions. Thus, we outline two automated
techniques below.

Both approaches rely on the introspecting capabilities of the JavaScript lan-
guage: not only can we determine the actual type of every expression at runtime
(with the typeof operator, e.g., whether it is of primitive boolean, number, or
string type, or an object or a function, to name the most important types) but
we can enumerate all properties and walk the property chains of all objects
(with Object.getOwnPropertyNames() and Object.getPrototypeOf()), and
retrieve the number of the formal parameters of every function (by reading their
length property). By relying on introspection, the approaches do not require the
source code of the engine-to-be-tested making them applicable to any engines.

The first approach, which we will call engine discovery in the paper
(or just discovery, for short), is a one-time analysis of the engine. It’s core idea is
to execute a specially crafted JavaScript program inside the engine-to-be-tested
using the above mentioned constructs. If this JavaScript program gets access to
an object, it can create type descriptor data structures from all values recursively
reachable from it by recording property names, and prototype and property rela-
tions – and formal argument list lengths for function objects. If this JavaScript
program gets access to the global object of the execution environment then it
can discover the whole API of the engine. Fortunately, the language standard
mandates the existence of that global object (available as this in the outmost
lexical scope), thus the approach is universal for all engines.

The discovery technique can find the prototypes and properties in the exposed
API, but as mentioned above, it has a very limited view of the signatures (para-
meter and return types) of the functions. Therefore, we propose a second app-
roach to extend the information about functions in the type descriptor data
structure: in JavaScript, every object can be modified dynamically, even most
of the built-in objects, and this includes the replacement of built-in functions
with user-written JavaScript code. Thus, we propose to wrap (or patch) every
function found using the discovery technique in a special code that, when called,
collects type descriptor information about every parameter before passing them
through to the original function, and also collects details about the returned
value after the original call finished but before it is given back to the caller. This
way the observable behaviour of the wrapped system does not change, but as
programs execute in the engine, information about function signatures in the
type descriptors can be continuously extended, refined (or, learned). Executing
official or project-specific JavaScript test suites in such a patched environment
is a plausible choice to learn signatures.

The data structures built by the engine discovery and signature learning
approaches can be exported from the engine, e.g., in JSON format by using
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Fig. 2. Architecture overview of the prototype implementation of the graph-based
JavaScript engine API fuzzing technique. The black boxes stand for the SUT, white
elements are part of the implementation, while gray ones are generated during its exe-
cution. Dashed lines separate parts which execute only once from those which run
multiple times (changing elements are marked with *).

built-in conversion routines. Then, that information can be easily transformed
to the prototype graph format introduced in Sect. 2.

5 Experimental Results

5.1 Tools and Environment

To evaluate the ideas explained in the previous sections, we have created a
prototype implementation. The code that discovers the API of the engine and
learns signatures from existing tests was written in JavaScript (relying on the
introspection capabilities of the language, as described in Sect. 4), while test
generator code, execution harness for the engine-under-test, and utility routines
were implemented in Python 3, with the help of the graph-tool module5. The
architecture overview of the prototype implementation is shown in Fig. 2.

As SUT, we have chosen jsc, the command line JavaScript execution tool from
the WebKit project6. The project – checked out from its official code repository
at revision 192323 dated 2015-11-11 – was built in debug configuration for its
GTK+ port (i.e., external dependencies like UI elements were provided by the
GTK+ project7), on an x86-64 machine running Ubuntu 14.04 with Linux ker-
nel 3.13.0, with gcc 4.9.2. To enable the investigation of the effects of fuzzing
5 https://graph-tool.skewed.de/.
6 https://webkit.org/.
7 http://www.gtk.org/.

https://graph-tool.skewed.de/
https://webkit.org/
http://www.gtk.org/
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on the SUT, we made use of the coverage computation support of the compiler
together with the gcov 4.9.2 and gcovr 3.2 tools8.

Our goal was not only to evaluate the prototype graph-based fuzzing tech-
nique on its own but also to compare it to existing solutions. Therefore, we have
downloaded jsfunfuzz9 – with hash 6952e0f dated 2016-01-08 – , one of the few
available open source JavaScript fuzzers to act as a baseline for our experiments.

5.2 Graphs

Since in our fuzzing technique the first step is to build a prototype graph, we have
applied both previously outlined approaches to jsc, i.e., first we have discovered
the engine and then learned functions signatures from existing tests. For the
latter step, we have used the official JavaScript stress test suite of the WebKit
project, executing 3,573 tests in the wrapped engine.

Table 1 shows the size metrics of the built graphs. The most striking difference
is in the number of Vtype vertices. This can be attributed to two factors: first,
because of the limited view of the engine discovery on the function signatures,
a large number of function objects are considered to be of the same prototype
(i.e., only their argument number differentiates between them, and those with
the same number of arguments get represented by a single type vertex). With
signature learning, however, most of the function objects get represented by a
separate type vertex. The second factor in the increase are new types emerging
during signature learning either originating from the test suite (e.g., previously
unseen literal parameters) or from the engine itself (e.g., natively constructed
return values).

Figure 3 shows the prototype graph resulting after the learning step.

Table 1. Size metrics of prototype graphs built for jsc. (Signatures were learned from
3,573 official stress tests.)

pgdiscover pglearn

|Vtype| 90 2022

|Vsig| 6 2362

|Eproto| 83 779

|Eprop| 670 2297

|Ecstr| 0 473

|Ecall| 32 2404

|Eparam| 17 83300

|Eret| 6 2362

8 http://gcovr.com/.
9 https://github.com/MozillaSecurity/funfuzz/.

http://gcovr.com/
https://github.com/MozillaSecurity/funfuzz/
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Fig. 3. Prototype graph built for jsc with the signature learning technique.

5.3 Evaluation

Once the graphs were built, we have used our test generator implementation
to create 50,000 expressions from both, each expression resulting from a path
consisting of a maximum of 20 property steps (as defined by γG,Λ in Sect. 3).
Then, we executed all expressions in jsc, one by one, and monitored their results.
We took note of all assertion failures and program crashes, and after every 5,000
expressions we also measured the accumulated code coverage of the hitherto
executed tests.

For the execution of jsfunfuzz, we used its own framework with the slight
modification of adding a periodic code coverage measurement to the system.
Jsfunfuzz was written with continuous (or continuously restarting) execution in
mind and thus does not support the generation of a given number of expres-
sions. Therefore, we could neither generate one expression per test as with our
implementation nor could we execute exactly 50,000 expressions. However, we
wanted to keep changes to it to the minimum, therefore we did not alter that
behavior. To allow fair comparison, we parametrized jsfunfuzz to restart after
every 1 second to generate only a small amount of expressions per test and we
stopped the whole framework after the first code coverage measurement past the
50,000 expressions limit (thus finishing with 50,320 expressions).
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Table 2 shows the line coverage results of all three fuzzing approaches both
with module-level granularity and in total. (We have considered each sub-
directory and standalone file of the JavaScriptCore build folder of the WebKit
project as a separate module.) The results show that the basic engine discovery-
based approach does not perform as well as jsfunfuzz in terms of total code
coverage (23.31 % compared to 37.25 %), but as soon as we extend our graph
with signature information extracted from tests, it improves significantly and
gives higher results (44.13 %).

We should also highlight results on three important modules, namely on
runtime, yarr, and jsc.cpp. The first contains C++ implementations of core
JavaScript language functionality (like built-in functions), while the second con-
tains the regular expression engine of the project. The third module (actually, a
single file), is the main command line application, which is a classic JavaScript
engine embedder in the sense that it binds some extra, non-standard routines
into the JavaScript environment. That is, these are the modules that expose
API of native code to the JavaScript space and thus are in our focus. As the
table shows, even the simpler engine discovery-based technique can outperform
jsfunfuzz in two out of the three modules, and the signature-extended variant
gives the best results in all three cases.

For the sake of completeness, we should also mention some modules where the
coverage is very low for all techniques. API and bindings contain API exposed
to an embedder: a JavaScript code has no effect on how the engine is linked to its
container application (moreover, bindings is marked deprecated in the code base,
thus won’t reach a higher coverage ever). The other modules – i.e., debugger,
disassembler, inspector, profiler, and tools – contain code that are development-
related and are also not under the control of the JavaScript code. Thus, these
modules cannot be – and are not – the target of JavaScript API fuzzing.

As the ultimate goal of fuzzing is not only to reach good code coverage but
also to cause system malfunction, we compared the three techniques on the basis
of caused crashes as well. Table 3 shows the total number of observed failures,
and since several tests triggered the same problem, the number of unique failures
as well. (The uniqueness was determined based on crash backtrace information
retrieved with a debugger.) Interestingly, both graph-based fuzzing techniques
found the same failures. This also means that even the engine discovery technique
with lower total coverage ratio could find more errors than jsfunfuzz. (However,
it has to be noted that one of the two crashes caused by jsfunfuzz was not found
by the graph-based prototype implementation.)

6 Related Work

Several previous authors tried to handle the weak-typedness of the JavaScript
language by creating various type systems. One of the most well-known type
systems was introduced by Anderson [1], who gave a formal algebraic definition
for types of a language named JS0 and also described how to perform type
inference on such grammars. Other authors extended that work, like Franzen
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Table 2. Code coverage results on jsc after 50,000 generated expressions (after 50,320
expressions for jsfunfuzz).

Module Total lines Covered lines

pgdiscover pglearn jsfunfuzz

API 1698 9 0.53 % 9 0.53 % 9 0.53 %

DerivedSources 4546 148 3.26 % 167 3.67 % 312 6.86 %

assembler 2997 1046 34.90 % 2037 67.97 % 2054 68.54 %

bindings 165 0 0.00 % 0 0.00 % 0 0.00 %

builtins 96 63 65.63 % 63 65.63 % 62 64.58 %

bytecode 8578 1650 19.24 % 4196 48.92 % 3320 38.70 %

bytecompiler 4656 2344 50.34 % 2372 50.95 % 2887 62.01 %

debugger 713 3 0.42 % 3 0.42 % 3 0.42 %

dfg 29959 27 0.09 % 11019 36.78 % 9403 31.39 %

disassembler 1033 3 0.29 % 3 0.29 % 3 0.29 %

heap 4221 2517 59.63 % 2671 63.28 % 2373 56.22 %

inspector 3594 0 0.00 % 0 0.00 % 0 0.00 %

interpreter 1336 594 44.46 % 664 49.70 % 648 48.50 %

jit 8919 814 9.13 % 4852 54.40 % 4345 48.72 %

jsc.cpp 926 507 54.75 % 519 56.05 % 240 25.92 %

llint 840 344 40.95 % 424 50.48 % 451 53.69 %

parser 6586 3618 54.93 % 3801 57.71 % 4400 66.81 %

profiler 788 4 0.51 % 4 0.51 % 4 0.51 %

runtime 27112 12115 44.69 % 15101 55.70 % 10648 39.27 %

tools 534 13 2.43 % 13 2.43 % 13 2.43 %

yarr 3538 486 13.74 % 1879 53.11 % 856 24.19 %

TOTAL 112835 26305 23.31 % 49797 44.13 % 42031 37.25 %

Table 3. Number of failures caused in jsc.

pgdiscover pglearn jsfunfuzz

total failures 1326 1445 4

unique failures 6 6 2

and Aspinall [4], who also tried to reason about the resource usage of programs
with the help of the type system. However, even if designed to be “realistic”,
JS0 is only a subset of the complete JavaScript language to make it manageable
with respect to formalization.

Other type system and type inference approaches have also been proposed
[2,7,13] but all authors focused on the static analysis of applications, not on the
API of engines or on the execution engines themselves. Sen et al. have created
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Jalangi [10], a dynamic analysis framework for JavaScript but it also deals with
user code only with the help of preprocessing and not with the environment the
programs run in, just like the static analyses.

The origins of random test generation date back to at least the ’70s, when
Purdom published his paper about grammar-based sentence generation for
parser testing [9]. However, the term fuzzing was coined by Miller in 1988 only,
as a result of truly random noise appearing in modem lines, disturbing terminals,
and causing programs to crash [12]. Since then, randomized testing has become
widespread; a good overview is also given in the work of Sutton et al [11].

The records on JavaScript fuzzing are not that long, but as the importance
of the language started raising, the topic gained attention both in academia and
industry. Godefroid et al. [5] have presented a whitebox fuzzing technique and
experimented with it on the JavaScript interpreter of the Internet Explorer 7.
That approach, however, required the symbolic execution of the application and
constraint solving in addition. Holler et al. created LangFuzz [6] but that is
an almost purely syntax-directed approach, which aims to avoid introducing
language-dependent semantic knowledge into the fuzzer, thus LangFuzz has no
type representation at all. Closest to our work is the state-of-the-art jsfunfuzz
system from Ruderman, which we have chosen to compare our proposed tech-
nique against. That system does apply an engine discovery approach similar to
ours, but it does not utilize all introspecting possibilities of the language, e.g.,
does not traverse the prototype chains and completely omits the automated
discovery and learning of function signatures (all possible parametrizations are
manually specified for the fuzzer).

7 Summary and Future Work

In this paper, we have defined a graph-based formalization of type informa-
tion in JavaScript, we have shown how to automate the building of such graphs
to describe the API exposed by a JavaScript execution engine, and we have
also defined an API fuzzing method based on graph terms. According to our
knowledge, this paper is the first work to use graph formalization and traver-
sal for type information and related analyses of JavaScript. In addition to the
formal definitions, we have also presented the experimental results of a proto-
type implementation of a JavaScript engine API fuzzer. The results show that
the prototype graph based API fuzzing technique can be on par with available
solutions in terms of total code coverage and even yield significantly better cov-
erage results in JavaScript API-related modules. Moreover, the implementation
triggered real program crashes during the experiments.

We see several potential directions for future work. First of all, we would
like to enhance the potential of the API fuzzer. We plan to experiment with
changing the formulas of Sect. 3 so that they do not necessarily generate type-
correct expressions (e.g., by replacing the occurrences of ∇G with a function
that traverses proto edges in both directions instead of forward only). That may
(or probably will) cause more generated inputs to be discarded by the engines,
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but we speculate that it may trigger more intrigued bugs as well. We would
also like to evaluate our approach on other SUTs: both on different standalone
JavaScript engines and especially on systems that bind external APIs into the
JavaScript execution environment, e.g., on web browsers that expose HTML
DOM manipulation API to user code. Moreover, we plan to investigate the
recently published ECMAScript 6 standard and evolve both the formalizations
and the implementation to adapt to any new concepts as needed. Finally, we
plan to investigate the potential use cases of the prototype graph outside the
fuzzing domain as well.
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Abstract. We study a component-based approach to simplify the chal-
lenges of verifying large-scale hybrid systems. Component-based mod-
eling can be used to split large models into partial models to reduce
modeling complexity. Yet, verification results also need to transfer from
components to composites. In this paper, we propose a component-based
hybrid system verification approach that combines the advantages of
component-based modeling (e.g., reduced model complexity) with the
advantages of formal verification (e.g., guaranteed contract compliance).
Our strategy is to decompose the system into components, verify their
local safety individually and compose them to form an overall system
that provably satisfies a global contract, without proving the whole sys-
tem. We introduce the necessary formalism to define the structure and
behavior of components and a technique how to compose components
such that safety properties provably emerge from component safety.

Keywords: Component-based development · Hybrid systems · Formal
verification

1 Introduction

The hybrid dynamics of computation and physics in safety-critical cyber-physical
systems (CPS), such as driver assistance systems, self-driving cars, autonomous
robots, and airplanes, are almost impossible to get right without proper formal
analysis. To enable this analysis, CPS are modeled using so called hybrid system
models. At larger scales of realistic hybrid system models, formal verification of
monolithic models becomes quite challenging. Therefore, component-based mod-
eling approaches split large models into partial models, i.e., co-existing or inter-
acting components (e.g., multiple airplanes in a collision avoidance maneuver).
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Even though this can lead to component-based models with improved structure
and reduced modeling complexity, component verification results do not always
transfer to composite systems without appropriate care.

This paper generalizes our previous work [18], which was limited to traffic
flow models (i.e., port conditions limited to maximum values, contracts limited
to load restrictions, components limited to interfaces and predefined behavior),
to a more generic approach to make hybrid system theorem proving modular on
a component level. The approach exploits component contracts to compose ver-
ified components and their safety proofs to a verified CPS. Differential dynamic
logic dL [21,22], the hybrid systems specification and verification logic we are
working with, is already compositional for each of its operators and, thus, a
helpful basis for our approach. Reasoning in dL splits models along the dL oper-
ators into smaller pieces. In this paper, we build compositionality for a notion
of components and interfaces on top of dL. We focus on modeling a system
in terms of components that each capture only a part of the system’s behav-
ior (as opposed to monolithic models) and a way to compose components by
connecting their interfaces (as opposed to basic program composition with dL
operators). Component-based hybrid systems verification is challenging because
both local component behavior (e.g., decisions and motion of a robot) and inher-
ently global phenomena (e.g., time) co-occur, because components can interact
virtually (e.g., robots communicate) and physically (e.g., a robot manipulates an
object), and because their interaction is subject to communication delays, mea-
surement uncertainty, and actuation disturbance. Typically, our components are
open systems [11], which are described and verified in isolation from other com-
ponents, separated by interfaces with assumptions about the environment that
provide guarantees about the behavior of components. If needed, they can be
turned into a closed system [11] by including a model of a specific environment.

This paper focuses on (i) lossless and instantaneous interaction between
components (allows uncertainty and delay in dedicated “ether” components,
e.g., sense the speed of a car precisely without measurement error), (ii) com-
ponents without physical entanglement (allows separated continuous dynamics,
e.g., robots drive on their own, but do not push each other), and (iii) compo-
nents without synchronized communication (parallel composition of continuous
dynamics, simplification to any sequential interleaving for discrete dynamics,
e.g., robots can sense their environment, but not negotiate with each other).

With this focus in mind, we define the structure and behavior of a notion
of components and a technique how to compose components such that safety
properties about the whole system emerge from component safety proofs (e.g.,
robots will not collide when staying in disjoint spatial regions). We illustrate our
approach with a vehicle cruise control case study.

2 Preliminaries: Differential Dynamic Logic

For specifying and verifying correctness statements about hybrid systems, we
use differential dynamic logic (dL) [21,22], which supports hybrid programs
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as a program notation for hybrid systems. dL models can be verified using
KeYmaera X [8], which is open source and has been applied for verification
of several case studies.1 The syntax of hybrid programs is generated by the
following EBNF grammar:

α ::= α;β | α ∪ β | α∗ | x := θ | x := ∗ | {x′
1 = θ1, . . . , x

′
n = θn & H} | ?φ.

The sequential composition α;β expresses that β starts after α finishes. The
non-deterministic choice α ∪ β follows either α or β. The non-deterministic rep-
etition operator α∗ repeats α zero or more times. Discrete assignment x := θ
instantaneously assigns the value of the term θ to the variable x, while x := ∗
assigns an arbitrary value to x. {x′ = θ & H} describes a continuous evolution
of x (x′ denotes derivation with respect to time) within the evolution domain
H. The test ?φ checks that a condition expressed by φ holds, and aborts if it
does not. A typical pattern x := ∗; ?a ≤ x ≤ b, which involves assignment and
tests, is to limit the assignment of arbitrary values to known bounds.

To specify safety properties about hybrid programs, dL provides a modal
operator [α]. When φ is a dL formula describing a state and α is a hybrid pro-
gram, then the dL formula [α]φ expresses that all states reachable by α satisfy
φ. The set of dL formulas relevant for this paper is generated by the following
EBNF grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic expres-
sions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ | [α]φ.

Notation: Variables. In dL (and thus throughout the paper) all variables are
real-valued. We use V to denote a set of variables. FV (.) is used as an operator on
terms, formulas and hybrid programs returning only their free variables, whereas
BV (.) is an operator returning only their bound variables.2 Similarly, V (.) =
FV (.) ∪ BV (.) returns all variables (free as well as bound).

Notation: Indices. Throughout this paper, subscript indices represent enu-
merations (e.g., xi). Superscript indices are used to further specify the kinds
of items described by the respective variables (e.g., vout represents an output
variable). If needed, a double (super- and subscript) one-letter index is used for
double numeration (e.g., xj

i represents element j of the vector xi).

3 Modeling and Verification Steps

In this section we present the modeling and verification steps in our component-
based verification approach (cf. Fig. 1). To illustrate the steps, we will use an

1 cf. http://symbolaris.com/info/KeYmaera.html.
2 Bound variables of a hybrid program are all those that may potentially be written

to, while free variables are all those that may potentially be read [23].

http://symbolaris.com/info/KeYmaera.html
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example of a vehicle cruise control system, which consists of an actuator compo-
nent adapting the vehicle speed according to a target speed chosen by a cruise
control component. The vehicle moves continuously, while the control behavior
is described by a discrete control part (e.g., choose velocity and acceleration).
The goal is to keep the actual velocity in some range [0, V ], where V denotes
a maximum velocity. Note that we model components fully symbolically, which
means that each component represents actually a family of concrete components.

Fig. 1. Steps for component-based modeling and verification

The approach consists of the following steps:

(1) identify global contract: Before decomposing the system, it is important
to learn what properties the system as a whole should fulfill (e.g., supported
by domain experts). The global contract specifies the initial state of the
whole system (Φ, e.g., initially the velocity is 0) as well as its overall safety
property (Ψ , e.g., the velocity will stay in the desired range).

(2) model components and interfaces: Find recurring parts or natural split-
ting points for implementations (e.g., we split our cruise control system in
a cruise controller and an actuator). The number of different components
should be kept small, so that the verification effort remains low; still, there
have to be sufficiently many components that can be instantiated to assem-
ble the system. Modeling components and their interfaces is a manual effort
(e.g., by modeling experts). A component has a behavior, while its interface
defines public input ports and output ports, see Definitions 2 and 3 later.

(3) identify contracts: For each component and its interface, we identify
initial states φi (e.g., initial target velocity is 0), a safety property ψsafe

i

(e.g., actual velocity does not exceed V ), as well as an output contract πout
i
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(e.g., target velocity is always in the desired range), see Definition 4 later.
These properties have to be chosen such that the global contract follows by
refinement or dominance [4]: Φ → ∧

i φi and
∧

i(ψ
safe
i ∧ πout

i ) → Ψ .
(4) verify contract compliance: Verify that components satisfy their con-

tracts formally, in our case (hybrid programs and dL), with KeYmaera X.
(5) compose and check compatibility: Construct the system by connecting

component ports to compose verified components in parallel, see Definition
5 later. Any component can be instantiated multiple times in the whole
system (e.g., instantiate maximum velocity parameters of a cruise control
with actual values; connect the controller with the actuator). In order to
transfer proofs about components to a global system proof, the compatibility
of the components must be checked (see Theorem 1 in Sect. 4.2, which is
proved under these compatibility assumptions). Intuitively, the compatibility
check ensures that the values provided for symbolic parameters of an output
port of one component instance are compatible with the values required on
a connected input port of the next instance, see Definition 6 later (e.g., the
controller cannot demand target speeds outside the target range).

The main result of this process is that the component safety proofs—done
for compatible components in isolation—transfer to an arbitrarily large system
built by instantiating these components (cf. Theorem 1).

4 Component-Based Modeling

In this section we introduce essential modeling idioms and definitions for the
presented steps. Section 4.1 introduces components (cf. step (2)) and their con-
tracts (cf. step (3)). Similarly, Bauer et al. [3] show how a contract framework
can be built generically. Section 4.2 introduces composition (cf. step (5)) and
ensures that the local properties transfer to the overall system.

4.1 Components and Contracts

Components can observe a shared global state, and modify their internal state.

Definition 1 (Global Variables). The global variables V global are a set of
variables shared by all components. It contains the variable t, which represents
the system time, is initially set to 0, and increases linearly with rate 1. None of
the global variables can ever be bound in any part of any component.

In the following paragraphs, we define components, which have a behavior
(e.g., how a cruise controller chooses a target velocity), and interfaces, which
consist of input ports (e.g., the current velocity received by cruise control) and
output ports (e.g., the new target velocity as provided by cruise control). We
define the behavior of a component in the canonical order of a control part
followed by a plant, which enables the definition of a structured composition
operation for components and interfaces.
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Definition 2 (Component). A component C is defined as a tuple

C = (ctrl,plant) , where

– ctrl is the discrete control part of a hybrid program (HP) and does not contain
continuous parts (i.e., differential equations), and

– plant is the continuous part of the form {x′
1 = θ1, ..., x

′
n = θn&H} for n ∈ N

i.e., an ordinary differential equation with evolution domain constraint H.

The interface of a component consists of input and output ports, which can
have contracts (i.e., πin and πout , e.g., value range for the target velocity).

Definition 3 (Interface). An interface I is defined as a tuple

I =
(
V in, πin,V out, πout

)
, where

– V in is a set of input variables, V out is a set of output variables,
– πin : V in → P specifies an input predicate (P represents the set of all logical

formulas) representing input requirements and assumptions, exactly one per
input variable (i.e., input port), accordingly for πout : V out → P,

– ∀v ∈ V in : V (πin(v)) ⊆ (
V \ V in

)∪{v}, i.e., no input predicate can mention
other input variables, which lets us reshuffle port ordering.

An interface I is called admissible for a component C, if (BV (ctrl)∪BV (plant))∩
V in = ∅, i.e., none of the input variables are bound in ctrl or plant.

Consider our running example of the vehicle cruise control, where the actua-
tor component chooses the acceleration according to a target velocity (cf. Fig. 2).
As illustrated in Fig. 2a, the component has a single input port to receive a target
velocity and a single output port to provide the current velocity.

Figure 2b describes this component and interface formally: The actuator
receives a target speed between 0 and V on its single input port vtr

ac , cf. (3).
It is a time-triggered controller with sampling period ε. The controller chooses
the acceleration of the vehicle such that it will not exceed the target velocity
until the next run and stores the current system time, cf. (1). The plant adapts

Fig. 2. Actuator component/interface example (Cac , Iac)
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the velocity accordingly and runs for at most ε time to enforce the sampling
period, cf. (2). The single output port yields the resulting actual velocity, which
still has to be in range between 0 and V , cf. (4).

Definition 4 (Contract). Let C be a component, I be an admissible interface
for C, and φ be a formula over the component’s variables V, which determines the
component’s initial state. Let ψsafe be a predicate over the component’s variables
V, i.e., a property describing the desirable target system state (i.e., a safety
property). We define ψ

def≡ ψsafe ∧ Πout, where Πout ≡ ∧
v∈V out πout(v) is the

conjunction of all output guarantees. The contract of a component C with its
interface I is defined as

Cont(C, I) ≡ t = 0 ∧ φ → [(in; ctrl; {t′ = 1,plant})∗]ψ

with input in
def≡ (

v1 := ∗; ?πin(v1)
)
; ...;

(
vr := ∗; ?πin(vr)

)
for all vi ∈ V in.

As the input predicates are not allowed to mention other inputs, the order of
inputs in in is irrelevant. We call a component with an admissible interface that
provably satisfies its contract to be contract compliant. This means, if started in
a state satisfying φ, the component only reaches states that satisfy safety ψsafe

and all output guarantees πout when all inputs satisfy πin .
In our running example of Fig. 2, the actuator component has an output

guarantee πout ≡ (0 ≤ vac ≤ V ) (i.e., the speed must always be in range), and
when starting from the initial conditions φ ≡ (vac = 0 ∧ ε > 0 ∧ V > 0) (i.e.,
vehicle initially stopped) it can provably guarantee safety3 ψsafe ≡ 0 ≤ vac ≤ V .

4.2 Composition of Components

Now that we have defined the structure and behavior of single components and
their interfaces, we specify how to compose a number of those components by
defining a syntactic composition operator for components. Differential dynamic
logic follows the common assumption in hybrid systems that discrete actions do
not consume time, i.e., multiple discrete actions of a program can happen instan-
taneously at the same real point in time. Time only passes during continuous
evolution measured through t′ in plant. Hence, if we disallow direct interaction
between the controllers of components,4 we can compose the discrete ctrl of
multiple components in parallel by executing them sequentially in any order,
while keeping their plants truly parallel through {x′

1 = θ1, . . . , x
′
n = θn & H}.

Interaction between components is then possible by observing plant output.
Such interaction, which exchanges information between components, will be

defined by connecting ports when composing components through their inter-
faces. The port connections are represented by a mapping function X , which
assigns an output port to an input port for some number of input ports. In this
paper, we focus on instantaneous lossless interaction, where the input variable
3 Note that in this case the output property and the safety property coincide. This is

not necessarily always the case.
4 Definition 5 restricts how variables between components can be shared.
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v instantaneously takes on the value of the output port it is connected to, cf.
v := X (v) in Definition 5. Other interaction patterns can be modeled by adapt-
ing Definition 5. For example, measurement with sensor uncertainty Δ is v :=
∗; ? (X (v) − Δ ≤ v ≤ X (v) + Δ), which yields a modified compatibility check.

As we do not require all ports to be connected, the mapping function is a
partial function. Ports which are not connected become ports of the composite,
while ports which are connected become internal variables.

Definition 5 (Parallel Composition). Let Ci denote one of n components

Ci = (ctrli,planti) for i ∈ {1, ..., n}
with their corresponding admissible interfaces

Ii =
(
V in

i , πin
i ,V out

i , πout
i

)
for i ∈ {1, ..., n}

where
(
V in

i ∪ V out
i ∪ V(ctrli) ∪ V(planti)

) ∩ (V in
j ∪ V out

j ∪ V(ctrlj) ∪ V(plantj)
) ⊆

V global for i �= j, i.e., only variables in V global are shared between components,
and let

X :
(⋃

1≤j≤n
V in

j

)
⇀

(⋃
1≤i≤nV out

i

)

be a partial (i.e., not every input must be mapped), injective (i.e., every output
is only mapped to one input) function, connecting inputs to outputs. We define
IX as the domain of X (i.e., all variables x ∈ V in such that X (x) is defined)
and OX as the the image of X (i.e., all variables y ∈ V out such that y = X (x)
holds for some x ∈ V in).

(C, I)
def≡ ((C1, I1)‖...‖(Cn, In))X

is defined as the composite of n components and their interfaces (with respect to
X ), where

– the sensing for non-connected inputs remains unchanged

in ≡ vk := ∗; ?πin(vk); . . . ; vs := ∗; ?πin(vs)
︸ ︷︷ ︸

open inputs

for {vk, . . . , vs} = V in \ IX

– the order in which the control parts (and the respective port mappings) are
executed is chosen non-deterministically (considering all the n! possible per-
mutations of {1, ..., n}), so that connected ports become internal behavior of
the composite component

ctrl ≡ (ports1; ctrl1; ports2; ctrl2; ...; portsn; ctrln) ∪
(ports2; ctrl2; ports1; ctrl1; ...; portsn; ctrln) ∪
...

(portsn; ctrln; ...; ports2; ctrl2,ports1; ctrl1)

with portsi
def≡ vj := X (vj); . . . ; vr := X (vr)

︸ ︷︷ ︸
connected inputs

for {vj , . . . , vr} = IX ∩ V in
i ,
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Fig. 3. Cruise controller component/interface example (Ccc , Icc)

– continuous parts are executed in parallel, staying inside all evolution domains

plant ≡ {
x
(1)′
1 = θ

(1)
1 , . . . , x

(k)′
1 = θ

(k)
1︸ ︷︷ ︸

component C1

, . . . , x(1)′
n = θ(1)n , . . . , x(m)′

n = θ(m)
n︸ ︷︷ ︸

component Cn

& H1 ∧ . . . ∧ Hn

}
,

– the respective sets of variables are merged, where V in =
⋃

1≤i≤n V in
i \IX ,

V out =
⋃

1≤i≤n V out
i \OX , i.e., ports not connected within the composite com-

ponent remain input and output variables of the resulting interface,
– input port requirements of all interfaces are preserved, except for connected

inputs, i.e., πin : V in → P becomes πin(v), accordingly for πout(v):

πin(v) ≡

⎧
⎪⎨

⎪⎩

πin
1 (v) if v ∈ V in

1 \ IX

. . .

πin
n (v) if v ∈ V in

n \ IX
πout(v) ≡

⎧
⎪⎨

⎪⎩

πout
1 (v) if v ∈ V out

1 \ OX

. . .

πout
n (v) if v ∈ V out

n \ OX
.

To demonstrate parallel composition in our running example, we first intro-
duce a cruise controller component (cf. Fig. 3). The cruise control selects a target
velocity from the interval, but keeps the difference between the current (received)
velocity and the chosen target velocity below δV (cf. (5) and (6)). That way, the
acceleration set by the actuator component is bounded by δV /ε (i.e., the vehicle
does not accelerate too fiercely). We connect this cruise controller component to
the actuator component (cf. Fig. 2), as illustrated in Fig. 4.

Remark 1. Note that verifying the hybrid program for a composite according to
Definition 5 would require a proof of each of the n! branches of ctrl individually,
as they all differ slightly. For a large number of components, this entails a huge
proof effort. Previous non-component-based case studies (e.g., [13,16,17]), there-
fore, chose only one specific ordering. Our component-based approach verifies all
possible orderings at once, because the permutations are all proven correct as
part of proving Theorem 1 below in this paper.
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Remark 2. This definition of parallel composition uses a conjunction of all evo-
lution domains, which resembles synchronization on the most restrictive compo-
nent (i.e., as soon as the first and most restrictive condition is no longer fulfilled
all plants have to stop and hand over to ctrl). A more liberal component might
be forced to execute its control part because the evolution domain of a more
restrictive component did no longer hold. For example a component increasing
a counter on every run of its control is then forced to count although its own
evolution domain might have allowed it to postpone control. If this is undesired,
a component’s control can be defined as ctrli ∪ ?true, which would allow the
component to skip when forced to run its control part.

Remark 3. We define this composition operation for any number of components,
since it is not associative, because the composition of three components results
in 3! = 6 possible execution orders, whereas composing two components and
adding a third yields only 2! + 2! = 4 of the possible 6 execution orders.

Fig. 4. Cruise control composed of a cruise controller and an actuator by Definition 5.
The port connections X =

{
(vcc , vac), (vtr

ac , v
tr
cc)
}

replace the input port vtr
ac := ∗; ?(0 ≤

vtr
ac ≤ V ) with an internal port assignment vtr

ac := vtr
cc , provided the compatibility check

[vtr
ac := vtr

cc ]
(
πout
cc (vtr

cc) → πin
ac(v

tr
ac)
)

succeeds, cf. Definition 6, and accordingly for the
second port.

Note that Definition 5 replaces the non-deterministic input guarded by a test
from Definition 2 with a deterministic assignment that represents instantaneous
and lossless interaction between components (i.e., portsi), as illustrated in Fig. 4.
Hence, the respective output guarantees and input assumptions must match. For
instance, a cruise controller component demanding velocities 0 ≤ vtr

cc ≤ 70 is
compatible with an actuator 0 ≤ vtr

ac ≤ 100, but not the other way around.

Definition 6 (Compatible Composite). The composite of n components
with interfaces ((C1, I1)‖...‖(Cn, In))X is a compatible composite iff

CPO(Ii) ≡ [v := X (v)]
(
πout
j (X (v)) → πin

i (v)
)

is valid for all input ports v ∈ IX ∩ V in
i , for all interfaces Ii and where Ij is

the interface containing the port that is connected to the input port v of Ii. We
call CPO(Ci) the compatibility proof obligation for the interfaces Ii and say the
interfaces Ii are compatible (with respect to X ) if CPO(Ii) holds.

In other words, ((C1, I1)‖...‖(Cn, In))X is a compatible composite if all inter-
nal port connections are appropriate, i.e., if the guarantee of the output port
implies the requirements of the respective input port to which it is connected.
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Composite Contracts. Now that we have defined components and interfaces,
their contracts, and how to compose them to form larger composites, we prove
that the contracts of single components transfer to composites if compatible.

Theorem 1 (Composition Retains Contracts). Let C1 and C2 be compo-
nents with admissible interfaces I1 and I2 that are contract compliant (i.e., their
contracts are valid)

|= t = 0 ∧ φ1 → [(in1; ctrl1; {t′ = 1,plant1})∗] (ψ1) and (9)

|= t = 0 ∧ φ2 → [(in2; ctrl2; {t′ = 1,plant2})∗] (ψ2) (10)

and compatible with respect to X (i.e., compatibility proof obligations are valid)

|= [v := X (v)]
(
πout
1 (X (v)) → πin

2 (v)
)

and (11)

|= [v := X (v)]
(
πout
2 (X (v)) → πin

1 (v)
)

(12)

for all input ports v ∈ IX ∩ V in
1,2.

Then, the parallel composition C3, I3 = ((C1, I1)‖(C2, I2))X satisfies the contract

|= t = 0 ∧ (φ1 ∧ φ2) → [(in3; ctrl3; {t′ = 1,plant3})∗](ψ1 ∧ ψ2) (13)

with in3, ctrl3, and plant3 according to Definition 5.

The proof for Theorem 1 can be found in [19], along with a generalization
to n components. This central theorem allows us to infer how properties from
single components transfer to their composition. As such, it suffices to prove the
properties for the components and conclude that a similar property holds for the
composite, without explicitly having to verify it. The composite contract states
that, considering both pre-conditions hold (i.e., φ1∧φ2), all states reached by the
parallel execution of the components, both post-conditions hold (i.e., ψ1 ∧ ψ2).

5 Case Study: Vehicle Cruise Control

To illustrate our approach, we used a running example of a simple vehi-
cle cruise control system. The overall system requirement was to keep the
velocity vac in a desired range [0, V ] at all times, i.e., 0 ≤ vac ≤ V →
[CruiseControl]0 ≤ vac ≤ V . We split the system into two components, cf.
Fig. 4: an actuator component adapts velocity according to a target vtr

ac pro-
vided by a cruise control component as vtr

cc . If the cruise control component
(Fig. 3) provides a valid target velocity to the actuator (i.e., 0 ≤ vtr

ac ≤ V ), the
actuator component (Fig. 2) ensures to keep the actual velocity in the desired
range (i.e., 0 ≤ vac ≤ V ), thus ensuring the overall system property. Addition-
ally, the actuator provides the current velocity on an output port that is read
by the controller, acting as a feedback loop.
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Following Definition 4, we derive contracts for each component, which con-
sists of initial conditions φ (cf. (14) and (15)), safety conditions ψsafe (cf. (16))
and the port conditions (cf. (4) and (8)). Maximum speed V > 0 and cycle time
ε > 0 must be known. Additionally, the controller initializes vtr

cc = 0 and δV > 0.
The actuator restricts the initial velocity to 0 ≤ vac ≤ V .

φcc ≡ vtr
cc = 0 ∧ ε > 0 ∧ V > 0 ∧ δV > 0 (14)

φac ≡ 0 ≤ vac ≤ V ∧ ε > 0 ∧ V > 0 (15)

ψsafe
ac ≡ 0 ≤ vac ≤ V (16)

The set of global variables follows accordingly (cf. Definition 1): Vglobal =
{ε, V, t}.

After verifying5 both contracts Cont(Ccc , Icc) and Cont(Cac , Iac), we want
to compose the components to get the overall system, using the mapping func-
tion X = {(vcc , vac), (vtr

ac , v
tr
cc)}. Therefore, we have to check the compatibility

proof obligations for both connected ports (cf. Fig. 4). Then the overall system
property directly follows from the contract of the actuator component.

Splitting a system into components reduces the model complexity consider-
ably, since a component needs to know neither about the differential equation
systems of other components, nor about their control choices. In combined mod-
els, we have to analyze all the possible permutations of control choices, while
in the component-based approach, by Theorem 1 we can guarantee correctness
for all possible sequential orderings, without the proof effort entailed by listing
them explicitly.

The benefit of component-based verification becomes even larger when
replacing components in a system. For example, we can easily replace the cruise
control from Fig. 3 with a more sophisticated controller that takes the target
velocity as user input from an additional input port. After verifying the user
guided cruise control component, we only have to re-check the compatibility
proof obligations. In a monolithic model, in contrast, the whole system includ-
ing the actuator component must be re-verified.

6 Related Work

CPS Verification. Hybrid automata [2] are popular for modeling CPS, and
mainly verified using reachability analysis. Unlike hybrid programs, hybrid
automata are not compositional, i.e., for a hybrid automaton it is not sufficient
to establish a property about its parts in order to establish a property about
the automaton. Techniques such as assume-guarantee reasoning or hybrid I/O
automata [14], which are an extension of hybrid automata with input- and output-
ports, address this issue. Our approach here shares some of the goals with hybrid
5 All proofs were done in KeYmaera X [8].
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I/O automata and also uses I/O ports. But we target compositional reasoning
for hybrid programs, where the execution order of statements is relevant, so that
our approach defines how parallel composition results in interleaving of hybrid
programs. Furthermore, we define compositional modeling for hybrid programs
such that theorem proving of the entire system is reduced to proving properties
about the components and simple composition checks. Hybrid process algebras
(e.g., Hybrid χ [24], HyPA [20]) are specifically developed as compositional mod-
eling formalisms to describe behavior and interaction of processes using algebraic
equations. For verification purposes by simulation or reachability analysis, trans-
lations from Hybrid χ into hybrid automata and timed automata exist, so even
though modeling is compositional, verification still falls back to monolithic analy-
sis. We, in contrast, focus on exploiting compositionality in the proof.

Component-Based CPS Modeling. Damm et al. [5] present a component-
based design framework for controllers of hybrid systems with a focus on reac-
tion times. The framework checks connections when interconnecting components:
alarms propagated by an out-port must be handled by the connected in-ports.
We, too, check component compatibility, but for contracts, and we focus on
transferring proofs from components to the system level.

Focusing on architectural properties, Ruchkin et al. [26] propose a
component-based modeling approach for hybrid-systems. Although they do not
transfer verification results from components to composites, their definitions
have been an inspiration for our notion of components. Ringert et al. [25] model
CPS as Component and Connector (C&C) architectures using automata to
describe solely the discrete behavior. They verify the translated models of single
components, but do not provide guarantees about verified compositions.

Interface algebras (cf. [1,9]) are formalisms that separate component-based
models into interface models and component models. Similar to our approach,
the component model describes what a component does, while the interface
model defines how the component can be used. It is often distinguished between
interfaces with and without state, where stateful interfaces are usually viewed
as concurrent games. Our approach is similar to a stateless interface algebra [1].
Similarly, Bauer et al. [3] show how a contract framework can be built generically.
While useful for inspiration, these approaches focus on modeling aspects and do
not consider verification.

Verification. Madl et al. [15] model real-time event-driven systems. Their mod-
els can be transformed to UPPAAL (cf. [12]) timed automata, restricting the
continuous part of their models to time instead of arbitrary physical behav-
ior (e.g., movement). Moreover, their analysis targets the entire composition of
timed automata, thus defeating the advantages of components for verification.

A field closely related to component-based verification is assume-guarantee
reasoning (AGR, e.g., [7,10]), which was originally developed as a device to coun-
teract the state explosion problem in model checking by decomposing a verifica-
tion task into subtasks. In AGR, individual components are analyzed together
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with assumptions about their context and guarantees about their behavior (i.e.,
a component’s contract). AGR rules need to exercise care for circularity in the
sense that the approaches verify one component in the context of the other and
vice-versa, like Frehse et al. [7] (using Hybrid Labeled Transition Systems as
abstraction for Hybrid I/O-Automata) and Henzinger et al. [10] (using hierar-
chical hybrid systems based on hybrid automata). However, existing approaches
are often limited to linear dynamics, cannot handle continuity or use correspond-
ing reachability analysis or model checking techniques. In dL, in contrast, we can
handle non-linear dynamics and focus on theorem proving.

In summary, only few component-based approaches handle generic CPS with
both discrete and continuous aspects (e.g., [5,15,26]), but those do not yet focus
on the impact on formal verification. Related techniques for CPS and hybrid
systems verification focus mainly on timed automata, hybrid process algebras,
and hybrid automata with linear dynamics or end up in monolithical verification.

7 Conclusion and Future Work

We presented an approach for component-based modeling and verification of
CPS that (i) splits a CPS into components, (ii) verifies a contract for each of
these components and (iii) composes component instances in a way that transfers
the component contracts to a composite contract. Our approach makes hybrid
system verification more modular at the scale of components, and combines the
advantages of component-based modeling approaches (e.g., well structured mod-
els, reduced model complexity, simplified model evolution) with the advantages
of formal verification (e.g., guaranteed contract compliance).

Currently, our approach is limited to global properties that are stated rel-
ative to the initial system state. Port conditions are only allowed to mention
global variables and the port variable itself, which prevents conditions on the
change of a port since the last measurement (e.g., how far has a vehicle moved
since the beginning vs. how far has it moved since the last measurement). This
restriction can be removed with ports that remember their previous value and
relate measurements over time. Additionally, we plan to (i) introduce further
composition operations (e.g., sensing with measurement errors), (ii) provide fur-
ther component extensions (e.g., multi-cast ports), and (iii) provide tool support
to instantiate and compose components, and to generate their hybrid programs.
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Abstract. In this paper we present a technique based on invariant
based programming and separation logic for verifying pointer programs.
Invariant based programs are directed graphs where the nodes are called
situations and are labeled by predicates (invariants). The edges are
called transitions, and are labeled by guarded assignment statements. We
represent the situations using Isabelle’s locales. A locale is a theory
parameterized by constants and types. The constant parameters are
used for modeling the state of the program, and the type parameters
are used for obtaining generic programs. The invariants are modeled as
locale assumptions (axioms), and the transitions are modeled as locale
interpretations. For modeling pointer programs we use separation logic.
The final result of this construction is a collection of mutually recursive
Isabelle functions that implements the program. We apply this technique
to Lindstrom’s algorithm for traversing a binary tree without additional
memory.

1 Introduction

In this paper we introduce a technique for constructing correct programs manip-
ulating pointers within the Isabelle/HOL [21] theorem prover, using invariant
based programming [1,2] and separation logic [22,24,27].

Invariant based programming is an approach to construct a program where
we start by identifying the basic situations (pre- and post-conditions as well as
invariants) that could arise during the execution of the algorithm. These sit-
uations are identified before any code is written. After that, we identify the
transitions between the situations, which will give us the flow of control in the
program. The transitions are verified at the time when they are constructed.
The correctness of the program is thus established as part of the construction of
the program. The program structure in invariant based programs is determined
by the information content of the situations, using nested invariant diagrams.
The control structure is secondary to the situation structure, and will usually
not be well-structured in the classical sense, i.e., it is not necessarily built out of
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single-entry single-exit program constructs. We refer to a program constructed in
this manner as an invariant based program or invariant diagram. Detailed expla-
nations and motivating examples for the invariant based programming approach
can be found in [1].

Pointer manipulating programs as well as object oriented programs are dif-
ficult to get right and even more difficult to verify mainly due to aliasing. For
example, in the C language we could have two pointers to integer numbers:
int ∗ x, ∗y. After the assignment ∗x := 7 we have two possibilities for the value
of ∗y. If addresses x and y are different, then ∗y is unchanged, otherwise ∗y is
7. We cannot say just by looking at the program ∗x := 7 what will be the effect
on ∗y. We can specify that address x and y are different, and they both store
the value 1 using the assertion x �= y ∧ ∗x = 1 ∧ ∗y = 1. If we have more pointer
variables, expressing the non-aliasing properties becomes much more involved.
Separation logic was introduced for specifying in a more abstract manner non-
aliasing properties about pointers. Within separation logic two new predicate
operators were introduced: singleton heap (�→) and separation conjunction (∗).
The predicate x �→ a is true in those computation states where the heap contains
exactly one address x, and the value stored at address x is a. The predicate p∗ q
is true in a computation state if we can split the heap such that p is true for
one part of the heap and q is true for the second part. For example the predi-
cate (x �→ 1) ∗ (y �→ 1) is true in a state where the heap contains two distinct
addresses x and y, and 1 is stored at both addresses x, and y. Using separation
logic, if we know that (x �→ 1) ∗ (y �→ 1) is true before executing the program
∗x := 7, then after the execution (x �→ 7) ∗ (y �→ 1) is also true.

Isabelle/HOL is an interactive theorem prover based on higher order logic.
Isabelle has a powerful mechanism for creating sub-theories (called locales) [3]
with a local scope for constants (or parameters), assumptions, definitions and the-
orems. A locale can extend other locales and we may have locale interpretations.
A locale interpretation is an assignment of specific terms to the locale parameters.
As a consequence of this assignment we should prove that the assumptions of the
locales are true when the parameters are replaced by these terms.

In [23] we have introduced a technique for representing invariant diagrams
in Isabelle using locales. In this paper, we extend the technique from [23] with
separation logic for verifying pointer programs. The advantages of this technique
are the following: (1) the program and its specification (pre, post conditions and
invariants) are expressed using the same powerful language (higher order logic),
(2) the transitions correspond directly to verification conditions (VC), (3) the
proofs for the transitions are given after the transitions similarly to proofs of
lemmas in Isabelle, (4) Isabelle’s library of theories is available for specifications,
(5) We can use automatic theorem provers, (6) we can use separation logic, (7) we
construct a collection of mutually recursive functions in Isabelle implementing
the program and we generate executable code from them.

To illustrate our technique, we apply it to Lindstrom’s algorithm [17] for
traversing a binary tree. The algorithm is non-trivial, and it traverses the tree
without any additional memory. The drawback of the algorithm is that it visits
every node three times.
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There are many implementations of separation logic in different theorem
provers, and some implementations in Isabelle [12–15,19,20]. The purpose of
this paper is not to introduce yet another representation of separation logic.
In fact we use the existing implementation from [12,13]. There are also many
mechanical verifications of graph traversal algorithms using various techniques,
including separation logic. The purpose of this work is to show how to combine
existing techniques as invariant based programming, separation logic, theorem
proving, parametric theories (Isabelle locales), and code generation to obtain
a powerful tool for developing correct by construction imperative programs. In
earlier work [2] we also showed how to combine data refinement with invariant
based programming, and we verified the closely related Deutsch-Schorr-Waite
graph marking algorithm. The Isabelle theorem prover offers already few alter-
natives for constructing correct programs, however in all of them the invariants
are embedded within the structure of the program, and if the structure changes
significantly, then it is difficult to keep the proofs in sync with the verification
conditions. We propose an approach where the verification conditions are exactly
the program transitions and the proofs are attached to them. In our approach it
is possible to name individual invariants and statements of transitions, and use
these names in Isar [26] poofs. If we add or remove invariants or statements, the
proofs for the unchanged components stay the same due to using of names.

All results presented in this paper have been formalized and proved in Isabelle
and are available from http://users.ics.aalto.fi/viorel/Lindstrom.zip.

2 Related Work

Dafny [16] is an automatic program verifier for functional correctness. One prob-
lem that we see in this approach is that it uses an automatic theorem prover
that only has support for some theories. It is not easy to develop additional
theories to support programs on different domains. Because proving the correct-
ness relies only on automation, when proving some verification condition (VC)
fails due to its complexity, the user has to tweak the program by adding addi-
tional functions until the automated proof succeeds. This tweaking is equivalent
to interactively proving the VC, but without an explicit proof language, and it
may be much more time consuming than an interactive proof. Dafny does not
support separation logic.

Why3 [8] is another platform for program verification. It provides a rich lan-
guage for specification and programming, called WhyML, and relies on exter-
nal theorem provers, both automated and interactive, to discharge verification
conditions. Why3 comes with a standard library of logical theories and basic
programming data structures. It is possible to extend the Why3 library with
new theories, however these extensions are axiomatic in nature and practice has
shown that this can easily create inconsistencies. Although Why3 supports also
interactive theorem provers, the logic from the theorem prover is different from
the logic of Why3, and keeping the interactive proofs in sync with the program
is not a trivial task [6]. Why3 has some support for separation logic [5].

http://users.ics.aalto.fi/viorel/Lindstrom.zip
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There are also dedicated automatic provers for verifying programs using sep-
aration logic such as Smallfoot [4] and VeriFast [11]. One drawback is the limited
expressive power of the assertion language in Smallfoot. VeriFast allows more
expressive specification constructs but the user must introduce additional lemma
functions to help the automation. This again is a mechanism to add manual
proofs for VCs without an explicit proof language.

In [18] the authors report on the automatic verification of Lindstrom’s algo-
rithm. This approach can verify some aspects of the functional correctness of
the algorithm (all nodes are visited, and at the end the tree is left unchanged)
and termination. However this approach is based on some abstraction relations
provided by the user, and this requires deep understanding of the algorithm.
Assuming that on each visit of a node we apply a function f to the label of the
node, we verify that after the traversal, every label is equal to f3 (f ◦ f ◦ f)
applied to its initial value. It does not seem possible to verify this kind of prop-
erties about the algorithm using the approach from [18].

In [10] another method based on graph grammar abstraction for automatic
verification of Lindstrom’s algorithm is presented. Although it seems possible
to modify this approach to verify that all nodes are visited 3 times, it does not
seem possible to verify that during the traversal the function f3 is applied to
every label.

3 Preliminaries

In this paper we use higher order logic as implemented by the Isabelle theorem
prover. We use capital letters X,Y, . . . for types and small letters to denote
elements of these types x ∈ X. We denote by bool the type of Boolean values
false and true, and by nat the type of natural numbers. We use ∧, ∨, ⇒, and ¬
for the Boolean operations.

If X and Y are types, then X → Y denotes the type of functions from X
to Y . We denote by id : A → A the identity function (∀x • id(x) = x), and we
use a small bullet (•) for separating the quantified variables in formulas. For
f : X → Y , x ∈ X, and y ∈ Y , we define f [x := y] : X → Y by f [x := y](x) = y
and (∀z �= x • f [x := y](z) = f(x)). Predicates are the functions with Boolean
values with one or more arguments (e.g., a predicate with two arguments has
signature X → Y → bool). If r, r′ : X → bool are two predicates then r ∩ r′

and is the predicate given by (r ∩ r′)(x) = r(x) ∧ r′(x). We use ⊥ and � as
the smallest and greatest predicates: ⊥(x) = false and �(x) = true. We use the
notation X × Y for the Cartesian product of X and Y .

4 Separation Logic

We use an existing implementation in Isabelle of a generic Separation Algebra
[12,13] that we instantiate for our verification.

We model the heap storing values from a set V as a partial function from
the type of addresses (Address) to values. In Isabelle this corresponds to total
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functions from Address to Option(V ), where Option(V ) = V + {none} is the
disjoint union of V and {none}. Heap(V ) = Address → Option(V ).

For h ∈ Heap(V ) and p ∈ Address if h(p) = none then h is not defined in p,
otherwise h(p) ∈ V and h is defined in p. The allocated addresses of a heap h
are the addresses in which h is defined: alloc(h) = {p | h(p) �= none}.

We use the predicates on the heap (Heap(V ) → bool) as program assertions,
and using [13] we have a Separation Algebra structure on Heap(V ) that gives
us the separation conjunction, and empty heap assertions together with their
properties and a number of simplification tactics. Here we give the definitions
of the empty heap and separation conjunction for completeness, but they are
obtained from [13].

1. Empty heap: emp(h) = (alloc(h) = ∅)
2. Separation conjunction:

(α ∗ β)(h) = (∃h1 h2 • alloc(h1) ∩ alloc(h2) = ∅ ∧ h = h1 + h2 ∧ α(h1) ∧ β(h2))

where (h1 + h2)(p) = if p ∈ alloc(h1) then h1(p) else h2(p).
The predicate emp is true for a heap h if h does not contain any address.

The separation conjunction α ∗ β is true for h if h can be split in two disjoint
heaps h1 and h2 such that α is true for h1 and β is true for h2.

For an address p and a value v we introduce the predicate singleton heap
p �→ v that is true for a heap h if h contains only the address p and the value
stored in p is v: alloc(h) = {p} ∧ h(p) = v. We assume that �→ binds stronger
than ∗, i.e. (p �→ v) ∗ α is the same as p �→ v ∗ α.

If α, β and γ are predicates on the heap, p ∈ Address, and v, v′ ∈ V , then
following properties are true

emp ∗ α = α ∗ emp = α (p �→ v) ∗ (p �→ v′) = ⊥ α ∗ β = β ∗ α
(α ∗ β) ∗ γ = α ∗ (β ∗ γ) (p �→ v ∗ α)(h) ⇒ p ∈ alloc(h) ⊥ ∗ α = ⊥

The properties involving only emp, ∗, and ⊥ are available from [13], and the
others are direct consequences of the definitions.

We also need a special null address nil ∈ Address add we define the predicate
heap(h) to be true if and only if nil is not allocated in h (h(nil) = none). The
predicate heap(h) is a global invariant of our programs.

Next we introduce the operations manipulating pointers. For an address p
and a value v, the address update operation, denoted [p] := v, is a function which
takes as parameter a heap h, and returns a new heap h′. If the address p is
allocated in h, then h′ is h where the value of p is updated to v. Otherwise
h′ is some arbitrary but fixed element of Heap(V ). In this approach, updating
unallocated addresses, is not necessarily a fault, but if we update an unallocated
address, then we know nothing about the resulting heap. If the predicate heap is
an invariant of our program, then after updating an unallocated address, we will
not be able to prove that heap holds for the new heap. If a more conservative
approach is desired, in which the fact that we access unallocated addresses is
a fault, then when updating an unallocated address, we can return the heap
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which has nil as the only allocated address, and this violates the invariant heap.
Formally we have:

([p] := v)(h) = (if p ∈ alloc(h) then h[p := v] else ε(Heap(V )))

where, for a set A, ε(A) is an arbitrary, but fixed, element of A. This operation
preserves the global invariant heap.

If p is an address, then the address look-up operation, denoted [p], is a function
that maps heaps to values. If h ∈ Heap(V ) then [p](h) is the value of address p
in h if p is allocated in h, and it is an arbitrary, but fixed, value of V otherwise.

[p](h) = (if p ∈ alloc(h) then h(p) else ε(V ))

Here again, if p is not an allocated address in h, then [p](h) is an arbitrary
value, but it is not a fault. We can construct meaningful programs which access
unallocated address if we ignore the values of these addresses. However, if we
want to prove that our application is secure (it does not access arbitrary data
from the heap), then we can also use a more conservative approach for this
construct. We can design [p](h) to return a pair of a value and a new heap. If
the address is allocated, then it returns the value of p and h, otherwise it returns
an arbitrary value and the heap with nil as the only allocated address. In this
case, if we try to access an unallocated address, then the invariant heap is false
for the returned heap.

We can state now some rules for correctness of the heap operations. We state
these rules in a format that can be used for invariant based programs.

Theorem 1. If α is a predicate on heaps, p ∈ Address, v, v′ ∈ V , and h, h′ ∈
Heap(V ), then

1. (p �→ v ∗ α)(h) ⇒ v = [p](h)
2. (p �→ v ∗ α)(h) ∧ h′ = ([p] := v′)(h) ⇒ (p �→ v′ ∗ α)(h′)

The first property of this theorem corresponds to the Hoare rule for look-up
of an address in separation logic: {p �→ v ∗ α ∧ x = v′} x := [p] {x = v ∧ p[v′ :=
x] �→ v ∗ α} where α does not contain variable x free. The second property of
this theorem corresponds to the Hoare rule for address update: {p �→ v ∗ α}
[p] := v′ {p �→ v′ ∗ α}.

5 Pointer Representation of Binary Trees

In this section we introduce the abstract data type of binary trees and we use
separation logic to define the pointer representation of these trees. We also intro-
duce the basic results that are needed for proving Lindstrom’s tree traversal
algorithm.

The type of (abstract) binary trees with labels from the set A is defined by
the following recursive data type definition:

BTree(A) = • | node(label : A, left : BTree(A), right : BTree(A))
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Fig. 1. One step of the traversal algorithm

A binary tree with labels from A can be empty (•), or it can be the tree
node(a, l, r) where a is its label, and l, r are the left and right sub-trees. For a
non-empty tree t, the functions label(t), left(t), and right(t) return the label, the
left sub-tree, and right sub-tree of t, and they return some arbitrary, but fixed,
values for the empty tree. In addition we can also define recursively functions on
binary trees. We define a recursive function f on binary trees by defining f(•),
and by defining f(t) for a non-empty tree t, assuming that we know f(left(t))
and f(right(t)). For example for a function f : A → B we define recursively the
function map(f) : BTree(A) → BTree(B) which for a tree t returns a new tree t′

that has the same structure as t, but the labels t′ are obtained from the labels
of t by applying the function f . The formal definition of map(f) has two cases:

map(f)(•) = • map(f)(node(a, l, r)) = node(f(a),map(f)(l),map(f)(r))

Lindstrom’s algorithm traverses a binary tree stored in memory using point-
ers, and it does so by using constant space. However, the algorithm visits every
node of the tree three times. If on each visit of a node we apply a function
f : A → A to the label of the node, then at the abstract level, the traver-
sal algorithm is equivalent to applying f3 to every label of the tree, where
f3 = f ◦ f ◦ f . In other words the traversal of the tree t is the same as comput-
ing traverse(f)(t) := map(f3)(t). The algorithm traverses the tree in a number
of steps, and it uses an additional single node tree. A step of the algorithm
is represented in Fig. 1. The basic step takes two binary trees t0 and t, and
if t0 is nonempty (t0 = node(a, l, r)), then it returns another two trees l and
node(f(a), r, t). If t0 is empty (t0 = •), then it returns t and t0. Formally the
step of the algorithm is given by the following definition:

step(f)(•, t) = (t, •) step(f)(node(a, l, r), t) = (l, node(f(a), r, t))

We will prove next that for a suitable natural number n, if we iterate the step(f)
function on a pair of trees (t, t′) n times, then we obtain t′ and the traversal of
t. The size of the traversal is the number of steps needed for achieving this and
it is given by the following definition:

size(•) = 1 size(node(a, l, r)) = 3 + size(l) + size(r)

That is for every empty sub-tree of t we need one step, and for every proper
sub-tree of t we need 3 steps.

Theorem 2. If t and t′ are binary trees, then (step(f))size(t)(t, t′) =
(t′, traverse(f)(t))
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Now, using this theorem, if we iterate the step size(t) number of times, then
we obtain the traversed tree. However we do not know size(t) a priori, and
calculating it would be as difficult as the original task of traversing the tree. The
additional property that we can prove is that if we iterate the function step(id)
k times where k < size(t), then the first tree of the result is empty, or its label is
in the set of all labels of the original tree t. If we know that t′ is not empty, and
the label of t′ is not among the set of all labels of t, then we can stop applying
the step when the label of the first tree is the same as the label of the initial t′.

Theorem 3. If t and t′ are binary trees, k < size(t), and (u, u′) =
(step(id))k(t, t′), then u = • or label(u) ∈ set(t), where set(t) is the set of all
labels of the tree t.

In the reminder of this section we use separation logic to define the repre-
sentation of binary trees in memory using the heap. In this and next sections we
will use heaps that can store triples of a tree label from A, and two addresses for
the left and right sub-trees (Heap(A × Address × Address)). We will use binary
trees with labels from A and with labels from Address.

If u ∈ BTree(Address) then plabel(u) = (if u = • then nil else label(u)), and if
x ∈ BTree(A), then the predicate ptree(x, u)(h) is true if the trees x and u have
the same structure, all labels of u are distinct and are the allocated addresses in
h, and h represents the tree x. Formally we have

ptree(•, u) = (u = •)
ptree(node(a, l, r), u) = (u �= • ∧ (label(u) �→ (a, plabel(left(u)), plabel(right(u)))

∗ ptree(l, left(u)) ∗ ptree(r, right(u))))

When representing abstract binary trees using separation logic, usually a pred-
icate is defined on the abstract tree x and an address p, which is true when
at address p we have the representation of x. The definition of this predicate
uses existential quantifiers for the internal addresses of the tree. In our case it
is useful to make these internal addresses explicit for two reasons. Firstly, the
termination of the algorithm relies on these addresses. Secondly, we can show
that the content of the heap (with respect to the allocated addresses and the
structure) is the same after the execution of the algorithm.

Theorem 4. If x, y ∈ BTree(A) and u, v ∈ BTree(Address) then

1. (ptree(x, u) ∗ α)(h) ⇒ size(x) = size(u)
2. (ptree(x, u) ∗ ptree(y, v) ∗ α)(h) ⇒ set(u) ∩ set(v) = ∅

The second property of this theorem states that if the heap contains two
abstract binary trees x and y, and some other addresses specified by α, then the
two sets of addresses at which these trees are stored are distinct.

6 Invariant Based Program for Lindstrom’s Algorithm

We are ready now to introduce the Lindstrom’s algorithm for traversing a binary
tree as an invariant diagram. The algorithm is represented in Fig. 2.
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h ∈ Heap(A × Address × Address) ∧ heap(h)

f : A → A ∧ x, y ∈ BTree(A) ∧ u, v ∈ BTree(Address)

p0, q0 ∈ Address ∧ p0 = plabel(u) ∧ q0 = plabel(v) ∧ q0 �= nil

p, q ∈ Address ∧ n ∈ nat ∧ n ≤ size(u)

(∃u′ v′ x′ y′ • (step(id))n(u, v) = (u′, v′)

∧ (step(f))n(x, y) = (x′, y′)

∧ p = plabel(u′) ∧ q = plabel(v′)

∧ (ptree(x′, u′) ∗ ptree(y′, v′))(h))

size(x) = size(u) ∧ set(u) ∩ set(v) = ∅

Invariant size.u − n ∈ nat

(ptree(x, u) ∗ ptree(y, v))(h)

Init

p, q ∈ Address ∧ p = q0 ∧ q = p0

(ptree(traverse(f)(x), u) ∗ ptree(y, v))(h)

Final

A :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[p �= q0 ∧ p �= nil] ;

a, s, t := [p] ;

[p] := (f.a, t, q) ;

p, q, n := s, p, n + 1

B :

{
[p �= q0 ∧ p = nil] ;

p, q, n := q, p, n + 1

Heap

[p = q0]

p, q, n := p0, q0, 0

Fig. 2. Lindstrom’s algorithm as an invariant diagram

This diagram contains four situations (Heap, Init , Invariant , and Final).
The situation Heap introduces the variables and the invariants that are common
to all other situations. We have the heap h, the function f that we apply to
the labels, the abstract binary tree x that we are traversing, its corresponding
abstract tree u labeled by address, the auxiliary tree y and its corresponding
address tree v, and the addresses p0 and q0 of the heap representations of the
two trees. In order for this algorithm to work, we need to assume that the root
address of the auxiliary tree y is not nil (q0 �= nil). This is because the termination
condition for the algorithm is p = q0, and, while visiting the leaves of the tree
x, the variable p will become nil many times before finishing the traversal. The
situation Init states the precondition of the algorithm, i.e. the heap h contains
exactly the two trees x and y at addresses specified in u and v. In addition,
the conditions p0 = plabel(u) and q0 = plabel(v) assert that p0 and q0 are the
addresses of the roots of x and y. The situation Final states the post-condition
of the algorithm. At the end of the algorithm, the heap contains the traversal
of the tree x at address q = p0 and the original tree y at address p = q0. The
post-condition states also that the structure, and the addresses of the heap are
exactly the same, only the labels of the original tree x are changed. The loop
invariant is represented in the situation Invariant . This invariant states that at
current addresses p and q we have two binary trees which are obtained iterating
the step function n times on the original trees x and y.
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The transitions of an invariant diagram are directed edges between the
situations, labeled by program statements – guarded assignment statements.
A guard is syntactically represented by a Boolean expression within brackets
([p �= q0 ∧ p �= nil]). A transition from a situation is enabled if its guard is true
for the current values of the variables. The execution of a diagram starts from
some initial situation, and as long as transitions are enabled in the current sit-
uation, one is chosen non-deterministically and executed. The execution stops
when there are no more enabled transitions.

The initialization transition from situation Init to Invariant assigns the
addresses of the trees x and y to p and q and it assigns 0 to the variable n
which keeps tracks of the number of steps performed by the algorithm. The
transitions A and B correspond to the two cases of the of the step function. The
transitions A and B perform on the heap the operation specified by step.

To prove the termination of an invariant diagram in general, we add termina-
tion variants (ranging over well-founded sets) to situations that are part of loops.
We show that all cycles contain at least one transition which strictly decreases
the termination variant, and all the other transitions do not increase it. For this
algorithm, the termination variant is size(u) − n, and it is easy to see that both
transitions A and B are strictly decreasing it. The details of this procedure can
be found in [23].

The program from Fig. 2 uses a number of actual variables h, p, q, q0, p0, f as
well as some specification or ghost variables x, y, u, v, n. In fact the variable n
is also used as a proper variable in the transitions A and B. We could have n
existentially quantified inside the situation Invariant , but if we use this approach,
then we cannot use n to prove the termination of this algorithm. Because n
occurs only in assignment statements, and it is used only to update itself, we
can turn it also into a specification variable. The variables a, s, t are local to the
transition A.

The existential quantifier in the situation Invariant is used only to name the
two components of (step(f))n(x, y) and of (step(id))n(u, v). When proving the
correctness of the transitions involving this situation, the existential quantifier
is eliminated automatically by Isabelle.

7 Isabelle Representation of the Invariant Based Program

In this section we introduce the Isabelle representation of the Lindstrom’s algo-
rithm from Fig. 2. More details about this representation can be found in [23].

To represent the situations we use Isabelle locales [3], and to represent nesting
of situations we use the locale extension mechanism. Locales are parametric the-
ories with constants and axioms. The constants are used to model the program
variables, and the axioms are used to model the invariants.
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locale Heap =
fixes h : Heap.(A × Address × Address) and f : A → A
fixes x, y : BTree.A and u, v : BTree.Address and p0, q0 : Address
assumes isheap : heap.h
assumes labels [simp] : p0 = plabel.u and q0 = plabel.v
assumes q0 not nil [simp] : q0 �= nil

locale Init = Heap +
assumes trees heap : (ptree(x, u) ∗ ptree(y, v))(h)

locale Invariant = Heap + · · ·
locale Final = Heap + · · ·
The definitions of the Invariant and Final locales follow the same pattern

as the definitions of Heap and Init , and they contain the invariants introduced
already in Fig. 2. In locales we can also name the assumptions, and we can declare
some of them as automatic simplification rules.

The transitions in the diagram are modeled as locale interpretations:

context Init :
theorem to Invariant :
assumes p = p0 and q = q0 and n = 0
shows Invariant(h, f, x, y, u, v, p0, q0, p, q, n)

That is, if we are in the context of the situation Init, and we assign p0, q0,
and 0 to p, q, and n, then the situation Invariant holds for the new values.

context Invariant :
theorem A to Invariant :
assumes p �= q0 and p �= nil
assumes (a, s, t) = [p](h)
assumes h′ = ([p] := (f.a, t, q))(h)
assumes p′ = s and q′ = p and n′ = n + 1
shows Invariant(h′, f, x, y, u, v, p0, q0, p

′, q′, n′)

We model transitions that assign new values to existing variables using equal-
ities, and we introduce primed names for the new values of the existing variables.
For the heap look-up and update operations, we also need to use explicitly the
heap variable. Similar to the assumptions in locales, we can also name the tran-
sitions and we can declare them as simplification rules.

The other transitions from Fig. 2 are modeled in a similar manner.
Within locales we can also prove auxiliary lemmas that are useful to prove the

theorems for the transitions. For example a property that is useful for proving
the transitions A and B and also for termination, is the fact that if we are in
the situation Invariant , then if p �= q0 then n < size(u).

context Invariant :
lemma less size : p �= q0 =⇒ n < size(u)

We show how to prove the transition A of the diagram (theorem
A to Invariant). We assume that all invariants of the situation Invariant , are
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Fig. 3. (a) Invariant before transition and transition, (b) invariant after the transition

true, and the transition A is enabled. That is, there exists x′, y′, u′, v′ such that
properties from Fig. 3(a) are true and we have to find x′′, y′′, u′′, v′′ such that
the properties from Fig. 3(b) are true.

Using lemma less size we obtain that n′ = n + 1 ≤ size(u), so (c′) is proved.
(b′) and (h′) are also true because they are identical to (b) and (h). Because
p �= nil (ta) and p = plabel(u′) (f) it follows that u′ �= •. So there is w,w′

such that u′ = node(p,w,w′). Because u′ �= • and (g) it follows that x′ �= •, so
there are also b, z, z′ such that x′ = node(b, z, z′), and from (g), expanding the
definition of ptree we have

(obsa) : (p �→ (b, plabel(w), plabel(w′)) ∗ ptree(z, w) ∗ ptree(z′, w′) ∗ ptree(y′, v′))(h).

Because of (obsa), (tb), using Theorem 1, we obtain

(obsb) : b = a ∧ s = plabel(w) ∧ t = plabel(w′).

If we set x′′ = z and y′′ = node(f(a), z′, y′) then (d′) follows from the following
derivation:

(step(f))n
′
(x, y)

= {(td) and (d)}
step(f)(x′, y′)

= {our observations}
step(f)(node(a, z, z′), y′)

= {definition of step}
(z, node(f(a), z′, y′))

= {instantiations of x′′, y′′}
(x′′, y′′)

Similarly, if we set u′′ = w and v′′ = node(p,w′, v′) then (e′) is true. From
(obs b) and (td) it follows (f ′). We have now only the property (g′), and this
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can also be proved easily by expanding definitions, and using the heap update
rule from Theorem 1.

Although we have to write explicitly the heap parameter h in our specifi-
cations, we reason about heap statements as abstract as in classical separation
logic. To reason about a look-up statement v := [p] we need to show that the
heap before this statement has the structure (p �→ v′∗α), and then we know that
v = v′. For the update statement [p] := v we also need to know that the heap
has the structure p �→ v′ ∗ α before the statement, and then after the statement
we know that the new heap has the structure (p �→ v) ∗ α.

8 Isabelle/HOL Function Implementing the Algorithm

Section 7 introduced the invariant based program for Lindstrom’s algorithm
using Isabelle’s locales. This construction, including the supporting formalization
(binary trees in this case), should be done by the developer. In this section we
show how to construct a collection of Isabelle/HOL mutually recursive functions
that implements this algorithm. All steps from this section can be automated.

We introduce a function for each situation, except Heap. The function cor-
responding to a situation implements the execution of the algorithm starting in
this situation. The functions are defined in Fig. 4.

Every function has as parameters the variables defined in the corresponding
situation. We use all the variables, including the specification ones to be able to
prove easily the termination and the correctness property for these functions. At
the end of this section we will eliminate the specification parameters. All these
functions return a triple (h, p, q) that corresponds to the values of the variables
h, p, and q at the end of the algorithm. These functions can be mechanically
constructed from the transitions.

Fig. 4. Mutually recursive functions
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Because the termination of the recursive call to inv fun can be proved only
assuming that we are in situation Invariant , we have to include the expression
Invariant(h, f, x, y, u, v, p0, q0, p, q, n) in the definition of inv fun. If this expres-
sion is true, then we proceed with the transitions from situation Invariant , oth-
erwise we stop returning some arbitrary values. We show later how to eliminate
this condition.

The termination of this functions is proved by mechanically constructing
a well founded relation on the parameters. The fact that the relation is well
founded is proved by using the termination verification conditions. The details
of this procedure are presented in [23].

Together with the function definitions from Fig. 4 we obtain also an induction
theorem. Using the theorems for the transitions and the induction theorem we
can prove the following correctness theorem for these functions.

Theorem 5. The following properties are true

Init(h, f, x, y, u, v, p0, q0) ∧ (h′, p′, q′) = init fun(h, f, x, y, u, v, p0, q0)
=⇒ Final(h′, f, x, y, u, v, p0, q0, p

′, q′)
Invariant(h, f, x, y, u, v, p0, q0, p, q, n)

∧ (h′, p′, q′) = inv fun(h, f, x, y, u, v, p0, q0, p, q, n)
=⇒ Final(h′, f, x, y, u, v, p0, q0, p

′, q′)
Final .h.f.x.y.u.v.p0.q0.p.q ∧ (h′, p′, q′) = final fun(h, f, x, y, u, v, p0, q0, p, q)

=⇒ Final(h′, f, x, y, u, v, p0, q0, p
′, q′)

This theorem states that if we are in a situation of the diagram, and we
execute the corresponding function, then we end in the final situation. The proof
of this theorem can be automated by applying the induction theorem of the
recursive functions, and then using the theorems of the transitions.

The last step in our development is to eliminate the specification variables
and introduce new functions that can also be executed and translated to code.
In general our functions are mutually tail recursive and we can also define them
using the partial function mechanism from [25]. Isabelle supports defining par-
tial recursive functions, and [25] extends this mechanism to mutually recursive
partial functions. Our example has only one recursive function and we can define
it directly as a partial function in Isabelle:

partial function (tailrec) :
inv code(h, f, q0, p, q) =
if p �= q0 then
if p �= nil then
let (a, s, t) = [p](h), h′ = ([p] := (f(a), t, q))(h) in

inv code(h′, f, q0, s, p)
else
inv code(h, f, q0, q, p)

else
(h, p, q)
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Using the well established code generation mechanism of Isabelle [9], from
the function inv code we can generate directly ML, Scala, Ocaml, or Haskell exe-
cutable code. However we do not know yet that inv code satisfies the correctness
conditions from Theorem 5. Using again the induction theorem and the tran-
sition theorems we can prove that under the invariant conditions the functions
inv fun and inv code are equal:

Theorem 6. The following properties are true

Init(h, f, x, y, u, v, p0, q0)
=⇒ init fun(h, f, x, y, u, v, p0, q0) = init code(h, f, q0, p0, q0)

Invariant(h, f, x, y, u, v, p0, q0, p, q, n)
=⇒ inv fun(h, f, x, y, u, v, p0, q0, p, q, n) = init code(h, f, q0, p, q)

Using Theorems 5 and 6, if we start init code(h, f, q0, p0, q0) in a state satisfy-
ing the properties of the initial situation, then the result of this function satisfies
the properties of the final situation, i.e. the tree at address p0 is traversed three
times.

The code generation mechanism employed above does not produce efficient
code because it implements the heap structure in a functional manner. However
there are solutions available in Isabelle capable of generating efficient impera-
tive code [7,14] for programs using the same heap structure as our invariant
programs. The functions that we produce are always tail recursive, and they can
be implemented efficiently. Translating from our functional representation from
Fig. 4 into another program representation, better suited for imperative code
generation, is easy using the induction and the transition theorems. We showed
here the inv code representation suitable for pure functional code generation,
and we experimented with another representation. Proving the equivalence of
the representations (under the invariant assumptions), is a mechanical task of
applying the induction theorem, then expanding the recursive functions one step,
and finally applying the transition theorems on all branches.

9 Conclusions

In this paper we have introduced a technique based on separation logic and
invariant based programming for constructing correct pointer programs as higher
order functions in Isabelle/HOL theorem prover. We applied our technique for
a non-trivial algorithm due to Lindstrom for traversing a binary tree without
additional memory.

In our approach the developer needs to construct the situations, the invari-
ants, the transitions, and prove the correctness of the transitions. All the other
steps regarding the construction of the mutually recursive functions, and their
executable variants can be automated.

Acknowledgments. I am grateful to Stavros Tripakis and anonymous reviewers for
their useful comments that contributed to the improvement of the final version of the
paper.
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Abstract. Modularity and decontextualization are core principles of a
service-oriented architecture. However, the principles are often lost when
it comes to an implementation of services due to rigid service interfaces.
This paper focuses on a two-fold problem. On the one hand, the interface
description language must be flexible for maintaining service compatibil-
ity in different contexts without modification of the service itself. On the
other hand, the composition of interfaces in a distributed environment
must be provably consistent.

We present a novel approach for automatic interface configuration
in distributed services. We introduce a Message Definition Language
(MDL), an interface description language with support of subtyping,
flow inheritance and polymorphism. The MDL supports configuration
variables that link input and output interfaces of a service and propa-
gate requirements over an application graph. We present an algorithm
that solves the interface reconciliation problem using constraint satisfac-
tion that relies on Boolean satisfiability as a subproblem.

Keywords: Service-oriented architecture · Interface configuration ·
Constraint satisfaction · Satisfiability

1 Introduction

For the last decade service-oriented computing (SOC) has been a promising tech-
nology facilitating development of large-scale distributed systems. SOC allows
enterprises to expose their internal business systems as services available on
the Internet. On the other hand, clients can combine services and reuse them
for developing their own applications or constructing more complex services.
Although web services continue to play an important role in modern software
development, a service composition is still a key challenge for SOC and web ser-
vices. Web service composition empowers organizations to build inter-enterprise
software, to outsource software modules, and to provide an easily accessible func-
tionality for their customers. Furthermore, service composition reduces the cost
and risks of new software development, because the software elements that are
represented as web services can be reused repeatedly [1].

c© Springer International Publishing Switzerland 2016
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Web Service Description Language (WSDL) is an XML-based specification
language for describing service interfaces, which is a de facto standard in SOC.
Functionality and compatible data formats of the service are specified in WSDL
in the form of an interface. The names and formats in the interfaces of com-
municating services must exactly match for interface compatibility. Today the
environment in which services are developed and executed has become more
open, changing and dynamic, which requires an adaptable and flexible approach
to service composition. The choreography wired to specific WSDL interfaces is
too restrictive for dependable service composition. The choreography is stati-
cally bounded to specific operation names and types, which impedes reusability
of compound services and their interaction descriptions.

Reliable and dependable service composition remains a significant challenge
today [1,2]. Services are provided autonomously by various organizations. Devel-
opers of applications, particularly safety-critical applications, such as health care,
stock trading, nuclear systems, must be able to check soundness and complete-
ness of service composition at early stages. Therefore, model checking and veri-
fication of web services is being actively researched today [3,4].

Web Services Choreography Description Language (WS-CDL) [5] and Web
Service Choreography Interface (WSCI) [6] are languages for describing proto-
cols from a global perspective. This approach is based on π-calculus that defines
a behavioral semantics for concurrent processes. An application designer writes
a global description in WS-CDL or WSCI that should be realizable by local pro-
tocols of communicating services. Service interfaces in WS-CDL are specified in
WSDL. The relation between service interfaces connected with a communication
channel is one-to-one, i.e. there is no way to propagate data format requirements
and capabilities across the communication graph if services are not explicitly
connected by a channel. Moreover, [7] emphasizes that the existing association
between WS-CDL and WSDL does not allow equivalent services with different
WSDL interfaces to be part of the choreography.

Session types is another approach based on π-calculus that assures communi-
cation safety in distributed systems and in service choreographies particularly [8].
A choreography is defined as a global protocol in terms of the interactions that
are expected from the protocol peers and a set of local protocols, one for each
peer, which describes the global protocol from the viewpoint of an individual
peer. The session types require services to expose their behavior as a protocol.
This information is enough to define a communication type system, which is well-
suited for verifying runtime properties of the system such as deadlock-freedom,
interleaving, etc. The session types essentially rely on behavioral protocols, which
in most cases are neither explicitly provided nor can be derived from the code.

In this paper we present a formal method for configuring flexible interfaces
in the presence of subtyping, polymorphism and flow inheritance. Our method
is based on constraint satisfaction and SAT. In contrast to the approaches based
on π-calculus, our method does not require services to define a protocol, but
only to specify the data interface. The method is illustrated using an example
introduced in Sect. 2.
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2 Motivating Example

Our approach for configuring web services is motivated by rapid development of
Cloud computing, social networks and Internet of Things, which accelerate the
growth and complexity of service choreographies [9,10]. Accordingly, we chose a
simple but non-trivial example from one of those areas to illustrate our approach.
The same example, known as the three-buyer use case, is often called upon
to demonstrate the capabilities of session types such as communication safety,
progress and protocol conformance [11].

Consider a system involving buyers called Alice, Bob and Carol that cooper-
ate in order to buy a book from a Seller. Each buyer is specified as an independent
service that is connected with other services via a channel-based communication.
There is an interface associated with every input and output port of a service,
which specifies the service’s functionality and data formats that the service is
compatible with. The interfaces are defined in a Message Definition Language
(MDL) that is formally introduced in Sect. 3. Figure 1 depicts composition of
the application where Alice is connected to Seller only and can interact with
Bob and Carol indirectly. AS, SB,BC,CB,BS,AS denote interfaces that are
associated with service input/output ports. For brevity, we only provide AS, SB
and BC (the rest of the interfaces are defined in the same manner), which are
specified in the MDL as algebraic terms in the following way:

ASout = (:request: {title: tv↓},
payment: {title: tv↓

,money: int, id: int},
share(x): {title: tv↓

,money: int},
suggest(y): {title: tv↓}:)

SBout = (:response : {title: string,money: int}
| ct1↑

:)

BCout = (:share(z): {quote: string,money: int} | ct2↑
:)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ASin = (:request: {title: string},
payment: {title: string,money: int}
| ct1↑

:)

SBin = (:share(z) : {quote: string,
money: int},
response : {title: string,money: int}
| ct2↑

:)

BCin = (:share : {quote: string,money: int}:)

(: :) delimit a collection of alternative label-record pairs called variants, where
the label corresponds to the particular implementation that can process a mes-
sage defined by the given record. A record delimited by { } is a collection
of label-value pairs. Collection elements may contain Boolean variables called
guards (e.g. x, y or z in our example). A guard instantiated to false excludes
the element from the collection. This is the main self-configuration mechanism:
Boolean variables control the dependencies between any elements of interface
collections (this can be seen as a generalized version of intersection types [12])
The variables exclude elements from the collection if the dependencies between
corresponding elements in the interfaces that are connected by a communication
channel cannot be satisfied.

Alice Seller Bob Carol
ASout ASin

SAoutSAin

SBout SBin

BSoutBSin

BCout BCin

CBoutCBin

Fig. 1. Service composition in a Three Buyer usecase
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Parametric polymorphism is supported using interface variables such as tv↓,
ct1↑ and ct2↑ (the meaning of ↑ and ↓ is explain in Sect. 3). Moreover, the pres-
ence of ct1↑ and ct2↑ in both input and output interfaces enables flow inheritance
[13] mechanism that provides delegation of the data and service functionality
across available services.

ASout declares an output interface of Alice, which declares functionality and
a format of messages sent to Seller. The service has the following functionality:

– Alice can request a book’s price from Seller by providing a title of an arbitrary
type (which is specified by a term variable tv↓) that Seller is compatible with.
On the other hand, Seller declares that a title of type string is only acceptable,
which means that tv↓ must be instantiated to string.

– Furthermore, Alice can provide a payment for a book. In addition to the
title and the required amount of money, Alice provides her id in the mes-
sage. Although Seller does not require the id, the interconnection is still valid
(a description in standard WSDL interfaces would cause an error though) due
to the subtyping supported in the MDL.

– Furthermore, Alice can offer to share a purchase between other customers.
Although Alice is not connected to Bob or Carol and may even not be
aware of their presence (the example illustrates a composition where some
service communicates with services that the service is not directly connected
with), our mechanism detects that Alice can send a message with “share”
label to Bob by bypassing it implicitly through Seller. In order to enable
flow inheritance in Seller’s service, the mechanism sets a tail variable ct1↑

to (:share: {title: string,money: int}:). If Bob were unable to accept a mes-
sage with “share” label, the mechanism would instantiate x with false, which
automatically removes the corresponding functionality from the service.

– Finally, Alice can suggest a book to other buyers. However, examination of other
service interfaces shows that there is no service that can receive a message with
the label “suggest”. Therefore, a communication error occurs if Alice decides to
send themessage.Toavoid this, the configurationmechanismexcludes “suggest”
functionality from Alice’s service by setting y variable to false.

The proposed configuration mechanism analyses the interfaces of services
Seller, Bob and Carol in the same manner. The presence of ct1↑ variable in
both input and output interfaces of Bob enables support of data inheritance
on the interface level. Furthermore, the Boolean variable z behaves as an inter-
section type: Bob has “purchase sharing” functionality declared as an element
share(z): {. . . } in its input interface SBin (used by Seller). The element is related
to the element share(z): {. . . } in its output interface BCout (used by Carol). The
relation declares that Bob provides Carol with “sharing” functionality only if
Bob was provided with the same functionality from Seller. In our example, z is
true, because Carol declares that it can receive messages with the label “share”.
Note that there could be any Boolean formula in place of z, which wires any
input and output interfaces of a single service in an arbitrary way. The exist-
ing interface description languages (WSDL, WS-CDL, etc.) do not support such
interface wiring capabilities.
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Interface variables provide facilities similar to C++ templates. Services can
specify generic behavior compatible with multiple contexts and input/output
data formats. Given the context, the compiler then specializes the interfaces
based on the requirements and capabilities of other services.

The problem being solved is similar to type inference problem; however, it
has large combinatorial complexity and, therefore, direct search of a solution
is impractical. Furthermore, additional complexity arises from the presence of
Boolean variables in general form. Another problem is potential cyclic dependen-
cies in the network, which prevent the application of a simple forward algorithm.
In our approach, we define our problem as a constraint satisfaction problem.
Then we employ a constraint solver, which was specifically developed to solve
this problem, to find correct instantiations of the variables.

3 Message Definition Language and CSP

Now we define a term algebra called Message Definition Language (MDL). The
purpose of the MDL is to describe flexible service interfaces. Although we use a
concise syntax for MDL terms that is different from what standard WSDL-based
interfaces look like, it can easily be rewritten as a WSDL extension.

In our approach, a message is a collection of data entities, each specified by a
corresponding term. The intention of the term is to represent a standard atomic
type such as int, string, etc.; or inextensible data collections such as tuples;
or extensible data records [14,15], where additional named fields can be intro-
duced without breaking the match between the producer and the consumer and
where fields can also be safely inherited from input to output records; or data-
record variants, where generally more variants can be accepted by the consumer
than the producer is aware of, and where such additional variants can safely be
inherited from the output back to the input of the producer.

3.1 Terms

Each term is either atomic or a collection in its own right.Atomic terms are symbols,
which are identifiers used to represent standard types such as int, string, etc. To
account for subtyping we include three categories of collections: tuples that are
required to be of a certain arity and thus admit only depth structural subtyping,
records that are subtyped covariantly (a larger record is a subtype) and choices that
are subtyped contravariantly using set inclusion (a smaller choice is a subtype).The
records and the choices support both depth and width subtyping.

In order to support parametric polymorphism and flow inheritance in inter-
faces, we introduce term variables (called later t-variables), which are similar to
type variables. For coercion of interfaces it is important to distinguish between
two variable categories: down-coerced and up-coerced ones. The former can be
instantiated with symbols, tuples and records (terms of these three categories are
call down-coerced terms), and the latter can only be instantiated with choices
(up-coerced terms). Informally, for two down-coerced terms, a term associated
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with a structure with “more data” is a subtype of the one associated with a
structure that contains less; and vice versa for up-coerced terms. We use the
notation v↓ and v↑ for down-coerced and up-coerced variables respectively, and
v when its coercion sort is unimportant. Explicit sort annotation on variables is
useful for simplifying partial order definitions on terms.

We introduce Boolean variables (called b-variables below) in the term inter-
faces to specify dependencies between input and output data formats. The inten-
tion of b-variables is similar to intersection types, which increase the expressive-
ness of function signatures.

A Boolean expression b ∈ B (B denotes a set of Boolean expressions) called
a guard is defined by the following grammar:

〈guard〉 ::= (〈guard〉 ∧ 〈guard〉) | (〈guard〉 ∨ 〈guard〉) | 〈guard〉 → 〈guard〉 |
¬〈guard〉 | true | false | b-variable

MDL terms are built recursively using the constructors: tuple, record, choice
and switch, according to the following grammar:

〈term〉 ::= 〈symbol〉 | 〈tuple〉 | 〈record〉 | 〈choice〉 | t-variable
〈tuple〉 ::= (〈term〉 [〈term〉]∗)
〈record〉 ::= {[〈element〉[,〈element〉]∗[|down-coerced t-variable]]}
〈choice〉 ::= (:[〈element〉[,〈element〉]∗[|up-coerced t-variable]]:)
〈element〉 ::= 〈label〉(〈guard〉):〈term〉
〈label〉 ::= 〈symbol〉

Informally, a tuple is an ordered collection of terms and a record is an exten-
sible, unordered collection of guarded labeled terms, where labels are arbitrary
symbols, which are unique within a single record. A choice is a collection of
alternative terms. The syntax of choices is the same as that of records except for
the delimiters. The difference between records and choices is in width subtyping
and will become clear below when we define seniority on terms. We use choices to
represent polymorphic messages and service interfaces on the top level. Records
and choices are defined in tail form. The tail is denoted by a t-variable that
represents a term of the same kind as the construct in which it occurs.

A switch is an auxiliary construct intended for building conditional terms,
which is specified as a set of unlabeled (by contrast to a choice) guarded alter-
natives. Formally, it is defined as

〈switch〉 ::= <〈guard〉:〈term〉[, 〈guard〉:〈term〉]∗>
Exactly one guard must be true for any valid switch, i.e. the switch is sub-

stitutionally equivalent to the term marked by the true guard:

〈(false): t1, . . . , (true): ti, . . . , (false): tn〉 = 〈(true): ti〉 = ti.

For example, 〈(a): int, (¬a): string〉 represents the symbol int if a = true,
and the symbol string otherwise.
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3.2 Seniority Relation

For a guard g, we denote as Vb(g) the set of b-variables that occur in g. For a term
t, we denote as V↓(t) the set of down-coerced t-variables that occur in t, and as
V↑(t) the set of up-coerced ones; and finally Vb(t) is the set of b-variables in t.

Definition 1 (Semi-ground and Ground Terms). A term t is called semi-
ground if V↓(t) ∪ V↑(t) = ∅. A term t is called ground if it is semi-ground and
Vb(t) = ∅.
Definition 2 (Well-formed Terms). A term t is well-formed if it is ground
and exactly one of the following holds:

1. t is a symbol;
2. t is a tuple (t1 . . . tn), n > 0, where all ti, 1 ≤ i ≤ n, are well-formed;
3. t is a record {l1(g1): t1, . . . , ln(gn): tn} or a choice (:l1(g1): t1, . . . , ln(gn): tn:),

n ≥ 0, where for all 1 ≤ i �= j ≤ n, gi ∧ gj =⇒ li �= lj and all ti for which
gi are true are well-formed;

4. t is a switch 〈(g1): t1, . . . , (gn): tn〉, n > 0, where for some 1 ≤ i ≤ n, gi = true
and ti is well-formed and where gj = false for all j �= i.

If an element of a record, choice or switch has a guard that is equal to false,
then the element can be omitted, e.g.

{a(x ∧ y): string, b(false): int, c(x): int} = {a(x ∧ y): string, c(x): int}.

If an element of a record or a choice has a guard that is true, the guard can be
syntactically omitted, e.g.

{a(x∧y): string, b(true): int, c(x): int} = {a(x∧y): string, b: int, c(x): int}.

We define the canonical form of a well-formed collection as a representation that
does not include false guards, and we omit true guards anyway. The canonical
form of a switch is its (only) term with a true guard, hence any term in canonical
form is switch-free.

Next we introduce a seniority relation on terms for the purpose of structural
subtyping. In the sequel we use nil to denote the empty record { }, which has
the meaning of unit type and represents a message without any data. Similarly,
we use none to denote the empty choice (: :).

Definition 3 (Seniority Relation). The seniority relation � on well-formed
terms is defined in canonical form as follows:
1. none � t if t is a choice;
2. t � nil if t is a symbol, a tuple or a record;
3. t � t;
4. t1 � t2, if for some k,m > 0 one of the following holds:

(a) t1 = (t11 . . . tk1), t2 = (t12 . . . tk2) and ti1 � ti2 for each 1 ≤ i ≤ k;
(b) t1 = {l11: t11, . . . , l

k
1: tk1} and t2 = {l12: t12, . . . , l

m
2 : tm2 }, where k ≥ m and

for each j ≤ m there is i ≤ k such that li1 = lj2 and ti1 � tj2;
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(c) t1 = (:l11: t11, . . . , l
k
1: tk1 :) and t2 = (:l12: t12, . . . , l

m
2 : tm2 :), where k ≤ m and

for each i ≤ k there is j ≤ m such that li1 = lj2 and ti1 � tj2.

Similarly to the t-variables, terms are classified into two categories: symbols,
tuples and records are down-coerced terms and choices are up-coerced terms.
The seniority relation for down- and up-coerced terms possesses duality: the
element nil is the maximum element for down-coerced terms; on the other hand,
none is the minimum element for up-coerced terms. T ↓ denotes the set of all
down-coerced ground terms, T ↑ denotes the set of all up-coerced ground terms
and T = T ↓ ∪ T ↑ is the set of all ground terms. Similarly, T ↓

m denotes the set
of all vectors of down-coerced ground terms of length m and T ↑

n denotes the set
of all vectors of up-coerced ground terms of length n. If t1 and t2 are vectors of
terms (t11, . . . , t

1
n) and (t21, . . . , t

2
n) of size n, then t1 � t2 denotes the seniority

relation for all pairs t1i � t2i (1 ≤ i ≤ n).

nil

tuple record

. . .

symbol choice

. . .

none
subtype

down-coerced terms

up-coerced terms

Fig. 2. Two semilattices representing the seniority relation for terms of different cate-
gories. The lower terms are the subtypes of the upper ones

Proposition 1. The seniority relation � is a partial order, and (T ,�) is a pair
of meet and join semilattices (Fig. 2):

∀t1, t2 ∈ T ↓, t1 � t2 iff t1 � t2 = t1;

∀t1, t2 ∈ T ↑, t1 � t2 iff t1 � t2 = t2.

The seniority relation represents the subtyping relation on terms. If a term
t describes the input interface of a service, then the service can process any
message described by a term t′, such that t′ � t.

Although the seniority relation is straightforwardly defined for ground terms,
terms that are present in the interfaces of services can contain t-variables and b-
variables. Finding such ground term values for the t-variables and such Boolean
values for the b-variables that the seniority relation holds represents a CSP
problem, which is formally introduced next.

3.3 Constraint Satisfaction Problem for Web Services

We define a substitution, which is used in the definition of the CSP and in the
algorithm, as a syntactic transformation that replaces b-variables with Boolean
values and t-variables with ground or semi-ground values.
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Definition 4 (Substitution). Let g be a guard, t be a term, k = |Vb(g)∪Vb(t)|,
and f = (f1, . . . , fk) be a vector of b-variables contained in g and t, and v =
(v1, . . . , vk) be a vector of term variables contained in t. Then for any vector of
Boolean values b = (b1, . . . , bk) and a vector of terms s = (s1, . . . , sk)

1. g[f/b] denotes a Boolean value (true or false), which is obtained as a result of
the simultaneous replacement and evaluation of fi with bi for each 1 ≤ i ≤ k;

2. t[f/b] denotes the vector obtained as a result of the simultaneous replacement
of fi with bi for each 1 ≤ i ≤ k;

3. t[v/s] denotes the vector obtained as a result of the simultaneous replacement
of vi with si for each 1 ≤ i ≤ k;

4. t[f/b,v/s] is a shortcut for t[f/b][v/s].

Given the set of constraints C, we define the set of b-variables as

Vb(C) =
⋃

t�t′∈C
Vb(t) ∪ Vb(t′),

the sets of of down-coerced and up-coerced t-variables as

V↓(C) =
⋃

t�t′∈C
V↓(t) ∪ V↓(t′) and V↑(C) =

⋃

t�t′∈C
V↑(t) ∪ V↑(t′).

In the following for each set of constraints S such that |Vb(S)| = l, |V↑(S)| =
m and |V↓(S)| = n we use f = (f1, . . . , fl) to denote the vector of b-variables
contained in S, v↑ = (v↑

1 , . . . , v
↑
m) to denote the vector of up-coerced t-variables

and v↓ = (v↓
1 , . . . , v

↓
n) to denote the vector of down-coerced t-variables.

Let C be a set of constraints such that |Vb(C)| = l, |V↓(C)| = m, |V↑(S)| = n
and for some l,m, n ≥ 0. Now we can define a CSP-WS formally as follows.

Definition 5 (CSP-WS). Find a vector of Boolean values b = (b1, . . . , bl) and
vectors of ground terms t↓ = (t↓1, . . . , t

↓
m), t↑ = (t↑1, . . . , t

↑
n), such that for each

t1 � t2 ∈ C
t1[f/b,v↓/t↓,v↑/t↑] � t2[f/b,v↓/t↓,v↑/t↑]

The tuple (b, t↓, t↑) is called a solution.

4 Solution Approximation

One way to solve CSP-WS is to attempt to solve the problem for all possible
instantiations of b-variables. We start with considering the simplification when
the original problem is reduced to the one without b-variables provided that
some vector of Boolean assignments is given.

We use an approximation algorithm that iteratively traverses the meet and
the join semilattices for vectors of ground terms T ↓

m and T ↑
n , where m = |V↓(C)|

and n = |V↑(C)|, which represent solution approximations for down-coerced
and up-coerced terms respectively. The algorithm monotonously converges to a
solution if one exists. Informally, the algorithm performs the following steps:
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1. Compute the initial approximation of the solution for i = 0 as (a↓
i ,a

↑
i ) =

((nil, . . . , nil), (none, . . . , none)), where the first element in the pair is the vector
of top elements from the meet semilattice and the second element is the vector
of bottom elements from the join semilattice.

2. Compute (a↓
i+1,a

↑
i+1) such that a↓

i+1 � a↓
i and a↑

i � a↑
i+1.

3. Repeat step 2 until a chain of approximations converges to the solution, i.e.
(a↓

i+1,a
↑
i+1) = (a↓

i ,a
↑
i ), or a situation where some of the constraints from step 2

cannot be satisfied. Then return the last approximation as the solution orUnsat.

We extend the set T ↓
m with the element ⊥, i.e. T̃ ↓

m = T ↓
m∪{⊥}, and the set T ↑

n

with the element �, i.e. T̃ ↑
n = T ↑

n ∪{�}. Here ⊥ is defined as the bottom element
of the meet semilattice, i.e. ⊥ � a↓ for any a↓ ∈ T̃ ↓

m, and � is defined as the
top element of the join semilattice, i.e. a↑ � � for any a↑ ∈ T̃ ↑

n . The algorithm
returns ⊥ or � if it is unable to find an approximation for some constraints,
which, as shown in Theorem 1 below, means that the input set of constraints
does not have a solution.

4.1 Approximating Function

In order to specify how the next approximation is computed we introduce the
approximating function AF : C×T̃ ↓

m×T̃ ↑
n → T̃ ↓

m×T̃ ↑
n that maps a single constraint

and the current approximation to the new approximation.
The function AF is given below for all categories of terms (except for choices

because they are symmetrical to the cases for records and switches that are
reduced to other term categories). Let v↓ = (v1, . . . , vm), v↑ = (v1, . . . , vn),
a↓ = (a1, . . . , am), a↑ = (a1, . . . , an).

If t is a symbol, thegivenapproximation (a↓,a↑) already satisfies the constraint:

AF(t � t,a↓,a↑) = (a↓,a↑).

If t is a down-coerced term and vl is a down-coerced variable, the approxi-
mation for vl is used to refine the approximation for variables in t. Therefore,
the constraint is reduced to the one with vl as a ground term, which is obtained
by substitution vl[v↓/a↓]:

AF(t � vl,a
↓,a↑) = AF(t � vl[v↓/a↓],a↓,a↑).

If vl is an up-coerced variable and t is an up-coerced term, the case is sym-
metric to the previous one:

AF(vl � t,a↓,a↑) = AF(vl[v↑/a↑] � t,a↓,a↑).

If vl is a down-coerced variable and t is a down-coerced term, then vl must
be not higher than the ground term t[v↓/a↓,v↑/a↑] in the meet semilattice:

AF(vl � t,a↓,a↑) = ((a1, . . . , al � t[v↓/a↓,v↑/a↑], . . . , am),a↑).
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If t is an up-coerced term and v↑
l is an up-coerced variable, the case is sym-

metric to the previous one:

AF(t � v↑
l ,a

↓,a↑) = (a↓, (a1, . . . , al � t[v↓/a↓,v↑/a↑], . . . , an)).

If t1 and t2 are tuples (t11 . . . t1k) and (t21 . . . t2k) respectively, then the constraint
must hold for the corresponding nested terms:

AF((t11 . . . t1k) � (t21 . . . t2k),a
↓,a↑) = (

�

1≤i≤k

ai
↓,

⊔

1≤i≤k

ai
↑).

If t1 and t2 are records {l11: t11, . . . , l
1
p: t1p} and {l21: t21, . . . , l

2
q: t2q} respectively,

two cases must be considered:

– If for all i (1 ≤ i ≤ q) there exists j such that l1j = l2i , then the constraint for
nested terms t1j � t2i must hold:

AF({l11: t11, . . . , l
1
p: t1p} � {l21: t21, . . . , l

2
q: t2q},a↓,a↑) = (

�

1≤i≤q

ai
↓,

⊔

1≤i≤q

ai
↑).

– Otherwise, the set of labels in t2 is not a subset of the labels in t1 and,
therefore, t1 � t2 is unsatisfiable:

AF({l11: t11, . . . , l
1
p: t1p} � {l21: t21, . . . , l

2
q: t2q},a↓,a↑) = (⊥,�).

If vl is a down-coerced variable, t1 and t2 are records {l11: t11, . . . , l
1
p: t1p |vl} and

{l21: t21, . . . , l
2
q: t2q} respectively, the constraint can be satisfied only if for every

nested term t2i with the label l2j in t one of the following holds: 1) there exists
a subterm t1j with equal label in t1 and t1j � t2i holds, or 2) vl is a record that
contains a junior to t2i element with the same label:

AF({l11: t11, . . . , l
1
p: t1p |vl} � {l21: t21, . . . , l

2
q: t2q},a↓,a↑) = (

�

1≤i≤q

ai
↓,

⊔

1≤i≤q

ai
↑),

where

(ai
↓,ai

↑) =

{
AF(t1j � t2i ,ai

↓,ai
↑) if ∃j : l1j = l2i

((a1, . . . , al � t2i [v
↓/a↓,v↑/a↑], . . . am),a↑) otherwise.

If t1 is a record {l11: t11, . . . , l
1
p: t1p} or {l11: t11, . . . , l

1
p: t1p |vl} and t2 is a record

{l21: t21, . . . , l
2
q: t2q |ur}, then the constraint can by substitution be reduced to the

previous cases for records:

AF(t1 � t2,a
↓,a↑) = AF(t1 � t2[ur/ar],a↓,a↑).

The function AF has the property of homomorphism, which is important for
showing termination and correctness of the algorithm.
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Lemma 1 (Homomorphism). Let AF(t1 � t2,a
↓
1,a

↑
1) = (a↓

1,a
↑
1) and AF(t1

� t2,a
↓
2,a

↑
2) = (a↓

2,a
↑
2). Then

AF(t1 � t2,a
↓
1 � a↓

2,a
↑
1 � a↑

2) = (a↓
1 � a↓

2,a
↑
1 � a↑

2).

The function AFC is a composition of AF functions that are sequentially
applied to all constraints in C (the order in which AF is applied to the constraints
is not important due to distributivity of the semi-lattices):

AFC(a↓,a↑) = AF(t|C|
1 � t

|C|
2 ,AF(t|C|−1

1 � t
|C|−1
2 , . . . ,AF(t11 � t12,a

↓,a↑) . . . )).

The sequential composition preserves homomorphism for AFC . In Sect. 5 we
tacitly assume that for arbitrary terms the function AFC is defined in a similar
way.

4.2 Fixed-Point Algorithm

Now we present the algorithm (see Algorithm 1) that computes a chain of approx-
imations for the case Vb(C) = ∅ that converges to the solution if one exists.

Algorithm 1. CSP-WS(C), where Vb(C) = ∅
1: i ← 0
2: (a↓

0,a
↑
0) ← ((nil, . . . , nil), (none, . . . , none))

3: repeat
4: i ← i + 1
5: (a↓

i ,a
↑
i ) ← AFC(a↓

i−1,a
↑
i−1)

6: until (a↓
i ,a

↑
i ) = (a↓

i−1,a
↑
i−1)

7: if (a↓
i ,a

↑
i ) = (⊥,�) then

8: return Unsat
9: end if

10: return (a↓
i ,a

↑
i )

Theorem 1. For any set of constraints C such that Vb(C) = ∅ the following
holds: (1) Algorithm1 terminates after a finite number of steps; (2) CSP-WS
for C is unsatisfiable iff Algorithm1 return Unsat.

The proof is given in the extended version of the paper [16].

5 CSP-WS Algorithm

A straightforward algorithm for CSP-WS has to run Algorithm1 for each of
2l pairs of the semi-lattices, where l = |Vb(C)|. Instead, we present iterative
Algorithm 2 which takes the advantage of the order-theoretical structure of the
MDL and generates an adjunct SAT problem on the way.
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Algorithm 2. CSP-WS(C)
1: c ← |C|
2: i ← 0
3: B0 ← ∅
4: a↓

0 ← (nil, . . . , nil)
5: a↑

0 ← (none, . . . , none)
6: repeat
7: i ← i + 1
8: (a↓

i ,a
↑
i ) ← AFC(a↓

i−1,a
↑
i−1)

9: Bi ← Bi−1 ∪ ⋃
t1�t2∈C

(WFC(t1[v/ai])∪WFC(t2[v/ai])∪SC(t1[v/ai] � t2[v/ai]))

10: until (SAT(Bi),a
↓
i ,a

↑
i ) = (SAT(Bi−1),a

↓
i−1,a

↑
i−1)

11: if Bi is unsatisfiable then
12: return Unsat
13: else
14: return (b,a↓

i [f/b],a
↑
i [f/b]), where b ∈ SAT(Bi)

15: end if

Let B0 ⊆ B1 ⊆ · · · ⊆ Bs be sets of Boolean constraints, and a↓ and a↑ be
vectors of semiground terms such that |a↓| = |V↓(C)| and |a↑| = |V↑(C)|. We
seek the solution as a fixed point of a chain of approximations in the form:

(B0,a
↓
0,a

↑
0), . . . , (Bs−1,a

↓
s−1,a

↑
s−1), (Bs,a

↓
s,a

↑
s),

where for every i, 1 ≤ i ≤ s, and a vector of Boolean values b ∈ SAT(Bi):

a↓
i [f/b] � a↓

i−1[f/b] and a↑
i−1[f/b] � a↑

i [f/b].

The adjunct set of Boolean constraints potentially expands at every iteration
of the algorithm by inclusion of further logic formulas produced by the set of
Boolean constraint WFC (see Fig. 3) ensuring well-formedness of the terms and
the set of Boolean constraints SC (see Fig. 4) ensuring that the seniority relations
holds. The starting point is B0 = ∅, a↓

0 = (nil, . . . , nil), a↑
0 = (none, . . . , none) and

the chain terminates as soon as SAT(Bs) = SAT(Bs−1),a↑
s = a↑

s−1,a
↓
s = a↓

s−1,
where by SAT(Bi) we mean a set of Boolean vector satisfying Bi. Whether the set
of Boolean constraints actually expands or not can be determined by checking
the satisfiability of SAT(Bi) �= SAT(Bi−1) for the current iteration i.

We argue that if the original CSP-WS is satisfiable, then so is SAT(Bs) and
that the tuple of vectors (bs,a↓

s[f/bs],a↑
s[f/bs]) is a solution to the former,

where bs is a solution of SAT(Bs). In other words, the iterations terminate when
the conditional approximation limits the t-variables, and when the adjunct SAT
constrains the b-variables enough to ensure the satisfaction of all CSP-WS con-
straints. In general, the set SAT(Bs) can have more than one solution and we
select one of them. Heuristics that allows to choose a solution that is better for
the given application is left for further research.

Implementation. We implemented the CSP-WS algorithm as a solver in the
OCaml language. The input for the solver is a set of constraints and the output
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Fig. 3. The set of Boolean constraints that ensures well-formedness of a term t

Fig. 4. The set of Boolean constraints that ensures the seniority relation t1 � t2

is in the form of assignments to b-variables and t-variables. It works on top of
the PicoSAT [17] library (although any other SAT solver could be used instead).
PicoSAT is employed as a subsolver that deals with Boolean assertions.

6 Conclusion and Future Work

We have presented a new mechanism for choreographing service interfaces based
on CSP and SAT that configures generic non-local interfaces in context.
We developed a Message Definition Language that can be used with service-
based applications. Our mechanism supports subtyping, polymorphism and flow
inheritance thanks to the order relation defined on MDL terms. We have pre-
sented the CSP solution algorithm for interface configuration, which was devel-
oped specifically for this task.

In the context of Cloud, our results may prove useful to the software-as-
service community since we can support much more generic interfaces than
are currently available. Building services the way we do could enable service
providers to configure a solution for a network customer based on services that
they have at their disposal as well as those provided by other providers and
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the customer themselves, with automatic tuning to (locally unknown) non-local
requirements.

The next step will be the design of a mechanism for automatic interface
derivation from the sources of the services, which can be done in a straightfor-
ward manner. This complements as yet unavailable choreography mechanisms
that rely on behavioral protocols: automatic derivation of code behavior from
the sources is an open problem that presents a considerable challenge.
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Abstract. Railway designs deal with complex and large-scale, safety-
critical infrastructures, where formal methods play an important role,
especially in verifying the safety of so-called interlockings through model
checking. Model checking deals with state change and rather complex
properties, usually incurring considerable computational burden (chiefly
in terms of memory, known as state-space explosion problem). In con-
trast to this, we focus on static infrastructure properties, based on design
guidelines and heuristics. The purpose is to automate much of the man-
ual work of the railway engineers through software that can do verifica-
tion on-the-fly. In consequence, this paper describes the integration of
formal methods into the railway design process, by formalizing relevant
technical rules and expert knowledge. We employ a variant of Datalog
and use the standardized “railway markup language” railML as basis
and exchange format for the formalization. We describe a prototype tool
and its (ongoing) integration in industrial railway CAD software, devel-
oped under the name RailCOMPLETE�. We apply this tool chain in a
Norwegian railway project, the upgrade of the Arna railway station.

Keywords: Railway designs · Automation · Logic programming ·
Signalling · Railway infrastructure · railML · CAD · Datalog

1 Introduction

Railway systems are complex and large-scale, safety-critical infrastructures, with
increasingly computerized components. The discipline of railway engineering is
characterized by heavy national regulatory oversight, high and long-standing
safety and engineering standards, a need for interoperability and (national and
international) standardization. Due to the high safety requirements, the railway
design norms and regulations recommend the use of formal methods (of vari-
ous kinds), and for the higher safety integrity levels (SIL), they “highly recom-
mend” them (cf. e.g. [4]). Railways require thoroughly designed control systems
to ensure safety and efficient operation. The railway signals are used to direct
traffic, and the signalling component layout of a train station is crucial to its
traffic capacity. Another central part of a railway infrastructure is the so-called
c© Springer International Publishing Switzerland 2016
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interlocking, which refers, generally speaking, to the ensemble of systems tasked
to establish safe, conflict-free routes of trains through stations (cf. [18]).

Railway construction projects are heavy processes that integrate various
fields, engineering disciplines, different companies, stakeholders, and regulatory
bodies. When working out railway designs a large part of the work is repet-
itive, involving routine checking of consistency with rules, writing tables, and
coordinating disciplines. Many of these manual checks are simple enough to be
automated.

With the purpose of increasing the degree of automation, we present results
on integrating formal methods into the railway design process, as follows:

– We formalize rules governing track and signalling layout, and interlocking.
– The standardized “railway markup language” railML [19] is used as basis and

exchange format for the formalization.
– We model the concepts describing a railway design in the logic of Datalog; and

develop an automated generation of the model from the railML representation.
– We develop a prototype tool and integrate it in existing railway CAD software.

We illustrate the logical representation of signalling principles and show how
they can be implemented and solved efficiently using the Datalog style of logic
programming [21]. We also show the integration with existing railway engineer-
ing workflow by using CAD models directly. This enables us to verify rules
continuously as the design process changes the station layout and interlocking.
Based on railML [19], our results can be easily adopted by anyone who uses
this international standard. The work uses as case study the software and the
design (presently under development) used in the Arna-Fløen upgrade project,1

with planned completion in 2020. The Arna train station is located on Northern
Europe’s busiest single-track connection, which is being extended to a double-
track connection. The case study is part of an ongoing project in Anacon AS
(now merged with Norconsult), a Norwegian signalling design consultancy. It is
used to illustrate the approach, test the implementation, and to verify that the
tool’s performance is acceptable for interactive work within the CAD software.

The rest of the paper is organized as follows. Section 2 discusses aspects
of the railway domain relevant for this work. Section 3 proposes a tool chain
that extends CAD with formal representations of signalling layout and inter-
locking. Section 4 presents our formalization of the rules and concepts of rail-
way design as logical formulas amenable for the Datalog implementation and
checking. Section 5 provides information about the implementation, including
details about counterexample presentation and empirical evaluation using the
case study. We conclude in Sect. 6 with related and future work.

2 Background on the Railway Signalling Domain

The signalling design process results in a set of documents which can be cat-
egorized into (a) track and signalling component layout, and (b) interlocking
specification.
1 www.jernbaneverket.no/Prosjekter/prosjekter/Arna-Bergen.

www.jernbaneverket.no/Prosjekter/prosjekter/Arna-Bergen
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Fig. 1. Cut-out from 2D geographical CAD model (construction drawing) of prelimi-
nary design of the Arna station signalling (Color figure online).

Railway construction projects rely heavily on computer aided design (CAD)
tools to map out railway station layouts. The various disciplines within a project,
such as civil works, track works, signalling, or catenary power lines, work with
coordinated CAD models. These CAD models contain a major part of the work
performed by engineers, and are a collaboration tool for communication between
disciplines. The signalling component layout is worked out by the signalling
engineers as part of the design process. Signals, train detectors, derailers, etc.,
are drawn using symbols in a 2D geographical CAD model. An example of a
layout drawing is given in Fig. 1.

2.1 Interlocking Specification

An interlocking is an interconnection of signals and switches to ensure that
train movements are performed in a safe sequence [18]. Interlocking is performed
electronically so that, e.g., a green light (or, more precisely, the proceed aspect)
can only be lit under certain conditions. Conditions and state are built into
the interlocking by relay-based circuitry or by computers running interlocking
software. Most interlocking specifications use a route-based tabular approach,
which means that a train station is divided into possible routes, which are paths
that a train can take from one signal to another. These signals are called the route
entry signal and route exit signal, respectively. An elementary route contains no
other signals in-between. The main part of the interlocking specification is to
tabulate all possible routes and set conditions for their use. Typical conditions
are:

– Switches must be positioned to guide the train to a specified route exit signal.
– Train detectors must show that the route is free of any other trains.
– Conflicting routes, i.e. overlapping routes (or overlapping safety zones), must

not be in use.
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3 Proposed Railway Signalling Design Tool Chain

Next we describe shortly the tool chain that we propose for automating the cur-
rent manual tasks involved in the design of railway infrastructures (see details in
[15]). In particular, we are focused on integrating and automating those simple,
yet tedious, rules and conditions usually used to maintain some form of consis-
tency of the railway, and have these checks done automatically. Whenever the
design is changed by an engineer working with the CAD program, our verifi-
cation procedure would help, behind the scenes, verifying any small changes in
the model and the output documents. Violations would either be automatically
corrected, if possible, or highlighted to the engineer. Thus, we are focusing on
solutions with small computational overhead.

3.1 Computer-Aided Design (CAD) Layout Model

CAD models, which ultimately correspond to a database of geometrical objects,
are used in railway signalling engineering. They may be 2D or 3D, and contain
mostly spatial properties and textual annotations, i.e., the CAD models focus
on the shapes of objects and where to place them. The top level of the docu-
ment, called the model space block, contains geometrical primitives, such as lines,
circles, arcs, text, and symbols.

Geometric elements may represent the physical geometry directly, or symbol-
ically, such as text or symbols. However, the verification of signalling and inter-
locking rules requires information about object properties and relations between
objects such as which signals and signs are related to which track, and their
identification, capabilities, and use. This information is better modelled by the
railway-specific extensible hierarchical object model called railML [17].

3.2 Integrating railML and Interlocking Specifications
with CAD Models

CAD programs were originally designed to produce paper drawings, and common
practice in the use of CAD programs is to focus on human-readable documents.
The database structure, however, may also be used to store machine-readable
information. In the industry-standard DWG format, each geometrical object in
the database has an associated extension dictionary, where add-on programs
may store any data related to the object. Our tool uses this method to store the
railML fragments associated with each geometrical object or symbol. Thus, we
can compile the complete railML representation of the station from the CAD
model.

Besides the layout, the design of a railway station consists also of a specifica-
tion for the interlocking. This specification models the behavior of the signalling,
and it is tightly linked to the station layout. A formal representation of the inter-
locking specification is embedded in the CAD document in a similar way as for
the railML infrastructure data, using the document’s global extension dictio-
nary. Thus, the single CAD document showing the human-readable layout of
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the train station also contains a machine-readable model which fully describes
both the component layout and the functional specification of the interlocking.
This allows a full analysis of the operational aspects of the train station directly
from a familiar editable CAD model.

3.3 Overall Tool Chain

Figure 2 shows the overall tool chain. The software allows checking of rules and
regulations of static infrastructure (described in this paper) inside the CAD
environment, while more comprehensive verification and quality assurance can
be performed by special-purpose software for other design and analysis activities.

Rules,
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Fig. 2. Railway design tool chain. The CAD program box shows features which are
directly accessible at design time inside the CAD program, while the export creates
machine-readable (or human-readable) documents which may be further analyzed and
verified by external software (shown in dashed boxes).

Generally, analysis and verification tools for railway signalling designs can
have complex inputs, they must account for a large variety of situations, and
they usually require long running times. Therefore, we limit the verification
inside the design environment to static rules and expert knowledge, as these
rules require less dynamic information (timetables, rolling stock, etc.) and less
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computational effort, while still offering valuable insights. This situation may be
compared to the tool chain for writing computer programs. Static analysis can
be used at the detailed design stage (writing the code), but can only verify a
limited set of properties. It cannot fully replace testing, simulation and other
types of analysis, and must as such be seen as a part of a larger tool chain.

Other tools, that are external to the CAD environment, may be used for
these more calculation heavy or less automated types of analysis, such as:

– Code generation and verification for interlockings, possible e.g. through the
formal verification framework of Prover Technology.

– Capacity analysis and timetabling, performed e.g. using OpenTrack, LUKS,
or Treno.

– Building Information Modeling (BIM), including such activities as life-cycle
information management and 3D viewing, are already well integrated with
CAD, and can be seen as an extension of CAD.

The transfer of data from the CAD design model to other tools is possible by
using standardized formats such as railML, which in the future will also include
an interlocking specification schema [3].

4 Formalization of Rule Checking

To achieve our goal of automating checking of the consistency of railway designs
we need formal representations of both the designs and the consistency rules.

The logical representation of the designs (called the model) and of the rules
(called properties) are fed into the verification engine (SAT/SMT or Datalog)
which is doing satisfiability checking, thus looking for an interpretation of the
logical variables that would satisfy the formulas. More precisely, the rules are first
negated, then conjoined with the formulas representing the model. Therefore,
looking for a satisfying interpretation is the same as looking for a way to violate
the rules. When found, the interpretation contains the information about the
exact reasons for the violation. The reasons, or counter-example, involves some
of the negated rules as well as some parts of the model.

We formalize the correctness properties (i.e., technical rules and expert
knowledge) as predicates over finite and real domains. Using a logic programming
framework, we will include the following in the logical model:

1. Predicate representation of input document facts, i.e. track layout and inter-
locking.

2. Predicate representation of derived concept rules, such as object properties,
topological properties, and calculation of distances.

3. Predicate representation of technical rules.

Each of these categories are described in more detail below, after we present the
logical framework we employ.
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4.1 Datalog

Declarative logic programming is a programming language paradigm which
allows clean separation of logic (meaning) and computation (algorithm). This
section gives a short overview of Datalog concepts. See [21] for more details. In
its most basic form Datalog is a database query, as in the SQL language, over a
finite set of atoms which can be combined using conjunctive queries, i.e. expres-
sions in the fragment of first-order logic which includes only conjunctions and
existential quantification.

Conjunctive queries alone, however, cannot express the properties needed to
verify railway signalling. For example, given the layout of the station with tracks
represented as edges between signalling equipment nodes, graph reachability
queries are required to verify some of the rules. This corresponds to computing
the transitive closure of the graph adjacency relation, which is not expressible in
first-order logic [13, Chap. 3]. Adding fixed-point operators to conjunctive queries
is a common way to mitigate the above problem while preserving decidability
and polynomial time complexity.

The Datalog language is a first-order logic extended with least fixed points.
We define the Datalog language as follows: Terms are either constants (atoms)
or variables. Literals consist of a predicate P with a certain arity n, along with
terms corresponding to the predicate arguments, forming an expression like P (�a),
where a = (a1, a2, . . . , an). Clauses consist of a head literal and one or more body
literals, such that all variables in the head also appear in the body. Clauses are
written as

R0(�x) :− ∃�y : R1(�x, �y), R2(�x, �y), . . . , Rk(�x, �y).

Datalog uses the Prolog convention of interpreting identifiers starting with a cap-
ital letter as variables, and other identifiers as constants. E.g., the meaning of the
clause a(X,Y ) :− b(X,Z), c(Z, Y ) is ∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y)).

Clauses without body are called facts, those with one or more literals in
the body are called rules. No nesting of literals is allowed. However, recursive
definitions of predicates are possible. In the railway domain, this can be used to
define the connected predicate, which defines whether two objects are connected
by railway tracks:

directlyConnected(a, b) :− track(t), belongsTo(a, t), belongsTo(b, t).
connected(a, b) :− directlyConnected(a, b).
connected(a, b) :− directlyConnected(a, x), connection(x, c),

connected(c, b).

Here, the connection predicate contains switches and other connection types.
Further details of relevant predicates are given in the sections below.

Another common feature of Datalog implementations is to allow negation,
with negation as failure semantics. This means that negation of predicates in
rules is allowed with the interpretation that when the satisfiability procedure
cannot find a model, the statement is false. To ensure termination and unique
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solutions, the negation of predicates must have a stratification, i.e. the depen-
dency graph of negated predicates must have a topological ordering (see [21,
Chap. 3] for details).

Datalog is sufficiently expressive to describe static rules of signalling layout
topology and interlocking. For geometrical properties, it is necessary to take sums
and differences of lengths, which requires extending Datalog with arithmetic
operations. A more expressive language is required to cover all aspects of railway
design, e.g. capacity analysis and software verification, but for the properties in
the scope of this paper, a concise, restricted language which ensures termination
and short running times has the advantage of allowing tight integration with the
existing engineering workflow.

4.2 Input Documents Representation

Track and Signalling Objects Layout in the railML Format. Given a
complete railML infrastructure document, we consider the set of XML elements
in it that correspond to identifiable objects (this is the set of elements which
inherit properties from the type tElementWithIDAndName). The set of all IDs
which are assigned to XML elements form the finite domain of constants on
which we base our predicates (IDs are assumed unique in railML).

Atoms := {a | element.ID = a} .

We denote a railML element with ID = a as elementa. All other data associated
with an element is expressed as predicates with its identifying atom as one of
the arguments, most notably the following:

– Element type (also called class in railML/XML):

track(a) ← elementa is of type track,

signal(a) ← elementa is of type signal,

balise(a) ← elementa is of type balise,

switch(a) ← elementa is of type switch.

– Position and absolute position (elements inheriting from tPlacedElement):

pos(a, p) ← (elementa.pos = p), a ∈ Atoms, p ∈ R,

absPos(a, p) ← (elementa.absPos = p), a ∈ Atoms, p ∈ R.

– Direction (for elements inheriting from tOrientedElement):

dir(a, d) ← (elementa.dir = d), a ∈ Atoms, d ∈ Direction,

where Direction = {up, down, both, unknown}, indicating whether the object
is visible or functional in only one of the two possible travel directions, or
both.
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– Signal properties (for elements of type tSignal):

signalType(a, t)←(elementa.type= t), t∈{main, distant, shunting, combined} ,

signalFunction(a, f) ← (elementa.function = f),
a ∈ Atoms, f ∈ {home, intermediate, exit, blocking} .

The switch element is the object which connects tracks with each other and
creates the branching of paths. A switch belongs to a single track, but contains
connection sub-elements which point to other connection elements, which are in
turn contained in switches, crossings or track ends. For connections, we have the
following predicates:

– Connection element and reference:

connection(a) ← elementa is of type connection,

connection(a, b) ← (elementa.ref = b).

– Connection course and orientation:

connectionCourse(a, c) ← (elementa.course = c), c∈{left, straight, right}
connectionOrientation(a, o) ← (elementa.orientation = o),

a ∈ Atoms, o ∈ {outgoing, incoming} .

To encode the hierarchical structure of the railML document, a separate
predicate encoding the parent/child relationship is added:

– Object belongs to (e.g. a is a signal belonging to track b):

belongsTo(a, b) ← b is the closest XML ancestor of a whose element
type inherits from tElementWithIDAndName.

Interlocking. An XML schema for tabular interlocking specifications is
described in [3], and this format is used here with, anticipating that it will
become part of the railML standard schema in the future. We give some exam-
ples of how XML files with this schema are translated into predicate form:

– Train route with given direction d, start point a, and end point b (a, b ∈ Atoms,
d ∈ Direction):

trainRoute(t) ← elementt is of type route

start(t, a) ← (elementt.start = a)
end(t, b) ← (elementt.end = b)

– Conditions on detection section free (a) and switch position (s, p):

detectionSectionCondition(t, a) ←(a ∈ elementt.sectionConditions),
switchPositionCondition(t, s, p) ←((s, p) ∈ elementt.switchConditions).
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4.3 Derived Concepts Representation

Derived concepts are properties of the railway model which can be defined inde-
pendently of the specific station. A library of these predicates is needed to allow
concise expression of the rules to be checked.

Object Properties. Properties related to specific object types which are not
explicitly represented in the layout description, such as whether a switch is facing
in a given direction, i.e. if the path will branch when you pass it:

switchFacing(a, d) ← ∃c, o : switch(a) ∧ switchConnection(a, c)∧
switchOrientation(c, o) ∧ orientationDirection(o, d).

Topological and Geometric Layout Properties. Predicates describing the
topological configuration of signalling objects and the train travel distance
between them are described by predicates for track connection (predicate
connected(a, b)), directed connection (predicate following(a, b, d)), distance
(predicate distance(a, b, d , l)), etc. The track connection predicate is defined as:

directlyConnected(a, b) ← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b) ← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

Interlocking Properties. Properties such as existsPathWithoutSignal(a, b) for
finding elementary routes, and existsPathWithDetector(a, b) for finding adjacent
train detectors will be used as building blocks for the interlocking rules.

4.4 Rule Violations Representation

With the input documents represented as facts, and a library of derived con-
cepts, it remains to define the technical rules to be checked. Technical rules are
based on [11]. Some examples of technical rules representing conditions of the
railway station layout are given below. More details can be found in the technical
report [16].

Property 1 (Layout: Home signal [11]). A home main signal shall be placed
at least 200m in front of the first controlled, facing switch in the entry train path.

See also Fig. 3 for an example. Property 1 may be represented in the following
way:

isFirstFacingSwitch(b, s) ← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),
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200 m

Fig. 3. A home main signal shall be placed at least 200 m in front of the first controlled,
facing switch in the entry train path. (Property 1)

ruleViolation1(b, s) ← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x,home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x,home)∧
∧ distance(x, s, d, l) ∧ l < 200).

Checking for rule violations can be expressed as:

∃b, s : ruleViolation1(b, s),

which in Datalog query format becomes ruleViolation1(B,S)?.

Property 2 (Layout: Exit main signal [11]). An exit main signal shall be
used to signal movement exiting a station.

This property can be elaborated into the following rules:

– No path should have more than one exit signal:

ruleViolation2(s) ←∃d : signalType(s, exit) ∧ following(s, so, d)∧
¬signalType(s0, exit).

– Station boundaries should be preceded by an exit signal:

exitSignalBefore(x, d) ←∃s : signalType(s, exit) ∧ following(s, x, d)
ruleViolation2(b) ←∃d : stationBoundary(b) ∧ ¬exitSignalBefore(b, d).

Property 3 (Interlocking: Track clear on route). Each pair of adjacent
train detectors defines a track detection section. For any track detection sections
overlapping the route path, there shall exist a corresponding condition on the
activation of the route.

See Fig. 4 for an example. Property 3 can be represented as follows:

adjacentDetectors(a, b) ←trainDetector(a) ∧ trainDetector(b)∧
¬existsPathWithDetector(a, b),

detectionSectionOverlapsRoute(r, da, db) ← trainRoute(r)∧
start(r, sa) ∧ end(r, sb)∧
adjacentDetectors(da, db) ∧ overlap(sa, sb, da, db),
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Section 1 Section 2

Sig. A Sig. B

Tabular interlocking:
Route Start End Sections must be clear
AB A B 1, 2

Fig. 4. Track sections which overlap a route must have a corresponding condition in
the interlocking. (Property 3)

ruleViolation3 (r, da, db) ← detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

Property 4 (Interlocking: Flank protection [11]). A train route shall have
flank protection.

For each switch in the route path and its associated position, the paths starting
in the opposite switch position defines the flank. Each flank path is terminated
by the first flank protection object encountered along the path. An example sit-
uation is shown in Fig. 5. While the indicated route is active (A to B), switch
X needs flank protection for its left track. Flank protection is given by setting
switch Y in right position and setting signal C to stop. Property 4 can be elab-
orated into the following rules:

– All flank protection objects should be eligible flank protection objects, i.e. they
should be in the list of possible flank protection objects, and have the correct
orientation (the flankElement predicate contains the interlocking facts):

Route

Signal A Signal B

Signal C

Switch X

Switch Y

Fl
an
k

Fig. 5. The dashed path starting in switch X must be terminated in all branches by a
valid flank protection object, in this case switch Y and signal C. (Property 4)
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flankProtectionObject(a, b, d) ←((signalType(a,main) ∧ dir(a, d))∨
(signalType(a, shunting) ∧ dir(a, d))∨
switchFacing(a, d)∨
derailer(a)) ∧ following(a, b, d).

flankProtectionRequired(r, x, d) ← trainRoute(r) ∧ start(r, sa)∧
end(r, sb) ∧ switchOrientation(x, o) ∧ between(sa, x, sb)∧
orientationDirection(o, od) ∧ oppositeDirection(od, d).

flankProtection(r, e) ←flankProtectionRequired(r, x, d)∧
flankProtectionObject(e, x, d).

ruleViolation4 (r, e) ←flankElement(r, e)∧
¬flankProtection(r, e).

– There should be no path from a model/station boundary to the given switch,
in the given direction, that does not pass a flank protection object for the
route:

ruleViolation4 (r, b, x) ← stationBoundary(b)∧
flankProtectionRequired(r, x, d) ∧ following(b, x, d)∧
existsPathWithoutFlankProtection(r, b, x, d).

5 Tool Implementation

The XSB Prolog interpreter was used as a back-end for the implementation as it
offers tabled predicates which have the same characteristics as Datalog programs
[20], while still allowing general Prolog expressions such as arithmetic operations.

5.1 Counterexample Presentation

When rule violations are found, the railway engineer will benefit from informa-
tion about the following:

– Which rule was violated (textual message containing a reference to the source
of the rule or a justification in the case of expert knowledge rules).

– Where the rule was violated (identity of objects involved).

Also, classification of rules based on e.g. discipline and severity may be useful
in many cases. In the rule databases, this may be accomplished through the use
of structured comments, similar to the common practice of including structured
documentation in computer programs, such as JavaDoc (see Fig. 6 for an exam-
ple). A program parses the structured comments and forwards corresponding
queries to the logic programming solver. Any violations returned are associated
with the information in the comments, so that the combination can be used to
present a helpful message to the user. A prototype CAD add-on program for
Autodesk AutoCAD was implemented, see Fig. 7.
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Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

5.2 Case Study Results

The rules concerning signalling layout and interlocking from Jernbaneverket [11]
described above were checked in the railML representation of the Arna-Fløen
project, which is an ongoing design project in Anacon AS (now merged with
Norconsult). Each object was associated with one or more construction phases,
which we call phase A and phase B, which also correspond to two operational
phases. The model that was used for the work with the Arna station (phase A
and B combined) included 25 switches, 55 connections, 74 train detectors, and 74
signals. The interlocking consisted of 23 and 42 elementary routes in operational
phase A and B respectively.

Table 1. Case study size and running times on a standard laptop.

Testing station Arna phase A Arna phase B

Relevant components 15 152 231

Interlocking routes 2 23 42

Datalog facts 85 8283 9159

Running time (s) 0.1 4.4 9.4
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The Arna station design project and the corresponding CAD model has been
in progress since 2013, and the method of integrating railML fragments into the
CAD database, as described in Sect. 3, has been in use for about one year.
Engineers working on this model are now routinely adding the required railML
properties to the signalling components as part of their CAD modelling process.
The rule collection consisted of 37 derived concepts, 5 consistency predicates,
and 8 technical predicates. Running times for the verification procedure can be
found in Table 1.

6 Conclusions, Related and Further Work

We have demonstrated a logical formalism in which railway layout and interlock-
ing constraints and technical rules may be expressed, and which can be decided
by logic programming proof methods with polynomial time complexity.

Related Work. Railway control systems and signalling designs are a fertile
ground for formal methods. See [1,7] for an overview of various approaches and
pointers to the literature, applying formal methods in railway design. In partic-
ular, safety of interlockings has been intensively formalized and studied, using
for instance VDM [9] and the B-method, resp. Event-B [12]. Model checking
has proved particularly attractive for tackling the safety of interlocking, and
various model checkers and temporal logics have been used, cf. e.g. [5,6,22].
Critically evaluating practicality, [8] investigated applicability of model checking
for interlocking tables using NuSMVresp. Spin. The research shows that inter-
locking systems of realistic size are currently out of reach for both flavors of
model checkers. [10] uses bounded model checking for interlockings. An influen-
tial technology is the verified code generation for interlockings from Prover AB
Sweden [2]. Prover is an automated theorem prover, using St̊almarck’s method.

The mentioned works generally include dynamic aspects of the railway in
their checking, like train positions and the interlocking state. This is in contrast
to our work, which focuses on checking against static aspects. Lodemann et al.
[14] use semantic technologies to automate railway infrastructure verification.
Their scope is still wider than this paper in the computational sense, with the
full expressive power of OWL ontologies, running times on the order of hours, and
the use of separate interactive graphical user interfaces rather than integration
with design tools.

Future Work. In the future work with RailComplete AS, we will focus on
extending the rule base to contain more relevant signalling and interlocking
rules from [11], evaluating the performance of our verification on a larger scale.
Design information and rules about other railway control systems, such as geo-
graphical interlockings and train protection systems could also be included. The
current work is assuming Norwegian regulations, but the European Rail Traffic
Management System is expected to dominate in the future.
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Finally, we plan to extend from consistency checking to optimization of
designs. Optimization requires significantly larger computational effort, and the
relation between Datalog and more expressive logical programming frameworks
could become relevant.
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1 CERN – European Organization for Nuclear Research, Geneva, Switzerland
{ddarvas,eblanco}@cern.ch

2 Budapest University of Technology and Economics, Budapest, Hungary
{darvas,majzik}@mit.bme.hu

Abstract. Programmable Logic Controllers (PLCs) are widely used in
the industry for various industrial automation tasks. Besides non-safety
applications, the usage of PLCs became accepted in safety-critical instal-
lations, where the cost of failure is high. In these cases the used hardware
is special (so-called fail-safe or safety PLCs), but also the software needs
special considerations. Formal verification is a method that can help to
develop high-quality software for critical tasks. However, such method
should be adapted to the special needs of the safety PLCs, that are often
particular compared to the normal PLC development domain. In this
paper we propose two complementary solutions for the formal verifica-
tion of safety-critical PLC programs based on model checking and equiv-
alence checking using formal specification. Furthermore, a case study is
presented, demonstrating our approach.

Keywords: PLC · Model checking · Formal specification · Safety-
critical systems

1 Introduction and Motivation

Programmable Logic Controllers (PLCs) are special industrial computers,
widely-used for various automation tasks. Although initially PLCs were not
specifically targeting safety-critical applications, it is feasible and increasingly
accepted to use these controllers in critical settings with some restrictions [9].

Most of the PLCs can be programmed in one of the languages defined by
the IEC 61131-3 standard: Instruction List (IL), Structured Text (ST), Ladder
Diagram (LD), Function Block Diagram (FBD) and Sequential Function Chart
(SFC). The first two languages are textual with different levels of abstraction: ST
is a high-level language, while IL is “assembly-like”. The last three languages
are graphical. As SFC is a special-purpose language for structuring the PLC
programs, this paper focuses on the first four languages. Short examples of these
four languages can be seen in Fig. 2. These example programs have the same
meaning and behaviour, i.e. they provide the same output sequences for the
same input sequences.

c© Springer International Publishing Switzerland 2016
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Safety-Critical PLC-Based Systems. The safety-critical controllers have to fulfil
the requirements of the corresponding standards, such as IEC 61508, IEC 61511,
or IEC 62061. These standards define different safety integrity levels (SIL) and
various requirements and guidelines for the system and the development process.
Many PLC vendors produce a special range of hardware complying with the
corresponding standards. These so-called fail-safe PLC CPUs (or simply safety
PLCs in the following) are typically certified up to SIL3 according to IEC 61508-
2. Besides the special hardware, the PLC vendors provide special development
environments, often with additional restrictions compared to the non-safety-
critical PLC programming. For instance, Siemens1 restricts the developer to use
the LD or FBD language with further restrictions, such as no floating-point or
compound data types can be used [17], following the recommendations of the
IEC 61511-2 standard. Although the hardware of the safety PLCs is special, the
hardware differences do not affect the software part. Thus the main particularity
of the safety PLCs for us is the restricted programming possibilities, namely the
obligation to use restricted LD or FBD language for programming.

Typically, testing is applied to assess and improve the quality of PLC-based
applications. In safety-critical settings more precise verification is needed. Formal
verification is not widely used yet in the industry, presumably because of its high
cost and complexity. However, as the cost of failure is high in safety-critical PLC-
based systems, they are good candidates for formal verification. Fortunately,
formal verification becomes more and more accessible thanks to the new methods
that hide the difficulties from the developers.

The goal of this work is to apply formal verification (model checking and
equivalence checking) to safety-critical PLC programs in order to complement
the current verification methods, to increase the quality of the programs by find-
ing more faults. However, the goal is not (yet) to prove the correctness of the
PLC programs, therefore we will not focus directly on proving the correctness of
our methods in this paper. We extend the PLCverif approach [7], already pro-
viding a scalable and flexible model checking method adapted to PLC programs,
to make it suitable for the verification of safety-critical systems. This involves
three main tasks: (1) support for the specific languages used in safety PLCs,
(2) development of new reduction heuristics to cope with large safety programs,
and (3) introduction of a new verification approach based on complete behaviour
specification. Furthermore, we present a case study, where our method proved
to be applicable and useful.

Case Study. CERN, the European Organization for Nuclear Research operates
a particle accelerator complex, comprising the Large Hadron Collider (LHC).
1 As Siemens is widely-used at our organization, we are using it as an example PLC

provider. The languages used in Siemens PLCs are compliant with the IEC 61131
standard, but small syntactic and semantics differences exist. The Siemens variants
have different names: instead of IL, ST, LD, FBD, SFC, they are called STL, SCL,
LAD, FBD, SFC/GRAPH, respectively. To avoid the confusion, we will use the
standard language names for the Siemens variants too, but when a detail is vendor-
specific, we will use the Siemens syntax or implementation.
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Fig. 1. SM18 Cryogenic Test Facility ( c©CERN, 2013. CERN-GE-1304099-24)

The high collision energy of the LHC necessitates a strong magnetic field to bend
the particle beams, achieved by superconducting magnets. These magnets should
be tested before putting them into production. For this, CERN has a unique
testing facility (so-called SM18 Cryogenic Test Facility) where the magnets can
be tested at low temperature (1.8 K, achieved by liquid helium and nitrogen),
high currents (14 kA) and vacuum. A photo of the SM18 test hall can be seen
in Fig. 1 (4 out of the total 10 test benches are shown in the photo, with a
white, shorter quadrupole and a blue, longer dipole magnet currently under
test). Testing the magnets is a safety-critical task, as a failure can cause serious
damage or injury. Therefore a safety instrumented system is in use to allow or
forbid the magnet tests based on whether their preconditions are met. Recently
a project started to re-engineer this safety system based on safety PLCs. In this
project we have applied formal methods from the beginning of the development.

Structure of the Paper. Section 2 introduces the original PLCverif verification
approach, that is not adapted yet to safety-critical PLC programs. Then Sect. 3
defines two extensions, making the method applicable in safety-critical settings.
The validation and our experiences on the above-presented case study are dis-
cussed in Sect. 4. Section 5 presents the related work on formal verification of
PLC programs. Section 6 summarizes and concludes the paper.

2 The Original PLCverif Approach

The PLCverif tool2 provides a scalable and flexible workflow for the model check-
ing of PLCs [5,7]. It has already proven to be useful for non-safety-critical pro-
grams, written in ST language [7]. However, as it does not support the FBD
and LD languages, PLCverif cannot be used as it is for the verification of our
safety-critical PLC programs.

The original workflow (see Fig. 3) builds on two inputs: (1) the ST source code
(created by an engineer) and (2) the requirements formalized using pre-defined

2 http://cern.ch/plcverif/

http://cern.ch/plcverif/
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ST

IF NOT(x = TRUE OR
   y = FALSE) THEN
    r1 := TRUE;
END_IF;

r2 := (a >= b);
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Fig. 2. PLC language examples

ST code

IM

Verif. report

Specification

Reduction

Req. patterns

PLCverif
model checking

Fig. 3. Original verification workflow

requirement patterns. A requirement pattern is an English sentence containing
gaps to be filled by the user with simple expressions. The meaning of the sentence
is formalized using temporal logic, having the same placeholders.

First, the ST source code is parsed and translated to an internal, automata-
based intermediate model (IM). After, based on the given requirement and
generic PLC knowledge, the IM is reduced, preserving the properties to be
checked [6]. Then the “PLCverif model checking” step is performed: (a) the
reduced IM and the requirement are translated to one of the supported model
checker’s input format; next (b) the model checker tool is executed; and finally
(c) the output of the model checker tool is parsed, analysed and presented to the
user in a verification report. At the moment the concrete syntaxes of NuSMV,
nuXmv, UPPAAL, BIP and ITS tools are supported.

This method has three main advantages:

– Scalability. The automated reductions make the verification of large pro-
grams possible.

– Flexibility. The usage of IM allows to exchange the model checker tools.
– Usability. No special knowledge about formal verification is needed from

the user: the input of the PLCverif tool is an ST source code and a filled
requirement pattern, and the output is a self-contained verification report.

The PLCverif approach was found to be practical and applicable in real
cases [7]. However, to reuse this workflow for the safety-critical PLC programs
of CERN, three main extensions are needed.

– Support for new languages. The (Siemens) safety PLCs can only be pro-
grammed in LD or FBD languages, therefore these languages should be sup-
ported by PLCverif.

– Sustain the scalability. The newly targeted languages are on a lower
abstraction level than the ST language, therefore new, specialized reduction
heuristics are needed to cope with verification of the large PLC programs.
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– Detailed behaviour checking. The original PLCverif approach is based
on requirement patterns, thus on temporal logic expressions. This is conve-
nient to express some state reachability problems or general safety require-
ments in a declarative way. However, it is difficult to cover all behaviours
with requirement patterns. Besides these requirements, checking the detailed
(step-by-step) behaviour is also important for the safety-critical applications.
Therefore a complementary method, built on behaviour equivalence checking
between the implementation and a formal specification, is more convenient
to capture the detailed behaviour of the implementation.

The details of these extensions are discussed in the next section.

3 Extended Approach for Programs of Safety PLCs

This section is dedicated to the extensions of the PLCverif workflow that are
necessary to use it for safety-critical PLC programs. Section 3.1 discusses the
extensions required to handle the LD and FBD languages. Section 3.2 presents a
complementary workflow, built on formal specification and equivalence checking.

3.1 Verification of LD and FBD Programs

The primary need to verify safety-critical PLC programs is the ability to check
LD and FBD codes. However, in case of Siemens PLCs, the programs written in
graphical languages are not directly accessible, but they can be exported from
the development environment as IL code. This solves the problem of parsing LD
and FBD languages. However, the abstraction level of IL is even lower than LD’s
or FBD’s, thus it is more difficult to handle IL programs. Our extended workflow
can be seen in Fig. 4a, where the new parts are denoted by bold letters.

STr code

IM

Verif. report

Specification

Reduction

IL code

LD FBD

Req. patterns

PLCverif
model checking

(a) Workflow to check requirements
on safety PLC programs

Reduction

Reduction

STr code

IM

Composite IM

Verif. report

Formal spec.

IM

Assemble composite IM
Reduction

IL code

LD FBD

PLCverif
model checking

(b) Workflow to check conformance of safety
PLC programs

Fig. 4. Extended verification workflows
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Handling IL Code Inputs. The ST parser of PLCverif is based on Xtext3, pro-
viding rich tooling for the language defined by a grammar. However, IL cannot
be conveniently represented using Xtext. For example, in Siemens IL “A” may
be a variable and an AND logic instruction in the same program.

It is resource demanding to implement (1) a parser that can build the abstract
syntax tree of the IL language, and (2) a model translator that translates the
syntax tree to the intermediate model. Instead of developing these, we have
decided to represent IL code as ST code, providing a mapping in an inductive
way from each IL instruction to ST instructions. This way the PLCverif model
translator does not change, also the instruction-by-instruction mapping can be
much simpler than a complete parser in case of the IL language.

The challenge of this mapping is that the IL instructions directly access and
modify the different registers4 of the PLC. For example, the instruction “L var1”
stores the contents of Accumulator 1 in Accumulator 2, then it loads the value
of variable var1 to Accumulator 1. There is no language element to access the
registers directly in ST, making the direct representation of IL code impossible.
However, this can easily be solved for verification purposes. We emulate the
registers as local ST variables according to a well-defined naming convention,
and use it consistently in the ST programs and in the properties to be verified.
To avoid the confusion – though it does not require a language extension –, we
will use STr as language name for programs written in ST where the registers
are emulated as local variables. This solution is similar to the one presented in
[19]. To distinguish between ordinary variables and the ones representing STr
registers, the latter’s names start with double underscores.

With this extension, each IL instruction (e.g. bit logic and comparison opera-
tions, conversions, jumps, arithmetic instructions, load and transfer instructions)
can be represented in STr, by making all implicit effects of the IL instructions
explicit in STr. For this purpose, we have identified the semantics of each IL
instruction by checking on real PLCs what are the results of the instruction for
every possible initial state (i.e. for each valuations of the read registers and vari-
ables). The identified semantics of the IL instructions are generic, not specific to
our case studies. Some examples for this translation with different complexities
are in Table 1. A short description of the used registers is in Table 25.

As each IL instruction can be translated into STr, it can be seen inductively
that each IL program can be translated into STr as well. In other words, STr
can emulate all IL programs, and consequently all FBD and LD programs too.
Furthermore, STr can be regarded as a textual concrete syntax of the PLCverif
intermediate model (IM), therefore there is no theoretical difference if we trans-
late IL programs to the intermediate model directly or through STr.

3 https://www.eclipse.org/Xtext/
4 As previously discussed, we use the Siemens notations in this paper. Throughout this

paper registers are used as a generic term referring to the status bits, accumulators
and the nesting stack.

5 Here we omit the registers not necessary for simple IL programs, such as the BR
(binary result), OV (overflow), OS (stored overflow) bits and the address registers.

https://www.eclipse.org/Xtext/
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Table 1. IL to STr transformation examples

Table 2. Main registers in Siemens PLCs [16]

Register Purpose

RLO Result of last logic operation.

OR Helper bit for the “and before or” logical operation (O instruction).

NFC Not first computation. If it is false, the current value of RLO is not
taken into account.

STA Status bit. Stores the value of a bit that is referenced.

CC0, CC1 Condition codes. The result of the last comparison or other operations.

ACCU* Accumulators.

ns*[] Nesting stack. Temporarily stores register values ( nsRLO, nsOR) and
the last Boolean operation ( nsFC*) while a nested Boolean
computation is in progress.

Code Size Blow-Up and Reductions. Representing the registers as local vari-
ables allows the inductive mapping of IL programs to the ST language, mak-
ing possible to reuse the PLCverif workflow and toolchain. However, it raises
a new concern: a single IL instruction may read and modify several registers.
This causes a significant blow-up, as illustrated in Fig. 5. The original sample
IL code contains 4 instructions (Fig. 5a), that can be represented by one single
statement in ST (Fig. 5b). However, the IL code translated to STr have 14 vari-
able assignments (Fig. 5c). Note that these assignments represent the storage of
(intermediate) results that are not necessarily needed by the subsequent state-
ments. The extremities of this are the nesting Boolean operators (e.g. “A(”).
They store some intermediate computation results in the so-called nesting stack,
therefore a single IL operation might be translated to 40–50 STr assignments
(see Table 1).

This blow-up effect can be reduced by developing new automated reduction
heuristics, similarly to the ones already included in the PLCverif workflow [6].
The new reductions are similar to the reductions used in optimized compilers.

– Expression propagation can help to reduce the number of assignments. For
example, the second assignment of line 1 in Fig. 5c can be removed and the
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1 L a
2 L b
3 >=I
4 = r

(a) Source IL code
(Siemens)

1 r := (a >= b);

(b) Equivalent ST code

1 __ACCU2 := __ACCU1; __ACCU1 := a;
2

3 __ACCU2 := __ACCU1; __ACCU1 := b;
4

5 __OR := FALSE; __NFC := TRUE;
6 __RLO := (__ACCU1 <= __ACCU2);
7 __CC0 := (__ACCU1 > __ACCU2);
8 __CC1 := (__ACCU1 < __ACCU2);
9

10 IF __MCR THEN r := __RLO; END_IF;
11 __OR := FALSE; __STA := r; __NFC := FALSE;

(c) Generated STr code

Fig. 5. Illustration of code blow-up caused by IL to STr translation

first assignment of line 3 can be replaced by ACCU2 := a; without modifying
the behaviour of the program.

– The assignments without observable effect can be removed. For example, the
first assignment of line 1 in Fig. 5c can be removed, as its effect is hidden by
the first assignment of line 3.

– The non-used variables are deleted by the already existing cone of influence
reduction. For example, the CC0 and CC1 variables can be removed, as
they are never read in Fig. 5c.

– The expression propagation can result in complex Boolean expressions, that
can be reduced by Boolean factoring and other Boolean expression reduction
methods. If the simplified expression refers to fewer variables, these reductions
may help the cone of influence reduction. Nevertheless, even if they do not
reduce the state space, the Boolean expression simplification makes the other
reductions faster and decreases the memory needs.

By using these reduction heuristics, the code in Fig. 5c can be automatically
reduced to the one in Fig. 5b, when the registers are not read by any further
part of the code. Note that each reduction is applied only if it preserves the
properties that are currently under evaluation.

3.2 Verification Based on Formal Specification

The previous approach reused the original pattern-based requirement specifi-
cation method. This is a suitable way to check state reachability properties
expressed by the developer. However, the verification of the detailed behaviour
is similarly important in safety-critical systems, for which the original approach
is not convenient. Furthermore, there is no guarantee that the verification based
on manually extracted requirements covers all important aspects of the code.
In extreme cases the verification of these requirements can have an opposite
effect: the developer convinces himself based on incomplete requirements that
the implementation is correct. Later this might bias the testing process. To avoid
this, we provide a complementary verification approach which is more convenient
for detailed behaviour verification.



516 D. Darvas et al.

The specification of PLC programs is an important topic, yet there are no
widely used behaviour specification methods, especially not formal methods with
precise semantics definition. Providing a detailed specification is often too “expen-
sive”, and instead of precisely specifying the behaviour, documents written in nat-
ural language and informal control tables are used that are easy to misunderstand
and difficult to verify. However, as the cost of failure is high in the safety-critical
domain, also the behaviour of a safety PLC program is typically simpler. Therefore
providing a formal specification may be feasible in these cases.

Previously we have proposed a method called PLCspecif [4] for the formal
specification for PLC programs. Its aim is to provide a formal, yet convenient way
for the PLC developers to describe a detailed, complete behaviour specification
of the module or system under development. PLCspecif plugs together different,
already used semi-formal description methods, e.g. state machines, data-flow
diagrams, truth tables; and assigns a unified formal semantics to them. This helps
the development and the verification by providing unambiguous requirements.
The semantics of PLCspecif is designed in a way that the specifications can be
easily transformed to automaton-based models for formal verification.

If such specification exists for the safety-critical PLC program, we can benefit
from it and check directly the equivalence between the implementation and the
specification. This workflow is shown in Fig. 4b. The semantics of PLCspecif is
given as an automaton construction, that can be directly represented in the IM
formalism of PLCverif. Accordingly, two IMs are used in this approach: one to
represent the implementation, and another one representing the specification.
First, both IMs are reduced independently. In this phase we only use reduction
rules that preserve all properties, assuming that they check variable values only
at the end of the PLC cycles. Then the two IMs are automatically combined into
a composite verification model. This composite verification model is constructed
on the basis of the definition of the behavioural equivalence. As the equivalence
relation we would like to check requires that for each possible input sequence,
the specification and the implementation give the same output sequences, the
composite verification model ensures by construction that the two model parts
always get the same input values. After, the composite model is reduced again.
Then, similarly to the original PLCverif approach, we use one of the supported
external model checkers to decide whether the equivalence relation holds, namely,
that the corresponding outputs of the two model parts are equal in each step.

4 Validation and Analysis of Applicability

To demonstrate and validate the presented approaches, we recall the SM18 Cryo-
genic Test Facility’s safety controller. The implementation under test in this case
is the safety logic of this controller, isolated from the rest of the program that is
responsible for the non-safety-critical tasks. The IL code exported from the orig-
inal LD implementation contains about 9500 instructions. This was translated
into approx. 120 000 STr statements, already with some optimizations (e.g. the
nesting stack depth was reduced to the necessary amount). The potential state
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Fig. 6. Key metrics of the example

space (i.e. the cross-product of all contained variable’s domain and the possible
automata locations in the IM) contains approx. 10978 states.

We have applied both previously described formal verification approaches:
first the pattern-based, then the specification-based approach. The key metrics
and the summary of the two methods can be seen in Fig. 6. For each IM we give
the size of potential state space (PSS), the number of variables (#V), the size of
the state vector, i.e. the length of binary vector that can represent the current
values of all variables (SV), and the number of automata locations (#Loc).

Verification Based on Requirement Patterns. After the successful representation
of the safety logic in STr language, we have captured pattern-based require-
ments from the informal specification provided by the client of the project. As
this was the first safety-critical PLC program verification project at CERN, the
requirements were extracted by formal methods experts, rather than the PLC
program developers. In total 24 different requirements were extracted and for-
malised using requirement patterns. Some of them are fairly simple, while some
others contain references to up to 50 different variables.

In each case the verification was successfully executed, thanks to the
requirement-specific and general reductions that reduced both the number of
variables and automaton locations. Also, the reductions were able to eliminate
all register-representing variables in every case. The typical verification run time
of each requirement was 150–170 s, including the model generation, the model
reductions and the execution of the external model checker (nuXmv in this
case)6. In case of some requirements, only a small part of the model was enough
for the verification of the given requirement, therefore the reductions were able
to eliminate a large part of the IM, resulting a total run time of 4–5 s. The total
run time of all verification cases together was 43 min. The peak memory con-
sumption of PLCverif was 2926 MB, however as the implementation is in Java,
6 For all measurements we have used PLCverif 2.0.2 and nuXmv 1.0.1 on Windows 7

x64, executed on a PC with Intel R© CoreTM i7-3770 3.4 GHz CPU and 8 GB RAM.
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this number is an upper estimation of the required memory. The peak memory
consumption of nuXmv was 570 MB. In these cases the reductions performed
the significant part of the verification, the external model checker was easily able
to cope with the reduced model. Even the longest nuXmv execution time was
shorter than 30 s, and in many cases it was less than a second. However, without
our reductions the model checking could not be possible at all.

As the total run time, as well as the computation resource requirements are
significant, an automated solution was built using Jenkins7, that automatically
executes the verification of all requirements on any code or requirement modifica-
tion in the version control system. The execution takes place on remote servers,
this is completely transparent for the user. When the verification is completed,
the responsible people are notified by e-mail about the results of the verification.

Verification Based on Formal Specification. To validate the second approach,
the formal specification of the magnet test safety logic had to be captured. We
did not have a formal specification a priori, the implementation was developed
based on a semi-formal specification. As the precise semantics of the client’s
specification was already clarified during the previous verification process, the
creation of the formal specification was relatively simple. Note that PLCspecif
provides various tabular description methods, similar to the one used by the cus-
tomer of the project. As previously discussed, first the PLCspecif specification
was automatically translated to intermediate model. Even before reductions, this
IM generated from the specification was much smaller than the IM generated
from the STr code, as the model size blow-up caused by the explicit represen-
tation of PLC registers does not occur in this case. After the reductions, the
composite verification model was constructed and reduced. The resulting verifi-
cation model was larger than the biggest individual verification model generated
using the pattern-based approach. Consequently the total run time was longer,
approximately 10 min. However, this had to be done only once, while the first
approach necessitated 24 verification runs, one for each requirement. Therefore
in total the run time of the second approach was more than four times shorter.

Analysis of the Results. After performing the case study we have concluded that
the verification was successful, as it was possible to model and verify the critical
part of the PLC program. We have applied an iterative workflow: every time
the model checking pointed out a problem, we have suspended the verification
process until the root cause of the problem was fixed. Then the verification
process restarted with the new code version. In total 14 issues were identified.
We have classified the problems found into the following main categories:

– 4 requirement misunderstanding problems. In these cases the formalization
of the requirements pointed out ambiguous or contradictory elements in the
specification provided by the customer, overlooked during implementation.

– 3 functionality problems. In these cases the problem could have caused unex-
pected behaviours, but not dangerous situations.

7 https://jenkins-ci.org/

https://jenkins-ci.org/
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– 5 safety problems. In these cases the problem could have caused dangerous
situations, i.e. a magnet test might be permitted when it should not.

– 2 mixed functionality-safety problems.

All these problems were found before on-site testing of the PLC program.
As the (re-)deployment and the PLC’s on-site testing is a time-consuming oper-
ation, model checking provided an efficient verification method. Furthermore,
model checking does not involve the use of real hardware, therefore no danger-
ous situations can happen contrarily to on-site testing.

As testing in lab and on site provides the state-of-the-practice in the verifi-
cation of PLC-based systems, we have checked whether the problems identified
using formal methods could have been found using the typically applied testing
methods. Setting up a test scenario on-site can take up to hours, therefore only
the main functionalities and their most critical errors are targeted, potentially
omitting problems. Out of the 10 functionality or safety issues, 4 could have been
found using testing. In 6 cases it was practically impossible to find the problem
using our regular testing approach, as the testing is not exhaustive in practice.

We have performed the pattern-based verification approach first, which iden-
tified 12 of the 14 issues. The remaining 2 problems were found using the
specification- and equivalence checking-based approach. This shows that the two
methods are convenient for different types of requirements, and they can comple-
ment each other. The system is now in production for 7 months. So far no major
problem was observed in operation caused by mistakes in the safety logic.

Comparison of the Two Approaches. The two presented verification approaches
(pattern-based and behaviour specification-based approaches) provide different
advantages and disadvantages.

– Using the behaviour specification-based approach, all requirements contained
in the original specification are covered, there is no potential user omission
in extracting the requirements.

– The pattern-based approach can check properties in a more “declarative”
way, i.e. without specifying the complete behaviour and may help the user to
find discrepancies between the general expectations and the implementation,
or various requirement misunderstandings.

– The verification models generated in the pattern-based approach are often
smaller than in the other approach, providing better verification performance.
On the other hand, this approach involves multiple verification runs, whereas
the specification-based approach needs only one model generation and one
model checker execution.

– The integration to the existing development processes is easier in case of the
pattern-based approach, as there is no need for a complete formal specifica-
tion, which does not exist typically and often difficult to be constructed.

5 Related Work

The formal verification, especially model checking of PLC programs was deeply
studied in the last fifteen years [13]. Several approaches were developed with
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Table 3. Related work

Ref. Lang. Real-life applicability Scalability Tool Verifier tool

[2] IL, ST •• •• + Arcade

[3] IL • • − CaSMV

[8] ST, . . . •• •• − NuSMV

[10,20] FBD •• ••• + CaSMV

[11] IL •• •• − Z3

[12] SFC •• •• + SpaceEx

[14] FBD •• •• − NuSMV

[15] LD • ? − UPPAAL

[18] FBD • ? − UPPAAL

[19] IL • • − MiniSat

[7] ST, SFC ••• ••• + nuXmv, UPPAAL, . . .

Legend •••: high, ••: medium, •: low ; +: exists, −: does not exist

different advantages and capabilities. We summarize the works most relevant
to us in Table 3. To investigate the applicability of the methods, we have four
main factors to take into account: the set of supported languages, the real-
life applicability (how feasible it is to include the method in the normal PLC
development workflow), the scalability of the method and whether a supporting
tool was developed. It should be noted that the tools are typically not publicly
available, except for [2].

For checking applicability, we used the PLCverif approach [7] as a base of
comparison. This comparison contains subjective elements, but we claim that
PLCverif provides a better real-life applicability than the other methods, as
the formal verification-related difficulties are hidden from the user, there is no
need to edit directly temporal logic expressions or to invoke model checker tools.
The scalability is a similarly important question. We have tried to judge the
scalability of each method based on the cited papers. If it was not possible
(e.g. there was no presented verification example), we put “?” in the table. We
have also included the used verifier tools in the table. It can be seen that [7] was
the only approach we have found that provides a generic approach relying on
multiple model checkers, depending on the current verification needs.

Since [7] does not provide support for the FBD and LD languages necessary
to verify programs of safety PLCs, we decided to extend this method and to
benefit from its advantages in the other dimensions.

[19] is a particularly interesting related work. Their approach is similar to
ours: they translate the IL code instruction by instruction into a pivot lan-
guage, that is SystemC in their case. The verification is performed as an equiv-
alence checking between the SystemC representation of the implementation
and the specification. However, the scalability of this method is not justified.
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Furthermore, the SystemC specification cannot be used directly in our PLC
development workflow due to the lack of specific knowledge.

Equivalence checking was already used in different verification settings for
PLC programs: [1] applies regression verification between two versions of the
implementation. In our work we apply equivalence checking between the formal
behaviour specification and the implementation.

6 Summary and Conclusion

In this paper we presented an extension to the PLCverif approach [7] to handle
the PLC programs written in FBD, LD or IL language that is necessary to verify
safety-critical PLC programs. As [7] already contains methods to handle the ST
and SFC languages, the current paper justifies also the claim that PLCverif can
be a generic approach handling all five common PLC languages. To cope with
the safety-related languages, additional reduction heuristics were introduced.
Besides the requirement pattern and model checking-based verification approach,
a new approach was drawn up, based on a PLCspecif formal specification and
equivalence checking. These two approaches can complement each other.

A case study was presented showing that formal verification can be applied to
significantly large, real safety-critical PLC programs. The two formal verification
techniques identified several problems and they complemented each other. Many of
the problems identified using them could have not been found using the currently
used testing techniques. Moreover, the presented approaches helped to identify
problems with the requirements, such as ambiguity or contradictions, overlooked
by the developers during implementation. Formal verification was applied in the
design phase, thus fixing the problems was easier than if they would have been
found during on-site testing or in production. Furthermore, model checking and
behavioural equivalence checking provided a safe way to check requirements, with-
out any safety risks that might arise during on-site testing.

Acknowledgement. The authors would like to thank the people involved in the
presented re-engineering project for their support and cooperation. Special thanks to
Roberto Speroni for the cooperation and the continuous feedback.

References

1. Beckert, B., Ulbrich, M., Vogel-Heuser, B., Weigl, A.: Regression verification for
programmable logic controller software. In: Butler, M., Conchon, M., Zäıdi, F.
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González Suárez, V.M.: Formal verification of complex properties on PLC pro-
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Abstract. In this paper we describe our experience of enabling Sta-
tic Driver Verifier to use the Microsoft Azure cloud computing platform.
We first describe in detail our architecture and methodology for enabling
SDV to operate in the Microsoft Azure cloud. We then present our results
of using CloudSDV on single drivers and driver suites using various con-
figurations of the cloud relative to a local machine. Our experiments
show that using the cloud, we are able to achieve speedups in excess of
20x, which has enabled us to perform mass scale verification in a matter
of hours as opposed to days. Finally, we present a brief discussion about
our results and experiences.

Keywords: Cloud · Verification · Azure · Static analysis · Perfor-
mance · Parallel · SDV · Scalability

1 Introduction

The last decade has seen a marked increase in the use of formal methods and
static analysis in a variety of domains such as software development and sys-
tems engineering. Applications of formal methods vary from defect discovery to
automated/manual theorem proving for performing analysis and proving system
correctness. The Static Driver Verifier tool is one such static analysis tool that
enables the discovery of defects in Windows device drivers [8,9]. It is and has been
used with great effectiveness to check Windows device drivers for API compli-
ance [7]. Currently, SDV is shipped as part of the Windows Driver Development
Kit. As with other program analysis and defect discovery tools, the major issues
with SDV are related to the performance and scalability of the tool. By perfor-
mance, we refer to the total amount of time and memory resources required for
performing the verification task (e.g., wall clock time, memory pressure etc.).
Scalability on the other hand, is the size of the driver that we are able to suc-
cessfully verify by proving the absence or presence of defects with no concern for
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utilized resources. Small drivers may be completely verifiable by SDV, but still
face a performance problem because it takes a long time to completely verify
them. For example, for WDM drivers, there are approximately 200 rules that
need to be verified for each device driver. The maximum time that each rule
can take to be verified is 50 min; thus, resulting in a maximum possible total of
10000 min, or 167 h. Even on a multi-core computer, the verification can possi-
bly span days. For device driver developers, this can be extremely frustrating
and negative, possibly resulting in finally not using the tool for verification and
losing confidence in static analysis in general. It is important to note that this
particular problem can easily get worse if more rules are developed and verified
on device drivers. Past experiences of using SDV on larger device drivers proved
valuable for understanding the scalability problem that SDV runs into.

We attempt to solve some of these problems by enabling SDV to use a cloud
platform such as Microsoft Azure [2]. CloudSDV is a Microsoft Azure based
computation system that allows SDV to farm out its verification task to the
cloud. Doing so, provides benefits in multiple different areas for both, users as
well as developers of SDV:

– Parallelize. Multiple verification tasks can be dispatched simultaneously for
parallel computation; thus, improving the performance of the verification run.

– Offline Computation. By farming out verification tasks to Azure, it is possible
to schedule the entire verification of a driver and re-visit the results at a later
point.

– Result storage. Using Azure, it is now possible to perform better result stor-
age and telemetry for SDV. Results that were previously produced on local
machines, are now recorded systematically in the Microsoft Azure cloud for
future analysis. Additionally, it also becomes easier to query for results in the
past, whereas previously, such results would have been lost permanently.

– Verification as a Service. Similar to other software services, CloudSDV allows
improvements and bug fixes to SDV to be distributed much more easily.
Updates can also be distributed with a much higher cadence as opposed to
being governed by a less frequent schedule of the parent software (in this case
the Windows Driver Development Kit).

– Scalability. Moving verification tasks to Azure does not solve the scalability
problem in the traditional sense, but does provide the opportunity to verify
larger drivers that have been resource intense to verify until now. For example,
allowing a much larger timeout for each rule does not significantly increase
the total verification time anymore. Rather, only a much smaller penalty is
associated with the larger timeout; thus, allowing users to potentially get
better results.

The paper is organized as follows. Section 2 gives a brief introduction to
SDV. Section 3 gives an overview of the architecture and implementation of
CloudSDV. Section 4 presents the results of using CloudSDV on various drivers
and test suites. Section 5 presents a brief overview of known related work in this
area and Sect. 6 presents a discussion and conclusions.
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2 SDV Background

We first present a brief overview of SDV and how it functions. Figure 1 shows a
high level overview of how SDV operates.

Fig. 1. An overview of the SDV system.

SDV takes as input the sources of the driver under test and optionally, a set
of rules that are to be verified on the driver. Given a driver, SDV first ensures
that the driver can be compiled correctly. Following this initial compilation,
SDV then proceeds to combine the driver sources with the Operating System
model and the rules that are to be verified on the driver. The Operating System
model inside SDV is a set of C source files that model the Windows operating
system in a manner that is most useful for performing verification by the analysis
engine within SDV. There are two primary parts to the OS model. The stubs
that provide a demonic model of the kernel APIs that can possibly be called by
Windows device drivers, and the harness that simulates the operating system
and how it would call into the driver to perform functions. The rules within
SDV express temporal safety properties that drivers must adhere to. These rules
are expressed in SLIC, which is a C-like language streamlined to express safety
automaton [10]. The result of combining the driver sources with the operating
system model and rules is an intermediate binary file that can be consumed by
the analysis engine for verification. It should be noted that each rule that is to
be verified produces a new unique intermediate file. Thus, for N rules, there are
N unique binary files that are created for performing the verification.
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Until now SDV has only prepared the work that needs to be performed for
verifying the driver. Once the verification files are ready for all the rules, SDV
schedules the verification tasks in parallel, limiting the number of concurrent ver-
ification tasks to the total number of logical cores available in the local machine.
Each verification task is limited to a timeout (in seconds) and spaceout (in MB)
value that can be specified as a configuration to SDV. SDV waits for each ver-
ification run to complete and eventually reports results back to the user. Until
the CloudSDV work presented in this paper, SDV was only capable of running
on a single machine. For performing mass scale verification of many drivers,
additional infrastructure had been developed for executing SDV in parallel on
multiple machines, but such infrastructure was unintuitive and extremely tedious
to use.

3 CloudSDV Design and Implementation

We now describe the architecture, design, and implementation details of
CloudSDV. CloudSDV is implemented using C# and the .NET Microsoft Azure
API. The analysis engines and other parts of SDV have been implemented using
OCaml, C, and C++.

Figure 2 shows a high level overview of the CloudSDV system. In general,
time flows from right to left (counter clockwise) in the figure. The right most
side of the figure contains the CloudSDV client, which is slightly different from
the normal SDV client described earlier. There is an extra option included in the
normal SDV client to enable the CloudSDV scenarios. The CloudSDV client can

Fig. 2. An overview of the CloudSDV system.



CloudSDV Enabling Static Driver Verifier Using Microsoft Azure 527

be partitioned into two distinct parts. The first is the CloudSDV library that
is a generic library that allows any application to interact with the CloudSDV
Microsoft Azure service, and the second, is the SDV client slightly modified to
interact with the CloudSDV library. The CloudSDV library provides a generic
interface (the compute engine interface) that allows an application to sched-
ule a verification task, upload files and other data for performing a verification
task, and retrieve results from the computation platform. Figure 3 illustrates the
current implementations of the interface, with the bottom right hand box rep-
resenting future implementations for other parallelization platforms. Based on
the configuration of the application or command line arguments, the CloudSDV
client can either choose to perform the verification tasks locally, or using the
Microsoft Azure computation platform. In the future, we plan on providing addi-
tional implementations that can take advantage of other computation platforms
such as clusters, super computers etc. It should be noted that currently, in all
cases, the given driver is always compiled on the local machine and all the veri-
fication tasks themselves are created on the local machine.

Fig. 3. Various implementations of the compute engine interface.

After the CloudSDV client has compiled the driver and produced the various
verification tasks that need to be run, each task is scheduled. This translates to
two actions for each verification task: uploading the relevant payload/data to the
cloud computation platform, and scheduling the verification task by inserting an
entry into the work request queue. The payload/data is uploaded to Microsoft
Azure’s blob storage [4], which allows storing large amounts of unstructured text
or binary data for random direct access. The Azure queuing service is used for
storing verification task requests [5]. Each verification task in the queue contains
pointers to the data that has been previously uploaded by the CloudSDV client.
Within the CloudSDV Azure implementation, there exist CloudSDV worker
instances (grouped vertically in the middle of the cloud). The worker instances
are responsible for polling the work queue for new verification tasks that have
been submitted by CloudSDV clients.
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Fig. 4. State machine of the queuing system employed by CloudSDV.

Figure 4 shows the state machine implemented by CloudSDV for dealing with
messages in the request queue. As soon as a worker instance discovers a new task
in the queue, the worker instances marks the task (queue item) as invisible to
other instances. This is done atomically, so that other work instances are unable
to retrieve the same message. The transition from states S0 to S1 reflects this
behavior. In state S1, the worker is processing the verification task specified in
the queue entry. Azure queues provide the ability to mark the message invisible
for a specific time period. For a given timeout value specified to CloudSDV, we
use timeout + 300 seconds as the invisibility period of the entry in the queue.
After that time limit has been reached, the entry is automatically marked visible
again. This is represented as the transition from states S1 to S0. This transition
is only executed in cases where the worker was unable to process the task suc-
cessfully within the allocated amount of time (due to unknown reasons arising
from faulty code or unexpected crashes). In such cases, the result of the worker
can be considered lost, and having marked the task as invisible allows us to guar-
antee processing it again. In the case when the worker successfully processes the
verification task, the entry is deleted from the queue permanently, as shown by
the transition from states S1 to S2. State S2 is a final state where the entry no
longer exists in the queue. We choose timeout+ 300 seconds as the value of the
invisibility period to allow for delays. For example, it may be possible that the
verification task completes extremely close to the timeout period, in which case,
in highly congested network conditions, the delete message from the worker to
the Azure queuing system may only arrive after the timeout has expired. The
additional 300 s (arbitrary choice) buffer allows us to account for this scenario.
Even with the additional buffer time, under extreme circumstances it is possible
that the entry may be marked visible and then later deleted from the queue by
the worker that originally dequeued the entry. In such a case, there is only a side
effect if another worker has dequeued the same entry and marked it invisible
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before the original worker’s delete message was processed, but after the Azure
queuing system marked the entry as visible. In this particular scenario, the entry
is deleted by the original worker and the second worker (after performing the
verification) eventually discards its results and proceeds to the next work item
in the queue (based on an existence check in the queue). The disadvantage in
this scheme is the possibility for redundant processing (at most one extra time),
which arises in part due to Azure’s at-least-once best effort FIFO queue seman-
tics. In our experience and experiments, we never encountered this situation,
which we believe is in part is due to the large buffer we specify in the invisibility
timeout period. On the other hand, the advantage of marking items as invisi-
ble/visible in the queue is the strong guarantee of always processing all tasks in
the queue. Finally, we also impose a limit on the number of times an entry can
be dequeued from the queue. Each time an entry is dequeued for processing, we
modify the entry and increment the dequeue count. Once the specified limit is
reached, the entry is deleted from the queue and the result of that verification
task is listed as a ToolError. This condition is implemented to account for situa-
tions where the tools encounter an irrecoverable deterministic error and workers
repeatedly try to complete the same task.

Both the timeout and the spaceout values are used to limit the amount of
time and memory that can be consumed by the verification task on the worker
instance. If these values are exceeded, the verification task is ended and the
result is marked as a TimeOut or SpaceOut. These limits are user configurable
only on the CloudSDV client. Once a verification task has been submitted to the
queue, the configuration of the task can no longer be modified. The space and
time restrictions for the verification task are enforced using a monitoring agent
on the worker instance.

For each task that is executed, the instance also inserts telemetry data
into Azure table storage [6]. Telemetry data is used for performing analysis of
CloudSDV. Telemetry data and analysis includes various metrics such as time
taken to complete task, average time a task was waiting in the queue before
retrieval by a worker, number of times the task was marked visible/invisible etc.
Telemetry data is anonymous and used solely for the purpose of studying the
system to improve performance, stability, and efficiency.

During the entire time the verification is occurring in the cloud, the
CloudSDV client is continuously polling the Result service bus for new avail-
able results. The service bus is a commonly accessible storage medium (between
workers and CloudSDV client) where workers publish new results to a topic. Each
topic in the result bus is the unique ID of the CloudSDV client that submitted
verification tasks. This ID is made part of the task details, so the workers know
where to publish the result. As soon as results are available for any scheduled
tasks, the CloudSDV client reports the results to the user and exits. It should
be noted that there is extremely little difference (regarding GUI and console
output) in the experience the end user gets when using CloudSDV relative to
just using the SDV client, which is considered a positive aspect of the CloudSDV
system.
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3.1 CloudSDV and SDV Versions

A salient feature provided by CloudSDV is the ability to use different versions
of the core SDV product. This feature is especially useful for development and
testing of new SDV versions, where one is interested in comparing two ver-
sions of SDV against each other. The feature enables SDV developers (analysis
engine, rule, operating system model) to upload their custom versions of SDV
to the Azure blob storage and run experiments on a mass scale very quickly.
Using existing infrastructure, the developers are then able to regress their cur-
rent results against saved baselines.

To enable multiple version support, each component of CloudSDV must be
aware of the specific version being used. The CloudSDV client can be configured
to specify the SDV version that is to be used for the verification. Each verification
task that is created from that client, will also contain the same version string that
is to be used for verification. In the Azure cloud, when each worker instance starts
processing a new task request, it first checks to see if the SDV version specified
is present on the worker instance or not. If present, the worker instance switches
to using the specified SDV version and completes the task. If not present, the
worker instance first downloads the specified SDV version from CloudSDV’s
private blob store. If the version cannot be found in the blob store, the worker
instance marks the verification task as completed and provides an error code as
the final result.

SDV developers (infrastructure, OS model, analysis engines, and rules) are
provided special access and instructions for uploading their private versions of
SDV.

3.2 CloudSDV Monitor

As part of the CloudSDV infrastructure, we also implemented a simple
CloudSDV monitoring tool that allows us to monitor the current state of a
CloudSDV deployment. Figure 5 shows a screen shot of the CloudSDV monitor.
Our goal is to have the monitor serve as a one stop location for administrators
to view/modify the status of CloudSDV. The monitor is deployed as a Microsoft
Azure application itself. As configuration, it takes the list of CloudSDV deploy-
ments to monitor. Currently we have two deployments in Asia and US. Given a
deployment, the CloudSDV Monitor shows basic information about the deploy-
ment, the number of current active workers, and the status of the task queue.
Each entry in the queue is either currently being verified (shown in Tasks list) or
waiting to be verified (shown in Pending list). For each entry, we display the glob-
ally unique identifier for the task, the name of the driver, the rule being verified
on the driver, the version of SDV requested the submission time, and the exact
command that is to be used for performing the verification task. Future versions
of the monitor are intended to be more interactive and enable administrators to
perform operations on individual tasks or the entire deployment itself.
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Fig. 5. Screen shot of the CloudSDV monitor.

3.3 Autoscale

To minimize costs incurred on a regular basis, the CloudSDV system always
operates with a default of two worker instances. Along with the default 2 work-
ers, we use the Autoscale [3] feature of Microsoft Azure to adjust to incoming
verification tasks. The Autoscale feature is configured to increase the number of
active workers based on the size of the queue. Since Azure monitors the length
of the queue at fixed intervals (CloudSDV uses an interval of 10 min), any time
the length of the queue exceeds the configured limit, a certain number of new
instances of the workers are created (CloudSDV specifies this number as 50).
This process can potentially repeat itself until an upper limit of the total num-
ber of worker instances is reached (for CloudSDV this limit is 200). It should
be noted that the new worker instances created are not immediately available;
it can take anywhere up to 10 min for the workers to be fully functional and
available, although, in practice we observe that all the new worker instances are
available between 2 and 3 min. Further, each worker once activated has no SDV
versions available to it. Rather, a new worker lazily acquires SDV versions as
new tasks from the queue are processed. All results presented in this paper are
using the Autoscale feature as described here. We believe it would be interesting
to repeat the experiments with different configurations of the Autoscale feature,
or to disable Autoscale and always have 200 instances available. We plan on
doing such experiments in the future.

4 Results

We now present our test methodology and results of using the CloudSDV system.
To test CloudSDV, we first selected two drivers that vary in size and complexity.
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These drivers have been a part of the SDV test suite for a long time and con-
tinue to serve as good baseline drivers for testing. fail driver1 is an extremely
small and simple driver that SDV can verify relatively easily. The serial driver
is a much larger driver that takes a very long time to compile and verify. An
8 core machine may take 6 h to compile and verify all 200 rules. After testing
on individual drivers, we tested CloudSDV using test suites that are also avail-
able in SDV. The test suites specify a set of drivers and rules to be checked
on the drivers. Each rule results in a single verification task, so in total, there
are drivers × rules checks that are produced. Typically, the test suites can be
run locally, or using the SDV test infrastructure which will distribute the tasks
over a set of machines (managed personally). It should be noted that SDV test
infrastructure does not parallelize over all drivers and all checks, rather only
over all checks, one driver at a time. This choice was made to accommodate
for infrastructure limitations. In contrast, when we utilize CloudSDV, we paral-
lelize over all drivers and all checks. This is possible because the infrastructure
limitations are not relevant anymore. We use the JOM [1] tool to help us paral-
lelize over all drivers. Figure 6(a) illustrates the parallelism as implemented with
CloudSDV, and Fig. 6(b) illustrates the parallelism as implemented by the SDV
test infrastructure. Each dashed line followed by a solid line is one driver being
compiled and then verified.

(a)

(b)

Fig. 6. A visualization of the parallelism schemes implemented in (a) CloudSDV and
(b) the SDV test infrastructure.

Table 1 shows the results of using CloudSDV on various drivers and test
suites. The Local run is performed using an Intel(R) Xeon(R) CPU with 64
logical cores with a total of 64 GB of memory. The same machine is also used as
the CloudSDV client machine for utilizing the CloudSDV cloud (for compilations
and submitting tasks to the cloud). For each driver and test suite, we list the
total number of drivers and checks to be performed on the driver along with the
time taken (hh:mm) when using the local machine and when using a maximum
of 20, 100, and 200 worker instances in the CloudSDV cloud.
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Table 1. Results of using CloudSDV for various drivers and test suites.

Driver/Suite Drivers Checks Local Azure20 Azure100 Azure200

fail driver1 1 192 00:55 00:58 00:59 00:56

serial 1 192 01:56 02:09 01:57 01:56

sdv regress 2 26 00:25 00:22 00:22 00:18

svb-ITP 28 5040 27:26 08:11 02:20 02:08

sdv bugbash 91 16380 101:06 18:19 05:10 04:31

For fail driver1, where each verification task is at most 3 s (as measured
in the past on a local machine), the local verification run completes in approxi-
mately 55 min. Most of that time is spent creating the 192 different verification
tasks, 1 for each rule. Utilizing CloudSDV is actually ineffective in this case
because each verification check has to be transported to the cloud before it can
be completed. The additional overhead of transporting and waiting for results
creates a slowdown, irrespective of how many worker machines are utilized. For
the serial driver, we again notice the same behavior, where scheduling tasks
on the CloudSDV cloud results in no significant improvement. Again, this can
be explained by making the observation that the majority of the work being
performed in verifying these drivers is the compilation and creation of the tasks
as opposed to the actual execution of the verification tasks. The sdv regress
test suite consists of 2 drivers which take a total of 25 min to verify on the
local machine. This is the first time we observe any improvement when using
CloudSDV to verify the drivers. Using 20 workers, we see that the run only
takes 22 min, and using 100 and 200 worker instances, the total time taken is
again 22 min and 18 min respectively. Since there are only a total of 26 tasks
produced by this suite, we don’t observe any significant speedup when going
from 20 to 100 workers. For the svb-ITP case, we observe that there is much
more speedup in going from the local run to using 20 and 100 workers. This
is because the total number of tasks (5040) produced is much greater than in
any of our experiments before this. Since the total number of checks is still not
significant enough for completely utilizing the 200 workers, we don’t see any
significant speedup when going from 100 to 200 cores. For our last test suite, we
picked sdv bugbash, which is by far the largest test suite in terms of the number
of checks it produces. The local run takes more than 4 days to complete. Using
even 20 workers produces over a 5x speedup. Furthermore, CloudSDV’s true
value is shown when we move to 100 and 200 cores where we observe speedups
of 17.5x and 22.5x respectively. As seen in the results, the speedup when moving
from 100 to 200 cores is modest. This is because all the compilation is still being
performed on a single machine, which does require a significant amount of time
and space resources. We suspect that it is possible to get even more speedup by
using multiple machines for compilation and adding even more workers.

Table 2 shows statistics for time spent by a single verification task in the
queue. These results were gathered over a total of 3858 checks. As shown in the
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Table 2. Statistics for time spent by a task waiting in the queue.

Mean Median Standard Deviation Minimum Maximum

24.87 s 11.51 s 27.35 s 1 s 91 s

table, on average, a verification task spends around 25 s waiting in the queue
before a worker starts to process the task. This number can prove to be too
high if the verification task itself is trivial and does not require much time to be
processed and completed. On the other hand, for much larger tasks that require
significantly more time to complete, the time spent waiting in the queue proves
to be trivial and has no noticeable impact on the entire time taken for verifying
the driver. The maximum time any task spent waiting in the queue was 91 s,
which is a direct result of the Microsoft Azure Autoscale feature. This happens
when all worker instances are busy with a task and the tasks in the queue are
waiting either for new instances to be created or for an existing worker instance
to poll the queue for a new task.

5 Related Work

In the past, parallel techniques for model checking have been explored in great
depth. [18] specifically focused on parallelizing the Murphi model checker for
speeding up the exploration of states and also possibly achieving higher scalabil-
ity by exploring more states and verifying larger models. Kumar et. al. present
work in [17] that performs load balancing of parallel model checking algorithms.
Work presented in [11] investigates how to perform LTL model checking in a
distributed environment. Work presented in [16] also aims at taking advantage
of availability of greater resources and computation power.

Given the body of work in parallel model checking, and the rise of static
analysis as a more practical solution for certain problems, it was only a mat-
ter of time before the case for static analysis in the cloud was made [12]. To
this effect, [13] presents work that ports the CPAChecker to the Google App-
Engine and exposes the abilities through API as well as a web interface. To our
knowledge, this work is the closest to the work presented in this paper but has
key differences. Primarily, the work in [13] focuses on using the Google App-
Engine in a Platform as a Service (PaaS) setting, while our work is focused on
using Microsoft Azure in a Infrastructure as a Service (Iaas) setting. Due to
this primary difference, porting the verification technologies involved no effort
in CloudSDV, whereas [13] had to make significant changes to CPAChecker for
it to function correctly using the Google App-Engine.

Cloud based testing services have also become more practical and popular.
[14,15] present cloud based frameworks and environments for performing auto-
mated testing.

The work presented in this paper focuses on taking an existing static analysis
and verification tool (SDV) and making it available to the users through the
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cloud in an effort to offload the computational resources required to perform the
verification, speedup the verification task, and possibly scale to larger problems.

6 Conclusion

We have presented a method for parallelizing the SDV verification tool using
Microsoft Azure. The architecture and implementation make use of core concepts
provided by Microsoft Azure (blobs, queues, workers, Autoscale etc.). Using the
CloudSDV implementation, we were able to perform large scale verification of
drivers and SDV test suites in a sound and consistent manner. Our results show
that the CloudSDV implementation is extremely performant and scalable. At
worst, CloudSDV performs as well as a local verification run, and in the best
case, CloudSDV is capable of delivering extremely large amounts of speedup.
We conclude that the observed speedup is directly proportional to the amount
of verification checks that can be submitted to the CloudSDV system. From
our current experiments and results, we observe that CloudSDV is extremely
effective for large test suites containing a lot of verification tasks, but not as
effective for single drivers.

Currently, the CloudSDV implementation is being evaluated for integration
with the primary SDV product that is shipped with the Windows Driver Kit.
The evaluation is primarily for the purpose of exposing the CloudSDV service
to driver developers, both internal and external.

As future work, we plan on performing more experiments with different con-
figurations of the Autoscale feature to identify a possible sweet spot. We also
plan on investigating the potential to make the CloudSDV client asynchronous
(remove polling) and offline, where one can schedule jobs and exit the CloudSDV
client (not be required to have the client running continuously). Finally, we
intend to study the system in greater detail to identify possible bottlenecks and
improve performance, especially in the area of payload transport and create
techniques that can positively impact the single driver case.

Acknowledgments. We would like to thank B. Ashok and Vlad Levin for their valu-
able input and support of this work.
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