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Preface

These are the proceedings of the 16th International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2016.
The conference was held during June 20–24, 2016, in Eindhoven, The Netherlands:
one of the vibrant hi-tech hot spots of Europe. The IPMU conference is organized every
two years with the aim of bringing together scientists working on methods for the
management of uncertainty and aggregation of information in intelligent systems.

Since 1986, the IPMU conference has been providing a forum for the exchange of
ideas between theoreticians and practitioners working in these areas and related fields.
In addition to the many contributed scientific papers, the conference has in the past
attracted prominent plenary speakers, including the Nobel Prize winners Kenneth
Arrow, Daniel Kahneman, and Ilya Prigogine. Another important feature of the con-
ference is the presentation of the Kampé de Fériet Award for outstanding contributions
to the field of uncertainty and management of uncertainty. Past winners of this pres-
tigious award were Lotfi A. Zadeh (1992), Ilya Prigogine (1994), Toshiro Terano
(1996), Kenneth Arrow (1998), Richard Jeffrey (2000), Arthur Dempster (2002),
Janos Aczel (2004), Daniel Kahneman (2006), Enric Trillas (2008), James Bezdek
(2010), Michio Sugeno (2012), and Vladimir N. Vapnik (2014). This year, the recipient
was Joseph Y. Halpern from Cornell University, USA.

IPMU 2016 had a rich scientific program. Four invited overview talks (tutorials)
were given on the first day, identifying the challenges and discussing the various
methods in the field of information processing and the management of uncertainty.
Further, the program consisted of five invited plenary talks, 13 special sessions, 127
contributed papers that were authored by researchers from 34 different countries,
industry round tables, and discussion panels. The plenary presentations were given by
the following distinguished researchers: Chris Dyer (Carnegie Mellon University,
USA), Joseph Y. Halpern (Cornell University, USA), Katharina Morik (Technische
Universität Dortmund, Germany), Peter P. Wakker (Erasmus University Rotterdam,
The Netherlands), and Ronald R. Yager (Iona College, USA). All contributed papers
underwent the same review process and were judged by at least two reviewers; 90 %
of the papers were reviewed by three or more referees, and some papers by as many as
five referees. Furthermore, all papers were scrutinized by the program chairs, meaning
that each paper was studied by three to six independent researchers. The review process
also respected the usual conflict-of-interest standards, so that all papers received
blinded, independent evaluations.

Organizing a conference like IPMU 2016 is not possible without the assistance,
dedication, and support of many people and institutions. We want to thank our industry
sponsors, the institutional sponsors, and the material sponsors. Our sponsor chair, Paul
Grefen, did an excellent job in attracting the interest and support from industry for the
success of IPMU 2016. We are also particularly grateful to the organizers of sessions
on dedicated topics that took place during the conference—these special sessions have



always been a characteristic element of the IPMU conference. Special thanks go to Joao
Sousa, who helped evaluate and select the special session proposals. The help of the
members of the international Program Committee as well as multiple reviewers was
essential in safeguarding the scientific quality of the conference. The local Organizing
Committee is very grateful for the efforts of multiple student volunteers who provided
practical support during the conference.

Finally, we gratefully acknowledge the technical support of several organizations
and institutions, notably the IEEE Computational Intelligence Society, the European
Society for Fuzzy Logic and Technology (EUSFLAT), and the Netherlands Research
School for Information and Knowledge Systems (SIKS). Last, but not least, our
greatest gratitude goes to the authors who submitted their work and presented it at the
conference!

April 2016 Rui J. Almeida
Joao Paulo Carvalho
Marie-Jeanne Lesot

Anna M. Wilbik
Bernadette Bouchon-Meunier

Uzay Kaymak
Susana Vieira

Ronald R. Yager
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Plenary Lectures



Actual Causality: A Survey

Joseph Y. Halpern

Cornell University, Computer Science Department, 414 Gates Hall, Ithaca, NY
14853, USA

halpern@cs.cornell.edu

Abstract. What does it mean that an event C “actually caused” event E? The
problem of defining actual causation goes beyond mere philosophical specula-
tion. For example, in many legal arguments, it is precisely what needs to be
established in order to determine responsibility. (What exactly was the actual
cause of the car accident or the medical problem?) The philosophy literature has
been struggling with the problem of defining causality since the days of Hume,
in the 1700s. Many of the definitions have been couched in terms of counter-
factuals. (C is a cause of E if, had C not happened, then E would not have
happened.) In 2001, Judea Pearl and I introduced a new definition of actual
cause, using Pearl’s notion of structural equations to model counterfactuals. The
definition has been revised twice since then, extended to deal with notions like
“responsibility” and “blame”, and applied in databases and program verification.
I survey the last 15 years of work here, including joint work with Judea Pearl,
Hana Chockler, and Chris Hitchcock. The talk will be completely
self-contained.

Biography Joseph Halpern received a B.Sc. in mathematics from the University of
Toronto in 1975 and a Ph.D. in mathematics from Harvard in 1981. In between, he
spent two years as the head of the Mathematics Department at Bawku Secondary
School, in Ghana. After a year as a visiting scientist at MIT, he joined the IBM
Almaden Research Center in 1982, where he remained until 1996, also serving as a
consulting professor at Stanford. In 1996, he joined the CS Department at Cornell, and
was department chair 2010-14.

Halpern’s major research interests are in reasoning about knowledge and uncer-
tainty, security, distributed computation, decision theory, and game theory. He is a
Fellow of AAAI, AAAS (American Association for the Advancement of Science), the
American Academy of Arts and Sciences, ACM, IEEE, and SEAT (Society for the
Advancement of Economic Theory). Among other awards, he received the
ACM SIGART Autonomous Agents Research Award in 2011, the Dijkstra Prize in
2009, the ACM/AAAI Newell Award in 2008, the Godel Prize in 1997, was a
Guggenheim Fellow in 2001-02, and a Fulbright Fellow in 2001-02 and 2009-10. Two
of his papers have won best-paper prizes at IJCAI (1985 and 1991), and another two
received best-paper awards at the Knowledge Representation and Reasoning Confer-
ence (2006 and 2012). He was editor-in-chief of the Journal of the ACM (1997-2003)
and has been program chair of a number of conferences.



The Present State of the Art of Modeling
Uncertainty in Decision Theory, Resulting
from an Interaction between Mathematical
Economists and Empirical Psychologists

Peter P. Wakker

Econometric Institute, Erasmus University, Rotterdam, The Netherlands
wakker@ese.eur.nl

Abstract. In decision theory, more than in other fields of IPMU, the modeling of
uncertainty is driven by empirical findings about human behavior. Decision
theorists are strict in the requirement that for every mathematical detail the
empirical meaning must be exactly specified. For example, taking the lower
bound of possible probabilities of an event, while accepted uncritically in most
information management theories, is meaningless to a decision theorist until it
has been specified whether the event in question yields good or bad outcomes.

This lecture describes how the current state of the art in uncertainty-decision
theory could only come about from interactions between empirically oriented
psychologists and mathematically oriented economists. At several stages in
history, the next step forward could be made only by empirical intuitions from
psychologists. Following up on that, the next step forward could be made only
by theoretical inputs from economists with advanced technical skills. Modern
views on the proper modeling of uncertainty attitudes could only arise from the
merger of ideas from all the fields mentioned. It, for instance, led to a measure of
information-insensitivity that is more refined than just taking supremums or
infimums of uncertainty measures.

Biography Peter Wakker is a professor of decisions under uncertainty at Erasmus
School of Economics of the Erasmus University Rotterdam. He works in behavioral
economics, primarily on the differences between normative and descriptive decisions,
and on decisions under risk and uncertainty. Wakker has published in leading journals
in economics, business, medicine, psychology, statistics, and mathematics. He was
nominated the best-publishing Dutch economist in the years 1994, 1998, 2003, and
2007, and was ranked 90th in the world in the ISI’s most cited scientists in economics
and business in 2003. He received a Frank P. Ramsey Medal in 2013 and the Medical
Decision Making Career Achievement Award in 2007. Wakker regularly gives advices
on insurance in the media. Wakker is director, jointly with Professor Han Bleichrodt,
of the research group Behavioral Economics.



Decision Making with Multi-criteria

Ronald R. Yager

Machine Intelligence Institute, Iona College
yager@panix.com

Abstract. The construction of multi-criteria decision functions is strongly
dependent upon the use of aggregation operators. Here if D(x) = Agg(C1(x),
C2(x), …,Cn(x)) represents the satisfaction of alternative x to the collection of
criteria a central problem becomes the formulation of the decision function
D. The structure of the function Agg must be a reflection of the decision makers
perceived relationship between the different criteria. We must provide some
approaches that can used to help in the construction of these decision functions.
One approach is to allow the decision-maker to express their perceived rela-
tionship between the criteria in a linguistic like manner and then try to model
this relationship using fuzzy logic formalisms. Another approach is the use of set
measures for the representation of the relationship between criteria. Once having
a formal representation of the decision function D we must evaluate it for each
alternative. In many real world environments the values of the Cj(x) can only be
provided with some uncertainty. Among the different types of imprecise valu-
ations are intervals, probability distributions, D-S belief structures, fuzzy sets,
intuitionistic, Pythagorean and generalized orthopair fuzzy sets as well ordi-
nallinguistic valuations. Finally we must choose among these alternatives based
their values for D(x). In the case of uncertainty in the Cj(x) the value of D(x) also
manifests uncertainty. Choosing requires that we provide an ordering of these
uncertain values. In our talk we shall discuss various topics from the above.

Biography Ronald R. Yager is Director of the Machine Intelligence Institute and
Professor of Information Systems at Iona College. He is editor and chief of the
International Journal of Intelligent Systems. He has published over 500 papers and
edited over 30 books in areas related to fuzzy sets, human behavioral modeling,
decision-making under uncertainty and the fusion of information. He is among the
worlds top 1 % most highly cited researchers with over 45,000 citations in Google
Scholar. He was the recipient of the IEEE Computational Intelligence Society Pioneer
award in Fuzzy Systems. He received the special honorary medal of the 50-th
Anniversary of the Polish Academy of Sciences. He received the Lifetime Outstanding
Achievement Award from International the Fuzzy Systems Association. He recently
received honorary doctorate degrees, honoris causa, from the Azerbaijan Technical
University and the State University of Information Technologies, Sofia Bulgaria. Dr.
Yager is a fellow of the IEEE, the New York Academy of Sciences and the Fuzzy
Systems Association. He has served at the National Science Foundation as program
director in the Information Sciences program. He was a NASA/Stanford visiting fellow
and a research associate at the University of California, Berkeley. He has been a
lecturer at NATO Advanced Study Institutes. He was a program director at the National
Science Foundation. He is a visiting distinguished scientist at King Saud University,



Riyadh Saudi Arabia. He was an adjunct professor at Aalborg University in Denmark.
He received his undergraduate degree from the City College of New York and his Ph. D.
from the Polytechnic Institute NewYork University. He is the 2016 recipient of the IEEE
FrankRosenblatt Award themost prestigious honor given out by the IEEEComputational
Intelligent Society.
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Resource-Constrained Data Analysis
and Exploration

Katharina Morik

Faculty for Computer Science, Artificial Intelligence Group,
TU Dortmund University, Dortmund, Germany
katharina.morik@tu-dortmund.de

Abstract. Computer science has always taken into account some resources
needed for the execution of algorithms, namely runtime and memory space.
Since the triumph of very large data centers, energy has become a resource of
importance, additionally. In 2008, Google had its millionth server. Google’s
estimated yearly energy consumption is about 2024 watt hours (Wh). A search
request consumes 0.3 Wh, asking and reading the result at a home computer
consumes about the same, so that each query costs about 0.6 Wh1.

Where data centers challenge resources at a global scale, the energy of
cyber-physical systems and smartphones is restricted at the local device. The
battery of a smartphone has a capacity of about 8 Wh. The user wants a long
battery duration together with a high quality of service. Regarding machine
learning, there are two ways, in which energy may be saved. On the one hand, a
learning algorithm may learn from compiler logs2 or from user behavior3 how to
enhance the heuristics of the system’s software. On the other hand, the learning
algorithm itself has to become energy-efficient. This can be achieved through
approximations which reduce the operations that cost the most energy4.

Cyber-physical systems populate diverse parts of our everyday life, they are the
nodes of the Internet of Things and they produce big data. If we focus again on
smartphones, each user generates about 60 GB of data per year. Learning a
personal model of app usage could allow early warnings when to recharge the
battery5. However, the analysis of such data is not easy: data may be missing, their
incompleteness is not easy to recognize, and they may be wrong due to several
reasons. Labels, which are needed for classifier training, are missing.

1 E. Gelenbe, Y. Caseau (2015) The impact of information technology on energy consumption and
carbon emissions, in: Ubiquity, June, 1–15

2 P. Lokuciejewski, M. Stolpe, K. Morik, P. Marwedel (2010) Automatic Selection of Machine
Learning Models for WCET-aware Compiler Heuristic Generation, in: 4th Workshop on Statistical
and Machine Learning Approaches to ARchitecture and compilaTion (SMART)

3 P. Fricke, F. Jungermann, K.Morik, N. Piatkowski, O. Spinczyk, M. Stolpe (2010) Towards
Adjusting Mobile Devices to User’s Behaviour, in: Intern. Workshop at ECML PKDD on Mining
Ubiquitous and Social Environments

4 N. Piatkowski, S. Lee, K. Morik (2016) Integer undirected graphical models for
resource-constrained systems, in: Neurocomputing, 173(1), 9–23

5 N. Piatkowski, S. Lee, K. Morik (2013) Spatio-Temporal Random Fields: Compressible
Representation and Distributed Estimation, in: Machine Learning Journal 93(1), 115–139



Data exploration is an important, though often under-estimated first part of data
analysis.

In the talk, several probabilistic graphical models will be presented together
with their applications.

Biography Katharina Morik is full professor for computer science at the TU Dortmund
University, Germany. She earned her Ph.D. (1981) at the University of Hamburg and
her habilitation (1988) at the TU Berlin. Starting with natural language processing, her
interest moved to machine learning ranging from inductive logic programming to
statistical learning, then to the analysis of very large data collections, high-dimensional
data, and resource awareness. She is a member of the National Academy of Science
and Engineering and the North-Rhine- Westphalia Academy of Science and Art. She is
the author of more than 200 papers in well acknowledged conferences and journals.
Her latest results include spatio-temporal random fields and integer Markov random
fields, both allowing for complex graphical models under resource constraints. Her
interest in interdisciplinary research covers a large variety of fields. She successfully
collaborated with linguists, engineers, physicians, and astrophysicists.

She was one of those starting the IEEE International Conference on Data Mining
together with Xindong Wu, and was chairing the program of this conference in 2004.
She was the program chair of the European Conference on Machine Learning (ECML)
in 1989 and one of the program chairs of ECML PKDD 2008. She is in the editorial
boards of the international journals Knowledge and Information Systems and Data
Mining and Knowledge Discovery.

Her aim to share scientific results strongly supports open source developments. For
instance, the first efficient implementation of the support vector machine, SVM_light,
was developed at her lab by Thorsten Joachims. Also the leading data mining platform
RapidMiner started out at her lab, which continues to contribute to it. Currently, the
Java streams framework is developed, which abstracts processes on distributed data
streams.

Since 2011, she is leading the collaborative research center SFB876 on data
analysis under resource-constraints, an interdisciplinary center comprising 14 projects,
20 professors, and about 50 Ph.D. students or Postdocs.
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Learning Representations of Complex
Structures in Natural Language

with Neural Networks

Chris Dyer

Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA
cdyer@cs.cmu.edu

Abstract. Effective processing of natural language requires integrating infor-
mation from a variety of sources: an individual word’s meaning depends on the
context it is used in; the proper interpretation of a sentence depends on
understanding the discursive context it occurs in; and, reasoning about the truth
of a linguistically encoded proposition requires drawing on world knowledge.
However, if we take stock of what progress has been made in language pro-
cessing applications to date, it is precisely those that depend on a narrow view of
context rather than those that require significant integration of contextual
information where we find the most success.

In this talk I argue that the challenge of developing next-generation models
that are sensitive to broader contextual information can be helpfully cast as a
representation learning problem. Given a basic representation of the input signal
and relevant contextual information, a unified representation suitable for making
predictions needs to be computed. I discuss work from my group on using
neural networks to integrate basic representations of component linguistic ele-
ments and combining them recursively to obtain composite representations of
complex objects. Our work has demonstrated that taking inspiration from the
linguistic structures when designing architectures is more effective than
task-agnostic architectures. Applications ranging from text categorization, to
language modeling, to machine translation will be discussed.

Biography Chris Dyer is an assistant professor at Carnegie Mellon University. Dyer
graduated from the Duke University in 2000, where he studied computer science. He
went on to obtain a Ph.D. in linguistics in 2010 from University of Maryland under the
supervision of Prof. Philip Resnik. Chris Dyer’s research interests line in the inter-
section of statistical machine translation, unsupervised learning, computational mor-
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Abstract. Based on the representation of OWA operators as Choquet
integrals with respect to symmetric capacities, a new kind of OWA gen-
eralizations based on decomposition integrals is proposed and discussed.
The symmetry of the underlying capacity is not sufficient to guarantee
the symmetry of the resulting operator, and thus we deal with sym-
metric saturated decomposition systems only. All possible generalized
OWA operators on X = {1, 2} are introduced. Similarly, when consider-
ing the maximal decomposition system on X = {1, 2, 3}, all generalized
OWA operators are shown, based on the ordinal structure of the normed
weighting vector w = (w1, w2, w3).

Keywords: Choquet integral · Decomposition integral · OWA
operator · Pan-integral · Symmetric capacity

1 Introduction

OWA operators, as a special class of aggregation functions (i.e., increasing func-
tions A : [0, 1]n → [0, 1] satisfying two boundary conditions A(0, . . . , 0) = 0,
A(1, . . . , 1) = 1, for more details see [5]) covering the standard min,max and
arithmetic mean operators, were introduced by Yager [13] in 1988.

Definition 1. Let w = (w1, . . . , wn) ∈ [0, 1]n be a normed weighting vector,

i.e.,
n∑

i=1

wi = 1. A function OWAw : [0, 1]n → [0, 1] given by

OWAw(x) =
n∑

i=1

wi xσ(i), (1)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation of {1, . . . n} such that xσ(1) ≥
· · · ≥ xσ(n), is called an OWA operator.

Very soon they became an important tool in many domains, especially in deci-
sion problems. Rather early, several generalizations of OWA’s appeared, such as
GOWA [15] (Generalized OWA), IOWA [14,16] (Induced OWA), etc.

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 3–10, 2016.
DOI: 10.1007/978-3-319-40596-4 1
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Recently, a survey of OWA literature using a citation network analysis was pub-
lished in [2], including 537 OWA related sources in supplementary document.

Note that OWA operators can be seen as Choquet integrals with respect to
symmetric capacities [4] too. We recall that Choquet integral was introduced
by Choquet in 1953 [1]. When dealing with a finite universe X = {1, . . . , n},
functions f : X → [0, 1] can be identified with vectors x ∈ [0, 1]n, xi = f(i),
i = 1, . . . , n. A capacity (fuzzy measure) m : 2X → [0, 1] is a monotone set
function constrained by the two boundary conditions, m(∅) = 0,m(X) = 1.
Since now, we will deal in this contribution with X = {1, . . . , n}.

Definition 2 ([5]). For a given vector x ∈ [0, 1]n and capacity m on X the
corresponding Choquet integral is given by

Chm(x) =
n∑

i=1

xσ(i) (m(Eσ,i) − m(Eσ,i−1)) , (2)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation such that xσ(1) ≥ · · · ≥
xσ(n), Eσ,0 = ∅, and for i = 1, . . . , n, Eσ,i = {σ(1), . . . , σ(i)}.

As already observed in the case of formula (1), also in the case of formula (2)
it may happen, that the permutation σ is not unique. This fact does not hurt
the correctness of formula (2). As observed by Grabisch [4], formulae (1) and
(2) may coincide for each x ∈ [0, 1]n if and only if m(Eσ,i) does not depend on
the considered permutation σ. This means that only cardEσ,i = i matters, i.e.,
m(E) = m(σ(E)) for any E ∈ 2X and permutation σ, σ(E) = {σ(i)| i ∈ E}.
Such capacities are called symmetric. Now, it is enough to put wi = m(Eσ,i) −
m(Eσ,i−1) to see that

OWAw = Chm (3)

Vice-versa, for any normed weighting vector w, it is enough to define a sym-
metric capacity m : 2X → [0, 1] by

m(E) =
cardE∑

i=1

wi (4)

to see the representation (3).
Recall that OWA operators are symmetric, positively homogeneous, idempo-

tent, comonotone additive [5] and piece-wise linear. To define them axiomatically,
the comonotone additivity and symmetry are sufficient [4]. Any proper general-
ization of OWA operators should violate some of the above properties. We have
discussed some of such generalizations in our recent paper [10].

Throughout this contribution, we will consider generalizations which are
symmetric, positively homogeneous, idempotent and piece-wise linear, but not
comonotone additive. From alternative approaches, recall the OWA generaliza-
tions based on p-symmetric capacities and Choquet integral [11], where the sym-
metry is replaced by p-symmetry, and the remaining above mentioned properties
are preserved. Our approach deals with symmetric capacities and decomposition
integrals recently introduced by Even and Lehrer [3].



Decomposition Integral Based Generalizations of OWA Operators 5

2 Decomposition Integrals

Any non-empty set of non-empty subsets of X is called a collection. Any non-
empty set H of collections is called a decomposition system.

Definition 3 ([3]). Let a decomposition system H be fixed. For a capacity m on
X the corresponding H-decomposition integral IH,m is given by

IH,m(x) = max

{∑
i∈J

ai m(Ai)
∣∣ (Ai)i∈J ∈ H, ai ≥ 0 for each i ∈ J,

∑
i∈J

ai1Ai ≤ x

}
.

(5)

Alternatively, we can write

IH,m(x) = max
ζ∈H

⎧
⎨

⎩

∑

Ai∈ζ

ai m(Ai)
∣
∣ ai ≥ 0 for each i,

∑

Ai∈ζ

ai1Ai
≤ x

⎫
⎬

⎭
=max

ζ∈H
Iζ,m.

For any collection ζ, the functional Iζ,m is positively homogeneous, monotone
and piece-wise linear, and thus also the functional IH,m is positively homoge-
neous, monotone and piece-wise linear. Obviously, it is symmetric whenever the
capacity m is symmetric. In general, it need not be idempotent and neither an
aggregation function. However, due to the positive homogeneity, the mapping

AH,m =
IH,m

IH,m(1)
: [0, 1]n → [0, 1] (6)

is an idempotent aggregation function whenever IH,m(1) > 0.
Recall that due to [9] IH,m(1) = 1 for each capacity m whenever the decom-

position system H is complete (i.e., each non-empty subset E of X is contained
in at least one collection from H) and any of its collections is formed by logically
independent subsets of X (i.e., their intersection is non-empty). We introduce
now some decomposition systems and related decomposition integrals.

Example 1. Consider X = {1, . . . , n}.

(1) Let H(i) = {B| B is a chain in X of length i}, i ∈ {1, . . . , n}. As shown
in [9], these decomposition systems yield the only kind of decomposition
integrals which are also universal integrals in the sense of Klement et al. [6].
Note that IH(1),m is the Shilkret integral [12], while IH(n),m = Chm is the
Choquet integral [1]. Note that IH(i),m is an aggregation function for each
capacity m and i ∈ {1, . . . , n}.

(2) For ∅ �= A ⊆ X, let HA = {{A}}. Then

IHA,m(x) = min{xi| i ∈ A} · m(A),

and IHA,m is an aggregation function only if m(A) = 1.
(3) Let HPan = {B| B is a partition of X}. Then HPan is the Pan-integral intro-

duced in [17], and it is not an aggregation function, in general.
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(4) Let HL = {B| ∅ �= B ⊆ 2X − {∅}}. This decomposition system is the
greatest one and thus also IHL,m is the greatest decomposition integral. It
was introduced by Lehrer [7], where it is called a concave integral, and it is
not an aggregation function, in general.

(5) Let HS = {{{1}, {1, 2}, . . . , {1, 2, . . . , n}}, {{2}}, . . . } consists of one
maximal chain in X and remaining singleton collections {A},
A /∈ {{1}, {1, 2}, . . . , {1, 2, . . . , n}}. Clearly, H(1) � HS � H(n) whenever
n > 1, and thus the decomposition integral based on HS is between the
Shilkret and Choquet integral, i.e.,

IH(1),m ≤ IHS ,m ≤ IH(n),m.

Note that IHS ,m is an aggregation function for any capacity m.
For n = 2, it holds

IHS ,m(x, y) =
{

m({1}) · x + (1 − m({1})) · y if x ≥ y
max(x,m({2}) · y) otherwise . (7)

3 H-OWA Operators

To guarantee the symmetry of decomposition integrals, the symmetry of a con-
sidered capacity m is not sufficient. For example, the formula (7) in the case of
a symmetric capacity m determined by m(1) = m(2) = a yields

IHS ,m(x, y) =
{

a · x + (1 − a) · y if x ≥ y
max(x, a · y) otherwise ,

which is symmetric only if a ∈ {0, 1}. This fact is due to non-symmetry of the
decomposition system HS .

Definition 4. Let σ : X → X be a permutation on X. For any non-empty
subset E of X, denote Eσ = {σ(i)| i ∈ E}. For any collection B = {E1, . . . , Ek},
denote Bσ = {(E1)σ, . . . , (Ek)σ}. Similarly, for any decomposition system H,
denote Hσ = {Bσ| B ∈ H}. A decomposition system H is called symmetric if
and only if H = Hσ for any permutation σ on X.

Observe that considering decomposition systems introduced in Example 1, sym-
metric are only the systems H(i), i = 1, . . . , n, HPan and HL.

As already mentioned, there are decomposition system on H such that
IH,m(1) = 0 may happen for some capacity m.

Proposition 1. Let H be a decomposition system on X. Then IH,m(1) > 0 for
any capacity m on X if and only if there is a collection B ∈ H such that X ∈ B.
Proof. Note that if m1 ≥ m2 then IH,m1 ≥ IH,m2 and thus it is enough to deal

with the smallest capacity m∗ on X, m∗(E) =
{

1 if E = X
0 otherwise . Clearly, if X /∈ B

for each B ∈ H, then IH,m∗(1) = 0. On the other hand, if X ∈ B for some
B ∈ H, then IH,m∗(1) = 1. 	
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Definition 5. Let H be a decomposition system on X such that X ∈ B for some
B ∈ H. Them H is called a saturated decomposition system.

Note that each complete decomposition system is saturated, but not vice
versa. Systems H(i), i = 1, . . . , n, HPan, HL and HS introduced in Example 1
are saturated, but not the systems HA for A �= X.

Definition 6. Let H be a symmetric saturated decomposition system on X,
and let m be a symmetric capacity on X. Then the functional H − OWAw :
[0, 1]n → [0, 1] given by

H − OWAw(x) =
IH,m(x)
IH,m(1)

(8)

is called a decomposition OWA operator. Here w = (w1, . . . , wn) with w1 =
m({1}), w2 = m({1, 2}) − m({1}), . . . , wn = m({1, . . . , n}) − m({1, . . . , n − 1}),
i.e.,

m(E) =
cardE∑

i=1

wi, E ∈ 2X .

Note that H(n) − OWAw = OWAw is the standard OWA operator due to
the fact that H(n) generates just the Choquet integral. We summarize some
properties of H-OWA operators, which form a particular class of aggregation
functions:

– symmetry
– positive homogeneity
– idempotency
– piece-wise linearity
– monotonicity in weights, i.e.,

H − OWAw(1) ≤ H − OWAw(2)

whenever
w

(1)
1 ≤ w

(2)
1 , w

(1)
1 +w

(1)
2 ≤ w

(2)
1 +w

(2)
2 , . . . , w

(1)
1 + · · ·+w

(1)
n ≤ w

(2)
1 + · · ·+w

(2)
n .

Example 2. For n = 2, the only symmetric saturated decomposition systems are

H(1) = {{{1}}, {{2}}, {{1, 2}}},
H(2) = {{{1}, {1, 2}}, {{2}, {1, 2}}},
HPan = {{{1}, {2}}, {{1, 2}}},
HL = {{{1}}, {{2}}, {{1, 2}}, {{1}, {1, 2}}, {{2}, {1, 2}}, {{1}, {2}}, {{1}, {2}, {1, 2}}},
HX = {{{1, 2}}}
and

H1 = {{{1}, {1, 2}}, {{2}, {1, 2}}, {{1, 2}}},
H2 = {{{1}}, {{2}}, {{1}, {1, 2}}, {{2}, {1, 2}}}.
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Fig. 1. H(1) − OWA(0.3,0.7) on the left and HPan − OWA(0.3,0.7) on the right

The corresponding H-OWA operators are then given by: (see also Fig. 1)

H(1) − OWA(w1,1−w1)(x, y) = max(w1x,w1y,min(x, y));

H(2) − OWA(w1,1−w1)(x, y) = OWA(w1,1−w1)(x, y) =
= w1 max(x, y) + (1 − w1)min(x, y);

HPan − OWA(w1,1−w1)(x, y) =
max(w1x + w1y,min(x, y))

max(2w1, 1)
=

=
{

x+y
2 if w1 ≥ 1

2
max(w1x + w1y,min(x, y)) otherwise

;

HL − OWA(w1,1−w1)(x, y) =
{

x+y
2 if w1 ≥ 1

2
OWA(w1,1−w1)(x, y) otherwise

;

HX − OWA(w1,1−w1)(x, y) = min(x, y);
H1 − OWA(w1,1−w1)(x, y) = OWA(w1,1−w1)(x, y);
H2 − OWA(w1,1−w1)(x, y) = OWA(w1,1−w1)(x, y).

As we can see, in some cases the resulting H-OWA operators coincide for different
capacities, and in some cases they result into the standard OWA operators. We
have the next general result.

Theorem 1. Let H be a symmetric saturated decomposition system on X. Then:

(i) if {{1}, . . . , {n}} ∈ H and w1 ≥ wi, i = 2, . . . , n, then

H − OWAw(x) = AM(x),

where AM is the arithmetic mean;
(ii) if H(n) ⊆ H, and for any B ∈ H there is D ∈ H(n) such that B ⊆ D (i.e.,

any B ∈ H is a chain), then

H − OWAw(x) = OWAw(x),

i.e., H-OWA is the standard OWA operator.
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Thought Theorem 1 shows some constraints of the H-based generalization of
OWA operators, there is still a rich variety of new kinds of aggregation functions
obtained by this proposed generalization method. We illustrate this fact for n = 3
and H = HL, i.e., when concave integral based generalization of ternary OWA
operators is considered.

Example 3. Let a symmetric capacity m on X = {1, 2, 3} be related to a weight-
ing vector w = (w1, w2, w3) ∈ [0, 1]3, w1 + w2 + w3 = 1. Due to Theorem 1, if
w1 ≥ w2 and w1 ≥ w3, HL − OWAw = AM.

On the other hand, if w1 ≤ w2 ≤ w3, then HL − OWAw = OWAw. We have
still 3 remaining cases considering the ordinal structure of weighting vector w:
– if w3 ≤ w1 ≤ w2 then

HL − OWAw(x1, x2, x3) =

{
AM(x1, x2, x3) if xσ(1) ≤ xσ(2) ≤ xσ(3)

2w1
3(1−w3)

xσ(1) + 2w2
3(1−w1)

(xσ(2) + xσ(3)) otherwise
,

where σ : X → X is a permutation such that xσ(1) ≥ xσ(2) ≥ xσ(3);
– if w1 ≤ w3 ≤ w2 then

HL − OWAw(x1, x2, x3)

= min
(

1,
2

3(1 − w3)

)

· max (OWAw(x1, x2, x3), Aw(x1, x2, x3))

where

Aw(x1, x2, x3) =
{

1−w3
2 (x1 + x2 + x3) if xσ(1) ≤ xσ(2) + xσ(3);

w1xσ(1) + 2w2(xσ(2) + xσ(3)) otherwise ;

– if w2 ≤ w1 ≤ w3 then

HL − OWAw(x1, x2, x3) = min

(
1,

1

3w1

)
· max

(
OWAw(x1, x2, x3), xσ(3) + w1(xσ(1) + xσ(2) − 2xσ(3)), w1(x1 + x2 + x3)

)
.

4 Concluding Remarks

We have introduced a generalization of OWA operators based on a symmetric
capacity m and a H-decomposition integral, where H is a saturated symmetric
decomposition system. The introduced H-OWA operators are not only sym-
metric, idempotent and positively homogeneous aggregation functions, but they
are also piece-wise linear and continuous. Note that there is a dual concept
to decomposition integrals, namely the superdecomposition integrals introduced
in [8]. Based on symmetric capacities m and H-superdecomposition integrals,
where again H should be symmetric and saturated, a further type of OWA gen-
eralizations could be introduced. Note that when considering H(n), then also the
superdecomposition integral yields the Choquet integral, and hence the standard
OWA operators are included in this new intended family, too.

Acknowledgments. The support of the grants APVV-14-0013 and VEGA 1/0682/16
is kindly announced.
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Abstract. In this paper we deal with the problem of obtaining the set of
k-additive measures dominating a fuzzy measure. This problem extends
the problem of deriving the set of probabilities dominating a fuzzy mea-
sure, an important problem appearing in Decision Making and Game
Theory. The solution proposed in the paper follows the line developed
by Chateauneuf and Jaffray for dominating probabilities and continued
by Miranda et al. for dominating k-additive belief functions. Here, we
address the general case transforming the problem into a similar one
such that the involved set functions have non-negative Möbius trans-
form; this simplifies the problem and allows a result similar to the one
developed for belief functions. Although the set obtained is very large,
we show that the conditions cannot be sharpened. On the other hand, we
also show that it is possible to define a more restrictive subset, providing
a more natural extension of the result for probabilities, such that it is
possible to derive any k-additive dominating measure from it.

Keywords: Fuzzy measures · Dominance · k-additivity

1 Introduction

Fuzzy measures, also called capacities, nonadditive measures, are widely used in
the representation of uncertainty, decision making and cooperative game theory.
A particular class of fuzzy measures which is of interest in this paper can be
found in the Theory of Evidence developed by Dempster [4] and Shafer [22]. In
this theory, uncertainty is represented by a pair of “lower probability” (or “degree
of belief”) and “upper probability” (or “degree of plausibility”) assigned to
every event. These upper and lower probabilities have been well studied [25,26];
they are not additive in general, and are called by Shafer belief and plausibility
functions.

The problem of finding the set of probability measures dominating a given
fuzzy measure appears in many situations, especially in decision theory and in
cooperative game theory. In decision theory, it may happen that the available
information is not sufficient to assign an exact probability to events, but it only

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 11–22, 2016.
DOI: 10.1007/978-3-319-40596-4 2
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allows an interval of compatible probability values. In this case, we obtain a set
of possible probabilities, denoted by P. If we consider μ := infP∈P P , then μ is
a fuzzy measure (but not necessarily a belief function [24]), called the “coherent
lower probability”. As a consequence, for any probability P ′ dominating μ, it
follows that EP ′(f) ≥ Cµ(f), for any function f , where Cµ denotes the Choquet
integral [3]. In [2], Chateauneuf and Jaffray use this result and the fact that
μ ≤ P, ∀P ∈ P to obtain an easy method to compute infP∈P EP (f). Note that
this method is based on the knowledge of the set of all probability distributions
dominating μ. The same can be applied for obtaining an upper bound.

In cooperative game theory, a TU-game is a set function μ vanishing on the
empty set (it is not necessarily a fuzzy measure, however). One of the most
important problems in this field is to obtain a sharing function for the game,
that is, assuming that the grand coalition X is formed and the benefit μ(X) is
obtained, we are looking for a rational and equitable way to divide μ(X) among
all players. Any possible sharing function is called a solution of the game. Among
the many concepts of solutions in the literature (see, e.g., [5]), one of the most
popular is the core of the game [23], which is defined as the set of additive
games dominating μ and coinciding with μ on the grand coalition X. The core
is a bounded polyhedron, possibly empty, and much research has been devoted
to its study (see a survey in [10]).

On the other hand, a natural extension of probabilities or additive measures is
the concept of k-additive measure [7,8]. They constitute a mid-term between prob-
ability measures (which are too restrictive in many situations) and general fuzzy
measures (whose complexity is too high to deal with in practice). Thus, a natural
extension of the previous dominance problem is to look for the set of k-additive
measures dominating a given fuzzy measure. There are some cases where this
could be useful. First, suppose a situation that can be modelled via a k-additive
measure (an axiomatic characterization to this situation can be found in [19]),
but where our information is not enough to completely determine the measure.
Then, we have to work with a set of compatible k-additive measures (let us call it
Uk). A second example is the identification of a capacity in a practical situation.
It can be proved that the available information may not be sufficient to determine
a single solution, but there exists a set of k-additive measures, all equally suitable
[16]. Moreover, the set of all these measures is a convex set and consequently, the
measure for an event A ⊆ X lies in an interval of possible values (a deeper study
about the uniqueness of the solution and the structure of the set of solutions can
be found in [18]). As for probabilities, if μ = infµk∈Uk

μk, then μ is a fuzzy mea-
sure and Cµ′

k
(f) ≥ Cµ(f), for any k-additive measure μ′

k dominating μ. Therefore,
it seems interesting to find the set of all k-additive fuzzy measures dominating μ,
thus extending the results in [2].

Another interest in finding the set of dominating k-additive measures can
be found in game theory. As we have said above, the core of a game μ may be
empty [1]. Considering instead the set of its k-additive dominating games, called
the k-additive core, it is shown in [17] that the k-additive core is never empty,
as soon as k ≥ 2.
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In this paper we deal with the problem of characterizing the set of all
k-additive measures dominating a given fuzzy measure μ. Previous attempts
in this direction appear in [9,20]. As it will become apparent below, we have
to face many difficulties that do not arise in the case of probabilities, except
in very restrictive situations. One of these situations is the case of k-additive
belief functions dominating a belief function. We will use the results in this case
to derive a general result for any fuzzy measure and any dominating k-additive
measure.

The rest of the paper is organized as follows: in the next section, we explain
the basic facts and results in order to fix notation and to be self-contained;
then, we derive the results for characterizing the set of dominating k-additive
measures. We end the paper with concluding remarks and open problems.

2 Basic Results

Consider a finite referential set of n elements, X = {1, ..., n}. The set of subsets
of X is denoted by P(X) and we denote P∗(X) = P(X)\{∅}; the set of subsets
whose cardinality is less or equal than k is denoted by Pk(X), or Pk

∗ (X) if the
emptyset is not included. Subsets of X are denoted A,B, ...; we will sometimes
write i1 · · · ik instead of {i1, . . . , ik} in order to avoid a heavy notation; braces
are usually omitted for singletons and subsets of two elements.

We define a fuzzy measure as a set function μ : P(X) → [0, 1] satisfying
the boundary conditions μ(∅) = 0, μ(X) = 1 and monotonicity (μ(A) ≤ μ(B)
whenever A ⊆ B). Fuzzy measures are denoted by μ, μ∗ and so on, and the set
of all fuzzy measures on X is denoted FM(X).

Given a set function μ (not necessarily a fuzzy measure), an equivalent rep-
resentation of μ can be obtained via the Möbius transform [21], given by

m(A) :=
∑

B⊆A

(−1)|A\B|μ(B), ∀A ⊆ X.

The Möbius transform is also widely used in the field of Game Theory, where
it is known as dividends [13]. It is worth noting that m(A) can attain nega-
tive values. The set of fuzzy measures μ such that the corresponding Möbius
transform satisfies m(A) ≥ 0, ∀A ⊆ X is known as the set of belief functions,
denoted BEL(X). Belief functions come from the Theory of Evidence developed
by Dempster [4] and Shafer [22]. Given the Möbius transform, it is possible to
recover the original fuzzy measure through the Zeta transform:

μ(A) =
∑

B⊆A

m(B).

Contrarily to fuzzy measures, for which it holds 0 ≤ μ(A) ≤ 1, ∀A ⊆ X, the
upper and lower bounds for the Möbius transform are not trivial. These bounds
are given in the next result.
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Theorem 1. [12] For any fuzzy measure μ, its Möbius transform satisfies for
any A ⊆ N , |A| > 1:

l|A| := −
(|A| − 1

c′
|A|

)

� m(A) �
(|A| − 1

c|A|

)

:= u|A|,

with

c|A| = 2
⌊ |A|

4

⌋

, c′
|A| = 2

⌊ |A| − 1
4

⌋

+ 1,

and for |A| = 1 < n:
0 � m(A) � 1,

and m(A) = 1 if |A| = n = 1. These upper and lower bounds are attained by the
fuzzy measures μ∗

A, μA∗, respectively:

μ∗
A(B) =

{
1, if |A| − l|A| � |B ∩ A|
0, otherwise

,

μA∗(B) =
{

1, if |A| − l′|A| � |B ∩ A|
0, otherwise

,

for any B ⊆ N .

We give in Table 1 the first values of the bounds.

Table 1. Lower and upper bounds for the Möbius transform of a fuzzy measure

|A| 1 2 3 4 5 6 7 8 9 10 11 12

u.b. of m(A) 1 1 1 3 6 10 15 35 70 126 210 462

l.b. of m(A) 1(0) −1 −2 −3 −4 −10 −20 −35 −56 −126 −252 −462

Let us now introduce the concept of k-additivity. A problem appearing in
the practical use of fuzzy measures is their complexity. Contrary to the case of
probabilities, where just n−1 values suffice to completely determine a probability
on a set of cardinality n, in order to determine a fuzzy measure 2n − 2 values
are necessary. As a consequence, complexity grows exponentially with n. In an
attempt to reduce this complexity, Grabisch has defined the concept of k-additive
measure [7].

A fuzzy measure μ is said to be k-additive if its Möbius transform vanishes
for any A ⊆ X such that |A| > k and there exists at least one subset A with
exactly k elements such that m(A) 
= 0.

Thus, it can be seen that probabilities are just 1-additive measures (and also
1-additive belief functions). As a consequence, k-additive measures generalize
probability measures and they fill the gap between probability measures and
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general fuzzy measures. For a k-additive measure, the number of coefficients is
reduced to

k∑

i=1

(
n

i

)

.

More about k-additive measures can be found, e.g., in [8]. We define the set
FMk(X) (resp. BELk(X)) as the set of fuzzy measures (resp. belief functions)
μ whose corresponding Möbius transform m satisfies m(A) = 0 if |A| > k.

Finally, we say that a fuzzy measure μ∗ dominates μ, and we denote it by
μ∗ ≥ μ, if

μ∗(A) ≥ μ(A), ∀A ⊆ X.

For general set functions, dominance is defined by

μ∗(A) ≥ μ(A), ∀A ⊆ X,μ∗(X) = μ(X).

Given a fuzzy measure μ, we define the set FMk
≥(μ) (or BELk

≥(μ) if we
restrict to dominating k-additive belief functions) as the set of fuzzy measures
(resp. belief functions) in FMk(X) (resp. BELk(X)) dominating μ.

3 Characterizing the Set of Dominating Fuzzy Measures

Consider a fuzzy measure μ and let us turn to the problem of obtaining the set
FMk

≥(μ). In [2], the following result is proved.

Theorem 2. Let μ be a fuzzy measure on X, m its Möbius transform, and
suppose P ∈ FM1

≥(μ). Then, P can be put under the following form:

P ({i}) =
∑

B�i

λ(B, i)m(B), ∀i ∈ X.

The function λ : P∗(X) × X → [0, 1] is a weight function satisfying:
∑

i∈B

λ(B, i) = 1, ∀∅ 
= B ⊆ X.

λ(B, i) = 0 whenever i 
∈ B.

Dempster has shown the same result in [4] and also Shapley in [23], but both
of them only for belief functions.

If we restrict our attention to the case of the set of k-additive belief functions
dominating a belief function, the following result appears in [20].

Theorem 3. Let μ,m, μ∗ : P(X) → R, where μ is a fuzzy measure, m its
Möbius inverse, and μ∗ ∈ BELk

≥(μ). Then, necessarily the Möbius transform m∗

of μ∗ can be put under the following form:

m∗(A) =
∑

B|A∩B 
=∅
λ(B,A)m(B), ∀A ∈ Pk

∗ (X),
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where function λ : P∗(X) × Pk
∗ (X) → [0, 1] is such that

∑

A|B∩A 
=∅
λ(B,A) = 1, ∀B ∈ P∗(X). (1)

λ(B,A) = 0, if A ∩ B = ∅. (2)

We have to keep in mind that Eqs. 1 and 2 lead to a non-empty intersection
condition; from a mathematical point of view, another possibility (with better
properties) of generalizing Theorem 2 could be a more restrictive inclusion con-
dition, i.e. satisfying λ(B,A) = 0 whenever A 
⊆ B. However, this condition
fails to obtain all dominating k-additive belief functions, as it is shown in [20].
When dealing with general fuzzy measures, it happens that we have to permit
functions λ attaining negative values [9]. Thus, we obtain a very wide set of
functions, many of them failing to satisfy monotonicity or dominance.

In this paper, we are going to apply the result for belief functions to obtain
a more handy result for the general case.

Theorem 4. Let μ, μ∗ : P(X) → R, where μ ∈ FMk(X) and μ∗ ∈ FMk
≥(μ),

for k = 1, ..., n, and let us denote by m and m∗ their respective Möbius trans-
forms. Let us define:

maux(A) = m(A) − l|A|, m∗
aux(A) = m∗(A) − l|A|,

where li denotes the lower bound for the Möbius transform of subsets of car-
dinality i, i = 1, ..., k. Then, necessarily m∗

aux can be put under the following
form:

m∗
aux(A) =

∑

B|A∩B 
=∅
λ(B,A)maux(B), ∀A ∈ Pk

∗ (X),

where function λ : Pk
∗ (X) × Pk

∗ (X) → [0, 1] is such that
∑

A|A∩B 
=∅
λ(B,A) = 1, ∀B ∈ Pk

∗ (X). (3)

λ(B,A) = 0, if A ∩ B = ∅. (4)

Indeed, in this result, function λ is a sharing function of maux(B) among
any subset A such that A ∩ B 
= ∅. Thus, this problem can be turned into a
transshipment problem in a flow network. Figure 1 shows the corresponding flow
network for k = 2.

The proof of the result is based on Gale’s Theorem for a transshipment
network [6], where subset A offers m(A) − l|A| to be shared among subsets
intersecting with A. However, the underlying idea of the result relies on the
result for k-additive dominating belief functions. For belief functions, Theorem3
is an extension of Theorem 2; on the other hand, this result cannot be applied
for general k−additive dominating measures, as shown in [9]. The idea then
is to transform μ and μ∗ into other set functions μaux and μ∗

aux resp., having
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1 2 3 12 13 23

1 2 3 12 13 23

Fig. 1. Example of flow network for k = 2

properties similar to belief functions. More concretely, the corresponding Möbius
transform is non-negative (but these set functions are not normalized!). In this
sense, we can add other constraints instead of l|A|, or even the same constant
regardless the cardinality, but these are the more accurate [12].

Remark that the condition allowing positive weights for non-empty intersec-
tions in Eqs. 3 and 4 cannot be turned into an inclusion condition, as the next
example shows.

Example 1. Consider |X| = 3 and the 2-additive fuzzy measure μ whose Möbius
transform m, and whose corresponding maux are given in next table

A {1} {2} {3} {1, 2} {1, 3} {2, 3}
µ 0.4 0.3 0.4 0.4 1 0.7

m 0.4 0.3 0.4 -0.3 0.2 0

maux 0.4 0.3 0.4 0.7 1.2 1

Now, consider μ∗ the 2-additive measure, with m∗,m∗
aux given by

A {1} {2} {3} {1, 2} {1, 3} {2, 3}
µ∗ 0.4 0.3 0.5 0.5 1 0.7

m∗ 0.4 0.3 0.5 -0.2 0.1 -0.1

m∗
aux 0.4 0.3 0.5 0.8 1.1 0.9

Then, m∗
aux(12) > maux(12), while the only subset containing {1, 2} is {1, 2}

itself.

The previous result can be extended when we are looking for k′-additive
measures dominating k-additive measures when k 
= k′. For this, it suffices to
notice that FMk′

(X) ⊂ FMk(X) if k′ < k. Consequently, any measure in
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FMk′
≥ (μ) can be derived from the previous theorem considering k. Similarly, if

k′ > k, any k′-additive measure dominating μ can be derived from the previous
theorem just taking into account that μ ∈ FMk′

(X).

Corollary 1. Let μ, μ∗ : P(X) → R, where μ ∈ FMk(X) and μ∗ ∈ FMk′
≥ (μ),

for k, k′ = 1, ..., n, and let us denote by m and m∗ their respective Möbius trans-
forms. Assume k ≥ k′ and let us define:

maux(A) = m(A) − l|A|, m∗
aux(A) = m∗(A) − l|A|,

where li denotes the lower bound for the Möbius transform of subsets of car-
dinality i, i = 1, ..., k. Then, necessarily m∗

aux can be put under the following
form:

m∗
aux(A) =

∑

B|A∩B 
=∅
λ(B,A)maux(B), ∀A ∈ Pk′

∗ (X),

where function λ : Pk
∗ (X) × Pk′

∗ (X) → [0, 1] is such that
∑

A|A∩B 
=∅
λ(B,A) = 1, ∀B ∈ Pk

∗ (X).

λ(B,A) = 0, if A ∩ B = ∅.

Corollary 2. Let μ, μ∗ : P(X) → R, where μ ∈ FMk(X) and μ∗ ∈ FMk′
≥ (μ),

for k, k′ = 1, ..., n, and let us denote by m and m∗ their respective Möbius trans-
forms. Assume k ≤ k′ and let us define:

maux(A) = m(A) − l|A|, m∗
aux(A) = m∗(A) − l|A|,

where li denotes the lower bound for the Möbius transform of subsets of car-
dinality i, i = 1, ..., k′. Then, necessarily m∗

aux can be put under the following
form:

m∗
aux(A) =

∑

B|A∩B 
=∅
λ(B,A)maux(B), ∀A ∈ Pk′

∗ (X),

where function λ : Pk
∗ (X) × Pk′

∗ (X) → [0, 1] is such that
∑

A|A∩B 
=∅
λ(B,A) = 1, ∀B ∈ Pk

∗ (X).

λ(B,A) = 0, if A ∩ B = ∅.

As we have seen in Example 1, a non-empty intersection condition is needed.
However, it is possible to obtain all dominating k-additive dominating measures
from set functions that can be derived via an inclusion condition. This is stated
in next result.
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Theorem 5. Let μ,m, μ∗,m∗ : P(X) → R, where μ ∈ FMk(X), μ∗ ∈
FMk

≥(μ) and m,m∗ their corresponding Möbius inverses. Let us define

maux(A) = m(A) − l|A|, m∗
aux(A) = m∗(A) − l|A|,

where li denotes the lower bound for the Möbius transform of subsets of cardi-
nality i, i = 1, ..., k. Then, there exists a set function (not necessarily a fuzzy
measure) μ′ dominating μ whose Möbius transform m′ is such that the corre-
sponding m′

aux can be written as

m′
aux(B) =

∑

A|B⊆A

λ′(A,B)maux(A), ∀B ∈ Pk
∗ (X),

where λ′ : Pk
∗ (X) × Pk

∗ (X) → [0, 1] is such that
∑

B|B⊆A

λ′(A,B) = 1, ∀A ∈ Pk
∗ (X). (5)

λ′(A,B) = 0 if B 
⊆ A, (6)

and m∗
aux can be derived from m′

aux through

m∗
aux(C) =

∑

B|B⊆C

λ∗(B,C)m′
aux(B), ∀C ∈ Pk

∗ (X),

where λ∗ : Pk
∗ (X) × Pk

∗ (X) → [0, 1] is such that
∑

C|B⊆C

λ∗(B,C) = 1, ∀B ∈ Pk
∗ (X).

λ∗(B,C) = 0 if B 
⊆ C.

This result is explained in Fig. 2 for |X| = 3 and k = 2.
It is worthnoting the differences with a similar result appearing in [20]; in

that result, applying for dominating k-additive belief functions, any set function
obtained using Eqs. 5 and 6 is a k-additive dominating belief function. However,
in this more general situation, we cannot ensure monotonicity, as next example
shows.

Example 2. Consider |X| = 3 and let μ be the {0, 1}-fuzzy measure such that
μ(A) = 1 if and only if {1, 2} ⊆ A. Then, the corresponding m is given by
m(1, 2) = 1 and m(A) = 0 otherwise. Then, μ ∈ FM2(X) and maux(1, 2) =
2,maux(i, j) = 1 for any other pair and maux(i) = 0 for any singleton. Now, if
we define

λ(A,B) =
{

1 if A = B
0 otherwise , if A 
= {1, 2}, λ({1, 2}, B) =

{
1 if B = {1}
0 otherwise

Then, m′
aux(1) = 2,m′

aux(1, 2) = 0,m′
aux(2) = 0, whence it follows m′(1) =

2,m′(1, 2) = −1,m′(2) = 0 and thus, μ′(1) = 2 > μ′(1, 2) = 1, violating
monotonicity.
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1 2 3 12 13 23

1 2 3 12 13 23

1 2 3 12 13 23

Fig. 2. Example of flow network for k = 2.

4 Conclusions and Open Problems

In this paper we have dealt with the problem of obtaining the set of k-additive
dominating measures of a k-additive measure. For this, we have used a previous
result valid for the special case of belief functions. The result follows the same
philosophy of other results derived by Chateauneuf and Jaffray [2] and Miranda
et al. [18]; along this line, we have obtained a superset of the set FMk

≥(μ).
A natural question is whether FMk

≥(μ) is strictly contained into that set.
We have proved that in general, the non-empty intersection condition can-

not be removed, but it seems interesting to search for special cases for which
non-empty intersection can be turned into an inclusion condition because this
condition seems easier to handle.

However, we feel that the most interesting open problem is to apply these
results in a procedure for obtaining the set of vertices of FMk

≥(μ). As it can be
easily found, FMk

≥(μ) is a polytope and thus, it is completely determined by
its vertices. There are several results concerning the vertices of the core and the
set of dominating probabilities, i.e. FM1

≥(μ) [14,23]. For k ≥ 2, several results
have been obtained in [11]. The problem is particularly difficult for 2 < k < n
because the set of vertices of FMk(X) is not the set of {0, 1}-valued measures
in FMk(X) [15] and the general form of these vertices is not known. Even for
a seemingly simple situation, the set FM2

≥(μ), up to our knowledge, the set of
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vertices is not known for any μ. The results in the paper could shed light on
these problems, as they provide bounds for these sets.
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Abstract. We are interested in aggregation function based on two
weights vectors: the criteria weights p and the rank weights w. The main
drawback of the existing proposals based on p and w (in particular the
Weighted OWA (WOWA) and the Semi-Uninorm OWA (SUOWA) oper-
ators) is that their expression is rather complex and the contribution of
the weights p and w in the aggregation is obscure as there is no clear
interpretation of these weights. We propose a new approach to define
aggregation functions based on the weights p and w. We consider the
class of capacities (which subsumes the WOWA and SUOWA). We start
by providing clear interpretations of these weights that are seen as con-
straints on the capacity. We consider thus the whole class of capacities
fulfilling these constraints. A simulation shows that the WOWA and
SUOWA almost never satisfy these constraints in a strict sense.

Keywords: Choquet integral · Ordered Weighted Average · Shapley
value · Intolerance index

1 Introduction

Aggregation functions are widely used in many applications. The Weighted Sum
(WS) and Ordered Weighted Average (OWA) – defined by Yager [1,2]– operators
are very popular. They are both based on a vector on n components, if there
are n criteria to aggregate. In the WS, the parameters p are criteria weights.
In the OWA, the parameters w are rank weights. The main interest of these
aggregation functions is their simplicity and interpretability. Thanks to that,
these two weight vectors can be directly provided by a decision maker. The first
one corresponds to the importance of criteria. This type of information is often
asked to decision makers. The second one is related to the assessment of solutions
having good marks on only one criterion, on only two criteria, etc., on all criteria
[3]. A decision maker can also provide such an information.

It is then natural to combine criteria weights and rank weights, in order to
take advantage of the flexibility of both WS and OWA – being thereby able to
capture relative importance of criteria and interaction among them – while using
only a very small amount of information from the decision maker. By contrast,
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 23–34, 2016.
DOI: 10.1007/978-3-319-40596-4 3
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the most general aggregation function able to represent the importance of criteria
and interaction among them is the Choquet integral w.r.t. a capacity. The latter
contains 2n parameters, making it difficult to elicit in applications. The interest
of having a generalization of WS and OWA based on only 2n parameters is thus
very high.

Several aggregation functions based on criteria weights and rank weights
have been proposed in the literature (see Sect. 2). The Weighted OWA (WOWA)
operator [4], the Hybrid Weighted Averaging (HWA) operator [5], the Semi-
Uninorm OWA (SUOWA) operator [6], and the Ordered Weighted Averaging
Weighted Average (OWAWA) operator [7]. HWA has a simple expression but
fails to fulfill basic important properties, such as idempotency. OWAWA is a
simple linear combination of WS and OWA, and its interpretation is not so
intuitive. On the other, WOWA and SUOWA operators have quite complex
expressions, which are not intuitive for a decision maker. Moreover, the two
weights vectors p and w are combined in a way that is difficult to understand,
and one cannot readily see what is the contribution of p and w in the formula.

The aim of this paper is to propose a new approach to define aggregation
functions based on two weight vectors p and w, in which these two vectors
have a clear semantics in the aggregation function. The existing approaches first
define an aggregation formula parametrized by w and p, and then analyze their
properties. We proceed in the opposite way (see Sect. 3). We start with a class
of very general aggregation functions able to capture both importance of criteria
and interaction among them. We naturally consider the Choquet integral w.r.t.
general capacities. Then we define clear semantics of p and w. More precisely, it
takes the form of linear constraints on the capacity.

Going back to WOWA and SUOWA, we performed a numerical simulation
to check whether these constraints are fulfilled, and if not how far they are to
be fulfilled (see Sect. 4).

2 Background

The set of criteria is denoted by N = {1, . . . , n}. We are interested in an aggre-
gation function H : IRN → IR.

2.1 Background on the Choquet Integral

Capacities and Choquet Integral. A capacity (also called fuzzy measure) on
N = {1, . . . , n} is a set function μ : 2N → [0, 1] such that [8,9]

– boundary conditions: μ(∅) = 0, μ(N) = 1,
– monotonicity: ∀A ⊆ B ⊆ N , μ(A) ≤ μ(B).

Let MN be the set of all capacities on N .
A capacity is said to be additive if μ(A ∩ B) = μ(A) + μ(B) for every pair

(A,B) of disjoint coalitions. A capacity is said to be symmetric if μ(A) depends
only on the cardinality of A.
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The Choquet integral of a = (a1, . . . , an) ∈ IRn defined w.r.t. a capacity μ
has the following expression [8]:

Cμ(a1, . . . , an) =
n∑

i=1

aσ(i) × [μ ({σ(i), · · · , σ(n)}) − μ ({σ(i + 1), · · · , σ(n)})],

(1)

where σ is a permutation on N such that aσ(1) ≤ aσ(2) ≤ · · · ≤ aσ(n), and
μ ({σ(i + 1), · · · , σ(n)}) = 0 when i = n. The Choquet integral has been proved
to be able to model both the importance of criteria and the interaction between
criteria.

The weighted sum is given by

WSp(a) =
∑

i∈N

pi ai

where p = (p1, . . . , pn) is the weight of criteria. It corresponds to a Choquet
integral with respect to an additive capacity: μWSp

(S) =
∑

i∈S pi.
The Ordered Weighted Average (OWA) is defined by for any a ∈ IRN [1,2]

OWAw(a) =
n∑

j=1

wj aσ(n−j+1)

where wj are the weights allotted to the jth largest value of vector a. It corre-
sponds to a Choquet integral with respect to a symmetric capacity: μOWAw

(S) =
∑|S|

j=1 wj .

Shapley Value. It is not easy to interpret a capacity in a synthetic way, as it
contains 2n parameters. The most helpful importance index helping to interpret
a capacity is the concept of mean importance, defined as the Shapley value of
the capacity [10]:

φi(μ) =
∑

S⊆N\{i}

|S|!(n − |S| − 1)!
n!

(μ(S ∪ {i}) − μ(S)).

Index of Tolerance and Intolerance. In decision under uncertainty, the use
of belief functions (infinitely monotone capacities) allows to represent risk aver-
sion. This is a general behavior of the decision maker towards risk or uncertainty,
that is not specific to a given state of nature. The counterpart of risk aversion
in MCDA is the concept of intolerance. Roughly speaking, a decision maker is
intolerant if one needs to be good on most of criteria to have a good overall eval-
uation [11]. Marichal introduced tolerance and intolerance indices to formalize
this idea [12].

Vetos and favors are situations of extreme intolerance and tolerance respec-
tively. Criterion i is said to be a veto (resp. a favor) if Cμ(a) = 0 (resp. Cμ(a) = 1)
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whenever ai = 0 (resp. ai = 1) [13]. In other words, a bad evaluation on a veto
criterion cannot be compensated by the other criteria. The concept of a veto
can be generalized to subsets of cardinality k: A Choquet integral Cμ (or equiv-
alently its underlying capacity μ) is at most k-intolerant if Cμ(a) = 0 whenever
aσ(k) = 0 [11]. It is k-intolerant if, in addition, Cμ(a) 
= 0 for some aσ(k−1) = 0.
One can prove that Cμ is at most k-intolerant if and only if μ(A) = 0, ∀A ⊆ N
with |A| ≤ n−k [11]. The index of k-intolerance is the mean value of Cμ(a) over
all a such that aσ(k) = 0 [12]:

intolk(μ) =
n − k + 1
(n − k)

(
n
k

)
∑

K⊆N
|K|=k

E(Cμ(0K , Z−K))

where E denotes expectation, assuming that the random inputs Z1, . . . , Zn are
independent and uniformly distributed. This gives:

intolk(μ) = 1 − 1
n − k

n−k∑

t=0

1
(
n
t

)
∑

T⊆N
|T |=t

μ(T ).

Likewise, a Choquet integral Cμ is at most k-tolerant if Cμ(a) = 1 whenever
aσ(n−k+1) = 1 [11]. The index of k-tolerance is the mean value of Cμ(a) over all
a such that aσ(n−k+1) = 1 [12]:

tolk(μ) =
n − k + 1
(n − k)

(
n
k

)
∑

K⊆N
|K|=k

E(Cμ(1K , Z−k)) − 1
n − k

,

This gives:

tolk(μ) =
1

n − k

n∑

t=k

1
(
n
t

)
∑

T⊆N
|T |=t

μ(T ) − 1
n − k

.

2.2 Existing Proposals Based on Two Weight Vectors

We describe in this section the existing proposals based on two weight vectors:
the criteria weights p and the rank weights w.

Wished Properties. We start by giving some important properties that the
aggregation function H : IRN → IR should satisfy. The following properties are
taken from [14]:

– Continuity: H is continuous
– Idempotency: H(α, . . . , α) = α for every α
– Monotonicity: H is monotone



On Capacities Characterized by Two Weight Vectors 27

– Compensation: mini∈N ai ≤ H(a) ≤ maxi∈N ai. Note that this property fol-
lows directly from Idempotency and Monotonicity

Consider now an aggregation function Hp,w based on the two weights p and w.
The following property is wished:

– Generalization of WSp and OWAw: One says that Hp,w generalizes both the
WS and OWA, if Hp,η = WSp and Hη,w = OWAw, where η denotes the
uniform vector ( 1

n , . . . , 1
n ) [6].

WOWA. Torra introduced an aggregation function based on the criteria weights
p and the rank weights w. It is called Weighted OWA (WOWA) operator [4]. It
depends also on a quantifier Q : [0, 1] → [0, 1], which is a non-decreasing function
such that Q(0) = 0 and Q(1) = 1. The quantifier Q is defined from rank weights
w in the following way [2,15]

Q

(
k

n

)

− Q

(
k − 1

n

)

= wk, for k = 1, . . . , n.

The WOWA has the following expression:

WOWAQ
p,w(a) =

n∑

j=1

qj aτ(n−j+1)

where

qj = Q

(
j∑

k=1

pτ(n−k+1)

)

− Q

(
j−1∑

k=1

pτ(n−k+1)

)

.

A WOWA are a particular case of a Choquet integral for the following
capacity

μWOWAQ
p,w

(S) = Q

(
∑

i∈S

pi

)

.

SUOWA. Another aggregation function constructed from the two vectors p and
w has recently been proposed by Llamazares [6,16]. Its definition is based a semi-
uninorm and is thus called Semi-Uninorm OWA operator (SUOWA in short).
A semi-uninorm is a mapping U : [0, 1]2 → [0, 1] if it is monotonic and possesses
a neutral element e ∈ [0, 1] (such that U(e, x) = U(x, e) = x for every x).

Let us define a set function v by

v(S) = |S| U

(
μWSp(S)

|S| ,
μOWAw

(S)
|S|

)

(2)

The factor 1
|S| comes from the fact that when p = η (resp. w = η), μWSp (S)

|S|
(resp. μOWAw (S)

|S| ) is independent of S and is always equal to 1
n . Hence property

“generalization of WSp and OWAw” is satisfied, if the neutral element is e = 1
n .
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The drawback with this expression is that it may be non-monotone. Hence
Llamazares considers the monotonic cover of v:

μSUOWAU
p,w

(S) = max
T⊆S

v(T ).

The monotonic cover can be computed recursively [16]

μSUOWAU
p,w

(S) = max
(

v(S),max
i∈S

μSUOWAU
p,w

(S \ {i})
)

.

Then the SUOWA is the Choquet integral with respect to μSUOWAU
p,w

.

Set-function v is bounded by 1 if and only if U ∈ Ũ 1
n , where Ũ 1

n is the set
of semi-uninorms with neutral element e = 1

n such that U( 1
k , 1

k ) ≤ 1
k for all

k ∈ IN [16, Proposition 5]. In the context of MCDA, we will generally consider
idempotent semi-uninorms. They are necessarily elements in Ũ 1

n . Let us give
some interesting examples of semi-uninorms with neutral element e = 1

n [17]:

Umin(x, y) =
{

max(x, y) if (x, y) ∈ [ 1n , 1]2,
min(x, y) otherwise

Umax(x, y) =
{

min(x, y) if (x, y) ∈ [0, 1
n ]2,

max(x, y) otherwise

UAM (x, y) =

⎧
⎨

⎩

min(x, y) if (x, y) ∈ [0, 1
n ]2,

max(x, y) if (x, y) ∈ [ 1n , 1]2 \ {( 1
n , 1

n )}
x+y
2 otherwise

UP (x, y) = n min
(

x, y,
1
n

)

max
(

x, y,
1
n

)

=

⎧
⎨

⎩

max(x, y) if (x, y) ∈ [ 1n , 1]2,
min(x, y) if (x, y) ∈ [0, 1

n ]2,
n x y otherwise

UTM
(x, y) = min

(

x, y,
1
n

)

+ max
(

x, y,
1
n

)

− 1
n

=

{
max(x, y) if (x, y) ∈ [ 1

n
, 1]2,

min(x, y) if (x, y) ∈ [0, 1
n
]2,

x + y − 1
n

otherwise

UTL
(x, y) =

{
max(x, y) if (x, y) ∈ [ 1n , 1]2,
max(x + y − 1

n , 0) otherwise

All previous semi-uninorms are idempotent except UTL
, as they subsumes to

the min or max operator on the diagonal. Functions Umin and Umax are the
smallest and largest idempotent semi-uninorms respectively. Note that UAM

is basically the average mean between Umin and Umax. Semi uninorm UP is
a continuous idempotent semi-uninorm defined from generating the logarithm
function. Finally, TM and TL are defined from the largest and the smallest (i.e.
the Lukasiewicz t-norm) quasi-copula.

Concerning UTL
, if mini∈N pi + minj∈N wj ≥ 1

n , and for every 1 ≤ k ≤ n,
either 1

k

∑
1≤j≤k wj ≤ 1

n or for all S ⊆ N with |S| = k, 1
k

∑
i∈S pi ≤ 1

n , then

μ
SUOWA

UTL
p,w

(S) = μWSp(S) + μOWAw(S) − |S|
n
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HWA. The hybrid weighted averaging (HWA) operator is an aggregation func-
tion Hw

p : IRn → IR defined by [5]

HWAw
p (a) =

n∑

i=1

wi × npσ(i)aσ(i)

where σ is a permutation of {1, . . . , n} such that pσ(1)aσ(1) ≥ · · · ≥
pσ(n)aσ(n). This formula can be seen as the OWA operator applied to vector
(np1a1, . . . , npnan).

HWA fails to satisfy Idempotency and Compensation properties, which make
it not suitable for applications in MCDA.

OWAWA. The Ordered Weighted Averaging Weighted Average (OWAWA)
operator is defined by [7]

OWAWAW
p (a) = α WSp(a) + (1 − α) OWAw(a)

where α ∈ [0, 1] is a parameter. This expression is too simple and fails to com-
bine the weights w and p in a subtle way. In particular, it does not satisfy the
“Generalization of WSp and OWAw” property [6].

3 Definition of a Semantics on the Two Weight
Vectors p and w

We are given two weight vectors: the criteria weights p = (p1, . . . , pn), and the
rank weights w = (w1, . . . , wn). As we have seen, a major problem with the
existing proposals combining these two weight vectors p and w is their interpre-
tation.

The existing approaches first define an aggregation formula parametrized
by w and p, and then analyze their properties. We proceed in the opposite
way. We start by providing some properties that we would like to have for an
aggregation function based on the two weight vectors p and w. These properties
will be considered as constraints on the capacity μ. One obtains thus a set of
admissible capacities.

The aim of this section is to provide a clear interpretation of p and w, and
derive constraints on the capacity from these interpretations. Intuitively, the
two vectors p and w are orthogonal in their interpretations, as p relates the
importance of criteria and w relates to the type of interaction among criteria.

3.1 Constraints on p

Let us first identify the constraints on μ derived from the criteria weight vector
p. The weighted sum WSp is the simplest aggregation function based on p. In
the weighted sum, pi has a clear interpretation. It is simply the importance of
criterion i. We observe that pi = WSp(1i, 0−i) − WSp(0, . . . , 0).



30 C. Labreuche

When the DM provides as inputs the importance pi of criterion i, the mean
importance of criteria i should be precisely pi. The Shapley value has been
advocated to represent the mean importance of the criteria for a capacity. Then
the Shapley values of μ shall be equal to p:

∀i ∈ N φi(μ) = pi. (3)

3.2 Constraints on w

The rank weight vector w that we wish to use, is taken from the OWA operator
OWAw. In an OWA operator, all criteria are symmetric and have thus the same
importance. Hence w describes only the way criteria are interacting together.

We have used the Shapley value to interpret p. The ∗-intolerant indices depict
interaction among criteria, and are not dependent on a particular pair or subset
of criteria – unlike the interaction indices. Hence the k-intolerant index might
be suitable to interpret the weights w. In order to check this, let compute the
k-intolerant index for the OWA operator OWAw:

intolk(μOWAw
) = 1 − 1

n − k

n−k∑

t=1

1
(
n
t

)
∑

T⊆N
|T |=t

μOWAw
(T )

= 1 − 1
n − k

n−k∑

t=1

t∑

j=1

wj = 1 − 1
n − k

n−k∑

t=1

t wt.

There is a clear relation between the k-intolerant index and the value of the n−k
first values in the weight vector w. However, this relation is not so trivial, and
it will not be convenient as a constraint.

An essential property of the weights w is the following [3]: OWAw

(1S , 0N\S) = w1 + w2 + · · · + ws for any S ⊆ N with |S| = s. We note
that OWAw(1S , 0N\S) is equal to the OWA capacity μOWAw at S. In order
to generalize this property to a non-symmetric capacity, we just need to replace
OWAw(1S , 0N\S) by the average value of μ(S) over all subsets of cardinality
s. This corresponds to the term 1

(nt)
∑

T⊆N
|T |=t

μ(T ) =: At(μ) in the expression of

intolk. There is a simple linear relation between the ∗-intolerant indices and the
A∗ indices:

intol1(μ) = 1 − 1
n − 1

n−1∑

t=1

At(μ)

· · ·

intolk(μ) = 1 − 1
n − k

n−k∑

t=1

At(μ)

· · ·
intoln−1(μ) = 1 − A1(μ).
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Enforcing constraints on the ∗-intolerant indices or on the A∗ indices is com-
pletely equivalent. Due to the simple relations At(μOWAw

) =
∑t

j=1 wj , we choose
to interpret the weights w from the A indices. Note that At(μ) is the average
value of an alternative being very good on t criteria and very bad on the remain-
ing ones.

Hence we obtain the following constraints for the interpretation of the w rank
weights:

∀s ∈ {1, . . . , n − 1} 1
(
n
s

)
∑

S⊆N : |S|=s

μ(S) =
s∑

k=1

wk. (4)

Note that (4) with s = n has been removed as it is trivially satisfied by every
capacity.

3.3 Set of Capacities Consistent with the Semantics of p and w

According to the previous subsections, we are interested to the set of capacities
that are consistent with the semantics given to p and w (relations (3) and (4)):

MN (p,w) :=
{

μ ∈ MN :

∀i ∈ N
∑

S⊆N\{i}

|S|!(n − |S| − 1)!
n!

(μ(S ∪ {i}) − μ(S)) = pi ,

∀s ∈ {1, . . . , n − 1} 1
(
n
s

)
∑

S⊆N : |S|=s

μ(S) =
s∑

k=1

wk

}

4 Satisfaction of the Constraints with the Existing
Proposals

The aim of this section is to analyze whether the WOWA and SUOWA operators
satisfy relations (3) and (4), and if not, how far they are from fulfilling it.

Experimental Setting. We consider a family μp,w of capacities parametrized
by the two weight vectors p and w.

Given two weight vectors p and w, we first construct μp,w, then we compute
φ1 (μp,w), . . ., φn (μp,w), A1 (μp,w), . . ., An−1 (μp,w). In order to measure how far
we are to fulfill relations (3) and (4), we introduce the following errors

EP (p,w) :=
√∑

i∈N

(φi (μp,w) − pi)
2

EW (p,w) :=

√
√
√
√
√

∑

1≤k≤n−1

⎛

⎝Ak (μp,w) −
k∑

j=1

wj

⎞

⎠

2
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These two metrics are equal to zero when (3) and (4) are fulfilled.
We generated 100 000 random vectors p and w. The L2 average and max

value of EP (p,w) over the 100 000 runs are denoted by L2
P and L∞

P respectively.
The L2 average and max value of EW (p,w) over the 100 000 runs are denoted
by L2

W and L∞
W respectively.

Satisfaction of the Constraints with the WOWA Operator. First of all,
relations (3) and (4) are almost never satisfied by the WOWA operator. The
numerical results are given in the following table:

n 3 4 5 6 8 10

L2
P 0.040 0.026 0.022 0.016 0.010 0.007

L∞
P 0.400 0.284 0.312 0.219 0.156 0.099

L2
W 0.082 0.081 0.079 0.077 0.074 0.071

L∞
W 0.583 0.493 0.469 0.384 0.271 0.242

We note that the average values L2
P and L2

W are rather small. Hence relations
(3) and (4) are not far from being satisfy on average. However, the error is quite
large in the worst cases. In these situations, there is a major discrepancy between
the interpretation that the decision maker would expect and what the WOWA
will provide.

To illustrate the worst cases, consider the following values: n = 4, p =
(0.01, 0.07, 0.12, 0.7) and w = (0.02, 0.42, 0.53, 0.03). The capacity correspond-
ing to the WOWA is given by:

μ({1}) = 0.0004, μ({2}) = 0.0056, μ({3}) = 0.0096, μ({4}) = 0.864
μ({1, 2}) = 0.0064, μ({1, 3}) = 0.0104, μ({2, 3}) = 0.0152
μ({1, 4}) = 0.8852, μ({2, 4}) = 0.9724, μ({3, 4}) = 0.9784
μ({1, 2, 3}) = 0.016, μ({1, 2, 4}) = 0.9736, μ({1, 3, 4}) = 0.9796
μ({2, 3, 4}) = 0.9868.

For this capacity, we have

φ(μ) = (0.00567, 0.025, 0.03, 0.93933)
A∗(μ) = (0.22, 0.478, 0.739, 1.0).

We obtain the following errors

EP (p,w) = 0.2596, EW (p,w) = 0.3079.

These large errors can be explained somehow by the fact that the information
contained in p and w is conflicting.
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with Umin

n 3 4 5 6 8 10

L2
P 0.124 0.108 0.094 0.0846 0.07 0.0611

L∞
P 0.755 0.651 0.576 0.479 0.347 0.288

L2
W 0.111 0.113 0.112 0.111 0.108 0.106

L∞
W 0.685 0.746 0.707 0.5088 0.456 0.398

with Umax

n 3 4 5 6 8 10

L2
P 0.126 0.112 0.100 0.092 0.080 0.071

L∞
P 0.717 0.716 0.550 0.477 0.364 0.314

L2
W 0.118 0.125 0.129 0.130 0.133 0.134

L∞
W 0.704 0.857 0.826 0.829 0.859 0.865

with UTM

n 3 4 5 6 8 10

L2
P 0.081 0.075 0.068 0.063 0.055 0.049

L∞
P 0.465 0.387 0.315 0.299 0.206 0.164

L2
W 0.066 0.070 0.071 0.072 0.074 0.074

L∞
W 0.424 0.369 0.319 0.399 0.352 0.331

with UTL

n 3 4 5 6 8 10

L2
P 0.057 0.053 0.049 0.045 0.040 0.036

L∞
P 0.436 0.401 0.313 0.264 0.202 0.175

L2
W 0.048 0.053 0.056 0.057 0.060 0.061

L∞
W 0.394 0.348 0.347 0.301 0.305 0.357

Satisfaction of the Constraints with the SUOWA Operator. As for
the WOWA, relations (3) and (4) are almost never satisfy with the SUOWA
operator. The following numerical results – using different semi-uninorms – are
of the same kind as for the WOWA.

We notice that UTL
gives the smallest errors on average.

5 Conclusion

In order to provide a clear interpretation of the two weight vectors p and w, we
consider the set MN (p,w) of capacities that fulfill both (3) and (4). These two
relations provide a clear semantics to p and w respectively.

We note that neither WOWA nor SUOWA satisfy these properties in the
general case. Even though we have seen that these classes of aggregation func-
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tions almost satisfy (3) and (4), there are situations for which (3) and (4) are
very far from being fulfilled. In these situations, there is a major discrepancy
between the interpretation that the decision maker would expect and what these
aggregations functions would provide.

Among the elements of MN (p,w), one may adopt different strategies. One
may for instance propose the element of MN (p,w) which maximizes the entropy,
as in [18]. It is indeed a safe strategy as the available preference information is
very sparse. This translates into a convex optimization problem under linear
constraints.

Acknowledgments. This work has been supported by the European project FP7-
SEC-2013-607697, PREDICT “PREparing the Domino effect In crisis siTuations”.

References

1. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

2. Yager, R.R.: Quantifier guided aggregation using OWA operators. Int. J. Intell.
Syst. 11, 49–73 (1996)

3. Labreuche, C., Mayag, B., Duqueroie, B.: Extension of the MACBETH approach
to elicit an owa operator. EURO J. Decis. Processes 3, 65–105 (2015)

4. Torra, V.: The weighted owa operator. Int. J. Intell. Syst. 12, 153–166 (1997)
5. Xu, Z., Dai, Q.: An overview of operators for aggregating information. Int. J. Intell.

Syst. 18, 953–969 (2003)
6. Llamazares, B.: An analysis of some functions that generalize weighted means and

OWA operators. Int. J. Intell. Syst. 28, 380–393 (2013)
7. Merigo, J.: A unified model between the weighted average and the induced owa

operator. Expert Syst. Appl. 38, 11560–11572 (2011)
8. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)
9. Sugeno, M.: Fuzzy measures and fuzzy integrals. Trans. SICE 8(2), 95–102 (1972)

10. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.)
Contributions to the Theory of Games, Vol. II. Annals of Mathematics Studies,
vol. 28, pp. 307–317. Princeton University Press, Princeton (1953)

11. Marichal, J.L.: Tolerant or intolerant character of interacting criteria in aggregation
by the choquet integral. Eur. J. Oper. Res. 155(3), 771–791 (2004)

12. Marichal, J.L.: k-intolerant capacities and choquet integrals. Eur. J. Oper. Res.
177(3), 1453–1468 (2007)

13. Grabisch, M.: The application of fuzzy integrals in multicriteria decision making.
Eur. J. Oper. Res. 89, 445–456 (1996)

14. Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge
University Press, Cambridge (2009)

15. Yager, R.R.: Families of OWA operators. Fuzzy Sets Syst. 55, 255–271 (1993)
16. Llamazares, B.: Constructing choquet integral-based operators that generalize

weighted means and OWA operators. Information Fusion 23, 131–138 (2015)
17. Llamazares, B.: SUOWA operators: Constructing semi-uninorms and analyzing

specific cases. Fuzzy Sets and Systems
18. Kojadinovic, I., Marichal, J.L., Roubens, M.: An axiomatic approach to the def-

inition of the entropy of a discrete Choquet capacity. Inform. Sci. 172, 131–153
(2005)



Computing Superdifferentials of Lovász
Extension with Application to Coalitional Games
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Abstract. Every coalitional game can be extended from the powerset
onto the real unit cube. One of possible approaches is the Lovász exten-
sion, which is the same as the discrete Choquet integral with respect to
the coalitional game. We will study some solution concepts for coalitional
games (core, Weber set) using superdifferentials developed in non-smooth
analysis. It has been shown that the core coincides with Fréchet superdif-
ferential and the Weber set with Clarke superdifferential for the Lovász
extension, respectively. We introduce the intermediate set as the limiting
superdifferential and show that it always lies between the core and the
Weber set. From the game-theoretic point of view, the intermediate set
is a non-convex solution containing the Pareto optimal payoff vectors,
which depend on some ordered partition of the players and the marginal
coalitional contributions with respect to the order.

Keywords: Coalitional game · Lovász extension · Choquet integral ·
Core · Weber set · Superdifferential

1 Introduction

Many important solution concepts for transferable-utility n-person coalitional
games can be expressed in terms of formulas involving gradients or generalized
gradients of a suitable extension of the game. The purpose of such a “differential
representation” is not only computational, but it is also to provide a new inter-
pretation of the corresponding payoff vectors, which usually revolves around the
idea of marginal contributions to a given coalition.

In this contribution we will build a bridge between the class of solution
concepts involving the core and the Weber set by applying certain generalized
derivatives, namely the supergradients, which are studied in variational analy-
sis [8,12]. Among the main superdifferentials count the Fréchet, the limiting
and the Clarke superdifferential, respectively. By adopting the idea proposed
in [13] we employ the limiting superdifferential to define directly a new solution
concept for coalitional games, the so-called intermediate set. Specifically, the
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 35–45, 2016.
DOI: 10.1007/978-3-319-40596-4 4
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intermediate set is the limiting superdifferential of the Lovász extension [6] of
the game v (or, equivalently, the discrete Choquet integral with respect to v [4])
calculated at the grand coalition. The associated payoff vectors are thus mar-
ginal contributions to the grand coalition in the sense conveyed by the limiting
superdifferential.

It turns out that the newly constructed solution is meaningful and interesting
from many viewpoints. The intermediate set can be seen as a nonempty inter-
polant between the core and the Weber set, which makes it applicable especially
when the former is empty or small and the latter is huge. Theorem 2 provides
a combinatorial description of the payoff vectors from the intermediate set in the
following sense. For some ordered partition of the player set, each such vector
is a Weber-style marginal vector on the level of blocks of coalitions and, at the
same time, no coalition inside each block can improve upon this payoff vector
in the sense of marginal coalitional contributions. The intermediate set is thus
a solution concept that looks globally like the Weber set, but behaves locally
like the core concept.

The paper is structured as follows. Section 2 introduces the basic notions and
results from cooperative game theory and non-smooth analysis needed through-
out the paper. The intermediate set is introduced in Sect. 3, where we formulate
its equivalent characterization using ordered partitions of the player set and
discuss its properties together with some examples.

The proofs are omitted for the space restrictions in this paper. The interested
reader is invited to consult the authors’ paper [1], which provides full details and
further arguments in favor of the solution concept presented in this proceedings
paper.

2 Basic Notions

We recall basic notions and results from cooperative game theory [10] and non-
smooth variational analysis [8,12].

2.1 Coalitional Games

Let N = {1, . . . , n} be a finite set of players, where n is a positive integer.
By 2N we denote the powerset of N whose elements A ⊆ N are called coalitions.
A (transferable utility coalitional) game is a function v : 2N → R with v(∅) = 0.
Any x = (x1, . . . , xn) ∈ Rn is called a payoff vector. We introduce the following
notation:

x(A) =
∑

i∈A

xi, for every A ⊆ N.

We say that a payoff vector x is feasible in a game v whenever x(N) ≤ v(N).
The set of all feasible payoff vectors in v is denoted by F(v).

Let Γ (N) be the set of all games and Ω ⊆ Γ (N). A solution on Ω is a set-
valued mapping σ : Ω → 2R

n

that maps every game v ∈ Ω to a set σ(v) ⊆ F(v).
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We recall the core solution and the Weber set. The core of a game v is the convex
polytope C(v) = {x ∈ Rn | x(N) = v(N), x(A) ≥ v(A) for every A ⊆ N}.

Let Πn be the set of all the permutations π of the player set N . Let v ∈ Γ (N)
and π ∈ Πn. A marginal vector of a game v with respect to π is the payoff vector
xv(π) ∈ Rn with coordinates

xv
i (π) = v

⎛

⎝
⋃

j≤π−1(i)

{π(j)}
⎞

⎠ − v

⎛

⎝
⋃

j<π−1(i)

{π(j)}
⎞

⎠ , i ∈ N. (1)

The Weber set of v is defined as

W(v) = conv{xv(π) | π ∈ Πn}.

Since xv(π)(N) = v(N), the Weber set is a solution on Γ (N) in the sense defined
above. Moreover, it always contains the core solution; see [15, Theorem 14].

Proposition 1. C(v) ⊆ W(v) for every v ∈ Γ (N).

The fundamental tool in this paper is the concept of Lovász extension [6].
For every set A ⊆ N let χA denote the incidence vector in Rn whose coordinates
are given by

(χA)i =

{
1 if i ∈ A,

0 otherwise.

We write 0 in place of χ∅. The embedding of 2N into Rn by means of the mapping
A �→ χA makes it possible to interpret a game on 2N as a real function on {0, 1}n.
Indeed, it suffices to define v̂(χA) = v(A), for every A ⊆ N . We will extend the
function v̂ onto Rn. For every x ∈ Rn, put

Π(x) = {π ∈ Πn | xπ(1) ≥ · · · ≥ xπ(n)}.

Given i ∈ N and π ∈ Π(x), define V π
i (x) = {j ∈ N | xj ≥ xπ(i)}. Note that

V π
i (x) = V ρ

i (x) for every π, ρ ∈ Π(x). This implies that any vector x ∈ Rn can
be unambiguously written as a linear combination

x =
n−1∑

i=1

(xπ(i) − xπ(i+1)) · χV π
i (x) + xπ(n) · χN . (2)

Using the convention V π
0 (x) = ∅, we can rewrite (2) as

x =
n∑

i=1

xπ(i) ·
(
χV π

i (x) − χV π
i−1(x)

)
. (3)

The Lovász extension v̂ of v ∈ Γ (N) is the function Rn → R defined linearly
with respect to the decomposition (3):

v̂(x) =
n∑

i=1

xπ(i) · (
v(V π

i (x)) − v(V π
i−1(x))

)
, for any x ∈ Rn.
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Observe that the definition of v̂(x) is independent on the choice of π ∈ Π(x).
Clearly v̂(χA) = v(A) for every coalition A ⊆ N . It is easy to see that the Lovász
extension v̂ of any game v fulfills these properties:

– v̂ is continuous and piecewise affine on Rn;
– v̂ is positively homogeneous: v̂(λ · x) = λ · v̂(x) for every λ ≥ 0 and x ∈ Rn;
– the mapping v ∈ Γ (N) �→ v̂ is linear.

The following lemma says that the local behavior of v̂ is the same around χN as
in the neighborhood of 0.

Lemma 1. For any x ∈ Rn it holds true that v̂(x + χN ) = v̂(x) + v̂(χN ).

A game v ∈ Γ (N) is called supermodular (or convex ) if the following inequal-
ity is satisfied: v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B), for every A,B ⊆ N . A sub-
modular game v is such that −v is supermodular. A game v is called additive
when v(A∪B) = v(A)+v(B) for every A,B ⊆ N with A∩B = ∅. We will make
an ample use of several characterizations of supermodular games appearing in
the literature; see [5,6,14,15].

Theorem 1. Let v ∈ Γ (N). Then the following assertions are equivalent:

1. v is supermodular;
2. {xv(π) | π ∈ Πn} ⊆ C(v);
3. C(v) = W(v);
4. The Lovász extension v̂ of v is a concave function.

2.2 Superdifferentials

In this section we will define the selected concepts of variational (nonsmooth)
analysis, namely various superdifferentials which generalize the superdifferential
of convex functions. Since the superdifferentials will be computed only for the
Lovász extension, we will confine to defining superdifferentials only for piecewise
affine functions at a point x̄ ∈ Rn. This assumption enables us to neglect the
term o(‖x − x̄‖) present in the more general definitions; see [12, Definition 8.3],
for example. We refer the reader to [12] for the general framework involving
upper semicontinuous functions.

While the standard monographs on variational analysis [8,11,12] deal with
subdifferentials instead of superdifferentials, most of the results can be readily
transformed to the setting of superdifferentials, usually by reversing inequalities
only.

Definition 1. Let f : Rn → R be a piecewise affine function and x̄ ∈ Rn. We
say that x∗ ∈ Rn is a

1. Fréchet supergradient of f at x̄ if there exists neighborhood X of x̄ such that
for all x ∈ X we have

f(x) − f(x̄) ≤ 〈x∗,x − x̄〉;
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2. limiting supergradient of f at x̄ if for every neighborhood X of x̄ there exists
x ∈ X such that x∗ is a Fréchet supergradient of f at x;

3. Clarke supergradient of f at x̄ if

x∗ ∈ conv{y| ∀neighborhood X of x̄ ∃x ∈ X ∩ D with y = ∇f(x)},

where D := {x ∈ Rn| f is differentiable at x}.
The collection of all (Fréchet, limiting, Clarke) supergradients of f at x̄ is called
(Fréchet, limiting, Clarke) superdifferential and it is denoted by ∂̂f(x̄), ∂f(x̄)
and ∂f(x̄), respectively.

It is easy to see that

∂̂f(x̄) ⊆ ∂f(x̄) ⊆ ∂f(x̄), x̄ ∈ Rn,

where all the inequalities may be strict. Moreover, [12, Theorem 8.49] yields that
the limiting and the Clarke superdifferential of a piecewise affine function f are
related as follows: ∂f(x̄) = conv ∂f(x̄). The following two examples show that
the three superdifferentials can differ significantly.

Example 1 ([2, Example 10.28]). Consider the function R2 → R defined as
f(x1, x2) = max(min(2x1 + x2, x1), 2x2). This function is piecewise affine and it
can be expressed as follows:

f(x1, x2) =

⎧
⎪⎨

⎪⎩

2x1 + x2 if x2 ≤ 2x1 and x2 ≤ −x1,

x1 if x2 ≤ x1
2 and x2 ≥ −x1,

2x2 if x2 ≥ 2x1 or x2 ≥ x1
2 .

Let us compute all the three superdifferentials of f at x̄ = 0:

∂̂f(x̄) = ∅,

∂f(x̄) = conv{(2, 1), (1, 0)} ∪ {(0, 2)},

∂f(x̄) = conv{(2, 1), (1, 0), (0, 2)}.

Example 2. Let

g(x1, x2) =

⎧
⎪⎨

⎪⎩

0 if x1 ≤ 0 or x2 ≤ 0,

−x1 if x2 ≥ x1 ≥ 0,

−x2 if x1 ≥ x2 ≥ 0,

for every (x1, x2) ∈ R2.

Function g is piecewise affine and the three superdifferentials of g at x̄ = 0 are,
respectively,

∂̂g(x̄) = {(0, 0)},

∂g(x̄) = conv{(0, 0), (−1, 0)} ∪ conv{(0, 0), (0,−1)},

∂g(x̄) = conv{(0, 0), (−1, 0), (0,−1)}.
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3 Intermediate Set

The Lovász extension v̂ of a coalitional game v is instrumental in characterizing
the core solution and the Weber set by the tools of nonsmooth calculus. Specif-
ically, it was shown that the core coincides with the Fréchet superdifferential of
v̂ at 0 [3, Proposition 3] and that the Weber set is the Clarke superdifferential
of v̂ at 0 [13, Proposition 4.1]. It may be more natural to use the grand coalition
N in place of the empty coalition ∅ in those formulas. Lemma 1 says that this
is always possible.

Proposition 2. For every game v ∈ Γ (N), C(v) = ∂̂v̂(χN ) = ∂̂v̂(0) and
W(v) = ∂v̂(χN ) = ∂v̂(0).

It can easily be shown that the gap between the core and the Weber set
can be too large. Indeed, the core can be empty, while the Weber set can be
a large convex polytope. Taking into account the hierarchy of superdifferentials
introduced in the previous section, we will pursue an idea mentioned in [13]
and by analogy with Proposition 2 we define a new solution concept as ∂v̂(χN ),
where ∂ is the limiting superdifferential. This leads to the following notion.

Definition 2. The intermediate set M(v) of v ∈ Γ (N) is the set

M(v) := ∂v̂(χN ).

Similarly as in Proposition 2, we can show that for every game v ∈ Γ (N),
M(v) = ∂v̂(0). Lemma 2 explains why the solution concept M(v) was termed
the “intermediate set”.

Lemma 2. Let v ∈ Γ (N). Then:

1. M(v) �= ∅.
2. We have

C(v) ⊆ M(v) ⊆ W(v),

where both inclusions may be strict.
3. W(v) = conv M(v).
4. v is supermodular if and only if C(v) = M(v) = W(v).

Example 3. [3-player glove game] Let N = {1, 2, 3}. The first player owns
a single left glove and the remaining two players possess one right glove each.
The profit of a coalition is a total of glove pairs the coalition owns:

v(A) =

{
1 if A ∈ {{1, 2}, {1, 3}, N},

0 otherwise.

It is not difficult to compute C(v),M(v) and W(v) directly:

C(v) = {(1, 0, 0)},

M(v) = conv{(1, 0, 0), (0, 1, 0)} ∪ conv{(1, 0, 0), (0, 0, 1)},

W(v) = conv{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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3.1 Characterization by Ordered Partitions

In this section we are going to show an alternative expression for the intermediate
set using the concept of an ordered partition. Thus the purely analytic definition
of intermediate set can be equivalently stated in terms of the combinatorial and
order-theoretic properties of a coalitional game.

Let K ≥ 1. An ordered partition of the player set N is a K-tuple

P := (B1, . . . , BK)

of coalitions ∅ �= Bi ⊆ N such that Bi ∩ Bj = ∅ (i �= j) and B1 ∪ · · · ∪ BK = N .
Let

P = {P | P is an ordered partition of N}.

The family P is associated with the following scheme of allocating profits x
among the players in a game v:

1. The players may be split into any ordered partition P = (B1, . . . , BK) ∈ P.
2. Each block of players Bk can distribute the total amount

x(Bk) = v(B1 ∪ · · · ∪ Bk−1 ∪ Bk) − v(B1 ∪ · · · ∪ Bk−1)

to its members, which can be interpreted as the marginal contribution of
coalition Bk to the coalition B1 ∪ · · · ∪ Bk−1 with respect to P .

3. No coalition B in a block Bk may improve upon x, while respecting the given
order of coalition blocks, that is,

x(B) ≥ v(B1 ∪ · · · ∪ Bk−1 ∪ B) − v(B1 ∪ · · · ∪ Bk−1).

Note that the players share total of v(N) among them as a consequence
of the second principle. The distribution procedure explained above has two
extreme cases. Assume that the ordered partition P is the finest possible, that
is, P = ({π(1)}, . . . , {π(n)}) for some permutation π ∈ Πn. In this case the allo-
cation scheme in a game v leads to the marginal vectors xv(π) defined by (1).
On the contrary, if the partition contains one block only, P = (N), then all the
players (and coalitions) are treated equally, which results in distributing payoffs
according to the definition of core. Any ordered partition P = (B1, . . . , BK)
different from the two extreme cases generates a combination of the principle
of marginal distribution on the level of blocks with the core-like stability inside
each block of the partition, while respecting the given order of coalitions. Such
a distribution process is thus always a mixture of the considerations endogenous
to Bi and those which are exogenous to Bi.

Our characterization says that x ∈ M(v) if and only if there is an ordered
partition P such that x is allocated to the players according to the above distri-
bution principles.

Theorem 2. For every game v ∈ Γ (N),

M(v) =
⋃

P∈P
MP (v),
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where MP (v) with P = (B1, . . . , BK) is the set of all x ∈ Rn such that the fol-
lowing two conditions hold for every k = 1, . . . ,K and for each B ⊆ Bk:

x(Bk) = v(B1 ∪ · · · ∪ Bk−1 ∪ Bk) − v(B1 ∪ · · · ∪ Bk−1),
x(B) ≥ v(B1 ∪ · · · ∪ Bk−1 ∪ B) − v(B1 ∪ · · · ∪ Bk−1).

Example 4. Let N = {1, 2, 3} and

v(A) =

⎧
⎪⎨

⎪⎩

0 if |A| = 1,

2 if |A| = 2,

3 if A = N.

It is easy to see that v is not supermodular but only superadditive, that is,
v(A ∪ B) ≥ v(A) + v(B) for every A,B ⊆ N with A ∩ B = ∅.

The core of this game is C(v) = {(1, 1, 1)}, while the Weber set W(v) coin-
cides with the hexagon whose 6 vertices are all the permutations of the payoff
vector (0, 1, 2). The intermediate set is the union of three line segments; see
Fig. 1. We obtain that M(i,jk)(v) = ∅ for every ordered partition (i, jk) of N .1

On the other hand, M(ij,k)(v) is the line segment whose endpoints are the two
marginal vectors x with xk = 1. Thus x ∈ M(v) iff it belongs to M(ij,k)(v)
for some ordered partition (ij, k) of N . The example shows that, in general, the
intermediate set is not a union of selected faces of the Weber set.

(a) Core (b) Intermediate set (c) Weber set

Fig. 1. The solutions from Example 4 in the barycentric coordinates

3.2 Properties

It was proved in [1] that the core, the intermediate set, and the Weber set share
many properties of solution concepts for coalitional games. Namely each of the
three solutions is Pareto optimal, anonymous, covariant, and has both the null
player property and the dummy player property.

In sharp contrast to the core and the Weber set, the previous examples
showed that the intermediate set is typically non-convex. Indeed, the Weber set
1 We may occasionally switch to a simplified notation for coalitions, writing ij in place

of {i, j} and similarly.
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is always the convex hull of the intermediate set. Moreover, the core can be
void, while the intermediate set is always non-empty. Individual rationality is
not fulfilled by the intermediate set, in general. However, the intermediate set
satisfies this property on the class of all weakly superadditive games, that is, the
coalitional games v for which the following property holds true:

v(A ∪ {i}) ≥ v(A) + v({i}), for every A ⊆ N and i ∈ N \ A.

3.3 Example: Simple Games

We will compute the intermediate set for the class of all simple games and
compare the achieved results to the shape of the core. A game v ∈ Γ (N) is
monotone if v(A) ≤ v(B) whenever A ⊆ B ⊆ N . A simple game is a monotone
game v with v(A) ∈ {0, 1} and v(N) = 1. Every simple game v over the player
set N can be identified with the family of winning coalitions

V = {A ⊆ N | v(A) = 1}.

Conversely, any system of coalitions V such that

1. N ∈ V, ∅ /∈ V and
2. A ⊆ B ⊆ N, A ∈ V ⇒ B ∈ V,

gives rise to a simple game v by putting v(A) = 1 if A ∈ V and v(A) = 0,
otherwise. The family of minimal winning coalitions in v is given by

Vm = {A ∈ V | B � A ⇒ B /∈ V, for every B ⊆ N}.

The core of a simple game v is fully determined by the minimal winning
coalitions in v. Indeed, it is well-known that

C(v) =
⋂

E∈Vm

{x ∈ I(v) | xi = 0 for every i ∈ N \ E} ,

where I(v) := {x ∈ Rn | x(N) = v(N), xi ≥ v(i), i ∈ N} is the set of imputa-
tions in v. Using our Theorem 2 we can show that an analogous formula exists
for the intermediate set. It states that M(v) arises as a union of faces of the
standard simplex, where each face corresponds to one minimal winning coalition.

Theorem 3. Let v ∈ Γ (N) be a simple game. Then

M(v) =
⋃

E∈Vm

⎧
⎨

⎩
x ∈ Rn

∣
∣
∣
∣
∣
∣

xi = 0 if i ∈ N \ E
xi ≥ 0 if i ∈ E∑

i∈E xi = 1

⎫
⎬

⎭
.

As an example we will compute the intermediate set of the UN Security
Council voting scheme.
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Example 5. The UN Security Council contains 5 permanent members with veto
power and 10 non–permanent members. To pass a resolution, all the permanent
members and at least 4 non–permanent members have to vote for the proposal.
This is a mildly simplified version of the real voting process, in which absten-
tion of a permanent member is not usually regarded as a veto. However, this
assumption is usually accepted in game-theoretic literature; see e.g. [9, Example
XI.2.9] or [7, Example 16.1.3].

We assume that the players N = {1, . . . , 15} are ordered in such a way that
the first five are the permanent members and the last ten are the non–permanent
members. Then it is easy to show that the core and and the Weber set of the
corresponding simple game v are, respectively,

C(v) =

{

x ∈ R15

∣
∣
∣
∣
∣
x ≥ 0,

5∑

i=1

xi = 1, xi = 0 for i = 6, . . . , 15

}

and

W(v) =

{

x ∈ R15

∣
∣
∣
∣
∣
x ≥ 0,

15∑

i=1

xi = 1

}

.

Since core allocations are stable, any payoff x ∈ C(v) is distributed only among
the permanent members (the vetoers). By contrast, the Weber set is the whole
14-dimensional standard simplex in R15, which contains some payoff vectors
whose meaning is problematic. For instance, it is not entirely clear how to inter-
pret a vector

(
0, . . . , 0, 1

10 , . . . , 1
10

) ∈ W(v). As we will see, this vector is not
contained in M(v).

Given i ∈ N , denote by ei ∈ R15 the vector whose coordinates are ej = 1 if
j = i and ej = 0 otherwise. Put D = {D ⊆ {6, . . . , 15} | |D| = 4}. Theorem 3
yields

M(v) =
⋃

D∈D
conv ({e1, e2, e3, e4, e5} ∪ {ei | i ∈ D}) .

In other words, M(v) is a union of
(
10
4

)
8-dimensional standard simplices, each

of which is a convex hull of eis corresponding to the five permanent members
and four other non–permanent members. Each such simplex is associated with
the ordered partition having two blocks, ({1, . . . , 5} ∪ D,N \ ({1, . . . , 5} ∪ D))
where D ∈ D.

4 Conclusions

Not every solution concept is usually suitable for the entire class of coalitional
games. In our future research we plan to study if the intermediate set is well-
tailored for some subclass of games. The intuition says that such a class of games
has the small core and the large Weber set since this makes the interpolation by
the intermediate set between the two solutions especially appealing.

An interesting open question is based on the behavior of the core and the com-
ponents of the intermediate set MP (v) observed in Example 4 and Theorem 3:
Can we recover the core of a coalitional game v as an intersection of selected
components MP (v)?
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Abstract. We propose an axiomatization of the Choquet integral model
for the general case of a heterogeneous product set X = X1 × . . . × Xn.
In MCDA elements of X are interpreted as alternatives, characterized
by criteria taking values from the sets Xi. Previous axiomatizations
of the Choquet integral have been given for particular cases X = Y n

and X = Rn. However, within multicriteria context such indenticalness,
hence commensurateness, of criteria cannot be assumed a priori. This
constitutes the major difference of this paper from the earlier axioma-
tizations. In particular, the notion of “comonotonicity” cannot be used
in a heterogeneous structure, as there does not exist a “built-in” order
between elements of sets Xi and Xj . However, such an order is implied by
the representation model. Our approach does not assume commensurate-
ness of criteria. We construct the representation and study its uniqueness
properties.

Keywords: Choquet integral · Decision theory · MCDA · Multi-criteria
decision making

1 Introduction

The Choquet integral is widely used in decision analysis and, in particular,
MCDA [5], although its use is still somewhat restricted due to both method-
ological problems and difficulties in practical implementation. Rank-dependent
models first appeared in the axiomatic decision theory in reply to the criticism
of Savage’s postulates of rationality [12]. The renowned Ellsberg paradox [3] has
shown that people can violate Savage’s axioms and still consider their behaviour
rational. First models accounting for the so-called uncertainty aversion observed
in this paradox appeared in the 1980s, in the work [11] and others (see [17]
for a review). One particular generalization of the expected utility model (EU)
characterized by Schmeidler [13] is the Choquet expected utility (CEU), where
probability is replaced by a non-additive set function (called capacity) and inte-
gration is performed using the Choquet integral.

Since Schmeidler’s paper, various versions of the same model have been char-
acterized in the literature (e.g. [4,16]). CEU has gained some momentum in
both theoretical and applied economic literature, being used mainly for analysis
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 46–57, 2016.
DOI: 10.1007/978-3-319-40596-4 5
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of problems involving Knightian uncertainty. At the same time, rank-dependent
models, in particular the Choquet integral, were adopted in multiattribute utility
theory (MAUT) [7]. Here the integral gained popularity due to the tractability
of non-additive measures in this context (see [5] for a review). The model per-
mitted various preferential phenomena, such as criteria interaction, which were
impossible to reflect in the traditional additive models.

The connection between MAUT and decision making under uncertainty has
been known for a long time. In the case when the number of states is finite,
which is assumed hereafter, states can be associated with criteria. Accordingly,
acts correspond to multicriteria alternatives. Finally, the sets of outcomes at
each state can be associated with the sets of criteria values. However, this last
transition is not quite trivial. It is commonly assumed that the set of outcomes is
the same in each state of the world [12,13]. In multicriteria decision making the
opposite is true. Indeed, consider preferences of consumers choosing cars. Each
car is characterized by a number of features (criteria), such as colour, maximal
speed, fuel consumption, comfort, etc. Apparently, sets of values taken by each
criterion can be completely different from those of the others. In such context
the ranking stage of rank-dependent models, which in decision under uncertainty
involves comparing outcomes attained at various states, would amount to com-
paring colours to the level of fuel consumption, and maximal speed to comfort.
Indeed, the traditional additive model [2,9] only implies meaningful compara-
bility of units between goods in the bundle, but not of their absolute levels.
However, in rank-dependent models such comparability seems to be a necessary
condition.

We propose a representation theorem for the Choquet integral model in the
MCDA context. Binary relation � is defined on a heterogeneous product set
X = X1 × . . . × Xn. In multicriteria decision analysis (MCDA), elements of the
set X are interpreted as alternatives, characterized by criteria taking values from
sets Xi. Previous axiomatizations of the Choquet integral model have been given
for the special cases of X = Y n (see [8] for a review of approaches) and X = Rn

(see [5] for a review). One related result is the recent axiomatization of the
Sugeno integral model ([1,6]). Another approach using conditions on the utility
functions was proposed in [10]. The “conjoint” axiomatization of the Choquet
integral for the case of a general X was an open problem in the literature.
The crucial difference with the previous axiomatizations is that the notion of
“comonotonicity” cannot be used in the heterogeneous case, due to the fact
that there does not exist a meaningful “built-in” order between elements of
sets Xi. New axioms and modifications of proof techniques had to be introduced
to account for that.

Our first axiom shows, roughly, how the set X can be partitioned into sub-
sets based on properties necessary for existence of an additive representation.
The axiom (A3) we introduce is similar to the “2-graded” condition previously
used for characterizing of MIN/MAX and the Sugeno integral ([1,6]). At every
point z ∈ X for every pair of coordinates i, j ∈ N it is possible to build two
“rectangular cones” - one made up of points from Xi which are “greater” than
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zi and points from Xj which are “less” than zj , and the second for the opposite
case. The axiom states that triple cancellation for � restricted to i, j must then
hold on at least one of these cones. This allows to partition X into subsets by
using intersection of such cones for various pairs i, j.

The second property is that the additive representations on different subsets
are interrelated, in particular “trade-offs” between criteria values are consistent
across partition elements both within the same dimension and across different
ones. This is reflected by two axioms (A4, A5), similar to the ones used in
[9,16] (Sect. 8.2). One, roughly speaking, states that triple cancellation holds
across subsets, while the other says that ordering of intervals on any dimension
must be preserved when they are projected onto another dimension by means
of equivalence relations. These axioms are complemented by a new condition
called bi-independence (A6) and weak separability (A2) [1] - which together
reflect the monotonicity property of the integral, and also the standard essential-
ity, “comonotonic” Archimedean axiom and restricted solvability (A7,A8,A9).
Finally, � is supposed to be a weak order (A1), and X is order dense.

2 Choquet Integral in MCDA

Definition 1. Let N = {1, . . . , n} be a finite set and 2N its power set. A capac-
ity (non-additive measure, fuzzy measure) is a set function ν : 2N → R+ such
that:

1. ν(∅) = 0;
2. A ⊆ B ⇒ ν(A) ≤ ν(B), ∀A,B ∈ 2N .

In this paper, it is also assumed that capacities are normalized, i.e. ν(N) = 1.

Definition 2. The Choquet integral of a function f : N → R with respect to a
capacity ν is defined as

C(ν, f) =

∞∫

0

ν({i ∈ N : f(i) ≥ r})dr +

0∫

−∞
[ν({i ∈ N : f(i) ≥ r}) − 1]dr

Denoting the vector of values of f : N → R as (f1, . . . , fn), the definition can be
written down as:

C(ν, (f1, . . . , fn)) =
n∑

i=1

(f(i) − f(i−1))ν({j ∈ N : fj ≥ f(i)})

where f(1), . . . , f(n) is a permutation of f1, . . . , fn such that f(1) ≤ f(2) ≤ · · · ≤
f(n), and f(0) = 0.

One of the most useful tools for analysis of the capacity is the so-called
Möbius transform. It’s a linear transformation of the capacity which is given by:

m(A) =
∑

B⊂A

(−1)|A\B|ν(B).
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2.1 The Model

Let � be a binary relation on the set X = X1×. . .×Xn. 	,≺,�,∼, �∼ are defined
in the usual way. In MCDA, elements of set X are interpreted as alternatives
characterized by criteria from the set N = {1, . . . , n}. Set Xi contains criteria
values for criterion i. We say that � can be represented by a Choquet integral,
if there exists a capacity ν and functions fi : Xi → R, called value functions,
such that for all x, y ∈ X:

x� y ⇐⇒ C(ν, (f1(x1), . . . , fn(xn)) ≥ C(ν, (f1(y1), . . . , fn(yn)).

As seen in the definition of the Choquet integral, its calculation involves
comparison of fi’s to each other. It is not immediately obvious how this operation
can have any meaning in the MCDA decision framework. It is well-known that
direct comparison of value functions for various attributes is meaningless in the
additive model [9] (recall that the origin of each value function can be changed
independently). In the homogeneous case X = Y n this problem is readily solved,
as we have a single set of “consequences” Y (in the context of decision making
under uncertainty). The required order is either assumed as given [17] or is
readily derived from the ordering of “constant” acts (y, . . . , y) [16]. Since there is
a single “consequence” set, we also only have one value function U : Y → R, and
thus comparing U(yi) to U(yj) is perfectly sensible, since U represents the order
on the set Y . None of these methods can be readily applied in the heterogeneous
case.

2.2 Properties of the Choquet Integral

Below are given some important properties of the Choquet integral:

1. Functions f : N → R and g : N → R are comonotonic if for no i, j ∈
N holds f(i) > f(j) and g(i) < g(j). For all comonotonic f the Choquet
integral reduces to a usual Lebesgue integral. In the finite case, the integral
is accordingly reduced to a weighted sum.

2. Particular cases of the Choquet integral (e.g. [5]), where m is a Möbius trans-
form of the capacity:
– If m({1}) = . . . = m({n}) = 1, then C(ν, (f1, . . . , fn)) = max(f1, . . . , fn).
– If m(N) = 1,m(A) = 0, A �= N , then C(ν, (f1, . . . , fn)) = min(f1, . . . , fn).
– If m(A) = 0, for all A ⊂ N : |A| ≥ 2, then C(ν, (f1, . . . , fn)) =∑

i∈N ν({i})fi

Property 1 states that the set X can be partitioned into subsets correspond-
ing to particular ordering of the value functions. There are n! such sets. Since
the integral on each of the sets is reduced to a weighted sum, i.e. an additive
representation, we should expect many of the axioms of the additive conjoint
model to be valid on this subsets. This is the intuition behind several of the
axioms given in the following section.
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3 Axioms and Definitions

A1 - Weak order. � is a weak order.
A2 - Weak separability. For all i, if aix−i 	 bix−i for some ai, bi ∈ Xi,x−i ∈

X−i, then aiy−i � biy−i for all y−i ∈ X−i.

Note, that from this follows, that for any ai, bi ∈ Xi either aix−i � bix−i or
bix−i � aix−i for all x−i ∈ X−i. This allows to introduce the following definition:

Definition 3. For all ai, bi ∈ Xi define �i as ai �i bi ⇐⇒ aix−i � bix−i for
all x−i ∈ X−i.

Definition 4. For any z ∈ X define SEz
ij = {xixjz−ij ∈ X : xi �i zi, zj �j xj},

and NWz
ij = {xixjz−ij ∈ X : zi �i xi, xj �j zj}.

Definition 5. Given i, j ∈ N , a relation � on X1 × . . . × Xn satisfies ij-triple
cancellation (ij-3C), if for all ai, bi, ci, di ∈ Xi, pj , qj , rj , sj ∈ Xj, and all z−ij ∈
X−ij holds:

aipjz−ij � biqjz−ij

airjz−ij � bisjz−ij

cipjz−ij � diqjz−ij

⎫
⎪⎬

⎪⎭
⇒ cirjz−ij � disjz−ij .

We can introduce the following binary relations:

Definition 6. We write:

1. iRz j if ij-triple cancellation holds on the set SEz
ij.

2. iSzj if [NOT j Rz i].
3. iEz j if [iRz j AND j Rz i].

The following axiom has two parts.

A3 - Coordinate Ordering Completeness. Rz is complete, i.e. for any z ∈
X, and all i, j ∈ N ,

[iRz j] OR [j Rz i].

This new property would allow us to divide X into subsets without the need to
use the notion of comonotonicity. Note that while Rz is complete, Sz is partial.1

Since N is finite, there is only a finite number of various partial orders Sz, so we
can index them (Sa,Sb, . . .) and drop the superscripts when not needed. Also,
each of the partial orders Sk uniquely defines the corresponding Rk - iRk j if
[NOT jSki].

In contrast to the case with two variables, this property alone is not suf-
ficient to construct a representation. Comparing value functions for different
attributes suggests some sort of transitivity. For example, fi(xi) > fj(xj) and
fj(xj) > fk(xk) imply fi(xi) > fk(xk). The property we introduce is weaker - it
is acyclicity (for some pairs of coordinates we might have iEz j for all z ∈ X).
1 If it is empty for all z, other axioms entail the existence of an additive representation

on X.
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A3 - Coordinate Ordering Acyclicity. For all z ∈ X, Sz is acyclic. In other
words,

[iSzjSz . . .Szk] ⇒ iRz k.

This axiom effectively defines how the set X is partitioned. It is required for the
Choquet integral representation to exist.

We also introduce the following notions:

Definition 7. Define SEij as a union of the following three sets:

– All z ∈ X such that iRz j, if zi is not maximal and zj is not minimal;
– All z ∈ X such that zi is maximal and for no xj , yj ∈ Xj : zj �j xj �j yj we

have j Rxjz−j i and NOT j Ryjz−j i;
– All z ∈ X such that zj is minimal and for no xi, yi ∈ Xi : yi �i xi �i zi we

have j Rxiz−i i and NOT j Ryiz−i i.

Define NWij as a union of the following three sets:

– All z ∈ X such that j Rz i, if zj is not maximal and zi is not minimal;
– All z ∈ X such that zi is minimal and for no xj , yj ∈ Xj : yj �j xj �j zj we

have iRxjz−j j and NOT iRyjz−j j;
– All z ∈ X such that zj is maximal and for no xi, yi ∈ Xi : zi �i xi �i yi we

have iRxiz−i j and NOT iRyiz−i j.

Presence of maximal and minimal points significantly complicates the def-
initions of SEij and NWij , since at such points some of the sets SEz

ij and
NWz

ij become degenerate and condition ij-3C trivially holds. If sets Xi and
Xj do not contain minimal or maximal points, we can drop the corresponding
conditions in each definition and simply state that SEij = {z : iRz j} and
NWij = {z : j Rz i}.

Partial orders Si define subsets of the set X as follows.

Definition 8. We write XSi =
⋂

(k,j):kRi j

SEkj

It is well known that the sufficient property for an additive representation
to exist on a Cartesian product is strong independence [9]. In the X = Y n

case, the Choquet integral was previously axiomatized using comonotonic strong
independence (or comonotonic trade-off consistency [16]). In this paper we will
be using sets XSi to formulate a similar condition.

Definition 9. We say that i ∈ N is essential on A ⊂ X if there exist
xix−i, yix−i ∈ A, such that xix−i 	 yix−i.

A4 - Intra-coordinate trade-off consistency

aix−i � biy−i

aiw−i � biz−i

cix−i � diy−i

⎫
⎪⎬

⎪⎭
⇒ ciw−i � diz−i,
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provided that either:

(a) Exists XSj such that aix−i, biy−i, aiw−i, biz−i, cix−i, diy−i, ciw−i, diz−i ∈
XSj

(b) Exist XSj ,XSk such that aix−i, biy−i, aiw−i, biz−i ∈ XSj , i is essential on
XSj , and cix−i, diy−i, ciw−i, diz−i ∈ XSk , or;

(c) Exist XSj ,XSk such that aix−i, biy−i, cix−i, diy−i ∈ XSj , i is essential on
XSj , and aiw−i, biz−i, ciw−i, diz−i ∈ XSk .

Informally, the meaning of the axiom is that ordering between preference
differences (“intervals”) is preserved irrespective of the “measuring rods” used
to measure them. However, contrary to the additive case this does not hold on
all X, but only when either points involved in all four relations lie in the same
“3C-set” XSj , or points involved in two relations lie in one such set and those
involved in the other two in another.

A5 - Inter-coordinate trade-off consistency

aix−i � biy−i

cix−i � diy−i

aiy
0
−i ∼ pjx

0
−j

biy
0
−i ∼ qjx

0
−j

ciy
1
−i ∼ rjx

1
−j

diy
1
−i ∼ sjx

1
−j

pje−j � qjf−j

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒ rje−j � sjf−j

for all aix−i, biy−i, cix−i, diy−i ∈ XSj provided i is essential on XSj ,
aiy

0
−i, biy

0
−i, ciy

1
−i, diy

1
−i ∈ XSk , pjx

0
−j , qjx

0
−j , rjx

1
−j , sjx

1
−j ∈ XSl provided j

is essential on XSl , pje−j , qjf−j , rje−j , sjf−j ∈ XSm .

The formal statement of the A5 is rather complicated, but it simply means that
the ordering of the “intervals” is preserved across dimensions. Together with A4
the conditions are similar to Wakker’s trade-off consistency condition [17]. The
axiom bears even stronger similarity to Axiom 5 (compatibility) from Sect. 8.2.6
of [9]. Roughly speaking, it says that if the “interval” between ci and di is
“larger” than that between ai and bi, then “projecting” these intervals onto
another dimension by means of the equivalence relations must leave this order
unchanged. We additionally require the comparison of intervals and “projection”
to be consistent - meaning that each quadruple of points in each part of the state-
ment belongs to the same XSi . This axiom can be also conveniently formulated
in terms of standard sequences - if we map all members of a sequence on some
dimension onto another dimension via equivalence relations, it will be a standard
sequence as well, provided the above restrictions hold.

A6 - Bi-independence Let aix−i, bix−i, cix−i, dix−i ∈ XSi and aix−i 	 bix−i.
If for some y−i ∈ X−i we have ciy−i 	 diy−i, then cix−i 	 dix−i for all i ∈ N .
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This axiom is similar to “strong monotonicity” in [17]. In simple terms it means
that if a coordinate is essential “somewhere” within a set XSi , then it is essential
everywhere on this set.

A7 - Essentiality All coordinates are essential on X.
A8 - Restricted solvability If aix−i � y � bix−i, then there exists c : cix−i ∼ y

for i ∈ N .
A9 - Archimedean axiom Every bounded standard sequence contained in

some XSi is finite, and in the case of only one essential coordinate, there
exists a countable order-dense subset of XSi .

Finally, we can introduce a notion of interacting coordinates.

Definition 10. Coordinates i and j are interacting if exists z ∈ X, such that
iSzj or jSzi. We call a set A ⊂ N an interaction clique if for each i, j ∈ A
we can build a chain of coordinates i, k, . . . , j, such that every two subsequent
coordinates in the chain are interacting.

Interaction cliques play an important role in the uniqueness properties of the
representation. In what follows we will be considering only cliques of maximal
possible size if not specified otherwise.

3.1 Additional Assumptions

The following additional assumptions are made. The reasoning behind each one is
explained below. They are not required for the construction of the representation
in general.

“Collapsed” equivalent points along dimensions. For no i ∈ N and no
ai, bi ∈ Xi holds aix−i ∼ bix−i for all x−i ∈ X−i.

If this wasn’t true, we could have value functions assigning the same value to
several points in the same set Xi. To simplify things we exclude such case,
however, it can be easily reconstructed once the representation is built.

Density. We assume that for all i ∈ N , whenever aix−i 	 bix−i, there exists
ci ∈ Xi such that aix−i 	 cix−i 	 bix−i (X is order dense).

“Closedness”. For every i and j, if there exist xixjz−ij such that iSxixjz−ij j
and yixjz−ij such that jSyixjz−ij i, then exists zi ∈ Xi such that iEzixjz−ij j.

This assumption says that sets SEij and NWij are “closed”. In the repre-
sentation this translates into existence of the inverse for all points where value
functions fi and fj are equal, provided i and j are interacting and the inverse
exists for at least one of the coordinates (i.e. there is a corresponding point in
Xi or Xj). This is a technical simplifying assumption and the proof can be done
without it.
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Geometry of X . For every clique of interacting variables A ⊂ N , there exist
at least two points r0A, r1A ∈ X such, that for every pair i, j ∈ A, we have
iEr0A j and iEr1A j.

Again, this is a simplifying assumption, but this time a restrictive one. It
takes the proof somewhat closer to the homogeneous case (see Sect. 5). Without
it we can have a situation, where the smallest value of fi : Xi is larger then
the greatest value of fj : Xj for some i, j ∈ N . This in turn does not allow to
construct the capacity in a unique way. Another way to stating this assumption,
is to say that X must contain points corresponding to all possible acyclic partial
orders on N , generated by interacting pairs iSj. Work to remove this assumption
is still in progress.

4 Representation Theorem

As follows from the definition of the Choquet integral (Sect. 2), every point x ∈ X
uniquely corresponds to a set of weights pxi : pxi ≥ 0,

∑
i∈N pxi = 1. This notation

is used to simplify the statement of the following theorems.

Theorem 1. Let � be an order on X and the structural assumption hold. Then,
if axioms A1-A9 are satisfied, there exists a capacity ν and value functions
f1 : X1 → R, . . . , fn : Xn → R, such that � can be represented by the Choquet
integral:

x� y ⇐⇒ C(ν, (f1(x1), . . . , fn(xn))) ≥ C(ν, (f1(y1), . . . , fn(yn))), (1)

for all x, y ∈ X.

Capacity and value functions have the following uniqueness properties. Let
I = {A1, . . . , Ak} be a partition of N , such that m(B) = 0 for all B ⊂ N such
that B ∩ Ai �= ∅, B ∩ Aj �= ∅. If no such partition exists, let I = {N}.

Theorem 2. Let g1 : X1 → R, . . . , gn : Xn → R be such that (1) holds with fi
substituted by gi. Then, at all xi ∈ Xi, such that for some z−i we have p

xiz−i

i > 0,
and also p

xiz−i

j > 0, j �= i, value functions fi and gi are related in the following
way:

fi(xi) = αAj
gi(xi) + βAj

,

Capacity changes as follows

m′(B) =
αAj

m(B)
∑

C⊂Ai,Ai∈I αAi
m(C)

.

At the remaining points of X, i.e. for xi such that for any z−i ∈ X−i we have
p
xiz−i

i = 1, and p
xiz−i

j = 0 for all j �= i, value functions fi have the following
uniqueness properties2:

fi(xi) = ψi(gi(xi)),
2 Due to our assumption that for no ai, bi we have aiz−i ∼ biz−i for all z−i, we can’t

have pxiz−i = 0 for all z−i.
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Y

Y

(a) Homogeneous case - “constant
acts” are a red line

X1

X2

(b) Heterogeneous case - SEz
12,

NWy
12 and the empty “border”

Fig. 1. Differences with the homogeneous case - border

Y

Y

Y

(a) Homogeneous case - all n!
comonotonic cones are present

X1

X2

X3

(b) Heterogeneous case - not all
cones are present

Fig. 2. Differences with the homogeneous case - geometry of X

where ψi is an increasing function, and for all j ∈ N, j �= i, such that exists
A ∈ N : i, j ∈ A,m(A) > 0, we additionally have

fi(xi) = fj(xj) ⇐⇒ gi(xi) = gj(xj).

5 Constructing the Representation

The axiomatization rests on three main pillars: a weakened form of comonotonic-
ity (A3), trade-off consistency conditions (A4,A5), and strong monotonicity
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(A6). The main difference from the previous results is A3, other axioms are
notably quite similar to the homogeneous case. Details of the construction can
be found in [14,15].

In the homogeneous case, the characterization is performed by stating that
there exist additive representations on pre-defined subsets of X, in particular
on the comonotonic cones, and the representations are related to each other. In
this paper we state a weakened form of this property, showing that additivity
holds on some loosely-defined subsets of X, and then use additional axioms to
guarantee that these subsets have a required shape in the representation. The
differences between comonotonicity and A3 are as follows:

– In the homogeneous case we have a hypercube, symmetrically divided into
conical subsets. In our case, the symmetry is no longer present.

– In the homogeneous case there always exists a non-empty thin border between
comonotonic subsets (so-called “constant acts”). In some sense, it is a “straight
line” (see Fig. 1a, b). A3 alone guarantees that the border is only non-
decreasing, in the sense that an increase along Xi cannot be accompanied
only by a decrease along Xj . Moreover, the boundary does not have to be
non-empty or, on contrary, be a “line”. Additional axioms (A4,A5,A6) guar-
antee that this border has a required shape.

– With n dimensions, homogeneous case provides a built-in transitivity of coor-
dinate ordering. Moreover, all n! possible orderings are always present. In our
case coordinate ordering is constructed by combining pairwise orderings for all
i, j ∈ N , hence we have to introduce an additional property - acyclicity. Not
all n! cones are necessarily present, moreover not all possible combinations of
pairwise orderings are present as well (however, we do not consider this case
here, see structural assumption “Geometry of X”). This has an effect on the
uniqueness properties of the capacity. See Fig. 2a, b for an example.

References

1. Bouyssou, D., Marchant, T., Pirlot, M.: A conjoint measurement approach to the
discrete Sugeno integral. In: Brams, S.J., Gehrlein, W.V., Roberts, F.S. (eds.)
The Mathematics Preference, Choice and Order, pp. 85–109. Springer, Heidelberg
(2009)

2. Debreu, G.: Topological methods in cardinal utility theory. Cowles Foundation
Discussion Papers (1959)

3. Ellsberg, D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75(4), 643–669
(1961)

4. Gilboa, I.: Expected utility with purely subjective non-additive probabilities. J.
Math. Econ. 16(1), 65–88 (1987)

5. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno
integrals in multi-criteria decision aid. 4OR Q. J. Oper. Res. 6(1), 1–44 (2008)
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Abstract. Aggregation functions acting on the lattice of all Choquet
integrals on a fixed measurable space (X,A) are discussed. The only
direct aggregation of Choquet integrals resulting into a Choquet integral
is linked to the convex sums, i.e., to the weighted arithmetic means. We
introduce and discuss several other approaches, for example one based
on compatible aggregation systems. For X finite, the related aggregation
of OWA operators is obtained as a corollary. The only exception, with
richer structure of aggregation functions, is the case card X = 2, when
the lattice of all OWA operators forms a chain.

Keywords: Aggregation function · Capacity · Choquet integral · OWA
operator

1 Introduction

Consider a fixed measurable space (X,A), i.e., X is a non-empty set and A
is a σ-algebra of subsets of X. If X is finite, then A = 2X is considered, by
convention. A set function m : A → [0, 1] is called a capacity whenever it is
monotone and satisfies the boundary conditions m(∅) = 0 and m(X) = 1. The
set of all capacities on (X,A) will be denoted as M(X,A). Similarly, F(X,A) is
the set of all A-measurable functions f : X → [0,∞[. Recall that the Choquet
integral [1,4] of f ∈ F(X,A) with respect to m ∈ M(X,A) is given by

Chm(f) =
∫ ∞

0

m(f ≥ x) dx, (1)

where the right-hand side of (1) is the classical (possibly improper) Riemann
integral. Observe that due to Schmeidler [13,14], a functional I : F(X,A) → [0,∞]
is a Choquet integral, I = Chm for some m ∈ M(X,A), if and only if it is
comonotone additive and I(1X) = 1. Then m(E) = I(1E) for any event E ∈ A.

Formally, the set Ch(X,A) = {Chm|m ∈ M(X,A)} forms a distributive
bounded lattice with respect to the partial ordering � herited from the standard
ordering of reals, i.e., Chm1 � Chm2 if and only if Chm1(f) ≤ Chm2(f) for each
f ∈ F(X,A). It is not difficult to check that Chm1 � Chm2 if and only if m1 ≤ m2,
i.e., if m1(E) ≤ m2(E) for each event E ∈ A. Thus the lattices (Ch(X,A),�) and
(M(X,A),≤) are isomorphic, with the respective top and bottom elements given
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 58–64, 2016.
DOI: 10.1007/978-3-319-40596-4 6
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by Sup and Inf and m∗ and m∗, respectively, where Sup, Inf : F(X,A) → [0,∞]
are given by Sup (f) = sup {f(x)|x ∈ X}, Inf (f) = inf {f(x)|x ∈ X}, and
m∗,m∗ : A → [0, 1] are given by

m∗(E) =
{

0 if E = ∅,
1 otherwise ,

m∗(E) =
{

1 if E = X,
0 otherwise .

The aim of this contribution is a deeper look on the aggregation of Choquet
integrals from Ch(X,A). Recall that an aggregation function on a bounded lattice
(L,≤L) [2,11] is a mapping A : Ln → L which is monotone with respect to the
partial order ≤L and satisfies the boundary conditions A(0L, . . . , 0L) = 0L,
A(1L, . . . , 11) = 1L. Here n is a fixed integer from the set {2, 3, . . .}. Choquet
integrals (on finite sets) are frequently applied as utility functions in the area of
multicriteria decision support [6]. Here, the considered universe X is the set of
criteria, and each evaluating expert can propose his own Choquet integral (i.e.,
his own capacity m) to evaluate single alternatives. To find a consensus among
experts, an aggregated Choquet integral can be one alternative. This fact has
motivated us to study aggregations of Choquet integrals. Our approach differs
from multi-step procedures considered, e.g., in [12]. Observe that OWA operators
[16] are a particular subclass of Choquet integrals, and then several results shown
for the aggregation of Choquet integrals can be applied as corollaries for the
aggregation of OWA operators, too.

The contribution is organised as follows. In the next section, a direct aggre-
gation of Choquet integrals is considered. Section 3 is devoted to the aggregation
of Choquet integrals based on the aggregation of capacities. In Sect. 4, we discuss
the aggregation of OWA operators. Finally, some concluding remarks are added.

2 Direct Aggregation of Choquet Integrals

For any aggregation function A : [0,∞]n → [0,∞], see [7], one can apply A to
aggregate Choquet integrals in the form AA : Chn

(X,A) → I(X,A),

AA(Chm1 , . . . , Chmn
)(f) = A(Chm1(f), . . . , Chmn

(f)) (2)

where I(X,A) is the set of all monotone functionals I : F(X,A) → [0,∞], I(0) = 0.
In general, AA need not result into a Choquet integral. The positive homo-

geneity of Choquet integrals forces this property for A in such case, for example.
Similarly, the comonotone additivity of Choquet integrals results into the addi-
tivity of A. Moreover, A(1) = 1 is also forced. Summarizing, we have the next
result.

Theorem 1. Let A : [0,∞]n → [0,∞] be an aggregation function. Then the
following are equivalent.
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– for any Choquet integrals Chm1 , . . . , Chmn
∈ Ch(X,A), also AA(Chm1 , . . . ,

Chmn
) given by (2) belongs to Ch(X,A);

– A is a weighted arithmetic mean, A(x1, . . . , xn) =
∑n

i=1 wixi, where
(w1, . . . , wn) ∈ [0, 1]n and

∑n
i=1 wi = 1.

Obviously, under the notation of Theorem1,

AA(Chm1 , . . . , Chmn
) = Chm, where m =

n∑

i=1

wimi ∈ M(X,A). (3)

3 Aggregation of Choquet Integrals Based
on the Aggregation of Capacities

Consider any aggregation function A : Chn
(X,A) → Ch(X,A). Obviously, A is

in a one-to-one correspondence with some aggregation function B : Mn
(X,A) →

M(X,A).
For example, the case of direct aggregation of Choquet integrals discussed in

Sect. 2 relates convex sums (weighted arithmetic means) of Choquet integrals and
of capacities, see formula (3). Maybe the simplest approach to the aggregation
of capacities is based on fixed aggregation function A : [0, 1]n → [0, 1], see [7],
BA : Mn

(X,A) → M(X,A) is then given by

BA(m1, . . . ,mn)(E) = A(m1(E), . . . , mn(E)), E ∈ A (4)

Properties od A are then straightforwardly applicable to BA, and subsequently
to the related aggregation AA of Choquet integrals. This fact allows to model the
conjunctive, disjunctive or averaging attitude of the global decision maker. One
can define also particular aggregation functions on Ch(X,A) in this way, such as
triangular norms or conorms [10].

Theorem 2. Let A : [0, 1]n → [0, 1] be a given aggregation function. Then the
following are equivalent.

– AA : Chn
(X,A) → Ch(X,A) given by AA(Chm1 , . . . , Chmn

) = ChB(m1,...,mn), see
(4), is a t-norm on Ch(X,A);

– A is a t-norm.

Example 1. Let Π : [0, 1]n → [0, 1] be the standard product, Π(x1, . . . , xn) =
Πn

i=1xi. Observe that Π is a t-norm, i.e., a symmetric associative aggregation
function on [0, 1] with neutral element 1. For X = {1, 2},A = 2X, it holds
M(X,A) = {ma,b | a, b ∈ [0, 1]2}, where ma,b({1}) = a and ma,b({2}) = b. More,
F(X,A) can be represented as [0,∞[2, and

Chma,b
(x, y) =

{
ax + (1 − a)y if x ≥ y,
(1 − b)x + by otherwise .
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Then
AΠ(Chma1,b1

, . . . , Chman,bn
)(x, y) = ChmΠn

i=1ai,Πn
i=1bi

(x, y)

=
{

(Πn
i=1ai)x + (1 − Πn

i=1ai)y if x ≥ y,
(1 − Πn

i=1bi)y + (Πn
i=1bi)y otherwise .

Formula (4) can be generalized in several ways. Observe that for each event
E, in (4) the same aggregation function A is applied. In general, one can use,
for E1 	= E2, different aggregation functions, but not arbitrary. Note that the
monotonicity of capacities poses some restrictions here. On the other hand, for
any aggregation function A it holds A(m1(∅), . . . ,mn(∅)) = A(0, . . . , 0) = 0 and
A(m1(X), . . . , mn(X)) = A(1, . . . , 1) = 1.

Definition 1. For a fixed measurable space (X,A) and n ∈ {2, 3, . . .}, let Hn =
(AE)E∈A be a system of n-ary aggregation functions AE : [0, 1]n → [0, 1] such
that for any ∅ 	= E1 � E2 � X it holds AE1 ≤ AE2 . Then H is called a compatible
aggregation system on (X,A).

Proposition 1. Let Hn = (AE)E∈A be a compatible aggregation system on
(X,A). For any n-tuple (m1, . . . ,mn) ∈ (M(X,A))n define a set function
BHn

(m1, . . . ,mn) : A → [0, 1] by

BHn
(m1, . . . ,mn)(E) = AE(m1(E), . . . , mn(E)). (5)

Then BHn
(m1, . . . ,mn) is a capacity on (X,A), i.e., BHn

(m1 . . . ,mn) ∈
M(X,A).

Based on (5), one can define a new type of aggregation of Choquet integrals.

Theorem 3. Let Hn = (AE)E∈A be a compatible aggregation system on (X,A).
Then the mapping AHn

: Chn
X,A → I(X,A) given by AHn

(Chm1 , . . . , Chmn
) =

Chm, where m = BHn
(m1, . . . ,mn), is an aggregation of Choquet integrals.

Example 2. For X = {1, 2}, put A∅ = AX = Π, A{1} = Min and A{2} = Max.
Then Hn = (AE)E∈2X is a compatible aggregation system on (X,A). Then
BHn

(ma1,b1 , . . . ,man,bn
) = mMin{ai},Max{bi}, and

AHn
(Chm1 , . . . , Chmn

)(x, y) =
{

Min{Chmi
(x, y)} if x ≥ y,

Max{Chmi
(x, y)} otherwise .

Note that also Theorem 3 can be further generalized. Indeed, to determine the
value m(E) of an aggregated capacity m, we exploit values m1(E), . . . , mn(E),
only. This approach is reasonable, and we add the next example as an exotic
one, to see how far we can go not considering any reasonable constraints.

Example 3. Let X = {1, 2} and let A1, A2 : [0, 1]4 → [0, 1] be aggregation func-
tions. Define A : Ch2

(X,A) → Ch(X,A) by A(Chma1,b1
, Chma2,b2

) = Chma,b
, where

a = A1(a1, b1, a2, b2), b = A2(a1, b1, a2, b2). Clearly, A is an aggregation of Cho-
quet integrals.



62 R. Mesiar et al.

4 Aggregation of OWA Operators

Consider a finite space X, card X = k. A capacity m ∈ M(X,2X) is symmetric
whenever m(E) = ϕ( card X

k ), where ϕ : [0, 1] → [0, 1] is some monotone function
such that ϕ(0) = 0, ϕ(1) = 1. Then the corresponding Choquet integral Chm :
[0,∞[k→ [0,∞[ is given by Chm(a1, . . . , ak) =

∑k
i=1 wibi, where bi is the i-th

greatest input among (a1, . . . , ak), i.e., i-th order statistics, and wi = ϕ( i
k ) −

ϕ( i−1
k ). Hence, Chm = OWAw is the OWA operator based on the weighting

vector w = (w1, . . . , wk) as introduced by Yager in [16]. For more details and
proofs we recommend [5]. The set OWAk of all OWA operators on (X,A),
card X = k, is a lattice with top element OWA(1,0,...,0) = Max and bottom
element OWA(0,...,0,1) = Min. Note that if k = 2, then OWA2 is a bounded
chain. Based on the results highlighted in Sects. 2 and 3, we have the next results
for aggregation functions on OWAk. The next result is a corollary of Theorem
1 if k > 2, but not more for k = 2.

Corollary 1. Let A : [0,∞]n → [0,∞] be an aggregation function. Then the
following are equivalent.

– AA : OWAn
k → I(X,2X) is an aggregation function on OWAk, where

A(OWAw(1) , . . . ,OWAw(n))(a1, . . . , ak)

= A(OWAw(n)(a1, . . . , ak), . . . ,OWAw(n)(a1, . . . , ak));

– if k = 2, then A is the Choquet integral on N = {1, . . . , n};
if k > 2, A is the weighted arithmetic mean.

Similarly, one can consider Theorems 2 and 3. The next result is related to
Theorem 3.

Corollary 2. Let A1, . . . , Ak−1 : [0, 1]n → [0, 1] be aggregation functions such
that A1 ≤ . . . ≤ Ak−1. Then the mapping A : OWAn

k → OWAk given by
A(OWAw(1) , . . . , OWAw(n)) = OWAw is an OWA-aggregation function, where
w = (w1, . . . , wk) is defined as follows:

– for w(i) = (w(i)
1 , . . . , w

(i)
k ) define the corresponding cumulative vector v(i) =

(v(i)
1 , . . . , v

(i)
k ), v

(i)
j = w

(i)
1 + . . . + w

(i)
j ;

– define v = (v1, . . . , vk) by vj = Aj(v
(1)
j , . . . , v

(n)
j ), j = 1, . . . , k−1, and vk = 1;

– then w1 = v1, w2 = v2 − v1, . . . , wk = vk − vk−1.

There are also alternative approaches. We will consider them in our future
research, especially bilinear types of aggregation functions.

Note that formally the set OWAk can be considered as a convex closure
of the set of order statistics OS1 = Max,OS2, . . . , OSk = Min, and thus, in
the case of bilinearity, we need to introduce the aggregation of order statistics
only (their aggregation should be an OWA operator but not necessarily an order
statistics).
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5 Concluding Remarks

We have discussed the aggregation of Choquet integrals, and as a particular case,
also the aggregation of OWA operators. Observe that some particular aggrega-
tion functions on OWA operators were introduced in a recent paper [9] where
the focus was on the ORness parameter characterizing the disjunctive attitude
of OWA operators. Also in some other distinguished classes of Choquet inte-
grals one can find several approaches to the aggregation (or, equivalently, to the
aggregation of capacities). So, for example, in the case of belief measures, i.e.,
capacities linked to a probability P on 2X \ {∅}, m(E) =

∑
F⊆E P (F ), we have

Chm(a1, . . . , ak) =
∑

E⊆X P (E) · min{ai | i ∈ E}. For belief measures, already
the seminal paper of Dempster [3] brings a combination rule for belief functions,
i.e., their aggregation. Some other approaches to aggregation of belief measures
can be found, e.g., in [8].

Note that due to the fact that the Šipoš integral [15] based on a capacity
m and real valued function vector x ∈ Rn is given by Šm(x) = Chm(x+) −
Chm(x−), where x+ = (max{x1, 0}, . . . , max{xn, 0}) and x− = x+ − x, our
results for the Choquet integral can be straightforwardly formulated for the
Šipoš integral, too. Note that this is due to the fact that for x,y ∈ Rn, if x ≤ y
then x+ ≤ y+ but x− ≥ y−.

Acknowledgment. The work on this contribution was supported by the grant APVV-
14-0013.
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Abstract. A data analysis model using the inclusion-exclusion integral
and a new construction method of a model utilizing t-norms are pro-
posed. This model is based on the integral with respect to the nonadditive
measure and is constructed in three steps of specifications of monotone
functions, t-norm and of monotone measures. The model has good
description ability and can be applied flexibly to real problems. Applying
this model to the data set of a multiple criteria decision making problem,
the efficiency of the model is verified by comparing it with the classical
linear regression model and with the Choquet integral model.

Keywords: Monotone measure · Inclusion-exclusion integral · Möbius
transform · Interaction operator · t-norm

1 Introduction

In recent years, data analysis has become increasingly important for us with
the development of the storage and data management solutions. Therefore, data
analysis models describing relations between several explanatory variables as
input data and objective variables are needed in different fields, such as multiple
criteria decision making. In dealing with these problems, the linear regression
model has been widely used for a long time and plays a central role. There
are, however, many cases where the linear model is insufficient. Therefore, more
flexible models and methods are needed. As the objective variable is monotone
with respect to the explanatory variables, in many cases, using a monotone
measure, which is also called a nonadditive measure or fuzzy measure, has been
considered. Indeed, the Choquet integral model as the integral with respect to
monotone measures has been proposed and has produced good results [5,7,14,
15,19,20].

We have proposed an integral with respect to a monotone measure and call
this the inclusion-exclusion integral. We also propose a data analysis model using
this integral [10,11]. This integral contains the Lebesgue integral and also the
Choquet integral. In other words, our model contains the linear regression model
and the Choquet integral model. It has a strong model description ability and
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 65–77, 2016.
DOI: 10.1007/978-3-319-40596-4 7
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may be flexibly applied to real problems. Later in this paper, a new construction
method [11] of our proposed model is given using t-norms to evaluate the mutual
interactions among the events. We give experimental results and verify the valid-
ity of our proposed method.

2 Preliminaries

Throughout the paper, the whole set is a finite n points set denoted by Ω :=
{1, 2, . . . , n} and P(Ω) denotes the power set of Ω. For a set A, |A| is the cardinal
number of A.

2.1 The Inclusion-Exclusion Integral

Definition 1 (monotone measure [1,16,18]). A set function v : P(Ω) →
[0,+∞) is a monotone measure if v satisfies the following conditions:

1. v(∅) = 0, v(Ω) < +∞.
2. For any A,B ∈ P(Ω), A ⊂ B implies v(A) ≤ v(B).

The monotone measure space, denoted by (Ω,P(Ω), v), means that v is a
monotone measure on P(Ω). We denote a function on Ω by f := (f(1), . . . , f(n))
or also by f := (f1, . . . , fn) for simplicity.

Definition 2 (interaction operator). Let Ω be a nonempty n points set, K ∈
(0,+∞] and I(x | A) : [0,K]n × P(Ω) → [0,K] be a function. We say I is an
interaction operator on [0,K] if I satisfies the following conditions:

1. I(x | ∅) = K, I(x | Ω) = 0.
2. I(x | {i}) := xi for any i ∈ Ω, that is, I(x | {i}) is a coordinate function.
3. I(x | A) ≤ minB�A{I(x | B)} for any A ∈ P(Ω).

The interactive monotone measure space, denoted by (Ω,P(Ω), v, I,K),
means that Ω = {1, . . . , n}, v is a monotone measure on P(Ω) and I(x | A) :
[0,K]n × P(Ω) → [0,K],K ∈ (0,+∞] is an interaction operator.

Lemma 1. Let Ω = {1, 2, . . . , n} and I be an interaction operator on [0,K].
Then K is the unit element. In other words, for any i ∈ Ω, if x ∈ [0,K]n

satisfies xi = K, then I(x | A) = I(x | A ∪ {i}) holds for any A ∈ P(Ω)
satisfying A 	
 i.

Definition 3 (Inclusion-exclusion integral [11], Cf. [9,10]). Let
(Ω,P(Ω), v, I,K) be an interactive monotone measure space. For any function
f : Ω → [0,K], the inclusion-exclusion integral of f with respect to v and I,
denoted by (I)

∫
fdv, is defined by

(I)
∫

f dv :=
∑

A∈P(Ω)

M I(f | A) v(A),

where
M I(f | A) :=

∑

B⊃A

(−1)|B\A|I(f | B).
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Example 1. A binary operator on [0, 1] satisfying the following (T1-4)

(T1) 0 ⊗ 0 = 0, x ⊗ K = x for any x > 0.
(T2) x ≤ y implies x ⊗ z ≤ y ⊗ z.
(T3) x ⊗ y = y ⊗ x.
(T4) x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z.

is called t-norm ([12,17], Cf. [13]) These t-norms can be extended to multi-
variable function by (T4) and they are examples of the interaction operators.
Specifically, it shall be:

I(f | A) :=

⎧
⎨

⎩

⊗

i∈A

fi, |A| > 1,

fi, A = {i}.

Definition 4 (Discrete Choquet integral [1]). Let (Ω,P(Ω), v) be a
monotone measure space and f := (f1, . . . , fn) a non-negative function on Ω.
The Choquet integral of f with respect to v, denoted by (C)

∫
fdv, is defined by

(C)
∫

f dv := (C)
∫ ∞

0

μ({f ≥ t})dt =
n∑

i=1

(
fσ(i) − fσ(i+1)

)
v({σ(1), . . . , σ(i)}),

where σ is a permutation on Ω such that fσ(1) ≥ · · · ≥ fσ(n), and fσ(n+1) := 0.

Theorem 1. Let (Ω,P(Ω), v, I,K) be an interactive monotone measure space.
Then it holds that ∑

A�i

M I(f | A) = f(i).

By Theorem 1, the inclusion-exclusion integral can be interpreted as follows.
Each fi, i ∈ Ω of the integrand f is divided into M I(f | A), A 
 i. M I(f | A) is
the quantity of f assigned for A as interaction of elements only in A. In contrast,
I(f | A) corresponds to the quantity by interactions of elements involving A and
others. This derives the name“interaction operator.”

We say I is a nonnegative interaction operator if for any x ∈ [0,K]n we have
M I(x | A) ≥ 0 for any A ∈ P(Ω). We say I is a monotone interaction operator
if for any x ,y ∈ [0,K]n satisfying x ≤ x ≤ y , that is, xi ≤ yi, i ∈ Ω, we have
M I(x | A) ≤ M I(y | A) for any A ∈ P(Ω).

Theorem 2. Let (Ω,P(Ω), v, I,K) be an interactive monotone measure space.
(i) If v is additive. Then we have

(I)
∫

fdv =
∫

fdv.

(ii) If I is a nonnegative interaction operator, then it holds that

(I)
∫

fdv ≥ 0.
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(iii) Let f := (f1, . . . , fn) and g := (g1, . . . , gn) be functions from Ω to [0,K].
If I is a monotone interaction operator, then the inclusion-exclusion integral is
monotone. In other words, for any pair of f and g that satisfy fi ≤ gi for any
i ∈ Ω, we have

(I)
∫

fdv ≤ (I)
∫

gdv.

Definition 5 (Möbius transform). Let (Ω,P(Ω), v) be a monotone measure
space. The Möbius transform of v, denoted by mv, is defined by

mv(A) :=
∑

B⊂A

(−1)|A\B|v(B)

for any A ∈ P(Ω). There is one-to-one correspondence between v and mv with
Möbius inversion formula:

v(A) =
∑

B⊂A

mv(B)

for any A ∈ P(Ω).

Theorem 3. Let (Ω,P(Ω), v, I,K) be an interactive monotone measure space.
The inclusion-exclusion integral can be represented by using the Möbius trans-
form as

(I)
∫

f dv =
∑

A∈P(Ω)

I(f | A) mv(A).

Example 2 (Cf. Definition 4). The Choquet integral is an inclusion-exclusion
integral. In fact, it is known that the Choquet integral is represented by the Möbius
transform [6]:

(C)
∫

f dv =
∑

A∈P(Ω)

min{fi | i ∈ A} mv(A).

It is known that the Lebesgue integral and the Choquet integral both have
the following property. The inclusion-exclusion integral also has this property.

Theorem 4. Let (Ω,P(Ω), v, I,K) be an interactive monotone measure space
and K be the unit element. Define the characteristic function χA for A ∈ P(Ω)
on Ω by

χA(i) :=
{

K, i ∈ A,
0, i 	∈ A.

Then we have
(I)

∫

χAdv = Kv(A).
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In application to multivariate analysis, the whole set Ω corresponds to the
set of, for example, criteria or attributes of objects and integrand f corresponds
to a set of values assigned to each elements of Ω. In general, the scale or the
direction of variables f = (f1, . . . , fn) depend on each i ∈ Ω. Values of f on
Ω are measured objectively and each unit and scale depend on each criterion.
Some of these criteria are “the higher the better” attributes and the others are
“the lower the better”. Moreover there are cases where the value range of f is
not R but just totally ordered sets. Therefore, the following generalization of the
interaction operator is useful in a practical sense.

Definition 6. Let Ω be a nonempty n points set, R1, . . . ,Rn be totally ordered
sets, and K ∈ (0,+∞] and I(x | A) : Rn × P(Ω) → [0,K] be functions. We say
I is a rescaling interaction operator on R := R1 × · · · × Rn if I satisfies the
following conditions:

1. I(x | ∅) = K, I(x | Ω) = 0.
2. For each i ∈ Ω, I(x | {i}) is either monotonically increasing or monotonically

decreasing. That is, for any x,y ∈ R, either xi < yi implies I(x | {i}) ≤ I(y |
{i}) or xi < yi implies I(x | {i}) ≥ I(y | {i}).

3. I(x | A) ≤ minB�A{I(x | B)} for any A ∈ P(Ω).

3 Modeling Method

We propose concrete methods for constructing the Möbius type inclusion-
exclusion models using t-norms. To identify an inclusion-exclusion model, it is
needed to specify two functions need to specified; an interaction operator I and
a monotone measure v.

Let f = (f1, . . . , fn) be an input data set consisting n attributes and let
y be its objective variable. Suppose ϕi, i = 1, . . . , n are monotone functions
from Ri to [0, 1] and

⊗
:

⋃n
k=2[0, 1]k → [0, 1] be t-norm. We define

I(f | {i}) := ϕi(fi)⊗k = 2 and I(f | A :=
⊗

i∈A ϕi(fi) for A ∈ P(Ω), |A| > 1.
Then for a data set f = (f1, f2, . . . , fn), the representation of the inclusion-
exclusion integral, which we call the Möbius type inclusion-exclusion model, is
written as the following formula:

ŷ := (I)
∫

fdv + a0 =
∑

A∈P(Ω)

mv(A) I(f | A) + a0

=
∑

A∈P(Ω)

{

mv(A)
⊗

i∈A

ϕi(fi)

}

+ a0 (1)

=: a{1}ϕ1 + a{2}ϕ2 + · · · a{3}ϕn

+a{1,2}(ϕ1 ⊗ ϕ2) + a{1,3}(ϕ1 ⊗ ϕ3) + · · · + a{n−1,n}(ϕn−1 ⊗ ϕn)
...
+a{1,2,...,n}(ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕn) + a0,
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where ŷ denotes an estimated objective variable and ϕi denotes ϕi(fi) in the
right side. Therefore the process of constructing an inclusion-exclusion integral
model consists of three processes of specification.

1. monotone functions ϕ1, . . . , ϕn as I(f | {i}),
2. t-norm

⊗
as I(f | A), |A| > 1, and

3. coefficients aA, A ∈ P(Ω) as mv(A), and a0 as (I)
∫

(0, 0, . . . , 0)dv.

3.1 Specification of Monotone Functions

First, it is needed to specify n monotone functions ϕ1, . . . , ϕn need to be
specified. These functions rescale each data fi, as I(f | {i}), i ∈ Ω. This
process corresponds to rescaling or pretreatment of data sets. To guarantee the
monotonicity of v, for attributes where the larger they take, the larger the objec-
tive value takes, ϕi are supposed to be monotone. For attributes where the larger
they take, the smaller the objective value takes, ϕi are supposed to be reverse-
monotone. Both linear and nonlinear functions are acceptable as ϕi, however the
range of ϕi needs to be [0, 1] because we adopt t-norms as I(f | A), |A| > 1. We
suggest a way of determining ϕi a linear rescaling function.

ϕi(x) := max
{

min
{

x − ϕmin
i

ϕmax
i − ϕmin

i

, 1
}

, 0
}

,

and in the case that fi needs to be reversed,

ϕi(x) := 1 − max
{

min
{

x − ϕmin
i

ϕmax
i − ϕmin

i

, 1
}

, 0
}

.

ϕmin
i and ϕmax

i are the minimum and the maximum values of range of ϕi, respec-
tively.

If needed, nonlinear monotone functions can provide a more effective rescal-
ing, for example, where monotone functions which raise the correction coefficient
between ϕi(fi) and the objective value. In Sect. 4.1, we use nonlinear monotone
functions as ϕi such that

ϕi := arg max
ϕi

(
cor

({yj}M
j=1, {xj}M

j=1

))
, i = 1, 2, . . . , n,

where

cor
({yj}M

j=1, {xj}M
j=1

)
:=

∑
j

(
yj − 1

M

∑
j yj

)(
xj − 1

M

∑
j xj

)

√(
∑

j

(
yj − 1

M

∑
j yj

)2
)(

∑
j

(
xj − 1

M

∑
j xj

)2
) .
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3.2 Specification of t-norms

Next, t-norms to be specified. We show the both formulas as binary operator
and k-ary operator, k = 1, . . . , n, of non-parametric and parametric t-norms as
follows. For x, y ∈ [0, 1], i = 1, 2, . . . , k,

1. the algebraic product: x ⊗a y := xy,
2. the logical product: x ⊗min y := min{x, y},

3. the bounded product: x ⊗b y := max(x + y − 1, 0), xy

4. t-product: x ⊗T y :=
xy

x + y − xy
,

5. Dombi’s t-norm [2]: x ⊗D y :=
1

1 +
(

(
1
x − 1

)λ +
(

1
y − 1

)λ
) 1

λ

, λ ≥ 0,

6. Dubois and Prade’s t-norm [4]: x ⊗DP y :=
xy

max{x, y, λ} ,

7. Schweizer and Sklar’s t-norm [17]:

x ⊗SS y := 1 − {(1 − x)p + (1 − y)p − (1 − x)p(1 − y)p} 1
p , p > 0,

8. Hamacher’s t-norm [8]: x ⊗H y :=
xy

γ + (1 − γ)(x + y − xy)
, γ > 0,

9. Yager’s t-norm [21]: x ⊗Y y := 1 − (min{1, (1 − x)p + (1 − y)p})
1
p , p > 0

The t-product is obtained by putting γ = 0 of Hamacher’s t-norm and also λ = 1
of Dombi’s t-norm.

The inclusion-exclusion integral using the logical product as I corresponds
to the Choquet integral.

t-norms correspond to I(f | A) controlling the quantities of the interaction
among elements in A ∈ P(Ω).

Remark 1. We may also adopt generalized t-norms under the condition of the
interaction operator. For example, for xi ∈ [0, 1], i = 1, . . . , n, Dubois and
Prade’s t-norm can be generalized to the interaction operator as follows:

⊗

i∈A

GDP xi :=
∏

i∈A xi · min{x1, x2, . . . , x|A|}⎛

⎝
∏

i:xi>λ|A|

xi

⎞

⎠ · λ|A|
|{i∈A|xi≤λ|A|}|−1 · min{x1, x2, . . . , x|A|, λ}

,

0 ≤ λ1 ≤ λ1 ≤ . . . λn ≤ 1,

which is not a t-norm but an interaction operator.
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3.3 Specification of Monotone Measures

The last step in the construction process is to select good variables in regression
and to determine the values of their coefficients. One of the disadvantages of the
inclusion-exclusion model is its large number of terms, so that using the selecting
method of the linear regression model is effective for eliminating the defect. This
problem can be solved by regarding the Möbius type inclusion-exclusion [11]
model as the linear regression model. We propose using methods proposed for
the linear regression model to select a subset of variables used in the model [3].
In Sect. 4.3, we use the stepwise regression method which is the most common
method of selecting variables in regression models. The only difference point in
the case of the inclusion-exclusion integral model is that we have to consider the
monotonicity of v.

4 Experiments

In this section, we show the concrete process and the results of an experimen-
tal trial to validate the performance of the inclusion-exclusion integral model
compared with both the linear multi regression model and the Choquet inte-
gral model. We used the Möbius type inclusion-exclusion model (Eq. (1)) as the
inclusion-exclusion model and the Choquet integral model. The linear regression
model is

y =
∑

i∈Ω

aifi + a0.

We used the “Car Evaluation” data sets that were provided for open access in
the UCI repository1. The data set consisted of 1728 data sets containing “overall
evaluation” and a further six attributes for evaluating a car: “price”, “cost of
maintenance”, “number of doors”, “passenger capacity”, “trunk capacity” and
“estimated safety”. Therefore, Ω is a six-points set consisting of these attributes,
Ω := {1, 2, 3, 4, 5, 6} := {“ price”, “cost of maintenance”, “number of doors”,
“passenger capacity, “trunk capacity”, “estimated safety”.

4.1 Monotone Functions

We adopted the monotone functions shown in Table 1. The correlation coeffi-
cient is maximized with the objective value, “overall evaluation”. We have, for
example,

ϕ1 := ϕprice =
(

veryhigh high medium low
0 0.1 0.7 1

)

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Table 1. Car evaluation data sets and monotone functions

Attributes Alternatives Rescaling

Explanatory
variables

price buying (very high, high,
medium, low)

(0, 0.1, 0.7, 1)

doors number (2, 3, 4, more) (0, 0.7, 0.9, 1)

passenger capacity (2, 4, more) (0, 0.8, 1)

trunk capacity (big, medium, small) (1, 0.7, 0)

estimated safety (high, medium, low) (1, 0.6, 0)

Objective
variable

overall evaluation (unacceptable, acceptable, good,
very good)

(1, 2, 3, 4)

and for example,

I
(
(high,medium, 3, 2,big, low) | {“doors numbers′′})

= 0.7.

Selection took place by the exhaust search between 0 and 1 with stepping
width 0.1. In other words, in the case that the number of attributes is four,
(0, 0.1, 0.2, 1), (0, 0.1, 0.3, 1), (0, 0.1, 0.4, 1), . . . , (0, 0.2, 0.3, 1), . . . , (0, 0.8, 0.9, 1).

4.2 t-norms

We adopted the t-norms in Sect. 3.2. The parameters of parametric t-norms
are determined by the exhaust search. For example, in the case of Dubois and
Prade’s t-norm, we try the model with λ between 0 and 1 with stepping width
0.05 and adopt the best parameter that maximizes adjusted R2. This quantifies
how well the model fits the data:

adjusted R2 := 1 − (1 − R2)
(

M − 1
M − K − 1

)

,

where R2 is the coefficient of determination,

R2 := 1 −
∑M

j=1

(
yj − ŷj

)2

∑M
j=1

(
yj − 1

M

∑M
j=1 yj

)2 ,

M is the number of the data sets and K is the number of the selected variables
in the model.

4.3 Monotone Measures

Regarding the Möbius type inclusion-exclusion model as the linear regression
model, we obtained a{1}, a{2}, . . . , a{n}, a{1,2}, a{1,3}, . . . , a{n−1,n}, . . . , a{1,...,n}
as the least-square method and selected them using the stepwise regression
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Table 2. Results

Regression model t-norm R Adjusted R2 #variables Parameter

Linear regression — 0.715 0.510 6 —

Choquet integral logical product 0.920 0.846 13 —

Möbius type algebraic product 0.928 0.861 8 —

inclusion-exclusion bounded product 0.907 0.821 12 —

integral t-product 0.928 0.861 9 —

Dombi’s t-norm 0.930 0.864 10 λ = 0.9

Dubois’s t-norm 0.930 0.864 11 λ = 0.95

Schweizer’s t-norm 0.930 0.864 11 p = 1.3

Hamacher t-norm 0.930 0.864 10 p = 0.4

Yager’s t-norm 0.927 0.858 10 p = 1.7

method. We also took account of the variance inflation factor (VIF). In gen-
eral, a value of 10 is recommended as the maximum level for VIF in order to
avoid trouble with the stability of the coefficients. We also assumed that v is
monotone when using the stepwise selection method. Therefore, the conditions
to enter came to be that

1. F-value is greater than 3.84,
2. v is monotone, and
3. VIF is less than or equal to 10,

and the conditions to remove are that

1. F-value is less than 2.71,

where 3.84 is based on the upper critical value of the F-distribution at 5 per-
cent significant level and 2.71 is at 10 percent significant level, and the column
“#variables” in Table 3 show the number of selected variables using this selec-
tion.

4.4 Results

The results of the experiment are shown in Tables 2 and 3. Table 2 shows “R”
which is the correlation coefficient of observed values and the fitted values by the
regression models. The closer to 1 they are, the better the regression model is.
Table 3 shows the selected variables of each regression models. The results shows
validity of the proposed method using the inclusion-exclusion integral model
compared with the classical linear regression model. The concrete formula of
one of the best model with Dubois and Prade’s t-norm was
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Table 3. Selected variables of each model

Regression model t-norm Selected variables

Linear regression — {1},{2},{3},{4},{5},{6}
Choquet integral logical product {3},{5},{6},{1,4,6},{2,4,6},{3,4,6},

{1,4,5,6},{2,3,4,6},{2,4,5,6},{1,3,4,5,6},
{1,2,3,4,6},{1,2,4,5,6},{1,2,3,4,5,6}

Möbius algebraic product {4,6},{1,4,6},{1,2,4,6},{1,3,4,6},{1,4,5,6},
inclusion-exclusion {2,3,4,6},{2,4,5,6},{2,3,4,5,6}
integral bounded product {6},{4,5},{1,2,3},{1,3,6},{1,4,6},{2,4,6},

{3,4,6},{1,2,3,4}, {1,4,5,6},{2,4,5,6},
{2,3,4,5,6},{1,2,4,5,6},{1,2,3,4,5,6}

t-product {1,4,6},{2,3,6},{2,4,6},{3,4,6},{1,3,4,6},
{1,4,5,6},{2,4,5,6},{1,2,3,4,6},{2,3,4,5,6}

Dombi’s t-norm {6},{1,4,6},{2,4,6},{1,3,4,6},{1,4,5,6},
{2,3,4,6},{2,4,5,6},{1,2,3,4,6}, {1,2,4,5,6},
{1,2,3,4,5,6}

Dubois’s t-norm {6},{4,5},{1,4,6},{2,4,6},{1,3,4,6},{1,4,5,6},
{2,3,4,6},{2,4,5,6},{1,2,3,4,6},{1,2,4,5,6},
{1,2,3,4,5,6}

Schweizer’s t-norm {6},{1,4,6},{2,4,6},{3,4,5},{1,3,4,6},
{1,4,5,6},{2,3,4,6},{2,4,5,6},{1,2,3,4,6},
{1,2,4,5,6},{1,2,3,4,5,6}

Hamacher’s t-norm {6},{45},{146},{246},{1346},{1456},
{2346},{2456},{12346},{12456},{123456}

Yager’s t-norm {6},{4,5},{1,4,6},{3,4,6},{1,2,4,6},{1,3,4,6},
{1,4,5,6},{2,3,4,6},{2,4,5,6},{2,3,4,5,6}. . .

FDP(f) = 0.075 ϕ6 + 0.059

⎛

⎝
⊗

i∈{4,5}
DP ϕi

⎞

⎠ + 0.462

⎛

⎝
⊗

i∈{1,4,6}
DP ϕi

⎞

⎠

+0.384

⎛

⎝
⊗

i∈{2,4,6}
DP ϕi

⎞

⎠ + 0.509

⎛

⎝
⊗

i∈{1,3,4,6}
DP ϕi

⎞

⎠ + 0.937

⎛

⎝
⊗

i∈{1,4,5,6}
DP ϕi

⎞

⎠

+0.334

⎛

⎝
⊗

i∈{2,3,4,6}
DP ϕi

⎞

⎠ + 0.541

⎛

⎝
⊗

i∈{2,4,5,6}
DP ϕi

⎞

⎠ + 0.582

⎛

⎝
⊗

i∈{1,2,3,4,6}
DP ϕi

⎞

⎠

+0.826

⎛

⎝
⊗

i∈{1,2,4,5,6}
DP ϕi

⎞

⎠ − 0.911

⎛

⎝
⊗

i∈{1,2,3,4,5,6}
DP ϕi

⎞

⎠ + 0.967,

where ϕi denotes ϕi(fi).
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The model gives additional information. We can read the strengths of
the interaction between attributes by mv and I and obtain the importance
of each criterion by the Shapley value of v. In the case of FDP, we obtain
Φ(v) = (φ1, φ2, φ3, φ4, φ5, φ6) = (0.175, 0.137, 0.052, 0.230, 0.120, 0.286) which
shows that “estimated safety” is the most significant attribute.
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Abstract. The fuzzy inference system (FIS) has been tuned and
revamped many times over and applied to numerous domains. New and
improved techniques have been presented for fuzzification, implication,
rule composition and defuzzification, leaving one key component rela-
tively underrepresented, rule aggregation. Current FIS aggregation oper-
ators are relatively simple and have remained more-or-less unchanged
over the years. For many problems, these simple aggregation operators
produce intuitive, useful and meaningful results. However, there exists
a wide class of problems for which quality aggregation requires non-
additivity and exploitation of interactions between rules. Herein, we show
how the fuzzy integral, a parametric non-linear aggregation operator, can
be used to fill this gap. Specifically, recent advancements in extensions of
the fuzzy integral to “unrestricted” fuzzy sets, i.e., subnormal and non-
convex, makes this now possible. We explore the role of two extensions,
the gFI and the NDFI, discuss when and where to apply these aggrega-
tions, and present efficient algorithms to approximate their solutions.

Keywords: Fuzzy inference system · Choquet integral · Fuzzy integral ·
gFI · NDFI · Fuzzy measure

1 Introduction

In Lofti Zadeh’s seminal 1965 paper on fuzzy set (FS) theory, a new philosophy
was put forth to address uncertain data and/or information [1]. In 1973, Zadeh
introduced fuzzy logic and he suggested that it might be a useful mechanism to
model higher-level thought and reasoning in humans [2]. The first application
selected was a steam engine and boiler control system and the rules were provided
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 78–90, 2016.
DOI: 10.1007/978-3-319-40596-4 8
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by the system operators [3]. The Mamdani-Assilian fuzzy inference system (FIS)
is built on top of Zadeh’s compositional rule of inference (CRI), a generalization
of modus ponens, modus tollens, etc. The CRI is a way to calculate a FS-valued
output based on crisp or FS-valued inputs and an implication function. Other
well-known FISs that generalize the CRI are the Takagi-Sugeno-Kang (TSK) [4],
Tsukamoto [5], and single input rule modules (SIRM) FISs [6,7]. Nearly all FISs
consist of some subset of fuzzification, CRI, rule firing, rule combination and
defuzzification. Of particular importance to this paper is the aggregation step
in an FIS, which is responsible for combining the output of different rules and
deriving a final comprehensive decision. Specifically, we are concerned with the
identification of functions that can take multiple FS-valued inputs and produce
a FS-valued output. The Mamdani-Assilian FIS typically uses FS aggregation
strategies such as maximum and summation per individual element in the dis-
crete output domain. The aggregations used in most FISs share something in
common, they are relatively simple and they do not model nor exploit interac-
tions (when/if available) between rules. Herein, we investigate the role of the
fuzzy integral (FI) [8], namely the Choquet integral (CI), for non-linear rule
combining in fuzzy logic. In particular, we explore our two recent extensions,
the generalized FI (gFI) and the non-direct FI (NDFI) [9], that are capable
of aggregating any type of FS in contrast to prior extensions for interval-valued
data and fuzzy numbers. The fuzzy measure (FM), introduced by Sugeno in 1974
[8], is used to model interactions (when/if available) between rules. Specifically,
for the Mamdani-Assilian FIS, let X be the set of N rules, let xi ∈ X be the
ith rule and H(xi), or Hi for short, be the ith FS-valued rule output. Herein,
we address how to use the NDFI and gFI for fuzzy logic and when and where to
use one or the other. Figure 1 illustrates the role of the FI in fuzzy logic.

In 1992, Yager explored rule aggregation in fuzzy logic [10]. He considered two
rule representations, the Mamdani model and the logical model, and obtained a
general rule representation. For aggregation, he explored two soft classes of rule
combining, or-like and and-like. Ultimately, Yager’s work is subsumed by our

Fig. 1. Block diagram of a fuzzy inference system and where the FI fits in.
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current article. First, Yager’s operators are performed per-element in a discrete
output domain. This is how the NDFI operates, although not the gFI (which is
based on the extension principle (EP)). Second, Yager’s two classes of operators,
and even his related ordered weighted averages (OWAs) [11], are special cases of
the CI (with respect to particular FMs) [12]. Third, and related to the second
point, the NDFI and gFI are not restricted to being additive (they only need to
satisfy the more general rule of monotonicity) and they can model and exploit
rich interactions between rules when/if available. This allows us to achieve a
much wider, sophisticated and custom set of non-linear aggregation operators.

The organization of this paper is as follows. In Sect. 2, the FI, NDFI and
gFI are reviewed and their role in FIS rule output aggregation is addressed. In
Sect. 3, we provide an example of the proposed theory. The goal of this article is
to make the necessary introduction to different relevant FI extensions, propose
algorithms for computing the integrals, and present discussions about specifying
or learning g in the context of fuzzy logic.

2 Fuzzy Measure and Integral

2.1 Fuzzy Measure

The concepts of a measure and integral are two of the most fundamental aspects
of mathematics. A famous example is the Lebesgue measure and integral with
respect to that measure. The Lebesgue measure is the typical way of assigning a
value to subsets of a Euclidean space, i.e., length, area, volume. However, mea-
sures can capture a wide range of concepts outside of n-dimensional Euclidean
spaces. In the context of the FI, the FM often is a subjective assessment of the
worth or importance of a subset of data or information sources. In general, the
FM requires the property of monotonicity with respect to set inclusion, a weaker
property than the additive property of a probability measure. In [8], the initial
focus was an integrand (h) and FM (g) in the interval [0, 1], h : X → [0, 1] and
g : 2X → [0, 1], where 2X is all subsets of X. However, both integrand and FM
have been defined more generally and used in the FI, e.g., h : X → [−∞,∞],
h : X → �+

0 , g : 2X → �+
0 , etc. Next, we briefly review the FM.

Definition 1 (Fuzzy measure) [8]. For a finite set X, a FM is a function
g : 2X → �+

0 , such that

1. (Boundary Condition) g(φ) = 0 (and often g(X) = 1);
2. (Monotonicity) If A,B ⊆ X, A ⊆ B, then g(A) ≤ g(B).

Note, if X is an infinite set, then a third condition guaranteeing continuity is
required. However, this is a moot point for finite X. In the FIS system, we only
consider the finite set X of N rules.

Definition 2 (Sugeno λ-measure) [8]. Let g be a FM. Furthermore, g is called
a Sugeno λ-measure if it satisfies the following condition,

gλ(A ∪ B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), (1)
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for some λ > −1. The Sugeno λ-measure is built using the singleton values (aka
densities), gi = g({xi}). Sugeno showed that λ can be found by solving

λ + 1 =
N∏

i=1

(
1 + λgi

)
, λ > −1, (2)

where there exists one real solution that satisfies λ > −1.

Definition 3 (S-Decomposable Measure). Let S be a triangular-conorm (t-
conorm). A FM g is called an S-decomposable measure if g(φ) = 0, g(X) = 1,
and for all A,B such that A ∩ B = φ,

g(A ∪ B) = S(g(A), g(B)). (3)

2.2 Choquet Integral

Next, we briefly review the real-valued discrete CI; see [8,9,13,14] for additional
information (proofs, properties, etc.).

Definition 4 (�-Valued Discrete Choquet FI) [8]. Given a finite set X, FM
g and function h : X → �, the CI of h with respect to g is

∫

h ◦ g = Cg(h) =
N∑

i=1

hΔ(i)

(
g(AΔ(i)) − g(AΔ(i−1))

)
, (4)

where hΔ(i) = h({xΔ(i)}) and Δ is a permutation on X such that hΔ(1) ≥
hΔ(2) ≥ ... ≥ hΔ(N), AΔ(i) = {xΔ(1), ..., xΔ(i)} and g(AΔ(0)) = 0.

2.3 Generalized Fuzzy Integral

In [9], we introduced the gFI, an extension of the FI based on Zadeh’s exten-
sion principle (EP) for “unrestricted” (potentially non-convex and subnormal)
FSs. Initially, the gFI was created for skeletal age-at-death estimation in forensic
anthropology [15,16]. Due to space considerations herein, see [9] for full math-
ematical detail, proofs and in-depth analysis. Algorithm 1 is an algorithmic
description of how to calculate the gFI.

Note, that at a particular α-cut we obtain, for non-convex FSs, a discontin-
uous interval, e.g., an αHi that yields more than one interval, like [0, 0.1] and
[0.7, 0.9], versus a single continuous interval, such as [0, 0.9]. The gFI plays off
the fact that a discontinuous interval can be represented as the union of its con-
tinuous sub-intervals [9]. At each α-cut, we first decompose the discontinuous
intervals into their corresponding continuous interval counterparts. Computa-
tionally, that is for a finite number of α-cut approximation, this only makes
sense when we consider a finite number of continuous intervals. Next, we com-
pute the continuous interval-valued FI on each combination (Mα in total) of
continuous intervals with respect to our different inputs/sources. For example,
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Algorithm 1. Algorithm to calculate the generalized FI (gFI) [9]
1: Input FM g � e.g., Sugeno λ-FM, learn g from data, specify g, etc.
2: Input FS-valued partial support function H � i.e., Hi for i = {1, ..., N}
3: Calculate β =

∧N
i=1 Height(Hi) � minimum height of partial support FSs

4: for each α ∈ (0, β] do � note, this step is discretized in practice
5: [

∫
H ◦ g]α =

(∫
[αH]1 ◦ g

)
� first gFI calculation; interval-valued FI

6: for k = 2 to Mα do � each continuous interval combo (Mα) at α
7: [

∫
H ◦ g]α = [

∫
H ◦ g]α

⋃ (∫
[αH]k ◦ g

)
� kth gFI calculation

8: end for
9: end for

for two inputs, if the first has three continuous intervals and the second has two
then Mα equals six. Let [αH]k=1 be the first such combination, i.e., the first
continuous interval from source one, first continuous interval from source two,
etc. The gFI is simply the union of these continuous-valued interval FI results. At
each α-cut, the beauty is that the gFI breaks down into a set of interval-valued
FI calculations which breaks down further into two �-valued FIs [9,17]—one for
the left interval endpoints and one for the right interval endpoints.

2.4 Non-Direct Fuzzy Integral

Unlike the gFI, the NDFI does not extend the FI according to Zadeh’s EP. It
should be noted that the EP is not the true and only way to address extensions of
the FI, it is just one well grounded and heavily studied approach. Due to space
considerations herein, see [9] for full mathematical detail, proofs and indepth
analysis of the NDFI. Algorithm 2 is a description of the NDFI.

Algorithm 2. Algorithm to calculate the non-direct FI (NDFI) [9]
1: Input FM g � e.g., Sugeno λ-FM, learn g from data, specify g, etc.
2: Input the FS-valued partial support function H � i.e., Hi for i = {1, ..., N}
3: Discretize the output domain, D = {d1, ..., d|D|} � e.g., D = {0, 0.01, ..., 1}
4: Initialize the (FS) result to R[dk] = 0
5: for each dk ∈ D do � for each output domain location
6: for each i ∈ {1, ..., N} do � for each input
7: Let zi = Hi(dk) � i.e., z is the vector of memberships at dk
8: end for
9: R[dk] =

∫
z ◦ g � �-valued FI of z with g

10: end for

Whereas the gFI decomposes the FI into a sequence of interval-based FI
calculations across the membership domain, NDFI decomposes the FI into a
sequence of �-valued FI calculations across the input/element domain. The gFI
always produces FSs whose cardinality, i.e., number of elements of the set, is
greater than zero, as long as the minimum input FS height is greater than zero.
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However, the NDFI is not guaranteed to do this. For example, consider when
the FI becomes the minimum operator, i.e., when g(A) = 0,∀A ⊂ X, g(X) = 1.
Furthermore, assume the input FSs are completely disjoint. The NDFI therefore
produces a value of 0 everywhere.

2.5 FI for Combining Rules in a FIS

As the reader can clearly see, the NDFI and gFI are two ways to aggregate
FS-valued inputs. Furthermore, they fit naturally into existing FISs. The first
question we explore is, when to use the NDFI and when to use the gFI. Table 1
summarizes a few important properties of these two extensions.

Table 1. Summary of important properties of the NDFI and the gFI

FI extension domain order “types” of sets

NDFI discrete or continuous no assumption any

gFI real-number domain total order any

In general, if the domain is naturally discrete and no total order exists then
the gFI is not applicable but the NDFI is. The NDFI “aggregates in place”—
it does not allow for interaction or cross-pollination between elements in the
domain. On the other hand, the gFI allows for interaction between elements
(thus why it works on �). Additionally, the gFI is based on the EP and it
extends a function to FS-valued inputs. In the next section we provide numeric
examples that illustrates these concepts.

Next, we explore common FMs encountered in practice (and FISs in the
case of the NDFI). In Yager’s approach [10], he explored and-like and or-like
aggregation operators on a per-element basis. The NDFI yields Yager’s and-like
and or-like operators, OWA operators (specifically, all linear combinations of
order statistics) and numerous other aggregation operators outside this set. It is
well-known that the FI, specifically the CI, turns into a particular aggregation
operator based on g (Table 2 provides an example for a few well-known FMs).

Table 2. Example FMs and aggregation operators induced

Resultant CI operator FM properties

OWA g(φ) = 0, g(X) = 1, g(A) = g(B) when |A| = |B|, ∀A, B ⊆ X

Maximum g(A) = 1, ∀A ⊆ X, A �= φ, g(φ) = 0

Minimum g(X) = 1, g(A) = 0, ∀A ⊂ X

Mean g(A) = |A|
N

, ∀A ⊆ X, A �= φ, g(φ) = 0

Sum g(A) = |A|, ∀A ⊆ X, A �= φ, g(φ) = 0



84 L. Tomlin et al.

Of course, the FMs in Table 2 (minus “sum”) are all OWAs and it is well-
known that the CI can yield a class of custom non-linear aggregation operators
outside of OWAs. The FM can be a number of things from a belief measure to
a Sugeno λ-FM to much more. This is not counting the vast sea of custom and
unique FMs that one might need and attempt to learn from data. The NDFI can
also reproduce the sum, used by many FISs, if one discards the upper g(X) = 1
boundary condition. For example, the FM g(A) = |A| makes the CI yield the
summation operator, e.g., for N = 4, hΔ(1)(1−0)+hΔ(2)(2−1)+hΔ(3)(3−2)+
hΔ(4)(4 − 3) = hΔ(1) + hΔ(2) + hΔ(3) + hΔ(4).

Instead, if we do not want to use a standard aggregation operator then we
can specify the full FM. However, this can be incredibly complex as g grows
quickly in size—2N terms for N inputs. If we know the “worth” of the singletons
(aka densities) then one can refer to techniques such as the Sugeno λ-measure
and S-decomposable measure to impute the remainder of the FM. We can also
look to a technique such as the k-additive FI.

However, if one wants to learn the FM, densities or the full FM, from data
then a number of methods can be used, e.g., an optimization algorithm such as
a genetic algorithm [18], linear and quadratic programming [13,14,19], gradient
descent [20], etc. See [21] for FI learning works prior to 2008. In the case of
a FIS, learning depends on if one has labeled data that is the defuzzified or
FS-valued target outputs. In the latter case, we must select a measure of distance
or divergence between FSs, such as one that calculates the sum of differences of
interval endpoints across α-cuts [18,22]. While it is possible to learn the FM in
fuzzy logic, we note that in practice it is likely not a trivial task as it has to be
achieved in combination with FIS parameter specification.

Next, we explore the complexity of the NDFI versus the gFI. If the output
domain has been discretized (or is already discrete) and is D = {d1, d2, ..., d|D|},
then the NDFI requires |D| FIs, each of which take 3N−1 operations (specifically
N multiplications, N subtractions and N − 1 additions), therefore 3N |D| − |D|
total calculations (not counting the Hi sorting step, which occurs for each ele-
ment in D). The NDFI has more-or-less the same cost as current FIS operations,
e.g., maximum, average, sum, etc. The only added complexity is determining the
FM. Depending on the number of desired α-cuts, the gFI may or may not be
more expensive than the NDFI (depends on the discretization level of the output
domain). Assuming P α-cuts, we must first determine each continuous interval,
all combinations of continuous intervals must be computed (Mα) and subjected
to the interval-valued FI (which is the invocation of two �-valued FIs, thus N
operations), and we must take the union of the results. The gFI cost formula
is not as easily expressible (as the NDFI) because each α-cut on each FS can
yield a different number of discontinuous intervals. We do not see complexity
as the driving factor in selecting the NDFI or the gFI. Instead, it seems more
important that a user prefers the EP (gFI) or “aggregation in place” (NDFI).
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3 Numeric Example

In this section, we consider an augmented fuzzy logic tipping problem. We consider
four arbitrary rules (Table 3) and an input of (0.58, 0.75, 0.96), for (responsiveness,
satisfaction, food), which results in four FSs to aggregate. Note, the particular
vocabulary and their parameters is not as important as the trends of FSs. We want
to show the case of one “outlier” (FS in extreme disagreement, i.e., H1) and three
overlapping (partially agreeing) FSs. Table 4 contains the terms and parameters
used in the four rules. For comparison’s sake, Table 5 contains five different FMs
(whose full set of values are reported) used to aggregate our rule FS outputs. The
particular FMs in Table 5 were selected in order to demonstrate the behavior and
differences between the NDFI and gFI. In particular, we compute OWAs (maxi-
mum, minimum, average), the sum, the Sugeno λ-FM (for a set of densities) and
an S-Decomposable FM (labeled possibility in Table 5), where S=max, for a given
set of densities. In addition, we report two “binary FMs”—a FM (labeled g2,3 in
Table 5 for compactness sake) that is 0 except for g({x2, x3}) = 1 (and satisfying
monotonicity) and a FM (called g1,4 in Table 5) that is 0 except for g({x1, x4}) = 1
(and satisfying monotonicity).

Table 3. Example toy rules for tipping

Rule If Then

1 responsiveness is slow tip is very low

2 satisfaction is high tip is high

3 responsiveness is moderate AND satisfaction is high tip is very high

4 responsiveness is moderate AND food is delicious tip is stellar

Table 4. Fuzzy set parameters for FIS example1

Variable Term Tri. Membership Variable Term Tri. Membership

responsiveness slow (0.3,0.45,0.6) Tip very low (0,0.15,0.3)

moderate (0.35,0.5,0.65) high (0.55,0.7,0.85)

satisfaction high (0.7,0.8,0.9) very high (0.65,0.8,0.95)

food delicious (0.8,0.9,1) stellar (0.8,0.9,1)
1note, this could be scaled to a level of tip, e.g. in [0,30]%

Our tipping example exposes a few interesting things. First, the gFI results
look rather extreme as they are truncated according to the minimum height
input FS (due to the formulation of the EP). Truncation is extremely frequent
as each rule fires to some degree so the FSs are almost always subnormal. Next,
the max, min and average look more like what we might expect, if our desire is
fuzzy arithmetic. On the other hand, the NDFI aggregates in place—restricting
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Table 5. List of FMs used for examples

FM max min sum average Sugeno λ-FM (gλ1) g2,3 g1,4 possibility

g({x1}) 1 0 1 0.25 0.001 0 0 0.1

g({x2}) 1 0 1 0.25 0.25 0 0 0.8

g({x3}) 1 0 1 0.25 0.001 0 0 0.2

g({x4}) 1 0 1 0.25 0.25 0 0 0.7

g({x1, x2}) 1 0 2 0.5 0.253 0 0 0.8

g({x1, x3}) 1 0 2 0.5 0.002 0 0 0.2

g({x1, x4}) 1 0 2 0.5 0.253 0 1 0.7

g({x2, x3}) 1 0 2 0.5 0.253 1 0 0.8

g({x2, x4}) 1 0 2 0.5 0.983 0 0 0.8

g({x3, x4}) 1 0 2 0.5 0.253 0 0 0.7

g({x1, x2, x3}) 1 0 3 0.75 0.256 1 0 0.8

g({x1, x2, x4}) 1 0 3 0.75 0.993 0 1 0.8

g({x1, x3, x4}) 1 0 3 0.75 0.256 0 1 0.7

g({x2, x3, x4}) 1 0 3 0.75 0.991 1 0 0.8

g(X) 1 1 4 1 1 1 1 1

fusion to just the set of available evidence at a particular output domain element.
This produces different results for the same FM. Next, each FI extension and
FM yields different FSs, which leads to different defuzzified results (when/if a
crisp overall output is desired). The results of firing the rules with the given
inputs and utilizing each measure in Table 5 can be found in Fig. 2.

In the case of the sum FM and the gFI, if the output domain is restricted to
[0, 1] then the result is officially “out of range”. However, the gFI and the NDFI
yield results that do not exceed the min and max input FSs, which therefore is in
the valid interval as long as the inputs are in the valid interval and the FM has
at max g(X) = 1 [9]. Additionally, the NDFI also yields (due to boundedness
property of the FI) results between [0, 1] as long as the sets have memberships
in [0, 1] and the FM has at max g(X) = 1. Obviously, the sum FM violates
these conditions. One rationalization of the usefulness of an NDFI operator that
produces membership values greater than 1 is it still leads to a technically valid
defuzzified result (but not a valid FS).

Next, we explore a binary FM. A binary FM is a FM whose values are
restricted to {0, 1}. Consider the set of all maximal chains of the Hasse diagram
(2X ,⊆). A maximal chain in (2X ,⊆) is a sequence φ, {xπ(1)}, {xπ(1), xπ(2)},
..., {xπ(1), ..., ππ(N)} (for a given permutation π). In the discrete case, the CI
is nothing more than a weighted sum—the sorted integrands times the differ-
ences in their respective values in the maximal chain. For a binary FM, one of
these difference-in-g’s is 1 and the other values are 0 (trivial to prove due to
monotonicity). Now, consider the FM in Fig. 2 labeled g2,3. This FM has value



Fuzzy Integral for Rule Aggregation in Fuzzy Inference Systems 87

Fig. 2. Graphical illustration of the gFI and NDFI outputs for the FMs reported in
Table 5, terms in Table 4 and rules in Table 3.
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0 for all subsets except 1 for {x2, x3} and all respective subsets needed to ensure
monotonicity. The result is the minimum of the two sets H2 and H3 (shown in
Fig. 2). The same argument holds for the FM labeled g1,4 (the FM is computing
the minimum of the two inputs H1 and H4). While this is a rather extreme
(binary) example to illustrate the importance and resulting effect of specifica-
tion and/or learning of higher-order tuple terms in the FM, the point is we can
achieve a wealth of custom aggregation strategies for combinations of rules.

In closing, while it would be nice to definitively state that the NDFI or the
gFI is better, we feel this is not the case. Instead, the ultimate decision of which
extension to pick appears to break down into either what the problem demands
(e.g., a discrete domain where elements cannot cross-pollinate) or the desire of
what aggregation should do to the outputs, either aggregate in place or compute
a function that has been extended to FS-valued inputs.

4 Conclusion and Future Work

Herein, we proposed and started to explore the NDFI and gFI extensions for
rule aggregation in a FIS. We discussed how these extensions fit into existing
FISs, reviewed efficient discrete algorithms and analyzed their computational
complexities. Furthermore, we showed, via the toy tipping example, how to pick
FMs that turn the CI into existing FIS aggregation operators, we discussed
imputation methods (from the densities) and opened the door for learning. The
example and Table 1 gave the reader a feel for the inner workings and differences
between the gFI and NDFI and it helps with understanding when and where to
use one extension over the other. We also highlighted that the NDFI “aggregates
in place” (per-element) while the gFI is based on the EP. Ultimately, this makes
a big difference, in terms of output, and it is a choice the user must make.

Due to space considerations, we had to restrict the focus of this article to
different technical aspects of rule output aggregation using the NDFI and the
gFI. However, in future work we feel it will be important to explore various
applications, in particular in conjunction with learning rules from data and going
beyond theories like the Wang-Mendel approach. While an important part of the
gFI and NDFI is the fact that they can produce a wealth of different aggregation
operators and extend the capabilities of a FIS, we will need to explore if there
are any particular FMs (and therefore aggregation operators) that are “more
appropriate” than others for different scenarios. The point is, a FIS user will
need to either select or learn the FM. If no data is available then a big challenge
they will have to face is what FM to select for their given application. Next, while
we discussed type-1 fuzzy logic herein, in [23] we previously extended the FI for
type-2 FS-valued integrands. We will explore the extension of NDFI and gFI,
and thus FISs, for type-2 valued integrands. Last, we will investigate efficient
methods (mathematics and algorithms) for learning the FM from both �-valued
and FS-valued ground truth.
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Abstract. We propose the Choquet integral with respect set to a func-
tion defined as the product-sum calculation between a set function and a
fuzzy measure. The fuzzy integral is an extension of the Choquet integral.
The Choquet integral assumes that the interactions among input values
are interact fully but the extension assumes the values partially inter-
action. In this paper, we define another integral expression and analyze
its properties. For an input vector the optimal set function is calculated
through linear programming. Lastly, we analyze coalitions among set
functions that are a cooperative game using the proposed integral.

Keywords: Set function · Choquet integral · Fuzzy measure · Möbius
transformation · co-Möbius transformation · Linear programming ·
Supermodular · Cooperative game

1 Introduction

In the ordinal Choquet Integral model [3,5], the input functions had to be com-
bined if the input values could be combined. If worker A works 8 h and B works
10 h, the Choquet integral model interprets this as the workers work 8 h together
and worker B works 2 h alone. In this paper, we propose a model to deal with
the case that A works 1 h alone, B works 3 h alone, and both work 7 h together.

To represent such a case, the input values are represented as a set function
η. In this case, η({A}) = 1, η({B}) = 3, η({A,B}) = 7. In the proposed model,
for a fuzzy measure μ, the output value is the product sum values between η
and μ.

In this paper, we show the properties of the proposed model such as its
representation using the Möbius transformation and co-Möbius transformation
and analyze the coalition among η.
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J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 91–100, 2016.
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2 Choquet Integral with Respect to a Set Function

2.1 Choquet Integral and Choquet Integral with Respect to a Set
Function

Let X = {1, . . . , n} be the set of criteria (n: number of criteria), and x =
(x1, . . . , xn) be the individual score vector where xi ≥ 0,∀i.

Definition 1. A fuzzy measure μ is defined as

μ : 2X → R+ where μ(∅) = 0 and μ(A) ≥ μ(B) if A ⊇ B. (1)

Definition 2. The Choquet integral ([3,5]) is defined as

fC
μ (x) ≡

n∑

i=1

[xσ(i) − xσ(i+1)]μ({σ(1), . . . , σ(i)}) (2)

where σ(i) is the permutation on X, that is, xσ(1) ≥ . . . ≥ xσ(n), xσ(n+1) = 0
and X = {σ(1), . . . , σ(n)}.
Definition 3. Input of the Choquet integral with respect to a set function is a
set function η defined as

η : 2X → R+, η(∅) = 0. (3)

Definition 4. TheChoquet integral with respect to a set function fPS
μ (η) is defined

as the product-sum (PS) calculation between the two set functions, that is

fPS
μ (η) ≡

∑

A∈2X

[η(A)μ(A)]. (4)

Definition 5 (Maximal Chain). Maximal Chain θ is defined as a family of
sets that θ = {C0, . . . , Cn} where Ci ∈ 2X , C0 � . . . � Cn, C0 = ∅, Cn = X.

Definition 6 (g : x → η). For a x, the maximal chain θ = {Ci | Ci =
{σ(1), . . . , σ(i)}, i = 1, . . . , n} ∪ ∅. η = g(x) is defined as, ∀A ∈ 2X

η(A) =

{
xσ(i) − xσ(i+1) if A = Ci ∈ (θ \ ∅)
0 otherwise.

(5)

For example, if n = 3 and x = (2, 5, 3) then η({2}) = 5 − 3, η({2, 3}) = 3 − 2,
η({1, 2, 3}) = 2 and η(A) = 0, ∀A ∈ (2X \ {{2}, {2, 3}, {1, 2, 3}}).

Theorem 1. The Choquet integral with respect to a set function is an extension
of the Choquet integral.
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Proof. For any x and μ, η = g(x ) and θ is the maximal chain of g(x )

fC
μ (x) =

n∑

i=1

[(xσ(i) − xσ(i+1))μ({σ(1), . . . , σ(i)})]

=
∑

A∈θ

[η(A)μ(A)] +
∑

A/∈θ

[η(A)μ(A)] =
∑

A∈2X

[η(A)μ(A))] = fPS
μ (η) (6)


�
Definition 7 (h : η → x). For a η, x = h(η) is defined as, ∀i ∈ X,

xi =
∑

A�i

η(A), i = 1, . . . , n. (7)

A(∈ X) of η is an active set when η(A) > 0.

Theorem 2. If all active A of η are in a maximal chain, θ, that is η = g(h(η))
then

fPS
μ (η) = fC

μ (h(η)) (8)

Proof

fPS
μ (η) =

∑

A∈θ

[η(A)μ(A)] +
∑

A/∈θ

[η(A)μ(A)] =
∑

A∈θ

[η(A)μ(A)] = fC
μ (h(η)) (9)


�

Example 1 (2 workers). Two workers (X = {1, 2}) work in a workshop. Worker
W1 produces 20 kg per hour (μ({1}) = 20) and W2 produces 30 kg per hour
(μ({2}) = 30). If the two workers work in cooperation, they produce 60 kg per
hour (μ({1, 2}) = 60). One day, W1 starts at 9 and works 7 h and W2 start at
10 and works 8 h. From 9 am to 10 am, W1 works 1 h alone (η({1}) = 1). From
10 am to 4 pm, W1 and W2 work in cooperation (η({1, 2}) = 6). From 4 pm to
6 pm, W2 works 2 h alone (η({2}) = 2). The output of the workshop is

fPS
μ (η) = η({1})μ({1}) + η({2})μ({2}) + η({1, 2})μ({1, 2}) = 440. (10)

If the two workers start at the same time, the output is the Choquet integral
with x1 = 7 and x2 = 8, fC

μ (x ) = (x2 − x1)μ({2}) + x1μ({1, 2}) = 450.
The Choquet integral is based on the assumption that the input values are

combined if they can combine.

2.2 Sum of Choquet Integral Outputs

For any two input vectors x 1 and x 2, x 3 = x 1 + x 2. Generally, the sum of two
Choquet integral output values are not the same, that is,

fC
μ (x 3) � fC

μ (x 1) + fC
μ (x 2).
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The addition of two set functions, η3 = η1 + η2 is defined as η3(A) = η1(A) +
η2(A),∀A ∈ 2X .

Proposition 1 (Sum of two η)

fPS
μ (η1 + η2) = fPS

μ (η1) + fPS
μ (η2). (11)

Proof. Trivial. 
�
From Proposition 1, for any x 1 and x 2,

fPS
μ (g(x 1) + g(x 2)) = fPS

μ (g(x 1)) + fPS
μ (g(x 2)). (12)

Let’s (θ1, . . . , θK) be a maximal chain group which covers the union of all of
active A, that is, (θ1 ∪ . . .∪ θK) ⊇ {A | η(A) > 0} where θi is the maximal chain
of η. For (θ1, . . . , θK), it is easy to assign ηθ1 , . . . , ηθK

such that,

η =
K∑

i=1

ηθi
, where ηθi

(A)

{
≥ 0 if A ∈ θi

= 0 otherwise.
(13)

Theorem 3 (Decomposition to Choquet Integrals). For any η and μ,
fPS

μ (η) is represented as the sum of Choquet integral outputs.

Proof

fPS
μ (η) = fPS

μ (
K∑

i=1

ηθi
) =

K∑

i=1

[fPS
μ (ηθi

)] =
K∑

i=1

[fC
μ (h(ηθi

))] (14)


�
Generally, ηθi

of Eq. (13) and the decomposition fC
μ (h(ηθi

)) of Theorem 3 are
not unique.

Example 2 (2 Workers and 2 days). The 2 workers work 2 days and every day
they start work at the same time. The first day, W1 works 8 h and W2 works
10 h, x 1 = (8, 10) and η1 = g(x 1). The second day, W1 works 10 h and W2 works
8 h. The fuzzy measure μ would be the same as in example 1.

Table 1. Calculations of Example 2

i x i fC
µ (x i) ηi({1}) ηi({2}) ηi({1, 2}) fPS

µ (ηi)

1 First day (8, 10) 540 0 2 8 540

2 Second day (10, 8) 520 2 0 8 520

Sum(fC and fPS) 1060 1060

3 Sum(x and η) (18, 18) 1080 2 2 16 1060
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Table 1 shows the difference between the two Choquet integral models, that
is, the Choquet integral did not represent the two day case because fC

μ (x 1+x 2) �=
fC

μ (x 1) + fC
μ (x 2). However, the Choquet integral with respect to a set function

can represent this case, that is, fPS
μ (η1 + η2) = fPS

μ (η1) + fPS
μ (η2).

2.3 Möbius and Co-Möbius Transformation

The Möbius and the co-Möbius transformations [4,7] are equivalent representa-
tions of set functions [8].

Definition 8 (Möbius and Co-Möbius Transformation). The Möbius
transformation μm of a set function μ and the co-Möbius transformation μc

of a set function μ are defined as, ∀A ∈ 2X ,

μm(A) ≡
∑

B⊆A

[(−1)|A|−|B|μ(B)], μc(A) ≡
∑

B⊆A

[(−1)|B|μ(X \ B)]. (15)

The inverse transformations are, ∀A ∈ 2X ,

μ(A) =
∑

B⊆A

μm(A), μc(A) =
∑

B⊇A

μm(B). (16)

Using those transformations, we can represent the Choquet integral with
respect to a set the function as another expression. In this transformation, η is
the Möbius transformation of δ, that is η = δm.

Theorem 4 (Another Expression of the Choquet Integral with respect
to a set function). For any η and μ,

fPS
μm(δc) = fPS

μ (η) (17)

where δc(A) =
∑

B⊇A η(B),∀A ∈ 2X .

Proof

fPS
μm(δc) =

∑

A∈2X

[(δc(A)μm(A)] =
∑

A∈2X

[(
∑

B⊇A

η(B))μm(A)]

=
∑

B⊇A,A,B∈2X

η(B)μm(A) =
∑

B∈2X

[η(B)
∑

A⊆B

μm(A)] =
∑

B∈2X

η(B)μ(B) = fPS
μ (η) (18)


�

Example 3. Table 2 shows calculation process used in example 2. The upper line
is fPS

μ (η). η shows the two day’s total hours, that is, the two workers works 16 h
in corporation and each worker works 2 h alone. The output value is the product
sum of the two set functions. The line below shows fPS

μm(δc). δc({1}) shows W1’s
total work time (18) and δc({1, 2}) shows total work time in corporation (16).
μm({1, 2}) shows incremental value from the additive value. The output of the
two Choquet integrals with respect to a set function is equivalent.
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Table 2. Two Choquet Integrals with respect set function

{1} {2} {1, 2} {1} {2} {1, 2} product-sum

η(A): 2 2 16 μ(A): 20 30 60 fPS
µ (η) = 1060

δc(A): 18 18 16 μm(A): 20 30 10 fPS
µm(δc) = 1060

3 Optimization and Coalition of η

3.1 Range of η

For some x , we discuss the case that η is only assigned suitable values. The
range of η(A) is restricted by the following conditions.

Sum of input. The sum of the input values related to input i is xi, that is,
∑

A�i

η(A) = xi, i = 1, . . . , n (19)

Non-negative constraint. η(A),∀A are non-negative.

η(A) ≥ 0,∀A ∈ 2X (20)

3.2 Optimization

For a x and a μ, we assign a η∗ that maximizes or minimizes fPS
μ (η∗), according

to the model. Our model is based on the linear programming (LP) model. For a
given x and μ,

(Maximize) fPS
μ (η∗) =

∑

A∈2X

η∗(A)μ(A) (21)

where
∑

A�i

η∗(A) = xi, i = 1, . . . , n

η∗(A) ≥ 0,∀A

In the minimum model, Eq. (21) is changed to minimize the equation. For an LP
model, the optimal η∗ is not always unique, for example, when μ is an additive
fuzzy measure.

Wang [9] defined this optimization as the new integral with respect to μ
and x . The output value of the Wang’s integral is calculated using the compu-
tational algorithm.
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Example 4 (3 workers, super-additive). The fuzzy measure of this example in
Table 3 is super-additive, μ(A ∪ B) ≥ μ(A) + μ(B) if A ∩ B = ∅. For the input
x = (8, 6, 7), the maximum fPS

μ (η∗) is shown by the following LP model.

(Maximize) fPS
μ (η∗) =

∑

A∈2X

η∗(A)μ(A)

where η∗({1}) + η∗({1, 2}) + η∗({1, 3}) + η∗({1, 2, 3}) = x1

η∗({2}) + η∗({1, 2}) + η∗({2, 3}) + η∗({1, 2, 3}) = x2

η∗({3}) + η∗({1, 3}) + η∗({2, 3}) + η∗({1, 2, 3}) = x3

η∗(A) ≥ 0,∀A ∈ 2X

Table 3. Example 4

A {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Paramiters: x = (8, 6, 7) μ(A): 10 12 15 30 35 40 60

Optimal soulution fPS
µ (η∗) = 405 η∗(A): 1 0 0 0 1 0 6

The optimal solution is fPS
μ (η∗) = 405 and η∗ is on the bottom line of Table 3.

The active elements A, that is η∗(A) > 0, are {1} ⊂ {1, 3} ⊂ {1, 2, 3}, which is
a maximal chain. Therefore, in this case, fPS(η∗) = fC(x ∗) where x ∗ = g(η∗).

Example 5 (pizzeria). A pizzeria offers ‘pizza’(1), ‘salad’(2) and ‘dessert’(3).
The pizzeria sells them either as single items or set items. Their price is a fuzzy
measure μ in Table 4. This fuzzy measure is subadditive, μ(A∪B) ≤ μ(A)+μ(B),
if A ∩ B = ∅.

Table 4. Example 5

A {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Parameters: x = (10, 6, 7) μ(A): 7 2 5 8 10 7 12

Optimal solution fPS
µ (η∗) = 100 η∗(A): 0 0 0 3 4 0 3

A group buys 10 pizzas, 6 salads and 7 desserts. The minimum expen-
diture of the group is the minimum value of the LP model, fPS

μ (η∗) = 100
and η∗ is shown in Table 4. The deals available are the 3 ‘pizza and salad’ set
(η∗({1, 2}) = 3), 4 ‘pizza and dessert’ set(η∗({1, 3}) = 4) and 3 ‘pizza, salad,
and deserts’ set(η∗({1, 2, 3}) = 3). The solution cannot be represented by one
Choquet integral because active sets are not constructed by a maximal chain, for
example, θ1 = {∅, {1}, {1, 2}, {1, 2, 3}} and θ2 = {∅, {1}, {1, 3}, {1, 2, 3}}. There-
fore the solution is represented by the sum of two Choquet integral outputs, that
is, fPS

μ (η∗) = fC
μ ((6, 6, 3)) + fC

μ ((4, 0, 4)).
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3.3 Supermodular, Submodular and Optimization

Definition 9 (Supermodular and Submodular [3])

(Supermodular) μ(A ∪ B) + μ(A ∩ B) ≥ μ(A) + μ(B), ∀A,B ∈ 2X (22)

(Submodular) μ(A ∪ B) + μ(A ∩ B) ≤ μ(A) + μ(B), ∀A,B ∈ 2X . (23)

Theorem 5 (Superadditivity and Subadditivity Theorems [6]). Given
a supermodular set function μ and xA and xB,

fC
μ (xA + xB) ≥ fC

μ (xA) + fC
μ (xB) (24)

and given a submodular set function μ and xA and xB,

fC
μ (xA + xB) ≤ fC

μ (xA) + fC
μ (xB). (25)

Theorem 6. Given a supermodular set function μ and a set function η, η� =
g(h(η)),

fPS
μ (η�) ≥ fPS

μ (η) (26)

and given a submodular set function μ and η, η� = g(h(η)),

fPS
μ (η�) ≤ fPS

μ (η). (27)

Proof. First, we proof the supermodular case. We decompose η into ηθ1 , . . . , ηθK

of Eq. (13). As
∑K

i=1 h(ηθi
) = h(η), Theorems 3 and 5,

fPS
μ (η) = fPS

μ (
K∑

i=1

ηθi
) =

K∑

i=1

[fPS
μ (ηθi

)] =
K∑

i=1

[fC
μ (h(ηθi

))]

≤fC
μ (

K∑

i=1

h(ηθi
)) = fC

μ (g(h(η))) = fPS
μ (η�).

The submodular case can be proven in a similar manner. 
�
This theorem shows that if the fuzzy measure is supermoduler (submodular),
then the maximum (minimum) output of the Choquet integral with respect to
a set function is the Choquet integral.

In example 4 (Table 3), the fuzzy measure μ satisfies the supermoudular
condition. Therefore the active elements in the maximal output is a subset of
the maximal chain {∅, {1}, {1, 3}, {1, 2, 3}}. In example 5 (Table 4), the fuzzy
measure μ satisfies subadditive but not the submodular condition, for example
μ({1, 2}∪{1, 3})+μ({1, 2}∩{1, 3}) �≤ μ({1, 2})+μ({1, 3}). The active elements
of the maximal output {{1, 2}, {1, 3}, {1, 2, 3}} are covered by a union of two
maximal chains {∅, {1}, {1, 2}, {1, 2, 3}} ∪ {∅, {1}, {1, 3}, {1, 2, 3}}.
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3.4 Coalition of Cooperative Game

In this section we define a cooperative game [1] using the Choquet integral
with respect to a set function. Let Y = {1, . . . , m} be the set of players and
X = {1, . . . , n} be the set of inputs (resources). x {j}, j = 1, . . . , m are player
j’s input vector of resources and coalition B ⊆ Y ’s vector is xB =

∑
j∈B x {j}.

Each player and coalition produces output by combining their resources xB . The
output is calculated by the Choquet integral with respect to a set function. The
fuzzy measure μ is the common to all players and coalitions. The characteristic
function π is defined as

π(B) ≡ fPS
μ (ηB),∀B ∈ 2Y (28)

where ηB are the maximum outputs within their resources xB optimized by the
LP model (Eq. (21)).

Theorem 7 (Superadditive of π). The characteristic function π is superad-
ditive, that is

π(A ∪ B) ≥ π(A) + π(B), A ∩ B = ∅, A,B ∈ 2Y . (29)

Proof. η′ = ηA + ηB is a feasible solution of the coalition A ∪ B. As fPS
μ (η′) =

fPS
μ (ηA) + fPS

μ (ηB), and the maximization LP model, fPS
μ (ηA∪B) ≥ fPS

μ (ηA) +
fPS

μ (ηB). 
�

Example 6 (4 players and 3 resource models). Table 5 shows each player’s
resources. The resources are unevenly distributed for player 1,2,3 but evenly dis-
tributed for player 4. Fuzzy measure μ is μ({1}) = 0.2, μ({2}) = 0.1, μ({3}) =
0.1, μ({1, 2}) = 0.7, μ({1, 3}) = 0.8, μ({2, 3}) = 0.2, μ({1, 2, 3}) = 1.0, that is
superadditive, but not supermodular, μ({1, 2} ∪ {1, 3}) + μ({1, 2} ∩ {1, 3}) �≥
μ({1, 2}) + μ({1, 3}).

Table 5. Resources and shapley value of π

Player 1(x{1}) Player 2(x{2}) Player 3(x{3}) Player 4(x{4})

Resource 1 (x1) 10 4 3 4

Resource 2 (x2) 1 8 0 4

Resource 3 (x3) 1 1 9 4

Shapley Value of π 5.175 4.125 4.075 4.225

Table 6 shows the results of all coalitions. Player 4 does not benefit greatly
from the coalitions. Player 1 takes a large role when it combines with another
player, for example μ({1, 2}) − μ({1}) = 0.5. As player 1 has large amount of
resource 1, player 1 has the largest Shapley value [2] (Table 5).
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Table 6. Coalitions

A \ B {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} Y

{1} 8 0 0 0 3 2 4 0 0 0 0 0 0 0 0

{2} 0 4 0 0 0 0 0 0 4 0 0 0 0 0 0

{3} 0 0 6 0 0 0 0 2 0 6 0 0 0 2 0

{1, 2} 1 3 0 0 9 1 5 0 3 0 6 12 3 0 6

{1, 3} 1 0 3 0 2 10 5 0 0 3 8 5 12 0 8

{2, 3} 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

X 0 1 0 4 0 0 0 7 5 4 3 1 2 11 7

π(B) 3.1 3.5 3.0 4.0 8.5 9.1 8.3 7.4 7.5 7.0 13.6 13.4 13.7 11.4 17.6

4 Conclusion

We have defined the Choquet integral with respect to a set function and have ana-
lyzed the properties, including another representation using the Möbius trans-
formation, supermodularity and so on. We also define a cooperative game model
using the integral but the properties of the game have not explored.
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Abstract. In a context of Multiple Criteria Decision Aid, we present a
decision model explaining some French hospitals rankings in weight loss
surgery. To take into account interactions between medical indicators, we
elaborated a model based on the 2-additive Choquet integral. The refer-
ence subset, defined during the elicitation process of this model, is com-
posed by some specific alternatives called binary alternatives. To validate
our approach, we showed that the proposed 2-additive Choquet integral
model is able to approximate the hospitals ranking, in weight loss surgery,
published by the French magazine “Le Point” in August 2013.

Keywords: MCDA · Binary alternatives · Hospitals rankings · Choquet
integral · Capacity

1 Introduction

MultiCriteria Decision Aid (MCDA) aims at representing the preferences of a
Decision-Maker (DM), or a group of Decision-Makers, over a set of alternatives X
evaluated on a finite set of n criteria N = {1, . . . , n} often conflicting. Many soft-
wares implementing MCDA methods have been developed and most of them have
proved their efficiency in real applications, e.g. MACBETH [2], MYRIAD [12]. One
of the problem statement treated by MCDA is the elaboration of rankings from a
set of alternatives. In general, this ranking is assumed to be a weak order �.

Since many years, there exist some hospitals rankings published by news-
papers. In France, three newspapers publish every year their hospital rankings
per surgery specialties. In our knowledge, two other countries publish regularly
hospitals rankings:

• United Stated of America: these rankings are published each year by a news
paper called Usnews1. The methodology used is based on the weighted sum and
developed by the Research Triangle Institute (RTI international), a scientific
organism. The report of 129 pages about this methodology is free available2.

1 http://health.usnews.com/best-hospitals.
2 http://www.usnews.com/pubfiles/BH 2014 Methodology Report Final Jul14.pdf.

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 101–116, 2016.
DOI: 10.1007/978-3-319-40596-4 10

http://health.usnews.com/best-hospitals
http://www.usnews.com/pubfiles/BH_2014_Methodology_Report_Final_Jul14.pdf
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• United Kingdom: the rankings are elaborated by the National Health Service
(NHS)3.

From the view of MCDA, we were interested in the methodologies used in
French hospital rankings. We studied them in details, but we were disappointed
because all the French methodologies are just presented in few lines (not more
than a half page) compared to the Usnews methodology which is presented in
more than 100 pages. Furthermore there is no relevant information concerning
MCDA aspects. The main reason is that, behind these rankings, there are only
journalists (François Malye and Jérôme Vincent for “Le point”) and some very
small consulting companies (Le Guide santé for “Le Figaro Magazine” and Santé
Value for “Le Nouvel Observateur”) without knowledge about good best prac-
tices of MCDA. In general, to improve their reputation, the hospitals need and
wish to know each year their rank in the published hospital rankings. Most of
these hospitals choose to advertise this rank, when they are good, in their web-
site. Health governments agencies also can use these rankings to identify which
are the “weak” hospitals.

We propose here a way to improve a ranking in a given medical specialty. We
choose the weight loss surgery as an example for which it can be important to
take into account interactions between criteria. The elaborated model is based
on the 2-additive Choquet integral, and it was built independently of the data
used by the magazines (except the definition of criteria). To do this, we assume
that the DM is able to give his preferences on the set of fictitious hospitals called
binary alternatives. This latter is an alternative which takes either the neutral
value 0 for all criteria, or the neutral value 0 for all criteria except for one or
two criteria for which it takes the satisfactory value 1. Our aim is only to show
the possibility to elaborate a transparent model, which is understandable by the
readers or by the experts.

The paper is organized as follows: we present in Sect. 2 the three main French
hospitals rankings, especially in weight loss surgery. The 2-additive Choquet
integral is introduced in Sect. 3 and our model related to the weight loss surgery
is proposed in Sect. 4.

2 About French Hospital Rankings

In France, hospitals rankings are published each year by three magazines:
“Le Nouvel observateur”4, “Le Point”5 and “Le Figaro Magazine”6. To estab-
lish these rankings, they manipulate data coming from some official databases
like HOSPIDIAG7. This latter, a tool developed by the national performance
support agency (Agence Nationale d’Appui à la Performance : ANAP), sheds

3 http://www.nhs.uk.
4 http://classement-hopitaux.nouvelobs.com/.
5 http://hopitaux.lepoint.fr/.
6 http://sante.lefigaro.fr.
7 http://hospidiag.atih.sante.fr.

http://www.nhs.uk
http://classement-hopitaux.nouvelobs.com/
http://hopitaux.lepoint.fr/
http://sante.lefigaro.fr
http://hospidiag.atih.sante.fr
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light on a given facility, bringing together data from different databases (PMSI,
annual institutional statistics, etc.) in a single tool [3]. The databases contain
around eighty indicators which are likely to be filled each year by all the hospi-
tals. In French health system, there are approximately 1600 hospitals classified
as public, nonprofit private and commercial private.

All the three newspapers propose a ranking per surgery specialty, for instance
a ranking of weight loss surgery. Our analysis in this paper is focused on weight
loss surgery. The remarks and comments developed in this section are valid for
all the specialties.

2.1 Weight Loss Surgery

Bariatric surgery8 (weight loss surgery) includes a variety of procedures per-
formed on people who are obese. Weight loss is achieved by reducing the size of
the stomach with a gastric band or through removal of a portion of the stom-
ach (sleeve gastrectomy or biliopancreatic diversion with duodenal switch) or by
resecting and re-routing the small intestines to a small stomach pouch (gastric
bypass surgery).

To identify the “best” hospitals in weight loss surgery, the magazines combine
a part of the following indicators:

1. (CR1) Volume of activity: it is the number of stays of all patients with respect
to the value of care and some homogeneous price. This criterion has to be
maximized.

2. (CR2) Activity : number of procedures performed during one year. “Le Point”
supposes that if a hospital has a good score on activity then its teams are
more trained and often have good results. Therefore this criterion has to be
maximized. This opinion is not totally shared by some other experts who
estimate that a good score on the activity of a hospital does not imply nec-
essarily that its teams are best. In this case, one should also investigate if
this hospital does not focus on getting grants of the government because in
France some grants depend on the activity.

3. (CR3) Average Length Of Stay (ALOS): a mean calculated by dividing the
sum of inpatient days by the number of patients admissions with the same
diagnosis-related group classification. A variation in the calculation of ALOS
considers only the length of stay during the period under analysis. If a hospital
is more organized in terms of resources then its ALOS score should be low.

4. (CR4) Notoriety : Its corresponds to the reputation and attractiveness of the
hospital.
For “the Nouvel Observateur”, the attractiveness of the hospital depends on
the distance between the hospital and the patient’s home. This distance is
considered significant if it is more than fifty kms. Its reputation reflects the
gradual isolation of patients: the more they come from far away, the more the
reputation of the institution is important.

8 http://en.wikipedia.org/wiki/Bariatric surgery.

http://en.wikipedia.org/wiki/Bariatric_surgery
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The notoriety indicator of “Le Point” is a percentage of patients treated in
the hospital but living in another French administrative department. More
the percentage increases, more the hospital is attractive.

5. (CR5) Heaviness: it is a percentage measuring the level of resources consumed
(equipment, staff, . . . ) in the hospital.

6. (CR6) Quality score of French National Authority for Health (HAS)9: It is the
score (between • and •••••) obtained by the hospital after the accreditation
and quality visit made by the experts of HAS.

7. (CR7) % of By-Pass: It is the percentage of surgical procedures using gastric
bypass system. This criterion has to be maximized.

Table 1. The best 20 hospitals in Weight loss surgery (2013). Source: “Le Nouvel
Observateur” [14]

Hospitals CR1 CR3 CR7 CR5 CR4 FO

Georges-Pompidou 406 5.2 55 77 95 19.3

Bichat 203 7.8 75 83 94 18.9

Ambroise-Paré 193 6.6 90 83 94 18.7

Strasbourg 330 6.2 84 79 45 18.2

Nice 351 6.5 94 79 20 18.1

Nancy 230 6.9 87 81 76 17.9

Louis-Mourier 154 5.0 81 81 27 17.9

Pitié-Salpetrière 127 6.0 75 79 92 17.8

Laon 299 1.8 0 54 58 17.7

Lille 233 6.2 68 83 30 17.4

Colmar 192 3.5 97 77 19 17.4

Conception 287 3.1 28 63 22 17.3

Caen 152 6.7 89 79 63 17.1

Toulouse 173 4.3 63 77 87 17.0

Antibes 181 5.6 96 77 23 16.9

Edouard-Herriot 89 4.9 52 81 38 16.9

Havre 115 2.7 78 74 9 16.5

Jean-Verdier 116 6.7 44 79 32 16.4

Timone adultes 69 5.0 32 81 36 16.3

Orleans 131 6.1 69 81 41 16.4

9 French National Authority for Health (HAS) aims to improve quality and safety
of healthcare. The objectives are to accredit health care organizations and health
professionals, to produce guidelines for health professionals (practices, public health,
patient safety), to develop disease management for chronic conditions, to advise
decision makers on health technologies (drugs, devices, procedures), and to inform
professionals, patients, and the public.



A 2-Additive Choquet Integral Model for French Hospitals Rankings 105

8. (CR8) Technicality : this particular indicator measures the ratio of procedures
performed with an efficient technology compared to the same procedures per-
formed with obsolete technology. The higher the percentage is, the more the
team is trained in advanced technologies or complex surgeries.

Remark 1

• Nothing is said about how and why these eight indicators are selected.
• “Le Nouvel Observateur” uses the term activity as a composite indicator of
ALOS (CR3) and Volume of activity (CR1).

2.2 The 2013 Results

The rankings given by “Le Nouvel observateur” [14] take into account, in the same
tables, both public and private hospitals. They argue that this logic is in spirit of
their readers. In termsofMCDA, this justification of the choice of this set of alterna-
tives appears weak and seems to be only a “marketing argument”. Table 1 presents
the ranking of only twenty hospitals (among the first hundred hospitals evaluated)

Table 2. The best 20 hospitals in Weight loss surgery (2013). Source: “Le Point” [15]

Hospitals CR2 CR4 CR3 CR8 FP

Bichat 372 80 7.8 94 17.84

Nice 253 19 8.2 95 17.59

Nancy 208 60 8 90 17.37

Ambroise-Paré 140 85 6.5 96 17.23

Colmar 165 14 3.8 99 17.20

Caen 167 47 6.7 96 17.14

Strasbourg 289 25 6.3 82 17.13

Georges-Pompidou 394 80 5.5 56 17.06

Lille 247 18 4.8 63 17.02

Antibes 156 13 5.5 96 16.75

Orleans 167 35 6.7 86 16.66

Rouen 237 29 5.1 48 16.55

Jean-Verdier 174 40 9.7 82 16.45

Conception 332 19 3.8 24 16.44

Louis-Mourier 166 51 5.3 86 16.36

Poissy/St Germain 192 34 4.1 60 16.30

Montpellier 297 25 5.6 33 16.24

Toulouse 181 73 4.6 50 15.94

Amiens 170 28 3.8 10 15.63

Laon 242 23 1.4 0 15.54
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in weight loss surgery published by “Le Nouvel observateur” in 2013. These hospi-
tals are evaluated on five indicators: Volume of activity (CR1), ALOS (CR3), % of
By-Pass (CR7), Heaviness (CR5) and Notoriety (CR4). In their methodology, they
mention that they chose indicators which are most significant in terms of medical
innovation, but nothing is said about the concrete selection of such indicators. The
last column,FO, concerns the overall score given to each hospital by an aggregation
function not defined by the magazines. Indeed, nothing is said about this function
and how the overall score of each hospital is computed. We think that it could be a
simple weighted sum.

“Le Point” [15] have analyzed 952 hospitals in their rankings. Just 50, 40,
30, 25 or 20 best hospitals per specialty were published. In Table 2, the ranking
published in 2013 concerns the 20 best hospitals in weight loss surgery evaluated
on Activity (CR2), (Notoriety) (CR4); ALOS (CR3) and Technicality: (CR8).
The last column of the table refers to the overall score assigned to each hospital
and obtained by using an aggregation function FP . Like the previous newspaper,
nothing is said about this function and nothing about the elaboration of criteria.

Table 3. The best 20 hospitals in Weight loss surgery (2013). Source: “Le Figaro
Magazine” [13]

Hospitals CR2 CR6

Georges-Pompidou 878 • • • • •
Bichat 384 • • ••
Saint-Louis 285 • • ••
Rouen 300 • • ••
Laon 277 ••
Lille 271 • • ••
Caen 179 ••
Nantes 175 ••
Limoges 103 • • •
Rennes 89 ••
Montpellier 353 ••
Nice 263 ••
Orleans 206 • • ••
Tours 122 • • •
Jean-Mermoz Lyon 312 ••
Sens 140 • • •
Nancy 305 ••
Colmar 169 ••
Toulouse 352 • • ••
Bordeaux 133 ••
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They only indicate that it is a weighted sum. There is no information concerning
the weights associated to the criteria.

Among 1308 hospitals analyzed by the last newspaper, “Le Figaro Magazine”
[13], only 830 have been evaluated. The rankings published concern the 10 best
hospitals per specialty and per French region. We show in Table 3 some best
hospitals in eight regions. The criteria used are: Activity (CR2) and Quality
score of French National Authority for Health (HAS) (CR6). The ranking is
based on a lexicographic order (CR6 � CR2), but nothing about how these
rankings were elaborated.

We are not really surprised if the information about the methodologies used
by these three newspaper are poor and not available. Indeed, in France, the
sales of newspapers devoted to hospitals ranking are often the best of the year.
So there exist a real competition between the three organisms. Therefore, each
of magazine tries to keep secret its methodology.

3 MCDA Concepts

We think that, the elaboration of a hospital ranking is a practical application
where a MCDA process could be applied successfully. Let us give below some
suggestions indicating how to proceed.

As indicated in [4], we have to start with a a number of crucial questions when
trying to build an evaluation (ranking) model in MCDA [6,7]. These questions,
known as good practices, are:

1. What is the definition of objects to be evaluated?
2. What is the purpose of the model? Who will use it?
3. How to structure objectives?
4. How to achieve a “consistent family of criteria”?
5. How to take uncertainty, imprecision, and inaccurate definition into account?

All the French hospital ranking fail this last point.

After answering these questions, the choice of the suitable MCDA method
will be another problem. Some methodologies are based on an additive model,
in particular the weighted sum (e.g. methodologies of “Le Point”), because this
function is simple and understandable by many persons who are not experts in
MCDA.

We can observe that the ranking �LP proposed, from the set of the 20 hos-
pitals treating the weight loss surgery, by the magazine “Le Point” (see Table 2)
can be obtained by using an additive model i.e. there exist partial utility func-
tions UCRi

: CRi → R, i ∈ {2, 3, 4, 8} such that

hospital a �LP hospital b ⇔
∑

i∈{2,3,4,8}
UCRi

(hospital aCRi
) ≥

∑

i∈{2,3,4,8}
UCRi

(hospital aCRi
)

(1)
where hospital aCRi

is the value of the hospital a on the criterion CRi.
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Table 4. Partial utility functions for an additive model associated to �LP

CR2 CR4 CR3 CR8

UCR2(156) = 0.01 UCR4(13) = 0.3575 UCR3(1.4) = 0.15 UCR8(0) = 0

UCR2(165) = 0.02 UCR4(14) = 0.395 UCR3(3.8) = 0.14 UCR8(10) = 0.1425

UCR2(166) = 0.03 UCR4(18) = 0.405 UCR3(4.1) = 0.13 UCR8(24) = 0.1525

UCR2(167) = 0.15 UCR4(19) = 0.415 UCR3(4.6) = 0.12 UCR8(33) = 0.1625

UCR2(170) = 0.16 UCR4(23) = 0.425 UCR3(4.8) = 0.11 UCR8(48) = 0.2975

UCR2(174) = 0.17 UCR4(25) = 0.4825 UCR3(5.1) = 0.1 UCR8(50) = 0.3075

UCR2(181) = 0.18 UCR4(28) = 0.4925 UCR3(5.3) = 0.09 UCR8(56) = 0.3175

UCR2(192) = 0.23 UCR4(29) = 0.5025 UCR3(5.5) = 0.08 UCR8(60) = 0.3275

UCR2(208) = 0.33 UCR4(34) = 0.5125 UCR3(5.6) = 0.07 UCR8(63) = 0.3375

UCR2(237) = 0.34 UCR4(35) = 0.5225 UCR3(6.3) = 0.06 UCR8(82) = 0.5275

UCR2(242) = 0.35 UCR4(40) = 0.5325 UCR3(6.5) = 0.05 UCR8(86) = 0.5375

UCR2(247) = 0.4175 UCR4(47) = 0.5425 UCR3(6.7) = 0.04 UCR8(90) = 0.5475

UCR2(253) = 0.455 UCR4(51) = 0.5525 UCR3(7.8) = 0.03 UCR8(94) = 0.5575

UCR2(289) = 0.465 UCR4(60) = 0.5625 UCR3(8.0) = 0.02 UCR8(95) = 0.8025

UCR2(297) = 0.475 UCR4(73) = 0.5725 UCR3(8.2) = 0.01 UCR8(96) = 0.8125

UCR2(332) = 0.5125 UCR4(80) = 0.5825 UCR3(9.7) = 0 UCR8(99) = 1

UCR2(372) = 0.5225 UCR4(85) = 0.8

UCR2(374) = 0.535

UCR2(394) = 0.545

Indeed the overall score associated to each hospital in this ranking �LP (see
Table 5) can be computed by choosing the partial utility functions UCRi

, i ∈
{2, 3, 4, 8} given in Table 4. We used a simple linear programming to obtain these
parameters of an additive model, but there exist some MCDA methodologies like
UTA methods [21] which can help to find a suitable additive model corresponding
to a given ranking.

It is usually known that, an additive model like the weighted sum is unable to
take into account some phenomena like interactions between criteria described
in the following Example:

Example 1. Four hospitals are evaluated on three criteria Notoriety (CR4),
Average Lenght of Stay (ALOS) (CR3) and Activity (CR2) defined above in
Sect. 2.1. The performances of each hospital on the three criteria are given by
the following Table 6. We suppose that the DM gives these preferences:

• Hospital 1 is strictly preferred to the hospital 2 (if ALOS is “weak”, it is
preferable to have a hospital with good evaluation in Activity).

• Hospital 4 is strictly preferred to hospital 3 (If ALOS is “good”, he prefers in
this case a hospital with good evaluation in Notoriety).
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Table 5. The ranking �LP computed with the utility functions given in Table 4

Hospitals CR2 CR4 CR3 CR8 FP

1: Bichat 372 80 7.8 94 1.6925

2: Nice 253 19 8.2 95 1.6825

3: Nancy 208 60 8 90 1.6725

4: Ambroise-Paré 140 85 6.5 96 1.6625

5: Colmar 165 14 3.8 99 1.555

6: Caen 167 47 6.7 96 1.545

7: Strasbourg 289 25 6.3 82 1.535

8: Georges-Pompidou 394 80 5.5 56 1.525

9: Lille 247 18 4.8 63 1.27

10: Antibes 156 13 5.5 96 1.26

11: Orleans 167 35 6.7 86 1.25

12: Rouen 237 29 5.1 48 1.24

13: Jean-Verdier 174 40 9.7 82 1.23

14: Conception 332 19 3.8 24 1.22

15: Louis-Mourier 166 51 5.3 86 1.21

16: Poissy/St Germain 192 34 4.1 60 1.2

17: Montpellier 297 25 5.6 33 1.19

18: Toulouse 181 73 4.6 50 1.18

19: Amiens 170 28 3.8 10 0.9350

20: Laon 242 23 1.4 0 0.9250

Table 6. Evaluations of four hospitals on Notoriety, ALOS and Technicality.

CR4 ≡ Notoriety CR3 ≡ ALOS CR2 Activity

Hospital 1 35 8 9000

Hospital 2 37 8 8900

Hospital 3 35 3 9000

Hospital 4 37 3 8900

If wi and ui are respectively the weight and the partial function associated to the
criterion CRi, i ∈ {2, 3, 4}, then we get the following system:

w1 u1(35) + w2 u2(8) + w3 u3(9000) > w1 u1(37) + w2 u2(8) + w3 u3(8900) (2)
w1 u1(37) + w2 u2(3) + w3 u3(8900) > w1 u1(35) + w2 u2(3) + w3 u3(9000) (3)

The combination of these two equations leads to a contradiction.
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To model these type of interactions, we propose to elaborate a 2-additive Cho-
quet integral model [5,17,18] in the next section by using the classic Multi
Attribute Utility Theory (MAUT) approach [8]. The 2-additive Choquet integral
is a particular case of the well known Choquet integral [17,18]. Its main property
is to model interactions between two criteria. These interactions are simple and
more meaningful than those produced by using the general Choquet integral.
This aggregation function is based on the notion of capacity µ defined as a set
function from the powerset of criteria 2N to [0, 1] such that:

1. µ(∅) = 0
2. µ(N) = 1
3. ∀A,B ∈ 2N , [A ⊆ B ⇒ µ(A) ≤ µ(B)] (monotonicity).

A capacity µ on N is said to be 2-additive if its Möbius transform m : 2N → R

defined by

m(T ) :=
∑

K⊆T

(−1)|T\K|µ(K),∀T ∈ 2N . (4)

satisfies the following two conditions:

• For all subset T of N such that |T | > 2, m(T ) = 0;
• There exists a subset B of N such that |B| = 2 and m(B) 
= 0.

Given an alternative
x := (x1, ..., xn) ∈ X, the expression of the 2-additive Choquet integral is

given by [11]:

Cµ(u(x)) =
n∑

i=1

viui(xi) − 1
2

∑

{i,j}⊆N

Iij |ui(xi) − uj(xj)| (5)

where

• For all i ∈ N , ui : Xi → R+ is an utility function associated to the
attribute Xi;

• u(x) = (u1(x1), . . . , un(xn)) for x = (x1, ..., xn) ∈ X;

• vi =
∑

K⊆N\i

(n − |K| − 1)!|K|!
n!

(µ(K∪i)−µ(K)) is the importance of criterion

i corresponding to the Shapley value of µ [20];
• Iij = µij − µi − µj is the interaction index between the two criteria i and j

[10,19].

Therefore the 2-additive Choquet integral appears as a good compromise
between the arithmetic mean and the Choquet integral.

We simplify our notation for a capacity µ by using the following shorthand:
µi := µ({i}), µij := µ({i, j}) for all i, j ∈ N , i 
= j. Whenever we use i and j
together, it always means that they are different.
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4 A 2-Additive Choquet Integral Model Explaining
the Hospitals Rankings

Let us consider as the set of alternatives X, the set of French hospitals evaluated,
like in “Le Point”, on the following four criteria:

• Criterion 1: Activity (CR2);
• Criterion 2: Notoriety (CR4);
• Criterion 3: Average Lenght of Stay (ALOS) (CR3);
• Criterion 4: Technicality (CR8);

We denote this set of criteria by N = {1, 2, 3, 4} and the attribute associated to
the criterion i by Xi, i = 1, . . . , 4. We assume that each attribute Xi is defined
by a scale [Li;Ui] with Li the lower bound of the attribute (the worst element),
and Ui the upper bound (the best element). We set X1 = [0; 500], X2 = [0; 100];
X3 = [0; 10] and X1 = [0; 100]. In our model, the set of alternatives corresponds
to the Cartesian product X = X1 ×X2 ×X3 ×X4, i.e. a hospital h is equivalent
to an alternative h = (h1, h2, h3, h4) where hi is the evaluation of h on the
criterion i.

To compute the partial utility function ui : Xi → R associated to the criterion
i, we choose the monotone normalization formula described as follows: Given a
hospital h = (h1, h2, h3, h4),

⎧
⎪⎨

⎪⎩

ui(hi) =
hi

Ui
if i is to be maximized (criteria 1, 2 and 4)

ui(hi) = 1 − hi

Ui
if i is to be minimized (criterion 3)

(6)

By using an appropriate linear program, it is not difficult to check that, the above
ranking �LP is not representable by a weighted sum based on these normal-
ization transformation. There exist MCDA methodologies like the MACBETH
method [1] computing utility functions between 0 and 1, and ensuring to obtain
commensurable scales, which is an important property for the use of Choquet
integral [11].

Let us now assume that, the DM is able to identify on each attribute Xi,
two reference levels 1i and 0i corresponding respectively to his satisfactory and
neutral levels on the criterion i. We set for the convenience ui(1i) = 1 and
ui(0i) = 0. The Table 7 below gives the reference levels associated to each cri-
terion. These reference elements could be different to the bounds defined in Xi,
even if it is not the case in our model.

The next step of our approach consists to ask to the DM some pref-
erence information on a reference subset of alternatives, possibly fictitious,
called the set of binary alternatives. A binary action is an element of the set
B = {0N , (1i,0N−i), (1ij ,0N−ij), i, j ∈ N} = {a0, ai, aij , i, j ∈ N} ⊆ X
where

• 0N = (1∅,0N ) := a0 is a hospital considered neutral on all the four criteria.
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Table 7. The reference levels associated to each criterion

1-Activity 2-Notoriety 3-ALOS 4-Technicality

Satisfactory level 1i 500 100 0 100

Neutral level 0i 0 0 10 0

• (1i,0N−i) := ai is a hospital considered satisfactory on criterion i and neutral
on the other criteria.

• (1ij ,0N−ij) := aij is a hospital considered satisfactory on criteria i and j and
neutral on the other criteria.

From B = {a0; a1; a2; a3; a4; a12; a13; a14; a23; a24; a34}, we get the following pref-
erences of the DM called in [18] an ordinal information:

• A satisfactory hospital on Activity and ALOS (neutral on the other criteria)
is better than a satisfactory hospital on Notoriety and Technicality (neutral
on the other criteria), i.e. a13 is preferred to a24.

• A satisfactory hospital on Activity (neutral on the other criteria) is better
that a satisfactory hospital only on Notoriety and ALOS (neutral on the other
criteria), i.e. a1 is preferred to a23.

• A hospital only better in Activity (neutral on the other criteria) is judged
indifferent to a hospital better on Activity and ALOS (neutral on the other
criteria), i.e. a1 is indifferent to a13.

• If a hospital is fully satisfying on the criterion Technicality (neutral on the
other criteria), then it will be preferred to a hospital satisfactory on Notoriety
(neutral on the other criteria), i.e. a4 is preferred to a2.

• A satisfactory hospital on Activity and Technicality (neutral on the other cri-
teria) is better than a satisfactory hospital on ALOS and Technicality (neutral
on the other criteria), i.e. a14 is preferred to a34.

All these preferences are then translated in a linear programming in order to
test their compatibility with a 2-additive Choquet integral. The constraints of
this program are the following:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cµ(u(a13)) > Cµ(u(a24))
Cµ(u(a1)) > Cµ(u(a23))
Cµ(u(a1)) = Cµ(u(a13))
Cµ(u(a4)) > Cµ(u(a2))
Cµ(u(a14)) > Cµ(u(a34))
The 2-additive constrains of µ

(7)

If this preference information is not consistent, the axiomatization of a 2-additive
Choquet integral proposed in [18] could be used as an alternative to restore the
consistency of the preferences (see [16] for more details).
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Table 8. The parameters computed for our 2-additive Choquet integral model in weight
loss surgery

A 2 additive capacity μ μ1 = 0.2; μ2 = 0; μ3 = 0.1; μ4 = 0.1;

μ12 = 0.9; μ13 = 0.2; μ14 = 0.3; μ23 = 0.1;

μ24 = 0.1; μ34 = 0.2

Importance index vi v1 = 0.5; v2 = 0.35; v3 = 0.05; v4 = 0.1

interaction index Iij I12 = 0.7; I13 = −0.1; I14 = I23 = I24 = I34 = 0

The preference information on B introduced previously is consistent with a
2-additive Choquet integral model with the following parameters (the values of
the capacity on pairs and singletons, importance index of criteria vi and the
interaction index Iij , i, j = 1, 2, 3, 4) given in Table 8.

In this 2-additive Choquet integral model, Activity and Notoriety are the
most important criteria, while the criteria ALOS and Technicality are not very

Table 9. The ranking of the best 20 hospitals in Weight loss surgery obtained by a
2-additive model

Hospitals Cµ

1: Bichat 4.212

2: Ambroise-Paré 4.12

3: Colmar 3.9

4: Nancy 3.658

5: Georges-Pompidou 3.637

6: Antibes 3.566

7: Nice 3.539

8: Caen 3.507

9: Laon 3.391

10: Louis-Mourier 3.384

11: Strasbourg 3.377

12: Jean-Verdier 3.209

13: Toulouse 3.104

14: Orleans 3.077

15: Conception 3.015

16: Lille 2.912

17: Poissy/St Germain 2.807

18: Montpellier 2.585

19: Amiens 2.550

20: Rouen 2.437
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important. Furthermore Activity and Notoriety interact positively i.e. the DM
is satisfied when a hospital has a good evaluations on these two criteria. The
criteria Activity and ALOS are judged redundant (negative interaction) i.e. the
DM is satisfied if one of these two criteria is fully satisfactory. By applying this
model to the the data of the magazine “Le Point”, we get the ranking presented
in Table 9.

We can noticed that Bichat remains the best hospital in weight loss surgery
because it has good scores in Activity and Notoriety. The hospital Amiens
remains one of the last hospitals in the ranking, due to its low scores in all
the criteria. The hospital Laon is now at the middle of the ranking because it
has better evaluation on the criterion ALOS and an average score on Activity.
Since these two criteria are redundant, it not surprising to have this rank.

The Kendall tau distance10 between the ranking of the magazine “Le Point”
(see Table 2) and the ranking produced by our model (see Table 9) is 0.2263. This
value indicates that 23 % of pairs differ in ordering between the two rankings.
Therefore we think that a 2-additive Choquet integral is able to better explain
this ranking in weight loss surgery provided by “Le Point”.

5 Conclusion

The model we proposed is independent to any published data of hospitals rank-
ings in weight loss surgery. It suppose that, in order to express his preferences,
the DM is able to understand the meaning of binary alternatives related to the
four chosen criteria. Of course, this model can be improved by the DM and
the assumptions we made (transformation scale, reference subset, . . . ) can be
modified by the experts of this specialty (doctors, nurses, . . . ).

Since the 2-additive Choquet integral is a good compromise between the
weighted sum and the general Choquet integral, we suggest to use this type
of model in the elaboration of hospitals rankings when the DM suspects the
existence of some interactions between criteria. The study of the robustness and
validation of our model will be the next steps in the future works. We think that,
these two aspects must include the real expert in weight loss surgery.

We recommend to the French magazines to publish hospitals rankings in a
transparent way by using a suitable model such as a 2-additive Choquet integral
where the DM is the reader. Hence, this model can be viewed as an interactive
decision process where each reader can add in the proposed model its preferences
(in terms of Notoriety for instance), in order to get its own hospital ranking.

10 The Kendall tau ranking distance between two rank-
ings R1 and R2 is the quantity K(R1, R2) =
|{(i, j) : i < j, (τ1(i) < τ1(j) ∧ τ2(i) > τ2(j)) ∨ (τ1(i) > τ1(j) ∧ τ2(i) < τ2(j))}|

n/2(n − 1)
where τ1(i) et τ2(i) are the ranks of the element i in the rankings R1 and R2

respectively.
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vateur, pp. 77–117, 28 November 2013. http://classement-hopitaux.nouvelobs.
com/
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Abstract. We provides an axiomatic characterization of preorders in
lattices that are representable as benchmarking procedure. We show that
the key axioms are related to compatibility with lattice operations.

This paper propose also a characterization and a generalization of
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1 Introduction

Benchmarking is the process of comparing objects according to a set of bench-
marks where a benchmark is an important accomplishment. An object is con-
sidered better than another object in a benchmarking method if and only if it
achieves more benchmarks.

A benchmark-based approach is a very natural approach in many situations
and it is used in many settings as noted by Chambers and Miller in [5,6].

It may be used when comparing candidates in a selection process, in this
case benchmarks can refer to qualifications or to experience. When comparing
scholars by their citation profiles as in [5] an accomplishment is a pair of numbers
(x, y) where x is the number of publications with at least y citations.

Benchmarking provides information about quality of services perceived by
customers. As an example hotel classification systems are based on many char-
acteristics recorded through a benchmarking process. This approach can also be
used when we consider the question of how one can construct an ordering over
subsets of a set A given an ordering over the elements of A (see [9] for example).

In fact a lot of problems in individual and collective decision making involve
the comparison of sets of alternatives (e.g.,when a firm have to hire not just one
person but a team).1

It can be proved that a benchmark rule defines a preorder in a set of objects.
In the present note we study and characterize preferences in lattices that are

defined with respect to a set of benchmarks and we extend in a natural way the
results in [6]. The structure of the paper is as follows. To make this work self-
contained in Sect. 2 we briefly mention some basic concepts on lattices theory

1 I would like to thank Esteban Indurain for pointing out this problem.
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and we provide the necessary definitions. Section 3 is devoted to introduce com-
patible preorders on a lattice. In Sect. 4 we focus on benchmarking preferences
in finite lattices while in Sect. 5 we consider the case of distributive and bounded
lattices and we prove characterization theorems for benchmarking preferences.
We then focus in Sect. 6 on compatible lattice functions and we study the class
of aggregation functions that are componentwise compatible with every congru-
ence or every preference and we obtain a characterization of Sugeno integral that
is a noteworthy aggregation function that plays a relevant role as a preference
functional in multicriteria decision making.

2 Basic Notions and Terminology

First we recall some basic notions in lattice and ordered set theory. For further
background in ordered set theory we refer the reader to, e.g., Birkhoff [1], Davey
and Priestley [8] Caspard, Leclerc and Monjardet [7] or Grätzer [11].

A partially ordered set (poset for short)(P,≥) is a set P with a reflexive, anti-
symmetric and transitive binary relation ≥. We will write (x, y) ∈ R as x ≥ y (or
equivalently, y ≤ x) and we will use x > y to mean that x ≥ y and x �= y.

The word “partial” indicates that there’s no guarantee that all elements can
be compared to each other i.e. we don’t know that for all x, y ∈ P , at least one
of x ≤ y and x ≥ y holds. A poset in which this is guaranteed is a complete
poset and it is called a totally ordered set.

A relation that is reflexive and transitive is said to be a preorder. This is a
rather general concept, as every partial order and every equivalence order is a
preorder.

We say that y covers x if x �= y and no elements of the poset lie strictly
between x and y i.e. if x ≤ z ≤ y implies that z = x or z = y.

Our general approach to representation of preferences is based on lattice
theory and in this framework we extend the results in [6].

A poset L is a lattice if every pair of elements x, y has

(i) a least upper bound x ∨ y (called join), and
(ii) a greatest lower bound x ∧ y (called meet);

that is

z ≥ x ∨ y ⇐⇒ z ≥ x and z ≥ y

z ≤ x ∧ y ⇐⇒ z ≤ x and z ≤ y.

A lattice L is said to be distributive if, for every a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or, equivalently,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

A chain is a lattice such that for every a, b ∈ L we have x � y or y � x. Clearly,
every chain is distributive. A lattice L is said to be bounded if it has a least and
a greatest element, usually denoted by 0 and 1, respectively.
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If L is a lattice the cartesian product Ln also constitutes a lattice by defining
the lattice operations componentwise. Observe that if L is bounded (distribu-
tive), then Ln is also bounded (resp. distributive). We denote by 0 and 1 the
least and the greatest elements, respectively, of Ln.

If L,M are two lattices a mapping f : L → L is said to be a lattice homo-
morphism if it preserves meets and joins, i.e., f(x ∧ y) = f(x) ∧ f(y) and
f(x ∨ y) = f(x) ∨ f(y) for all x, y ∈ L. Every lattice homomorphism is clearly
order-preserving.

We will need the following definition. An element z of a lattice L is called
join irreducible if z = x∨ y for x, y ∈ L implies that z = x or z = y. The notion
of meet-irreducible element is defined dually. The set of join-irreducible elements
of a lattice L is denoted by J(L).

An element z of a lattice L is called join prime if z ≤ x∨y for x, y ∈ L implies
that z ≤ x or z ≤ y. The notion of meet-prime element is defined dually. The set
of join-prime elements of a lattice L is denoted by JI(L). It can be proved that
a join-prime element is join-irreducible and if L is a finite distributive lattice we
have that J(L) = JI(L).

A filter of a lattice L is a nonempty subset F such that

(i) if x ∈ F and x ≤ y then y ∈ F ,
(ii) x, y ∈ F then x ∧ y ∈ F .

Sets satisfying Condition (i) of a filter are called upsets. The dual notation
is that of an ideal. If a ∈ L we define the principal filter generated by x as
↑ x = {y ∈ L : y ≥ x}. It is easy to prove that ↑ x is a filter for every x ∈ L. It
can be proved that in a finite lattice each filter and each ideal are principal.

A proper filter is a filter that is neither empty nor the whole lattice while a
prime filter is a proper filter P such that if x ∨ y ∈ P then x ∈ P or y ∈ P . An
element x of a lattice L is join-prime if and only if ↑ x is prime. A filter F is
prime if and only if L \ F is an ideal, which is then a prime ideal.

Throughout this paper lattice means bounded and distributive lattice.

3 Benchmarking Rules on a Lattice

We introduce a formal definition of a preorder defined in a lattice by a set of
benchmarks. If L is a lattice and B ⊆ L for every x ∈ L we consider the set
B(x) = {b ∈ B : b ≤ x} and the relation � in L defined by

x � y if and only if B(x) ⊇ B(y) (1)

is said to be a benchmarking rule(as in [6]). According to this definition a bench-
mark rule is a comparison according to set-inclusion.

Employers commonly consider benchmarks when making hiring decisions and
often benchmarks are included on résumés and it is meaningful to note that in a
résumé there may be accomplishments that are not considered as benchmarks.

A binary relation R ⊆ L × L in a lattice L is said to be monotone if when
x ≥ y then (x, y) ∈ R. Benchmark rules are not necessarily complete but are
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transitive and monotone. It is easy to prove that if we have three objects x, y, z
in a lattice L if x is considered better than y in a benchmarking rule and z has
exactly the accomplishments common to x and y then y and z are equivalent.
This property requires that the preorder is compatible with the lattice structure
and we can note that a benchmarking rule respects the lattice operations as in
the following definition.

Let us say that a binary relation R ⊆ L × L in a lattice L is compatible
whenever it preserves the join and the meet i.e.

(i) if (x, y) ∈ R then (x ∧ z, y ∧ z) ∈ R for each z ∈ L;
(ii) if (x, y) ∈ R then (x ∨ z, y ∨ z) ∈ R for each z ∈ L.

It is straightforward to prove that a compatible binary relation on a lattice L
is monotone if and only if for every x ∈ L, (x, 0) ∈ R. An equivalence relation
defined on a lattice and compatible with the two lattice operations is said to be a
congruence. A preference on a lattice L is a monotone and compatible preorder
on L.

There is a strong link between preferences and congruences in a lattice.
If � is a preference on a lattice L then the relation ∼ defined by

x ∼ y if x � y and y � x

is a congruence on L. It can be proved also that

x � y if and only if x ∼ x ∨ y and x ∧ y ∼ y.

Moreover if ∼ is a congruence on a lattice L we can define a preference on L by

x � y if and only if x ∼ x ∨ y and x ∧ y ∼ y.

The following proposition considers some properties of benchmarking rules.

Proposition 1. If B ⊆ L and � is defined by

x � y if and only if B(x) ⊇ B(y) (2)

then � is a monotone preorder. If B ⊆ JI(L) then � is a preference on L.

Proof. The transitivity of � follows from the transitivity of ⊇ and the relation
is obviously reflexive. If x, y ∈ L are such that x ≥ y then if y ≥ b for b ∈ B it
follows that x ≥ y ≥ b so B(x) ⊇ B(y).

Now we suppose that B ⊆ JI(L) and that x � y. If z ∈ L, b ∈ B and
b ≤ y ∨ z since b is join-prime we have that b ≤ y or b ≤ z. If b ≤ y we have
also that b ≤ x by x� y and then we have proved that b ≤ x∨ z. It follows that
B(x ∨ z) ⊇ B(y ∨ z) and then x ∨ z � y ∨ z.

Let b ≤ y ∧ z with z ∈ L, b ∈ B. Then b ≤ y and b ≤ z and we can prove
that b ≤ x ∧ z. We have that B(x ∧ z) ⊇ B(y ∧ z) and so x ∧ z � y ∧ z.

If B ⊆ JI(L) a benchmarking preference � is a preference on L defined by (1)
with respect to the subset B of JI(L).

The following result characterizes complete benchmarking preferences.
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Proposition 2. If B ⊆ JI(L) and � is a benchmarking preference on L defined
with respect to the set B, � is a total order if and only if the set B is a chain.

Proof. If � is a complete preorder and b1, b2 are elements of B then or B(b1) ⊇
B(b2) or B(b1) ⊆ B(b2). Then we can conclude that b1 ≤ b2 or b1 ≥ b2.

Now we assume that B is a totally ordered set. If x, y ∈ L and x � y there
exists b1 ∈ B such that y ≥ b1 and x � b1. Let b2 an element in B(x). Since
b2 ≤ x we can prove that b1 � b2 therefore b1 > b2 . Then y ≥ b1 ≥ b2 and so
we have that B(x) ⊆ B(y) and we can conclude that x � y.

4 Compatible Relations on a Finite Lattice

Our aim is to characterize benchmarking preference on a finite lattice as com-
patible relations. The following proposition proves that every compatible and
monotone preorder can be defined with respect to a set of benchmarks.

Theorem 1. If L is a finite lattice every preference relation on L is a bench-
marking preference with respect to a set B ⊆ J(L).

Proof. We note that in a finite lattice JI(L) = J(L). If � is a preference in L
we define the set I(L) = {z ∈ J(L) : if w ∈ L, w� z then w ∼ z} and the set
B = J(L) \ I(J). We prove that if x, y ∈ L the x� y if and only if B(x) ⊇ B(y).
If there is an element z ∈ L such that z ≤ y and z � x we consider w ∈ L such
that z covers w. We have that z � w and since � is a preference and x � y we
have that x∧w� y ∧w. Since w = (x∧ z)∨w� (y ∧ z)∨w = z and thus w ∼ z.
Therefore z ∈ I(L) and we have proved that if x � y then B(x) ⊇ B(y).

Let x, y ∈ L such that B(x) ⊇ B(y). Since L is a finite lattice y = y1∨ . . .∨yn
where yi is a join-irreducible element of L for every i, 1 ≤ i ≤ n. If yi � x there
exists an element z such that z ≤ x, z < yi. Since yi /∈ B(x) we have that
yi /∈ B(y) it follows that z ∼ yi then yi ∼ z � x. We have proved that for every
i, 1 ≤ i ≤ n, yi � x and then y � x.

As a consequence of Theorem 1 we can give the following characterization of
congruences on finite lattices.

Proposition 3. If L is a finite lattice a relation on L is a congruence if and
only if there exists a set B, B ⊆ J(L) such that

x ∼ y if and only if B(x) = B(y) (3)

Proof. If we define a relation ∼ by (3) it is easy to see that ∼ is a congruence.
The converse follows directly from Theorem 1.
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5 Generalized Benchmarking Preferences

The results in Sect. 4 depend on the existence of many join-irreducible elements
in a finite distributive lattice. Note that in an infinite distributive lattice there
may be no join-irreducible element. In the infinite case, the role of join-irreducible
elements is taken by prime filters.

Let P be the set of prime filters of a lattice L. If B ⊆ P and x ∈ L we define
B(x) = {F ∈ B : x ∈ F}.

Proposition 4. If B ⊆ P and � is defined by

x � y if and only if B(x) ⊇ B(y) (4)

then � is is a preference on L.

Proof. As in Proposition 1 we can prove that � is a reflexive, transitive and
monotone relation. Let x, y, z ∈ L and x� y. If F ∈ P and y∨ z ∈ F then either
y ∈ F or z ∈ F . If y ∈ F then x ∈ F so we can conclude that x ∨ z ∈ F . It
follows that B(x ∨ z) ⊇ B(y ∨ z) and then x ∨ z � y ∨ z.

Moreover if F ∈ B and y ∧ z ∈ F then y, z ∈ F . Since B(x) ⊇ B(y) we have
also that x ∈ F . Then x ∧ z ∈ F hence B(x ∧ z) ⊇ B(y ∧ z) and x ∧ z � y ∧ z.

If B ⊆ P a generalized benchmarking preference � is a preference on L defined
by (4) with respect to B.

We present the following important result (see [11]).

Proposition 5. If x, y are two elements of the distributive lattice L and x � y
there exists a prime filter F with y ∈ F and x /∈ F .

The following theorem which characterizes preference relations as generalized
benchmarking preferences can now be proved.

Theorem 2. Every preference relation on a distributive lattice L is a generalized
benchmarking preference with respect to a set B ⊆ P.

Proof. First we consider the preorder ≥ defined on the lattice L and we prove
that

x ≥ y if and only if P(x) ⊇ P(y).

We can easily prove that if x ≥ y then P(x) ⊇ P(y).
By Proposition 5 if x, y are two elements of the lattice L and x � y there

exists a prime filter F with y ∈ F and x /∈ F and then P(x) � P(y).
Let � a preference on L an ∼ the associated congruence.
We denote by L the set of the equivalence classes with respect to ∼ and by

x the equivalence class of the element x. It is well known that L is a lattice
with the operations defined naturally on the equivalence classes and that there
is a surjective homomorphism f of L in L such that f(x) = x. Moreover we can
define a preference � in L by x � y if and only if x � y.

It is straightforward to prove that � is a well defined preference in L.
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If P is the set of prime filter in L the relation � in L is a generalized preference
relation on L with respect to P. It can be proved that the inverse image of a
prime filter with respect to a lattice homomorphism is a prime filter and then
the set B = {f−1(F ) : F ∈ P} is a set of prime filters in L. It follows that the
relation � in L is a generalized benchmarking preference with respect to B.

Using Theorem 2 one can easily prove the following result.

Proposition 6. A relation on a distributive lattice L is a congruence if and
only if there exists a set B, B ⊆ P such that

x ∼ y if and only if B(x) = B(y) (5)

By Proposition 6 we can prove that if F is a prime filter of the lattice L we can
define a congruence such that the equivalence classes are F and L \ F .

Proposition 7. If F is a prime filter of the distributive lattice L the relation
∼F defined by

x ∼F y if and only if x, y ∈ F or x, y /∈ F

is a congruence in L.

6 Compatible Aggregation Function on a Lattice

Aggregation operators are mathematical functions that are used to combine
several inputs into a single representative outcome;see [10] for a comprehensive
overview on aggregation theory. Aggregation operators play an important role
in several fields such as decision sciences, computer and information sciences,
economics and social sciences. There are a large number of different aggregation
operators that differ on the assumptions on the inputs and about the information
that we want to consider in the model. There are many situations where inputs
to be aggregated are qualitative and numerical values are used by convenience.
Sometimes we need to evaluate objects with a scale that is not totally ordered.
In this paper we focus on polynomial functions and on Sugeno integral in a
bounded and distributive lattice(see [2–4]). In fact the definition of Sugeno inte-
gral primarily introduced on real intervals can be extended to ordered domains.

We briefly introduce lattice functions that are compatible with lattice
operations.

We follow the approach in [12] and we consider componentwise compatibility
with respect to a relation defined on a lattice L.

A lattice function f : Ln → L is said to be compatible with the preference �

if when x,y ∈ Ln and for every i, 1 ≤ i ≤ n, xi � yi then f(x) � f(y).
A lattice function f : Ln → L is said to be compatible with the congruence ∼

if when x,y ∈ Ln and for every i, 1 ≤ i ≤ n, xi ∼ yi then f(x) ∼ f(y).
A function f : Ln → L is said to be monotone if, for every x,y ∈ Ln such

that for every i, 1 ≤ i ≤ n, xi ≥ yi then f(x) ≥ f(y).
The following proposition introduces a property of compatible aggregation

functions.
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Proposition 8. If L is a distributive lattice and f : Ln → L is a monotone
lattice function, f is compatible with a preference � if and only if it is compatible
with the associated congruence ∼.

Proof. By the definition of ∼ it is straightforward to prove that if f is compatible
with a preference � it is also compatible with the associated congruence ∼.

Conversely we consider a lattice function compatible with a congruence ∼.
Then if for every i, 1 ≤ i ≤ n, xi � yi hence xi ∼ xi ∨ yi and yi ∼ xi ∧ yi.

Since F is compatible with ∼ we can prove that f(x) ∼ f(x∨ y) and f(y) ∼
f(x∧y). Being f monotone it follows that f(x)∨f(y) ∼ f(x) and f(x)∧f(y) ∼
f(y) and then f(x) � f(y).

A lattice function f : Ln → L is called a polynomial function if can be
obtained by composition of the binary operations ∨ and ∧, the projections and
the constants functions (see [2–4]). If f(0) = 0 and f(1) = 1 a polynomial
function is a Sugeno integral (see [4]).

We want to show that the class of polynomial functions coincides with the
class of multivariate functionals compatible with every congruence defined in the
lattice L. So if we suppose that f(0) = 0 and f(1) = 1 we obtain a characteri-
zation of Sugeno integral as in [12].

Theorem 3. If L is a distributive lattice, a monotone lattice function f : Ln →
L is compatible with every preference (congruence) if and only if it is a polyno-
mial function.

Proof. Since binary operations ∨ and ∧, the projections and the constants func-
tions are compatible with every congruence it is clear that a polynomial function
is compatible with every congruence.

Suppose that f is a monotone lattice function f : L → L compatible with
every congruence. Our goal is to prove that for every x, y ∈ L, f(x ∨ y) =
f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) and then we can conclude that f is an
unary polynomial (see [2]). If x, y ∈ L, obviously f(x ∨ y) ≥ f(x) ∨ f(y) and we
suppose by contradiction that f(x) ∨ f(y) � f(x ∨ y). By Proposition 5 there
exists a prime filter F such that f(x ∨ y) ∈ F and f(x) ∨ f(y) /∈ F and then
f(x) /∈ F and f(y) /∈ F . Now we consider the congruence ∼F defined by the
prime filter F that is characterized by two class of equivalence namely the class
of elements that belongs to F and the class of elements that do not belong to
the filter F . It is clear that f(x) ∼F f(y) and so we have that x ∼F y. Therefore
x ∼F x ∨ y and then f(x) ∼F f(x ∨ y) that is a contradiction since f(x) /∈ F
and f(x ∨ y) ∈ F . We have proved that f(x ∨ y) = f(x) ∨ f(y) and in a similar
way we obtain that f(x ∧ y) = f(x) ∧ f(y) for every x, y ∈ L.

We note that any unary function obtained from an n-ary function compatible
with every congruence substituting constants for n − 1-variables is compatible
with every congruence and then by Lemma 9 of [2] we can conclude that every
function f , f : Ln → L compatible with every congruence in L is a polynomial
function.
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7 Concluding Remarks

This paper considers a qualitative approach to preferences representation. We
introduce a very general framework where a preference relation is not assumed
to be complete. We characterize preferences that respect lattice operations in
a bounded and distributive lattice. It can be proved that these preference rela-
tions are comparisons with respect to set inclusion and that these preference are
benchmarks rules. A benchmark rule considers an object better than another
object if it satisfies more benchmarks. So benchmarks represent relevant aspects
of the considered comparison.

Moreover in [12] it is proved that if L is a bounded chain a function that
an n-ary monotone function that preserves every congruence it is a polynomial
function. We extend the result to the case of a bounded and distributive lattice.
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Abstract. Survival signature has been presented recently to quantify
the system reliability. However, survival signature-based analytical meth-
ods are generally intractable for the analysis of realistic systems with
multi-state components and imprecisions on the transition time. The
availability of numerical simulation methods for the analysis of such sys-
tems is required. In this paper, novel simulation methods for computing
system reliability are presented. These allow to estimate the reliability
of realistic and large-scale systems based on survival signature including
parameter uncertainties and imprecisions. The simulation approaches are
generally applicable and efficient since only one estimation of the survival
signature is needed while Monte Carlo simulation is used to generate
component transition times. Numerical examples are presented to show
the applicability of the proposed methods.

Keywords: Reliability analysis · Survival signature · Monte Carlo
simulation

1 Introduction

The structure of a complex system cannot be sequentially reduced considering
alternative series and parallel sections. Consequentially, the study of the relia-
bility of such systems is still a topical subject in the literature and it has obvious
importance in many application areas [11]. Traditionally, the reliability analysis
of systems is performed adopting different well-known tools such as reliabil-
ity block diagram, fault tree and success tree methods, failure mode and effect
analysis, and master logic diagram [12]. The main limitation of these traditional
approaches is their lack of applicability for very large systems.

In recent years, the system signature [16] has been recognized as an important
tool to quantify the reliability of systems consisting of independent and identi-
cally distributed (iid) or exchangeable components with respect to the random
failure times. System signature separates the system structure from the compo-
nent probabilistic failure distribution. However, when it is adopted to solve a

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 129–140, 2016.
DOI: 10.1007/978-3-319-40596-4 12
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complex systems with more than one component type, it requires the computa-
tion of the probabilities of all possible different ordering statistics of each compo-
nent failure lifetime distributions, which is an intractable and tedious procedure.
In order to overcome the limitations of the system signature, Coolen and Coolen-
Maturi [7] proposed the use of survival signature for analysing complex systems
consisting of more than one single component type increasing the applicability
of such approach to characterise complex systems and networks. System survival
signature can also be derived from the subsystems survival signature [8], which
provides a theory for reliability analysis on real world systems of non-trivial size.
Based on the above concepts, Feng et al. [10] developed an analytical method
to calculate survival functions of systems with uncertain components parame-
ters which belong to the exponential family. The analytical solutions are exact
within the assumptions made, but they are sometimes hard or impossible to
derive for large complex systems. Hence, general applicable numerical solutions
are required to perform numerical experiments, analysing the effect of different
distribution types and to overcome the limitation of analytical methods that are
usually based on ad-hoc solutions and limited to some specific families of proba-
bility distribution functions. Simulation methods can be used for the sensitivity
analysis of multi-criteria decision models [6], optimise models with rare events
[15] and perform multi-attribute decision making [18].

In this paper, efficient simulation approaches are proposed to estimate the
reliability of large systems based on survival signature without the calculation
of all the cut-sets, which is a challenging and error prone task. The proposed
simulation approaches are applicable to any system configuration and able to
consider different representations of the uncertainties. The numerical implemen-
tation of the proposed approaches is based on two open source packages: the
R package “ReliabilityTheory” [3,4] adopted to calculate the survival signature
and OpenCossan [14] a Matlab toolbox for uncertainty quantification and reli-
ability analysis. The applicability and efficiency of the proposed approaches are
demonstrated by solving numerical examples.

2 Background

2.1 Survival Signature

Suppose there is one system formed by M components. Let the state vector of
components be x = (x1, x2, ..., xM ) ∈ {0, 1}M with xi = 1 if the i-th component
is in working state and xi = 0 if not. Φ = Φ(x) : {0, 1}m → {0, 1} defines the
system structure function, i.e., the system status based on all possible x. Φ is 1
if the system functions for state vector x and 0 if not.

Now consider a system with K ≥ 2 types of M components, with mk indi-
cating the number of components of each type and

∑K
k=1 mk = M . It is assumed

that the failure times of the same component type are independently and identi-
cally distributed (iid) or exchangeable. Coolen et al. [8] introduced the survival
signature for such a system, denoted by φ(l1, l2, ..., lK), with lk = 0, 1, ...,mk for
k = 1, 2, ...,K, which is defined to be the probability that the system functions
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given that lk of its mk components of type k work, for each k ∈ {1, 2, ...,K}.
There are

(
mk

lk

)
state vectors xk with precisely lk components xk

i equal to 1, so
with

∑mk

i=1 xk
i = lk. xk

i denotes the state of the i-th component of type k.
Let Sl1,l2,...,lK denote the set of all state vectors for the whole system for

which
∑mk

i=1 xk
i = lk, k = 1, 2, ...,K. Assume that the random failure times of

components of the different types are fully independent, and in addition the
components are exchangeable within the same component types, the survival
signature can be rewritten as:

φ(l1, ..., lK) =

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,l2,...,lK

φ(x), (1)

Ck(t) ∈ {0, 1, ...,mk} denotes the number of type k components working at
time t. Assume that the components of the same type have a known CDF, Fk(t)
for type k. Moreover, the failure times of different component types are assumed
independent, then:

P (
K⋂

k=1

{Ck(t) = lk}) =
K∏

k=1

P (Ck(t) = lk) =
K∏

k=1

(
mk

lk

)

[Fk(t)]mk−lk [1 − Fk(t)]lk

(2)
Hence, the survival function of the system with K types of components becomes:

P (Ts > t) =
m1∑

l1=0

...

mK∑

lK=0

φ(l1, ..., lK)P (
K⋂

k=1

{Ck(t) = lk}) (3)

Equation (3) separates the structure of the system from the failure time distri-
bution of its components, which is the main advantage of the system signature.
The survival signature only needs to be calculated once for any system, which is
similar to the system signature for systems with only single type of components.
For a special case of a system with only one type (K = 1) of components, the
survival signature and the system signature [16] are directly linked to each other
through a simple equation, however, the latter cannot be easily generalized for
systems with multiple types (K ≥ 2) of components [7]. This implies that all
attractive properties of the system signature also hold for the method using the
survival signature. The survival signature is easy to apply for systems with mul-
tiple types of components, and one could argue it is much easier to interpret
than the system signature.

2.2 Modelling the Uncertainties

Multiple mathematical concepts can be used to characterize variability and
uncertainty. Often in practical situations very limited data are available, and
to avoid the inclusion of subjective and often unjustified hypothesis, the impre-
cision and vagueness of the data can be treated combining probabilistic and
set theoretical components in a unified construct allowing the identification of
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bounds on probabilities for the events of interest in order to give a different
prospective to the results [5]. Random Set theory is a general framework suited
to model uncertainty represented as cumulative distribution functions (CDFs),
intervals, probability boxes, normalized fuzzy sets (also known as possibility dis-
tributions) and Dempster-Shafer [9,17] structures without making any implicit
or explicit assumption at all. Explanatory examples of such flexible frameworks
are provided in [1,2,13].

Without entering in the mathematical formalism, the Random Sets can be
understood as random variables that sample sets and not points as realizations.
These realization are called focal elements. When all focal elements are single-
tons, then the Random Set becomes a random variable.

Focal elements propagated through a model produce a collection of sets and
not points. These sets are generally identified by means of an opportune opti-
mization strategy. The collection of these set produces the so called Dempster-
Shafer structure [9]. The upper and lower bounds of these structures form the
distribution bounds of model output.

3 Simulation Approaches

The survival signature presented in the Sect. 2.1 can be adopted in a Monte Carlo
based simulation method to estimate the system reliability in a simple and effi-
cient way. A possible system evolution is simulated by generating random events
(i.e. the random transition time such as failures of the system components) and
then estimating the status of the system based on the survival signature (Eq. 1).
Then, counting the occurrence number of a specific condition (i.e. number of
system failures), it is possible to estimate the reliability of the system.

3.1 Reliability Analysis of System Without Imprecision

The simulation approach is based on the realizations of failure events of the
system’s components. Then, for each failure event the status of the system is
generated based on the probability that the system is working knowing that a
specific number of components are working. Such probability is given by the
survival signature as defined in Eq. 1. Suppose there is a system with M compo-
nents, K component types and mk components of type k. Hence, M =

∑K
k=1 mk.

The survival signature is computed only once before starting the Monte Carlo
simulation. Without loss of generality, the lifetime distributions of components
are irrespective of the time they enter into service and once failed they can not be
repaired. The reliability of the system can be estimated adopting the following
procedure:

1 Sample the failure times for each component. The failure time of component
type k is obtained sampling from the CDF Fk corresponding to it.

2 Order the failure times ti ≤ ti+1 for i = 1, 2, . . . , M . Hence, t1 represents the
first failure of a system component, t2 the second failure and so on.
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3 At each failure time, it is easy to calculate the number of components working
for each component type: Ck(ti).

4 Evaluate the survival signature which applies immediately after the corre-
sponding failure indicated as φti ≡ φ(C1(ti), C2(ti), . . . , CK(ti)).

5 Set i = 1 and draw from a Bernoulli distribution with probability 1 − φti the
system status X1 at time ti, if Xi = 1 the system fails.

6 If the system does not fail at ti, then consider ti+1. The probability that the
system functions at time ti+1 is φti+1/φti = qi+1, given that it has survived
at time ti. So the system failure at time ti+1 Xi+1 is drawn from a Bernoulli
distribution with the probability 1 − qi+1.

7 Repeat Step 6 to process other failure times (i ← i + 1).

The above procedure is repeated for N samples and the status of the system over
the time is collected in appropriated counters. It should be noted that with the
assumption that the system fails if no component functions, this implies that
qi∗ = 0 for i∗ ≤ M . Hence the system fails certainly at this ti∗ if it has not
failed before. The proposed algorithm is applicable to any system and requires
the calculation of the survival signature only once.

It is also possible to estimate the system reliability without the necessity
to sample the system status at each component failure time. The idea is to
interpret the survival signature as a normalised “production capability” of the
system defined by the Eq. 1. For instance, if all the components are working, the
system output is 1. If all components are in failure status, the system output is
0. Hence, instead of sampling the system state at each failure time, the survival
signature is evaluated immediately after each sampled component failure time
and collected in proper counters. In other words, for each Monte Carlo simulation
this method generates a random grid of time points at which to evaluate the
probability of survival to those times that represents the “production level of
the system”. Finally, the survival function is obtained by directly averaging of
the survival signature over the time, i.e. computing the expected production
level of the system adopting an algorithm derived from the approach proposed
in [19]. Hence, the reliability of the system can be estimated modifying the steps
5–7 of the proposed approach as follows:

5’ Compute the probability of survival (production level) of the system by eval-
uating the survival signature φ at each sampled component failure time ti.
For instance, the probability that the system survivals at time t1 is φt1 .

6’ Collect the value of the survival signature in appropriate counters (i.e. Y (j) =
Y (j) + φti for j : ti−1 ≤ j ∗ dt < ti) where Y represents the counter and dt
the discretisation time used to store the results.

The above procedure is repeated for N samples and the reliability of the system is
computed averaging the values of the survival signatures (P (Ts > t) ≈ 1

N Y (t)).
The uses of the survival signature makes this approach extremely efficient since it
does not require to sample the system output at each component transition time
(i.e. component failures). The flow chart of the simulation methods proposed for
estimating the reliability of non-repairable systems is shown in Fig. 1.
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Fig. 1. Flow chart of the proposed numerical approaches.

3.2 Reliability Analysis of Systems with Imprecision

Reliability analysis of complex systems requires the probabilistic characterization
of all the possible component transitions. This usually requires a large data-set
that is not always available. In fact, it might not be possible to unequivocally
characterize some component transitions due to lack of data or ambiguity. As
mentioned in Sect. 2.2, to avoid the inclusion of subjective and often unjustified
hypotheses, the imprecision and vagueness of the data can be treated by using
concepts of imprecise probabilities. Randomness and imprecision are considered
simultaneously but viewed separately at any time during the analysis and in
the results. The probabilistic analysis is carried out conditional on the elements
from the sets, which leads eventually to sets of probabilistic results.

Considering the imprecisions in the component parameters will lead to
bounds of the survival function of the systems and it can therefore be seen
as a conservative analysis, in the sense that it does not make any additional
hypothesis with regard to the available information. In some instances, analyti-
cal methods will not be appropriate means to analyse a system. Again, simulation
methods based on survival signature can be adopted to study systems consid-
ering parameter imprecision. A naive approach consists in adopting a double
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loop sampling where the outer loop is used to sample realizations in the epis-
temic space. In other words, each realization in the epistemic space defines a
new probabilistic model that needs to be solved adopting the simulation meth-
ods proposed above. Then the envelop of the system reliability is identified.
However, since almost all the systems are coherent (a system is coherent if each
component is relevant, and the structure function is non decreasing) it is only
necessary to compute the analysis reliability twice using the lower and upper
bounds for all the parameters, respectively.

4 Numerical Examples

4.1 Bridge System

The purpose of this numerical example is to verify the proposed algorithms since
analytical solutions are available. The bridge system comprises six components,
which belong to two types. It has no series section or parallel section which can
enable simplification (see Fig. 2). The survival signature can easily be computed
either manually or using the R-package ReliabilityTheory [4]. The values of the
survival signature are reported in Table 1. In this example the failure times of
component type 1 and 2 both obey exponential distributions with parameters
shown in Table 2. It is also assumed that the component once failed can not be
repaired. The survival function of the bridge system is then calculated by means
of the two proposed methods and compared with the analytical solution as shown
in Fig. 3. The simulations have been performed using N = 5000 samples and
collecting the results in 2000 counters. The discretisation time is only required
to collect the numerical results (i.e. survival function) although the simulation of
the system is continuous with respect to the time. The variance of the estimators
evaluated at time t = 0.8 and calculated by repeating the Monte Carlo simulation
20 times, is 3.0 · 10−5 using the Algorithm 1 and 1.4 · 10−5 with the Algorithm
2, respectively.

Fig. 2. Block diagramme of the bridge system with two types of components. The
number inside the boxes represent the component type.
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Table 1. Survival signature of the bridge system of Fig. 2

l1 l2 φ(l1, l2)

0 [0, 1, 2, 3] 0

[1, 2] [0, 1] 0

1 2 1/9

1 3 1/3

2 2 4/9

2 3 2/3

3 [0, 1, 2, 3] 1

Table 2. Failure rates of the components in the bridge system.

Component type Distribution type λ λ (with imprecision)

1 Exponential 0.8 [0.4, 1.2]

2 Exponential 1.5 [1.3, 2.1]
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Bridge System without imprecision

Analytical Solution
Algorithm 1
Algorithm 2 

Fig. 3. Survival function of the bridge system calculated by means of the proposed
simulation methods and analytical method, respectively.

The system is also analysed in presence of imprecision on the parameter value.
In particular, the only bounds of the exponential parameter is known as shown
in Table 2. To estimate the bounds of the survival function, the analysis have
been performed twice, using the lower and upper bound for all the parameters as
explain in Sect. 3.2. The results are shown in Fig. 4 and compared with analytical
solutions estimated adopting the method presented in [10] showing a perfect
agreement.
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Fig. 4. Bounds of the survival function of the bridge system calculated by means of
the simulation methods and compared with analytical solution.

Fig. 5. An eight components system without knowing the exact configuration.

4.2 Imprecise System

In order to illustrate the efficiency and the applicability of the proposed sim-
ulation approaches a complex system composed by 8 components of 5 types is
analysed. The component failure types and distribution parameters are shown
in Table 4. In addition, it is assumed that the exact configuration of part of the
system is unknown as shown in Fig. 5. However, the system can still be described
using the survival signature although affected by imprecision as shown in Table 3.
Algorithm 2 is used to estimated the bounds of the survival function of the sys-
tem by collecting the values (i.e. intervals) of the survival signature during the
Monte Carlo simulation. The collected bounds are then used to estimate the
bounds of the survival function as details in Ref [13]. For coherent systems as
explain in Sect. 3.2. In principle, Algorithm 1 can also be used for the estimation
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Table 3. Imprecise survival signature of the system of Fig. 5, φ(l1, l2, l3) = 0 and
φ(l1, l2, l3) = 1 for both lower and upper bounds are omitted.

l1 l2 l3 [φ(l1, l2, l3)]

1 1 1 [1/8,1/8]

1 1 2 [1/4,1/4]

1 2 1 [1/5,1/4]

1 2 2 [3/7,1/2]

1 3 1 [1/4,3/8]

1 3 2 [1/2,1/2]

1 4 1 [1/4,1/2]

1 4 2 [1/2,1/2]

2 0 1 [0,1/2]

2 0 2 [0,1]

2 1 1 [1/4,3/4]

2 1 2 [1/2,1]

2 2 1 [1/2,1]

2 3 1 [3/4,1]

Table 4. Components failure types and distribution parameters for system of Fig. 5

Component type Distribution Parameters

1 Weibull ([1.6, 1.8], [3.3, 3.9])

2 Exponential ([2.1, 2.5])

3 Weibull ([3.1, 3.3], [2.3, 2.7])
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Fig. 6. Upper and lower bounds of survival function for the system in Fig. 5.
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of the reliability bounds although it requires some modifications in the sampling
of the system status. The upper and lower bounds of survival function for the
system with imprecision both in the survival signature and on the component
distribution parameters are shown in Fig. 6. The simulation have been performed
using 5000 samples. This example shows the flexibility and the applicability of
the simulation approaches proposed for analysing complex systems affected by
imprecision where no analytical solutions are available.

5 Conclusions

Complex systems occur in various engineering applications, the survival signa-
ture has been shown to be a practical method for performing reliability analysis
of complex systems with multiple component types. However, there always exist
maintainability and imprecision within systems and the analytical methods are
only applicable in a few cases (e.g., for components only with exponential dis-
tribution types).

In this paper, efficient simulation methods have been proposed for system reli-
ability estimation. In principle, the simulation methods proposed in this paper
have the ability to analyse system reliability by using only component failure
time simulation and the survival signature, which is of great value for many sys-
tems in real world. The proposed simulation methods are generally applicable
and able to deal with imprecision in the component distribution parameters as
well in the system configuration (i.e. in the survival signature). Furthermore, they
can easily be used to analyse non-repairable and repairable systems. The simula-
tion methods are extremely fast and they can be adopted to analyse realistic and
complex systems. The feasibility and effectiveness of the presented approaches
have been illustrated with two numerical examples, the results indicate that sim-
ulation methods based on survival signature are efficient for analysing reliability
on complex systems.
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Abstract. We investigate the properties of the upper probability associ-
ated with a bivariate p-box, that may be used as a model for the imprecise
knowledge of a bivariate distribution function. We give necessary and suf-
ficient conditions for this upper probability to be maxitive, characterize
its focal elements, and study which maxitive functions can be obtained
as upper probabilities of bivariate p-boxes.

Keywords: Coherent lower and upper probabilities · Uni- and bivariate
p-boxes · Maxitive functions · Focal sets · Random sets

1 Introduction

Probability boxes can be given slightly different interpretations, such as con-
fidence bands or the result of interval measurements; our main interpretation
here will be that of envelopes of a set of probability distributions [4]. We focus
on bivariate p-boxes, that were recently introduced in [6,8] as a generalization
of p-boxes to the multivariate case. They arise in cases where we have impre-
cise knowledge about a bivariate distribution function, either because we cannot
determine precisely its marginals, because we have uncertain information about
the dependence between the underlying variables, or both.

In order to be able to take advantage of all the machinery that has already
been developed within imprecise probability theory, it is important to clarify the
connection between p-boxes and other imprecise probability models. This was
done in [10] by Troffaes and Destercke, who showed that any univariate p-box
is a particular case of a plausibility function. This was complemented in [11],
where it was determined under which conditions a p-box can be regarded as a
particular case of a maxitive function or a possibility measure. The interest of
maxitive models is that they are determined by the restrictions to singletons,
being thus more attractive from the computational point of view. They are linked
in particular to fuzzy models.

Here we study to which extent the aforementioned results can be established
for the bivariate case. This continues our work in [8], where we investigated
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when the lower/upper probability models associated with a bivariate p-box sat-
isfied the properties of avoiding sure loss and coherence. We shall focus on finite
spaces, and shall determine under which conditions the upper probability that
summarizes the set of probability measures of a bivariate p-box is maxitive. As
we shall show in Sect. 3, this only holds when one of the bounds of the bivariate
p-box is non-informative: either the lower distribution function is constant on 0
or the upper distribution function is constant on 1. In addition to the necessary
and sufficient conditions we shall establish, we shall determine the focal elements
of the upper probability of a p-box when this upper probability is a maxitive
measure. These focal elements can be used to ease the calculations in practical
problems.

On the other hand, although in Sect. 3 we characterize those p-boxes that
induce a maxitive measure, not all maxitive measures can be obtained as the
upper probability of a p-box; in other words, maxitive measures are not a partic-
ular case of probability boxes. In Sect. 4, we characterize those maxitive measures
that can be represented by means of bivariate p-boxes. Our paper concludes with
some additional discussion in Sect. 5. Due to space limitations, proofs have been
omitted.

2 Preliminary Concepts

Consider two finite ordered spaces X = {x1, . . . , xn},Y = {y1, . . . , ym}, where
xi < xi+1 and yj < yj+1 for every i = 1, . . . , n − 1 and every j = 1, . . . , m − 1,
and let X × Y denote their product. Following the notation introduced in [8],
we shall consider the cumulative sets Axi

= {x ∈ X | x ≤ xi} and Ayj
=

{y ∈ Y | y ≤ yj} for xi ∈ X and yj ∈ Y, as well as the cumulative rectangles
Axi,yj

= {(x, y) ∈ X × Y | x ≤ xi, y ≤ yj} for (xi, yj) ∈ X × Y.
We shall consider probability measures P defined on either X ,Y or the prod-

uct space X × Y. Since these are finite spaces, any such P is determined by its
restriction to singletons (its probability mass function). It is also determined by
its cumulative distribution function (cdf for short).

Definition 1. A (univariate) cdf on X is a non-decreasing function F : X →
[0, 1] satisfying F (xn) = 1.

In the bivariate case, cdfs are defined as follows.

Definition 2. A function F : X ×Y → [0, 1] is a bivariate cdf when it is compo-
nentwise non-decreasing, F (xn, ym) = 1 and it satisfies the rectangle inequality:

Δi,j
F = F (xi, yj) + F (xi−1, yj−1) − F (xi−1, yj) − F (xi, yj−1) ≥ 0

for any i = 2, . . . , n, j = 2, . . . , m.

In both cases there is a one-to-one correspondence between probability mea-
sures and distribution functions, by means of the cumulative sets.



Bivariate p-boxes and Maxitive Functions 143

Imprecise probabilities [1] is a generic term that may be used to refer to most
of the mathematical models that serve as an alternative to probability theory
in cases of imprecise or ambiguous information. In this paper we shall work
with lower and upper probabilities and some particular cases of interest, such
as plausibility or maxitive functions.

Definition 3 [12, Sect. 2.7]. Consider a universe Ω. An upper probability P is
a map P : K ⊆ P(Ω) → [0, 1]. Its conjugate lower probability P : Kc → [0, 1] is
defined on Kc = {Ac | A ∈ K} by

P (A) = 1 − P (Ac) ∀A ∈ Kc. (1)

Any upper or lower probability determines a set of probabilities, or credal set,
by M(P ) = {P prob. | P (A) ≤ P (A) ∀A ∈ K} and M(P ) = {P prob. | P (A) ≥
P (A) ∀A ∈ Kc}. Taking into account Eq. (1), M(P ) = M(P ). Because of this,
P , P carry the same probabilistic information, and as a consequence it suffices
to work with one of them. In this paper we will focus on upper probabilities.
An upper probability P is called coherent when it is the upper envelope of
the set M(P ). In that case, it can be extended to the power set by means
of the procedure of natural extension, which gives E(A) = sup{P (A) | P ∈
M(P )}, ∀A ∈ P(Ω).

In this paper, we shall focus on a particular family of coherent upper and
lower probabilities: maxitive and minitive functions.

Definition 4. A maxitive function Π : P(Ω) → [0, 1] is a function satisfying
Π(A ∪ B) = max{Π(A),Π(B)}, ∀A,B ⊆ Ω. Its conjugate function N obtained
by (1) is called a minitive function: N(A∩B) = min{N(A), N(B)}, ∀A,B ⊆ Ω.

Conjugate maxitive and minitive measures satisfy for instance N(A) = 0 if
Π(A) < 1 and therefore Π(A) = 1 when N(A) > 0. Since we are dealing with
finite spaces, maxitive and minitive functions are also possibility and necessity
measures [3]. In particular, a maxitive measure is determined by its restriction
to singletons, called its possibility distribution.

Maxitive and minitive functions are particular cases of plausibility and belief
functions from evidence theory [9], and as a consequence they are uniquely deter-
mined by a basic probability assignment m : P(Ω) → [0, 1], by means of the
formula Π(A) =

∑
B∩A �=∅ m(B). It holds that

∑
A⊆Ω m(A) = 1. Any set A such

that m(A) > 0 is called a focal element of m, and if we denote by F the set of
focal elements, it holds that Π(A) =

∑
B∩A �=∅,B∈F m(B).

Moreover, for maxitive functions the focal elements are nested, and can be
determined by the possibility distribution: if we consider the family of sets Eα :=
{ω : Π({ω}) ≥ α} for α ∈ [0, 1], the finiteness of Ω allows us to conclude that
{Eα : α ∈ [0, 1]} = {Eα1 , . . . , Eαn

} for some 0 = α1 < α2 < · · · < αn = 1. Then
the focal elements of Π are

Ω = Eα1 ⊃ Eα2 ⊃ · · · ⊃ Eαn
, (2)

and their mass functions are m(Eα1) = α1,m(Eαi
) = αi − αi−1 for i = 2, ..., n.
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In the same way as lower and upper probabilities can be used to model
the imprecise information about a probability measure, there exist models for
the imprecise information about a cumulative distribution function: probability
boxes.

Definition 5 [4,8]. A (univariate) probability box (or p-box) (FX , FX) defined
on X is a pair of ordered cdfs FX ≤ FX , where FX , FX : X → [0, 1]. A bivariate
p-box (F , F ) defined on X ×Y is a pair of ordered componentwise non-decreasing
functions F , F : X ×Y → [0, 1] such that F ≤ F and F (xn, ym) = F (xn, ym) = 1.

In particular, we shall say that FX (resp., FY , F ) is vacuous when FX = Ixn

(resp., FY = Iym
, F = I(xn,ym)). Note that the lower and upper bounds of a

bivariate p-box are not required to satisfy the rectangle inequality. The reason
is that, as shown in [8, Example 1], the lower and upper envelopes of a set of
bivariate cdfs may not satisfy such inequality in general.

As we said before, there is a one-to-one correspondence between probability
measures and cdfs, both in the univariate and in the bivariate case. It is also
possible to make a connection in the imprecise case. To see this, consider an
upper probability P on K ⊇ K1, where K1 = {Ax | x ∈ X} ∪ {Ac

x | x ∈ X}. It
defines a univariate p-box (FX , FX) by FX(x) = P (Ax) and FX(x) = 1−P (Ac

x)
for any x ∈ X . Conversely, we also have the following correspondence:

Theorem 1 [10,12]. Let (FX , FX) be a univariate p-box defined on X . It
defines a coherent upper probability on K1 by:

P (Ax) = FX(x) and P (Ac
x) = 1 − FX(x) x ∈ X . (3)

Its associated coherent lower probability is P (Ax) = FX(x) and P (Ac
x) =

1 − FX(x).

Let us now turn to the bivariate case. Consider K2 = {Ax,y | (x, y) ∈ X ×
Y}∪{Ac

x,y | (x, y) ∈ X ×Y}. Any coherent upper probability on K ⊇ K2 defines
a bivariate p-box (F , F ) by F (x, y) = P (Ax,y) and F (x, y) = 1 − P (Ac

x,y) for
any (x, y) ∈ X × Y. Conversely [8, Definition 8], given a bivariate p-box (F , F )
on X × Y, its associated upper probability P (F,F ) on K2 is given by:

P (F,F )(Ax,y) = F (x, y) and P (F,F )(A
c
x,y) = 1 − F (x, y) (4)

for any (x, y) ∈ X × Y, and its lower probability is P (F,F )(Ax,y) = F (x, y) and
P (F,F )(A

c
x,y) = 1 − F (x, y).

In general, P may not be coherent ([8, Example 2]). We will call a bivariate
p-box coherent when its associated upper probability given by Eq. (4) is. In
what follows, we shall assume that the upper probability derived from a (uni or
bivariate) p-box by means of Eqs. (3) or (4) is coherent and that it is defined on
the power set, using the notion of natural extension. There may be other upper
probabilities compatible with the p-box by means of Eq. (4); here we consider
the one determined by the values in K2 only.
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Given a bivariate p-box (F , F ) defined on X × Y, its marginal univariate
p-boxes (FX , FX) and (FY , FY ) are given by:

FX(xi) = F (xi, ym) and FX(xi) = F (xi, ym) ∀i = 1, . . . , n.

FY (yj) = F (xn, yj) and FY (yj) = F (xn, yj) ∀j = 1, . . . ,m.

The connection between maxitive functions and p-boxes was established in
the univariate case in [11]:

Theorem 2 [11, Corollary 13]. Let (FX , FX) be a univariate p-box defined
on X , and denote by P its associated upper probability given by Eq. (3) and
extended to P(X ) using natural extension. Then, P is maxitive if and only if
one of the following conditions holds:

(a) FX is 0-1 valued.
(b) FX is 0-1 valued.

3 Bivariate p-boxes Inducing a Maxitive Function

The aim of this section is to investigate which conditions a bivariate p-box must
satisfy in order to generate a maxitive function, trying to establish a character-
ization similar to the one Theorem2 gives for the univariate case. Recall that
we will consider a coherent bivariate p-box (F , F ) defined on the product space
X ×Y of two finite and ordered spaces. P (F,F ) will denote the upper probability
defined from (F , F ) using Eq. (4) and extended to P(X ×Y) by means of natural
extension, and P (F,F ) will denote its conjugate lower probability.

Definition 6. We shall say that (F , F ) is a maxitive bivariate p-box when the
natural extension of the upper probability P (F,F ) it induces by means of Eq. (4)
is a maxitive function.

We shall interpret (F , F ) as a model for the probabilistic information on
the joint behavior of two random variables X,Y . We shall assume that these
two variables are logically independent, in the sense that any pair (xi, yj) in the
product space X ×Y is assumed to be possible. In addition, taking into account
that both X ,Y are finite spaces, we shall assume that each pair has strictly
positive upper probability:

P (F,F )({(xi, yj)}) > 0 ∀i = 1, . . . , n; j = 1, . . . , m. (5)

This means in particular that there is at least one precise model P that is
compatible with our p-box (F , F ), in the sense that F ≤ FP ≤ F , and that gives
positive probability to any pair (xi, yj). In other words, any singleton is a focal
element of at least one of the compatible precise models. The condition will be
instrumental for the technical results that follow.
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3.1 Characterization of Maxitive Bivariate p-Boxes

We begin with a simple necessary condition for a p-box to be maxitive:

Proposition 1. Let (F , F ) be a maxitive bivariate p-box. Then, at least one of
the following conditions holds:
(a) FX , FY are vacuous.
(b) FX , FY are constantly 1.

Moreover, F (xi, yj) = min{F (xn, yj), F (xi, ym)} = min{FY (yj), FX(xi)} ∀i, j.

In the remainder of this section, we shall characterize p-boxes inducing a
maxitive function. We begin by considering the following notion:

Definition 7. We shall say that a bivariate p-box (F , F ) is of type-1 when its
lower distribution function F satisfies F = I(xn,ym), i.e., when it is vacuous.

The following proposition gives a useful property of this type of p-boxes:

Proposition 2. Let (F , F ) be a bivariate p-box. It is of type-1 if and only if both
FX , FY are vacuous. Moreover, in such a case it holds that P (F,F )({(xi, yj)}) =
F (xi, yj) for every i = 1, . . . , n; j = 1, . . . ,m.

Thus, type-1 p-boxes correspond to the first possibility determined in Propo-
sition 1. Next we characterize under which conditions they are maxitive:

Proposition 3. Let (F , F ) be a bivariate p-box of type-1. It is maxitive if and
only if one of the following conditions is satisfied:
(a) FX = 1 and F (xi, yj) = max{F (xi, y1), F (x1, yj)} ∀i, j.
(b) FY = 1 and F (xi, yj) = max{F (xi, y1), F (x1, yj)} ∀i, j.

The conditions established in this result are interesting because they mean
that for maxitive type-1 p-boxes at least one of the marginal p-boxes must be
completely uninformative: its lower bound is vacuous and its upper bound is
constant on 1.

Next we consider a second type of bivariate p-boxes:

Definition 8. We shall say that a bivariate p-box (F , F ) is of type-2 if it is not
of type-1 and its upper distribution function is constant on 1.

These cover the second possibility depicted in Proposition 1: the case where
both FX , FY are constant on 1.

Proposition 4. Let (F , F ) be a maxitive bivariate p-box with FX , FY constant
on 1 and where F is non-vacuous. Then F is constantly 1.

Taking this result into account, any bivariate distribution inducing a max-
itive measure is of either type-1 or type-2. For type-1 bivariate p-boxes, we
have characterized in Proposition 3 under which conditions they induce a max-
itive measure. Our next result provides a characterization in the case of type-2
bivariate p-boxes.

Proposition 5. Let (F , F ) be a coherent bivariate p-box of type-2. Then, P (F,F )

is maxitive if and only if F (xi, yj) = min{FX(xi), FY (yj)} ∀i = 1, . . . , n; j =
1, . . . ,m.
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3.2 Focal Sets of Maxitive Bivariate p-boxes

Next we determine the focal elements of maxitive bivariate p-boxes. We split our
study in type-1 and type-2 bivariate p-boxes.

Given a maxitive bivariate p-box of type-1, Proposition 2 implies that the
possibility distribution of (F , F ) is given by P (F,F )({(xi, yj)}) = F (xi, yj) ∀i, j.
Thus, the focal sets associated with P (F,F ) are defined by the different values of
F . From Eq. (2), if F takes the values γ1 < . . . < γk = 1, there are k focal sets
given by Ei = {(x, y) : F (x, y) ≥ γi}, and their masses are m(Ei) = γi −γi−1 for
any i = 1, . . . , k (we assume γ0 = 0). Obviously, Ei ⊇ Ei+1 for any i = 1, . . . , k−1
and E0 = X × Y. Our next result gives the form of the focal sets.

Proposition 6. Let (F , F ) be a maxitive bivariate p-box of type-1. Consider
the set S = {(xi, yj) | F (xi, yj) < min{F (xi+1, yj), F (xi, yj+1)}}. The following
statements hold:

1. The set S can be expressed as S = {(xi1 , yj1), . . . , (xik , yjk)}, where xi1 ≤
. . . ≤ xik and yj1 ≤ . . . ≤ yjk .

2. The focal sets of P (F,F ) are E0 = X × Y, El = Ac
xil

,yjl
, ∀l = 1, . . . , k,

with m(El) = F (xil+1 , yjl+1) − F (xil , yjl), where F (xik+1 , yjk+1) = 1, and
m(X × Y) = F (x1, y1).

Example 1. Consider X = {x1, x2, x3}, Y = {y1, y2, y3} and the bivariate p-box:

(x1, y1) (x1, y2) (x1, y3) (x2, y1) (x2, y2) (x2, y3) (x3, y1) (x3, y2) (x3, y3)
F 0 0 0 0 0 0 0 0 1

F 0.1 0.5 0.7 0.8 0.8 0.8 1 1 1

By Proposition 3, it induces a maxitive measure. Using the notation of Proposi-
tion 6, the set S is given by S = {(x1, y1), (x1, y2), (x1, y3), (x2, y3)}. Therefore,
according to Proposition 6, the focal sets of P (F,F ) and their masses are:

i 0 1 2 3 4
Ei X × Y Ac

x1,y1
Ac

x1,y2
Ac

x1,y3
Ac

x2,y3

m(Ei) 0.1 0.4 0.2 0.1 0.2

They are depicted in Fig. 1. �
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Fig. 1. Description of the focal sets of the upper probability P (F,F ) of Example 1.



148 I. Montes and E. Miranda

Next, we consider type-2 bivariate p-boxes. From Proposition 1, when P (F,F )

is maxitive F (xi, yj) = min{FY (yj), FX(xi)}. This means that F is indeed a
bivariate cdf (see for Example [7]), and in particular the support of PF , the
probability distribution associated with F , can be expressed as

S = {(u1, v1), . . . , (uk, vk)} ⊂ X × Y
such that (u1, v1) = (x1, y1), (uk, vk) = (xn, ym), ui ≤ ui+1, vi ≤ vi+1 for any
i = 1, . . . , k −1, which implies that PF ({(ui, vi)}) > 0 and

∑k
i=1 PF ({(ui, vi}) =

1. Using S we can determine the focal sets of P (F,F ).

Proposition 7. Let (F , F ) be a maxitive bivariate p-box such that F = 1, and
consider the set S above. Then, the focal sets of P (F,F ) are Ei = Aui,vi

, m(Ei) =
F (ui, vi) − F (ui−1, vi−1) for any l = 1, . . . , k, where F (u0, v0) := 0.

Example 2. Consider the bivariate p-box (F , F ) given by:

(x1, y1) (x1, y2) (x1, y3) (x2, y1) (x2, y2) (x2, y3) (x3, y1) (x3, y2) (x3, y3)
F 0.2 0.3 0.3 0.2 0.6 0.9 0.2 0.6 1

F 1 1 1 1 1 1 1 1 1

The set S is given by S = {(x1, y1), (x1, y2), (x2, y2), (x2, y3), (x3, y3)}. Applying
the previous proposition, the focal sets of P (F,F ) and their masses are:

Ei Ax1,y1 Ax1,y2 Ax2,y2 Ax2,y3 Ax3,y3

m(Ei) 0.2 0.1 0.3 0.3 0.1

We have graphically depicted these focal sets in Fig. 2. �
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Fig. 2. Description of the focal sets of the upper probability P (F,F ) of Example 2.

3.3 Relevance of Restriction (5)

At the beginning of this section we have mentioned one restriction that we are
imposing on the bivariate p-boxes we are considering in this paper: that the
associated upper probability of any pair (xi, yj) in X ×Y is strictly positive. We
have then characterized which of these p-boxes determine a maxitive measure,
and later determined the associated focal elements.

It is important to stress that Eq. (5) is essential to our results, in the sense
that there are bivariate p-boxes that do not satisfy it and still induce a maxi-
tive measure. Those bivariate p-boxes need not satisfy the conditions we have
established in Propositions 6, 7, as our next example shows.
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Example 3. Consider X = {x1, x2} and Y = {y1, y2} and the bivariate p-box:

(x1, y1) (x1, y2) (x2, y1) (x2, y2)
F 0 0.5 0 1
F 0 1 0.5 1

Note that this bivariate p-box is coherent because it is the lower/upper envelope
of the set of distribution functions {F1, F2}, where:

(x1, y1) (x1, y2) (x2, y1) (x2, y2)
F1 0 0.5 0.5 1
F2 0 1 0 1

and therefore, according to [8, Proposition 9], (F , F ) is coherent.
Secondly, it is easy to check that P (F,F ) is a maxitive function whose asso-

ciated focal sets are {(x1, y2)} and {(x1, y2), (x2, y1), (x2, y2)}, both with mass
0.5. These focal sets are not like those depicted in Propositions 6, 7.

The reason is that the bivariate p-box does not satisfy the necessary condition
of Proposition 1, since FX and FY are 0-1 valued, but FX , FY are not. The key
here is that P (F,F )({(x1, y1)}) = 0, and therefore our results from this section
cannot be applied. �

4 From Maxitive Functions to Bivariate p-boxes

So far, we have been studying the conditions a bivariate p-box must satisfy in
order to induce a maxitive function. However, it may be that not every maxitive
function can be obtained as the upper probability of a bivariate p-box, meaning
that not all maxitive models can be embedded in the framework of p-boxes:

Example 4. Consider X = {x1, x2},Y = {y1, y2} and let Π be the maxitive
measure determined by the possibility distribution π(x1, y1) = 1 = π(x2, y2),
π(x1, y2) = 0.5 = π(x2, y1). Assume that (F , F ) is a bivariate p-box such that
P (F,F ) = Π. Then we should have P (F,F )({x1, y1}) = 1 = P (F,F )({x2, y2}),
meaning that there must be P1, P2 in M(P (F,F )) such that P1({x1, y1}) =
1 = P2({x2, y2}). But this implies that the p-box (F , F ) must be vacuous,
because F (x2, y1) = F (x1, y2) ≤ FP2(x1, y2) = FP2(x2, y1) = 0, and F (x1, y1) ≥
FP1(x1, y1) = 1. As a consequence, P (F,F )({x1, y2}) = 1 = π(x1, y2), and there-
fore P (F,F ) does not coincide with Π. �

Given a maxitive function Π on P(X × Y), its associated bivariate p-box is

F (x, y) = Π(Ax,y), F (x, y) = 1 − Π(Ac
x,y) ∀(x, y) ∈ X × Y. (6)

One difference with the results in [11, Section 5] is that we shall assume that the
order in the universes X ,Y is fixed, and cannot be adapted to the values of the
maxitive measure.

Interestingly, the p-box (F , F ) defined above may not satisfy P (F,F ) = Π,
and in fact P (F,F ) may not even be maxitive:
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Example 5. Consider X = {x1, x2} and Y = {y1, y2} and the maxitive function
Π whose focal sets are E1 = {(x2, y1)}, E2 = X × Y, each one with a mass
of 0.5. If we denote by (F , F ) its associated bivariate p-box by Eq. (6) and
by P (F,F ), P (F,F ) the lower and upper probabilities it induces, we can easily
prove that P (F,F ), P (F,F ) are not minitive and maxitive functions: it holds that
P (F,F )(Ax2,y1) = 0.5 and P (F,F )(A

c
x1,y1

) = 0.5, while P (F,F )(Ax2,y1 ∩ Ac
x1,y1

) =
P (F,F )({(x2, y1)}) = 0, for instance considering the cdf F ∈ (F , F ) given by
F (x1, y1) = F (x1, y2) = F (x2, y1) = 0.5, F (x2, y2) = 1. Then, P (F,F ) is not
minimum-preserving. This can also be seen using the results of the previous
section: from Proposition 1, if P (F,F ) is maxitive, either FX , FY are constantly
1 or FX , FY are vacuous. However, in this example none of these conditions are
satisfied, and therefore P (F,F ) cannot be maxitive. �

In what follows, we shall assume that the upper probability P (F,F ) induced
by the (F , F ) determined by (6) satisfies Eq. (5). We look for conditions in terms
of the distribution π of the maxitive function Π to assure that it coincides with
the upper probability induced by its associated bivariate p-box. One important
remark is that, even if the bivariate p-box induced by Π is maxitive, it may not
hold that P (F,F ) = Π; an example will be given the context of random sets in
Example 7 later on.

We begin by establishing a necessary condition for a maxitive measure to be
attainable as the upper distribution of a bivariate p-box.

Proposition 8. Let Π be a maxitive function on P(X ×Y), and denote by π its
associated possibility distribution. If Π = P (F,F ), where (F , F ) is the p-box asso-
ciated with Π by (6), then either π(x1, y1) = 1 or max{π(x1, ym), π(xn, y1)} = 1.

Next we give sufficient conditions for the equality between P (F,F ) and Π. In
that case, P (F,F ) is maxitive and, as we have explained in the previous result,
either F or F is vacuous. We split now our study in these two cases.

Proposition 9. Let Π be a maxitive function defined on P(X ×Y), and denote
by π its associated possibility distribution. The following are equivalent:

(a) Π = P (F,F ) and F is vacuous.
(b) π is componentwise increasing, max{π(xn, y1), π(x1, ym)} = 1 and π(x, y) =

max{π(x1, y), π(x, y1)} for any (x, y).

Obviously this situation corresponds with the case of type-1 p-boxes. The
next result corresponds with the case of F = 1.

Proposition 10. Let Π be a maxitive function defined on P(X ×Y), and denote
by π its associated distribution. The following are equivalent:

(a) Π = P (F,F ) and F = 1.
(b) π is componentwise decreasing, π(x, y) = min{π(x1, y), π(x, y1)} for any

(x, y) and π(x1, y1) = 1.
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4.1 Maxitive Bivariate p-boxes and Random Sets

One framework where maxitive functions arise naturally is when dealing with
nested random sets. A random set Γ : Ω → P(X ×Y) defined on the probability
space (Ω,A, P ) is a multivalued map satisfying Γ∗(A) = {ω ∈ Ω | Γ (ω) ⊆
A} ∈ A for every A ⊆ X × Y. Any random set generates belief and plausibility
functions on P(X ×Y) by P (A) = P ({ω ∈ Ω | Γ (ω) ⊆ A}) and P (A) = P ({ω ∈
Ω | Γ (ω) ∩ A = ∅}). When the images of Γ are almost surely nested, that is,
when there is some N ∈ A with P (N) = 0 such that either Γ (ω1) ⊆ Γ (ω2) or
Γ (ω2) ⊆ Γ (ω1) for any ω1, ω2 /∈ N , then P and P are minitive and maxitive
functions [5, Theorem 8].

Any random set defines a bivariate p-box (F , F ) by means of F (x, y) =
P (Ax,y) and F (x, y) = P (Ax,y). In general, this p-box is not as informative
as the lower and upper probabilities of the random set [2]. In this section, we
are going to study the case where the upper probability of the random set is
maxitive. For this, we are going to study whether P and P (F,F ) coincide. Again,
we shall assume that the p-box determined by the random set satisfies Eq. (5).

We begin by showing that in general (F , F ) is not maxitive.

Example 6. Consider Ω = {ω1, ω2} with P ({ω1}) = 0.6 and P ({ω2}) = 0.4, and
the random set Γ defined by Γ (ω1) = {x1, x2} × {y1, y2}, Γ (ω2) = {(x2, y1)}.
Since the images of Γ are nested (Γ (ω2) ⊂ Γ (ω1)), P is maxitive. Let us see
that P (F,F ) is not. For this, we compute the bivariate p-box (F , F ):

(x1, y1) (x1, y2) (x2, y1) (x2, y2)
F 0 0 0.4 1
F 0.6 0.6 1 1

P (F,F )({(x1, y1)}) = F (x1, y1) = 0.6 and P (F,F )({(x2, y2)}) = 1 − F (x2, y1) =
1 − 0.4 = 0.6. However, P (F,F )({(x1, y1), (x2, y2)}) = 1, for instance considering
the cdf F given by F (x1, y1) = F (x1, y2) = F (x2, y1) = 0.6 and F (x2, y2) = 1.
Thus, P (F,F ) is not maxitive. �

In fact, P and P (F,F ) may not coincide even when both are maxitive:

Example 7. Consider Ω = {ω1, ω2} with P ({ω1}) = P ({ω2}) = 0.5 and the ran-
dom set Γ given by Γ (ω1) = {(x1, y1), (x3, y3)} and Γ (ω2) = {x1, x2, x3} ×
{y1, y2, y3}. It can be easily proven that F is vacuous and F is constantly
1, and therefore P (F,F ) is maxitive. However, taking the probability distribu-
tion with P ({(x2, y2)}) = 1, its associated cdf belongs to (F , F ), and therefore
P (F,F )({(x2, y2)}) = 1 > 0.5 = P ({(x2, y2)}), which shows that P (F,F ) and P
are different maxitive functions. �

5 Conclusions

The connection between p-boxes and maxitive measures established in [11] does
not extend straightforwardly to the bivariate case: it does not suffice that either
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the lower or the upper distribution function is 0-1-valued, but they need moreover
satisfy some additional properties: not only the focal elements of a maxitive
bivariate p-box must be nested, but they must be nested families of cumulative
rectangles (or their complementary sets, depending on whether we are working
with type-1 or type-2 bivariate p-boxes). In addition, not every maxitive measure
can be obtained as the upper probability of a bivariate p-box, as shown in Sect. 4.

There are several open lines of research that arise from our work. On the one
hand, we should extend our results to arbitrary universes, not necessarily finite.
In that case, we should distinguish between maxitive and possibility measures,
and we envisage that some additional continuity properties should be imposed if
a bivariate p-box is to induce a possibility measure, similarly to what has been
established in [11]. Related to this, our assumption of positive upper probability
on the singletons, that has been instrumental for many of our results, cannot be
satisfied when one of the marginal universes is uncountable.

Even if we focus on the finite case, we should also study the connection
between bivariate p-boxes and maxitive functions when this positivity condition
does not hold. As we have already shown in Example 3, if we lift this restriction
we may have other bivariate p-boxes inducing a maxitive measure. Thus, the
connection between these two models in the general case should be determined.
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Abstract. In Bayesian statistics, the choice of prior distribution is often
debatable, especially if prior knowledge is limited or data are scarce. In
imprecise probability, sets of priors are used to accurately model and
reflect prior knowledge. This has the advantage that prior-data conflict
sensitivity can be modelled: Ranges of posterior inferences should be
larger when prior and data are in conflict. We propose a new method for
generating prior sets which, in addition to prior-data conflict sensitiv-
ity, allows to reflect strong prior-data agreement by decreased posterior
imprecision.

Keywords: Bayesian inference · Strong prior-data agreement · Prior-
data conflict · Imprecise probability · Conjugate priors

1 Introduction

The Bayesian approach to inference [6] offers the advantage to combine data
and prior expert knowledge in a unified reasoning process. It combines a para-
metric sample model, denoted by a conditional distribution f(x | ϑ) of data
x = (x1, . . . , xn) given parameter ϑ with a prior distribution f(ϑ), expressing
expert opinion on ϑ. Given x, the prior distribution is updated by Bayes’ Rule
to obtain the posterior distribution f(ϑ | x) ∝ f(x | ϑ) ·f(ϑ). The choice of prior
distribution is often debatable. One can employ sensitivity analysis to study the
effect of different prior distributions on the inferences, as done in robust Bayesian
methods [2]. The method presented in this paper also uses sets of priors, with
interpretation in line with theory of imprecise probability [1,8], considering sets
of posterior distributions as the proper method to express the precision of prob-
ability statements themselves: the smaller the set of posteriors, the more precise
the probability statements. This relation should hold in particular in case of
prior-data conflict : From the viewpoint of the prior f(ϑ), the observed data x
seem very surprising, i.e., information from data is in conflict with prior assump-
tions [4]. This is most relevant when there is not enough data to largely reduce
the influence of the prior on the posterior; it is then unclear whether to put
c© Springer International Publishing Switzerland 2016
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more trust to prior assumptions or to the observations, and posterior inferences
should clearly reflect this state of uncertainty. [11] pointed out that both precise
and imprecise models based on conjugate priors can be insensitive to prior-data
conflict.

For Bayesian inference based on a precise conjugate prior, learning from data
amounts to averaging between prior and data [10, Sect. 1.2.3.1]. This is the root
of prior-data conflict insensitivity: When observed data are very different to what
is assumed in the prior, this conflict is simply averaged out and not reflected in
the variance of the posterior, giving a false sense of certainty: A posterior with
small variance indicates that we know what is going on quite precisely, but in
case of prior-data conflict we do not. Prior-data conflict is reflected by increased
imprecision in inferences, so more cautious probability statements, when using
carefully tailored sets of conjugate priors [11]. One approach is to define sets of
conjugate priors via sets of canonical parameters which ensure prior-data con-
flict sensitivity. [11] suggested a parameter set shape that balances tractability
and ease of elicitation with desired inference properties. This approach has been
applied in common-cause failure modelling [7] and system reliability [12]. We fur-
ther refine this approach by complementing the increased imprecision reaction
to prior-data conflict with further reduced imprecision if prior and data coincide
especially well, which we call strong prior-data agreement. These desired infer-
ence properties are achieved through a novel, more complex parameter set shape.
For ease of presentation, we restrict presentation to the Beta-Binomial model,
the approach is generalizable to arbitrary canonical conjugate priors. Section 2
gives a quick overview on Bayesian inference with sets of Beta priors. The new
shape is defined in terms of a parametrization recently suggested by Bickis [3]
and explained in Sect. 3. We suggest a shape in this parametrization that reacts
to both prior-data conflict and strong prior-data agreement (Sect. 4). Section 5
discusses generalizations and potential applications.

2 Generalized Bayesian Inference for Binary Data

The Binomial distribution models the probability to observe s successes in n
independent trials given p, the success probability in each trial. In a Bayesian
setting, information about p is expressed by a prior distribution f(p) and updat-
ing is straightforward if one uses a conjugate prior distribution, for which the
posterior distribution belongs to the same family as the prior, just with updated
parameters. The conjugate prior for the Binomial distribution is the Beta
distribution,1

f(p) ∝ pn(0)y(0)−1 (1 − p)n(0)(1−y(0))−1 , (1)

written here in terms of the canonical parameters n(0) > 0 and y(0) ∈ (0, 1),
where y(0) is the prior expectation for p, and n(0) is a pseudocount or prior

1 We denote prior parameter values by upper index (0) and posterior parameter values,
after n observations, by upper index(n).
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strength parameter. The posterior given s successes in n trials is a Beta distri-
bution with updated parameters

n(n) = n(0) + n , y(n) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· s

n
. (2)

The posterior mean y(n) for p is a weighted average of the prior mean y(0) and
the observed fraction of successes s/n, with weights proportional to n(0) and n,
respectively. This averaging between prior and data is a concern if observed data
differ greatly from what is expressed in the prior, as such conflict is averaged
out and not reflected in the posterior.

[11] showed that it is possible to obtain a meaningful reaction to prior-data
conflict by using sets of priors M(0) produced through parameter sets IΠ(0) =
[n(0), n(0)] × [y(0), y(0)]. More generally, [10, Sect. 3.1] describes a framework for
Bayesian inference using sets of conjugate priors based on arbitrary parameter
sets IΠ(0). Here, each prior parameter pair (n(0), y(0)) ∈ IΠ(0) corresponds to a
Beta prior, so M(0) can be taken directly as a set of Beta priors. Alternatively,
one may take the convex hull of all Beta priors with (n(0), y(0)) ∈ IΠ(0) as M(0);
M(0) then consists of all finite mixtures of Beta distributions with (n(0), y(0)) ∈
IΠ(0). It is a modeling decision whether to take M(0) as containing only Beta
priors or also the mixtures. In the first case, bounds for all inferences can be
obtained by optimizing over IΠ(0). In the second case, optimizing over IΠ(0) will
only yield bounds for all inferences that are linear functions of n(0) and y(0), as
the linearity ensures that bounds must correspond to the extreme points of the
convex set of priors, which are the Beta priors with (n(0), y(0)) ∈ IΠ(0). In both
cases, the set of posteriors M(n) is obtained by updating each prior in M(0)

according to Bayes’ Rule. This element-by-element updating can be rigorously
justified as ensuring coherence [8, Sect. 2.5], and was termed “Generalized Bayes’
Rule” by Walley [8, Sect. 6.4]. In the first case, M(n) is a set of Beta distributions
with parameters (n(n), y(n)), obtained by updating (n(0), y(0)) ∈ IΠ(0) according
to (2), leading to the set of updated parameters

IΠ(n) =
{

(n(n), y(n)) | (n(0), y(0)) ∈ IΠ(0) = [n(0), n(0)] × [y(0), y(0)]
}

. (3)

In the second case, the set of Beta distributions corresponding to (n(n), y(n)) ∈
IΠ(n) forms the extreme points of the convex set of posteriors M(n), such that,
just like M(0), M(n) can be described as a set of all finite mixtures of Beta
distributions with (n(n), y(n)) ∈ IΠ(n), see [10, pp. 56f].

M(n) forms the basis for all inferences, leading to probability ranges obtained
by minimizing and maximizing over M(n). For example, the posterior predictive
probability for the event that a future single draw is a success is equal to y(n);
for an imprecise model M(0) based on IΠ(0), the lower and upper probability
are

inf
IΠ(n)

y(n) = inf
IΠ(0)

n(0)y(0) + s

n(0) + n
and sup

IΠ(n)
y(n) = sup

IΠ(0)

n(0)y(0) + s

n(0) + n
.
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The relation between IΠ(0) and M(0), as well as between IΠ(n) and M(n), allows
to characterize model properties through properties of IΠ(0) and IΠ(n), as is
done in [10, Sect. 3.1.2–3.1.4]. The well-known Imprecise Dirichlet Model [9] cor-
responds to a choice of IΠ(0) = n(0) × (y(0), y(0)) where (y(0), y(0)) = (0, 1).
The model proposed by [5] generally assumes IΠ(0) = n(0) × [y(0), y(0)], and was
shown to be insensitive to prior-data conflict by [11], who proposed parameter
sets IΠ(0) = [n(0), n(0)]× [y(0), y(0)] instead. Indeed, for IΠ(0) = n(0) × [y(0), y(0)],
we get IΠ(n) = n(n) × [y(n), y(n)], where y(n) = (n(0)y(0) + s)/(n(0) + n) and
y(n) = (n(0)y(0) + s)/(n(0) + n). The posterior imprecision in the y dimension,
denoted by Δy(IΠ(n)), is then

Δy(IΠ(n)) = y(n) − y(n) =
n(0)(y(0) − y(0))

n(0) + n
,

and so the same for any fixed n, independent of s. In contrast, parameter sets
IΠ(0) = [n(0), n(0)] × [y(0), y(0)] provide prior-data conflict sensitivity, since

Δy(IΠ(n)) =
n(0)(y(0) − y(0))

n(0) + n
+ inf

y(0)∈[y(0),y(0)]
|s/n − y(0)| n(n(0) − n(0))

(n(0) + n)(n(0) + n)
.

The shape of IΠ(0) poses a trade-off [10, Sect. 3.1.4]: Less complex shapes are easy
to handle and lead to tractable models, but will offer less flexibility in expressing
prior information and may have undesired inference properties. In contrast, more
complex shapes may allow for more sophisticated model behaviour at the cost
of more involved handling.

3 A Novel Parametrization for Beta Priors

A conjugate Beta prior is updated by a shift in the parameter space, given by
rewriting (2):

n(0) �→ n(0) + n , y(0) �→ y(0) +
s − ny(0)

n(0) + n
.

The shift for the n coordinate is the same for all elements (n(0), y(0)) of IΠ(0). The
shift in the y coordinate depends on n(0), n, s, and the location of y(0) itself (in
fact, how far y(0) is from s/n). The shape of IΠ(0) changes during the update step
to IΠ(n), the effects on posterior inferences may be difficult to grasp. To isolate the
influence of a set shape, we consider a recently proposed parametrization [3], where
each coordinate has the same shift in updating, such that updating a prior set
corresponds to a shift of the entire set. In this novel parametrization, a conjugate
prior is represented by a coordinate (η(0)

0 , η
(0)
1 ), related to (n(0), y(0)) by

n(0) = η
(0)
0 + 2 , y(0) =

η
(0)
1

η
(0)
0 + 2

+
1
2

. (4)
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The domain of η0 and η1 in case of the Beta-Binomial model is

H =
{

(η0, η1)
∣
∣
∣η0 > −2, |η1| <

1
2
(η0 + 2)

}
, (5)

the Bayes update step in terms of η0 and η1 is given by

η
(n)
0 = η

(0)
0 + n , η

(n)
1 = η

(0)
1 +

1
2
(s − (n − s)) = η

(0)
1 + s − n

2
. (6)

Each success thus leads to a step of 1 in the η0 direction and of +1
2 in the

η1 direction, while each failure leads to a step of 1 in the η0 direction and of
− 1

2 in the η1 direction. While y(0) had the convenient property of being equal
to the prior expectation for p, η1 is only slightly more difficult to interpret.
From (4) we can derive that points (η0, η1) ∈ H on rays emanating from the
coordinate (−2, 0), i.e., coordinates satifying η1 = (η0 +2)(yc − 1/2), will have a
constant expectation of yc. The domain H, and these rays of constant expectation
emanating from the coordinate (−2, 0), can be seen in Fig. 1.

In the parametrization in terms of (n(0), y(0)), posterior inferences based on
y(n) become less imprecise with increasing n because Δy(IΠ(n)) → 0 for n →
∞. In the domain H, parameter sets do not change size during update, but the
rays of constant expectation fan out for increasing n. The more H(n) is located to
the right, the fewer rays of constant expectation it intercepts, and so imprecision
decreases. Imprecision in terms of y(n) can thus be imagined as the size of the
‘shadow’ that a set H(n) casts given a light source in (−2, 0). The smaller this
shadow, the less imprecise the inferences. Denoting the bounds of this shadow by

y(n)
H

:= min
(η

(n)
0 ,η

(n)
1 )∈H(n)

η
(n)
1

η
(n)
0 + 2

+
1
2

, y
(n)
H := max

(η
(n)
0 ,η

(n)
1 )∈H(n)

η
(n)
1

η
(n)
0 + 2

+
1
2

,

we call the η0 coordinate of arg min(η0,η1)∈H(n) y(n) and arg max(η0,η1)∈H(n) y(n)

the lower and upper touchpoint of H(n) responsible for the shadow [y(n)
H , y

(n)
H ].

Mutatis mutandis, the same definitions can be made for the prior set H(0). Due
to the fanning out of rays, most shapes for H(0) will lead to decreasing impre-
cision for increasing n. For example, models with IΠ(0) = n(0) × [y(0), y(0)] are

represented by a line segment H(0) = η
(0)
0 × [η(0)

1
, η

(0)
1 ], and imprecision decreases

because a line segment of fixed size will cast a smaller shadow when further to
the right, as illustrated in Fig. 1.

For prior-data conflict sensitivity, we need sets H(0) that cover a range of η0
values, just like sets IΠ(0) with a range of n(0) values are necessary to ensure
this property. A set H(0) that is elongated along a certain ray of constant expec-
tation will behave similar to a rectangular IΠ(0). When shifted along its ray
of constant expectation, imprecision will be reduced as the shadow of H(0) will
become smaller just as described above for line segments. When H(0) is instead
shifted away from its ray of constant expectation, imprecision will increase, as a
prolonged shape that is now turned away from its ray will cast a larger shadow.



158 G. Walter and F.P.A. Coolen

−2 0 2 4 6 8

−4
−2

0
2

4

η0

η 1

−2 0 2 4 6 8

−4
−2

0
2

4

η0

η 1

Fig. 1. Prior parameter set H(0) = η
(0)
0 × [η

(0)
1 , η

(0)
1 ] and respective posterior sets H(n)

for s/n = 0.5 (left) and s/n = 0.9 (right). Bounds for the domain H are in black, with
rays of constant expectation for yc = {0.1, 0.2, . . . , 0.9} in grey. Note that all sets have
the same size, imprecision decreasing only through their position on the η0 axis.

4 The Boatshape

The shape for H(0) that we suggest to obtain both prior-data conflict sensitiv-
ity and reduced imprecision in case of strong prior-data agreement looks like
a boat with a transom stern (see Fig. 2 below). The curvature along its length
in the direction of its constant rays of expectation leads to smaller Δy(IΠ(n))
as compared to a rectangular IΠ(0) with the same prior range Δy(IΠ(0)), see
Fig. 3. The strong prior-data agreement effect is realized through the touch-
points determining y

(n)
H and y

(n)
H moving along the shape during updating, see

Sect. 4.2. This is advantageous since the spread of the Beta posteriors is deter-
mined by η0 = n(0) − 2. In case of strong prior-data agreement, variances in
the ‘critical’ distributions at the boundary of the posterior expectation interval
[y(n)

H , y
(n)
H ] will thus be lower leading to reduced imprecision.

4.1 Basic Definition

We suggest an exponential function for the contours of a boat-shaped parameter
set H(0). We first restrict discussion on prior sets that are symmetric to the η0
axis, i.e., centered around yc = 0.5. Sets H(0) with central ray yc �= 0.5 can be
obtained by rotating the set around (η0, η1) = (−2, 0) such that yc forms the
axis of symmetry. Results for sets with yc = 0.5 generalize straightforwardly to
the case yc �= 0.5; an example is given in Fig. 6. The lower and the upper contour
functions are defined as

c(0)(η0) = −a
(
1 − e−b(η0−η

0
)
)
, c(0)(η0) = a

(
1 − e−b(η0−η

0
)
)
, (7)

where a > 0 and b > 0 are parameters controlling the shape of H(0), which is
defined as

H(0) = {(η0, η1) : η
0

≤ η0 ≤ η0, c
(0)(η0) ≤ η1 ≤ c(0)(η0)} . (8)
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A prior boatshape set, together with corresponding posterior sets for different
observations, is shown in Fig. 2. The same prior and posterior sets in terms of
(n(0), y(0)) are depicted in Fig. 3.

0 5 10 15 20

−5
0

5
10

η0

η 1

s = 8, n = 8

s = 4, n = 8 s = 8, n = 16

s = 16, n = 16

Fig. 2. Boatshape prior and posterior sets for data in accordance and in conflict with
the prior set. The parameters for the prior set are η

0
= 1, η0 = 6, a = 1.5, and b = 0.9.

While the posterior sets for s
n

= 0.5 move along the ray for yc = 0.5, the posterior sets
for s

n
= 1 are shifted away from the ray for yc = 0.5, resulting in increased posterior

imprecision. Note that lower and upper touchpoints are in the middle of the contour
for the prior set and the posterior sets resulting for data s

n
= 0.5, while the lower

touchpoint is at the end for the posterior sets for data s
n

= 1.

The parameter a determines the half-width of the set; the size in the η1
dimension would be 2a if η0 → ∞. Parameter b determines the ‘bulkyness’ of
the shape. Together with η

0
, a and b determine [y(0)

H , y
(0)
H ]. Decreasing η

0
, or

increasing a or b, leads to a wider [y(0)
H , y

(0)
H ]. η0 plays only a role in determining

when the ‘unhappy learning’ phase starts (see end of Sect. 4.3).
We see from the prior set in Fig. 3 that the lower and the upper bound for

y(0) is attained in the middle of the set contour. To determine y
(0)
H and y

(0)
H , we

need to find the corresponding touchpoints ηl
0
(0) and ηu

0
(0) by identifying the rays

of constant expectation that are tangents to H(0) and then solving for η0. Since
H(0) is symmetric to the η0 axis, we have ηl

0
(0) = ηu

0
(0) and we will determine

ηu
0
(0) by considering the upper contour tangent. We get

1 + b(ηu
0
(0) + 2) != eb(ηu

0
(0)−η

0
) . (9)

This equation only has one solution for ηu
0
(0) > η

0
that is, however, not available

in closed form. Generally, the nearer ηu
0
(0) is to η

0
, the larger d

dη0
c(0)(ηu

0
(0)), such

that y
(0)
H is further away from 1

2 .
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Fig. 3. Boatshape prior and posterior sets from Fig. 2 in the (n(0), y(0)) parametriza-
tion. The rectangular prior set with the same range for y(0) as the prior boatshape set
and the corresponding posterior sets are drawn with dashed lines. Unions of symmetric
credibility intervals (γ = 0.5) are drawn as vertical bars. Note that all posterior boat-
shape sets have shorter y(n) ranges than their corresponding posterior rectangle sets,
and boatshape credibility regions are especially short for posterior sets where s

n
= 0.5.

4.2 Strong Prior-Data Agreement Property

Sets (8) lead to reduced imprecision in inferences when data are strongly sup-
porting prior information as the touchpoint moves further to the right in that
case. The basic shape is symmetric around the η0 axis (H(0) has central ray
yc = 0.5), and updating with strong-agreement data s/n = 0.5 means that H(0)

is shifted along the η0 axis by n, such that also H(n) is symmetric around the
η0 axis. We thus need to consider only one touchpoint. Movement to the right
means that the upper posterior touchpoint ηu

0
(n) is larger than the updated prior

touchpoint ηu
0
(0), so we need to show that ηu

0
(n) > ηu

0
(0) + n. The upper contour

for the posterior boatshape, updated with s = n
2 , is c(0) from (7) shifted to

the right by n, i.e., c(n)(η0) = a − ae−b(η0−n−η
0
). The equation to identify the

posterior upper touchpoint is

1 + b(ηu
0
(n) + 2) != eb(ηu

0
(n)−n−η

0
) . (10)

Comparing (10) to (9), both have a linear function with slope b and intercept
1 + 2b on the left hand side. The exponential function on the right hand side
of (10) is the function on the right hand side of (9) shifted to the right by n.
We can picture this situation as in Fig. 4: ηu

0
(0) is identified by the intersection

of the linear function with the left, non-shifted exponential, whereas ηu
0
(n) is at

the intersection of the linear function with the right, shifted exponential. Since
b > 0, we have indeed ηu

0
(n) > ηu

0
(0) + n.
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4.3 Touchpoints for Arbitrary Updates

Let us now consider the update of the basic boatshape (8) in the general case
s �= n

2 , investigating the effect that different values of s for fixed n have on ηl
0
(n)

and ηu
0
(n)2. For s �= n

2 , H(n) is not symmetric to the η0 axis, and we have to
derive the touchpoints ηl

0
(n) and ηu

0
(n) separately. The upper and lower contours

for H(n) are

c(n)(η0) = s − n

2
+ a − ae−b(η0−n−η

0
) , c(n)(η0) = s − n

2
− a + ae−b(η0−n−η

0
) ,

leading to

a

s − n
2 + a

(
1 + b(ηu

0
(n) + 2)

) != eb(ηu
0
(n)−n−η

0
) , (11)

a
n
2 − s + a

(
1 + b(ηl

0
(n) + 2)

) != eb(ηl
0
(n)−n−η

0
) . (12)

We see that the graph from Fig. 4 holds here as well, except that the linear
function on the left hand side of (11) and (12) is changed in slope and intercept
by a factor. (Equivalently, we can consider it to be rotated around the root
−2− 1

b .) For s = n
2 , this factor is 1 for both (11) and (12), reducing to (10). Due

to symmetry of H(0) we consider, without loss of generality, only the case s > n
2 .

The factor a
s−n

2 +a in (11) is smaller than 1 and decreasing in s to a
n
2 +a for

s = n. As the linear function’s slope will be less steep (the intercept is lowered
as well), the intersection with the exponential function moves to the left, i.e.
ηu
0
(n)(s) < ηu

0
(n)(n

2 ) for n
2 < s < n. This means that y

(n)
H (s) > y

(n)
H (n

2 ). However,
ηu
0
(n)(s) can decrease only to η

0
+ n: When ηu

0
(n)(s) reaches the left end of H(n)

2 We treat s as a a real-value in [0, n] for convenience of our discussions; this does not
affect the conclusions.



162 G. Walter and F.P.A. Coolen

at η
0

+ n, the gradual increase of y
(n)
H through the changing tangent slope is

replaced by a different change mechanism, where increase of y
(n)
H is solely due

to the shift of H(n) in the η1 coordinate. Due to (4), y
(n)
H is then linear in s.

In (12), the factor to the linear function is a
n
2 −s+a . Here, we have to distin-

guish the two cases n
2 ≤ s < n

2 + a and s ≥ n
2 + a. In the first case, the factor is

larger than 1 and increasing in s so the intersection of the linear function with the
exponential function will move to the right, such that ηl

0
(n)(s) becomes larger,

and y
(n)
H increases. In the second case, the factor is undefined (for s = n

2 + a)
or negative (for s > n

2 + a) and there is no intersection of the linear function
with the exponential function for any η0 > η

0
+ n. So for s ≥ n

2 + a, the whole
set is above the η0 axis, and the touchpoint must thus be at η0 + n. Actually,
ηl
0
(n)(s) = η0 + n already for some n

2 ≤ s < n
2 + a, when the intersection point

reaches η0 + n. At this point, gradual increase of y
(n)
H resulting from the move-

ment of ηl
0
(n)(s) along the set towards the right is replaced by a linear increase

in s. Again, this is because the η1 coordinate is incremented according to (6),
and from (4) we see that y(n) is linear in η1.

4.4 Posterior Imprecision

We now summarize the results from Sect. 4.3 and give two numerical examples.
For s > n

2 , both y(n) and y(n) will at first increase gradually with s, as ηu
0
(n)

moves to the left, and ηl
0
(n) moves to the right. We will call such updating of

the prior parameter set, where both lower and upper posterior touchpoints are
in the middle of the set, happy learning. At some su, ηu

0
(n) will reach η

0
+n, and

at some sl, ηl
0
(n) will reach η0 + n. Whether sl < su or vice versa depends on

the choice of parameters η
0
, η0, a and b. When s is larger than either sl or su,

we have unhappy learning, where data s is very much out of line with our prior
expectations as expressed by H(0). Ultimately, when s > su and s > sl, both y

(n)
H

and y
(n)
H will increase linearly in s, but with different slopes. y

(n)
H will increase

with slope 1
η
0
+n+2 , whereas y

(n)
H will increase with the lower slope 1

η0+n+2 .
These findings are illustrated in Fig. 5 for a boatshape set with yc = 0.5,

η
0

= −1, η0 = 20, a = 1 and b = 0.4. These are compared to a rectangular set
and two line segment sets with the same y(0) range. Here we see a linear increase
of y

(n)
H for s < 4 and a superlinear increase for s ≥ 4. We have happy learning for

s ∈ [4, 6], and unhappy learning for s �= [4, 6]. For s ≈ 5, Δy for the boatshape
set is about half of Δy for the rectangle set. The line segment sets lead to very
short y(n) ranges, but do not reflect prior-data conflict.

Figure 6 depicts a numerical example for the case yc = 0.75. Notice that the
rotated boatshape parameter set is not symmetric in the (n(0), y(0)) space. We
see that [y(n)

H , y
(n)
H ] is nearly as short as [y(n), y(n)] for the line segments sets

when s ≈ 0.75, but that unlike those, the boatshape offers prior-data conflict
sensitivity. Interestingly, all four sets lead to a similar y(n) for s < 5.
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5 Concluding Remarks

For application of the novel method presented in this paper, elicitation of the
boatshape set parameters must be considered, pre-posterior analysis seems useful
for this. It will be interesting to investigate whether another way of defining a set
aligned to a certain ray could be useful, namely by shifting each part of H(0) from
(8) in the η1 dimension onto the desired ray (similar to turning a right prism into
an oblique prism). Alternatives to the functional form of the contour functions
(7) could also be worth of study. The method was presented here for the case of
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binary data, it can be easily generalized to cover all sample distributions that
belong to the exponential family, since for those a conjugate prior in the (η0, η1)
parametrization can be constructed having a purely data-dependent translation
as update step [3, p. 56].

In the parameter space described in Sect. 3, updating the prior set amounts
to a purely data-dependent translation, leaving the set shape unchanged.
As shown, this enables flexible modeling of prior information and tailored pos-
terior inference properties, while remaining within the generalized Bayesian par-
adigm, hence opening a wide field of research on prior set shapes for specific
inference objectives.
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dinated Advanced Maintenance and Logistics Planning for the Process Industries”
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Abstract. Accelerated life testing provides an interesting challenge for
quantification of the uncertainties involved, in particular due to the
required linking of items’ failure times, or failure time distributions, at
different stress levels. This paper provides an initial exploration of the
use of statistical methods based on imprecise probabilities for accelerated
life testing, with explicit emphasis on prediction of a future observation
at the actual stress level of interest. We apply nonparametric predictive
inference at that stress level, in combination with an estimated paramet-
ric form for the function linking different levels. For the latter aspect
imprecision is introduced, leading to observations at stress levels other
than the actual level of interest, to be transformed to intervals at the
latter level. We believe that this is the first attempt to apply impre-
cise probability methods to accelerated life testing scenarios, and argue
in favour of doing so. The paper concludes with a discussion of related
research topics.

Keywords: Accelerated life testing · Imprecise probability · Nonpara-
metric predictive inference · Power-weibull model · Right-censored data ·
Survival functions

1 Introduction

Testing of highly reliable components is often complicated if, under normal con-
ditions, failures tend to occur only after a very long time, e.g. many years. This
makes it impossible to infer aspects of the components’ failure time distribution
at a relatively early stage, for example for comparison of components from dif-
ferent manufacturers. An effective way to still enable data collection for such
inferences is provided by so-called Accelerated Life Testing (ALT), which is gen-
eral terminology for a range of test scenarios, which have in common that the
components are tested under conditions that differ from the normal conditions.
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Under the changed conditions, the failure time distribution will change corre-
sponding to reduction of failure times, for example the stress level or temperature
at which the components function may be increased for the tests. There is a wide
variety of test designs, including constant stress testing, step stress testing and
progressive stress testing. These test methods and a variety of statistical methods
that can be applied for such methods are in detail described by Nelson [15].

Constant stress testing is the most widely used ALT design: the components
are divided into several groups and all components in a group are tested at a
constant stress level. In this paper we only consider this relatively straightfor-
ward form of ALT. The main challenge for statistical methods for ALT lies in
the obvious fact that information from a test with increased stress levels must
be transformed to information that can be considered as representative for infor-
mation about component failure times under the normal conditions. Due to the
enormous practical relevance of ALT and the obvious challenges for statistical
inference based on ALT data, many statistical models and methods for ALT
data have been presented [15]. A standard model for failure time data resulting
from ALT is the power-Weibull model, which we use as the first stage in the new
approach which we explore in this paper.

The power-Weibull model consists of a Weibull model for failure times at
stress level i = 0, 1, 2, . . . , k, where level i = 0 is the normal level and levels
i = 1, 2, . . . , k represent k increased stress levels. These Weibull distributions
for different stress levels are assumed to have the same shape parameter β, but
different scale parameters αi. Assuming that the stress level is quantified by a
single positive measurement Vi for stress level i, which is an increasing function
of the stress level i (one can e.g. think of voltage), the different αi values are
assumed to satisfy the equation

αi = α

(
V0

Vi

)p

such that α0 = α is the Weibull scale parameter at the normal stress level
and p is the parameter of the power-law which models the links of the different
Weibull distributions at different stress levels. For clarity, in this paper we use
the parametrization for the Weibull distribution with shape parameter β and
scale parameter α corresponding to the survival function

P (T > t) = exp

{

−
(

t

α

)β
}

A useful alternative way to understand this power-law link between the differ-
ent stress levels is provided by the fact that, under this model assumption, an
observation ti at stress level i, so subject to stress Vi, can be interpreted as an
observation

ti
(

Vi

V0

)p



Imprecise Inference for Accelerated Life Testing 167

at stress level 0. As the objective of ALT is, obviously, to have a reduction of
failure times at higher stress levels, it is necessary to assume that p > 0 with
p > 1 most likely in practical applications. Given failure time data, which can
contain right-censored data under the usual assumption that the cause of cen-
soring holds no information about the remaining future time to failure of a right-
censored observation, the parameters α, β and p of this model can be estimated
by maximising the likelihood function, which requires a quite straightforward
numerical optimisation method; computation in this paper was performed with
the statistical software R.

Section 2 of this paper provides a short introduction to nonparametric predic-
tive inference (NPI), in particular it provides the NPI lower and upper survival
functions for a future observation based on failure time data including right-
censored observations, these are used in the new statistical method for ALT
data which is presented in Sect. 3. This method consists of two stages. In the
first stage, the power-Weibull model is assumed for the observations at all stress
levels simultaneously, including the parameter p representing the link between
different stress levels. Based on all the data, the parameters in this model are
estimated using maximum likelihood estimation. In the second stage, only the
point estimate for the link parameter p is used to transform data from the dif-
ferent stress levels to the normal level. Then NPI is used with these combined
data to provide lower and upper survival functions for the next observation at
the normal stress level. In Sect. 4 this approach is extended by including impre-
cision in the link parameter, which leads to observations at levels other than
the normal stress to be transformed to interval-valued observations at the nor-
mal stress level, with the width of these intervals increasing as function of the
difference between the corresponding stress level and the normal stress level.
These interval-valued observations are then used in the NPI approach to lead
to new lower and upper survival functions with increased imprecision. This can
be interpreted as a straightforward method to provide robust predictive infer-
ences based on ALT data. This is the first investigation towards developing NPI
methods for ALT data and the proposed method is rather ad hoc, but the idea
to use imprecision as a safeguard against lack of detailed knowledge in ALT set-
tings seems attractive. Section 5 provides a brief discussion of related research
challenges, including performance evaluation of the method proposed here and
some suggestions for different imprecise probabilistic methods for ALT data.

2 Nonparametric Predictive Inference

Nonparametric predictive inference (NPI) is a statistical method based on Hill’s
assumption A(n) (Hill [9]), which gives a direct conditional probability for a
future observable random quantity, given observed values of related random
quantities [1,3,4,16]. Let Y1, . . . , Yn, Yn+1 be positive, continuous and exchange-
able random quantities representing event times [8]. Suppose that the values
of Y1, . . . , Yn are observed and the corresponding ordered observed values are
denoted by 0 < y1 < . . . < yn < ∞, for ease of notation let y0 = 0 and
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yn+1 = ∞. For ease of presentation, it is assumed that no ties occur among the
observed values. It is quite straightforward to deal with tied observations in this
setting, by assuming that tied observations differ by small amounts which tend
to zero. For the random quantity Yn+1 representing a future observation, based
on n observations, the assumption A(n) [9] is P (Yn+1 ∈ (yi−1, yi)) = 1/(n + 1)
for i = 1, . . . , n + 1. A(n) does not assume anything else, and can be interpreted
as a post-data assumption related to exchangeability [8]. Inferences based on
A(n) are predictive and nonparametric, and can be considered suitable if there
is hardly any knowledge about the random quantity of interest, other than the
n observations, or if one does not want to use such information, e.g. to study
effects of additional assumptions underlying other statistical methods. A(n) is
not sufficient to derive precise probabilities for many events of interest, but it
provides bounds for probabilities via the ‘fundamental theorem of probability’
[8], which are lower and upper probabilities in the theory of imprecise probability
with strong consistency properties [1,2].

In reliability analyses, events of interest are often failures of units, but such
data are often affected by right-censoring, where for a unit it is only known
that it has not yet failed by a specific time. Coolen and Yan [7] presented a
generalization of A(n), called ’right-censoring A(n)’, or rc-A(n), which is suitable
for NPI with right-censored data and uses the additional assumption that, at
the moment of censoring, the residual time to failure of a right-censored unit is
exchangeable with the residual times to failure of all other units that have not
yet failed or been censored.

Suppose that there are n observations consisting of u failure times, x1 < x2 <
. . . < xu, and n−u right-censored observations, c1 < c2 < . . . < cn−u. Let x0 = 0
and xu+1 = ∞. Suppose further that there are si right-censored observations in
the interval (xi, xi+1), denoted by ci

1 < ci
2 < . . . < ci

si
, so

∑u
i=0 si = n − u. We

introduce notation di
j for any observation, either a failure or right-censoring time,

with di
0 = xi and di

j = ci
j for j = 1, . . . , si and i = 0, 1, . . . , u. Let ñcr and ñdi

j

be the number of units in the risk set just prior to time cr and di
j , respectively,

with the definition ñ0 = n + 1 for ease of notation. Let di
si+1 = di+1

0 = xi+1 for
i = 0, 1, . . . , u − 1, and note that the product taken over an empty set is defined
as equal to one. Based on the assumption rc-A(n) [7], the NPI lower and upper
survival functions for the failure time of the next unit, SXn+1

(t) and SXn+1(t),
respectively, are as follows [13,14]. For t ∈ [di

j , d
i
j+1) with i = 0, 1, . . . , u and

j = 0, 1, . . . , si,

SXn+1
(t) =

1
n + 1

ñdi
j

∏

{r:cr<di
j}

ñcr + 1
ñcr

(1)

and for t ∈ [xi, xi+1) with i = 0, 1, . . . , u,

SXn+1(t) =
1

n + 1
ñxi

∏

{r:cr<xi}

ñcr + 1
ñcr

(2)

These NPI lower and upper survival functions are step-functions, presented in
product forms which lead to relatively straightforward computation. It should be
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remarked that the Kaplan-Meier (KM) estimate [10] based on such data, which
is the classical nonparametric maximum likelihood estimate, always lies between
the NPI lower and upper survival functions [7]. Whilst the KM estimate has
also been used for accelerated testing data [15], it should be emphasized that its
explicit aim is estimation of an underlying population distribution, whilst our
NPI approach is explicitly predictive and considers events involving one future
observation at the standard stress level.

The assumption rc-A(n) results in lower and upper survival functions, which
fit well into the theory of imprecise probability [2]. The imprecision in these
inferences therefore results from the limited inferential assumption made, and
it reflects the amount of information in the form of observations well. Note,
for example, that the upper survival function only decreases at an observed
failure time, while the lower survival function decreases both at an observed
failure time and, by a smaller amount, at a right-censored observation. This
is in line with a useful, albeit somewhat informal interpretation of imprecise
probabilities, namely that a lower probability reflects the information in favour
of the event of interest, and the difference between 1 and the corresponding
upper probability reflects the information against the event of interest. So the
decrease of both the NPI lower and upper survival function at an observed failure
time reflects a decrease of information supporting survival past this time, while
a right-censored observation reduces the information in favour of survival (hence
the slight decrease of the lower survival function) but does not provide evidence
against survival (so the upper survival function is not affected).

3 NPI with Estimated Link

The new statistical method for ALT data, which we propose in this paper, con-
sists of two stages. In the first stage, the basic power-Weibull model is assumed
and its parameters are estimated using maximum likelihood estimation. Other
models can be used, as well as other estimation methods. While this stage results
in point estimates for all parameters α, β and p, the next stage only uses the
estimate for p, which we denote by p̂. In the second stage, we transform all obser-
vations at stress levels other than the normal level, so V1, . . . , Vk, to ‘equivalent’
observations at the normal level, using the estimate p̂ within the transformation
explained in Sect. 1, leading to

ti
(

Vi

V0

)p̂

Right-censored observations are transformed similarly, where their status as
right-censored observation is maintained. Now, we apply NPI with all these
transformed data as well as the original data at the normal level, as explained in
Sect. 2. We illustrate the results of this approach in an example using data from
the literature; this example will also be used for an extension of this method in
Sect. 4.
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Example. Lawless [11, p. 341] presents the ALT data set below in an exercise
with further reference to an unpublished Master’s thesis. The data result from an
experiment in which specimens of solid epoxy electrical insulation were studied
in an accelerated voltage life test. Twenty specimens are tested at each of three
voltage levels, the normal level V0 = 52.5 and increased levels V1 = 55.0 and V2 =
57.5 kilovolts. Most of the sixty specimens actually failed during the experiments,
but a few did not, these provide right-censored observations. The failure times,
in minutes, are given in Table 1, where a right-censored observation is indicated
with a superscript asterisk.

Table 1. Failure times at three voltage levels.

Voltage Data

V0 = 52.5 245, 246, 350, 550, 600, 740, 745, 1010, 1190, 1225,

1390, 1458, 1480, 1690, 1805, 2450, 3000, 4690, 6095, 6200∗

V1 = 55.0 114, 132, 144, 162, 222, 258, 300, 312, 396, 444,

498, 520, 745, 772, 1240, 1266, 1464, 1740∗, 2440∗, 2600∗

V2 = 57.5 168, 174, 234, 252, 288, 288, 294, 348, 390, 408,

444, 510, 528, 546, 558, 690, 696, 714, 900∗, 1000∗

Maximum likelihood estimation for the power-Weibull model, based on these
data, leads to parameter estimates β̂ = 1.184, α̂ = 2038.03 and p̂ = 15.104,
where it should be remarked that this numerical optimisation appears to be
sensitive to the starting point of the algorithm, we noticed some slight variation
in the resulting estimates for different starting points.

In the second stage of our procedure, we only use the estimate p̂ to transform
the data, as explained above. This leads to the values in Table 2, still listed with
their corresponding stress level. Of course, the data at the normal stress level
V0 = 52.5 have not been transformed, but are also included in the table for ease
of comparison with the transformed data from the other stress levels.

Table 2. Failure times transformed to normal voltage level.

Voltage Data

V0 = 52.5 245, 246, 350, 550, 600, 740, 745, 1010, 1190, 1225,

1390, 1458, 1480, 1690, 1805, 2450, 3000, 4690, 6095, 6200∗

V1 = 55.0 230.2, 266.5, 290.8, 327.1, 448.2, 520.9, 605.7, 630.0, 799.6, 896.5,

1005.5, 1049.9, 1504.2, 1558.7, 2503.7, 2556.2, 2956.0, 3513.2∗, 4926.6∗, 5249.6∗

V2 = 57.5 663.8, 687.5, 924.6, 995.7, 1138.0, 1138.0, 1161.7, 1375.1, 1541.0, 1612.2,

1754.4, 2015.2, 2086.3, 2157.4, 2204.9, 2726.4, 2750.1, 2821.3, 3556.2∗, 3951.4∗
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Using these 60 failure observations, either originally observed at the normal
voltage level or transformed to it, the NPI approach as described in Sect. 2
provides predictive lower and upper survival functions, which must be interpreted
as applying for a further specimen, exchangeable with those in the test, subjected
to the normal stress level V0 = 52.5. These lower and upper survival functions
are presented in Fig. 1.
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Fig. 1. Lower and upper survival functions with p̂ = 15.104

4 Imprecision in Link Estimate

The method presented in Sect. 3 is, as will be clear, rather ad-hoc. There are
many aspects which will make us doubt the validity of the predictive inference.
These include doubt about the model used at stage 1 and, related to this, the fact
that the estimation of the Weibull parameters influences the estimate of the para-
meter p̂ but is further neglected at stage 2. As mentioned in the example, there
may also be some numerical instability in the estimation computations. One
could rebute all such issues by suggesting more detailed modelling, but particu-
larly for ALT data there often remains an element of model-based extrapolation
that is difficult, sometimes even impossible, to justify on the basis of available
data. Note that the example considered in this paper does have observations at
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the normal stress level, in other applications this may not be the case or they
may only consist of right-censored observations.

We propose a different route to more detailed modelling, although if such
modelling can be done on the basis of detailed knowledge of the scenario under
study then, of course, this is strongly recommended; it can still be combined
by the overall ideas we are presenting here. In an attempt to develop sound
predictive inference for ALT data, we suggest to adapt the two stage approach
presented in Sect. 3 by replacing the point estimate for p by an interval [p, p]. The
use of this interval in the transformation of observations at stress level Vi to the
normal level V0 leads to such observations becoming interval-valued observations
at the normal stress level, which we believe is an attractive way for showing the
effect of imprecision in line with the absence of perfect information about the
link between the different stress levels. Furthermore, these intervals representing
observations at other levels will be larger for larger values of i, so an original
observation from a stress level that is further away from the normal level is
transformed to a wider interval at the normal level than an original observation
at a level nearer to the normal level. We believe that, in general, this is also an
attractive property of such imprecise inferences for ALT data.

Due to the monotonicity of the transformed data in the power-Weibull model,
and the monotonicity of the NPI lower and upper survival functions with regard
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Fig. 2. Lower and upper survival functions with [p, p] = [14.5, 15.5]
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Fig. 3. Lower and upper survival functions with [p, p] = [13.0, 17.0]

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

Su
rv

iv
al

 fu
nc

tio
n Sp=10 Sp=20

Fig. 4. Lower and upper survival functions with [p, p] = [10.0, 20.0]
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to the data on which they are based, this interval [p, p] straightforwardly leads,
in the second stage of our method, to the NPI lower survival function based on
the transformed data using p, and the NPI upper survival function based on
the transformed data using p. Hence, the imprecision in this inferential method,
that is the difference between the corresponding NPI upper and lower survival
functions, will increase when the width of the interval [p, p] increases.

Example (ctd). For the example in Sect. 3, the point estimate for p was equal
to p̂ = 15.104. Replacing this by an interval [p, p] = [14.5, 15.5] leads to the lower
and upper survival functions presented in Fig. 2. Increasing the imprecision to
[p, p] = [13.0, 17.0] leads to the lower and upper survival functions presented in
Fig. 3, while the substantial further increase in imprecision to [p, p] = [10.0, 20.0]
leads to the lower and upper survival functions in Fig. 4.

These figures show the effect of increased imprecision for the parameter p,
where even for very substantial imprecision the effect on the lower and upper
survival functions is still quite modest. Of course, this depends on the ratios
Vi/V0 used, which are close to one in this example, but nevertheless it suggests
that some concerns, e.g. about some sensitivity to the starting point of the
numerical optimisation methods used to derive p̂, are not necessary.

5 Discussion

This paper has provided an initial presentation of the possibilities provided by
theory of imprecise probabilities [2] for ALT applications. The proposed method
combines transformation of failure times at increased stress levels to equivalent
observations at the normal stress level, based on an assumed full parametric
model, with nonparametric predictive inference based on all the combined data
at the normal stress level. As shown, it is quite straightforward to build extra
robustness into the inferences by taking an interval of values for the link parame-
ter p instead of a point estimater. One could of course use a confidence interval
for this, but we avoided that as the ‘confidence’ would only be meaningful within
the full model, and it would likely lead to far more imprecision than is required
for good quality prediction. Instead our overall aim, and the topic of ongoing
research, is to get insight into appropriate choice of the interval for the para-
meter p in order to get predictive inference with good frequentist properties.
This is not trivial, as very wide intervals will lead to lower and upper survival
functions that are very imprecise, hence will have good frequentist properties for
prediction but will be quite meaningless. There has not yet been much atten-
tion to performance evaluation for imprecise predictive inference methods in the
literature.

There are many unknowns in ALT, with aspects related to the transformation
of data from one level to another, or just the simultaneous modelling of data at
different levels, often involving modelling assumptions that are difficult or even
impossible to justify by observable data. This makes statistical methods using
imprecise probabilities attractive for applications in ALT, in particular where
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these can be kept relatively simple compared to the alternative of using very
detailed models. We were slightly surprised that, upon investigation, we did not
yet find other contributions of imprecise methods for ALT data, while there
is a substantial literature on imprecise methods for other reliability problems
[5,6,17] and clearly there are many related research challenges and opportunities
for applications ahead. It will also be interesting to consider imprecise statistical
methods for ALT data using a different way to deal with the transformation of
data from different stress levels. One such an alternative approach that may be of
interest for combination with NPI is the linking of data from different stress levels
through matching of quantiles [12], which can however only be applied if there
are quite substantial numbers of observations at all the stress levels. Another
possible approach is by assuming a parametric link function but no further model
assumption, and optimising the parameters of the link function through optimal
mixing of all the (transformed) data at the stress level of interest.

This initial exploration into development of an NPI-based approach for ALT
data will be followed by a detailed simulation study on the predictive perfor-
mance of our method, which will also provide guidance on suitable levels of
imprecision in the parameter linking the data from different stress levels, in par-
ticular related to misspecification of the model. Hence, the main justification of
the approach should come from the predictive performance, where guidance on
suitable levels of imprecision for providing robustness in model specification will
be important.
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Abstract. A brief survey of mathematical gnostics is presented. Math-
ematical gnostics is a tool of advanced data analysis, consisting of

1. theory of individual uncertain data and small samples,
2. algorithms to implement the theory,
3. applications of the algorithms.

The axioms and definitions of the theory are inspired by the Laws of
Nature dealt with by physics and the investigation of data uncertainty
follows the methods of analysis of physical processes. The first axiom is
a reformulation of the measurement theory which mathematically for-
malizes the empirical cognitive activity of physics. This axiom enables
the curvature of the data space to be revealed and quantified. The nat-
ural affinity between uncertain data and relativistic mechanics is also
shown. Probability, informational entropy and information of individual
uncertain data item are inferred from non-statistical Clausius’ thermo-
dynamical entropy. The quantitative cognitive activity is modeled as a
closed cycle of quantification and estimation, which is proved to be irre-
versible and maximizes the result’s information. A proper estimation of
the space’s curvature ensure a reliable robustness of the algorithms suc-
cessfully proven in many applications. Gnostic formulae of data weights
and errors, probability and information, which has been proved as valid
for small samples of strongly uncertain data converge to statistical ones
when uncertainty becomes weak. From this point of view, the mathemat-
ical gnostics can be considered as an extension of statistics useful under
heavy-duty conditions.

1 A Gnostic System

The notion of the gnostic system has been applied in [1] to a general model of
recognition characterized as the pairing of a real object and of a subject, its
observer. The observation activity object → subject is followed by the feedback
subject → object the purpose of which is using the evaluated information in
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manipulating, exploiting or control the object. In the special case of quantitative
recognition , the observation represents the mapping of a real quantity onto
numbers called quantification, the feed-back being the estimation of the true
quantity’s value. The necessity of quantification originated with the development
of the market and the measuring became the task for physics. Mathematical
modeling of counting and measuring – the measurement theory [2] – considers
the quantification as a consistent mapping of structures of empiric quantities
(sets endowed with some relations and operations) onto numeric structures. This
theory deals with precise quantification only, leaving the treatment of imprecise
quantification to mathematical statistics. Such a quantification process can be
named ideal quantification.

2 Axiom of Real Quantification

As known from measurement theory, to ensure consistency of the ideal quan-
tification, the relations between quantities and the operations on them must
be subject to several logical conditions. This requirement was substituted in [3]
by the idea of ideal quantification as the commutative (Abelian) group1 If the
real quantitative observation process would actually be the Abelian group, the
estimation would be simply the inverse of this group. Unfortunately, real obser-
vations are disturbed by uncertain impacts. But these impacts are as real as the
observed quantity. Moreover, their nature is the same: electrical measurements
are subject to electrical disturbance. The uncertain impacts can thus be con-
sidered as countable or measurable sets and endowed with the same operation
as the true observed quantities. Real quantification can be therefore modeled as
a pair of two Abelian groups, one of the true and one of disturbing quantities.
Considering one single quantitative observation, one actually obtains one single
real number of the form of

A = A0 + SΦ (1)

with the true real value A0, real uncertain value Φ and a positive dimensionless
scale parameter S. Both A0 and Φ are numerical images of elements of empiri-
cal structures forming Abelian groups. The multiplicative form of the additive
relation 1 is obtained by exponentiation as

Z = Z0 exp(SΦ) (2)

Quantities A are real numbers and they can have both finite and infinite values
when considered as theoretical objects. However, as numeric images of actual
quantities, they have values within some finite bounds. This is why the the-
ory involves regular transformations of the actual finite data domains onto the
infinite domain to introduce and analyze the corresponding functions of data.

1 Abel group is a set endowed with a binary operation satisfying the conditions of
closedness, associativity, commutativity and existence of an identity element and of
the inverse element to each element.
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3 Geometry of Real Quantification, Quantifying Error
and Weight

The observed data value Z (2) is represented by a point in the bi-dimensional
plane (Z0, SΦ). Observation is a discrete event, however let us consider the vir-
tual path of a continuous variable z from the true value Z0 to the observed
value Z under the impact of the uncertainty ϕ changing from the zero start-
ing value to an unknown value Φ. The length of this path is the observation
error. A non-trivial question arises, which of many existing geometries is to be
applied to quantify the error? Using the identity exp(α) = cosh(α) + sinh(α)
and introducing hyperbolic Cartesian coordinates

xQ = Z0 cosh(2SΦ) yQ = Z0 sinh(2SΦ) (3)

one comes to the relation
Z0 =

√
(x2

Q − y2
Q) (4)

The plane of observed data is thus endowed with the Minkowskian metric and the
path of virtual movement is the Minkowskian circle. The number Z0 is a circle’s
radius and invariant of the movement. Multiplier 2 of Minkowskian angle SΦ
results from accepting the angular distance between Φ and −Φ (the mirrored
point’s angle) as the angular error. Relative coordinates

wQ = cosh(2SΦ) hQ = sinh(2SΦ) (5)

called quantifying weight and quantifying irrelevance have important interpre-
tation in quantification of the uncertainty as data error weight and data error
value. These names are motivated by the relation

sinh(2SΦ) =
∫ 2SΦ

0

cosh(x)d(x) (6)

where wQ determines the weight of the differential data error d(2SΦ) thus playing
the role of metrical tensor in the sense of Riemannian geometry.

4 Geometry of Estimation, Estimating Error and Weight

An observer aims to use the best available way of measuring for quantification,
but he must accept the observed value “as it is” without the chance of choosing
the virtual quantification path determined by Nature. However, he knows from
geometry, that the length of the quantifying path measured by Minkowskian
geometry is an extremal : its length between two points exceeds the lengths of
each of the other path between the same points. This means that the uncertainty
SΦ makes the observed value as bad as possible by maximizing its distance from
the true value. The observer has a chance for his best “countermove” in his
game with Nature by choosing the best virtual path of estimation from the
known observed value Z back to the unknown true value Z0 thus minimizing the
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resulting error. As shown in gnostic theory [4], such a path exists and its points
have coordinates

xE = Z0 cos(2Sϕ) yE = Z0 sin(2Sϕ) (7)

where the relative coordinates

wE = cos(2Sϕ) hE = sin(2Sϕ) (8)

are estimating weight and estimating irrelevance, for which an analogue of the 6
exists. Thus this path has the form of Euclidean circle. It means that the observa-
tion plane is endowed by two metrics, quantifying (Minkowskian) and estimating
(Euclidean) ones. The Euclidean angle ϕ is related with the Minkowskian ones
Φ by

tan(Sϕ) = tanh(SΦ) (9)

Thus each point of the observation plane has double interpretation, a quantifying
and an estimating one.

5 Uncertainty and Curvature

The additive formulae 1 represents the quantity SΦ as a cause of observed values’
uncertainty. It is frequently used as an evaluation of the uncertainty’s “size” and
its square as an element of the data variance or data “weight”. The latter notion
has a classic statistical background. As proved in [10], the best asymptotically
unbiased and asymptotically normally distributed estimate of the mean of dif-
ferently dispersed data is a weighted mean where the weights are proportional to
the reciprocal value of the data variance. It means, that measurement in different
points of the observation space is to be done differently. In terms of Riemannian
geometry: the metric tensor is a function of the coordinates of the space and
that space is curved. “Locally dependent” metrics have been introduced into
statistics as well by using the influence functions to improve robustness of the
regression analysis [11]. There are many approaches to this task supported by
statistical assumptions and tailored to different data classes. The influence func-
tions derived from gnostic axioms were presented in [6].

Locally dependent metrics are also introduced by quantifying and estimat-
ing weights (5) and (8). Their non-linearity with respect to data is obviously
exhibiting two types of forms, convex and concave. The scale parameter S is a
function of the curvature’s radius. It is closely connected with the robustness of
the estimation of uncertainty.

6 Entropy of a Datum and Entropy Fields

C.E. Shannon’s information entropy is the negative value of L. Boltzmann’s
statistical entropy. A complete system of probabilities of events is necessary for
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the evaluation of this entropy. The pre-statistical concept of Clausius’ thermody-
namic entropy makes use only of the heat amount and the absolute temperature.
A Gedanken-experiment helped in [5] to represent the entropy of a single uncer-
tain datum in the Clausius’ manner by introduction of the proportional mapping
of the squared data value onto the absolute temperature and onto the heat flow.
Substitution into Clausius’ formula shows that the changes of the thermody-
namic entropy of an uncertain datum within quantification and estimation is
proportional to the changes of the corresponding data weights,

δEQ = wQ − 1 δEE = wE − 1 (10)

if the coefficients of proportionality of the mapping are suitably chosen. The
plane of observation is formed by possible data values, each of which has its
quantifying and estimating weight attached. Formulae 10 therefore define two
scalar fields of entropy. Gradients of these fields can be shown to be proportional
to the corresponding irrelevances hQ and hE .

7 Information and Probability of an Individual Datum

The source of a scalar field E is known to result from the operation div grad E ,
i.e. by application of the Laplace’s operator Δ. Looking for the source of the
entropy field of EQ in the point (x, y) one comes to relation

(x2 + y2)ΔEQ =
1

p ∗ (1 − p)
(11)

where
p = (1 − hE)/2 (12)

Introducing the quantity

I(p) = −p ∗ ln(p) − (1 − p) ∗ ln(1 − p) (13)

one has the relation

1
p ∗ (1 − p)

=
d2(I(1/2) − I(p))

dp2
(14)

saying that the right hand side of Eq. 11 is a source of the field of I. The quantity
I(p) would be formally identical with the Shannon’s information of an event,
the probability of which would be p. Moreover, there is a large set of conditions
in [7] under which a quantity is to be accepted as information. As shown in
[4], all such conditions are satisfied by I which thus deserves to be accepted
as information of an individual uncertain datum and its argument p as the
datum’s probability. Equation 11 can be thus formulated as a general statement:
The source of entropy of an individual uncertain datum is proportional to the
source of its information. This equation describes the conversion of entropy to



182 P. Kovanic

information and vice versa. It thus can be considered to be a mathematical model
of the Maxwell’s demon2

8 Ideal Gnostic Cycle and its Features

The observed point, interpreted by quantifying coordinates (xQ, yQ) or by esti-
mating ones (xE , yE) has its mirrored image (xQ,−yQ) and (xE ,−yE). They
are two arcs of virtual paths connecting the observed points with their mir-
rored images, the “hyperbolic” arc of a Minkowskian circle and an “ordi-
nary”(Euclidean) ones. This closed path is called the Ideal Gnostic Cycle (IGC ).
Changes of entropy and information of a datum 10 and 14 enable the important
features of the IGC to be proved:

[A] Data transformations following the closed path of IGC provide the best
estimate of the true value in the sense of maximization of results’ information
and minimization of its entropy.

[B] The closed IGC is irreversible: none estimation can completely eliminate the
error of an uncertain observation.

Thus the IGC according to [A] provides a theoretical model for programs of
estimation, but establishes by [B] unsurpassable limits for data analysis like the
second law of thermodynamics does for heat transformation.

9 What Should Data Say for Themselves

The ideal of data treatment frequently formulated as “Let data speak for them-
selves!” resulted from the requirement of maximum objectivity. The more a
priori assumptions on data, the more subjectivity is increasing the danger of
discrepancy between assumed models and actual features of data. The goal of
data treatment is information being brought by data, but reaching it is critically
limited by the knowledge of data features. This knowledge requires answering a
series of questions:

– What kind of geometry should be applied (Euclidean, Minkowskian, Rie-
mannian)?

– What curvature of the space of uncertain data characterizes the given data?
– Is the data structure additive or multiplicative?
– Are the data homo- or heteroscedastic?
– Is there a data trend?
– Are the data cross- or autocorrelated?
– Are the data homogeneous?
– What is form of the probability and density distribution?

Some of these questions are not asked in statistics, others are answered by
assumptions. Mathematical gnostics derives all the answers from data. The cru-
cial point is the robust kernel estimation of probability distributions.
2 As described in [8], Maxwell introduced in his Gedanken-experiment a virtual crea-

ture capable to use the information on movement of molecules to convert it into
decrease of entropy.
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10 The Unique Kernel for Robust Kernel Estimation

The kernel estimation of a probability density function was introduced in [9]
along with five conditions necessary for asymptotic convergence to true density.
A lot of kernels can be found in literature satisfying these conditions and giving
estimates of different quality dependent on the kernel’s form. Kernels are ordi-
narily defined over the domain of the independent variable using their natural
additive or multiplicative scale. Unlike this, the individual data item’s probabil-
ity 12 is defined over the infinite (positive) domain obtained by transformation
of the actual data domain. Its density was shown to satisfy all Parzen’s condi-
tions. Its application to kernel estimation is not only justified, but advantageous:
its form is universally applicable and as a result of the theory, it is unique and
optimal. The location of the kernel is determined by the (known) observed value
and its “width” by the scale parameter S which is to be estimated by data.

11 Aggregation of Kernels

The Parzen’s kernel estimating method creates the density estimate by addi-
tive aggregation of kernels without the consideration of any alternatives. It may
seem natural, because the historical mathematical forerunners of kernel esti-
mation like Green and Duhamel3 did essentially the same because of linearity.
However, the aggregation of gnostic kernels deserves a special consideration. The
space of observed data within the quantification process has been shown as a
Minkowskian plane with coordinates proportional to the hyperbolic cosine (wQ)
and the hyperbolic sine (hQ). But a two-dimensional plane depicting the moment
and energy of a relativistic charge-free particle would be endowed by the same
geometry. This means that there exists (at least mathematically) a consistent
linear mapping of the pair (wQ, hQ) onto the pair of (energy, momentum) of
a relativistic particle moving with velocity corresponding to the argument of
said hyperbolic functions. Moreover, this mapping is Lorentz-invariant, i.e. it is
valid for all data uncertainties and corresponding particle’s velocities. This map-
ping uncertain data ⇔ relativistic particle can be applied to several data. The
aggregation law of relativistic particles is known, it is the Momentum-Energy
Conservation Law, which is additive with respect to pairs (energy, momentum).
To preserve the mapping for a data set, one must aggregate the pairs (wQ, hQ)
additively as well, although they are nonlinear functions of data. The second
axiom of the gnostic theory extends this way of aggregating from quantifying
weights and irrelevances to estimating ones to preserve the mapping of quanti-
fying variables to estimating ones and vice versa.

However, a sum of cosine is not a cosine and a sum of sines is not a sine.
Therefore, sum of weights (and irrelevances) of a data set will represent the
weight (irrelevance) of the whole set but not a pair (weight, irrelevance) of
a possible single data item. This is why a proper normalization of additively

3 See Green’s function and Duhamel’s integral.
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aggregated weights and irrelevances should be applied instead of their simple
addition.

The form of both quantification and estimation kernels can be shown to be
similar, differing only by scale parameters. However, the results of aggregation
of kernels depend on metric.

12 Applications of the Gnostic Kernels

The kernel presented above was the derivative of probability. The linearity of
this operation allows us to obtain and use kernels of both density and proba-
bility. Library of gnostic algorithms includes the following applications of kernel
estimation:

12.1 Local Probability and Density Distribution

Local distributions are obtained as means of kernels. They possess a full flexibil-
ity controlled by the choice of scale parameter. This feature make them an ideal
instrument for revealing the detailed structure of a data set and to perform the
marginal analysis showing the data clusters and outliers in a non-homogeneous
data set. A special kind of inner robustness of these distributions allows a deep
insight into a homogeneous data set to be obtained allowing robust bounds of
its important subintervals to be estimated.

12.2 Global Probability and Density Distribution

Each pair (weight, irrelevance) has its module determined as the Minkowskian
or Euclidean length of the observed point’s radius vector. The global proba-
bility distribution function is obtained as the mean of integral kernels divided
by the module of sums of cosines and sines by using the proper metric. The
global density distribution is the first derivative of the global probability distrib-
ution. There are two types of the global distributions differing by robustness, the
estimating one is robust with respect to outlying data and peripheral clusters
while the quantifying distribution is robust with respect to inner disturbances
and noises of the treated data sample. Unlike the high flexibility of the local
distribution functions, the global ones are more rigid. This feature makes them
applicable to robust probability and density estimation, to reliable tests of data
homogeneity and to estimation of the observed data’s true values and of bounds
of data support. Global distribution enable three types of censored data to be
estimated: both left- and right censored ones and interval data.

The advantage of gnostic distribution functions lies in their independence
on the a priori assumptions, objectivity due to the reliance only on data alone,
suitability for small data samples and a much broader application field than
standard statistical distributions including small data samples.
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12.3 Robust Curve Fitting

Frequently used curve fitting by means of polynomials or by sets of other func-
tions including the orthogonal ones can suffer from un-robustness in the case
of application to uncertain data. A careful preliminary gnostic analysis pro-
viding reliable estimates of individual data weights, proper geometry and scale
parameters of gnostic kernels used for the fit enable the maximum of resulting
information to be reached.

12.4 Analysis of Dependencies

The correlation coefficient can say that there exists an interdependence between
two vectors, but the interpretation of the interaction is easy only in the case
close to the linear relationship. The application of kernel estimates is suitable
especially for presentation of non-monotonous dependencies.

13 Robust Regression

The approach to the task of robust multi-dimensional regression modeling based
on mathematical gnostics has been demonstrated in [6]. The gist was the choice of
a criterion function for the evaluation of model’s residuals. Instead of some formal
“purely mathematical” functions, natural features of uncertainty were used such
as the common source of fields of entropy and information. Results were shown to
be applicable as special kinds of influence functions used in robust statistics for
the Iterated Weighted Least Squares Method completed by a feed-back filter.
Extensive comparisons with statistical models of this type demonstrated the
priority of the gnostic approach resulting in better estimates of curvature of
the space of uncertain data and in information maximization of the estimation
process.

The standard case of a regression model representing the dependent vector as
a linear combination of explanatory vectors can be called explicit. The implicit
regression model is obtained from the explicit one by division of all equations of
the system by the values of the dependent variable (which must be non-zero).
There are some advantages of the implicit regression, e.g. uniqueness of the
model independent on the exchange of roles of explanatory/dependent variables,
comparability and evaluation of relative impacts of variable.

14 Robust Correlation

The availability of reliable robust regression techniques enabled a new approach
to robust correlation coefficients to be introduced. The proportionality between
two centered vectors x and y is considered twice, as x = c · y and y = k · x
with scalars c and k, which are estimated by the robust regression. The square
root of products of estimates can be used as robust estimate of the correlation
coefficient.
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15 Testing of Hypotheses

The crucial problem of statistical testing of hypotheses is the decision making
on the probability distribution of the underlying data. Some statistical tests
are based on the Gaussian assumption, but experienced analyst know that the
“normal” distribution is not always normal. Relying on a priori assumptions as
well as data violation by “normalizing” transformations can lead to incorrect
decision making. The availability of robust probability distributions described
above allows not only tests on a required significance level to be performed, but
actual significance of the required decision to be evaluated.

16 Homogeneity Problem

Problems with data homogeneity can be demonstrated on the task of statistical
investigation of political preferences. The careful selection of people used as a
data source cannot warrant the homogeneity (similarity, affinity, comparability,
closeness) of meaning of all individuals or groups. There is an extensive amount
of factors influencing the measurable parameters. All these factors cannot be
under the control of the survey’s organizers. Increasing the survey’s size can be
even counter-productive: the more cases, the broader the spectrum of factors.
Moreover, it is not always safe to assume that the demanding conditions of
Central Limit Theorem are satisfied.

A non-homogeneity of a one-dimensional data set is sensitively and reliably
detected by the appearance of a second maximum in gnostic global density dis-
tribution. This enables a reliable homogenization to be performed.

17 Robust Cluster Analysis

The local distribution functions enable the homogenization of a one-dimensional
non-homogeneous data sample to be implemented by the identification of
outliers, inliers and sub-clusters causing the non-homogeneity. Thus a non-
homogeneous data set consisting of several homogeneous clusters can be sub-
jected to robust marginal analysis. This approach is efficiently generalized to
robust multi-dimensional cluster analysis by a marginal analysis of residuals
of an implicit multi-dimensional model. A multi-dimensional non-homogeneous
data set is then replaced by several homogeneous clusters.

The robustness of this approach enables the multi-dimensional objects (rep-
resented by rows of the model) to be ordered in a rational and reliable way.

18 Implementation

Methods of mathematical gnostics have been implemented as computer pro-
grams during the last several decades and the implementation efforts are con-
tinuing today, as well. Their application in many fields, including technology,
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economy, medical, environmental investigation and others, were used not only
for tests of their efficacy, but also as motivation and initiation of further devel-
opment. The long-term experience confirms the usefulness of this approach to
uncertainty. Many applications (especially to economic problems like financial
statement analysis and financial control, marketing and financial markets) are
described in [12]. The gnostic methodology of analysis of environmental para-
meters was investigated within the framework of two research projects of the
European Union [13,14]. Programs based on mathematical gnostics became the
main data analytical tool in the Institute of Chemical Process Fundamentals of
the Czech Academy of Sciences as documented by series of publications (e.g.
[15–18]). Recent results enable a complete automation of the exploratory phase
of data analysis providing robust information on actual data model, which offers
the rising of the quality assessment control to the level unreachable by other
methods ([19].

19 Conclusions

Mathematical gnostics, which is based on the axiomatic theory of individual
uncertain data and small samples and supported by laws of physics develops
advanced methods for the treatment of strongly uncertain data. These methods
maximize the resulting information and are naturally robust. Their applications
also extend the range of tasks solvable by statistical methods.
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Abstract. Referring Expression Generation (reg) algorithms, a core
component of systems that generate text from non-linguistic data, seek
to identify domain objects using natural language descriptions. While
reg has often been applied to visual domains, very few approaches deal
with the problem of fuzziness and gradation. This paper discusses these
problems and how they can be accommodated to achieve a more realistic
view of the task of referring to objects in visual scenes.

Keywords: Referring expression · Fuzziness · Linguistic description ·
Visual scenes

1 Introduction

The aim of systems for automatically generating linguistic descriptions of visual
scenes is to generate text describing the scene contained in an image, simulating
the results provided by humans in the same task. In recent years, scene descrip-
tion has attracted a lot of attention as part of a growing trend to explore the
interface between vision and language in Natural Language Generation (nlg)
[1], as is the case of other kinds of data [2–4].

Research in this area tends to focus on learning correspondences between
parts of an image and textual descriptions to generate descriptive captions
[5–7]. A somewhat different focus is offered by work on Referring Expression
Generation (reg), one of the most important tasks in nlg. A referring expres-
sion is a noun phrase whose communicative purpose is to identify an object to
the hearer, for which it must be a distinguishing description, i.e., it must be “an
accurate description of the entity being referred to, but not of any other object
in the current context set”, the context set being “the set of entities that the
hearer is currently assumed to be attending to” [8]. The most standard way of
approaching reg computationally is by seeing the problem as a content selection
problem [9]. If a particular object is to be identified linguistically among a set of
other objects, then the challenge is to find a set of properties of the object that
c© Springer International Publishing Switzerland 2016
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identifies it uniquely and to do so in a way that matches what human speakers
would do in a similar situation.

Formally, this means that there are two important criteria for a reg algo-
rithm to be successful. Let re = {p1, . . . , pn} stand for a referring expression
(a set of properties) returned by such an algorithm for some target referent o.
The description re is considered accurate if, for all p ∈ re, o ∈ [[ p ]], that is,
every property in the description is true of o. Furthermore, re is a successful
description if it uniquely identifies o, that is:

⋂

p∈re

[[ p ]] = {o} (1)

The choice problem represented by reg has been explored in a number of
algorithms, reviewed in detail in [9], though it has only recently been tackled
in the context of complex visual scenes [10,11]. Referring expressions in images
use visual properties and concepts for characterizing univocally certain regions
in the image, corresponding to objects or areas of interest.

In many cases these concepts and properties are fuzzy or gradable in nature,
a factor that has been ignored in many reg algorithms, which typically treat a
target’s properties as symbols with a crisp extension. While exceptions to this
trend exist [12], they have focussed on prototypically gradable properties, such as
an object’s size. Yet, even properties such as an object’s colour admit of bound-
ary cases and gradations. Another simplification in existing reg models has to
do with the notion of an object itself: frequently, reg algorithms assume that the
relevant components of a visual scene are entities and their properties. However,
even the concept of an ‘entity’ can be argued to be fuzzy. An example where this
complication becomes an important issue is a weather forecasting application,
which needs to refer to a geographical region in order to describe the weather
conditions holding within it. As real-world applications show [13], regions corre-
sponding to a particular set of predicates describing the weather conditions will
often not be easily identifiable using place names or simple expressions based on
cardinal directions.

Thus, in addition to the problem of modelling the semantics of fuzzy concepts
with respect to their correspondence with properties of objects [14,15], referring
expressions using fuzzy concepts may also match objects in the scene to a certain
extent, and this extent has to be calculated, introducing an additional complexity
in the reg problem. In particular, distinguishability of an object with respect
to others in terms of a referring expression involving fuzzy concepts turns out
to be a matter of degree. In this paper we address this problem.

The paper is organized as follows: in Sect. 2 we briefly discuss fuzzy visual
concepts. In Sect. 3 we deal with graduality in referring expressions. Implications
of graduality in reg are discussed in Sect. 4. Section 5 concludes the paper.

2 Fuzzy Concepts in Visual Scenes

Concepts related to low-level features like colour, texture, and shape are among
the most employed in linguistic description [16], and are usually affected by
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fuzziness. Colour terms used as adjectives like red, vivid yellow, etc. are para-
digmatic examples of fuzzy concepts, and can be represented by means of fuzzy
subsets of crisp colours in some colour space. That is, each crisp colour (usually
represented by a triplet of numbers, whose domain and meaning vary from one
colour space to another) has a membership degree to each colour term. Several
proposals are available in the literature for determining the membership func-
tion representing each colour term [17]. Once the terms are defined, they have
to be matched to the objects under study. This is not a trivial issue because,
unless all the pixels comprising the object have the same colour, approaches for
associating colour terms to the whole object are necessary, like for instance the
notion of colour dominance [18]. Fuzzy approaches for defining shape (round,
regular, convex, etc.) and texture properties (coarseness, contrast, orientation,
etc.) are also available, see [19,20] and references therein.

Not only properties, but regions themselves can be fuzzy as well, as they
are usually defined in terms of their correspondence to properties [16]. In this
sense, a fuzzy region is defined as a fuzzy subset of pixels in the image. As an
example of this, if we take the homogeneity in colour as the criterion for deter-
mining regions, we obtain fuzzy regions like the ones in the image in Fig. 1(a),
which shows a collection of cells as seen under the microscope. The regions cor-
responding to cells are characterized by being red but, whilst some of them have
clear boundaries, some others do not, since the colour of some pixels has partial
membership to red for some cells. Dozens of methods for fuzzy segmentation are
available [21].

The lack of clear boundaries of fuzzy regions is another source of fuzziness
for other properties, which further complicates the task of calculating a region’s
other properties, including its size, shape, and its spatial relationships with other
regions and with the image framework (location), among others. These concepts,
which are themselves fuzzy even for crisp regions, have been an object of study

(a) An image containing objects
with fuzzy properties

(b) Labelled cells in the image

Fig. 1. An image with fuzzy properties and its labelled counterpart
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Table 1. Fulfilment degree of several fuzzy properties and accuracy of three referring
expressions for the image in Fig. 1(a).

Cell Dark Small Upperleft dark & small dark & upperleft small & upperleft

1 0,00 0,29 0 0,00 0,00 0,00

2 0,00 0,71 0 0,00 0,00 0,00

3 1,00 1,00 0,96 1,00 0,96 0,96

4 0,83 0,00 0,85 0,00 0,83 0,00

5 0,00 0,00 0,05 0,00 0,00 0,00

6 0,00 0,00 0 0,00 0,00 0,00

7 0,00 0,14 0 0,00 0,00 0,00

8 0,33 0,14 0 0,14 0,00 0,00

9 0,33 0,00 0,33 0,00 0,33 0,00

10 0,00 0,00 0,01 0,00 0,00 0,00

11 0,00 0,14 0 0,00 0,00 0,00

12 0,00 0,43 0 0,00 0,00 0,00

13 0,00 0,00 0 0,00 0,00 0,00

14 0,00 0,00 0 0,00 0,00 0,00

15 0,00 0,00 0 0,00 0,00 0,00

16 0,00 0,00 0 0,00 0,00 0,00

17 0,00 0,14 0 0,00 0,00 0,00

18 0,17 0,14 0 0,14 0,00 0,00

19 0,17 0,14 0 0,14 0,00 0,00

20 0,00 0,00 0 0,00 0,00 0,00

21 0,17 0,43 0 0,17 0,00 0,00

22 0,00 0,00 0 0,00 0,00 0,00

23 0,17 0,29 0 0,17 0,00 0,00

24 0,00 0,86 0 0,00 0,00 0,00

25 0,00 0,00 0 0,00 0,00 0,00

26 0,00 0,57 0 0,00 0,00 0,00

27 0,50 0,43 0 0,43 0,00 0,00

28 0,67 0,00 0 0,00 0,00 0,00

with fuzzy techniques [16,22,23]. It is easy to see examples of concepts that are
fulfilled only to some degree by objects in the image depicted in Fig. 1(a), such
as round shape, above (spatial relationship), in the middle (location), etc.

In order to illustrate our discussion, let us consider, for the objects in
Fig. 1(a), the fuzzy properties small, dark, and upperleft. Table 1 shows example
fulfilment degrees of these properties for all the named objects in Fig. 1(a). For
the property small, a fuzzy subset on the domain of the proportion of pixels in
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the image has been employed. The property dark is calculated as the dominance
of the property low luminance of the pixels in an object. The property upperleft
is defined as a fuzzy region with square core and support, core with side 1/4
of the image, and support with side 3/8, with membership decreasing linearly.
We omit more specific details about how these degrees have been calculated for
reasons of space.

3 Gradation in Referring Expressions

When referring expressions are comprised of fuzzy properties, both their accu-
racy and their ability to discriminate an object become a matter of degree,
contrary to the view usually assumed by reg algorithms (see Sect. 1). In this
section we propose different ways to assess these, as well as some other proper-
ties which are also important when generating referring expressions and assessing
their quality.

3.1 Accuracy

As we have noted, the accuracy of a referring expression with respect to a given
object measures the extent to which what the expression says is true for the
object, that is, the degree to which all the properties that appear in the expres-
sion hold for the object. When the referring expression is composed of fuzzy
properties, to calculate the accuracy of the expression for a given object we first
have to compute the fulfilment degree of each property; subsequently we have
to appropriately aggregate these degrees into a single value.

Let us once again consider a referring expression re involving properties
{p1, . . . , pn} and an object o. Let also pi(o) be the fulfilment degree of prop-
erty pi for object o. The accuracy of re for object o is calculated as follows:

are(o) =
n⊗

i=1

pi(o) (2)

where ⊗ is a t-norm.
As an example, consider again Fig. 1(a) (Fig. 1(b) assigns numbers to the

cells) and the three referring expressions: The small object in the upper-left (re1),
The dark object in the upper-left (re2), and The small and dark object (re3).

According to data in Table 1, and using the minimum as t-norm, we have
that:

– ac3(re1) = min(small(c3), upperleft(c3)) = 0.96
– ac3(re2) = min(dark(c3), upperleft(c3)) = 0.96
– ac3(re3) = min(small(c3), dark(c3)) = 1
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3.2 Referential Success

As noted in Sect. 1, referential success is the extent to which the referring expres-
sion unambiguously identifies the intended referent to the reader or hearer. Con-
sider again a referring expression re and a set of objects O = {o1, . . . , om}. The
referential success of re with respect to a referent object oi is the degree to which
re is true for oi and false for the rest of objects, that is:

rsre(oi) = are(oi) ⊗
⎛

⎝
⊗

oj∈O∧j �=i

¬(are(oj))

⎞

⎠ ∈ [0, 1] (3)

where ⊗ is a t-norm and ¬ is a fuzzy negation. Note that this notion of referential
success is quite different from the more traditional definition given in reg (see
Eq. 1 above). As an example, consider again Fig. 1(a) and the three referring
expressions in the previous section. In this case, if we once more use the minimum
as t-norm and the standard fuzzy negation operator, we have that:

– rsre1(c3) = min(are1(c3),mincj �=c3(1 − are1(cj))) = min(0.96, 1) = 0.96
– rsre2(c3) = min(are2(c3),mincj �=c3(1 − are2(cj))) = min(0.96, 0.17) = 0.17
– rsre3(c3) = min(are3(c3),mincj �=c3(1 − are3(cj))) = min(1, 0.57) = 0.57

As can be observed, though the three considered referring expressions are
almost equally true for cell 3, they have rather different degrees of referential
success. The two last expressions fail in the objective of unambiguously identi-
fying the referent object to the reader. This is due to the fact that the accuracy
of re2 regarding cell 4 is also high (are2(c4) = 0.83) and the accuracy of re3
regarding cell 27 is not low (are2(c27) = 0.43).

The presented measure is a natural extension of the conventional concept
of referential success when the accuracy of the referring expression for a given
object is fuzzy. However, this measure produces similar values when evaluating
referring expressions independently of the number of objects they fuzzily refer
to.

For example, consider the following sentences:

– re4 = The dark object.
– re5 = The object in the upper-left.

In both cases, the referential success with respect to cell 3 is rather low
(rsre4(c3) = 0.17, rsre5(c3) = 0.15). However, if we do not have any other
alternative, we will probably choose re5 because, as can be seen in Table 1, there
are fewer objects for which re5 is true to some extent than there are for re4.
That is, the fuzzy sets of objects of which re5 is to some extent true is more
specific, i.e. there is less uncertainty about which referent is intended.

To asses this uncertainty, Fuzzy Set Theory offers a wide variety of measures
of the specificity of fuzzy sets. If Ore is the fuzzy set of objects for which re is
true to some extent, with Ore(o) = are(o), then the specificity of re, Sp(re),
should satisfy, among others, the following:
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– Sp(re) = 1 iff Ore is a crisp singleton.
– If Ore = ∅, then Sp(re) = 0.
– If card(Ore) ≤ card(Ore′) and Ore and Ore′ are normal fuzzy sets, then

Sp(re) ≥ Sp(re′), where card(·) is a suitable cardinality measure.

3.3 A Multiobjective Problem

In order to asses the goodness or adequacy of a referring expression, other quality
dimensions can be considered, apart from the ones previously discussed, simi-
larly to what happens in complete linguistic descriptions [3]. The reg literature
contains a number of such proposals. Thus, brevity has been proposed as a cri-
terion of adequacy [24] based on the conversational maxim, due to Grice [25],
that a cooperative communicator should say no more than is required for the
purposes of the exchange. Similarly, humanlikeness has been explored based on a
variety of psycholinguistic findings, such as for example the extent to which the
properties selected in a referring expression are salient or ‘preferred’ by speak-
ers [26,27]. Finally, it has been argued that the use of certain properties in a
referring expression depends on the relevance to the user given their current
communicative task [28] as well as their knowledge state [29].

Though in the example used in this section it has been possible to determine
the best referring expression for cell 3, in general, the problem of generating a
referring expression for a given object does not always lead to a single best solu-
tion. It is quite normal to find that different measures of quality are correlated to
different degrees; for instance, they might exert opposing influences, be contra-
dictory, and/or have a negative correlation. For example, as we add properties
to a referring expression, we increase the specificity but we also decrease brevity
and probably also accuracy and ease of comprehension. Interestingly, empirical
work comparing a large number of reg algorithms against shared datasets sug-
gests that in fact, different evaluation metrics corresponding to different quality
dimensions often do not correlate with each other [27].

This means that there is in general no such thing as the optimum or best
referring expression for a given object, and the referring expression generation
is a multiobjective optimization problem, as explained in [30,31] for complete
linguistic descriptions.

4 REG in the Presence of Graduality: A Discussion

As we have noted, gradability and fuzziness have not received much attention
in the reg literature. An exception is the work of van Deemter [12], who pro-
poses a semantics for gradable properties, such as those related to the size of
an object, and an algorithm to incorporate these properties in a reg procedure.
van Deemter proposes to represent gradable properties numerically, preceding
the standard reg content determination procedure with a step in which such
properties are converted into inequalities. For example, if o is defined as having
a value n for its height, this would be ‘unpacked’ into a set of inequalities of the
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form n > m, for all m which are values of height that are less than n. A standard
reg algorithm can now use these inequalities as it would any other property,
assuming that content selection is followed by an appropriate realisation step to
convert them into an appropriate natural language string.

This approach is arguably less general than the one proposed in this paper.
In particular, if we abandon the view that the relationship between objects and
their properties is necessarily boolean (in the sense that an object either has a
property or it doesn’t) and adopt the more graded notion of degree of fulfilment,
it is possible to treat all properties as potentially graded, or rather, all objects
in a domain as having a particular property to different degrees. The contrast
between the definition of accuracy and referential success given in Eq. (1) and
Eqs. (2-3) makes this explicit.

4.1 Discriminatory Power

From the perspective of knowledge representation, this also eschews a core sim-
plifying assumption made in many approaches to reg, namely, that properties
are mutually exclusive. For example, consider an object’s colour. In a domain
in which some objects are red and some are pink, it is typically assumed that
[[ red ]] ∩ [[ pink ]] = ∅, so that a reg algorithm that determines, for a target
referent o, that o ∈ [[ red ]], can safely ignore all objects in the extension of pink,
since the latter is a completely different property.

This assumption has had an important implication for the development of
heuristics to control the search performed by a reg algorithm during content
selection, especially where the notion of discriminatory power is concerned. Dis-
criminatory power refers to the informativeness of a property, that is, the extent
to which it is true of the target referent, but false of other objects in the domain
[24]. Thus, algorithms which define the quality of a referring expression in terms
of brevity or informativity make use of this notion in trying to generate brief
descriptions, by prioritising properties with higher discriminatory power, under
the assumption that this will help the reader or hearer to identify the object more
efficiently [24,32,33]. Returning to our example of colour, if the target referent
happens to be the only red object in the domain, these algorithms will tend to
select this property. The problem is that the object in question might also have
a non-zero degree of fulfilment with respect to the property pink, based on the
closeness of this colour to red, so that the discriminatory value of the property
selected is not as clear-cut as was initially assumed.

4.2 Salience and Contextual Knowledge

Explicitly accounting for fuzziness also has implications for the way in which
another important quality heuristic is modelled in a reg algorithm, namely,
salience or preference. Many algorithms [26,34] give priority to properties, not
based on discriminatory power, but on how salient, relevant or preferred they
are. This notion of preference is usually defined by appealing to psycholinguistic
findings, for example, the finding that speakers tend to avoid prototypically
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gradable properties such as size, unless they are absolutely required, in contrast
for example to colour which, as we have seen, is used very frequently [35,36].
However, many such findings are based on experimental domains in which colours
are maximally salient and distinct. A fuzzy approach can of course handle such
cases, given that the fulfilment degree of an object with respect to a colour which
is maximally salient in a domain would be higher than it would be in case the
property is less salient, that is, closer to other colours. However, this approach
would also enable more nuanced models, in which preference or salience can be
computed in less straightforward cases, as in the example in Fig. 1(a) above.
Indeed, the human tendency to use colour in referring expressions decreases
significantly in the presence of colours that are similar, or close to each other [37].
Similarly, the tendency to use size increases, when the size difference between a
target referent and its distractors is large [38].

Note that a graded notion of salience is also more faithful to the findings in
the vision literature, where many computational models of visual salience iden-
tify salient regions based on a combination of the properties we have discussed
in this paper, treating these properties as gradable [39,40]. The framework pro-
posed here could potentially be adapted to the findings from the vision literature,
by incorporating a psychologically plausible definition of salience into the com-
putation of degree of fulfilment that determines the likelihood for a property to
be selected by a reg procedure.

A further trend in computational research on vision is the incorporation of
top-down, or contextual, knowledge [15,41]. Certain models [42,43] have success-
fully modelled human shifts of attention in visual scenes by incorporating both
feature-based salience and knowledge of the type of scene being viewed. Thus,
the salience of an object depends not only on the distinctiveness of its properties,
but on human expectations concerning its location and function in a particular
scene. Returning to our running example, when viewing an array of cells, such
as those in Fig. 1(a), a biologist’s attention might be drawn less by their colour
(perhaps because this is relatively unimportant, or expected, where cells and
tissues are concerned), but by their other properties. Future research on reg
will need to take into account these top-down, expectation-based mechanisms,
which are also known to influence the way humans refer to objects [44,45]. It is
an open question whether the computation of the degree of fulfilment of a fuzzy
property can be modulated by such top-down considerations.

4.3 Spatial Relations

Finally, another area in which fuzzy sets can play an important role in reg is in
reference to objects using (spatial) relations to other elements of a scene. Since
the early work of Dale and Haddock [46], the problem has been mostly defined
in logical terms: the elements of a scene that can serve as potential anchors for
a target referent in a spatial relation such as in front of are themselves encoded
explicitly in the reg input [47], though there has been some work that takes
a more realistic perspective in selecting salient landmarks [10,34]. Once again,
the simplifying assumptions underlying reg algorithms can be relaxed using a
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fuzzy approach to spatial relations, especially where these are ‘uncertain’ and
not necessarily mutually exclusive. For instance, in Fig. 1(b) if the object to be
identified is cell 1, it can be seen that it is above cell 6 but also overlaps with it to
some degree. It is not clear whether a good referring expression in this case should
combine the two relations (the small cell at the top which is above and slightly
overlaps another), select only one, perhaps the most salient one, or simply rely
on a non-relational frame of reference (the one at the top towards the middle).
Many techniques have been described to handle fuzzy spatial relationships, and
we believe that reg would benefit from an exploration of this literature. Some
related work has shown that fuzzy sets can be useful in generating appropriate
natural language descriptions of uncertain temporal relations between events
[48]; applying similar strategies to spatial relations is a promising way forward.

5 Conclusions

In this paper, we have tackled a classic problem in the generation of nat-
ural language from non-linguistic data, namely, referring expression generation.
Focussing on visual scenes, we have sought to extend the remit of reg algorithms,
by (a) abandoning some simplifying assumptions related to knowledge represen-
tation, especially the assumption that properties are crisp sets and that they
are either true or false of an object; and (b) extending the notions of accuracy
and referential success to deal with the more complex picture that gradability
affords. Our discussion has also pointed to several directions for future work,
notably the possibility of integrating the types of models proposed in this paper
with findings from the vision literature concerning salience. We believe this is
a promising direction in which to take research on reg; indeed, it potentially
offers a way to bridge the gap between research on fuzzy sets, research on Natural
Language Generation, and work in computer vision.
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4. Ramos-Soto, A., Bugaŕın, A., Barro, S.: On the role of linguistic descriptions of
data in the building of natural language generation systems. Fuzzy Sets Syst. 285,
31–51 (2016)



The Role of Graduality for Referring Expression Generation in Visual Scenes 201

5. Mitchell, M., Dodge, J., Goyal, A., Yamaguchi, K., Stratos, K., Han, X.,
Mensch, A., Berg, A., Han, X., Berg, T., Daume III., H.: Midge: Generating Image
Descriptions From Computer Vision Detections. In: EACL 2012, Avignon, France,
pp. 747–756. Association for Computational Linguistics (2012)

6. Kulkarni, G., Premraj, V., Ordonez, V., Dhar, S., Li, S., Choi, Y., Berg, A.C.,
Berg, T.L.: Baby talk: Understanding and generating simple image descriptions.
IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2891–2903 (2013)

7. Yatskar, M., Galley, M., Vanderwende, L., Zettlemoyer, L.: See No Evil, Say No
Evil : Description Generation from Densely Labeled Images. In: Proceedings of the
Third Joint Conference on Lexical and Computation Semantics (*SEM) (2014)

8. Reiter, E., Dale, R.: A fast algorithm for the generation of referring expressions.
In: COLING 1992, pp. 232–238 (1992)

9. Krahmer, E., van Deemter, K.: Computational generation of referring expressions:
A survey. Comput. Linguist. 38(1), 173–218 (2012)

10. Elsner, M., Rohde, H., Clarke, A.D.F.: Information structure prediction for visual-
world referring expressions. In: EACL 2014, Gothenburg, Sweden, pp. 520–529.
Association for Computational Linguistics (2014)

11. Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.L.: ReferItGame: referring to
objects in photographs of natural scenes. In: EMNLP 2014, Doha, Qatar, pp. 787–
798. Association for Computational Linguistics (2014)

12. van Deemter, K.: Generating referring expressions that involve gradable properties.
Comput. Linguist. 32(2), 195–222 (2006)

13. Turner, R., Sripada, S., Reiter, E., Davy, I.P.: Selecting the content of textual
descriptions of geographically located events in spatio-temporal weather data. In:
Ellis, R., Allen, T., Petridis, M. (eds.) Applications and Innovations in Intelligent
Systems XV, pp. 75–88. Springer, London (2008)

14. Reiter, E., Sripada, S., Hunter, J., Yu, J., Davy, I.: Choosing words in computer-
generated weather forecasts. Artif. Intell. 167(1–2), 137–169 (2005)

15. Cadenas, J.T., Maŕın, N., Vila, M.A.: Context-aware fuzzy databases. Appl. Soft
Comput. 25, 215–233 (2014)

16. Castillo-Ortega, R., Chamorro-Mart́ınez, J., Maŕın, N., Sánchez, D., Soto-Hidalgo,
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Abstract. In the recent past, a lot of work has been done on Linguistic
Protoform Summaries (LPS). Much of this work focuses on improvement of the
ways to compute truth values of LPS as well as on development of different
protoforms. However, almost all of the systems using LPS use trapezoidal
membership functions. This work investigates the effects of using triangular and
pi shaped membership functions and compare their performance when using
trapezoids. We start with an experiment using synthetic data and then compare
the behavior of the three types of membership functions using real data which is
obtained from an eldercare setting.

Keywords: Linguistic protoform summaries � Membership functions � Truth
value

1 Introduction

An important aspect of decision support systems based on Fuzzy Logic and Fuzzy Sets
is the design of the membership functions employed to represent the linguistic variables.
Both the span of the membership functions as well as the shape can be an important
factor depending on the application of concern. In many instances of fuzzy systems,
there is little sensitivity to the configuration of the underlying membership functions.
This work investigates the effect of the shape of membership functions representing the
linguistic variables used to generate Linguistic Protoform Summaries (LPS).

Linguistic protoform Summaries are template based Natural Language sentences.
In the past they have been used extensively to report the content of data in various
fields [1–4]. As a departure from using LPS just to represent data linguistically, in [5]
the authors defined a method to compute dissimilarity between two LPS and proved
that it is a metric. This enabled them to use LPS as features of data and to find
Linguistic Prototypes [6] representing the nightly sleeping patterns of elderly over a
month’s period of time. Basically, LPS were generated for each of the 31 nights which
were then clustered to find Linguistic Prototypes. These prototypes were then deployed
to find anomalies in a dataset in [7]. While detecting anomaly nights worked well,
describing why a given night deviated from the normal pattern of prototype summaries
proved a challenge. One issue that was identified was that the truth values of the

© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 204–213, 2016.
DOI: 10.1007/978-3-319-40596-4_18



prototypes and the nightly LPS were very close to 1 in almost all cases. Hence, the truth
values played no role in distinguishing between 2 LPS under consideration. In all of
these works and most of the work on LPS in the literature, the shape of the membership
functions used to represent the linguistic variables of LPS is trapezoidal. Could that be
the reason for such high truth values? In the following we compare the performance of
trapezoid membership functions with triangular and pi shaped functions [8] related to
LPS. We first preset an example with synthetic data and then explore the performance
of triangular and pi functions with a set of real data which is generated from the sensors
placed in the homes of elderly.

2 Background

In the sense of Yager [9], the most basic form of Linguistic Protoform Summaries
(LPS) can be exemplified by ‘Q y’s are P’ @ T where Q is called the quantifier (like
few, some, most), P is the summarizer (like small, big, tall), y’s are the objects being
summarized (like balls, nights) and T is the truth value ranging from 0 to 1. For
example, in Most of the balls are big @ 0.7, Most and big are the quantifiers and
summarizers respectively, the objects being summarized is size of balls in a bag and the
truth value is 0.7. The Quantifier and Summarizers are the linguistic variables and are
modelled over Fuzzy Sets. The truth value conveys information about the validity of
the summary with respect to the data. Out of the several techniques available in the
literature to compute it, we experimented with the methods of [9, 10]. Similar results
were obtained for both of these techniques, and therefore, we only present the analysis
using [10], in which the truth value is computed using Eq. (1)

TðA y0s are PÞ ¼ max
a2½0;1�

a ^ AðPaÞð Þ ð1Þ

where ^ is the minimum operator, P(x) is the membership function of the summarizer P,
Pa ¼ yi 2 Y jPðyiÞ� af gj j is the proportion of objects whose membership in P(x) is
greater than or equal to α (varies from 0 to 1 in small intervals), :j j denotes the
cardinality of a set and A(x) is a normal, convex and monotonically non-decreasing
membership function of the quantifier A. For a quantifier whose membership function
is not monotonically non-decreasing, it is split into two monotonically non-decreasing
functions, A1(x) and A2(x) (which is used to compute A2ðxÞ) and the truth value is
computed as shown in (1). Please refer to [10] for more details.

3 Tests with Synthetic Data

As mentioned before, traditionally Quantifiers and Summarizers have been represented
by trapezoidal membership functions. In this section we set out to see how changing
the shape of the membership functions to triangles and pi shaped functions varies the
truth values of Linguistic Protoform Summaries. To this end, we design an experiment
with synthetic data.
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The synthetic data is comprised of 100 balls inside a bag. We find the LPS sum-
marizing the size of the balls inside this bag. To see the variation of truth values we
change the size of the balls in steps and generate LPS at each point. The truth values are
computed for trapezoidal, triangular and pi shaped membership functions. Figures 1
and 2 show the summarizer and quantifier membership functions of all three types
drawn in the same figures to have a better relative comparison among them.

While converting the trapezoids to triangles we change the span of the functions
such that they have the similar core and intersection points in all three shapes. For
example, for the case of mid in Fig. 1, the core of triangular function is at the center of
the core of trapezoid. However, the value of the trapezoid membership function is zero
at all points other than from 0.25 to 0.75, while the triangle and pi functions are non-zero
from 0.1 to 0.9. This is done in order to have the intersection of the membership function
of mid and small, and mid and big at same levels for all three types of membership
functions. If this modification is not done, then some values on the x axis (that is, the size
in this particular case) will have very small memberships in all three functions which is
non-intuitive since it would lead to giving less importance to these values in the final
truth value calculation. Also, note that the pi function has smaller memberships than the
corresponding triangle until 0.5, while it is higher for values above 0.5.

We start with 100 balls, with all sizes having highest membership in the summa-
rizer Small. Then step by step, we replace five balls in the bag with balls having highest
membership in summarizer Big. That is, at the end we have all balls with highest
membership in the summarizer Big. At each step we calculate the truth values of LPS
of the form Q of the balls are P where P and Q are the quantifiers and summarizers,
respectively, given in Figs. 1 and 2. For each step we would have twelve summaries
(four for each summarizer). Reporting the truth value of all these summaries at every
step will result in a lot of clutter. Therefore, in Fig. 3 we only report truth values of 3
sentences, Almost None of the balls are small, Many balls are big and Many balls are
small when using trapezoidal, triangular and pi shaped membership functions. Truth

Fig. 1. Trapezoid, triangular and pi shaped membership functions for summarizers used in
synthetic data example. The x-axis represents the size of balls. (Color figure online)
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values generated from trapezoids are shown with “tick marks”, those from triangles
have “dots”, and truth calculation using pi functions are shown with “open circles”. It is
easy to see that for the case when triangular and pi shaped functions are used, the truth
value varies gradually while it changes in big steps when using trapezoids. This is
expected since the trapezoids have longer constant periods of membership 1 while in
triangles and pi, the membership gradually reaches 1 and also drops slowly to 0. It is
easy to observe this by looking at each set of 3 curves of the same color in Fig. 3. This
variation of truth value along with the data the LPS are summarizing looks more
intuitive since its better reflecting the changes in the data.

Another important observation that should be noted is that when the truth values
computed using trapezoids are below 0.5, the use of triangles and pi functions

Fig. 2. Trapezoid, triangular and pi shaped membership functions for quantifiers used in
synthetic data example. (Color figure online)

Fig. 3. Truth value vs the number of big balls while using trapezoid, triangle and pi shaped
membership functions. The x-axis shows how many of the 100 balls have highest membership in
the summarizer big. (Color figure online)
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intensifies it, while it suppresses the value when the truth value is greater than 0.5. This
is expected, since the triangular and pi membership functions are greater than trape-
zoids for values below 0.5 while they are less than trapezoids for the values above it.
Also, when using pi functions, the truth values are smaller as compared to when using
triangles for values less than 0.5, while it is greater with triangles when the value is
higher than 0.5. This is also in accordance with how the membership functions are
constructed, since the pi functions become higher than triangular functions only after
they reach a value of 0.5.

Given these results where intuition can play a significant role, the use of either
triangular or pi-shaped membership functions enables truth values to span the entire
unit interval. This should allow truth values to play a bigger role in distinguishing one
LPS from another in an automated explanation system.

4 Tests with Real Data

In this section we explore how changing the shape of the membership functions effect
the results with real data. We use the data which was previously used in [6] to generate
Linguistic Prototypes. This data comes from an aging in place facility called TigerPlace
in Columbia, MO, USA. The apartments of elderly are equipped with network of
sensors such as motion sensors, Kinect or bed sensors to monitor the living patterns of
the residents. In that work, nightly bed restlessness data was summarized by summaries
of the form:

Qof theDt slots had P restlessness

where the data during a night was divided into slots of duration Δt (15 min) and Q and
P are the quantifiers and summarizers respectively. For example, a summary describing
the bed restlessness over a night may be: Few of the Δt had high bed restlessness. We
use two nights from this dataset to compare the performance of trapezoidal, triangular
and pi shaped membership functions.

The membership functions of the Summarizers and Quantifier used to generate the
summaries of the form mentioned above are shown in Figs. 4 and 5. While con-
structing the triangular and pi membership functions, we try to be as close as possible
to the trapezoids used in [6]. However, similar to the synthetic data example, their span
needs to be changed sometimes to avoid cases having very low memberships for some
points on the x axis.

Figures 6 and 7 show the data of two nights. Each point in the graph is the
restlessness of Δt slot (15 min time slot). To compute the value of each slot, a night is
first divided into 15 min slots, then the restlessness data inside a slot is accumulated to
get the final value. Also, note that the number of 15 min slots are not same for the two
nights shown in Figs. 6 and 7 because the start and end time of the night is calculated
dynamically for each night.

Along with the raw data, we also show the memberships of each data point in the
three summarizers shown in Fig. 4 for all three types of membership functions. This is
done in order to have a better interpretation of data with respect to the membership
functions used.
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Fig. 4. Trapezoid, triangle and pi shaped membership functions for summarizers used in real
data examples. (Color figure online)

Fig. 5. Trapezoid, triangle and pi shaped membership functions for quantifiers used in real data
examples. (Color figure online)

Fig. 6. Case A – night time restlessness. The last row shows the raw data with x-axis showing
the number of 15 min slot and y-axis is the restlessness in each slot. The first row shows the
membership of the raw data in summarizer low, the second shows membership in medium while
the third row for summarizer high, with the first column for trapezoids, the second for triangle
and third for pi shaped membership function.
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4.1 Case A

Table 1 lists all the possible LPS generated for the data shown in Fig. 6. For each
summary, we compute the truth values with all three types of membership functions.
Also, instead of the full sentence of LPS, we only show the quantifier and summarizer

Fig. 7. Case B – night time restlessness.

Table 1. Case A-truth values of summaries when using trapezoid, triangular and pi membership
functions. The first and second column show the Quantifier and Summarizer respectively, for
each summary.

Quantifier Summarizer Truth values
Trapezoids Triangles Pi

‘almost none’ ‘low restlessness’ 0.00 0.13 0.04
‘a few’ ‘low restlessness’ 0.00 0.25 0.13
‘about a half’ ‘low restlessness’ 0.00 0.25 0.13
‘many’ ‘low restlessness’ 1.00 0.51 0.52
‘most’ ‘low restlessness’ 0.33 0.27 0.14
‘almost all’ ‘low restlessness’ 0.00 0.00 0.00
‘almost none’ ‘medium restlessness’ 0.00 0.40 0.32
‘a few’ ‘medium restlessness’ 1.00 0.60 0.68
‘about a half’ ‘medium restlessness’ 0.00 0.16 0.05
‘many’ ‘medium restlessness’ 0.00 0.00 0.00
‘most’ ‘medium restlessness’ 0.00 0.00 0.00
‘almost all’ ‘medium restlessness’ 0.00 0.00 0.00
‘almost none’ ‘high restlessness’ 1.00 0.77 0.89
‘a few’ ‘high restlessness’ 0.00 0.23 0.11
‘about a half’ ‘high restlessness’ 0.00 0.00 0.00
‘many’ ‘high restlessness’ 0.00 0.00 0.00
‘most’ ‘high restlessness’ 0.00 0.00 0.00
‘almost all’ ‘high restlessness’ 0.00 0.00 0.00
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for each summary of the form, Q of the Δt slots had P restlessness. It can be observed
that the spread of the truth values is more uniform for the case when triangles and pi
membership functions are employed as compared to the trapezoids. For example, for
the case with trapezoid membership functions, the truth value of, Many of the Δt slots
had low restlessness is 1 while it is 0 for all the quantifiers to the left of it in Fig. 5, i.e.,
almost none, few, about a half. However, with triangular shaped membership functions
for the same summarizer, the truth values start with 0.13 for the summary with
quantifier almost none, it progressively rises to 0.51 for many and drops gradually to 0
for almost all. Similar trends can be observed when using the pi shaped membership
functions.

4.2 Case B

LPS for the data displayed in Fig. 7 are shown in Table 2. Similar to Case A, for each
possible summary, we present the truth values for all three types of membership
functions. The spread of truth values for trapezoidal membership functions is not as
non-uniform as in the Case A. For instance, the truth values of summaries with
summarizer low restlessness varies gradually from 0 for quantifier almost none to 0.67

Table 2. Case B-truth values of summaries when using trapezoid, triangular and pi memberhsip
functions. The first and second column show the Quantifier and Summarizer respectively, for
each summary.

Quantifier Summarizer Truth values
Trapezoids Triangles Pi

‘almost none’ ‘low restlessness’ 0.00 0.13 0.04
‘a few’ ‘low restlessness’ 0.50 0.50 0.50
‘about a half’ ‘low restlessness’ 0.67 0.52 0.54
‘many’ ‘low restlessness’ 0.33 0.37 0.28
‘most’ ‘low restlessness’ 0.00 0.12 0.03
‘almost all’ ‘low restlessness’ 0.00 0.00 0.00
‘almost none’ ‘medium restlessness’ 0.00 0.40 0.32
‘a few’ ‘medium restlessness’ 0.50 0.60 0.68
‘about a half’ ‘medium restlessness’ 0.80 0.40 0.32
‘many’ ‘medium restlessness’ 0.25 0.09 0.02
‘most’ ‘medium restlessness’ 0.00 0.00 0.00
‘almost all’ ‘medium restlessness’ 0.00 0.00 0.00
‘almost none’ ‘high restlessness’ 0.80 0.56 0.61
‘a few’ ‘high restlessness’ 0.20 0.44 0.39
‘about a half’ ‘high restlessness’ 0.00 0.11 0.02
‘many’ ‘high restlessness’ 0.00 0.00 0.00
‘most’ ‘high restlessness’ 0.00 0.00 0.00
‘almost all’ ‘high restlessness’ 0.00 0.00 0.00
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for about a half. Nevertheless, the truth values for triangular and pi membership
functions are better spaced out among all the LPS.

This type of gradual trend in the truth values of LPS can be considered more
informative as compared to the cases where the truth values suddenly rises and drops to
some value. Even though it might not be of much value when LPS are used to analyze
some data linguistically, they can be considered better when LPS are used as features,
like in [6]. Also, it should be noted that in some applications, in order to decide which
LPS should be used in the final representation of the data, a threshold based on the truth
value is used. In such cases, the threshold would need to be changed for triangular and
pi membership functions.

5 Conclusions and Future Work

With the help of synthetic and real data we compared the performance of three types of
membership function with respect to computing truth values for Linguistic Protoform
Summaries. The contrast between the three was much more evident for synthetic data
than for the real data we chose. This is because we had the liberty of designing an
experiment tailored to this task in the synthetic data case. As for the real data, it is quite
possible that we will find more differences in the performances utilizing the three
membership function types as we include more nights into our study. Nevertheless, the
two real data examples we presented still pose some interesting comparisons. This
naturally leads us to a more rigorous and broad study of comparison of membership
functions with different sets of real data. Moreover, evaluations with the help of case
studies involving human subjects might present some important insights.

An important exercise that we are currently conducting is to first study the use of
triangular and pi shaped membership functions when using LPS as features to compute
Linguistic Prototypes. Then from the prototypes, we are building an automated system
to explain why particular nights deviate from the prototypes. We believe that using
triangular or pi shaped memberships will aid in that endeavor.
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Abstract. In our previous work we introduced a novel concept of the
multiaspect text categorization (MTC) task meant as a special, extended
form of the text categorization (TC) problem which is widely studied
in information retrieval. The essence of the MTC problem is the clas-
sification of documents on two levels: first, on a more or less standard
level of thematic categories and then on the level of document sequences
which is much less studied in the literature. The latter stage of classifi-
cation, which is by far more challenging, is the main focus of this paper.
A promising way of attacking it requires some kind of modeling of con-
nections between documents forming sequences. To solve this problem
we propose a novel approach that combines a well-known techniques to
model sequences, i.e., the Hidden Markov Models (HMM) and the Latent
Dirichlet Allocation (LDA) technique for the advanced document repre-
sentation, hence obtaining a hybrid approach. We present details of our
proposed approach as well as results of some computational experiments.

Keywords: Multiaspect text categorization · Sequences of documents ·
HMM · LDA

1 Introduction

We deal with a variant of the text categorization (TC) problem. In its basic
form, the general TC problem boils down to deciding which of a predefined
set of categories a given document belongs to. Thus, usually after adopting an
appropriate document representation, e.g., based on the vector space model [2],
documents are treated as vectors and one of a multitude of the classification
techniques may be employed. In a series of papers [8,16,18,19] (see www.ibspan.
waw.pl/∼zadrozny/MTC for a complete list of our related papers). we have intro-
duced and studied the concept of the multiaspect text categorization (MTC), a
novel problem that goes far beyond the usual TC. We have proposed several
approaches to solve it. The MTC task may be seen as a special case of the gen-
eral text categorization problem where two levels of classification are involved. It
is inspired by a practical application which may be briefly described as follows.
c© Springer International Publishing Switzerland 2016
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Institutions in Poland, as well as in virtually all countries, are obliged to handle
documents related to their business processes in a strictly regulated way. First,
the documents have to be assigned to some thematic/topical categories arranged
in a hierarchy. For example, a document submitted by a citizen while applying
for a driving license should be classified as belonging to the top category “Social
and civic cases” or, perhaps, within its specialized descendant subcategory at
the bottom of a hierarchy, such as “Documentation of a vehicle registration”.
Second, within such a category this document has to be classified to a specific
case, i.e., a sequence of documents related to a particular instance of the business
process of the driving license issuing of that person. Such a sequence may already
exist – for instance, the document under consideration may concern some addi-
tional information the applicant has been required to provide – or it may be the
first document which initiates a case, e.g., it is the application for the issuing
of the driving license of that person. Thus, within the case the documents are
sequentially ordered and their order is implied by the logical succession of the
documents within a given business process. Each instance of a given process may
clearly be associated with a different number of documents of a different type,
e.g., some documents may be initially missing and the institution will send a
notice to the applicant to complete it which he or she will respond attaching
those missing documents or explaining the reasons for their lack, or asking for
further information from the institution etc.

The above task is usually dealt with manually, which is costly and time con-
suming, and our aim is to support the human operator by developing a system
automatically generating an advice concerning the proper classification of docu-
ments. Thus, on the first level one may apply one of the classification techniques
well studied in the classic text categorization [13]. The second level classification
is more challenging due to several reasons. First of all, there is a limited number
of training documents representing particular cases and a straightforward app-
roach of treating each case as a category on its own does not work well. Moreover,
the list of cases is growing over time and a classifier has to detect if a document
to be classified should start a new case. Hence, grasping the logic of succession
of the documents within a case seems to be critical for a classifier to successfully
handle the MTC problem. In our previous work we proposed several solutions to
the MTC problem. In particular, in [16] we proposed two approaches to model
the sequences of the documents using Zaki’s sequence mining algorithm [20] and
the Hidden Markov Models [12]. In this paper we further develop the latter
approach and go beyond the conceptual presentation by making the approach
operational. In particular, we follow a widely advocated approach of developing
a hybrid system that combines a variant of the well-known HMM technique with
one of the modern techniques used to represent textual documents and known
as the Latent Dirichlet Allocation (LDA) [4].

We first remind the formal definition of the MTC problem and point out
some related works. Next, we present a general scheme of our proposed approach,
briefly reminding the basics of the HMM and LDA techniques, focusing on their



216 S. Zadrożny et al.

hybridization. Then, we discuss details of our approach, present the results of
some computational experiments and conclude with some final remarks.

2 The Multiaspect Text Categorization Problem

We assume a collection of documents, D = {d1, . . . , dn} which is structured as
follows. The documents are arranged in a set of predefined categories from the
set C = {c1, . . . , cm} in such a way the each document d ∈ D belongs to exactly
one category c ∈ C. The documents are further arranged within each category
in sequences σ ∈ Σ which are referred to as cases:

σk =< dk1 , . . . , dkT
> (1)

Σ = {σ1, . . . , σp} (2)

Each document d ∈ D belongs to exactly one case σ ∈ Σ. A different rationale
and logic assumed for the grouping of the documents into categories and cases
is here important. That is, respectively, a topical similarity or the belongingness
to the same business process, in relation to its different stages.

Our purpose is to develop a system, following the paradigm of supervised
learning, working in such a way that given a collection D structured as above
and a new document d� the system supports a human user in deciding how to
assign d� to a category c ∈ C and to a case σ ∈ Σ within this category. For
practical reasons, we distinguish between on-going cases comprising documents
of the business processes still under way, and closed cases related to the business
processes which are already completed. The newly incoming documents may be
classified only to the cases of the former type while cases of both types may serve
as training examples for the construction of a classifier.

The MTC problem formulation and its practical inspirations are original and
the literature of this topic basically comprises our recent works only. The most
similar problem already known in the literature is Topic Detection and Tracking
(TDT) [1]. It is inspired by a practical problem of handling a stream of news
stories to be organized in a dynamically structured collection. News/documents
concerning the same topic/event have to be grouped together and, similarly to
our MTC problem, incoming documents may belong to already existing groups
or may start new ones. Topics in the TDT are similar to the cases in our MTC
problem and, in general, both problems share many points. However, they are
inherently different which well justifies the study of the MTC as a separate
problem. For example, in the TDT there are no such distinct two levels of clas-
sification as in the MTC. Even if the concept of a hierarchical TDT was also
considered as an extension to the basic TDT, still the different nature of classes
at particular levels of the hierarchy is not considered there. Another important
aspect distinguishing both problems is that in the MTC cases are sequences of
documents while topics in TDT are just sets of stories. For more discussion of
the relation between the TDT and MTC, cf. our paper [8].

The MTC problem may be dealt with in many different ways. Due to a space
limit we refer the reader to a number of approaches we proposed in our earlier
papers.
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3 The Proposed Approach

3.1 The Techniques Employed: HMM, LDA and the Logistic
Regression

Hidden Markov Models (HMM) [12]. As we need a model of the sequence
(case) of documents, we assume here that the case is a realization of a stochastic
process with the Markov property and hidden states, i.e., is a Hidden Markov
Model (Chain) (HMM), denoted by λ = (A,B, π) and characterized by the
following parameters:

1. the number of hidden states NS ; the states Si ∈ S = {S1, . . . , SNS
}, may

be here interpreted as corresponding to the stages of the business process
represented by a given case,

2. the number of distinct observation symbols ui ∈ U = {u1, . . . , uNU
}; here the

observations are the whole documents and we discuss their representation in
what follows – in the explanation of the line 5 of the algorithm shown in
Fig. 1,

3. the state transition probability distribution, denoted as A = [aij ]1≤i,j≤NS
,

i.e., aij = P (qt+1 = Sj | qt = Si), where qt denotes the (hidden) state of the
stochastic process at time t,

4. the observation symbols probability distribution bj ∈ B = {b1, . . . , bNS
}

defined for each state Sj , i.e.:

bj : U → [0, 1], bj(ui) = P (Ot = ui | qt = Sj) (3)

where Ot denotes an observation generated at time t; O = (O1, . . . , OT ) will
denote the whole sequence generated by the HMM which corresponds here to
the sequence of documents (a case),

5. the initial probability distribution π over the state space S, i.e., π(Si) =
P (q1 = Si).

For our purposes the original basic version of the HMM, as described above,
seems to be not adequate. A possible extension [14] consists in adding covariates
to condition the probabilities of the transitions and observations. We use a vector
of covariates covt = [cov1t , . . . , covk

t ] for the observation distribution conditioning
which leads to the following modified form of (3):

bj(ui) = P (Ot = ui | qt = Sj , covt) (4)

There are three basic problems related to the HMMs [12]:

– the evaluation problem, i.e., how to efficiently compute the probability of an
observation sequence O = (O1, . . . , OT ) given an HMM λ,

– the decoding problem, i.e., given an HMM λ and an observation sequence
O = (O1, . . . , OT ) what is a most probable (in some sense) sequence of states
(S1, . . . , ST ) which led to the generation of sequence O,
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– the learning problem, i.e., given an HMM λ = (A,B, π) and a sequence of
observations O how to adjust λ’s parameters A,B and π so as to maximize
the probability of O, i.e., P (O | λ).

In our algorithm we are dealing mostly with the first and third problem but
the second problem is also of interest from the point of view of possible future
modifications of our approach.

Thus, we may adopt an HMM λc as a rich generative model of sequences
σ =< d1, . . . , dT > belonging to a given category c. We will discuss this in more
detail later, including the form of the covariates involved, in the explanation of
the line 5 of the algorithm shown in Fig. 1.

Latent Dirichlet Allocation (LDA) [4]. The Latent Dirichlet allocation
(LDA) is a generative probabilistic model of a collection of documents (a corpus).
Basically, it assumes that there is a set of k topics1 Z = {zj} and each document
d ∈ D of the corpus deals with a mixture θd of them, i.e., θd : Z → [0, 1] such
that

∑
j θd(zj) = 1. Each topic zj is, in turn, a distribution over a set of words

(vocabulary) V = {wi}, i.e., zj : V → [0, 1] and
∑

i zj(wi) = 1.
It is assumed that for the whole corpus a parameter denoted by β is fixed and

each topic distribution zj ∈ Z is sampled from the Dirichlet distribution with
parameter β over the space of all multinomial (categorical) distributions over
the vocabulary V . Another parameter set for the whole corpus is α which is the
parameter of the Dirichlet distribution used to sample the mixtures of topics, to
be explained below. Then, a document d, belonging to a corpus characterized by
the values of parameters α and β, is assumed to be generated in the following
process:

1. First, the length of the document in words, N , is sampled according to the
Poisson distribution with the parameter ξ.

2. Second, the mixture of topics θd is sampled for the document according to
the Dirichlet distribution with the parameter α.

3. Finally, for each of the N positions of words assumed to comprise the docu-
ment d, first a topic zj is sampled using the multinomial distribution θd and
then a word w ∈ V is chosen using the multinomial distribution related to
the topic zj .

Now, if we are given a corpus of documents we can observe only the values
of the variables corresponding to the particular positions of the words within
documents. All other random variables mentioned in the description of the gen-
erative process above are hidden. There exists a number of approaches to infer
the posterior distributions of the hidden variables and to estimate parameters
α and β [4]. Using one of them we obtain an LDA model of the corpus. Let us
denote its part which will be useful for our further considerations as:

L = ({zj}j=1,...,k, {θd}d∈D) = (Z,Θ) (5)
1 To shorten the notation we will denote the topic in the same way as the distribution

on the words defining it.
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i.e., we have a set of k multinomial distributions zj over the set of words V
for all k topics and for each document d ∈ D we have a mixture of topics θd

characterizing it. We are also in a position to determine the representation of a
new document d� /∈ D using the LDA model obtained.

3.2 The Algorithm

Here we assume that the incoming document d� has been first properly classified
to a category and the algorithm presented assigns a case to d�. We briefly discuss
the question of category assignment in Sect. 3.3.

The general scheme of the proposed algorithm is presented in Fig. 1. Now we
will discuss its particular lines, referring to the numbers shown in Fig. 1. In the
next section we present the results of the computational experiments carried out
using the R environment and its various packages, thus while describing here
particular steps of the algorithm we will refer to its more general aspects as well
as to the aspects specific for the assumed implementation.

Line 3. The document-term matrix forms a standard representation of the col-
lection of documents in the vector space model [2]. The set of terms (the vocab-
ulary) used to represent the documents is denoted as V . Here we employ the
weights of the terms (keywords) in documents equal to the frequencies of their
occurrence within those documents, i.e. the tf weighting scheme. This is the
format preferred for the LDA analysis of the collection.

Line 4. An LDA model L = (Z,Θ) is constructed for the whole collection of
training documents belonging to category c. The number of topics should be

1: Initialization stage
2: for all categories c ∈ C do
3: create a document-term matrix
4: create an LDA model, LDAc, for the collection Dc ⊆ D of the documents be-

longing to category c
5: train an HMM model, λc, using all cases belonging to Dc

6: end for
7: Classification stage
8: d� ← newly arrived document
9: c∗ ← category assigned to d�

10: represent d� using the model LDAc

11: for all ongoing cases σi do
12: compute, with respect to the HMM λc, the conditional probability of the case

σ extended with the document d�, < σi, d
� >, under the condition that the

sequence σ has been generated, i.e. Pλc(< σi, d
� >| σ)

13: end for
14: choose the case σi with the highest Pλc(< σi, d

� >| σ) and assign d� to this case.

Fig. 1. A general scheme of the proposed algorithm
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chosen experimentally but should not be too large as that number implies the
number of parameters that have to be learned during the training of the HMM,
in line 5.

Line 5. In this step, first, the representation of each document d ∈ D provided
by the obtained LDA model L in the form of a distribution θd is transformed into
a binary vector2, d = [d1, . . . , dk] ∈ {0, 1}k, of dimension k in such a way that
if the probability of a given topic zj according to θd is greater than a threshold
value τ (in the experiments τ = 1/k), then dj = 1 and otherwise dj = 0, i.e.:

θd −→ d : dj =
{

1 if θd(zj) ≥ τ
0 otherwise j = 1, . . . , k (6)

Then, all cases present in collection D are used to train the HMM with a
number of states NS chosen experimentally and observations identified with the
binary vectors dj defined in (6). The observation probability distributions (3)–(4)
are assumed to be multivariate Bernoulli distributions, i.e.,

bj(ui) = P (d | qt = Sj) =
k∏

j=1

P (dj = 1 | qt = Sj)dj ∗ P (dj = 0 | qt = Sj)1−dj

(7)
Actually, we are using a modified form of the formula (4) as we use the covariates
for our observation distributions and the logistic regression to take them into
account. Thus, in our case the following formula is employed:

logit(P (dj | qt = Sj)) = ω1cov
j
t + ω0 (8)

where the vector of covariates cov = (cov1t , . . . , covk
t ) at time t is defined as

follows:

covj
t = θdtfn

t−1
· zj =

|V |∑

i=1

dtfn
t−1,i ∗ zi

j j = 1, . . . , k (9)

where:

– |V | denotes the size of the vocabulary,
– dtfn

t−1 = (dtfn
t−1,1, . . . , d

tfn
t−1,|V |) denotes the document occurring in the case at

the preceding position (at time t − 1 in the parlance of the HMM modeling)
which is represented by its normalized version present in the document-term
matrix created in line 3 of the algorithm shown in Fig. 1; the normalization
takes the following form:

dtfn
t−1,i =

dtf
t−1,i

maxj dtf
t−1,j

i = 1, . . . , |V | (10)

where dtf
t−1,i denotes the i-th coordinate of the vector representing the docu-

ment in the document-term matrix before normalization,
2 To simplify notation we denote this vector as d, i.e., in the same way as the document
d ∈ D.
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– zj is the probability distribution representing the j-th topic, obtained as a
part of the LDA model of the collection, which is here treated as a vector,
i.e., zj = (z1j , . . . , z

|V |
j ),

∑|V |
i=1 zi

j = 1.

The usage of the covariates defined as above makes it possible to better model
the patterns of the similarity/dissimilarity of the documents neighboring in a
sequence belonging to a given category. More on that in the discussion provided
in Sect. 3.3.

Line 8. A new document d� to be classified is first represented both in terms of
the document-term matrix mentioned in line 3 as well as in terms of the LDA
model mentioned in line 4.

Line 9. As it is mentioned earlier, we assume that the document d� is already
classified to a category. In our previous work we usually use the k-nearest neigh-
bors algorithm to do that. The current use of the LDA models opens new possi-
bilities and in our further work we will check the efficiency of the method based
on the LDA model.

Line 12. In order to select a case to which document d� should be classified we
compute for each on-going case σi =< di1 , . . . , diT > and d� the following index:

P (d� | σi, λ) =
P (di1 , . . . , diT , d�|λ)

P (di1 , . . . , diT |λ)
(11)

which may be interpreted as the probability of the event that document d�

makes up the continuation of the case σi. In line 14 simply the case for which
the probability (11) is highest is selected and the document d� is assigned to it.

3.3 Discussion

The essence of the proposed algorithm, shown in Fig. 1, is relatively simple:
the succession of the documents within cases is modeled using an HMM whose
parameters are learned on the training data and a new document d� is suggested
to be added to a case for which it is the most probable successor (we do not
consider here for simplicity the situation when a new case has to be established;
for some solutions of this subproblem the reader is referred to our papers [8,19]
as well as, e.g., to [15]). However, a few points do require some extra comments.

It should be noted that several representations of the documents are
employed. The first is the standard vector space model based representation
using the tf weighting scheme which is then employed to create an LDA model
of the collection of documents3. The LDA based representation is then simplified,

3 All text processing considered in this paper is carried out separately for each category
c ∈ C, which will not be explicitly mentioned again, and, moreover, we will refer
to the collection of documents having in mind its subset comprising documents
belonging to one category.
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namely it is turned into a binary representation, for the purposes of the HMM
(see further discussion below). Finally, the original tf based representation is
normalized/scaled for the purposes of the covariates computation.

The decision on the assumed documents representation is, of course, strongly
connected with the form of the observation distributions used for the HMM
based cases modeling. The first important assumption we adopted is that about
independence of the features representing documents, i.e., terms/keywords in the
standard vector space model representation or topics in case of the LDA. While
this assumption is obviously incorrect in general, still it is usually assumed as
otherwise the number of parameters of multivariate distributions makes effective
and efficient learning practically impossible. Then, we have tried several options
using both the Boolean representations of documents and their weighted forms,
the former combined with the multinomial distribution and the latter combined
with the Gaussian distribution. A multinomial distribution becomes cumbersome
already for relatively small vocabularies V , requiring NS |V | parameters to be
learned. In our experiments the vocabulary, already aggressively reduced, was
composed of ca. 250 terms. The use of the LDA models makes it possible to
reduce the number of features and at the same time provides for a more semantic
rich representation. The number of parameters to be learned for the observation
distributions is now equal 2NSk, where NS is the number of states and k is the
number of LDA topics. In our experiments the “binarized” version of the LDA
representation proved to be most effective.

Actually, only after including covariates to a binary LDA representation via
the logistic regression we have obtained satisfactory results in our experiments.
The covariates are defined in such a way that the observation distribution – at
a given point in time/position in the case – depends not only on the current
state but also on the actual form of the preceding document expressed using
normalized tf based representation. Formula (9) makes it possible to model the
patterns of dependency between documents neighboring within a case such that
occurrence in the preceding document of the terms strongly represented in a
given LDA topic increases or decreases the probability of this topic in the next
document in the sequence.

The proposed solution is based on a rather simple extension of the classic
HMM. An interesting and natural alternative seems to be the use of a discrim-
inative model, such as, e.g., the conditional random field. However, it should
be noted that the MTC task resembles rather a time-series prediction problem
than a sequential supervised learning problem [6]. In particular, in general, we
do not assume the availability of the training data comprising cases where each
document is assigned to a class (a label). Such a labeling may be envisaged, e.g.,
assuming that a specific stage of a business process may be associated with each
document but this leads to a different class of possible approaches referring to
the concept of business processes mining which we do not consider here. Anyway,
in our research agenda for the MTC problem we consider the use of the Hidden
Conditional Random Fields [10] which do not require labeled training sequences.
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4 Computational Experiments

We have verified the proposed algorithm using an enlarged version of the col-
lection of documents we adopted and used in our previous works. A detailed
description of the collection may be found in [17,18]. The starting point is the
set of articles on computational linguistics available in the framework of the ACL
Anthology Reference Corpus (ACL ARC) [3]; see also http://atmykitchen.info/
datasets/acl rd tec/cleansed text/index cleansed text.htm. We use a subset of
664 papers which are composed of sections. In order to group the documents
into categories we cluster the whole set of 664 papers into 6 clusters (the num-
ber 6 has been chosen experimentally to obtain reasonably sized categories).
Then, we treat each paper as a case composed of documents corresponding to
the sections of this paper.

Thus, we obtain 664 cases comprising 6884 documents in total. The number
of cases and a cut-off point in each of them are randomly chosen. All documents
at the cut-off positions are treated as test data while the documents following
them are deleted from the collection. In each experiment, for each category a
number of test documents has been selected proportionally to the size of this
category, 64 documents in total in each experiment, i.e., 10 % of cases are each
time treated as on-going.

The results obtained, averaged over 10 runs and 6 categories, are the follow-
ing: microaveraged and macroaveraged accuracy of classification equal 0.54 and
0.57, respectively. The results are encouraging though one can well imagine a
number of ways the proposed algorithm may be tuned and there seem to be a
real potential for improvement thanks to employing a more semantic oriented
document representation and an explicit modeling of dependencies between the
documents within cases. In our previous papers we reported the results for other
approaches we proposed earlier, including also a recent technique developed for
the topic tracking task in TDT. However, most of them concerned a smaller
subset of the ACL ARC corpus and also a smaller number of cases are there
assumed to be on-going. It should be noted that if a case is considered as a
class the respective classification problem gets usually more difficult with the
growing number of classes; cf., e.g., [5]. However, recently we have tested (and
compared against its newly proposed modified version) the method introduced
in [18] on the same, larger version of the ACL ARC corpus which is adopted
in this paper. We have obtained comparable results but the current proposed
solution attempts to grasp the logic behind the order of the documents in a case
in a more explicit way and is thus more promising as a starting point for some
further improvements.

All computations are carried out using the R platform [11] and the following
packages: tm [7], topicmodels [9], depmixS4 [14] and our own R scripts. The
most important parameters of the methods involved are the following: for the
LDA – the number of topics k = 30, the α parameter of the Dirichlet distribution
= 1.67, i.e., 50/k, the beta parameter is automatically estimated; for the HMM
– the number of states = 6, observation distributions are binomial (actually,
Bernoulli as 1 trial is assumed) with the logit link.

http://atmykitchen.info/datasets/acl_rd_tec/cleansed_text/index_cleansed_text.htm
http://atmykitchen.info/datasets/acl_rd_tec/cleansed_text/index_cleansed_text.htm


224 S. Zadrożny et al.

5 Concluding Remarks

We have proposed a novel hybrid approach to solving the new multiaspect text
categorization (MTC) problem proposed in our previous works. In comparison to
our earlier approaches it assumes as a point of departure a more sophisticated
explicit model of the whole collection of documents and, in particular, of the
sequences of documents forming cases. In the new hybrid approach proposed,
our earlier solution proposal based on the HMM is combined in a synergistic way
with the LDA modeling of the collection of documents which certainly opens
new vistas on the capability of this modeling. In particular, the possibility to
link the probability of occurrence of an LDA topic in a given document with
the vocabulary of the preceding document seems to be particularly interesting
and promising. This is a type of dependency modeling we are looking for, i.e.,
such which to some extent abstracts from the actual value of the features of the
documents and makes it possible to discover more universal patterns typical for
different cases belonging to the same category.

Acknowledgments. This work is supported by the National Science Centre under
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Abstract. Approximate Numerical Expressions (ANEs) are linguistic
expressions involving numbers and referring to imprecise ranges of val-
ues, such as “about 100”. This paper proposes to interpret ANEs as
fuzzy numbers. A model, taking into account the cognitive salience of
numbers and based on critical points from Pareto frontiers, is proposed
to characterise the support, the kernel and the 0.5-cut of the correspond-
ing membership functions. An experimental study, based on real data, is
performed to assess the quality of these estimated parameters.

Keywords: Approximate numerical expression · Fuzzy number · Pareto
frontier · Empirical study · Number salience

1 Introduction

Approximate numerical expressions (ANEs) are vague linguistic expressions of
the general form “about x” where x is a number. They are used in daily life
to denote imprecise ranges of values, e.g., “Berlin is located at about 900 km
from Paris”; “The patient has had fever for about one week”. In the field of
Human-Computer Interfaces, ANEs raise the issues of their interpretation, i.e.,
the estimation of the range of values they designate and their representation in
information systems, for instance as intervals of values or as fuzzy sets.

From a linguistic perspective, Lasersohn [10] proposes to formalise vagueness
in a general context, beyond the case of numerical expressions, through the use
of pragmatic halos, defined as the union of the entity that is explicitly referred to
by a vague expression and entities of the same semantic type that are implicitly
denoted. For instance, in the proposition “there were about 100 participants at the
meeting”, the pragmatic halo of the vague expression “about 100” corresponds to
100 exactly and a range of possible values around 100 (e.g., [90; 110]). Therefore,
interpreting an ANE corresponds to estimating the range of values that satisfy
it, i.e., the values that are included in its pragmatic halo.
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 226–237, 2016.
DOI: 10.1007/978-3-319-40596-4 20
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A natural approach to model the fuzziness in boundary values is to use fuzzy
sets [14,15], that lead to represent ANEs as fuzzy numbers [16], defined by their
membership functions. Fuzzy numbers are classically used to represent uncer-
tainty or imprecision in numerical data [5]. However, to the best of our knowl-
edge, no attempt has been made to empirically characterise the membership
functions of fuzzy numbers related to ANEs in natural language.

The aim of this paper is to propose a model to characterise the support,
the kernel and the 0.5-cut of fuzzy numbers corresponding to ANEs of the form
“about x”, for x ∈ N. More specifically, the model is based on critical points
from Pareto frontiers, as a compromise between the numbers cognitive salience
and their distance to the reference value x. An empirical study is conducted
to collect real data and to perform an experimental validation to highlight the
quality of the estimations provided by the model.

The paper is structured as follows: Sect. 2 describes previous works and exist-
ing models. The proposed model is presented in Sect. 3. The data collection pro-
cedure is described in Sect. 4. Section 5 presents the experimental study and its
results. Finally, conclusions and future works are discussed in Sect. 6.

2 Related Works

This section introduces the notations and definitions of dimensions and proper-
ties of ANEs used in this work. Two models from the literature, estimating the
range of denoted values, are then presented: a scale-based model [8,13] and a
regression model [4]. Finally, the fuzzy set approach to vagueness is discussed.

2.1 Definitions and Notations

The ANEs considered in this paper are of the form “about x”, for x ∈ N. In the
decimal system, x can be written as x =

∑q
i=0 ai ·10i, where ai ∈ �0, 9�. We pro-

pose four dimensions, formally defined in Table 1, to characterise x: granularity
Gran(x) is the power of ten x belongs to, relative magnitude Rm(x) is the value
of its last significant digit and precision Prec(x) is the product of granularity
and relative magnitude. These dimensions are expected to influence the inter-
pretation of ANEs. For instance, precision is meant to reflect the expectation
that the width of the interval corresponding to “about 30.050” is comparable to
the one of “about 150”, 50 being the common part.

From these dimensions, two classes of natural numbers can be distinguished.
Round numbers are classically defined as multiples of 10 with a single significant
digit (e.g., 50 or 8000). We propose to define pseudo-round numbers as multiples
of 10 with at least two significant digits (e.g., 320 or 8150).

Beyond these arithmetical characteristics, we propose another one, taking
into account a cognitive component. Indeed, it has been observed than some
numbers occur more frequently than others in corpuses [2,7] and complexity
Cpx(x) aims at capturing this salience. It appears that, firstly, the more signifi-
cant digits a number has, the lower its frequency. Secondly, numbers whose last
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Table 1. Dimensions of a natural number x =
∑q

i=0 ai · 10i, illustrated by x = 4750
in the last column. B(x), used in the complexity definition, is defined in Eq. (1).

Dimension Formal definition Example x = 4750

Granularity Gran(x) = 10i∗ where 10

i∗ = min{i|ai �= 0}
Relative magnitude Rm(x) = ai∗ 5

Precision Prec(x) = ai∗ · 10i∗ 50

Number of significant digits NSD(x) = q − i∗ + 1 3

Complexity Cpx(x) = NSD(x) − B(x) 2.5

significant digit is 5 or, to a lower extent, 2, occur more frequently. For symmetry
reasons around multiples of 10, we propose to process numbers with Rm(x) = 8
(e.g., 18 = 20 − 2) as numbers with Rm(x) = 2 (e.g., 22 = 20 + 2). Thus, we
propose to formalise the complexity of a number as its number of significant
digits minus a bonus to capture these specific cases, if the number of significant
digits is at least 2.

The bonus function thus distinguishes three categories, depending on the
value of the last significant digit Rm(x) and respecting the order of frequency of
appearance: B(x1) > B(x2) > B(x3), for x1, x2, x3 ∈ N such that Rm(x1) = 5,
Rm(x2) ∈ {2, 8} and Rm(x3) /∈ {2, 5, 8}. We arbitrarily propose to set these
values at 0.5, 0.25 and 0. The bonus function is therefore formalised as:

B(x) =

⎧
⎨

⎩

0.5 if Rm(x) = 5 and NSD(x) > 1
0.25 if Rm(x) = 2 or Rm(x) = 8 and NSD(x) > 1
0 otherwise

(1)

The plus signs on Fig. 1 illustrate the complexity Cpx(x) for all integers x
between 400 and 500.

2.2 Scale-Based Models (SBM)

The first approach in interpreting ANEs is proposed from a linguistic perspec-
tive and models the range of denoted values as an interval. Scale-based models
(SBM) [8,12,13] rely on scale systems S = {s1, . . . , sn}, where si are granularity
levels such that si < si+1. As examples, one can mention the time scale-system,
S = {1 min, 5 min, 15 min, . . .}, or the decimal one, S = {1, 10, 100, . . .}.

The interpretation of a numerical expression can occur at any granularity
level. For instance, in the decimal system, the numerical expression “100” can
be interpreted at the 1, 10 or 100 levels. The finer the granularity, the narrower
the interval. Speakers express the intended level through the use of approxima-
tors [12]: “exactly” refers to the finest granularity level the expression belongs to,
while “about” refers to the coarsest one (e.g., the level of thousands for “about
1000”), formally defined as GranC(x) = sup({si ∈ S|x mod si = 0}). If the
scale-system S is the decimal system, GranC(x) = Gran(x) (see Table 1).
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SBM proposes that the values denoted by an ANE x are the ones closer to x
than to any other number on GranC(x). The interval is formally defined as:

ISBM (x) = [x − GranC(x)/2;x + GranC(x)/2] (2)

For instance, ISBM (300) = [250; 350]; ISBM (8150) = [8145; 8155]. This approach
has the advantage of taking into account the ANE granularity; however, it does
not address the issue of the relative magnitude: all ANEs at the same granularity
level result in the same interval width, although, one may expect, for instance,
that the interval of “about 100” would be narrower than the one of “about 800”.

2.3 Regression Model (REGM)

Ferson et al. [4] propose an empirical approach using real data to test the rel-
evance of predictors of the interval width. Semantically contextualised ANEs
(e.g., “Roughly 25% of Canadians are Protestant.”) were presented to partici-
pants, who were asked to estimate the boundaries of the corresponding intervals.
The proposed model then estimates the interval as:

IREGM (x) =
[

x − 10L(x)

2
;x +

10L(x)

2

]

where L(x) =A + B · Om(x) + C · R(x) + D · f(x)
+ E · Om(x) · R(x) + F · Om(x) · f(x) + G · R(x) · f(x)
+ H · Om(x) · R(x) · f(x) (3)

where A to H are parameters empirically set by performing a regression on
the data. Om(x) is the ANE order of magnitude (Om(x) = log10(x)), R(x)
its roundness (R(x) = i∗ + 1), and f(x) its “fiveness”, defined as f(x) = 1 if
ai∗ = 5, f(x) = 0 otherwise. Om(x), R(x), f(x) and their combinations have
been empirically selected as predictors for the interval width.

This model presents the advantage of allowing the adaptation to different
contexts by learning parameters on a dataset. However, it can be noted that the
semantic context is not controlled in the experimental setting although mixing
different contexts may result in interactions between this factor and the ones
related to the ANE reference number.

2.4 Fuzzy Representation of Vagueness

From a linguistic perspective, Lakoff [9] considers that every term in natural
language is, to some extent, fuzzy: category membership is not a matter of all or
nothing, but rather a matter of degrees. As supported by empirical evidence [6],
fuzzy logic is therefore a relevant formalisation of the vagueness inherent to
natural language: any term can be modeled by a membership function.

Among the natural language terms, numerical expressions can be represented
as fuzzy numbers [16], defined as fuzzy sets on the universe R. From this point
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of view, approximators are modifiers of the membership function of the fuzzy
reference value [11]. For instance, the approximator exactly narrows the curve
of the membership function whereas approximately widens it.

Interpreting an ANE x therefore consists in estimating its membership func-
tion, fx̃(y), where y are values that can be denoted by “about x”. Among various
methods to elicit such membership functions (see, e.g. [1]), the random set view
interprets the membership degree of a candidate number (e.g., 95 for “about
100”) as the cumulative frequency of participants thinking that it belongs to
the interval denoted by the ANE. Thus, if half of the population think that 95
is included in “about 100”, the truth value of 95 is 0.5. The median of the dis-
tribution is therefore a critical point for membership functions that corresponds
to the 0.5 membership degree.

3 Proposed Model

This section describes the model we propose to estimate the support, the kernel
and the 0.5-cut of fuzzy numbers corresponding to ANEs.

The Pareto Frontiers Model (PFM): The model we propose is based on the
assumption that, when interpreting an ANE, human beings tend to make a com-
promise between the cognitive cost of boundary values, which can be measured
by the complexity Cpx(x), on one hand, and the range of denoted values, mea-
sured by the distance between the boundaries of the interval and the ANE x, on
the other hand. It implies that, for a given range of denoted values, the cognitive
cost is minimised; reciprocally, for a given cognitive cost, the range of denoted
values is minimised. For instance, given the ANE “about 500”, participants of
the empirical study (see Sect. 4) tend to give answers such as [499; 501], [490; 510]
or [450; 550]. The boundaries of these intervals are the closest to the ANE when
Cpx(x) is 3, 2 and 1.5. Therefore, the values that optimise the compromise are
better candidates to be the boundaries than all other values.

As a consequence, the model we propose first consists in determining these
good candidates by generating Pareto frontiers [3]: all possible candidate values v
in [1;x[ for the lower boundary, and in ]x,+∞[ for the upper boundary of the
ANE x are compared on two criteria (i) the absolute distance from the ANE:
dx(v) = |v − x|; (ii) the complexity Cpx(v). The selected values, constituting
the Pareto frontier, are those that are not dominated by any other value. For a
given ANE, two Pareto frontiers are considered: P−(x) = [y−

1 , . . . , y−
n− ] relates

to the lower boundary of the interval and P+(x) = [y+
1 , . . . , y+

n+ ] to the upper
one, ordered by increasing distance to x, dx(yi). Figure 1 illustrates these Pareto
frontiers for the ANE “about 440”: P−(440) = [439, 438, 435, 430, 420, 400] and
P+(440) = [441, 442, 445, 450, 500]. One can notice that the model naturally
captures the asymmetry observed in the data (see Sect. 4) due to salient numbers
(e.g., 420, 450) in the reference number neighborhood.

The second step of the model we propose consists in using the values in the
Pareto frontiers as candidates to be the boundaries of the support, kernel and
0.5-cut limits of fuzzy numbers corresponding to ANEs.
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Fig. 1. Pareto frontiers (red lines) for lower (left from green line) and upper (right
from green line) boundaries of the ANE “about 440”. Black plus signs represent the
complexity Cpx(x) for each integer value in [400; 500] (see Table 1). (Color figure online)

Fig. 2. Support, kernel and 0.5-cut of the membership function for ANE about 440,
based on critical points from Pareto frontiers with piecewise linear interpolation.

Support, Kernel and 0.5-cut Estimations: Any value outside the support
interval, noted IS(x), is considered as not referred by the ANE. We therefore
propose to define the farthest values from x of the Pareto frontiers as boundaries
of this interval, formally: IS(x) = [y−

n− ; y+
n+ ].

Any value inside the kernel interval, noted IK(x), is considered as being fully
denoted by the ANE. We propose to define the nearest values from x of the
Pareto frontiers as boundaries of this interval, formally: IK(x) = [y−

1 ; y+
1 ].

The boundaries of the 0.5-cut interval, noted IM (x), are also selected accord-
ing to their rank in P−(x) and P+(x). We propose to make the chosen rank
dependent on the considered ANE x, so as to make the model more flexible.
More, precisely, we propose that the rank of the boundary estimation depends
on the number of significant digits NSD(x) and the precision Prec(x) of the
ANE: an exhaustive analysis of empirical data (omitted in this paper for reasons
of space) has validated them as factors influencing ANE interpretation. The rank
is computed as:
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rP (x) = round

⎛

⎝log(Prec(x)) − 1 +
NSD(x)∑

k=1

k

⎞

⎠ (4)

The estimation of the 0.5-cut interval is then IM (x) = [y−
rP (x); y

+
rP (x)].

For the example x = 440, as illustrated in Figs. 1 and 2, one obtains:
IS(440) = [400; 500], IK(440) = [439; 441] and IM (440) = [430; 450].

4 Data Collection

We conducted an empirical study to collect real intervals corresponding to ANEs
so as to experimentally validate our proposed model. This section presents the
methods used to collect and process the data.

Material: An online questionnaire containing 24 uncontextualised ANEs, 15
round (20, 30, 40, 50, 80, 100, 200, 400, 500, 600, 800, 1000, 2000, 6000 and
8000) and 9 pseudo-round (110, 150, 440, 560, 1100, 1500, 4700, 4730 and 8150)
was designed. These values have been selected in order to cover different combi-
nations of dimensions, to avoid biases towards any specific one: several relative
magnitudes at a granularity level (e.g., 20/40/80), several granularity levels at a
relative magnitude (e.g., 80/800/8000), several numbers of significant digits at
the same precision (e.g., 50/150/8150). ANEs are presented in a random order.
The instructions, given in French, can be translated as “In your opinion, what
are the MINIMUM and MAXIMUM values associated with “about x”?”. This
questionnaire meets the criteria proposed by [1] to elicit membership functions
in a random set perspective. This method is also similar to the one used by [4].

146 participants have been recruited through an announcement diffused on
mailing-lists: 102 women and 44 men, aged 20 to 70 (M = 38.6; σ = 14.2).

Data Preprocessing: The answer to ANE x given by participant p is noted
Ip(x) = [I−

p (x); I+p (x)]. It is considered as an outlier if: (i) it is inadequate (e.g.,
[0; infinity]), (ii) I−

p (x) > x or I+p (x) < x (e.g., I(800) = [700; 750] or I(800) =
[810; 850]), or (iii) I−

p (x) < x/10 or I+p (x) > 10x (e.g., I(100) = [10; 1100]). In
a second step, mean and standard deviation are computed for the remaining
boundaries of each ANE. Any boundary value beyond three standard deviations
of the mean is considered as an outlier. Finally, participants with more than 70 %
missing values or outliers are considered as untrustworthy and all their answers
are excluded. The analyses include 3177 (91 %) of the 3504 collected intervals.

Global Observations: In the collected data, not detailed here, it can be
observed that participants tend not to agree on the intervals: on average, 15.4
different answers per boundary are obtained, ranging from 9 (for “about 20”)
to 22 (for “about 8150”). However, 84.4 % of the boundaries are located on the
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Pareto frontiers as defined in Sect. 3, which validates the principle underlying
the model we propose.

When examining whether the provided intervals are symmetric around the
reference value, the collected data show that symmetry depends on the ANE:
74.2 % are symmetric with respect to the considered ANE, but intervals of some
ANEs, such as 440 or 4730, are less often symmetric (63 % and 50 % respectively).
This observation validates the definition of a flexible model allowing for non-
symmetric observations.

5 Experimental Study

This section presents the experimental study we performed in order to assess
the quality of the three estimated parameters of fuzzy numbers corresponding
to ANEs: 0.5-cut, support and kernel. The used quality criteria and the results
of each parameter are described in the next subsections.

5.1 Evaluation of the 0.5-cut Estimation

In the random set view of membership functions [1], 0.5-cuts correspond to the
median of the intervals given by the participants. Thus, to evaluate the 0.5-cut
estimation, we propose to compare it to this median interval.

As the models from the literature [4,13] are not fuzzy, they can be used to
estimate either the support, the kernel or the 0.5-cut. We propose to use them
to predict the 0.5-cut as it is a central indicator of the boundary distributions.

Quality Criteria: We note X the set of considered ANEs and P (x) the set of
participants whose intervals are not considered as outliers for x ∈ X. Moreover,
we note the prediction of model m [m−(x);m+(x)], ΔM b

m(x) = |mb(x) − x| its
distance from x for b ∈ {−,+}, and ΔMedb(x) the median of the distances
ΔP b

p (x) = |Ibp(x) − x| over all participants p in P (x).
To assess whether the estimations are correct, we first propose to use the

accuracy score of the median prediction, i.e., the number of boundary values
for which the relative distance to the observed median is lower than 10 %. The
median accuracy, MA, to be maximised, can be formalised as:

MA(m) =
1

2 · |X|
∑

x∈X

∣
∣
∣
∣

{

b ∈ {−,+}
∣
∣
∣
∣
|ΔM b

m(x) − ΔMedb(x)|
ΔMedb(x)

≤ 0.1
}∣

∣
∣
∣ (5)

Secondly, to assess the degree of error, we propose to evaluate the bal-
ance between participants who are above and below the estimated 0.5-cut, for-
mally defined as: N+ = |{p ∈ P (x)|ΔP b

p (x) > ΔM b
m(x)}| and N− = |{p ∈

P (x)|ΔP b
p (x) < ΔM b

m(x)}|. A correct estimation of the median interval implies
that the model m should be such that N+ = N− for all x, b.
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However, since interval boundaries given by the participants are distributed
on few points, a perfect balance may not be possible. Therefore, the score takes
into account the balance of the actual median, i.e., N∗

+ = |{p ∈ P (x)|ΔP b
p (x) >

ΔMedb}| and N∗
− = |{p ∈ P (x)|ΔP b

p (x) < ΔMedb}|.
The score of the model then depends on the difference between N+ and N∗

+

and between N− and N∗
−. Averaging over the two boundaries b ∈ {−,+} and

all considered ANEs, the median error, to be minimised, can be defined as:

MErr(m) =
1

2 · |X| ·
∑

x∈X

∑

b∈{−,+}
(|N+ − N∗

+| + |N− − N∗
−|) (6)

Experimental Procedure: Using these quality criteria, we compare the per-
formances of our proposed Pareto frontiers model PFM, the scale-based model
SBM [8,13] with the decimal system (i.e., S = {1, 10, 100, . . .}), and the regres-
sion model REGM [4]. The latter only provides the size of the intervals and no
information about their location or symmetry around the ANE. We make the
assumption that they are symmetric and centered on x.

A cross-validation procedure is performed on two benchmarks, (i) Participant
(PB): REGM learning is performed on the intervals given by 75 % of the partic-
ipants, the remaining 25 % constitute the test dataset. (ii) ANE (AB): REGM
learning is performed on the intervals given by all participants on 17 (66.7 %)
of the ANEs. The 7 remaining ANEs are used as test dataset. Each benchmark
consists in 1000 random decompositions of the learning/test datasets, with the
constraint that they must include a mix of round and pseudo-round ANEs.

In order to determine which model shows the best results in each benchmark,
statistical analyses using ANOVA tests with model as factor, and Tukey’s HSD
post-hoc tests are performed. The significance threshold is set at p = .01.

Results: Table 2 shows the performances of the models. Results are similar in
both the Participant and the ANE benchmarks.

It can firstly be observed that our proposed model PFM shows the best per-
formances, both in median prediction accuracy (MA) and in median estimation
error (MErr), providing an empirical validation.

Table 2. Means and standard deviations of the two criteria for each model on the
Participant (PB, left) and the ANE benchmarks (AB, right). Bold scores are the sta-
tistically best ones according to the ANOVA and post-hoc tests.

Model MA (%) - PB MErr - PB MA (%) - AB MErr - AB

SBM 28.0 (6.9) 0.76 (0.08) 24.9 (14.5) 0.79 (0.18)

REGM 20.0 (7.2) 0.67 (0.18) 15.7 (13.2) 0.65 (0.14)

PFM 58.3 (8.9) 0.35 (0.12) 63.8 (14.0) 0.27 (0.16)
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The behaviour of REGM (poor MA but an average MErr) can be due to
the fact that it provides real-numbered boundary estimations while participants
tend to give round or pseudo-round numbers, leading to erroneous predictions.
However, the average MErr indicates that these real-numbered estimations are
close to the actual medians. On the contrary, SBM appears to perform better
than REGM on prediction accuracy while the prediction errors are much more
important.

5.2 Evaluation of the Support and Kernel Estimations

Quality Criterion: Assessing the quality of the support and the kernel esti-
mations the same way as the 0.5-cut raises the issue of the outliers. Indeed,
in the random set view, the support corresponds to the largest interval, and
the kernel corresponds to the narrowest one. Therefore, the presence of a single
extreme answer results in aberrant support or kernel values. Prediction accuracy
or distance to actual values thus lack robustness with respect to extreme values.

To overcome this issue, we propose to build a basic piecewise linear mem-
bership function, fG

x̃ (y), obtained by linking the generated points of support,
0.5-cut and kernel and to compare it to an elicited reference fuzzy set fE

x̃ (y).
We build the latter in a random set view [1], defining fE

x̃ (y) as the cumulative
relative frequency of participants including y in the interval corresponding to x.

We propose to compare fG
x̃ (y) to fE

x̃ (y) using the area of their difference,
relatively to the area of the reference fE

x̃ (y). This criterion, measuring the mem-
bership function quality, to be minimised, can be formalised as:

MFQ(x) =

∫
y
|fG

x̃ (y) − fE
x̃ (y)|

∫
y
fE
x̃ (y)

(7)

Results: Figure 3 illustrates four examples of elicited and generated member-
ship functions. The high steps observed in fE

x̃ (y) are due to boundary values
frequently given by participants.

The generated membership functions visually fit well the elicited ones of 150,
400 and 8150, corresponding to MFQ scores 0.211, 0.397 and 0.618 respectively.
Moreover, the asymmetry of the fE

x̃ (y) is captured, validating our PFM model.
The mean quality score is 0.502 (σ = 0.175), ranging from 0.211 (x = 150)

to 0.950 (x = 1100). Setting a threshold at MFQ = 0.6 to consider a good
estimation, 17 over 24 (70.1 %) generated membership functions are correct.

As expected, the presence of outliers (i.e., 7500 and 10000 for x = 8150; 100
and 600 for x = 400) lowers the score of some ANEs. In the particular case of
x = 1100 (Fig. 3, top right), the poor obtained fitting and score (MFQ = 0.950)
can be explained by the fact that the upper Pareto frontier ends at 2000, a value
not given by participants.

When detailing the difference between round and pseudo-round ANEs, it
appears that the mean scores obtained for round (0.488) and pseudo-round num-
bers (0.524) are similar. However, the standard deviation reveals a higher sig-
nificantly variability for pseudo-round numbers (0.272) than for round numbers
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Fig. 3. Generated (red) and elicited (black) membership functions of four ANEs: x =
150 (top, left), x = 1100 (top, right), x = 8150 (down, left), and x = 400 (down, right).
(Color figure online)

(0.087), indicating that some ANEs are well captured while some other are less.
In particular, x = 1100 (MFQ = 0.950) and x = 4730 (MFQ = 0.864) result in
scores far from the mean, compared to other ANEs.

6 Conclusion and Future Works

In this paper, we propose a model to interpret ANEs of the form “about x”
as fuzzy numbers. More specifically, a computational model, based on critical
points from Pareto frontiers and capturing the cognitive dimension of number
salience, is proposed to characterise the support, the kernel and the 0.5-cut of
the corresponding membership functions.

We conducted an experimental study on real data collected from an online
questionnaire, which validates the proposed model: it shows that PFM performs
better than the models from the literature in 0.5-cut estimation. Moreover, the
piecewise linear membership functions generated from the estimations are close
approximations of the elicited ones.

Future work will study the relevance of including other points from the Pareto
frontiers as specific α-cuts to better fit the elicited membership functions. It will
also focus on extension of the model to take into account the context of an ANE
occurence as it has an effect on ANE interpretation [10,13]. Indeed, “about 10.000
euros”, for instance, may not be interpreted the same way it is said by a seller
or a buyer. Extensions of the model will focus on other linguistic approximators,
such as “at least” or “less than”.
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Finally, the proposed model will be implemented in applications such as
search engines to improve the relevance of answers provided to approximate
queries.

Aknowledgments. This work was performed within the Labex SMART (ANR-11-
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Abstract. When evaluating an odor, non-specialists generally provide
descriptions as bags of terms. Nevertheless, these evaluations cannot be pro-
cessed by classical odor analysis methods that have been designed for trained
evaluators having an excellent mastery of professional controlled vocabulary.
Indeed, currently, mainly oriented approaches based on learning vocabularies
are used. These approaches too restrictively limit the possible descriptors
available for an uninitiated public and therefore require a costly learning phase
of the vocabulary. The objective of this work is to merge the information
expressed by these free descriptions (terms) into a set of non-ambiguous
descriptors best characterizing the odor; this will make it possible to evaluate the
odors based on non-specialist descriptions. This paper discusses a non-oriented
approach based on Natural Language Processing and Knowledge Representation
techniques - it does not require learning a lexical field and can therefore be used
to evaluate odors with non-specialist evaluators.

Keywords: Sensorial analysis � Distributional semantics � Information fusion �
Taxonomy � Odor quality � Non-oriented approach

1 Introduction, Problem and Objective

A Major Societal Concern. According to several surveys, people have become
increasingly sensitive to issues related to pollution and environment - see for example
ISAAC study [1] and Aphekom study [2]. In particular, in large cities and large
industrial areas, people have become increasingly attentive to air pollution. Indeed,
odors are considered to be the second reason for complaint after noise. They are often
considered to be aggressions and are generally perceived as threats for individual
health. In this context, numerous companies focus on finding solutions to improve their
image and their relationship with neighboring populations of industrial sites. It is
therefore essential for these companies to control and to measure the acceptability
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related to their air emissions – and therefore to have tools at their disposal to perform
these analyses. Assessing the acceptability of an odor is to check that the odor is not
associated to an unpleasant character. Studying the acceptability of an odor therefore
relies on the ability to analyze the natural language descriptions qualifying the odor.

The evaluation of odor quality is also considered vital for companies that want to
remain competitive. Indeed, the quality of an odor highly impacts product design since
smell plays a central role in defining the identity of a product - the odor of a product
may have both positive and negative effects on product perception – almost everybody
will remind the often artificial and carefully designed sweet smell of his favorite candy.
Odor quality has therefore a direct impact on sells, which explains that controlling this
product characteristic is of major importance for brands.

Identifying the Smell. The smell is the image that the brain has made in the presence of
odor molecules. An odor is commonly characterized using three notions: (i) its intensity,
which depends on the concentration of the odorous substance of the inspired air; (ii) its
hedonic tone, which assigns a pleasant or an unpleasant character to the smell, and (iii) its
quality, i.e. to what the odor refers to, that can be translated by linguistic descriptors. The
quality refers to the perceived odor and remains the most subjective propriety of
olfactory perception - as it relies on the personal memories of individuals [3].

In this setting, the complexity of evaluating odor quality returns to the difficulty to
analyze odor descriptions. Currently, industrials have long relied on well-defined eval-
uation procedures in the framework of costly sensorial analyses sessions that have been
designed for carefully analyzing, controlling and selecting odors [13]. Such evaluations
of odors quality are commonly made through controlled linguistic descriptors provided
by trained specialists capable of distinguishing precise panels of odors. Among the
approaches proposed in the literature, the wheel of odors and odor fields are often used to
qualify odors [4, 5]. These methods use an oriented approach based on a common
referential to qualify the odors, which facilitates their characterization. Indeed, forcing
evaluators to use specific descriptors facilitates understanding, interpreting and pro-
cessing the results. Nevertheless, a learning phase in which valid descriptors have to be
learned is required to use such methods. This (i) prevents their use by non-specialists,
(ii) implies additional training costs, and (iii) limits the number of evaluators and
experiments that can be used to evaluate an odor. In this article, we propose an alternative
to this costly and restrictive approach by defining an automatic approach enabling to
evaluate odors based on non-specialist descriptions. The aim of this work is therefore to
propose an approach for evaluating an odor by analyzing natural language descriptions
provided by non-specialists. The proposed approach is non-oriented and requires neither
prior training nor learning of a specific lexical field by the evaluators.

We consider that the terms used by non-specialists to describe the quality of an
odor are free, i.e. it is here assumed that people provide their assessments using their
own words and vocabulary. Therefore, contrary to descriptions provided by experts in
oriented approaches, the terms we have to deal with are not part of an implicit con-
trolled and standardized vocabulary defining the terms commonly used for character-
izing (specific) odors. The purpose of our work is therefore to identify the descriptors
that best describe the smell by analyzing natural language descriptions provided by
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non-specialists. In this paper, we focus on the special case where we want an odor to be
described by a set of non-ambiguous descriptors. These descriptors−denoted concepts
in the rest of the paper−are assumed to be partially ordered into taxonomy O ¼ 4;Cð Þ,
with C the set of concepts. The knowledge organization confers their semantic nature to
the concepts. The aim of this work is therefore to summarize the quality of an odor into
a conceptual annotation, i.e. set of concepts.

Assumptions and Materials. For a given odor evaluation, a description provided by
non-expert is assumed to be a set of terms in which each term may be associated to an
intensity (the intensity degree is defined to be between 1 and 5, the higher its value, the
more important the related term is in the smell description). As an example, the
description d provided by an evaluator testing the smell of yoghurt could be the
following:

d ¼ ½ðorange; 4Þ; ðlemon; 4Þ; ðbutter; 3Þ; ðbrownsugar; 1Þ; ðlemoncake; 2Þ�

The problem we face can therefore simply be formulated by the following question: how
to fusion the information expressed by description d in order to formally characterize the
odor of the evaluated yoghurt into a conceptual annotation (set of partially-ordered
concepts)? Defining a model for answering this question requires characterizing the
semantics, i.e. meaning, of the terms used in the description, e.g. intuitively, looking at
description d, people understand that the terms “orange” and “lemon” refer to “citrus
fruits” (putting aside the problem of ambiguity). This is because our knowledge about
the world provides us a taxonomical organization we can use to derive conclusions on
the basis of deductive reasoning. Indeed, we know that the concepts Orange and
Lemon both refer to specific types of concept Citrus-fruit, i.e. formally Orange
4 Citrus-fruit and Lemon4 Citrus-fruitwhich implies that the description
d implicitly refers to the concept Citrus-fruit, a concept that could therefore be a
good candidate to characterize the odor. Such a reasoning approach relies on a taxo-
nomic knowledge organization partially ordering concepts. However, in other cases,
such reasoning is also based on the consideration of the semantic proximity between
concepts, e.g. Lemon cake contains Lemon which reinforces the fact that
Citrus-fruit seems to be relevant to describe the odor of yoghurt, despite the fact
that, strictly speaking, Lemon cake is not ordered to Lemon and Citrus-fruit.

For defining our approach, we intuitively propose to consider that a term evokes
concepts (e.g. the term lemon cake evokes with some degrees the concepts Lemon and
Cake). Automatically assessing the degree with which a term evokes a concept is a
difficult task. First we have to consider the fact that no consensus could be obtained in
numerous cases – the appraisal may vary a lot between two persons since it depends on
subjective notions. Second, even if our will is to mimic only one person estimation, it
would require formalizing too much complex and extensive knowledge to represent all
the interactions between the concepts. To tackle this complex problem, we propose to
take advantage of distributional semantics models for evaluating term proximity with
regard to their usage (i.e. meaning). These models are based on the distributional
hypothesis which, in linguistics, states that words that are used and occur in the same
contexts tend to purport similar meanings [10]. The first step to obtain such a model is
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to analyze word co-occurrences in a large corpus of texts (e.g. Wikipedia). These
co-occurrences are used to derive a model, usually a matrix, providing a vector rep-
resentation of terms. Finally, two terms can be compared by analyzing their vector
representations; a variety of measures have been proposed for that purpose [6], e.g.
cosine measure. Since distributional semantics models enable us to compare terms with
regards to their semantics, we next consider that measuring the similarity between a
term and a concept returns to calculate the similarity between the term and the terms
associated to this concept in the input taxonomy. As an example, the degree to which
the term lemon cake evokes the concept Lemon will be estimated using the semantic
proximity between the term lemon cake and the term related to the concept Lemon (e.g.
lemon, citrus medica).

The following section presents the model we propose for deriving term vector
representations. They will next be used by fusion information techniques to derive the
description of the odor.

2 Modeling

The model is composed of two principal parts; the first consists in defining a corre-
spondence between the terms and the concepts of the taxonomy, i.e. to represent the
terms and the terms related to concepts as vectors on a given vocabulary T . By
comparing the vector representations, we will then compute the degree to which a term
evokes a concept. The second part consists to aggregate the terms of a description in
order to obtain a synthetic set of concepts (conceptual annotation) which formally best
characterizes the odors.

In order to ease the readability of this section, the various notations which will be
used to introduce the model are listed below:

C: the set of concepts, C ¼ c1; c2; . . .; cnf g, Cj j ¼ n
O ¼ 4;Cð Þ: the taxonomy partially ordering the set of concepts
T: the set of terms that constitute the vocabulary
Te: the set of terms of the description provided by the evaluator e to qualify the

odor, Te ¼ te1; t
e
2; . . .; t

e
ke

n o
, Te � T ;

Tc: the set of terms associated to concept c, with Tc � T .

2.1 Computing Conceptual Annotations from Terms

The vector representations of the terms (including concepts’ related terms) are used to
estimate to which degree a term of the description evokes a concept. Informally, the
strength of evocation a term has with regard to a concept can be regarded as the semantic
proximity between the term and the concept. The correspondence or measure the
semantic proximity between terms and concepts cannot be established in a straight-
forward manner without considering the terms associated to the concepts. For this, we
first define a correspondence between the terms of the vocabulary T and the terms that
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refer to concepts (
S
c2C

Tc). This correspondence between terms and concepts is defined as

the measure of proximity between terms of T and terms associated to concepts.
The proximity between terms and concepts will be defined by rTC : T � C ! 0; 1½ �,

according to the measure rTT which assesses the proximity of two terms
rTT : T � T ! 0; 1½ �. Numerous measures for comparing terms have already been
proposed in the literature [6] - co-occurrences or pointwise mutual information are
classical ones in texts analysis. These measures basically verify rTT t; tð Þ ¼ 1 and
rTT t; t0ð Þ ¼ rTT t0; tð Þ. Then, the semantic proximity between a term t and a concept c
can be estimated, for example, as the maximum of the similarity values between the term
t and the terms in Tc associated with the concept c: rTCðt; cÞ = maxs2Tc rTTðt; sÞ.

The objective of this step is to synthesize the information expressed by the terms of
a description Te to characterize the odor through a conceptual annotation. To this aim, it
is required to aggregate the information conveyed by the vector representations of the
terms composing Te. This conceptual annotation, annot Teð Þ, with annot : 2T ! 2C, can
be computed as follows:

annot Teð Þ ¼
[

t2Te c 2 Cjmaxc2CrTCðt; cÞf g ð1Þ

This model considers a simple one-to-one correspondance between terms and
concepts. When two terms in Te evoke the same concept no redundancy will be
considered. The main drawback of this strategy is that long descriptions may lead to
large conceptual annotations. In those cases, a conceptual summary of annot Teð Þ is
desired. The situation is similar when there are several evaluators who individually
provide descriptions that are to be conceptually synthetized. This summary is not so
obvious because it requires having in mind the way concepts are organized in the
taxonomy to make simplistic but relevant factorizations, i.e., eliminate redundancies of
too similar concepts but retain concepts that evoke obviously different ideas related to
the perception of the odor.

2.2 Summarizing Conceptual Annotations

Let E ¼ e1; e2; . . .; esf g be the set of evaluators. We consider that each evaluator ei
provides a set of terms characterizing the quality of the same odor. Using the model
introduced in Sect. 2.1, a set of concepts annot Teið Þ can be associated to each indi-
vidual bag of terms Tei .

In the following, we propose an algorithm to semantically summarize a set of
semantic annotations. When the number of evaluators s is not too large (e.g., sensorial
analysis sessions are composed of 6 or 8 evaluators), we search for a conceptual
summary annot� that synthesizes the individual conceptual annotations. We suppose
the search space to be 2f0 where f0 ¼

S
c2
Ss

i¼1
annot Teið ÞAnc cð Þ, and Anc cð Þ is the set of

inclusive ancestors of concept c in the sense of the taxonomic order of O ¼ 4;Cð Þ
(i.e., the set of concepts composed of c and the concepts that subsume c). The search
for annot� can be expressed as an optimization problem as proposed in [8]. The
objective function is associated to a consistency criterion:annot� must be as similar as
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possible to all the annotations it summarizes. The second criterion is a concision
constraint: a summary is by definition synthetic.

The similarity between a summarizing annotation annot 2 2f0 and the annotations
annot Teið Þ can be modelled using a taxonomic semantic similarity measure used to
compare groups of concepts (groupwise measure). The objective function is then:

g1ðannotÞ ¼ 1
s

Xs

i¼1
simgðannot; annot Teið ÞÞÞ ð2Þ

with simg : 2C � 2C ! ½0; 1� the groupwise semantic similarity measure.
Two strategies may be envisaged when comparing two groups of concepts, called

direct and indirect groupwise semantic measures. The former considers the steps of
features of both sets of concepts while the latter aggregates individual pairwise values.
The Jaccard index for example may be applied to create a direct groupwise semantic
measure [14]: say A, B are two groups of concepts and Aþ ¼ S

c2Aanc cð Þ,
Bþ ¼ S

c2Banc cð Þ, where anc cð Þ corresponds to c and all its ancestors in O, then the

semantic similarity of A and B can be computed by simJaccard A;Bð Þ ¼ Aþ \Bþj j
Aþ [Bþj j.

However, because direct groupwise measures are all hampered by a higher computation
time than for indirect ones, we choose in order to evaluate the closeness between two
groups of concepts a composite average of pairwise similarities called Best Match
Average (BMA) defined as follows [15]:

simBMA A;Bð Þ ¼ 1
2 Bj j

X
c2B simm c;Að Þþ 1

2 Aj j
X

c2A simm c;Bð Þ

where simm c;Xð Þ ¼ maxc0 2Xsimðc; c
0 Þ with simðc; c0 Þ a pairwise semantic similarity

measure. The field of similarity measures (SM) is wide and has been subject to many
contributions [7], pursuing the idea that computing similarities of pairs of concepts is
crucial in order to mimic the human thinking. We choose a graph based SM since the
taxonomy O is basically a directed graph. A more comprehensive work on this topic is
available in [16].

The optimal solution annot� must be as consistent as possible under the concision
constraint. The more concepts in ðe:g:; annot ¼ f0 ¼

Ss
i¼1annot Teið Þ), the more precise

the summary and the more likely g1ðannotÞ value is high but in return not synthetic at
all. The concision is defined as a penalty function with regard to the number of
concepts in the annotation:

g2 annotð Þ ¼ l annotj j ð3Þ

where l 2 0; 1½ � is a parameter controlling the importance of the constraint.
Finally, the function to be maximized is:

g annotð Þ ¼ g1 annotð Þ � g2 annotð Þ
and annot� ¼ argmaxannot22f0g annotð Þ ð4Þ
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Finding an exact optimal solution according to the objective function is not feasible
when f0j j becomes large. Fiorini et al. have proposed a local heuristic using a greedy
algorithm to remove one after the other elements from f0 until annot� is found - details
on the parameterization and performances of this algorithm are provided in [8, 9] and
are not discussed in the following practical case.

3 Practical Case

The distributional models used for computing the proximity of terms are of critical
importance for summarizing the term descriptions. Various approaches for computing
and comparing word-vector representations have been proposed in the literature. Even
if some strategies have been proved to be better suited for some specific use cases, the
selection of the best-suited strategy for practical cases is still an open question and
therefore requires domain-specific analyses and parameter settings [6]. In this study,
several models using different parameter settings have been tested to compute
word-vector representations. Considering the different parameter settings, obtained
models differ (i) on the way the set of terms T is computed, (ii) on the size of vector
representations, and (iii) on the semantics of each dimension of the vectors that are
finally considered. A brief discussion on the different models that have been tested in
this study is proposed in this section. All tested models have been obtained from the
analysis of a lemmatized version of Wikipedia – English version 2015 – and have been
computed using open source code (that will be made available if the paper is accepted).

The set of terms T is of major importance and must be carefully built since it
defines the terms provided by the evaluators that can be mapped into concepts – ideally
we want

Ss
i¼1Tei � T , i.e. we don’t want to lose any information provided by a term

description. The set of terms T also defines the taxonomy concepts that can be asso-
ciated to evaluator term descriptions. Indeed, it’s important to stress that it will not be
possible to process the terms provided by the evaluators that are not in T since it will
not be possible to compare them to the concepts defined in the taxonomy. Similarly, it
will be impossible to take advantage of the concept for which the terms are not in T -
those terms could not be used to link a term description into the conceptual space,
which will also hamper the performance of the treatment. In this study, two approaches
have been evaluated to distinguish the set of terms T:

1. Considering a custom English dictionary built from the free dictionary Wiktionary
(m ¼ 200k);

2. Applying some restrictions on the grams and bi-grams that can be found into
Wikipedia, e.g. by only considering the words that have at least been seen 10 or 50
times in the whole corpora ðm10 ¼ 1:2M;m50 ¼ 209kÞ.
In all cases, the vector representations of the terms composing T have first been

computed into R
jT j only considering syntagmatic relationships between words, i.e. by

analyzing co-occurrences of words in a specific window size (30 and 100 words have
been used for the experiments). Using such a model a term t 2 T is represented as a
vector~t ¼ ½coocc t; tið Þ�i¼0;jT j, with coocc : T � T ! N the function used to compute
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the number of times two words co-occurred into the same term window. A model in

which~t ¼ ½pmi t; tið Þ�i¼0;jT j has also been tested where pmi x; yð Þ ¼ pðx=yÞ
pðxÞ is the pointwise

mutual information of ðx; yÞ; and p holds for probability. Since the set T is large,
specific reduction techniques have next been applied on the models in order to reduce
the size of term vectors, e.g. by only considering dimensions that are associated to the
most frequent words – reductions based on matrix factorization techniques, such as
Single Value Decomposition, could have been used but have not been tested in this
study. Reducing vector sizes is not only useful to reduce computational time but also
has the benefit to remove some noises that will hamper vector comparison. Based on
the tested models, the proximity between two terms, i.e. rTT : T � T ! ½0; 1�, is
computed using cosine similarity between vector representations. Therefore the set of
terms Te � T provided by an evaluator e is summarized by a conceptual annotation
according to Eq. (1).

In the illustrative following example, a naïve evaluator has been invited to assess
the quality of a set of honey items. It is assumed that we have a non-specialist eval-
uator, who is prompted to smell and then verbalize the odor by a set of terms in natural
language. Let us suppose Te ¼ cappuccino; grapef g. The proximity between cappuc-
cino (resp. grape) and its 40 closest terms in the sense of the proximity measure are
provided in the Table 1. This result has been obtained with a model built from a
collection of 106 texts of Wikipedia, the proximity measure is based on co-occurrences
of terms in the corpus and the terms’ co-occurrences have been computed with a
symmetric 100 wide sliding window. A restriction Tj j ¼ 3000 has been applied in this
practical case.

The results in Table 1 merely illustrate the intuitive notion of proximity: they are
clearly debatable even if they suitably match with the intuitive terms we might com-
monly relate to cappuccino (resp. grape). The evaluation of the model would obviously
require a test campaign which is out of the scope of this paper. Our aim here is rather to
propose a general processing pipe from sets of terms in natural language to the syn-
thetic conceptual annotation that summarizes the collective evaluation quality into
notions that make sense for professional of specific domains. Each part of this pipe will
be deeper analyzed in future works.

The set of terms Te ¼ cappuccino; grapef g provided by an evaluator e is con-
ceptualized according to Eq. (1). The taxonomy that is used to compute this conceptual
annotation has been built from the sensory analysis applied to honey proposed in [11]
where an odor and aroma wheel for honey sensory analysis is provided (Fig. 1). An
“odor or aroma wheel” is a popular visual scheme for diagramming the range of smells
that characterize a particular food or beverage. A well-known example is the wine
aroma wheel, developed in 1984 by University of California-Davis chemist Ann Noble.
It is laid out like a dartboard, with broad flavor categories (e.g., “fruity”) near the center
and specific examples of that category (e.g., “strawberry”) on the outer ring. As a
consequence, this abstraction hierarchy is interpreted in our framework as the partial
order that organizes the concepts of our field of application. The taxonomy has been
built with the free open-source taxonomy editor PROTEGE (see extract at the right side
of Fig. 1) [12].
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The Fig. 1 both provides the odor wheel of [11] and our free interpretation into a
taxonomic order whose part is illustrated at the right part of the figure. The wheel
provides both the concepts of the domain and their specificity levels that are interpreted

Table 1. Grape and cappuccino closest terms (scores are rounded up to 10−2)

Cappuccino Grape

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1.0
0.95
0.92
0.91
0.89
0.88
0.88
0.87
0.87
0.87
0.86
0.85
0.85
0.85
0.82
0.81
0.81
0.81
0.81
0.81
0.80
0.79
0.79
0.78
0.77
0.77
0.77
0.76
0.76
0.76
0.74
0.72
0.70
0.70
0.69
0.69
0.67
0.65
0.64
0.63

Cappuccino
Latte
Espresso
Macchiato
Cortado
Fluid ounce
Latte Macchiato
Portafilter
Coffee bean
Coffee cup
Ristretto
Lait
Coffee maker
Americano
Quarter glass
Coffee liqueur
Half-caf
Doppio
Crema
Nong
Barista
Frappe
Coffee pot
Mocha
Tastebud
Teaspoon
Milk tea
Hyperforeignism
Sade
Sugar spoon
Froth
Demerara
Chaus
Piloncillo
Pharisee
Chicory
Ice cube
Chocolate milk
Milk chocolate
Red eye

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

0.99
0.94
0.93
0.92
0.92
0.92
0.92
0.92
0.91
0.91
0.90
0.90
0.90
0.90
0.90
0.89
0.89
0.89
0.89
0.89
0.87
0.87
0.86
0.85
0.85
0.85
0.85
0.84
0.84
0.83
0.83
0.83
0.83
0.82
0.82
0.82
0.82
0.82
0.82
0.82

Grape
Vineyard
Winemaking
Winery
Varietal
Viticulture
Winemaker
Chardonnay
Vine
Grape wine
Wine grape
Doc
Blanc
SAUVIGNON
blanc
Phylloxera
Planting
Terroir
Appellation
Syrah
Dessert wine
Tasting
AOC
Mildew
Cabernet
Sauvignon
Chianti
Vintage
Merlot
Spoilage
Riesling
Grapevine
Winepress
Vintner
Ice wine
Pinot Noir
Wine bottle
Wine
Wine cellar
Montrachet
Riesling
Vigneron
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in the ontological model. This interpretation should be deeper discussed: the translation
of the abstraction hierarchy of odors the wheel captures and the taxonomic order based
on the relationships rdfs:subClassOf do not match so easily and should be more
precisely analyzed in future works – since it may impact both the conceptual annotation
calculus and in the summary of conceptual annotations. In our example, the conceptual
annotation related to Te ¼ cappuccino; grapef g is annotðTeÞ ¼ coffee; blackcurrantf g
where Coffee and Blackcurrant, two concepts of the aroma wheel, they then
make sense for professionals in the honey sector (note that Blackcurrant and
Cassis are equivalent).

The experiments concerning the way conceptual annotations characterizing the
odor quality provided by a group of evaluators can be semantically summarized into a
unique conceptual annotation are yet under progress. However, the interested reader
can already consult another one of our publication in the application field of semantic
indexing [9].

Our approach tries to mimic the analysis of naïve descriptions in natural language a
professional sensorial analysis operator could perform. The vocabulary used to describe
the smell is not limited and it does not require learning any specific vocabulary. The
way the verbal descriptions are gathered and interpreted as well as the formal
descriptors chosen is more or less arbitrary and often depends on the operator. For that
purpose, our approach is supposed to automate the identification of the sets of concepts
(descriptors) in order to increase both the reliability and the performance of the process.
This automation should also allow expanding the assessment of the quality of odors to
large groups of evaluators as it is the case in the analysis of olfactory nuisances around
industrial sites.

Fig. 1. (left) odor and aroma wheel for honey sensory analysis; (right) interpretation of the
wheel as the partial order of a taxonomic relation
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To validate our model in future works, the sensory profiles evaluators provide will
be compared to the ones our approach generates; we will use a groupwise similarity
measure to compare the two groups conceptual annotations as basic metrics. Let us note
Tei the set of terms the evaluator ei provides and CIei , the conceptual interpretation the
operator in charge of the sensorial analysis proposes, and finally annot Teið Þ the semantic
annotation our approach relates to Tei as proposed in this paper. Basically, the relevancy
of our algorithm is function of simgðCIei ; annot Teið ÞÞ. We will analyze the statistical
distribution of the errors ei ¼ 1� simgðCIei ; annot Teið ÞÞ� �

. This distribution will have
to be read in conjunction with the deviations dij ¼ 1� simgðCIei ;CIejÞ

� �
. Indeed, the

more homogeneous the interpreted evaluations CIei , the more obvious the olfactory test
seems to be and the smaller the standard deviation of ei should be. dij should also be used
to calibrate or normalize ei. The relevancy of conceptual annotations cannot be envis-
aged in the same way whereas even experts disagree in their assessments.

4 Conclusion and Perspectives

Evaluating the quality of odors is important for industrials to control the acceptability
of odors related to its air emissions. The evaluation of odor quality also plays a very
vital role in sensory analysis: pleasant smell of product increases the likelihood a
product appeal to customers. Nowadays, industrial oriented approaches for assessing
the quality of odors mostly require structured and controlled vocabularies that implies
expensive and long training phases for experienced assessors. To address this issue, we
propose an approach that automates the process of assessing the quality of an odor.
Non-oriented, this approach is based on semantic analysis and does not require learning
a lexical field - it that can therefore be used to evaluate odors with non-specialist natural
language descriptions. Distributional models commonly used in natural language
processing are introduced to capture the relationships between naïve terms and pro-
fessional standardized descriptors. Finally, optimization and clustering techniques
allow identifying the conceptual annotation that best summarizes the natural language
descriptions and therefore the initially informal evaluations of odor quality.

In future works, the evaluation of the approach will require several test campaigns.
A database on smells of candies is under construction. Expert and novice assessments
are gathered for 6 candy types. Another database concerns flavor descriptions in red
and white wines. The parameterization of the distributional model will be one of the
major issues during this validation phase. We will also have to pay a particular
attention on the effect the interpretation of the odor/aroma wheels into our taxonomic
partial orders could have. In our current framework, the terms are represented as
vectors on a given vocabulary T; it is also envisaged to project these representations
onto the conceptual space C in order to take into account the similarity between
concepts in the vector representation. Interestingly, this non-oriented approach for
identifying the quality of odors appears to be an actual cognitive automation of the task
entrusted to expert operators in sensorial analysis. It opens interesting perspectives for
developing scalable sensorial analyses to large sets of evaluators when assessing
olfactory nuisances around industrial site.
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Abstract. In statistical pattern recognition, feature transformation
attempts to change original feature space to a low-dimensional subspace,
in which new created features are discriminative and non-redundant,
thus improving the predictive power and generalization ability of subse-
quent classification models. Traditional transformation methods are not
designed specifically for tackling data containing unreliable and noisy
input features. To deal with these inputs, a new approach based on
Dempster-Shafer Theory is proposed in this paper. A specific loss func-
tion is constructed to learn the transformation matrix, in which a sparsity
term is included to realize joint feature selection during transformation,
so as to limit the influence of unreliable input features on the output
low-dimensional subspace. The proposed method has been evaluated by
several synthetic and real datasets, showing good performance.

Keywords: Belief functions · Dempster-Shafer theory · Feature trans-
formation · Feature selection · Pattern classification

1 Introduction

The performance of pattern classification methods depends crucially on the qual-
ity of input features: (1) with a small-sized training pool, a relatively high dimen-
sional feature space increases the complexity of the learning algorithms, thus
raising the risk of over-fitting on the training set; (2) it often happens that the
input space contains features that are irrelevant, or even at odds with the class
labels. These unreliable input features could decrease substantially the classifi-
cation accuracy of the distance-based learning algorithms (e.g., the K-nearest
neighbor rules).

Low-dimensional feature transformation is a feasible solution to the issues
discussed above. It attempts to transform the original feature space to a discrimi-
native subspace, in which new features are created for use in model construction.
However, since traditional feature transformation methods, e.g., principal com-
ponent analysis (PCA), neighborhood component analysis (NCA) [5] and large
margin nearest neighbor method (LMNN) [18], were not designed specifically

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 253–261, 2016.
DOI: 10.1007/978-3-319-40596-4 22
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for tackling data that contains unreliable input features, their performance may
severely decline with this kind of imperfect information.

The Dempster-Shafer Theory (DST) [15] is also known as the theory of belief
functions or Evidence theory. As a powerful tool for modeling and reasoning
with uncertain and/or imprecise information, it has shown remarkable applica-
tions in divers fields, such as unsupervised learning [3,13,20], supervised learn-
ing [4,6,8,10,11], information fusion [7,9,12,14,17], etc. These facts motivated
us to design a new DST-based feature transformation method for data that
contains unreliable and noisy features. To this end, a specific cost function con-
sisting of two terms is constructed for learning a low-dimensional transformation
matrix. The first term minimizes the imprecision regarding the class member-
ship of each instance. The �2,1-norm regularization of the transformation matrix
acts as the second term. By means of feature selection, it aims to manage the
influence of unreliable original features on the output transformation. The pro-
posed cost function is minimized efficiently by a first order method (namely the
Beck-Teboulle proximal gradient algorithm [1]). Finally, a low-dimensional trans-
formation of the original feature space is realized to widely separate instances
from different classes.

The rest of this paper is organized as follows. The background on DST is
recalled in Sect. 2. The proposed method based on DST is then introduced in
Sect. 3. In Sect. 4, the proposed method is tested on both synthetic and real-world
datasets. Finally, we conclude paper in Sect. 5.

2 Background on Dempster-Shafer Theory

The necessary background on DST is briefly reviewed in this section. As a gen-
eralization of both probability theory and the set-membership approaches, DST
has two main components, i.e., quantification of a piece of evidence and combi-
nation of different items of evidence.

2.1 Evidence Quantification

DST is a formal framework for reasoning under uncertainty based on the mod-
eling of evidence [15]. Let ω be a variable taking values in a finite domain
Ω = {ω1, · · · , ωc}, called the frame of discernment. An item of evidence regard-
ing the actual value of ω can be represented by a mass function m on Ω, defined
from the powerset 2Ω to the interval [0, 1], such that

∑

A⊆Ω

m(A) = 1. (1)

Each number m(A) denotes a degree of belief attached to the hypothesis that
“ω ∈ A”. Function m is said to be normalized if m(∅) = 0, which is assumed
in this paper. Any subset A with m(A) > 0 is called a focal element of mass
function m. If all focal elements are singletons, m is said to be Bayesian; it is
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then equivalent to a probability distribution. A mass function m with only one
focal element is said to be categorical and is equivalent to a set.

Corresponding to a normalized mass function m, we can associate belief and
plausibility functions from 2Ω to [0, 1] defined as:

Bel(A) =
∑

B⊆A

m(B); Pl(A) =
∑

B∩A �=∅
m(B). (2)

Quantity Bel(A) (also known as credibility) can be interpreted as the degree to
which the evidence supports A, while Pl(A) can be interpreted as the degree to
which the evidence is not contradictory to A. Functions Bel and Pl are linked
by the relation Pl(A) = 1−Bel(A). They are in one-to-one correspondence with
mass function m.

2.2 Evidence Combination

In DST, beliefs are elaborated by aggregating different items of evidence. Demp-
ster’s rule of combination [15], as well as its unnormalized version, i.e., the con-
junctive combination rule defined in the Transferable Belief Model (TBM) [16],
are basic mechanisms for evidence fusion. Let m1 and m2 be two mass functions
derived from independent items of evidence. They can be fused via Dempster’s
rule to induce a new mass function m1 ⊕ m2 defined as

(m1 ⊕ m2)(A) =
1

1 − Q

∑

B∩C=A

m1(B)m2(C), (3)

where Q =
∑

B∩C=∅ m1(B)m2(C) measures the degree of conflict between evi-
dence m1 and m2.

3 Method

Let {(Xi, Yi)|i = 1, · · · , N} be a collection of N training pairs, in which
Xi = [x1, · · · , xV ]T is the ith instance with V input features, and Yi is the cor-
responding class label taking values in a frame of discernment Ω = {ω1, · · · , ωc}
with an integer c ≥ 2.

Feature Transformation. To realize a linear transformation of the input feature
space, we need to learn a matrix A ∈ Rv×V , by which the squared distance
between any two instances (e.g., Xi and Xj) is quantified as

d2(Xi,Xj) = ||AXi − AXj ||22. (4)

The size of the transformation matrix A should satisfy the constraint v � V , so
as to output a low-dimensional transformation.

To learn such a matrix A, we successively set each Xi, i ∈ {1, . . . , N}, as
a query instance. Then, other samples in the training pool can be regarded as
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independent items of evidence that support different hypotheses concerning the
class membership of Xi. The evidence offered by the training sample (Xj , Yj =
ωq), j �= i and q ∈ {1, . . . , c}, asserts that Xi is also originated from the class ωq.
However, this piece of evidence is partially reliable. It is inversely proportional
to the dissimilarity between Xi and Xj , and can be quantified as a mass function

{
mij({ωq}) = exp

(−d2(Xi,Xj)
)

mij(Ω) = 1 − exp
(−d2(Xi,Xj)

) , (5)

where the distance, i.e., d2(Xi,Xj), is measured by (4). Let Γq (q = 1, . . . , c) be
the set of training samples (except Xi) belonging to the same class ωq. Since the
corresponding mass functions point to the same hypothesis (i.e., Yi = ωq), they
can be combined via Dempster’s rule (i.e., (3)) to deduce a global mass function
for all training samples in Γq:

{
m

Γq

i ({ωq}) = 1 − ∏
j∈Γq

[1 − exp {−d(Xi,Xj)}]
m

Γq

i (Ω) =
∏

j∈Γq
[1 − exp {−d(Xi,Xj)}]

. (6)

The global mass function m
Γq

i quantifies the evidence refined from the train-
ing pool that support the assertion Yi = ωq. The mass of belief m

Γq

i (Ω) measures
the imprecision of this hypothesis. If the actual value of Yi is ωq, this imprecision
should then close to zero, i.e., m

Γq

i (Ω) ≈ 0; in contrast, imprecision pertaining
to other hypotheses should close to one, i.e., mΓr

i (Ω) ≈ 1, ∀r �= q. According to
this assumption, we propose to represent the prediction loss for training sample
(Xi, Yi) as a function of the matrix A, namely

lossi(A) =
c∑

q=1

ti,q ·
⎧
⎨

⎩
1 − m

Γq

i ({ωq}) ·
c∏

r �=q

mΓr
i (Ω)

⎫
⎬

⎭

2

, (7)

where ti,q is the qth element of a binary vector ti = [ti,1, . . . , ti,c], with ti,q = 1
iff Yi = ωq. When Yi = ωq is true, minimizing lossi(A) can force both
m

Γq

i ({ωq}) = 1 − m
Γq

i (Ω) and
∏c

r �=q mΓr
i (Ω) to approach one as far as possi-

ble, thus achieving the goal to maximize the reliability of the right hypothesis
(Yi = ωq) but minimize the reliability of other assertions. As the result, the
learnt matrix A can lead Xi only close to samples from the same class in the
transformed space.

Feature Selection. To control the influence of unreliable input features in the
transformed feature subspace, the l2,1-norm sparsity regularization of A, namely

||A||2,1 =
V∑

j=1

(
v∑

i=1

A2
i,j

)1/2

, (8)

is adopted to realize the joint selection and transformation of input features. By
forcing columns of A to be zero during the learning procedure, this sparsity term
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can only select the most reliable input features to calculate the low-dimensional
transformation.

Finally, based on all training samples, the loss function to learn the matrix
A is defined as

arg min
A

1
N

N∑

i=1

lossi(A) + λ||A||2,1, (9)

where λ is a hyper-parameter that controls the influence of the sparsity penalty.

Optimization. Considering that lossi (7) is differentiable concerning A, while
||A||2,1 (8) is partly smooth (it is non-smooth iff A = 0), the Beck-Teboulle
proximal gradient algorithm [1], which belongs to the class of first-order opti-
mization methods, is used in this paper to find the solution of (9).

4 Experimental Results

In this section, the proposed method was evaluated by a synthetic dataset and
two real-world datasets. The Evidential K-nearest-neighbor (EK-NN) classifica-
tion rule [2] was selected to classify the testing samples after feature transfor-
mation.

4.1 Evaluation by Synthetic Datasets

The synthetic dataset was generated using a process similar to the one described
in [19]. It contains nr relevant features uniformly and independently distributed
between [−1, 1]. The output label of each instance is determined by

y =

{
ω1 if maxi(xi) > 21− 1

nr − 1
ω2 otherwise

, (10)

where xi is the ith relevant feature. Besides the relevant features, there are nu

irrelevant (noisy) features also uniformly distributed between [−1, 1], without

# irrelevant features (nu)
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Fig. 1. Testing accuracy of the EK-NN classifier based on different feature transfor-
mation methods. Performance in the input feature space is presented as the baseline.
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(a) (b) (c) (d)

Fig. 2. Two-dimensional transformation results obtained by (a) PCA, (b) NCA, (c)
LMNN and (d) our method, respectively.

any relation with the class label; and also ni imprecise features copied as the
cubic of the relevant features.

The numbers of relevant, irrelevant and imprecise features were set, respec-
tively, as nr = 2, nu ∈ {6, 16, 26, 36, 46} and ni = 2 to simulate five different
situations. Under each situation, 150 training instances and 150 testing instances
were simulated. The proposed method was compared with PCA, NCA [5] and
LMNN [18]. Each of the compared methods was used to learn a two-dimensional
transformation (i.e., to learn a matrix A ∈ Rnr×(nr+nu+ni)) on the training
dataset. After that, the EK-NN was used to classify the testing samples in the
transformed subspace. The parameters used in the EK-NN classifier was deter-
mined by the method proposed in [21], and the number of nearest neighbors was
set as K = 3.

Finally, the testing accuracy (in %) for different methods with respect to
changing number of unreliable features are summarized in Fig. 1, in which the
results obtained by the input features are also presented as the baselines for
comparison. As can be seen, our method has higher testing accuracy than other
methods under all the five different situations. It is also worth to note that the
difference increases following the augment of unreliable input features, which
reveals that the proposed method is stable and immune to severely deteriorated
input information.

Apart from the classification performance, we also visualized a synthetic
dataset (fifty input features with nr = 2, ni = 2 and nu = 46) in the 2-D
subspace, so as to evaluate whether the proposed method can effectively sepa-
rate instances from different classes after feature transformation. The proposed
method was still compared with PCA, NCA, and LMNN. As shown in Fig. 2, it
outputs the largest margin between different classes as compared to the other
three methods.

4.2 Evaluation by Real-World Datasets

The proposed method was further evaluated using two real-world datasets offered
by oncologists1:

1 They are with the Department of Nuclear Medicine, Centre Henri Becquerel, 76038
Rouen, France.
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(1) Lung Tumor Dataset: This dataset contains twenty-five lung tumor patients
(instances) treated with chemo-radiotherapy (CRT). For each patient, fifty-
two intensity and texture features were extracted from the positron emission
tomography (PET) images acquired before and during the treatment. The
class label for each patient was recurrence or no-recurrence, which was clini-
cally assessed at one year after the end of CRT.

(2) Esophageal Tumor Dataset: This dataset contains thirty-six esophageal
tumor patients (instances) treated with chemo-radiotherapy. For each patient,
twenty-nine features were extracted from the PET images and the clinical doc-
uments. The class label for each patient was disease-free or disease-positive,
which was clinically assessed at one month after the end of CRT.

The two real-world datasets are briefly summarized in Table 1. Comparing to a
limited number of instances (which is often encountered in the medical domain),
a relatively large amount of input features were gathered for each clinical dataset.
In addition, due to system noise and limited resolution of PET imaging, some
features calculated from the PET images are unreliable, or even at odds with
the class labels.

Since the datasets are small-sized, the leave-one-out cross-validation
(LOOCV) was adopted to assess the performance. The proposed method was
compared with the other three feature transformation methods, i.e., PCA, NCA
and LMNN. For all the compared methods, the dimensionality of the output
subspace was chosen between two to five. The best output dimension was deter-
mined according to the average testing accuracy. Finally, the average training
accuracy and testing accuracy (more important) obtained by different methods

Table 1. Description of the real-world datasets.

Dataset Classes Instances Features

Lung tumor 2 25 52

Esoph. tumor 2 36 29

Table 2. Comparing the performance (ave± std) of our method with the other three
feature transformation methods (PCA, NCA and LMNN). The results obtained by the
EK-NN in the original feature space is served as the baseline for comparison.

Method Lung Tumor Dataset Esophageal Tumor Dataset

Training Testing Training Testing

Original space 69.50±4.46 60.00±50.00 63.73±2.14 61.11±49.44

PCA 81.50±5.25 76.00±43.60 56.90±5.81 58.34±50.00

NCA 99.50±1.83 80.00±40.82 94.21±3.24 69.44±46.72

LMNN 100.00±0.00 68.00±47.61 85.48±4.50 80.56±40.14

Our method 100.00±0.00 88.00±33.17 97.46±1.64 83.33±37.80
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are summarized in Table 2, in which results obtained by the input features are
presented as baselines for comparison. As shown in Table 2, the proposed method
leads to better testing accuracy than other methods on the studied real-world
datasets.

5 Conclusion

An approach based on DST has been proposed to realize joint feature trans-
formation and feature selection from the input space that contains unreliable
features. To this end, a loss function consisting of two terms has been con-
structed, in which the first term attempts to minimize the imprecision regarding
each training sample’s class membership; while the second term, namely a spar-
sity regularization of the transformation matrix, serves to limit the influence of
unreliable input features on the output feature transformation. The constructed
loss function has been minimized by a proximal gradient algorithm to find a sat-
isfactory transformation matrix. After that, the output matrix has been used to
accomplish the low-dimensional transformation of the input space. Experimental
results obtained on the synthetic dataset and the real-world datasets show that
the proposed method can be used to improve the performance of classification
methods (e.g., the EK-NN classifier) on low-quality data.

Acknowledgements. This work was partly supported by China Scholarship Council.
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Abstract. Visual processing is one of the most essential tasks in robot-
ics systems. However, it may be affected by many unfavourable factors in
the operating environment which lead to imprecisions and uncertainties.
Under those circumstances, we propose a multi-camera fusing method
applied in a scenario of object recognition for a NAO robot. The cameras
capture the same scenes at the same time, then extract feature points
from the scene and give their belief about the classes of the detected
objects. Dempster’s rule of combination is then used to fuse information
from the cameras and provide a better decision. In order to take advan-
tages of heterogeneous sensors fusion, we combine information from 2D
and 3D cameras. The results of experiment prove the efficiency of the
proposed approach.

Keywords: Object recognition · NAO robot · Uncertainty · Evidence
theory · Camera fusion

1 Introduction

With the very fast development of high technologies, robotics is now more and
more important to human life. Specifically, vision processing is one of the most
focused areas, which helps a robot increase its ability to learn in explored envi-
ronments. This work considers a scenario in which a NAO robot can recog-
nize previously learned objects by fusing multi-camera to increase the quality of
recognition and reduce uncertainties and imprecisions. We first have a look at
how the other works have dealt with object recognition, then propose a solution
for the considered case.

In fact, the problem of recognizing an object has been addressed for sev-
eral decades. The number of methodologies is huge up to now; each of them
tried to prove their strengths and overcame the weaknesses of the preceding
solutions. For instances, Berg et al. [1] used Geometric Blur approach for fea-
ture descriptors and proposed an algorithm to calculate the correspondences
between images. The query image was then classified according to its lowest
cost of correspondence to the sample images. Besides that, Ling and Jacobs [2]
introduced the term “inner-distance”as the length of the shortest path between
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 262–273, 2016.
DOI: 10.1007/978-3-319-40596-4 23
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landmark points within the shape silhouette. The inner-distance was used to
build shape representations and they helped to obtain good matching results.
For some texture-based approaches, [3] proposed a texture descriptor based on
Random Sets and experimentally showed that it outperformed the co-occurrence
matrix descriptor. Decision tree induction was used in that work to learn the
classifier. Another example can be found in [4] where color and texture informa-
tion were both used in an agricultural scenario to recognize fruits. On the other
hand, some context-based methods like [5–7] considered contextual information
surrounding the target objects. These information come from the interaction
among objects in the scene and they help to disambiguate appearance inputs
in recognition tasks. Similarly successful, the methods based on local feature
description like SIFT [8] and SURF [9] have received many positive evaluations
and have been widely applied [10–13]. SIFT extracts keypoints from object to
build feature vectors. We then calculate the matching (using Euclidean distance)
between an input object and the ones in database to find the best candidate
class. After that, the agreement on the object and its location, scale, and orien-
tation are determined by using a hash table implementation of the Generalized
Hough Transform. In a different manner, SURF uses a blob detector based on
the Hessian matrix to find interest points, then it calculates the descriptor by
using the sum of Haar wavelet responses. Finally, by comparing the descriptors
obtained from different images, the matching pairs can be found.

For the purpose of collecting spatial information about the detected objects,
and avoiding imprecision of 2D images under non-ideal lighting conditions like
outdoor environment, some works concentrated on 3D object recognition. In
[14], an extended version of the Generalized Hough Transform was used in 3D
scenes. Each point in the input cloud votes for a spatial position of the object’s
reference point and the accumulating bin with the maximum votes indicates
an instance of the object in the scene. In [15,16], the 3D extensions of SIFT
and SURF descriptor also gave positive recognition results. In addition, Zhong
[17] introduced a new 3D shape descriptor called Intrinsic Shape Signature to
characterize a local/semi-local region of a point cloud. This descriptor uses a
view-independent representation of the 3D shape to match shape patches from
different views directly, and a view-dependent transform encoding the viewing
geometry to facilitate fast pose estimation. On the contrary, [18,19] considered
the use of point pairs for the description and the feature matching is then done by
implementing a hash table. Recently, the SHOT descriptor [20] has emerged as
an efficient tool for 3D object recognition [21,22]. Indeed, the descriptor encodes
histograms of basic first-order differential entities (i.e. the normals of the points
within the support), which are more representative than plain 3D coordinates
about the local structure of the surface. After defining an unique and robust 3D
local reference frame, it is possible to enhance the discriminative power of the
descriptor by concerning the location of the points within the support, from that
describing a signature.

It is clear that all of the above mentioned approaches have experimentally
shown good results in object recognition. Nevertheless, many of them did not
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Fig. 1. Multi-camera helps NAO robot recognize objects.

focus on the problem of uncertainty and imprecision which might come from
the quality of data and sensors, the lighting conditions, the viewing angles to
the objects and particularly, the similarity among confusing objects. Therefore,
in this work we propose to use multi-camera to recognize objects which have
many similarities. The proposed method is implemented in a NAO robot due
to our development in a robotics project, however it is not restricted to any
other kind of vision-based platform. In order to take advantage of both 2D
and 3D recognitions, we use not only a 2D camera of the NAO robot but also
another 2D IP Axis camera and another 3D Axus camera; Fig. 1 shows the
multi-camera environment where the robot is requested to recognize objects.
The fusion of these three heterogeneous sensors brings additional advantages for
each one because the NAO camera and the IP camera give characteristics about
the 2D features of the detected objects whereas the Axus camera provides depth
information. We propose an evidential classifier based on Dempster-Shafer theory
(or Evidence theory) [23] for each camera, then we combine them in decision level
in order to give more reasonable results of object recognition.

The outline of the paper is as follow. First, we describe our approach step-by-
step in Sect. 2, then we give an illustrative example in Sect. 3. Section 4 shows our
results of experiment to validate the approach, finally Sect. 5 gives the conclusion.

2 Our Recognition Approach

2.1 An Evidential Classifier for Each Camera

Processing Flow: Figure 2 shows the flow of classification by each camera.
First, an input image in 2D or 3D form is captured based on the type of camera
sensor. For the NAO camera and the IP camera (2D), the input data is 640×480
images; for the Axus camera (3D), the input images are in form of Point Cloud
since we implement 3D processing by using the PCL library [24]. To focus on
the classification, we use only one instance of object appearing in the captured
scene.
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Fig. 2. Evidential classifier for each camera

First, interest points (or key points) of the object in the scene are extracted.
In an image, an interest point can be described as a point that has rich informa-
tion about local image structure around it, and these points characterize well the
patterns in the image. After that, we use methods of descriptor to build a feature
vector for each interest point. We use the word “feature points” for the interest
points that have been described by the descriptor. The methods of descriptors
used in this work are SURF [9] for 2D data and SHOT [20] for 3D data accord-
ing to their strong properties as explained above. From the set of feature points
acquired, we build a mass function which describes the camera’s degree of belief
about the classes of detected object. Thereafter, a decision is made by choos-
ing the class with the maximum pignistic probability. The processing flow is
described with more detail later.

Evidence Theory in the Scenario: Suppose the robot has to recognize an
object that can be only in one of N classes, i.e. the space of discernment is:

Ω = {O1, O2, ..., ON} (1)

Then we have the power set which contains the subsets of the space of dis-
cernment:

2Ω = {{∅}, {O1}, {O2}, ..., {ON}, {O1 ∪ O2}, ..., {O1 ∪ ON}, ..., {Ω}} (2)

In Evidence Theory, we have to determine a mass function which describes
the degree of belief for all possible hypotheses in the power set. This function
satisfies:

m : 2Ω → [0, 1]
∑

H∈2Ω

m(H) = 1 (3)

To illustrate the proposed approach, we consider a simple case in Fig. 3 where
we suppose that there are three classes of object: A, B and C. For the sake of
explanation, we assume that we have only one training image for each class.
With an input image which contains a set X of feature points of object, our
mission is to decide the appropriate class for X. The basic idea is that each
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Fig. 3. Illustration of the idea. Each input feature point votes for a hypothesis.

feature point xi ∈ X will vote for a hypothesis H ∈ 2Ω based on its matching to
the training images. In Fig. 3, the feature point x1 matches both images of class
A and B, so we accumulate one vote for the hypothesis H = {A∪B}. Similarly,
the feature point x2 votes for H = {C}. By doing the same principle for all the
feature points of X, we can construct all elements of the mass function after
doing a normalization step. Due to the need of clear explanation in a scientific
work, the step of defining the matching and constructing mass function will be
mathematically described thereafter.

Construction of Mass and Decision: First, let us denote Δ(pi, pj) the nor-
malized distance between two feature points pi and pj ; the shorter the distance
is, the more similar the two feature points are.

Δ(pi, pj) ∈ [0, 1] (4)

In order to decide the matching between a feature point pX
i of an input image

X (X can also be understood as the set of feature points for the input image)
and a training image M whose class is Oj ∈ Ω, we use the idea in [25]. We
will find the two nearest neighbours of pX

i in M , called pM
i1

and pM
i2

(the feature
points in M are previously extracted in the training phase). We suppose that
pM

i1
is closer to pX

i than pM
i2

i.e. Δ(pX
i , pM

i1
) ≤ Δ(pX

i , pM
i2

). After that, we define
a matching function between the feature point pX

i of an input image X and the
model M :

δ(pX
i ,M) =

⎧
⎨

⎩

1, if Δ(pX
i , pM

i1
) ≤ α and

Δ(pX
i ,pM

i1
)

Δ(pX
i ,pM

i2
)

≤ β

0, otherwise
(5)

where α and β are two user-defined parameters such that 0 ≤ α, β ≤ 1. The for-
mer guarantees that the distance between pX

i and its most similar feature point
found in M is small enough whereas the latter helps to avoid false matching.
In this work, we choose β = 0.8 as suggested in [25], and we add α = 0.25 in
order to reduce noise. Indeed, these two parameters help us to find a strong and
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distinctive matching between the feature point pX
i and its closest feature point

in M . If δ(pX
i ,M) = 1, we then say that pX

i is matched to the training image M ,
i.e. matched to the class Oj ∈ Ω of M and vice versa. In the same way, we can
find all the matches of the feature points in the input image X to the training
image M .

For now, we define the matching between X and the class Oj by considering
all the matches between feature points pX

i in X and the class Oj . In the case
that the class Oj has several training images Mk, we choose the training image
Mmax that has the maximum number of matches to X according to Eq. (5).

δmax(pX
i , Oj) = δ(pX

i ,Mmax) (6)

Table 1 shows an example illustrating the matches between input feature
points and the output classes. A cell c(pX

i , Oj) implies the matching between
the feature point pX

i of X and the class Oj , i = 1, 2, ...RX - number of feature
points in X, j = 1, 2, ...N - number of classes. If the cell is red, it means that
the feature point pX

i matches the class Oj (i.e. δmax(pX
i , Oj) = 1), otherwise not

matched.
After we determine the matching between the input feature points and the

output classes, we can construct the mass function as follow. Each feature point
pX

i will vote for a hypothesis in the power set such that the hypothesis is com-
posed of the classes that match pX

i . Mathematically, let’s define a hypothesis-
voted function that calculates the accumulated votes for each hypothesis:

accV ote(X,H) =
∑

pX
i ∈X

φ(pX
i ,H), H ∈ 2Ω (7)

where φ(pX
i ,H) is a function indicating the matching between the feature point

pX
i and every element class in H:

φ(pX
i ,H) =

{
1, if

∑
Oj∈H δmax(pX

i , Oj) = |H|
0, otherwise

(8)

where |H| be the cardinality of H and δmax(pX
i , Oj) was already explained above.

Indeed, φ(pX
i ,H) indicates whether a feature point pX

i matches every element
class in the hypothesis H or not, and accV ote(X,H) calculates the number

Table 1. Matching between the feature points of input image X and the classes

pX1 pX2 pX3 ... pXRX

O1 ...
O2 ...
O3 ...
... ... ... ... ... ...
ON
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of feature points in X that matches every element class in H. After that, we
calculate the mass function based on the hypothesis-voted function:

mX(H) =
accV ote(X,H)

GX
(9)

where GX is the normalization factor that guaranties the condition in Eq. (3):

GX =
∑

H∈2Ω ,H �=∅
accV ote(X,H) (10)

It is worth noting that, in this work we assume that the class of object in
the input image X is only in Ω, so we put mX(∅) = 0.

Once we have constructed the mass function, we can give decision about
the class of the object. Since the maximum of belief is too pessimistic and the
maximum of plausibility is too optimistic, we choose the class which has the
maximum pignistic probability [26]:

BetPX(Oj) =
1

1 − mX(∅)

∑

Oj∈H

mX(H)
|H| (11)

2.2 Fusion of Cameras

Base on the Evidence theory, each camera gives a decision about the classification
of the detected object. In addition, by using Dempster’s rule of combination [23],
we can integrate information from multi-camera in order to give a better decision.
Usually, the rule is defined for two sources, however it is enough to ensure a trivial
extension to many sources due to its associativity and commutativity:

mcomb(∅) = 0

mcomb(H) =

∑
H1∩H2∩...∩HS=H m1(H1)m2(H2)...mS(HS)

1 − K
,H ∈ 2Ω ,H �= ∅

(12)
where S is the number of information source (i.e. number of cameras, 3 in this
experiment) and:

K =
∑

H1∩H2∩...∩HS=∅
m1(H1)m2(H2)...mS(HS) (13)

Finally, the decision about the class of the detected object can be made by
using pignistic probability as in Eq. (11).

3 Illustrative Example

In this section, we provide an example to illustrate the proposed approach. Sup-
pose that we want the robot to recognize an object in a captured scene with
three classes in the space of discernment, that means:
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Ω = {O1, O2, O3} (14)

so there are 8 possible hypotheses in the power set:

2Ω = {{∅}, {O3}, {O2}, {O2 ∪ O3}, {O1}, {O1 ∪ O3}, {O1 ∪ O2}, {Ω}} (15)

For simplicity, we suppose that for each class, we have only 1 training image.
Assuming that the NAO camera captures the scene X and it found 10 feature
points in the input image XNAO. For each of those input feature points, we find
two nearest neighbours feature points in each training image. After that, we use
Eqs. (4), (5), and (6) to construct the matching between the input image and
each class. Table 2 shows an example of the matching found. Each cell describes
the matching between a feature point and a class; if δmax(pXNAO

i , Oj) = 1, the
cell is red, otherwise white. The last row indicates the hypothesis voted by the
associating feature point.

Table 2. Matching between the input image XNAO and the classes

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

O1

O2

O3

Vote for: O1 O2 O1

O1

∪
O3

O2 O2

O1

∪
O3

O3

O1

∪
O2

O2

∪
O3

From Table 2, we have determined the strength of each hypothesis in
the power set. Table 3 then shows the accumulated vote for each hypothesis
which is calculated by Eqs. (7) and (8). Each cell in the table is the value of
φ(pXNAO

i ,H),H ∈ 2Ω . Remind that if φ(pXNAO
i ,H) = 1, it means that the fea-

ture point pXNAO
i votes for the hypothesis H. According to Eq. (10), we have

GXNAO =
∑

accV ote = 1 + 3 + 1 + 2 + 2 + 1 + 0 = 10. From these information,
we calculate the mass values as in the last column by using Eq. (9).

After that, we assume that we use not only the NAO camera but also another
IP camera (2D) and another Axus camera (3D). By doing the same steps, we can
obtain two mass vectors output from the two additional sensors. Table 4 shows
example values of these mases. Additionally, we also calculate the combination
of the masses using Dempster’s rule (mcomb) and transform it to the pignistic
probability (BetP ) for each of singleton hypothesis. The last column is the final
decision from the fusion of three cameras, which recognizes that the detected
object belongs to the class O1.
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Table 3. Accumulated vote for each hypothesis

H ∈ 2Ω p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 accVote Mass value

∅ 0 0 0 0 0 0 0 0 0 0 0 0.00

O3 0 0 0 0 0 0 0 1 0 0 1 1/10

O2 0 1 0 0 1 1 0 0 0 0 3 3/10

O2 ∪ O3 0 0 0 0 0 0 0 0 0 1 1 1/10

O1 1 0 1 0 0 0 0 0 0 0 2 2/10

O1 ∪ O3 0 0 0 1 0 0 1 0 0 0 2 2/10

O1 ∪ O2 0 0 0 0 0 0 0 0 1 0 1 1/10

Ω 0 0 0 0 0 0 0 0 0 0 0 0/10

Table 4. Mass values from there camera sensors

Hypothesis mNAO mIP mAxus mcomb BetP Decision

∅ 0.00 0.00 0.00 0.00

O3 0.10 0.23 0.21 0.22 0.23

O2 0.30 0.17 0.12 0.26 0.27

O2 ∪ O3 0.10 0.08 0.00 0.00

O1 0.20 0.32 0.09 0.49 0.50 O1

O1 ∪ O3 0.20 0.13 0.13 0.02

O1 ∪ O2 0.10 0.00 0.39 0.01

Ω 0.00 0.07 0.06 0.00

4 Experiments

As mentioned previously, the concentration of this work is how to resolve uncer-
tainties and imprecisions during the object recognition process of the NAO robot.
For that reason, we did three experiments, each of them contains a set of confus-
ing objects as shown in Fig. 4. In the first set, there are 4 cups which can cause
uncertainty in their spatial structures for the 3D camera to recognize. Conversely,
the second experiment contains 4 boxes that have similar brand information on
their surface, which may limit the recognition of the 2D cameras. Finally, we
tested with 4 Lego bricks which are considered to have difficulties for both 2D
and 3D cameras, in the third experiment.

For the training phase, we trained two images for each object with each
camera in different view points. We then manually removed the background in
these images in order to have only the model objects. For the test phase, NAO
robot is requested to recognize an object appearing in front of it and say the
result to human. The two cameras (IP and Axus) are on the two sides of the
robot to help it improve the recognition. These three cameras capture the scene
at the same time whenever the robot wants to recognize the object in the scene.
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To focus on the work of recognition, the image region containing the object is
restricted in order to avoid the noises in scene. For each of the three experiments,
we did 32 recognition tests with different objects of 4 classes (so 8 tests for each
object). The tested objects were turned around and put in different angles to
the cameras in each test for the reason of challenging uncertainty.

Table 5 shows the results of experiment which is the comparison between the
recognition rate of each camera (using the proposed classifier individually) and
the fusion of three cameras. Remind that the rate for each camera cannot be
high due to the confusing between similar objects and the objects are turned
around each time of test. The fifth column is the result when we fuse the three
cameras by using a simple voting based on majority: each camera gives its own
recognition result based on the proposed classifier, then we choose the output
class that is voted by the largest number of cameras. The last column shows
the result of using Dempster-Shafer combination for the three cameras, which
outperforms the majority voting to improve the recognition rate in average.

Fig. 4. Confusing objects used in the experiment

Table 5. Experiment result

Camera NAO (2D) IP (2D) Axus (3D) Majority Dempster-

voting Shafer

fusion fusion

Experiment 1 78 % 88 % 75% 100% 97%

Experiment 2 72 % 72 % 91% 91% 97%

Experiment 3 59 % 59 % 69% 72% 84%

Average 69.67 % 73 % 78% 87.67 % 92.67%
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5 Conclusion

The work in this paper focuses on how to resolve uncertainties and imprecisions
in object recognition for a NAO robot. Since the robot may face difficulties
during its visual operation due to lighting conditions, viewing angles and the
quality of camera, we propose to add more cameras in order to improve the
recognition rate. Each camera extracts feature points from the captured scene,
then provides a mass function based on the matching between the input and
the training images. After that, Dempster’s rule of combination is used to fuse
information from these cameras. As can be seen, the approach is generalized
for both 2D and 3D cameras, and the experiment work gives positive results,
which prove the advantage of the fusion. Our future works will consider a more
complex scenario where the NAO robot can build a semantic map based on the
recognition approach used in this work.
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Abstract. Link prediction is the problem of determining future or
missing associations between social entities. Most of the methods have
focused on social networks under a certain framework neglecting some
of the inherent properties of data from real applications. These latter
are usually noisy, missing or partially observed. Therefore, uncertainty
is an important feature to be taken into account. In this paper, proposals
for handling the problem of missing link prediction while being attentive
to uncertainty are presented along with a technique for uncertain social
networks generation. Uncertainty is not only handled in the graph model
but also in the method itself using the assets of the belief function theory
as a general framework for reasoning under uncertainty. The approach
combines sampling techniques and information fusion and returns good
results in real-life settings.

Keywords: Social network analysis · Missing link prediction · Uncer-
tain social network · Belief function theory · Information fusion · Graph
sampling

1 Introduction

Social networks have been witnessing an inconceivable development in recent
years, becoming possibly the main actor of the Web 2.0. Social Network Analysis
(SNA) has provided a collection of specific models and methods designed for the
investigation of social network data and extraction of knowledge from them. The
main objective is to determine the conditions under which the patterning of social
ties arise and uncover their consequences. From this perspective, link prediction
of topology became the focus of many researchers from various domains. It is a
task of link mining that aims at predicting new or existent links in the network.
In fact, prediction of future links considers the dynamics of the social network.
The task is to determine very likely but not yet existing associations based on
the previous snapshots of the network. In contrast, prediction of missing links
considers its static state rather than its evolution, where the current knowledge
is incomplete [15]. In a word, the latter has no temporal aspect, the goal is to
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 274–285, 2016.
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predict missing connections to get a more outright picture of the overall structure
of the links from the data [27]. Here we are interested at the prediction of missing
links under uncertainty in social networks.

As a matter of fact, missing link prediction is of theoretical and practical
significance in modern science [26]. In many cases, links might exist at time t
but not at t′. A possible reason is a change in privacy settings or when data
are partially observed [13], e.g. a facebook user might decide to hide his friends
between time t and t′, which lead to missing links in the network. This has
important ramifications as it may alter estimates of the network statistics [14].
Besides, inferring these missing links raises privacy matters in social networks
since several algorithms can be applied to predict new and missing links [9].

On the other hand, data from real world applications are prone to observa-
tion errors. They are frequently missing, incomplete and noisy. As pointed out
in [2], different degrees of uncertainty characterize several real-world networks
especially the large-scale ones. Accordingly, it is an important feature that needs
to be taken into account when dealing with social networks from real world data.
To handle this uncertainty, the edges might be associated with weights describ-
ing their existence in the network. Most of the existing methods use probabilities
[3,13], however, in our case, we propose to use the belief function theory [6,21]
which is considered as a generalization of the probability theory. In fact, one of
the practical uses of the belief functions is the representation and management of
missing information. It provides convenient ways to handle real life missing data
problems [23]. Furthermore, the belief function theory provides tools for com-
bining of evidence induced from several pieces of information. More information
about the interest of adopting the belief function theory to handle uncertainty
in networks can be found in [5].

Additionally, we design a fruitful approach for missing link prediction that
takes into account the uncertain aspects of the social network. It is completely
different from methods from link prediction literature as it operates merely with
the belief function tools. It uses popular structural measures based on local
graph information to compute distances between the links. A fusion procedure is
subsequently applied taking into account the reliability of the sources to predict
missing links. Besides, a technique based on network sampling is operated for
the creation of uncertain social networks to test the validity of our proposals.

This paper is organized as follows: in the next two sections, we examine
related literature about link prediction and the belief function theory. In Sect. 4,
we introduce our graph model for uncertain social networks. In Sect. 5, we design
the approach for missing link prediction. In Sect. 6, we show the experiments we
have carried out to test the performance of our approach. Finally, in Sect. 7, we
draw our conclusions and sketch possible future works.

2 Missing Link Prediction

In recent years, topological link prediction in network evolution has gained the
interest of many researchers from various fields. Its applications include explo-
ration of protein-protein interactions, mining food relationships in biological and



276 S. Mallek et al.

ecological networks, co-authorship retrieval in collaboration networks, mining
frienships, uncovering hidden groups or investigating missing members in social
networks.

The most straightforward assumption for link prediction is that two nodes
that are similar tend to share a link. To this end, the main concern is how to
compute the similarity between nodes accurately. As discussed in several works,
methods and measures used in link prediction can be applied for both future
and missing link prediction. For a review, see [16].

Typically, social networks are schematized as a graph G = (V,E), where
V is the set of social entities and E is the social ties linking them. On the
basis of this graph formulation, the link prediction problem can be defined as
follows: Let Tl = (Gl, Vl) and Tk = (Gk, Vk) be two states of a social network at
times l and k. The link prediction task consists at using Tl to predict the social
network structure Gk. We predict new links when l < k. In contrast, missing
links are predicted when l > k [8]. Most existing methods use the topological
information of the networks, including the local or global similarity measures.
The local methods consider indices based on neighborhoods in the network while
the global methods use the ensemble of paths between the nodes.

2.1 Local Information Measures

These measures capture node similarity by considering their structural local
properties. The most popular property is the set of neighbors τ(u) of a given
node u. The most widely used index is the number of common neighbors [20],
denoted by CN . The intuition is that two nodes u and v that share many common
neighbors are more likely to form a link. It is defined as follows:

CN(u, v) = |τ(u) ∩ τ(v)| (1)

The Jaccard Coefficient (JC) uses all the the neighbors of the pair (u, v) as
it considers the number of nodes that are adjacent to at least one of them. It is
defined as follows:

JC(u, v) =
|τ(u) ∩ τ(v)|
|τ(u) ∪ τ(v)| (2)

On the other hand, the AdamicAdar measure [1], denoted by AA, penalizes
high degree neighbors since a node with high degree is likely to be in the common
neighborhood of other nodes anyway. The AA index is defined as follows:

AA(u, v) =
∑

vk∈(τ(u)∩τ(v))

1
log|τ(vk)| (3)

2.2 Global Information Measures

These measures derive nodes similarity between a pair of nodes (u, v) from paths
based on the assumption: the closest two nodes are, the higher the chance for
them to be connected. Global information measures include the shortest path,
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SimRank [12], Hitting time, etc. For instance, the shortest path distance is simply
the shortest distance between two nodes. The SimRank index assumes that two
nodes tend to be connected if they are linked to similar nodes. The Hitting time
consider random walks, it computes the expected number of steps required for
a random walker to reach v from u.

2.3 Discussion

Both types of measures are simple and generic, they may be applied to networks
from several domains. Yet, they have some shortcomings. The CN measure has
proved its efficiency in several real networks and has shown the best performances
in many comparisons with others measures based on local information [15,26].
However, it favors the nodes with large degrees. To solve this problem, vari-
ants such as the JC and AA have been proposed to clear up this tendency. On
the other hand, path based metrics generally give accurate prediction however
they suffer from two major drawbacks. Firstly, they are computationally expen-
sive as they inquire for the global topological information of the network, and
are usually impractical on large-scale networks. Secondly, the global topological
information is frequently not available [16]. Besides, the additional complexity
does not always enhance the prediction, since similar power can be obtained with
local methods as well [15]. For that, our approach for missing link prediction uses
local information measures.

3 Belief Function Theory

The belief function theory [6,21], is a suitable theory for the representation and
management of imperfect knowledge. It allows to handle uncertainty and impre-
cision found in data, fuse evidence and make decisions. In fact, belief functions
provide convenient solutions to deal with missing information problems, many
real life examples are given in [23]. For these reasons, we have adopted this theory
to address the missing link prediction problem.

Let Θ be the frame of discernment, an exhaustive and finite set of mutually
exclusive events associated to a given problem, and let 2Θ denote the set of all
subsets of Θ. Knowledge in the belief function theory is represented by a basic
belief assignment (bba), denoted by m, it is defined as follows:

m : 2Θ → [0, 1]
∑

A⊆Θ

m(A) = 1 (4)

We call A a focal element if m(A) > 0.
Evidence induced from two reliable and distinct sources of information may

be combined using the conjunctive rule of combination denoted by ∩©. It is
defined as [22]:

m1 ∩©m2(A) =
∑

B,C⊆Θ:B∩C=A

m1(B) · m2(C) (5)
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On the other hand, to combine two masses m1 and m2 defined on two disjoint
frames Θ and Ω, the vacuous extension is applied. For that, the bba’s have to
be extended to the product space Θ × Ω. The vacuous extension denoted by ↑
is defined by:

mΘ↑Θ×Ω(C) =

{
mΘ(A) if C = A × Ω,A ⊆ Θ,C ⊆ Θ × Ω

0, otherwise
(6)

When combining evidence on Θ, it is important to take reliability of the sources
into account. For that, a discounting operation can be applied [21]:

{
αm(A) = (1 − α) · m(A),∀A ⊂ Θ
αm(Θ) = α + (1 − α) · m(Θ) (7)

where α ∈ [0, 1] is the discount rate.
In order to define the relation between two different frames of discernment

Θ and Ω, one may use the multi-valued mapping [6]. In fact, a multi-valued
mapping operation denoted by τ , joins the subsets Xi ⊆ Ω that can possibly
correspond to Ai ⊆ Θ:

mτ (Ai) =
∑

τ(Xi)=Ai

m(Xi) (8)

The pignistic probability measure denoted by BetP is usually used to make
decisions under the belief function framework [24]:

BetP (A) =
∑

B⊆Θ

|A ∩ B|
|B|

m(B)
(1 − m(∅))

, for all A ∈ Θ (9)

4 Evidential Social Network

A graph G = (V,E) is the most commonly used representation of social networks
where V is the set of nodes representing the actors and E is the set of social links.
Yet, binary relationships do not express uncertainty resulting from imperfect
data and unreliability of the tools used when constructing the network.

Accordingly, we encapsulate the uncertainty degrees on the edges level using
the belief function theory [17,18]. In fact, each edge uv is weighted by a bba
denoted by muv defined on Θuv = {Euv,¬Euv}, where Euv expresses the event
exists and ¬Euv depicts the absence of the link. That is to say, muv encodes
the degree of uncertainty regarding the existence of uv. In other terms, instead
of assigning weights that can be either 1 or 0 to describe whether or not a
link exists, a mass distribution with values in [0, 1] is ascribed. It is important to
notice that links uv with pignistic probability BetPuv(Euv) < 0.5 are considered
not existing. In other words, the likelihood that uv exists is less than 50%. It is
therefore not schematized on the graph.
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Fig. 1. An evidential social network with missing links and bba’s weighted edges

An example of such a graph structure is given in Fig. 1, where links are
weighted by bba’s. The dashed links are the missing ones, they can match to a
previous state of the graph or they are unobservable from the data due to noise.
Assume that the graph in Fig. 1 is a social network of friendships, the nodes
represent users and the links describe friend relationships. We can imagine the
setting where the user “Gil” decided to hide his list of friends between time t and
t′, however, one of his friends, here “Hal”, is showing his list of friends. Hence,
we will have missing links i.e., Gil Deb and Gil Cal from the social network data
at time t′. Since the hidden links do not have assigned masses, our task is to
uncover them in order to decide whether the connections actually exist or not.

5 Evidential Missing Link Prediction

To properly deal with uncertainty, it is not enough to just handle links with
mass functions attached, we have also to define a proper method for how to
take the uncertainties into consideration when applying the link prediction task.
As a matter of fact, as discussed in [25], sampling techniques and simulation-
based approaches are promising methods to model and analyze social networks
with uncertain data. Actually, sampling mechanisms are frequently applied when
dealing with missing or partially observed data [4,13]. One of the reasons is that
processing missing data and treatment of sampled data are much alike since
what is not sampled can be considered as unobserved. In particular, various
effective link tracing and link mining techniques use network sampling [7,11].
The authors in [10] discussed the connection between sampled and missing data
in social networks.

To this end, our proposed method draws on n independent random samples
of the social network graph generated from the data. We assume that the links
have a priori bba’s, the task is to determine the missing ones. For a link to predict,
a distance based on local information measures is computed with respect to the
links in each graph Gi. The most similar link is considered as the most reliable
source of evidence and the information is transferred to the frame of discernment
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of the analyzed. Finally, evidence gathered from all the graphs is combined to
get an overall picture and make decision about the link existence. To this end,
we propose a method fulfilling the task of inferring a missing link between a pair
of nodes (u, v) based on the five steps presented below.

5.1 Similarity Measurement

At first, the Euclidean distance D(uv, xy) between the link uv and each link xy
included in each graph Gi is computed. We use structural similarity measures
based on local information as features. CN (Eq. 1), JC (Eq. 2) and AA (Eq. 3)
are employed since they are simple and they have proved their effectiveness in
many scenarios [15,20,26]. The most similar link that has the smallest distance
is considered. We divide the distance metric by its maximum value to get values
in [0, 1]. It is computed as follows:

D(uv, xy) =

√∑n
s=1(sims

uv − sims
xy)2

Dmax
(10)

where s is the index of a structural similarity metric, simuv and simxy are
respectively its values for uv and xy and Dmax is the maximum value of the
Euclidean distance.

5.2 Reliability Computation

Upon determining the most similar link, we quantify its degree of reliability
using a discounting operation (Eq. 7). The value given by the distance measure
is considered as a discount coefficient denoted by α = D(uv, xy). In fact, the
more similar the two links are, the more reliable the similar link is, i.e., when the
two links are totally similar D(uv, xy) is equal to 0 thus xy is a totally reliable
source of evidence (α = 0). Hence, mxy is discounted as follows:

⎧
⎪⎨

⎪⎩

αmxy({Exy}) = (1 − α) · mxy({Exy})
αmxy({¬Exy}) = (1 − α) · mxy({¬Exy})
αmxy(Θxy) = α + (1 − α) · mxy(Θxy)

(11)

One should notice that when there are many similar links, i.e., equal smallest
distances, the link with the highest mass on the event “exist” is chosen since the
degree of certainty of its existence would be higher.

5.3 Information Mapping

The discounted bba of the most similar link xy defined on the frame of discern-
ment Θxy has to be transfered to the frame Θuv of the link to predict. For that,
a multi-valued mapping operation (Eq. 8) denoted by τ : Θxy → 2Θuv

is applied
to match the elements as follows:
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• The discounted mass αmxy({Exy}) is transferred to muv
Gi

({Euv});
• The discounted mass αmxy({¬Exy}) is transferred to muv

Gi
({¬Euv});

• The discounted mass αmΘxy

(Θxy) is transferred to muv
Gi

(Θuv).

Where α = D(uv, xy) and muv
Gi

denotes the bba of uv on Θuv given the most
similar link, here xy in the graph Gi.

5.4 Global Fusion

Upon gathering information from the n sample graphs, the overall evidence
is fused to get the final basic belief assignment denoted by muv

f . The masses
muv

Gi
obtained from the n graphs are combined using the conjunctive rule of

combination such that:

muv
f = muv

G1
∩©muv

G2
∩© . . . ∩©muv

Gn
(12)

At this step, the graphs are treated as independent sources of evidence, the
combined information obtained from each most similar link in each graph is
fused with the evidence collected from all the graphs.

5.5 Decision Process

At the final step, we make decision about whether or not the link is missing
(existent). Fot that, we compute the pignistic probability BetPuv(Euv) (Eq. 9).
Actually, if BetPuv(Euv) > 0.5 then the likelihood that a link between u and
v exists has probability greater than 50%, it would not be considered missing
otherwise.

6 Experiments

In our experiments for testing the proposed evidential missing links prediction
method, we generated samples of a real social network component of 1500 nodes
and 20 K edges of facebook friendships obtained from [19]. A simulation phase
is subsequently applied in order to transform the samples into evidential graphs.
Mass functions are simulated randomly and attached to the edges. The link
prediction task is then applied. We compared the predicted missing links with
the actual existing ones in the initial graph to test the quality of the results.

6.1 Pre-processing

In the first part of our experiments, we generated 13 samples of the social network
graph. A fraction of the existing links is removed and a number of false edges
that do not exist either in the sample graph or the original graph is added
randomly. Hence, the removed links are the missing ones that we aim to predict
when applying the prediction task. Table 1 reports the percentage of false links
added to the samples graphs.
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Table 1. The percentage of false links

Graphs G1,G2,G3,G4 G5,G6,G7 G8,G9,G10 G11,G12,G13

False links % 10 15 20 25

At a second step, for all our dataset, we simulate mass functions according to
the links’ existence in each graph in order to get uncertain versions of the sam-
ples. For that, bba’s on the links that exist in the original graph corresponding
to a pignistic probability that is greater than 0.5 on the event “exist” are ran-
domly created. In contrast, the bba’s on the new added links in each sample are
generated such that the pignistic probability on the event “not exist” is greater
or equals 50%.

6.2 Results

To test our proposals, six experiments E1, E2, E3, E4, E5 and E6 are per-
formed. In E1, E2, E3 and E4, the missing link prediction approach is applied to
respectively three graph samples with the same percentage of false added links,
(G1,G2,G3), (G5,G6,G7), (G8,G9,G10) and (G11,G12,G13). To analyze the effect
of the number of considered graphs, we used in the fifth and sixth experiments
respectively two and four graphs samples with the same number of added false
edges, (G1,G2) and (G1,G2,G3,G4). The predicted links are subsequently com-
pared with the original graph. The performance is evaluated using two ppopular
measures: precision and recall. The precision represents the ratio of the number
of relevant predicted existing links nc to the number of analyzed links n. It is
defined as follows:

precision =
nc

n
(13)

The recall catches the correctly predicted existing links nc versus the correctly
and falsely predicted existing ones ncf . It is defined as follows:

recall =
nc

ncf
(14)

In each experiment, 50% of the analyzed links correspond to true missing links
that exist in the original graph. The other 50% are false links that do not exist
in both the original and sample graphs. The precision and recall results obtained
in the experiments are shown in Figs. 2 and 3.

As it can be seen in Figs. 2 and 3, the prediction quality in terms of precision
gives values higher than 60% reaching a maximum performance of 71% in E6.
Besides, the recall measure reaches 61% in E1 which means that 61% of relevant
existing links are predicted by the approach. In other words, the method is able
to predict 61% of the actual missing links. It clearly sticks out from these results
that our method is applicable on uncertain social networks generated from real
world data. That is, validity of our proposals is experimentally showed.
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Fig. 2. Precision and recall values obtained in E1, E2, E3 and E4

Fig. 3. Precision and recall values obtained in E1, E5 and E6

In Fig. 2, we observe that prediction accuracy for the four experiments is
above 60% for precision and close to 60% for recall. However, the precision
decreases as the percentage of false edges increases, from 68% in E1 where the
graphs have 10% false edges to 62% in E4 where the graphs have 25% false
added edges. This can be due to the increase of the nodes’ degrees. In fact,
the proposed method is based on local information measures, these latter are
sensitive to nodes neighborhoods. The more the nodes are connected and the
more we get similar links when computing distances. The same applies to recall
values, it decreases from 61% in E1 to 53% in E4. On the other hand, increasing
the number of considered graphs enhance the prediction accuracy. As shown in
Fig. 3, the precision and recall values increase respectively from 64% and 52%
in E5 (two considered graphs) to 71% and 57% in E6 (four considered graphs).
This can be related to the fact that further sources of evidence are considered and
new information about the nodes becomes available. Accordingly, more evidence
is investigated in the fusion procedure. We also note that in both Figs. 2 and 3,
precision values are higher than the recall values which points out that the
method predicts more incorrect missing links than incorrect non missing links.
In other terms, the approach is omitting relevant missing links more than it
is predicting false non existing ones. Although the results given by the recall
measure are quite satisfactory i.e., 61% in E1, they are considerably smaller due
to the large size of the dataset which challenges the algorithms.

Unfortunately, a comparative analysis cannot be accomplished at this point
since, to the best of our knowledge, there is no existing approach that addresses
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missing link prediction under uncertainty. On the other hand, comparison with
the state of the art methods is not engaging since they do not operate on the
same graph structures.

7 Conclusion

Missing link prediction is a substantial problem in social networks as it helps
analyze and understand social groups. It enables the implementation of efficient
tools to discover hidden groups or to investigate missing members, etc. which
are very crucial problems in security analysis and criminal investigation.

We have proposed a graph model for social networks that handles uncertainty
degrees regarding the links existences using mass functions. A new method for
the prediction of missing links have also been investigated. It uses local informa-
tion of the graph topology to compute distances between the nodes. These infor-
mation are subsequently transferred and fused using the belief function theory
tools to get a global information and make decisions about the links’ existence.
Our proposals have been evaluated on a real world online social network of face-
book friendship. Experimental results given by the precision and recall measures
show that our method provides accurate prediction.

Interesting avenues for future research include prediction of jointly missing
attributes of the nodes under uncertainty. In fact, several methods use addi-
tional information about the nodes and edges to predict future or missing links.
Yet, these attributes are frequently missing from the data due to privacy or
anonymization issues. Therefore, it would be interesting to study the problem of
jointly missing links and attributes under an uncertain framework.
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Abstract. Robots are destined to live with humans and perform tasks
for them. In order to do that, an adapted representation of the world
including human detection is required. Evidential grids enable the robot
to handle partial information and ignorance, which can be useful in var-
ious situations. This paper deals with an audiovisual perception scheme
of a robot in indoor environment (apartment, house..). As the robot
moves, it must take into account its environment and the humans in
presence. This article presents the key-stages of the multimodal fusion:
an evidential grid is built from each modality using a modified Dempster
combination, and a temporal fusion is made using an evidential filter
based on an adapted version of the generalized bayesian theorem. This
enables the robot to keep track of the state of its environment. A deci-
sion can then be made on the next move of the robot depending on the
robot’s mission and the extracted information. The system is tested on
a simulated environment under realistic conditions.

Keywords: Active multimodal perception · Evidential filtering · Mobile
robot

1 Introduction

Perceptually-driven robots have raised increased interest in different domains
(autonomous vehicles [6], medecine, social robotics [3,9]). This work takes place
in the context of companion robots, i.e. autonomous robot that monitor and
estimate the needs of the persons in their environment and react accordingly
by positioning themselves in a socially acceptable way. In order to do that, the
humans in the scene must be detected and tracked in time, in an adequate world
representation. In this paper, we consider the case of a small indoor mobile robot,
equipped with video and depth (RGB-D) and audio sensors, that must keep track
of humans in its surrounding in order to accomplish a mission. Each sensor
is able to provide information on the possible presence of humans at different
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locations with respect to the robot, with a certain degree of uncertainty. The
robot must then fuse at best the information at hand, while taking into account
this uncertainty, in order to localize humans properly.

This requires the robot to be able to create and update a map of its envi-
ronment and to localize itself in this map. The most common kind of map is
the grid, where each cell of the grid represents a spatial portion of the world
and contains information as to the content of this portion. Until recently, grids
contained only information of occupancy to enable the robot to move around
obstacles and detect moving objects [1,8].

In our case, we want the grid to contain more information in order to extract
relevant information for the mission, i.e. human positions. Moreover uncertainty
and doubt are crucial to the problem, as the perception algorithms and sensors
are not perfect, and the spatial field of detection is only partial. A framework
adapted to this representation of knowledge is the evidential framework [7].
Interesting works already exist on evidential grids [2,4], mainly in the field of
autonomous cars: in both works, a fusion scheme is presented that takes sensor
data (and a priori knowledge in the case of [2]) and fuse it into a time-evolutive
model in order to produce an enhanced grid containing information relevant to
vehicle navigation. However in both cases the only exteroceptive sensor consid-
ered is the LIDAR, which means that no multimodality is used. Moreover the
perception is only used to increase the accuracy of navigation and does not take
into account the mission of the robot.

We propose a fusion scheme based on extracted data from the sensors at
each observation time. The information extracted by the sensors are directly inte-
grated into evidential sensor grids that are fused together to produce a perception
grid containing the information accross all sensors. To increase the robustness
and add information about dynamicity, this grid is fused into an evolutive evi-
dential model. This enables the robot to keep all the extracted data directly
into an information grid from which decisions concerning its next motion can be
taken depending on its mission.

2 World Model and Evidential Grids

An occupancy grid is a grid in which each cell contains information about the
state of occupancy of this cell. The most common type of occupancy grid is an
estimation for each cell of a probability distribution over the two states “occu-
pied” or “free”.

In our case, the robot has missions to fulfill in dynamic environment, in
human presence (e.g. monitor the state of the persons in the environment). In
order to accomplish its mission, the robot must navigate through its environ-
ment, i.e. know where it is allowed to go without collisions with its environment
and what paths to consider to reach a goal, and at the same time extract infor-
mation relevant to its mission, i.e. places where the humans might be present,
places where objects might be, and the dynamics of the scene (mobility, staticity
of its surrounding). The robot must also keep in memory the places where it does
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not know the content of the scene, as they might become the next important
locations to visit.

We are thus trying to estimate the state of the spatial surrounding of the
robot, in the state space Ω = {H,O,F}, where:

– H: Presence of a human, mobile or static
– O: Presence of a non-human object, mobile or static
– F: Free navigable space

As the perceptual capabilities of the robot are not perfect (faulty sensors
or perception algorithms), a deterministic approach can present a quantity of
drawbacks. To have all the information relevant to navigation and the mission
of the robot in one unified stochastic representation, we propose a fusion method
based on evidential grids [2].

An evidential grid is a grid in which each cell contains information about the
state of a portion of the robot’s environment in the form of a belief function.

The outline of the method is presented in Fig. 1:

Creation of sensor grids

RGB

Depth

Audio

Video evidential grid

Audio evidential grid

Fusion scheme

Perception
grid at time t

Static fusion

Information grid

Temporal model

Temporal fusion

Fig. 1. Global fusion scheme

At each time step, information is extracted from sensors, and sensor grids
are created accordingly. The creation of such grids is detailed in Sect. 3. The
sensor grids are then fused together in order to obtain a perception grid. This
perception grid is then fused in an evolutive fusion model, in order to extract
information about the dynamics of the scene. The creation of the perception grid
and the temporal fusion are detailed in Sect. 4.

Throughout the article the following notations are used: mΩ , qΩ , and belΩ

represent respectively a basic belief assignment (bba), commonality function,
and belief function over discernment space Ω.

mΩ [S],qΩ [S], and belΩ [S] represent respectively a conditional basic belief
assignment, commonality function, and belief function over discernment space
Ω, which represents the belief repartition knowing hypothesis H to be true.
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3 Robot Perceptual System and Sensor Grids

3.1 Perceptual Capabilities of the Robot

It is assumed that an occupancy grid of the environment has been built in a
previous patrol of the robot, thanks to a Simultaneous Localization and Mapping
(SLAM) algorithm, and contain information about purely static objets (wall,
furniture). This is not a necessity but enables us not to consider the loop-closing
problem in mapping, and gives a predefined configuration of the environment of
the robot (a static map of the residential place of the robot).

The field of perception for each sensor is different, as shown in Fig. 2. The
field of vision, represented by the purple cone in Fig. 2(a) is narrower than the
field of audition, represented by the purple zone in Fig. 2(b), which means that
a person can be heard without being part of the field of vision.

(a) (b)

Fig. 2. Perception characteristics: In both maps the robot is represented by a green
point and is assumed to be facing north. In (a), the field of vision is represented by the
purple zone. When a human or an object detection happens (in red), it can directly
be put at its precise location inside the grid. In (b), the field of audition is represented
by the purple zone. A detection (in red) is less precise. The source can be anywhere in
the red zone. (Color figure online)

We assume that human detection is performed on each frame of the video
(e.g. face or skeleton detection). On each frame, if a human is detected, its
position in the image is known. A video observation cannot directly be placed
in a grid, as the depth information is missing. In order to be able to localize
video observation inside sensor grids, a registration is performed between the
information provided by the RGB sensor and the depth information given by
the depth sensor. This registration enables the linking between each pixel of the
video and corresponding cells inside the grid (i.e. correspondance between the
image frame of reference and the world frame of reference) Fig. 2(a). In the same
way, we assume that a human sound-source localization is performed on the
audio in synchronization with the video (typicall thanks to a generalized cross-
correlation method), so that each audio observation is made at the same time as
the video observation. As the robot only has two microphones, the localization
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cannot yield a precise position of the source but a cone in which the source is
likely to be, as shown in red in Fig. 2(b).

3.2 Sensor Grids

An evidential grid is created for each sensor. The aim of evidential sensor grids is
to fill each cell of the perceived spatial zone with a belief function on discernment
space Ω = {H,O,F}, described in Sect. 2, matching the information extracted
from the sensor for this particular cell.

Video Evidential Grid: The video itself can only deliver information on the
possible presence of a human in the scene, while the depth sensor gives informa-
tion on the presence of objects (human or not) and free space. This leaves four
possibilities for a given cell:

– If a human is detected a bba is created in the matching cell with the following
focal elements: H1 and Ω

– If an object is detected by the depth sensor without corresponding to a human
detection, a bba with focal elements {H,O} and Ω is created. Indeed, the
depth sensor does not give information as to what the nature of the detected
object is.

– If neither the depth sensor nor the video detect an object, a bba with focal
elements F and Ω is created.

– If a spatial zone is not part of the field of vision of the robot or is occluded
because of an object, a vacuous belief function is created for each cell of this
zone.

The way the belief are attributed reflects the trust in the detection algorithm.

Audio Evidential Grid: As shown in Fig. 2(b), sound-source localization with
two microphones is not spatially precise. The sound source can be anywhere in
the cone. Moreover, the sound can only give out information on the possible
presence of a human in a given cell (not on the fact that a given cell is free
space). Thus for the audio perception map, two cases are possible for a given
cell:

– If a detection happens and the considered cell is part of the audio cone, a bba
with focal elements H and Ω is created.

– If the considered cell is not part of the audio cone or if no detection is made
(silence), a vacuous bba is created for the cell.

In case of a detection, all the cells in the spatial zone of detection receive the
same bba. The way the beliefs are attributed reflects the trust in the detection
algorithm.
1 In order to simplify the notations, singletons of the discernment frame are noted

without brackets, hence H instead of {H}.
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4 Fusion Scheme

4.1 Perception Grid

In order to obtain a unified perception map accross all sensors, the audio and
video perception map need to be fused at each observation time. The grids are
fused cell by cell, thanks to an unnormalized conjunctive combination. However,
the detections do not have the same spatial uncertainty, depending on the modal-
ity, which means that conflict can appear during fusion. Knowing the possible
focal elements of the belief functions, only one combination can create conflict,
as shown in Table 1: it is the case where a cell is part of the audio cone, which
mean that there is a possible presence of a human in this cell, whereas the vision
sensors detect the cell as being free.

Table 1. Intersections between possible focal elements of the audio belief function
mΩ

a and the video belief function mΩ
v . The states are: F for free space, H for human

presence, and O for non-human object

In that case we chose to assign the conflict to hypothesis F, which means
trusting the vision over the audio detection, as the vision is spatially more pre-
cise. The fused basic belief assignment mΩ

P is then obtained through this modified
fusion rule:

mΩ
P (S) =

(
mΩ

a ∩©mΩ
v

)
(S), ∀S ⊆ Ω,S �= F (1)

mΩ
P (F ) =

(
mΩ

a ∩©mΩ
v

)
(F ) + (mΩ

a ∩©mΩ
v )(∅) (2)

After this fusion, we obtain the perception grid, representing the information
from all sensors, in which each cell contains a basic belief assignement mΩ

P , with
four possible focal elements: H, {H,O}, F, {Ω}.

4.2 Temporal Fusion

A type of information that can be useful to a companion robot is to differentiate
between mobile and static objects, through temporal integration. In order to be
able to differentiate between static and mobile objects, we introduce the frame
of discernment Θ = {Hs,Hm, Os, Om, F} where the new states are:

– Hs: Presence of a static human, i.e. a human has been occupying this cell for
an arbitrary period of time

– Hm: Presence of a mobile human, i.e. a human has filled the cell recently
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– Os: Presence of a static non-human object, i.e. an object has been occupying
this cell for an arbitrary period of time

– Om: Presence of a mobile non-human object, i.e. an object has filled the cell
recently

– F : free space

To be able to work in this discernment space we define the following refining:

γ : Ω → 2Θ

{H} 	→ {Hs,Hm}
{O} 	→ {Os, Om}
{F} 	→ {F}

(3)

2Ω → 2Θ

mΩ
P (B) 	→ mΘ

P (γ(B)), ∀B ⊆ Ω
(4)

This refining is applied to each cell of the perception grid, which enables us
to obtain a grid with discernment frame Θ. The sensor grid cannot add belief on
dynamic hypotheses as sensors are not able to detect motion in the scene. This
can be done by detecting changes in the scene between the time t-1 and time t.
In order to do that, we propose the use of a credibilist hidden markov model [5].

Credibilist Hidden Markov Model: A credibilist HMM estimates a belief
function at time t from the estimate of this belief function at t-1 and observations
at time t.
To be able to perform the HMM, two elements are needed:

– qΘ
t [St−1

i ](St
j) ∀Sj , Si ⊆ Θ, is the conditional commonality of transition from

credibilist state Si at t-1 to the state Sj at time t. Thus the matrix qΘ
t is a

matrix of size 2|Θ| ∗ 2|Θ|

– qΘt

b (P ) ∀P ⊆ Θ which represents the commonality repartition on subsets of
Θ given by observations at time t

With those elements, the estimation is a two-step process. First the commonality
function at time t q̂Θt

α is predicted:

q̂Θt
α (St

j) =
∑

St−1
i ⊆Θt−1

mΘt−1
α (St−1

i ) · qΘ
t [St−1

i ](St
j), ∀St

j ⊆ Θt (5)

where m
Θt−1
α is the estimated basic belief assignment at time t-1.

The estimated commonality is then corrected with the observations at time
t, by conjunctive combination:

qΘt
α (St

j) = q̂Θt
α (St

j) · qΘ
b (St

j), ∀St
j ⊆ Θt (6)
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Prediction Step: In our case, no model of evolution of a cell is available,
as predicting the way each cell of the scene is going to change is complicated.
That is why we propose to perform a temporal discounting on each cell of the
estimated grid at t-1 as a prediction. This enables the model to slowly decrease
towards ignorance in case no further observation is made on the cell:

m̂Θt
α (Si) = mΘt−1

α (Si) · e−γ ∀Si ⊆ Θt−1 (7)

m̂Θt
α (Θ) = 1 −

∑

Si⊆Θt−1

m̂Θt
α (Si) (8)

where γ is the decrease rate toward ignorance. This is equivalent to defining:

mΘ
t [St−1

i ](St
j) = 0, ∀i �= j, St

j �= Θ (9)

mΘ
t [St−1

i ](St
i ) = e−γ , Si �= Θ (10)

mΘ
t [St−1

i ](Θ) = 1 − e−γ , ∀St−1
i �= Θ (11)

mΘ
t [Θ](Θ) = 1 (12)

Correction Step: For each cell, the correction step is supposed to be a con-
junctive combination between m̂Θt

α and mΘt

P . However, each time the fusion is
performed, some conflict will appear if the cell’s true state changes between t-1
and t, as the model does not predict any change. Information must be extracted
from the conflict. Once again the only case where conflict appears is when a cell
changes state from occupied to free, or conversely when it becomes occupied. In
the former case, the only viable option is to trust the sensors and transfer the
conflict on the hypothesis F (trusting the prediction step would be dangerous
as it does not account for any possible state change in the cell). However, in
the latter case, the cell filling with an object means that a mobile object just
entered the cell, and we propose to transfer the conflict on the underlying mobile
hypothesis of mΘt

P . This corresponds to the following rule of fusion:

mΘt
α (A) =

(
m̂Θt

α ∩©mΘt
P

)
(A) +

∑
A=(B∩{Hm,Om})

B⊆Θ\F

(
m̂Θt

α (F ) · mΘt
P (B)

)
, ∀A ⊆ {Hm, Om}

(13)

mΘt
α (F ) =

(
m̂Θt

α ∩©mΘt
P

)
(F ) +

∑
A⊆Θ\F

(
m̂Θt

α (A) · mΘt
P (F )

)
(14)

mΘt
α (A) =

(
m̂Θt

α ∩©mΘt
P

)
(A), ∀A else (15)

Staticity Check: At that point, the system never adds belief on static hypothe-
ses Hs and {Hs, Osk}. It can also artificially increase the belief on mobile
hypotheses in the case where a previously free cell is filled, e.g. by a human,
and the object that fills it stops: in this case, as the sensor continues to detect
the human (focal element {Hs,Hm}), when the temporal fusion happens, the
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mass will be transferred on Hm for as long as the person stays in the cell, because
of the conjunctive combination. To answer this problem, we propose a staticity
check, which is done after each temporal fusion. This test enables the transfer of
masses on static hypotheses in case a cell has been occupied for a predetermined
time. A cell is considered occupied if the belief in the hypothesis Θ\F is larger
than a predefined number, i.e. if the percentage of belief in occupation is higher
than an arbitrary threshold.

The occupation is defined as follow:

Occ = bel({Hm,Hs, Om, Os}) (16)

if Occ is larger than a predefined δ for a time longer than Δt then all masses
on mobile hypotheses are transferred on static hypotheses i.e.:

m({Hm}) 	→ m({Hs}) (17)
m({Hm, Om}) 	→ m({Hs, Os}) (18)
m({Hm, Om,Hs, Os}) 	→ m({Hs, Os}) (19)

By doing this, if a mobile object suddenly stops, and stays detected, the
belief will be naturally transferred on static hypotheses.

5 Results

5.1 Simulation Conditions

In the simulation, an occupancy grid is available, showing the true state of
the scene, of size 50 × 50 cells. With cells of size 20 × 20 cm, this represents
a place of 100 m2. In order to properly illustrate the fusion scheme without
overcomplicating the analysis, we propose a simplified environment for the robot,
shown in Fig. 3. The environment is composed of free space and an obstacle,
e.g. a wall.

(a) Occupancy grid (b) Visibility of the robot (c) Example of audio cone

Fig. 3. Occupancy grid and perceptual capabilities of the robot. (a) shows the occu-
pancy grid: white cells represent free space and black cells represent obstacles. (b)
shows the visual perception space of the robot. In this case the robot is placed in the
center of the grid, facing north. White cells represent places the robot can see, black
cells that are not visible. (c) shows an audio detection by the robot (white cells).
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The robot occupies one cell at a time. This is not restrictive as the robot is
not part of its own perception. We assume that humans of the scene also occupy
one cell at a time. This might cause some problems locally as humans are never
truly motionless, but as it depends of the spatial resolution of the grids, we
consider it a sufficient first approximation.

As for the perceptual capabilities of the robot, they are shown in Fig. 3b
and c. We used a cone of visibility of angular size 45 degrees centered on the
robot, and an audio cone of angular size 20 degrees centered on the observation
to account for audio localization uncertainty. We assume that the robot is able
to localize itself properly in the map, considering the performances of available
state-of-the-art localization algorithms [8].

5.2 Scenario

In the scenario described in this section, the robot does not move. This is not
restrictive as we assume that the robot localizes itself properly, as the state
of each cell is estimated independently of the state of its neighbourhood. We
consider a scenario containing one moving and talking person, e.g. on the phone.
The person crosses the field of vision of the robot. His voice may continuously
be heard. The steps are the following ones:

1. When the robot starts perceiving, the human is outside its field of vision, but
inside its audio cone detection, talking

2. The human starts to move and enters the field of vision of the robot
3. The human continues walking in front of the robot and becomes silent
4. The human stops for a while and stand without moving, e.g. listening

The parameters used are:

– γ = 0.4: we use a rather slow decrease rate, in order to see the influence of
temporal discounting

– Δt = 6: after 6 consecutive observations of occupancy, the staticity check will
perform on the cell. This leaves a good amount of time before adding belief
to staticity

– δ = 0.5: if there is more belief that support the occupied state of the cell than
the free state, we consider the cell to be occupied

In order to present the information in a compact way, only the subset of Θ
with the highest assigned belief is shown for each cell. The three first step of the
scenario can be observed in Fig. 4.

At t = 0 (Fig. 4a and d), the robot begins to perceive its environment. As
there is no previous fused map, the sensor grid is the final map. The human is
not inside the field of vision, and the audio cone is filled with belief functions
on {Hs,Hm}. As expected, the obstacle in the field of vision receives belief
functions with belief on {Hs,Hm, Os, Om}. The rest of the space is accurately
separated between free space in the rest of the field of vision and ignorance on
non-perceived zones.



296 Q. Labourey et al.

(a) Occupancy grid at t=0 (b) Occupancy grid at t=5 (c) Occupancy grid at t=9

(d) Max belief at t=0 (e) Max belief at t=5 (f) Max belief at t=9

Fig. 4. Scenario realization: on the top line, occupancy grids at 3 different observation
time, and on the bottom line, corresponding max belief grid after fusion. On each zone,
the subset of Θ with the maximum belief assigned is indicated.

At t = 5 (Fig. 4b and e), the human has entered the cone of vision, and is
still talking. The temporal discounting leaves a part of previous audio cones on
the left (hypothesis {Hs,Hm}). As the human is walking, both the audio cone
and the video detection are changing at each observation, filling cells that were
previously considered free, thus the presence of belief functions with maximal
belief on Hm. As expected, the case of conflict between video putting belief on
F and audio putting belief on {Hs,Hm} is solved by trusting the video, hence
the fact that the audio cone is not appearing once the human enter the field of
vision.

At t = 9 (Fig. 4c and f), the human continues walking and talking and is now
walking in front of the obstacle. As before, in the visually perceived zone, the
hypothesis Hm is dominant in cells that are becoming occupied from previously
free. This time the audio cone has two different kinds of impact: on the zone
behind the obstacle, it is fused with ignorance, hence the dominance of hypothesis
{Hs,Hm}, which seems fair, as the sound might in fact come from behind the
obstacle with a non-visible person. The cone also has an influence on the obstacle
itself, as the part of the obstacle that is inside the audio cone will receive a belief
function on {Hs,Hm} (due to the fact the audio is increasing the belief in the
presence of a human and the video cannot contredict the information). However
as those cells have been occupied for longer than 6 consecutive observations,
the belief is transferred on {Hs}. This can be an advantage, as there are a
lot of common obstacles on which a human can be (tables, chair, sofas, etc.).
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(a) Occupancy grid at
t=14

(b) Occupancy grid at
t=25

(c) Max belief at t=14 (d) Max belief at t=25

Fig. 5. End of the scenario

However, to obtain a more accurate state estimate, a good idea would be to
include information from the occupancy grid (e.g. a cell containing a wall cannot
receive belief on H). The staticity check also happens on the rest of the obstacle,
which transfers the belief from {Hs, Os,Hm, Om} to {Hs, Os}.

The rest of the scenario can be seen in Fig. 5.
At t = 14, the person has stopped talking and stops moving. Not enough

time has passed for the staticity check to enter into effect. Moreover the temporal
discounting, linked with the video observation of the obstacle has not allowed yet
to go back to the dominance of {H,O} on the totality of the obstacle. Finally, at t
= 25, the staticity has had effect on the human detection and the cell containing
the person is accurately dominated by a belief on Hs. The obstacle is detected
as such again, and the temporal discounting created a zone of ignorance behind
the human. The filter describes the environment of the robot accurately.

6 Conclusion and Perspectives

This paper presented an evidential filter for indoor navigation of a mobile robot
in dynamic environment. The filter is based on two main steps: the creation of
evidential grids to represent sensor data, and the fusion scheme divided into two
parts. First the sensor data is fused accross all sensors and then the information
is integrated inside an evolutive model. The filter describes the environment of
the robot accurately, based on information extracted from conflict between the
sensors and the evolutive model.
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The computational complexity aspect was not explored in this paper and can
be problematic as the fusion process is performed at each time step on each step,
however methods to increase efficiency in belief functions exist in litterature. One
interesting addition could be the use of neighbourhood to estimate the state of a
cell: this would enable the inclusion of spatial information in the model. Moreover
it would help face the possible loss of detection from sensors.
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Abstract. Evidential Hidden Markov Models (EvHMM) is a particular
Evidential Temporal Graphical Model that aims at statistically repre-
senting the kynetics of a system by means of an Evidential Markov Chain
and an observation model. Observation models are made of mixture of
densities to represent the inherent variability of sensor measurements,
whereas uncertainty on the latent structure, that is generally only par-
tially known due to lack of knowledge, is managed by Dempster-Shafer’s
theory of belief functions. This paper is dedicated to the presentation of
an Expectation-Maximization procedure to learn parameters in EvHMM.
Results demonstrate the high potential of this method illustrated on
complex datasets originating from turbofan engines where the aim is to
provide early warnings of malfunction and failure.

Keywords: Evidential Temporal Graphical Model · Evidential latent
variable · Markov chain · Belief functions · Parameter learning

1 Introduction

The statistical representation of multi-dimensional time-series originating from
a dynamical system consists in finding a concise and meaningful mathematical
model that can be easily interpreted and used to undertand the behavior of the
system. Those models can then be used to enhance data-driven phenomenolog-
ical physics model with better prediction capabilities in in-service applications.
However, sources of uncertainty are numerous in real-world applications which
accounts for systems’ oversizing to ensure people safety and equipments’ avail-
ability. Uncertainty quantification thus plays a critical role during both systems’
design (upstream) and in-service monitoring (downstream).

Dempster-Shafer’s theory of belief functions is a mathematical framework
that allows to represent, quantify and propagate uncertainties. Its application
in mechanical engineering has however been limited due to a lack of tools to
handle temporal data. The additional temporal dimension compared to static
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 299–310, 2016.
DOI: 10.1007/978-3-319-40596-4 26
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Fig. 1. Graphical representation of a hidden Markov model: z is discrete and hidden,
x is continuous and observed, t is the time index.

data makes both the inference and learning problems more difficult than with
probability theory.

This paper is focused on a simple – yet not tackled – problem that is the
estimation of parameters in Hidden Markov Models when uncertainty is no more
represented by probabilities but by belief functions. This model has been initially
called Evidential Hidden Markov Models (EvHMM) and represents a particular
statistical discrete-latent Markov model which is depicted in Fig. 1. This model
assumes that the system is driven by a doubly stochastic process: A Markov
chain on discrete hidden (not observed) variables called states, and an observa-
tion model that statistically represents the distribution of sensor measurements
(recorded on the system) defined conditionally to the states.

Inference mechanisms in EvHMM has been proposed by the author in [16,21]
(not recalled here) to estimate the belief functions over hidden variables given
both an observation model and data. Those mechanisms provide exact belief
functions and enable one to compute the equivalent of a likelihood of a given
model for some sequences of observations, as well as to estimate sequences of
hidden states. Those procedures can then be used to explore relevant regions in
the feature or parameter space.

Only the learning problem is considered subsequently, with some assump-
tions required to make the problem tractable [18]. Section 2 presents a criterion
for learning parameters in evidential discrete-latent models, which is applied in
Sect. 3 for EvHMM. Some results are presented in Sect. 4.

2 Parameter Learning in Evidential Discrete-Latent
Models

2.1 The Criterion

The quality of a model such as depicted in Fig. 1 can be quantified by minimizing
the amount of conflict between the model and the data. Time-series are denoted
as X = [x1;x2; . . .xT ] with length T in D dimensions with xt = (x1, . . . , xD)′

called feature vector. The latent states are represented by discrete random vari-
ables z1, z2 . . . zt taking values in a finite set Ωz = {s1, s2, . . . , sK}, si ∩ sj = ∅.
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Finding the parameters θ∗ in a latent variable model, in which uncertainty
is managed by belief functions, and made of one observed variable xt and one
discrete hidden variable zt with t = 1 . . . T , can be turned into the maximization
of the potential support assigned to the subset (x1, Ωz) , (x2, Ωz) . . . (xT , Ωz)
after observing all data vectors:

θ∗ = argmax
θ

plR
T ×ΩT

z ((x1, Ωz) , (x2, Ωz) . . . (xT , Ωz) | θ) (1)

R is the domain of xt. For short, this criterion is rewritten as argmax θ pl(X,Ωz |
θ). By definition of the plausibility function, the criterion can be computed by
summing belief masses assigned to all configurations of the hidden variables S:

pl(X,Ωz | θ) =
∑

S ��∅
m(X,S | θ) (2)

Direct maximization of this criterion is untractable but by making use of the
latent structure, it is possible to formulate the problem differently in order to
use an EM procedure (Expectation-Maximization) [6]. In EM, the E-step can
indeed be used to estimate the distribution over latent variables given both the
data and the current values of the parameters θ(q) (at iteration q) while the
M-step can be used to find the parameters θ(q+1) that allows to maximize an
“auxiliary” function such that the criterion (that is not directly maximized) does
not decrease. For that, we can rewrite the criterion as

pl(X,Ωz | θ) =
∑

S ��∅
R(S)

m(X,S | θ)
R(S)

(3)

where S ⊆ Ωz and R is a distribution such that
∑

A R(A) = 1 that allows
Jensen’s inequality to be applied [9, Eq. 5]:

log pl(X,Ωz | θ) ≥ Qm,m(θ(q), θ) − Hm,m(θ(q), θ(q)) (4a)

Qm,m(θ(q), θ) =
∑

S ��∅
R(S, θ(q)) log m(X,S | θ) (4b)

Hm,m(θ(q), θ(q)) =
∑

S ��∅
R(S, θ(q)) log R(S, θ(q)) (4c)

s.t.
∑

S

R(S, θ(q)) = 1 (4d)

where Hm,m depends only on previous estimates θ(q) and allows to underline
that when the function in the logarithm ideally evolves towards the target R
(which can change at each iteration) then Qm,m − Hm,m → 0. Since R(S) must
sum up to 1, it follows that a rational choice for R is a BBA denoted as mγ

subsequently and Qm,m is an expectation taken with respect to mγ .
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2.2 E/M-steps

An EM-like procedure can thus be applied. At iteration q, the E-step aims at
maximizing the expectation 4b given fixed parameters θ(q). We can cancel its
derivative with repect to R using appropriate Lagrangian multipliers (integrating
the aforementionned constraint on R) to get the maximizer m

(q)
γ :

E-step: ⇒ m(q)
γ =

m(X,S | θ(q))
∑

S′ ��∅ m(X,S′ | θ(q))
≡ m(S | X, θ(q)) (5)

m
(q)
γ (· | X) is the posterior BBA on states given observations. The posterior is

then used in the M-step to find the best estimate θ(q+1) for the next iteration
so that it maximizes the expectation under m

(q)
γ :

M-step: ⇒ θ(q+1) = argmax
θ

E
m

(q)
γ

[log m(X,S | θ)] (6)

The algorithm iterates likewise to standard EM until the relative increase of the
support pl(X,Ωz) between two consecutive iterations remains below a threshold.

Property 1. Since R is a BBA, then Jensen’s inequality holds so that this algo-
rithm is guaranteed to converge.

The proof follows the same line of reasoning as in standard EM.

Conjecture 1. Similarly to the auxiliary function in EM [1, Theorem 2.1], the
maximization of the lower bound Qm,m does not decrease the total support.

This conjecture was implicitly assumed in [23] for the Credal EM algorithm
applied to Gaussian Mixture Model.

Remark 1. According to the model considered, it can be practically feasible to
check whether the conjecture holds or not. It is the case for EvHMM [18] by
using the evidential forward propagation [16].

2.3 Incorporating Evidential Prior to Adjust the Posterior BBA

The target BBA m
(q)
γ computed in the E-step is of paramount interest to rees-

timate the parameters. In cases of model’s misspecification (choice of A for
instance) or biases induced by the data collection process, this BBA may even-
tually lead to wrong parameter estimates.

One solution was proposed in [23]. It considers that the prior knowledge on
hidden variables are encoded by a set of T belief functions. For temporal data,
the prior may be defined on Ωz with a BBA mΩz

prior(t). Note that it is likely
to encounter situations where the prior can be defined on Ωz × Ωz. If nothing
is known about the hidden variables, then ∀t,mΩz

prior(t)(Ωz) = 1. Those priors
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can then be incorporated into the computation of the mathematical expectation
(Eq. 4a) by Dempster’s rule ∩© as initially proposed in [23]:

m(q)
γ ← m(q)

γ ∩© mprior(t) (7)

see also [4,7]. The second solution relies on the Theory of Weighted Distribu-
tions (TWD) [11] that allows to incorporate prior knowledge on expectations
computed in EM [3].

3 Learning Parameters in EvHMM

3.1 What Is an EvHMM?

An EvHMM is a particular evidential discrete-latent model enhanced by a
Markov chain [16] in which the states can be partially observable with some
degree of uncertainties. It is defined by two main sets of parameters:

– Transition matrix A: An entry aij represents the belief mass of observing
subset Sj at time t given that the system was in subset Si at t − 1.

– Observation model: Allows to generate the belief mass on subset Sj at t
given observation xt. Observations are supposed to follow a multivariate
Gaussian Mixture Model (GMM) for each state, characterized by parameters
Φ = {μ, c,Σ} representing the means, covariances and mixing weights.

The symbol θ = {A,μ, c,Σ} represents the set of parameters of an EvHMM.
In this model, the joint BBA (Eq. 6) located in the logarithm of the crite-

rion can not be expressed using only products which makes the estimation of
parameters untractable.

Assumption 1. It is possible to decouple the estimation of the transitions para-
meters in the Markov chain from the parameters in the observation model.

This decoupling appears naturally in standard HMM due to factorisation [2,
Chap. 13]. The criterion can thus be rewritten as Qm,m = Qa

m,m + Qb
m,m where

Qa
m,m is related to the transitions while Qb

m,m to the observation model.

3.2 M-step for the Markov Chain

Suppose that the transition matrix is made of BBAs mΩz
a (· | St−1), St−1 ⊆ Ωz. A

sequence S = (S1, S2, . . . St . . . ST ), St ⊆ Ωz starting at S1 requires to considering
that S1 is true at t = 1, S2 is true at t = 2 and so on.

Proposition 1. The total support assigned to a sequence S = (S1, S2,
. . . St . . . ST ), St ⊆ Ωz can be quantified by the plausibility on ΩT

z = Ωz × Ωz ×
. . . Ωz (T times) after conditioning on the sequence. Given a vacuous BBA on
initial states, the total support is given by:

plΩ
T
z (S) =

T∏

t=2

plΩz
a (St | St−1) (8)

It defines an Evidential Markov Chain (EMC).
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Note that the solution is different if the prior is not vacuous. The solution is also
different from the result proposed in [12, Definition 4.1]:

Definition 1 (proposed in [12]). An EMC has been defined as

mΩT
z (S) =

T∏

t=2

mΩz
a (St | St−1) (9)

This definition is of practical interest in the sequel since estimating the transition
given plausibilities (Eq. 8), although exact, would lead to incoherences due to the
presence of BBA in the suggested EM procedure (Sect. 2). The proposed criterion
has thus the following form:

Qa
m,m(A(q),A) =

T∑

t=2

∑

Sj⊆Ωz

∑

Si⊆Ωz

mΩz×Ωz

ξ(t,t−1)(Si, Sj | A(q)) log mΩz
a (Sj | Si,A)

(10)
where mξ(t,t−1) is a BBA defined on two consecutive time slices that represents
the probability mass of observing two given subsets. The maximization of Qa

m,m

with respect to ma at iteration (q) requires to take the derivative of Qa
m,m and

using appropriate Lagrangian multipliers (ensuring that
∑

B mΩz
a (B | St−1) =

1,∀St−1 ⊆ Ωz yielding:

m(q+1)
a (Sj,t | Si,t−1) =

∑T
t=2 mΩz×Ωz

ξ(t,t−1)(Si, Sj | A(q))
∑T

t=2

∑
∅�=Sl⊆Ωz

mΩz×Ωz

ξ(t,t−1)(Si, Sl | A(q))
(11)

By assuming that the BBAs defined conditionally to subsets are computed by
the disjunctive rule of combination [22] using only on BBAs defined conditionally
to singletons, it follows that Eq. 11 allows to estimate |Ωz| × 2|Ωz| parameters.

3.3 M-step for the Observation Model

In [23], the authors suggested an approach (EM-like) to estimate the parameters
in a GMM using belief functions to represent uncertainty on mixing (discrete
latent) variables. The criterion relies on both BBA and plausibilities generating
inconsistencies for reestimation formulas. We can thus aim at maximizing an
approximation of the support similarly to the Markov chain given by:

Qb
m,m(θ(q), θ) =

T∑

t=1

∑

S⊆Ωz

mΩz
γ,t(S | X,A(q), Φ(q)) log mΩz

b (S Rxt, Φ) (12)

where it is important to remark that mγ is made dependent not only on the
current parameters of the observation model (Φ(q)) but also on the EMC (A(q)).
Indeed, the Evidential Forward-Backward algorithm proposed in [16] can com-
pute this quantity, which is related to Eq. 11 by a marginal operation likewise
to standard HMM [13, Eq. 38].
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The Generalized Bayesian Theorem (GBT) [22] allows to deduce the BBA
mΩz

b (S Rxt, Φ) given plausibilities conditional to singleton plΩz (xt RSt, Φ) [5]:

mΩz

b (S Rxt, Φ) =
∏

sk∈S

plR(xt R sk, Φ)
∏

sk /∈S

(
1 − plR (xt R sk, Φ)

)
(13)

where plR(xt R sk, θ),∀sk ∈ Ωz is given by a GMM [13, Sect. 4A]. Making use of
Eq. 13, the criterion Qb

m,m can be rewritten as:

Qb
m,m(θ(q), θ) =

T∑

t=1

∑

sl∈Ωz

{
plΩz

γ,t(sl | θ(q)) log pl(xt R sl, θ)

+belγ,t(sl | θ(q)) log
(
1 − pl(xt R sl, θ)

)}
(14)

where belγ,t is the belief function.

Assumption 2. The contribution of “belγ,t(sl | θ(q)) log
(
1 − pl(xt R sl, θ)

)
” is

negligible compared to plΩz
γ,t(sl | θ(q)) log pl(xt R sl, θ).

This assumption does not narrow the expression down to a probabilistic formu-
lation because the weight plΩz

γ,t(sl | θ(q)) makes use of the information held by
all subsets that contain sl.

For illustration purpose, we consider one Gaussian component for each sin-
gleton state. The criterion can thus be approximated as:

Qb
m,m(θ(q), θ) ≈

T∑

t=1

∑

sl∈Ωz

plΩz
γ,t(sl | θ(q)) log pl(xt | sl, θ) (15)

The means μk, k = 1 . . . K for the next iteration are obtained by

μ
(q+1)
j =

∑
t pl

(q)
γ,t(sj) xt

∑
t pl

(q)
γ,t(sj)

(16)

and the covariances by

Σ
(q+1)
j =

∑
t pl

(q)
γ,t(sj) · (xt − μj) (xt − μj)′

∑
t pl

(q)
γ,t(sj)

(17)

Due to component annealing observed in practice [10], the mixture weights were
not considered.

3.4 E-step

mγ,t represents the knowledge on subsets of states after observing X which is
obtained by the evidential forward-backward algorithm [16]. This algorithm can
be written using commonality functions which allows point-wise multiplication
and therefore with limited complexity.
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4 Results

4.1 Turbofan Engine Datasets

The turbofan datasets were generated using the CMAPSS simulation environ-
ment that represents an engine model of the 90,000 lb thrust class [8,20]. The
authors used a number of editable input parameters to specify operational profile,
closed-loop controllers, environmental conditions (various altitudes and tempera-
tures). Some efficiency parameters were modified to simulate various degradations
in different sections of the engine system. Selected fault injection parameters were
varied to simulate continuous degradation trends. The datasets generated pos-
sess unique characteristics that make them very useful and suitable for developing
classification and prognostics algorithms [17]: Multi-dimensional response from a
complex non-linear system, high levels of noise, effects of faults and operational
conditions, and plenty of units simulated with high variability.

In the present paper, the 100 training instances of dataset #1 are considered
to illustrate the EvHMM on a complex system. These instances were generated by
considering one operating condition and one fault mode. The data were collected
from various parts of the system to record effects of different degradation mecha-
nisms on 21 sensor measurements. The time-series thus represent different degra-
dation behaviors in multiple units. From sensor measurements in each instance
of the training dataset #1, a health indicator is built as proposed in [14]. The
health indicators (HI) are depicted in Fig. 2 where we can observe high variability
in terms of noise and degradation level. For classification purpose, a ground truth
of the state sequences corresponding to each time-series was proposed in [19] which
is used subsequently, and available at https://fr.mathworks.com/matlabcentral/

fileexchange/54808-segmentation-of-cmapss-trajectories-into-states. The comparison
between the ground truth and the estimations provided by both HMM and
EvHMM is made by the Adjusted Rand Index (ARI) [24] that tends to 1 if the
sequence estimated and the ground truth are equal.
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Fig. 2. Instances in training dataset #1.
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4.2 Influence of a Possibly Wrong Ground Truth

The ground truth may be corrupted by errors due, for instance, to the lack
of expertise on the degradation, to the noise on the HI or to some parameter
tuning. To evaluate the influence of labeling errors, we proceed as proposed in
[4,15] where at each time step t of a training instance, an error probability qt is
drawn randomly from a beta distribution with mean ρ and standard deviation
0.2. Then, with probability qt, the state yt is replaced by a completely random
value ỹt with a uniform distribution over possible states. We thus obtain noisy
labels corresponding to a crisp random labeling. Note that ρ = 1 corresponds to
the unsupervised case (no labels). The use of prior in HMM was proposed in [15]
with available code at https://fr.mathworks.com/matlabcentral/fileexchange/55172.

Training and testing sets were then generated to evaluate the EvHMM. 20
instances and the corresponding labels were randomly selected for training, the
remaining 80 are kept for testing (without labels), and this process is repeated 8
times. For each run, the labels were corrupted 10 times with the random process
explained previously. For each value of ρ, 6400 results were thus obtained which
are represented by box plots in Fig. 3.
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Fig. 3. Performance (ARI) of EvHMM and HMM for the classification of hidden states
with respect to the quantity and quality of prior about states (controlled by ρ).
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Figure 3(a) and (b) depict the evolution of the performance of both HMM
and EvHMM when noisy labels are considered. It can be observed that the
behavior of the EvHMM is highly different from standard HMM. Note that the
low performance of the HMM in this particular case (noisy labels) was also
underlined in [15]. The tests made with uncertain labels (not shown here) led
to similar results for both models. The EvHMM appears more robust to label
switching compared to standard HMM, with a stable performance around 90%
until high level of noise (ρ = 0.8), whereas the performance of the HMM highly
decreases with report to the noise level ρ. For noisy labels, the EvHMM always
outperformed the HMM, except for the supervised case with ρ = 0 yielding
similar results. The 75-th percentiles of the EvHMM’s performance are almost
always close to 1 while the boxes for the HMM follows the decreasing trend of
the median with report to the noise level. Therefore, with an appropriate ini-
tialization (made similarly for both models), the EvHMM may lead to a high
recognition rate for this dataset. The difference between both models is partly
attributed to the ability of the EvHMM to manage disjunctive sets in particular
in presence of conflicting information between prior and estimates. This eventu-
ally allows belief masses to be assigned more gradually to particular singletons
compared to the probabilistic case.

5 Conclusion and On-going Work

EvHMM (Evidential Hidden Markov Model) is a new method for time-series
modelling based on Dempster-Shafer’s theory of belief functions. The main dif-
ference with standard Hidden Markov Models is the consideration of random
disjunctive sets in the Markov chain. The use of belief functions to quantify and
propagate uncertainty and imprecision on subsets of random latent variables
allows to represent the gradual evolutions of a state variables of a system which
is monitored through sensors.

Some preliminary results are presented on complex datasets on which the
proposed EvHMM depicts high performance compared to standard HMM in
presence of noisy labels.

In [18], it is shown that the likelihood (termed as a plausibility) can be
exactly computed so that the conjecture and approximations proposed in this
learning procedure to make the solution tractable can be easily checked in real
applications.

The application of the proposed procedure to various evidential latent models
is considered for future work.
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Rombaut, Denis Pellerin and Thierry Denoeux for discussions around inference in
EvHMM and EM-based learning in HMM. This work has been carried out in the fol-
lowing projects: the CNRS-PEPS project “EVIPRO”, the “SMART COMPOSITES”
project (FRI2). It also got support from the Laboratory of Excellence “ACTION”
(reference ANR-11-LABX-01-01).



EvHMM: Learning 309

References

1. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. Ann. Math.
Stat. 41, 164–171 (1970)

2. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)
3. Juesas, P., Ramasso, E.: Ascertainment-adjusted parameter estimation approach

to improve robustness against misspecification of health monitoring methods. In:
Mechanical Systems and Signal Processing (2016). http://dx.doi.org/10.1016/j.
ymssp.2016.03.022
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Abstract. To ensure the quality of a learned Bayesian network out of limited
data sets, evaluation and selection process of variables becomes necessary. With
this purpose, two new variable selection criteria N2Sj and N3Sj are proposed in
this research which show superior performance on limited data sets. These
newly developed variable selection criteria with the existing ones from prior
research are employed to create Bayesian networks from three different limited
data sets. On each step of variable elimination, the performance of the resulting
BNs are evaluated in terms of different network performance metrics. Further-
more, a new variable evaluation criteria, IHj, is proposed which measures the
impact of a variable to all the other variables in the network. IHj serves as an
indicator of the most important variables in the network which has a special
importance for the use of BNs in social science research, where it is crucial to
identify the most important factors in a setting.

Keywords: Bayesian networks � Variable selection in Bayesian networks �
Importance hierarchy of variables in network � Variable evaluation scores �
Limited data sets

1 Introduction

In the art of transforming data into information, statistical community has long dealt
with the problem of variable selection and there is an immense literature for different
models and approaches, which acted as footprints for the machine learning community
in efforts of identifying the relevant features of a problem. These efforts are particularly
praiseworthy in the world of today where the advancement of data collection tools and
automatic capture of data is ever increasing with an enormous speed and thus the
number of redundant variables without contribution.

Having more features does not always contribute to problem solving or the correct
representation of the problem. [1] have shown that with their proposed algorithm the
feature space may be reduced in many learning tasks while also improving the accu-
racy. [2] states that for interpretation of the results only a small representative subset of
the original feature space of the data may be sufficient. The reasons for selecting only a
subset of variables, instead of including all, may be listed as concerns for loss in
prediction accuracy, loss in speed of the predictor, cost considerations for observation
of extra features [3], model overfitting [4].
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Maybe the bliss is in ignoring and that has long been identified by the researchers;
the only debate is about on how to decide what to ignore. However, when it comes to
the topic of variable selection in probabilistic graphical networks, particularly Bayesian
networks (BN), the same level of prosperity of research cannot be observed and that
qualifies the subject as an open and unsaturated research field. The previous work on
variable selection in BNs mostly focused on selection of the variables for BNs where
BNs are used as a classifier. [5] have studied the feature-selection behavior of the
minimum description length for feature selection function for learning BN classifiers
from data. Many researchers have argued that the knowledge of the values of variables
of Markov blanket should be sufficient for classification problems [6, 7] and suggested
to use the Markov blanket information for selecting the important variables. There exist
considerable research where a BN is generated from a data set and then the Markov
blanket of the class variable is used to the feature subset selection task for the clas-
sification problem [8, 9].

Though there exist considerable research for variable selection in BNs with the
purpose of creating a better classifier, considering the capabilities of BNs, it can be well
appreciated that the role and importance of a BN is not limited to act just as a classifier.
BNs are used in many different domains ranging from biology to document classifi-
cation, targeted advertising, legal services and the variety of these fields is increasing
every day. A natural consequence of this is that depending on the field of application
the expectations from a BN may differ and hence the expectations from its performance
may vary [10]. Additionally, though there exist much research for structure learning
algorithms in BN, most of the research assume to have access to large data sets
available which is not always the case for many real-world applications [11]. All these
point out the need for further research for variable selection in BN aiming for improved
BN representations of the considered problem and hence better performing Bayesian
networks out of limited data sets.

For the purpose of creation of better performing BNs [12] proposed a heuristic
procedure for selecting the variables to be used in the final BN. In their approach, first
an initial BN is learned using all of the variables in data. Then using the information
contained in the conditional probability tables (cpt) of the variables the Sj score is
calculated for each variable j in the network, which acts as a stepwise criteria for
selecting the variables to be used in the final BN. The proposed heuristic is applied
using a market basket data set and its performance is evaluated in terms of the logscore
of the final BN. Later [10] have argued that though the Sj score demonstrates a sound
performance on prediction capacity, its formula leads to the problem that the variables
without parents or children in the network are punished and that in turn affects the
overall performance of the heuristic. To that end they proposed a modification on the
score and tested the performance of the revised score, NSj using a credit data set, again
in terms of the logscore of the resulting BN. Though both of these works obtain
successful results, there is need for more data sets to evaluate the process and for
different criteria to evaluate the performance of the resulting BN.

In this work we develop two new variable selection scores N2Sj and N3Sj. Addi-
tionally we develop a new variable evaluation score, IHj, which identifies the variable
in the network with the most contribution to other variables. Identifying the most
important variable in the network is especially important in terms of the social science
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research, where it is crucial to identify the most important factors in a setting. We test
the performance of all the variable selection scores dj, Sj, NSj, N2Sj, N3Sj, IHj using
three data sets. The performance of the scores are evaluated in terms of the network
performance measures AIC, BIC, loglikelihood and K2.

The outline of the remainder of paper is as follows: In Sect. 2 we review the
existing scores dj, Sj, NSj, introduce the new ones IH, N2Sj, N3Sj and explain the
application and evaluation process of the proposed scores. Section 3 gives details about
the data sets used for this study. In Sect. 4, we present the results of all the scores and
discuss its implications. In Sect. 5 we summarize and conclude.

2 Variable Evaluation for Bayesian Networks: Prior Work,
New Scores and the Application of the Heuristic

2.1 Prior Work: dj, Sj, NSj

The prior work in variable evaluation scores for creating better performing BNs,
[10, 12], are both based on the idea that once an initial BN is learned from the data set,
the cpts of the variables in the network can be used to identify the variables which have
strong association with each other. With that in mind, [12] applied the distance measure
to the cpt of each variable, in order to measure the degree of change of the conditional
probabilities of a child node depending on the states of its parents. Here a high average
distance is desired as an indication of a strong relationship. The average distance of
each variable j in the network, where N is the set of variables in the network, may be
calculated as follows: Here dj represents the average distance of the variable of interest
j with its parent variables. pjk and qjk stand for the conditional probabilities of this
variable j for the different states of its parents, k stands for the different states of the
variable and n stands for the number of states of the set of parent nodes.

dj ¼
X

ðpjk � qjkÞ2= n
2

� �
;8p ^ q for j 2 N ð1Þ

Basing the evaluation of the variables just on their level of association with their
parents might us, overlook the ones which have a strong association with their children.
This fact and the idea that the same average distance shows the degree of association of
a child node jointly with the child’s other parents is considered by the development of
the Sj score. In this formula the Sj score of a variable j in the network, for j ϵ N, is the
sum of the average distance of the same variable dj and the average of the average
distances of its children. Here ij denotes the child variable i of the variable j and cj
denotes the number of j’s children. Hence according the proposed heuristic for each
variable in the network first their average distance and then Sj will be calculated, where
the variables with the lowest performance on the Sj score will be eliminated from the
network and then a new BN will be learned where again the information contained in
the new cpts will be used for the calculation of the variable evaluation scores of the
variables.
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Sj ¼ dj þ
P

i
dij
Cj

� �
; for cj [ 0

dj; for cj ¼ 0

(
ð2Þ

As presented in Eq. 2, Sj diminishes to dj when the variable does not possess any
children and equals to the latter part (average of the average distances of its children) if
the variable does not have any parents. For that reason, later [10] criticized the Sj score
suggesting that its formula leads to the problem that the variables without parents or
children in the network are punished which in turn affects the overall performance of
the heuristic. As a modification to the Sj score they offered the NSj score for the
evaluation of variables. NSj considers three cases, the case of a variable without
children, without parents and the case of a variable with both parents and children. The
ones without any parents or children will be eliminated from the network. Accordingly,
NSj, for j ϵ N, is computed as follows:

NSj ¼
dj; for cj ¼ 0P

i
dij
Cj
; for dj ¼ 0

dj þð
P

i

dij
Cj
Þ

2 ; for cj ^ dj [ 0

8>><
>>: ð3Þ

2.2 New Scores for Variable Evaluation in BN: IHj, N2Sj, N3Sj

In this section we present three new variable evaluation scores IHj, N2Sj and N3Sj. IHj is
a score defined for identifying the variables in the network which contribute most to
other variables in the network and may hence be called as the importance hierarchy
indicator for variables present in the network. The calculation of IHj is based on the
results of the sensitivity analysis calculated as the entropy reduction. Entropy reduc-
tion, I, is calculated as

I ¼ H Qð Þ � H QjFð Þ ¼
X

q

X
f

P q; fð Þlog2½p q; fð Þ�
P qð ÞPðf Þ ð4Þ

where H(Q) is the entropy of Q before any findings, H(Q|F) is the entropy of Q after
new findings from variable F, and Q is measured in information bits [13]. For the
calculation of IHj, for each variable j in the network, where N is the set of variables,
sensitivity analysis based on entropy reduction are performed. Accordingly, IHj, is
calculated as the sum of entropy reduction that the variable j has with the other
variables, i, in the network. This sum is normalized over the sum of the sensitivity
analysis conducted for each variable in the network. In terms of contribution to the
other variables, IHj, can identify the most important variables in the network, hence the
precious one of the BN. This has a special importance for the use of BNs in social
science research, where it is crucial to identify the most important factors in a setting.
Previously, for the same purpose [14] used the Borda score based on the entropy
reduction of the variables in the network. However, that approach considers only the
top four results and overlooks the effect of all the variables in the network.
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IHj ¼
P

i2N IjiP
j2N
P

i2N Iji
; for j �N ð5Þ

As a follow up on the previous work, N2Sj is defined as the maximum between the
average distance of a variable j and the average of the average distances of its children.
With this modification, similar to NSj score, N2Sj prevents the punishment of the
variables without parents or children whereas at the same time also induces the
selection process towards the variables with a strong association with either parents and
or children. On the other hand, different than the NSj score which uses the average of
the scores for variables with both parents and children, in the formulation of N2Sj the
Max function is used. This change, leverages the selection of the variables to the
network which have both parents and children but the association level with one of
them (with either its parents or children) is weak whereas with the other one, the
variable has a strong association.

N2Sj ¼ Max dj;
P

i
dij

cj

� �
; for cj [ 0

dj; for cj ¼ 0

8<
: ð6Þ

N3Sj, on the other hand, aims to also consider the effect of importance a variable
plays towards the other variables in the network and not just considers the level of
association with parents and or children. Hence, N3Sj is defined as the product of N2Sj
with IHj, for j ϵ N.

N3Sj ¼ Max dj;
P

i
dij

cj

� �
� IHj; for cj [ 0

dj � IHj; for cj ¼ 0

8<
: ð7Þ

2.3 Application and Evaluation Process of the Variable Evaluation
Scores

For the application of the heuristic and the comparison of the variable selection scores,
first a BN is learned using all of the variables in data set. Afterwards, using the cpts of
the variables out of the learned networks, the corresponding scores, dj, Sj, NSj, N2Sj,
N3Sj, IHj are calculated and a predefined number of variables with the lowest scores are
eliminated from the network. Later, for each score considered and according its result
in variable selection, a new BN is created with the remaining variables and new cpts are
learned which will be again used for the calculation of the variable evaluation scores
and hence the selection of variables. This procedure is repeated until the desired
number of variables is reached. After each step of the variable elimination, the per-
formance of the resulting networks are evaluated in terms of four network performance
measures Akaike information criterion (AIC) [15], Schwarz Bayesian information
criterion (BIC) [16], loglikelihood [17] and logarithm of the K2 score [18]. A nice
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review of the performance metrics for Bayesian networks are given by [13]. The
measures used in this study are defined as follows:

AIC ¼ log p Djĥ;G
� �� �

� np ð8Þ

BIC ¼ log p Djĥ;G
� �� �

� np
2
logðNÞ ð9Þ

where p Djĥ;G
� �

is the likelihood of the data D according the estimated parameters ĥ

and structure G of the created BN, N is the sample size of the data set and np is the
number of parameters.

The log-likelihood L is defined as

L ¼
X

i
ni�test � log ni

wi � N ð10Þ

where ni is the number of instances in bin i, ni-test the number of instances of the test set
that fall into this bin, wi the bin width, and N the total number of training instances.
L measures the performance of a learned BN structure with its estimated parameters on
a given test set.

The logarithm of the K2 score is given as:

log K2 Xið Þð Þ ¼
Xqi

j¼1
ððln ri � 1ð Þ!

Nij þ ri � 1
� �

!

 !
þ
Xri

k¼1
lnðNijk!Þ ð11Þ

where Nijk represents the number of cases in the database in which the variable Xi took
its kth value, where k = 1, 2,…, ri and j represents the unique combination of values of
its set of parents (j = 1, 2,…, qi). With respect to BIC, AIC measure penalizes less
harshly for the inclusion of additional edges and K2 score can be considered as an
intermediate one between AIC and BIC in terms of the penalization of network
complexity [19]. All of the networks are learned using the Bayesian search algorithm in
Genie [20], the sensitivity analysis are conducted in Netica [21] and for the evaluation
of the networks bnlearn [22] package in R is employed.

3 Data Sets: Credit, WEF, Trade

Three different data sets are used for this research which will be referred to as Credit,
WEF and Trade data throughout the paper. The selection of these data sets in particular,
is in line with the research idea of this paper which is to develop efficient variable
evaluation scores for BNs. It is aimed that, with the application of these variable selection
scores better performing BNs will be obtained and hence the hidden information con-
tained in limited data sets may be revealed. With that in mind, the data sets used in this
study are limited in terms of the representative cases, the corresponding variables and the
number of states and in terms of that each shows different characteristics.
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The first data set is a free data set, called the German credit data, provided by the
UCI Center for Machine Learning and Repository Systems. For the analysis the
cleaned and discretized version of this dataset, previously used by [10] is employed,
which constitutes of 21 columns and 1000 lines, referring the number of variable and
cases consequently.

The second data set employed is the data released by WEF [23] for the 2009–2012
period. The data set used to learn the BN constitute the data of 21 variables considered
for all the countries1 participating in the WEF study over the four years indicated. The
data is first transformed into a form where each variable is discretized with seven states,
each having equal width of range. Accordingly, the final form of the data set used has
21 discrete variables with 539 cases.

As the third data set the BACI database by [25] is used. It is a cleaned version of
COMTRADE Database. The number of cases contained in the data set is 143. In this
paper, trade data is aggregated to indicate exports of each country in each HS-two digit
product categories which refers to 69 variables where each variable is discretized to
have four states with equal width. Trade data sets can be used for different levels of
aggregation of products. As the data is more disaggregated, the product groups have of
a more detailed definition. HS-6 digit data includes over five thousand product groups
and the construction of a BN using all, would significantly increase the computational
cost. On the other hand, by eliminating irrelevant variables, we can both work with
disaggregated trade data, identify the effect of the important variables and also reduce
the computational cost.

4 Score Performance Results, Evaluation and Discussion

The performance of the resulting BNs using each variable selection criteria on three
data sets are presented in Figs. 1, 2 and 3, which are reported in terms of the network
scores AIC, BIC, loglikelihood and K2. The variable elimination process is repeated
for five steps in Credit and WEF data, and for six2 steps in Trade data. The number of
variables eliminated on each step is two on Credit and WEF data, and six on Trade data
which is decided upon the inherent number of variables of the data set. Step 0 indicates
the BN created using all of the variables in the data set. Since on some steps the same
set of variables are selected by different criteria, the same results are obtained, hence in
figures the bars of different variable selection criteria do have the same height.

In addition to the variable selection criteria, dj, Sj, NSj, N2Sj, N3Sj, IHj, considered in
this research, the results given in Figs. 1, 2 and 3 also includes the results of the BNs
created by eliminating the variables with the highest dj scores, called top dj. The
purpose for the inclusion of these results is to demonstrate that the considered variable
elimination scores, indeed select the correct variables to be eliminated from the net-
work and the improvement obtained in the BNs using these, is not due to overfit in data

1 Oil exporting coutries are excluded from the data set [24].
2 Since all of the criteria selected the same set of variables on the first step an additional step was
added.
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because of the reduction of the data set. Consequently, as it is demonstrated in Figs. 1,
2 and 3, the results of the BNs created by eliminating the variables with top dj scores
from the network, are worse than all of the variable selection criteria in almost every
step of the three data sets. This result is also apparent given in Table 1 below. In
Table 1, a pairwise comparison is made between all the variable selection scores plus
the top dj, in terms of difference in mean values of AIC, BIC, loglike and k2 of the
resulting BNs. The variable selection criteria with the better performance is reported
with its corresponding significance level. Accordingly, comparing the results obtained
using the considered variable elimination criteria to the results with top dj we see that in

Fig. 1. Credit data: performance of the resulting BNs in different network performance metrics
(Color figure online)

Fig. 2. WEF data: performance of the resulting BNs in different network performance metrics
(Color figure online)
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Fig. 3. Trade data: performance of the resulting BNs in different network performance metrics
(Color figure online)

Table 1. Pairwise comparison of criteria in terms of the mean (***, **, * represent
consecutively 1 %, 5 % and 10 % level of significance for difference in mean) values

AIC BIC loglike k2

dj vs Sj Sj dj
** Sj

** Sj
*

dj vs NSj NSj
*** NSj

* NSj
** NSj

**

dj vs N2Sj N2Sj
*** N2Sj N2Sj

*** N2Sj
***

dj vs N3Sj N3Sj dj
** N3Sj

** N3Sj
*

dj vs IHj dj
* dj

*** dj dj
Sj vs NSj NSj NSj

** Sj NSj
Sj vs N2Sj N2Sj

** N2Sj
*** Sj N2Sj

Sj vs N3Sj Sj Sj N3Sj Sj
Sj vs IHj Sj

** Sj
** Sj

** Sj
**

NSj vs N2Sj N2Sj N2Sj N2Sj N2Sj
NSj vs N3Sj NSj NSj

** N3Sj NSj
NSj vs IHj NSj

*** NSj
*** NSj NSj

**

N2Sjvs N3Sj N2Sj
** N2Sj

** N3Sj N2Sj
N2Sj vs IHj N2Sj

*** N2Sj
*** N2Sj

* N2Sj
**

N3Sj vs IHj N3Sj
** N3Sj N3Sj

** N3Sj
**

top dj vs dj dj
*** dj

** dj
*** dj

***

top dj vs Sj Sj
*** Sj Sj

*** Sj
***

top dj vs NSj NSj
*** NSj

*** NSj
*** NSj

***

top dj vs N2Sj N2Sj
*** N2Sj

** N2Sj
*** N2Sj

***

top dj vs N3Sj N3Sj
***

– N3Sj
*** N3Sj

***

top dj vs IHj IHj
*** IHj

* IHj
*** IHj

***
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almost all cases the considered variable selection score obtained statistically signifi-
cantly better results than the ones obtained using ‘top dj’.

In all data sets with the application of all of the considered variable selection criteria
we see noteworthy improvement in the network performance. However, this
improvement is lowest with dj and IHj scores. This is an expected result since dj only
considers the strength of association of a child node with its parent. The poor per-
formance of dj compared to Sj and NSj are previously reported in [10, 12] and it is
measure used to develop the new variable selection measures in this research. IHj on
the other hand, considers the effect of a variable on all the other variables in the
network. Though this is important in terms of identification of the most important
variables in the network, it may not be the correct approach for variable selection in BN
since a strong association with either parents or children is much more important for the
prediction performance of the learned BN, than the wide influence of a variable among
the others in the network. In line with these results, as presented in Fig. 1 the new
variable selection criteria N2Sj, developed in this research, shows a statistically sig-
nificant superior performance in Credit data set compared to all the other scores. N2Sj,
according to its formulation using the max function, favors the variables in the network
with a strong association with either its parents or children. The Credit data in this
research represent a richer data set compared to the other two and hence the selection of
variables can be made according to the max function.

On the other hand, though WEF data includes the same number of variables as in
Credit, it has a smaller number of cases but a greater number of states. Accordingly, as
presented in Fig. 2 below, on WEF data, N3Sj shows a superior performance to all the
other criteria. It can be observed that, though also NSj and N2Sj got noteworthy results,
the newly suggested criteria N3Sj, differentiates itself among the others. This difference
is statistically significant in loglike compared to NSj and Sj. With the involvement of
IHj term in its formulation N3Sj not only values the strength of association of a variable
with its parents and children but also the variable’s impact to the whole network. In that
matter, restricting the selection process to the strength of association to parents and
children only, deteriorates the findings in limited data sets with a big number of states
but a small number of cases. However, when the success of the network is evaluated in
terms of the BIC measure which punishes harshly for the inclusion of more edges we
observe that N2Sj obtains better results compared to Sj and N3Sj, the criteria which favor
the well connectivity among the network.

The variable selection process for BNs requires the consideration of different
dimensions inherent in the data set. In order to assure to end up with a high quality
network, the weight of these dimensions should differ according the data characteris-
tics. In that instance the trade data set represents a very sparse form with its big number
of variables and very limited number of cases. Accordingly, results given in Fig. 3
below show that the Sj score, which considers the total contribution of a variable has
both with its parents and children and thus punishes the ones without parents or
children, shows a sound performance compared to others. BNs created from such
limited data sets have the problem of well connectivity among the network since the
big number of variables are represented through a few number of cases. In that matter,
having a selection criteria which praises the well connectivity of a variable with its
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prodecessor and successor is crucial for the rightful selection of the variables which
will be eliminated from the network.

5 Summary and Conclusions

Though there exist much research for structure learning algorithms in BNs, the topic of
variable selection with the purpose of creating better performing BNs is a neglected
area of research. The existing work on this topic focuses on the case where BNs are
used as a classifier. However, the use and thus the extensiveness of BNs is increasing
every day which creates the need for efficient variable selection criteria capable of
creating better performing BNs out of limited data sets.

In this research, two new variable selection criteria N2Sj and N3Sj are proposed.
Using these variable selection criteria in addition to the existing ones in previous work,
BNs out of three different limited data sets are created. On each step of variable
elimination, the performance of the resulting BNs using six different variable selection
criteria dj, Sj, NSj, N2Sj, N3Sj, IHj are evaluated in terms of four different network
performance metrics. The new variable evaluation criteria, IHj, measures the impact of
a variable to all the other variables in the network. IHj serves as an indicator of the
identification of the most important variables in the network. This is especially
important in terms of the social science research, where it is crucial to identify the most
important factors in a setting.

Our findings indicate that the BNs created using the newly suggested criteria N2Sj
and its predecessor NSj show a superior performance on limited data sets. N2Sj,
according to its formulation favors the variables in the network with a strong associ-
ation with either its parents or children. The newly suggested N3Sj score on the other
hand differentiates itself from its previous alternatives through the involvement of IHj

term. N3Sj not only values the strength of association of a variable with its parents and
children but also the variable’s impact to the whole network. In that matter, restricting
the selection process to the strength of association to parents and children only,
deteriorates the findings in limited data sets with a big number of states but a small
number of cases. We conclude that the variable selection process for BNs requires the
consideration of different characteristics of the data sets. Hence to end up with a high
quality network, the rightful choice of criteria should be based on those characteristics
inherent in data set.
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Abstract. Performing probabilistic inference in multi-target dynamic
systems is a challenging task. When the system, its evidence and/or its
targets evolve, most of the inference algorithms either recompute every-
thing from scratch, even though incremental changes do not invalidate
all the previous computations, or do not fully exploit incrementality to
minimize computations. This incurs strong unnecessary overheads when
the system under study is large. To alleviate this problem, we propose
in this paper a new junction tree-based message-passing inference algo-
rithm that, given a new query, minimizes computations by identifying
precisely the set of messages that differ from the preceding computations.
Experimental results highlight the efficiency of our approach.

Keywords: Bayesian networks · Incremental inference · Junction tree

1 Introduction

Bayesian networks (BN) [10,17] are one of the most popular framework for rea-
soning with uncertainty in expert systems. They are used in a wide range of
real-world applications, including medical diagnosis, risk management and clin-
ical decision support. A BN is a compact graphical representation of a joint
probability distribution. It can be considered as a probabilistic knowledge base,
in which the process of querying/requesting is called inference. Different queries
exist, including the computation of most probable explanations or that of the
posterior marginal distributions of some random variables (hereafter called tar-
gets). In this paper, we focus on the latter. It is known to be NP-hard in general
[2,3] but many exact and approximate inference algorithms have been proposed
in the literature [12,15,20]. Extensions to handle very large systems [11,18,21]
and temporal features have also been proposed [6,16,19]. Their increased com-
plexity requires even more efficient inference algorithms.

Rule-based systems, which originated our research, are nowadays a very
popular tool for automating decision making. To quantify uncertainties in the
domain, they most often use heuristic models, e.g., certainty factors [1], which
have theoretical and practical limitations [8] that could be overcome by exploit-
ing probabilities. In this context, BNs could prove to be useful. In addition,
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 326–337, 2016.
DOI: 10.1007/978-3-319-40596-4 28
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their efficient inference engines, notably cluster-based and junction tree-based
algorithms [9,15,20], seem to be good candidates to speed-up the rules infer-
ence process. But, by essence, rule-based systems are incremental multi-target
environments, so BN inference shall also be performed incrementally. Some algo-
rithms exploit partially this feature (see [15]) but they are far from optimal when
the set of targets is smaller than the set of all the random variables or when it
changes. The problem is even worse when the structure of the junction tree
(JT) evolves over time. This can become an issue in rule-based systems in which
changes in the BN structure, the evidence and the targets, occur frequently.

In [4], 4 incrementality criteria relevant to probabilistic inference were intro-
duced: incrementality w.r.t resources, queries, evidence and representation. In
this paper, we are interested in all these criteria, especially in the last three.
Surprisingly, very few inference algorithms address all these aspects. In [5], for
instance, the query point of view is taken into account by reconfiguring dynam-
ically some join trees when queries change but the BN structure is assumed to
remain static, which may not necessarily be the case in rule-based systems. In
[14], the authors exploit relevance-based reasoning to identify the parts of the
network that are relevant for computations and, then, update several subnet-
works whose union covers the original one. Unfortunately, this algorithm does
not take into account computations performed previously. In [15], an incremen-
tal JT-based inference algorithm has been proposed that exploits independences
induced by incremental evidence updates. But the JT structure never evolves
and it is assumed that all the nodes are targets, which is not optimal in our con-
text. On the opposite, the incremental JT structure is addressed in [7] but not
the queries incrementality nor the exploitation of previous probabilistic compu-
tations. Along similar lines, Li et al. argue that compiling the original BN into
a conjunctive normal form coupled with caching techniques improves inference
when the network structure is updated [13]. But this does not take optimally
into account evidence and queries. In this paper, we investigate a new app-
roach to overcome the above shortcomings. This approach aims at improving
the efficiency of inference for very large and dynamic systems. The key idea of
our algorithm, called Incremental Junction Tree Inference (IJTI ), consists of
restricting the computations only to parts of the JT that are relevant to targets
and that have been invalidated by incremental changes. As a consequence, IJTI
minimizes the probabilistic computations.

The paper is organized as follows. In the next section, we introduce the neces-
sary background. In Sect. 3, we present our approach and justify its correctness.
Then we highlight the efficiency of our contribution with a set of experiments.
Finally, some conclusion and future works are provided in Sect. 5. All the proofs
are given in an appendix.

2 Preliminaries and Notations

A BN is a pair (G, Θ), where G = (V,A) is a directed acyclic graph (DAG).
V is a set of nodes representing random variables. A is a set of arcs and
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Fig. 1. A JT construction

Θ = {P (X|Pa(X)) : X ∈ V} is the set of the conditional probability tables
(CPT) of the variables in V given their parents in G. The BN encodes the joint
probability over V as the product of these CPTs. In this paper, probabilistic
inference is based on a message-passing algorithm within a JT. Constructing the
latter consists of, first, converting DAG G into an undirected graph by adding,
for each node in V, edges between all of its parents (moralization) and removing
the orientations of the remaining arcs, and, then, by adding an edge between a
pair of non-adjacent nodes in every cycle of at least four nodes (triangulation).
The nodes of the JT correspond to complete maximal subgraphs (cliques) of the
resulting graph. These nodes are linked by edges in such a way that i) the JT
contains no loop; and ii) any pair of cliques with a nonempty intersection are
linked by a path on which all cliques contain this intersection. Figure 1a shows
an example of a DAG, its moralized and triangulated graph are given in Fig. 1b,
where dashed and dotted edges represent those added during moralization and
triangulation respectively. Finally Fig. 1c depicts a corresponding JT. Note that
a JT can be a forest, e.g., when DAG G is not connected. In our approach,
dealing with a forest is equivalent to iterate the same process on its connected
components. Hence, without loss of generality, we will consider in the sequel that
the JT on which we will perform inference is a tree T . Hereafter, for any JT T ,
we will denote by V(T ) and E(T ) its set of cliques and edges respectively.

The message-passing algorithm consists of performing a collect and a distri-
bution from a predetermined root r ∈ V(T ). During the collect, messages are
sent along edges from leaves toward r and, during the distribution, they are
sent in the opposite direction. To guarantee the correctness of computations,
for any edge (i, j) ∈ E(T ), the message sent from i to j, denoted by ψi→j , is
computed only when clique i has received messages from all its neighbors except
j. Figure 1d shows an example of message-passing with r = ABD (thick clique)
and dotted and dashed arcs representing the collect and distribution messages
respectively. The computation of these messages is beyond the scope of this paper
but can be found in [15]. In an incremental environment, not all the messages
need be recomputed each time a modification occurs because, in practice, many
will remain the same. As we shall see, using the following definitions, we can
characterize precisely those that need some update given new set of evidence,
structural changes or/and targets.
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Definition 1 (Path). Let T = (V(T ), E(T )) be a JT. i1, . . . , in+1 is said to be
a path in T if (iα, iα+1) ∈ E(T ) for all α ∈ {1, . . . , n}. For simplicity, this path
is denoted by i1−in+1 and its length by len(i1−in+1) (which is equal to n).

Definition 2 (Adjacency). Let i, j ∈ V(T ), i �= j. i and j are adjacent in
T iff (i, j) ∈ E(T ). The set of cliques adjacent to i is denoted by Adj(i), i.e.,
Adj(i) :=

{
k ∈ V(T ) : (i, k) ∈ E(T )

}
. Let r ∈ V(T ), r �= i, then Adjr(i) denotes

the singleton set containing the clique adjacent to i that is on the path between
i and r, i.e., Adjr(i) :=

{
k ∈ Adj(i) : k ∈ i−r

}
. We also define Adjr(r) := ∅.

Finally, let Adj-j(i) := Adj(i) \ {j}.
For instance, in Fig. 2a, Adjr(i) = {k3} and Adjr(k3) = {r}. Finally, let

V-j (i) stands for the set of nodes of the maximal subtree in T that contains i
and not Adjj(i), and let Vj(i) = V-j (i) ∪ {j} (see the shadowed area in Fig. 2a).

A message ψi→j sent within T is directed by nature. It propagates toward j
(and, by induction, toward V-i(j )) all the relevant information coming from the
cliques in V-j (i), notably all the evidence they received (by abuse, we say that
a clique received evidence when at least one of its random variables received
evidence). As a consequence, if ψi→j has already been computed previously and
no new evidence has been received nor structural changes occured in V-j (i), there
is no need to recompute it. But even if V-j (i) received evidence, ψi→j needs not be
computed/updated if V-i(j ) contains no target. In this case, ψi→j ’s state becomes
“invalid” since the content of ψi→j is now incorrect. This is not an issue for the
current inference but, for future ones, we have to take this state into account to
recompute ψi→j if it is to be used. Let A(T ) be the set of all arcs induced from
E(T ), taking into account orientations, i.e., A(T ) :=

⋃
(i,j)∈E(T ){(i, j)}∪{(j, i)

}
.

To formalize the above conditions, we begin with characterizing the information
that is “local” to i and j by:

Definition 3 (Local label-message λ). λ : A(T ) �→ 2{ε,T} is a function s.t.

(i, j) �−→ λi→j :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{ε} if ψi→j is in “invalid state” or “new evidence or
structural changes” have affected i (1)

{T} if i contains targets (2)
{T, ε} if (1) and (2)
∅ otherwise

To simplify the notation, hereafter, we will remove braces and denote {T, ε}
by Tε. Then, the idea of our algorithm consists of marking every arc (i, j) in
A(T ) by labels μi→j expressing all the “local” information that V-j (i) contains.

Definition 4 (Label-message μ). For (i, j) ∈ A(T ), the label-message sent
from i to j is a function μ : A(T ) �→ 2{ε,T} such that μi→j :=

⋃
k′∈V-j (i)

{k}=Adjj(k
′)

λk′→k.

As an example of the previous discussion, imagine that a first incremental
update impacts the initial DAG and consequently the initial T of Fig. 2a. This
consists of the removal of k4, the insertion of an evidence on r and a new target
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Fig. 2. Message passing within a JT T .

on k1. Figure 2b depicts the μ-messaging within T after this update, where
dashed and dotted ellipses stand for the cliques containing targets and evidence
respectively. One can easily see that, for instance, μi→j = ε, μj→i = T and
μj→k2 = Tε. The following proposition allows to recursively construct the μ-
messages:

Proposition 1 (μ construction). Let (i, j) ∈ A(T ), then we have: μi→j =
λi→j ∪ ⋃

k∈Adj-j(i)
μk→i.

3 Inference Optimization: IJTI

Let us recall that ψi→j denotes the message exchanged between cliques i and j
during an inference computation. It shall not be confused with the label message
μi→j of Definition 4.

3.1 Optimal Roots

Usually, the number of computations performed by a JT-based message-passing
algorithm does not depend on the root clique selected for collect/distribution
because the ψi→j messages are sent on both directions on all the edges of the
JT. For IJTI, this is not the case, since this algorithm computes and sends only
the ψi→j messages necessary for the computation of the posterior distributions
of its target nodes. On some edges, IJTI will therefore not compute some ψi→j

messages because they are irrelevant w.r.t. the targets posterior distributions. As
a consequence, in IJTI, the number of computations performed is sensitive to the
selection of the root: for instance, in the JT of Fig. 2a, if clique i received evidence
and the only target is j, only message ψi→j from i to j is necessary, which is
precisely what is sent if clique i is selected as root (here, only a distribution
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is necessary). But if clique k4 is selected instead, message ψi→k4 needs to be
sent during the collect and messages ψk4→i and ψi→j need to be sent during the
distribution, which is clearly not optimal. To determine the optimal roots, let us
define δi→j(r) as an indicator of whether message ψi→j is recomputed (in this
case, δi→j(r) = 1) or not (δi→j(r) = 0) when r is selected as a root. In IJTI, we
therefore seek to minimize δ(r) =

∑
(k′,k)∈A(T ) δk′→k(r), which corresponds to

the total number of messages recomputed and sent. Based on the discussion of
the preceding section, we can write:

δi→j(r) =

⎧
⎨

⎩

1 if (ε ∈ μi→j and {j} = Adjr(i)) or
(ε ∈ μi→j and {i} = Adjr(j) and T ∈ μj→i)

0 otherwise
(1)

The first line of Eq. (1) concerns collect messages ({j} = Adjr(i)). It asserts
that collect message ψi→j needs to be recomputed only if it is currently in an
invalid state or if new evidence or structural changes have occurred in V-j (i)
(ε ∈ μi→j). When this is not the case, clearly, this message is up to date and
does not need recomputation. The second line of Eq. (1) concerns distribution
messages ({i} = Adjr(j)). It asserts that ψi→j needs to be recomputed only if
there exists a target farther toward the leaves of the JT (T ∈ μj→i) and if some
evidence has been received on V-j (i) or some message coming from V-j (i) has
been updated (ε ∈ μi→j). Equation (1) can be rewritten more compactly as:

δi→j(r) =

⎧
⎨

⎩

1 if ε ∈ μi→j and
({j} = Adjr(i) or ({i} = Adjr(j) and T ∈ μj→i))

0 otherwise
(2)

Figure 2c and d illustrate that δ(k3) = 5 and δ(i) = 4 respectively. In this case,
it is better to select i as a root rather than k3 since this avoids the unnecessary
computation of one message. The following theorem states the existence of some
optimal roots and characterize them:

Theorem 1 (Optimal roots). Suppose we computed the μ-messages within T .
Then there exists r ∈ V(T ) fulfilling one of the following mutually exclusive and
exhaustive properties:

(a) (V(T ), E(T )) = ({r}, ∅)
(b) ∃r′ ∈ V(T ) : μr′→r = μr→r′ = Tε
(c) ∀k ∈ Adj(r) : μk→r ∈ {T, ε, ∅}
In addition, r ∈ Argmink∈V(T )δ(k), i.e., r is an optimal root w.r.t. inference
computations.

3.2 A New Incremental Inference

In this section, we propose a new algorithm designed to deal with incremental
inference. We assume that a first inference has been performed by message-
passing within T , using for instance a collect-distribute algorithm in a Lazy
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Algorithm 1. IJTI

input : modified T , Q targets cliques
output : posteriors on targets
// set the number of neighbors

visited during the collect

1 for i ∈ V(T ) do
2 i.nbV N ← 0

3 Compute the μ-labels in T
4 Find r using Theorem 1
5 L ← the set of leaves of T

// collect phase

6 foreach clique i ∈ L do
7 p ← Adjr(i)
8 if δi→p(r) = 1 then
9 Compute ψi→p

10 p.nbV N ← p.nbV N + 1
11 if p �= r and p.nbV N = |Adj(p)| − 1

then L ← L ∪ {p}
12 L ← L \ {i}

// distribution phase

13 L ← {r}
14 foreach clique i ∈ L do
15 foreach j ∈ Adj(i) \ Adjr(i) do
16 if δi→j(r) = 1 then
17 Compute ψi→j

18 L ← L ∪ {j}

19 foreach clique t ∈ Q do
20 Compute the posterior distributions

of the target nodes in clique t

21 return posterior distributions

Propagation-like architecture. Afterwards, incremental changes occur. Then IJTI
is called to optimize the inference process. We recall that we use a target-driven
approach, hence, we recompute only invalidated collect messages and we only
distribute messages up to the targets. Under these assumptions, the proposed
algorithm is described in Algorithm 1. It runs a revised message-passing algo-
rithm to compute ψi→j only when δi→j(r) = 1 for all i, j in the modified junction
tree T . In line 5, a leaf clique i is such that |Adj(i)| = 1. We emphasize that com-
puting messages is performed similarly to a classic JT-based inference algorithm.
The correctness of IJTI is guaranteed by the following proposition:

Proposition 2. The IJTI algorithm is sound, i.e., computing only messages
ψi→j such that δi→j(r) = 1, for all (i, j) ∈ A(T ), results in the correct compu-
tation of the posterior distributions of the target variables.

4 Experiments

In this section, we highlight the effectiveness of our algorithm by comparing the
gain of using it instead of any non-incremental JT-based inference algorithm.
This gain is equal to 1−δ(r)/(2|E(T )|), i.e., this is the percentage of unnecessary
messages that IJTI avoids to compute compared to the messages sent by classical
inference algorithms on both directions on all the edges.

For this purpose, we performed tests using the aGrUM library1 on 9 real-
world BNs of different complexities as well as on randomly generated BNs. The
1 http://agrum.lip6.fr.

http://agrum.lip6.fr
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Fig. 3. IJTI gain for real BNs (Color figure online)

Fig. 4. IJTI gain for artificial BNs (Color figure online)

latter contained nbNodes Boolean random variables, (6 ≤ nbNodes ≤ 900, see
Fig. 4) and, for each value of nbNodes, 3 BNs were generated with nbArcs arcs,
nbArcs being chosen randomly in the interval [nbNodes− 1, 4/3 ∗nbNodes− 1].

We simulated the incrementality by randomly choosing for each inference a set
of targets and modified cliques. This induced invalid messages in T . Figures 3 and 4
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show the average resulting gains and their standard deviations (error bars2) over
20 incremental inference queries. Note that the behavior of the algorithm is the
same for real-world BNs and for randomly generated ones. As could be expected,
the smaller the modifications, the bigger the gain. Note also that the gain is not too
sensitive to the size of the BN.

5 Discussion and Future Work

In this paper, we introduced IJTI, a new incremental junction-tree-based infer-
ence algorithm for multi-target dynamic systems. Assuming that a first com-
plete inference has been performed, it extracts an optimal root and optimizes
the inference accordingly. The correctness of these two optimizations is proved
and experiments highlight that our approach allows for important savings com-
pared to classical ones. For future works, we plan to improve our algorithm,
notably by taking into account caching for the determination of the roots. We
also plan to apply IJTI in Probabilistic Relational Models in order to speed-up
their inference. Finally, we aim at coupling our approach with rule-based expert
systems to improve their probabilistic reasoning.

Acknowledgments. This work was partially supported by IBM France Lab/ANRT
CIFRE grant #2014/421.

Appendix: Proofs

Proof of Proposition 1: Note that V-j (i) = {i} ∪ ⋃
k∈Adj-j(i)

V-i(k) and, for
k ∈ Adj-j(i), l′ ∈ V-i(k), we have Adjj(l′) = Adji(l′). Using Definition 4, one can
thus rewrite μi→j into:

μi→j =
⋃

l′∈V-j (i)
{l}=Adjj(l

′)

λl′→l = λi→j∪
⋃

k∈Adj-j(i)

μk→i
︷ ︸︸ ︷⋃

l′∈V-i (k)
{l}=Adjj(l

′)

λl′→l = λi→j∪
⋃

k∈Adj-j(i)

μk→i

�
Proof of Theorem 1 – mutual exclusivity: if property (a) is satisfied, then
T contains no edge, therefore properties (b) and (c) cannot be satisfied.

Now, assume that there exist r1, r
′
1 such that μr′

1→r1 = μr1→r′
1

= Tε (prop-
erty b). Let r2 be any clique in V(T ). Without loss of generality, assume
that r1 lies on the path i1 = r2, i2, . . . , ip = r′

1 between r2 and r′
1. Then, by

Proposition 1, μi2→r2 ⊇ μi3→i2 ⊇ · · · ⊇ μr′
1→r1 = Tε. Therefore, properties (b)

and (c) cannot hold simultaneously. �

2 In Fig. 3a, due to the small number of nodes and arcs in the BNs, percentages of mod-
ifications lower than 10 % imply no modification at all, hence the lack of error bars.
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Proof of Theorem 1 – r’s existence: if A(T ) = ∅, then property (a) holds
and r is the unique node of T . Now, assume that A(T ) �= ∅. If there exists an
edge (i, j) ∈ E(T ) such that μi→j = μj→i = Tε, then r = i satifies property (b).
Otherwise, neither properties (a) nor (b) hold. Assume that property (c) neither
holds. Then, for all edges (i, j), exactly one of μi→j or μj→i is equal to Tε and the
other one belongs to {∅, ε, T}. Let (i0, j0) be such that μi0→j0 = Tε and μj0→i0 �=
Tε. Then, if |Adj(i0)| = 1, clique i0 satisfies property (c), a contradiction. As
we assume that property (b) neither holds, there exists i1 ∈ Adj(i0) such that
μi1→i0 = Tε and μi0→i1 �= Tε. The same reasoning holds for i1, hence either
i1 is a leaf, which contradicts property (c) or i1 has another neighbor i2 such
that μi2→i1 = Tε and μi1→i2 �= Tε. By induction, we create a path i1, . . . , in of
maximal size. This path is necessarily finite since T is a finite tree, hence clique
in is a leaf which, therefore, satisfies property (c), a contradiction. Consequently,
when properties (a) and (b) do not hold, property (c) holds. �
One can now prove separately the optimality for each property of Theorem1,
since these properties are mutually exclusive:

Proof of Theorem 1 – property a’s optimality: r is the only node in T .
Choosing it as a root is therefore optimal. �

Lemma 1. Let i, j ∈ V(T ) be such that ε ∈ μj→i and μi→j = ∅, then ∀l ∈
V-j (i) : δ(l) = δ(j) + len(l−j).

Proof. Note that when ε /∈ μj→i, T is up-to-date in the current inference
and there is no need to perform any computation. The proof is achieved by
induction on n = len(l−j). For n = 1, we have l = i, so by Eq. (2) and the
fact that ε ∈ μj→i and i ∈ Adji(j), we get δj→i(i) = 1. As a consequence,
δ(i) =

∑
(k′,k)∈A(T )\{(j,i)} δk′→k(i) + 1. Yet, as T /∈ μi→j we have δj→i(j) = 0;

so δ(j) =
∑

(k′,k)∈A(T ))\{(j,i)} δk′→k(j). Since ε /∈ μi→j , δi→j(i) = δi→j(j) = 0.
For (k′, k) �= (i, j), (j, i), we have Adji(k) = Adjj(k) and Adji(k′) = Adjj(k′). In
this case, it follows that δk′→k(i) = δk′→k(j). We conclude that δ(i) = δ(j) + 1.

Now suppose this property is satisfied for n − 1 > 1, let us prove that it
remains true for n. Let l be such that len(l−j) = n − 1. Let {p} = Adji(l).
Then δ(l) = 1+

∑
(k′,k)∈A(T )\{(p,l)} δk′→k(l) because δp→l(l) = 1 (since ε ∈ μp→l

and {l} = Adjl(p)). Knowing that T /∈ μl→p, we get δp→l(p) = 0, it follows that
δ(p) =

∑
(k′,k)∈A(T )\{(p,l)} δk′→k(p). Now using the same reasoning as in the case

n = 1 and by remarking δl→p(p) = δl→p(l) = 0 because ε /∈ μl→p, we conclude
that δ(l) = 1+

∑
(k′,k)∈A(T )\{(p,l)} δk′→k(l) = 1+

∑
(k′,k)∈A(T )\{(p,l)} δk′→k(p) =

1 + δ(p). By applying the induction hypothesis on l, where len(l−j) = n − 1, we
obtain: δ(l) = 1 + δ(p) = 1 + n − 1 + δ(j) = δ(j) + n. �

Lemma 2. Let V1 = {r ∈ V(T ) : ∃k ∈ Adj(r), μr→k = μk→r = Tε}, then for
any r, r′ in V1 we have δ(r) = δ(r′).

Proof. Assume that |V1| > 1. By Proposition 1, the nodes in V1 form a
connected subgraph. Let r, r′ ∈ V1 be such that (r, r′) ∈ E(T ). Finally, let
(k′, k) ∈ A(T ) \ {(r, r′), (r′, r)}. If k′ /∈ {r, r′}, then either k = r, k = r′
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or k /∈ {r, r′} and in all these cases we have: Adjr(k′) = Adjr′(k′), hence
δk′→k(r) = δk′→k(r′). Otherwise, let k′ = r′ then k �= r and we have
also3 Adjr(k) = Adjr′(k) and again δk′→k(r) = δk′→k(r′). As a consequence:∑

(k′,k)∈A(T )\{(r,r′),(r′,r)} δk′→k(r) =
∑

(k′,k)∈A(T )\{(r,r′),(r′,r)} δk′→k(r′). By
Eq. (2), we get: δr→r′(r) + δr′→r(r) = δr→r′(r′) + δr′→r(r′) = 2.
We conclude that δ(r) − ∑

(k′,k)∈A(T )\{(r,r′),(r′,r)}δk′→k(r) = δ(r′) −
∑

(k′,k)∈A(T )\{(r,r′),(r′,r)}δk′→k(r′). Hence δ(r) = δ(r′). �

Proof of Theorem 1 – property b’s optimality: Under the notations of
property b), it is sufficient to prove that for any i not in V1, δ(r) ≤ δ(i)4. Without
loss of generality, assume that i ∈ V-r ′(r). Let (k, k′) ∈ A(i−r), where A(i−r)
is the set of arcs induced from i−r. We either have {k′} = Adjr(k) or {k} =
Adjr(k′). Assume for instance that {k′} = Adjr(k) , k �= r, the second case should
be treated similarly. Then μk′→k = Tε and by applying Eq. 2, we summarize the
results on the following table:

μk→k′ δk→k′(i) + δk′→k(i) δk→k′(r) + δk′→k(r)
∅ 1 0
T 1 1
ε 2 1

we conclude that
∑

(k′,k)∈A(i−r) δk′→k(r) ≤ ∑
(k′,k)∈A(i−r) δk′→k(i). (1)

Now for (k, k′) /∈ A(i−r) it is easy to see that δk→k′(i) = δk→k′(r) and hence:∑
(k,k′)∈A(T )\A(i−r) δk′→k(r)=

∑
(k,k′)∈A(T )\A(i−r) δk′→k(i). (2).

By comparing (1) and (2) we get that δ(r) ≤ δ(i) for i /∈ V1. So far, we obtain,
by Lemma 2, for any i in V1, δ(r) = δ(i) and for any i not in V1, δ(r) ≤ δ(i),
therefore we have r ∈ Argmini∈V(T ) δ(i). �
Proof of Theorem 1 – property c’s optimality: Let i in V(T ) s.t. i �= r.

first case: μAdji(r)→r = ∅. Assume that T, ε ∈ V-i(r), because otherwise there is
no need to perform any computation, as either there is no query or no modifica-
tion in T ; so by Lemma 1 we have δ(i) = δ(r)+len(i−r) because i ∈ V-r (Adji(r)).
Hence δ(r) < δ(i).

second case: we omit the case μAdji(r)→r ∈ {T, ε}, but one should use the same
methodology as in property b)’s proof and the fact that for any k, k′ in i−r s.t
{k′} = Adjr(k) : μk→k′ = μi→Adjr(i) and examine δk′→k(r) and δk′→k(i). �
Proof of Proposition 2: Given a root r, δi→j(r) corresponds, by construction,
to the fact that ψi→j is necessary during the current inference and was inval-
idated in the previous one. As a consequence, the current inference needs to
recompute only such a message for any i, j in V(T ). �

3 If k′ = r then k �= r′ and the equality also verified.
4 All the nodes are computationally equivalent if ∀i ∈ V(T ), i ∈ V1 since V(T ) = V1.
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Abstract. Dynamic Bayesian Networks (DBNs) provide a principled
scheme for modeling and learning conditional dependencies from complex
multivariate time-series data and have been used in a wide scope. How-
ever, in most cases, the underlying generative Markov model is assumed
to be homogeneous, meaning that neither its topology nor its parameters
evolve over time. Therefore, learning a DBN to model a non-stationary
process under this assumption will amount to poor predictions capabil-
ities. To account for non-stationary processes, we build on a framework
to identify, in a streamed manner, transition times between underlying
models and a framework to learn them in real time, without assumptions
about their evolution. We show the method performances on simulated
datasets. The goal of the system is to model and predict incongruities
for an Intrusion Dectection System (IDS) in near real-time, so great care
is attached to the ability to correctly identify transitions times. Our pre-
liminary results reveal the precision of our algorithm in the choice of
transitions and consequently the quality of the discovered networks. We
finally suggest future works.

Keywords: DBN · ns-DBN · tv-DBN · Non-stationnary · Learning ·
Real time · Change point

1 Introduction

In many fields, particularly in information systems and biology modeling,
observed processes evolve over time on many scales. Their system states change
with time, describing complex trajectories. Some events or entities may influ-
ence others at any given time, but those correlations do not necessarily hold
forever. Which entity influences another may therefore vary, and any model
wishing to capture such a process, without observing the mechanism responsible
for such changes, cannot be stationary, that is its structure and/or parameters
need to evolve with time too. Otherwise, only one behavior is seen, averaging
all observations. Since we wish to model the behavior of information systems
within a network of computers - in real time - it seems reasonable to assume
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 338–350, 2016.
DOI: 10.1007/978-3-319-40596-4 29
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non-stationarity of the observed processes. Indeed, any program or application
can accept a wide range of inputs, communicate with other programs, and paths
chosen by the process (where it goes and what it does) are often at least input
dependent. Thereby, we need a framework for learning non-stationary processes,
in real time, and set our focus on non-stationary dynamic Bayesian networks.

Dynamic Bayesian Networks [5,13] are a probabilistic graphical formalism
describing, through conditional dependencies, complex dynamical systems under
uncertainty. Yet, the use of dynamic in DBN refers to the system evolving over
time, not the dynamics of the network structure or its parameters. Once deter-
mined on a subset of observations, conditional dependencies and parameters
are never revisited. In many applications, even more so when data are not pro-
duced in a controlled manner, assuming homogeneity of the underlying model(s)
describing which state the system is in seems too strong an assumption. This
issue has received attention in the last years from the academic field giving rise
to non-stationary dynamic Bayesian Networks (ns-DBN) [6–8,17,18] or time-
varying dynamic Bayesian Networks (TV-DBN) [20] with applications for system
biology [9]. Since processes have many execution paths and a huge input space, it
seems unwise to assume that one homogeneous model could accurately capture
a process evolution. Two different invocations could result in two completely
different traces. Thus we build our system on ns-DBNs.

In this paper, we propose a new algorithm to model non-stationary processes
using non-stationary dynamic Bayesian networks. It is organized as follows. We
start with (d)BNs and non-stationary dynamic Bayesian Networks. We then
build on a non-stationary learning algorithm and present our framework before
evaluating its performances on a number of simulated cases to reveal strengths
and weaknesses. We finally conclude and extend on our future work.

2 (Non-stationary) Dynamic Bayesian Networks

DBNs are classical Bayesian networks [16] in which nodes {Xi(t), i = 1 . . . n},
representing (discrete) random variables, are indexed by time t. They provide a
factored representation of the joint probability distribution P on a finite time
interval [1, τ ] defined as follows:

P (X(1) . . . ,X(τ)) =
n∏

i=1

τ∏

t=1

P (Xi (t) | Ui (t)) (1)

where Ui(.) denotes the set of parent nodes of Xi(.) and P (Xi (t) | Ui (t))
denotes the conditional probability function associated with random variable
Xi(t) given Ui(t). X(t) = {X1(t), . . . , Xn(t)}, is called a “slice” and repre-
sents the set of all variables indexed by the same time t. This joint probabil-
ity P (X(1), . . . ,X(τ)) represents the beliefs about possible trajectories of the
dynamic process X(t).

DBNs assume the first-order Markov property which means that the parents
of a variable in time slice t must occur in either slice t − 1 or t:

Ui(t) ⊆ X(t − 1) ∪ X(t)\Xi(t) (2)
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Fig. 1. A 2-Time-Slice BN (2TBN) and the (unrolled) dynamic Bayesian network.

Moreover, the conditional probabilities are time-invariant (first-order homo-
geneous Markov property):

P (Xi (t) | Ui (t)) = P (Xi(2)|Ui(2))),∀t ∈ [2, τ ] (3)

Hence, to specify a DBN, we only need to define the intra-slice topology (within
a time slice), the inter-slice topology (between two time slices), as well as the
parameters (i.e conditional probabilities, see Eq. 3) for the first two time slices.
We obtain a 2TBN such as in Fig. 1.

In this paper, we consider that Xi(t) are all discrete variables and let P t
ijk be

the probability that Xi(t) = k, given that its parents have instantiation j, i.e.

i = 1, . . . , n
P t

ijk = P (Xi(t) = k | Ui(t) = j), j = 1, . . . , ci

k = 1, . . . , ri

(4)

where ri is the number of values that node Xi(t) can take and ci is the number
of distinct configurations of Ui(t).

DBNs have been applied in a variety of domains such as speech recognition
[12], fault detection [11], medical diagnosis [4] or system biology [19] but their
applications on Intrusion Detection Systems are rare [1]. However, (Hidden)
Markov Models have been extensively proposed to model system call traces and
shell commands [23,24] or network data flow [15]. Bayesian Networks are mainly
used in this field in a static manner and often for classification purposes, as a
deciding mechanism aggregating smaller models outputs that offer a summary
of input data [10,14]. A variant of dynamic Bayesian Networks, called Continu-
ous Time Bayesian Networks (CTBNs), has been used to model network traffic
[21]. CTBNs leverage continuous time to solve the issue of time-granularity when
using DBNs, which require a time-slice width, thus making them computation-
ally inefficient when dealing with long period of “inactivity” or irregularly spaced
observations. The main drawbacks of the framework are that two variables can-
not change states simultaneously and a parameter needs to be chosen to scale
timing correlations. The work in [21,22] is close to ours in approach; the use of
a hidden variable allows to model the machine unknown state - the structure is
manually specified and does not evolve. After training, they use a sliding win-
dow and selection by likelihood threshold to flag anomalous behavior. However,
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D[3] D[4] D[5]

Fig. 2. Non-Stationary dynamic Bayesian network (ns-DBN) with 3 different epochs.
Note that DBNs in different epochs may have different parameters, structures and even
variables. For simplicity’s sake, priors BNs as in Fig. 1 are not represented.

the number of states of the hidden variable needs to be known in advance (two
in this case) and new models cannot be discovered on the fly. There is also no
mechanism for windows overlapping events from different models.

ns-DBNs are dynamic bayesians networks B : (Θ,G) organized by epochs of
varying size or transition times T : {(Bm : (Θ,G)m, Tm)}. There is no frame-
work yet to model the behavior of the transition times for ns-DBNs. As a con-
sequence, ns-DBNs represent non-stationary processes assuming piece-wise sta-
tionarity over epochs, which seems a reasonable assumption. They inherit all
advantages and inconvenients of DBNs.

Although different epochs in ns-DBN may alter parameters, structures and
even set of variables for the DBNs (see Fig. 2), [7] focuses on parameters evolution
with fixed structure. In [18], the focus is set on structural evolution. For this
later papers, the number of variables and their domains remain constant over
time (even if some are not observed during whole epochs). [6] is close to our
approach allowing structure, parameters as well as variables and their domains to
evolve over time. However we use different criteria and a mechanism for windows
overlapping events from different models to refine transition times.

ns-DBNs learning algorithms consist in identifying the different epochs and
the DBNs associated with each. Current learning algorithms focus on either
structure or parameter evolution (mainly to cope with the size of the search
space). Sadly they pretty much all require the availability of the whole database
and cannot be used in our online framework except. Offline learning of ns-DBNs
is usually achieved through the use of an updated traditional DBNs scoring
function used to account for the sufficient statistics that need to be specified by
epoch to find the best time transitions and an updated structural move set for
learning the structure which also need to be specified by epoch. However, we need
simpler schemes to achieve real time performance while streaming observations.
[6] proposes an interesting avenue: to take into account arcs strength using the
mutual information of a node and its parent and to use previous parameters as
priors for nodes that do not change from one model to another. Further inquiry
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is required since information can flow differently in the network according to
which nodes are observed.

3 Learning Non-stationary Processes

We present in this section a new algorithm to learn non-stationary dynamic
Bayesian networks in real time. In previous literature [7,8,18], the assumption
that two adjacent models are governed by similar distributions and/or similar
structures is often made. However we do not restrict ourselves to smooth evolu-
tions from model to model.

Real-time data are streamed in a continuous manner using a sliding window.
For each new window of data, our algorithm has to choose between using an
already known model or creating a new one. This choice is based on the likelihood
of the windowed data. Indeed it is expected that the likelihood of a model will
decrease if the underlying behavior changes (see Fig. 3). The algorithm begins
with a burn-in resulting in a first network that serves as a starting point.

More formally, at any current time τ , the algorithm confronts a collection of
M DBN models {Bm : (Θ,G)m}M with the windowed data w[τ, τ + r].

3.1 Learning with Fixed Variables and Static Window Size

To evaluate how a model m is able to explain the data w[τ, τ +r], we use a simple
criterion based on the likelihood on w. In a stationary DBN, the log-likelihood
of the data against a network with structure G and parameters Θ is:

LL(w : Θ,G) ∝
τ+r∑

t=τ

∑

i,j,k

Nijk log(θijk) (5)

with θijk = P (Xi(t) = k | Ui(t) = j) and Nijk the number of cases where
Xi(t) = k and Ui(t) = j in w.

For each DBN (Θ,G)m, we then compute LL(w : Θm,Gm). However the best
matching model cannot be selected only by maximizing LL since the algorithm
may also discover new models on the fly. For this purpose, one can note that
the distribution of the log-likelihood of a window w is approximately normally
distributed (as a sum of r + 1 i.i.d random variables using the central limit
theorem). We then design a statistical hypothesis test in order to find the log-
likelihood p-value LLtr such that 99% of matches occur with greater or equal log-
likelihood (see Fig. 3). To produce a first estimate of LLtr after discovering a new
network, we use Gibbs sampling [3]: trajectories are sampled from the network,
as many observations as needed to fit several windows, before computing their
likelihood by sliding the window. For each model m, we compute LLtr(Θm,Gm)

LL(w:Θ,G) .
Our selection rule becomes:

arg max
m

{
LLtr(Θm,Gm)

LL(w : Θm,Gm)
≥ 0.97

}

(6)
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Fig. 3. Cumulative P (X) and log P (X) for a window covering two different behav-
iors. The vertical red line is a transition between models, and horizontal red lines are
Gaussian with 99% confidence interval. (Color figure online)

We use 0.97 as the threshold on the likelihood ratio instead of 1 since the first
learning are quite inaccurate - a few events to learn a lot of parameters - and we
allow some divergence to occur. A time varying threshold on the likelihood ratio
could be designed to take into account parameters and structure convergence.
The higher the threshold the more specific the discovered and learned networks
will be (as a side-effect we will have more networks, for a given database, than
with a lower threshold).

If the set of models in Eq. 6 is empty, the algorithm will learn a new DBN
from the window and select it for the current window. If an existing model m
is selected, there is still a learning phase in order to update the parameters and
eventually the structure with the new data. Indeed, as observations increase
for the models, their structures will need to be reevaluated: at each order of
magnitude, we then re-estimate the network structures.

In experiments, Fig. 6 shows how a badly sized window can mislead the learn-
ing. We therefore propose to adapt the window.

3.2 Dynamic Adaptation of the Window

When the algorithm predicts for the current window a model mt different from
model mt−1 of the last window (i.e. mt would be a newly created DBN or an
already existing DBN), the prediction is not only about the change of behaviors
of the dynamic process but also about the time τ of this change (the change
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point). In this section, we propose to investigate more exactly the value of this
point by looking at the distribution of the likelihood within w[τ − r, τ + r].

Figure 3 shows the cumulative value of P (X) and log P (X) for such a window
(with change point c = 100 000). In order to identify a correct value for c, one
could rely on the change of slope in the cumulative P (X). To be more accurate,
we maximize over c the likelihood of a model where c separates two different
Gaussian processes. We then update mt−1 on w[τ − r, τ − r + c∗] and update
or learn mt on w[τ − r + c∗, τ + r] with the optimized change point c∗. If mt is
a new model, we use a non-informative Dirichlet prior, making the assumption
that parameters and structure evolve without correlations from one model to
another.

3.3 Learning with Incompatible Variables Domain

As seen in Fig. 2, the number of variables may change during the process. In
this case, one may have to confront a model and a database with a different
numbers of variables. If the variables of the database form a sub-set of the
variables of the model, with variable Xe in Gm but not in the database, we
use inference to estimate P (Xi | Ui \ Xe) and then compute the likelihoods. On
the other hand, if the variables of the model form a sub-set of the variables
of the database, those informations in the database are not exploitable for this
model and then are simply discarded. Such a model will not be selected for
the current window. If variables domains ΩXi

differs, we add the missing states

Algorithm 1. Main loop
Data: previous model id m∗

t−1, observations w[τ − r, τ ], w[τ, τ + r]
Data: D = {Bm}, Bm∗

t−1

1 begin
2 Φ ← find match(D,w)

3 if Φ �= {} then

4 m∗
t ← arg maxm

{
LLtr(Θ,G)
LL(w:Θ,G)

: (LL, LLtr, m) ∈ Φ
}

5 if m∗
t �= m∗

t−1 then
6 find the change point c on w[τ − r, τ + r]
7 update and validate previous model Bm∗

t−1
on w[τ − r, τ − r + c]

8 if new observations ≥ 10 * previous observations then
9 update Bm∗

t
structure and parameters with w[τ − r + c, τ + r]

10 previous observations ← previous observations + new observations

11 else
12 update Bm∗

t
parameters with w[τ − r + c, τ + r]

13 return

14 find the change point c on w[τ − r, τ + r]
15 update and validate previous model Bm∗

t−1
on w[τ − r, τ − r + c]

16 learn new model on w[τ − r + c, τ + r]
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Algorithm 2. Find match
Data: observations w[τ, τ + r]
Data: D = {Bm}, Dir({αijk})-(Dirichlet parameters)

1 begin
2 Φ ← {}
3 for Bm = (Θ, G)m ∈ D do
4 while ∃Xe ∈ Bm, Xe /∈ w do
5 ∀j ∈ �1, ce�, eliminate Xe using inference :
6 P (Xi | (Ui \ Xe) = j)

7 while ∃Xe ∈ w, Xe /∈ Bm, do
8 discard Xe

9 while ∃Xi ∈ w, Xi = k and Xi ∈ Bm, k /∈ ΩXi do
10 ΩXi ← ΩXi ∪ k

11 θijk ← αijk

Nij+αij

12 θij{o�=k} ← Nijo+αijo

Nij+αij

13 for Xl ∈ Bm : Xi ∈ Ul do
14 ∀j ∈ �1, ci�, compute using inference :
15 P (Xl | (Ul \ Xi) = j, Xi = k) ← P (Xl | (Ul \ Xi) = j)

16 if LLtr(Θ,G)
LL(w:Θ,G)

≥ 0.97 then

17 Φ ← Φ ∪ (LL, LLtr, m)

18 return Φ

using the (non-informative) Dirichlet priors αijk parameters and then compute
the likelihoods.

Algorithms 1 and 2 describe our framework for online learning of non-
stationary processes with ns-DBN. While the next section will investigate our
experiments, it is noteworthy that the complexity of our algorithm does not
depend of the size of the database but only of the size of the window and the
number of known models which is an important quality for online learning.

4 Experiments and Results

Our experiment consists in modeling simulated non-stationary processes. Using
the aGrUM library (http://agrum.lip6.fr), we generated a DBN of 10 nodes by
time-step of average domain size 7 (�3, 10�) and average node degree 3. We then
perturbed the structure and parameters of the model using the hellinger distance
[2] between the two models as stopping criterion. Multiple thresholds were used
to see how far apart two networks need to be for them to be recognized as two
independent models. Hellinger distances greater than 0.8 always involve changes
in parameters for all nodes and sometimes structure for a few set of nodes.
Hellinger distances under this threshold involve parameter changes for one or
two nodes, with small degrees, and sometimes an arc is added, adding very little
information.

http://agrum.lip6.fr
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The databases were then sampled from each model before being combined
to form a unique dataset consisting of 600.000 events. Different epoch sizes were
used in order to see the impact of sample size against network distance as well as
different resolutions of the sliding window to see how the system performs when
overlapping datasets from two distinct models (i.e. the epoch is not a multiple of
the window size). We ran each settings with and without the dynamic window
scheme. It is important to note that our algorithm have no prior information
about the number of networks, their variables and variables domains or the
number of transitions.

The fictive Fig. 4 explains how to read experiments’ figures and tables, where
FN stands for transitions false negatives (percentage of missed transitions over
all true transitions), FP stands for transitions false positives (percentage of false
transitions over all discovered transitions) and TP stands for transitions true pos-
itives (percentage of true transitions over all discovered transitions). Also, tp is
the number of (true) events learned by correct networks, fp the number of (false)
events learned by incorrect networks and fn the number of (true) missed events
by networks that are learned by others. Adaptive windows can be seen with curves
being extended either on the left (for the current matching model moving the win-
dow) or the right (non matching models that do not move the window). In experi-
ments’ tables, cuts average, minimal and maximal errors are shown, with standard
deviation. Finally, precision tp/(tp + fp) and recall tp/(tp + fn) for events are
also shown, that is average precision and recall over discovered networks. Recall
amounts to the percentage of correct events found for all correct events that should
have been found. Precision is inversely proportional to noise (events generated
from another model used to update the current model). Due to pages restriction,
results were averaged for all thresholds of hellinger distance. We focus on the cases
with the epoch not being a multiple of the window size - and show a best case
(Fig. 5) and worst case (Figs. 6, 7, 8 and 9) scenario with and without the adap-
tive window. The results for static and adaptive windows are presented in Tables 1
and 2, respectively.

Fig. 4. How to read figures. Fig. 5. Results for epochs of 5K obser-
vations, hellinger < 0.8, fixed window
size
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4.1 Static Windows

Figure 5 is an example of a successful run: the epoch is a multiple of the window
size, consequently the sliding window always contains observations from one
model at a time. In such settings, correct transition times and models are always
identified, with and without adaptive window. However, errors arise when using
arbitrary window sizes without dynamical windows as shown in Figs. 6 and 7.

Fig. 6. Results for epochs of 2K5
observations, hellinger < 0.8, fixed
window size

Fig. 7. Results for epochs of 10K
observations, hellinger < 0.8, fixed
window size

In the static case as in Table 1, two issues explain the poor precision and
recall for some experiments. The first issue arises when we have discovered fewer
networks than we should, mainly with lower hellinger thresholds, in which case
transitions were missed and some models are averaging several true models,
increasing noise and making further transitions harder to detect, hence increas-
ing FN of transitions and decreasing precision and recall over events. Such a
case is highlighted by Fig. 6 and by the first two rows of Table 1, with the first
row and Fig. 6 showing results for close true networks and the second row results
for distinct true networks. The second issue arises when we have discovered more
networks than we should, mainly with higher hellinger thresholds. When it hap-
pens, most networks in excess were made when the window overlaps events from
two true networks, thus modeling the transition itself (the next window matches
or creates another model, the true one), such as in Fig. 7 (the brown network).
Hence, we have two transitions instead of one, increasing FP for transitions.
Precision and recall are less affected by those FP since only a few transitions
give rise to very specific models, slightly reducing the recall of other discovered
(true) networks, but increasing their precision (reducing noise).

Results in the static case could be worse: in our setting, one epoch is not
a period of the window size but a multiple of the epoch can be a multiple of
the window size, in which case the window ends or starts at a true transition,
therefore “increasing” our probability of correctly identifying a transition or
model. Thus, FN and cuts errors could be higher whereas precision and recall
could be lower.
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Table 1. Results for static windows, showing missed transitions over all true transitions
(false negatives FN), false positive transitions (FP ) and true positive transitions (TP )
over all discovered transitions. For cuts, minimal, average and maximal error in events,
with variance. For discovered networks, precision and recall over events.

epoch window FN FP TP avg. error std. deviation min max precision recall

size

2500 1000 1.0 0.0 0.0 NA NA NA NA 0.2 1.0

2500 1000 0.0 0.0 1.0 251.046 249.998 0.0 500.0 0.829 0.875

2500 2000 0.602 0.0 1.0 521.052 361.644 0.0 1000.0 0.5 0.952

5000 1500 0.101 0.035 0.965 351.216 258.546 0.0 1000.0 0.833 0.935

5000 3000 0.0 0.06 0.94 752.1 579.236 0.0 2000.0 0.856 0.854

10000 1500 0.0 0.131 0.869 381.356 295.694 0.0 1000.0 0.961 0.96

10000 3000 0.1017 0.0083 0.992 772.81 601.843 0.0 2000.0 0.833 0.929

15000 2000 0.0 0.204 0.795 512.82 499.835 0.0 1000.0 0.963 0.958

4.2 Adaptive Windows

The results for adaptive windows, shown in Table 2, reveal that the size of the
window has little impact on the correct identification of transitions and models,
and it should hold as long as the window size is lower than the epoch. Surpris-
ingly, results are not worse for small epochs given the domain size of the network.
With adaptive windows, both previous issues are solved by looking for a change
point, as in Figs. 8 and 9: in the first case, we do not learn from overlapping win-
dows which reduces noise, making future transitions easier to discover. In the
second case, looking for a change point itself avoids the creation of a network to
represent the transition alone.

The ability of the algorithm to add modalities to known variables avoids
the creation of unnecessary networks in both settings, thus reducing FP for
transitions, and is of crucial importance for outliers that happen every now and
then.

Fig. 8. Results for epochs of 2K5
observations, hellinger < 0.8, dynamic
window size

Fig. 9. Results for epochs of 10K
observations, hellinger < 0.8, dynamic
window size
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Table 2. Results for adaptive windows, with columns as in Table 1.

epoch window FN FP TP average error std. deviation min max precision recall

size

2500 1000 0.0 0.0 1.0 4.399 18.045 0.0 254.0 0.998 0.998

2500 2000 0.0 0.0 1.0 2.435 4.683 0.0 38.5 0.999 0.999

5000 1500 0.0 0.0 1.0 3.0966 7.784 0.0 62.5 0.999 0.999

5000 3000 0.0 0.0 1.0 8.702 43.383 0.0 390.5 0.998 0.998

10000 1500 0.0 0.0 1.0 32.923 80.526 0.0 311.5 0.997 0.996

10000 3000 0.0 0.0 1.0 19.559 103.199 0.0 778.0 0.998 0.998

15000 2000 0.0 0.0 1.0 8.551 32.423 0.0 202.5 0.999 0.999

5 Conclusions and Future Work

We built a framework around Dynamic Bayesian Networks to learn non-
stationary processes in a continuous manner, designed to be fast and accu-
rate. However, several enhancements comes to mind: we mentioned a dynam-
ical threshold on the log-likelihood ratio to take into account convergence, as
well as the need for merging and deleting schemes, since we expect results to
be poorer the closer the original networks are from each other. While a naive
deleting scheme could consists of using a parameter for each network, decreas-
ing over time when not matching, merging networks require to compare their
joint probability distributions which involves heavy computations. The problem
of looking for a cut could also be investigated further, since if the cumulative
likelihood is a stepping function, we should cut at the first step, which we do
not (the algorithm is maximizing the likelihood over both Gaussians and the
cut is most often than not in between the steps). A most important enhance-
ment would be to model transitions from behavior to behavior, and predict to
some extent the next behavior for a given time or identify critical events (weak
signals) that would allow such predictions. Finally, we will apply this work to
detect anomalies in a host and network intrusion detection system.
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Abstract. Implication functions are crucial operators for many fuzzy
logic applications. In this work, we consider the definition of implication
functions in the interval-valued setting using admissible orders and we
use this interval-valued implications for building comparison measures.

Keywords: Interval-valued implication operator · Admissible order ·
Similarity measure

1 Introduction

Implication operators are crucial for many applications of fuzzy logic, including
approximate reasoning or image processing. Many works have been devoted to
the analysis of these operators, both in the case of fuzzy sets [1,2,14,15] and
in the case of extensions [3–5,13,16]. A key problem in order to define these
operators is that of monotonicity. When implication operators are extended to
fuzzy extensions, this problem is not trivial, since for most of the fuzzy extensions
do not exist a linear order, whereas for some applications, as it is the case of
c© Springer International Publishing Switzerland 2016
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fuzzy rules-based classification systems, it is necessary to have the possibility of
comparing any two elements [12].

In this work, we propose the definition of implication operators in the
interval-valued setting defining its monotonicity in terms of the so-called admis-
sible orders [11]. This is a class of linear orders which extends the usual order
between intervals and which include the most widely used examples of linear
orders between intervals, as lexicographical and Xu and Yager ones.

As a first step in a deeper study of these interval-valued implications with
admissible orders, we show how implications which are defined in terms of admis-
sible orders can be used to build comparison measures which are of interest from
the point of view of applications.

The structure of the present work is as follows. In Sect. 2 we present some pre-
liminary definitions and results. In Sect. 3 we present the definition of interval-
valued implication function with respect to an admissible order. Section 4 is
devoted to obtaining equivalence and restricted equivalence functions with
respect to linear orders. In Sect. 5 we use our previous results to build com-
parison measures. We finish with some conclusions and references.

2 Preliminaries

In this section we introduce several well known notions and results which will
be useful for our subsequent developments.

We are going to work with closed subintervals of the unit interval. For this
reason, we define:

L([0, 1]) = {[X,X] | 0 ≤ X ≤ X ≤ 1} .

By ≤L we denote an arbitrary order relation on L([0, 1]) with 0L = [0, 0] as
its minimal element and 1L = [1, 1] as maximal element. This order relation can
be partial or total. If we must consider an arbitrary total order, we will denote
it by ≤TL.

Example 1. The partial order relation on L([0, 1]) induced by the usual partial
order in R

2 is:
[X,X] �L [Y , Y ] if X ≤ Y and X ≤ Y . (1)

As an example of total order in L([0, 1]) we have Xu and Yager’s order
(see [17]):

[X,X] ≤XY [Y , Y ] if

{
X + X < Y + Y or
X + X = Y + Y and X − X ≤ Y − Y .

(2)

Definition 1. An admissible order in L([0, 1]) is a total order ≤TL which
extends the partial order �L.

In the following, whenever we speak of a total order we assume it is an
admissible order.
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Definition 2. Let ≤L be an order relation in L([0, 1]). A function
N : L([0, 1]) → L([0, 1]) is an interval-valued negation function (IV negation)
if it is a decreasing function with respect to the order ≤L such that N(0L) = 1L

and N(1L) = 0L. A negation N is called strong negation if N(N(X)) = X for
every X ∈ L([0, 1]). A negation N is called non-filling if N(X) = 1L iff X = 0L,
while N is called non-vanishing if N(X) = 0L iff X = 1L.

We recall now the definition of interval-valued aggregation function.

Definition 3. Let n ≥ 2. An (n-dimensional) interval-valued (IV) aggregation
function in (L([0, 1]),≤L, 0L, 1L) is a mapping M : (L([0, 1]))n → L([0, 1]) which
verifies:

(i) M(0L, · · · , 0L) = 0L.
(ii) M(1L, · · · , 1L) = 1L.
(iii) M is an increasing function with respect to ≤L.

Example 2. Fix α ∈ [0, 1]. With the order ≤XY , the function

Mα : L([0, 1])2 → L([0, 1])

defined by

Mα([X,X], [Y , Y ]) = [αX + (1 − α)Y , αX + (1 − α)Y ]

is an IV aggregation function.

3 Interval-Valued Implication Functions

Definition 4 (cf. [2,5]). An interval-valued (IV) implication function in
(L([0, 1]),≤L, 0L, 1L) is a function I : (L([0, 1]))2 → L([0, 1]) which verifies the
following properties:

(i) I is a decreasing function in the first component and an increasing function
in the second component with respect to the order ≤L.

(ii) I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L.
(iii) I(1L, 0L) = 0L.

Some properties that can be demanded to an IV implication function are the
following [10]:

I4 : I(X,Y ) = 0L ⇔ X = 1L and Y = 0L.
I5: I(X,Y ) = 1L ⇔ X = 0L or Y = 1L.
NP : I(1L, Y ) = Y for all Y ∈ L([0, 1]).
EP : I(X, I(Y,Z)) = I(Y, I(X,Z)) for all X,Y,Z ∈ L([0, 1]).
OP : I(X,Y ) = 1L ⇔ X ≤L Y .
SN : N(X) = I(X, 0L) is a strong IV negation.
I10: I(X,Y ) ≥L Y for all X,Y ∈ L([0, 1]).
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IP : I(X,X) = 1L for all X ∈ L([0, 1]).
CP : I(X,Y ) = I(N(Y ), N(X)) for all X,Y ∈ L([0, 1]), where N is an IV

negation.
I14: I(X,N(X)) = N(X) for all X ∈ L([0, 1]), where N is an IV negation.

We can obtain IV implication functions from IV aggregation functions as
follows.

Proposition 1. Let M be an IV aggregation function such that

M(1L, 0L) = M(0L, 1L) = 0L

and let N be an IV negation in L([0, 1]), both with respect to the same order ≤L.
Then the function IM : L([0, 1])2 → L([0, 1]) given by

IM (X,Y ) = N(M(X,N(Y )))

is an IV implication function.

Proof. It follows from a straight calculation. ��
However, in this work we are going to focus on a different construction

method for IV implication functions.

Proposition 2. Let ≤TL be a total order in L([0, 1]), and let N be an IV nega-
tion function with respect to that order. The function I : L([0, 1])2 → L([0, 1])
defined by

I(X,Y ) =

{
1L, if X ≤TL Y,

∨(N(X), Y ), if X >TL Y.

is an IV implication function.

Proof. It is clear that the function I is an increasing function in the second
component and a decreasing function in the first component. Moreover

I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L

and I(1L, 0L) = 0L. ��
This result can be further generalized as follows [15]:

Proposition 3. Let ≤TL be a total order in L([0, 1]), and let N be an IV nega-
tion function with respect to that order. If M : L([0, 1])2 → L([0, 1]) is an IV
aggregation function, then the function I : L([0, 1])2 → L([0, 1]) defined by

I(X,Y ) =

{
1L, if X ≤TL Y,

M(N(X), Y ), if X >TL Y,

is an IV implication function.
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4 Equivalence and Restricted Equivalence Functions in
L([0, 1]) with Respect to a Total Order

Along this section only total orders are considered.
The equivalence functions [6–8] are a fundamental tool in order to build

measures of similarity between fuzzy sets. In this section we construct interval-
valued equivalence functions from IV aggregation and negation functions.

Definition 5. A map F : L([0, 1])2 → L([0, 1]) is called an interval-valued (IV)
equivalence function in (L([0, 1]),≤TL) if F verifies:

(1) F (X,Y ) = F (Y,X) for every X,Y ∈ L([0, 1]).
(2) F (0L, 1L) = F (1L, 0L) = 0L.
(3) F (X,X) = 1L for all X ∈ L([0, 1]).
(4) If X ≤TL X ′ ≤TL Y ′ ≤TL Y , then F (X,Y ) ≤TL F (X ′, Y ′).

Theorem 1. Let M1 : L([0, 1])2 → L([0, 1]) be an IV aggregation function such
that M1(X,Y ) = M1(Y,X) for every X,Y ∈ L([0, 1]), M1(X,Y ) = 1L if and
only if X = Y = 1L and M1(X,Y ) = 0L if and only if X = 0L or Y = 0L. Let
M2 : L([0, 1])2 → L([0, 1]) be an IV aggregation function such that M2(X,Y ) =
1L if and only if X = 1L or Y = 1L and M2(X,Y ) = 0L if and only if X = Y =
0L. Then the function F : L([0, 1])2 → L([0, 1]) defined by

F (X,Y ) = M1(I(X,Y ), I(Y,X)),

with I the IV implication function defined in the Proposition 3 taking M = M2,
is an IV equivalence function.

Proof. Since

F (X,Y ) =

⎧
⎪⎨

⎪⎩

1L, if X = Y,

M1(M2(N(Y ),X), 1L), if X <TL Y,

M1(M2(N(X), Y ), 1L), if Y <TL X,

then F verifies the four properties in Definition 5. ��
In [8] the definition of equivalence function (in the real case) was modified

in order to define the so-called restricted equivalence function. Now we develop
a similar study for the case of IV equivalence functions.

Definition 6. Let N be an IV negation. A map F : L([0, 1])2 → L([0, 1]) is
called an interval valued (IV) restricted equivalence function (in (L([0, 1]),≤TL))
if F verifies the following properties:

1. F (X,Y ) = F (Y,X) for all X,Y ∈ L([0, 1]).
2. F (X,Y ) = 1L if and only if X = Y .
3. F (X,Y ) = 0L if and only if X = 0L and Y = 1L, or, X = 1L and Y = 0L.
4. F (X,Y ) = F (N(X), N(Y )) for all X,Y ∈ L([0, 1]).
5. If X ≤TL Y ≤TL Z, then F (X,Z) ≤TL F (X,Y ) and F (X,Z) ≤TL F (Y,Z).
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Theorem 2. Let N be an IV negation function. Let M1 : L([0, 1])2 → L([0, 1])
be an IV aggregation function such that M1(X,Y ) = M1(Y,X) for every X,Y ∈
L([0, 1]), M1(X,Y ) = 1L if and only if X = Y = 1L and M1(X,Y ) = 0L if and
only if X = 0L or Y = 0L. Let M2 : L([0, 1])2 → L([0, 1]) be an IV aggregation
function such that M2(X,Y ) = 1L if and only if X = 1L or Y = 1L and
M2(X,Y ) = 0L if and only if X = Y = 0L. Then the function F : L([0, 1])2 →
L([0, 1]) defined by

F (X,Y ) = M1(I(X,Y ), I(Y,X))

with I an IV implication function defined by

I(X,Y ) =

{
1L if X ≤TL Y

M2(N(X), Y ) otherwise,

verifies the properties (1) and (5) of Definition 6. Moreover, it satisfies property
(2) if N is non-filling and property (3) if N is non-vanishing.

Proof. Since

F (X,Y ) =

⎧
⎪⎨

⎪⎩

1L, if X = Y

M1(M2(N(Y ),X), 1L), if X <TL Y

M1(M2(N(X), Y ), 1L), if Y <TL X

then F verifies:

(1) F (X,Y ) = F (Y,X) trivially.
(5) If X ≤TL Y ≤TL Z, then N(Z) ≤TL N(Y ) ≤TL N(X). Since M1 is an

increasing function then F (X,Z) ≤TL F (X,Y ) and F (X,Z) ≤TL F (Y,Z).

Since M1(X,Y ) = 1L if and only if X = Y = 1L, then, if N is non-filling,
F (X,Y ) = 1L if and only if X = Y because

{
M2(N(Y ),X) 
= 1L, if X <TL Y

M2(N(X), Y ) 
= 1L, if X >TL Y.

Moreover, F (X,Y ) = 0L if and only if X >TL Y and M2(N(X), Y ) = 0L or
X <TL Y and M2(N(Y ),X) = 0L. Therefore, as N is non-vanishing, F (X,Y ) =
0L if and only if {

X = 0L or Y = 1L or
Y = 0L or X = 1L.

with X 
= Y .
��
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5 Similarity Measures, Distances and Entropy Measures
in L([0, 1]) with Respect to a Total Order

Our constructions in the previous section can be used to build comparison mea-
sures between interval-valued fuzzy sets, and, more specifically, to obtain simi-
larity measures, distances in the sense of Fang and entropy measures. Along this
section, we only deal with a total order ≤TL.

To start, let us consider a finite referential set of n elements, U =
{u1, . . . , un}. We denote by IV FS(U) the set of all interval-valued fuzzy sets
over U . Recall that an interval-valued fuzzy set A over U is a mapping A : U →
L([0, 1]) [9]. Note that the order ≤TL induces a partial order ≤TL in IV FS(U)
given, for A,B ∈ IV FS(U), by

A ≤TL B if A(ui) ≤TL B(ui) for every ui ∈ U .

First of all, we show how we can build a similarity between interval-valued
fuzzy sets defined over the same referential U . We start recalling the definition.

Definition 7 [8]. An interval-valued (IV) similarity measure on IV FS(U)
is a mapping SM : IV FS(U) × IV FS(U) → L([0, 1]) such that, for every
A,B,A′, B′ ∈ IV FS(U),

(SM1) SM is symmetric.
(SM2) SM(A,B) = 1L if and only if A = B.
(SM3) SM(A,B) = 0L if and only if {A(ui), B(ui)}={0L, 1L} for every ui ∈ U .
(SM4) If A ≤TL A′ ≤TL B′ ≤TL B, then SM(A,B) ≤TL SM(A′, B′).

Then we have the following result.

Theorem 3. Let M : L([0, 1])n → L([0, 1]) be an IV aggregation function with
respect to the total order ≤TL and such that M(X1, . . . , Xn) = 1L if and only if
X1 = · · · = Xn = 1L and M(X1, . . . , Xn) = 0L if and only if X1 = · · · = Xn =
0L. Then, the function SM : IV FS(U) × IV FS(U) → L([0, 1]) given by

SM(A,B) = M(F (A(u1), B(u1)), . . . , F (A(un), B(un)))

where F is defined as in Theorem2 with non-filling and non-vanishing negation,
is an IV similarity measure.

Proof. It follows from a straightforward calculation. ��
We can make use of this construction method to recover both distances and

entropy measures. First of all, let’s recall the definition of both concepts.

Definition 8 [6]. A function D : IV FS(U) × IV FS(U) → L([0, 1]) is called
an IV distance measure on IV FS(U) if, for every A,B,A′, B′ ∈ IV FS(U), D
satisfies the following properties:
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(D1) D(A,B) = D(B,A);
(D2) D(A,B) = 0L if and only if A = B;
(D3) D(A,B) = 1L if and only if A and B are complementary crisp sets;
(D4) If A ≤TL A′ ≤TL B′ ≤TL B, then D(A,B) ≥TL D(A′, B′).

Definition 9 [6]. A function E : IV FS(U) → L([0, 1]) is called an entropy on
IV FS(U) with respect to a strong IV negation N (with respect to ≤TL such that
there exists ε ∈ L([0, 1]) with N(ε) = ε if E has the following properties:

(E1) E(A) = 0L if and only if A is crisp;
(E2) E(A) = 1L if and only if A = {(ui, A(ui) = ε)|ui ∈ U};
(E3) E(A) ≤TL E(B) if A refines B; that is, A(ui) ≤TL B(ui) ≤TL ε or

A(ui) ≥TL B(ui) ≥TL ε;
(E4) E(A) = E(N(A)).

Then the following two results are straight from Theorem 3.

Corollary 1. Let M : L([0, 1])n → L([0, 1]) be an IV aggregation function with
respect to the total order ≤TL such that M(X1, . . . , Xn) = 1L if and only if X1 =
· · · = Xn = 1L and M(X1, . . . , Xn) = 0L if and only if X1 = · · · = Xn = 0L and
let N be an IV negation with respect to the order ≤TL which is non filling and
non-vanishing. Then, the function D : IV FS(U) × IV FS(U) → L([0, 1]) given
by

D(A,B) = N(M(F (A(u1), B(u1)), . . . , F (A(un), B(un))))

where F is defined as in Theorem2, is an IV distance measure.

Proof. It is straight from Theorem 3, since a similarity measure defines a distance
in a straightforward way. ��
Theorem 4. Let N be a strong IV negation (with respect to ≤TL) and such
that there exists ε ∈ L([0, 1]) with N(ε) = ε. Let M : L([0, 1])n → L([0, 1]) be
an IV aggregation function with respect to the total order ≤TL and such that
M(X1, . . . , Xn) = 1L if and only if X1 = · · · = Xn = 1L and M(X1, . . . , Xn) =
0L if and only if X1 = · · · = Xn = 0L. Then, the function E : IV FS(U) →
L([0, 1]) given by

E(A) = M(F (A(u1), N(A(u1))), . . . , F (A(un), N(A(un))))

where F is defined as in Theorem2 with non-filling and non-vanishing negation,
is an IV entropy measure.

Proof. It follows from the well known fact that, for a given IV similarity SM ,
the function E(A) = SM(A,N(A)) is an IV entropy measure [6]. ��
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6 Conclusions

In this paper we have considered the problem of defining interval-valued impli-
cations when the order relation is a total order. In particular, we have consid-
ered the case of admissible orders. We have also studied the construction of
interval-valued equivalence and similarity functions constructed with appropri-
ate interval-valued implication functions. Finally we have shown how our con-
structions can be used to get IV similarity measures, distances and entropy
measures with respect to total orders. In future works we will consider the use
of these functions in different image processing, classification or decision making
problems.
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Abstract. Sugeno integrals are aggregation functions defined on a qual-
itative scale where only minimum, maximum and order-reversing maps
are allowed. Recently, variants of Sugeno integrals based on Gödel impli-
cation and its contraposition were defined and axiomatized in the set-
ting of bounded chain with an involutive negation. This paper proposes
a more general approach. We consider totally ordered scales, multival-
ued conjunction operations not necessarily commutative, and implication
operations induced from them by means of an involutive negation. In such
a context, different Sugeno-like integrals are defined and axiomatized.

Keywords: Sugeno integral · Conjunctions · Implications · Multifacto-
rial evaluation

1 Introduction and Prerequisites

In a recent paper [4], we introduced variants of Sugeno integrals based on Gödel
implication and its contraposition using an involutive negation. It models qual-
itative aggregation methods that extend min and max, based on the idea of
tolerance threshold beyond which a criterion is considered satisfied. These new
aggregation operations have been axiomatized in [5] in the setting of a com-
plete bounded chain with an involutive negation. In the present paper, we try
to cast this approach in a more general totally ordered algebraic setting, using
multivalued conjunction operations that are not necessarily commutative, and
implication operations induced from them by means of an involutive negation.

We adopt the terminology and notations usual in multi-criteria decision
making, where some alternatives are evaluated according to a common set
C = {1, . . . , n} = [n] of criteria. A common evaluation scale L is assumed to
provide ratings according to the criteria: each alternative is thus identified with
a function f ∈ LC which maps every criterion i of C to the local rating fi of the
alternative with regard to this criterion. We assume that L is a totally ordered
set with 1 and 0 as top and bottom, respectively (L may be the real unit inter-
val [0, 1] for instance). For any a ∈ L, we denote by aC the constant alternative
equals to a on C. In addition, we assume that L is equipped with a unary order
reversing involutive operation t �→ 1 − t, that we call negation.
c© Springer International Publishing Switzerland 2016
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We denote by ∧ and ∨ the minimum and maximum operation on L. These
two aggregation schemes can be slightly generalised by means of importance
levels or priorities πi ∈ L, on the criteria i ∈ [n]. Suppose πi is increasing with
the importance of i. A fully important criterion has importance weight πi = 1.
In the following, we assume πi > 0 for every i ∈ [n], i.e., there is no useless
criterion. In this section, we also assume πi = 1, for some criterion i (the most
important one). It is a kind a normalization assumption that ensures that the
whole scale L is useful, and that is typical of possibility theory. These importance
levels can interact with each local evaluation fi in different manners. Usually,
a weight πi acts as a saturation threshold that blocks the global score under
or above a certain value dependent on the importance level of criterion i. Such
weights truncate the evaluation scale from above or from below. The rating fi is
taken into acount in the form of either (1−πi)∨fi ∈ [1−πi, 1], or πi∧fi ∈ [0, πi].
A fully important criterion can alone bring the whole global score to 1 or to 0.
The weighted minimum and maximum operations then take the following forms:

MINπ(f) =
n∧

i=1

(
(1 − πi) ∨ fi

)
; MAXπ(f) =

n∨

i=1

(πi ∧ fi). (1)

It is well-known that if the evaluation scale L is reduced to {0, 1} (Boolean
criteria) then letting Af = {i : fi = 1} be the set of criteria satisfied by alter-
native f , the function Π : Af �→ MAXπ(f) =

∨{πi : i ∈ Af} is a possibility
measure on C [12] (i.e, a set function Π that satisfies Π(A∪B) = Π(A)∨Π(B)
for every A,B ⊆ C), and N : f �→ MINπ(f) =

∧{1 − πi : i 	∈ Af} is a necessity
measure [3] (i.e., a set function N that satisfies N(A ∩ B) = N(A) ∧ N(B) for
every A,B ⊆ C). Note that the well-known duality property Π(A) = 1 − N(A),
where A denotes the set complement of A in C, immediately generalizes to the
scale L in the following way:

MAXπ(f) = 1 − MINπ(1 − f). (2)

There are two possible lines of action to extend the definition of the aggre-
gation operations in (1):

– Replacing possibility and necessity measures by more general monotonic set
functions that attach weights to groups of criteria.

– Extending the rating modification schemes using more general conjunctions
and implications.

Sugeno Integral. The first extension leads to modeling relative weights of the
sets of criteria via a capacity, which is an order-preserving map γ : 2C → L that
satisfies γ(∅) = 0 and γ(C) = 1. The conjugate capacity γc of γ is defined by
γc(A) = 1 − γ(A) for every A ⊆ C. The Sugeno integral [11], of an alternative f
can be defined by means of several expressions, among which the two following
normal forms [9]:

∫

γ

f =
∨

A⊆C

(
γ(A) ∧

∧

i∈A

fi

)
=

∧

A⊆C
(1 − γc(A)) ∨

∨

i∈A

fi. (3)
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These expressions, which generalise the conjunctive and disjunctive normal forms
in logic, can be simplified as follows:

∫

γ

f =
∨

a∈L

γ({i : fi ≥ a}) ∧ a =
∧

a∈L

γ({i : fi > a})) ∨ a. (4)

Moreover, for the necessity measure N associated with a possibility distribution
π, we have

∫
N

(f) = MINπ(f); and for the possibility measure Π associated
with π, we have

∫
Π

(f) = MAXπ(f).
There is a duality relation between Sugeno integrals with respect to conjugate

capacities, extending (2):
∫

γ

f = 1 −
∫

γc

(1 − f). (5)

Two alternatives f, g ∈ LC are said to be comonotone if for every i, j ∈ [n], if
f(i) < f(j) then g(i) ≤ g(j) and if g(i) < g(j) then f(i) ≤ f(j). By means of
this notion, Sugeno integral can be characterized as follows:

Theorem 1 [1]. Let I : LC → L. There is a capacity γ such that I(f) =
∫

γ
f

for every f ∈ LC if and only if the following properties are satisfied

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC.
2. I(a ∧ f) = a ∧ I(f), for every a ∈ L and f ∈ LC.
3. I(1C) = 1.

Equivalently, conditions (1-3) can be replaced by conditions (1’-3’) below.

1’. I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ LC.
2’. I(b ∨ f) = b ∨ I(f), for every a ∈ L and f ∈ LC.
3’. I(0C) = 0.

The existence of these two equivalent characterisations is due to the possibility
of writing Sugeno integral in conjunctive and disjunctive forms (3) equivalently.

Generalized Rating Modification. The second extension yields weighted min
and max operations of the form

MIN→
π (f) =

n∧

i=1

πi → fi; MAX⊗
π (f) =

n∨

i=1

πi ⊗ fi, (6)

where → is an implication connective, and ⊗ a conjunction, understood as multi-
valued connectives that coincide with Boolean implication and conjunction when
restricted to {0, 1}. In order to preserve the duality property (2), these opera-
tions must be related by a property that we call semi-duality, defined by the
equation a → b = 1 − (a ⊗ (1 − b)), or equivalently a ⊗ b = 1 − (a → (1 − b)).

One may then consider both generalizations together and define, given a pair
of semi-dual implication → and conjunction ⊗, the integrals

∫ ⊗ and
∫ → by

∫ ⊗

γ

f =
∨

A⊆C

(
γ(A) ⊗

∧

i∈A

fi

)
;

∫ →

γ

f =
∧

A⊆C

(γc(A) →
∨

i∈A

fi), (7)
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for every capacity γ and every f ∈ LC . In what follows, we refer to expressions
of the form

∫ →
γ

as co-integrals. The assumption of semi-duality ensures that the
duality Eq. (5) holds between integrals and co-integrals.

Sugeno integral is a particular instance of (7), since the minimum ∧ and the
Kleene-Dienes implication →K defined as a →K b := (1 − a) ∨ b exchange by
semi-duality. So, Eq. (3) actually states that

∫

γ

f =
∫ ∧

γ

f =
∫ →K

γ

f

for every capacity γ and every f ∈ LC . It means that integrals and co-integrals
defined by means of the operation ∧ and →K , respectively, coincide. As we shall
see in the sequel, this is not generally the case.

2 Variants of Sugeno Integrals: An Example

Let us recall previous results [4] in the qualitative setting of a complete bounded
totally ordered set L = (L,∧,→G, 0, 1) where →G is the Gödel implication
defined by residuation of ∧:

a →G b := sup{x : a ∧ x ≤ b} =

{
1 if a ≤ b

b otherwise.
(8)

As previously, L is equipped with an involutive operation 1 − ·. The following
(non-commutative) conjunction, introduced in [2] is defined by semi-duality:

a ⊗G b := 1 − (a →G (1 − b)) =

{
b if a > 1 − b,

0 otherwise.
(9)

The qualitative integral
∫ ⊗G

γ
and co-integral

∫ →G

γ
have simplified expressions

that extend those of Sugeno integrals, assuming f1 ≤ · · · ≤ fn:
∫ ⊗

γ

f =
n∨

i=1

γ({i, · · · , n}) ⊗ f(i) =
∨

a∈L

γ({f ≥ a}) ⊗ a (10)

∫ →

γ

(f) =
n∧

i=1

γc({1, · · · , i}) → f(i) =
∧

a∈L

γc({f ≤ a}) → a. (11)

Note also that if N is a necessity measure and Π is a possibility measure,
then

∫ →G

N
= MIN→G

π and
∫ ⊗G

Π
= MAX⊗G

π . However we cannot exchange N
and Π in those results.

As ⊗G is not commutative, there is an alternative definition for those aggrega-
tion operations, replacing ⊗G by the operation ⊗GC defined by a⊗GC b := b⊗Ga,
and the operation →G by the implication →GC associated with ⊗GC by semi-
duality (i.e., the operation →GC is the contrapositive version of →G):

a →GC b := 1 − (a ⊗GC (1 − b)) = (1 − b) →G (1 − a) =

{
1 if a ≤ b,

1 − a otherwise.



Generalized Sugeno Integrals 367

Properties (11)-(10) hold for
∫ →GC

γ
f and

∫ ⊗GC

γ
f as well as for their reduc-

tions to a form of weighted min and max for necessity and possibility measures.
Noticeably, the integral and co-integral based on Gödel implications and their

associated semi-dual conjunctions do not coincide. We have proved [4] that
∫ ⊗G

γ

f ≥
∫ →G

γ

f and
∫ ⊗GC

γ

f ≥
∫ →GC

γ

f, (12)

but the inequalities may be strict. For instance,
∫ →G

γ
(f) = 1 if for all A ⊆ C,

there is some i ∈ A such that fi ≥ γc(A), and
∫ ⊗G

γ
(f) = 1 if there is some subset

A ⊆ C such that γ(A) > 0 and fi = 1 for every i ∈ A.
Some characterization theorems for these variants of Sugeno integrals have

been obtained [5]:

Theorem 2. Let I : LC → L be a mapping. There is a capacity γ such that
I(f) =

∫ ⊗G

γ
f for every f ∈ LC if and only if

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC.
2. There is a capacity λ : 2C → L such that I(1A ⊗G a) = λ(A) ⊗G a for every

a ∈ L and every A ⊆ C.
In that case, we have γ = λ.

Theorem 3. Let I : LC → L be a mapping. There is a capacity γ such that
I(f) =

∫ →G

γ
f for every f ∈ LC if and only if

1. I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ LC.
2. There is a capacity ρ : 2C → L such that I(1A →G a) = ρ(A) →G a for every

a ∈ L.

If these conditions are satisfied then γ = ρc.

Similar theorems hold [5] for
∫ ⊗GC

γ
(f) and

∫ →GC

γ
(f). The above results suggest

that it is possible to find a more general algebraic structure to define generalized
Sugeno integrals, while keeping the same properties.

Note that the three implications and conjunctions in the above setting are
related in the following way. We consider the three following transformations
that can be applied to any operation � on a bounded totally ordered set with
involutive negation L = (L,∨,∧, 1 − ·, 0, 1):

– Residuation: aRes(�)b :=
∨{a : a � b ≤ c} if this supremum exists,

– Semi-duality: aS(�)b := 1 − a � (1 − b),
– Contraposition: aC(�)b := (1 − b) � (1 − a).
– Argument exchange: aA(�)b := b � a

Note that semi-duality and contraposition are involutive transformations. More-
over the diagram in Fig. 1 commutes [2].

In the sequel, we focus on generalized Sugeno integrals on a finite total order
equipped with a conjunction that is not necessarily commutative, and the co-
integral obtained by semi-duality. For simplicity, the word “q-integral” is used
here in the sense of generalized Sugeno integrals on a qualitative scale.
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a ∧ b a →G b (1 − b) →G (1 − a)Res C

(1 − a) ∨ b

SS

a ⊗G b

S S S S Res

b ⊗G aARes

Fig. 1. Connectives induced by the minimum on a finite chain

3 Sugeno-Like q-Integrals Based on Left-Conjunctions

We consider a bounded complete totally ordered value scale (L, 0, 1,≤), equipped
with an operation ⊗ called left-conjunction, which has the following properties:

– the top element 1 is a left-identity: 1 ⊗ x = x,
– the bottom element 0 is a left-anihilator 0 ⊗ x = 0,
– the maps x �→ a ⊗ x, x �→ x ⊗ a are order-preserving for every a ∈ L.

It follows that a ⊗ 0 = 0 for every a ∈ L (0 is an anihilator on both sides),
and so, a left-conjunction coincides with a Boolean conjunction on {0, 1}; but
we assume neither associativity nor commutativity. The following operations are
examples of left-conjunctions.

– T-norms on [0, 1], in particular ∧, the product t-norm, the �Lukasiewicz t-norm
and the nilpotent minimum ∧ defined by a∧b = 0 if a+ b ≤ 1 and a∧b = a∧ b
otherwise.

– Weak t-norms [8], i.e., left conjunctions such that a ⊗ 1 ≤ a.
– The non-commutative Gödel conjunction ⊗G previously introduced, and the

non-commutative conjunction ⊗rTC defined by a ⊗rTC b = 0 if a = 0, and
a ⊗rTC b = b if a 	= 0 (see [5]).

– Pseudo-multiplications used by Klement et al. [10] in the definition of universal
integrals. A pseudo-multiplication has genuine identity 1 and anihilator 0 (on
both sides).

Definition 1. Let ⊗ be a left-conjunction on L and γ : 2C → L be a capacity.
The q-integral

∫ ⊗
γ

is the mapping
∫ ⊗

γ
: LC → L defined by

∫ ⊗

γ

f =
∨

A⊆C

(
γ(A) ⊗

∧

i∈A

fi

)
, for all f ∈ LC .

We show that q-integrals can be characterized similarly as in Theorem 2. In
the following when we consider f ∈ LC , (·) denotes a permutation on the set
of criteria such that f(1) ≤ · · · ≤ f(n) and we let A(i) = {(i), · · · , (n)} with the
convention A(n+1) = ∅.

Lemma 1. If f ∈ LC then f =
∨n

i=1 1A(i) ⊗ f(i).
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Proof. For any i, k ∈ [n], f(i) ≤ fk if k ∈ A(i). It follows that 1A(i)(k)⊗f(i) = 0 if
fk < f(i) and f(i) otherwise; hence

∨n
i=1 1A(i)(k)⊗f(i) =

∨{f(i) | f(i) ≤ fk} = fk.

Proposition 1.
∫ ⊗

γ
f =

∨n
i=1 γ(A(i)) ⊗ f(i).

Proof.
∫ ⊗

γ
f =

∨
A⊆C γ(A) ⊗ ∧

i∈A fi. Let us denote
∧

i∈A fi by fiA
. It follows

that A ⊆ A(iA) which entails γ(A) ≤ γ(A(iA)) and γ(A) ⊗ fiA
≤ γ(A(iA)) ⊗ fiA

.

Lemma 2. For every capacity γ, the map
∫ ⊗

γ
: LC → L is order-preserving.

Proof. Directly from the assumption that the map x �→ a⊗x is order-preserving.

Lemma 3.
∫ ⊗

γ
f =

∨
a∈L γ({f ≥ a}) ⊗ a.

Proof. We use Proposition 1. Let a ∈ L \ {f1, . . . , fn}.
If a > f(n) then γ({f ≥ a}) ⊗ a = 0 ⊗ a = 0.
If a < f(1) then γ({f ≥ a}) ⊗ a = γ({f ≥ f(1)}) ⊗ a ≤ γ({f ≥ f(1)}) ⊗ f(1).
If f(i−1) < a < f(i) then γ({f ≥ a})⊗a = γ({f ≥ f(i)})⊗a ≤ γ({f ≥ f(i)})⊗f(i).

Lemma 4. For any comonotone f, g ∈ LC, we have
∫ ⊗

γ
(f ∨ g) =

∫ ⊗
γ

f ∨ ∫ ⊗
γ

g.

Proof. The inequality
∫ ⊗

γ
(f ∨ g) ≥ ∫ ⊗

γ
f ∨ ∫ ⊗

γ
g follows from Lemma 2. Let

us prove the other inequality. Let a ∈ L. For any two comonotone functions
f, g ∈ LC we have either {f ≥ a} ⊆ {g ≥ a} or {g ≥ a} ⊆ {f ≥ a}.
If {f ≥ a} ⊆ {g ≥ a} then {f ∨ g ≥ a} = {f ≥ a} ∪ {g ≥ a} = {g ≥ a} and
γ({f ∨ g ≥ a}) ⊗ a = γ({g ≥ a}) ⊗ a ≤ (

γ({g ≥ a}) ⊗ a
) ∨ (

γ({f ≥ a}) ⊗ a
)
.

By symmetry, the inequality is also true when {g ≥ a} ⊆ {f ≥ a}; hence
∫ ⊗

γ
(f ∨ g) ≤ ∨

a∈L

((
γ({g ≥ a}) ⊗ a

) ∨ (
γ({f ≥ a}) ⊗ a

))
=

∫ ⊗
γ

f ∨ ∫ ⊗
γ

g.

Lemma 5. For every f ∈ LC and every � ∈ {1, . . . , n−1}, the maps 1A(�) ⊗f(�)
and

∨n
i=�+1 1A(i) ⊗ f(i) are comonotone.

Proof. We represent both maps as vectors of components ordered according
to (1), . . . , (n), so that A(�) = {(�), . . . , (n)}. In consequence, 1A(�) ⊗ f(�)(i) =
∨n

i=�+1 1A(i) ⊗ f(i)(i) = 0 if i ≤ � while 1A(�) ⊗ f(�)(i) = f(�) and
∨n

i=�+1 1A(i) ⊗
f(i)(i) = f(i) if i > �. Hence it is easy to check that the two maps are comonotone.

Lemma 6. For any capacity γ, any B ⊆ C and any a ∈ L we have
∫ ⊗

γ
(1B⊗a) =

γ(B) ⊗ a. In particular
∫ ⊗

γ
1C = 1.

Proof.
∫ ⊗

γ
f =

∨n
i=1 γ(A(i)) ⊗ f(i), where f = 1B ⊗ a. Note that 1B(i) ⊗ a = a

if i ∈ B and 1B(i) ⊗ a = 0 otherwise. So, there is j such that B = A(j) =
{(j), . . . , (n)}. So we get

∫ ⊗
γ

(1B ⊗ a) =
∨n

i≥j γ(A(i)) ⊗ a, and the maximum is

attained for i = j. Further,
∫ ⊗

γ
1C =

∫ ⊗
γ

1C ⊗ 1 = γ(C) ⊗ 1 = 1.

We can now prove our first characterization result.
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Theorem 4. Let I : LC → L be a mapping and ⊗ a left-conjunction. There is a
capacity γ such that I(f) =

∫ ⊗
γ

f for every f ∈ LC if and only if

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC.
2. There is a capacity λ : 2C → L such that I(1A ⊗a) = λ(A)⊗a for every a ∈ L

and every A ⊆ C.
In that case, we have γ = λ.

Proof. Necessity is obtained by previous Lemmas. For sufficiency, assume that
I is a mapping that satisfies conditions 1 and 2 and let f ∈ LC . We have I(f) =
I(

∨n
i=1 1A(i) ⊗ f(i)) =

∨n
i=1 I(1A(i) ⊗ f(i)) =

∨n
i=1 λ(A(i)) ⊗ f(i) =

∫ ⊗
λ

f .

Note that we have used all properties of left-conjunctions in our proof of the
previous result. Moreover, contrary to universal integrals,

∫ ⊗
γ

1A = γ(A) ⊗ 1 	=
γ(A), generally, since 1 is not an identity on the right. To get the property
∫ ⊗

γ
1A = γ(A), it is enough to assume the left-conjunction ⊗ is commutative.

The set function γ̂(A) = γ(A)⊗1 generally differs from γ. The following counter-
example shows that we may have γ̂(A) 	= γ(A) and

∫ ⊗
γ

	= ∫ ⊗
γ̂

.

Example 1. C = {1, 2}, L = [0, 1] and ⊗G is the Gödel conjunction. We have
a ⊗G 1 = 0 if a = 0 and 1 otherwise so a ⊗G 1 	= a if a < 1. Let us consider γ
such that γ({1}) = 0 and γ({2}) = 0.1. If f is defined by f1 = 0 and f2 = 0.8
we obtain

∫ ⊗G

γ
f = (1 ⊗G 0) ∨ (0.1 ⊗ 0.8) = 0.8 and

∫ ⊗G

γ̂
f = 1 since γ̂({2}) = 1.

In the case when the functional I is maxitive, we prove the following:

Theorem 5. Assume that ⊗ is a left conjunction that is right-cancellative, that
is, for every a, b, c ∈ L, if a⊗ c = b⊗ c then a = b. Let I : LC → L be a mapping.
There is a possibility measure Π such that I(f) =

∫ ⊗
Π

f for every f ∈ LC if and
only if I satisfies the following properties:

1. I(f ∨ g) = I(f) ∨ I(g), for any f, g ∈ LC.
2. There is a capacity λ : 2C → L such that I(1A ⊗a) = λ(A)⊗a for every a ∈ L

and every A ⊆ C.
In that case, we have Π = λ.

Proof. A q-integral with respect to a possibility measure satisfies the requested
properties. Let us prove the converse. According to the previous theorem, there
exists a capacity λ such that I(1A ⊗ a) = λ(A) ⊗ a for all a. For all a 	=
0, (1A ⊗ a) ∨ (1B ⊗ a) = (1A∪B ⊗ a) by the order-preservingness property;
so (λ(A) ⊗ a) ∨ (λ(B) ⊗ a) = λ(A ∪ B) ⊗ a. Again by order-preservingness,
(λ(A)⊗ a)∨ (λ(B)⊗ a) = (λ(A)∨λ(B))⊗ a hence the cancellativeness property
allows us to conclude λ(A ∪ B) = λ(A) ∨ λ(B).

The above result also holds for commutative conjunctions (so, for triangular
norms), and also pseudo-multiplications, since in that case I(1A) = I(1A⊗1C) =
Π(A)⊗1 = Π(A). But it does not hold for the Gödel conjunction, nor the other
non-commutative conjunction mentioned above.
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4 Integrals Defined with a Right-Conjunction

We consider a binary operation ⊗C defined by a ⊗C b := b ⊗ a where ⊗ is a
left-conjunction. Clearly, a ⊗C 1 = a, a ⊗C 0 = 0, 0 ⊗C a = 0, and the maps
x �→ a⊗C x and x �→ x⊗C a are order-preserving. We call ⊗C a right-conjunction.
The associated q-integral is

∫ ⊗C

γ

f =
∨

A⊆C

(
∧

i∈A

fi ⊗ γ(A)).

It generally differs from
∫ ⊗

γ
f [4]. Using the results presented in Sect. 3 it

is easy to prove that if f ∈ LC , then f =
∨n

i=1 f(i) ⊗C 1A(i) where for every
� ∈ {1, . . . , n−1}, the maps f(�)⊗C1A(�) and

∨n
i=�+1 f(i)⊗C1A(i) are comonotone.

Since x �→ x ⊗C a is increasing,
∫ ⊗c

γ
f =

∨n
i=1 γ(A(i)) ⊗C f(i), and since

x �→ a ⊗C x is increasing, the map
∫ ⊗C

γ
: LC → L is order-preserving for every

capacity γ. Moreover we have
∫ ⊗C

γ
f =

∨
a∈L(a ⊗ γ({f ≥ a})) and for any

comonotone f, g ∈ LC we have
∫ ⊗C

γ
(f ∨ g) =

∫ ⊗C

γ
(f) ∨ ∫ ⊗C

γ
(g).

For every capacity γ, every A ⊆ C and every a ∈ L, it holds
∫ ⊗C

γ

(a ⊗C 1A) =
∨

B⊆C

γ(B) ⊗C

∧

i∈B

(a ⊗C 1A(i)) =
∨

B⊆C

∧

i∈B

(1A(i) ⊗ a) ⊗ γ(B).

We have
∧

i∈B(1A(i) ⊗ a) = a if B ⊆ A and
∧

i∈B(1A(i) ⊗ a) = 0 otherwise, so
∫ ⊗C

γ

(a ⊗C 1A) =
∨

B⊆A

a ⊗ γ(B) = a ⊗ γ(A).

In particular, as 1⊗a = a, we have
∫ ⊗C

γ
1A = γ(A), and so

∫ ⊗C

γ
(a⊗C 1A) =

a ⊗ ∫ ⊗C

γ
1A. We are ready to prove the following characterization result.

Theorem 6. Let I : LC → L be a mapping and ⊗C a right-conjunction. There
is a capacity γ such that I(f) =

∫ ⊗C

γ
f for every f ∈ LC if and only if

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC.
2. For every A ⊆ C and every a ∈ L we have I(1A ⊗C a) = I(1A) ⊗C a.
3. I(1C) = 1.

In that case γ is defined by γ(A) = I(1A) for every A ⊆ C.

Proof. The proof that I(f) =
∨n

i=1 I(1A(i))⊗C f(i) is similar to that of Theorem 4.
Then we must prove that the set function λ : A �→ I(1A) is a capacity. We do
have that λ(C) = 1, and λ(∅) = I(0) = I(0 ⊗C 1C) = 0 ⊗ λ(C) = 0. Finally,
for every A ⊆ B, as 1 ⊗C 1A ≤ 1 ⊗C 1B ,we get by conditions 1 and 2 that
λ(A) = λ(A) ⊗ 1 = I(1 ⊗C 1A) ≤ I(1 ⊗C 1B) = 1 ⊗ λ(B) = λ(B).

Note that if the maxitivity condition 1 is extended to any pair of mappings f ,
g, then I(1B) = Π(B) and I(f) = MAX⊗C

π (f) =
∨n

i=1 fi ⊗ πi. The contra-
posed Gödel conjunction ⊗GC and the right conjunction associated with the
conjunction ⊗rTC introduced above are examples of right-conjunctions.
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5 Q-cointegrals Defined from Left-Conjunctions

As L is equipped with an involutive negation t �→ 1 − t, we can define an
implication → from ⊗ by semi-duality: a → b := 1−(a⊗(1−b)). This implication
satisfies the following very usual properties:

– a → 1 = 1, 0 → b = 1 and 1 → b = b,
– → is decreasing according to its first argument,
– → is increasing according to the second one.

Under property 1 → b = b, implication → is called a border implication. The
implication → and the conjunction ⊗ exchange via semi-duality.

The following implication operations satisfy the properties presented above.

– S-implications obtained from triangular norms by semi-duality, among them,
the Kleene-Dienes implication, the �Lukasiewicz implication a →�L b = max(1−
a + b, 0), the nilpotent implication induced by the nilpotent minimum a →
b = 1 if a ≥ b and (1 − a) ∨ b otherwise, Reichenbach implication (induced by
product).

– Implications obtained from triangular norms by residuation Res, among which
the Gödel and �Lukasiewicz implications, the nilpotent implication, Goguen
implication (induced by product). Operations of the form ⊗ = S(Res(�)),
where � is a left-continuous t-norm, are (generally non-commutative) left-
conjunctions instrumental in the construction of Sect. 4.

– a →XC b = 1 if a = 0, and b if a 	= 0 [5].

Definition 2. Let → be a border implication as defined above on L and γ : 2C →
L be a capacity. The q-cointegral

∫ →
γ

: LC → L is the mapping
∫ →

γ

f =
∧

A⊆C

(
γc(A) →

∨

i∈A

fi

)
, for all f ∈ LC .

Using semi-duality, q-cointegrals can be expressed in terms of q-integrals.

Proposition 2.
∫ →

γ
(f) = 1 − ∫ ⊗

γc(1 − f).

As in [5], using semi-duality, we derive the following results from Sect. 4.
For any f ∈ LC , we have f =

∧n
i=1 1A(i+1)

→ f(i) where for every
� ∈ {1, . . . , n − 1}, the maps 1A(�+1)

→ f(�) and
∧n

i=�+1 1A(i+1)
→ f(i) are

comonotone. Also,
∫ →

γ
(f) =

∧n
i=1 γc(A(i+1)) → f(i) =

∧
a∈L γc({f ≤ a}) → a.

Moreover we have the following characterisation result.

Theorem 7. Let I : LC → L be a mapping. There is a capacity γ such that
I(f) =

∫ →
γ

f for every f ∈ LC if and only if the following properties are satisfied.

1. I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ LC.
2. There is a capacity ρ : 2C → L such that I(1A → a) = ρc(A) → a,∀a ∈ L.

In that case ρ = γ.
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We can run a similar study for q-cointegrals induced by a right-conjunction.
They use implications that differ from the above ones by the property a → 0 =
1 − a that replaces 1 → b = b, i.e. these implications reconstruct the involutive
negation.

Remark 1. The equality (3) between the q-cointegral and the q-integral, in the
case of conjunction ∧ and its semi-dual (1−a)∨b does not extend to conjunction-
based q-integrals. For example only the inequality (12):

∫ ⊗
γ

f ≥ ∫ →
γ

f holds for
(⊗,→) ∈ {(⊗G,→G), (⊗GC ,→GC)} [4]. This inequality cannot even be gener-
alised to other conjunctions. For example, for the nilpotent minimum and the
nilpotent maximum (a∨b = a ∨ b, if a ≤ 1 − b and 1 otherwise) the relations
a∧b ≤ a ∧ b and a ∨ b ≤ a∨b imply the opposite inequality

∫ ∧
γ

f ≤ ∫ ⇒
γ

f , where

⇒ is S(∧), but
∫ ∧

γ
f 	= ∫ ⇒

γ
f .

Example 2. Consider C = {1, 2}, L = [0, 1], a capacity γ defined by γ({1}) =
γ({2}) = 0 and f such that f1 = 0.5 and f2 = 0.5; then

∫ ∧
γ

f = 0.5 <
∫ ⇒

γ
f = 1.

Remark 2. The diagram on Fig. 1 holds for transforms of many more operations
� than ∧. Fodor [8] has shown that the existence of Res(�) is a necessary and
sufficient condition for the square on the left-hand side to commute. The whole
diagram commutes if and only if moreover � is commutative. Res(�) exists for
left and right conjunctions. So from any q-integral based on a left-conjunction ⊗,
one can generate two q-cointegrals (based on Res(⊗) and S(⊗)), and another q-
integral based on Res◦S(⊗) = S ◦Res(⊗). We can do likewise for the associated
right-conjunction A(⊗).

Remark 3. The q-cointegral-like expression defined on a complete residuated
lattice in [6] is based on an anticapacity ν i.e., a set function such that ν(∅) = 1,
ν(C) = 0 and A ⊆ B implies ν(A) ≥ ν(B). For all f ∈ LC , it takes the form:∮ →

ν
f =

∧
A⊆C

∨
i∈A(fi → ν(A)), for all f ∈ LC . It is what we call a desintegral

in [4] as it is decreasing with fi.

6 Conclusion

In this paper, we have proposed a very general setting for generalized forms of
Sugeno integrals where the inside operation is either a not-necessarily commuta-
tive multivalued conjunction or a multivalued implication. The properties in the
algebraic setting were chosen to be minimal in order to preserve representation
theorems by means of comonotonic minitive or maxitive functionals: integrals
are maxitive, while cointegrals are minitive and differ from each other, in con-
trast with the case of standard Sugeno integrals. One remaining open problem
is to find necessary and sufficient conditions for a conjunction ⊗ to ensure the
equality between integrals and their semi-dual cointegrals.

Acknowledgements. This work is partially supported by ANR-11-LABX-0040-CIMI
(Centre International de Mathématiques et d’Informatique) within the program ANR-
11-IDEX-0002-02, project ISIPA.
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Abstract. Fuzzy implication functions are used to model fuzzy condi-
tional and consequently they are essential in fuzzy logic and approxi-
mate reasoning. From the theoretical point of view, the study of how
to construct new implication functions from old ones is one of the most
important topics in this field. In this paper a construction method of
implication functions from a t-conorm S (or any disjunctive aggregation
function F ), a fuzzy negation N and an implication function I is stud-
ied. Some general properties are analyzed and many illustrative examples
are given. In particular, this method shows how to obtain new implica-
tions from old ones with additional properties not satisfied by the initial
implication function.

Keywords: Fuzzy implication function · t-conorm · Disjunctive aggre-
gation function · Construction methods · Natural negation

1 Introduction

Fuzzy implication functions play a fundamental role in fuzzy logic and approxi-
mate reasoning since they are used not only to model fuzzy conditionals but also
in the inference processes. Moreover, they have a lot of applications in many dif-
ferent fields that vary from fuzzy control and fuzzy subsethood measures to fuzzy
mathematical morphology and image processing. For this reason, the interest of
implication functions from a pure theoretical point of view has been growing in
last decades, see for instance the survey [15] and the monographs [4,6] entirely
devoted to this kind of operators.

Due to this great quantity of applications, it was pointed out for instance in
[25] the necessity of having a lot of different classes of fuzzy implication functions.
In this sense, one of the main topics in the theoretic study of implications is the
research of new construction methods of fuzzy implication functions. The most
important methods to construct fuzzy implication functions are the following:

(i) From different kinds of aggregation functions, especially t-norms, t-conorms
and uninorms, leading to the classes of R, (S,N), QL and D-implications
derived from t-norms and t-conorms (see mainly [6]), as well as their coun-
terparts derived from uninorms (see [2,7,11,14,21,22]). Moreover, some of
these results were collected and completed later in the survey [20].

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 375–386, 2016.
DOI: 10.1007/978-3-319-40596-4 32
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(ii) From different kinds of generators leading mainly to the Yager’s f and
g generated implications that are constructed from generators of con-
tinuous Archimedean t-norms and t-conorms (see [5,8,28]), the so-called
h-implications constructed from generators of representable uninorms (see
[17]), and many generalizations that can be found in the recent survey [13].

(iii) From other implication functions like for instance the minimum and
the maximum of two implications, any convex linear combination, the
ϕ-conjugate or the N -reciprocal of an implication, and so on [6]. More recent
constructions like the threshold and vertical threshold generation methods
[18,19], some algebraic operations between implications [26,27] and some
others, see the recent survey [20].

Some new construction methods of implication functions have recently
appeared for instance in [3,10] or [23]. The method presented in [23] and later
recalled and completed in [24] allows to construct fuzzy implication functions
from a fuzzy negation N . In that paper, a more general method from a t-conorm
S, a fuzzy negation N and a fuzzy implication function I was posed as an open
question.

The idea of this paper is to develop such method and to study the proper-
ties that it preserves, generalizing the t-conorm S to a disjunctive aggregation
function F . Since it depends on three different operators, F,N and I, there are
many directions to investigate. For instance, one can fix two of the three oper-
ators and study the implications obtained varying the third one, or one can fix
one of them varying the other two, and so on. Thus, we are dealing with a field
of study with many possibilities and we highlight some of them in the current
paper as a first approximation. In particular, it is shown how to obtain new
implications from old ones with additional properties not satisfied by the initial
implication function.

The paper is organized as follows. After this introduction, Sect. 2 is devoted
to some preliminaries in order to make the paper as self-contained as possible.
Section 3 presents the main results of the paper. In such section the construc-
tion method is investigated, some general results are shown, many examples are
presented and some possible lines of study are pointed out. Finally, the paper
ends with Sect. 4 devoted to some conclusions and future work.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms, t-conorms
and fuzzy negations (all necessary results and notations can be found in [12]).
We recall here only some facts on aggregation functions and fuzzy implications
in order to establish the necessary notation that we will use along the paper and
to make it as self-contained as possible.

Definition 1. A binary operator F : [0, 1] × [0, 1] → [0, 1] is said to be an
aggregation function if it is increasing in each variable and it satisfies F (0, 0) = 0
and F (1, 1) = 1.
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Definition 2. An aggregation function F : [0, 1] × [0, 1] → [0, 1] is said to be
disjunctive when F (x, y) ≥ max(x, y) for all x, y ∈ [0, 1].

For more details on aggregation functions, their classes and their properties
see for instance [9].

Definition 3. A binary operator I : [0, 1] × [0, 1] → [0, 1] is said to be a fuzzy
implication function, or an implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition.

Definition 4. Given a fuzzy implication function I, the function NI(x) =
I(x, 0) for all x ∈ [0, 1] is always a fuzzy negation, known as the natural negation
of I.

Among many other properties usually required for fuzzy implications we
recall here some of the most important ones.

– The (Left) Neutrality Property:

I(1, y) = y for all y ∈ [0, 1]. (NP )

– The Consequent Boundary:

I(x, y) ≥ y for all y ∈ [0, 1]. (CB)

– The Ordering Property:

I(x, y) = 1 ⇐⇒ x ≤ y for all x, y ∈ [0, 1]. (OP )

– The Identity Principle:

I(x, x) = 1 for all x ∈ [0, 1]. (IP )

– The Strong Negation Principle:

I(x, 0) is a strong negation for all x ∈ [0, 1]. (SNP )

– The Continuity condition:

I is a continuous mapping (CO)
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– The Laws of Contraposition with respect to a fuzzy negation N :

I(x, y) = I(N(y), N(x)) for all x, y ∈ [0, 1]. CP (N)

I(x,N(y)) = I(y,N(x)) for all x, y ∈ [0, 1]. R − CP (N)

I(N(x), y) = I(N(y), x) for all x, y ∈ [0, 1]. L − CP (N)

Recall that the three contrapositions are equivalent when the negation con-
sidered is strong.

– The Exchange Principle:

I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1]. (EP )

In [24] the following method to construct implication functions from fuzzy
negations was presented.

Proposition 5. Let N be a fuzzy negation. The function FN given by:

FN (x, y) =

{
1 if x ≤ y
(1−N(x))y

x + N(x) if x > y

is always an implication function.

All the above mentioned properties of implication functions were studied in
detail and they were characterized depending on the fuzzy negation N used in the
construction. However, the authors pointed out that the previous construction is
a particular case of a more general one, where implication functions are obtained
from a t-conorm S, a fuzzy negation N and an implication function I through
the formula:

ISNI(x, y) = S(N(x), I(x, y)) for all x, y ∈ [0, 1]. (1)

3 FNI-implications

In this section we want to investigate those implication functions given by the
previous equation. However, we will generalize the method since function S needs
not be a t-conorm in order to generate fuzzy implications. In fact any disjunctive
aggregation function F is enough for that purpose as it is posed in the following
proposition.

Proposition 6. Let F be a disjunctive aggregation function, N a fuzzy negation,
and I an implication function. The function IFNI given by:

IFNI(x, y) = F (N(x), I(x, y)) for all x, y ∈ [0, 1], (2)

is always an implication function.
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Definition 7. A fuzzy implication function IFNI constructed through Eq. (2)
will be called an FNI-implication. Whenever the aggregation function F is in
fact a t-conorm S, IFNI will be called a SNI-implication.

According to Proposition 6, Eq. (2) gives a new method to construct implica-
tion functions. It is clear that such methods are especially interesting depending
on which usual properties of implications they preserve. Thus, one of the main
objectives of this paper is to investigate which properties are preserved by the
construction given by Eq. (2).

Remark 8. Note that in fact the previous proposition remains true if the aggre-
gation function F satisfies only the condition F (0, 1) = 1. However, we require
that F must be disjunctive because it will be essential in the preservation of some
properties of fuzzy implication functions.

Let us first give some illustrative examples of the new construction.

Examples 9

(i) As a first example of course we can take F the probabilistic sum t-conorm,
N a fuzzy negation and I the Goguen implication given by

IGG(x, y) =

{
1 if x ≤ y
y
x if x > y,

and we obtain implications IN given by Shi et al. in [23,24] (see also
Proposition 5 in the preliminaries).

(ii) Taking a t-conorm S, N a fuzzy negation and I the implication function
given by

I(x, y) =

{
1 if x = 0
y if x > 0,

then we clearly retrieve the class of (S,N)-implications.
(iii) Take a t-conorm S, N the greatest fuzzy negation given by

ND2(x) =

{
1 if x < 1
0 if x = 1,

and I any implication function. The corresponding SNI-implication is then
given by

ISNI(x, y) =

{
1 if x < 1 and y ∈ [0, 1]
I(1, y) if x = 1 and y ∈ [0, 1].

(iv) Similarly, taking F a t-conorm S, N a fuzzy negation and I the Gödel
implication given by

IGD(x, y) =

{
1 if x ≤ y

y if x > y,
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we obtain the implications:

ISNI(x, y) =

{
1 if x ≤ y

S(N(x), y) if x > y.

For instance, if we take the classical negation N(x) = 1 − x, we obtain the
Fodor implication from the the maximum t-conorm.

(v) Taking I = IRC the Reichenbach implication, that is IRC(x, y) = 1−x+xy,
and the classical negation we obtain

ISNI(x, y) = S(1 − x, 1 − x + xy) for all x, y ∈ [0, 1].

Thus, for instance, from the maximum t-conorm we retrieve the proper
Reichenbach implication, whereas considering the probabilistic sum t-
conorm we obtain the polynomial implication (see [16]):

I(x, y) = 1 − x2 + x2y for all x, y ∈ [0, 1],

which is also the f-generated Yager implication with generator f(x) =√
1 − x.

(vi) Consider F the dual representable aggregation function (see [1]) with gen-
erating pair (f,N), where f(x) = − ln x and N(x) = 1 − x, that is,

F (x, y) = min
(

1,
max(x, y)

1 − min(x, y)

)

for all x, y ∈ [0, 1]

Then if we take I = IRC the Reichenbach implication and the classical
negation, we obtain

IFNI(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if y ≥ 2x − 1
x

1 − x + xy

x
if y <

2x − 1
x

The structure of this implication function can be viewed in Fig. 1.

Let us begin our discussion by proving that all fuzzy implication functions
are in fact SNI-implications.

Proposition 10. Let F be a disjunctive aggregation function F with neutral
element 0 and N = NGD the Gödel negation given by

NGD(x) =

{
1 if x = 0
0 if x > 0.

Let I be a fuzzy implication function and IFNI the corresponding FNI-
implication. Then IFNI = I.
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Fig. 1. Structure of the FNI-implication of Example 9(vi), where (∗) stands for 1−x+xy
x

.

Consequently we have that any fuzzy implication can be seen as an FNI-
implication. Thus both the class FNI of all FNI-implications and the class FI
of all fuzzy implication functions are exactly the same. That is FNI = FI. In
spite of this fact, FNI-implications allow us to construct new implications from
other already known, as we have seen in the examples before. Now, we want to
deal with the properties that are preserved by FNI-implications.

Proposition 11. Let F be a disjunctive aggregation function, N a fuzzy nega-
tion, I an implication function, and IFNI the corresponding FNI-implication.
The following items hold:

(i) If I satisfies (IP ) then IFNI also satisfies it.
(ii) If I satisfies (CB) then IFNI also satisfies it.

Moreover,

(iii) If F has neutral element 0 then I satisfies (NP ) if and only if IFNI also
satisfies it.

(iv) If F and N are continuous then IFNI preserves the continuity condition
(CO).

It is easy to see that, without the conditions stated in the previous proposi-
tion, items (iii) and (iv) do not longer hold. Next we want to study the preser-
vation of the ordering property. First, let us recall that an aggregation function
F is said to have trivial 1-region whenever it satisfies F (x, y) = 1 if and only
if max(x, y) = 1. Similarly, a negation N is said to be non-filling whenever it
satisfies N(x) = 1 if and only if x = 0.

Proposition 12. Let F be a disjunctive aggregation function, N a fuzzy nega-
tion, I an implication function, and IFNI the corresponding FNI-implication.
If F has trivial 1-region and N is non-filling then IFNI preserves (OP ).

Again it is clear that without the conditions stated in the proposition above
the (OP ) is not preserved and again Example 9-(iii) gives a counterexample. Let
us now deal with the natural negation of an FNI-implication.
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Let F be a disjunctive aggregation function, N a fuzzy negation, I an impli-
cation function, and IFNI the corresponding FNI-implication. Then the natural
negation of IFNI is given by

NIFNI
(x) = F (N(x), NI(x)) for all x ∈ [0, 1].

Before to deal with the other usual properties of fuzzy implications, we want
to highlight an interesting property of this new construction method. Namely,
it is possible to consider adequate aggregation functions and fuzzy negations
in such a way that the corresponding FNI-implication, IFNI obtained from I,
satisfies additional properties that the initial implication I does not satisfy. The
idea comes from Proposition 11, since most of the preserved properties do not
satisfy the converse. That is, the FNI-implication IFNI can satisfy (IP ), (CB)
or (CO) even when the initial implication function I does not satisfy it. For
instance, we have the following result concerning (IP ).

Proposition 13. Let S be a t-conorm and N a fuzzy negation with
S(N(x), x) = 1 for all x ∈ [0, 1]. Let I be an implication function and ISNI

the corresponding SNI-implication. If I satisfies (CB) then ISNI satisfies (IP ).

Example 14. Take N = Nc the classical negation and S = SLK the �Lukasiewicz
t-conorm. Consider I = IRC the Reichenbach implication that satisfies (CB) but
not the (IP ). Then the corresponding ISNI-implication is given by

ISNI(x, y) = SLK(1 − x, IRC(x, y)) = min(2 − 2x + xy, 1) for all x, y ∈ [0, 1].

The structure of this implication can be viewed in Fig. 2.

Fig. 2. Structure of the FNI-implication of Example 14, where (∗) stands for 2−2x+xy.

Similarly one can construct FNI-implications that are continuous and that
satsfy (SNP ) even from implication functions that do not satisfy such properties,
like in the following proposition.

Proposition 15. Let F be a continuous disjunctive aggregation function and N
a continuous fuzzy negation. Let I be an implication function which is continuous
except at point (0, 0).
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(i) Then IFNI satisfies (CO).
(ii) Moreover, if F has 0 as neutral element, N is strong, and I has ND1 as

natural negation, then IFNI satisfies (SNP ).

Examples 16. There are many fuzzy implication functions satisfying the con-
ditions given in the previous proposition. For instance, all residual implications
derived from strict t-norms as well as all Yager implications f-generated with
generator f such that f(0) = +∞.

1. Consider N = Nc the classical negation, S = max and I = IGG the Goguen
implication, which is the residual implication derived from the product t-norm.
The corresponding SNI-implication is given by

ISNI(x, y) =

⎧
⎪⎨

⎪⎩

1 if x ≤ y
y
x if x > y ≥ x − x2

1 − x otherwise,

and is a continuous implication with strong natural negation. The structure
of this implication can be viewed in Fig. 3.

2. Consider N = Nc the classical negation, S = max and I = IYG the Yager
implcation, which is a Yager f-generated implication with generator f(x) =
− ln(x). The corresponding SNI-implication is given by

ISNI(x, y) =

{
1 if x = y = 0
max(1 − x, yx) otherwise,

and is a continuous implication with strong natural negation. The structure
of this implication can be viewed in Fig. 4.

Fig. 3. Structure of the FNI-implication of Example 16(1).

Finally, it is clear that the FNI-construction does not preserve the (EP ) as
it is usually the case in almost all known construction methods. However, with
respect to the contraposition properties, we want to finish this section with a
new result involving the R − CP (N) and its preservation.
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Fig. 4. Structure of the FNI-implication of Example 16(2).

Proposition 17. Let S = max, N a continuous fuzzy negation and I an impli-
cation function satisfying (CB) and R − CP (N). Let ISNI the corresponding
SNI-implication, then ISNI = I.

Of course, there are many other cases for which the corresponding SNI-
implication coincides with the initial implication I. See for instance Proposition 10.
Thus, a natural question arises: In which cases a fuzzy implication function I
remains invariant through the FNI-construction?

4 Conclusions and Future Work

In this paper the FNI-construction method of fuzzy implication functions based
on a disjunctive aggregation function F , a fuzzy negation N and an implication
function I is presented and studied. Many examples of this method are given to
illustrate the situation, and as a consequence it is proved that any fuzzy impli-
cation function can be obtained through this method. It is investigated which
of the usual properties of fuzzy implication functions are preserved through this
method and moreover, it is proved that the obtained FNI-implication can sat-
isfy additional properties that the initial implication does not satisfy. Thus, the
FNI-construction can be viewed also as a method of modifying an implication
function not satisfying a concrete property, in order to obtain a new one that
satisfies it. The FNI-method becomes specially interesting because it depends
on three different operators and consequently it can be investigated in many
different directions. Let us detail some of them.

1. One can fix an implication function I and a disjunctive aggregation function
F obtaining implications constructed just from a fuzzy negation N . Therefore
one can investigate which properties satisfy these new implications depending
on the properties of N . This is the case of the paper [24] which is the real origin
of the current work. However, there are many different options. For instance,
take the probabilistic sum t-conorm and the �Lukasiewicz implication. Then
the obtained FNI-implications are given by

ISNI(x, y) =

{
1 if x ≤ y

1 − (x − y)(1 − N(x)) if x > y,
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and one can investigate the properties of these implications depending on
those properties of the corresponding negation N .

2. Similarly, one can fix I and N and then obtain implications just from a
disjunctive aggregation function F (or from a t-conorm S). For instance,
taking the classical negation and the Reichenbach implication we obtain the
FNI-implications given by

IFNI(x, y) = F (1 − x, 1 − x + xy) for all x, y ∈ [0, 1].

3. Finally, by fixing N and F one obtain implication functions from a fixed one.
For instance, taking the classical negation and the probabilistic sum t-conorm
we obtain

ISNI(x, y) = 1 − x + xI(x, y) for all x, y ∈ [0, 1].

In all the previous cases one obtain a new class of implication functions which
properties can be studied in detail.
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Abstract. In fuzzy logic, the Modus Ponens property for fuzzy implica-
tion functions is usually considered with respect to a continuous t-norm
T and for this reason this property is also known under the name of T -
conditionality. In this paper, the t-norm T is substituted by a uninorm U
leading to the property of U -conditionality. The new property is studied
in detail and it is shown that usual implications derived from t-norms
and t-conorms do not satisfy it, but many solutions appear among those
implications derived from uninorms. In particular, the case of residual
implications derived from uninorms or RU -implications is investigated
in detail for some classes of uninorms.

Keywords: Fuzzy implication function · Modus ponens · t-norm · Uni-
norm · Natural negation

1 Introduction

In the framework of fuzzy logic and approximate reasoning, fuzzy implication
functions are used not only in modelling fuzzy conditionals but also in the infer-
ence process. To manage forward inferences the Modus Ponens becomes essential
in the process, especially when the Zadeh’s compositional rule of inference is
used. In these cases, the Modus Ponens is guaranteed when the fuzzy operators
used, that is, the conjunction and the fuzzy conditional, satisfy the following
inequality:

T (x, I(x, y)) ≤ y for all x, y ∈ [0, 1], (1)

where T is usually considered a (continuous) t-norm and I a fuzzy implication
function. For this reason the previous inequality is known as the Modus Ponens
property, and also as T -conditionality.

Due to its importance in the inference process, those t-norms T and fuzzy
implication functions I that satisfy Eq. (1) have been investigated by many
researchers for decades (see for instance, [2,3,17,19,26–29]). The main studies
are related to implications derived from t-norms and t-conorms. Thus, resid-
ual implications and (S,N)-implications were investigated in detail in [2,26,27],
and QL and D-implications in [28]. Moreover, these results were collected and
completed later in [3] (see Sect. 7.4).
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 387–398, 2016.
DOI: 10.1007/978-3-319-40596-4 33
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However, there are many other kinds of implication functions to be considered
and even different methods of constructing implication functions from others
(see [21]). Among them, a kind of implication functions extensively studied
are those derived from more general aggregation functions than t-norms and t-
conorms, specially those derived from uninorms (see for instance [1,4,7,23,24]).
Recently, T -conditionality was already studied for these two kinds of implica-
tion functions, that is, for the so-called RU -implications and (U,N)-implications
(see [14,15]).

The idea of this paper is to extend such study to the property of conditionality
with respect to a uninorm U instead of a t-norm T . This is done for a uninorm U
and a fuzzy implication function I in general. However, some initial results prove
that the considered uninorm must be conjunctive and the implication function
must satisfy some properties that lead us to center our investigation in the case
of residual implications derived from a uninorm U0, that is, the case of RU -
implications. We extend our study to two of the most usual classes of uninorms,
that is, uninorms in Umin and idempotent uninorms.

The paper is organized as follows. After this introduction, Sect. 2 is devoted
to some preliminaries in order to make the paper as self-contained as possible.
Section 3 deals with the Modus Ponens with respect to a uninorm U , includ-
ing some general results for any kind of implication functions as well as some
particular ones for the case of RU -implications. This last part is divided in two
subsections, one for each class of uninorms, uninorms in Umin and idempotent
uninorms. Finally, the paper ends with Sect. 4 devoted to some conclusions and
future work.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms, t-conorms
and fuzzy negations (all necessary results and notations can be found in [10]). We
also suppose that some basic facts on uninorms are known (see for instance [9])
as well as their most usual classes, that is, uninorms in Umin and Umax ([9]) and
idempotent uninorms ([6,12,25]). See also the recent survey in [13]. We recall here
only some facts on implications and uninorms in order to stablish the necessary
notation that we will use along the paper.

Definition 1. A binary operator I : [0, 1] × [0, 1] → [0, 1] is said to be a fuzzy
implication function, or an implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition.
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Definition 2. Given a fuzzy implication function I, the function NI(x) =
I(x, 0) for all x ∈ [0, 1] is always a fuzzy negation, known as the natural negation
of I.

Definition 3. A uninorm is a two-place function U : [0, 1]2 −→ [0, 1] which
is associative, commutative, increasing in each place and such that there exists
some element e ∈ [0, 1], called neutral element, such that U(e, x) = x for all
x ∈ [0, 1].

Evidently, a uninorm with neutral element e = 1 is a t-norm and a uninorm
with neutral element e = 0 is a t-conorm. For any other value e ∈]0, 1[ the
operation works as a t-norm in the [0, e]2 square, as a t-conorm in [e, 1]2 and its
values are between minimum and maximum in the set of points A(e) given by

A(e) = [0, e[× ]e, 1] ∪ ]e, 1] × [0, e[.

We will usually denote a uninorm with neutral element e and underlying
t-norm and t-conorm, T and S, by U ≡ 〈T, e, S〉. For any uninorm it is satisfied
that U(0, 1) ∈ {0, 1} and a uninorm U is called conjunctive if U(1, 0) = 0 and
disjunctive when U(1, 0) = 1. On the other hand, let us recall two of the most
studied classes of uninorms in the literature.

Theorem 4 ([9]). Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element
e ∈ ]0, 1[.

(a) If U(0, 1) = 0, then the section x 
→ U(x, 1) is continuous except in x = e if
and only if U is given by

U(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

eT
(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2,

e + (1 − e)S
(

x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2,

min(x, y) if (x, y) ∈ A(e),

where T is a t-norm, and S is a t-conorm.
(b) If U(0, 1) = 1, then the section x 
→ U(x, 0) is continuous except in x = e if

and only if U is given by the same structure as above, changing minimum
by maximum in A(e).

The set of uninorms as in case (a) will be denoted by Umin and the set of uni-
norms as in case (b) by Umax. We will denote a uninorm in Umin with underlying
t-norm T , underlying t-conorm S and neutral element e as U ≡ 〈T, e, S〉min and
in a similar way, a uninorm in Umax as U ≡ 〈T, e, S〉max.

Idempotent uninorms were analysed first in [5] and they were characterized
in [6] for those with a lateral continuity and in [12] for the general case. An
improvement of this last result was done in [25] as follows.
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Theorem 5 ([25]). U is an idempotent uninorm with neutral element e ∈ [0, 1]
if and only if there exists a non increasing function g : [0, 1] → [0, 1], symmetric
with respect to the identity function, with g(e) = e, such that

U(x, y) =

⎧
⎪⎨

⎪⎩

min(x, y) if y < g(x) or (y = g(x) and x < g2(x)),
max(x, y) if y > g(x) or (y = g(x) and x > g2(x)),
x or y if y = g(x) and x = g2(x),

being commutative in the points (x, y) such that y = g(x) with x = g2(x).

Any idempotent uninorm U with neutral element e and associated function
g, will be denoted by U ≡ 〈g, e〉ide and the class of idempotent uninorms will be
denoted by Uide. Obviously, for any of these uninorms the underlying t-norm T
is the minimum and the underlying t-conorm S is the maximum.

On the other hand, different classes of implications derived from uninorms
have been studied. We recall here RU -implications.

Definition 6. Let U be a uninorm. The residual operation derived from U is
the binary operation given by

IU (x, y) = sup{z ∈ [0, 1] | U(x, z) ≤ y} for all x, y ∈ [0, 1].

Proposition 7 ([7]). Let U be a uninorm and IU its residual operation. Then
IU is an implication if and only if the following condition holds

U(x, 0) = 0 for all x < 1. (2)

In this case IU is called an RU -implication.

This includes all conjunctive uninorms but also many disjunctive ones, like for
instance disjunctive idempotent uninorms U ≡ 〈g, e〉ide with g(0) = 1 (see [22]).
Many other disjunctive uninorms are also included in other classes of uninorms
like the representable uninorms (see [7]) or uninorms continuous in the unit open
square (see [24]). However, when we deal with left-continuous uninorms U we
clearly have that U satisfies condition (2) if and only if it is conjunctive.

Some properties of RU -implications have been studied involving the main
classes of uninorms: those previously stated, uninorms in Umin and idempotent
uninorms, and also involving many other classes like representable uninorms,
uninorms continuous in the open unit square and even uninorms with continuous
underlying operators (for more details see [1,3,7,8,11,16,18,23,24]). Recently,
the Modus Ponens property with respect to a t-norm T has been studied in
detail also for implications derived from uninorms (not only for RU , but also for
(U,N)-implications) in [14,15].

3 U -conditionality

In this section we want to generalize the definition of Modus Ponens with respect
to a t-norm T by introducing the so-called U -conditionality:
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Definition 8. Let I be an implication function and U a uninorm. It is said
that I satisfies the Modus Ponens property with respect to U , or that I is an
U -conditional if

U(x, I(x, y)) ≤ y for all x, y ∈ [0, 1]. (3)

The purpose of this paper is to study which conditions must satisfy a fuzzy
implication I and a uninorm U in order to be I an U -conditional. Since we take a
uninorm that generalizes a conjunction, it could be natural to take a conjunctive
uninorm in the definition before. However, this is not necessary because it can
be deduced from the definition as follows.

Lemma 9. Let I be an implication function and U a uninorm. If I is an U -
conditional then U must be conjunctive.

Proof. Just taking x = 1 in Eq. (3) we obtain U(1, 0) = 0 and U must be
conjunctive. ��

Let us now give some properties that must satisfy an implication function to
be an U -conditional.

Proposition 10. Let U be a conjunctive uninorm with neutral element e ∈]0, 1[
and let I be an U -conditional. The following items hold:

1. I(e, y) ≤ y for all y ∈ [0, 1].
2. The natural negation NI must satisfy

NI(x) = 0 for all x ≥ e, and NI(x) < e for all 0 < x < e.

In particular, NI can not be continuous.
3. It must be U(x,NI(x)) = 0 for all x ∈ [0, 1].
4. I(x, y) < e for all x > y ≥ e. In particular, I(1, y) < e for all y < 1.
5. U(1, I(1, y)) ≤ y for all y ∈ [0, 1].

The previous proposition gives some necessary conditions on the uninorm U
as well as on the implication I in order they satisfy U -conditionality. For those
conditions involving the uninorm U , note that condition 3 above can be trivial
or easily satisfied depending on how is the negation NI , and condition 5 is also
trivially satisfied for instance for any uninorm in Umin.

On the other hand, from the proposition above it is clear that the usual
classes of fuzzy implication functions, that is, R, (S,N), QL and D-implications
derived from t-norms and t-conorms, as well as f and g-generated Yager’s impli-
cations, can not be U -conditionals (note that all of them satisfy I(1, y) = y
for all y ∈ [0, 1] which is incompatible with property 4 in the previous proposi-
tion). However, this is not the case of RU and (U,N)-implications derived from
uninorms.

For instance, RU -implications (see Definition 6) satisfy IU (e, y) = y for all
y ∈ [0, 1] and so they are good candidates to be U -conditionals. In what follows
we will deal with U -conditionality for RU -implications derived from uninorms.
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First of all recall that when we take a left-continuous uninorm U , then the
corresponding RU -implication always satisfies U -conditionality with respect to
the proper uninorm U (see [7]). From this fact we directly have the following
result.

Proposition 11. Let U,U0 be two uninorms with neutral elements e, e0 ∈]0, 1[
respectively, such that one of them is left-continuous and let IU0 be the residual
implication derived from U0. If U ≤ U0 then IU0 is an U -conditional.

Example 12. Let U be a left-continuous uninorm with neutral element e ∈]0, 1[
and U0 the least uninorm with neutral element e, that is,

U0(x, y) =

⎧
⎪⎨

⎪⎩

0 if x, y < e

max(x, y) if x, y ≥ e

min(x, y) otherwise.

Then IU is an U0-conditional.

Another general result for RU -implications is given in the following proposi-
tion.

Proposition 13. Let U,U0 be two uninorms with neutral elements e, e0 ∈]0, 1[
respectively and let IU0 be the residual implication derived from U0. If IU0 is an
U -conditional then it must be e0 ≤ e.

From now on, let us deal with the cases when U0 is a uninorm in one of the
classes recalled in the preliminaries, that is, when U0 is in Umin or an idempotent
uninorm. We will divide our study in two subsections, one for each class of
uninorms.

3.1 Case When U0 Is in Umin

In this section we want to deal with residual implications derived from uninorms
in Umin. Let us recall first how are this kind of implications, that can be found
for instance in [7] (see also [23] for the version recalled in the next proposition).

Proposition 14. Let U0 ≡ 〈T0, e0, S0〉min be a uninorm in Umin with neutral
element e0 ∈]0, 1[. Then its residual operator IU0 is always an implication func-
tion and it is given by

IU (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x < e0 andx ≤ y

e0IT0

(
x
e0
, y
e0

)
if 0 ≤ x < e0 andx > y

y if y ≤ e0 ≤ x

e0 if e0 ≤ y < x

e0 + (1 − e0)RS0

(
x−e0
1−e0

, y−e0
1−e0

)
if e0 ≤ x ≤ y,

where RS0 denotes the residual operator associated to the t-conorm S0, that is,
RS0(x, y) = sup{z ∈ [0, 1] | S(x, z) ≤ y} for all x, y ∈ [0, 1].
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Thus, for this kind of RU -implications we have the following results.

Proposition 15. Let U be a uninorm with neutral element e ∈]0, 1[ and U0 ≡
〈T0, e0, S0〉min a uninorm in Umin with e0 ≤ e. If the RU -implication IU0 is an
U -conditional then it must be e0 < e and U(x, y) = min(x, y) for all x, y ∈ R0

where the region R0 is given by

R0 = [0, e0] × [e, 1] ∪ [e, 1] × [0, e0]. (4)

The region R0 in the proposition above, where the uninorm U must be given
by the minimum is depicted in Fig. 1.

e

e

e0

e0

1

0 1

R0

R0

Fig. 1. Region R0 given in Eq. (4) in the previous proposition.

Proposition 16. Let U be a uninorm with neutral element e ∈]0, 1[ and under-
lying operators TU , SU , and let U0 ≡ 〈T0, e0, S0〉min be a uninorm in Umin with
e0 < e. Suppose that T0 = min and SU = max. Then the RU -implication IU0 is
an U -conditional if and only if U(x, y) = min(x, y) for all x, y ∈ R0 where R0 is
the region given in (4).

Example 17. Let U0 ≡ 〈T0, e0, S0〉min a uninorm in Umin with e0 ∈]0, 1[, T0 =
min, that is, U0 is given by

U0(x, y) =

{
e0 + (1 − e0)S0

(
x−e0
1−e0

, y−e0
1−e0

)
if x, y ≥ e0

min(x, y) otherwise,

and let U ≡ 〈TU , e, SU 〉min be a uninorm in Umin with e > e0 and SU = max,
that is U is given by

U(x, y) =

⎧
⎪⎨

⎪⎩

eTU

(
x
e ,

y
e

)
if x, y ≤ e

max(x, y) if x, y ≥ e

min(x, y) otherwise.

In this case we have that IU0 is always an U -conditional. The structures of the
uninorm U and the residuated implication IU0 can be viewed in Fig. 2.
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e

e

e0

e0

1

0 1

min

minTU

max

e

e

e0

e0

1

0 1

1

y

RS0

e0

Fig. 2. Structures of the uninorm U (left) and the residuated implication IU0 (right)
that is an U -conditional, given in Example 17.

Now, we can give the general result for uninorms U in Umin.

Theorem 18. Let U be a uninorm with neutral element e ∈]0, 1[ and underlying
operators TU , SU and U0 ≡ 〈T0, e0, S0〉min a uninorm in Umin with e0 < e.
Suppose that U(e0, e0) = e0 in such a way that U is given by a t-norm T1 in the
square [0, e0]2 and that U0(e, e) = e in such a way that U0 is given by a t-conorm
S1 in the square [e, 1]2. Then the RU -implication IU0 is an U -conditional if and
only if the following items hold:

i) U(x, y) = min(x, y) for all x, y ∈ R0 where R0 is the region given in (4).
ii) The residual implication derived from the t-norm T0, IT0 , is a T1-conditional.
iii) SU (x,RS1(x, y)) ≤ y for all x ≤ y.

3.2 Case When U0 Is an Idempotent Uninorm

Let us deal in this section with residual implications derived from idempotent
uninorms and let us recall first how are this kind of implications. First, recall that
the residual operator derived from a uninorm U0 is an implication function if and
only if U0(x, 0) = 0 for all x < 1 (see [7], or Proposition 7 in the preliminaries).
Consequently, in our case when U0 is idempotent, say U0 ≡ 〈g0, e0〉ide with
0 < e0 < 1, then it is necessary to have g0(0) = 1 and so this condition will be
always assumed from now on. Let us recall now how are the residual implications
derived from idempotent uninorms (see for instance [22]).

Proposition 19. Let U0 ≡ 〈g0, e0〉ide be an idempotent uninorm with neutral
element e0 ∈]0, 1[ and such that g0(0) = 1. Then its residual operator IU0 is an
implication function and is given by

IU0(x, y) =

{
max(g0(x), y) if x ≤ y

min(g0(x), y) if y < x.
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We already know from the general result given in Proposition 13 that it must
be e0 ≤ e in order IU0 be an U -conditional. Moreover, in this case we can give
also a necessary condition on the uninorm U .

Proposition 20. Let U be a conjunctive uninorm with neutral element e ∈]0, 1[,
U0 ≡ 〈g0, e0〉ide an idempotent uninorm with neutral element 0 < e0 ≤ e and
IU0 the residual implication derived from U0. If IU0 is an U -conditional then the
underlying t-conorm of U must be SU = max.

There are some cases when the necessary condition before is also sufficient
as it is shown in the following result.

Proposition 21. Let U be a conjunctive uninorm with neutral element e ∈]0, 1[,
U0 ≡ 〈g0, e0〉ide an idempotent uninorm with neutral element 0 < e0 < e and
such that g0(e) = 0. Let IU0 be the residual implication derived from U0. Then
IU0 is an U -conditional if and only if the underlying t-conorm of U is SU = max.

Example 22. Let us consider a fixed element e ∈]0, 1[ and U any conjunctive
uninorm with neutral element e and underlying t-conorm SU = max. Let g0 be
the Id-symmetrical decreasing function given by

g0(x) =

⎧
⎪⎨

⎪⎩

1 if x = 0
e − x if x ≤ e

0 otherwise,

and let U0 be any idempotent uninorm with associated function g0. With these
conditions, it is clear that the neutral element of U0 is e0 = e

2 and the corre-
sponding residual implication is given by

IU0(x, y) =

⎧
⎪⎨

⎪⎩

max(e − x, y) if x ≤ y

min(e − x, y) if y < x < e

0 otherwise.

From the previous proposition, this residual implication IU0 is always an
U -conditional. The structures of the uninorm U0 and its residual implication
IU0 can be viewed in Fig. 3.

On the other hand, in the case when g0(e) > 0 an additional condition must
be required to the uninorm U to ensure U -conditionality of IU0 . Specifically, we
have the following result.

Proposition 23. Let U be a conjunctive uninorm with neutral element e ∈]0, 1[,
U0 ≡ 〈g0, e0〉ide an idempotent uninorm with neutral element 0 < e0 ≤ e and
such that g0(e) > 0. Let IU0 be the residual implication derived from U0. Then
IU0 is an U -conditional if and only if the following two items hold:

1. The underlying t-conorm of U is SU = max.
2. U(x, g0(x)) = g0(x) for all x ∈ [e, 1].
3. U(1, y) = y for all y < g0(1)
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Fig. 3. Structures of the uninorm U0 (left) and its residual implication IU0 (right) given
in Example 22.

Example 24. Note that any uninorm U in Umin with underlying t-conorm
SU = max satisfies the conditions in the proposition above and consequently,
the residual implication IU0 of any idempotent uninorm U0 ≡ 〈g0, e0〉ide with
e0 < e and g0(0) = 1 is an U -conditional.

4 Conclusions and Future Work

Forward inference schemes in approximate reasoning are based on the Modus
Ponens property, also called T -conditionality. Thus, fuzzy implication functions
used in the inference process of any fuzzy rule based system are required to
satisfy this property, which becomes essential in approximate reasoning and
fuzzy control. In this paper we have extended such property to the so-called
U -conditionality, by substituting the t-norm T by a uninorm U . Fixed a uni-
norm U , we studied in this paper which fuzzy implication functions satisfy
U -conditionality leading to the fact that the most appropriate implications in
this case are those derived from uninorms. We have given a detailed study of the
case of RU -implications when the uninorm used to derive the residual implica-
tion is a uninorm in Umin or an idempotent uninorm.

As a future work, we want to extend this study to other kinds of uninorms
like representable uninorms, uninorms continuous in the open unit square, com-
pensatory uninorms and so on. Moreover, we want to deal also with other
kinds of implications like (U,N)-implications derived from disjunctive uninorms
(see [3]) or h and (h, e)-implications recently introduced in [20]. Finally, a similar
generalization through uninorms of the Modus Tollens property would be also
worth of study.
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Abstract. Fuzzy implication functions are logical connectives com-
monly used to model fuzzy conditional and consequently they are essen-
tial in fuzzy logic and approximate reasoning. From the theoretical point
of view, the study of how to construct new implication functions from
old ones is one of the most important topics in this field. In this paper
new ordinal sum construction methods of implication functions based on
fuzzy negations N are presented. Some general properties are analysed
and particular cases when the considered fuzzy negation is the classical
one or any strong negation are highlighted.

Keywords: Ordinal sum · Fuzzy implication function · Fuzzy negation ·
t-norm · t-conorm · (S,N)-implication

1 Introduction

From a theoretical point of view fuzzy logical connectives play an essential role
in the theory of fuzzy sets and fuzzy logic. Usually these connectives are mod-
elled in a functionally expressible framework and then, they are modelled through
operations defined on the unit interval [0, 1]. Thus, conjunctions and disjunctions
are commonly modelled by t-norms and t-conorms, complements by fuzzy nega-
tions and fuzzy conditionals by fuzzy implication functions (see [3,10]). Along the
theoretic study of fuzzy sets, these logical operations have been deeply investi-
gated and many generalizations have appeared, leading to the use of not only
t-norms and t-conorms, but also uninorms and many other classes of conjunctive
and disjunctive aggregation functions (see [5,9]).

The necessity of having many different kinds of logical connectives have led to
the study of construction methods of some of these operations from given ones.
One of the most important of these construction methods is the ordinal sum con-
struction of t-norms and t-conorms and some generalizations (see [10,19]). In fact,
this construction methods comes from a more general framework which is the ordi-
nal sum of (commutative) semigroups (see [6,11]).

Among these logical connectives, fuzzy implication functions play a funda-
mental role in approximate reasoning and fuzzy control because they are used

c© Springer International Publishing Switzerland 2016
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not only to model fuzzy conditionals, but also in the inference processes. More-
over, they have a lot of applications in many different fields that vary from fuzzy
control and fuzzy subsethood measures, to fuzzy mathematical morphology and
image processing. For this reason, the interest of implication functions from a
pure theoretical point of view has grown in last decades, see for instance the sur-
veys [4,13] and the monographs [2,3] entirely devoted to this kind of operators.

Due to this great quantity of applications, it was pointed out for instance in
[22] the necessity of having a lot of different classes of fuzzy implication func-
tions. In this sense, one of the main topics in the theoretic study of implications
is the research of new construction methods of fuzzy implication functions. There
are many different methods to construct fuzzy implication functions and most of
them can be found for instance in [2,3]. However, the research in this direction is
currently very active and new constructions are constantly being proposed. For
instance, there are some of them constructed from fuzzy negations [1,20], from
unary functions [12,14], from other fuzzy implication functions [15–17,23,24],
and so on. The interest of these construction methods lies in the potential preser-
vation of the usual properties of fuzzy implications. That is, when the resulting
implication function constructed from an initial one keeps the properties that
satisfies this initial implication function. For this reason, the study of which
properties are preserved by any new construction method which is presented, is
the first matter of study for such method.

Curiously, unlike in the aggregation functions framework, the ordinal sum
construction of fuzzy implication functions has not been as studied as other con-
struction methods. In [7], the structure of residual implications of ordinal sums of
continuous Archimedean t-norms was studied and the definition of ordinal sums
of residual implications was presented. Then, in [18] some few notes on resid-
ual implications derived from ordinal sums of left-continuous t-subnorms were
given and the structure of the related residual implications was shown to be an
ordinal sum of residual implications linked to the corresponding left-continuous
t-subnorms. Nevertheless, a general study on this construction method was miss-
ing until the publication of the very recent paper [21] where an ordinal sum of
fuzzy implications functions (not necessarily residual implications) is presented
leading to fuzzy implication functions whose structure resembles the one based
on residual implications.

However, there are other possibilities in the study of ordinal sums of fuzzy
implication functions and this paper is focused precisely in this question. The
idea is based not on residual implications derived from ordinal sums of t-norms,
but on the (S,N)-implications derived from ordinal sums of t-conorms. From
this starting point, we present many different ordinal sum constructions, one for
each possible fuzzy negation N , leading to the so-called N -ordinal sums.

The paper is organized as follows. After this introduction, Sect. 2 is devoted
to some preliminaries in order to make the paper as self-contained as possible.
Section 3 presents the main results of the paper. In such section the ordinal
construction based on a fuzzy negation N is investigated, some examples are
given and it is investigated which of the most usual properties of implication
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functions are preserved under the N -ordinal sum construction. Finally, the paper
ends with Sect. 4 devoted to some conclusions and future work.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms and
t-conorms. For more details in this particular topic, we refer the reader to [10].
To make this work self-contained, we recall here some of the concepts and results
used in the rest of the paper. First of all, the definition of fuzzy negation is given.

Definition 1 ([3, Definition 1.4.2]). A decreasing function N : [0, 1] → [0, 1] is
called a fuzzy negation if N(0) = 1 and N(1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous,
(ii) strong, if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1],

Important examples of fuzzy negations are the classical (standard) negation
given by NC(x) = 1 − x for all x ∈ [0, 1] and the least fuzzy negation given by

ND1(x) =
{

1 if x = 0,
0 if x ∈ (0, 1].

Now, we recall the definition of fuzzy implication function.

Definition 2 ([8, Definition 1.15]). A binary operator I : [0, 1]2 → [0, 1] is said
to be a fuzzy implication function if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition.

Given a fuzzy implication function I, its 0-horizontal section defines always
a fuzzy negation.

Definition 3 ([3, Definition 1.4.15]). Let I be a fuzzy implication function. The
function NI defined by NI(x) = I(x, 0) for all x ∈ [0, 1], is called the natural
negation of I.

Fuzzy implication functions may satisfy some additional properties which
come from tautologies in crisp logic. Some interesting ones which will be studied
in this paper are the following:

– The exchange principle,

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1]. (EP)
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– The consequent boundary,

I(1, y) ≥ y, y ∈ [0, 1]. (CB)

– The left neutrality principle,

I(1, y) = y, y ∈ [0, 1]. (NP)

– The ordering property,

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

– The identity principle,
I(x, x) = 1, x ∈ [0, 1]. (IP)

– The contrapositive symmetry with respect to a fuzzy negation N ,

I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1]. (CP(N))

– The law of right contraposition with respect to a fuzzy negation N ,

I(x,N(y)) = I(y,N(x)), x, y ∈ [0, 1]. (R − CP(N))

Finally, let us recall the well-known family of (S,N)-implications. Given a
t-conorm S and a fuzzy negation N , an (S,N)-implication is defined as

IS,N (x, y) = S(N(x), y), x, y ∈ [0, 1].

3 The Opposite Ordinal Sum Construction of Fuzzy
Implication Functions

Before giving the definition of an ordinal sum of fuzzy implication functions,
let us motivate this new look to this construction method of fuzzy implication
functions from some given ones. As we have already commented in the introduc-
tion, the idea comes from the structure of an (S,N)-implication generated by
an ordinal sum t-conorm S. Next example illustrates this structure.

Example 1. Let us consider the ordinal sum t-conorm S given by S = (〈0, 0.25,
SLK〉, 〈0.75, 1, SP 〉) where SLK stands for the �Lukasiewicz t-conorm and SP for
the probabilistic sum t-conorm. Concretely, S is given by

S(x, y) =

⎧
⎨

⎩

min{x + y, 0.25} if x, y ∈ [0, 0.25],
−4xy + 4x + 4y − 3 if x, y ∈ [0.75, 1],
max{x, y} otherwise.

(1)

Now, taking the strict fuzzy negation N(x) = 1 − x2 for all x ∈ [0, 1], we can
consider the corresponding (S,N)-implication given by

IS,N (x, y) =

⎧
⎨

⎩

min{1 − x2 + y, 0.25} if x ∈ [
√

0.75, 1], y ∈ [0, 0.25],
1 − 4x2 + 4x2y if x ∈ [0,

√
0.25], y ∈ [0.75, 1],

max{1 − x2, y} otherwise.
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(a) S (b) IS,N

Fig. 1. The t-conorm S and the (S,N)-implication considered in Example 1.

In Fig. 1, the graphical representations of S and IS,N are given. However, a
careful look to this expression enables to establish a relationship between IS,N
and the implication functions ISLK ,N1 and ISP ,N2 where

N1(x) =
1 − (

√
0.75 + (1 − √

0.75)x)2

0.25
, N2(x) = 1 − x2, for all x ∈ [0, 1].

Indeed,

IS,N (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0.25 · ISLK ,N1

(
x−√

0.75
1−√

0.75
, y
0.25

)
if x ∈ [

√
0.75, 1], y ∈ [0, 0.25],

0.75 + 0.25 · ISP ,N2

(
x√
0.25

, y−0.75
0.25

)
if x ∈ [0,

√
0.25], y ∈ [0.75, 1],

max{1 − x2, y} otherwise.

Thus, IS,N is in fact constructed from some (S,N)-implications generated by
the summands (SLK and SP ) of the ordinal sum t-conorm S.

The underlying structure of an (S,N)-implication where S is an ordinal sum
t-conorm is what we want to explain and generalize with the following novel
definition of an ordinal sum of fuzzy implication functions.

Definition 4. Let J be a finite or countably infinite index set, {(aj , bj)}j∈J be a
family of pairwise disjoint open intervals of [0, 1], N be a fuzzy negation and let
{(cj , dj)}j∈J be such that cj = N(bj) and dj = N(aj). Let {Ij}j∈J be a family
of fuzzy implication functions satisfying

NIj (x) =
N(aj + (bj − aj)x) − cj

dj − cj
, for all x ∈ [0, 1], (2)
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for every j ∈ J such that cj < dj. A function I : [0, 1]2 → [0, 1] given by

I(x, y) =

{
cj + (dj − cj) · Ij

(
x−aj

bj−aj
,

y−cj
dj−cj

)
if x ∈ [aj , bj ] and y ∈ [cj , dj ],

max{N(x), y} otherwise,

is called the N -ordinal sum of the family {Ij}j∈J . In this case we will write
I = 〈N, (aj , bj , Ij)j∈J〉.
Remark 1. When a non-strict negation N is considered in Definition 4, it may
occur that cj = dj for some j ∈ J . In this case, the corresponding fuzzy impli-
cation function Ij does not play any role in the N -ordinal sum implication.
In particular, its natural negation does not need to satisfy Eq. (2) and the
N -ordinal sum implication I is understood that it satisfies I(x, cj) = cj for
all x ∈ [aj , bj ].

Remark 2. Definition 4 includes the fuzzy implication function studied in
Example 1. In particular, taking the family of open intervals {(0,

√
0.25),

(
√

0.75, 1)}, N(x) = 1 − x2 for all x ∈ [0, 1], I1 = ISP ,N1 and I2 = ISP ,N2 ,
we have that IS,N where S is the t-conorm given by Eq. (1) is in fact

I = 〈N, (0,
√

0.25, I1), (
√

0.75, 1, I2)〉.
The first question that arises is whether the N -ordinal sum of a family of

fuzzy implications {Ij} is always a fuzzy implication function in the sense of
Definition 2. Next example shows that this is not true in general.

Example 2. Let us consider N = NC and I = 〈N, (0, 0.5, IRS)〉 where IRS is the
Rescher implication. In this case, I is given by

I(x, y) =

⎧
⎨

⎩

1 if x ∈ [0, 0.5], y ∈ [0.5, 1], x + 0.5 ≤ y,
0.5 if x ∈ [0, 0.5], y ∈ [0.5, 1], x + 0.5 > y,
max{1 − x, y} otherwise.

However, I is not a fuzzy implication function since I(0.5, 0.75) = 0.5 < 0.75 =
I(0.75, 0.75) and therefore, I is not decreasing in the first variable.

Thus, we have to characterize which fuzzy implication functions are suitable
to generate a fuzzy implication function through the N -ordinal sum construction
method. Next theorem shows that the consequent boundary property is the key
property to ensure that this construction method provides a fuzzy implication
function in the sense of Definition 2.

Theorem 1. Let J be a finite or countably infinite index set, {(aj , bj)}j∈J be a
family of pairwise disjoint open intervals of [0, 1], N a fuzzy negation, {Ij}j∈J

a family of implication functions with associated negations satisfying Eq. (2),
and I = 〈N, (aj , bj , Ij)j∈J〉 its N -ordinal sum. Then the following statements
are equivalent:

(i) I is a fuzzy implication function.
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(ii) {Ij}j∈J and {(aj , bj)}j∈J satisfy:

Ij satisfies (CB) for all j ∈ J such that bj < 1. (3)

Remark 3. It would be possible to generalize Definition 4 in the following way:

I(x, y) =

{
cj + (dj − cj) · Ij

(
x−aj

bj−aj
,

y−cj
dj−cj

)
if x ∈ [aj , bj ] and y ∈ [cj , dj ],

max{N ′(x), ϕ(y)} otherwise,

where N ′ ≤ N and ϕ : [0, 1] → [0, 1] is a nondecreasing function such that
ϕ ≥ id. This definition would change all the results presented in this paper in
the sense that they would be more complex involving ϕ and N ′. For the sake of
simplicity and in order to focus on the relationship with (S,N)-implications, we
have decided to restrict the ordinal sum to Definition 4.

At a first glance, the N -ordinal sum construction method given in Defini-
tion 4 would force the researcher to fix a fuzzy negation N and then to choose
some specific family of fuzzy implication functions {Ij}j∈J satisfying Eq. (2).
This would be a quite restrictive construction method that would not allow
to construct an ordinal sum of any given family of fuzzy implication functions
satisfying Property (3) with the chosen family of open intervals. However, this
method allows the researcher to construct an ad-hoc fuzzy negation N for any
family {Ij}j∈J in order to obtain a fuzzy implication function I through the
N -ordinal sum construction method, as it is detailed in the following remark.

Remark 4. Given a family of fuzzy implication functions {Ij}j∈J satisfying
Property (3) with a family of pairwise disjoint open intervals of [0, 1]
{(aj , bj)}j∈J , we can always construct a fuzzy negation N in such a way that
the natural negation NIj of each Ij satisfies Eq. (2). Specifically, we have several
cases to consider:

1. If {(aj , bj)}j∈J gives a partition of [0, 1], we can construct the fuzzy negation
N given by:

N(x) = cj + (dj − cj) · NIj

(
x − aj

bj − aj

)

(4)

for all x ∈ [aj , bj ] and j ∈ J where {(cj , dj)}j∈J , stated in the decreasing
order, is a family of pairwise disjoint open intervals of [0, 1]. It is immediate
to check that in this case Eq. (2) holds and we can construct the N -ordinal
sum of {Ij}j∈J .

2. When J is a finite set and {(aj , bj)}j∈J is not a partition of [0, 1], N can be
constructed as in Eq. (4) for all values in [aj , bj ] and j ∈ J , but then it is
not uniquely defined in [0, 1] \ ⋃

j∈J [aj , bj ]. Indeed, for all x ∈ [bj , aj+1] with
J ∈ J , N needs only to be a non-increasing function satisfying N(bj) = cj
and N(aj+1) = dj+1.

3. When J is an infinite set and {(aj , bj)}j∈J , it is also possible to define a fuzzy
negation N but the construction method of N is more complex and due to
the lack of space, we have omitted it.
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Let us illustrate some examples of the N -construction method.

Example 3. The following two examples deal with on the one hand, a case when
we have a partition of [0, 1] and on the other hand, a case when the ad-hoc fuzzy
negation N can be chosen in an infinite number of ways.

(i) Let us consider the family of fuzzy implication functions {ILK , IRC , IFD}
where ILK , IRC and IFD denote the �Lukasiewicz, Reichenbach and Fodor
implications and the partition of [0, 1] given by {(0, 0.25), (0.25, 0.75),
(0.75, 1)}. These three fuzzy implication functions satisfy (CB) and their
natural negation is NC . In this case, through Eq. (4) in Remark 4, the ad-
hoc construction of the fuzzy negation N retrieves N(x) = NC(x) for all
x ∈ [0, 1]. Thus, the N -ordinal sum

I1 = 〈NC , (0, 0.25, ILK), (0.25, 0.75, IRC), (0.75, 1, IFD)〉
is given by

I1(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

min{1, 0.25 − x + y} if x ∈ [0, 0.25], y ∈ [0.75, 1],
1.125 − 1.5x − 0.5y + 2xy if x, y ∈ [0.25, 0.75],
0.25 if x ∈ [0.75, 1], y ∈ [0, 0.25], 4x − 3 ≤ 4y,
max{1 − x, y} otherwise.

(ii) Let us consider now the family of fuzzy implication functions {IGD, IGG}
where IGD and IGG stand for the Gödel and the Goguen implications, which
also satisfy (CB) and they have ND1 as natural negation, and the family of
open intervals {(0, 0.25), (0.75, 1)}. In this case, using Eq. (4), we have that

N(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x = 0,
0.75 if 0 < x ≤ 0.25,
0.25 if x = 0.75,
0 if 0.75 < x ≤ 1.

Note that N is not defined in (0.25, 0.75) and we can consider an infinite
number of extensions of N to the whole interval [0, 1]. In particular, we can
consider the following two ones:

N2(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if x = 0,
0.75 if 0 < x ≤ 0.25,
1 − x if 0.25 < x < 0.75,
0.25 if x = 0.75,
0 if 0.75 < x ≤ 1,

N3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x = 0,
0.75 if 0 < x ≤ 0.25,
0.25 if 0.25 < x ≤ 0.75,
0 if 0.75 < x ≤ 1.

Using these two fuzzy negations, we can construct the following two N -
ordinal sums given by

I2 = 〈N2, (0, 0.25, IGD), (0.75, 1, IGG)〉,
I3 = 〈N3, (0, 0.25, IGD), (0.75, 1, IGG)〉,
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and for i = 2, 3, we have

Ii(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if x ∈ [0, 0.25], y ∈ [0.75, 1], 4x ≤ 4y − 3,
y if x ∈ [0, 0.25], y ∈ [0.75, 1], 4x > 4y − 3,
0.25 if x ∈ [0.75, 1], y ∈ [0, 0.25], 4x − 3 ≤ 4y,

y
4x−3 if x ∈ [0.75, 1], y ∈ [0, 0.25], 4x − 3 > 4y.

max{Ni(x), y} otherwise.

All these fuzzy implication functions are depicted in Fig. 2.

(a) I1 (b) I2 (c) I3

Fig. 2. Some fuzzy implication functions constructed via the N -ordinal sum construc-
tion method in Example 3.

From now on, we will study some of the most interesting additional proper-
ties which can be satisfied by a fuzzy implication function. Since the N -ordinal
sum implication is constructed from a family of fuzzy implication functions, its
properties will heavily rely on the properties satisfied by the members of the
family. Let us start studying the natural negation of the N -ordinal sum.

Proposition 1. Let J be a finite or countably infinite index set, {(aj , bj)}j∈J be
a family of pairwise disjoint open intervals of [0, 1], N a fuzzy negation, {Ij}j∈J

a family of implication functions satisfying Property (3) and with associated
negations satisfying Eq. (2). Let I = 〈N, (aj , bj , Ij)j∈J 〉 be its N -ordinal sum.
Then the natural negation of I is equal to N , that is, NI = N .

Remark 5. If we want the N -ordinal sum implication with (strict) continuous
natural negation N of a given family of fuzzy implication functions {Ij}j∈J

satisfying Property (3), then it is necessary that the natural negations of the
initial fuzzy implication functions IJ are (strict) continuous for all j ∈ J . This
condition is also sufficient when the family of intervals is a partition of [0, 1].
Otherwise, recall that N is not uniquely defined in [0, 1] \ ⋃

j∈J [aj , bj ] and to
obtain a (strict) continuous natural negation N , we must choose continuous
(strictly) decreasing functions there.
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The fulfilment of the left neutrality principle by the N -ordinal sum implica-
tion relies only on the left neutrality principle of only one of the fuzzy implica-
tion functions of the family. In fact, when bj < 1 for all j ∈ J , it always satisfies
the left neutrality principle. The same analysis is also valid for the consequent
boundary property.

Proposition 2. Let J be a finite or countably infinite index set, {(aj , bj)}j∈J be
a family of pairwise disjoint open intervals of [0, 1], N a fuzzy negation, {Ij}j∈J

a family of implication functions satisfying Property (3) and with associated
negations satisfying Eq. (2). Let I = 〈N, (aj , bj , Ij)j∈J〉 be its N -ordinal sum.
Then the following statements are equivalent:

(i) I satisfies (NP) ((CB)).
(ii) If there exists j ∈ J such that bj = 1 then Ij must satisfy (NP) ((CB)).

The left neutrality principle of the members of the family {Ij} is mandatory
to ensure the continuity of the N -ordinal sum implication.

Proposition 3. Let J be a finite or countably infinite index set, {(aj , bj)}j∈J be
a family of pairwise disjoint open intervals of [0, 1], N a fuzzy negation, {Ij}j∈J

a family of implication functions satisfying Property (3) and with associated
negations satisfying Eq. (2). Let I = 〈N, (aj , bj , Ij)j∈J〉 be its N -ordinal sum.
Then the following statements are equivalent:

(i) I is continuous.
(ii) The two following properties hold:

(a) For all j ∈ J , Ij is continuous.
(b) For all j ∈ J such that bj < 1, Ij satisfies (NP).

Now let us study the (right) contrapositive symmetry of the N -ordinal sum
implications. Next result shows that these two properties are preserved by this
construction method.

Proposition 4. Let J be a finite or countably infinite index set, {(aj , bj)}j∈J be
a family of pairwise disjoint open intervals of [0, 1], N a fuzzy negation, {Ij}j∈J

a family of implication functions satisfying Property (3) and with associated
negations satisfying Eq. (2). Let I = 〈N, (aj , bj , Ij)j∈J〉 be its N -ordinal sum.
Then the following items hold:

(i) I satisfies R−CP (N) with respect to N if, and only if, Ij satisfies R−CP (N)
with respect to NIj for all j ∈ J .

(ii) If N is a strong negation, then I satisfies CP (N) with respect to N if, and
only if, Ij satisfies CP (N) with respect to NIj for all j ∈ J .

Now, let us study the exchange principle for this class of implications. Next
result shows that the exchange principle for the N -ordinal sum implication is
related not only to the exchange principle for the summands of the ordinal sum
but also to the right contrapositive symmetry.
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Proposition 5. Let J be a finite or countably infinite index set, {(aj , bj)}j∈J be
a family of pairwise disjoint open intervals of [0, 1], N a fuzzy negation, {Ij}j∈J

a family of implication functions satisfying Property (3) and with associated
negations satisfying Eq. (2). Let I = 〈N, (aj , bj , Ij)j∈J 〉 be its N -ordinal sum.
Then I satisfies (EP ) if, and only if, the following items hold:

(i) Ij satisfies (EP ) for all j ∈ J .
(ii) Ij satisfies R − CP (N) with respect to NIj for all j ∈ J such that N(bj) =

cj > 0.

4 Conclusions and Future Work

The ordinal sum construction method is a well-known construction method of
some aggregation functions, such as t-norms and t-conorms. Until recently with
the publication of [21], this construction method had not been proposed for
fuzzy implication functions. However, the method proposed in [21] is mainly
based on residual residual implications since the structure of the ordinal sum
defined there resembles heavily to the ordinal construction method of t-norms.
Therefore, in this paper, a totally different ordinal sum construction method for
fuzzy implication functions has been presented with the aim of generalizing the
structure of the (S,N)-implications generated by an ordinal sum t-conorm S.
This construction method allows to define a new fuzzy implication function from
a given family of fuzzy implication functions satisfying a property related to the
consequent boundary. Some examples have been presented and some important
additional properties such as the exchange principle, the left-neutrality princi-
ple, the continuity or the contrapositive symmetry, among others, have been
analysed.

As future work, we plan to study more additional properties of the N -ordinal
sum implications such as the law of importation, the ordering property, the
identity principle or the distributivity properties. In addition, we want to fully
characterize the intersections of the family of N -ordinal sum implications with
respect to the most well-known families of fuzzy implications.
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Abstract. In this work we investigate two distributivity equations
I(x, U1(y, z)) = U2(I(x, y), I(x, z)), I(U1(x, y), z) = U2(I(x, z), I(y, z))
for implication operations and uninorms in interval-valued fuzzy sets
theory. We consider decomposable (t-representable) uninorms generated
from two conjunctive or disjunctive representable uninorms. Our method
reduces to solve the following functional equation f(u1 + v1, u2 + v2) =
f(u1, u2) + f(v1, v2), thus we present new solutions for this equation.

Keywords: Aggregation operators · Uninorms · Interval-valued fuzzy
sets · Distributivity equations · Functional equations

1 Introduction

The distributivity of (classical) fuzzy implications over different fuzzy logical
connectives, like t-norms, t-conorms or uninorms has been studied in the recent
past by many authors (see [1–3,7,9,13,15,30,31,33]). Distributivity equations
have a very important role to play in efficient inferencing in approximate rea-
soning, especially in fuzzy control systems. Given an input “x̃ is A′”, the role
of an inference mechanism is to obtain a fuzzy output B′ that satisfies some
desirable properties. The most important inference schemas are fuzzy relational
inference and similarity based reasoning. In the first case, the inferred output
B′ is obtained either as

(i) sup−T composition, where T is a t-norm, as in the compositional rule of
inference (CRI) of Zadeh (see [35]), or

(ii) inf −I composition, where I is a fuzzy implication, as in the Bandler-Kohout
subproduct (BKS) (see [16]),

of A′ and given rules. Since all the rules of an inference engine are exercised dur-
ing every inference cycle, the number of rules directly affects the computational
duration of the overall application.

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 411–422, 2016.
DOI: 10.1007/978-3-319-40596-4 35
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To reduce the complexity of fuzzy “IF-THEN” rules, Combs and Andrews [18]
proposed an equivalent transformation of the CRI to mitigate the computational
cost. In fact, they demanded the following classical tautology

(p ∧ q) → r = (p → r) ∨ (q → r),

written in fuzzy logic language, i.e., using t-norms, t-conorms and fuzzy implica-
tions. Subsequently, there were many discussions (see [17,21,29]), most of them
pointed out the need for a theoretical investigation required for employing such
equations. Later, the similar method but for similarity based reasoning was pre-
sented by Jayaram [27]. For an overview of the most important these methods
see [12, Chapter 8].

In [4–6] (for the full article see [10]), [8,11] we discussed the following dis-
tributivity equations

I(x, T1(y, z)) = T2(I(x, y), I(x, z)),
I(S(x, y), z) = T (I(x, z), I(y, z)),

for t-representable (decomposable) t-norms and t-conorms (in interval-valued
fuzzy sets theory) generated from continuous Archimedean operations. In these
articles we obtained the solutions for each of the following functional equations,
respectively:

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2), (A)
g(min(u1 + v1, a),min(u2 + v2, a)) = g(u1, u2) + g(v1, v2), (B)
h(min(u1 + v1, a),min(u2 + v2, a)) = min(h(u1, u2) + h(v1, v2), b), (C)

k(u1 + v1, u2 + v2) = min(k(u1, u2) + k(v1, v2), b), (D)

where a, b > 0 are fixed real numbers, f : L∞ → [0,∞], g : La → [0,∞], h : La →
[0, b], k : L∞ → [0, b] are unknown functions and

L∞ = {(u1, u2) ∈ [0,∞]2 | u1 ≥ u2},
La = {(u1, u2) ∈ [0, a]2 | u1 ≥ u2}.

More precisely, the solutions of Eq. (A) are presented in [4, Proposition 3.2], the
solutions of Eq. (B) are presented in [5, Proposition 4.2], the solutions of Eq. (C)
are presented in [10, Proposition 5.2] and the solutions of Eq. (D) are presented
in [8, Proposition 3.2].

These investigations have been extended to the following functional equation

I(x,U1(y, z)) = U2(I(x, y), I(x, z)), (D-UU1)

when U1, U2 are decomposable uninorms on LI generated from two conjunctive
representable uninorms and I is an unknown function (see [14]). In that article
we presented the solutions of the following functional equation

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2), (u1, u2), (v1, v2) ∈ L∞, (F)
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where L∞ = {(x1, x2) ∈ [−∞,∞]2 | x1 ≤ x2}, with the assumption (−∞)+∞ =
∞ + (−∞) = −∞ in both sets of domain (formally in both projections) and
codomain of a function f .

In this article we continue this research for two distributivity laws: Eq.
(D-UU1) and the following equation

I(U1(x, y), z) = U2(I(x, z), I(y, z)), x, y, z ∈ LI , (D-UU2)

where U1, U2 are given decomposable uninorms, and function I is unknown, in
particular an implication. We show that in this case solving both Eqs. (D-UU1)
and (D-UU2) reduces to finding solutions of Eq. (F) for some combinations of
the following assumptions

(−∞) + ∞ = ∞ + (−∞) = −∞, (A−)

(−∞) + ∞ = ∞ + (−∞) = ∞. (A+)

in both sets of domain (formally in both projections) and codomain of a function f .

2 Interval-Valued Fuzzy Sets, Implications and Uninorms

One possible extension of fuzzy sets theory is interval-valued fuzzy sets theory
introduced by Sambuc [32] (see also [26,36]), in which to each element of the
universe a closed subinterval of the unit interval is assigned – it can be used as
an approximation of the unknown membership degree. Let us define

LI = {(x1, x2) ∈ [0, 1]2 | x1 ≤ x2},
(x1, x2) ≤LI (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≤ y2.

In the sequel, if x ∈ LI , then we denote it by x = [x1, x2]. In fact, LI = (LI ,≤LI )
is a complete lattice with units 0LI = [0, 0] and 1LI = [1, 1].

Definition 2.1. An interval-valued fuzzy set on X is a mapping A : X → LI .

We assume that the reader is familiar with the classical results concerning
basic fuzzy logic connectives, but we briefly mention some of the results employed
in the rest of the work.

One possible definition of an implication on LI is the following one
(cf. [12,20,24]).

Definition 2.2. Let L = (L,≤L) be a complete lattice. A function I : L2 → L
is called a fuzzy implication on L if it is decreasing with respect to the first
variable, increasing with respect to the second variable and fulfills the following
conditions:

I(0L, 0L) = I(1L, 1L) = I(0L, 1L) = 1L, I(1L, 0L) = 0L. (1)
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Uninorms (in the unit interval) were introduced by Yager and Rybalov in
1996 (see [34]) as a generalization of triangular norms and conorms. For the
recent overview of this family of operations see [23,28].

Definition 2.3. Let L = (L,≤L) be a complete lattice. An associative, commu-
tative and increasing operation U : L2 → L is called a uninorm on L, if there
exists e ∈ L such that U(e, x) = U(x, e) = x, for all x ∈ L.

Remark 2.4

(i) The neutral element e corresponding to a uninorm U is unique. Moreover,
if e = 0L, then U is a t-conorm and if e = 1L, then U is a t-norm.

(ii) For a uninorm U on any L we get U(0L, 0L) = 0L and U(1L, 1L) = 1L.
(iii) For a uninorm U on ([0, 1],≤) we get U(0, 1) ∈ {0, 1}.
(vi) For a uninorm U on LI with the neural element e ∈ LI \ {0LI , 1LI} we get

U(0LI , 1LI ) ∈ {0LI , 1LI} or U(0LI , 1LI )‖e, i.e., U(0LI , 1LI ) is not compara-
ble with e (cf. [19,22]).

(v) In general, for any lattice L, if U(0L, 1L) = 0L, then it is called conjunctive
and if U(0L, 1L) = 1L, then it is called disjunctive.

In the literature one can find several classes of uninorms (see [25,28]). Uni-
norms that can be represented as in point (ii) of Theorem2.5 are called repre-
sentable uninorms.

Theorem 2.5 ([25, Theorem3]). For a function U : [0, 1]2 → [0, 1] the fol-
lowing statements are equivalent:

(i) U is a strictly increasing and continuous on ]0, 1[2 uninorm with the neutral
element e ∈]0, 1[ such that U is self-dual, except in points (0, 1) and (1, 0),
with respect to a strong negation N with the fixed point e, i.e.,

U(x, y) = N(U(N(x), N(y))), x, y ∈ [0, 1]2 \ {(0, 1), (1, 0)}.

(ii) U has a continuous additive generator, i.e., there exists a continuous and
strictly increasing function h : [0, 1] → [−∞,∞], such that h(0) = −∞,
h(e) = 0 for e ∈]0, 1[ and h(1) = ∞, which is uniquely determined up to a
positive multiplicative constant, such that for all x, y ∈ [0, 1] either

U(x, y) =

{
0 if (x, y) ∈ {(0, 1), (1, 0)},
h−1(h(x) + h(y)), otherwise,

when U is conjunctive, or

U(x, y) =

{
1 if (x, y) ∈ {(0, 1), (1, 0)},
h−1(h(x) + h(y)), otherwise,

when U is disjunctive.
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Remark 2.6 (cf. [3]). If a representable uninorm U is conjunctive, then U(x, y) =
h−1(h(x) + h(y)) holds for all x, y ∈ [0, 1] with the assumption

(−∞) + ∞ = ∞ + (−∞) = −∞. (A-)

If a representable uninorm U is disjunctive, then U(x, y) = h−1(h(x) + h(y))
holds for all x, y ∈ [0, 1] with the assumption

(−∞) + ∞ = ∞ + (−∞) = ∞. (A+)

Now we shall consider the following special class of uninorms on LI .

Definition 2.7 (see [19,22]). A uninorm U on LI is called decomposable (or
t-representable) if there exist uninorms U1, U2 on ([0, 1],≤) such that

U([x1, x2], [y1, y2]) = [U1(x1, y1), U2(x2, y2)], [x1, x2], [y1, y2] ∈ LI ,

and U1 ≤ U2. In this case we will write U = (U1, U2).

It should be noted that not all uninorms on LI are decomposable (see [22]).

Lemma 2.8 ([22, Lemma8]). If U on LI is a decomposable uninorm, then
U(0LI , 1LI ) = 0LI or U(0LI , 1LI ) = 1LI or U(0LI , 1LI ) = [0, 1].

Therefore it is not possible that for decomposable uninorm U = (U1, U2) on
LI we have that U1 is disjunctive and U2 is conjunctive.

Lemma 2.9 (cf. [22, Theorems 5 and 6]). If U = (U1, U2) on LI is a decom-
posable uninorm with the neutral element e = [e1, e2], then e1 = e2 is the neutral
element of U1 and U2.

Lemma 2.10 ([14, Lemma3.9]). Let a function I : (LI)2 → LI satisfy (1)
and Eq. (D-UU1) with some uninorms U1, U2 defined on LI . Then U1 is con-
junctive if and only if U2 is conjunctive.

Lemma 2.11 Let a function I : (LI)2 → LI satisfy (1) and Eq. (D-UU2) with
some uninorms U1, U2 defined on LI . Then U1 is conjunctive if and only if U2

is disjunctive and U1 is disjunctive if and only if U2 is conjunctive.

Proof. Putting x = z = 0LI and y = 1LI in (D-UU2) we have

I(U1(0LI , 1LI ), 0LI ) = U2(I(0LI , 0LI ), I(1LI , 0LI )).

If U1 is conjunctive, then U1(1LI , 0LI ) = 0LI and from (1) we obtain 1LI =
U2(1LI , 0LI ), thus U2 is disjunctive. If on the other hand U1 is disjunctive, then
U1(1LI , 0LI ) = 1LI and by (1) we have 0LI = U2(1LI , 0LI ), so U2 is conjunctive.

�
The above results allow us to investigate Eqs. (D-UU1) and (D-UU1) only

for some decomposable uninorms.
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3 Method for Solving Distributivity Eqs. (D-UU1)
and (D-UU2) for Decomposable Uninorms

In this section we derive the Eq. (F) from distributivity Eqs. (D-UU1) and
(D-UU2). Let U1 = (U1, U2), U2 = (U3, U4) be decomposable uninorms on LI .
Assume that the projection mappings on LI are defined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2, for [x1, x2] ∈ LI .

Eqs. (D-UU1) and (D-UU2) have the following form:

I([x1, x2],[U1(y1, z1), U2(y2, z2)])
=[U3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

U4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2])))],

I([U1(x1, y1),U2(x2, y2)], [z1, z2])
=[U3(pr1(I([x1, x2], [z1, z2])), pr1(I([y1, y2], [z1, z2]))),

U4(pr2(I([x1, x2], [z1, z2])), pr2(I([y1, y2], [z1, z2])))],

for [x1, x2], [y1, y2], [z1, z2] ∈ LI . As a consequence we obtain the following four
equations, which are satisfied for all [x1, x2], [y1, y2], [z1, z2] ∈ LI ,

pr1(I([x1, x2],[U1(y1, z1), U2(y2, z2)]))
= U3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

pr2(I([x1, x2],[U1(y1, z1), U2(y2, z2)]))
= U4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2]))),

pr1(I([U1(x1, y1),U2(x2, y2)], [z1, z2]))
= U3(pr1(I([x1, x2], [z1, z2])), pr1(I([y1, y2], [z1, z2]))),

pr2(I([U1(x1, y1),U2(x2, y2)], [z1, z2]))
= U4(pr2(I([x1, x2], [z1, z2])), pr2(I([y1, y2], [z1, z2]))).

Next, let us fix arbitrarily [x1, x2], [z1, z2] ∈ LI and define four functions
k1[x1,x2]

, k2[x1,x2]
, l

[z1,z2]
1 , l

[z1,z2]
2 : LI → LI by

– k1[x1,x2]
(·) := pr1 ◦ I([x1, x2], ·),

– k2[x1,x2]
(·) := pr2 ◦ I([x1, x2], ·),

– l
[z1,z2]
1 (·) := pr1 ◦ I(·, [z1, z2]),

– l
[z1,z2]
2 (·) := pr2 ◦ I(·, [z1, z2]),

where ◦ denotes the standard composition of functions. Thus we have shown
that if U1 and U2 on LI are decomposable, then Eqs. (D-UU1) and (D-UU2) are
equivalent, respectively, to the following systems of equations:

k1[x1,x2]
([U1(y1, z1), U2(y2, z2)]) = U3(k1[x1,x2]

([y1, y2]), k1[x1,x2]
([z1, z2])),

k2[x1,x2]
([U1(y1, z1), U2(y2, z2)]) = U4(k2[x1,x2]

([y1, y2]), k2[x1,x2]
([z1, z2])),

(DUU-1’)
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l
[z1,z2]
1 ([U1(x1, y1), U2(x2, y2)]) = U3(l

[z1,z2]
1 ([x1, x2]), l

[z1,z2]
1 ([y1, y2])),

l
[z1,z2]
2 ([U1(x1, y1), U2(x2, y2)]) = U4(l

[z1,z2]
2 ([x1, x2]), l

[z1,z2]
2 ([y1, y2])).

(DUU-2’)
Let us look closer to Eq. (DUU-1’). Assume that U1 = U2 and U3 = U4 are repre-
sentable uninorms generated from h1 and h3, respectively. Next, by Lemma 2.10,
let us assume that both U1, U3 are conjunctive or disjunctive. From Remark 2.6,
if both uninorms are conjunctive, then we assume the assumption (A−) on the
codomains of h1 and h3, while if both uninorms are disjunctive, then we the
assumption (A+) on the codomains of h1 and h3.

Using the representation for representable uninorms i.e., Theorem2.5, we can
transform our problem to the following equation (for a simplicity we deal only
with k1 now)

k1[x1,x2]
([h−1

1 (h1(y1) + h1(z1)), h−1
1 (h1(y2) + h1(z2))])

= h−1
3 (h3(k1[x1,x2]

([y1, y2])) + h3(k1[x1,x2]
([z1, z2]))),

where [x1, x2], [y1, y2], [z1, z2] ∈ LI . Let us put h1(y1) = u1, h1(y2) = u2,
h1(z1) = v1 and h1(z2) = v2. It is obvious that u1, u2, v1, v2 ∈ [−∞,∞] and
u1 ≤ u2, v1 ≤ v2, since y1 ≤ y2, z1 ≤ z2, and generator h1 is strictly increasing.
If we define

f1
[x1,x2]

(u, v) := h3 ◦ k1[x1,x2]
([h−1

1 (u), h−1
1 (v)]), u, v ∈ [−∞,∞], u ≤ v,

then we get the following functional equation

f1
[x1,x2]

(u1 + v1, u2 + v2) = f1
[x1,x2]

(u1, u2) + f1
[x1,x2]

(v1, v2), (2)

where (u1, u2), (v1, v2) ∈ L∞ and f1
[x1,x2]

: L∞ → [−∞,∞] is an unknown func-
tion. By L∞ we denoted the set {(x1, x2) ∈ [−∞,∞]2 : x1 ≤ x2}.

Repeating all of the above calculations for the function k2, we get analogous
functional equation:

f2
[x1,x2]

(u1 + v1, u2 + v2) = f2
[x1,x2]

(u1, u2) + f2
[x1,x2]

(v1, v2), (3)

where f2
[x1,x2]

: L∞ → [−∞,∞] is an unknown function defined by

f2
[x1,x2]

(u, v) := h3 ◦ k2[x1,x2]
([h−1

1 (u), h−1
1 (v)]), (u, v) ∈ L∞.

Observe that Eqs. (2) and (3) are exactly the same functional Eq. (F), i.e.,

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2),

where f : L∞ → [−∞,∞] is an unknown function.
As a summary of this case we see that conjunctive representable uninorms U1,

U3 leads us to Eq. (F) with the assumption (A−) on the domain and codomain of
a function f , while the case of disjunctive representable uninorms U1, U3 leads us
to Eq. (F) with the assumption (A+) on the domain and codomain of function f .
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Now let us return to Eq. (DUU-2’). As before, let U1 = U2 and U3 = U4 will
be representable uninorms generated by h1 and h3, respectively. By Lemma 2.11
we know that it is enough to consider again only two cases: when U1 is conjunc-
tive and U3 disjunctive, or vice versa - when the U1 is an disjunctive, and U3

conjunctive. We still assume (A−) on the codomains of generators of conjunctive
uninorms and (A+) on the codomains of generators of disjunctive uninorms. For
fixed [z1, z2] ∈ LI let us define

g
[z1,z2]
1 (u, v) := h3 ◦ l

[z1,z2]
1 ([h−1

1 (u), h−1
1 (v)]), (u, v) ∈ L∞,

g
[z1,z2]
2 (u, v) := h3 ◦ l

[z1,z2]
2 ([h−1

1 (u), h−1
1 (v)]), (u, v) ∈ L∞.

Repeating, for functions l1, l2, all the calculations which we carried out ear-
lier for functions k1 and k2, we obtain that also functions g

[z1,z2]
1 and g

[z1,z2]
2

satisfy the functional Eq. (F). This time the case of conjunctive uninorm U1 and
disjunctive uninorm U3 leads to the Eq. (F) with the assumption (A−) on the
domain of f and (A+) on the codomain of f , while the case of disjunctive uni-
norm U1 and conjunctive uninorm U3 lead to the Eq. (F) with the assumption
(A+) on the domain of f and (A−) on the codomain of f .

4 Some New Results Pertaining to Functional Equations

In [3] we solved the additive Cauchy functional equation:

f(x + y) = f(x) + f(y), x, y ∈ [−∞,∞],

for an unknown function f : [−∞,∞] → [−∞,∞]. It should be noted that the
main problem in this context was with the adequate definition of the additions
∞+(−∞) and (−∞)+∞. Recently, in [14] we presented solutions of the Eq. (F)
for all (u1, u2), (v1, v2) ∈ L∞, with the assumption (A-), i.e., (−∞) + ∞ =
∞ + (−∞) = −∞ in both sets of domain (formally in both projections) and
codomain.

In this article we present new theorem which shows all solutions of Eq. (F)
with the assumption (A+) on the domain (formally in both projections) and
codomain of function f .

Theorem 4.1. Let L∞ = {(u1, u2) ∈ [−∞,∞]2 | u1 ≤ u2}. For a function
f : L∞ → [−∞,∞] the following statements are equivalent:

(i) f satisfies functional Eq. (F) for (u1, u2), (v1, v2) ∈ L∞, with the assump-
tion (A+), i.e., (−∞) + ∞ = ∞ + (−∞) = ∞, in both sets of domain
(formally in both projections) and codomain of f .

(ii) Either f = −∞, or f = 0, or f = ∞ or

f(u, v) =

{
−∞, u = ∞,

0, u < ∞,
or f(u, v) =

{
−∞, v = ∞,

0, v < ∞,
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or

f(u, v) =

{
∞, u = ∞,

0, u < ∞,
or f(u, v) =

{
∞, v = ∞,

0, v < ∞,

or

f(u, v) =

{
−∞, u < ∞,

∞, u = ∞,
or f(u, v) =

{
−∞, v < ∞,

∞, v = ∞,

or

f(u, v) =

{
−∞, v ∈ R,

∞, v ∈ {−∞,∞}, or f(u, v) =

{
−∞, u ∈ R,

∞, u ∈ {−∞,∞},
or

f(u, v) =

{
−∞, u, v ∈ R,

∞, u = −∞ or v = ∞,

or

f(u, v) =

⎧
⎪⎨

⎪⎩

−∞, u < ∞ and v = ∞,

0, v < ∞,

∞, u = ∞,

or there exists a unique additive function c : R → R such that

f(u, v) =

{
−∞, u ∈ {−∞,∞},
c(u), u ∈ R,

or f(u, v) =

{
−∞, v ∈ {−∞,∞},
c(v), v ∈ R,

or

f(u, v) =

{
∞, u ∈ {−∞,∞},
c(u), u ∈ R,

or f(u, v) =

{
∞, v ∈ {−∞,∞},
c(v), v ∈ R,

or

f(u, v) =

⎧
⎪⎨

⎪⎩

−∞, u = −∞,

c(u), u ∈ R,

∞, u = ∞,

or f(u, v) =

⎧
⎪⎨

⎪⎩

−∞, v = −∞,

c(v), v ∈ R,

∞, v = ∞,

or

f(u, v) =

⎧
⎪⎨

⎪⎩

−∞, (u < ∞ and v = ∞) or v = −∞,

c(v), v ∈ R,

∞, u = ∞,

or there exist unique additive functions c1, c2 : R → R such that

f(u, v) =

{
−∞, u = −∞ or v = ∞,

c1(u) + c2(v), u, v ∈ R,
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or

f(u, v) =

{
∞, u = −∞ or v = ∞,

c1(u) + c2(v), u, v ∈ R,

or

f(u, v) =

⎧
⎪⎨

⎪⎩

−∞, u = −∞ and v < ∞,

c1(u) + c2(v), u, v ∈ R,

∞, v = ∞,

or

f(u, v) =

⎧
⎪⎨

⎪⎩

−∞, (u < ∞ and v = ∞) or u = −∞,

c1(u) + c2(v), u, v ∈ R,

∞, u = ∞,

or

f(u, v) =

⎧
⎪⎨

⎪⎩

−∞, u ∈ R and v = ∞,

c1(u) + c2(v), u, v ∈ R,

∞, u ∈ {−∞,∞},
or

f(u, v) =

⎧
⎪⎨

⎪⎩

−∞, u = −∞ and v ∈ R,

c1(u) + c2(v), u, v ∈ R,

∞, v ∈ {−∞,∞},
for all (u, v) ∈ L∞.

5 Conclusions

In this article we presented method for reducing Eqs. (D-UU1) and (D-UU2) to
Eq. (F) for implication operations and decomposable uninorms (generated from
two conjunctive or disjunctive representable uninorms) in interval-valued fuzzy
sets theory. We showed that with this assumption it is enough to solve Eq. (F)
for some combinations of the assumptions (A−) and/or (A+) in both sets of
domain (formally in both projections) and codomain of a function f .

Theorem 4.1 solves the considered functional equation with the assumption
(A+) in both the domain (in fact in both projections) and the codomain of
function f . We would like to underline that cases combining (A−) in the domain
and (A+) in the codomain (and vice versa) were also analyzed by us and we will
present them soon.

Now, using Theorem 4.1, we are able to solve Eq. (2) and (3), i.e., we can
obtain the description of the two projections of the vertical section I([x1, x2], ·),
for fixed [x1, x2] ∈ L∞, of the solutions of our main distributivity Eq. (D-UU1)
for decomposable uninorms generated from disjunctive representable uninorms.
In our future work we will consider these problems in details.
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Abstract. Recently, fuzzy implications based on copulas, i.e. proba-
bilistic implications and probabilistic S-implications, were introduced
and their properties were explored. However, the reverse problem of
copulas derived from fuzzy implications, suggested by Massanet et al.
[11,12], is also of interest. In the paper we consider geometric properties
of those fuzzy implications that generate copulas. Moreover, we consider
the reverse problem for some generalizations of copulas like quasi-copulas
and semi-copulas.

Keywords: Copula · Fuzzy implication · Probabilistic implication ·
Spearman’s rho · Diagonal section · Quasi-copula · Semi-copula

1 Introduction

Fuzzy implications still arouse curiosity of many researchers both because of their
interesting theoretical properties and various applications in approximate reason-
ing, fuzzy control and so on. In the literature one can find several methods for
constructing fuzzy implications, like S-implications, R-implications etc. (see [4]).
Recently Grzegorzewski introduced new families of fuzzy implications based on
copulas, i.e. probabilistic implications, probabilistic S-implications [7,8,10], sur-
vival implications and survival S-implications [9]. Another family of fuzzy implica-
tions based on copulas was proposed by Dolati et al. [5]. The common feature of all
these contributions is to deliver such fuzzy implication that combine both impre-
cision modeled by fuzzy theory and randomness described by probability theory.
And this is a justification for taking a copula to lay the foundations of such desired
fuzzy implication. Actually, by the Sklar Theorem a copula expresses the depen-
dence between random variables. Hence it can also form a link between a premise
and a consequent.

The properties of implications based on copulas were examined in several
papers (e.g. [2,3,7,8,10]). It is known, for instance, that for any copula the proba-
bilistic S-implication is a fuzzy implication. However, Massanet et al. [11,12] set an
interesting reverse problem: Can we say that using reverse reasoning each fuzzy
implication leads to a copula? In general the answer is negative. But Massanet
et al. [11,12] show some conditions that a fuzzy implication has to satisfy to
generate a copula.
c© Springer International Publishing Switzerland 2016
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In the present paper we try to exploit more thoroughly the geometric prop-
erties of those fuzzy implications which produce copulas. Moreover, since each
copula is a particular case of a quasi-copula or semi-copula one may consider
fuzzy implications based on those more general objects (see [1]). Thus, it seems
quite natural to consider the reverse problem of fuzzy implications leading to
quasi- or semi-copulas as well.

The paper is organized as follows. In Sect. 2 we recall some preliminaries on
fuzzy implications, copulas and probabilistic implications. In Sect. 3 we present
the reverse problem mentioned above and show some of its solutions. Then, in
Sect. 4, we consider different aspects of the geometry of fuzzy implications in the
context of their possible links with copulas. Section 5 is devoted to the reverse
problem in relation to quasi-copulas, semi-copulas and binary aggregation oper-
ators. We end the paper with conclusions and suggestions for further research.

2 Preliminaries

Fuzzy implication functions are generalizations of the classical implication to
fuzzy logic. According to the well-established fact that fuzzy concepts have
to generalize adequately the corresponding crisp concepts, the most commonly
accepted definitions of fuzzy connectives are the following.

Definition 2.1 ([4]). A function I : [0, 1]2 → [0, 1] is called a fuzzy implica-
tion if it satisfies the following conditions

(I1) I(x1, y) ≥ I(x2, y) if x1 ≤ x2, for all y ∈ [0, 1],
(I2) I(x, y1) ≤ I(x, y2) if y1 ≤ y2, for all x ∈ [0, 1],
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Definition 2.2 ([13]). A function C : [0, 1]2 → [0, 1] is called a copula (specif-
ically, a 2-copula) if it satisfies the following conditions

(C1) C(x, 0) = C(0, y) = 0, for all x, y ∈ [0, 1],
(C2) C(x, 1) = x, for all x ∈ [0, 1],
(C3) C(1, y) = y, for all y ∈ [0, 1],
(C4) C is 2-increasing, i.e. C(x2, y2) − C(x2, y1) − C(x1, y2) + C(x1, y1) ≥ 0

for all x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2, y1 ≤ y2.

It can be shown that every copula is bounded by the so-called Fréchet-
Hoeffding bounds, i.e., for any copula C and for all x, y ∈ [0, 1] the following
inequalities hold

W (x, y) ≤ C(x, y) ≤ M(x, y), (1)

where M(x, y) = min{x, y} and W (x, y) = max{x + y − 1, 0} are also copulas.
The notion of a copula was applied by Grzegorzewski for defining probabilistic

implications and probabilistic S-implications.
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Definition 2.3 ([7,10]). Let C be a copula. A function IC : [0, 1]2 → [0, 1] given by

IC(x, y) =

{
1, x = 0
C(x,y)

x , x > 0
, x, y ∈ [0, 1], (2)

is called a probabilistic implication (based on a copula C). The set of all proba-
bilistic implications will be denoted by ICprob.

It is worth noting that a probabilistic implication is not necessarily a fuzzy
implication. To guarantee that a probabilistic implication is also a fuzzy impli-
cation we need to add condition (I1) that IC is antitone with respect to the
first variable (other conditions in Definition 2.1 are satisfied by any probabilistic
implication, see [10]).

Definition 2.4 ([10]). Let C be a copula. A function ĨC : [0, 1]2 → [0, 1] given by

ĨC(x, y) = C(x, y) − x + 1, x, y ∈ [0, 1], (3)

is called a probabilistic S-implication (based on a copula C). The set of all prob-
abilistic S-implications will be denoted by ICprobS.

It should be stressed that any probabilistic S-implication - contrary to prob-
abilistic implication - is a fuzzy implication. It can be shown (see [2]) that
the family of all probabilistic implications and the family of all probabilistic
S-implications are disjoint, i.e., ICprob ∩ I

C

probS = ∅.
Grzegorzewski [9] introduced also two families of implications based on sur-

vival copulas, i.e. survival implications and survival S-implications.

3 PSI-functions

As it was mentioned in the previous section each probabilistic implication and
probabilistic S-implication, similarly as their survival counterparts, is defined by
a copula. Massanet et al. [11,12] considered the reverse problem, i.e. how to con-
struct copulas from implication functions. Since for any copula the corresponding
probabilistic S-implication is a fuzzy implication, they discussed methods reverse
to those used in construction of probabilistic S-implications. They have started
by introducing the following notion.

Definition 3.1 ([11]). Let I be a fuzzy implication function. A function CPSI
I

defined for all x, y ∈ [0, 1] as

CPSI
I (x, y) = I(x, y) + x − 1, (4)

is called a probabilistic S-implication function (PSI-function for short)
derived from the fuzzy implication function I. Moreover, if CPSI

I is a copula it
will be called a PSI-copula.
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It is clear by the definition CPSI
ĨC

= C and ĨCPSI
I

= I for any copula C

and fuzzy implication function I. However, a PSI-function CPSI
I is not always

a copula. For example, it is obvious that the implication function I must be
continuous in order to derive a copula. Massanet et al. gave in [11] the necessary
and sufficient conditions on a fuzzy implication function I to obtain a PSI-copula.
Before we cite them let us recall two concepts important in fuzzy implication
theory.

Firstly, we say that a fuzzy implication I satisfies the left-neutrality prin-
ciple (NP) if I(1, y) = y for all y ∈ [0, 1]. Secondly, a function defined for a
given fuzzy implication I as follows NI(x) = I(x, 0), where x ∈ [0, 1], is called
the natural negation of I.

Theorem 3.2 ([11]). Let I be a fuzzy implication function. A function CPSI
I

given by (4) is a copula if and only if the following conditions hold:

(i) The natural negation of I is NI(x) = 1 − x.
(ii) I satisfies the left-neutrality principle.
(iii) I is 2-increasing.

Massanet et al. [11,12] explored also some broad families of fuzzy implications
like (S,N)-implications or R-implications in this context and proved some criteria
dedicated especially for those families.

Theorem 3.3 ([11]). Let S be a t-conorm, IS the (S,N)-implication given by
IS(x, y) = S(1 − x, y) for all x, y ∈ [0, 1], and CPSI

IS
is the PSI-function derived

from IS. Then the following conditions are equivalent:

(i) CPSI
IS

is a copula.
(ii) S is 2-decreasing, i.e. S(x2, y2) − S(x2, y1) − S(x1, y2) + S(x1, y1) ≤ 0 for

all x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2, y1 ≤ y2.
(iii) S satisfies the 1-Lipschitz property, i.e. S(x2, y)−S(x1, y) ≤ x2 −x1 for all

x1, x2, y ∈ [0, 1] such that x1 ≤ x2.

From Theorem 3.3 one can conclude (see [11]) that a PSI-function CPSI
IS

derived from the (S,N)-implication I is a copula if and only if N(x) = 1 − x and
S is one of the following t-conorms: the maximum, an Archimedean t-conorm
with convex additive generator or an ordinal sum of Archimedean t-conorms
with convex additive generators.

Theorem 3.4 ([11]). Let T be a left-continuous t-norm, IT its R-implication.
Then the PSI-function CPSI

IT
derived from IT is a copula if and only if T is the

Lukasiewicz t-norm.

By Theorem 3.4 it is clear that CPSI
IT

= M , where M is the upper Fréchet-
Hoeffding bound (1).

Massanet et al. discussed also in [11,12] the similar reverse problem starting
from survival S-implications.
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4 Geometric Conditions for PSI-copulas

4.1 Introductory Example

To verify whether given PSI-function is a copula one has to check three conditions
in Theorem 3.2. While the left-neutrality principle and the shape of the natural
negation of I could be verified just by a glance on the plot of I, to check if I is
2-increasing is usually not so immediate. Let us consider the following example.

Example 4.1. Let us have a look on the plots of some well-known fuzzy implica-
tions: the Goguen implication (Fig. 1), the reciprocal Yager implication (Fig. 2)
and the Baczynski implication (Fig. 3). For the expressions of those fuzzy impli-
cations we refer the reader to [4]. None of the PSI-functions derived from these
three fuzzy implications are copulas. Actually, it is so because the natural nega-
tion of the Goguen implication is not a classical negation, the reciprocal Yager
implication does not satisfy the neutrality principle while in the case of the
Baczynski implication both conditions (i) and (ii) in Theorem 3.2 fail.

Fig. 1. The Goguen implication. Fig. 2. The reciprocal Yager implication.

Fig. 3. The Baczynski implication. Fig. 4. IPC implication.
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Let us also consider the following fuzzy implication (see [4], p. 96):

IPC = 1 − (
max{x(x + xy2 − 2y), 0})

1
2 (5)

depicted in Fig. 4. It is easily seen that IPC(1, y) = y and IPC(x, 0) = 1 − x, so
both conditions (i) and (ii) in Theorem 3.2 are satisfied. Does it mean that the
PSI-function derived from IPC is a PSI-copula? Can we answer this question
without checking if IPC is 2-increasing? �

It would be interesting to discover some simple criteria to eliminate those
fuzzy implications which cannot generate a copula. In other words, we wish to
find some simple necessary conditions for a PSI-function to be a PSI-copula. In
fact, we may suggest several approaches that could be helpful in practice.

4.2 Bounds-Based Condition

Let us start from the following lemma.

Lemma 4.2. For any copula C the following condition holds

IKD ≤ ĨC ≤ ILK , (6)

where IKD and ILK denote the Kleene-Dienes implication and the �Lukasiewicz
implication, respectively.

Proof. As it was shown in [10] for the lower Fréchet-Hoeffding bound W we get
ĨW (x, y) = max{1−x, y} = IKD(x, y). Similarly, for the upper Fréchet-Hoeffding
bound M we obtain ĨM (x, y) = min{1, 1−x+ y} = ILK(u, v). Moreover, for any
two copulas C1 ≤ C2 we have ĨC1(x, y) = C1(x, y) − x + 1 ≤ C2(x, y) − x + 1 =
ĨC2(x, y). Therefore, by (1) we conclude that IKD ≤ ĨC ≤ ILK for any copula C.

�

This way we obtain a natural necessary condition for a fuzzy implication to
generate a PSI-copula.

Theorem 4.3. Let I be a fuzzy implication such that CPSI
I is a PSI-copula.

Then IKD(x, y) ≤ I(x, y) ≤ ILK(x, y) for any x, y ∈ [0, 1].

The above stated condition means that the plot of a fuzzy implication which
can be treated as a candidate for generating a PSI-copula should lie between the
plot of the Kleene-Dienes implication (see Fig. 5) and the plot of the �Lukasiewicz
implication (see Fig. 6).

Example 4.4. Going back to fuzzy implication (5), as we can notice, it satisfies
the neutrality principle and the natural negation of this implication is the classi-
cal negation. However, IPC(0.95, 0.9) > ILK(0.95, 0.9), so IPC cannot generate
a PSI-copula. �
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Fig. 5. The Kleene-Dienes implication. Fig. 6. The �Lukasiewicz implication.

It is also easily seen that

Lemma 4.5. If IKD ≤ I ≤ ILK then for any x, y ∈ [0, 1]

(a) I(1, y) = y,
(b) I(x, 0) = 1 − x.

Since property (a) in Lemma 4.5 means that I satisfies the left-neutrality
property (NP), while (b) means that the natural negation of I is NI(x) = 1 − x,
the necessary and sufficient conditions for a PSI function to be a copula might
be expressed as follows:

Theorem 4.6. Let I be a fuzzy implication function. A function CPSI
I given by

(4) is a copula if and only if the following conditions hold:

1. IKD ≤ I ≤ ILK ,
2. I is 2-increasing.

4.3 Area-Based Conditions

Suppose X and Y are continuous random variables whose copula is C. The
association between these two variables can be measured by Spearman’s rho
defined as follows

ρC = ρ(X,Y ) = 12
∫ 1

0

∫ 1

0

(C(x, y) − xy) dxdy = 12
∫ 1

0

∫ 1

0

C(x, y)dxdy−3. (7)

As it is known −1 ≤ ρC ≤ 1 for any copula C. Therefore, assuming that C
is a PSI-copula we may substitute it by I(x, y) + x − 1 in (7) and then we get

−1 ≤ 12
∫ 1

0

∫ 1

0

(I(x, y) + x − 1) dxdy − 3 ≤ 1,
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which is equivalent to the following inequalities

2
3

≤
∫ 1

0

∫ 1

0

I(x, y)dxdy ≤ 5
6

(8)

having a straightforward geometric interpretation. Indeed, condition (8) gives as
the desired area below the plot of a fuzzy implication. This way we get another
necessary condition for a fuzzy implication to generate a PSI-copula.

Theorem 4.7. Let I be a fuzzy implication such that CPSI
I is a PSI-copula.

Then the area below the plot of I should take value in the interval
[
2
3 , 5

6

]
.

It can be seen that the borders of this interval given in Theorem 4.7 are
obtained for the Kleene-Dienes implication and the �Lukasiewicz implication,
respectively, i.e.

∫ 1

0

∫ 1

0
IKD(x, y)dxdy = 2

3 and
∫ 1

0

∫ 1

0
ILK(x, y)dxdy = 5

6 .
Besides Spearman’s rho one may consider some other measure of associa-

tion between random variables defined using copulas. Let us recall the so-called
concordance function Θ = Θ(C1, C2) defined for any two copulas C1 and C2 as
follows (see [13]):

Θ(C1, C2) = 4
∫ 1

0

∫ 1

0

C2(x, y)dC1(x, y) − 1. (9)

It is worth noting that Spearman’s rho can be also defined by the concordance
function, i.e. ρC = 3Θ(C,Π), where Π is the product copula. Because of the
distinguished role of the Fréchet-Hoeffding bounds, the concordance function
between given copula C and these bounds is also of interest, i.e. Θ(C,M) and
Θ(C,W ). It can be shown (see [13]) that 0 ≤ Θ(C,M) ≤ 1 and −1 ≤ Θ(C,W ) ≤
0 for any copula C. Therefore, assuming C = CPSI

I (x, y) = I(x, y)+x−1, simple
calculations lead us to the following conclusion

Θ(C,M) = 4
∫ 1

0

∫ 1

0

C(x, y)dM(x, y) − 1 = 4
∫ 1

0

C(x, x)dx − 1

= 4
∫ 1

0

(I(x, x) + x − 1)dx − 1 = 4
∫ 1

0

I(x, x)dx − 3.

Thus, finally, if I is a fuzzy implication such that CPSI
I is a PSI-copula, then I

satisfies the following inequalities

3
4

≤
∫ 1

0

I(x, x)dx ≤ 1. (10)

In the same way we can show that

Θ(C,W ) = 4
∫ 1

0

∫ 1

0

C(x, y)dW (x, y) − 1 = 4
∫ 1

0

C(x, 1 − x)dx − 1

= 4
∫ 1

0

(I(x, 1 − x) + x − 1)dx − 1 = 4
∫ 1

0

I(x, 1 − x)dx − 3
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and therefore, we may conclude that if I is a fuzzy implication such that CPSI
I

is a PSI-copula, then the following inequalities are satisfied

1
2

≤
∫ 1

0

I(x, 1 − x)dx ≤ 3
4
. (11)

4.4 Diagonal-Based Conditions

One of the crucial concepts connected with a copula C is its diagonal section,
i.e. a function δC : [0, 1] → [0, 1] defined as δC(x) = C(x, x). Sometimes the
so-called secondary diagonal section given by δ∗

C(x) = C(x, 1 − x) is also of
interest. It seems that the similar functions can be useful in the framework of
fuzzy implications. Let us introduce the following two functions.

Definition 4.8. The main diagonal of a fuzzy implication I is a function
δI : [0, 1] → [0, 1] defined by

σI(x) = I(1 − x, x). (12)

The second diagonal of a fuzzy implication I is a function σ∗
I : [0, 1] → [0, 1]

given by
σ∗
I (x) = I(x, x). (13)

One may easily seen that for any fuzzy implication I its main diagonal is
nondecreasing and such that σI(0) = 0 and σI(1) = 1. On the other hand for
any second diagonal we have σ∗

I (0) = σ∗
I (1) = 1. We can also say that a fuzzy

implication satisfies the identity principle if and only if its second diagonal is
constant and σ∗

I (x) = 1 for any x ∈ [0, 1].
We can utilize both above defined diagonals to specify other necessary con-

ditions for a fuzzy implication to generate a copula.

Theorem 4.9. Let I be a fuzzy implication such that CPSI
I is a PSI-copula.

Then its main diagonal is bounded as follows: x ≤ σI(x) ≤ min{1, 2x}.
Proof. By Lemma 4.2 each fuzzy implication that generates a copula is bounded
from below by the Kleene-Dienes implication and from above by the �Lukasiewicz
implication. Hence the same relation holds for their main sections. Then we
can easily calculate that σIKD

(x) = max{1 − (1 − x), x} = x and σILK
(x) =

min{1, 1 − (1 − x) + x} = min{1, 2x}. �

In a similar way we prove the following theorem.

Theorem 4.10. If CPSI
I is a PSI-copula derived from a fuzzy implication I

then its second diagonal is bounded as follows: max{1 − x, x} ≤ σ∗
I (x) ≤ 1.

One can also notice that using diagonals necessary conditions (10) and (11)
for a fuzzy implication to generate a PSI-function can be expressed as follows.
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Theorem 4.11. If CPSI
I is a PSI-copula derived from a fuzzy implication I

then 1
2 ≤ ∫ 1

0
σI(x)dx ≤ 3

4 .

Theorem 4.12. If CPSI
I is a PSI-copula derived from a fuzzy implication I

then 3
4 ≤ ∫ 1

0
σ∗
I (x)dx ≤ 1.

One can also ask about fuzzy implications which generate copulas with some
specific diagonal sections. The following lemmas can be easily proved.

Lemma 4.13. If CPSI
I is an Archimedean PSI-copula derived from a fuzzy

implication I then σ∗
I (x) ≤ 1.

Lemma 4.14. CPSI
I is a PSI-copula such that δCPSI

I
(x) = x for x ∈ [0, 1] if

and only if CPSI
I is derived from the �Lukasiewicz implication.

Lemma 4.15. CPSI
I is a PSI-copula such that δCPSI

I
(x) = max{1 − x, x} for

x ∈ [0, 1] if and only if CPSI
I is derived from the Kleene-Dienes implication.

5 PSI-quasi-copulas and Other Generalizations

As we know a PSI-function may not be a copula. Thus a natural question arises
about the relation between PSI-functions and some generalizations of the copulas
like quasi-copulas, etc. Let us start this section by recalling some definitions.

Definition 5.1 ([13]). A function Q : [0, 1]2 → [0, 1] is called a quasi-copula
if it satisfies conditions (C1)-(C3) and

(C4’) for all x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2, y1 ≤ y2 it holds

Q(x2, y2) − Q(x2, y1) − Q(x1, y2) + Q(x1, y1) ≥ 0,

where at least one of x1, x2, y1, y2 ∈ {0, 1}.
It is worth noting that condition (C4’) is equivalent to requiring that quasi-

copulas are nondecreasing in each variable, i.e. for all x1, x2, y1, y2 ∈ [0, 1] such
that x1 ≤ x2, y1 ≤ y2

Q(x1, y1) ≤ Q(x2, y2), (ND)

and satisfy the 1-Lipschitz property, i.e. for all x1, x2, y1, y2 ∈ [0, 1]

|Q(x1, y1) − Q(x2, y2)| ≤ |x1 − x2| + |y1 − y2|. (Lip)

Another interesting family of functions is given by the semicopulas.

Definition 5.2 ([6]). A function B : [0, 1]2 → [0, 1] is called a semicopula if it
satisfies conditions (C2)-(C3) and (ND).
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By Definition 5.2 we have 0 ≤ B(x, 0) ≤ B(1, 0) = 0 and 0 ≤ B(0, y) ≤
B(0, 1) = 0 which shows that each semicopula satisfies condition (C1).

It is worth noting that the notion of semicopula generalizes some concepts
mentioned above. In particular, a semicopula C which is 2-increasing, i.e. satis-
fying condition (C4), is a copula. Moreover, a semicopula Q which satisfies the
1-Lipschitz property (Lip) is a quasi-copula.

It can be shown that a PSI-function automatically is neither a quasi-copula
nor a semi-copula. However, similarly as in the case of a PSI-copula we may
specify some requirements to be satisfied by a fuzzy implication generating quasi-
copulas or a semi-copulas.

Theorem 5.3. If I is a fuzzy implication such that

(i) the natural negation of I is NI(x) = 1 − x,
(ii) I satisfies the left-neutrality principle,
(iii) I satisfies the 1-Lipschitz property (Lip),

then the function CPSI
I derived from I is a quasi-copula.

Theorem 5.4. If I is a fuzzy implication such that

(i) the natural negation of I is NI(x) = 1 − x,
(ii) I satisfies the left-neutrality principle,
(iii) I satisfies the 1-Lipschitz property with respect to the first argument, i.e.

|I(x1, y) − I(x2, y)| ≤ |x1 − x2| for all x1, x2, y ∈ [0, 1],

then the function CPSI
I derived from I is a semi-copula.

Please note, that both copulas and quasi-copulas are special cases of the
1-Lipschitz binary aggregation operators defined as follows.

Definition 5.5. A (binary) aggregation operator is a function A : [0, 1]2 →
[0, 1] which is nondecreasing in each component and satisfies A(0, 0) = 0 and
A(1, 1) = 1. Moreover, an aggregation operator A satisfying the Lipschitz condi-
tion with constant 1 (Lip) is called a 1-Lipschitz aggregation

The following theorems can be proved.

Theorem 5.6. If I is a 1-Lipschitz fuzzy implication with respect to the first
argument then the function CPSI

I derived from I is a binary aggregation operator.

Theorem 5.7. If I is a 1-Lipschitz fuzzy implication then the function CPSI
I

derived from I is a 1-Lipschitz binary aggregation operator.
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6 Conclusions

In the paper we have tried to give more light in understanding the nature and
geometric properties of those fuzzy implications that may generate copulas. We
have discussed this reverse problem with respect to probabilistic S-implications
only. First steps in the reverse problem with respect to survival S-implications
were done by Massanet et al. [11,12]. We have abandoned this topic because of
the limited size of this contribution. Quite a new challenge, not discussed yet,
is the reverse problem with respect to usual probabilistic implications and sur-
vival implications. Moreover, many interesting topics for further research are
connected with fuzzy implications required for deriving copulas with prede-
fined properties (like given sections) or for generating required quasi-copulas or
semi-copulas.
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Abstract. In this paper we show how the diversity of properties for
quantales is well suited for describing multivalence in many-valued logic.
Tensor products of quantales will play an important role in showing how
more simple valuation scales can be tensored together to provide more
complex valuation scales. In health care applications, this is typically
seen for disorders and functioning. Classification of disorder is typically
quite bivalent, whereas scales used in functioning classifications are mul-
tivalent. The role ‘not specified’ or ‘missing’ is shown to be of importance.

Keywords: Assessment · Logic · Quantale

1 Introduction

The diversity of properties for quantales make them well suited for describing
multivalence in many-valued logic, and as involving different carriers of uncer-
tain information. This information is frequently subjected to various algebraic
operations, which raises expectations of the logical machinery to deliver desired
properties with a proper logical and mathematical foundation, and in partic-
ular to meet the requirement of richness needed in real-world applications.
Non-commutativity of operation is a typically important consideration from
application point of view. The notion of logic as a structure embraces signa-
tures and constructed terms and sentences latively constructed as based on
these terms. Similarly, sentence and conglomerates of sentences are fundamen-
tal for entailments, models and satisfactions, in turn latively to become part of
axioms, theories and proof calculi. This lativity is always produced and main-
tained by functors and monads, and as acting over underlying categories in form
of monoidal categories. Category theory is thus a suitable metalanguage for logic,
in particular when applications and typing of information must be considered.
Uncertainty may reside in generalized powerset functors, and may be internal-
ized in underlying categories. In both cases, suitable algebras must motor this
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uncertainty representation, and quantales are very suitable in this context. In
Sects. 2 and 3, we provide background and prerequisite for quantales and tensors
[11–14]. In Sect. 4 we present an example from health and social care, and how
multivalent classification is supported by tensored quantales.

2 Quantales

Let Preord be the category of preordered sets and Sup be the category of com-
plete lattices and join preserving maps. A pair (X, ∗) is a prequantale if X is a
complete lattice and X ×X

∗−→ X is a bimorphism of Sup. A prequantale (X, ∗)
is unital iff there exists an element e ∈ X with x ∗ e = x = e ∗ x for all x ∈ X,
and (X, ∗) is a quantale if ∗ is associative. A quantale (X, ∗) is semi-integral if
the relation x1 ∗ � ∗ x2 ≤ x1 ∗ x2 holds for all x1, x2 ∈ X, and it is semiunital if
the relations x ≤ x ∗ � and x ≤ � ∗ x hold for all x ∈ X. An element x ∈ X is
called idempotent if x ∗ x = x, and the quantale is idempotent if every element
of X is idempotent. An element x ∈ X is called left-sided (resp. right-sided) if
� ∗ x ≤ x (resp. x ∗ � ≤ x). An element x ∈ X is two-sided if it is left-sided and
right-sided. The quantale is left-sided (resp. right-sided) if every element of X is
left-sided (resp. right-sided), and two-sided if every element is two-sided.

An element p ∈ X is called prime in (X, ∗) if p �= � and the implication
x ∗ y ≤ p =⇒ x ∗ � ≤ p or � ∗ y ≤ p holds for all x, y ∈ X.

In the following we introduce our main quantale example, which will be used
in our application description. Let C3 be the chain consisting of three elements
⊥, a and � where ⊥ and � are the universal bounds. On C3 we consider two
non-commutative and associative multiplications:

� ∗� � = �, a ∗� a = a, ⊥ ∗� ⊥ = ⊥, � ∗� a = a, a ∗� � = �
� ∗� ⊥ = ⊥, a ∗� ⊥ = ⊥, ⊥ ∗� a = ⊥, ⊥ ∗� � = ⊥,
� ∗r � = �, a ∗r a = a, ⊥ ∗r ⊥ = ⊥, � ∗r a = �, a ∗r � = a,
� ∗r ⊥ = ⊥, a ∗r ⊥ = ⊥, ⊥ ∗r a = ⊥, ⊥ ∗r � = ⊥,

Then C�
3 = (C3, ∗�) is a left-sided and idempotent quantale, while Cr

3 = (C3, ∗r)
is right-sided and idempotent. The prime elements of C�

3 and Cr
3 are ⊥ and a.

From application point of view, we will interpret x1 ∗r x2 as x1 “juncted
with” x2, or x1 “juncted with, as followed by,” x2. We will further discuss the
view that a corresponds to a valuation ‘not (yet) specified’. Since a ∗r � = a, we
have the interpretation

‘not (yet) specified’ ∗r “given and true” = ‘not (yet) specified’.

Interpretations of the multiplication ∗� and ∗r on C3 shows e.g. that a ∗r �
is ‘not (yet) specified’ and then ‘true’ = ‘not (yet) specified’. Further � ∗r ais
‘true’ and then ‘not (yet) specified’= ‘true’, � ∗� a is ‘true’ and then ‘not (yet)
specified’= ‘not (yet) specified’, and a ∗� � is ‘not (yet) specified’ and then
‘true’= ‘true’. In this sense we have to do with two different types of ‘not (yet)
specified’, one being right-sided and the other one being left-sided. Thus our



Non-commutative Quantales for Many-Valuedness in Applications 439

interpretation refers directly to the interpretation of ‘right-sidedness’ and ‘left-
sidedness’. Boole [1] never distinguished this non-commutativity and sidedness,
so in his formulations, left-sidedness would be the same as right-sidedness, i.e.,
two-sidedness which leads to two values only, namely � as ‘all beings’ and ⊥ as
‘no beings’.

3 Tensors

If C = (C0,⊗,1, a, �, r) is a monoidal category, then the bifunctor ⊗ is called the
tensor product of C and 1 the unit object of C. Tensor products exist for a wide
variety of algebraic structures. For complete lattices X and Y , the pair (B, β) is

called a tensor product of X and Y , if B is a complete lattice and X × Y
β−→ B

is a bimorphism such that, for every bimorphism X × Y
b−→ Z there exists a

unique join preserving map B
hb−−→ Z with b = hb ◦ β.

Tensors can be constructed using the set G(X,Y ) of all join reversing maps

X
f−→ Y provided with the following partial order:

f1 ≤ f2 ⇐⇒ f1(x) ≤ f2(x) for all x ∈ X.

Obviously, (G(X,Y ),≤) is a complete lattice in which meets (but in general not
joins) are computed pointwise. In particular, the universal upper bound � and
the universal lower bound ⊥ in G(X,Y ) have the following form:

�(x) = � and ⊥(x) =

{
�, x = ⊥,

⊥, x �= ⊥,
x ∈ X.

Now we introduce a map X × Y
β−→ G(X,Y ) as follows:

[β(x, y)](x′) =

⎧
⎪⎨

⎪⎩

�, if x′ = ⊥,

y, if ⊥ �= x′ ≤ x,

⊥, if x′ �≤ x,

x, x′ ∈ X, y ∈ Y.

Firstly, β(x, y) is an element of G(X,Y ), and the relation β(x,⊥) = β(⊥, y) = ⊥
holds for all x ∈ X and y ∈ Y , and, secondly, β is a bimorphism that fulfills the
following important properties

β(�,�) = � (1)
∧

i∈I

β(xi, yi) = β
(∧

i∈I

xi,
∧

i∈I

yi

)
(2)

f =
∨

x∈X

β(x, f(x)) for any f ∈ G(X,Y ). (3)

The properties (1) and (2) mean that β is meet preserving, while the property (3)
expresses the fact that {β(x, y) | x ∈ X, y ∈ Y } forms a join basis of G(X,Y ).
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Based on the example in the previous section, we compute the tensor product
C�

3 ⊗ Cr
3 = (C3 ⊗ C3, �) and observe that C3 ⊗ C3 consists of six elements

� = � ⊗ �, α = (a ⊗ �) ∨ (� ⊗ a), λ = a ⊗ �, � = � ⊗ a, β = a ⊗ a,
⊥ = ⊥ ⊗ ⊥ = ⊥ ⊗ a = a ⊗ ⊥.

Note also that ⊥ ⊗ � = � ⊗ ⊥ = ⊥.
The order-theoretic structure of C3 ⊗ C3 can be visualized by the following

Hasse diagram:

�

α

λ �

β

⊥

����
����

���
���

(4)

and the multiplication table has the form

x\y ⊥ β λ � α �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
β ⊥ β β � � �
λ ⊥ λ λ � � �
� ⊥ β β � � �
α ⊥ λ λ � � �
� ⊥ λ λ � � �

The unique non-elementary tensor α is the unique non-idempotent element in
(C3 ⊗ C3, �). Further, the elementary tensor β = a ⊗ a is neither left-sided nor
right-sided, while λ is left-sided, but not right-sided and � is right-sided, but not
left-sided. Moreover, the tensor product (C3 ⊗ C3, �) is semi-integral.

The prime elements of (C3 ⊗ C3, �) are α, λ, � and ⊥.
Further, note that C3 ⊗ C3 is the (complete) lattice of all join reversing self-

maps of C3, and is therefore order isomorphic to the lattice of all join preserving
self-maps C3. The identity idC3 of C3 corresponds to the tensor (= join reversing
map) (a ⊗ �) ∨ (� ⊗ a), where a is the element of C3 being strictly between the
� and ⊥ elements of C3.

This order isomorphism reveals that behind � there is hidden the composi-
tion. Hence the interpretation of � as “and then” makes sense.

As a further clarification of the algebraic structure of C3 ⊗ C3, we should
also recall the following. Firstly, � is the tensor product of the multiplication of
the left-sided, idempotent, non-commutative chain C3 with the multiplication
of the right-sided, idempotent, non-commutative chain C3. This is a general
mathematical construction and happens in various places of algebra. Secondly,
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let L be a complete lattice provided with an order reversing involution. Then the
unital quantale Q(L) of all join preserving maps with the multiplication given by
the composition of maps goes back to Mulvey, Pelletier and Rosický ([16,17]).
An element f ∈ Q(L) is left-sided iff there exists a ∈ L such that f has the
following form:

f(x) =
{�, x �≤ a

⊥, x ≤ a,
, x ∈ L.

An element g ∈ Q(L) is right-sided iff there exists a ∈ L such that g has the
following form:

g(x) =
{

a, x �= ⊥
⊥, x = ⊥,

, x ∈ L.

Further, the semi-integral regularization of (Q(L), ◦) leads to a multiplication
∗ on Q(L) given by g ∗ f = g ◦ � ◦ f . This quantale is no longer unital (the
semi-integral regularization destroys the unit). The semi-integral regularization
of a unital quantale means that the product, i.e., result of the multiplication, is
determined by left-sided and right-sided elements.

In the special case L = C3 the semi-integral regularization of Q(C3) is iso-
morphic to the tensor product C�

3 ⊗ Cr
3 . In particular this means that the mul-

tiplication in C3 ⊗ C3 has the form f � g = f ◦ � ◦ g in Q(C3). Here � is then
the universal upper bound in of Q(C3), � is the tensor product of the respec-
tive multiplications in the left-sided, idempotent C3 with the multiplication in
the right-sided, idempotent C3, and, ◦ is the composition of maps. So when we
interpret � as “and then”, we obviously hide the composition of maps.

From application point of view, the question is where in (C3 ⊗ C3, �) we
have the element for ‘not (yet) specified’. Viewing ⊗ similarly “juncted with, as
followed by,”, we have a ⊗ � = λ, so in this interpretation, λ is the candidate
for ‘not (yet) specified’ in (C3 ⊗ C3, �). In applications the intuition of � is more
application specific, but derives its meaning from the theoretical observations.
Thus we are able to remain precise in our formal treatment, and at the same
time enable the transition from the theory to practice. In general the approach
is indeed the other way around. We start from applications and try to identify
impact of the underlying theory. Often the application side needs to pay attention
to the outcome of this theoretical change.

Once we use the tensor product C�
3 ⊗ Cr

3 , we indeed have the possibility
to treat the concept ‘right-sidedness’ and ‘left-sidedness’ at the same time. The
point of departure is the unique idempotent element β = a⊗a with is neither left-
sided nor right-sided. Then we construct the unique left-sided element λ, being
strictly between top and bottom, and the unique right-sided element �, being
strictly between top and bottom, as λ = ��β(= a⊗�) and � = β ∗�(= �⊗a).
In this algebraic context, without still too much anticipating what may happen
in a particular application context, we may interpret β as ‘not know’. Then
‘true’ and then ‘not know’ = ‘not (yet) specified’ in the left-sided sense, and
‘not know’ and then ‘true’ = ‘not (yet) specified’ in the right-sided sense. We
therefore have two sides of ‘not knowing’, so that we can polarize ‘not knowing’
to become attributed both within and outside the scale of factual truth values.
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Known but not know for fact is different from not yet known. This distinction
is subtle in particular when interpreting it with an application context.

Note finally that ({⊥, λ,�}, �) is isomorphic to C�
3, and ({⊥, �,�}, �) is iso-

morphic to Cr
3 . This observation underlines the fact that C�

3⊗Cr
3 is the smallest,

non-idempotent quantale which covers the three-valued phenomenon of ‘left-
sidedness’ and ‘right-sidedness’.

4 Applications

In this section we suggest how juncted qualification of human functioning can be
viewed as based on underlying tensored qualification of respective qualifications
for capacity and mood. This makes sense in a multivalent setting, and, as we shall
see, even based on the three-valued C3. A key feature in C3 is the availability
of both the left-sided and the right-sided binary operation. This enables to have
non-commutativity, when desired. In a bivalent situation, such an effort would
make no sense, since non-trivial non-commutative junction does not exist if we
always expect � � � = � and ⊥ � ⊥ = ⊥. Here the only two remaining cases for
non-commutativity are either x1 � x2 = x1 or x1 � x2 = x2. In both these cases
we have situations where one of the evaluations totally ignore the other.

In the three-valued situation of C3, the element a is the most interesting
one as far as interpretations are concerned. Obviously, there are a number of
candidates for the interpretation � and ⊥, but given that we expect � � � = �
and ⊥ � ⊥ = ⊥, there is only little room for interpretation. We may view � and
⊥ e.g. as ‘good’ and ‘bad’, ‘right’ and ‘wrong’, or (logically) as ‘true’ and ‘false’.

In the case of ‘true’ and ‘false’, we typically say “what is known [about some-
thing] is true — what is known [about something] is false”. In a propositional
logic situation, that ‘something’ is never described, but indeed remains mod-
elled by propositional constants. In the case of ‘good’ and ‘bad’, we similarly
have “[this] is good — [this] is bad”, and we would need at least signatures and
terms [8,9] in order properly to model what we precisely mean by ‘this’. How-
ever, in the case of ‘good’ and ‘bad’, there is an epistemic-dialogic aspect often
overlooked in purely logical treatments. “Knowing what is good” and “knowing
when doing good” is to be distinguished not just within the actions of one indi-
vidual, but in particular when considering individuals “in dialogue”, and how
information is processed in dialogue. Dialogic or dialogism was also treated by
Mikhail Bakhtin (1895–1975) in his literary theory. Bakhtin goes further than
Buber, as Bakhtin includes the Other “for Me” aspect, i.e., kind of as an oppo-
site arrow for the corresponding [dia]logic morphism representing Bakhtin’s “I
for the Other”. Heteroglossia has unfortunately not been subjected to formal
logic considerations, but doing might open up interesting avenues for logical
investigations involving logic in dialogue. Even in Shakespeares theory of drama
[2] it is unclear if Shakespeare actually was concerned with dramatic theory and
even logic. Clearly, Shakespeare is understood as a poet, but he was obviously
also much concerned with theatrical considerations. His literary part is then
more of “information, knowledge and logic”, where the theatrical part is more
about “process and logic” [7].
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The distinction between information and process is indeed important, and a
distinction must also be made between “information in [a] process” and “infor-
mation as processed”. One could also say that “information processing” and
“processed information” is not the same thing but rather two sides of the same
“information and process coin”. Here ‘right’ and ‘wrong’ seems more of a process-
oriented issue as we tend to distinguish between “doing [things] right” and “doing
[things] wrong”.

Developing logical notions in these respects requires predicativity, and much
more logical structure, so for the purpose of this paper we restrict to focus
on the algebraic aspect of valuations. Now leaving � and ⊥ mostly out of the
discussion, let us turn our focus on a in C3. Again there are a number of intuitive
interpretation, but here we will look at it as an ‘not specified’ or ‘missing’. In
numerics we compute 2 + 2 = 4 and if we must extend our computations with
missing it will mostly be like 2 + missing = missing. With missing as the
a, we can logically compute with it. As ‘missing’ is a more technical matter,
‘unspecificed’ is broader and e.g. a ‘not (yet) given’, whether as a ‘cannot say’ or
a ‘(still) not known’. Obviously, this a can also be viewed as the grade between
� and ⊥, in a linear view of C3 as a set of truth values.

Non-commutativity now comes into play, and we illuminate this situation
with capacity and mood being described by dementia and depression. Dementia
is about cognitive decline and depression is about gradation of mood.

Discussions on dementia versus depression is known to lead to the question
about which one coming first [18,19], and their is a vast amount of literature
generally about the topic. Cognitive impairment may be seen as a component of
late-life depression, so depression is in some sense seen as coming before dementia
or accelerating the decline of cognitive capacity. This view says that depression
increases the risk of dementia in an individual otherwise cognitively capable.
On the other hand, depressive symptoms may be seen as commonly appearing
because of neurodegeneration, so dementia is a cause, in some sense, of depres-
sion. The question of which comes first or which one should primarily be in focus
in diagnostics or prevention.

There are several studies specifically about these two options. On the
one hand, cognitive decline “juncted with” depression, or cognitive decline
“juncted with, as followed by,” depression [15], can be seen as valuated by
dementia ∗r depression. On the other hand, depression “juncted with, as fol-
lowed by,” cognitive decline [3], i.e., depression as a risk factor for dementia,
means treating or preventing depression supports prevention of dementia. The
valuation in this case is closer to dementia ∗� depression.

In comparison, a similar but different duality and non-commutatitivity
appears with falls and depression. Here its less intertwined as depression lead-
ing to higher fall risk is different from depression appearing months after a fall
injury. In the latter case, depression is due to functional decline after a fall injury,
rather that due to the fall injury itself. Other situations can be found, but in
the subsequent steps we focus on dementia ∗ depression.



444 P. Eklund et al.

To start with, let us look at dementia “juncted with” depression, and suppose
Dementia = � and depression = a. Then dementia ∗r depression = �, so
an ‘not specified’ depression would not weaken dementia ∗ depression to ‘not
specified’. This amounts to saying that truth of dementia would preserve the
truth of the statement dementia “juncted with, as followed by,” (still) not known
depression. On the other hand, we will have depression ∗r dementia = a, so
not knowing depression would mean not knowing depression “juncted with, as
followed by,” (still) not known dementia. Since x1 ∗� x2 = x2 ∗r x1, the left-sided
and right-sided are in this case just dual situations. However, non-commutativity
is here a key factor, and this non-commutativity must not be confused with
causality e.g. as appearing in computations related to conditional probabilities.

At this point it is appropriate to point out a fundamental difference between,
on the one hand, sampling and hypothesis testing in statistics, with “how many”
and related mean values as ingredients in statistical evidence. Logical evidence
states “how” and is related to truth values. Bridging the gap between “how
many” and “how” is the first step in a successful bridging of the gap between
analytics (statistics) and guidelines (logic).

Dementia and depression are within the realm of disorders, as classified by
WHO’s (World Health Organization) ICD (Intermational Classification of Dis-
eases). Even if disorders in many meanings can have magnitude and severity, a
diagnosis code is nevertheless bivalent in the sense of representing a disease being
diagnosed or not, i.e., no gradation is enabled within ICD. WHO’s ICF (Interna-
tional Classification of Functioning, Disability and Health), on the other hand,
comes with a generic 5-scale for valuation of the severity of specific functioning.
The so called ICF Core Sets are potentially many-valued subsets of ICF codes,
even if the existing Core Sets do not explicitly recognize that many-valuedness
in a more strict logical sense.

ICF as a classification for Functioning, Disability and Health distinguishes
between health domains and health-related domains, where the domains are
described in two basic lists, respectively, for Body Functions and Structures, and
Activities and Participation. Functioning is seen as an umbrella term encom-
passing all body functions, activities and participation, whereas Disability is an
umbrella term for impairments, activity limitations or participation restrictions.
In WHOs international classifications, health conditions (diseases, disorders,
injuries, etc.) are classified primarily in ICD-10, which provides the etiologi-
cal framework as complementary to ICF. Functioning and disability associated
with health conditions are indeed classified in ICF.

ICF has moved away from being a “consequences of disease” classification
(1980 version) to become a “components of health” classification. Components
of health are then seen as constituents of health, whereas “consequences” focuses
on the impacts of diseases or other health conditions that may follow as a result.
Disorder and functioning seen as intertwined does obviously not exclude causality
and consequence. On the contrary, consequence becomes even a more compli-
cated matter.
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Components of functioning and disability are interpreted by means con-
structs, and these constructs are operationalized by using qualifiers. For the
Activities and Participation component, two constructs are available, nemaly,
capacity and performance. Consequences within or between constructs are never
considered, and ICF indeed describes interactions between its components only
informally, and on a very general level.

ICF uses the same generic scale, respectively, for Body Functions and Struc-
tures, Activities, and Participation, and as related to health conditions as dis-
order or disease (ICD).

All these components are quantified using the same generic scale. The scale
is not logically explained, but leans on statistics. A typical statement in ICF is
that “for this quantification to be used in a universal manner, assessment proce-
dures need to be developed through research”. One of the qualifiers, MODERATE
problem, is defined as up to half of the time or half the scale of total difficulty.
Here “scale” is intentionally left as undefined, but relates to percentage scales
and how they appear in statistics.

There is indeed no logical explanations, and no indications whatsoever on how
to junct qualifiers in an algebraic and logical setting. Qualifiers like MODERATE
problem are more seen as quantifiers by percentages as to be calibrated in dif-
ferent domains with reference to population standards as percentiles. They are
never explained or seen as logical qualifiers. Therefore, the no specific algebra
for the generic is ever defined, nor is it explained or assumed how algebraic
properties might be preserved e.g. when transforming from Body Function to
Activity.

The ICF datatypes and its generic scale of quantifiers correspond to elements
in C�

3 ⊗ Cr
3 as follows:

xxx.0 NO problem � full capacity
xxx.1 MILD problem α sufficient capacity
xxx.2 MODERATE problem � capacity in transition
xxx.3 SEVERE problem β capacity almost lost
xxx.4 COMPLETE problem ⊥ no capacity
xxx.8 not specified λ capacity not (yet) known

In ICF’s generic scale, there is also a xxx.9 for ‘not applicable’, but this should
not be seen as part of the valuation, but is rather a lack of typing.

In the table above we have provided our example focus on capacity, and in our
brief algebraic view we focus e.g. on in transition. Clearly, several annotations
and contexts are possible, and we do claim that there is a variety of possible
annotations and contexts, all requiring specific properties as far as algebraic
structures are concerned.

Before going deeper into how ICF’s generic scale can be explained alge-
braically in a variety of ways using quantales and tensors of quantales, it is
first important to note how ⊗ comes from a monoidal closed category, so objects
are tensored, i.e., C3 is to be viewed as a category. This is clearly quite chal-
lenging to connect to medical knowledge and preparations for sampling as basis
for a clinical trial. Informally treated information in trials and studies of various
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kind is identified and used by medical professionals within the realm of evidence-
based medicine, where statistics is the only method of computation, and logic is
usually comprehended in quite rudimentary forms.

As we shall see, there are many candidates for representing ICF’s generic
scale as a quantale. An interpretation of ICF’s constructs in relation to diseases
(ICD) could suggest viewing ICF’s generic scale as a quantale in form of

ICFd = ICD� ⊗ ICDr

reflecting the situation that a valuation of a multi-morbidity medical condition-
condition interaction of ICD codes corresponds to the way valuation of function-
ing is done with respect to ICF codes. Similar relations and structure can be
provided as involving several other classifications [6].

Specific chains of values in C�
3⊗Cr

3 now come into play, and reflect valuations
appearing in care pathways. We use the ICF core set for rheumatoid arthritis
(RA) to illuminate this situation. RA is an autoimmune, chronic inflammatory,
disorder that affects the joints, and shows a relatively high prevalence of comor-
bidities [4], with depression as the most commonly observed comorbidity. Typical
functioning affected included the following ICF codes:

b280 Sensation of pain
b455 Exercise tolerance functions
b710 Mobility of joint functions

Suppose we now have an overall functioning valuation for RA at ⊥, and at some
point in time and in a certain position in the care pathway. A complete problem
(⊥) related to depression has been treated to become a severe problem (β). The
valuation for RA then jumps to β. The sensation of pain, as caused by RA, has
been brought to level α, so β � α produces a new RA level at �. Severity β of
pulmonary disease may again bring the RA level back to � � β = β.

Concerning ICF’s generic scale, we have the situation ‘full capacity’ and then
‘capacity almost lost’ = ‘capacity not (yet) known’, and the situation ‘capacity
almost lost’ and then ‘full capacity’ = ‘capacity in transition’. It therefore seems
that the binary operation ‘and then’ gives an orientation! Moreover, we have
‘full capacity’ and then ‘capacity not (yet) known’ =‘capacity not (yet) known’,
‘capacity not (yet) known’ and then ‘full capacity’ = ‘full capacity’, ‘capacity
in transition’ and ‘full capacity’ = ‘capacity in transition’, and ‘full capacity’
and then ‘capacity in transition’ = ‘full capacity’. In this way we never reach
α = (a ⊗ �) ∨ (�a ⊗ a)= ‘sufficient capacity’. It is also remarkable to observe
that

‘sufficient capacity’ and then ‘sufficient capacity’ = ‘full capacity’,

because α is the unique non-idempotent element, a phenomenon which is also
beyond Boole’s [1] idempotent view of conjunction.

Obviously, this is a quite general example, and without detail concern-
ing mechanisms involved in this multimorbitiy and multifunctioning view.
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The example nevertheless serves as a demonstration about how conditions of
various kind interact in a non-commutative manner. Clearly, C3 and C�

3 ⊗ Cr
3

are not the only options even in the case of ICFd, nor do we claim that there are
canonic all-purpose scales. However, ICF has adopted its 5-scale with the ‘not
specified’ not clearly related to elements in the 5-scale. Note also in the tensor
how � dominates the quantale, in some sense reflecting the bivalence of disorder
qualification. Looking at the algebra of the generic scale e.g. for the capacity
construct, ICFc, the Hasse diagram of the scale remains, but the quantale must
be different and must be identified without such domination of the � qualifier.

5 Conclusions and Future Work

The use of quantales enables a non-commutative setting. Our medical exam-
ple illuminates a situation where non-commutativity must be considered, and
in health care there are many similar situations where multivalence invites to
considering non-commutativity. Quantales as such or as tensored from other
quantales clearly provide application oriented uncertainty modelling in particu-
lar in situations where classifications and nomenclatures play an important role.
The role of ‘not specifified’ in various forms is important. In health and social
care this is clearly relevant for WHO’s classifications, and in particular concern-
ing their interrelations. This is expected to have bearing on considerations for
SNOMED and HL7 as well.

For appropriate typing of items and objects within applications, valuations
cannot simply be of the form v : X → C�

3 ⊗ Cr
3 , where X would be seen as

unstructured and based on no terminologies or classifications. From application
point of view we do not rule out the possibility that we may have sidedness per
type. This also raises the question whether or not one should aim at finding a
universally valid quantale for all types within one application context, or is it
more reasonable to think in terms of having different quantales per type. In a
junction x1⊗x2 we need to understand this beyond just the algebraic machinery
in particular when x1 and x2 are terms of different type [9].

From enrichment of logic language point of view, it is important to note how
quantales can be arranged to appear in underlying Goguen categories [8], and
when terms over a signature [9] are constructed over such Goguen categories, we
enable multivalent annotations for expressions as terms, which then in turn enable
multivalence annotations in sentences like, e.g., clauses in logic programming [10].

Several real-world application domains can make use of these structures and
techniques. Logic and many-valuedness as proposed in this paper will be consid-
ered also e.g. when showing how to enrich the language used in the manufactur-
ing industry regarding information structure and its representation for products
and production processes. This underlines the importance of introducing a struc-
ture for functioning classification in order to complement and interact with the
traditional view of faults and failures in product and production subsystems.

The potential use of a many-valued logic enriched classification of function-
ing in machines and manufacturing (MCFu) should then be related to enriched
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classification of faults (MCFa). As compared to the ICF tensor, for the manu-
facturing industry and design structures in engineering we have a similar

MCFu = MCFa� ⊗ MCFar,

which is expected to be important in ontology considerations for various systems-
of-systems. This clearly reflects the situation that a valuation of a multiple fault
system-of-systems fault-fault interaction of MCFa encoding corresponds to the
way valuation of MCFu based functioning is done with respect to MCFu encod-
ing. More generally, encoding in this manner will need to be integrated in mod-
elling standards like UML, SysML and BPMN [5].
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10. Eklund, P., Galán, M.Á., Helgesson, R., Kortelainen, J., Moreno, G., Vázquez, C.:
Towards categorical fuzzy logic programming. In: Masulli, F. (ed.) WILF 2013.
LNCS, vol. 8256, pp. 109–121. Springer, Heidelberg (2013)
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Abstract. In medical diagnosis, information about the health state of
a patient can often be obtained through different tests, which may per-
haps be combined into an overall decision rule. Practically, this leads to
several important questions. For example, which test or which subset of
tests should be selected, taking into account the effectiveness of individ-
ual tests, synergies and redundancies between them, as well as their cost.
How to produce an optimal decision rule on the basis of the data given,
which typically consists of test results for patients with or without con-
firmed health condition. To address questions of this kind, we develop
an approach that combines (semi-supervised) machine learning method-
ology with concepts from (cooperative) game theory. Roughly speaking,
while the former is responsible for optimally combining single tests into
decision rules, the latter is used to judge the influence and importance of
individual tests as well as the interaction between them. Our approach
is motivated and illustrated by a concrete case study in veterinary medi-
cine, namely the diagnosis of a disease in cats called feline infectious
peritonitis.

1 Introduction

Different types of tests, such as measuring serum antibody concentrations, are
commonly used in medical diagnostics in order to reveal the health condition of
an individual. The effectiveness of a single test is typically determined by cor-
relating the test outcome with the true condition. Moreover, classical statistical
hypothesis testing can be used to compare different test procedures in terms of
their effectiveness.

In this paper, we tackle the problem of evaluating or selecting a test pro-
cedure from a slightly different perspective using methods of (semi-)supervised
machine learning. Roughly speaking, the idea is that, by learning a model in
which various candidate tests play the role of predictor variables, information
about the usefulness of individual tests as well as their combination is provided
by properties of that model. An approach of that kind has at least two important
advantages:
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 450–461, 2016.
DOI: 10.1007/978-3-319-40596-4 38
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– First, it not only allows for judging the usefulness of single tests but also of
combined tests, i.e., the combination of different tests into one overall (diag-
nostic) decision rule. Thus, it informs about possible synergies (as well as
redundancies) between individual tests and the potential to improve diagnos-
tic accuracy thanks to a suitable combination of these tests.

– Second, going beyond the standard setting of supervised learning, a machine
learning approach suggests various ways of improving the selection of tests by
taking advantage of additional sources of information. An important special
case is the use of semi-supervised learning to exploit “unlabeled” data coming
from individuals for which tests have been made but the true health condition
is unknown. This situation is highly relevant in medical practice, because
tests can often be conducted quite easily, whereas determining the true health
condition is very difficult or expensive.

Our approach is motivated by a concrete case study in veterinary medicine,
namely the diagnosis of a disease in cats called feline infectious peritonitis (FIP).
Complete certainty about whether or not a cat is FIP-positive, and eventually
will die from the disease, requires a necropsy [1,10]; unfortunately, no test per-
formed in a cat while still alive has a 100 % sensitivity or 100 % specificity. Con-
sequently, while different tests can be applied to cats quite easily, “labeling” a
cat in the sense of supervised learning is expensive, difficult and time-consuming.

In addition to the use of (semi-supervised) machine learning methodology
in medical diagnosis, we propose a game-theoretical approach for measuring the
usefulness of individual tests as well as model-based combinations of such tests.
Roughly speaking, the idea is to consider a combination of tests as a “coalition”
in the sense of cooperative game theory, and the “payoff” of the coalition as
the diagnostic accuracy achieved by the test combination. This approach will be
detailed in the next section, prior to elaborating more closely on our case study
in Sect. 3, presenting experimental results in Sect. 4 and concluding the paper
in Sect. 5.

2 Evaluating Single and Combined Tests

Suppose a set of tests X1, . . . , XK to be available. We consider the outcome of
each test as a random variable Xk : Ω −→ R, where Ω is the population of
individuals to which the test can be applied. Jointly, the K tests thus define a
random vector

X = (X1, . . . , XK) ∈ X = R
K .

The health state is a dichotomous variable Y ∈ Y = {−1,+1}. Typically, each
test is a positive indicator in the sense that P(Y = +1 |Xk) increases with Xk,
i.e., the larger Xk, the larger the probability of the positive class. Using machine
learning terminology, each test corresponds to a feature or predictor variable.
Moreover, X is the instance space, each X ∈ X is an instance, and Y is the
(binary) output or response variable.
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2.1 Combined Tests

If a diagnostic decision ŷ ∈ {−1,+1} is not necessarily based on a single test Xk

alone, but possibly uses a combination of several tests, a first question concerns
the way in which such a combination is realized. From a machine learning point
of view, this question is related to the choice of an underlying models class
(hypothesis space)

H ⊂
K⋃

J=1

HJ =
K⋃

J=1

YR
J

,

where J ≤ K is the number of tests included in the decision rule. Formally, we
specify a combined test in terms of the subset A ⊆ [K] = {1, . . . , K} of indices,
i.e., test Xk is included if k ∈ A.

The model class H could be defined, for example, as the class of linear thresh-
old functions of the form

h :
(
xσ(1), . . . , xσ(J)

) �→
�

�
J∑

j=1

wj · xσ(j) > t

�

� , (1)

where w1, . . . , wJ , t ∈ R+ and �·� maps true predicates to +1 and false predicates
to −1; moreover, σ(j) is the j-th test included in the combination, i.e., σ(j) = k

if
∑k

i=1�i ∈ A� = j.

2.2 Optimal Decision Rules

Let L : {−1,+1}2 −→ R be a loss function, such that L(y, ŷ) denotes the
penalty for making the diagnostic decision ŷ if the true health state is y. For
each combined test, specified by a subset A ⊆ [K], there is an optimal decision
rule

h∗
A ∈ arg min

h∈H

∫

L
(
y, h(x)

)
dP(x, y),

i.e., a decision rule that minimizes the loss in expectation. We denote the expected
loss of this model, which corresponds to the Bayes predictors in H|A|, by

e∗(A) =
∫

L
(
y, h∗

A(x)
)
dP(x, y). (2)

2.3 Estimating Generalization Performance

In practice, of course, neither the Bayes predictor h∗
A nor the ideal generalization

performance e∗(A) are known. Instead, we only assume a data set D = DL ∪DU

to be given, which consists of a set of labeled instances

DL =
{
(xi, yi)

}L

i=1
⊂ X × Y



Selecting Tests in Medical Diagnosis 453

and possibly another set of unlabeled instances (test results without ground
truth) DU = {xj}U

j=1 ⊂ X . From a machine learning point of view, it is then
natural to estimate the generalization performance on the basis of D for each
A ⊆ [K]. To this end, models (1) can be fitted and their generalization perfor-
mance can be estimated, for example, using cross-validation techniques or the
bootstrap. More specifically, what can be estimated in this way is the general-
ization performance of a model that is trained on a combination A and data in
the form of L labeled and U unlabeled examples. Therefore, we shall denote a
corresponding estimate by ê(A,L,U) or simply ê(A) (assuming the underlying
data to be given).

Needless to say, the estimates ê(A) thus obtained are not necessarily
monotone in the sense that ê(B) ≤ ê(A) for A ⊆ B. In fact, while e∗(A) is
the generalization performance of the Bayes predictor, i.e., the model that is
obtained in the limit of an infinite sample size (provided the underlying learner
is consistent), the estimates ê(A) are obtained from models trained on a finite
(and possibly small) data set. Therefore, practical problems such as overfit-
ting become an issue, i.e., including additional tests may deteriorate instead of
improve generalization performance.

2.4 Correcting Generalization Performance

How can the ideal generalization performances

{e∗(A) |A ∈ [K]} (3)

be estimated? Starting with the finite-sample estimates

{
ê(A) |A ⊆ [K]

}
, (4)

our proposal is to correct these estimates so as to assure monotonicity. In fact,
monotonicity is the main difference between the ideal and finite-sample scores.
Apart from that, the ideal scores (3) should not differ too much from the esti-
mates (4), i.e., e∗(A) ≈ ê(A), at least if the training data is not too small.

These considerations suggest the following estimation principle: Find a set of
values (3) that satisfy monotonicity while remaining as close as possible to the
corresponding scores (4). This principle can be formalized as an optimization
problem of the following kind:

minimize
∑

A⊆[K]

∣
∣ê(A) − e∗(A)

∣
∣

s.t.
e∗(B) ≤ e∗(A) for all A ⊆ B ⊆ [K]
0 ≤ e∗(A) ≤ 1 for all A ⊆ [K]

The above problem can be tackled by means of methods for isotonic regres-
sion. More specifically, since the inclusion relation on subsets induces a partial
order on 2[K], methods for isotonic regression on partially ordered structures are
needed [3,14].
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2.5 Measuring the Usefulness of Tests

Consider the set function ν′ : 2[K] −→ [0, 1] defined by ν′(A) = 1− e∗(A). Obvi-
ously, ν′ is a monotone measure (of the usefulness of combined tests). Moreover,
this measure can be normalized by setting

ν∗(A) =
ν′(A) − ν′(∅)

ν′([K]) − ν′(∅)
,

where ν′(∅) is the performance of the best (default) decision rule that does not
use any test, i.e., which either always predicts ŷ = +1 or always ŷ = −1. The
measure ν∗(·) thus defined satisfies the following properties:

– ν∗(∅) = 0, ν∗([K]) = 1,
– ν∗(A) ≤ ν∗(B) for all A ⊆ B ⊆ [K].

Thus, ν∗ is a normalized, monotone (but not necessarily additive) set function,
referred to as fuzzy measure or capacity in the literature [5]. For each combined
test A, ν∗(A) is a reasonable measure of the usefulness of this test.

In a similar way, a measure v• can be defined on the basis of the finite-sample
scores (4), that is, by normalizing ν′(A) = 1 − ê(A):

v•(A) =
ν′(A) − ν′

min

ν′
max − ν′

min

,

where ν′
min = 1−maxB⊆[K] ê(B) and ν′

max = 1−minB⊆[K] ê(B). Note, however,
that this measure is not necessarily monotone.

Which of the two measures is more meaningful, ν∗ or ν•? The answer to this
question depends on practical considerations and what the measure is actually
supposed to capture. When being interested in the potential asymptotic useful-
ness of a test combination, then ν∗ is the right measure. Otherwise, if a model
induced from a concrete set of training data is supposed to be put into (medical)
practice, ν• is arguably more relevant.

2.6 Shapley Value and Interaction Index

From the point of view of (cooperative) game theory, each (test) combination
A ⊆ [K] can be seen as a coalition and ν ∈ {ν∗, ν•} as the characteristic function,
i.e., v(A) is the payoff achieved by the coalition A. Thanks to this view, we can
take advantage of various established game-theoretical concepts for analyzing
the importance of individual players, which correspond to tests in our case, as
well as the interaction between them. In particular, the Shapley value, also called
importance index, is defined as follows [17]:

ϕ(k) =
∑

A⊆[K]\{k}

1

K

(
K − 1

|A|
)

(
ν(A ∪ {k}) − ν(A)

)
. (5)
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The Shapley value of ν is the vector ϕ(ν) = (ϕ(1), . . . , ϕ(K)). For monotone
measures (such as ν = ν∗), one can show that 0 ≤ ϕ(k) ≤ 1 and

∑K
k=1 ϕ(k) = 1;

thus, ϕ(k) is a measure of the relative importance of the test Xk.
The interaction index, as proposed by [13], is defined as follows:

I(i, j) =
∑

A⊆[K]\{i,j}

(
ν(A ∪ {i, j}) − ν(A ∪ {i}) − ν(A ∪ {j}) + ν(A)

)

(K − 1)
(

K − 2
|A|

) .

This index ranges between −1 and +1 and indicates a positive (negative) inter-
action between the tests Xi and Xj if Ii,j > 0 (Ii,j < 0).

It is worth mentioning that the approach put forward in this section is quite
in line with the idea of Shapley value regression [11], which makes use of the
Shapley value in order to quantify the contribution of predictor variables in
(linear) regression analysis (quantifying the value of a set of variables in terms
of the R2 measure on the training data).

3 Feline Infectious Peritonitis in Cats

Feline infectious peritonitis (FIP) is a disease with an affinity to young cats, a
predisposition to involve cats living in larger groups. As it exhibits typical phys-
ical examination and clinical laboratory findings, it appears to be easy to diag-
nose. However, while a presumptive diagnosis is quickly established, a definite
diagnosis is difficult to impossible to obtain without gross and histopathological
evaluation including immunohistochemistry [1,10].

The seroprevalence is high, especially in catteries where up to 90 % of the
cats are positive [2], but also up to 50 % of cats living in single-cat households
have coronavirus-specific antibodies [4]. Of these, 5–10 % will develop the deadly
form of FIP. A characteristic symptom of FIP is body cavity effusion, which also
appears in other diseases [8]. Several treatment options exist for some of these
diseases while FIP is deadly and no reliable effective therapy is known so far [16].
Therefore, it is important to diagnose the correct disease early.

Several diagnostic tests are available that diagnose FIP, for which sensitivity,
specificity, positive and negative predictive value vary between different studies,
presumably because different forms of FIP (effusive and dry) were investigated
and because various clinical signs, geographic locations, years of investigation,
prevalence and combination of tests were used [4,6,7,9,15,18]. In studies so far,
no cat had all available tests performed.

The data underlying our study includes the following diagnostic tests:

– Albumin to Globulin ratio, plasma (X1) and effusion (X2)
– Rivalta test (X3)
– Presence of antibodies against feline coronavirus (FCoV, X4)
– Reverse transcriptase nested polymerase chain reaction (RT-nPCR) to detect

FCoV-RNA in EDTA-blood (X5) and in the effusion (X6)
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– Immunofluorescence staining (IFA) of FCoV antigen in macrophages in the
effusion (X7)

4 Empirical Study

Our dataset consists of 100 cats in total. For 29 of these cats, a necropsy was per-
formed to establish the gold standard diagnosis; 11 of the 29 cats were diagnosed
with feline infectious peritonitis (FIP). Additionally, the above 7 diagnostic tests
were performed on all cats (i.e., K = 7, L = 29 and U = 71).

To estimate the generalization accuracy (in terms of the simple 0/1 loss
function) of each of the 27 = 128 combined diagnostic tests, we employ a semi-
supervised classification technique called maximum contrastive pessimistic like-
lihood estimation (MCPL) [12]. Logistic regression with L2 penalization is used
as the base learner in MCPL, i.e., individual tests are combined using a linear
model of the form (1).

Estimates ê(A) of the (finite-sample) classification errors are obtained as fol-
lows: We resample the set of 29 labelled cats and split the resulting sample into
16 training and 13 test examples. The remaining 71 cats without label infor-
mation are added to the training set. This procedure is repeated 501 times for
each of the 128 combinations of tests, and the results are averaged. To obtain
estimates e∗(A) of the ideal generalization performances, the finite-sample esti-
mates are subsequently corrected using isotonic regression [3,14] as described
in Sect. 2.4.

4.1 Test Importance for Finite-Sample Performance Estimates

Figure 1 shows the Shapley values calculated for each test on the basis of the
finite-sample performances ê(A), i.e., the measure ν•. Note that, since this mea-
sure is not necessarily monotone, negative Shapley values are possible (as is the
case for the Rivalta test). The highest Shapley values are obtained for the two
RT-nPCR tests.

Fig. 1. Shapley values calculated for the finite-sample measure ν•.
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Fig. 2. Classification accuracy for all 128 test combinations (sorted by mean accuracy).
The vertical lines show the 80 % empirical percentiles of the bootstrap estimates. The
results for subsets including RT-nPCR (blood) are highlighted in blue. (Color figure
online)

To further illustrate the importance of the diagnostic test RT-nPCR, Fig. 2
shows the mean validated classification accuracy for all 128 test combinations.
The 80 % empirical percentiles are indicated by the vertical lines, and the subsets
are sorted in decreasing order of their mean validated accuracy. Moreover, the
results for those subsets including RT-nPCR (measured in blood) are highlighted
in blue. Evidently, the concentration of subsets containing RT-nPCR (blood) is
systematically higher to the left of the plot, which confirms that the inclusion
of the test improves diagnostic accuracy.

4.2 Test Importance for Ideal Performance Estimates

The effect of isotonic regression on the finite-sample estimates is shown in Fig. 3.
Here, each blue dot corresponds to an estimate ê(A) for a particular subset
A of diagnostic tests. Since partial monotonicity, which is assured by isotonic
regression, cannot be visualized in a two-dimensional plot, the data points are
sorted by their corrected classification accuracy (and ties are broken at random).
The green line shows the isotonic regression fit.

The corrected performance estimates ν∗(A) can subsequently be used to cal-
culate the Shapley values for each diagnostic test. The results are shown in
Fig. 4. Due to the monotonicity of ν∗, all values are now positive. Again, the RT-
nPCR tests achieve the highest Shapley values, but FCoV antibody titer and IFA
(effusion) obtain values > 0.15, too. Note that the relative order of the RT-nPCR
tests changed from the one in Fig. 1, probably due to their accuracy being very
similar and the random nature of the bootstrap validation.

Figure 5 shows the accuracy estimates for all subsets. The dots indicate the
corrected accuracies ν∗(A) and are used to sort subsets in decreasing order, while
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Fig. 3. Isotonic regression correction (green line) applied to the bootstrap validated
classification accuracies (blue dots). (Color figure online)

Fig. 4. Shapley values calculated using the corrected validation accuracies.

the vertical lines show the 80 % percentiles of the original bootstrap estimates.
Again, the results are highlighted in blue if RT-nPCR (blood) is included in
A. Like in the case of ν• (cf. Fig. 2), the subsets containing RT-nPCR (blood)
can mostly be found on the left side of the plot; this trend is now even more
pronounced.

4.3 Balancing Accuracy and Cost

An important question for a veterinary physician is which combination A of tests
to perform, taking into account both diagnostic accuracy and effort. Figure 6
shows the corrected accuracies ν∗(A) (green dots) of all subsets of tests and
their combined monetary cost in Euro. The Pareto set, consisting of those com-
binations that are not outperformed by any other combination in terms of both
accuracy and cost at the same time, is indicated as a blue line. From a prac-
tical point of view, the result suggests to use a single diagnostic test, namely
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Fig. 5. Corrected accuracy ν∗(A) for all 128 subsets (sorted by mean accuracy). The
vertical lines show the 80% empirical percentiles of the original bootstrap estimates.
Subsets including RT-nPCR (blood) are shown in blue. (Color figure online)

Diagnostic test Cost

A/G ratio (plasma) 7.34
A/G ratio (effusion) 7.34
Rivalta test 1.00
Antibody titer 20.83
RT-nPCR (blood) 43.32
RT-nPCR (effusion) 43.32
IFA (effusion) 23.80

Fig. 6. Scatter plot of the monetary costs of the subsets in Euro in relation to the
corrected accuracies ν∗(A) shown as green dots. The blue line shows the Pareto front.
The red points highlight the subsets which contain exactly one test. The costs for each
individual test are shown in the table on the right. (Color figure online)

RT-nPCR (blood or effusion), because the inclusion of more tests yields only
minor improvements. This is confirmed by the pairwise interaction indices shown
for both measures ν• and ν∗ in Table 1. All these measures are negative, sug-
gesting that the tests are more redundant than complementary.

Note that, once a decision in favor of using a single test is made, the Shapley
value, as a measure of average improvement achieved by adding a test, is no
longer the best indicator of the usefulness of a test. Instead, a selection should
be made based on the tests’ individual performance. With a validated accuracy
of 87 %, RT-nPCR (effusion) appears to be the best choice in this regard.
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Table 1. Pairwise interaction indices for ν• (left) and ν∗ (right).

X1 X2 X3 X4 X5 X6 X7

X1 0.0 −0.02 −0.03 −0.05 −0.05 0.00 −0.02 −0.20 −.21 −0.15 −.21 −0.17 −.19

X2 0.0 −0.05 −0.05 −0.02 −0.03 −0.07 −0.05 −0.03 −0.04 −0.04 −0.04

X3 0.0 −0.02 −0.04 −0.10 −0.06 −0.04 −0.06 −0.07 −0.06

X4 0.0 −0.08 −0.05 −0.01 −0.04 −0.04 −0.03

X5 0.0 −0.30 −.33 −0.24 −.32

X6 0.0 −0.20 −.22

5 Summary and Conclusion

In this paper, we proposed a method for measuring the importance and useful-
ness of predictor variables in (semi-/supervised) machine learning, which makes
use of concepts from cooperative game theory: subsets of variables are consid-
ered as coalitions, and their predictive performance plays the role of the payoff.
Although our approach is motivated by a concrete application in veterinary medi-
cine, namely the diagnosis of feline infectious peritonitis in cats, it is completely
general and can obviously be used for other learning problems as well.

For the case study just mentioned, our method produces results that appear
to be plausible and agree with the medical experts’ experience. Roughly speak-
ing, there are two strong diagnostic tests that are significantly more accurate
than others; practically, it suffices to use one of them, since a combination with
other tests yields only minor improvements.

There are several directions for future work. For example, the principle we
proposed in Sect. 2.4 for inducing ideal generalization performances e∗(A) from
finite-sample estimates ê(A) is clearly plausible and, moreover, seems to be
indeed able to calibrate the original estimates thanks to an ensemble effect.
Nevertheless, it calls for a more thorough analysis and theoretical justification.
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Abstract. Blood vitamin B12 levels are not representative for actual
vitamin B12 status in tissue. Instead plasma methylmalonic acid (MMA)
levels can be measured because MMA concentrations increase relatively
early in the course of vitamin B12 deficiency. However, MMA levels in
plasma may also be increased due to renal failure. In this paper we
estimate the influence of the kidney function on MMA levels in plasma
by using fuzzy inference systems. Using this method diagnosing vitamin
B12 deficiencies could be improved when kidney failure is present.

Keywords: Vitamin B12 deficiency · Kidney function · Takagi-Sugono
fuzzy inference system

1 Introduction

A deficiency in vitamin B12 is a common disorder which can result in various
hematological and neurological disorders. Until a significant vitamin B12 defi-
ciency is developed in the tissue, patients often remain asymptomatic. In the
detection of vitamin B12 deficiency, measuring vitamin B12 levels in serum is
not a proper representation of actual vitamin B12 levels in tissue [9,11].

As an indirect but functional measure of tissue vitamin B12 status, methyl-
malonic acid (MMA) levels in plasma can be measured as MMA concentrations
increase relatively early in the course of vitamin B12 deficiency [2,5]. Vita-
min B12 serves as a cofactor in the enzymatic reaction where the coenzyme
A-linked form of MMA, i.e. methylmalonyl-CoA, is converted into succinyl-
CoA by methylmalonyl-CoA mutase, an important step in the extraction
of energy from proteins and fats. When there is a vitamin B12 deficiency,
methylmalonyl-CoA is not converted by the enzyme and accumulates. Upon
release of methylmalonyl-CoA in the plasma, coenzyme A is released and MMA
levels rise. As a consequence, the vitamin B12 supply to the tissues is reflected
by the level of MMA in plasma, showing an inverse correlation.

c© Springer International Publishing Switzerland 2016
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However, MMA plasma levels may also be increased due to renal failure as
a result of impaired filtration and secretion [2,7]. Therefore, increased MMA
levels in plasma are not specific to vitamin B12 deficiency. To determine if a
vitamin B12 deficiency is present based on MMA plasma level measurements,
it is preferred to include measurements assessing kidney function. It is known
that there is an influence of kidney function on MMA plasma levels but to the
authors’ best knowledge the extend of this influence is unknown.

In this paper we estimate the influence of the kidney function on MMA
plasma levels using data analysis techniques, in particular fuzzy inference sys-
tems (FIS). In order to achieve this goal, we first model the relationship between
the MMA, vitamin B12 and kidney function with a FIS. Next, we use the model
to estimate the influence of kidney function on MMA plasma levels.

This paper is structured as follows: in Sect. 2 we describe the collected data.
Section 3 describes briefly the FIS and how it was created from the data. Section 4
presents the analysis of the influence of the kidney function. The paper is finished
with the concluding remarks in Sect. 5.

2 Data Description

In order to model the relationship between MMA plasma levels, vitamin B12 and
kidney function, we collected laboratory and physiological data from all patients
at the Catharina Hospital Eindhoven in the Netherlands, where vitamin B12
measurements were performed in the period from July 2010 until April 2015. In
this way we obtained 64331 records.

For vitamin B12, the exact value can be determined up to the value of
1400 pmol/L. If it is higher it is noted in the hospital information system as
“>1400”. The values of vitamin B12 below 90 pmol/L means deficiency, while
values above 300 pmol/L are considered as indication for no deficiency.

Methylmalonic acid (MMA) levels in the plasma are measured in range from
100 (sometimes 140 depending on the equipment) till 1500 nmol/L. Concentra-
tions lower and higher than the threshold values are indicated respectively as
“<100” and “>1500”. Levels of plasma MMA below 300 nmol/L are considered
normal in the Catharina Hospital laboratory [9], while levels above 430 nmol/L
are considered to indicate vitamin B12 deficiency.

Kidney functions can be described by creatinine values or glomerular filtra-
tion rate (GFR). In this study we use the GFR values calculated according to
the CKD EPI formula, taking into account creatinine levels, gender and age.
CKD EPI above 90 mL/min/1.73 m2 indicate very good kidney function, values
between 60 mL/min/1.73 m2 and 90 mL/min/1.73 m2 indicate good kidney func-
tion. Values between 30 mL/min/1.73 m2 and 60 mL/min/1.73 m2 are indication
of moderate kidney function, while values below 30 mL/min/1.73 m2 means poor
kidney function (renal failure). For this study we may assume that the threshold
of 60 mL/min/1.73 m2 is the most important one.

Catharina Hospital is a leading center for bariatric surgery, and so many vita-
min B12 measurements included in the dataset were performed for the bariatric
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patient population. For those patients, MMA measurements are performed only
when the vitamin B12 results meet certain pre-determined criteria, i.e. so called
reflex testing. As a result, this population is overrepresented in the dataset
and therefore we decided to include only the data of non-bariatric patients, i.e.
patients with a BMI between 18 and 25. We also excluded patients, that we sus-
pect for being supplemented with vitamin B12 (vitamin B12 serum level above
900 pmol/L). Further we filtered out observations with missing values or non-
numerical values of vitamin B12, MMA or CKD EPI. As a result we obtained
380 data points. The 3D scatter plot showing the data is shown in Fig. 1.
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Fig. 1. Scatter plot MMA and vitamin B12 and CKD EPI

3 Fuzzy Model

We model the relationship between MMA, vitamin B12 and kidney function
(CKD EPI) using first order Takagi-Sugeno Fuzzy Inference System. The fuzzy
model is obtained by following a clustering-based methodology similar to the
one in [10]. Fuzzy c-means clustering is used to determine the antecedents of
the initial fuzzy model, after which the model parameters are optimized. The
rule antecedents are distributed according to a scatter partition [4], which is the
natural partitioning approach in the cluster-based approaches.
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iVAT image − data with 2 features: vitamin B12, CKD EPI

50 100 150 200 250 300

50

100

150

200

250

300

iVAT image − data with 3 features: vitamin B12, CKD EPI, MMA
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Fig. 2. iVAT images of dissimilarity of data points with two features: vitamin B12 and
CKD EPI (above) and three features: vitamin B12, CKD EPI and MMA (below).

For testing purposes, we held out 10 % of the data as the test set. The selec-
tion of the test set is stratified based on the MMA values binned into five cate-
gories of equal sizes. The remaining data are used to build the model.

First we investigate the number of clusters and rules that the FIS should
have. For this purpose we use a few cluster tendency assessment methods, such
as iVAT [1] and cluster correlation validity indices [8]. The iVAT method is a
visual method for determining the possible number of clusters in, or the cluster
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tendency of a set of objects [1]. We created two iVAT images for the data, as
shown in Fig. 2, one for features Vitamin B12 and CKD EPI, and the other
including also MMA as a feature. Those images does not give clear indication
about number of clusters visible in this data set. However it seems that between
two and seven clusters can be distinguished.

We also used Pearson’s and Spearman’s cluster correlation validity (CCV)
indices [8] to determine number of clusters. If the clustering space contained only
two features, namely vitamin B12 and CKD EPI, both CCV indices suggested
creating six clusters. Once we added MMA as additional feature, then Pearson’s
CCV suggested creating five clusters, while Spearman’s CCV suggested eight
clusters.

We also used the validation set to find the best number of rules for the FIS.
We used a repeated 10-fold stratified cross-validation approach. The quality of
the FIS was evaluated with mean absolute error MAE. In this case choosing two
clusters was indisputable winner. Therefore, and for sake of simplicity, we chose
to model with only two clusters. Therefore we created first order Takagi-Sugeno
Fuzzy Inference System with two rules. We used fuzzy c-means clustering. The
optimal consequent parameters were found by anfis Matlab function [6]. The
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Fig. 3. Memberships of the linguistic labels low and moderate for Vitamin B12 and
CKD EPI.
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anfis function uses a network representation of a Takagi-Sugeno fuzzy system
to determine the optimal model parameter through gradient-based learning. We
used the hybrid learning approach in which the antecedent parameters are deter-
mined by back-propagation and the consequent parameters are learnt by least
squares optimization in an iterative learning process [3].

However, before we trained the FIS with the data, we investigated the mem-
berships of the antecedents. For both variables one membership function was
targeting a small subset of the domain, which could be described as low, while
the other was embracing the rest of the space. Because the boundaries were not
covered by any of the membership functions, we decided to change the mem-
bership functions corresponding to the linguistic labels low to left shouldered
membership functions. Only afterwards the output parameters were estimated
using the hybrid learning algorithm.

The membership functions for both vitamin B12 and CKD EPI are shown
in Fig. 3.

The following two rules were obtained after training:

– If (Vitamin B12 is moderate) and (CKD EPI is moderate) then MMA = -0,41
* Vitamin B12 -1,24 * CKD EPI + 473,46

– If (Vitamin B12 is low) and (CKD EPI is low) then MMA = -3.17* Vitamin
B12 - 3,35 * CKD EPI + 1311,77
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Fig. 4. The response surface generated by the fuzzy model together with the data
points.
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Fig. 5. Projections of the response surface of the fuzzy model to Vitamin B12 and
CKD EPI dimensions.
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Fig. 6. Scatter plot of true vs estimated values of MMA. (Colour figure online)

The mean squared error (MSE) on the training set was 25759.3 and the MAE
was 106.4. The MSE on the testing set was 21268.7 and the MAE was 113.6.

Figure 4 shows the surface plot of the fuzzy model together with the data
points. Figure 5 are the projections of this surface to Vitamin B12 and CKD
EPI dimensions, respectively. Figure 6 shows a scatter plot of the true values of
plasma MMA level against the estimated ones. The observations of training and
testing sets are marked with different colors.

4 Estimation of the Influence of the Kidney Functions

The model created may next be used to estimate the influence of the kidney
function on the MMA levels in the plasma. Let us consider a patient with
CKD EPI on the level of 30 mL/min/1.73 m2 and vitamin B12 on the level
of 90 pmol/L and MMA of 600 nmol/L. According to the model such patients
have MMA of 829 nmol/L. A patient with same vitamin B12 level, but CKD
EPI of 60 mL/min/1.73 m2 691. Hence 138 pmol/L of MMA can be explained by
the poor kidney function. Therefore we can expect that for this patient MMA
value should be corrected by 138 pmol/L, meaning that if his kidneys had been
working normally, the patient should have had MMA value of 562 nmol/L.

In order to decide whether the patient has Vitamin B12 deficiency, the doc-
tors prefer simple criterion with a single threshold, for instance MMA above
430 nmol/L. Therefore for the patients with decreased kidney function, based
on the model we can estimate the increase of the level of MMA, that is
caused by the poor kidney function compared to the patient with CKD EPI of
60 mL/min/1.73 m2. Next we can adjust the observed MMA value with the cor-
rection value, and then this updated value can be compared with the threshold.
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Fig. 7. MMA levels against CKD EPI for fixed vitamin B12 levels (from 90 pmol/L
(dark red color) till 300 pmol/L (dark blue), every 10 pmol/L). (Color figure online)

Figure 7 plots the lines of MMA against CKD EPI for fixed vitamin B12
levels, every 10 pmol/L ranging from 90 pmol/L (dark red color) till 300 pmol/L
(dark blue). We focus only on this area, because patients in this area are sus-
pected to have vitamin B12 deficiency.

Detailed analysis of those values showed that the difference in MMA on each
unit of CKD EPI increases as CKD EPI decreases. It means that the poorer
is the kidney function, the higher are values of MMA. Similar relationship can
be found between vitamin B12 and MMA, i.e. the difference in MMA on each
unit of vitamin B12 increases with decrease of vitamin B12 levels. It means that
greater vitamin B12 deficiency, the higher are values of MMA. Change of MMA
for each 5 mL/min/1.73 m2 of CKD EPI ranges from 6 till 25 pmol/L, with an
average change of 16 pmol/L.

By using our fuzzy model, the clinicians can interpret the measured values
of MMA more accurately by correcting it for the kidney function of the patient.

5 Concluding Remarks

We considered the problem of vitamin B12 deficiency. Vitamin B12 levels in serum
is not a proper representative of actual vitamin B12 levels in tissue. Methylmalonic
acid (MMA) levels in theplasma canbeused as indication of vitaminB12deficiency
in tissue, because MMA concentrations increase relatively early in such situations.
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However, MMA levels in the plasma may also be increased due to renal failure,
complicating the relationship between B12 levels and the MMA.

To estimate the influence of the kidney function on MMA levels in the plasma
we modelled the relationship between vitamin B12, MMA and kidney function
using a first order Takagi-Sugeno fuzzy inference system.

By using this model it is possible to estimate the expected change of values of
MMA for different levels of kidney functions and for the same levels of vitamin B12.

Our model gives the way for adaptive interpretation of MMA measurements
based on the patient’s kidney function. In this way, it becomes possible to detect
B12 deficiency more accurately when kidney failure is present or when a patient’s
kidney function is reduced.

Despite our promising results, the model can still be improved further. Fore
example, Fig. 6 shows that the model systematically underestimates true MMA
values when they are high. In the future we will investigate the cause of this. We
will also include additional features that may influence MMA levels in order to
improve the predictive accuracy of the model.
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Abstract. This paper presents a data collecting process using smartphone-
based accelerometer in association with geographic information systems
(GIS) software to better manage pavement condition data and facilitate with
decision making for maintenance and rehabilitation. The smartphone is equip-
ped with an accelerometer (a mobile apps) could record 50 vibration data points
per second in three direction (X, Y, and Z). The type of Traditional pavement
survey is time-consuming and requires experienced technicians to travel along
highway to visualize pavement conditions and record any failures. Combining
vibration intensity data with a GIS platform can help public agencies with a
strategic plan to prioritize maintenance schedules for both bike trails and
highway roads. The objective of this paper is to (1) discuss the processes of
vibration data analysis using a smartphone based accelerometer and to
(2) demonstrate how to relate vibration intensity data to locate priority areas for
immediate.

Keywords: Vibration � Smartphones � Mobile apps � Accelerometers �
Geographic information systems

1 Background and Problem Statement

Pavement condition surveys involve data acquisition, interpretation, and documenta-
tion. These activities characterize surface condition, such as surface cracking, defor-
mation, and other surface defects for both flexible and rigid pavements. Currently, there
are three key major pavement distress detecting techniques; (1) manual inspection,
(2) imaging process detection, and (3) vibration-based detection. Manual inspection
perhaps is most popular and affordable method among highway agencies for pavement
condition surveys. However, manual inspection remains labor intensive and time con-
suming procedure. It is subject to personal experience and bias, making the survey
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results inconsistent and different between distress raters [1, 2]. More recently, three-
dimensional automated imaging and sensor technology have been widely used to survey
pavement surface conditions and capture distress issues [3–5]. When traveling on
highways, a vehicle equipped with sensors on board should integrate the dynamic
vibration effect associated with sensors taking into account for a whole system that
consists with (i) a vibration model with three dimensional components (x/y/z) along
with varying vehicle speeds and vehicle weights that collects vibration responses based
on the road roughness condition generated by an exogenous dynamical contact between
tires of the vehicle and the road surface, and (ii) a signal processing model that can
effectively transfer and analyze dynamic vibration data, and extract signatures of the
pavement condition after the adaptive filtering and machine-learning process. More
recently, bikes attached with mobile apps (sensors and accelerometers) have been used
by local governments to perform condition surveys along their respective bike trails.
One of issues with post- data processing is how to effectively display the relation
between the survey results and the actual locations so that engineers would be able to
prioritize areas the need to be repaired immediately. This paper presents a data collecting
process using smartphone-based accelerometer in association with geographic infor-
mation systems (GIS) software to better manage pavement condition data and facilitate
with decision making for maintenance and rehabilitation.

2 Data Acquisition

2.1 Dynamic Vibration and Signal Processing

When a vehicle or bike travels on a road, vibration response is recorded based on the
interaction between the pavement surface and tires of a vehicle or a bike. A dynamic
vibration coupled model using motion equation ca be used to simulate the scenario as
shown in Eq. 1.

M½ � €uf gþ C½ � _uf gþ K½ � uf g ¼ F tð Þf g ð1Þ

where M½ �; C½ � and K½ � represent the total mass matrix, the total damping matrix, and
the total stiffness matrix of a vehicle; €uf g; _uf g; and uf g, are acceleration, speed, and
displacement vector of nodes in the three directions (x, y, and z) for a given
vehicle/bike.

The traffic load matrix F tð Þf g is related to vehicle/bike structure, vehicle/bike
weight, pavement irregularity, and driving speed and can be expressed as:

F tð Þf g ¼ P0 þm0ax
2� �

sin xtð Þj j ð2Þ

where P0 = vehicle weight that caries from vehicle types; m0 = spring coefficient
related to the mass of vehicle and vehicle structure; a = geometric irregularity vector
height that needs to be determined by the proposal; x = vibration circular frequency,
taking x ¼ 2pv=l in which v = vehicle speed and l = length of a vehicle/bike.
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For a pavement system, Eq. 1 can be also applied with a different dynamic load as
shown below:

F tð Þf g ¼ qsin2
p
2
þ pt

d

� �
ð3Þ

where d is the duration of load and the load intensity is q.
When the pavement receivesmoving load, the dynamic response can be expressed as:

R tð Þf g ¼
Z 0

�d=2
R tð Þ dF

dt
dt ð4Þ

The dynamic response equation can be rearranged to:

R tð Þf g ¼ qp2

2

Xn

i¼1
ci

1þ exp �d=2tið Þ
p2 þ d=2tið Þ2 ð5Þ

Sensor time-series signal from accelerometer used Z-axis as an example can be
written as

SZ tð Þ ¼ g þVZ tð ÞþAZ tð Þþ n tð Þ ð6Þ

where

g: Earth gravity-constant
VZ (t) = vibration at z axis: Assume car on flatness road
AZ (t) = Acceleration projection to Z axis. Assume car is accelerating (+ or −) when
drive on the slopes.
n(t) = noise. It can come from system or thermal noise.

2.2 Data Acquisition: Smartphone Accelerometer and Data Transfer

The data were collected using a smartphone accelerometer, a mobile apps called My
Vibrometer. This mobile apps allows the user to collect vibration data due to cell phone
movements. The myVibrometer mobile app exports a .csv file format, which is easy to
import into GIS software. The application collects data points at a rate of 50 points per
second on a real time scale including date and time. The vibration data were reported in
units of gravity. The vibration data collected were in X, Y and Z coordinates. The data
collected from myVibrometer also directly provides the longitude and latitude within
the same .csv file. Each data set can be quickly imported into the mapping software and
would be easy to scale up the data sourcing and provides easy data management. Based
on output files, the myVibrometer app records and exports the following data: vibration
in X, Y and Z coordinates (g), heading (degrees), course (degrees), speed (m/s), altitude
(m), latitude (degrees), longitude (degrees), and date and time. Recorded coordinates
are associated with the smartphone’s GPS system to help tracking the moving path of a

Using Geographic Information Systems and Smartphone 477



vehicle/bike while traveling on roads. The above features make the smartphone
accelerometer an ideal candidate for data collection and data analysis.

3 Preliminary Road Test: Vehicle Equipped with Mobile App

3.1 Vibration Accelerometer Setting

Before applying the vibration model, mobile apps, signal processing, and GIS platform

in roadway condition assessments, a preliminary road test was conduct on Northern
Arizona University’s campus to validate the applicability of the mobile sensing tech-
nology and mapping in real world application. A road displaying rough and smooth
surface (Fig. 1) was selected.

For a vehicle, the entire vibration data collecting system consists of a smartphone
equipped with vibration sensors that will capture vibration responses from the road

surface. When a vehicle travels on a roadway, the vibration sensors will gather
vibration data based on the surface conditions as shown in Fig. 2. The collected data
together with coordinates of points will be temporarily stored in the memory of the
phone and then transmitted to the team’s server.

Fig. 1. Road surface with pothole and cracking (L) and smooth condition (R)

Fig. 2. Schematic of vibration data and placement of a smartphone
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3.2 Data Analysis and Result Discussions

During testing, the vehicle’s speed was controlled at 35 km/h (20 mph) to keep all data
to be consistent. Three road tests traveling on the same road with the same direction
were implemented. Visual inspection of the data shows at least two potholes in Fig. 1
(Left). The presence of the potholes was manifested in the three data points, X, Y, and Z.
It is also noted that the data for the first pothole (1st peak) is different than the second
pothole (2nd peak). In particular, the X-and Z-axis samples show significantly wider
impulse response around 2nd peak. We interpret this to reflect that the pothole depth is
not deep and has wider uneven surface. We also analyzed the data using the variance,
average, and mean square analysis. The objective of this analysis is to understand if the
road condition is reflected on these numbers. By using signal processing method, data
analysis result is shown in Fig. 3. We found that the variance for the smooth road
(X = 0.07, Y = 0.05, Z = 0.05 g) is significantly smaller than the data for the medium
road (X = 0.21, Y = 0.1, Z = 0.5 g), which is in turn smaller than the rough road
(X = 1.03, Y = 0.76, Z = 0.6 g). Obviously, device sensors can successfully detect the
signatures of road conditions and driving behaviors. The preliminary road test result was

in support of mobile app setting, dynamic vibration modeling, as well vibration data
analysis and signal processing. A real project was therefore selected in cooperation with
the Department of Facility Services on the university’s bike trails using the same
approach and technology to prioritize pavement areas for maintenance and rehabilita-
tion. The reason of this project is to evaluate if the methodology presented in highways
by a vehicle can be applied in urban/campus trails by a bike.

Fig. 3. Comparison of vibration magnitudes between rough and smooth road
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4 Road Test: Pavement Condition Assessment of Bike Trails

4.1 Application of Geographic Information Systems in Roadway
Condition Surveys

The Geographic and Information System (GIS) is a software which can be used in
managing and analyzing the geographical information. GIS has many applications in
the fields of engineering and sciences. One of the fields which utilizes the GIS is the
field of pavement management. The system can be used in maintaining, evaluating, and
managing pavement systems. GIS can be used in pavement condition assessments of
roadways and bike trails. The system develops maps and tables which can be used to
identify the locations where the infrastructure needs maintenance. The roughness of the
bike trails across Northern Arizona University (NAU) campus has long been a severe
issue to maintenance technicians in the Department of Facility Services. NAU has
different bike routes connecting between the North and South campus. About 22 % of
NAU students use bikes for their trips, and about 30 % of NAU students use bikes for
their school commutes. It is important to maintain bike trails in a good condition to
provide better serviceability to all faculty, staff, and students who bike to and from their
home. It is the priority that NAU’s Facility Services’ strategic planning to survey all
bike trails, identify different levels of pavement failure mode, and prioritize the
areas/locations for prompt rehabilitation. This project demonstrates the effectiveness of

Fig. 4. Vibration data along S Knoles Dr

Fig. 5. Vibration data along S San Francisco Ave.
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combining mobile sensing technology, data analysis and GIS platform in bike trail
condition management.

4.2 Data Collection

The roughness of the bike trail was evaluated using the accelerometer installed on a
smartphone. The vibration data obtained from the application were used to evaluate the
road roughness. After completion of biking along the campus trails, all vibration data
were imported in excel to allow the team and NAU technicians to preview the vibration
patterns before exporting all the data into the GIS platform. Figures 4, 5, 6 shows an
example of raw vibration data sets collected from different bike trails.

The vibration data set obtained from the app were subsequently presented on an
ArcGIS map. The bike trails were presented on the map with the cracks shown on the
map. Pictures of the cracks were added to the ArcGIS map. Based on the above raw
data, it is extremely difficult to identify where the pavement failures are even though
many peak vertical magnitudes were noticed in the displayed excel graphs. Cracks
were divided into two types which are large cracks and small cracks using 0.5 g value
as a baseline to breakdown these two levels of pavement failure. It should be noted, as
of present, there is no standard that specifies how to identify pavement failure modes by
using the vibration intensity data. The baseline definition was made based on the
previous preliminary road test. GPS data were recorded while biking along trails. All
moving path were tracked by the mobile app and were displayed in a digital map using
a GIS platform (Fig. 7). It was estimated that approximately a million vibration points
were recorded in the GIS map. This moving path in Fig. 7 was a helpful tool that
provides the team members with all tracks and trends the team members travelled. The
reviewers in the office were able to observe the entire biking activities and make an
adjustment if needed.

4.3 Data Analysis and Discussions

The data obtained from the accelerator application were imported to GIS software in
order to present it on the map. It is feasible that using GIS software can be better used
to manage numerous vibration data points, particularly when dealing with an

Fig. 6. Vibration data along McCreary Dr. and McConnell Dr.
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approximately a million of data points. After the data was brought to the GIS map, it
was converted to event themes where the x and y fields were set to longitude and
latitude, respectively. All information of vibration data were stored in an attribute table
for further analysis. The category function of GIS software was used to breakdown two
major pavement failure mode: severe cracks and moderate/slight cracks. Given the
discussion with NAU technicians, only severe cracking areas (large cracks in maps)
will be considered for priority for rehabilitation. Based on the meeting discussion, all
vibration data were analyzed and stored in the attribute table of the platform. A GIS
map was produced to represent the analysis results (Fig. 8).

As shown in Fig. 8, all bike trails were displayed in a GIS map using five color
polylines. The blue polyline was used to represent the bike lanes on road. The red
polyline was used to represent bike trails where it’s required to ride with caution. The
green polyline was used to represent bike routes. The purple polyline was used to
represent mixed pedestrian and bike path, and the orange polyline was used to represent
the Flagstaff urban trail. The results show that the bike trails on the NAU north campus

Fig. 7. Moving path of biking shown in a GIS platform (approximately a million data points)
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have the experienced a large number of cracks as shown in Fig. 8. During analysis, it
was found that there are major types of cracking on the bike trails across the NAU
campus, which are thermal cracking, block cracking, and alligator cracking, respec-
tively. Based on visual inspection while biking, most of the cracks along the campus
are thermal cracking, a dominant pavement failure mode in the Northern Arizona
region.

After completion of data analysis and GIS digitizing and mapping, the research
team and NAU technicians were able to sit together to review all pavement failures and
their locations. In order to improve the infrastructure of the bike trails system at NAU,
the severe cracks along all trails have to be fixed. A periodic maintenance consisting of
crack seals and chip seals has been scheduled based on the data analysis and GIS map
provided by the research. NAU technicians have been able to implement strategic
planning for pavement rehabilitation and or preservation activities following the rec-
ommendation from the project results. The combination of smartphone based

Fig. 8. Pavement condition assessment in a GIS map (Color figure online)
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accelerometer (mobile app), vibration analysis, and GIS platform has demonstrated
their effectiveness in analyzing vibration data, digitizing and mapping GIS shape files,
as well as prioritizing pavement rehabilitation areas. The research presented in the
paper provides a cost-effective method for technicians to survey pavement conditions
in a regular basis. Technicians have enjoyed the advantage provided by the modern
technology including smartphone, signal processing, data analysis, and GIS as useful
knowledge databases to improve the pavement inspection. The extension of the project
will be focused on infrastructure system for the near future.

5 Conclusions

1. The method presented in this paper shows the feasibility of utilizing smartphone
accelerometers with a GIS platform to provide a promising and cost-effective
pavement assessment and maintenance system being applied in both highway roads
and bike trails.

2. Smartphone based accelerometer (mobile app) has the ability to record vibration
responses and transfer to a server for further analysis using signal processing.

3. The combination of smartphone based accelerometer (mobile app), vibration
analysis, and GIS platform has demonstrated their effectiveness in analyzing
vibration data, digitizing and mapping GIS shape files, as well as prioritizing
pavement rehabilitation areas.

4. Maintenance technicians have been able to follow the guidelines and recommen-
dations provided by the project to prioritize pavement maintenance areas and better
manage pavement system across the campus.

5. A future implementation will be focused on the improvement of infrastructure
system (pipes, bridges, high volume freeways, etc.) using the method provided by
the paper.
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Abstract. This work introduces AutoFIS-Class, a methodology for
automatic synthesis of Fuzzy Inference Systems for classification prob-
lems. It is a data-driven approach, which can be described in five steps:
(i) mapping of each pattern to a membership degree to fuzzy sets; (ii)
generation of a set of fuzzy rule premises, inspired on a search tree, and
application of quality criteria to reduce the exponential growth; (iii) asso-
ciation of a given premise to a suitable consequent term; (iv) aggregation
of fuzzy rules to a same class and (v) decision on which consequent class
is most compatible with a given pattern. The performance of AutoFIS-
Class has been compared to those of other four rule-based systems for 21
datasets. Results show that AutoFIS-Class is competitive with respect
to those systems, most of them evolutionary ones.

Keywords: Fuzzy inference system · Automatic synthesis · Classifica-
tion

1 Introduction

Nowadays, a major part of accumulated knowledge is stored as datasets and
many classification algorithms have been developed to extract that knowledge
[1,2]. The question of an adequate knowledge representation becomes relevant
in applications where a “black box” model [3] does not suffice. This model may
provide high accuracy, but not a logical, functional or descriptive way of how
results are obtained. In other words, in many cases not only accuracy but also
linguistic interpretability is an important factor. Fuzzy Inference Systems [4] are
well known for their capability of representing knowledge in a comprehensible
way through inference rules and constitute therefore an appropriate modeling for
merging interpretability and accuracy [5,6]. The assessment of how interpretable
a fuzzy system is usually takes into account, for example, the model structure
(Mamdani, Takagi-Sugeno), number of rules, number of antecedents and the
membership functions format [6,7].

In order to build models that consider both accuracy and interpretability,
most studies have used (i) Evolutionary Algorithms to elaborate fuzzy rules
with or without membership function tuning [5,8,9] and (ii) Evolving Fuzzy
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 486–497, 2016.
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Inference Systems [3,10–12] that create and adapt a fuzzy rule base by gathering
new observations. A negative aspect in approach (i) is its computational cost
and the number of parameters – due to the use of a Evolutionary Algorithm,
in some cases multi-objective. As for approach (ii), several works succeed in
obtaining low-lenght rules and compact rule bases [13–16], which are important
aspects in the interpretability context [17]. However, the approach proposed here
is a simpler one, in the sense that it assumes an initial and fixed allocation for
membership functions and does not need post-processing.

This paper presents an off-line approach that generates a Fuzzy Inference
System automatically, focused on classification and seeking accuracy but also
favoring linguistic interpretability. The proposed AutoFIS-Class model has the
following main characteristics: (i) generates premises to ensure minimum quality
criteria, (ii) associates each premise to the more compatible consequent term
and (iii) aggregates the degrees of activation of rules related to a same class by
using aggregation operators that weigh rules on the basis of their impact on the
classification.

The case studies take as a basis the work of Alcal-Fdez et al. [18] and consider
21 datasets. The performance of AutoFIS-Class is compared to those of other
four Evolutionary Fuzzy Systems that generate rules.

The next section presents the AutoFIS-Class model while the third section
describes the experiments and presents results and discussions. The fourth
section concludes the paper and suggests future works.

2 AutoFIS-Class Model

In this section the stages of the AutoFIS-CLASS model are described, starting
with the mapping of crisp values into membership degrees (Fuzzification). The
inference process comprises definition of rules premises (Formulation), definition
of the most appropriate consequent (Association) and the union of the activa-
tions of each rule (Aggregation). The winning class for a given pattern is defined
in the Decision stage. The outline of the model is shown in Fig. 1. The inner
annulus symbolizes the Formulation process, which contains all the premises;
the yellow region corresponds to those that meet the minimum quality criteria
to get through to the Association stage. Here premises are placed in different
classes (hence the different colours) and some of them are not useful to any class
(black region). Finally, in the Aggregation stage, rules are weighed and premises
with small influence (black region) are excluded from the classification process.

2.1 Fuzzification

In classification, the main information consists of n patterns xi = [xi1, xi2,
..., xiJ ] of J attributes Xj present in the database (i = 1, ..., n and j = 1, ..., J).
A number of L fuzzy sets Ajl = {(xij , μAjl

(xij))|xij ∈ Xj} is associated to
each j−th attribute, where μAjl

: Xj → [0, 1] is a membership function that
associates to each observation xij a membership degree μAjl

(xij) to the fuzzy
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Formulation

Association

Agregation

Fig. 1. AutoFIS-Class: inference stage. (Color figure online)

set Alj . Each pattern is associated to a class Ci out of K possible ones, that is
Ci ∈ {1, 2, ...k, ...,K}.

Three aspects are taken into account in the Fuzzification stage: membership
functions format, the support of each membership function μAjl

(xij) and the
appropriate linguistic label, which qualifies the subspace defined by the mem-
bership function with a suitable term. In theory, this could be done by an expert,
but in practice – due to the difficulty of finding such an expert – a strong par-
tition is usually employed [8,19,20], as shown in Fig. 2a.

Xj

µ(Xj) (a)

0

1 Aj1 Aj2 Aj3 Aj4 Aj5

Xj

µ(Xj) (b)

0

1 Aj1 Aj2 Aj3Aj4Aj5

Fig. 2. Triangular membership functions: (a) Strongly partitioned and (b) Tukey.

Another approach considers the information from the quartiles: 0th quartile
(minimum value), 1st quartile, 2nd quartile (median), 3rd quartile and 4th quar-
tile (maximum value). This type of partitioning is called Tukey and is shown
in Fig. 2b. It should be noted that in this work categorical attributes and the
classes are binarized.
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2.2 Fuzzy Inference

Formulation. This stage consists of building rule premises. A premise is usually
defined as: “If X1 is A1l and . . . and Xj is Ajl and . . . and XJ is AJl”, or, in
mathematical terms:

μAd
(xi) = μA1l (xi1) ∗ . . . ∗ μAjl

(xij) ∗ . . . ∗ μAJl
(xiJ) (1)

where μAd
(xi) is the joint membership degree of pattern i in premise d, (d =

1, . . . , D), computed by using a t-norm ∗ that combines every μAjl
(xij). Thus,

a premise can be built from a combination of the μAjl
(xij) through the use of

t-norms, t-conorms, negation operators and linguistic hedges.
In this work, the product t-norm is the only one employed. Besides, the

negation operator can act upon each element in a premise:

“If X1 is not A1l and . . . and Xj is not Ajl and . . . and XJ is not AJl”.
This procedure, as opposed to negating the result as a whole, that is No

(“If X1 is A1l and . . . and Xj is Ajl and . . . and XJ is AJl”), doubles the
number of possibilities of premises, enlarging therefore the search space.

The number of possible premises that will form a rule base grows exponen-
tially with the quantity of attributes. As an example, consider a case with three
attributes (X1, X2, X3) where each of them is associated to two linguistic terms.
Premises of size (number of antecedent elements) 1 are: “If X1 is A1L”, “If X1

is A1H”, ..., and “If X3 is A3H”; of size 2: “If X1 is A1L and X2 is A2L”, ...,
and “If X3 is A3H and X1 is A1H”; and of size 3: “If X1 is A1L and X2 is A2L

and X3 is A3L”, ..., and “If X1 is A1H and X2 is A2H and X3 is A3H”. In total
there will be six premises of size 1, twelve of size 2 and eight of size 3. When
the number of attributes and of linguistic terms increase, a large quantity of
premises is generated. However, not all of them will be used to form the rule
base: many will either be redundant or will generate conflicts in the decision of
the most appropriate class.

Regarding interpretability, it is desirable to have few rules with few
antecedent elements. Thus, the following procedure is proposed.

1. Limit on the maximum size of premises;
2. Evaluation of a premise viability through a set of filters: support, similarity

and conflict in classification;
3. Organized generation of premises: initialization with size-1 premises, creation

of size-2 premises from the size-1 viable ones, generation of size-3 premises
from viable size-2 premises and so on.

With respect to the first item above, the maximum size of premises is a user-
defined parameter; its highest value is the number of attributes in the database.
As for the third item, the objective is to build premises with few antecedent
elements (more interpretable) and do not incur in computational overload by
using premises that will not be adequate for a fuzzy rule (as a result of item 2).
The filtering process is described below.
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Support Filter: aims at building premises that cover a large number of patterns
in the database. The Relative Support of a premise μAd

(xi) is given by:

Supd =
∑n

i=1 μAd
(xi)

n
(2)

Given a user-defined tolerance εSup, a premise is deemed viable if Supd > εsup. If
μA∗ (xi) = μA1L(xi1) does not present a Relative Support greater than εsup, any
combination of μA∗ (xi) with other membership functions will generate premises
that are not viable. This may be verified through the degeneration property of
most t-norms [21].

Similarity Filter: its objective is to reduce the occurrence of similar or identical
premises. Given two premises μAd

(xi) and μAv
(xi), the similarity between them

can be computed by:

Simd,v =
∑n

i=1 min{μAd
(xi) , μAv

(xi)}∑n
i=1 max{μAd

(xi) , μAv
(xi)} (3)

Given a user-defined tolerance εsim, two premises are similar if Simd,v >
εsim. If the similarity is identified, the premise with the lower Relative Support
is removed. It should be noted that if a premise is excluded when Simd,v > εsim,
its combination with another membership function (that is, a larger premise
derived from it) would not necessarily be excluded. However, this exclusion is
performed in order to generate the smallest possible number of premises that
will get through to the next stages.

PCD Flter: this aims at reducing the occurrence of similar or conflicting rules
by computing the Penalized Confidence Degree (PCDk) [22]:

PCDk = max

{∑
iεk μAd

(xi) − ∑
i/∈k μAd

(xi)
∑n

i=1 μAd
(xi)

, 0
}

(4)

The objective is to compute the activation degree of the remaining classes
and discount them from CDk. This should result in rules more specific to a given
class and not in general ones. A premise is not viable if PCDk = 0 for all K
classes.

After generating premises μA1 (xi), μA2 (xi) ..., μAD
(xi) that satisfy size

requirements and that have gone through all filters, the next step is the associ-
ation of each premise to a consequent class.

Association. This determines the consequent class that is most compatible to
a given premise μAd

(xi). Premise d associated to class k (i.e. a fuzzy rule) is
denoted by μA

d(k) (xi), which describes, in linguistic terms:

“If X1 is A1l and...and XJ is AJl, then xi is Class k”
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Here, the Confidence Degree (CDk) [19,23] is used for identifying the com-
patibility between premises and classes:

CDk =
∑

i∈k μAd
(xi)

∑n
i=1 μAd

(xi)
∈ [0, 1] (5)

where
∑

i∈k μAd
(xi) is the sum of the compatibility degree between the premise

and class k and
∑n

i=1 μAd
(xi) is the total compatibility. The class to be assigned

to a μAd
(xi), that is, μA

d(k) (xi), is given by the k-th class that maximizes CDk.
Premises for which CDk = 0 will not be assigned to any consequent class.

Aggregation. In a Fuzzy Inference System a new pattern x∗
i may be compat-

ible with several rules, pertinent to one or more classes. The aggregation stage
combines the activation degree x∗

i of rules related to a same class, so that a
consensual value is generated for discriminating the target class.

Consider D(k) as the number of rules related to class k. Given an aggregation
operator [24], g : [0, 1]D

(k) → [0, 1], the membership degree of x∗
i in each of the

K classes (μ̂Ci∈k(x∗
i )) will be:

μ̂Ci∈1(x∗
i ) = g[μA

1(1)
(x∗

i ), ..., μA
D(1) (x

∗
i )] (6)

μ̂Ci∈2(x∗
i ) = g[μA

1(2)
(x∗

i ), ..., μA
D(2) (x

∗
i )] (7)
...

μ̂Ci∈K(x∗
i ) = g[μA

1(K) (x
∗
i ), ..., μA

D(K) (x
∗
i )] (8)

In aggregation, the most used t-conorm is the maximum. Alternatively, the
Weighted Average may be used similarly to the procedure of AsMQR already
described [24]. In this work the use of Weighted Average estimated through
Restricted Least Squares (RLS) is proposed:

μ̂Ci∈1(x∗
i ) =

D(1)
∑

d(1)=1

wd(1)μA
d(1)

(xi) (9)

...

μ̂Ci∈K(x∗
i ) =

D(K)
∑

d(K)=1

wd(K)μA
d(K) (xi) (10)

where wd(k) is the weight, or the degree of influence, of μA
d(k) (xi) in the discrim-

ination of patterns related to class k. The process described in the Association
stage is used for finding the weights.

Once the membership degree x∗
i has been computed for each of the K classes,

the information given by μ̂Ci∈1(x∗
i ),...,μ̂Ci∈K(x∗

i ) helps decide which class the
pattern x∗

i belongs to.
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Decision. Given a new pattern x∗
i , the decision on its membership to class k is

computed by:

Ĉi = argk max{μ̂Ci∈1(x∗
i ), ..., μ̂Ci∈k(x∗

i ), ..., μ̂Ci∈K(x∗
i )} (11)

where Ĉi is the predicted class: result of the k-th argument that minimizes
(11). Therefore, this method associates pattern x∗

i to the most pertinent class
according to the existing rule base. In the case of a tie, either a heuristic may
be applied (for example: impose on x∗

i the class that has more patterns in the
data base) or no class is defined for x∗

i .
The information provided by Ĉi for the whole pattern makes it possible

to evaluate the performance of AutoFIS-Class. A simple approach consists of
computing the Average Classification Error (AVC):

AV C =
∑n

i=1 |Ci − Ĉi|
n

(12)

where |Ci − Ĉi| = 0 se Ci = Ĉi, and 1 otherwise.

3 Case Studies

3.1 Experiments

The databases used in the experiments – 21 of the 26 employed by Alcal-Fdez
et al. [18] – were taken from the KEEL site [25] and are shown in Table 1.

Some databases are small (Iris, Appendicitis and Wine) and others present
high scalability and dimensionality(MSpambase, Texture, Satimage, etc.).
Eleven of them are of a binary type and the remaining ten are multiple-class
databases.

The work carried out in [18] shows results for four models: 2SLAVE, FH-
GBML, SGERD e FARC-HD, alll of them Evolutionary Fuzzy Systems aiming at
generating concise fuzzy rule bases by using an evolutionary metaheuristics. The
model FARC-HD (Fuzzy Association Rule-Based Classification Model for High-
Dimensional) proposed in [18] employs an evolutionary algorithm that selects a
subset of rules initially generated through a procedure similar to that of AutoFIS-
Class but without employing some of the filters.

Experiments with AutoFIS-Class have followed the same procedure used in
[18]: (i) for each database a 10-fold cross-validation is performed; (ii) AutoFIS-
Class is run for each cross-validation fold and accuracy and number of rules in
the test stage are recorded; and (iii) the average accuracy for the 10 folds is
reported as a result.

Table 2 shows the settings used in the experiments, both for binary an multi-
ple classes databases. Those settings have been obtained from preliminary tests
performed to evaluate (superficially) the sensitivity of AutoFIS-Class to the var-
ious parameters. It can be seen that the main differences between settings for
binary and multiple classes databases reside on disabling the PCD filter and on
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Table 1. Main characteristics of the databases.

Database J n K

Iris 4 150 3

Cleveland 13 297 5

Phoneme 5 5404 2

Vowel 13 990 11

Monk-2 6 432 2

Crx 15 653 2

Appendicitis 7 106 2

Pen-based 16 10992 10

Pima 8 768 2

Two-norm 20 7400 2

Glass 9 214 6

Wdbc 30 569 2

Page-blocks 10 5472 5

Satimage 36 6435 6

Magic 10 19020 2

Texture 40 5500 11

Wine 13 178 3

German 20 1000 2

Heart 13 270 2

Spambase 57 4597 2

Ring 20 7400 2

the increase in the number of membership functions for multiple classes data-
bases. This is due to the fact that rules were not generated for all classes, and
the few that were generated for some classes were excluded by the PCD filter.
Statistical analyses followed the recommendations of [26,27]; a significance level
of 5% was adopted.

3.2 Results

The main results - in terms of accuracy and number of rules – for each model
in the test phase are shown in Table 3. The FARC-HD model presents the best
average results in terms of accuracy.

In order to check whether the difference in accuracy is significant, Table 4
presents the results provided by the Friedman and Iman Davenport test and by
the Holm method [27]. The FARC-HD model presented the lowest rank (1.3333):
its accuracy is such that it almost always figures in first place, AutoFIS-Class
occupies second place, with a rank of 2.6190. The Friedman and Iman-Davenport
test show that some algorithms present significantly lower or higher ranks than
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Table 2. AutoFIS-Class settings for binary and multiple classes databases.

Settings Binary Multiple classes

Membership functions format Tukey Tukey

Number of membership functions 3 5

t-norm prod prod

Negation yes yes

Premise size 2 2

εsup 0,05 0,05

εsim 0,95 0,95

PCD Filter yes no

Association CD CD

Aggregation RLS RLS

Table 3. Accuracy in test phase and no. of rules (# R) for each model and database.

Database AutoFIS-Class 2SLAVE FH-GBML SGERD FARC-HD

Tst. (%) # R Tst. (%) # R Tst. (%) # R Tst. (%) # R Tst. (%) # R

Appendicitis 89,82 5,6 82,91 4,4 86,00 13,8 84,48 2,5 84,18 6,8

Crx 86,77 19,1 74,06 2,4 86,60 11,6 85,03 2,1 86,03 25,4

German 71,40 26,8 70,53 6,5 87,01 5,1 67,97 3,4 72,8 85,7

Heart 83,33 23,6 71,36 4,3 75,93 12,7 73,21 2,7 84,44 27,0

Magic 79,91 7,7 73,96 4,1 81,23 9,9 72,06 3,1 84,51 43,3

Monk-2 97,57 9,7 97,26 3,0 98,18 14,7 80,65 2,2 99,77 14,2

Phoneme 71,82 5,8 76,41 11,5 79,66 17,4 75,55 3,6 82,14 17,8

Pima 73,97 7,4 73,71 7,8 75,26 10,6 73,37 3,1 75,66 22,7

Ring 50,62 13,8 79,63 4,6 86,92 6,9 72,63 6,8 94,08 24,0

Spambase 88,10 21,7 70,14 7,9 77,22 3,9 72,98 3,7 91,93 29,8

Two-norm 93,47 31,4 86,99 26,5 85,97 12 73,98 3,1 95,28 60,9

Wdbc 91,91 6,6 92,33 5,2 92,26 7,2 90,68 3,7 95,25 10,4

Cleveland 58,61 56,4 48,82 11,9 53,51 6,9 51,59 6,4 55,24 61,3

Glass 67,07 46,7 58,05 15,1 57,99 9,4 58,49 6,9 70,24 22,7

Iris 95,33 10,9 94,44 4,0 94,00 14,9 94,89 3,4 96,00 4,0

Page-blocks 94,68 11,8 91,39 7,5 94,21 7,4 90,72 6,5 95,01 19,1

Penbased 83,94 111,9 81,16 40,0 50,45 18,4 67,93 15,9 96,04 152,8

Satimage 81,55 61,8 81,69 57,9 74,72 16,5 77,10 12,2 87,32 76,1

Texture 87,24 74,8 81,57 34,9 70,15 14,6 71,66 18,6 92,89 54,5

Vowel 63,84 113,6 71,11 63,1 67,07 9,2 65,83 18 71,82 72,3

Wine 93,76 16,8 89,47 5,5 92,61 9,2 91,88 4,2 94,35 8,7

Average 81,18 32,57 78,43 15,62 79,38 11,06 75,84 6,29 85,95 39,98

Std. Dev 13,15 33,22 11,85 18,19 13,49 4,10 11,01 5,25 11,32 35,68
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Table 4. Friedman test and Holm method results.

i Model Rank

4 SGERD 4.1905

3 2SLAVE 3.7619

2 FH-GBML 3.0952

1 AutoFIS-Class 2.6190

0 FARC-HD 1.3333

Test p-value

Friedman < 0.0001

Iman Davenport < 0.0001

Model z = (R0 − Ri)/SE p-value Holm Reject?

SGERD 5.8551 <0.0001 0.0125 yes

2SLAVE 4.9770 <0.0001 0.0167 yes

FH-GBML 3.6108 0.0003 0.0250 yes

AutoFIS-Class 2.6349 0.008415 0.0500 yes

their counterparts. As FARC-HD has the lowest rank, it has been selected to be
compared pairwise with the other models. The FARC-HD model has presented
the lowest rank (p-value < 0, 05), which means that it outperforms all the other
models in the test phase.

With respect to the rule base, AutoFIS-Class generated fewer rules than
FARC-HD for 76,19 % of the databases. The main objective of obtaining a com-
pact rule base without affecting accuracy in a significant way has been fully
attained. It must also be stressed that, as opposed to the other models, AutoFIS-
Class does not employ any evolutionary algorithm routine for rule base simpli-
fication or improvement.

4 Conclusion

This paper has presented AutoFIS-Class, a new methodology for automatic gen-
eration of Fuzzy Inference Systems for Classification. Its performance was evalu-
ated for 21 databases and compared to those of four other models (that employ
evolutionary approaches). Although AutoFIS-Class does not make use of any
evolutionary algorithm, it has performed very well in terms of accuracy, falling
behind FARC-HD only. On the other hand, AutoFIS-Class has generated a more
compact rule base than FARC-HD has, reaching therefore a good compromise
between accuracy an interpretability.

Future works will consider a hybridization with Wang & Mendel’s algorithm
[28] for the generation of longer premises, the use of nonlinear aggregation meth-
ods, new forms of association and new filters. Given the ease of execution of the
proposed methodology, practical applications will also be considered.
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Abstract. Viewing the modelling of agrifood chains (AFC) from a multi
agent systems (MAS) point of view opens up numerous avenues for
research while building upon existing advancements in the state of the
art. This paper explores different aspects in MAS research areas in con-
sensus and cooperation (argumentation, negotiation, normative systems,
multi agent resource allocation and social affects) and provides insights
into how viewing classical AFC problems from this perspective can bring
new perspectives and research avenues.

Keywords: Multi agents systems · Agri-food chain modelling · Argu-
mentation · Alignment · Coalition formation · Normative reasoning

1 Introduction

Understanding and controlling agri-food processes is of major importance when
trying to ensure sustainability with respect to growing complexity and consumer
expectation. Methodologies and tools from various sub-fields of Artificial Intel-
ligence have showed their potential for advancing the state of the art.

Here we solely focus on the problem of dealing with the uncertain knowledge
(elicitation, representation and reasoning) involved at different levels of the food
chain. Such chains often model complex processes relying on numerous criteria,
using various granularity of knowledge, most often inconsistent (due to the fact
that complementary points of view can be expressed). The main aspect that
characterises such knowledge is uncertainty that could be either regarded from
a logical point of view or a provenance point of view.

Many approaches in the literature investigate the added value of a log-
ical based representation to deal with the above mentioned problems. Such
approaches [10] (mainly using ontologies and Linked Open Data) bring real
added value within each step of the transformation but they have difficulty
addressing overall chain transformations [9,23,27]. Approaches based on reason-
ing in presence of inconsistency (such as argumentation based approaches of
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 498–509, 2016.
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[16,31,34,35]) look at integrating various steps of the food chain but they do
not address multi objective optimisation problems common within food chains.
Furthermore, recent advances in Linked Open Data and its potential for interop-
erability meant that more and more ontologies are developed by various actors of
the food chain. Methods for integrating these ontologies in a principled manner
are still to be developed within each food chain.

This paper investigates the following research question: “What are the salient
points of addressing knowledge representation and reasoning (KRR) in Agri-Food
Chain (AFC) as a consensus and cooperation problem in multi-agent systems
(MAS)?” Our claim is that viewing the problem of KRR from a multi agent sys-
tem point of view opens up numerous avenues for research while building upon
existing advancements in the state of the art. We will explore different aspects
in MAS research areas in consensus and cooperation (argumentation, negotia-
tion, normative systems, multi agent resource allocation and social affects) and
show how viewing classical AFC problems from this perspective can bring new
perspectives and research avenues. We claim that agent technology can opti-
mise food supply chain operation by employing intelligent agent applications
(as shown in supply chain management case) but also facilitate reasoning with
incomplete, inconsistent and missing knowledge - a key aspect of KRR man-
agement in AFC. Agents enhance the flexibility and efficiency of supply chain
management while providing an unifying framework for various key problems in
AFC. The main contribution of the paper resides in this unifying aspects: by
modelling AFC problems as MAS problems we benefit from a unifying setting
that encompasses a plethora of related research questions.

The paper is structures as follows. After a quick introduction on multi-agent
systems in Sect. 2 we investigate the use of argumentation (Sect. 3.1), multi-agent
resource allocation (Sect. 4.1), normative systems (Sect. 4.2), for AFC research.
Section 5 concludes the paper.

2 Consensus and Cooperation in Multi Agent Systems

In agrifood chains, the products traditionally go through the intermediate
stages of processing, storage, transport, packaging and reach the consumer (the
demand) from the producer (the supply). More recently, due to an increase
in quality constraints, several parties are involved in production process, such
as consumers, industrials, health and sanitary authorities, etc. expressing their
requirements on the final product as different point of views which could be con-
flicting. Such complex systems require to be addressed both at each individual
transformation level as well as in its globality (from the genome to the final
product).

Autonomous agents and multi agent systems represent a way of analysing,
designing and implementing complex software systems. A multi agent system
can be seen as a loosely coupled network of problem solvers that work together
to solve problems beyond individual capabilities of each one of them. In multi
agent systems each agent has its own incomplete information, the data is decen-
tralised and computation is asynchronous. Such systems have the advantage of
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distributed and concurrent problem solving with a plethora of interactions pos-
sible [20,25]. Common types of interactions include: cooperation, coordination,
negotiations, planning, norm compliance, blame assignment, etc.

When representing and reasoning about an agent’s mind, one can distinguish
between:

1. Cognitive models of rational action (representing the attitudes of agents, their
beliefs, intentions etc.) and

2. Modelling of the strategic structure of the systems (how can agents accomplish
their intentions either alone or in cooperation).

Regarding the first aspect (rational cognitive states) one can identify dif-
ferent attitudes such as information attitudes (beliefs), pro attitudes (desires,
intentions, goals) and normative attitudes (obligations, permissions and autho-
risation). We will address these problems in Sect. 3.1 by explaining how we can
model agent’s beliefs in AFC and how the different agents can “defend” and
justify their beliefs in the argumentation process.

Regarding the second above mentioned aspect, in multi agent systems, coop-
eration can be interpreted as giving consent to provide one’s state and following
a common protocol that serves the group objective [36]. We need to distinguish
between unconstrained and constrained cooperation problems. Unconstrained
cooperation is, for example, an alignment between two agents with the purpose
of speaking the same logical language. Constrained cooperation refers, for exam-
ple, to respective normative systems that impose a certain group behaviour. The
strategic structure of a system has also been logically represented using coalition
logic, temporal logic etc. In Sect. 4.1 we will explain how we can make use of
multi agent resource allocation problems in order to model different coopera-
tion problems that could arise in AFC. We will also investigate how normative
reasoning can be used for AFC in Sect. 4.2.

3 Rational Cognitive Modelling

In this section we will focus first on the modelisation of the agent knowledge.
To clarify the notions we will propose, in Fig. 1 we show the multi agent sys-

tem modelisation of agri-food chains. In the top part of the picture the agro-food
chain is depicted, stemming from genomics all the way to the consumer’s plate.
The food, at every step, undergoes several transformations. For instance, the
grape can be selected based on genomics to have desirable farming properties
(such as draught resistance, disease resistance etc.). At the next step different
technological itineraries are compared in order to select the best way of growing
the plant according to different criteria (yield, pesticide treatment etc.). The
product may undergo several transformations at this step depending on its final
form (for example, the durum wheat may be transformed in flour or in couscous
etc.). At the various next steps (trader, distributor, retailer) more transforma-
tions are possible as well as important packaging issues addressed. Packaging
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may also play an important role for increasing the shelf life of aliments (modi-
fied pressure, CO2 and O2 permeability etc.) and reducing food loss.

Each step of the transformation process (from genomic studies to the con-
sumer plate) will be modelled by one or several agents. These agents will model
the knowledge (rule based systems) required at each transformation step. Ontolo-
gies dedicated to the specific domain of transformation can be employed [24].

In the bottom part of the Fig. 1 the agents from the various steps are con-
nected via communication/cooperation links. These links along with the agents
will form the multi agent system used to model the agro-food chain.

Fig. 1. Multi agent system modelisation of agri-food chains

As mentioned before, in AFC one or several agents will represent one uni-
tary transformation. Please note that for each unitary transformation, within
each individual agent, several knowledge representation challenges are to be
addressed. First, the information to be represented at each step of the trans-
formation is incomplete, imprecise and highly expressive. There are several ways
of obtaining such information. For instance sensors can provide numerical infor-
mation about the plant. Such information might be unreliable due to measure-
ments errors. The numerical information has to be put in the context of symbolic
information. Such symbolic information (transformation rules, ontological data)
need to be represented in a logical language that allows for reasoning and for
reuse. Linked Open Data can be employed for re-usability reasons. Expressive
representation and reasoning languages will provide the possibility of deriving
implicit information from explicitly represented knowledge.

In the next section we detail the next problem, the problem of agent to agent
communication. We will focus on argumentation and negotiation. In Sect. 4 the
multi agent interaction is studied.
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3.1 Argumentation and Negotiation

The notion of one to one interaction among self-interested agents has been cen-
tred around argumentation and negotiation. Two conditions have to be fulfilled
and namely bounded rationality and incomplete information. Let us start by
addressing the last point and namely incomplete information. We will come
back to bounded rationality at the end of this paper in Sect. 5.

Let us consider, as an illustrating example, the platform developed in
the French Institute for Research in Agronomy (INRA) to link agronomy
insights with socio-economic developments and behaviour of various stakehold-
ers involved (farmers, consumers, biologists, industrial partners etc.). It aims at
identifying ways and solutions to maintain the quality of production and sat-
isfy the needs of the users, while limiting the environmental impact (see e.g.
the MEANS initiative http://www6.inra.fr/meanseng/). The long-term ambi-
tion is to homogeneously integrate information from different sources, namely
the regional production practices, market organization at local, national and
international levels, and along the agri-food chains. In practical applications
such as the one described above, the knowledge obtained from the various actors
involved is incomplete. The causes of incompleteness are numerous. First, it is
difficult to obtain a complete ontology (set of rules that describe the world) from
domain experts. AGROVOC [21,30] can provide a basis for the ontology devel-
oper but the elicitation process is difficult. The basic rules used for reasoning
might seem obvious for the domain expert. This calls for two important aspects
to be considered:

– First, the representation language needs to be expressive enough in order for
implicit knowledge to be derived from explicit knowledge. Existential rules, that
allow for existential variables in the head of the rules are especially useful. The
existential variables allow to represent variables that are unknown (same mech-
anism as value invention in tuple generating dependencies in databases) [8].

– Second, the incompleteness can be used as a way to help experts focus on the
parts of the ontology that need expanding. One can use explanation facilities
of query answering in presence of incompleteness [3–6]. The experts, faced
with the system explanation, can choose to enrich the knowledge base if the
explanation (or the results) are not conform to their expectation.

When putting together the knowledge from several incomplete sources one
needs to perform alignment in order to integrate the sources. Such alignment
can be obtained using various methods from the literature. For instance, key
discovery on the two datasets and the use of such keys as alignment candidate
generators have been proven to significantly improve the state of the art [7,26].
Reasoning can be performed on the union of the sources that share the same
vocabulary. In most cases, the union of several sources is inconsistent. As false
implies anything, the inconsistent knowledge bases cannot be used as such for
reasoning (as any conclusion could be derived). Different inconsistency methods
have been devised in order to reason with such knowledge [22]. It is important
at this step to make several observations.

http://www6.inra.fr/meanseng/
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In this paper we accept the idea that full specifications cannot be established
in agrifood chains (thus we need to address incomplete information). On the
other hand, several complementary points of view - possibly contradictory - can
be expressed (nutritional, environmental, taste, etc.). We then need to assess
their compatibility (or incompatibility) and identify solutions satisfying a maxi-
mum set of viewpoints. Several logical frameworks based on argumentation have
been proposed in the literature where argumentation was used as a logical tool
able to reason in presence of inconsistency. The reasoning process was either
done using forward chaining reasoning or backwards chaining. In forward chain-
ing reasoning all arguments and attacks were computed and extensions used in
order to represent maximal consistent point of views over the argument and
attack set. In backwards chaining an argument was investigated to be accepted
or rejected based on the other arguments attacking it and their respective status
(accepted or rejected). The two approaches come down to same semantic results,
of course, but differ from a computational point of view as well as methodological
[13,14,18,32,33].

Please note that argumentation theory can be used not only to deal with
inconsistency but also to explain the decision made by the system to a user (as
already explained above as a method to remove incompleteness). Argumentation
gives the possibility of defining formal protocols of interaction between agents.
This is particularly interesting when one of the agents in question is a human
agent. We can design formal protocols that underpin the basis of human agent
interaction. The notion of an explanatory dialogue as proposed by [3] is a way
to offer an interactive explanation that takes place between the system and the
user. Explanatory dialogues allow (including and not limited to) the user to ask
follows-up questions, clarification questions, elaborate on previous explanations.

Social Attitudes and Affects. When reasoning about knowledge (using clas-
sical methods or using inconsistency tolerant reasoning mechanisms) different
pieces of knowledge can be of different importance for a decision maker. Exist-
ing argumentation-based systems for inconsistent ontology need to take this
aspect into account and deal with such preferences on data sources (where more
important knowledge is considered to be preferred to less important knowledge).
Many approaches exists in literature for dealing with preferences and attacks.
The state of the art considers two roles of preferences. Either preferences can
inhibit attacks [1] or preferences can be used in a latter stage as a way of filter-
ing out extensions. The preferences relation on the arguments can be lifted to a
preference relation on sets of arguments (extensions). The latter approach has
been used in agronomy and sucesfully validated with domain experts [17].

Another way of handling preferences is to use mental states in order to model
dominant agents. As explained before, a multi-agent system is composed of mul-
tiple autonomous agents, each capable of reacting to changes in the environment.
The internal workings of an agent cannot be discerned by an external observer,
and agents are thus treated as black boxes by other agents. One common app-
roach to agent design involves ascribing agents with mental states based on folk
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psychology. Thus, for example, the family of BDI techniques [28] to agent design
ascribe an agent with a set of beliefs, a set of desires, and a set of intentions
which are derived from these beliefs and desires. An agent would then act in
such a way so that it will attempt to fulfil its intentions. Approaches such as [2]
could be used in order to refine human to human or human to agent interactions
in multi agent systems.

4 Strategic Behavior Modelling

In this section we investigate the modelling of the strategic structure of the
multi agent system (how can agents accomplish their intentions either alone
or in cooperation). Cooperation means following a common protocol that serves
the group objective. As already mentioned we distinguish between unconstrained
and constrained cooperation problems.

Unconstrained cooperation is, for example, an alignment between two agents
with the purpose of speaking the same logical language. We already discussed
alignment issue in the previous section as such aspects are fundamental to ensure
communication throughout several agents.

When discussing constrained cooperation we will focus on two methods. First,
the strategic structure of a system can be logically represented using coalition
logic in Sect. 4.1. Next, we explain how normative systems can impose a certain
group behaviour in Sect. 4.2.

4.1 Multi Agent Ressource Allocation and Coalitions

The issue of flexible allocation of tasks to multiple problem solvers received
attention from the early days of Artificial Intelligence. The tasks that need to
be performed are announced from a central node and other nodes subsequently
place bids on the tasks they can perform. The central node collects the bid for
the task and awards the task to the best bidder. This works as an abstraction of
a marked-based centralized distributed system for the determination of adequate
allocations of heterogenous indivisible resources. In a Multi Agent Resource Allo-
cation (MARA) system [12], there is central node a (let’s call it the auctioneer)
and a set of n nodes, I = 1, ..., n (the bidders) which concurrently demand
bundles of resources from a common set of available resources, R = r1, ..., rm,
held by the auctioneer. The auctioneer broadcasts R to all n bidders, asking
them to submit in a specified common language, the bidding language, their R-
valuations over bundles of resources. Bidders i R-valuation, vi, is a non-negative
real function on P(R), expressing for each bundle the individual interest of bid-
der i in obtaining S. No bidder i knows the valuation of any other n 1 bidders,
but all the participants in the system agreed on the outcome: based on bidders
R-valuations, the auctioneer will determine a resources allocation specifying for
each bidder i her obtained bundle Oi (its outcome). The task of the auctioneer
finding a maximum value allocation for a given set of bidder valuations is called
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the Winner Determination Problem (WDP). This is a NP-hard problem, being
equivalent to weighted setpacking.

An instance of the MARA problem is the problem of coalition formation
(that models teamwork explicitly). A particular strength of multi-agent systems
is the ability of agents to form coalitions that may achieve goals more efficiently
than when agents act as individuals. Possible applications of coalition forma-
tion techniques in multi-agent systems include rescue coordination, supply chain
management, e-commerce, etc. MARA in general and coalition formation in par-
ticular can be used in agrifood chains to model more general behaviour for chain
organisation. Many approaches used for agrifood chains are myopic (they only
refer to one transformation or one actor on the chain). Having a global view will
allow certain optimisations that go beyond the individual transformations. Also
a global view of the system will pave the way for seamless reverse engineering
techniques where final specifications are used in order to derive (using backwards
chaining) initial conditions needed for such specifications.

Three main issues studied in the context of MARA in general (that also apply
in the context of MARA for agrifood chains) are [19,29]:

1. Optimization of a coalition value. In agrifood chains this could refer to the
minimising of cost of products (cost in the broad sense - depending on the
resources needed). This relies however on having full knowledge on partial
costs which is infeasible in certain practical cases due to incomplete knowledge
(discussed in the previous section).

2. Division of a coalition value between agents (e.g. the concepts of core or
Shapley value). Studying such concepts could help highlight the steps in the
agrifood chain transformation with most utility (or, the inverse, steps that
could be avoided).

3. Generating the optimal division of agents into exhaustive and disjoint coali-
tions. Such divisions are called coalition structures and the this problem is
called an optimal coalition structure generation problem (CSG). Lastly, the
CSG problem could be used in order to optimise the agrifood chain in its
totality.

4.2 Normative Reasoning

Another way of organising a multi agent system is by installing a set of norms
that need to be behaved by all agents. Norm aware agents make use of concepts
such as obligations, permissions, and prohibitions, to represent and reason about
socially imposed goals and capabilities. Such agents are able to decide whether
to act in a manner consistent with norms, or whether to ignore them. Typically,
norms are imposed on a set of agents in order to increase the overall utility of
the system (often at the cost of individual utility), or reduce computational or
communication overhead [11].

Norms, such as obligations, permissions and prohibitions, place soft con-
straints upon an agent. Typically, ignoring an obligation (i.e. violating it) means
that a sanction is applied to the agent, but the agent may still choose to ignore a
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norm in some situations. An agent is said to be norm-aware if it is able to reason
about the norms that apply to it. A multi-agent system containing norm-aware
agents has a number of advantages over simpler multi-agent systems. Norms
allow agents to assume, by default, that other agents will behave in a certain
way, reducing the complexity of their reasoning. Norms are typically declarative,
and have a great deal of explanatory power. Norms thus form a good program-
ming and understanding metaphor for both creating agents, and understanding
their actions in specific situations.

A norm may be defined in terms of five components. First, a norm has a
type, for example, an obligation, or a permission. Second, a norm has an activa-
tion condition, identifying the situations in which the norm affects some agents.
Third, a norm imposes some normative condition on the affected agent; if this
normative condition does not hold, the norm is not being followed. Fourth, norms
have a termination, or expiration condition, identifying the situations after which
the norm no longer affects the agent. Finally, the norm must identify the agents
which it affects. These agents are referred to as the norm targets.

During its lifecycle, an abstract norm becomes instantiated. While instan-
tiated, its normative condition may evaluate to true or false at different times.
Finally, the norms expiration condition evaluates to true, after which the instan-
tiated norm is deleted. It is possible to construct this condition as a query to the
knowledge base, and from this, determine whether the norm is violated or not.

A normative environment is used to keep track of the abstract (generic norms)
and instantiated norms (norms applying to one agent during a given time lapse)
within the system. Since norms may be instantiated and expire as time passes,
the normative environment must, at each time point, identify which norms exist
in the system.

In [15] the authors proposed a rich model for tracking and determining the
status norms may be represented graphically via a logical language represented
as a graph. The framework presented is intended to capture the evolution of a
norm over time, allowing for its instantiation and expiration, as well as recording
the time periods during which a norm was complied with or violated. Since the
internal structure of such a norm is somewhat complex, some technique for
explaining why a norm is in a certain state is required, and a visual model for
explaining norm status useful for human agent interaction.

In both cases (modelling the constrained cooperation as a multi agent
resource allocation problem or as a normative system) we could impose the
global view on the system that was lacking in the state of the art that only
considered the localised optimisation within a transformation. Furthermore, we
can also model important ethical aspects which are very important to consider
but difficult to take into account in existing systems.

The main difference between the two approaches is the elicitation aspects.
While in MARA one needs to rely on a complete knowledge of the utility of
the various coalitions in the normative approach such requirement is no longer
imposed. One can state the different norms that the system should respect and
then each individual agent will comply or not to the respective norm.
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5 Discussion

In this paper we provided a proposal for modelling AFC problems as MAS prob-
lems. The contribution of the paper lays in the unifying framework that such
modelling could being into KRR problems in AFC. While certain approaches
in KRR for AFC already employ multi agent systems techniques (such as argu-
mentation) an unified framework where the chain can be studied in its globality
could prove to be beneficial. Such claim is supported by the advantages of mod-
elling supply chain management as multi agent system modelling proved by the
state of the art. While supply chain management is a particular case of agri-
food chain modelling, in general in agrifood chain modelling the incompleteness
and uncertainty of the knowledge makes the problem much harder. This is yet
another reason to benefit from the uncertainty reasoning in multi agent systems.

As mentioned before the agents we consider here are rational agents. It could
be (especially in an argumentation setting) that we do not want to consider solely
rational agents. Indeed, the cognitive biases should be taken into account. Detect-
ing and highlighting such biases (which could be common in domain experts due
to the narrowness of their expertise) might be able to prevent decision errors in
chain management.

We conclude this paper by a quick remark about implementation aspects. As
already explained the aim of the paper is to be a position paper about the benefits
of modelling AFC as MAS. Of course such modelisation should be followed
in practice by judicial implementations. One of the most important aspects to
consider is the flexibility of the system that should be extendible in time. Another
important aspects is the seamless integration with LOD ontologies (in terms of
compatibility with Web Services, SPARQL endpoints and expressivity).
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Abstract. In this paper, we introduce an uncertain data mining driven
model for knowledge discovery in chemical database. We aim at discov-
ering relationship between molecule characteristics and properties using
uncertain data mining tools. In fact, we intend to predict the Critical
Micelle Concentration (CMC) property based on a molecule character-
istics. To do so, we develop a likelihood-based belief function modelling
approach to construct evidential database. Then, a mining process is
developed to discover valid association rules. The prediction is performed
using association rule fusion technique. Experiments were conducted
using a real-world chemical databases. Performance analysis showed a
better prediction outcome for our proposed approach in comparison with
several literature-based methods.

Keywords: Evidential data mining · Chemical database · Association
rule · Associative classifier

1 Introduction

Data mining is generally held to be generically a discipline of the field of Knowl-
edge Discovery, or Knowledge Discovery in Databases (KDD). It is usually
defined as the process of identifying valid, novel, potentially useful, and ulti-
mately understandable patterns from large collections of data. Then, causal rules
are derived from those patterns. Frequent patterns and valid rules can be used
to test hypotheses (or verification goals) or to autonomously find entirely new
patterns (discovery goals) [1]. Discovery goals could be predictive (requiring pre-
dictions to be made using the data in the database) [2]. On the other hand, there
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has been an explosion in the availability of publicly accessible chemical informa-
tion, including chemical structures of small molecules, structure-derived proper-
ties and associated biological activities in a variety of assays [3,4]. These data
sources provide a significant opportunity to develop and apply computational
tools to extract and understand the underlying structure-activity relationships.
These techniques remain sensitive to the presence of imperfect data [5]. Recent
years, we have noticed the emergence of uncertain data mining tools [6–8] that
contribute to seek hidden pertinent information under the presence of uncer-
tainty and imprecision. However, to the best of our knowledge, uncertain data
mining tools have not yet been used to discover pertinent knowledges neither to
predict in chemical databases.

In this work, we are interested in evidential data mining in chemical data-
bases. The latter provides a generalizing framework for probabilistic and binary
data mining disciplines [9]. Recently, mining over evidential databases has flour-
ished by several contributions and the introduction of new support and confi-
dence measures [10,11]. In addition, it has been applied on several fields such as
healthcare [12], cheminformatics [13], etc.

From methodological point of view, we intend to apply an uncertain data
mining-driven approach to analyze a chemical database. The chemical data-
base contains records of amphiphilic molecules1. We aim at predicting physico-
chemical properties of a new molecule from their structural characteristics. The
imprecision within the data is modelled using evidence theory. Methodologi-
cally, we transform the chemical database into an evidential database with a
likelihood-based approach. Once the imprecision examined, valid association
rules are selected and used for the prediction of Critical Micelle Concentration
(CMC) property.

This paper is organized as follows: in Sect. 2, the state-of-the-art works of
evidential data mining are briefly recalled. In Sect. 3, we introduce our uncertain
data mining driven approach. A new likelihood-based model for imprecision con-
sideration is presented. The performance of our proposed approach was studied
on a real-world chemical database in Sect. 4. Finally, we conclude and sketch
potential issues for the future work.

2 Preliminaries

2.1 Evidential Database

An evidential database stores either uncertain and imprecise data [14] via the
evidence theory. An evidential database, denoted by EDB, with n columns and
d rows where each column i (1 ≤ i ≤ n) has a domain Θi of discrete values. Each
cell of a row j and a column i contains a normalized Belief Basic Assignment
(BBA) mij : 2θi → [0, 1] as follows:

1 An amphiphilic molecule is chemical compound possessing both hydrophilic (water-
loving, polar) and lipophilic (fat-loving) properties.
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⎧
⎨

⎩

mij(∅) = 0
∑

A⊆θi

mij(A) = 1. (1)

An item corresponds to a focal element2. Two different itemsets (a.k.a pat-
terns) can be related via either the inclusion or the intersection operator. Indeed,
the inclusion operator for evidential itemsets [11] is defined as follows, where X
and Y are two evidential itemsets:

X ⊆ Y ⇐⇒ ∀xi ∈ X,xi ⊆ yj (2)

xi and yj are respectively the ith and the jth element of X and Y . For the same
evidential itemsets X and Y , the intersection operator is defined as follows:

X ∩ Y = Z ⇐⇒ ∀zk ∈ Z, zk ⊆ xi and zk ⊆ yj . (3)

An evidential association rule R is a causal relationship between two itemsets
that can be written in the following form R : X → Y such that X ∩ Y = ∅.

Example 1. We aim at developing a predictive model for a chemical database.
The evidential database records information about several molecules. Table 1
shows an example of an evidential database.

Table 1. Evidential database EDB

Molecule Head Family (HF)? Carbon Number (Nc)? CMC?

M1 m11(Glucose) = 1.0 m21(7) = 0.9 m31(12) = 0.8

m21(7 ∪ 8) = 0.1 m31(12 ∪ 50) = 0.2

M2 m12(Glucosamine) = 1.0 m22(8) = 0.8 m32(12) = 0.7

m22(8 ∪ 10) = 0.2 m32(0.2 ∪ 12) = 0.3

The first transaction means that the molecule M1 is a Glucose head family
type of the frame of discernment ΘHF = {Glucose,Glucosamine}. The second
attribute reflects the Critical Micelle Concentration (CMC) discretized in the
following frame of discernment ΘCMC = {0.2, 12, 50}. M1 has a CMC close to
12 mM and could be some doubt if it belongs to around 50 millimolar (mM) CMC
class. In Table 1, {HF = Glucose} is an item and {HF = Glucose}×{CMC =
12∪50} is an itemset such that {HF = Glucose} ⊂ {HF = Glucose}×{CMC =
12 ∪ 50} and {HF = Glucosamine} ∩ {HF = Glucosamine} × {CMC = 0.2 ∪
12} = {HF = Glucosamine}. {Nc = 8} → {CMC = 12} is an association rule.

In the following subsection, we recall the definition of belief-based, precise-based
support and confidence measures that estimate the pertinence of patterns and
association rules.
2 Each subset A of 2Θ, fulfilling m(A) > 0, is called a focal element.
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2.2 Support and Confidence Measures

As is the case for probabilistic data mining [8], the support within the evidential
context is based on expectation. Two support family approaches were proposed.
The first support measure was proposed by [11] and called the belief-based sup-
port measure. It is considered as the lower bound for the support. It is written
as follows:

SupBel
Tj

(X) =
∏

i∈[1...n]

SupBel
Tj

(xi) =
∏

i∈[1...n]

Bel(xi). (4)

Thus, the belief-based support in the entire database is computed as follows:

SupBel
EDB(X) =

1
d

d∑

j=1

SupBel
Tj

(X). (5)

Since the belief-based support is a lower estimation of the support, it is
obvious that in some cases that an itemset I could have a higher support value.
Another measure was introduced by Samet et al. [15] that provides a medium
estimation. The precise measure Pr is defined by:

Pr(xi) =
∑

x⊆Θi

|xi ∩ x|
|x| × mij(x) ∀xi ∈ 2Θi . (6)

The evidential support of an itemset X =
∏

i∈[1...n]

xi in the transaction Tj (i.e.,

PrTj
) is then computed as follows:

PrTj
(X) =

∏

xi∈Θi,i∈[1...n]

Pr(xi). (7)

Thus, the support SupEDB of the itemset X becomes:

SupEDB(X) =
1
d

d∑

j=1

PrTj
(X). (8)

A new metric for confidence computing based on the precise-based support mea-
sure is introduced in [10]. For an association rule R : Ra → Rc, the confidence
is computed as follows:

Conf(R) =

d∑

j=1

SupTj
(Ra) × SupTj

(Rc)

d∑

j=1

SupTj
(Ra)

. (9)

Example 2. We consider the same problem described in Example 1. The precise
support of the itemset {HF = Glucose} × {Nc = 7} in the evidential database
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is equal to 1×0.95+0
2 = 0.475. It is superior to the one computed with the belief-

based support which is equal to 1×0.9+0
2 = 0.45. Finally, the association rule

{Nc = 8} → {CMC = 12} has 0.05×0.9+0.9×0.85
0.05+0.9 = 0.85 as confidence in the

evidential database.

3 Uncertain Data Mining Approach for CMC Prediction

In the following, we introduce our uncertain data mining approach for
amphiphilic molecule’s CMC prediction. The provided approach, shown in Fig. 1
consists in three stages. Imprecision within the raw database is processed when
evidential database is constructed upon the use of likelihood modelling app-
roach. Then, frequent patterns and valid association rules are retrieved with
EDMA mining algorithm [10]. The selected valid association rules are then used
to compute the CMC of an amphiphilic molecule.

DB

Likelihood
database
modelling

EDMA EvAC

Pre-processing Mining process Associative classification

Fig. 1. Evidential data mining based model for the prediction of CMC property

3.1 Likelihood Modelling for Input Data

Let us assume the class-conditional probability densities f(x|ωi) to be known.
Having observed x, the likelihood function is a function from Θ to [0,+∞)
defined as L(ωi|x) = f(x|ωi), for all k ∈ {1, . . . , K}. Shafer [16] proposed to
derive from L a belief function on Θ defined by its plausibility function. Starting
from axiomatic requirements, Appriou [17] proposed another method based on
the construction of I belief functions mi(.). The idea consists in taking into
account separately each class and evaluating the degree of belief given to each
of them. In this case, the focal elements of each BBA mi are the singleton {ωi},
its complement ωi, and Θ. This model, hereafter referred to as the Separable
Likelihood-based (SLB) method, has the following expression:

⎧
⎪⎨

⎪⎩

mi({ωi}) = 0
mi(ωi) = αi · {1 − R · L(ωi|x)}
mi(Θ) = 1 − αi · {1 − R · L(ωi|x)}.

(10)
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where αi is a coefficient that can be used to model external information such as
reliability, and R is a normalizing constant that can take any value in the range
(0, (maxi(L(ωi|x)))−1]. A second model satisfying the axiomatic requirements
[17] can be written as follows:

⎧
⎪⎨

⎪⎩

mi({ωi}) = αi·R·L(ωi|x)
1+R·L(ωi|x)

mi(ωi) = αi

1+R·L(ωi|x)
mi(Θ) = 1 − αi

(11)

Both BBA models could be used to consider imprecision within the data. How-
ever, we retain the second BBA model since it is more informative.

0 0.002 0.4 4.5 14.40 50
0

5

10

15

CMC (mM)

F
re

q
u
en

cy

Fig. 2. Frequency of appearance histogram of amphiphilic molecule’s CMC

Now, we intend to model each molecule x with a BBA that expresses its
membership to the CMC classes. To do so, we distinguish between two types
of data (i.e., proprieties and descriptors of molecule) in the database: categoric
and numeric data. A categoric data, such as the head family in Table 1, are
represented by certain BBA. A BBA is called a certain BBA when it has one
focal element, which is a singleton. It is representative of perfect knowledge and
the absolute certainty. The numeric data are transformed into a BBA using the
likelihood model. In fact, from the histogram of frequency in Fig. 2, we construct
a probability density function (pdf). A pdf is constructed on each CMC peak.
The computed pdf corresponds to the class-conditional probability density. Five
class-conditional probability density functions are constructed from Fig. 2. A
class-conditional pdf is computed for the following CMC classes: CMC around
0.002, 0.4, 4.5, 14.40 and 50 mM. Once the class-conditional probability functions
are constructed, we compute the BBA that expresses the membership of x to
each CMC class following the model detailed in Eq. (10). The computed BBAs
are then combined to obtain the final BBA that expresses the membership of x
to all CMC classes:

m = ⊕i∈Imi (12)
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where ⊕ is the Dempster’s rule of combination between two BBAs which is
defined as:

(m1 ⊕ m2)(A) = m⊕(A) =
1

1 − m(∅)

∑

B∩C=A

m1(B) × m2(C) ∀A ⊆ Θ,A �= ∅
(13)

where m(∅) represents the conflict mass between m1 and m2, is defined as:

m(∅) =
∑

B∩C=∅
m1(B) × m2(C). (14)

Once the evidential database is constructed, we mine frequent patterns and
valid association rules. The methodology for patterns and association rules min-
ing over evidential amphiphilic molecules database is detailed in the following
subsection.

3.2 Data Mining Predictive-Based Model for Amphiphile Molecules

In the following, we detail the evidential data mining process to predict the CMC
property of a molecule based on its structural characteristics. Once the evidential
database is constructed with the procedure described in Subsect. 3.1, we mine
frequent patterns and valid association rules. A pattern is called frequent (resp.
valid for association rules) if its computed support (resp. confidence) is higher
than or equal to a fixed threshold minsup (resp. minconf). In our model, we use
EDMA algorithm [10] to retrieve frequent patterns and valid association rules
from the evidential database. EDMA generates patterns having a precise support
higher than minsup in a level-wise manner. The valid association rules are then
deduced from frequent patterns. Each pattern of size k gives 2k − 2 different
association rules. The retrieved association rules are of help for predicting the
CMC value of a molecule. To do so, from the set of all valid association rules
R, we retain only those that have a CMC item within the conclusion part such
that:

RI = {R : Ra → Rc ∈ R|∃y ∈ ΘCMC , y ∈ RC}. (15)

The set RI represents the set of all prediction rules. They are the input
of the EvAC algorithm (see Algorithm 1). EvAC is an associative clas-
sifier algorithm that fuses interesting association rules for prediction pur-
poses. Indeed, EvAC algorithm classifies the data with fusion techniques and
FILTRATE LARGE PREMISE(.) function (line 1) allows to filtrate the
rules and to retain only those with the largest premise, having intersection with
the under classification instance X. In fact, the set of the largest premise rules
Rlarge are more precise than those with the shortest premise. Once found, they
are considered as independent sources and are combined (line 2 to 4). The fusion
is operated on association rules modelled into BBAs with Dempster’s rule of com-
bination (see Eq. (13)). The function argmax in line 5 allows the retention of
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Algorithm 1. Evidential Associative Classification (EvAC) algorithm
Require: R, X, ΘC

Ensure: Class
1: Rlarge ← FILTRATE LARGE PREMISE(R, X, ΘC)
2: for all r ∈ Rlarge do

3: m ←
{

m({r.conclusion}) = conf(r)

m(ΘC) = 1 − conf(r)
4: m⊕ ← m⊕ ⊕ m

5: Class ← argmaxHk∈ΘC BetP (Hk)
6: function filtrate large premise(R, X, ΘC)
7: max ← 0
8: for all r ∈ R do
9: if r.conclusion ∈ ΘC & X ∩ r.premise �= ∅ then

10: if size(r.premise) > max then
11: Rlarge ← {r}
12: max ← size(r.premise)
13: else
14: if size(r.premise) = max then
15: Rlarge ← Rlarge ∪ {r}
16: return Rlarge

the hypothesis that maximizes the pignistic probability which is computed as
follows:

BetP (Hn) =
∑

A⊆Θ

|Hn ∩ A|
|A| (1 − m(∅))

× m(A) ∀Hn ∈ Θ. (16)

Example 3. Let us assume a new molecule Mx, depicted in Table 2, we intend
to predict its CMC. Table 3 is a numerical example of evidential rules’ fusion
using EvAC. The extracted classification association rules are modelled as BBAs.
The decision with pignistic probability gives the {CMC = 12} class which is
naturally the case. The result is interpreted as the molecule Mx belongs to the
{CMC = 12} class and its CMC is highly possible centred around 12.

Table 2. The evidential transaction X under classification

Molecule Head family? Carbon Number? CMC?

Mx m11(Glucose) = 1.0 m21(7) = 0.8 ?
m21(7 ∪ 8) = 0.2
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Table 3. Numerical example of rule’s fusion

Rule Confidence wm
ΘC
Rl

BetP

R1 : {HF = Glucose}, {CN = 8} →
{CMC = 12}

0.9 m
ΘC
R1

({12}) = 0.9

m
ΘC
R1

(ΘC) = 0.1

R2 : {HF = Glucose}, {CN = 7} →
{CMC = 12}

0.9 m
ΘC
R2

({12}) = 0.9 BetP ({12}) = 0.993

m
ΘC
R2

(ΘC) = 0.1

R3 : {HF = Glucose}, {CN = 7 ∪ 8} →
{CMC = 50}

0.1 m
ΘC
R3

({50}) = 0.1 BetP ({50}) = 0.007

m
ΘC
R3

(ΘC) = 0.9

R4 : {HF = Glucose}, {CN = 7 ∪ 8} →
{CMC = 12 ∪ 50}

1 m
ΘC
R4

(12 ∪ 50) = 1

4 Empirical Results

Knowledge extraction from a chemical database is of great interest to the iden-
tification of useful molecules for a specific purpose. In this real case study,
we aimed at predicting the relationships between structural characteristics and
the physico-chemical properties of the amphiphile molecules. In particular, we
focused on the prediction of the Critical Micelle Concentration (CMC) of each
molecule by using its structural properties. The database is established from
the domain literature using a systematic review process. Each retrieved paper is
scanned and reviewed by two domain experts. Relevant information of structural
characteristics and related physico-chemical properties are extracted and stored
into a raw database for further processing. A transformation process, as the
one described in Subsect. 3.1, is performed to establish an evidential database
from raw data. The database after transformation and processing contains 199
amphiphile molecules (i.e., rows) detailed in 24 attributes (structural character-
istics and related physico-chemical properties) (i.e., columns). The amphiphile
molecule evidential database contains over 109 items (i.e., focal elements) after
transformation.

Table 4. Classification accuracy

Method EvACLike−Pr EvACECM-Pr EvACLike-Bel EvACECM-Bel CMAR [18] N. Net KNN SVM

% 65.83 63.83 49.20 49.20 58.29% 38.66 43.21 34.84

Figure 3 shows the number of extracted frequent patterns for two measures:
the belief and the precise support measures. Those measure were evaluated for
both likelihood-based and ECM-based imprecision modelling [19] for evidential
database construction. The results show that precise-based support associated
to an Evidential C-Means (ECM) for imprecision modelling provides the highest
number of frequent patterns with a peak of 87423 comparatively to likelihood-
based that has a peak of 50415. It is important to highlight that the belief-based
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Fig. 3. Number of retrieved frequent
patterns from the database.
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ciation rules from the database.
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Fig. 5. Runtime relatively to minsup
value

ΘCMC {0.004} {0.4} {4.5} {14.40} {50}
Recall 0.84 0.76 0.69 0.52 0.63

Precision 0.72 0.72 0.69 0.81 0.58

F-measure 0.77 0.74 0.69 0.63 0.60

Fig. 6. Recall, Precision and F-measure for
EvAC on the CMC classification

support measure always provides a lower number of frequent patterns than the
precise one for both likelihood and ECM database construction. This confirms
that the belief-based support is a pessimistic measure.

Figure 4 highlights the number of association rules that will be used for clas-
sification. It is important to emphasize that the number of association rules
depends on the number of the retrieved frequent patterns. The runtime for an
extraction algorithm with the precise support is slightly higher than the belief-
based one in Fig. 5. The belief measure provides better runtime thanks to the
mathematical simplicity of computing the belief function. To evaluate the accu-
racy of our algorithm, we perform a cross validation classification. The accuracy
of EvAC Algorithm is given in Table 4. The classification with a likelihood impre-
cision modelling approach is as efficient as those provided with ECM. Technically,
the reduction of the association rules, number-wise, when it is done correctly,
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helps to improve results. Indeed, the classification process as demonstrated in
Algorithm 1 relies on rules merging using the Dempster’s rule of combination.
An important number of association rules in addition to the characteristics of
Dempster’s combination rule behaviour misleads the fusion process to errors. In
addition, the classification accuracy depends on the quality of the discretization.
The use of the likelihood approach for evidential database construction provides
a better handling to the uncertainty with BBAs. In contrast, the result of the
k-NN, the Neural Networks and SVM using the Weka software, in Table 4, are
obtained after going through a PKIDiscretization. The comparison shows that
our proposed framework performs more efficiently.

In Fig. 6, we scrutinize the performance of the classification process under a
likelihood database construction and the precise support with the Recall, Preci-
sion and F-measure relatively to each CMC class. We report the F1 score which
is the harmonic mean between precision and recall. Specifically, the F1 score is:

F1 =
2 × Prec × Rec

Prec + Rec
, Prec =

tp

tp + fp
, Rec =

tp

tp + fn

with tp, fp, fn denoting true positives, false positives, and false negatives. Sev-
eral recall values are low such as the CMC={14.16} comparatively to the other
classes. This results can be explained by the proximity of centroid clusters found
by ECM. In fact, CMC={14.16} and CMC={16.09} could be merged into one
representative class for a better detection.

5 Conclusion

In this paper, we introduced new uncertain data mining driven approach for
physico-chemical property prediction of amphiphilic molecules. A new impreci-
sion modelling approach based on likelihood is provided. The likelihood mod-
elling approach is used to construct evidential database. As illustrated in the
experiment section, the proposed approach provided an interesting performance
on a real-world chemical database. In future work, we will be interested in con-
fronting our results the to other uncertain data mining approaches such as prob-
abilistic and fuzzy databases. Furthermore, the performance of mining algorithm
could be improved by adding specific heuristics to reduce focal elements through
evidential database construction process.
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Abstract. Recent years have seen increasing volumes of data generated
by online systems, such as internet logs, physical access logs, transaction
records, email and phone records. These contain multiple overlapping
sequences of events related to different individuals and entities. Infor-
mation that can be mined from these event sequences is an important
resource in understanding current behaviour, predicting future behaviour
and identifying non-standard patterns and possible security breaches.
Statistical machine learning approaches have had some success but do
not allow human insight to be included easily. We have recently presented
a framework for representing sequences of related events, with scope for
assistance from human experts. This paper describes the framework and
presents a new algorithm which (i) allows the addition of new event
sequences as they are identified from data or postulated by a human
analyst, and (ii) allows subtraction/removal of sequences that are no
longer relevant. Examination of the sequences can be used to further
refine and modify general patterns of events.

Keywords: Event sequences · Incremental algorithm · Fuzzy · X-mu

1 Introduction

Collaborative intelligence aims to combine the power of machines with the inter-
pretive skills, insight and lateral thinking provided by human analysts. The role
of the computer in this partnership is to gather data, transform it algorithmi-
cally, and provide visualisation. The role of the human is to provide creativity
and insight in analysing and understanding the data, and to extract “knowledge”
- which may be in the form of predictive rules, normal and unusual patterns in
the data, further insight into underlying mechanisms, etc.

In order to implement a successful collaborative intelligent system, it is nec-
essary to exchange knowledge between the components - in particular between
humans and machines, although in a multi-agent system we may also need to con-
sider human-human and machine-machine exchange. Typically, machine process-
ing is centred on well-defined entities and relations which may range from the

c© Springer International Publishing Switzerland 2016
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flat table structures of database systems through graph-based representations
and up to ontological approaches involving formal logics. Human language and
communication, on the other hand, is based on a degree of vagueness and ambi-
guity enabling efficient transmission of information between humans without the
need for precise definition of every term used. There is a fundamental mis-match
between the representations used by machine and human components in a collab-
orative intelligent system. Even quantities that can be measured precisely (such
as height of a person or building, volume of a sound, amount of rainfall, colour of
an object, etc.) are usually described in human language using non-precise terms
such as tall, loud, quite heavy, dark green, etc. More abstract properties such as
beautiful landscape, delicious food, pleasant weather, clear documentation, corpo-
rate social responsibility, are fundamentally ill-defined, whether they are based
on a holistic assessment or reduced to a combination of lower-level, measurable
quantities. However, we are generally able to judge the degree to which a partic-
ular instance possesses such a property. Zadeh’s initial formulation of fuzzy sets
[1] was inspired primarily by the flexibility of definitions in natural language.

Large volumes of data are generated by monitoring and recording systems,
such as internet logs, phone records, GPS monitors and physical access logs (e.g.
to buildings), financial transactions, etc. Linking records together into sequences
(whether within a single data source or across multiple sources) is a complex task
which is ideally suited to the notion of collaborative intelligence. Specific prob-
lems in extracting sequences of related events include determination of what
makes events “related’, how to find groups of “similar” sequences, identifica-
tion of typical sequences, and detection of sequences that deviate from expected
patterns, where the notion of “expected” can either be derived from previous
observations or from human analysis.

The ability to incorporate human knowledge and expertise is an area which
distinguishes collaborative intelligence from (widely used) statistical machine
learning approaches. In cases where insufficient data is available, or where the
data lead to incorrect conclusions, machine learning is not reliable and human
insight is required. For example, in the emergence of a previously unseen mal-
ware threat, a human analyst could use knowledge (e.g. of a zero-day exploit)
to identify the likely behaviour before a statistically significant body of data
has been gathered to train a machine learning system. An example of incorrect
conclusions could come from records of card-based entry/exit barriers where
“tailgating” occurs, i.e. an individual follows someone else through the barrier
without swiping their card. Such data will give misleading behaviour patterns.

The issues involved in discerning event sequences are strongly linked to the
concept of information granulation introduced by Zadeh [2] to formalise the
process of dividing a group of objects into sub-groups (granules) based on “indis-
tinguishability, similarity, proximity or functionality”. In this view, a granule is
a fuzzy set whose members are (to a degree) equivalent. In a similar manner,
humans are good at dividing events into related groups, both from the temporal
perspective (event A occurred a few minutes before event B but involves the
same entities) and from the perspective of non- temporal properties (event C is
very similar to event D because both involve similar entities/activities).
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However, at the same time it is necessary to recognise that most machine-
based algorithms require crisp, well-defined boundaries when processing data.
In this work, we use the X − μ method to translate consistently between the
(generally fuzzy) human knowledge representation and the (generally crisp) data
required by machines. We describe a compact and expandable sequence pattern
representation, which allows the addition of new event sequences as they are
identified, and subtraction of sequences that are no longer relevant. The main
contribution of the paper is the presentation of the incremental algorithms to
add and remove sequences. Although the algorithm for sequence addition was
presented briefly in [3], this paper contains a more detailed explanation. The
algorithm for sequence subtraction has not been previously published (other
than patent [4]).

2 Background

2.1 X-Mu Approach - Conversion between Fuzzy and Crisp

Human intelligence includes the ability to identify a group of related entities (e.g.
physical objects, events, abstract ideas) and to subdivide them into smaller sub-
groups at an appropriate level of granularity for the task at hand. Such groups
are rarely specified by “necessary and sufficient” conditions, but are better mod-
elled by membership functions, where we can compare different entities and judge
whether one belongs more strongly to the set than another. In the classical fuzzy
approach, for any predicate on a universe U, we introduce a membership function

μ : U → [0, 1]
representing the degree to which each value in U satisfies the predicate. Within
a universal set, the absolute value of the membership function for an element
is generally less important than the relative value, compared to other elements.
Whilst the end points 0 and 1 obviously correspond to classical non-membership
and full membership in the set, other values are most useful in comparing the
strength of membership (e.g. Bill Gates belongs more strongly than Larry Ellison
to the set of rich people). In this interpretation of fuzzy sets, there is an under-
lying assumption that membership values are commensurable, i.e. that member-
ship of (say) 0.8 in the set of rich people can be interpreted in the same way
as membership of 0.8 in the set of tall people or membership 0.8 for a temper-
ature value in the set of temperatures near-freezing. Such commensurability is
routinely assumed in fuzzy control applications (for example, an inverted pen-
dulum where a membership in a set of cart velocities might be combined with
membership in a set of angular accelerations). We adopt the commensurability
assumption in this paper. The interested reader is referred to [5,6].

Fuzzy approaches typically require modification of crisp algorithms to allow
set-valued variables. This is most apparent in fuzzifications of arithmetic, where
a single value is replaced by a fuzzy interval. For example, calculating the average
age of four employees known to be 20, 30, 50 and 63 is inherently simpler than when
the ages are given as young, quite young, middle-aged and approaching retirement.
In the latter case, we must handle interval arithmetic AND membership grades.
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In a similar fashion, querying a database to find employees who are aged over 60
is simpler than finding employees approaching retirement age.

The X − μ method [6] recasts the fuzzy approach as a mapping from mem-
bership to universe, allowing us to represent a set, interval or single value that
varies with membership, e.g. the mid-point of an interval. This natural idea is
difficult to represent in standard fuzzy theory, even though it arises frequently
e.g. the cardinality of a discrete fuzzy set or the number of answers returned in
response to a fuzzy query.

Since there is generally a set of values which satisfy the predicate to some
degree, we must modify algorithms to handle sets of values rather than single
values. These sets represent equivalent values - that is, values which cannot be
distinguished from each other. In this work, we are dealing with events that
are equivalent because their attributes are indiscernible - however, these sets of
events may vary according to membership, interpreted as the degree to which
elements can be distinguished from each other. The approach described in the
next section assumes we have crisp equivalence classes. We allow fuzziness in
the definition of sets used by human experts, and use the X − μ method to
ensure we have crisp sets, by working at a specific membership level. The X −μ
method also allows us to work with intensional definitions of equivalence classes
(parameterised by membership), but we do not cover this aspect here.

3 Directed Acyclic Sequence Graphs (DASG): Graph
Representation of Event Sequences

For any sequence of events, we create a directed graph representation in which
each edge represents a set of indiscernible events. Clearly for reasons of storage
and searching efficiency it is desirable to combine event sequences with common
sub-sequences, as far as possible, whilst only storing event sequences that have
been observed. This problem is equivalent to dictionary storage, where we are
dealing with single letters rather than sets of events, and we can utilise efficient
solutions that have been developed to store dictionaries. In particular, we adopt
the notion of a DAWG (directed acyclic word graph) [7]. Words with common
letters (or events) at the start and/or end are identified and the common paths
are merged to give a minimal graph, in the sense that it has the smallest number
of nodes for a DAWG representing the set of words (event sequences). Several
algorithms for creating minimal DAWGs have been proposed. In the main, these
have been applied to creation of dictionaries and word checking, efficient storage
structure for lookup of key-value pairs and in DNA sequencing (viewed as a
variant of dictionary storage). Most methods (e.g. [8,9]) assume that all words
(letter sequences) are available and can be presented to the algorithm in a specific
order. Sgarbas [7] developed an incremental algorithm which allowed additional
data to be added to a DAWG structure, preserving the minimality criterion (i.e.
assuming the initial DAWG represented the data in the most compact way, then
the extended DAWG is also in the most compact form).
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We assume that data is presented in a standard object-attribute-value table
format (e.g. CSV), with additional attributes calculated as necessary. We assume
that the data arrives in a sequential manner, either row by row or in larger groups
which can be processed row-by-row. Each row represents an event; there may be
several unrelated event sequences within the data stream but we assume events
in a single sequence arrive in time order. It is not necessary to store the data
once it has been processed, unless required for later analysis.

Table 1. Sample data from the VAST 2009 MC1 dataset

eventID Date Time Emp Entrance Direction

1 jan-2 7:30 10 b in

2 jan-2 13:30 10 b in

3 jan-2 14:10 10 c in

4 jan-2 14:40 10 c out

5 jan-2 9:30 11 b in

6 jan-2 10:20 11 c in

7 jan-2 13:20 11 c out

8 jan-2 14:10 11 c in

9 jan-2 14:30 11 c out

10 jan-3 9:20 10 b in

11 jan-3 10:40 10 c in

12 jan-3 14:00 10 c out

13 jan-3 14:40 10 c in

14 jan-3 16:50 10 c out

15 jan-3 9:00 12 b in

16 jan-3 10:20 12 c in

17 jan-3 12:30 12 c out

18 jan-3 14:30 12 c in

19 jan-3 15:00 12 c out

An example, used throughout the rest of the paper, is shown in Table 1.
This is a small subset of benchmark data taken from mini-challenge 1 of the
VAST 2009 dataset1, which gives swipecard data showing employee movement
into a building and in and out of a classified area within the building. No data
is provided on exiting the building.

The DASG representation assumes that we can subdivide the attributes into
the following categories:

– Event identifier - a key value which uniquely identifies a row of the table. In
the example, eventID takes this role.

1 http://hcil2.cs.umd.edu/newvarepository/benchmarks.php.

http://hcil2.cs.umd.edu/newvarepository/benchmarks.php
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– Event Sequencer - one or more attributes with an associated total order, used
to determine whether one event precedes or succeeds another. In the example,
Date or Time or both could take this role.

– Event Linkage - one or more attributes with an equivalence relation that
determines whether two events are linked (part of the same sequence).
For example, in Table 1 we define a sequence of events involving the same
employee, where there is no more than 8 h between contiguous events.

– Event Categorisation - one or more attributes with an equivalence relation
that determines whether two events (in different sequences) can be considered
as examples of the same event category. For example, we might group together
events that happen at approximately the same time, and/or involving the
same swipecard actions (building+in, classified+in or classified+out). The
definition of approximately the same time can be fuzzy, but must be made
crisp (via X − μ) to define the equivalence relation.

– Recorded Data - for subsequent analysis, we can record one or more of the
attributes associated with an event. This may be as simple as counting the
number of instances, or may involve more sophisticated processing such as
association rules between events.

There is no restriction on the number of attributes. We have selected three
employees for illustration purposes; rows in the initial table were ordered by
date/time, but have been additionally sorted by employee here to make the
sequences obvious. In this data,

Emp = set of employee ids = {10, 11, 12}
Date,Time= date / time of event
Entry points = {B - building, C - classified section}
Access direction = {in, out}

We first define the linkage relations, to detect candidate sequences. Here, for a
candidate sequence of n events:

S1 = (o11, o12, o13, . . . , o1n)

we define the following computed quantities:

ElapsedT ime ΔTij = Time (oij) − Time (oij−1)
with ΔTi1 = Time (oi1)

and restrictions (for j > 1):

Date (oij) = Date (oij−1)
0 < Time (oij) − Time (oij−1) ≤ Tthresh

Emp (oij) = Emp (oij−1)
(Action (oij−1) , Action (oij)) ∈ AllowedActions

where Action (oij) = (Entrance (oij) , Direction (oij))

where the relation AllowedActions is specified in Table 2. These constraints can
be summarised as
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Table 2. Allowed actions (row = first action, column = next action)

b,in c,in c,out

b,in x x

c.in x

c,out x x

– events in a single sequence refer to the same employee
– successive events in a single sequence conform to allowed transitions between

locations and are on the same day, within a time (Tthresh) of each other.

We choose a suitable threshold e.g. Tthresh = 8, ensuring anything more than
8 h after the last event is a new sequence. We identify candidate sequences by
applying the linkage relations. Any sequence has either been seen before or is a
new sequence. In Table 1, candidate sequences are made up of the events:

1 − 2 − 3 − 4,
5 − 6 − 7 − 8 − 9,
10 − 11 − 12 − 13 − 14,
15 − 16 − 17 − 18 − 19

We also define the EventCategorisation equivalence classes used to compare
events in different sequences. Here,

EquivalentAction = IAction

For direction In, EquivalentEventT ime = {[7] , [8] , . . .}
For direction Out, EquivalentElapsedT ime = {[0] , [1] , [2] , . . .}

where I is the identity relation and the notation [7] represents the set of start times
from 7:00–7:59. As mentioned in Sect. 2.1, fuzzy equivalence classes are converted
to crisp sets at a specific membership or to intensional definitions, parameterised
by membership. We represent each identified sequence as a path labelled by its
event categorisations (Fig. 1). The algorithms presented in the next section allow
us to incrementally add unseen sequences into a minimal DASG which represents
exactly the set of sequences seen so far (Fig. 2). Nodes are labelled by unique num-
bering; since the graph is deterministic, each outgoing edge is unique. An edge can
be specified by its start node and event categorisation, or by its event categorisa-
tion if there is no ambiguity about its start node.

Fig. 1. DASG representation of the first sequence (events 1-2-3-4) from Table 1. The
labels show the categorisation attributes, namely the equivalence class of the event
time and the entrance and direction.
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Fig. 2. Algorithm to extend a minimal graph by incremental addition of a sequence of
edges
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Standard definitions are used for InDegree, OutDegree, IncomingEdgesand
OutgoingEdges of a node, giving respectively the number of incoming and out-
going edges, the set of incoming edges and the set of outgoing edges. We also
apply functions Start and End to an edge, to find or set its start and end nodes
respectively and EdgeCategorisation to find its categorisation class.
Finally, let the function ExistsSimilarEdge(edge, endnode) return true when:

edge has end node endnode, event categorisation Land start node S1
AND

a second, distinct, edge has the same end node and event categorisation L
but a different start node S2
AND

S1 and S2 have OutgoingEdges(S1) == OutgoingEdges(S2)
If such an edge exists, its start node is returned by the function
StartOfSimilarEdge(edge, endnode)

The function MergeNodes(Node1, Node2) deletes Node2 and merges its
incoming and outgoing edges with those of Node1.

The function CreateNewNode(Incoming,Outgoing) creates a new node
with the specified sets of incoming and outgoing edges.

The algorithm proceeds in three distinct phases (corresponding to the three
while loops in Fig. 2. In the first and second parts, we move step-by-step through
the new event sequence and the graph, beginning at the start node S. If an event
categorisation matches an outgoing edge, we follow that edge to the next node
and move on to the next event in the sequence. If the new node has more than
one incoming edge, we must copy2 it; the copy takes the incoming edge that
was just followed, and the original node retains all other incoming edges. Both
copies have the same set of output edges. This part of the algorithm finds other
sequences with one or more common starting events. If at some point, we reach a
node where there is no outgoing edge matching the next event’s categorisation,
we create new edges and nodes for the remainder of the sequence, eventually
connecting to the end node F . Note that as the sequence is new, we must reach
a point at which no outgoing edge matches the next event’s categorisation; if
this happens at the start node S then the first stage is (effectively) omitted.
Finally, in the third stage, we search for sequences with one or more common
ending events. Where possible, the paths are merged.

The advantage of this algorithm is that it allows incremental modification,
so that new sequences can be added at any time. Although the example shows
the sequence patterns derived from data, it is also possible for a human expert
to specify and add a sequence pattern without it having been seen in the data.
Hence (for example) a previously unseen cyber-attack sequence could be added
to the DASG and the matching event sequence would be detected as soon as
it occurred. In contrast, a purely data-driven method would first flag the new
sequence as unknown (not matching any pattern in the graph), and would only
recognise subsequent occurrences after graph updating (Fig. 3).

2 The copy and merge operations are also used when removing sequences.
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Fig. 3. Adding further sequences: (left) graph after phase 1 of adding the second
sequence, dotted lines indicate nodes which are identical in phase 3; (centre) final
graph (after identical nodes have been merged) representing sequences 1 and 2; (right)
graph representing all four sequences

The representation also allows straightforward removal of sequences. For
example, if it is known that a sequence will never be seen again because it
is screened out by a different process, or because external changes make it
impossible, then processing and storage efficiency are improved by removing
the sequence pattern from the graph. However, we must take care not to remove
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Fig. 4. Algorithm to reduce a minimal graph by incremental removal of an existing
sequence of edges

any edge which is part of another pattern. Figure 4 shows the algorithm. The
process is straightforward - we consider nodes where the indegree ≥ 1, and the
outdegree ≥ 1 (four possibilities).

– If a node has indegree one and outdegree greater than one, then the path
up to and including this node must be retained, because it contributes to
paths other than the path to be deleted. In this case, any potential duplicates
up to this point can be discarded as the nodes are not altered.

– If a node has indegree greater than one and outdegree equal to one, then the
path from this node to the end must be retained, because it contributes to
paths other than the path to be deleted.
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– If a node has indegree one and outdegree one, it (and its incoming and out-
going edges) can potentially be removed, depending on the path.

– Finally a node with both in- and out- degree greater than one might require
modification and is marked as a potential duplicate.

4 Summary

The DASG representation allows us to store event sequence patterns in a com-
pact directed graph format, with efficient incremental algorithms to add a pre-
viously unseen pattern to the graph, and to remove a pattern from the graph.
Sequence patterns can be generated from data or by a human expert. The DASG
representation allows fuzzy specification of categories and equivalence relations,
which are converted to crisp relations using the X − μ approach. An efficient
implementation of the DASG is possible by compiling the graph into a set of
instructions for a virtual machine (described in [4,10]).
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Abstract. In the last years association rules are being applied to sup-
port decision making. However, the main concern is in the precision and
not in the interpretability of their results, so they produce large sets
of rules difficult to understand for the user. A comprehensible system
should work according to the human decision making process, which is
quite based on the case study and the scenario projection. Here we pro-
pose an association rule based system for scenario query (SQAR), where
the user can perform “what if...?” queries, and get as response what usu-
ally happens under similar scenarios. Even more we enrich our proposal
with a hierarchical structure that allows the definition of scenarios with
different detail levels, to comply with the needs of the user.

Keywords: OLAP · What if queries · Association rules

1 Introduction

Association Rules (AR) have been widely used with different purposes [18],
mainly for problem description but also for tasks like classification, as in the
case of the predictive association rules or associative classifiers, the multi-class
classification methods, or the class association rules algorithms (CAR).

Lots of these methods are applied to support decision making [21], however,
as Huysmans et al. states in [6], they are mainly focused on improving the accu-
racy of the classification; which results in systems that offer to the user a set
of rules, usually very large, that is difficultly understandable. It is leading to a
growing concern about improving the interpretability and comprehensibility of
the data mining results [10], which is bringing proposals combining the associa-
tion rules with other techniques like decision trees [8].

However, to create anunderstandable system for theuser, it seems logic to study
how the humans make their decisions, and develop a system according to it. In this
sense, researchpoints the study of cases and the analysis andprojection of scenarios
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 537–548, 2016.
DOI: 10.1007/978-3-319-40596-4 45
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as the most widely spread practices in decision making environment, due to the
impact they have in the quality and the biases of the decisions taken [12,20]. This
way it is possible to find proposals using scenarios to support decision making in
medicine [11], education [5] or even sports [19]. Even more, recent proposals point
the methods based on scenarios as better than probabilistic models [4] or those
based on predictions [14].

In OLAP what if queries [15] are a type of analysis where the user indicate
an hypothetical scenario indicating some values for the datacube (or changes over
them) and the system builds a new datacube under these assumptions. The user
can then query this new datacube to analyse the results of this hypothesis [3].
This kind of analysis is time consuming due to the calculation needed to build the
datacube. There are proposals to improve the efficiency of the process [7,16]. In
all the cases, if the user changes the hypothetical query the system has to build a
new datacube for this scenario.

This is why we propose here a comprehensible association rule based sys-
tem, oriented to support decision making based on scenarios: Scenario Query
based on Association Rules (SQAR). The main idea consists on creating a set of
association rules, and build on it a knowledge base for an inference system (one
for all scenarios). This system allows the user to query about a given scenario,
through queries of the type “what if..?”, to which the user gets as response the
elements or situations that usually take place under similar situations.

Even more we propose the use a multidimensional model as starting point,
which allows taking advantage of the hierarchies defined on it to compose sce-
narios with different detail levels, and hence to use concepts nearer to the user.

It is explained in Sect. 2 where the underlying fuzzy multidimensional model
and the association rules extraction method are presented. Next, in Sect. 3 the
scenario oriented query system is described. In Sect. 4 we pose an simple example
of use to illustrate the operation of the system; and finally, in Sect. 5, we show
our conclusions.

2 Fuzzy Multidimensional Model

The base for the system structure is a multidimensional model that stores the
data and allows querying on it. In this section we briefly present its basics, and a
more detailed explanation of the structure and operations can be found in [13].

2.1 Multidimensional Structure

The structure of the fuzzy multidimensional model, starts with next definitions:

Definition 1. A dimension is a tuple d = (l,≤d, l⊥, l�) where l = li, i = 1, ..., n
such that each li is a set of values li = {ci1, ..., cin} and li∩lj = ∅ if i�=j,
and ≤d is a partial order relation between the elements of l so that li ≤d lk if
∀cij ∈ li ⇒ ∃ckp ∈ lk/cij ⊆ ckp. l⊥ and l� are two elements of l such that
∀li ∈ l l⊥ ≤d li ≤d l�.
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We denote level to each element li. To identify the level l of the dimension
d we will use d.l. The two special levels l⊥ and l� will be called base level and
top level respectively. The partial order relation in a dimension is what gives the
hierarchical relation between levels.

Definition 2. For each pair of levels li and lj such that lj ∈ Hi, we have the
relation μij : li × lj → [0, 1] and we call this the kinship relation.

If we use only the values 0 and 1 and we only allow an element to be included
with degree 1 by an unique element of its parent levels, this relation represents
a crisp hierarchy. But if we relax these conditions and allow the use of values in
the interval [0,1] with no other limitation, we have a fuzzy hierarchical relation.

Definition 3. We say that any pair (h, α) is a fact when h is an m-tuple on
the attributes domain we want to analyze, and α ∈ [0, 1].

The value α controls the influence of the fact in the analysis. The imprecision
of the data is managed by assigning an α value representing this imprecision.
Now we can define the structure of a fuzzy DataCube.

Definition 4. A DataCube is a tuple C = (D, lb, F,A,H) such that D =
(d1, ..., dn) is a set of dimensions, lb = (l1b, ..., lnb) is a set of levels such that lib
belongs to di, F = R∪∅ where R is the set of facts and ∅ is a special symbol, H is
an object of type history, and A is an application def ined as A : l1b×...×lnb → F ,
giving the relation between the dimensions and the facts defined.

2.2 Operations

Once we have the structure of the multidimensional model, we need the opera-
tions to analyze the data in the datacube. In this section we present the elements
needed to apply the normal operations (roll-up, drill-down, pivot and slice).

Definition 5. An aggregation operator G is a function G(B) where B =
(h, α)/(h, α) ∈ F and the result is a tuple (h′, α′).

The parameter required by the operator can be seen as a fuzzy bag, a con-
struction which may have a group of elements that can be duplicated, and each
one has a degree of membership.

Definition 6. For each value a belonging to di we have the set

Fa =

{ ⋃

li∈Hli

Fb/b ∈ lj ∧ μij(a, b) > 0 if li �= lb

{h/h ∈ H ∧ ∃a1, ..., anA(a1, ..., an) = h} if li = lb
(1)

The set Fa represents all the facts that are related to the value a.

With this structure, the basic operations over datacubes are defined (defini-
tion and properties in [13]).
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2.3 Association Rule Extraction: COGARE

Our proposal is based on an association rule extraction algorithm that works over
datacubes called Complexity Guided algorithm for Association Rule Extraction
COGARE [9]. The method extracts rules over datacubes and diminishes the
complexity by using the concepts defined in the hierarchy over each dimension
to reduce the number of rules, as indicated in Fig. 1.

Fig. 1. COGARE algorithm

There are three main stages in the method:

– Itemsets generation: the algorithm uses the Apriori algorithm [1] adapted
to the multidimensional model. It takes into account the hierarchy of the
dimension when an itemset is not frequent, and looks for a generalization that
may be frequent (bottom-up approach). In this generalization the support
threshold is adapted such that the more general the items are, the higher the
threshold is (see [9] for details).

– Rules generation: the algorithm extracts rules with an Apriori like algorithm.
– Rules generalization: the rule set obtained in the previous stage is generalized

to reduce the complexity of the result. In this step, the algorithm tries to
generalize the elements in the association rules by defining the items at a
higher level (more abstract). If the generalized rules include another ones (i.e.
they are defined over more concrete values but represent the same knowledge)
those are deleted. On each step, the quality of the rule set is controlled so if
it decreases down to an established threshold, the operation is not applied.

The associations rules obtained with this process are pruned according to a
certainty factor (CF) [17] instead of confidence to avoid some of the well known
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problems of this quality measure. The method obtains an average complexity
reduction of 39% [9] and this is why we have chosen it as starting point for our
proposal.

3 Scenario Query Based on Association Rules System

Using as base the fuzzy multidimensional system presented above, we add now
the elements needed for the SQAR system. Figure 2 shows the system structure,
where two modules are required:

– Inference system: the association rules will be used as knowledge base for an
inference system. The user will give some data for the needed scenario and the
inference system will use the rules to get other elements that normally appear
in that case.

– User interface: the interface allows the user to describe the scenario and is
also used to show the related inferred elements. We have implemented an
interactive interface in the sense that user can refine the scenario after the
inference process, adding or deleting elements.

Fig. 2. SQAR System structure

3.1 Inference System

One of the main problems to use association rules in an inference system, is that
it is not possible to propagate the values of the quality measures (support and
confidence) when applying the rules; as states Balcazar et al. [2] “the confidence
of the inferred items can not be propagated from the known items and their
confidences”.

However, this issue can be solved using the CF . This measure was first
proposed for an expert system on Medicine called MYCIN [17]. This system used
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CF to enable inexact reasoning, so the authors proposed an inference system
to deal with CF and propagate the values. This is why the algorithm described
in Sect. 2.3 to extract association rules uses the CF : since or rules have been
obtained with this factor, they can directly be used in an inference system.

What we propose here is to incorporate the rules obtained by COGARE
process as knowledge base for MYCIN inference system in a interactive interface.
With this approach we hide the rules to the user so he/she does not have to
interpret them. The user only has to establish the known values that define the
scenario of interest (i.e. the elements in the dimensions of the datacube), and
the system will apply the obtained rules to infer other values that are related to
the ones introduced.

3.2 User Interaction

We propose an interactive process to solve the user’s scenario queries:

1. The user chooses the values that define the scenario for one or several dimen-
sions of the datacube.

2. The inference process is applied and the elements related to the ones selected
are shown to the user.

3. User may interact with the system adding new values or deleting one of the
previously selected.

4. After each change, the system applies again the inference process showing the
new results to the user.

In the next section we present an example of use in the medical field.

4 Example

This example has three parts: first we introduce the underlying fuzzy datacube
of the medical case, then we show the operation of the OLAM system, and finally
the scenario query is exemplified.

4.1 Medical DataCube: CMedical

This schema is defined over data collected for non-postponed surgeries which
were carried out in hospitals in Granada between 2002 and 2004. For the facts,
we only consider the data when the patients are from Granada. There are 50185
facts with one variable (amount) and 6 dimensions:

– Patient: the dimension that models patient data. The most detailed levels
consider the different combinations of sex and age of each patient (the base
level therefore has 2 sexes for 101 possible ages, totalling 202 values). As shown
in Fig. 3, over this level we group the patients according to their sex (level sex )
and age (level age). Over this last one, we define (level group) what we can
consider to be young, adult and old patients using linguistic terms over the
concrete values, grouping this way the values more naturally for user. The last
level groups all the values so we have called it all with a single value (all).
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Fig. 3. Multidimensional schema over medical data

– Time: in this dimension we consider the date when the surgeries took place.
Over this level, we have defined a normal hierarchy over dates: week day, month
day, month, month and year, and year. The level Temperature represents infor-
mation about the average temperature of each month in Granada using the
labels cold, warm and hot to group the values. The relationships between the
month and the temperature are not crisp because the user normally considers
these concepts with imprecision. The definition of the relationships are shown
in Fig. 4.

– Place: this dimension stores information about where the patients live. Since
the definition of the metropolitan area of Granada is not clear, we have used
a fuzzy relation to establish the relationship between this level and the towns.

– Duration: we also consider the amount of time that each operation took. The
level Range groups this information according to three categories: normal,
long and very long duration. These groups have been defined imprecisely as
shown in Fig. 5.

Fig. 4. Definition of level Temperature in dimension Time for CMedical
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– Material: we want to analyze whether any materials were required for the
operations, i.e. blood, prothesis, implants. The dimension Material models
this information.

– Cause: in this dimension we model the causes of the surgery according to the
codes established by the WHO. We consider the 9 main categories as the base
level and the description on them.

Fig. 5. Definition of level Range in dimension Duration for CMedical

Measures: the only measure we consider is the number of surgeries performed
with exactly the same values for all the dimensions we have built. This measure
has been called the amount.

4.2 OLAM Process

To extract the rules we use COGARE algorithm over the datacube CMedical.
The main parameters used are:

– Support: 0.01.
– CF: 0.4 (minimum value of CF to consider a rule).
– Abstraction function: We use the Generality as abstraction function defined

as the number of elements grouped by the item compared to the total number
of elements at most detailed level of the dimension (the base level) (see [9] for
more details).

– Complexity due to number of rules: in this case we use the function N defined
as a relation between the number of rules and the number of possible items in
the datacube (see [9] for details).

After the process we get 164 association rules. These rules will be used in
the next step to enable the user to ask for possible scenarios.

4.3 What-if... Process

Figure 6 shows the initial screen of the system.
Let us suppose that a medical doctor is interested on the surgeries related

to infectious diseases. In the interface the user chooses this kind of disease
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Fig. 6. Initial screen

Fig. 7. Added Infectious diseases

from dimension Cause, level Description. The system then applies the infer-
ence process, and answers (Fig. 7) that the need of implants in these surgeries is
normal (CF = 0.719).

Now the user wants to refine the query adding some information about the
sex of the patient, Female. The system infers again with this new information
(Fig. 8), giving as result that the CF of the use of implant during the operations
increases (from 0.719 to 0.923).

Now the doctor decides to check for other relation: deletes the sex of the
patient and adds the group of age, choosing elder. With this information, the
system gets a new relation (Fig. 9): in almost all scenarios the patient lives in



546 C. Molina et al.

Fig. 8. Added sex female

Fig. 9. Deleted sex female, and added age elder

the capital Granada (CF = 0.999), during the operation implants are needed
(CF = 0.976), but no blood (CF = 0.995) is required. The last information
given is that the duration of the surgeries in this scenario is usually normal
(CF = 0.412).

5 Conclusions

As can be seen in this paper we have proposed an intuitive query system based on
association rules where the user asks for different scenarios and obtains an easily
comprehensible response indicating what usually happens in similar scenarios,
according to the knowledge base and the inference process.
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The process is enriched with the use of hierarchies, that enables the operation
with a terminology near to the final user.

This hiding of the rule system complexity with a comprehensible response;
the use of scenarios, a decision making process habitual for the humans; and the
close to the user terminology enhances the possibility of bring to the rule based
decision support systems closer non-expert users.
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Abstract. The frequent subgraph mining has widespread applications in many
different domains such as social network analysis and bioinformatics. Generally,
the frequent subgraph mining refers to graph matching. Many research works
dealt with structural graph matching, but a little attention is paid to semantic
matching when graph vertices and/or edges are attributed. Therefore, the dis-
covered frequent subgraphs should become more pruned by applying a new
semantic filter instead of using only structural similarity in the graph matching
process. In this paper, we present POSGRAMI, a new hybrid approach for
frequent subgraph mining based principally on approximate graph matching. To
this end, POSGRAMI first uses an approximate structural similarity function
based on graph edit distance function. POSGRAMI then uses a semantic ver-
tices similarity function based on possibilistic information affinity function. In
fact, our proposed approach is a new possibilistic version of existing approach in
literature named GRAMI. This paper had shown the effectiveness of POS-
GRAMI on some real datasets. In particular, it achieved a better performance
than GRAMI in terms of processing time, number and quality of discovered
subgraphs.

Keywords: Graph mining � Frequent subgraph mining � Approximate graph
matching � Possibility theory � Possibilistic similarity

1 Introduction

The main issue of the graphs is related to their famous characteristics to model complex
structures such as protein structures in biology that represent natural products of living
cells, chemical compound analysis and social networks which can exhibit both
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community structures of political or cultural organization and computer networks.
Indeed, graphs demonstrate today a powerful mathematic tool when representing
objects and their relationship in many different domains. One of the ways used to
present a large or multi-graphs is to extract all of its frequent subgraphs that occur
frequently in a set of graphs. The frequent subgraphs are widely used in several
applications, including classification [1] and modelling of user profiles [2]. In the
literature, several algorithms have been proposed to allow the extraction of frequent
subgraphs in large graph in an efficient way such as GRAMI [3]. Yet, these techniques
are usually based on the structural aspect and don’t integrate the semantic aspect of the
graph. In other words, these techniques can generally efficiently extract a large set of
frequent subgraphs, and provide basic statistical information such as support, number
of nodes and number of edges of each subgraph. In addition, the data are generally
imperfect and imprecise due to noise, incompleteness and inaccuracies in real world
graph. Due to this issue, the similarity between subgraphs is often inexact and iso-
morphism between graphs is not complete in real applications. In this paper, we pro-
pose a novel framework, POSGRAMI, of possibilistic frequent subgraph mining in a
single large graph. Our approach based on approximate technique for solving the
frequent subgraph mining problem. To solve the problem of inexact graph matching,
POSGRAMI uses hybrid graph matching process which combines approximate
structural graph matching and semantic graph matching based upon possibilistic sim-
ilarity. To summarize, we make the following contributions:

• We propose POSGRAMI, a possibilistic approach for frequent subgraph mining in
a single large graph. POSGRAMI go beyond discovering only frequent subgraphs
with structural similarity approach to prunes them by applying semantic filter.

• We introduce two similarity measures to detect an approximate structural and
semantic graph matching using respectively the graph edit distance function and the
information affinity.

Several applications for this possibilistic approach can be suggested such as: social
network analysis and community detection.

2 Related Works

Generally, the challenge in frequent subgraph mining comes from the costly graph
isomorphism that is known to be NP-complete in their generalization. This task is also
known as the graph matching problem. The concept of graph matching consists of
finding an exact or inexact matching between the nodes of two graphs. Several methods
of exact graph matching have been proposed. The most popular algorithm is that of
tree-based search techniques. The problem of exact graph matching is closely related to
that of graph isomorphism which consists of finding an exact mapping among nodes
and edges of two graphs. Several performance enhancements were proposed such as
ranging from CSP based techniques [4] and search order optimization [5]. However,
the exact graph matching cannot be very useful in real world where inexact corre-
spondence may exist. This second category of graph matching defines approximate or
inexact matching methods, where a strict correspondence between the two graphs being
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compared does not need to be found. In a real application, exact matching methods are
often inapplicable due to the distortions or errors in the underlying data. Many works
have been proposed for frequent subgraph mining based on approximate graph
matching. In GRAMI [3], the authors formulate the frequent subgraph mining as a
constraint satisfaction problem. In addition, GRAMI proposed two extensions to its
core algorithm namely CGRAMI and AGRAMI. The first extension is a version that
supports structural and semantic constraints in order to prune undesirable matches and
limit the search space. The second extension is an approximate version, which
approximates subgraph frequencies. Yet, GRAMI cannot handle the uncertainty
inherent in real applications. Consequently, interesting frequent subgraph may be lost.
In most existing approaches presented above are warranted for find the optimal solu-
tion, but needs exponential time and space due to the NP-completeness of the inexact
graph matching problem.

3 Theoretical Framework

In this section, we present the fundamental definitions of frequent subgraph mining,
possibility theory and possibilistic similarity.

Graph Edit Distance Function. This distance measure is defined as the length of the
shortest sequence of edit operations required to transform one graph G1 into the other G2.

GEDðG1; G2Þ ¼ 1� mcsðG1; G2Þj j
maxð G1j j; G2j jÞ

With |mcs (G1, G2)| is the maximum number of nodes of common subgraphs of
two graphs G1 and G2. |G1| and |G2| are respectively number of nodes of graph G1 and
graph G2.

Approximate Structural Similarity. We introduced a new structural similarity
function based upon Graph edit distance function. Given two graphs G1 and G2 and
the distance edit function between these two graphs Distance GED (G1, G2). So, to get
a similarity value less than 1, structural similarity STS (G1, G2) should be defined by:

STSðG1;G2Þ ¼ 1�GEDðG1;G2Þ

STSðG1;G2Þ ¼ jmcsðG1;G2j
maxð G1j j; G2j jÞ

3.1 Possibility Theory: An Overview

Possibility theory [9] is a modern and simple uncertainty theory devoted to handle
some types of uncertainty. It represents the state of incomplete knowledge by the
notion of possibility distribution which corresponds to a mapping from the universe of
discourse Ω = {ω1, ω2, ωn} to the scale L = [0, 1] encoding our knowledge on the real
world states. From a possibility distribution, two dual measures can be derived:
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Possibility and Necessity measures. Given a possibility distribution π on the universe of
discourse Ω, the corresponding possibility and its dual necessity measures of any event
A � Ω are, respectively, determined by the formulas:

P Að Þ ¼ max
xA

p xð Þ and N Að Þ ¼ min
xA

1�P xð Þð Þ ¼ 1�P Að Þ

Π(A) evaluates at which level A is consistent with our knowledge represented by
while N(A) evaluates at which level A is certainly implied by our knowledge repre-
sented by π.

3.2 Possibilistic Similarity Measure

The mathematical concept of similarity measures is used fundamentally to compare two
objects and it reflects the degree of closeness between them by possibility distributions
on the same universe of discourse. Several similarity measures have been proposed
such as information closeness [7] and information affinity [8, 10]. In fact, we adopt the
latter because the information affinity satisfies interesting properties such as
non-negativity and non-degeneracy and permutation. The information affinity, denoted
by InfoAff takes into account a classical informative distance, namely, the Manhattan
distance along with the inconsistency measure. The information affinity between two
possibility distributions π1 and π2 is defined as follows:

InfoAff p1; p2ð Þ ¼ 1� d p1; p2ð Þþ Inc p1 ^ p2ð Þ
2

d p1; p2ð Þ ¼ 1
n

Xn

i¼1
jp1ðxiÞ � p2ðxiÞj

d (π1, π2) represents the Manhattan distance between π1 and π2 and Inc(π1 ∧ π2) tells
us about the degree of conflict between the two distributions. In this paper, we use this
affinity function as graph semantic similarity function SMS between two graphs G1 and
G2 from possibilistic InfoAff defined as possibilistic distance between two possibility
distributions π1 of G1 and π2 of G2 as follows:

SMS G1; G2ð Þ ¼ 1� InfoAff G1; G2ð Þ

3.3 Hybrid Structural-Semantic Similarity

Given two graphs G1 and G2 and based upon both structural distance GED and
semantic similarity measure SMS defined above, we introduce here a new concept of
hybrid structural semantic graph similarity (HGS) between two graphs G1 and G2 by
using linear combination of two similarity quantities: structural similarity (STS) and
semantic similarity (SMS) as follows:

552 M. Moussaoui et al.



HGS G1; G2ð Þ ¼ a � STS G1; G2ð Þ þ 1� að Þ SMS G1; G2ð Þ

HGS G1;G2ð Þ ¼ a
mcs G1;G2ð Þj j

max G1j j; G2j jð Þ þ 1� að Þð1� d p1; p2ð Þþ Inc p1 ^ p2ð Þ
2

Þ

4 POSGRAMI: Possibilistic Frequent Subgraph Mining

GRAMI [3] proposed a frequent subgraph mining algorithm as a constraint satisfaction
problem solving approach which is illustrated by Algorithm 1. It is one of algorithms
which are based on an approximate graph matching in an efficient way.

Subgraph similarity search is usually not exact due to inaccuracies in real world
graph applications because it’s difficult to meet exactly the same subgraph as a part of
many different graphs. Consequently, we proposed a new algorithm named POS-
GRAMI which tried to solve this problem by using an approximate graph or subgraph
matching based upon possibility similarity of vertices and structure. It uses an
approximate matching process that considers two different subgraphs with small dif-
ferences in nodes or vertices structure as similar subgraphs. To enhance the GRAMI
algorithm, POSGRAMI algorithm uses possibility theory for frequent subgraph min-
ing. Which allowed us to achieve search space reductions by applying a possibility
distribution for each node. Therefore, the possibilistic graph matching approach
addresses the frequent subgraph mining problem without exhaustively enumerating all
isomorphism in the graph. In other words, possibilistic graph mining approach searches
not only frequent subgraphs with exact similarity, but by extends it to both inexact
structural similarity search and semantic graph similarity search. POSGRAMI approach
has three distinct steps to mine the possibilistic frequent subgraphs. In the first step,
possibilistic graph candidate generation consists principally of traversing the graph and
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explores frequent subgraph search space. For each candidate we can check whether it is
frequent by computing its support. The graph candidate generation process explored in
a depth first search but doing so requires computing the possibilistic code to avoid
duplicates. Therefore, this step avoids the generation of some insignificant subgraphs
for further knowledge discovery conveniences. The second step, possibilistic graph
matching allows to detect the approximate graph matching between candidate sub-
graphs generated. This step is based on hybrid structural-semantic similarity compu-
tation (HGS). This measure looks like a semantic and structural filter which allows only
some candidates to be definitely considered by applying restriction using given toler-
ance threshold, Hyb-sim, to similarity between graph candidates generated by the first
step. To calculate the structural and semantic similarity between the candidate sub-
graphs, we use two similarity measures using respectively the graph edit distance
function and the information affinity. The third step, subgraph support computation
consists of determining the frequency for each grown subgraph. A subgraph g is
frequent if its occurrence count is greater than a user-defined minimum support. In the
main POSGRAMI algorithm Algorithm 2 exposed bellow, a graph G is considered as
input where vertices and edges are labeled in a specific domain that can be null.

Given vertices’ label possibilistic matrix, the new possibilistic algorithm for mining
approximate subgraphs starts by finding a set E that covers all frequent edges in the
graph (i.e. with support greater or equal to minimum support min_sup). Then, Sub-
graph_Generation method is recursively called for each frequent edge to grow the
graphs and find all their frequent descendants. This procedure takes as input a subgraph
S and tries to extend it with the frequent edges of E. In this work, we adopt the
DFScode canonical form as in gSpan [11] to reject already generated extensions. The
DFScode strategy is a technique for traversing or searching tree or graph data struc-
tures. It starts at the root and explores as far as possible along each branch before
backtracking. Subgraph_Generation procedure eliminates the members of Cs that do
not satisfy the support threshold min_sup, their extensions are also infrequent. The
relative importance of nodes and edges in a graph is obtained through the numerical
component affected to each node of a possibilistic graph G. Following, we introduce a
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new concept of possibilistic graph matching, Possibilistic_GM. This concept allows to
detect the possibilistic similarity between subgraphs and to measure the frequency of
these subgraphs. This algorithm focuses on the structural and/or semantic similarity
between subgraphs. Indeed, in POSGRAMI algorithm, similarity between a pair of
isomorphic subgraphs depends on how similar their possibility distributions.

4.1 Structural-Semantic Subgraph Generation

The exploration space of the frequent subgraphs forms a partial order. It can be
searched in a depth first search or breadth first search order but doing so requires
computing the possibilistic code to avoid duplicates. We include background knowl-
edge to generate candidate subgraphs based on the numerical component affected to
each node. Let assume that the corresponding variables in each node contain the
possibility of being important and the possibility of being unimportant of each node
according to the context of the application as presented in Algorithm 3.

Hence, each node can have one or more extension by one edge. Yet, we find that
some extensions are useless for the context of the application. We find also some that
subgraphs can be structurally frequent but without semantic meaning. This allows for
take advantage of the respective pruning of smaller subgraphs to prune insignificant
assignments. In various cases, a subgraph can be rejected without search. This strategy
avoids the expensive search procedure. Indeed, POSGRAMI stores all embedding to
generate only refinements that actually appear and to achieve fast approximate iso-
morphism testing in the next step.
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Figure 1 illustrates a part of a subgraph generation tree consisting of subgraph
(a) which is extended to (b). Let assume that the corresponding variables in each node
respectively contain the possibility of being important and the possibility of being
unimportant of each node according to the context of the application as shown in
Table 1. Each node can have one or more extension by one edge. Yet, we find that
some extensions are useless for the context of the application. We find also some
subgraphs can be structurally frequent but without semantic meaning. For example, let
consider the node A as the root in the graph. In this case, A may be extended by B and
D. The substructure A-B can be structurally frequent and significant but the sub-
structure A-C is not significant. This allows for take advantage of the respective
pruning of smaller subgraphs to prune insignificant assignments. Consequently, this
strategy avoids the expensive search procedure. We try, in the second step, to detect not
only frequent subgraphs with exact similarity, but by extending it to non-exact simi-
larity search using possibilistic similarity measure, i.e. information affinity [10].

4.2 Possibilistic Frequent Subgraph Mining Algorithm

Given a graph G proposed as input graph to POSGRAMI algorithm. After computing
its three essential steps, we obtain a set of frequent subgraphs that occur frequently in
this input graph using possibilistic similarity. To solve the problem of approximate or
inexact graph matching, POSGRAMI uses two similarity measures: an approximate
structural similarity function based on graph edit distance function and also a semantic
vertice’s similarity function based on possibilistic information affinity function. The
procedure Possibilistic_GM of Algorithm 4 bellow describes the possibilistic frequent
subgraph mining approach.

Fig. 1. Example of structural-semantic subgraph generation.

Table 1. Vertices possibility distribution

Possibility distribution Π(A) Π(B) Π(C) Π(D) Π(E)

Important information 0.7 0.8 0.6 0.3 0.5
Unimportant information 0.1 0.55 0.22 0.85 1
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The possibilistic graph matching allows comparing two objects described by
possibility distributions on the same universe of discourse. The approximate graph
matching concept is very useful for real applications due to the fact that similarity
between subgraphs is often not complete in real world. This concept helps to reduce the
exponential number of frequent subgraphs. In the final step of our new frequent graph
mining approach, an embedding list is used to determine the frequency (support) of
each candidate subgraph. The support of a subgraph S is simply the number of
occurrences of S in the graph G. The subgraph S is considered as frequent if its support
is greater or equal to minimum support. The advantage of this innovative approach
compared to the old one is that the newer is able to extract some possibilistic frequent
subgraphs, particularly for datasets where traditional enumerative methods fail com-
pletely. The possibility theory provides some principal justifications over the usual
mathematical modeling of probabilities in handling uncertainty which occur in many
real-life problems.
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5 Experimental Study

Generally, in a frequent subgraph mining approach two aspects are emphasized,
namely the number of extracted frequent subgraphs and their significance. For our
experimental comparison, we reused a source code obtained from of GRAMI [3].

Table 2 summarizes the main characteristics of the datasets. The first dataset
models the social news of Twitter. Each node represents a Twitter user and each edge
represents an interaction between two users. The original graph does not have possi-
bility distribution, so we randomly added distribution to the nodes. This dataset was
previously used in many studies such as [3] and is publicly available via the following
link (socialcomputing.asu.edu/datasets/Twitter). The second dataset models the
Microsoft co-authorship information. Nodes represent authors and are labeled with the
author’s field of interest. Edges represent interaction between two authors and are
labeled with the number of co-authored papers. The third dataset models the search
engine and digital library for scientific and academic papers CiteSeer. Each node
represents a publication and each edge represents citations between them.

5.1 Empirical Results

The experiments are measured using the UNIX time command. All experiments are
conducted using Java on a Linux machine with 8 cores running at 3.20 GHz with
32 GB RAM and 1 TB disk. To evaluate the quality of the discovered frequent sub-
graphs using the information gain which is one of the most popular interestingness
measures in data mining. Given a set of training examples Ω and a possibility distri-
bution Pos. The information gain of Pos is computed using the following formulas:

InformationGain X; Posð Þ ¼ Entropy Xð Þ � Entropy XjPosð Þ

EntropyðXÞ ¼ �
XX

i¼1

pðxiÞlogpðxiÞ

Where p (xi) is the probability of getting the xi value when randomly selecting an
example from the set. The information gain is measured separately for each subgraph in
order to measure how each subgraph is informative for the considered task. The
average value of information gain is computed for all the frequent subgraph extracted
by POSGRAMI and those discovered by the approximate version of GRAMI with
different minimum support, min_sup. The retained hybrid similarity threshold is 65 %.
Table 3 shows that POSGRAMI is able to extract a set of subgraphs that are more

Table 2. Benchmark datasets

Dataset |N| |E| Density

Twitter 11.316.811 85.331.846 Dense
MiCo 100.000 1.080.298 Dense
CiteSeer 3.312 4,732 Medium
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Table 3. Comparison of information gain of the possibilistic subgraphs with those discovered
by AGRAMI

Min supp Twitter Mico CiteSeer
POSGRAMI GRAMI POSGRAMI GRAMI POSGRAMI GRAMI

1000 0.326 0.285 0.463 0.336 0.520 0.423
2000 0.388 0.312 0.336 0.245 0.498 0.264
3000 0.224 0.115 0.288 0.325 0.292 0.341
4000 0.513 0.478 0.382 0.329 0.376 0.338

Fig. 2. Runtime of frequent subgraph mining for possibilistic approach and GRAMI among
different minimum support with hybrid similarity threshold = 65 %.
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informative than those extracted by the approximate GRAMI. Whereas, the quality of
the sets of frequent subgraphs discovered by GRAMI did not even reach the infor-
mation gain value of the whole set of frequent subgraphs. This proves the reliability of
POSGRAMI and shows that using the uncertainty theory. It enables possibility theory
to better detects approximate similarity between subgraphs and thus to mine a set of
subgraph that are most informative.

5.2 Runtime Analysis

In this section, we evaluate the runtime of POSGRAMI compared to that of the
approximate GRAMI. Firstly, we tried different minimum frequency threshold in order
to obtain a reasonable number of frequent subgraphs from each dataset. Secondly, we
have to fix the value of the approximation parameter Hyb-sim between 0 and 1
(0 < Hyb-sim ≤ 1). If the value of the hybrid similarity equal to 1, that means no
approximation matching. Figure 2 illustrates the evolution of runtime using different
values of min_sup (minimum support) ranging from 1000 to 5000 with a step-size of
1000. The figure shows a difference in execution time between the two approaches.

Figure 2 shows that possibilistic approach is scalable and more robust in real-world
applications that usually deal with huge amounts of data. The empirical study clearly
shows that POSGRAMI is much more time efficient than GRAMI under different sets
of parameters.

6 Conclusion

POSGRAMI is a new possibilistic frequent subgraph graph mining approach that
integrates both structural and semantic aspects. The semantic aspect is a precious help
in the discovery of knowledge. The success of this theory is due to its ability to handle
uncertainty and imprecision in simple way and to offer a classified semantics to natural
language statements. In short, the comparison experiment verifies that POSGRAMI
performs better in general than GRAMI in terms of time and quality.
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Abstract. The electricity market has been significantly changing in
the last decade. The deployment of smart meters is enabling the log-
ging of huge amounts of data relating to the operations of utilities
with the potential of being translated into knowledge on consumers and
enable personalized energy efficiency programs. This paper proposes an
approach for mining characteristics of a residential consumers (income,
education and having children) from high-resolution smart meter data
using transparent fuzzy models. The system consists in: (1) extraction of
comprehensive consumption features from smart meter data, (2) use of
fuzzy models in order to estimate the characteristics of consumers, and
(3) knowledge extraction from the fuzzy models rules. Accurate estimates
of consumer income and education level were not achieved (60% accu-
racy), for the presence of children accuracies of over 70% were achieved.
Performance is comparable to the state of the art with the addition of
model interpretability and transparency.

Keywords: Fuzzy modelling · Smart metering · Classification ·
Residential electricity consumers · Smart grid

1 Introduction

The energy sector has started to accept demand side management (DSM) as a
necessity to achieve higher efficiency and reduce costs through management of
peak load. DSM programs can target consumers with a wide array of goals and
behaviours. Consumers who are inefficient in their consumption, using outdated
and inefficient appliances or having poor insulation in their homes, can be the
target of education programs or be offered incentives in exchange of buying more
efficient appliances. Consumers who appear to have a more flexible demand for
energy can be offered special tariffs in order to motivate them to reduce or shift
their consumption at hours of peak system demand.

Technological advancement in the fields of metering, communications and
computation are enabling utilities to monitor and save huge amounts of data
related to their operation. The deployment of electricity meters with two-way
communication capabilities is enabling the logging of the consumption of users

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 562–573, 2016.
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with high resolution. The number of smart meters has surpassed the number
of traditional one-way communication meters in the United States [1]. Close to
45 million smart meters are already installed in three Member States (Finland,
Italy and Sweden) of the European Union (EU), representing 23 percent of the
envisaged installation in the EU by 2020 [2].

The high resolution consumption data communicated by smart meters has
the potential to give utilities the knowledge and insights needed to engage their
consumers with the right energy efficiency programs, personalizing their services
to the specific characteristics and needs of each customer. Through knowledge
discovery and data mining, using computational intelligence techniques, the char-
acteristics of a household can be extracted from their consumption patterns and
used by decision makers and marketers in order to design the right programs
and engage with the right customers. This topic also as strong implications for
consumer privacy, indicating that households need to be aware and engage with
those who capture this type of data, urging them of the importance of privacy
protection.

In this context, this paper proposes and evaluates a transparent system to
predict consumer characteristics from smart metering data. The designed sys-
tem enables: (1) extraction of consumption features from high frequency smart
meter data, (2) derivation of fuzzy models to infer consumer characteristics and
(3) knowledge extraction from the fuzzy models rules.

The aim of the system is to derive transparent and interpretable models
relating the consumption behaviour and characteristics of electricity customers,
providing decision makers and marketers in the utility industry with valuable
insights for the design and management of DSM programs. The proposed system
is evaluated using real data from a smart metering trial run in Ireland [3].

Similarly to other works published in this topic, accurate estimates of con-
sumer income and education level were not achieved, while for the inference
of presence of children accuracies of over 70 % were achieved. The performance
results are in line with the ones presented in other works which give no focus to
model interpretability.

This paper is structured as follows: Sect. 2 presents the related work. Section 3
presents the system design. Section 4 presents the evaluation of the proposed
system through an use case and Sect. 5 presents the main conclusions of this
paper.

2 Related Work

The use of static data related to household characteristics, e.g., income, num-
ber of inhabitants, education, construction year and appliances in relation to
static or dynamic energy consumption data is being studied in order to find
the main drivers of residential energy consumption. In [4–6] factor analysis and
linear regression are used to find the main determinants of energy consump-
tion in residential settings, such as weather data, household characteristics and
demographics. In [7] demographic data and psychological and belief related data
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is studied in comparison to energy consumption. In [8–11] consumptions pro-
files obtained via clustering are correlated to household characteristics. In [12]
a methodology is presented for the characterization of medium voltage (MV)
electricity customers through clustering and posterior modelling for which the
classification of new customers is stated as a possible application.

In line with the proposed system, [13–15] present studies on the prediction
of household information based on smart meter data. In Fusco et al. (2012) [13],
the authors attempt to classify the presence of kids, specific appliances, employ-
ment status and education levels of residents through a wide range of features
and classification methods, finding difficulties in achieving accurate predictions.
In [15], occupancy states are inferred from consumption time series using hidden
Markov models, achieving good prediction accuracy. In [14], a system to auto-
matically estimate specific characteristics from a household is proposed, such as
socio-economic status, its dwelling and its appliance stock, achieving promising
results in the prediction of some of the characteristics.

Contrasting the work published in the topic, the proposed system has a strong
focus on model interpretability and transparency, not only enabling the inference
of household characteristics but also the possibility to understand the relation
between the consumption dynamics and the specific targeted characteristics. In
comparison with the approach proposed in [11], the proposed system deals with
the inverse problem, deriving household characteristics from smart metering data
in contrast to the inference of customer consumption patterns from the same
characteristics.

3 System Design

This section presents the design of the proposed system for the mining of con-
sumer characteristics from smart meter data. The smart metering data is first
used for the extraction of relevant features that represent the consumption
dynamics. The fuzzy model then infers the consumer characteristics from the
extracted features. Figure 1 depicts the proposed system.

Fig. 1. Proposed system.

3.1 Feature Extraction and Transformation

The smart meter data is high frequency consumption data of households. Two
different types of features were extracted in order to derive the models: (1) load
indices which characterize the daily electricity consumption dynamics, and
(2) average (A), maximum (M) and minimum (m) absolute daily consumption.
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The LI are shape indices derived from the smart meter data, these are pro-
posed in [16] and used for the characterization of medium-voltage customers
in [12]. LI are used in this paper with the intention of obtaining models of easy
interpretation and to explain what consumption characteristics are the most rel-
evant in the characterization of consumers. The indices are presented in Table 1.
i1 is the load factor, i2 is the off-peak factor, i3 is the night impact coefficient,
i4 is the lunch impact coefficient and i5 is the modulation coefficient at off-peak
hours. Pmax, Pmin, Pav are, respectively, the maximum (M), minimum (m) and
average A consumption of the corresponding periods. In order to characterize
periods which are larger than one day (e.g. a month or season) the mean of the
index is used.

Table 1. Normalized indices to characterize electricity customers’ behaviour

Parameter Definition Periods

Daily Pav/Pmax i1 = Pav,day/Pmax,day 1 day

Daily Pmin,day/Pmax,day i2 = Pmin,day/Pmax,day 1 day

Night impact i3 = 1/3Pav,night/Pav,day 1 day and 8 h night (from
23 h to 06 h)

Lunch impact i4 = 1/8Pav,lunch/Pav,day 1 day and 3 h lunch from
(12 h to 15 h)

Daily Pmin/Pav i5 = Pmin,day/Pav,day 1 day

3.2 Modelling

The proposed system make use of Takagi-Sugeno fuzzy models (FM) [17] to infer
consumer characteristics from the consumption features extracted. Support Vec-
tor Machines (SVM) [18] are also used in the evaluation section for comparison
purposes and verify the suitability of the FM.

Takagi-Sugeno Fuzzy Inference System. Fuzzy models are “grey box” and
transparent models that allow the approximation of non-linear systems with no
previous knowledge of the system to be modelled. Fuzzy inference systems have
the advantage, in comparison to other non-linear modelling techniques, to not
only provide transparency but also linguistic interpretation in the form of rules.

In this work, FM are derived from the data. These consist in fuzzy rules where
each rule describes a local input-output relation. With FM, each discriminant
function consists, for the binary classification case, in rules of the type

Ri : If x1is Ai1 and ... and xM is AiM

then di(x) = fi(x), i = 1, 2, ...,K (1)

where fi is the consequent function of rule Ri. The output of the discriminant
function di(x) can be interpreted as a score (or evidence) for the positive example
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given the input feature vector x. The degree of activation of the ith rule is given
by βi =

∏M
j=1 μAij

(x), where μAij
(x) : R → [0, 1]. The discriminant output is

computed by aggregating the individual rules contributions: d(x) =
∑K

i=1 βifi(x)
∑K

i=1 βi
.

A sample x is considered positive if the score is higher than a certain γ threshold
di(x) > γ.

The number of rules K and the antecedent fuzzy sets Aij are determined
by fuzzy clustering in the product space of the input variables. FCM is used to
determine the cluster centres and the number of clusters was determined through
cross-validation. The consequent functions fi(x) are linear functions determined
by ordinary-least squares (OLS) in the space of the input and output variables.

Support Vector Machines. SVM [18] are a popular machine learning method
for classification. Given non separable training vectors in two classes Support
Vector Classification (SVC) finds the hyper plane that maximizes the margin
between the training points of classes 0 and 1, allowing some points to be inside
the margin. The classifier finds linear boundaries in the input feature space or
can make use of the kernel trick in order to work in a transformed non-linear
feature space.

4 Experimental Results

This section presents the experimental evaluation of the proposed system using
real smart meter data. The data used and its processing are first described, fol-
lowed by the performance achieved by the modelling approaches and the inter-
pretation of the rules (membership and consequent functions).

4.1 CER Dataset

The proposed system is tested using data from 4232 Irish households monitored
for one and a half year. The dataset consists of electricity consumption data
logged at 30 min intervals and surveys responded before the start of the trial.
This dataset resulted from an electricity customer behaviour trial by the Irish
Commission for Energy Regulation (CER). The data is stored and maintained
by the Irish Social Science Data Archive (ISSDA) [3].

The mean hourly consumption for the four seasons is pictured in Fig. 2.
Consumption follows the typical residential dynamic with a small peak in the
morning and lunch time, a larger one at the end of the afternoon and low
consumption during the night. As expected, the mean consumption in winter
presents the highest values due to the heating needs.

The binary consumer characteristics used as target of inference are:

– Income: Positive class indicates a high income (> 50, 000 euros)
– Education: Positive class indicates the survey respondent has superior edu-

cation (university)
– Children: Positive class indicates there are children in the consumers

household
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Fig. 2. Hourly aggregated mean seasonal consumption of all consumers.

Only consumers who responded to these three questions were considered in
the evaluation, resulting in a total of 1287 households.

4.2 Model Performance

Feature extraction was done only for working days, excluding weekends and
holidays. This is done in order maximize the probability of extracting features
from days in which consumers follow a routine. The data was also seasonally
separated to reduce the effect of evolving dynamics along the year.

The inference of the consumer characteristics was done using the two of
models presented in the system design section and the results are obtained using
10-fold cross validation. The FM is derived using 2 and 3 clusters and sigmoid
membership function. The parameters of the SVM are optimized in each fold
through grid search (C={0.01, 0.1, 1, 10, 100}, γ={0.01, 0.045, 02, 1, 10})

In a binary classification task the true positive (TP) and false positive (FP)
are the number of consumers correctly and incorrectly identified to segment “1”
and the true negative (TN) and false negative (FN) are the consumers correctly
and incorrectly identified to segment “0”. The accuracy is obtained following
Eq. 2. The area under the curve (AUC) is equal to the area under the receiver
operating (ROC) curve of the classifiers [19].

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

The results of the evaluation are summarized in Fig. 3, which pictures the
mean AUC and accuracy for the tested modelling approaches for each one of the
target characteristics. The designed system was not able to achieve acceptable
performance in the prediction of income and education but the presence of chil-
dren was possible with around 70 % accuracy. Overall, the FM with 2 clusters
resulted in the best performance both in accuracy and AUC.

Detailed results are presented in Table 2. It shows that the performance
throughout the different seasons and modelling techniques was similar, with the
exception of the Autumn data resulting in significantly poorer results in income
and education inference.
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Fig. 3. Hourly aggregated mean seasonal consumption of all consumers. (Color figure
online)

Table 2. Results on the prediction of characteristics from smart meter data

Fuzzy Model (2 clusters)

Variable Measure Winter Spring Summer Autumn

Income AUC 0.619 0.628 0.607 0.595

Accuracy 0.627 0.646 0.627 0.618

Education AUC 0.618 0.616 0.630 0.598

Accuracy 0.627 0.621 0.651 0.622

Children AUC 0.700 0.694 0.674 0.712

Accuracy 0.693 0.684 0.683 0.718

Fuzzy Model (3 clusters)

Income AUC 0.612 0.633 0.614 0.598

Accuracy 0.622 0.639 0.629 0.630

Education AUC 0.610 0.614 0.624 0.587

Accuracy 0.625 0.631 0.632 0.604

Children AUC 0.685 0.688 0.673 0.705

Accuracy 0.687 0.685 0.689 0.702

SVM

Variable Measure Winter Spring Summer Autumn

Income AUC 0.623 0.624 0.620 0.591

Accuracy 0.636 0.644 0.630 0.615

Education AUC 0.624 0.610 0.635 0.587

Accuracy 0.630 0.616 0.660 0.612

Children AUC 0.700 0.696 0.676 0.708

Accuracy 0.700 0.682 0.677 0.714

The resulting performance is very similar to the performance achieved in
Beckel et al. (2014) [14], where accuracies under 60 % for high income estimation
and around 70 % for children were obtained.
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4.3 Model Interpretation

Through the use of FM for the modelling of the target characteristics it is possible
to extract the membership functions and consequent functions (rules) used for
inference. The following paragraphs attempt to interpret the models and extract
insights which could be of value for decision makers or marketers in the electricity
utility industry.

Figure 4 pictures the best separated membership functions for the inference of
income. Equations 3 and 4 presents the rules extracted considering the pictured
variables, separated in what can be interpreted as high and low load factor and
consumption groups. It is interesting to note that for the high load factor and
consumption rule the load factor as a positive relationship with high income
and the off-peak factor a negative relationship, while for the low load factor and
consumption rule is the opposite.

(a) (b)

(c) (d)

Fig. 4. Input membership function for Income inference using Spring data. (Color
figure online)

Rules extracted from the FM for income inference using Spring
data:

R1 : If i1 is high and A is high and M is high and m is high and ...

then d1(x) = 0.84− 0.67i1 + 0.33i2 + 0.15i3− 0.91i4 + 1.40i5− 0.09A+ 1.74m− 0.20M

(3)
R2 : If i1 is low and A is low and M is low and m is low and ...

then d2(x) = 0.11 + 0.25i1− 0.65i2 + 0.18i3− 0.42i4 + 2.34i5− 0.59A+ 1.74m+ 0.61M

(4)
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Figure 5 pictures the best separated membership functions for the inference
of education. Equations 5 and 6 presents the rules extracted considering the
pictured variables, separated in what can be interpreted as high and low off-
peak factor and consumption groups.

It is interesting to note that for the high off-peak factor and consumption rule
the load factor seemingly has a much lower influence on the result in comparison
with the low off-peak factor and consumption rule, for which it is related in
a positive fashion (for consumers with lower consumption and lower off-peak
consumption, a more linear and constant consumption pattern is related with
and higher level of education). For the high off-peak factor and consumption rule
and high consumption during the night is related with a lower education.

(a) (b)

(c) (d)

Fig. 5. Input membership function for education inference using Summer data. (Color
figure online)

Rules extracted from the FM for education inference using Sum-
mer data:

R1 : If i2 is high and A is high and M is high and m is high and ...

then d1(x) = 0.50− 0.19i1− 0.22i2− 1.28i3 + 0.12i4− 0.49i5 + 0.66A− 0.31m− 0.53M

(5)

R2 : If i2 is low and A is low and M is low and m is low and ...

then d2(x) = 0.40 + 1.23i1− 0.53i2 + 0.19i3 + 0.14i4 + 0.73i5− 0.46A+ 0.59m+ 0.18M

(6)
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Figure 6 pictures the best separated membership functions for the inference
of the presence of children in the household. Equations 7 and 8 presents the
rules extracted considering the pictured variables, separated in what can be
interpreted as high and low load factor and consumption groups. It is interesting
to note that for high load factor and consumption rule the night impact factor is
related to having children (if a consumer has high and linear consumption, the
amount of consumption at night has a relationship with having children) while
for the low consumption and load factor rule the opposite is verified.

(a) (b)

(c) (d)

Fig. 6. Input membership function for Children inference using Autumn data. (Color
figure online)

Rules extracted from the FM for children inference using Autumn
data:

R1 : If i1 is low and A is low and M is low and m is low and ...

then d1(x) = 0.41− 0.27i1− 0.28i2− 0.51i3 + 0.01i4− 0.67i5− 0.83A+ 0.26m+ 0.45M

(7)

R2 : If i1 is high and A is high and M is high and m is high and ...

then d2(x) = 0.89 + 0.9i1− 0.51i2 + 1.74i3− 0.63i4 + 0.01i5− 0.87A+ 0.69m− 0.10M

(8)
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5 Conclusions

This paper proposes a system design for the estimation of consumer characteris-
tics based on the mining of smart meter data using fuzzy modelling. Extracted
rules are transparent and interpretable, enabling the extraction of valuable
knowledge for marketers and decision makers in the electricity sector.

Evaluation with real data from smart trials run in Ireland show the promise of
the approach, achieving reasonably accurate estimate of the presence of children
in a household but not achieving acceptable accuracy for the estimation of high
income and high education consumers. The results are in line with similar studies
but present the benefit of the extraction of transparent and interpretable rules.

In the future the system needs to be more thoroughly tested, using different
datasets and used for the estimation of other characteristics. Deeper research on
consumption extracted features should also be sought after, potentially resulting
in higher accuracies.
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2. Commission Européenne. Benchmarking smart metering deployment in the EU-27
with a focus on electricity (2014)

3. ISSDA. Data from the Commission for Energy Regulation. www.ucd.ie/issda
4. Sanquist, T.F., Orr, H., Shui, B., Bittner, A.C.: Lifestyle factors in U.S. residential

electricity consumption. Energy Policy 42, 354–364 (2012)
5. Kavousian, A., Rajagopal, R., Fischer, M.: Determinants of residential electric-

ity consumption: using smart meter data to examine the effect of climate, build-
ing characteristics, appliance stock, and occupants’ behavior. Energy 55, 184–194
(2013)

6. Bedir, M., Hasselaar, E., Itard, L.: Determinants of electricity consumption in
Dutch dwellings. Energy Build. 58, 194–207 (2013)

7. Sütterlin, B., Brunner, T.A., Siegrist, M.: Who puts the most energy into energy
conservation? A segmentation of energy consumers based on energy-related behav-
ioral characteristics. Energy Policy 39(12), 8137–8152 (2011)

8. Wijaya, T., Ganu, T., Chakraborty, D.: Consumer segmentation and knowledge
extraction from smart meter and survey data. In: Proceedings of the 2014 SIAM
International Conference on Data Mining (SDM14), pp. 226–234 (2014)

www.ucd.ie/issda


Mining Smart Metering Data through Fuzzy Modelling 573

9. Rhodes, J.D., Cole, W.J., Upshaw, C.R., Edgar, T.F., Webber, M.E.: Cluster-
ing analysis of residential electricity demand profiles. Appl. Energy 135, 461–471
(2014)

10. Viegas, J.L., Vieira, S.M., Meĺıcio, R., Mendes, V.M.F., Sousa, J.M.C.: Electricity
demand profile prediction based on household characteristics. In: Proceedings of
the 12th International Conference on the European Energy Market (2015)

11. Viegas, J.L., Vieira, S.M., Sousa, J.M.C.: Fuzzy clustering and prediction of elec-
tricity demand based on household characteristics. In: Proceedings of the16th
World Congress of the International Fuzzy Systems Association (IFSA) and the 9th
Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)
(2015)

12. Ramos, S., Duarte, J.M., Duarte, F.J., Vale, Z.: A data-mining-based methodology
to support MV electricity customers characterization. Energy Build. 91, 16–25
(2015)

13. Fusco, F., Wurst, M., Yoon, J.W.: Mining residential household information from
low-resolution smart meter data. In: Proceedings of the 21st International Confer-
ence on Pattern Recognition, pp. 3545–3548 (2012)

14. Beckel, C., Sadamori, L., Staake, T., Santini, S.: Revealing household characteris-
tics from smart meter data. Energy 78, 397–410 (2014)

15. Albert, A., Rajagopal, R.: Smart meter driven segmentation: what your consump-
tion says about you. IEEE Trans. Power Syst. 28(4), 4019–4030 (2013)

16. Chicco, G., Napoli, R., Postolache, P., Scutariu, M., Toader, C.: Customer char-
acterization options for improving the tariff offer. IEEE Trans. Power Syst. 18(1),
381–387 (2003)

17. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its Application to
Modeling and Control (1985)

18. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 297, 273–297 (1995)
19. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology 143(4), 29–36 (1982)



Soft Computing for Image Processing



Approximate Pattern Matching Algorithm

Petr Hurtik(B), Petra Hodáková, and Irina Perfilieva
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Abstract. We propose a fast algorithm of image pattern (instance)
matching which is based on an efficient encoding of the pattern and
database images. For each image, the encoding produces a matrix of
the F-transform components. The matching is then realized by compar-
ing the F-transform components of the pattern and the database images.
The optimal setting of the algorithm parameters is discussed, the success
rate and the run time are exhibited.

Keywords: Pattern matching · Searching algorithm · Image searching ·
F-transform

1 Introduction

Exact pattern matching involves finding all occurrences of a pattern (instance)
in a string, where the length of the pattern is shorter, or equal than that of
the string. The exact pattern matching is still widely used in a variety of text
searches engines.

The pattern matching was formed by string searching. Let us recall the most
known string searching algorithms: Rabin-Karp [1], Knuth-Morris-Pratt [2] and
Boyer-Moore [3]. Although these algorithms were proposed for strings, some of
them may be extended for multidimensional data.

Generally, in pattern matching (especially for higher dimensions) the focus
can be shifted to inexact or approximate matching. The latter allows small devi-
ations from the zero distances to make the comparison still relevant.

The aim of this contribution is to design a fast algorithm of approximate
pattern matching consisting in finding all occurrences of a given instance in a
given database. To present possibilities of our algorithm in a real situation, we
focus on two-dimensional data, i.e., images. The main idea of our approach is to
work with approximations (codes) of images instead of the original ones. We use
the technique of F-transform [4] to encode the given data. We remind that the
F-transform produces dimensional reduced approximations of the original data.
The advantage of F-transform is that we can choose how much the original data
are reduced and by that still ensure a good quality of the data approximation.

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 577–587, 2016.
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This property was used in an image reduction [5] where we showed that the
F-transform can reduce an image more precisely than other tested algorithms
(Bilinear, Bicubic and Lanczos resampling).

We follow up our previous work [6] where the F-transform based pattern
matching was proposed for one dimensional data. In this contribution, we deal
with an approximate pattern matching for r-dimensional data. We focus on the
optimal setting of the F-transform parameters in order to obtain an efficient
algorithm with respect to a success rate and a computational time.

The structure of the paper is as follows: the problem is formally defined
and the technique of F-transform is recalled in Sect. 2 - Preliminaries. Section 3
analyzes a proper setting of a fuzzy partition and decision thresholds and then
the algorithm steps are formulated. Experiments are demonstrated in Sect. 4.

2 Preliminaries

In this section, we formulate the problem we are focused on and briefly recall the
main concepts of the F-transform which is the technique used to encode data in
our approximate pattern matching algorithm.

2.1 Problem Formulation

We are given a database IDat = {f1, f2, . . .} of multidimensional objects: strings,
images, etc. Each object fi is represented by a function of r variables:

fi : Di → R,

where Di ⊂ R
r, r ≥ 1, is the domain of fi.

Additionally, we are given an instance (pattern) fp of one or several objects
from the database IDat where fp : Dp → R and Dp ⊂ R

r.
The goal is to find all occurrences of the instance fp in the database IDat.
We distinguish between a full coincidence and a proper inclusion of fp in one

or several objects from IDat.
The approximate matching will be realized by computing distances between

the F-transform components of the instance and every object from the database.
The minimal distance that is greater than a predefined threshold indicates that
fp matches the corresponding object from IDat. The details are in Sect. 3.

2.2 F-Transform for Functions with r Variables

The idea of our method is to work with encoding data instead of the original data.
We propose to encode the data by using the F-transform. It was mentioned in the
previous section that data are generally represented by a function of r variables.
Let us recall the main concepts of the F-transform for functions with r variables
and a fuzzy partition of r-dimensional domain, see [4,7] for more definitions and
properties.
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We denote the common domain of all functions with r variables by Dr =
[a1, b1] × · · · × [ar, br] and vectors x = (x1, . . . , xr) elements of Dr. Let us first
introduce the notion of fuzzy partition for D1 = [a, b]. Then we will extend it
for the domain Dr.

Definition 1. Let c0 = c1 < . . . < cn = cn+1 be fixed nodes within [a, b] such
that c1 = a, cn = b and n > 2. We say that fuzzy sets A1, . . . , An : [a, b] → [0, 1]
identified with their membership functions defined on [a, b] form a fuzzy partition
of [a, b] if the following conditions hold true for each k = 1, . . . , n:

1. Ak(ck) = 1;
2. Ak(x) = 0 if x ∈ [a, b]\(ck−1, ck+1);
3. Ak(x) is continuous on [ck−1, ck+1];
4. Ak(x) strictly increases on [ck−1, ck] and strictly decreases on [ck, ck+1].

The membership functions A1, . . . , An are called basic functions. A point x ∈ [a, b]
is covered by the basic function Ak if Ak(x) > 0.

If the nodes c1, . . . , cn are h-equidistant, i.e., for all k = 2, . . . , n, ck = ck−1+h,
where

h = (b − a)/(n − 1) (1)

and two additional properties hold for k = 2, . . . , n − 1:

5. Ak(ck − x) = Ak(ck + x) for all x ∈ [0, h];
6. Ak(x) = Ak−1(x − h) and Ak+1(x) = Ak(x − h) for all x ∈ [ck, ck+1];

then the fuzzy partition A1, . . . , An is h-uniform.
Moreover, the fuzzy partition is called Ruspini partition if for all x ∈ [a, b]

holds the Ruspini condition
n∑

k=1

Ak(x) = 1.

The following definition extends the concept of fuzzy partition of D1 to Dr.

Definition 2. Let a fuzzy partition of an interval [aj , bj ] be given by basic func-
tions Aj

1, . . . , A
j
nj
, n > 2, for j = 1, . . . , r. Then the fuzzy partition of Dr is

given by the fuzzy Cartesian product {A1
1, . . . , A

1
n1

} ×� {A2
1, . . . , A

2
n2

} ×� · · · ×�
{Ar

1, . . . , A
r
nr

} with respect to the product t-norm of these r fuzzy partitions.

Let us now recall the definition of the direct F-transform for function with r
variables defined at discrete points.

Definition 3. Let {A1
1, . . . , A

1
n1

} ×� {A2
1, . . . , A

2
n2

} ×� · · · ×� {Ar
1, . . . , A

r
nr

} be
a fuzzy partition of Dr and let a function f : Dr → R be known at points
(p11, . . . , p

r
1), . . . , (p

1
N , . . . , prN ) such that for each (k1, . . . , kr) where kj = 1, . . . , nj

and j = 1, . . . , r, there exists i = 1, . . . , N : A1
k1

(p1i ) · · · Ar
kr

(pri ) > 0. We say that



580 P. Hurtik et al.

a ν-tuple Fn1n2...nr [f ] = [Fk1...kr
] of real numbers where ν = (n1 · n2 . . . nr) is

the discrete direct F-transform of f with respect to the given fuzzy partition if

Fk1...kr
=

∑N
i=1 f(p1i , . . . , p

r
i )A

1
k1

(p1i ) · · · Ar
kr

(pri )
∑N

i=1 A1
k1

(p1i ) · · · Ar
kr

(pri )
(2)

for each r-tuple k1 . . . kr.

Let us remark that the F-transform can approximate the original function
with an arbitrary precision. The quality of the approximation depends on the
parameter h of the chosen fuzzy partition. It holds, the smaller h, the better
approximation by the F-transform components, see [4] for more details.

3 Algorithm

The purpose of this contribution is to propose a method for matching and iden-
tifying place of the pattern fp with the particular fi ∈ IDat. Before we define
particular steps of the algorithm, let us introduce the main ideas:

1. Application of the F-transform to fp and fi ∈ IDat, i = 1, . . . , d, w.r.t. the
same h-uniform fuzzy partition. By this part, we encode the original data
into the reduced representation in the form of components.

2. Comparison of the components of fp with the components of all fi ∈ IDat,
i = 1, . . . , d, i.e., sliding comparison. This part is realized by computing cor-
responding distances.

3. Matching of fp with a particular fi ∈ IDat. The final match is realized with
respect to the minimal distance between the components and considering a
predefined decision threshold.

The ideas of the algorithm are described in a general way. Now we focus on
two following details which will be analyzed more deeply:

Q1: The F-transform is dependent on a chosen fuzzy partition. How to deter-
mine the particular fuzzy partition, i.e., what is the optimal value of the
parameter h?

Q2: The final matching is realized by the threshold of decision making. Is it
possible to derive the threshold automatically or it has to be specified by a
user?

Fuzzy partition specification: It was mention in Sect. 2.2, the smaller h (the
more F-transform components) the better approximation of the function. On the
other hand, the bigger h (the less F-transform components) the less comparisons
of the components and therefore, the faster processing. The question is what is
the optimal value for h?

It is clear that when we compute a distance between two components (one
from a pattern and one from a database image) which correspond to the same
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part of those images, the distance is zero. What happen when the correspond-
ing compared parts of the image are shifted by δ? How much is the distance of
the corresponding components influenced by the δ and by the parameter h? We
describe this dependency by an “error” which denotes a ratio between the dis-
tance of components (between the pattern and the database) with respect to the
δ and the standard deviation of all components of the pattern. The dependency
is illustrated on a graph in Fig. 1. We observe that the error is increasing for
δ ∈ [0, h/2] and decreasing for δ ∈ [h/2, h] (because of the sliding comparison).
A next graph in Fig. 2 illustrates the influence of the chosen h on the average
error with respect to the shift δ. We observe that there is no influence of the
chosen h on the average error. Therefore, we can choose the parameter h as big
as possible (with respect to the size of the pattern) to make the processing faster.

Fig. 1. The error denotes a ratio between the distance of components (with respect to
the δ) and the standard deviation of all components of the pattern.

Fig. 2. Dependency of the average error on the chosen h with respect to the shift δ.

Once we specify the parameter h, we need to establish h-uniform fuzzy par-
tition with this parameter. As we mentioned above, the error is increasing with
respect the shift δ and maximum for δ = h/2. In order to avoid this increasing
error and make it as much constant as possible, we propose to use two h-uniform
fuzzy partitions shifted in their position by h/2. This solution gives us the error
almost constant for arbitrary δ, see a graph in Fig. 3.
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Fig. 3. Dependency of the error on δ ∈ [0, h/2]. The errors of two h-uniform fuzzy
partitions shifted by h/2 are displayed in blue and red, the “final” error is displayed
in yellow. (Color figure online)

Decision Making Threshold: The algorithm marks one (or more) image(s)
in the database where the pattern can be included. Each marked image has
assigned the corresponding distance. To make a decision, if the marked image
with the minimal distance corresponds to the pattern, we compare it with a
threshold. The threshold value is delimited automatically as the average value
of the differences between all neighboring components of the pattern.

Algorithm. To demonstrate possibilities of the proposed algorithm in a real
situation, we present the particular steps of the algorithm over two-dimensional
data, i.e., images. Let us remark that generally an image is defined as a discrete
function of two variables f : [1, N1] × [1, N2] → R defined on an array of pixels
{(pi, pj)|i = 1, . . . , N1; j = 1, . . . , N2}. The image pattern matching algorithm is
described in details in Fig. 4.

4 Experiments

In this section, we present experiments tested on real-life images with different
scenarios. We created a large database of images and tested several patterns. We
present the success rate and the computational time of the tests. The particular
conditions of the presented experiments are as follows.

The database consists of 1292 images with high-resolutions (8 Mpx, 12 Mpx).
The physical size of the database stored in a hard-disk is 4076 MB in jpeg format
and 32558 MB in bmp format. The database of images includes in total 1.11 ·1010

pixels. Let us remark that the computational time of all experiments was measured
on a low-powered notebook without any parallelism.

The pre-processing of the algorithm can be realized only once and its com-
putational time is not included in the total computational time. In this step, the
F-transform components w.r.t. several values of h are computed for all images
from the database. The components are stored in .txt file without any compres-
sion. The size of the original database is reduced as follows:

h = 20 : 413 MB, h = 40 : 101 MB, h = 60 : 44 MB,

h = 80 : 28 MB, h = 100 : 15 MB, h = 800 : 0.2 MB.
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Fig. 4. F-transform based pattern matching algorithm

Let us emphasize that the extreme reduction is obtained for h = 800 where the
database size is reduced to 0.2 MB. If we use rar compression, we obtain the
file of the size 0.04 MB, i.e., 100000x smaller than the original database in jpeg
format.

The first experiment tested 40 image patterns selected by a human. The pat-
terns differ in size and content. All patterns include some texture, e.g., face, tree,
car etc. The result of this test was 100 % success rate. The mean computational
time was 200 ms of matching one pattern in the whole database (1292 images).
An example is shown in Fig. 5 (Top).
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Fig. 5. Three examples of the pattern matching - patterns (left), matched images
(right). Top: The pattern was a part of an image. It was searched and matched suc-
cessfully. Middle: The pattern was a part of an image and it was modified by adding
a black square. It was searched and matched successfully. Bottom: The pattern was a
homogeneous part of an image (only 255 values; the pattern is magnified to be more
visible in the images.). It was searched and matched incorrectly to the image on the
left. The original image is on the right. Remark: the pattern was matched to both the
images but the incorrect one had the minimal distance.

The second experiment tested 500 image patterns created by a computer via
a script. The script selects a random-sized pattern from a random position in
a random image from the database. The result of this test was 90 % success
rate. The mean computational time was 300 ms per pattern. The reason why we
did not achieve 100 % success rate is the homogeneity of patterns. Some patterns
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contained only homogeneous areas (for instance sky) and the algorithm identified
those patterns with more images from the database where the correct one did not
achieve the minimal distance. The example of an incorrect matching is presented
in Fig. 5 (Bottom). In such cases, the algorithm can be modified to return more
than one “best match” result. For example, when the algorithm is set to return
3 % of the best matched images from the database, the achieved success rate is
99 %.

Let us remark that we also tried to search for patterns which are little modi-
fied with respect to the original database images they are created from. We exper-
imented with manually created modifications, see an example in Fig. 5 (Middle).
For automatized test we modified patterns by Gaussian convolution with the
mask (5 × 5) pixels. Even in such cases, we achieved the same success rate and
computational time as in the previous experiments.

5 Discussion

In this section, we discuss some problems which arose while the algorithm was
designed.

“Miss-match” Problem. The problem called “miss-match” is a situation when
the pattern is matched with the incorrect image (see Fig. 5 (Bottom)). This
problem can be formally described as follows:

fp ⊂ fi and fp �⊂ fj ; fi, fj ∈ IDat

but Disti(Fn1pn2p
[fp], T

xy
i ) > Distj(Fn1pn2p

[fp], T
xy
j ).

The problem of miss-match can arise when the pattern is a part of some image
and the components of the pattern and of the corresponding part in the image
are shifted by some unknown δ. This situation is displayed in Fig. 6.

To avoid the miss-match problem, we use the two h-uniform fuzzy partitions
shifted by h/2 for each image comparison (described in Sect. 3).

Higher Degree F-transform. In the proposed algorithm, we use the ordinary
F-transform to encode the original data. Let us remark that there exists also
a higher degree F-transform and generally, the higher degree F-transform gives
the better approximation of the function. Therefore, we investigated the usage
of the first degree F-transform [8] and the standard arithmetic mean.

Similarly to the Sect. 3 where we discussed the specification of the fuzzy par-
tition and the parameter h, we investigated the dependency of the error on the
chosen encoding method. A graph in Fig. 7 illustrates the dependency of the error
on the shift δ with respect to the ordinary F-transform (F0-transform), the F1-
transform and the standard arithmetic mean (over non-overlapping sub-areas of
the function). This graphical demonstration was obtained by a numerical exper-
iment with the fixed parameter h = 50 and with the shift δ ∈ {0, 1, . . . , 200}.

The graph in Fig. 7 confirms that for the shift δ ≥ 2h (the case when the
two compared components are not overlapped) the error is constant for all three
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Fig. 6. Illustration of different positions of the pattern components (bottom) with
respect to the components of the original image (top).

Fig. 7. Dependency of the error on shift δ with respect to the ordinary F-transform,
F1-transform and arithmetic mean (Colour figure online)

methods. We also observe that in the case of the F1-transform, the error for the
shift δ ∈ {h/2, . . . , 2h} (two compared components overlap) is bigger than in
the case of non-overlapped components. This leads to the miss-match problem
and therefore the F1-transform is not suitable for this comparison. We conclude
that the most suitable method to avoid the miss-match problem is the ordinary
F-transform (F0-transform).

6 Conclusion

In this contribution, we proposed the pattern matching algorithm. The algorithm
was presented for two dimensional data (images) but the method is universal and
can be easily extended to process r-dimensional data in general. The possibility
of modification of the algorithm into arbitrary dimension is one of the most
important benefit of the proposed algorithm.
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We focused on the algorithm design in details. The core idea lies in encoding
the original data by the F-transform in order to reduce the dimension and obtain
a simplified representation. We investigated particular steps of the algorithm
and discussed settings of all parameters. The algorithm is suitable for the exact
pattern matching as well as for the approximate matching. The algorithm can
return either one best result identified with the pattern or the list of best results.

The proposed methodology was tested on several experiments with the result
of 90 % success rate (at least). In the tested 4 GB database with more than
thousand big-resolution images, the algorithm excelled with the computational
speed of 200–300 ms per pattern.

The general usage of the algorithm is searching in the real data when we face
to a problem of big sized data. The data are too big to be loaded into a fast
memory (RAM) and then they have to be stored in a slower memory (hard disk)
and swapped. The proposed algorithm uses the reduced representation of data
and then they can be loaded to the fast memory directly.
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LQ1602 “IT4Innovations excellence in science” provided by MŠMT.
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7. Štěpnička, M.: Fuzzy Transform and its Applications to Problems in Engineering
Practice (Thesis). University of Ostrava, Ostrava (2008). http://irafm.osu.cz/f/
PhD theses/Stepnicka.pdf
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Abstract. The paper is focused on demonstration of image inpainting
technique using the F-transform theory. Side by side with many algo-
rithms for the image reconstruction we developed a new method of patch-
based filling of an unknown (damaged) image area. The unknown area is
proposed to be recursively filled by those known patches that have non-
empty overlaps with the unknown area and are the closest ones among
others from a database. We propose to use the closeness measure on the
basis of the F1-transform.

Keywords: Image processing · F-transform · Inpainting

1 Introduction

Inpainting belongs to a group of sophisticated methods/algorithms to replace
the lost or corrupted parts of partially given images. The technique can be used
to fill places after an object was cut away or small defects were removed. The
inpainting can be approximately divided into two groups: a patch-based substi-
tution [1–4] and a recursive filling, which is usually based on partial differen-
tial equations [5–8]. This classification is not mutually exclusive, so there are
methods that use both approaches. In this paper, we propose a new patch-based
inpainting technique using the sparse image representation and F1-transform [9].

The Fk-transform theory [10] performs a transformation of the original
universe of functions (images) into a universe of their vectors or matrices of
components for which further computations are easier. In this respect, the F-
transform is useful in applications such as image compression, fusion, recon-
struction, etc. The F-transform degree k states for a polynomial degree of the
components. The F1-transform components are polynomials of the first degree,
whereas F0-transform components are scalars.

The structure of this contribution is as follows. The preliminaries and state
of the art are provided in Sect. 2. The theory of F-transform is described in
Sect. 3. Section 4 describes a concrete application of the F-transform to the image
inpainting problem, and Sect. 5 contains some examples. The conclusion is pro-
vided in Sect. 6.
c© Springer International Publishing Switzerland 2016
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2 Preliminaries and State of the Art

Let us fix the following notation to use throughout the paper. Image I is a
2D function such as I : [0,M ] × [0, N ] → [0, 255], where M + 1 denotes the
image width, N + 1 denotes the image height, and [0, 255] denotes the pixel
intensity. We denote [0,M ]Z = {0, 1, 2, . . . ,M}, [0, N ]Z = {0, 1, 2, . . . , N} and
[0, 255]Z = {0, 1, 2, . . . , 255}. Image I is assumed to be partially defined: it is
defined (known) on the area Φ and undefined (unknown, damaged) on the area
Ω. The border between these areas is denoted by δΩ and assumed to be unknown.
The notation is illustrated in Fig. 1.

Fig. 1. Two areas where image I is defined (Φ) and undefined (Ω).

In the recursive inpainting process, Ω should be recursively filled so that
every pixel ω ∈ δΩ ∪ Ω should be replaced by some pixel φ ∈ Φ. In patched-
based inpainting, a rectangular patch Ψ ∈ Φ is the most favorable choice. We
denote Ψφ for a rectangular patch centered at pixel φ. If pixel ω is unknown
(belongs to δΩ ∪ Ω), then the patched-based inpainting consists of finding a
patch from the known area, e.g., Ψφ, which is the most similar to Ψω, so that

Ψφ = arg min
φ′

d(Ψω, Ψφ′). (1)

Function d is usually selected as the Euclidian distance. However, the pioneers
Efros and Leung [4] used d(Ψω, Ψφ) as the sum of the square differences between
Ψω and Ψφ, which is defined as follows

d(Ψω, Ψφ) =
Ψw∑

x=0

Ψh∑

y=0

(Ψω(x, y) − Ψφ(x, y))2,

where Ψw + 1 and Ψh + 1 are the patch width and height, respectively.
A priority of unknown pixel selection is very important. A number of the

known pixels in Ψω is taken into the consideration. The higher number means
higher priority. In general, the highest number of known pixels have patches
Ψω centered at the border δΩ. This however, requires to determine such pix-
els (remember that they are considered as unknown). In our contribution, we
propose to determine the border pixels using the operation of erosion (mathe-
matical morphology operation) described later in the paper. Inside the border,
pixels are selected according to their indexation. This way of processing is known
as onion-peel.
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3 F-Transform

We recall the definition of the F-transform [10] and the notion of a fuzzy par-
tition1 at the beginning. Fuzzy sets (basic functions) A0, . . . , Am, 1 < m < M ,
which are identified with their membership functions A0, . . . , Am : [0,M ] →
[0, 1], establish a fuzzy partition of [0,M ] with nodes 0 = x0 < x1 < · · · < xm =
M , if the following conditions are fulfilled:

(1) Ak : [0,M ] → [0, 1], Ak(xk) = 1;
(2) Ak(x) = 0 if x /∈ (xk−1, xk+1), k = 0, . . . , m;
(3) Ak(x) is continuous on [0,M ];
(4) Ak(x) strictly increases on [xk−1, xk] and strictly decreases on [xk, xk+1],

where k = 1, . . . ,m;
(5)

∑m
k=0 Ak(x) = 1, x ∈ [0,M ].

We say that the fuzzy partition A0, . . . , Am is an h-uniform fuzzy partition
if nodes xk = hk, k = 0, . . . ,m are equidistant, h = M/m, and two additional
properties are met:

(6) Ak(xk − x) = Ak(xk + x), x ∈ [0, h], k = 0, . . . ,m;
(7) Ak(x) = Ak−1(x − h), k = 1, . . . , m, x ∈ [xk−1, xk+1].

Parameter h will be referred to as a radius of a partition. Similarly, a partition
of [0, N ] by B1, . . . Bn can be defined.

3.1 F0-Transform

The F0-transform of an image is given by a corresponding matrix of compo-
nents. Let the fuzzy partition of [0,M ] and [0, N ] be given by basic functions
A0, . . . , Am : [0,M ] → [0, 1] and B0, . . . , Bn : [0, N ] → [0, 1], respectively.
We remark that the set of pixels P = {(i, j) ∈ [0,M ]Z × [0, N ]Z} with inte-
ger coordinates is sufficiently dense with respect to the chosen partitions. Thus,
(∀k)(∃x ∈ [0,M ]Z) Ak(x) > 0, and (∀l)(∃y ∈ [0, N ]Z) Bl(y) > 0, which follows
from condition 5) above.

We call the m × n matrix of real numbers F0
mn[I] = (F 0

kl) the (discrete)
F 0-transform of image I with respect to {A0, . . . , Am} and {B0, . . . , Bn}, if for
all k = 0, . . . , m; l = 0, . . . , n,

F 0
kl =

∑N
y=0

∑M
x=0 I(x, y)Ak(x)Bl(y)

∑N
y=0

∑M
x=0 Ak(x)Bl(y)

. (2)

The elements F 0
kl are called the components of the F 0-transform. In the termi-

nology of kernels or masks, the expression (2) can be rewritten as a convolution
with sliding window [11]. In image processing, the F0-transform components
determine an average intensity value over the appropriate area. The illustration
is in Fig. 2.
1 For the sake of simplicity, we consider this notion for a one-dimensional universe.



Image Reconstruction by the Patch Based Inpainting 591

Fig. 2. F0-transform components of four 5 × 5 image areas.

3.2 F1-Transform

In this section, we recall the (direct) F1-transform as it was presented in [12].
Let {Ak × Bl | k = 0, . . . ,m, l = 0, . . . , n} be a fuzzy partition of [0,M ] × [0, N ].
Let L1

2(Ak) ⊆ L2(Ak) (L1
2(Bl) ⊆ L2(Bl))2 be spanned by the two orthogonal

polynomials

P 0
k (x) = 1, P 1

k (x) = x − xk,

(Q0
l (y) = 1, Q1

l (y) = y − yl),

where 1 denotes the respective constant function.
Analogously, let L1

2(Ak ×Bl) ⊆ L2(Ak ×Bl) be spanned by the three orthog-
onal polynomials

S00
kl (x, y) = 1, S10

kl (x, y) = x − xk, S01
kl (x, y) = y − yl.

Let I ∈ L2([0,M ] × [0, N ]), and F1
kl be the orthogonal projection of

I|[xk−1,xk+1]×[yl−1,yl+1] on subspace L1
2(Ak × Bl), k = 0, . . . ,m, l = 0, . . . , n.

We say that matrix F1
mn[I] = (F 1

kl), k = 0, . . . ,m, l = 0, . . . , n is the F1-
transform of I with respect to {Ak × Bl | k = 0, . . . ,m, l = 0, . . . , n}, and F1

kl is
the corresponding F1-transform component.

The F1-transform components of I are linear polynomials in the form of

F 1
kl(x, y) = c00kl + c10kl (x − xk) + c01kl (y − yl),

2 L2(Ak) is a Hilbert space of square-integrable functions f : [xk−1, xk+1] → R, whose
weighted inner product 〈f, g〉k is given by

〈f, g〉k =

∫ xk+1

xk−1

f(x)g(x)Ak(x)dx,

where the weight function is equal to Ak.
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where the coefficients are

c00kl =

∑N
y=0

∑M
x=0 I(x, y)Ak(x)Bl(y)

∑N
y=0

∑M
x=0 Ak(x)Bl(y)

,

c10kl =

∑N
y=0

∑M
x=0 I(x, y)(x − xk)Ak(x)Bl(y)

∑N
y=0

∑M
x=0(x − xk)2Ak(x)Bl(y)

, (3)

c01kl =

∑N
y=0

∑M
x=0 I(x, y)(y − yl)Ak(x)Bl(y)

∑N
y=0

∑M
x=0(y − yl)2Ak(x)Bl(y)

.

In image processing, the F1-transform components determine an average
intensity value and an average gradient of the appropriate area, as illustrated in
Fig. 3.

Fig. 3. F1-transform components of four 5 × 5 image areas. The areas are identical to
those in Fig. 2.

4 Application to Inpainting Process

As previously mentioned, image inpainting aims at filling the unknown area.
Image I with a designated unknown area Ω is the input of this problem. Ω
must be replaced (filled) using patches from the known area Φ, where Φ =
[0,M ] × [0, N ]\Ω. The following method is our main contribution to the topic.
It consists of four sequential steps that are characterized below.

4.1 Creation of a Database of Patches

The known area Φ of image I is partitioned into partially overlapped patches.
The patch has a rectangular shape with a predefined size. The number of patches
q is determined by their size. The patches Ψ i

φ where i = 1, . . . , q are stored in
the database DΨ , which will be used later for the reconstruction.
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Database Optimization. Many database patches are frequently notably simi-
lar to one another. To avoid duplicity, we propose to compare distances between
already included patches and a new one Ψn. The following distance is used:

d(Ψn, Ψd) =
m∑

k=0

n∑

l=0

|Ψn(k, l) − Ψd(k, l)|;∀Ψd ∈ DΨ . (4)

If there is at least one Ψd such that the value (4) is less than a certain
threshold, the patch Ψn is not included into DΨ . The appropriate choice of the
threshold is a subject of our future research. Currently, we use a value from the
interval [0..5].

4.2 Border Extraction

The unknown area Ω is surrounded by the border δΩ. We consider square-
shape patches Ψ centered at unknown pixels. For the sake of reconstruction, it
is desirable to have as many known pixels in Ψ as possible. This condition is
fulfilled if the corresponding centers are on the border δΩ, which implies that
we must determine the border of Ω, process its pixels, consequently update the
border, etc.

For the purpose of border extraction, we propose to use the operator of
mathematical morphology [13] - erosion. The erosion is defined as follows

Φ � T = {z ∈ [0,M ] × [0, N ]|Tz ⊆ Φ},

where T is a structuring element and z is a translation vector. For the purpose
of border determination, we consider square-shaped structuring elements of the
size 3 × 3. The border is determined as follows

δΩ = Φ − (Φ � T ).

The illustration is in Fig. 4.

(a) Structuring el-
ement T

(b) Unknown area
Ω (black) and
known area Φ
(white)

(c) Eroded known
area Φ � T (white)

(d) The border δΩ
(white) as Φ−(Φ�
T )

Fig. 4. Illustration of the border extraction using mathematic morphology erosion. For
better illustration, the colors are inverted.
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The type of reconstruction based on the primary processing of border pixels
is commonly known as onion peel.

4.3 Patch Searching

We take a pixel ω from the border δΩ and create the patch Ψω, whose center
is at this pixel. Let s be the mask of the damaged (unknown) part in Ψω as
shown in Fig. 5. We apply s to each patch in the database DΨ and create a new
database Ds

Ψ , where each patch Ψs
φ is partially damaged by s. The goal is to find

the closest patch Ψs
φ from Ds

Ψ to the patch Ψω.

(a) Patch (b) Mask

Fig. 5. Patch Ψω (left) with unknown area determined by the mask s.

We propose to measure closeness between patches by the mean average of
distances between coefficients of their F1-transform components, i.e.

d(Ψ1, Ψ2) =
d00(Ψ1, Ψ2) + d01(Ψ1, Ψ2) + d10(Ψ1, Ψ2)

3
,

where

d00(Ψ1, Ψ2) =
∑m

k=0

∑n
l=0 |Ψ00

1 (k, l) − Ψ00
2 (k, l)|

mn
,

d01(Ψ1, Ψ2) =
∑m

k=0

∑n
l=0 |Ψ01

1 (k, l) − Ψ01
2 (k, l)|

mn
,

d10(Ψ1, Ψ2) =
∑m

k=0

∑n
l=0 |Ψ10

1 (k, l) − Ψ10
2 (k, l)|

mn
,

and Ψ00
i , Ψ01

i , Ψ10
i , i = 1, 2, are the corresponding F1-transform coefficients in

accordance with (3). The main advantage of our proposal consists in its compu-
tational effectiveness. The patch-searching process is illustrated in Fig. 6 where
show various patches Ψs

φ together with the corresponding values of the measure
of closeness d(Ψω, Ψs

φ).
The numbers n and m of fF1-transform components is determined by the

radius h of the chosen partition. The exact value of h differs from one application
to another. A smaller value of h corresponds to a larger number of components
and greater computation time. A larger h leads to a faster computation but with
a higher risk of a wrong assignment of Ψs

φ to Ψω.
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(a) Ψω

(b) (c) (d) (e) (f) (g)

Fig. 6. (a) Original patch Ψω with an unknown area (colored in black) whose mask is
s; some patches from Ds

Ψ with the corresponding measures of closeness d(Ψω, Ψs
φ) as

follows: (b) 7.79; (c) 8.94; (d) 14.19; (e) 20.02; (f) 29.44; (g) 46.02.

4.4 Patch Reconstruction

After the closest patch Ψs
φ is selected, we replace (reconstruct) the partially

known Ψω by the fully known Ψφ ∈ DΨ , which corresponds to Ψs
φ. The illustration

is in Fig. 7.

(a) (b)

Fig. 7. (a) Patch Ψω centered around the pixel ω ∈ δΩ; (b) The closest patch Ψs
φ from

the database DΨ .

5 Examples and Comparison

There are no established benchmarks to verify a quality of inpainting methods.
Therefore, in order to compare the proposed method with other ones we choose
a visual quality estimation. We start with the example where inpainting is used
for erasing of unwanted objects. In Fig. 8, we demonstrate the ability of our
method to delete a relatively large object and reconstruct the erased part by the
corresponding texture.

In the following two examples, we artificially created damaged (unknown)
areas of various geometrical shapes and then reconstructed them by the proposed
method. We used two measures RMSE and SSIM and estimated the quality of the



596 P. Vlašánek and I. Perfilieva

(a) Input image (b) Mask (c) Output image

Fig. 8. Application of the proposed inpainting method to the problem “erase and
reconstruct”.

(a) Original image (b) Damaged image (c) Proposed output

Fig. 9. Illustration of the proposed inpainting technique to the problem “erase and
reconstruct”. Original image (400 × 400 pixels) was damaged by erasing highlightd
areas and then reconstructed. The original and reconstructed images were compared
by RMSE (22.0426), and SSIM (0.916244).

(a) Original image (b) Damaged image (c) Proposed output

Fig. 10. Illustration of the proposed inpainting technique to the problem “erase and
reconstruct”. Original image (300 × 300 pixels) was damaged by erasing highlightd
areas and then reconstructed. The original and reconstructed images were compared
by RMSE (13.7273), and SSIM (0.91897).

obtained reconstruction. In Figs. 9 and 10, the illustration of the reconstruction
together with the estimation of the quality is given.

We made a visual comparison with exemplar-based inpainting technique pub-
lished in [14]. Images and details are in Figs. 11 and 12.
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(a) Input image (b) Output from [14] (c) Proposed output

(d) Detail in (a) (e) Detail in (b) (f) Detail in (c)

Fig. 11. Comparison between two inpainting methods: the proposed one and published
in [14]. The black billiard ball was erased. Reconstruction of the erased area by the
proposed method has less visible artifacts.

(a) Input image (b) Output from [14] (c) Proposed output

(d) Detail in (a) (e) Detail in (b) (f) Detail in (c)

Fig. 12. Comparison between two inpainting methods: the proposed one and published
in [14]. The figure of a man was erased. Reconstruction of the erased area by the
proposed method has less visible artifacts.

6 Conclusion

The paper describes an ongoing study in patch-based inpainting, which is
inspired by the F1-transform technique. We propose to create feature vectors
that consist of the F1-transform coefficients and use them in computation of
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closeness. Every partially known patch is replaced by the closest patch from the
available database. Moreover, we propose a priority in the selection of patches.

We decomposed the entire reconstruction process into the sequence of steps:
creation of a patch database, border extraction, patch searching and patch recon-
struction. All steps are illustrated.

Acknowledgment. This work was supported by the project LQ1602 IT4Innovations
excellence in science.
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Abstract. Template-based methods for image processing hold a list of
advantages over other families of methods, e.g. simplicity and ability to
mimic human behaviour. However, they also demand a careful design
of the pattern representatives as well as that of the operators in charge
of measuring/detecting their presence in the data. This work presents a
method for fingerprint analysis, specifically for singular point detection,
based on template matching. The matching process sparks the need for
similarity measures able to cope with radial data. As a result, we intro-
duce the concepts of Restricted Radial Equivalence Function (RREF)
and Radial Similarity Measure (RSM), further used to evaluate the per-
ceptual closeness of scalar and vectorial pieces of radial data, respectively.
Our method, which goes by the name of Template-based Singular Point
Detection method (TSPD), has qualitative advantages over other alter-
natives, and proves to be competitive with state-of-the art methods in
quantitative terms.

Keywords: Fingerprint analysis · Singular point detection · Radial
data · Restricted equivalence function · Similarity measure

1 Introduction

Among biometrical identity authentication systems, those based on fingerprint
analysis are the most popular alternative for a large range of applications, e.g.
card-less payments or access control. Fingerprint-based authentication systems
carry out the individual authentication analyzing, mostly, ridge patterns in the
fingertips. A simple division of the context of fingerprint authentication can
be made by discriminating identification and verification tasks. Identification
refers to the localization of an individual in a database, provided one or more
of its fingerprints; verification refers to the confirmation of a claimed identity
in a database. For both tasks, having an accurate way to perform one-to-one
fingerprint comparisons (usually known as fingerprint matching) is critical.

Fingerprint matching is not trivial, and often involves significant computa-
tional effort. For fingerprint verification this is not a major problem, since the
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 599–611, 2016.
DOI: 10.1007/978-3-319-40596-4 50
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input fingerprint is only compared with those corresponding to the claimed iden-
tity. However, in the context of identification, the time and resources spent at
each matching become of paramount importance. In fact, several strategies have
been developed to minimize the number of such comparisons in an identification
process. The most popular of such strategies is classification [8,9], which con-
sists of comparing the input image only to those belonging to the same so-called
class. Such class is assigned according to the global structure of the ridges in
the fingertip. Although several classification schemes and strategies have been
proposed, most of the applications use the five major classes in the Henry system
[18]: arch, tented arch, left loop, right loop and whorl. These classes can also be
depicted in terms of the number and relative position of the so-called Singular
Points (SPs). SPs are locations of the fingerprint in which abnormal ridge pat-
terns occur, and can be categorized in two types: cores (where ridges are bent)
and deltas (where the ridge flow diverges). Considering that SPs are defined as
local ridge patterns, we decided to study a SP detection method which could be
based on template matching. As a final goal, this SP detection shall be used as
support information to decide which class does a fingerprint belong to.

Template matching is a recurrent solution in digital image processing and
roots in very early cognitive abilities in human vision system [20]. A priori,
the only information needed in a template matching system is an expression
of the items to be identified (the templates) and a comparison measure able to
detect occurrences of the template in the input data. Examples of template-based
methods for image processing range from low-level feature detectors [5,11,22], to
composite object detectors (e.g. the eye detector in [16]). In the SP detection sce-
nario, defining a template is straightforward, since the SPs themselves are defined
by their visual properties. However, the design of a comparison measure able to
model the fit of such templates at each location of a fingerprint involves major
challenges. Since a human fingerprint is composed of lines (ridges), we demand
the templates to be represented as a set of lines (equivalently, orientations). As
a consequence, the comparison measures used to quantify the matching of each
template at each position of the fingerprint must consider the radial nature of
the data. Put to more strict terms, the similarity measure must be able to cope
with radial data.

Different mathematical theories have been used to model, leading to what
Zadeh referred to as a vast armamentarium of techniques for comparison [28].
Axiomatic representations of metric and non-metric comparison frameworks
have appeared in the literature (e.g. [25] for set-based similarity, or [6] for
T -indistinguishability). Despite the variety of measures and inspirations, none
of such frameworks is prepared for radial data. In this work we present the con-
cepts of Restricted Equivalence Function (REF) and Similarity Measure (SM)
for radial data. Our study is motivated by our specific problem, but also fuelled
by the increasing relevance of radial data in applied research. Tasks in highly
researched topics, e.g. computer vision, often involve handling radial data in dif-
ferent flavours (e.g., angular, vectorial or tensorial data [29]) and consequently
demand well-defined operators for different tasks, including data comparison.
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The proposed operators fulfil these demands and, moreover, become a key the
completion of our template-based SP detection method.

The remainder of the work is as follows. In Sect. 2 we review some stan-
dard notation on radial data. Section 3 is devoted to introduce the concepts
of RREF and RSM, while in Sect. 4 we present our proposal for SP detection
in fingerprints. Section 5 includes an experimental study in which we illustrate
the performance of our SP detection method, compared to other well-known
methods in the literature. Finally, Sect. 6 gathers some conclusions and a brief
discussion on potential future evolutions of our method.

2 Preliminaries

Among the areas in which fuzzy set theory has played a relevant role, data sim-
ilarity modelling is one of the most prominent ones. The reason is that notions
like similarity, closeness or likeliness are inherently bounded to human perception
or interpretation. Hence, different proposals have appeared to effectively model
the comparison of information. Among these, we find fuzzy metric spaces [15],
with interesting advantages over classical metric spaces in terms of interpretabil-
ity [10] or equivalence and similarity measures [3], which we take as inspiration
to develop measures that can handle radial data. In this work we make use of
three well-known concepts, namely Restricted Equivalence Function (REFs, [3]),
Similarity Measures (SMs, [27]), and Aggregation Operators (AgOps, [2]). Due
to space constraints, we do not review these concepts explicitly, but we refer to
the referenced works for further information.

In this work we define an equivalence relation R to relate angles in with
identical orientation and direction. Let a, b ∈ R, we have aRb if and only if
a = b + 2kπ, where k ∈ Z. In this way, the equivalence class [a] = {b | bRa} is
the set containing all the data associated with the same angle. Note also that any
semiopen interval whose width is 2π (i.e., an interval of the form [ω, ω+2π[) is the
quotient set (a set which contains one element and only one of each equivalence
class). In particular, the most common quotient sets for radial data are [0, 2π[
and [−π, π[. In this work, we consider the quotient set Ω = [0, 2π[, on which we
define the classical operations sum (a⊕b = [a+b]) and difference (a�b = [a−b]),
where [t] denotes the only element z ∈ Ω such that zRt. In this context, we refer
to mirroring as the mapping: m : Ω −→ Ω such that m(a) = 0 � a.

3 Comparison of Radial Data

Radial data has been a subject of analysis since mid-18th century [7]. Most of the
literature on radial data is based on adapting distributions to circular set-ups, in
order to abilitate statistical analysis of radial data. One of the problems receiving
meager attention in radial data is data comparison. In fact, to the best of our
knowledge, no comprehensive analysis of the quantification of similarity between
two angles has been performed in the literature. There have been proposals for
radial data comparison using the sample median direction [7] or the sample modal
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direction [19], as well as some metrics on [0, 2π[. For example, the angular metric,
given by δ∗(a, b) = min(|b−a|, 2π−|b−a|), which represents the amplitude of the
shortest arc encompassing two angles. However, no development has been made
on interpretable measures able to adapt to human perception or evaluation.

Radial data introduces very interesting novelties for similarity modelling,
specifically the fact that, for radial data, increasing the farness of two elements
will eventually lead to increasing their closeness. This apparent contradiction,
which is only such contradiction in linear data, roots on the very nature of radial
data. This section is devoted to develop functions that are able to measure the
perceived similarity between scalar and vector angular data.

3.1 Restricted Radial Equivalence Functions

Definition 1. A mapping rθ : Ω2 → [0, 1] is called a Restricted Radial Equiva-
lence Function (RREF) associated with the metric δ if it satisfies the following:

(RR1) rθ(a, b) = rθ(b, a) for all a, b ∈ Ω;
(RR2) rθ(a, b) = 1 if and only if δ(a, b) = 0;
(RR3) rθ(a, b) = 0 if and only if δ(a, b) is maximum;
(RR4) rθ(a, b) = rθ(m(a),m(b)) for all a, b ∈ Ω;
(RR5) For all a, b, c, d ∈ Ω, if δ(b, c) ≤ δ(a, d), then rθ(b, c) ≥ rθ(a, d).

Definition 1 is not a direct extension of that of REF to radial data. Dif-
ferences arise from the absence of monotonicity in radial data, hampering the
interpretation of closeness, farness and relative sorting, and are mostly reflected
in (RR5). Nevertheless, the spirit and semantics of RREFs are those of REFs.
In this work, we only consider RREFs associated with the angular metric
δ∗(a, b) = min(|b − a|, 2π − |b − a|).
Proposition 1. Let rθ be a RREF associated with the metric δ∗. For all
a1, b1, a2, b2 ∈ Ω, if δ∗(a1, b1) = δ∗(a2, b2) then rθ(a1, b1) = rθ(a2, b2).

Proof. Let a1, b1, a2, b2 ∈ Ω such that δ∗(a1, b1) = δ∗(a2, b2). According to
(RR5), δ∗(a1, b1) ≤ δ∗(a2, b2) implies rθ(a1, b1) ≥ rθ(a2, b2). Analogously,
δ∗(a2, b2) ≤ δ∗(a1, b1) implies rθ(a2, b2) ≥ rθ(a1, b1) so the equality holds.

Proposition 1 implies that, if h : Ω2 → [0, 1] satisfies (RR5) with respect to
the metric δ∗, then it also satisfies (RR4), since δ(a, b) = δ(m(a),m(b)).

Proposition 2. Let ϕ and ψ be automorphisms of the intervals [0, 1] and [0, π],
respectively. The mapping t : Ω2 → [0, 1] given by

t(a, b) = ϕ−1

(

1 −
(

1
π

ψ (δ∗(a, b))
))

(1)

is a RREF.

Proof. Direct by the properties of the metric δ∗.

Some examples of RREFs constructed as in Proposition 2 are included in Fig. 1.
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(a)ϕ(x) = x, ψ(x) = x (b)ϕ(x) = x, ψ(x) =
√

πx (c)ϕ(x) = x2, ψ(x) = x2

π

Fig. 1. Restricted radial equivalence functions generated as in Proposition 2 from auto-
morphisms in the unit interval (namely ϕ) and in [0, π] (namely ψ).

3.2 Radial Similarity Measures

Definition 2. A mapping sθ : Ωk ×Ωk → R
+ is said to be a k-ary Radial Sim-

ilarity Measure (RSM) associated with the metric δ∗ if it satisfies the following:

(SR1) sθ(a, b) = sθ(b,a) for all a, b ∈ Ωk;
(SR2) sθ(a, b) = 0 if and only if d∗(ai, bi) = π for all i ∈ {1, . . . , k};
(SR3) sθ(c, c) = Maxa,b∈Ωksθ(a, b) for all c ∈ Ωk;
(SR4) For all a, b, c,d ∈ Ωk, if δ∗(a,d) ≥ δ∗(b, c) then sθ(a,d) ≤ sθ(b, c),

where δ∗(a,d) ≥ δ∗(b, c) implies that δ∗(ai, di) ≥ δ∗(bi, ci) for all i ∈
{1, . . . , k}.

Proposition 3. Let rθ be a RREF and let f be a k-ary aggregation function
such that f(x) = 0 if and only if xi = 0 for all i ∈ {1, . . . , k} and f(x) = 1 if
and only if xi = 1 for all i ∈ {1, . . . , k}. The function sθ[f,rθ ] : Ωk × Ωk, given
by

sθ[f,rθ ](a, b) = f(rθ(a1, b1), . . . , rθ(ak, bk)) (2)

is a k-ary radial similarity measure that satisfies

– sθ[f,rθ ](a, b) = sθ[f,rθ ](b,a) for all a, b ∈ Ωk;
– sθ[f,rθ ](a, b) = 0 if and only if d∗(ai, bi) = π for all i ∈ {1, . . . , k};
– sθ[f,rθ ](a, b) = 1 if and only if ai = bi for all i ∈ {1, . . . , k};
– For all a, b, c,d ∈ Ωk, if δ∗(a,d) ≥ δ∗(b, c) then sθ[f,rθ ](a,d) ≤ sθ[f,rθ ](b, c),

where δ∗(a,d) ≥ δ∗(b, c) implies that δ∗(ai, di) ≥ δ∗(bi, ci) for all i ∈
{1, . . . , k}.

– sθ[f,rθ ](a, b) = sθ[f,rθ ](m(a),m(b)) for all a, b ∈ Ωk where m(a) =
(m(a1), . . . , m(ak)).

4 A Novel Proposal for Singular Point Detection

In this section we present a framework for SP detection based on templates,
which is referred to as Template-based SP Detection method (TSPD method).
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To the best of our knowledge, no author has proposed the use of templates to
represent SPs, probably due to the lack of reliable comparison methods that can
handle the matching score. The most similar approach is the usage of complex
filters [17], which are convolved with the complex representation of orientation
maps1. From our point of view, template-matching is a natural strategy for SP
detection, mostly because the very definition of SP is vague and based on human
perception.

Any template matching-based framework for image processing is based on
a three-fold nucleus: (a) a fit representation of the input data, (b) templates
describing the patterns to be searched, and (c) a reliable tool to quantify the
similarity between both representations. Since our framework is based on mim-
icking human perception, our aim is to maintain all three components as faithful
as possible to the human comprehension of the problem. Consequently, we elab-
orate on the ridge-like representation of fingerprints (a) and templates (b), while
employing RSMs for (c).

(a) (b) (c)

Fig. 2. Whorl image generated with SFinGe (a), together with its Orientation Map
(OM) (b) and Squared Orientation Map (SqOM) (c). Blocks are composed of 12 × 12
pixels.

(a) Fingerprint representation using Orientation Maps (OMs). How to repre-
sent the ridges in a fingerprint has been often studied, but most of the
authors agree on using OMs [24]. OMs are constructed from the division
of fingerprint image into disjoint blocks; each of those blocks is assigned
a unique orientation given by the majority ridge orientation of its pixels.
The best-known procedure for OM generation is the gradient method [1],
in which the orientation of the ridges is computed pixel-wise as the per-
pendicular to the gradient direction. Gradients are usually computed with
Sobel masks, although many other options are elegible [23]. Figure 2 includes
a OM of a whorl-typed fingerprint. In Fig. 2(b) cores take oriented cup-
like patterns, which are dependent on the specific orientation of each SP;

1 The method in [17] is indeed used as baseline contender for the experiments in
Sect. 5.
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deltas, however, produce triangular orientation patterns. Some authors have
explored an alternative representation of ridges that is better fitted than
OMs to our goals, as mentioned earlier. This representation, namely Squared
OM (SqOM) [13], is created from an OM by multiplying each of its values
(orientations) by 2 (consequently, orientations are translated to directions).
In our proposal we use SqOMs. As seen in Fig. 2(c), this produces interesting
improvements in the representation of SPs w.r.t. that in OMs. Specifically,
we aim at exploiting the fact that cores, in SqOMs, produce either clockwise
or anticlockwise vector flows. In both cases, they become rotation-invariant.
Regarding deltas, the improvement is not as decisive, since their appearance
does not become rotation-invariant. Still, using SqOMs simplifies the design
of the templates, and is kept as standard representation of fingerprints in
the TSPD method.

(b) Templates for SP representation. The templates in our framework must be
a minimal set capturing the way in which SPs appear (or are perceived) in
a SqOM. Cores manifest as either clockwise or anticlockwise vector flows.
As a consequence, there is only need for two templates. Moreover, these
templates can be functionally represented in a very simple manner.
Let the origin (0, 0) represent the center of a template T of size (2n + 1) ×
(2n + 1). The orientation at a position (x, y) ∈ [−n, n]2 of a core template
is given by

T (x, y) =

{
atan2(y, x) if it is a clockwise core, and
atan2(−y,−x) if it is an anticlockwise core,

(3)

where atan2(y, x) is the well-known sign-sensitive version of the arctangent
of y

x , i.e. the anticlockwise angle of the vector (x, y) with respect to the
positive x-axis. Note that the center of the template has no value, and hence
contains no information for the matching process.
Regarding deltas, template design becomes more intricate. In a general man-
ner, a delta is represented as a triangular pattern in the OM, and becomes
a symmetric pattern with vectors opposing each other in two orthonormal
directions in the SqOM (see Fig. 2). None of those representations is rotation-
invariant, and consequently an orientation-dependent template must be cre-
ated to represent delta SPs. The orientation at a position (x, y) ∈ [−n, n]2

of a delta SP template with orientation α ∈ [0, π] is given by

Tα(x, y) = atan2(−(cos(α)y − sin(α)x), sin(α)y + cos(α)x). (4)

Figure 3 displays the delta SP template for different values of α. In such
templates we can observe how the delta pattern is composed of two ortho-
normal axis, one resembling an attractor to the origin, the other one being
a repeller from it.
In the template definitions above there are two decisions to be taken in the
instantiation of templates. The first decision is on the number of delta SP
templates to be used; that is, how many different values of α are used to



606 C. Lopez-Molina et al.

produce templates. Theoretically, a greater number of templates will lead
to more accurate detections, although presumably coupled to a better fit-
ting of abnormal ridge occurrences that do not correspond to SPs. Also,
more templates induce a higher computational effort.The second decision
relates to the size of the templates. Indeed the size of the templates must
be dependent upon the size of the blocks in the SqOM, as well as upon the
expected granularity of the fingerprint capturing process. These parameters
are further discussed in Sect. 5.2.

(c) Comparison of SqOMs and templates. The comparison of SqOMs and tem-
plates is done in the simplest possible manner. For each template we produce
a similarity map with the same dimensions as the SqOM. Each position of
such similarity maps corresponds to the value yielded by the RSM between
the template and the neighbourhood of the block. Finally, all the similarity
maps corresponding to the same type of SP are fused using the max opera-
tor. In this way, we obtain a graded representations of the presence of each
type of SP.

(a) T0 (b) T π
8

(c) T π
4

(d) T 3π
8

(e) T π
2

Fig. 3. Examples of delta SP templates Tα generated as in Eq. (4) with different values
of α.

5 Experiments

The TSPD method has interesting qualitative advantages compared to other
methods, e.g. the simplicity of the process and its high interpretability. In this
section we compare the performance of our method to that of the most relevant
SP detection methods in the literature, in quantitative terms. The results of the
TSPD method have been compared with those of the Poincarè method [14], as
well as to those of the one proposed by Liu [17]. The former method has been
selected because it is the most used SP detection method in literature, whereas
the latter method is included because it holds strong similarities to ours.

5.1 Quantification of the Results

This experiment uses the most common dataset for fingerprint analysis, as
it is the National Institute of Standards and Technology Special Database 4
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(NIST-4) [26]. This database, published by the FBI (Federal Bureau of Inves-
tigation), contains 4000 rolled-ink fingerprints (of 512 × 480 pixels) from 2000
fingertips. It has been, historically, the most popular dataset for the validation
of fingerprint classification. We have manually labelled the first 1000 fingerprints
from NIST-4 database2. Labelling has been carried out according to the speci-
fications given in the specialized literature and has been thoroughly revised by
multiple reviewers.

In this experiment we have quantified the performance of each procedure in
correctly and accurately detecting SPs.For each dataset we have created a con-
fusion matrix which accounts for the success and fallout in SP detection. After
extracting the SPs for a fingerprint, we first compute the best-possible matching
between the cores in the automatic solution to those in the ground truth, forc-
ing a one-to-one correspondence. Each matched core in the automatic solution
accounts for as True Positive (TP). Then, each unmatched core in the auto-
matic solution and in the ground truth are tagged as False Positive (FP) and
False Negative (FN), respectively. Finally, in case both the automatic solution
and the ground truth contain less than two cores, the missing SPs are taken as
correct predictions, and consequently are accounted for as True Negatives (TN).
The process is analogous for the deltas, whose results are stored in an inde-
pendent confusion matrix. Note that each fingerprint can generate more than
two hits in the confusion matrix, if SPs are both missed (FNs) and misdetected
(FPs). Note also that in the matching we consider some tolerance in the corre-
spondence of SPs tagged by the automatic method to those in the ground truth.
For the present experiment, this spatial tolerance is set to 10% of the length of
the image diagonal.

The results generated with the above-mentioned procedure lead to two con-
fusion matrices for each dataset, one for cores and one for deltas. From such
matrices, we have generated different scalar interpretations of the quality of the
results. More specifically, we consider precision (Prec) and recall (Rec), which
are further combined to produce the so-called F0.5 measure. Moreover, we also
measure the percentage of fingerprints in which all the SPs (cores and deltas)
have been correctly detected.

5.2 Experimental Procedure

In this experiment, the techniques used for OM/SqOM computation, smooth-
ing and segmentation are identical for each of the three SP detection meth-
ods. Firstly, the image is divided into non-overlapping blocks of 10 × 10 pixels.
Secondly, the image is segmented to avoid false SP detections in the ridge abnor-
malities occurring at the fingertip boundaries. Thirdly, to compute the gradients
for the OM we use the well-known Sobel operators [23]. The resulting matrix is
the OM, which is further regularized using a flat mask of 5× 5 blocks [13]. Once
the OM is generated, each of the methods needs to be customized:

2 The labels for this experiment can be downloaded from [4].
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– TSPD method. In order to preserve the fairness of the comparison, we have
considered a very basic configuration, which can be seen as the baseline con-
figuration of the method. This configuration involves only 4 templates (two
for each type of SP), all of them having 5 × 5 blocks. In the case of the delta
SP templates, we take α ∈ {0, π

2 }. This is, objectively, the minimum set of
templates to be used. However, the usage of 5 RSM is expected to shed light
on the impact of the RSMs on the final results, as well as to illustrate the
flexibility of the TSPD method.
In this experiment, RREFs are constructed as in Proposition 2, i.e. from pairs
of automorphisms (ϕ,ψ); The automorphism ϕ is given by ϕ(x) = x0.5, while
the automorphism ψ is given by ψ(x) = xei

πei−1 , with ei ∈ (0.5, 0.75, 1, 1.5, 2).
In the remainder of this paper, each of such combinations of automorphisms is
referred to as Ri, with i representing the index in ei. In this way, R4 involves
the use of e4 = 1.5 in the construction of ψ. The thresholds used in combina-
tion with each of the five Ri are 0.7, 0.8, 0.85, 0.9 and 0.95, respectively3.

– Poincarè method. This method consists of computing the difference between
each orientation in a 3 × 3 neighbourhood and its clockwise successor. Those
differences are further summed up to produce the Poincarè index in each
block [18]. This index takes value 0, 1

2 or − 1
2 , indicating the absence of a SP,

the presence of a core or the presence of a delta, respectively. Although other
authors have used other configurations of the neighbourhood [12,21], specially
regarding its size, we maintain the frequently used 3 × 3 size.

– Liu’s method. In this method SqOMs are filtered with first order complex
filters at different scales. More specifically, the large scale filters are used to
discriminate the real SPs from spurious responses, while the fine scale ones
determine their precise location. The threshold used for discrimination of SPs
is set to 0.7. Regarding the scales we consider, as in [17], filters of s×s blocks,
with s ∈ {3, 5, 7, 9}.

5.3 Results

The performance obtained by each method is listed in Fig. 4, including the aver-
age F0.5 for each type of SP and the percentage of fingerprints for which the
method achieved a perfect detection (which we refer to as Perfect Detection
Percentage, PDP). That is, the rate of fingerprints for which each method gath-
ered the exact number of SPs.

In Fig. 4 TSPD-R5 is the best performer overall, obtaining the greatest PDP
(69.90%), as well as the best average F0.5 measure (0.861). Although the other
competing methods stay relatively close to those values, especially when it comes
to the PDP, TSPD-R5 shows the most consistent results, not plunging in one
single aspect of the evaluation.

The relevance of the RSMs in the TSPD is put to the spotlight by the results
in Fig. 4. Interestingly, TSPD-R3, with ϕ and ψ being identity functions, is

3 The threshold for each method, including Liu’s and Poincaré, has been manually set
to optimize the results.
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Template-based SP detection
Poincaré Liu

Quant. TSPD-R1 TSPD-R2 TSPD-R3 TSPD-R4 TSPD-R5
C
or
es

TP 897 869 875 900 868 759 922
FP 273 148 147 194 132 40 329
FN 93 121 115 90 122 231 68
TN 776 888 889 844 905 982 721
PREC .767 .854 .856 .823 .868 .950 .737
REC .906 .878 .884 .909 .877 .767 .931
F0.5 .831 .866 .870 .864 .872 .849 .823
Avg. dist. 14.4 13.9 13.7 13.9 13.8 13.8 16.4

D
el
ta
s

TP 871 841 844 864 839 728 767
FP 340 169 176 236 159 53 29
FN 102 132 129 109 134 245 206
TN 731 891 884 827 898 1006 1011
PREC .719 .833 .827 .785 .841 .932 .964
REC .895 .864 .867 .888 .862 .748 .788
F0.5 .798 .848 .847 .834 .851 .830 .867
Avg. dist. 11.2 10.7 10.4 10.6 10.3 13.5 11.5
Avg. F0.5 .815 .857 .859 .849 .861 .839 .845
PDP (%) 56.70 67.80 68.10 66.50 69.90 66.40 54.50

Fig. 4. Results gathered by each SP detection method on the NIST dataset (1000
fingerprints).

not the best performer. This fact indicates that a sensible choice of automor-
phisms in the construction of the RREFs can optimize the result of the TSPD
method. In Fig. 4 we also observe that Liu’s method obtains a PDP similar to
our worst configurations (54.50%). Despite being the best method detecting
cores (922), Liu’s method also produces 329 false cores detections, significantly
more than those by the Poincarè method (40) and any of the configurations of
the TSPD. The behaviour is reversed in the analysis of the deltas, having that
the precision of Liu’s method is very high (29 FPs and 1011 TNs), but comes
together to a relatively low recall (induced by 767 TPs). This evidence is consis-
tent with those by Galar et al. [9]. As for the Poincarè method, we observe a high
PDP; still, the average F0.5 is rather mean because of its difficulties in detect-
ing cores (231 FNs) and deltas (245 FNs). From this results, we conclude that
TSPD-R5 obtains the best results, showing the best trade-off between successes
(TPs, TNs) and failures (FPs, FNs).

From the results in this experiment we conclude that the TSPD method is, at
least, competitive with the contending methods. Although it involves a certain
parameter setting (that of the RSMs and thresholds), this is not radically differ-
ent from what happens in other SP detection methods (including Liu’s method).
Interestingly, the RREF leading to the best results in the TSPD method is not
that constructed with the pair of automorphisms R3, indicating that non-linear



610 C. Lopez-Molina et al.

modelling of dissimilarity can play a role in real applications. Specifically, the
best-performing version is that using the pair of automorphisms R5, since it
outperforms all of the other versions of the TSPD method in terms of Combined
F and PDP.

It is worth noting that the TSPD method has advantages over its counterparts
other than pure performance. For example, it holds interesting visualization prop-
erties when it comes to error correction, partly derived from the simplicity of the
method. Indeed, we have not exploited the potential use of multi-scale templates
yet as Liu’s method does. Finally, the model is flexible and configurable, and results
can be adapted to each application due to the usage of parametrizable RSMs.

6 Conclusions

This work has two main contributions. First, we have adapted the concepts of
Restricted Equivalence Function (REF) and Similarity Measure (SM) to radial
environments. The resulting operators, namely Restricted Radial Equivalence
Function (RREF) and Radial Similarity Measure (RSM), capture the expected
behaviour and semantics of the original operators, but at the same time embrace
the cyclic nature of radial data. Second, we have illustrated the validity of the
operators for an image processing task, such as fingerprint analysis. In order to
do so, we have presented a framework for Singular Point (SP) detection based on
templates, which requires the use of RSMs at the template matching stage. This
framework, namely Template-based Singular Point Detection (TSPD) method,
shows promising results and portrays the usefulness of RSMs for the comparison
of radial data in scenarios in which imprecision and ambiguities occur.
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Abstract. This paper presents an algorithm designed to segment veins in the
periventricular region of the brain in susceptibility-weighted magnetic resonance
images. The proposed algorithm is based on a Mamdani-type fuzzy rule-based
system that enables enhancement of veins within periventricular regions of
interest as the first step. Segmentation is achieved after determining the cut-off
value providing the best trade-off between sensitivity and specificity to establish
the suitability of each pixel to belong to a cerebral vein. Performance of the
algorithm in susceptibility-weighted images acquired in healthy volunteers
showed very good segmentation, with a small number of false positives. The
results were not affected by small changes in the size and location of the regions
of interest. The algorithm also enabled detection of differences in the visibility of
periventricular veins between healthy subjects and multiple sclerosis patients.

Keywords: Brain � Fuzzy rule-based systems � Image segmentation �Magnetic
resonance imaging

1 Introduction

Susceptibility-weighted imaging (SWI) is a noninvasive magnetic resonance imaging
(MRI) technique that takes advantage of the magnetic susceptibility effects of para-
magnetic deoxygenated hemoglobin [1]. Because of this capability, SWI can be used to
visualize venous structures in the brain, providing valuable complementary information
for the diagnosis and treatment of patients with neurological disorders such as multiple
sclerosis (MS) [2]. A quantitative method to determine the number of veins detected on
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SWI would be of value for monitoring MS severity, progression, and the response to
therapy [3].

Segmentation of venous structures over the entire brain with SWI is extremely
complex. This is partly because certain regions, including the periventricular white
matter, contain numerous small veins, most of them very thin and difficult to differ-
entiate from their surroundings in these sequences. Many of the available methods used
for segmenting veins in SW images are adaptations of techniques designed and used for
segmenting bright arteries from a dark background [4]. Several methods for cere-
brovascular segmentation have been proposed, and a detailed review is provided by
Lesage et al. [5]. Focusing only on SWI, two main approaches have been used for
segmentation of brain venous structures [6]. The first is based on the use of a statistical
local thresholding algorithm [3]. The second approach involves application of
scale-space analysis based on vesselness filters, which can be used to directly visualize
venous structures [7]. Segmentation is then done using thresholding [8] or an active
contour model [9]. Some examples of vesselness filters [10–13] are based on Frangi’s
[7] and Sato’s vesselness filter [8].

Detection of venous blood pixels in SW images addressed to segmenting venous
structures in the brain is subject to several factors that imply inherent uncertainty. Most
cerebral veins are tiny, thin structures existing in an environment where noise,
non-homogeneity, artifacts, and partial volume effects introduce varying degrees of
vagueness that affect their detection and the definition of their paths. Fuzzy rule-based
systems (FRBSs) are important areas in which fuzzy logic and fuzzy set theory are
applied. In contrast to classical rule-based systems, FRBS deal with fuzzy rules instead
of classical logical ones, and their success resides in their approximation to human
perception and reasoning, and their intuitive handling and simplicity [14].

Some examples of FRBS use in MRI have been reported [15, 16], and two studies,
conducted by Forkert et al. [17, 18], have described FRBS application to solve the
problem of segmenting vasculature in MR images. However, Forkert’s work focuses on
3D time-of-flight (TOF) magnetic resonance angiography (MRA) rather than magnetic
resonance venography with SWI. To our knowledge, the approach presented here is the
first application of a FRBS to segment veins in SW images.

2 Materials and Methods

2.1 Image Datasets

Image datasets for training and test purposes were obtained from 13 healthy individuals
(10 women and 3 men), with a mean age of 36.7 years (range, 28–50 years). Images of
one of these subjects were used for training and the images of the other 12 were used to
test the algorithm. To evaluate the capability of the algorithm to detect differences in
vein visibility between patients and healthy subjects, we also studied 13
relapsing-remitting multiple sclerosis (RRMS) patients (9 women and 4 men) with a
mean age of 37.1 years (range, 28–46 years), mean disease duration of 10.3 years
(range, 0.83–22.0 years), and an average Expanded Disability Status Scale (EDSS)
score of 3.1. All images were acquired on a Siemens Magnetom Trio 3.0 T scanner
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(Siemens, Erlangen, Germany) with a 12-channel array head coil using a 3D fast-low
angle single shot sequence (repetition time [TR]/echo time [TE], 32 ms/24.6 ms; flip
angle, 15°; matrix, 320 × 320; voxel size, 0.78 × 0.78 × 3.0 mm3; iPAT factor, 2).
Fifty-two parallel contiguous axial slices covering the whole brain were acquired using
this sequence. The study was approved by the Clinical Research Ethics Committee of
Hospital Universitari Vall d’Hebron in Barcelona (Spain).

2.2 Proposed Method

The proposed algorithm for segmenting veins on SWI has 5 main steps: image
selection, preprocessing, definition of regions of interest, enhancement of veins, and
segmentation of veins.

The first step is selection of 4 contiguous SW slices from the brain MRI exami-
nation of a subject, In ð1� n� 4Þ, where the regions of interest can be visualized.
Then, structures outside the intracranial region have to be removed in In ð1� n� 4Þ by
applying to In a procedure based on the brain surface extraction (BSE) algorithm [19]
included in the Medical Image, Processing, Analysis, and Visualization (MIPAV)
software package, version 4.4.1 (Center for Information Technology, NIH, Bethesda,
Maryland, USA). Thus, the InB ð1� n� 4Þ images are obtained. These images are then
normalized, so that the normalized value for each pixel p located at position (i,j) in InB is
given by:

InN ði; jÞ ¼ int 1000 InB ði;jÞ
hmax

� �
if InB ði; jÞ� 4hmax

4000 otherwise

(
ð1Þ

where hmax is the gray-level value greater than 150 associated with the maximum
frequency in the smoothed histogram HSðInBÞ obtained by averaging the frequency
values whose distances in HðInB Þ were less than or equal than 2.

In the next step, pixels belonging to veins are enhanced to best differentiate them
from their surroundings within ROIðInNÞ by applying a Mamdani-type FRBS to the
images InN ð1� n� 4Þ to obtain the associated Adequacy images, InA ð1� n� 4Þ. The
inputs of this FRBS are perceptual features of vein pixels within ROIs evaluated with
low-level operators, and the output is the adequacy of these pixels to belong to veins.

Finally, a cut-off value is applied to the Adequacy images to obtain the segmented
images, InSV ð1� n� 4Þ, whose value for a pixel p located at position (i, j) equals one if
it belongs to ROIðInN Þ and InA ði; jÞ[ c, and is zero otherwise. ROC curve analysis was
used to select the best cut-off value.

2.3 Implementation of the Method

This section describes how the algorithm steps were implemented.

Selection of Images, Preprocessing, and Definition of ROIs. From the 52 axial
slices acquired in the examination of one healthy volunteer, we selected 4 contiguous
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axial slices, Int ð1� n� 4Þ, where the ROIs were visualized. The training images Int
were then normalized following the preprocessing procedure previously described,
obtaining InN t. In each hemisphere of InN t we then manually defined a 9.38 mm by
42.97 mm rectangular ROI in the periventricular region mainly occupied by white
matter from the corona radiata, ROIðInN tÞ. The pixels within the 8 rectangular ROIs
obtained are the only ones included in the next steps.

Enhancement of veins within the ROIs

Selection of features. Alook inside the white rectangles in Fig. 1(a) shows that veins in
SW images are visualized as mainly linear structures showing a darker gray level than
their immediate surroundings. Comparison of the linear venous structures in the ROIs
and the dark structures within the ellipses of the magnified image in Fig. 1(b) shows
that the veins are lighter than the wider vessels in other locations, and some of them
show short discontinuities. In addition, certain thin, dark structures are seen outside the
ROIs, such as areas of cortex with a high iron content (Fig. 1(b), white arrows), whose
characteristics may cause them to be mistaken for veins.

Taking into consideration these factors, 3 features are essential to detect vein pixels
within periventricular ROIs: Gray-level, Thinness, and Linearity.

Selection of operators to evaluate the features. Several low-level operators were
analyzed, seeking those that best characterized Gray-level, Thinness, and Linearity.

Fig. 1. Example of SW image after application of the BSE algorithm and normalization process.
(a) Location of ROIs (white rectangles). (b) Magnification of the area containing ROIs in which
black ellipses enclose blood vessels showing better differentiation than most of those within the
ROIs, and white arrows point to some cortex locations with high iron content, which, because of
their perceptual features, could be mistaken for vein vessels.
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Selection of the most appropriate operator to evaluate Gray-level involved analysis of 9
operators: gray-level of the central pixel, and maximum, minimum, mean and median
gray-level values of the pixels covered by 3 × 3 and 5 × 5 raster windows. The
standard deviations of the gray-level values within these windows and the gray-level
differences between the central pixel and its neighbors were the 26 operators analyzed
for Thinness. Lastly, to select the operator to evaluate Linearity, we used kernels that
enabled detection of horizontal, vertical, or oblique (+45 and –45 degrees)
single-pixel-wide lines. Application of these kernels required inverting the gray scale of
the images in order to detect dark linear structures.

To obtain the operators, pixels corresponding to veins located within the ROIs in
the training set images InN t ð1� n� 4Þ, ROIðInN tÞ, were manually labeled using MRIcro
software [20]. These were the reference images InREFV t ð1� n� 4Þ, in which the value
assigned to a pixel in the (i, j) position was 1 if it belonged to a vein and 0 otherwise.
Moreover, since our analysis was focused on finding the best operators to evaluate the
features of vein pixels, pixels within InREFV t

were divided into 3 reference sets: S1,
comprising pixels labeled as veins and belonging to very thin veins; S2, including
pixels labeled as veins without thinness restrictions; and S3, comprising pixels that were
not labeled.

The operator selected to evaluate each feature had to maximize the separability,
defined by the ratio between the absolute value of the mean value difference and the
maximum of standard deviation values obtained for the reference sets Sr and Ss (r, s 2
{1, 2, 3}, r ≠ s). Then, the operators showing the best performance for evaluating the
features of each pixel p located at (i,j) were as follows: gray-level value, gl(i,j), for the
Gray-level feature; the third highest difference between the central and surrounding
pixels within a 5 × 5 window centered on the pixel, dif 35x5ði; jÞ , for the Thinness feature;
and the maximum of 4 directional 3 × 3 kernels centered on (i,j), maxK3x3(i,j), for the
Linearity feature.

Proposed Mamdani-type FRBS. The principal elements of the FRBS were defined and
designed based on a priori knowledge, in this case, expert judgment and experience.
The underlying knowledge of the system was then explicitly translated into a set of
easy to interpret linguistic labels using fuzzy rules.

Knowledge Base: The data base (DB) of the proposed system is comprised of sets of
linguistic terms and the membership function partitions associated with the three input
variables introduced in previous section (Gray-level, Thinness, and Linearity), and the
output variable (Adequacy of a pixel to belong to a venous blood vessel). The sets of
linguistic terms considered for the input and output variables are given as follows:

LGray-level = {Dark, Medium-Dark, Light} = {D, MD, LG}
LThinness = {Low, Medium, High} = {Lthin, Mthin, Hthin}
LLinearity = {Low, Medium, High} = {Llin, Mlin, Hlin}
LAdequacy = {Very Poor, Poor, Fair, Good, Excellent} = {VP, P, F, G, E}

To define the semantics of these linguistic labels, we adopted trapezoidal-shaped
membership functions (MFs). The MFs were defined by the quadruple (sl, cl, cu, su),
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where sl and su, and cl and cu are the lower and upper bounds of the support and the
core, respectively. The shapes of the MFs can be seen in Fig. 2, which show the fuzzy
partitions defined on the domains of each variable.

MFs associated with the input variables were obtained by analyzing the values of
the features within and around ROIðInN tÞ defined in InN t ð1� n� 4Þ, whereas the uni-
form partition corresponding to the output variable involved 5 levels of adequacy.

The rule base (RB) is represented in compact format by the decision table shown in
Table 1. To achieve good performance, the 27 rules conforming the RB were obtained
taking into account expert human knowledge and attending to a trade-off between the
number of pixels associated with true and false positives. The pixel values for the
features fire each rule for the eight ROIs defined in the images of ROIðInN tÞ.
Inference Engine: The fuzzification interface establishes a mapping from crisp input
values to fuzzy sets defined in the universe of discourse of this input, U = Ugl x
Uthin x Ulin. To do so, for each pixel p belonging to an ROI we obtained the

Fig. 2. Trapezoidal-shaped membership functions defining the semantics of the linguistic labels.
Input variables associated with (a) Gray-level, (b) Thinness, and (c) Linearity features. (d) Output
variable associated with Adequacy. Values defining the shape of each membership function are
given in (d) for input variables, and in (f) for the output variable.
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corresponding input vector: xp = (xgl, xthin, xlin) = (gl(i,j), dif 35x5ði; jÞ , maxK3x3(i,j)).
Then, we sought the degree to which it belonged to each of the fuzzy sets defined in U;
that is, µD(xgl), µMD(xgl), µLG(xgl), µL,thin(xthin), µM,thin(xthin), µH,thin(xthin), µL,lin(xlin),
µM,lin(xlin), µH,lin(xlin), which were obtained via the corresponding trapezoidal mem-
bership functions.

The inference system and defuzzification interface selected to derive the fuzzy and
crisp outputs were the classical ones used by Mamdani [21]. These involve the min-
imum t-norm for both the conjunctive operator, T, which derives the rules firing
according to the decision table, and the implication operator, I, which determines the
output of the compositional rule of inference. Mode A-FATI is the defuzzification
interface, where the aggregation operator, G, is modeled by the maximum t-conorm,
while the defuzzification method, D, is the center of gravity (COG), such that:

lAk
ðxpÞ ¼ MinðlAk; gl

ðxglÞ; lA k; thin
ðxthinÞ ; lAk; lin

ðxlinÞÞ ; k ¼ 1; . . .; 27 ð2Þ

lB0
k
ðyÞ ¼ MinðlAk

ðxpÞ; lBk
ðyÞÞ ; k ¼ 1; . . .; 27 ð3Þ

lB0 ðyÞ ¼ Max
1� k� 27

lB0
k
ðyÞ

� �
ð4Þ

yp ¼ COGðlB0 ðyÞÞ ¼
R
Y ylB0 ðyÞdyR
Y lB0 ðyÞdy �

PN
i¼1

yilB0 ðyiÞ
PN
i¼1

lB0 ðyiÞ
ð5Þ

where yi was the i-value in the uniform partition of the adequacy interval [0, 1] in N
values, where the value of N was 100. The values yp so obtained provided the adequacy
of each pixel p in ROIðInN tÞ to be a vein pixel.

Segmentation of Veins. After applying the FRBS to the training images,
InN t ð1� n� 4Þ, we obtained the associated Adequacy images, InA t ð1� n� 4Þ: For each

Table 1. Decision table describing the rule base of the proposed FRBS

Linearity

Gray-level Thinness Llin Mlin Hlin

D Lthin VP VP VP
Mthin VP VP P
Hthin VP P F

MD Lthin F G F
Mthin F E E
Hthin P F G

LG Lthin P F P
Mthin P F F
Hthin VP P P
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pixel p, the value of InA tðpÞ was the value obtained if the pixel belonged to the ROI. If
not, the value was set at zero.

We then sought the cut-off value, “c”, providing the best segmentation results. We
considered 71 cut-off values, ci ð1� i� 71Þ, in the interval [0.2, 0.9] and applied them
to the Adequacy images, InA t ð1� n� 4Þ. For each ci, four segmented images were
obtained, InSV t ð1� n� 4Þ, whose value for a pixel p located at position (i, j) equaled
one if it belonged to ROIðInN tÞ and InA t ði; jÞ[ ci, and was zero otherwise. To know the
number of true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN), a pixel-by-pixel comparison was performed between InSV t and the
reference image, InREFV t, manually labeled by an expert to determine the correctness of
the classification within ROIðInN tÞ.

To select the best cut-off value, we used an ROC plot, representing the trade-off
between sensitivity (S), that is the true positive rate (TPR), and the false positive rate
(FPR), for each ci value. The true positive and false positive rates are given by S =
TPR = TP/(TP + FN), and FPR = FP/(TN + FP). Applying this process, we obtained
71 points (FPRci, TPRci), depicted in the ROC space. The best trade-off value is
defined by the closest point to the upper left corner, located at (0.0316, 0.9394), which
in our case was c = 0.58.

3 Results

To evaluate the performance of the algorithm, we selected quality indices that enabled
pixel-by-pixel comparison within the ROIs of the reference and segmented images. The
indices were also defined based on the number of TP, FP, TN, and FN. Then, in
addition to the true and false positive rates we also considered specificity (SPC),
accuracy (ACC), and the Dice coefficient (DC). These quality indices are defined by
SPC = TN/(TN + FP), ACC = (TP + TN)/(TP + FP + TN + FN), and DC = 2TP/
(2TP + FP + FN).

3.1 Evaluation of the Algorithm on Training and Test Images

Training Images. The results for the training images are presented in the third row of
Table 2, which shows the mean (m) and standard deviation (σ) values for the indices S,
SPC, ACC, and DC in the comparison between the segmented and reference images.
As was expected, and as can be inferred from the values greater than 0.9 obtained for
sensitivity and Dice coefficient (third and sixth columns in Table 2), the vast majority
of pixels labeled as veins within the reference images were detected by the algorithm.
Moreover, the specificity and accuracy values (fourth and fifth columns of Table 2)
point to a low number of false positives. Finally, the low standard deviation values with
regard to the mean values obtained for all the indices studied indicate that there were no
large differences in terms of detection quality between the regions analyzed.

Test Images. To help in the interpretation of the results for the 96 regions of interest,
ROIðInN TÞ, selected in the test images, the fourth row of Table 2 shows the mean (m) and
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standard deviation (σ) for S, SPC, ACC, and DC. As can be seen, the mean values for the
test and training images are similar for all the indices except sensitivity, which has a
slightly lower mean value for the test images. Furthermore, the σ values for the test
images are somewhat higher than those for the training images, but this is because of a
greater data heterogeneity from the test set images. Therefore, despite the higher σ
values, the results indicate a similar performance for the test and training images.

Figure 3 illustrates the performance of the algorithm. Column (a) is a magnified
depiction of InN T around ROIðInN TÞ, the overlays in column (b) correspond to the
manual marking of vein pixels by an expert, InREFV T , and the overlays in column (c) are
the results of vein segmentation, InSV T . The vast majority of pixels labeled as veins in

Table 2. Quality index values obtained with the proposed algorithm and other approaches

S SPC ACC DC

Algorithm Group m () m () m () m ()
Proposed FRBS Training 0.938 (0.017) 0.968 (0.001) 0.962 (0.005) 0.916 (0.022)

Test 0.914 (0.044) 0.969 (0.023) 0.957 (0.017) 0.910 (0.031)
Frangi’s Test 0.776 (0.054) 0.886 (0.040) 0.847 (0.028) 0.707 (0.031)
Sato’s Test 0.796 (0.054) 0.866 (0.045) 0.851 (0.029) 0.720 (0.029)

Fig. 3. Examples of the results obtained by processing three test slices corresponding to
different anatomical locations. (a) Magnification of the original image area including ROIs.
Columns (b) and (c) show overlays of the reference delineated and the segmentation results,
respectively
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the reference images were included in the segmentation. Only a very small number of
false positives and false negatives occurred (see quality indices in Table 2). The false
positives were mainly due to factors such as movement during image acquisition, small
differences in the width of some vessels between the reference and segmented images,
and visualization of other thin structures rich in iron. The false negatives were mainly
due to partial volumes in some locations within the ROIs.

3.2 Dependence on the Window Properties

Location and size of the window selected for ROI delineation must be taken into
account to avoid false positives. Structures surrounding periventricular white matter
may have characteristics that make them difficult to differentiate from veins when they
are partially included in ROIs and an automatic segmentation is applied.

The previous analysis was done using ROIs defined by 9.38 mm × 42.97 mm
rectangular windows (W1). As an initial approach to evaluate the influence of the size
and position of the window, we tested a smaller (8.59 mm × 39.06 mm) window (W2).
Although the size of W2 was not greatly different from W1, the use of a smaller window
helped to select positions with a lower possibility of presenting FP.

To evaluate the effect of using one or another window in the test images, we
compared the quality indices obtained when ROIs were derived using W1 or W2

(Table 3). Means and standard deviations for S, SPC, ACC, and DC were very similar
using the two windows, and p-values for the differences (bottom row) were not
significant.

3.3 Comparison with Other Methods

To assess the gain of the proposed approach, we compared it with two publicly
available methods developed for problems similar to the one proposed here. These two
approaches were based on implementation of vesselness enhancement filters (VEF),
developed by Frangi [7] and Sato [8], and included in the VMTK module [22] of the
3Dslicer software [23]. First, the optimum values for the parameters of the approaches
based on these filters were selected by evaluation of their segmentation performance on
ROIðInN tÞ. We then used these approaches to analyze ROIðInN TÞ.

The results obtained using the filters on ROIðInN TÞ are shown in Table 2. Although
the approaches based on the VEF yielded high values for the four quality indices, the
proposed approach showed better performance: a significant improvement (p < 0.001,
ANOVA test) of around 10 % to 15 % in S, SPC, and ACC, and around 26 % in DC.

Table 3. Quality index values obtained for test images using windows: W1 and W2.

S SPC ACC DC

Window m () m () m () m ()
W1 0.914 (0.044) 0.961 (0.023) 0.957 (0.017) 0.910 (0.030)
W2 0.916 (0.044) 0.970 (0.023) 0.958 (0.018) 0.913 (0.031)
p-value 0.827 0.839 0.822 0.643
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3.4 Evaluation of the Ability to Detect Changes in the Visibility of Veins

To evaluate the applicability of the proposed Mamdani-type FRBS algorithm for
clinical purposes, we considered an approach similar to that reported by Ge et al. [3].
The authors demonstrated a significant reduction in the visibility of veins in the
periventricular white matter in RRMS patients compared to controls.

In this evaluation, we included images from 13 RRMS patients and 13 healthy
controls. The proposed FRBS was applied to the ROIs defined in these images, and the
segmented images were obtained. Following segmentation, the mean number of venous
blood voxels within the ROIs was 108.60 (σ = 14.70) in RRMS patients and 126.94
(σ = 18.70) in healthy controls, and there exists a significant difference (p = 0.01,
Student’s t-test) between these two groups, as was reported by Ge et al. [3].

4 Conclusion

The algorithm proposed here is based on a fuzzy rule-based system that allows seg-
menting periventricular venous vasculature in SW MR images. The algorithm entails
initial enhancement of cerebral veins in defined ROIs using an FRBS to determine the
adequacy of each pixel to belong to a vein, and applies a cut-off value for final
segmentation of these structures. The results obtained from healthy volunteers showed
very good segmentation with a very small number of false positives. The method also
proved to be robust and applicable to the study of periventricular veins in MS.
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Abstract. In this work we investigate the use of OWA operators in color
image reduction. Since the RGB color scheme can be seen as a Cartesian
product of lattices, we use the generalization of OWA operators to any
complete lattice. However, the behavior of lattice OWA operators in
image processing is not easy to predict. Therefore, we propose an orness
measure that generalizes the orness measure given by Yager for usual
OWA operators. With the aid of this new measure, we are able to classify
each OWA operator and to analyze how its properties affect the results
of applying OWA operators in an algorithm for reducing color images.

Keywords: Image reduction · Lattice OWA operators · Orness

1 Introduction

Aggregation functions, in general, and OWA operators, in particular, are very
important tools in real-world applications, where the need to fuse or aggregate
several inputs into a single representative output frequently arises. If we focus in
image processing, aggregation functions are key tools in fields such as filtering
and denoising, stereo vision, reconstruction or reduction [2,5,10,11]. In this work
we focus on the latter.

When we deal with grayscale images, usual version of aggregation functions
(defined on [0, 1]) can be used. In particular, in [12,13] some examples can be
c© Springer International Publishing Switzerland 2016
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seen, as well as in [11] where a specific family of OWA operators, called centered
OWA operators, have been used. However, when we deal with color images (for
example, those based on the RGB color scheme) aggregation functions are not
trivially extended. One possible solution was given in [1], where aggregations on
a cartesian product of lattices (product lattice) were used.

From another point of view, in [9] the generalization of OWA operators to
any complete lattice was proposed. Since it is easy to prove that the cartesian
product of lattices is, in fact, a lattice, it is clear that lattice OWA operators
can be also used in color image processing.

In this work we study the use of lattice OWA operators defined in [9] in color
image reduction, where images are defined on the RGB color scheme. Since it
is possible to define many lattice OWA operators (just by taking many weight-
ing vectors), our idea is to establish a classification of OWA operators using a
generalization of the orness measure given by Yager [15].

Taking into account the proposed orness measure, we apply several OWA
operators in color image reduction and we study whether the orness of each
OWA operator determines its goodness in reduction algorithms.

The structure of the paper is as follows: in Sect. 2 we recall several prelimi-
nary definitions related to lattices and in Sect. 3 we recall the generalization of
OWA operators to any complete lattice. In Sect. 4 we define our proposed orness
measure and in Sect. 5 we study the effect of OWA operators in image reduction.
We finish, in Sect. 6 with conclusions and future research.

2 Preliminaries

Throughout this paper (L,≤L) will denote a complete lattice, i.e., a partially
ordered set in which all subsets have both a supremum and an infimum. 0L and
1L will respectively stand for the least and the greatest elements of L. A lattice
L is said to be complemented if for each a ∈ L there exists some b ∈ L such that
a ∧ b = 0L and a ∨ b = 1L [6]. A subset M of L is called a sublattice of (L,≤L)
if whenever a, b ∈ M , then both a ∧ b and a ∨ b belong to M .

Definition 1 (see [3]). A map T : L × L → L (S : L × L → L) is said to be a
t-norm [resp. t-conorm] on (L,≤L) if it is commutative, associative, increasing
in each component and has a neutral element 1L [resp. 0L].

Remark 1. For any n > 2, T (a1, . . . , an) will denote

T (. . . (T (T (a1, a2), a3), . . . an−1), an).

Note that, for any permutation σ of the elements 1, . . . , n,

T (a1, . . . , an) = T (aσ(1), . . . , aσ(n)).
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Throughout this paper (L,≤L, T, S) will denote a complete lattice endowed with
a t-norm T and a t-conorm S. As usual, Ln will denote the cartesian product
L × · · · × L and LIn will stand for the set of all the n-ary lattice intervals
[a1, . . . , an] with a1 ≤L · · · ≤L an contained in L.

Recall that an n-ary aggregation function (see [8]) is a function M : Ln → L
such that:

1. M(a1, . . . , an) ≤L M(a′
1, . . . , a

′
n) whenever ai ≤L a′

i for 1 ≤ i ≤ n.
2. M(0L, . . . , 0L) = 0L and M(1L, . . . , 1L) = 1L.

It is said to be idempotent if M(a, . . . , a) = a for every a ∈ L and it is called
symmetric if, for every permutation σ of the set {1, . . . , n}, M(a1, . . . , an) =
M(aσ(1), . . . , aσ(n)).

A wide family of both symmetric and idempotent aggregation functions was
introduced by Yager in [14] on the lattice L = [0, 1], the real unit interval:

Definition 2 (Yager [14]). Let α = (α1, · · · , αn) ∈ [0, 1]n be a weighting
vector with α1 + · · · + αn = 1. An n-ary ordered weighted average operator or
OWA operator is a map Fα : [0, 1]n → [0, 1] given by

Fα(a1, · · · , an) = α1b1 + · · · + αnbn,

where (b1, . . . , bn) is a rearrangement of (a1, · · · , an) satisfying that b1 ≥ · · · ≥ bn.

With the purpose of classifying these operators, Yager introduced in [15] (see
also [4]) an orness measure for each OWA operator Fα, which depends only on
the weighting vector α = (α1, . . . , αn), in the following way:

orness(Fα) =
1

n − 1

n∑

i=1

(n − i)αi = Fα

(

1,
n − 2
n − 1

, · · · ,
1

n − 1
, 0

)

. (1)

3 Lattice OWA Operators

In this section we recall the generalization of OWA operators to any complete
lattice endowed with a t-norm T and a t-conorm S [9]. In order to generalize
these operators, we demand certain conditions about the weighting vector.

Definition 3 ([9]). Consider any complete lattice (L,≤L, T, S). A lattice vec-
tor α = (α1, . . . , αn) ∈ Ln is said to be a weighting vector in (L,≤L, T, S) if
S(α1, . . . , αn) = 1L and it is called a distributive weighting vector in (L,≤L

, T, S) if it also satisfies that for any a ∈ L,

S (T (a, α1), . . . , T (a, αn)) = T (a, S(α1, . . . , αn))

and consequently equal to a.
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Evidently, OWA operators need an arrangement of inputs. Therefore, the
main difficulty arises in converting a vector (a1, . . . , an) ∈ Ln into another vector
(b1, . . . , bn) ∈ Ln such that b1 ≥L · · · ≥L bn.

Definition 4 ([9]). Let (L,≤L, T, S) be a complete lattice. For any vector
(a1, . . . , an) ∈ Ln, an n-dimensional lattice interval [bn, . . . , b1] is defined by

• b1 = a1 ∨ · · · ∨ an ∈ L.
• b2 = [(a1∧a2)∨· · ·∨(a1∧an)]∨[(a2∧a3)∨· · ·∨(a2∧an)]∨· · ·∨[an−1∧an] ∈ L.
...

• bk =
∨{aj1 ∧ · · · ∧ ajk | j1 < · · · < jk ∈ {1, . . . , n}} ∈ L.

...
• bn = a1 ∧ · · · ∧ an ∈ L.

Now, we recall the definition of lattice OWA operator.

Definition 5 ([9]). Let (L,≤L, T, S) be a complete lattice. For each distributive
weighting vector α = (α1, . . . , αn) ∈ Ln, the function Fα : Ln → L given by

Fα(a1, . . . , an) = S (T (α1, b1), · · · , T (αn, bn)) (a1, . . . , an) ∈ Ln

is called an n-ary OWA operator, where [bn, . . . , b1] is the n-dimensional lattice
interval obtained from (a1, . . . , an) using Definition 4.

4 Orness Measure for Lattice OWA Operators

In this section we study a methodology to analyze the behavior of an OWA
operator by means of an orness measure. Concretely, we focus on a wide class of
complete lattices that includes all the finite lattices:

(MFC) For any a, b ∈ L with a ≤L b, there exists some maximal chain with
a finite length, named l, between a and b,

a = a0 <L a1 <L · · · <L al = b.

The maximality means that, for any 0 ≤ i ≤ l − 1 there is no c ∈ L with
ai <L c <L ai+1.

Definition 6. Let (L,≤L, T, S) be a complete lattice satisfying condition
(MFC). For any a, b ∈ L, the distance from a to b is the length of the shortest
maximal chain between a and b, denoted by d(a, b).
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In [15], Yager also defined, for any weighting vector on [0, 1], the concept of
quantifier. Given a weighting vector α = (α1, . . . , αn) ∈ [0, 1]n, the quantifier
Qα : {0, 1, . . . , n} → [0, 1] is given by

Qα(k) =
{

0 if k = 0
α1 + · · · + αk otherwise (2)

The same concept can be extended to a distributive weighting vector on an
arbitrary lattice L.

Definition 7. Let (L,≤L, T, S) be a complete lattice satisfying condition
(MFC). For any distributive weighting vector, α = (α1, . . . , αn) ∈ Ln, define
the qualitative quantifier Qα : {0, 1, . . . , n} → L by means of

Qα(0) = 0L,

Qα(k) = S(α1, . . . , αk) for k = 1, . . . , n

Now, we are ready to give the orness measure of any lattice OWA operator.

Definition 8. Let (L,≤L, T, S) be a complete lattice satisfying condition
(MFC). For any distributive weighting vector in (L,≤L, T, S), α =
(α1, . . . , αn) ∈ Ln, consider the qualitative quantifier Qα : {0, 1, . . . , n} → L
defined in Definition 7. For each k = 1, . . . , n, call m(k) = d (Qα(k − 1), Qα(k)).
If m = m(1) + · · · + m(n), then define

orness(Fα) =
1

n − 1

n∑

i=1

(n − i)
m(i)
m

. (3)

Some interesting properties of the proposed orness measure (see [7] for an
axiomatic definition of orness) are proven in the following results.

Theorem 1. Let (L,≤L, T, S) be a complete lattice satisfying condition (MFC).
If α = (α1, . . . , αn) ∈ Ln and β = (β1, . . . , βn) ∈ Ln are distributive weighting
vectors in (L,≤L, T, S) with Fα = Fβ, then orness(Fα) = orness(Fβ).

Proposition 1. Let (L,≤L, S, T ) be a complete lattice satisfying condition
(MFC) and Fα : Ln → L an arbitrary OWA operator.

1. If α = (1L, 0L, . . . , 0L) ∈ Ln, then orness(Fα) = 1.
2. orness(Fα) = 0 if and only if Fα is the AND-operator.

3. If α = (0L, . . . 0L,
(k)

1L, 0L, . . . , 0L) ∈ Ln with 1 < k < n, then orness(Fα) =
n−k
n−1 , as in the case of standard orness.
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5 Image Reduction Using Lattice OWA Operators

In this work we consider images in the RGB color scheme. Given an image of M
rows and N columns, if we define L = {0, 1, . . . , 255}, then the color image can
be seen as a mapping {1, . . . , M} × {1, . . . , N} → L × L × L. Since L is a chain,
the product L × L × L is, in fact a lattice [1].

Image reduction consists in diminishing or compacting the spatial resolution
of an image preserving its original properties to some extent. That is, an image
reduction algorithm receives an image and returns a new image representing the
same scene but with a lower number of pixels.

Suppose that, starting from an image of M × N pixels, we want to obtain
a new image of M ′ × N ′ with M ′ < M and N ′ < N . One possibility consists
in finding numbers p, s ∈ N such that M = M ′p and N = N ′s (if M ′ or N ′

are not multiple of M or N , respectively, we take the largest p, s ∈ N such
that M < M ′p and N < N ′s), so that we can establish a mapping between a
set of adjacent p × s pixels of the original image and one pixel of the reduced
image. Following this procedure, the objective of image reduction consists in
aggregating (or fusing) p × q pixels into a single representative pixel. Since we
know that each pixel of an RGB color image is an element of the lattice L×L×L,
we can reduce image by defining OWA operators

Fα : (L × L × L)p×s → L × L × L.

Next, we show a reduction algorithm based on lattice OWA operators:

Reduction algorithm
Require: Image Q of M × N pixels; weighting vector α.
Ensure: Image Q′ of M ′ × N ′ pixels with M ′ < M and N ′ < N .
1: Find numbers p, s ∈ N such that M = M ′p and N = N ′s
2: Divide the image Q into non-overlapping blocks of p × s pixels
3: for each block in Q do
4: Take the p × s pixels of the block, namely q1, . . . , qp×s ∈ L × L × L
5: Apply OWA operator

Fα(q1, . . . , qp×s)

6: Take the result of Fα as a pixel of the reduced image Q′

7: end for

Observe that in the proposed algorithm, the same OWA operator is applied to
every block within the image. Although it would be possible to apply different
OWA operators, we are interested in analyzing the behavior of each operator
in the whole image. Therefore, if we take t different weighting vectors, we will
obtain t different reduced images by applying t times the reduction algorithm,
each time with a different weighting vector.

Consider the following set of weighting vectors:
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α1 = ((255, 192, 128), (192, 255, 192), (128, 192, 255),
(64, 128, 192), (0, 64, 128), (0, 0, 64),
(0, 0, 0), (0, 0, 0), (0, 0, 0))

α2 = ((192, 128, 64), (255, 192, 128), (192, 255, 192),
(128, 192, 255), (64, 128, 192), (0, 64, 128),
(0, 0, 64), (0, 0, 0), (0, 0, 0))

α3 = ((128, 64, 0), (192, 128, 64), (255, 192, 128),
(192, 255, 192), (128, 192, 255), (64, 128, 192),
(0, 64, 128), (0, 0, 64), (0, 0, 0))

α4 = ((64, 0, 0), (128, 64, 0), (192, 128, 64),
(255, 192, 128), (192, 255, 192), (128, 192, 255),
(64, 128, 192), (0, 64, 128), (0, 0, 64))

α5 = ((0, 0, 0), (64, 0, 0), (128, 64, 0),
(192, 128, 64), (255, 192, 128), (192, 255, 192),
(128, 192, 255), (64, 128, 192), (0, 64, 128))

α6 = ((0, 0, 0), (0, 0, 0), (64, 0, 0),
(128, 64, 0), (192, 128, 64), (255, 192, 128),
(192, 255, 192), (128, 192, 255), (64, 128, 192))

α7 = ((0, 0, 0), (0, 0, 0), (0, 0, 0),
(64, 0, 0), (128, 64, 0), (192, 128, 64),
(255, 192, 128), (192, 255, 192), (128, 192, 255))

α8 = ((0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (64, 0, 0), (128, 64, 0),
(192, 128, 64), (255, 192, 128), (192, 255, 255))

It is difficult to predict the effect of each weighting vector just by analyzing
the weights. However, we can use our proposed orness measure in order to classify
each weighting vector. Recall that, as it has been explained in [11], better reduced
images are obtained when the operator is far from pure OR and AND operators.
That is, better results will be obtained by those weighting vectors with central
orness value. The orness of each weighting vector can be seen in Fig. 1.

We have applied our reduction algorithm to the original image in Fig. 1 of
510×510 pixels, obtaining 8 reduced images of 170×170 pixels (Fig. 2). Observe
that, as long as the orness of the weighting vector decreases, the brightness of
the color intensities of the images also decreases.

In order to analyze the quality of each image and following the ideas in [1,11],
we have reconstructed the images into its original size and we have compared
them with the original image. In this sense, the closer the reconstructed with the
original image, the better the OWA operator used to reduce the image. We have
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Table 1. Orness measure of OWA operators constructed by weighting vectors α1 to α8.

W. vector Orness

α1 0.9735

α2 0.9202

α3 0.8400

α4 0.7329

α5 0.5632

α6 0.4382

α7 0.3132

α8 0.1985

Fig. 1. Original Mandrill image (510 × 510 pixels)

used the well-known method of bilinear interpolation (implemented in Matlab
using imresize) in order to enlarge the image and the measure of MSE, PSNR
and SSIM [16] in order to compare the images. Recall that lower values of MSE
indicate that the compared images are very close. On the contrary, lower values
of SSIM and PSNR indicate that the images are very different. Table 2 shows
the quality measure for each OWA operator considered. Observe that the best
results in terms of MSE, PSNR and SSIM are obtained by the same weighting
vector (α5) and similar results are obtained with α6. However, when the orness
of the OWA operator either increases or decreases, the quality of the reduced
images always decreases. In this sense, we can conclude that the weighting vectors
associated to central orness measure are better for image reduction than others.

Another interesting effect of OWA operators in image reduction is the fact
that we can use them in order to highlight some specific zones of the image
attending at the color properties. For example, if we want to highlight bright
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α1 α2

α3 α4

α5 α6

α7 α8

Fig. 2. Reduced images obtained by applying reduction algorithm taking α1, . . . , α8 as
weighting vectors.

Table 2. Quality measures (MSE, PSNR and SSIM) of enlarged images obtained from
Fig. 2.

W. vector Orness MSE PSNR SSIM

α1 0.9735 1442 16.54 0.6562

α2 0.9292 1156 17.50 0.6659

α3 0.8400 842.0 18.88 0.6792

α4 0.7329 626.2 20.16 0.6908

α5 0.5632 528.9 20.90 0.6942

α6 0.4382 533.8 20.86 0.6890

α7 0.3132 633.9 20.11 0.6756

α8 0.1985 828.1 18.95 0.6550
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(dark) zones. In this case, we are not interested in obtaining a reduced image
which is similar to the original and, therefore, we do not consider weighting
vectors with central orness measures. If we want to highlight bright (dark) zones,
it is better to consider OWA operators with high (low) orness measure. This
effect can be seen in Fig. 3, where two different OWA operators have been used
(those corresponding to weighting vectors α1 and α8). Observe that in the image
obtained using α1, the bright areas have been highlighted and enlarged, while
the opposite effect is obtained by means of α8.

Fig. 3. Original image (row 1) and two reduced images (row 2) using α1 (left) and α8

(right).

6 Conclusions

In this paper we have investigated the use of lattice OWA operators in an appli-
cation to image reduction. In order to analyze the behavior of each operator in
the reduced image, we have proposed a new orness measure that determines the
proximity of each lattice OWA operator with respect to the pure OR operator.

After applying several OWA operators to our reduction algorithm, we have
seen that when we are interested in keeping the intensity properties of the original
image we have to use lattice OWA operators with an orness measure close to 0.5.
However, when we want to highlight certain areas attending at the intensities
of that area, we have to move to specific lattice OWA operators. In these cases,
the proposed orness measure allows to choose the appropriate operator.

Acknowledgments. D. Paternain and H. Bustince have been partially supported by
Spanish project TIN2013-40765-P. R. Mesiar has been partially supported by grant
APVV-14-0013.
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Abstract. This paper proposes a method to evaluate hierarchical image seg-
mentation procedures, in order to enable comparisons between different hier-
archical algorithms and of these with other (non-hierarchical) segmentation
techniques (as well as with edge detectors) to be made. The proposed method
builds up on the edge-based segmentation evaluation approach by considering a
set of reference human segmentations as a sample drawn from the population of
different levels of detail that may be used in segmenting an image. Our main
point is that, since a hierarchical sequence of segmentations approximates such
population, those segmentations in the sequence that best capture each human
segmentation level of detail should provide the basis for the evaluation of the
hierarchical sequence as a whole. A small computational experiment is carried
out to show the feasibility of our approach.

Keywords: Image segmentation � Hierarchical network clustering �
Edge-based image segmentation evaluation

1 Introduction

Image segmentation, understood as the identification of connected and homogenous
regions of an image, is an essential tool in today applications of image processing. There
is a wide variety of approaches to segmentation as well as of techniques to perform it [2],
in the same way that also different approaches exist regarding how to evaluate the
performance of segmentation procedures (see for instance [3, 6, 9, 10, 12, 13]).

A technique based on segmentation is that of hierarchical image segmentation [1],
whose aim is to produce a consistent sequence of segmentations identifying the objects
in an image with different levels of detail. Hierarchical segmentation is a relevant
extension of segmentation since various applications (see for instance [5]) require
different detail levels to be simultaneously available, in such a way that object iden-
tification is consistent through the different detail levels. However, contrarily to
non-hierarchical segmentation, there are relatively few hierarchical segmentation pro-
cedures, and these usually find the problem that there are not clearly accepted
approaches on how to evaluate a hierarchical segmentation algorithm.
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The aim of this paper is to propose a method to enable evaluation of hierarchical
segmentation procedures by an edge-based segmentation evaluation approach (see [3,
10]), possibly today’s most widely accepted and extended segmentation evaluation
methodology. The main argument behind the proposed method is that a hierarchical
sequence of segmentations captures or approximates the different possible levels of detail
humans may use or that may be needed in an application. Thus, given a set of reference
human segmentations, which constitute a sample of such different possible detail levels,
the hierarchical sequence should be evaluated as awhole through the segmentations in the
sequence that best approximate each reference’s level of detail.

A detailed description of the proposed method is given in Sect. 3, and a small
computational experiment is carried out in Sect. 4 to illustrate its feasibility. This
experiment evaluates the Divide-and-Link [7, 8], so the basics of this hierarchical
segmentation algorithm are described in Sect. 2.3 upon the basis of formal definitions
of the segmentation (Sect. 2.1) and hierarchical segmentation (Sect. 2.2) problems.
Finally, some conclusions are shed in Sect. 5.

2 Preliminaries

In this section, we remind the standard definitions of image segmentation and hierar-
chical image segmentation, providing the formal basis from which our proposal will be
developed in next section. We also describe here an algorithm that performs hierar-
chical image segmentation, and that will be used in Sect. 4 to illustrate the proposed
evaluation methodology.

Thus, let us start by recalling that a digital image I is often regarded as a graph
whose nodes are the pixels, and whose edges represent the neighborhood relationships
of such pixels in the image. Formally, in this approach an (r × s)-digital image is
decomposed in its set of pixels V ¼ fpij ¼ ði; jÞj1� i� r; 1� j� sg and a set of edges
E ¼ fe ¼ fpij; pi0j0 gjpij; pi0j0 2 V are neighbor pixelsg, in such a way that two pixels
p; p0 2 V are considered to be adjacent to each other in the image if and only if
e ¼ p; p0f g 2 E. Therefore, G = (V, E) is a graph constituted by the image’s pixels as
well as by their neighbor relationships. The graph G can be assumed to be connected.

Neighboring relationships between pixels are usually introduced through proximity
topologies specifying who the neighbors of any given pixel are. Possibly, the simplest
such topology is that specifying that the neighbors of a given a pixel pij are the four
horizontally and vertically adjacent pixels pi�1;j, piþ 1;j, pi;j�1 and pi;jþ 1 (see Fig. 1).
Different topologies are possible specifying both a greater number (8, 12, etc.) of
neighbors and more complex patterns of proximity relationships. For simplicity,
however, in this paper we assume the just introduced 4-connectivity.

Fig. 1. Proximity topology associating 4 neighbors (in red) to a given pixel (black dot). (Color
figure online)

636 J. Tinguaro Rodríguez et al.



In a (network-based) segmentation context, the previous graph G = (V, E) is
usually complemented by a dissimilarity measure d that informs on the spectral dif-
ferences between (unordered) pairs of neighbor pixels. Notice that such dissimilarity
measure d is defined over the edges in E. That is, given an edge e ¼ fp; p0g 2 E, the
value de ≥ 0 quantifies how different the pixels p; p0 2 V are in terms of its spectral
information, in such a way that the greater de is, the more dissimilar p and p0 are.
Different alternatives are possible in order to construct such dissimilarity measure from
the spectral information of the pixels, depending on the nature of such spectral
information (white intensities, RGB, multispectral data, etc.) as well as on the specific
problem being faced and the context it belongs to. Once a measure d verifying desirable
properties is chosen, we denote by D ¼ fdeje 2 Eg the set of all dissimilarities between
adjacent nodes. The available information of a digital image I is therefore summarized
by the image network N(I) = {G, D}.

2.1 Image Segmentation

Image segmentation is commonly understood as an image processing technique dealing
with the task of identifying the different objects that appear in a digital image. Typi-
cally, objects in an image occupy regions formed by adjacent and connected pixels.
This idea explains why a graph-based approach to digital images is useful for seg-
mentation. Moreover, it provides a basis for formalizing the notion of image seg-
mentation itself. Here we recall two equivalent definitions of image segmentation: a
first, more natural one, based on the elements to be separated (the nodes of the graph);
the second one is instead based on the edges which link those elements.

Definition 1. Given an image network NðIÞ ¼ fG ¼ ðV ;EÞ;Dg, a family S ¼
R1; . . .;Rtf g with Rj � V for all j 2 1; . . .; tf g constitutes a segmentation of image I if

and only if the following conditions holds:

(a) Non overlapping regions, i.e., for all i ≠ j, Ri \ Rj = ∅.
(b) Covering:

St
j¼1 Rj ¼ V .

(c) Connectivity of all regions: for all j 2 1; . . .; tf g, the subgraph (Rj, E|Rj) is a
connected graph.

In the previous definition, different objects in the image are associated to the
different regions or connected sets of pixels Rj in S. However, in a network context it is
possible to characterize image segmentation through an alternative but equivalent
approach, instead based on the edge set B � E that identifies the boundaries between
the different regions composing the segmentation of the image network N(I). Partic-
ularly, the segmentation can be univocally characterized through the minimal set of
edges which separate the regions of the segmentation:

Definition 2. Given an image network NðIÞ ¼ fG ¼ ðV ;EÞ;Dg, a subset B � E char-
acterizes a segmentation of I if and only if the number of connected components of the
partial graph G E�Bð Þ ¼ V ;E�Bð Þ decreases when any edge of B is deleted.
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In this way, given a boundary edges set B verifying Definition 2, the family
S ¼ R1; . . .;Rtf g of connected components of the partial graph G E�Bð Þ constitutes a
segmentation in the sense of Definition 1. The reciprocal is also true, that is, given a
family S ¼ R1; . . .;Rtf g of connected pixels regions verifying the conditions of
Definition 1, the set B of edges whose endpoint pixels lie in different regions Ri ≠ Rj of
S is a boundary edges set in the sense of Definition 2. More generally, it is possible to
state the following result establishing the equivalence of the two previous definitions of
image segmentation (a proof can be found for instance in [7]).

Theorem 1. Given an image network NðIÞ ¼ fG ¼ ðV ;EÞ;Dg, let SnðNðIÞÞ be the
set of all node segmentations (in the sense of Definition 1) and SeðNðIÞÞ be the set of
all edge segmentations (in the sense of Definition 2). Then, there exists a natural
bijection / : SnðNðIÞÞ ! SeðNðIÞÞ that assigns to each node segmentation S an edge
segmentation B given by the boundaries of the regions in S.

Particularly, if a subset of edges B � E is an edge segmentation of the image
network N(I), then any of its edges links two different regions of the corresponding
node segmentation. The following proposition provides necessary and sufficient con-
ditions for this property to hold for a set of edges B. Notice that this lemma (a proof can
be found in [7]) introduces the structure of forest (a partial graph without cycles) in an
image network, which will be essential in the algorithm for hierarchical image seg-
mentation described in Sect. 2.3.

Proposition 1. Given an image network NðIÞ ¼ fG ¼ ðV ;EÞ;Dg, a subset of edges
B � E is an (edge) segmentation if and only if there exist a spanning forest G(F) = (V,
F) and a subset F0 � F verifying the following conditions:

(a) F0 � B;
(b) F�F0 6� B;
(c) For all e ¼ fp; qg 2 E�F; e 2 B if and only if p and q belong to different con-

nected components of the partial graph GðF�F0Þ.

2.2 Hierarchical Image Segmentation

The notion of hierarchical image segmentation addresses the problem of providing
different levels of segmentation detail of the objects in an image. For instance, having
different levels of segmentation detail may be useful for data mining or knowledge
discovery tasks [4]. Basically, a hierarchical set of image segmentations is a consistent
sequence of segmentations of an image at different levels of detail. By consistent we
mean that the segmentations at coarser levels of detail can be obtained by merging
regions from segmentations at finer levels of detail.

The previous definitions of image segmentation can be easily extended to the
hierarchical case by just recalling that if S; S0SnðNðIÞÞ are two segmentations, then S is
finer than S0 if for all R ∊ S there exist a region R0 2 S0 such that R � R0.
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Definition 3. Given an image network NðIÞ ¼ fG ¼ ðV ;EÞ;Dg, a family S ¼
fS1; . . .; Skg of node segmentations of N(I) is a hierarchical segmentation of N(I) when
the following holds:

(a) Si 2 SnðNðIÞÞ for all i ∊ {1, …, k} (i.e. each Si is a node-based segmentation of
N(I));

(b) Si+1 is finer than Si.

A similar definition can be established in terms of edge-based segmentations, just
taking into account that given two edge segmentations B;B0 2 SeðNðIÞÞ, B is finer
than B0 if B0 � B.

Definition 4. Given an image network NðIÞ ¼ fG ¼ ðV ;EÞ;Dg, a family B ¼
fB; . . .;Bkg of edge segmentations of N(I) is a hierarchical segmentation of N(I) when
the following holds:

(a) Bi 2 SeðNðIÞÞ for all i ∊ {1, …, k} (i.e. each Si is a edge-based segmentation of
N(I));

(b) Bi+1 is finer than Bi.

2.3 Divide and Link: An Algorithm for Hierarchical Image Segmentation

In this section, we briefly recall the basics of the Divide and Link (D&L) algorithm,
introduced in [8] in the context of social network analysis, and adapted to perform
hierarchical image segmentation in [7]. This algorithm will be used later in Sect. 4 to
illustrate the proposed evaluation methodology.

Given an image network NðIÞ ¼ fG ¼ ðV ;EÞ;Dg, the D&L algorithm is based on
a divisive process that begins with the trivial segmentation formed by the whole image
V, and ends after a predefined number of divisive stages K are performed. In each stage
h of the algorithm 1� h�Kð Þ a segmentation Sh of the image is obtained, which is
finer than that of the previous stage. These successive divisive stages are ruled by the
dissimilarity measures de of the edges e ∊ E, as well as by a set of K predefined
thresholds a1 [ a2 [ . . .[ aK , in such a way two adjacent pixels p and q belonging to
the same region at a given stage h will be separated into different regions in the next
stage h + 1 of the hierarchical process if and only if d{p,q} ≥ αh+1. To this aim, the
algorithm selects in each stage h a set of divisive edges (those with de ≥ αh) and a set of
linking edges (with de < αh), and arranges them in a single ordered list used to build a
spanning forest. This structure allows avoiding potential inconsistencies (as it has no
cycles), in such a way that, after deleting the divisive edges, the regions of this stage’s
segmentation are obtained as the connected components of the forest. The pseudocode
of the algorithm can be found in [7]. Figure 2 illustrates the different segmentations
obtained for the well-known Church digital color image through a divisive process
with K = 5 stages. The dissimilarity measure d was computed as the L1 spectral dis-
tance between adjacent pixels (assuming a 4-connectivity topology as in Fig. 1).
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3 Edge-Based Evaluation for Hierarchical Segmentation

In this section we introduce a methodology for evaluating hierarchical segmentation
techniques as the just exposed Divide-and-Link algorithm. This proposal belongs to the
category of supervised segmentation evaluation methods, and more particularly to the
subcategory of edge-based segmentation evaluation (see [3, 10, 13]). As such, it
departs from a reference image dataset, depicting objects that are delimited by borders
or boundaries specified by humans. These human-segmented images provide the
ground truth against which machine-segmentations are compared.

Notice that, even although the methods to be compared produce segmentations (i.e.
pixel regions occupied by an object) and not boundary maps (i.e. just the borders of
such objects), the edge-based approach exploits the close relationships between the
segmentation and edge-detection problems to allow evaluating a segmentation in terms
of the boundaries between segments or regions (region-based evaluation [9] is also
possible, but it is way less extended as only a few small reference datasets are avail-
able). At this respect, borders between two regions of a segmented image are usually
assigned to the boundary pixels of the larger segment, but any other approach that
generates a boundary map from a segmented image will be as valid in terms of the
method proposed here.

A first problem that arises when trying to develop a supervised evaluation approach
in the context of hierarchical segmentation is the lack of hierarchically human-
segmented reference images. That is, reference datasets provide a single ground truth
boundary map for each human that segments an image. And although different humans
may segment the image with a different level of detail, normally these different human
segmentations of a given reference image does not form a consistent hierarchy (in the
sense above discussed of providing a sequence of finer segmentations). Thus, it is not
possible to apply the edge-based reference datasets directly to evaluate any hierarchical
segmentation technique.

However, although a priori unknown, the different detail levels of different human
segmentations of an image may be soundly captured or approximated through the
sequence of machine segmentations of a hierarchical procedure. That is, given a human

Fig. 2. Original Church image and the segmentations obtained in 5 steps of the D&L algorithm
through the corresponding thresholds αh.
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segmentation and a hierarchical sequence of machine segmentations, there always
exists an element of the sequence that best approximates the detail level of the human
one. Thus, the whole hierarchical sequence can be taken as an approximation to the
different levels of detail that a collection of different-sensitivity humans performing
segmentation may use. And our point is that, in order to evaluate the performance of a
hierarchical segmentation procedure, we should focus precisely on those segmentations
of the sequence that best approximate each human reference’s level of detail.

Thus, let us formalize these ideas by specifying the process to evaluate a hierar-
chical segmentation algorithm on a reference image. Suppose that for this image there
are available L independent human segmentations GTl (1 ≤ l ≤ L) providing ground
truth references for the evaluation. Suppose also that the hierarchical algorithm pro-
vides a set of K machine segmentations Sk (1 ≤ k ≤ K) structured hierarchically, all
with the same size as the reference image. Then, as discussed above, given a human
segmentation GTl, it is successively matched against each machine segmentation
Sk k ¼ 1; . . .;Kð Þ, providing the usual counts of true positives, false positives and false
negatives. These are respectively denoted by TPkl, FPkl and FNkl, and are typically used
to compute precision and recall scores as follows:

Pkl ¼ TPkl

TPkl þFPkl
; Rkl ¼ TPkl

TPkl þFNkl

These scores are in turn used to compute an F-measure Fkl for each combination of
human-machine segmentations. The F-measure is widely used as a criterion to evaluate
the performance of diverse techniques, particularly segmentation algorithms, and is
obtained as the harmonic mean of precision and recall:

Fkl ¼ 2 � Pkl � Rkl

Pkl þRkl

In this way, it is possible to report a single measure evaluating how good each
machine boundary map of the hierarchical sequence approximates the boundaries (and
thus also the level of detail) of a given human map.

Following the discussion above, we then select the map of the sequence S1; . . .; SK

with the best Fkl-measure for each human ground truth GTl, that is identified by the
index

k�l ¼ arg max
1� k�K

Fkl

Thus, the machine map Sk
�
l is the element of the hierarchical sequence that provides

a best approximation of the segments (i.e. the boundaries) provided by human l. As
several human segmentations are usually available for a given image, we then average
the precision Pk�l l and recall Rk�l l scores of the machine maps Sk

�
l selected for each of the

different available human maps GLl l ¼ 1; . . .; Lð Þ in order to obtain global precision
P and recall R scores for the considered image:
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P ¼ 1
L

XL
l¼1

Pk�l l R ¼ 1
L

XL
l¼1

Rk�l l

These scores P and R can then be combined as usual in a global F-measure
measuring the overall performance goodness of the hierarchical segmentation proce-
dure being evaluated on a given reference image. As discussed, such global F-measure
has to be understood as a measure of the extent up to which a given hierarchical
segmentation is able to capture the different detail levels that a set of different human
segmentations of such an image may contain.

Remark 1. Notice that the previously referred counts of true positives, false positives
and false negatives are usually dependent on a distance threshold δ that specifies the
tolerance level to small boundary localization errors. Machine boundary pixels that lie
closer than a distance δ from a human boundary pixel and that can be matched in a
one-to-one correspondence to human boundary pixels (through solving a sparse min-
imum cost bipartite assignment problem) are counted as true positives. Only those
machine pixels that cannot be matched counts as false positives. Unmatched human
boundary pixels count as false negatives. In this sense, just let us remark that our
method can be used taking into account any tolerance to localization error.

Remark 2. Another important remark concerns the usage of precision-recall (or PR)
curves, relatively similar to ROC curves but replacing fallout by precision in the x-axis.
PR curves are commonly used as rich descriptors of performance for (non-hierarchical)
segmentation techniques that rely on a set of parameters. Each particular configuration
of the parameters produces a pair of precision-recall scores, and through a search of the
parameter space a PR curve is obtained that approximates the Pareto frontier of the
algorithm (for a given human segmentation) in terms of the precision-recall criteria.
Then, as the F-measure curve is typically unimodal, the maximum F attained at the
points of the PR curve is reported as the overall measure of performance [10].

At this point, it is important to remark that a hierarchical procedure as the above
exposed D&L algorithm depends on a set of K parameters a1\a2\. . .\aK for each
possible number of detail levels K, i.e. for each sequence of K hierarchically-related
segmentations. By varying these parameters, a different PR curve may be obtained for
each value of K following the method proposed above. That is, we claim that each
hierarchical sequence S1; . . .; SK

� �
(associated to parameters a1; . . .; aK) of machine

segmentations has to be evaluated globally with respect to the whole set of L human
segmentations (possibly providing different reference levels of detail) through the global
P and R scores (and the corresponding F-measure) obtained as above. Thus, different
specifications of the parameters a1; . . .; aK do produce different (P, R) pairs, which in
turn may be used to build the PR curve of the hierarchical procedure for a given K. Then,
two different approaches may be devised to choose a particular value of K:

1. Consider a predefined value for K, for instance on the basis of a priori knowledge
about the different levels of detail actually present on the human reference
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segmentations. Or simply take K = L, assuming that possibly each one of the
L human reference segmentations is performed at a different level of detail.

2. Search for the optimal K i.e. that providing the best PR curve, in the sense of either
reaching the greatest maximum F-measure or the greatest AUC
(area-under-the-curve).

Notice that, although the second, search-based approach would allow uncovering
the best configuration of the parameters of the hierarchical procedure, it may be
unpractical since the number of parameters to be adjusted in order to compute adequate
PR curves for each K grows linearly with K. For this reason, we find the first approach
to be more practical and particularly taking K = L is encouraged unless reliable a priori
knowledge about the present levels of detail is available.

To sum up, the proposed evaluation methodology for hierarchical segmentation can
be seen as an extension of the state-of-the-art edge-based segmentation evaluation
methodology [1, 10], in the sense that the former builds up upon the latter by just
enabling hierarchical segmentation techniques to be introduced in comparisons. Par-
ticularly, the proposed method allows a sequence of segmentations to be evaluated as a
whole, viewing it as an approximation to the whole set of available human references.
As commented above, the lack of reference datasets and the consequent difficulties for
developing a proper evaluation methodology is possibly one of the main problems
found in the development of hierarchical segmentation techniques. Thus, we hope that
the proposed methodology may contribute to alleviate this bottleneck problem of
hierarchical segmentation evaluation.

4 Computational Example

Now we describe a small computational experiment to illustrate the proposed evalu-
ation methodology. This experiment compares the performance of the exposed
Divide-and-Link (D&L) hierarchical segmentation algorithm with that of a small set of
well-known edge-detection techniques on just a single reference image and its asso-
ciated human segmentations. The same Church image as in Fig. 2 together with a set of
L = 5 human segmentations (shown in the first column of Fig. 3) will provide the
ground truth for the evaluation. Besides D&L, the Canny [4], Prewitt [11] and Sobel
(see [2]) edge-detectors (as implemented in MATLAB R2010b) will constitute the set
of procedures to be compared. For simplicity, we do no compute the PR curves of the
detectors, and just the precision-recall scores obtained through the detectors’MATLAB
default parameters will be reported. The D&L algorithm is set up asking for a hierarchy
of K = L = 5 segmentations, to be obtained with arbitrary thresholds α1,…,α5 (those
used in Fig. 2) and by using the 4-connectivity topology together with the L1 dis-
similarity measure (i.e. de is given by the sum of the absolute differences in RGB
intensities of adjacent pixels p,q such that e = {p, q}). A boundary map is derived from
each of the 5 D&L segmentations by declaring as boundary just the pixels in the larger
region from each pair of adjacent pixels belonging to different regions. Counts of true
positives, false negatives and false positives are obtained through pixel-to-pixel
matching between the human and the machine boundary maps, i.e. localization error is
not tolerated (so δ = 0). Finally, precision and recall scores as well as the respective
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F-measures are computed for each pair of human and machine segmentations as
described in Sect. 3. Let us remark that this experiment is neither intended to constitute
a rigorous evaluation of the D&L algorithm nor a detailed comparison of this procedure
with state-of-the-art techniques, but just to provide an illustrative example intended to
show the feasibility of the proposed evaluation methodology and hopefully con-
tributing to a better understanding of this paper.

Results for each human-D&L segmentation matching are shown in Table 1 below.
Highest F-measures and precision-recall scores for each human are bolded. Notice that
the two D&L segmentations with α2 = 42 and α3 = 36 consistently obtain the best F-
measures of the D&L hierarchical sequence. They are the most precise detectors and

Table 1. F-measures and pairs of scores (precision,recall) for each matching of human-D&L
segmentations.

D&L
α1 = 52

D&L
α2 = 42

D&L
α3 = 36

D&L
α4 = 30

D&L
α5 = 22

Human
1

F = 0.07
(0.15,0.05)

F = 0.27
(0.21,0.37)

F = 0.27
(0.20,0.40)

F = 0.21
(0.14,0.42)

F = 0.21
(0.14,0.45)

Human
2

F = 0.05
(0.10,0.03)

F = 0.17
(0.13,0.26)

F = 0.18
(0.13,0.30)

F = 0.14
(0.09,0.32)

F = 0.14
(0.09,0.34)

Human
3

F = 0.04
(0.16,0.03)

F = 0.23
(0.25,0.21)

F = 0.25
(0.25,0.25)

F = 0.22
(0.18,0.27)

F = 0.22
(0.18,0.30)

Human
4

F = 0.08
(0.13,0.05)

F = 0.26
(0.19,0.43)

F = 0.25
(0.17,0.46)

F = 0.19
(0.12,0.47)

F = 0.18
(0.11,0.50)

Human
5

F = 0.03
(0.06,0.02)

F = 0.24
(0.20,0.30)

F = 0.25
(0.19,0.33)

F = 0.19
(0.13,0.34)

F = 0.19
(0.13,0.36)

Fig. 3. Human segmentations ground truth (first column) and matchings of these with the
machine boundary maps generated through different D&L thresholds and the Canny detector.
Green pixels are true positives, yellow ones are false positives and magenta false negatives.
(Color figure online)
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obtain the best precision-recall balance. As expected, the lower the threshold αk is, the
greater recall is obtained, as a finer level of detail is introduced. In this sense, these
illustrative results suggest that two different (but relatively similar) detail levels are
being used along the 5 human segmentations. Particularly, humans 1 and 4 seem to
provide segments with a somehow lower detail level than humans 2, 3 and 5 (humans 2
and 3 signal the electric lines at the bottom-right, while humans 2 and 5 provide more
details of the bell tower base and top).

Thus, following the discussion in last section, the evaluation of the D&L algorithm
should focus on those segmentations of the hierarchical sequence that best approximate
the detail level of each human segmentation. This is accomplished in Table 2 below,
combining the best D&L results (in terms of F) for each human with the results obtained
by the Canny, Sobel and Prewitt detectors. Again, best scores for each human are bolded.
The D&L best-matches consistently obtain a significantly higher precision than the other
detectors, at the cost of a small difference with Canny’s recall. Overall, after averaging the
precision and recall scores along all humans, D&L obtains the highest F-measure, clearly
outperforming the Sobel and Prewitt detectors and obtaining a better precision-recall
balance than Canny (of course, just for the MATLAB default parameters of the three
detectors other than D&L). Anyway, besides the particular results obtained, this exper-
iment shows the feasibility of the proposed evaluation methodology, as just intended.

5 Conclusions

A method to enable the evaluation of hierarchical segmentation algorithms through a
supervised edge-based approach has been introduced in this paper. This makes possible
comparing different hierarchical procedures between them and against other
non-hierarchical segmentation techniques (as well as with edge detectors). The main
point we made is that hierarchical segmentation can be understood as an approximation

Table 2. Comparison of the different detectors performance along the various human
segmentations. D&L results come from selecting in Table 1 the partitions with maximum
F-measure for each human. Overall results are obtained by averaging the (precision,recall) pairs.

D&L Canny Sobel Prewitt

Human
1

F = 0.27
(0.21,0.37)

F = 0.15
(0.09,0.41)

F = 0.13
(0.10,0.22)

F = 0.13
(0.09,0.21)

Human
2

F = 0.18
(0.13,0.30)

F = 0.11
(0.06,0.33)

F = 0.09
(0.06,0.16)

F = 0.09
(0.06,0.16)

Human
3

F = 0.25
(0.25,0.25)

F = 0.17
(0.12,0.27)

F = 0.14
(0.13,0.14)

F = 0.13
(0.12,0.14)

Human
4

F = 0.26
(0.19,0.43)

F = 0.13
(0.08,0.46)

F = 0.13
(0.08,0.25)

F = 0.12
(0.08,0.25)

Human
5

F = 0.25
(0.19,0.33)

F = 0.15
(0.09,0.35)

F = 0.14
(0.10,0.20)

F = 0.13
(0.10,0.20)

Overall F = 0.25
(0.19,0.33)

F = 0.14
(0.09,0.36)

F = 0.13
(0.10,0.20)

F = 0.12
(0.09,0.19)
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to the (a priori unknown) different detail levels with which an image may be seg-
mented. Thus, given a sample of these different possible levels of detail as that pro-
vided by a set of reference human segmentations, a hierarchical sequence of
segmentations should be evaluated by selecting the set of segmentations of the hier-
archical sequence that best approximate each human segmentation level of detail. The
proposed methodology is based on the state-of-the-art edge-based segmentation eval-
uation framework, just extending it to allow hierarchical segmentation procedures to be
evaluated and compared. Hopefully this may contribute to solve or at least alleviate the
bottleneck problem of hierarchical segmentation evaluation.

Possibly the main advantage of a hierarchical approach to segmentation as that of
the D&L algorithm is that it allows working at different levels of detail in a consistent
way. Although other (non-hierarchical) segmentation procedures may provide different
detail levels by varying the parameters configuration, typically the so-obtained seg-
mentations are not hierarchical, i.e. they do not consistently identify objects in the
sense that successive partitions enable a higher detail levels without modifying
the objects already detected in previous segmentations. The same may apply for the
boundaries respectively resulting from a hierarchical segmentation technique (applying
a consistent method to decide the boundaries of the detected regions) and a usual
edge-detector.

At this respect, with this paper we would also like to emphasize that image pro-
cessing algorithms should always depart from precise formal definition of the particular
problems they address (as we have done defining segmentation and hierarchical seg-
mentation). Although related, segmentation, edge detection and image classification (to
say just three) indeed constitute different image processing problems. In our opinion, a
precise and accepted formal definition of the different problems being addressed should
be a main objective of research for the image processing community, since it would
allow for a better categorization and relative comparison of the different existing
techniques, as well as for the development a formal study of the relationships holding
between the different problems, and therefore also between the various techniques that
address them.

As a particular future research objective derived from this work, we are working in
a rigorous and updated evaluation and comparison of several hierarchical and
non-hierarchical segmentation procedures, which will also allow a further validation of
the proposed methodology.
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Abstract. The paper deals with the higher degree fuzzy transforms
(F-transforms with polynomial components) for functions of two vari-
ables in the case when two-dimensional generalized fuzzy partition is
given by B-splines of two variables. We investigate properties of the direct
and inverse F-transform in this case and prove that using B-splines as
basic functions of fuzzy partition allows us to improve the quality of
approximation.
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1 Introduction

The concept of fuzzy transform (F -transform or F 0-transform) was introduced in
2001 [11] (see also the key paper [9]) and generalized to the case of higher degree
(Fm-transform, m ≥ 1) in 2011 [12] by I. Perfilieva with co-authors. Initially,
the technique of F -transform was described for functions of one variable. The
extension for the two-dimensional case (i.e. for functions of two variables) has
been introduced in [17] and developed in [7,8].

There is a number of papers dealing with fuzzy transforms with respect to
a fuzzy partition with specially designed basic functions including fuzzy parti-
tions based on splines (see, e.g., [1,5]). In both mentioned cases the ordinary
F -transforms (i.e. with the classical components-numbers) for functions of one
variable have been considered. The construction of higher degree fuzzy trans-
forms with respect to a fuzzy partition given by central, odd degree B-splines
of one variable was presented by the authors at the previous FUZZ-IEEE con-
ference (IEEE International Conference on Fuzzy Systems) in Istanbul in 2015
(see [6]). At the current stage our main focus area refers to the case of two vari-
ables. Let us note that in last years exactly two-dimensional F-transforms have
been widely applied in image processing for solving problems of image compres-
sion, reconstruction, denoising, fusion, edge detection (see, e.g., [2,3,13,14]). Our
motivation to develop and investigate the technique of spline-based F-transform
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for the case of several variables has been caused by the rapid development of
such applications.

Our research focuses on the Fm-transform with respect to a generalized
uniform fuzzy partition given by B-splines of two variables of degree 2k1 − 1
and 2k2 − 1 respectively. We generalize for the two-dimensional case the main
result of [6] and obtain that in this case the inverse Fm-transform is precise for
polynomials of two variables of degree r1 ≤ 2k1 − 1 and r2 ≤ 2k2 − 1 when
r1 + r2 ≤ 2m + 1. On the basis of this result we obtain error estimations for
approximation by the inverse Fm-transform and prove that using B-splines may
improve the approximation properties of the technique of higher degree two-
dimensional F -transform.

The paper is structured as follows. Section 2 contains preliminaries on fuzzy
partitions, Fm-transforms (direct and inverse) and B-splines. Section 3 describes
a special design of fuzzy partition based on B-splines of two variables and the
corresponding F-transform constructions. Section 4 identifies the degree of poly-
nomials for which the inverse two-dimensional Fm-transform based on B-splines
is precise. Section 5 is devoted to approximation properties of the inverse Fm-
transform described above. Finally, Sect. 6 concludes the results.

2 Preliminaries

We will use the following notation:

– [n..m] (for integers n,m with n ≤ m) – the set {n, n + 1, . . . , m};
– Pl – the set of univariate polynomials of degree at most l;
– Pl1,l2 = span

{
xiyj |i ∈ [0 .. l1], j ∈ [0 .. l2]

}
– the set of bivariate polynomials

s.t. the degree of the first variable is at most l1 and the degree of the second
variable is at most l2.

2.1 Fuzzy Partition

Fuzzy partition of a rectangle [a, b] × [c, d] ⊂ R
2 is commonly defined via fuzzy

partitions of the intervals [a, b] and [c, d].

Generalized 1D Fuzzy Partition (see, e.g., [3,10]). Suppose that [a, b] ⊂ R,
a < b, and N ∈ N is chosen. Let h > 0 and h′ > h/2. Let t0, . . . , tN be fixed
nodes s.t. a < t0 < . . . < tN < b and the following requirements are satisfied:

1. ti+1 = ti + h for all i ∈ [0 .. N − 1];
2. Ēi ⊂ [a, b] for all i ∈ [0 .. N ], where Ei := (ti−h′, ti+h′) and Ēi is the closure

of Ei (the constraint h′ > h/2 ensures that the adjacent sets Ei and Ei+1

intersect and the whole interval (a, b) is covered);
3.

⋃N
j=0 Ēj = [a, b].

The sets Ei depend on the parameter h′; for the sake of simplicity, this parameter
is not included in the notation of Ei.
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Definition 1. Fuzzy sets A0, . . . , AN : [a, b] → [0, 1] are said to constitute a
generalized (h, h′)-uniform fuzzy partition of [a, b] if the following conditions are
satisfied:

– Ai(t) > 0 if t ∈ Ei, and Ai(t) = 0 if t ∈ [a, b] \ Ei, i ∈ [0 .. N ];
– Ai is continuous on Ēi, i ∈ [0 .. N ];
–

∑N
j=0 Aj(t) > 0 for all t ∈ (a, b), i ∈ [0 .. N ].

– Ai(ti − t) = Ai(ti + t) for all t ∈ [0, h′], i ∈ [0 .. N ];
– Ai(t) = Ai+1(t + h) for all t ∈ Ēi and i ∈ [0 .. N − 1].

It is easy to see that then there is an even function A : [−H,H] → R, where
H = h′/h, such that for all i ∈ [0 .. N ] and t ∈ Ēi, Ai(t) = A

(
t−ti
h

)
. The function

A is said to be the generating function of the partition A0, . . . , AN .

Definition 2. Suppose that an interval I ⊂ [a, b] is such that

N∑

i=0

Ai(t) = 1 for all t ∈ I.

Then the fuzzy partition A0,. . . ,AN is said to fulfill the Ruspini condition on I.

2D Fuzzy Partition (see, e.g., [3,10]). Suppose that the fuzzy sets A0,. . . ,AN1

establish a fuzzy partition of [a, b] and B0,. . . ,BN2 establish a fuzzy partition of
[c, d]. Then the fuzzy sets Ai×Bj , i ∈ [0 .. N1], j ∈ [0 .. N2], are said to constitute
a fuzzy partition of the Cartesian product [a, b]×[c, d]. The membership function
of Ai × Bj is equal to the product Ai(x)Bj(y) of the corresponding membership
functions Ai, Bj .

Moreover, if A0,. . . ,AN1 fulfill the Ruspini condition on I ⊂ [a, b] and B0,
. . . , BN2 fulfill the Ruspini condition on J ⊂ [c, d], then Ai × Bj , i ∈ [0 .. N1],
j ∈ [0 .. N2], satisfy the Ruspini condition on I × J [4], in the sense that

N1∑

i=0

N2∑

j=0

Ai(x)Bj(y) = 1 for all (x, y) ∈ I × J.

2.2 Higher Degree F-transforms

Suppose that fuzzy sets A0,. . . ,AN1 establish a generalized (h1, h
′
1)-uniform fuzzy

partition of [a, b], and B0,. . . ,BN2 establish a generalized (h2, h
′
2)-uniform fuzzy

partition of [c, d]. Denote the fixed nodes of [a, b] by t
(1)
i , i ∈ [0 .. N1]; similarly,

the fixed nodes of [c, d] are denoted by t
(2)
j , j ∈ [0 .. N2]. Let

E
(1)
i := (t(1)i − h′

1, t
(1)
i + h′

1), E
(2)
j := (t(2)j − h′

2, t
(2)
j + h′

2),

and Ē
(1)
i , Ē

(2)
j stand for the closure of E

(1)
i , E

(2)
j , respectively.
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For any i ∈ [0 .. N1], j ∈ [0 .. N2], let L2(Ai × Bj) be the Hilbert space of
all square-integrable functions f : Ē

(1)
i × Ē

(2)
j → R, equipped with the inner

product 〈·, ·〉i,j , defined as

〈f, g〉i,j =
∫

Ē
(1)
i ×Ē

(2)
i

f(t1, t2)g(t1, t2)Ai(t1)Bj(t2) dt1 dt2,

and the associated norm ‖·‖i,j1. By Lm
2 (Ai × Bj), m ∈ N ∪ {0}, we denote the

subspace of L2(Ai×Bj), spanned by the bivariate polynomials of degree at most
m. Finally, by L2(A,B) we shall denote the set of all f : [a, b] × [c, d] → R s.t.
its restriction on any rectangle Ē

(1)
i × Ē

(2)
j belongs to L2(Ai × Bj).

Fix any f ∈ L2(A,B). Its direct Fm-transform is defined as the (N1 + 1) ×
(N2 + 1) matrix whose (i, j)-th component is the orthogonal projection of f on
Lm
2 (Ai × Bj).

Let Fm
i,j(f, x, y) be the value of the (i, j)-th component of the direct Fm-

transform of f at (x, y) ∈ [a, b] × [c, d]. Then the inverse Fm-transform of f
(evaluated at (x, y)), which we denote by Fm(f, x, y), is defined as

Fm(f, x, y) =

∑N1
i=0

∑N2
j=0 Fm

i,j(f, x, y)Ai(x)Bj(y)
∑N1

i=0

∑N2
j=0 Ai(x)Bj(y)

.

If (x, y) ∈ I × J and the chosen fuzzy partition satisfies the Ruspini condition
on I × J , this expression is simplified to

Fm(f, x, y) =
N1∑

i=0

N2∑

j=0

Fm
i,j(f, x, y)Ai(x)Bj(y).

Suppose that P l
i , Ql

j , l ∈ [0 ..m], are univariate polynomials s.t. deg P l
i =

deg Ql
j = l and

∫

E
(1)
i

P l1
i (x)P l2

i (x)Ai(x) dx =
∫

E
(2)
j

Ql1
j (y)Ql2

j (y)Bj(y) dy =

{
1, l1 = l2,

0, l1 �= l2.

Then the bivariate polynomials P l1
i × Ql2

j satisfy

〈
P l1
i × Ql2

j , P l3
i × Ql4

j

〉

ij
=

{
1, l1 = l3 and l2 = l4,

0, otherwise,

1 In fact, this way a semi-norm ‖·‖i,j in L2(Ai × Bj) is defined. The identification of
functions f and g, which are almost everywhere equal in the sense ‖f − g‖i,j = 0,
turns ‖·‖i,j from a semi-norm into a norm and the semi-definite sesquilinear form
〈·, ·〉i,j into an inner product. Further on, this technical detail will be ignored.
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and the direct Fm-transform components can be computed as

Fm
i,j(f, x, y) =

∑

l1+l2≤m,
l1,l2≥0

cl1,l2i,j (f)P l1
i (x)Ql2

j (y),

where

cl1,l2i,j (f) =

〈
f, P l1

i × Ql2
j

〉

i,j〈
P l1
i × Ql2

j , P l1
i × Ql2

j

〉

i,j

. (1)

When there is no ambiguity, notation cl1,l2i,j (f) will be simplified to cl1,l2i,j .

2.3 B-splines

Univariate B-splines of degree n are [15,16] piecewise (w.r.t. a given domain par-
tition) polynomial (of degree n) functions in Cn−1(R), characterized by having
minimal support.

Central B-splines [16] are even B-splines that have 1-equidistant knots. For
each integer n ≥ 0 the central B-spline is unique (up to a constant factor).
The properties of B-splines and construction of a fuzzy partition using central
B-spline as the generating function are described in more details in [6].

3 Two Dimensional Fuzzy Partition Generated by
B-splines

Fix N1, N2, k1, k2 ∈ N. By A and B we denote the central B-splines of degree
2k1 − 1 and 2k2 − 1, respectively.

Let a rectangle [a, b] × [c, d] ⊂ R
2 be fixed. Denote h1 = (b − a)/(N1 + 2k1)

and h2 = (d − c)/(N2 + 2k2). By t
(1)
i we denote the h1-equidistant nodes:

t
(1)
i = a + h1 (i + k1), i ∈ [−k1 .. N1 + k1]; then

a = t
(1)
−k1

< t
(1)
0 < t

(1)
N1

< t
(1)
N1+k1

= b.

Similarly, by t
(2)
j we denote the h2-equidistant nodes t

(2)
j = c + h2 (j + k2),

j ∈ [−k2 .. N2 + k2]. By Ai(x) and Bj(y) we denote the functions A

(
x−t

(1)
i

h1

)

and B

(
y−t

(2)
j

h2

)

, respectively, i ∈ [0 .. N1], j ∈ [0 .. N2].

We consider the generalized fuzzy partition of [a, b] × [c, d] formed by the
functions Ai(x) · Bj(y), where (i, j) ∈ [0 .. N1] × [0 .. N2].

An illustration of the fuzzy partition of [1, 3] × [2, 4], generated by B-splines
of degree 3 in each variable, is shown in Fig. 1.
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Fig. 1. Fuzzy partition of [1, 3] × [2, 4] when k1 = k2 = 2, N1 = 3, N2 = 4

3.1 Spaces L2(A × B) and L2(Ai × Bj)

Let L2(A × B) stand for the Hilbert space, which consists of square integrable
functions f : [−k1, k1] × [−k2, k2] → R, with the inner product 〈·, ·〉 given by

〈f, g〉 =
∫ k1

−k1

∫ k2

−k2
f(x, y)g(x, y)A(x)B(y) dxdy

and the induced norm ‖f‖ = 〈f, f〉0.5. Space Lm
2 (A×B) is defined as the closed

linear subspace of L2(A×B), spanned by the set of linearly independent system of
polynomials

{
xiyj |0 ≤ i, j ≤ m, i + j ≤ m

}
(restricted to [−k1, k1]× [−k2, k2]).

Define the analogous one-dimensional concepts: L2(A) is the Hilbert space of
square integrable functions f : [−k1, k1] → R with the inner product 〈·, ·〉A given
by 〈f, g〉A =

∫ k1

−k1
f(t)g(t)A(t) dt (and the induced norm ‖·‖A); space Lm

2 (A)
is defined as the closed linear subspace of L2(A), spanned by the closed set
of linearly independent system of polynomials

{
1, t, t2, . . . , tm

}
(restricted to

[−k1, k1]). Spaces L2(B) and Lm
2 (B) are defined similarly.

Orthogonal (w.r.t. 〈·, ·〉A) monic polynomials in L2(A) are constructed as
follows:

P 0(t) ≡ 1, P l+1(t) = χl(t) −
l∑

j=0

λl
jP

j(t), l ≥ 0,

where λl
j =

〈
χl, P j

〉
A

∥
∥P j

∥
∥−2

A
, χl(t) = tl+1. By inductive arguments (and the

fact that A is an even function, but 〈·, ·〉A is defined as an integral over a sym-
metric interval), it can be seen that P l is an odd function iff l is odd and P l is
an even function iff l is even. Another obvious but important property is that P l

is orthogonal (w.r.t. 〈·, ·〉A) to every polynomial of degree less than l. Similarly
define orthogonal (w.r.t 〈·, ·〉B) monic polynomials Ql with deg Ql = l.

Then polynomials P l1(x) · Ql2(y) and P s1(x) · Qs2(y) are orthogonal (for
(l1, l2) �= (s1, s2), w.r.t. 〈·, ·〉); moreover, Lm

2 (A × B) is spanned by the polyno-
mials P l1(x) · Ql2(y) with 0 ≤ l1 + l2 ≤ m.

Fix i ∈ [0 .. N1], j ∈ [0 .. N2] and consider the space L2(Ai × Bj). By chang-
ing variables in the corresponding integral, the inner product 〈·, ·〉ij can be
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obtained from 〈·, ·〉 as follows: 〈f, g〉i,j = h1h2

〈
f̃ , g̃

〉
, where by p̃(x, y) the func-

tion p
(
xh1 + t

(1)
i , yh2 + t

(2)
j

)
is denoted.

Hence the basis of Lm
2 (Ai×Bj) are formed by the polynomials P l1

i (t1)Ql2
j (t2),

l1, l2 ≥ 0, l1 + l2 ≤ m, where

P l
i (t1) = P l

(
t1 − t

(1)
i

h1

)

and Ql
j(t2) = Ql

(
t2 − t

(2)
j

h2

)

.

Moreover,
∥
∥
∥P l1

i Ql2
j

∥
∥
∥
2

i,j
= h1h2

∥
∥P l1Ql2

∥
∥2.

3.2 Ruspini Condition

Let
[â, b̂] = [t(1)k1−1, t

(1)
N1−k1+1] and [ĉ, d̂] = [t(2)k2−1, t

(2)
N2−k2+1]. (2)

The fuzzy partition A0, . . . , AN1 of [a, b] fulfills [6, Eq. 13] the Ruspini condition
on the interval [â, b̂]; similarly, the fuzzy partition B0, . . . , BN2 fulfills the Ruspini
condition on [ĉ, d̂]. Consequently, Ai × Bj , (i, j) ∈ [0 .. N1] × [0 .. N2], (the fuzzy
partition of [a, b] × [c, d]) fulfills the Ruspini condition on [â, b̂] × [ĉ, d̂].

It follows that for all (x, y) ∈ [â, b̂] × [ĉ, d̂] the inverse Fm-transform of a
function f can be computed as

Fm(f, x, y) =
∑

i∈[0 .. N1]
j∈[0 .. N2]

∑

l1+l2≤m
l1,l2≥0

cl1,l2i,j P l1
i (x)Ql2

j (y)Ai(x)Bi(y),

where cl1,l2i,j is defined as in (1); moreover, when f is a polynomial of degree at
most m, we have Fm(f, x, y) = f(x, y).

For example, in Fig. 1, the Ruspini condition is fulfilled on the interval
[13/7, 15/7] × [11/4, 13/4].

4 Approximation of Polynomials

From now on we will assume that the fuzzy partition and polynomials P l1 , Ql2 ,
P l1
i , Ql1

j are defined as in the previous section. First we state the following result;
its proof is technical and therefore omitted here.

Lemma 1. Suppose that r1, r2 ∈ N ∪ {0} and a polynomial f is defined as

f(x, y) =
r1∑

l1=0

r2∑

l2=0

al1,l2P l1(x)Ql2(y).
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Let cl1,l2i,j be defined as in (1) for all l1 ∈ [0 .. r1], l2 ∈ [0 .. r2], i ∈ [0 .. N1] and
j ∈ [0 .. N2]. Then for all l1 ∈ [0 .. N1], l2 ∈ [0 .. N2] there exists a polynomial
pl1,l2 ∈ Pr1−l1,r2−l2 s.t.

cl1,l2i,j = pl1,l2(i, j) for all (i, j) ∈ [0 .. N1] × [0 .. N2].

Our main result is that for the described fuzzy partition the inverse Fm-
transform coincides with p on the Ruspini rectangle for all polynomials p of
degree at most 2m + 1 (provided that their degree in x or y variable does not
exceed 2k1 − 1 or 2k2 − 1, respectively).

Theorem 1. Suppose that f ∈ Pr1,r2 , r1 ≤ 2k1−1, r2 ≤ 2k2−1, r1+r2 ≤ 2m+1.
Then

Fm(f, x, y) = f(x, y) for all (x, y) ∈ [â, b̂] × [ĉ, d̂] (defined by (2)).

Proof. Suppose that r1 + r2 ≥ m + 1, otherwise the claim is trivially satisfied.
For all (i, j) ∈ [0 .. N1] × [0 .. N2] we can express

r1∑

l1=0

r2∑

l2=0

cl1,l2i,j P l1
i (x)Ql2

j (y) = f(x, y), (3)

where cl1,l2i,j is defined as in (1).
Fix nonnegative integers l1, l2 so that l1+l2 > m and l1 ≤ 2k1−1, l2 ≤ 2k2−1.

We will show that
∑

i∈[0 .. N1]
j∈[0 .. N2]

cl1,l2i,j P l1
i (x)Ql2

j (y)Ai(x)Bj(y) = 0. (4)

By Lemma 1, there exists a polynomial p̄ ∈ Pr1−l1,r2−l2 such that cl1,l2i,j = p̄(i, j)
for all (i, j) ∈ [0 .. N1] × [0 .. N2]. It means that there are such reals as1,s2 that

cl1,l2i,j =
r1−l1∑

s1=0

r2−l2∑

s2=0

as1,s2i
s1js2 for all (i, j) ∈ [0 .. N1] × [0 .. N2].

By linearity, to prove (4), it suffices to show that
∑

i∈[0 .. N1]
j∈[0 .. N2]

is1js2P l1
i (x)Ql2

j (y)Ai(x)Bj(y) = 0 (5)

for all s1 ∈ [0 .. r1 − l1] and s2 ∈ [0 .. r2 − l2]. Notice that (5) can be factored as

(
N1∑

i=0

is1P l1
i (x)Ai(x)

)⎛

⎝
N2∑

j=0

js2Ql2
j (y)Bj(y)

⎞

⎠ = 0.
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Recall that [6, Claim 3]

k1∑

i=1−k1

p(i)P l(τ − i)A(τ − i) = 0 (6)

for all τ ∈ [0, 1] and univariate polynomials p whose degree does not exceed
min {l − k1, 2k1 − 1 − l}. A similar statement holds for Ql and B.

Let p(x) = xs1 and q(y) = ys2 . Notice that s1 ≤ r1 − l1 and s2 ≤ r2 − l2;
it immediately follows that s1 + l1 ≤ r1 ≤ 2k1 − 1 and s2 + l2 ≤ r2 ≤ 2k2 − 1.
Moreover,

s1 + s2 ≤ (r1 + r2) − (l1 + l2) ≤ (2m + 1) − (m + 1) = m ≤ l1 + l2 − 1.

It follows that at least one of the inequalities s1 ≤ l1−1, s2 ≤ l2−1 holds. Suppose
that s1 ≤ l1 − 1 (the other case is similar), then deg p ≤ min {l1 − 1, 2k1 − l1},
thus by (6) we have

k1∑

i=1−k1

is1P l1 (τ − i) A (τ − i) = 0 for all τ ∈ [0, 1]. (7)

There is such i0 ∈ [k1−1 .. N1−k1] that x ∈ [t(1)i0
, t

(1)
i0+1] (remark: it is possible

that there are several such indices i0, i.e., x = t
(1)
i′ for some i′ ∈ [k1 .. N1−k1−1];

then any of these indices can be chosen, say, i0 = i′).
Then suppAi ⊂ [i0 − k1 + 1 .. i0 + k1]; letting τ = (x − t

(1)
i0

)/h1 ∈ [0, 1] we
have (x − t

(1)
i0+i)/h1 = τ − i, and P l1

i (x)Ai(x) = P l1 (τ − i) A (τ − i). Hence

N1∑

i=0

is1P l1
i (x)Ai(x) =

k1∑

i=1−k1

is1P l1 (τ − i) A (τ − i) = 0,

where the last equality is due to (7). But this implies that (4) holds and we
conclude that

Fm(f, x, y) =
∑

i∈[0 .. N1]
j∈[0 .. N2]

∑

l1∈[0 .. r1]
l2∈[0 .. r2]

cl1,l2i,j P l1
i (x)Ql2

j (y)Ai(x)Bj(y).

Now from (3) and the Ruspini condition it follows that

Fm(f, x, y) = f(x, y)
∑

i∈[0 .. N1]
j∈[0 .. N2]

Ai(x)Bj(y) = f(x, y).
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5 Approximation of Smooth Functions

Theorem 2. Suppose that k1, k2 ∈ N and non-negative integers r,m satisfy r ≤
min {2k1 − 1, 2k2 − 1, 2m + 1}. Let f be a function from Cr+1 ([a, b] × [c, d]) and
Fm(f, ·) be its inverse Fm-transform with respect to the generalized fuzzy partition
based on two-variable B-splines of degree 2k1 − 1 and 2k2 − 1, respectively.

Then for all (x, y) from [â, b̂]× [ĉ, d̂] (defined by (2)) the following estimation

f(x, y) − Fm(f, x, y) = O(hr+1)

holds, where h = max {h1, h2}.
Proof. We apply for function f the Taylor formula with the Lagrange form of
the remainder:

f(x, y) = pr(f, x, y) +
1

(r + 1)!
dr+1f (x0 + θ1(x − x0), y + θ2(y − y0)) ,

where pr(f, ·, ·) is the Taylor polynomial for f , deg pr ≤ r, (x0, y0) is the point
of expansion, θ1, θ2 ∈ [0, 1].

Then
f(x, y) − Fm(f, x, y) = Rr(x, y) − Fm(Rr, x, y),

where Rr(x, y) = f(x, y) − pr(x, y). Taking into account that all partial deriva-
tives

∂r1+r2f

∂xr1∂yr2
for r1, r2, s.t. r1 + r2 ≤ r + 1,

are continuous on [a, b]×[c, d], we obtain that Rr(x, y) = O(hr+1) holds whenever
x − x0 = O(h) and y − y0 = O(h).

To estimate the approximation error f(x, y) − Fm(f, x, y) we assume that
x ∈ [t(1)i0

, t
(1)
i0+1], y ∈ [t(2)j0

, t
(2)
j0+1] and take x0 = t

(1)
i0

and y0 = t
(2)
j0

. Clearly, this
choice ensures that Rr(x, y) = O(hr+1). To estimate Fm(Rr, x, y), we use the
formula

Fm(Rr, x, y) =
i0+k1∑

i=i0−k1+1

j0+k2∑

j=j0−k2+1

∑

l1+l2≤m
l1,l2≥0

cl1,l2i,j (Rr)P l1
i (x)Ql2

j (y)Ai(x)Bj(y),

where cl1,l2i,j (Rr) is defined as in (1). Let us show that cl1,l2i,j (Rr) = O(hr+1),
P l1
i (x) = O(1), Ql2

j (y) = O(1), then (since clearly Ai(x)Bj(y) = O(1)) the
estimation Fm(Rr, x, y) = O(hr+1) will immediately follow.

Let (i, j) ∈ [i0 − k1 + 1 .. i0 + k1] × [j0 − k2 + 1 .. j0 + k2] and l1 ∈ [0 .. r1],
l2 ∈ [0 .. r2] be fixed. By Cauchy inequality,

∣
∣
∣
∣

〈
Rr, P

l1
i Ql2

j

〉

i,j

∣
∣
∣
∣ ≤ ‖Rr‖i,j ·

∥
∥
∥P l1

i Ql2
j

∥
∥
∥
i,j

= ‖Rr‖i,j
∥
∥P l1Ql2

∥
∥

√
h1h2.
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Fig. 2. Difference between f(x, y) = sin(2π2xy) and its inverse F 1-transform

Therefore
∣
∣
∣c

l1,l2
i,j (Rr)

∣
∣
∣ ≤ ‖Rr‖i,j

‖P l1Ql2‖√
h1h2

. On the other hand, from the mean value

theorem we have

‖Rr‖2i,j = 4k1k2h1h2R
2
r(t1, t2)Ai(t1)Bj(t2)

for some (t1, t2) ∈ E
(1)
i × E

(2)
i . Since Rr(t1, t2) = O(hr+1), we obtain that

cl1,l2i,j (Rr) = O(hr+1).

Since |i − i0| ≤ k1+1 and P l1
i (x) = P l1

(
x−t

(1)
i

h1

)

, we have x−t
(1)
i = O(h) and

x−t
(1)
i

h1
= O(1), thus also P l1

i (x) = O(1). Similarly, Ql2
j (y) = O(1). We conclude

that Fm(Rr, x, y) = O(hr+1) and, as claimed,

f(x, y) − Fm(f, x, y) = Rr(x, y) − Fm(Rr, x, y) = O(hr+1).

Example. In Fig. 2 we show the difference between the original function f(x, y) =
sin(2π2xy) and its inverse F 1-transform in two cases: with less basic functions
(the left figure: N1 = N2 = 17) and with more basic functions (the right figure:
N1 = N2 = 27) (for the sake of clarity [a, b] and [c, d] are chosen so that in both
cases the Ruspini condition is fulfilled on [0, 1] × [0, 1]). In both cases the fuzzy
partitions are generated by cubic B-splines.

6 Conclusion

The paper is devoted to the continuous version of Fm-transforms based on
B-splines of two variables. It is proved that it is possible to improve the approxima-
tion properties of two-dimensional fuzzy transforms by using B-splines as a tool for
generating a fuzzy partition. Taking into account that a large part of applications
(including applications in image processing) of the technique of F -transforms cor-
responds to the discrete case, we consider the extension of our approach to this case
as one of main directions for our future research. We see that the obtained results
will allow us to receive good approximative properties also for two-dimensional dis-
crete Fm-transforms based on B-splines of two variables.
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Abstract. Many image processing and computer vision applications
require a preprocessing of the image to remove or reduce noise. Gaussian
noise is a challenging type of noise whose removal has led to the pro-
posal of several noise filters. In this paper we present a novel version of
the morphological filters based on amoebas with the aim to incorporate
fuzzy logic into them to achieve a better treatment of the uncertainty.
The experimental results show that the proposed algorithm outperforms
the classical amoeba-based filters both from the visual point of view and
the quantitative performance values for images corrupted with Gaussian
noise with standard deviation from 10 to 30.

Keywords: Noise reduction · Fuzzy mathematical morphology · Mor-
phological amoebas · t-norms · Fuzzy implications

1 Introduction

One of the most important problems in image processing is the image noise
reduction. In many cases, due to various reasons, the image acquiring process
is affected by the introduction of unwanted information. There are mainly three
types of noise models: the impulsive noise, in which only some of the pixels of
the image are affected; the additive noise, where the value of a random vari-
able with a certain distribution is added to all the pixels of the image; and the
multiplicative noise, which depends on the intensity level (an example would be
the speckle noise). This article deals with the additive noise introduced by a
Gaussian distribution (called Gaussian noise).

Different techniques and methods have been proposed to reduce Gaussian
noise, see [20] for a recent review. One of these approaches is the spatial domain,
which includes local or non-local filters, that attempt to take advantage of the
correlations which exist in most natural images [20]. Another well-known filters
are Wiener, mean, Gaussian, anisotropic, median or bilateral. Another category
is the transform domain filtering methods, where the images are represented by
orthonormal basis with a series of coefficients. Examples of this technique are
the wavelets based methods [20]. Finally, we can cite also learning-based filtering
methods [6,23] and mathematical morphology based filters [1,17].
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 660–671, 2016.
DOI: 10.1007/978-3-319-40596-4 55
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Although all these methods deal well enough with the reduction of the
Gaussian noise, in many cases this noise reduction implies an alteration of rel-
evant information of the image such as contours or different textures. These
alterations can cause serious problems with further processing of the image.
Trying to solve this last problem, a new proposal was made by Lerallut et al.
[16], where the concept of morphological amoebas was introduced. The main
idea of this approach is to use dynamic structuring elements in the application
of the morphological operators, in opposition to what is usually done in classic
filtering, where there is only one kernel or structuring element, which does not
depend on the pixel where is being applied.

From another side, the fuzzy mathematical morphology generalizes the binary
morphology [19] using concepts and techniques of the theory of fuzzy sets [3,13].
This theory allows a better processing and a representation with higher flexibility
of the uncertainly and the ambiguity present in each level in an image. The four
basic morphological operations are dilation, erosion, closing and opening and
because the grey level images can be viewed as fuzzy sets (see [18]), morpho-
logical fuzzy operators can be defined using fuzzy tools. Therefore, conjunctions
(continuous t-norms and uninorms, see [12]) and their residuals implications have
been used. Fuzzy mathematical morphology has been applied in different studies
to remove salt-and-pepper noise [9,10], obtaining competitive results. The idea
of this work is to bring the morphological amoebas into the fuzzy mathematical
morphology, in order to apply them to reduce Gaussian noise. To accomplish this
goal, we propose an algorithm that based on the ideas behind some non-local
filters such as [4] assigns grey-level values to the pixels of the amoeba according
to a similarity measure.

The structure of the communication is as follows. In the next section, the
Gaussian noise model and the definitions and properties of the fuzzy morpho-
logical operators are recalled. In Sect. 3 the morphological amoebas are studied
and defined from the fuzzy mathematical morphology point of view, and a new
algorithm based on them is proposed. Then, in Sect. 4 the numerical results of
the performed experiments are analysed. In the last section some conclusions
and future work are discussed.

2 Preliminaries

2.1 Noise Models

Noisy sensors or transmission channels are the main sources of noise in digital
images. One type of noise is the Gaussian noise, that is created during the acqui-
sition phase due to poor illumination of sensors, high temperature, transmission,
etc. It has a Gaussian distribution being one of the toughest types of noise to

reduce. Its probability density function is given by p(x) = 1
σ

√
2π

e− (x−μ)2

2σ2 , where
μ is its mean and σ, its standard deviation.

Let F be the original image and F be the image corrupted with Gaussian
noise of mean μ and standard deviation σ. If x is a pixel and F (x) and F (x) are
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the grey level values of images F and F , respectively, we have F (x) = F (x)+G(x)
where G(x) is a random value of a Gaussian distribution of mean μ and standard
deviation σ.

2.2 Fuzzy Mathematical Morphology

Fuzzy morphological operators are defined using fuzzy operators such as fuzzy
conjunctions, like t-norms, and fuzzy implications. More details on these logical
connectives can be found in [14] and [2], respectively. Let us recall the definitions
of t-norms and fuzzy implications.

Definition 1 [14]. A t-norm is a commutative, associative, non-decreasing
function T : [0, 1]2 → [0, 1] with neutral element 1, i.e., T (1, x) = x for all
x ∈ [0, 1].

Definition 2 [2]. A binary operator I : [0, 1]2 → [0, 1] is a fuzzy implication if
it is non-increasing in the first variable, non-decreasing in the second one and it
satisfies I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

A well-known way to obtain fuzzy implications is the residuation method.
Given a t-norm T , the binary operator IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}
is a fuzzy implication called the residual implication or the R-implication of T .

The different t-norms and the different residual implications that will be
considered in Sect. 4 are displayed in Table 1.

Table 1. Considered t-norms with their residual implications.

Name t-norm Residual implication

Minimum TM(x, y) = min(x, y) IGD(x, y) =

{

1 if x ≤ y

y if x > y

Nilpotent Minimum TnM(x, y) =

{

0 if x + y ≤ 1

min(x, y) otherwise
IFD(x, y) =

{

1 if x ≤ y

max(1 − x, y) if x > y

�Lukasiewicz TLK(x, y) = max(x + y − 1, 0) ILK(x, y) = min(1, 1 − x + y)

Using the previous operators, we can define the basic fuzzy morphological
operators such as dilation and erosion. We will use the following notation: T
denotes a t-norm, I a fuzzy implication, F a grey-level image, and B a grey-
level structuring element (see [13] for formal definitions), dF denotes the set of
points where F is defined and Tv(F ) is the translation of a fuzzy set F by v ∈ R

n

defined by Tv(F )(x) = F (x − v).

Definition 3 [18]. The fuzzy dilation DT (F,B) and the fuzzy erosion EI(F,B)
of F by B are the grey-level images defined by

DT (F,B)(y) = sup
x∈dF ∩Ty(dB)

T (B(x − y), F (x)),

EI(F,B)(y) = inf
x∈dF ∩Ty(dB)

I(B(x − y), F (x)).
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From the fuzzy erosion and the fuzzy dilation, the fuzzy opening and the
fuzzy closing of a grey-level image F by a structuring element B can be defined.

Definition 4 [7]. The fuzzy closing CT,I(F,B) and the fuzzy opening
OT,I(F,B) of F by B are the grey-level images defined by

CT,I(F,B)(y)=EI(DT (F,B),−B)(y), OT,I(F,B)(y)=DT (EI(F,B),−B)(y).

A more detailed account on these operators, their properties and applications
can be found in [7,8,11,18]. In particular, when I is the R-implication of T , most
of the desirable algebraical properties of a mathematical morphology hold.

3 Introducing Fuzziness in Morphological Amoebas

In this section, we review the literature concerning morphological amoebas, the
morphological operators derived from them and some of the applications where
these operators have been used. In particular, the definition of a morphological
amoeba and the idea and motivation behind its introduction is recalled. After
that, we introduce the definition of a fuzzy morphological amoeba and the basic
morphological operators (erosion, dilation, closing and opening) derived from
them. From these operators, a filtering algorithm for Gaussian noise reduction
based on these operators is proposed.

3.1 Morphological Amoebas

As we have already commented, mathematical morphology uses an structuring
element to process the image. Traditionally, this structuring element is usually a
fixed, space-invariant image in all the pixels of the image. However, this approach
has an important drawback. Since the local features of an image change in general
all over the image, a fixed structuring element may not be the best option to
process all the pixels of the image. In particular, fixed structuring elements may
remove thin elements or displace contours leading to a bad performance of the
concrete algorithm applied to the image. This effect is particularly highlighted in
noise reduction applications. In this field, the performance of a filter is usually
evaluated in terms of a balance between the noise reduction or removal and
the preservation of the features (edges, texture) of the image. This trade-off is
problematic because if one wants to design a morphological filter to remove high
percentages of noise, a large structuring element must be chosen. However, in
this case, the small details of the image are removed hindering the restoration
of the image.

To overcome this problem, adaptive structuring elements have been proposed.
These structuring elements are able to adapt themselves to the content of the
image in each pixel keeping the details of the image. One of the most important
and successful approaches in this topic is the one based on morphological amoe-
bas introduced in [16]. An amoeba is an organism which is capable of altering
its shape by extending and retracting its pseudopods, temporary extensions of
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its cell. The behaviour and ability of this organism induced the proposal of some
morphological operators based on adaptive structuring elements, called morpho-
logical amoebas which try to reproduce this behaviour. Thus, for each pixel of
the image, the shape of the amoeba is computed through the concept of amoeba
distance.

Definition 1 [16]. The amoeba distance dλ with parameter λ > 0, λ ∈ R,
between two pixels x, y of an image F is given by:

dλ(x, y) =

{
0 if x = y,
min

σ(x,y)
L(σ(x, y)) if x �= y,

where σ(x, y) = {x = x0, x1, . . . , xn = y} is a path between these two pixels and
L(σ(x, y)) denotes the length of the path σ(x, y) and it is given by

L(σ(x, y)) =
n∑

i=0

(1 + λ · |F (xi) − F (xi+1)|).

It is necessary to bound the extension of the amoeba. In practice, fixed a pixel
x, we will only compute the amoeba distance of this pixel x to all the pixels in a
concrete window Wx centred in x. Thus, the amoeba is limited by this window and
it is also limited to those pixels with an amoeba distance lower than a maximum
amoeba distance dmax. Specifically, A(x) = {y | y ∈ Wx, dλ(x, y) ≤ dmax}.

Once the construction of the amoeba is established, in [16], the morphological
operators based on morphological amoebas are defined.

Definition 2 [16]. The morphological dilation D(F ) and the morphological
erosion E(F ) based on morphological amoebas of an image F are defined as

D(F )(x) = max
z∈A(x)

F (z), E(F )(x) = min
z∈A(x)

F (z),

where A(x) is the amoeba of pixel x.

Remark 1. The morphological dilation and morphological erosion given in
Definition 2 are equivalent to the t-morphological operators for grey-level images
(see [18] for more details) where now, the maximum and the minimum are not
computed using a fixed structuring element, but on the pixels of the amoeba.

From these two basic morphological operators, the morphological closing and
the morphological opening based on morphological amoebas can be defined.

Definition 3 [16]. The morphological closing C(F ) and the morphological
opening O(F ) based on morphological amoebas of an image F are defined as
C(F ) = E(D(F )) and O(F ) = D(E(F )), respectively.

Note that when the closing or the opening based on morphological amoebas
are computed, every pixel is affected by two amoebas, the one computed from the
original image when the dilation is applied and then, the one computed from the
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dilated image when the erosion is applied. These two morphological operators
are the basis of the so-called alternate filters (see [19,21]), given by combinations
of openings and closings. Although in some morphological frameworks, in par-
ticular for fixed structuring elements, the filters C(O(F )), O(C(F )), O(O(F ))
and C(C(F )) are increasing and idempotent, this is not true in the amoeba
framework due to the change of the amoeba in each step of the filter. When
this occurs, the so-called Alternate Sequential Filters ASF (see [19,21]), which
are combinations of the alternate filters, can be defined. These operators based
on morphological amoebas are defined in [16] and their performance is visu-
ally assessed. Nevertheless, the authors state that the basic filters that apply
the median or the mean over the amoebas are computationally less expensive
and provide similar results than the ASF filters. We will denote by mean(F )
and median(F ) these two amoeba-based filters. These two last filters will be
considered in Sect. 4 and compared with the filter presented in this paper.

3.2 Fuzzy Morphological Amoebas and Derived Alternate Filters

Once we have recalled the motivation and the definitions of the classical mor-
phological amoebas, we want to introduce fuzziness into their definition and
to propose fuzzy morphological operators based on these fuzzy morphological
amoebas. The main problem that we have to overcome to achieve this goal is
related to the grey-level values of the pixels of the amoeba. While in classical
grey-level t-morphological operators, the structuring element has no grey-level
values and it is only used to select those pixels from which the maximum or the
minimum is computed, in fuzzy morphological operators the grey-level pixels of
the structuring element play a key role (see Definition 3). Therefore, the fuzzy
morphological amoeba FA at a pixel x of the image F is computed through the
following steps:

1. The classical morphological amoeba A(x) at that pixel is computed using
Definition 1 within a window centred at x of size Lws.

2. For each pixel y of the amoeba, we consider a window centred at y of size
Sws < Lws and a window of the same size centred at x and we construct the
subimages Fy and Fx of F given by these two windows.

3. A degree of similarity between Fy and Fx is computed using the following
similarity measure:

EQσDI(Fy, Fx) = 1 − 1

(Sws)2

∑
z∈d(Fy)∩Tx−y(dFx )

|Fy(z) − Fx(z − x + y, z − x + y)|.

This measure has interesting properties [5]: 0 ≤ EQσDI ≤ 1 and larger values
of EQσDI are indicators of a greater similarity between Fx and Fy.

4. We assign a value of sgl ∈ [0, 1] to the grey-level of the pixels y of the
amoeba with a lowest value EQσDI(Fy, Fx). We assign 1 to the grey-level of
the pixels y of the amoeba such that EQσDI(Fy, Fx) = 1. The grey-levels of
the remaining pixels of the amoeba are assigned proportionally, that is

FAx(y) = 1 − (1 − EQσDI(Fy, Fx)) · 1 − sgl

1 − minz∈A(x) EQσDI(Fz, Fx)
.
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We will denote by FAsgl,Lws,Sws
x the fuzzy morphological amoeba at a pixel

x computed using the previous steps, to make explicit the dependence of the
amoeba to the parameters sgl, Lws and Sws. The idea behind this algorithm is
analogous to the one presented in [4]. There, it is stated that every small window
in a natural image has many similar windows in the same image. As greater is
the similarity between the small window centred at a pixel x and the one centred
at a pixel y, greater should be the weight of y into the denoising of x. Thus, as
greater is the similarity, greater is the grey-level value of a pixel of the amoeba.
Taking into account the previous discussion, the fuzzy morphological operators
given in Definition 3 can be rewritten using these fuzzy morphological amoebas.

Definition 5. The fuzzy morphological dilation DT (F ), erosion EI(F ), clos-
ing CT,I(F ) and opening OT,I(F ) of an image F using the fuzzy morphological
amoebas FAsgl,Lws,Sws

x with x ∈ dF , denoted by FAx for short, are respectively
the grey-level images defined by for all y ∈ dF

DT (F )(y) = sup
x∈dF ∩dF Ay

T (FAy(x), F (x)),

EI(F )(y) = inf
x∈dF ∩dF Ay

I(FAy(x), F (x)),

CT,I(F )(y) = EI(DT (F ))(y), OT,I(F )(y) = DT (EI(F ))(y).

Since it can be checked that FAsgl,Lws,Sws
x (x) = 1 for all x ∈ dF , the following

proposition gives some inclusions between the fuzzy morphological operators
based on fuzzy morphological amoebas.

Proposition 6. Let F be an image. The following inclusions hold:

EI(F ) ⊆ F ⊆ DT (F ), EI(F ) ⊆ OT,I(F ), CT,I(F ) ⊆ DT (F ).

From the fuzzy morphological closing and opening, we can define the alternate
filters CT,I(OT,I(F )), OT,I(CT,I(F )), OT,I(OT,I(F )) and CT,I(CT,I(F )). These
operations can be useful to reduce Gaussian noise as it will be shown in Sect. 4.
In Fig. 1, the images obtained after applying the fuzzy morphological operators
based on fuzzy morphological amoebas to an image corrupted with Gaussian
noise are depicted. In addition, the result obtained by the filter OT,I(CT,I(F ))
is also included. The Gaussian noise has been notably reduced while the details
and texture of the image have been preserved.

4 Experiments

In this section we develop some experimental results to show the potential of
the alternate filters defined from fuzzy morphological operators based on fuzzy
morphological amoebas. Specifically, we have compared the performances of
the alternate filter OT,I(CT,I) using TM, TnM and TLK and their corresponding
R-implications with the well-known methods of classic amoebas using mean and
median filters (see previous section for details) and the Kuwahara filter [15].



Gaussian Noise Reduction Using Fuzzy Morphological Amoebas 667

(a) Original image (b) Gaussian σ = 15 (c) Fuzzy dilation (d) Fuzzy erosion

(e) Fuzzy closing (f) Fuzzy opening (g) Alt. filter OC

Fig. 1. Images obtained applying some fuzzy morphological operators based on fuzzy
morphological amoebas with T = TM and its residual implication.

4.1 Framework

For the experiments, 15 images of the miscellaneous volume of the USC-SIPI
image database of the University of South Carolina1 have been selected and
corrupted with Gaussian noise with μ = 0 and σ ∈ {10, 15, 20, 25, 30}. The six
filters have been applied to these images and their results have been compared.

In addition to the visual comparison of the filtered images obtained by the
filters, the restoration performance will be quantitatively measured by the widely
used performance objective measure SSIM. Let F1 and F2 be two images of
dimensions M × N . In the following, we suppose that F1 is the original noise-
free image and F2 is the restored image for which some filter has been applied.
The structural similarity index measure (SSIM) was introduced in [22] under
the assumption that human visual perception is highly adapted for extracting
structural information from a scene. The measure is defined as follows:

SSIM(F2, F1) =
(2μ1μ2 + C1)

(μ2
1 + μ2

2 + C1)
· (2σ12 + C2)
(σ2

1 + σ2
2 + C2)

,

where μk, k = 1, 2 are the means of the images F1 and F2 respectively, σ2
k

is the variance of each image, σ12 is the covariance between the two images,
C1 = (0.01 ·255)2 and C2 = (0.03 ·255)2. Larger values of SSIM (0 ≤ SSIM ≤ 1)
are indicators of better capabilities for noise reduction and image recovery.

1 This image database can be downloaded from http://sipi.usc.edu/database/misc.
tar.gz.

http://sipi.usc.edu/database/misc.tar.gz
http://sipi.usc.edu/database/misc.tar.gz
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Table 2. Parameters of the alternate filter OT,I(CT,I) for the three considered t-
norms and their corresponding R-implications. For all the configurations, it has been
used dmax = 0.196.

t-norm σ LwS SwS λ sgl σ LwS SwS λ sgl σ LwS SwS λ sgl

TM

10
7 3 7.0 0.118

15
7 3 3.2 0.118

20
9 3 2.1 0.118

TnM 7 3 4.5 0.039 7 3 3.0 0.039 9 3 2.1 0.039
TLK 9 3 4.3 0.004 9 3 3.0 0.004 9 3 2.15 0.004

TM

25
9 3 1.8 0.0118

30
9 3 1.55 0.118

TnM 9 3 1.75 0.039 9 3 1.55 0.039
TLK 9 3 1.8 0.004 9 3 1.5 0.004

Table 3. Mean (x) and standard deviation (s) of the SSIM values obtained by the
considered filters and number of images in which every configuration OT,I(CT,I) out-
performs the other three methods.

σ = 10 σ = 15

Method x s # Images x s # Images

OT,I(CT,I) (TnM) 0.9105 0.0527 0.8596 0.0695
OT,I(CT,I) (TM) 0.8891 0.0678 0.8545 0.0719
OT,I(CT,I) (TLK) 0.9135 0.0525 0.8615 0.0716
Classic amoebas (mean) 0.8901 0.8090 (12, 12, 11) 0.8085 0.1109 (12, 12, 12)
Classic amoebas (median) 0.8947 0.0688 (12, 12, 12) 0.8201 0.0976 (12, 12, 12)
Kuwahara 0.8774 0.0572 (13, 7, 13) 0.8372 0.0652 (13, 12, 13)

σ = 20 σ = 25

OT,I(CT,I) (TnM) 0.8089 0.0815 0.7619 0.0893
OT,I(CT,I) (TM) 0.8081 0.0816 0.7605 0.0903
OT,I(CT,I) (TLK) 0.8103 0.0818 0.7618 0.0899
Classic amoebas (mean) 0.7418 0.1273 (12, 12, 12) 0.6727 0.1404 (12, 13, 13)
Classic amoebas (median) 0.7560 0.1148 (12, 12, 12) 0.6891 0.1283 (12, 13, 13)
Kuwahara 0.7937 0.0731 (13, 12, 12) 0.7494 0.0799 (11, 10, 12)

σ = 30
OT,I(CT,I) (TnM) 0.6992 0.0984
OT,I(CT,I) (TM) 0.7143 0.0946
OT,I(CT,I) (TLK) 0.7173 0.0922
Classic amoebas (mean) 0.6117 0.1460 (14, 13, 13)
Classic amoebas (median) 0.6282 0.1364 (14, 13, 11)
Kuwahara 0.7073 0.0838 (7, 11, 11)

4.2 Experimental Results

First of all, in Table 2, for every σ, the best parameters values for the filter
OT,I(CT,I) with the three different t-norms and residual implications have been
established according to the SSIM values. These parameters values have been
used for the comparison with the other considered filters.

In Table 3, we show the mean, standard deviation and the number of images
in which every configuration of OT,I(CT,I) outperforms the other three filters.
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10 15 20 25 30
0.4

0.6

0.8

1

SSIM

OT,I(CT,I)(TnM)
OT,I(CT,I)(TM)
OT,I(CT,I)(TLK)
Classic amoebas (mean)
Classic amoebas (median)
Kuwahara

σ

Fig. 2. Plot of the mean of the SSIM measures of the 15 images.

(a) Input original
image

(b) Gaussian noise
image σ = 20

(c) OT,I(CT,I) (TnM),
SSIM = 0.8523

(d) OT,I(CT,I) (TM),
SSIM = 0.8526

(e) OT,I(CT,I) (TLK),
SSIM = 0.8513

(f) Amoeba mean,
SSIM = 0.7537

(g) Amoeba median,
SSIM = 0.7700

(h) Kuwahara filter,
SSIM = 0.8292

Fig. 3. Results obtained by the different filters for the corrupted image in (b).

For instance, with σ = 10, OT,I(CT,I) with TnM or TM outperform in 12 of the
15 images the classic amoeba-based mean filter, while with TLK outperforms in
11 of the images. As it can be seen, the OT,I(CT,I) with TLK and its residual
implication has the highest mean for all the different values of σ (see Fig. 2).
Moreover, the Wilcoxon statistical test concludes that the differences in average
with the second filter are statistically significant for all σ values except for σ = 30.
In addition to a higher mean value, the alternate filters OT,I(CT,I) and Kuwahara
have the lowest standard deviation of the SSIM measure. This fact ensures the
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robustness of this approach. In Fig. 3, we display the results obtained by the
different filters for the “Lenna” image corrupted with Gaussian noise σ = 20.

5 Conclusions and Future Work

In this paper, we have introduced the concept of fuzzy morphological amoebas
which are morphological amoebas that incorporate fuzziness in their expressions.
These amoebas are used to define fuzzy morphological operators. From these
operators, an alternate filter based on this theory has been proposed to remove
Gaussian noise in images. The filter has been tested using the t-norms TM, TnM

and TLK and it has been shown that it outperforms, both from the visual point
of view and the quantitative performance measure, other well-known Gaussian
filters as the classical amoebas filters based on the mean and the median and
the Kuwahara filter. The Wilcoxon statistical test ensures the superiority of the
alternate filter with TLK over the other filters.

As a future work, we want to compare this filter with other Gaussian filters
presented in the literature, to use some method to estimate the σ of the Gaussian
noise to determine which set of parameters has to be chosen in each image and
to consider other alternate filters to improve the results. Finally, we want to
analyse the potential use of fuzzy morphological amoebas in edge detection.

Acknowledgments. This paper has been partially supported by the Spanish grant
TIN2013-42795-P.
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Abstract. This paper proposes a fuzzy partitioning subspace cluster-
ing algorithm that minimizes a variant of the FCM cost function with a
weighted Euclidean distance and a penalty term. To this aim it consid-
ers the framework of proximal optimization. It establishes the expression
of the proximal operator for the considered cost function and derives
PFSCM, an algorithm combining proximal descent and alternate opti-
mization. Experiments show the relevance of the proposed approach.

Keywords: Fuzzy partitioning clustering · Subspace clustering · Prox-
imal descent

1 Introduction

Subspace clustering [1] is an unsupervised machine learning task that aims at
partitioning data into groups with strong internal similarity and external dissim-
ilarity (just as clustering) while also discovering the best subspaces to represent
these clusters. The identified subspaces are required to be minimal, yet sufficient
to describe the clusters they contain.

The definition of subspace clustering requires the identification of the clusters
and of their subspaces to be simultaneous: indeed, if either clusters or their
subspaces are known beforehand, the problem reduces to finding the subspaces
or correct description of the clusters, respectively. In addition, as opposed to
feature selection, different clusters are most of the time discovered in different
subspaces.

As briefly sketched in Sect. 2, there exist several families of techniques and
algorithms to solve the subspace clustering problem, as well as various represen-
tations of the subspaces, depending on the intended application of the subspace
clustering.

This paper places itself in the partitioning paradigm in a fuzzy setting and
produces clusters identified by a center. Moreover, it discovers axis-parallel sub-
spaces, which are thus identified by weights on the original data features. An orig-
inal cost function formalises these concepts and adds, to a FCM cost function [3]
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 675–686, 2016.
DOI: 10.1007/978-3-319-40596-4 56
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with weighted Euclidean distance, a penalty term expressing constraints to iden-
tify the relevant subspaces.

As this penalty term is not differentiable, standard optimization techniques
such as alternate optimization are not available. This paper introduces a novel
optimization scheme, exploiting tools from the proximal descent theory [8]. The
utilisation of such techniques is still relatively new in machine learning and in
clustering in particular [9].

This paper proposes an innovative implementation of this theoretical para-
digm in the fuzzy subspace clustering framework. It establishes a theorem giving
the expression of the proximal operator allowing the optimization of the consid-
ered cost function. Finally, it proposes an algorithm, called PFSCM, standing
for Proximal Fuzzy Subspace C-Means, using this result to solve the subspace
clustering problem through the combination of proximal descent and alternate
optimization.

This paper is structured as follows: in Sect. 2, related works and the scientific
context of subspace clustering are summed up. A new cost function is presented
and studied in Sect. 3. In Sect. 4, the implementation of proximal descent is
studied to optimize the proposed function, leading to the update equation from
which the PFSCM algorithm is derived. This algorithm is then experimentally
validated in Sect. 5.

2 Related Works

Subspace clustering [1] can be seen as a combination of clustering and feature
selection tasks, the latter being performed locally for each cluster. It aims at
identifying both a data decomposition into homogeneous and distinct subgroups
and the subspaces in which these clusters are defined. Figure 1 gives an example
of such clusters, contained in axis-parallel subspaces: although the data are 3-
dimensional, cluster c1 actually lives in the plane z = 0 and cluster c2 in the
plane y = 0.

A large number of approaches to the subspace clustering problem have been
explored in machine learning as well as in data mining or computer vision. A list
can be found in [12]. This paper focuses on iterative partitioning techniques. The
k-subspace algorithm [13] generalises the k-means approach, alternating between

c2

c1x

y

z

Fig. 1. Two clusters, contained in two different planes: c1 in (x, y) and c2 in (x, z).
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the assignation of points to the clusters and the estimation of subspaces to fit
these clusters. Witten and Tibshirani [14] propose a reformulation of the k-means
minimization problem into a maximization problem with a weighted distance.
An �1-based constraint is added in order to produce sparse weight vectors and
identify the subspaces. Qiu et al. [10] adapt this framework to fuzzy clustering
and compare it to some usual subspace clustering algorithms. Both the crisp and
fuzzy variants of these algorithms heavily modify the original k-means function
to formulate a maximization problem with a �1-regularization term, in order to
identify minimal subspaces.

Closer to the original k-means paradigm, the fuzzy c-means clustering algo-
rithm [3] has been adapted to the context of subspace clustering. Keller and
Klawonn [6] adapt the FCM cost function to use a weighted Euclidean distance.
Denoting (xi)n

i=1 ∈ R
d the datapoints of dimension d, c the number of clusters,

(uri) ∈ [0, 1] for i ∈ {1, . . . , n} and r ∈ {1, . . . , c} the fuzzy membership degree
of xi to cluster Cr, μr ∈ R

d the center of cluster Cr and (wrj) ∈ [0, 1] the weight
of dimension j for cluster Cr, they study the following cost function:

JK&K(C,U,W ) =
c∑

r=1

n∑

i=1

um
ri

d∑

j=1

wv
rj(xij − μrj)2 (1)

where m, v ∈ R are fuzzifiers which can be tuned by the user to specify the
level of fuzziness of the corresponding parameters and C,U,W are respec-
tively the matrices containing the centers (μr), the memberships (uri) and the
weights (wrj). The function is minimized under the following constraints:

– (C1) ∀i ∈ {1, . . . , n},
c∑

r=1
uri = 1 and (C2) ∀r ∈ {1, . . . , c},

n∑

i=1

uri > 0;

– (C3) ∀r ∈ {1, . . . , c},
d∑

j=1

wrj = a �= 0.

The first two constraints (C1) and (C2) are similar to the FCM ones. Con-
straint (C3) on the weights (wrj), where a is a user-defined parameter, is specific
to the subspace clustering problem and prevents the trivial solution such that
∀r,∀j, wrj = 0. The minimization of Eq. (1) under these constraints produces a
solution to the fuzzy subspace clustering problem. The computed weights (wrj)
indicate how close the points assigned to Cr are in dimension j. Figure 1 illus-
trates the relation between Eq. (1) and subspace clustering: cluster c1 lies in the
(x, y) plane. In the z dimension, its points are very close to its center; therefore,
minimizing JK&K amounts to maximizing w1z rather than w1x and w1y.

Borgelt [4] generalises Keller and Klawonn’s work and proposes to slightly
change the weights, so that the algorithm completely selects dimensions by
attributing a null weight to others. He introduces the following cost function,where
the terms um

ri and wv
rj are replaced with general fuzzification functions g and h [7],

which are supposed to be convex and differentiable on the [0, 1] interval:

JB(C,U,W ) =
c∑

r=1

n∑

i=1

h(uri)
d∑

j=1

g(wrj)(xij − μrj)2 (2)
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This function is optimized under the same constraints as JK&K . Experimental
results on artificial data show that Borgelt’s algorithm better selects subspaces.

Both Keller & Klawonn and Borgelt functions are differentiable in each para-
meter on the considered domains, which allows to retain the technical framework
of fuzzy c-means alternate optimization. They derive their algorithms from the
corresponding cost function through the usual Lagrangian technique and obtain
three update equations for parameters C, U and W .

3 Proposed Cost Function for Fuzzy Subspace Clustering

In this section, a new cost function is introduced to model the subspace clustering
problem and a study of its properties is conducted.

3.1 A Weighted Fuzzy c-Means Function

Using the same notations as in Sect. 2, we propose the following cost function:

J(C,U,W ) =
c∑

r=1

n∑

i=1

um
ri

d∑

j=1

w2
rj(xij − μrj)2 + γ

c∑

r=1

|
d∑

j=1

(wrj) − α| (3)

under the classic FCM constraints (C1) and (C2).
The first term is the same as Keller & Klawonn’s cost function, except for

the weight fuzzifier v which is set to 2, in order to simplify further mathematical
analysis of the function: it corresponds to a FCM cost function with a locally
weighted Euclidean distance.

The second term adds a cost to the function which prevents the sum of the
weights of each cluster Cr from being too far from the user-defined parameter α
which plays the same role as a in Keller & Klawonn’s (C3) constraint: for α �= 0,
it prevents the trivial solution W = 0. The user-defined parameter γ ∈ R is
used to balance out the two terms: it only needs to be large enough to penalize
trivial solutions. This term can also be interpreted as an “inlined” constraint
that incorporates constraint (C3), which does not need to be optimized through
the particular Lagrangian method, but rather allows the use of new optimization
techniques.

The cost function J in Eq. (3) thus conveys the idea of finding a solution
to the subspace clustering problem with a relaxed constraint, inspired by �1-
regularization [11].

3.2 Minimization of the Cost Function

Using the cost function J , solving the subspace clustering problem amounts
to finding the parameters (C∗, U∗,W ∗) that minimize J . This function can be
decomposed as follows:
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J(C,U,W ) = F (C,U,W ) + γG(W )

where F (C,U,W ) =
c∑

r=1

n∑

i=1

um
ri

d∑

j=1

w2
rj(xij − μrj)2

G(W ) =
c∑

r=1

Gr(Wr) =
c∑

r=1

|
d∑

j=1

(wrj) − α|

The function J verifies several properties of interest, which motivate and
validate the technique used in the next section. First, J is a convex function
of W , as it is the sum of convex functions.

F is differentiable in all three parameters and it can be shown that its gradi-
ent is Lipschitz-continuous for fixed C and U . These properties guarantee good
performances of well-known optimization algorithms, such as gradient descent.

For fixed W , minimizing J under constraints is equivalent to minimizing F .
As for fuzzy c-means, this can be done through alternate optimization. From the
above function and constraints, the two classic update equations for membership
degree and cluster centers are derived:

uri =
d

2
1−m

ri
c∑

s=1

d
2

1−m

si

where d2ri =
d∑

j=1

w2
rj(xij − μrj)2 (4)

and μrj =

n∑

i=1

um
ri · xij

n∑

i=1

um
ri

(5)

These two equations are used in the PFSCM algorithm described in Sect. 4
to update the terms uri and μr in order to find the minimum of J .

Function G is convex but not differentiable in the variable W , which prevents
the derivation of an update term for weight optimization and motivates the use
of proximal descent, proposed in the next section.

4 Proximal Descent for Weight Optimization

As it is not differentiable everywhere, the function J previously defined cannot
be optimized by classic alternate optimization. This section proposes a new algo-
rithm, PFSCM (which stands for Proximal Fuzzy Subspace C-Means), based on
an advanced technique of convex optimization: proximal descent [9].

In this section, the parameter of interest is the matrix of weights W , while C
and U are fixed. Therefore, J(C,U,W ) is noted J(W ) for the sake of simplicity.
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4.1 Proximal Descent

The cost function has the form J(W ) = F (W ) + γG(W ), where both functions
are convex but only F is differentiable and classic optimization techniques thus
cannot be applied. As this general form of function has gained interest in the
machine learning community (for example, when the second function G is a
regularization term), proximal descent has been studied as an alternative to
these techniques [2].

When γ = 0, usual optimization techniques would suggest to seek for the
minimum of F (0 in the particular case of Eq. (3)) by iterating some update
equation. For example, gradient descent considers a general equation of the form
W t+1 = W t − η · ∇F (W t), where t is the iteration index and η is a descent step
size. This simple optimization scheme provides an iterative algorithm in order
to minimize any convex function F , starting from any W 0 and iterating until
convergence.

As the function G is not differentiable, its gradient ∇G does not exist for
each W t. Proximal descent enriches gradient descent in the following way:

W t+1 = prox γ
L G

(

W t − 1
L

∇F (W t)
)

(6)

where prox γ
L G(W ′) = argmin

W

{
1
2
‖W − W ′‖2 +

γ

L
G(W )

}

(7)

where L > 0 is a descent step size, similar to η. That is, in order to solve a
global minimization problem, proximal descent solves a minimization problem
as defined by Eq. (7) at each step of the iteration.

Proximal descent can be understood as a technique of separating the descent
in two phases: first for the function F , then for G. Such a descent scheme is also
known as the “forward-backward” algorithm. In order to solve Eq. (7), proximal
descent approximates F around the current point of the iterative descent, W t:

argmin
W

{

F (W t) +
〈∇F (W t),W − W t

〉
+ γG(W ) +

L

2
‖W − W t‖2

}

= argmin
W

{
1
2
‖W − (W t − 1

L
∇F (W t))‖2 +

γ

L
G(W )

}

Here again, if γ = 0, this problem has a simple solution: gradient descent
scheme W t+1 = W t − 1

L∇F (W t), hence the scheme given in Eq. (6).
The key ingredient to efficiently implement the descent scheme defined by

Eq. (6) is the notion of proximal operator: it provides a closed-form expression
to the optimization problem defined by Eq. (7), which is often counter-intuitive,
yet simple to implement.

4.2 Efficient Weight Optimization with Proximal Operators

We establish in the following theorem a proximal operator for the penalty term
G(W ) = γ

∑c
r=1|

∑d
j=1(wrj) − α|. Let K be the vector (1, 1, . . . 1) ∈ R

1×d, such
that K · K

ᵀ = d.
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Theorem 1. Let Gr(Wr) = |∑d
j=1(wrj) − α| and L ∈ R.

prox γ
L Gr

(Wr) = Wr +
1
d
K

ᵀ · (α + proxγd
L |·|(K · Wr − α) − K · Wr) (8)

where proxλ|·|(x) = sign(x)max(|x| − λ, 0).

Moreover, prox γ
L G(W ) =

(
prox γ

L Gr
(Wr)

)

r=1...c
∈ R

d×c.

Proof. The proof uses results from [5,9]. First, Gr(Wr) = φ(K ·Wr) where φ(x) =
|x−α|. Using the translation and semi-orthogonal linear transform properties [5]:

proxGr
(Wr) = Wr +

1
d
K

ᵀ · (
proxφ(K · Wr) − K · Wr)

= Wr +
1
d
K

ᵀ · (
α + proxd|·|(K · Wr − α) − K · Wr)

Hence the expression of prox γ
L Gr

by the postcomposition property [9].
Finally, prox γ

L G is computed using the separable sum property of proximal
operators [9]. ��

Equation (8) gives the expression of a proximal operator for the G function
which can be used to efficiently implement the scheme defined in Eq. (6) to
update the current estimation of W .

As for gradient descent, the choice of L matters for the actual convergence
of the descent, as well as for its speed. We observe that setting L = trace(H−1)
yields good results, where H is the Hessian matrix of F (as a function of W ).
As F is simple enough, H is a diagonal matrix and does not depend on W .

4.3 A Fuzzy Subspace Algorithm: PFSCM

Using the previous mathematical results, we propose the PFSCM algorithm for
fuzzy subspace clustering (see Algorithm 1). PFSCM combines alternate opti-
mization of k-means-style algorithms for differentiable parameters with proximal
descent for the optimization of the weights.

Initialization is a typical issue of k-means-like algorithms. In this paper, initial
centers are randomly chosen and each cluster receives uniform weights for all
dimension. As most partitioning algorithms, the number c of clusters to identify
must be set by the user, as well as constants γ > 0 and α > 0.

The algorithm then iterates the update of all three parameters U , μ and W ,
much like alternate optimization in k-means algorithm. It consists of two alter-
nate inner loops: the regular parameters μ and U are optimized separately
from W , which requires the special optimization procedure described in the
previous subsection. Parameters μ and U are optimized one last time at the end
of the algorithm, in order to guarantee that the result takes the final computed
weights into account.

The convergence criteria are defined as the distance between the current and
the previous values of the parameters being optimized. In particular, convergence
for (μ,U) is defined as ‖μt − μt+1‖2 < ε ∨ ‖Ut − Ut+1‖2 < ε.
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Data: X: data matrix
Parameters: c,γ,α: numbers;
Variables: μ, U, W: arrays;

Wlast: array
Initialization: Wr ← (1, 1, . . . 1) for each Cr;

μ ← random centers
Output: μ, U, W
repeat

repeat
Update U according to Equation (4);
Update μ according to Equation (5)

until convergence(μ, U);
repeat

Update W according to Equation (7)
until convergence(W);
Wlast ←− W

until convergence(Wlast);
Update U and μ one last time.

Algorithm 1: The proximal fuzzy subspace clustering PFSCM algorithm

PFSCM outputs U , C and W . In order to exploit the result of the algorithm,
it may be of interest to extract the dimension associated to each cluster. To that
aim we propose to post-process the matrix W using an additional parameter
cut to cut out the irrelevant dimensions in a simple fashion: a dimension j for a
cluster Cr is considered relevant if wrj > cut.

5 Experimental Study

The proposed PFSCM algorithm has been tested on artificial data in order to
study its ability to correctly identify centers of non-circular clusters, as well as
the dimensions that are relevant to describe the clusters. The results show the
effectiveness of PFSCM in detecting the clusters and their subspaces. Moreover,
PFSCM is compared to Keller & Klawonn’s algorithm [6] and shows to provide
a better estimation of the dimensionality of the subspaces.

5.1 Illustrative Example

This subsection presents an illustrative experiment in d = 2 dimensions, similar
to the example given in Keller and Klawonn [6] and graphically represented in
Fig. 2: four clusters are generated, one of them (the top red one in Fig. 2) being
circular while the others have a very low variance in one dimension. PFSCM is
run with c = 4, m = 2, α = 1 and γ = 1000.

In Fig. 2 the points are colored according to the cluster Cr for which uri is
maximum and Table 1 presents the weights computed for each dimension and
cluster. It can be observed that PFSCM correctly identifies the desired clusters
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Fig. 2. Clustering example in two dimensions (Color figure online)

Table 1. Computed weights for the example given in Fig. 2. Column w1 (resp. w2)
denotes the weight associated to the x-axis (resp. y-axis).

Red cluster Yellow cluster Green cluster Blue cluster

w1 w2 w1 w2 w1 w2 w1 w2

Weights 0.528 0.472 0.063 0.937 0.027 0.973 0.964 0.036

and their dimensions: the two weights (w1, w2) found for the circular cluster are
similar, whereas the horizontal (respectively vertical) clusters verify w2 
 w1

(respectively w1 
 w2).
It is worth noting that, for this specific instance, some points close to the

blue cluster are assigned to one of the horizontal clusters, as it minimizes the
cost function. This kind of inliers is frequent in subspace clustering problems,
and naturally leads to the use of fuzzy membership values (uri). In a similar
fashion, moving the vertical cluster towards the center of the whole figure leads
to the “stealing” of some points of the red cluster by the blue one. However,
it can be observed that the identified dimensions for the circular cluster stay
relatively stable (both wrj > cut = 0.2), failing to recognize a non-flat cluster
only 4 times out of 100 in the specific situation where all generated centers are
vertically aligned.

5.2 Experimental Protocol

Considered Data. In order to validate PFSCM, the previous experiment is
generalized to higher dimensions, more precisely to artificial data of dimension
d ∈ {5, 7, 9, 11, 13, 15}. For each experiment, k = 4 centers c1, . . . , c4 are gener-
ated randomly in the hypercube [−3, 3]d with a minimum (Euclidean) distance
of 0.3 between the centers. Then, dr dimensions j1, . . . jdr

are randomly picked,
with dr randomly chosen between 1 and d− 3. Dimensions j1, · · · , jdr

are there-
after called the “relevant dimensions” for cluster Cr.
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For each cluster, 100 points are generated according to a Gaussian distri-
bution, with variance v < 0.1 for dimensions j1, . . . , jdr

and v ∈ [0.5, 0.9] for
other dimensions. The generated points in cluster r in dimension j thus fol-
low Xr ∼ N (cr, vj).

Algorithm Parameters. Keller & Klawonn’s algorithm is initialized with
FCM centers and uses m = v = 2, a = 1 and c = 4. PFSCM is ran with
m = 2, α = 1, γ = 1000 and c = 4. Both algorithms use the same convergence
criterion, with ε = 10−4.

The parameter cut is set to 1
2d , which is a simple rule of thumb to identify the

dimensions selected as relevant by the algorithms in each considered dimension d.

Quality Criteria. Both algorithms are evaluated on three metrics in order
to qualify their results and their ability to discover the desired clusters and
subspaces, and their dimensions.

First, let δ =
∑4

r=1 ‖μr −cr‖2 be the sum of the Euclidean distances between
the generated centers and the computed ones (μr): this metric is a standard
quality criterion for evaluating the produced clusters. A low value means that
the computed centers are close to the original ones.

We also consider θ defined as the percentage of clusters for which all relevant
dimensions are correctly identified by the algorithm: the relevant dimensions are
correctly identified if wrj > cut ⇔ j ∈ {j1, · · · jdr

}.
Finally, for the clusters for which the relevant dimensions have been correctly

identified, let the weight ratio φ = ω1
ωjdr

where ω1 is the largest computed weight
and ωjdr

the smallest computed weight for the relevant dimensions. This met-
ric computes the distortion of the cluster between the relevant dimensions, as
estimated by both algorithms.

5.3 Experimental Results

The results of the experiment are presented in Table 2 in the form of the means
and standard deviations of the three criteria, computed over 100 runs of each
algorithm. Both algorithms sometimes produce bad results, identifying centers
too far from the generated ones, which distort the means and standard deviations
of the previous metrics. Such outliers (less than 2% of the runs) have been
cleaned out of the results.

It can be observed that PFSCM correctly identifies the generated centers (as
shown by δ), and produces stable results in each dimension, as shown by the low
standard deviation. Moreover the algorithm, along with the proposed cut ratio
cut = 1

2d , performs well in selecting the relevant dimensions of the subspaces (as
shown by θ). Finally, the weights ratio φ is relatively stable when the number of
dimensions increases.

Keller & Klawonn’s algorithm correctly identifies the centers (cr) and the
difference with PFSCM is not meaningful. However it appears to miss out some
relevant dimensions of the generated subspaces. This is a general feature of the
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Table 2. Comparison between PFSCM and Keller & Klawonn’s algorithm

d δ φ θ

Mean SD Mean SD %

PFSCM 5 0.90 0.67 2.51 1.41 76

7 0.98 0.81 3.08 1.72 79

9 0.90 0.50 3.96 2.09 80

11 0.88 0.33 4.35 2.01 83

13 0.97 0.40 4.78 1.99 83

15 0.90 0.10 5.22 1.84 91

K&K 5 1.27 1.03 2.61 1.78 43

7 1.55 1.38 3.12 2.29 39

9 1.39 1.18 4.05 3.01 31

11 1.26 0.90 4.50 3.48 28

13 1.42 1.29 4.68 3.60 25

15 1.21 1.06 8.05 3.27 10

algorithm, which can be seen in [6] as well: although the most relevant dimension
is almost always identified, Keller & Klawonn’s algorithm gives a much smaller
weight to the other relevant dimensions, which is also shown by the larger mean
for φ. This feature can be modulated by tuning the value of the fuzzifier v, but
then this modification affects the weights of each dimension, including the most
relevant one.

In summary, PFSCM identifies the same clusters as Keller & Klawonn’s algo-
rithm, but produces a better estimation of the dimensions of the subspaces. It
is also more regular when the dimension d increases.

6 Conclusion and Future Works

This paper introduces a new approach to solve the fuzzy subspace clustering
problem with a cost function involving non-differentiable terms. Advanced opti-
mization techniques are explored, which replace the standard update equations
of fuzzy c-means-like algorithms.

Experiments on synthetic data show the relevance of the proposed approach,
that appears to correctly identify all the relevant dimensions and not more,
whereas Keller & Klawonn’s algorithm tends to underestimate the number of
relevant dimensions. This provides more information about the importance of
each dimension for the subspaces and clusters.

Future works will aim at generalizing this approach around the same key
ideas: a differentiable function matching the specification of the problem and one
or several penalty functions, expressing constraints on the shape of the solution.
The introduction of regularization terms for parameters other than W will also
be studied. Finally, more efficient descent schemes will be considered, in order
to speed up the descent.
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M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol.
5782, pp. 506–521. Springer, Heidelberg (2009)

14. Witten, D.M., Tibshirani, R.: A framework for feature selection in clustering. J.
Am. Stat. Assoc. 105, 713–726 (2010)



Participatory Learning Fuzzy Clustering
for Interval-Valued Data

Leandro Maciel1(B), Rosangela Ballini1, Fernando Gomide2,
and Ronald R. Yager3

1 Department of Economics Theory, Institute of Economics, University of Campinas,
Campinas, São Paulo, Brazil

{maciel,gomide}@dca.fee.unicamp.br, ballini@unicamp.br
2 Department of Electrical Engineering and Industrial Automation,

School of Electrical and Computer Engineering, University of Campinas,
Campinas, São Paulo, Brazil

3 Machine Intelligence Institute, Iona College, New Rochelle, NY, USA
yager@panix.com

Abstract. This paper suggests an interval participatory learning fuzzy
clustering (iPL) method for partitioning interval-valued data. Participa-
tory learning provides a paradigm for learning that emphasizes the per-
vasive role of what is already known or believed in the learning process.
iPL clustering method uses interval arithmetic, and the Hausdorff dis-
tance to compute the (dis)similarity between intervals. Computational
experiments are reported using synthetic interval data sets with linearly
non-separable clusters of different shapes and sizes. Comparisons include
traditional hard and fuzzy clustering techniques for interval-valued data
as benchmarks in terms of corrected Rand (CR) index for comparing
two partitions. The results suggest that the interval participatory learn-
ing fuzzy clustering algorithm is highly effective to cluster interval-valued
data and has comparable performance than alternative hard and fuzzy
interval-based approaches.

Keywords: Fuzzy clustering · Participatory learning · Interval data

1 Introduction

Data clustering plays an important role in several engineering and data process-
ing domains. As a method of unsupervised learning, clustering can be applied
in a wide range of fields such as data mining, pattern recognition, bioinformat-
ics, computer vision, image processing, information retrieval, etc. Clustering has
recently become a subject of great interest, mainly due the explosive growth in
the use of databases and the huge volume of data stored in them [2].

Clustering methods aim to partition a set of items into clusters or groups
within a given cluster have a high degree of similarity, whereas items belonging
to different clusters have a high degree of dissimilarity [1]. Clustering techniques
can broadly divided into hierarchical and partitioning methods. In hierarchical
methods, a complete hierarchy is built, i.e., a nested sequence of partitions of
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 687–698, 2016.
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the input data is constructed. On the other hand, in partitioning techniques the
objective is to obtain a single partition of the input data into a fixed number of
clusters by optimizing and objective function, in general.

Hard and fuzzy methods are the most popular partitioning clustering tech-
niques. Partitioning hard clustering methods construct disjointed clusters, in
which each object of the data set must be assigned to precisely one cluster,
whereas fuzzy partitioning clustering considers the idea of partial membership
of each patter in a given cluster, providing a fuzzy partition of the data. One of
the first fuzzy clustering methods was provided by [3]. The objective function
in this case was based on an adequacy criterion defined by Euclidian distances.
This method was further generalized by [4] which proposes the well-known fuzzy
C-means algorithm. [5] suggested the first adaptive fuzzy clustering algorithm,
which uses a quadratic distance defined by a full covariance matrix estimated
for each cluster1. Recently, in [7] fuzzy K-means clustering algorithms based on
adaptive quadratic distances are suggested. The distances are computed using
diagonal fuzzy covariance matrices estimated globally or defined by diagonal
fuzzy covariance matrices estimated locally for each cluster.

All these methods consider objects described by real-valued variables, i.e.,
the patterns to be grouped are usually represented as a vector of quantitative
or qualitative measurements where each pattern takes a single value for each
variable. When handling real world complex data, these models are very restric-
tive, since they do not take into account variability and/or uncertainty inherent
to the data. Instead of real numbers, variable must assume sets of categories
or intervals, possibly even with frequencies or weights, which comprise a new
domain of multivariate analysis, pattern recognition and artificial intelligence:
Symbolic Data Analysis (SDA) [1]. SDA includes methods such as clustering, fac-
torial techniques, decision trees, etc., for managing aggregated data described by
multi-valued variables represented by categories, intervals, sets, or probability
distributions [8].

There are several clustering methods for symbolic data, which differ in the
type of the considered symbolic data, in their structures and/or in the considered
clustering criteria. Considering the problem of partitioning clustering methods
for symbolic data, [9] extended the classical K-means method in order to manage
data characterized by numerical and categorical variables2. A dynamic cluster-
ing algorithm for symbolic data was suggested by [10]. The method considers
context-independent proximity functions, where the cluster representatives are
probability distributions vectors.

[11] addressed several clustering algorithms for symbolic data described by
intervals variables by the generalization of classical data analysis approaches.
Considering adaptive distances, [12] proposed partitioning clustering methods for
interval data based on city-block distances. Further, [7] suggested an algorithm
using an adequacy criterion based on adaptive Hausdorff distances.

1 [6] also used adaptive distances for quantitive data partition, however, the method
concerns hard partition.

2 A brief literature review of hierarchical clustering methods for symbolic data can be
found in [1].
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In terms of fuzzy clustering, [1] extends the fuzzy C-means clustering method
for symbolic interval data. The author presented adaptive and non-adaptive
fuzzy C-means clustering methods for interval data using an adequacy criterion
based on squared Euclidian distances between vectors of intervals. Similarly, [13]
introduced partitioning fuzzy K-means clustering models for interval-valued data
based on adaptive quadratic distances that change at each algorithm iteration
and can be either the same for all clusters and their representatives.

In [2], fuzzy Kohonen clustering networks for partitioning interval data are
suggested. More recently, [14] proposed an interval-valued possibilistic fuzzy
C-means clustering algorithm. The model use both fuzzy memberships and possi-
bilistic typicalities to model the uncertainty implied in the data sets, and develop
solutions to overcome the difficulties caused by type-2 fuzzy sets, such as the
construction of footprint of uncertainty, type-reduction and defuzzification.

The aim of this paper is to suggest a fuzzy clustering approach for sym-
bolic interval-valued data based on the Participatory Learning (PL) paradigm
introduced by [15]. Participatory learning provides a paradigm for learning that
emphasizes the pervasive role of what is already known or believed in the learn-
ing process. Central to this framework is the idea that for new information to
contribute to learning, it must display some compatibility or consistency with
what is already believed [16]. Therefore, the focus of this paper is to extend the
participatory learning clustering algorithm, proposed by [17], to the situation in
which the observations are interval-valued data. It suggests the interval partic-
ipatory learning fuzzy clustering (iPL) approach as a new framework to cluster
interval data. iPL clustering method uses interval arithmetic [18,19], and the
Hausdorff distance to compute the (dis)similarity between intervals. Computa-
tional experiments are reported using synthetic interval data sets with linearly
non-separable clusters of different shapes and sizes. The results of iPL are com-
pared against traditional hard and fuzzy clustering techniques for interval-valued
data, as suggested in [1], in terms of corrected Rand (CR) index [20] for com-
paring two partitions.

This paper proceeds as follows. After this introduction, Sect. 2 gives a brief
reminder of the interval arithmetic adopted in this work. Section 3 details the
participatory learning fuzzy algorithm for interval-valued data based on the
Hausdorff distance for intervals. Computational experiments using synthetic data
are shown in Sect. 4 in order to show the usefulness of the suggested approach
against traditional hard and fuzzy clustering methods for interval data. Finally,
Sect. 5 concludes the paper and suggests issues for further investigation.

2 Interval Arithmetic

In this paper an interval x is a closed bounded set of real numbers:

x = [xL, xU ] ∈ �, (1)

where � = {[xL, xU ] : xL, xU ∈ �, xL ≤ xU} is the set of closed inter-
vals of the real line �, xL the lower bound, and xU the upper bound of the
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interval. An m-dimensional interval vector x is an ordered m-tuple of intervals
x = [x1, x2, . . . , xm]T , where xj = [xL

j , xU
j ] ∈ �, j = 1, . . . ,m.

Interval arithmetic extends traditional arithmetic to operate on intervals.
This paper uses the arithmetic operations introduced by Moore [19]:

x + y = [xL + yL, xU + yU ],
x − y = [xL − yU , xU − yL],

xy =
[
min{xLyL, xLyU , xUyL, xUyU},max{xLyL, xLyU , xUyL, xUyU}]

,

x/y = x (1/y) , with 1/y = [1/yU , 1/yL]. (2)

Interval arithmetic subsumes classic arithmetic. This means that if an oper-
ation of interval arithmetic takes real numbers as operands, considering them as
intervals of length zero, then we obtain the same result as if the operation were
performed using traditional arithmetic.

The interval participatory learning fuzzy model requires a metric to measure
distances and (dis)similarities between intervals. This paper uses the Hausdorff
distance instead of the Euclidean distance as commonly used by the literature
[7]. If x and y are vectors of intervals, then the Hausdorff distance between x
and y, denoted by dH(x,y), is

dH(x,y) =
m∑

j=1

(
max

{|xL
j − yL

j |, |xU
j − yU

j |})
. (3)

The next section addresses iPL, the interval participatory learning fuzzy
clustering method for interval-valued data.

3 Interval Participatory Learning Fuzzy Clustering
Method

This section provides the interval participatory learning fuzzy clustering method
(iPL). One of the main characteristics of a clustering algorithm is to naturally
partition a data set X = {x1, . . . ,xN}, intervals xk in this paper, k = 1, 2, . . . , N ,
in c, 2 ≤ c ≤ N , fuzzy subsets of X, where c is the number of clusters and N the
number of observations. The main idea is to extend the participatory learning
fuzzy clustering method suggested by [17], a form of unsupervised fuzzy cluster-
ing algorithm, to deal with interval-valued data. Next, iPL clustering method is
formulated. Further, the corresponding algorithm is described as well.

3.1 Interval Participatory Learning Fuzzy Clustering

Participatory learning (PL) assumes that model learning depends on what the
system already knows about the model. Therefore, the current model is part of
the process itself and influences the way in which new observations are used for
self-organization. An essential property of PL is that the impact of new data in
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inducing self-organization or model revision depends on its compatibility with
the current rule base structure or, equivalently, its compatibility with the current
cluster structure [17].

In participatory learning clustering, the object of learning is cluster structure.
Cluster structures are defined by cluster centers (or prototypes). Formally, let
V = {v1, . . . ,vc}, vi ∈ [0, 1]m, i = 1, . . . , c, be a variable that encodes the belief
of a system, i.e., the clusters centers of an initial cluster structure. The aim is
to learn the value of this variable. It is assumed that the knowledge about the
value of the variable comes in a sequence of observations xk ∈ [0, 1]m, where xk

is the k-th observation of the system3.
The aim of the participatory mechanism is to learn the value of vi, using data

xk. In other words, each xk, k = 1, 2, . . . , N , is used as a vehicle to learn about
vi, where N stands for the number of observations. We say that the learning
process is participatory if the contribution of each data xk to the learning process
depends upon its acceptance by the current estimate of vi being valid. Implicit in
this idea is that, to be useful and to contribute to the learning of vi, observations
xk must somehow be compatible with current estimates of vi.

Let vi
k be the estimate of vi after k observation. According to participatory

learning principles, to be relevant for the learning process, xk must be close to
vi

k. It means that the system is willing to learn from information that is not too
different from the current beliefs. In order to update the estimate or belief of vi,
a smoothing like algorithm is applied [17]:

vi
k+1 = vi

k + Gi
k(xk − vi

k), (4)

where
Gi

k = αρi
k (5)

with α ∈ [0, 1] as the learning rate and ρi
k the compatibility degree between xk

and vi
k.

This formulation allows for different perceptions of similarity for different
components of the vectors4. In [17], the compatibility measure ρi

k is defined as:

ρi
k = 1 − di

k, (6)

where di
k = ||xk −vi

k|| is the Euclidian distance and || · || is a norm. Since in this
paper we are considering interval-valued data, the Euclidian distance is replaced
by the Hausdorff distance for intervals as in Eq. (3). Therefore, the compatibility
measure in iPL is calculated as follows:

ρi
k = 1 − dHi

k = 1 −
m∑

j=1

(
max

{
|xL

j,k − vi,L
j,k |, |xU

j,k − vi,U
j,k |

})
, (7)

where m is the dimension of the data.
3 One must note that in iPL, both data x and cluster centers v are intervals, as defined

in Sect. 2.
4 Notice that the formulation in (4) uses the conventional vector quantization rule to

update the cluster centers as in the fuzzy self-organizing neural network [21], which
considers the distance from a new data point to the cluster surfaces.
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In order to account the situation when a stream of conflicting observations
arises during a certain period of time iPL clustering considers an arousal mecha-
nism that monitors the compatibility of the current beliefs with the observations.
This information is translated into an arousal index used to influence the learn-
ing process. The higher the arousal rate, the less confident is the system with
the current belief, and conflicting observations become important o update the
beliefs [17].

Formally, let ai
k ∈ [0, 1] be the arousal index of cluster i at k. The arousal is

updated as follows:
ai

k+1 = ai
k + β(1 − ρi

k+1 − ai
k), (8)

The value of β ∈ [0, 1] controls the rate of change of arousal: the closer β is
to one, the faster the system is to sense compatibility variations. The arousal
accounts for observations that are declared incompatible with the current system
beliefs. In data clustering this means that if a data point xk is far enough from
all cluster centers, then there is enough motivation to create a new cluster. If
the arousal index is greater than a threshold value τ ∈ [0, 1], a new cluster is
created:

vi+1
k = xk. (9)

Otherwise, the most compatible cluster with xk is updated using (4).
The way iPL clustering takes into account the arousal mechanism is to incor-

porate the arousal index (8) into (5); that is, we assume

Gi
k = α(ρi

k)1−ai
k . (10)

When ai
k = 0, Gi

k = αρi
k, which is the iPL procedure with no arousal. If the

arousal index increases, the similarity measure has a reduced effect. The arousal
index can be interpreted as the complement of the confidence we have in the truth
of the current belief, the rule base structure. The arousal mechanism monitors the
performance of the system by observing the compatibility of the current model
with the observations. Therefore learning is dynamic in the sense that (4) can be
viewed as a belief revision strategy whose effective learning rate (10) depends on
the compatibility among new data, the current cluster structure and on model
confidence as well.

Note that the learning rate is modulated by compatibility. Conventional
learning models, have no participatory considerations and the learning rate is
usually set small to avoid undesirable oscillations due to spurious values of data
far from cluster centers. While protecting against the influence of noisy data, low
learning rate slow down learning. Participatory learning allows higher values of
the learning rate and the compatibility index lowers the effective learning rate
when large deviations occur. On the other hand, high compatibility increases
the effective rate, speeding up the learning process.

Whenever a cluster center is updated or a new cluster added, the iPL
fuzzy clustering procedure should verify whether redundant clusters are created.
Updating a cluster center using (4) can push a given center closer to another
one and a redundant cluster may be formed. Thus, a mechanism to exclude
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redundancy is needed. One such mechanism is to verify if similar outputs due to
distinct rules are produced. In iPL clustering, a cluster center is declared redun-
dant whenever its similarity with another center is greater than or equal to a
threshold value λ ∈ [0, 1]. If this is the case, we can either maintain the original
cluster center or replace it by the average between the new data and the current
cluster center. As in (7), the compatibility index among cluster centers, i and j,
is computed as:

ρi,j
k = 1 − dHi,j

k . (11)

Therefore, if ρi,j
k ≥ λ, the cluster i is declared redundant.

3.2 iPL Algorithm

The interval participatory learning fuzzy clustering (iPL) algorithm is summa-
rized in this section. Initialization of the method includes the setting of initial
values for the cluster centers V0 (step 1). Particularly, in this paper two ran-
dom points of X are chosen to set V0. The corresponding fuzzy partition matrix
is also calculated. The fuzzy partition is represented by a membership matrix
U ∈ �(N×c) whose element ui,k ∈ [0, 1], i = 1, 2, . . . , c, is the membership degree
of the k-th data point xk to the i-th cluster, the one with center vi. The mem-
bership degrees, are computed using:

ui,k =

⎛

⎝
c∑

j=1

(
dHi

k

dHj
k

)2/η−1
⎞

⎠

−1

, (12)

where η is the fuzzification parameter, whose default value is η = 2.
Initial values for α, β, τ and λ must be set by the user (step 3). Next, for

each observation, the compatibility (step 7) and arousal (step 10) indexes are
computed for all clusters. If the arousal index of a current observation xk is
greater than the threshold τ , the data xk is declared as the center of a new
cluster (steps 12–13). Otherwise, the closest center to xk is updated (step2 15–
16). Further, the compatibility index among all clusters are calculated (step2
18–22). If the compatibility index of two clusters is greater than the threshold
λ, redundant clusters are excluded (steps 23–25).

Two stop criteria are considered in iPL. The algorithm ends when either
the maximum number of iterations (tmax) is reached or there is no significant
variation of the cluster centers from an iteration to the next. After stopping,
the fuzzy partition matrix is updated considering the cluster centers produced
during the last iteration. The detailed steps of the iPL algorithm are given
next.
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Interval participatory learning fuzzy clustering algorithm
1. set c = 2 and choose V0 randomly
2. compute U0 from V0

3. select values for α, β, τ and λ
4. set ai

0 = 0, i = 1, . . . , c, and t = 1
5. for k = 1, . . . , N do
6. for i = 1, . . . c do
7. compute compatibility ρik = 1 − dHi

k

8. end for
9. for i = 1, . . . c do
10. compute arousal ai

k = ai
k−1 + β(1 − ρik − ai

k−1)
11. end for
12. if ai

k ≥ τ , ∀ i ∈ {1, . . . , c} then create a new cluster center
13. vc+1

k = xk

14. else update the most compatible cluster center vs
k

15. vs
k+1 = vs

k + α(ρsk)
1−as

k(xk − vs
k)

16. s = arg maxi {ρik}, i = 1, . . . , c
17. end if
18. for i = 1, . . . c − 1 do
19. for j = i + 1, . . . , c do
20. compute compatibility among all clusters ρi,jk = 1 − dHi,j

k

21. end for
22. end for
23. if ∃ i | ρi,jk ≥ λ
24. exclude vi

k

25. end if
26. update U
27. end for
28. compute error = maxi |dHi(vi

t − vi
t−1)|, i = 1, . . . , c

29. if error > ε or t ≤ tmax then t = t + 1 and return to step 5
30. else stop
31. end if
32. update fuzzy partition matrix U

4 Computational Experiments

The interval IPL approach introduced in this paper is an unsupervised learning
clustering method for interval-valued data, useful for a variety of problems in
data mining, pattern recognition, image processing, etc. This section illustrates
interval data clustering with iPL using synthetic interval data sets with linearly
non-separable clusters of different shapes and sizes.

4.1 Data

This work considers the same data point configuration presented in [1,12]. Syn-
thetic data comprise two data sets of 350 points in �2, in which each point is
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Table 1. Mean and variances of the bi-variate normal distributions of the clusters in
data sets 1 and 2.

Data set 1 Data set 2

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

μ1 28 60 45 45 60 52

μ2 22 30 38 22 30 38

σ2
1 100 9 9 100 9 9

σ2
2 9 144 9 9 144 9

represented by the vector z = (z1, z2), zj ∈ �, j = 1, 2. The 350 points in each
data set are drawn from three bi-variate normal distributions of independent
components. From each data set three clusters of unequal sizes and shapes are
constructed: two clusters with an ellipsoidal shape and size 150 and one cluster
with a spherical shape and size 50. Therefore, the two data sets have three clus-
ters each. Table 1 shows the configuration parameters of the two data sets, where
μ stands for the mean and σ2 the variance. Further, it is supposed that there is
no correlation between the two components in the bi-variate distributions.

Figure 1 illustrates data sets 1 and 2. Data set 1 contains well-separated
clusters, whereas data set 2 shows overlapping clusters. Each point (z1, z2) of
the two data sets is considered as the ‘seed’ of rectangle to build interval data
sets as in [1]. Each rectangle is a vector of two intervals defined by: ([(z1 −
γ1)/2, (z1 +γ1)/2], [(z2 −γ2)/2, (z2 +γ2)/2]), where γ1 and γ2 are the width and
height of the rectangle, respectively. In Fig. 2 the two synthetic interval data sets
built from data set 1 and 2 are shown, respectively, for he case when γ1 and γ2
are drawn randomly from [1, 8].
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Fig. 1. Data sets 1 and 2 with well-separated and overlapping clusters, respectively.

4.2 Performance Measurement

As alternative, this paper compares the results of iPL with two hard clustering
methods and two fuzzy clustering approaches for interval-valued data. The inter-
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Fig. 2. Interval data sets 1 and 2 with well-separated and overlapping clusters, respec-
tively.

val hard clustering methods differ in terms of the distance measures: using city-
block distance (HardCB) [12] and Hausdorff distance (HardH) [7]. Otherwise, the
fuzzy methods comprise fuzzy c-means approaches extended for interval-valued
data as proposed by [1]. They also differ in terms of distance measures: using
quadratic Euclidian distance (FCME) and Hausdorff distance (FCMH).

The results are compared according to an external validity index. The key
idea is to compare the a priori partition (known) with the partition obtained
from the clustering algorithm. As in [1,7,13], this work uses the corrected Rand
(CR) index [20] for comparing two partitions. It measures the similarity between
a a priori partition and a partition furnished by a partitioning clustering algo-
rithm. CR takes values on the interval [−1, 1], where the value 1 indicates perfect
agreement between partitions, whereas values near 0 (or negatives) correspond
to clusters agreement [1].

4.3 Results

As an experiment, the construction on the interval data was processed for dif-
ferent values of γ1 and γ2 as follows: [1, 8], [1, 16], [1, 24], [1, 32] and [1, 40]. For
each interval, we run the algorithms 100 times, therefore, the average corrected
Rand CR index is calculated. Simulations were also conducted to find the best
performance in terms of CR index suggested the following control parameters
for iPL: α = 0.08, β = 0.2, τ = 0.17 and λ = 0.19.

Table 2 shows the values of the average of the CR index from the clustering
methods for interval data sets 1 and 2 for the different intervals of parameters
γ1 and γ2. Best results are in bold. Regarding the data configurations presenting
well-separated clusters (data set 1), i.e., interval data set 1 (Table 2), the average
CR indices are better for iPL and the models that use the Hausdorff distance
(HardH and FCMH). iPL and FCMH are the methods with better performance
but very similar regardless the range of the predefined intervals in Table 2.

Considering data configurations presenting overlapping clusters (data set 2),
the fuzzy clustering approaches FCMH and iPL clearly outperforms the other
methods (Table 2). The remaining models present similar values of CR index
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Table 2. Methods average CR index for interval data sets 1 and 2

Interval data set 1

Intervals HardCB HardH FCME FCMH iPL

[1, 8] 0.935 0.923 0.837 0.964 0.958

[1, 16] 0.931 0.931 0.844 0.979 0.981

[1, 24] 0.892 0.909 0.822 0.957 0.963

[1, 32] 0.773 0.912 0.761 0.919 0.911

[1, 40] 0.701 0.886 0.739 0.868 0.857

Interval data set 2

Intervals HardCB HardH FCME FCMH iPL

[1, 8] 0.470 0.448 0.430 0.832 0.780

[1, 16] 0.432 0.434 0.443 0.812 0.773

[1, 24] 0.406 0.418 0.425 0.739 0.679

[1, 32] 0.389 0.412 0.409 0.630 0.591

[1, 40] 0.373 0.393 0.390 0.527 0.486

average. In this case, FCMH shows better results than iPL, which is due to the
adaptive property of FCMH , i.e., the method uses adaptive parameters in the
Hausdorff distances for each cluster.

5 Conclusion

This paper suggested an interval participatory learning fuzzy clustering (iPL)
method for partitioning interval-valued data. iPL clustering method uses interval
arithmetic, and the Hausdorff distance to compute the (dis)similarity between
intervals. Using synthetic interval data sets, computational experiments com-
pared iPL against hard and fuzzy clustering methods in terms of corrected Rand
(CR) index for comparing two partitions. Results indicate the high potential of
iPL approach to cluster interval-valued data mainly for data configurations pre-
senting overlapping clusters. Further studies shall consider the application of iPL
for real data, as well as its use in fuzzy inference models.
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Abstract. Clustering is an important technique for identifying groups
of similar data objects within a data set. Since problems during the data
collection and data preprocessing steps often lead to missing values in the
data sets, there is a need for clustering methods that can deal with such
imperfect data. Approaches proposed in the literature for adapting the
fuzzy c-means algorithm to incomplete data work well on data sets with
equally sized and shaped clusters. In this paper we present an approach
for adapting the fuzzy c-means algorithm to incomplete data that uses
the dimension-wise fuzzy variances of clusters for imputation of missing
values. In experiments on incomplete real and synthetic data sets with
differently sized and shaped clusters, we demonstrate the benefit over
the basic approach in terms of the assignment of data objects to clusters
and the cluster prototype computation.

Keywords: Clustering · Fuzzy c-means (FCM) · Incomplete data ·
Missing values

1 Introduction

Clustering is one of the important and primarily used techniques for the auto-
matic knowledge extraction from large amounts of data. Its aim is to identify
groups, so-called clusters, of similar objects within a data set. Data clustering is
used in many fields, including database marketing, image processing, bioinfor-
matics, text mining, and many others. The quality of the data plays an important
role in the clustering process and might affect the clustering results. However,
problems during the data collection and data preprocessing are often inevitable
and might lead to uncertain, erroneous, or missing values in the data sets. Since
the completion or correction of data is often expensive or even impossible, there
is a need for clustering methods that can deal with such imperfect data.

In the literature, several approaches for adapting the fuzzy c-means (FCM)
algorithm to incomplete data have been proposed [1–3]. Like the basic FCM
algorithm, these methods assume that the clusters are equally sized and shaped.
Even if using the Euclidean distance function as a similarity criterion, in practice,
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 699–710, 2016.
DOI: 10.1007/978-3-319-40596-4 58
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FCM often reliably identifies differently shaped and sized clusters in complete
data sets. Therefore, the FCM algorithm is widely used as a stand-alone cluster-
ing method as well as in hybrid hierarchical clustering methods [4]. However, the
experiments conducted in [5] showed that FCM adapted to incomplete data pro-
duces less accurate clustering results on incomplete data with differently sized
and scattered clusters than in the case of clusters with equal sizes and volumes.
In [6], we proposed an approach for adapting FCM to incomplete data that takes
the cluster scatters into account during the imputation of missing values. Since
this method computes the cluster dispersions on the basis of completely avail-
able features, it cannot be applied on data sets where missing values occur in
all features. Moreover, the experiments showed that this approach produces less
accurate cluster prototypes than the basic approach. We assume the reason in
the calculation and the use of the cluster dispersions. The cluster dispersions are
computed on the basis of completely available features, but they are used for
the imputation of missing values in the other features. Therefore, if clusters have
different extents in different dimensions, the way of using the cluster dispersions
for the imputation of missing values as it is used in our previous approach does
more harm than good. In this paper, we present an approach for adapting the
fuzzy c-means algorithm to incomplete data that uses the dimension-wise fuzzy
variances of clusters for imputation of missing values. Our approach involves the
cluster shapes and volumes for missing value imputation in a simple and compu-
tationally inexpensive way. In experiments on real and synthetic data sets with
differently sized and shaped convex clusters, we demonstrate the capabilities of
our new approach and show the benefit over the basic approach in terms of the
assignment of data objects to clusters and the cluster prototype computation.

The remainder of the paper is organized as follows. In the next section we
give a short overview of the basic fuzzy c-means algorithm and the methods for
adapting FCM to incomplete data. In Sect. 3 we describe our idea for missing
values imputation using the dimension-wise fuzzy variance of clusters and present
the modified FCM algorithm. The evaluation results of our method and the
comparison with the basic approach are presented in Sect. 4. In Sect. 5 we close
the paper with a short summary and the discussion of future research.

2 Approaches for Fuzzy Clustering of Incomplete Data

2.1 Fuzzy c-Means Algorithm (FCM)

The fuzzy c-means algorithm (FCM) is a well known clustering algorithm that
partitions a given data set X = {x1, ..., xn} in a d-dimensional metric data space
into c clusters that are represented by their cluster prototypes V = {v1, ..., vc}.
Unlike the k-means algorithm [7], which assigns each data object to exactly one
cluster, fuzzy c-means algorithm assigns data items to clusters with membership
degrees [8]. The membership degree uik ∈ [0, 1] expresses the relative degree to
which the data point xk with 1 ≤ k ≤ n belongs to the cluster Ci, 1 ≤ i ≤ c.
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The objective function of the fuzzy c-means algorithm is defined as follows:

Jm(X,U, V ) =
c∑

i=1

n∑

k=1

um
ik · d2(vi, xk) . (1)

The similarity between the data items and the cluster prototypes is expressed
by the squared distance function. The parameter m, m > 1, is the fuzzifica-
tion parameter which determines the vagueness of the resulting partitioning.
The objective function of the fuzzy c-means algorithm is minimized using an
alternating optimization (AO) scheme [8]. The objective function is alternately
optimized over the membership degrees and the cluster prototypes in an iterative
process.

The algorithm begins with the initialization of the cluster prototypes vi which
can be either the first c data items of the data set or c randomly chosen data items
or c randomly chosen points in the data space. Alternatively, the membership
degrees can be initialized. In the first iteration step the membership degrees of
each data item to each cluster are updated according to Formula (2).

uik =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
d2(vi, xk)

) 1
1−m

c∑

l=1

(d2(vl, xk))
1

1−m

if Ixk
= ∅,

λ, λ ∈ [0, 1] with
∑

vi∈Ixk
uik = 1 if Ixk

�= ∅, vi ∈ Ixk
,

0 if Ixk
�= ∅, vi /∈ Ixk

,

(2)

where Ixk
= {vi | d2(vi, xk) = 0}. In the second iteration step the new cluster

prototypes are calculated based on all data items depending on their membership
degrees to the cluster (see Formula (3)).

vi =

n∑

k=1

(uik)mxk

n∑

k=1

(uik)m
, 1 ≤ i ≤ c . (3)

The iterative process continues as long as the cluster prototypes change up to a
value ε. Although the fuzzy c-means algorithm is known as a stable and robust
clustering algorithm that does not often get stuck in a local optimum [9,10], it
is sensible to evaluate the algorithm for different initializations to achieve the
optimal partitioning results.

2.2 Different Approaches for Fuzzy Clustering of Incomplete Data

In the literature, several approaches for adapting fuzzy clustering algorithms
to incomplete data have been proposed. Some of them such as the whole-data
strategy FCM (WDSFCM) and the partial distance strategy FCM (PDSFCM)
[1,2] carry out the analysis only on the basis of available values. Other methods
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like the optimal completion strategy FCM (OCSFCM) [1,2], the nearest proto-
type strategy FCM (NPSFCM) [1,2], and the distance estimation strategy FCM
(DESFCM) [3] impute missing feature values or distances in an additional iter-
ation step of the fuzzy c-means algorithm. In experiments described in [1,5], the
lowest missclassification errors have been obtained by PDSFCM, OCSFCM, and
NPSFCM. OCSFCM and NPSFCM tend to strengthen the clustering structure
of incomplete data which turned out to be beneficial e.g. for determining the
optimal number of clusters using cluster validity indexes (CVIs). In the follow-
ing we focus on the description of OCSFCM because it provides the basis for
our approach.

Optimal Completion Strategy FCM (OCSFCM). The idea of the optimal
completion strategy (OCS) is to iteratively compute the missing values as the
additional variables over which the objective function is minimized [1,2]. The
fuzzy c-means algorithm is modified by adding an additional iteration step where
the missing values are updated according to Formula (4).

xkj =
∑c

i=1(uik)mvij
c∑

i=1

(uik)m
, 1 ≤ k ≤ n and 1 ≤ j ≤ d . (4)

In this way, the missing values are imputed by the weighted means of all cluster
centers in each iteration step.

The advantage of this approach is that missing values are imputed during the
clustering process. However, the drawback of the OCSFCM is that the calcula-
tion of the cluster prototypes and the imputation of the missing values influence
each other because the algorithm does not distinguish between the available and
imputed feature values. In [11] the author proposed to diminish the influence of
imputed values to the calculation of cluster prototypes by reducing the mem-
bership degrees of incomplete data items depending on the number of missing
values. The resulting algorithm loses the property of a probabilistic fuzzy clus-
tering algorithm, though. In our approach we tackle this problem by computing
the cluster prototypes only on the basis of available feature values.

3 FCM Clustering of Incomplete Data Using
Dimension-Wise Fuzzy Variances of Clusters

In [6], we have proposed an approach for adapting FCM to incomplete data which
can be regarded as an extension of OCSFCM that takes the dispersions of clusters
into account for the imputation of missing values. The experimental results have
shown the benefits of this approach over the basic OCSFCM algorithm. However,
since the cluster dispersions are computed on the basis of completely available
features but used for the imputation of missing values in the other features, this
approach is restricted to data sets with equally shaped clusters, i.e. clusters that
have the same extents in different dimensions. Therefore, in our new approach
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we impute missing values taking the dimension-wise fuzzy variances of clusters
into account. The idea of our approach is imputing missing feature values of
incomplete data items depending on both the distances between the cluster
prototypes and the incomplete data items and the extents of clusters in the
corresponding dimensions.

3.1 A New Membership Degree Using Dimension-Wise Fuzzy
Variances of Clusters

For each cluster Ci, 1 ≤ i ≤ c, we calculate its fuzzy variance wij in each
dimension j, 1 ≤ j ≤ d, as an averaged squared distance of data items to their
cluster prototypes according to Formula (5).

wij =

n∑

k=1

um
ikikj(xkj − vij)2

n∑

k=1

um
ikikj

, (5)

where

ikj =

{
1, if xkj is available
0 else

for 1 ≤ j ≤ d, 1 ≤ k ≤ n. (6)

We calculate the dimension-wise fuzzy variances of clusters using only avail-
able feature items. In this way, we avoid the influence of the imputed feature
values on the calculation of cluster variances. That makes sense because missing
values are imputed by values close to the corresponding feature values of the
cluster prototypes. Therefore, taking both the available and the imputed feature
values into account for the calculation of cluster variances would reduce the real
variances of clusters. Furthermore, using all available feature items for the cal-
culation of the dimension-wise fuzzy variances of clusters makes our approach
applicable on incomplete data sets where missing values occur in all features and
data items. Calculating the fuzzy variances of clusters for each feature prevents
the influence of the distorted estimation of cluster variances in single dimensions
to the whole cluster variances in the case of a large amount of missing values in
those features.

We integrate the fuzzy variances of clusters in the new membership degree
update formula for the imputation of missing values as follows:

uw
(ik)j =

(
w−1

ij (vij − xkj)2
) 1

1−m

c∑

l=1

(
w−1

lj (vlj − xkj)2
) 1

1−m

∀xkj with ikj = 0, (7)

1 ≤ k ≤ n, 1 ≤ i ≤ c, and 1 ≤ j ≤ d. Note that we also compute the mem-
bership degrees for the imputation of missing values for each dimension. That
implies that a missing value of an incomplete data item in a particular feature
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is updated depending on the distances between the corresponding values of the
cluster prototypes and the last imputed value and the extents of clusters in that
feature. The larger the variance of a cluster and the smaller the distance between
the imputed data item and the cluster center in that particular dimension, the
higher the new membership degree is. If all clusters are equally sized and shaped,
then the membership degree uw

(ik)j depends only on the distances between the
data items and the cluster prototypes. As in the basic OCS approach the impu-
tation of missing values in our approach depends on the imputed values in the
previous iteration.

3.2 FCM for Incomplete Data Using Dimension-Wise Fuzzy
Variances of Clusters (FCMDFVC)

We integrate the new membership degree for imputation of missing values in
the basic OCSFCM algorithm and refer the resulting algorithm to as Fuzzy c-
Means Algorithm for Incomplete Data using Dimension-wise Fuzzy Variances
of Clusters (FCMDFVC). The working principle of FCMDFVC is depicted in
Algorithm 1 and is basically the same as of OCSFCM.

The algorithm begins with the initialization of cluster prototypes and missing
values. The membership degrees are updated in the first iteration step in the
same way as in the basic FCM and OCSFCM. The available and the imputed
feature values are not distinguished. Since we want to avoid the influence of
the imputed values to the calculation of the cluster prototypes, we compute the
cluster prototypes only on the basis of available feature values as in PDSFCM
according to Formula (8).

v′
ij =

n∑

k=1

(uik)mikjxkj

n∑

k=1

(uik)mikj

for 1 ≤ i ≤ c, 1 ≤ j ≤ d. (8)

If the termination condition is not reached, in the third iteration step, missing
values are imputed depending on the distances to the cluster prototypes and the
fuzzy variances of clusters according to Formula (9).

xkj =

c∑

i=1

(uw
(ik)j)

mv′
ij

c∑

i=1

(uw
(ik)j)

m

, 1 ≤ k ≤ n and 1 ≤ j ≤ d . (9)

Basically, the new membership degree for the imputation of missing values
can also be integrated in NPSFCM. In this case, the computation of cluster pro-
totypes using only available feature values is essential because the computation
of cluster prototypes and the imputation of missing values influence each other
even more than in OCSFCM.



Fuzzy c-Means Clustering of Incomplete Data 705

Algorithm 1. FCMDFVC(X, c,m, ε)
Require: X is a d-dimensional incomplete data set with n data items, 2 ≤ c ≤ n is

a number of clusters, m > 1 is a fuzzification parameter, ε > 0 is a termination
accuracy

1: Initialize the set of data centers v′ = {v′
1, ..., v

′
c}

2: Initialize all missing values xkj in X with random values in the data space
3: v = {}
4: repeat
5: v = v′

6: Calculate the membership degrees uik of each data item xk to each cluster Ci

according to Formula (2) // Step 1

7: Calculate the set of new cluster prototypes v′ = {v′
1, ..., v

′
c} according to For-

mula (8) // Step 2

8: if ‖v − v′‖ > ε then

9: Impute the missing values xkj according to Formula (9) // Step 3

10: end if
11: until ‖v − v′‖ < ε
12: return v′

4 Data Experiments

In this section we compare our approach with the basic OCSFCM algorithm
in terms of the assignment of data objects to clusters and the cluster pro-
totypes computation. In order to assess the impact of single modifications of
the basic method, in our experiments, we also tested the OCSFCM algorithm
that computes the cluster prototypes only using the available feature values and
the FCMDFVC approach that computes cluster prototypes using available and
imputed feature values.

4.1 Test Data and Experimental Setup

We tested the four above-mentioned approaches on different real and synthetic
data sets. For the sake of brevity, here we only report the results obtained on
the wine data set from the UCI Machine Learning Repository [12] and three
synthetic data sets with different properties. The wine data set consists of 178
data items, each with 13 features representing the results of a chemical analysis of
three wine types. Corresponding to the wine types, the data items are distributed
in three classes with 59, 71, and 48 instances. The synthetic data sets are depicted
in Fig. 1. Each of the data sets consist of 2000 data items generated by the
compositions of three and five 3-dimensional Gaussian distributions respectively.
The data items are distributed in three clusters with 400, 700, and 900 instances
in the data set 3D-3 and in five clusters with 200, 350, 450, 700, and 300 instances
in the data sets 3D-5 and 3D-5-h. All clusters have different magnitudes and
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partly overlap. The data set 3D-5-h was generated from the data set 3D-5 by
moving the clusters so that two groups of two and three differently sized clusters
build a hierarchical structure in the resulting data set. Using the data set 3D-
5-h, we wanted to find out if the ordering of clusters in the data sets affects the
performance of the clustering algorithms adapted to incomplete data.

(a) (b) (c)

Fig. 1. Test data: (a) 3D-3, (b) 3D-5, (c) 3D-5-h.

In our experiments we first clustered the complete data sets with the basic
FCM algorithm and used the resulting clusterings as a baseline for the compar-
ison. Then we generated incomplete data sets by removing values in all features
with different probabilities according to the general missing-data pattern [13].
The percentage of missing values was calculated in relation to all feature val-
ues in the data sets. In the resulting incomplete data sets, missing values were
equally distributed in all features. The general missing-data pattern is common
but challenging for clustering methods because missing values occur in many data
items. Since we did not adapted the clustering algorithms to incomplete data
with conditionally missing values, we deleted the values from the test data sets
according to the common missing-data mechanisms MCAR [13]. We clustered
the incomplete data sets with the four above-mentioned clustering algorithms.
We initialized the cluster prototypes with random values in the data space at
the beginning of the algorithms to create the test conditions as real as possible.
We used the Frobenius norm distance for the stopping criterion ‖V − V ′‖ < ε
defined in Formula (10).

‖V − V ′‖F =

√
√
√
√

c∑

i=1

d∑

j=1

|vij − v′
ij |2 for 1 ≤ i ≤ c, 1 ≤ j ≤ d. (10)

In all our experiments we set the value ε to 0.0001.

4.2 Experimental Results

The performance results of the fuzzy c-means clustering algorithms adapted to
incomplete data are shown in Figs. 2, 3, 4, and 5. For the sake of uniformity,
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we marked the clustering algorithms that only use the available feature items
for the computation of cluster prototypes with an asterisk in the legend. That
means that our new approach described in Sect. 3 is listed as FCMDFVC∗ in
the legend.

We evaluated the partitioning results produced by the clustering approaches
using different crisp and fuzzy indexes. Here, we only report the results for the
subset similarity index [14] for comparing the fuzzy partitions produced by the
clustering algorithms. Although in previous publications the partitioning results
produced by the fuzzy c-means algorithms for incomplete data were evaluated
using crisp similarity indexes, in our opinion, it makes more sense to use fuzzy
indexes to compare the resulting membership degrees. We used the Frobenius
norm distance between the terminal prototypes produced by FCM on complete
data and the terminal cluster prototypes produced by the four fuzzy clustering
approaches on incomplete data. Since there were significant variations in the
results from trial to trial, the figures below show the averaged results obtained
over 100 trials. For the sake of clarity, we omitted the standard deviations in the
diagrams.

Figure 2 presents the performance results for the basic OCSFCM and our app-
roach produced on the incomplete wine data set. According to these results the
computation of cluster prototypes only using available feature values seems to be
the only factor that improved the partitioning results on incomplete data. Our
proposal to impute missing values using the dimension-wise fuzzy variance of clus-
ters seems to worsen the partitioning results. Indeed, in almost all experiments this
approach produced the least accurate partitioning results and the highest proto-
type error among all approaches. As we mentioned above, the reason is that the
imputation of missing values depends on the imputation in the previous itera-
tion step and influences the computation of the cluster prototypes. Therefore, it
is essential to compute the cluster prototypes only on the basis of available fea-
ture items in our approach that produced similarly good results as OCSFCM using
available feature values for the computation of cluster prototypes.
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Fig. 2. Averaged results of 100 trials using incomplete wine data set.
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Since the wine data set has 13 attributes, we cannot visualize it and cannot
comment on the obtained results. Figures 3 and 4 present the performance results
produced by the four approaches on the 3-dimensional data sets with three and
five clusters. As the diagrams show, our new approach produced slightly more
accurate partitioning results and much more accurate terminal cluster proto-
types. While the performance results of OCSFCM and OCSFCM∗ were similar
on the data set 3D-3, the OCSFCM approach using available feature values for
the computation of cluster prototypes produced on average much inaccurate par-
titioning results on the data set 3D-5. This is due to the fact that unlike other
methods this approach produced comparably good clustering results only in few
of 100 trials and performed poorly on average.

Figure 5 shows the performance results for the four approaches produced
on the incomplete 3D-5-h data set where clusters were moved together building
two groups. All clustering approaches produced unstable results on this data set.
The basic FCM algorithm produced comparably accurate results on the complete
3D-5-h data set, we obtained 0.9949 for the crisp subset similarity averaged over
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Fig. 3. Averaged results of 100 trials using incomplete 3D-3 data set.
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Fig. 4. Averaged results of 100 trials using incomplete 3D-5 data set.
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Fig. 5. Averaged results of 100 trials using incomplete 3D-5-h data set.

100 trials. That shows that the spatial arrangement of clusters in the data set
has a strong influence on the clustering results produced on incomplete data.

5 Conclusions and Future Work

Approaches proposed in the literature for adapting the fuzzy c-means (FCM)
algorithm to incomplete data assume that the clusters are equally sized and
shaped. They produce less accurate clustering results on incomplete data with
differently sized and scattered clusters than on the data sets with clusters of
equal sizes and volumes. Our previous approach presented in [6] for adapting
FCM to incomplete data that takes the cluster scatters into account during the
imputation of missing values computes the cluster dispersions on the basis of
completely available features, but uses them for the imputation of missing val-
ues in the other features. Therefore, if clusters have different extents in different
dimensions, it fails to work. In this paper, we presented a new approach for adapt-
ing the fuzzy c-means algorithm to incomplete data that uses the dimension-
wise fuzzy variances of clusters for imputation of missing values. Our approach
involves the cluster shapes and volumes for missing value imputation and com-
putes cluster prototypes only using the available feature values. In experiments
on real and synthetic data sets with differently sized and shaped clusters, we
demonstrated that our new approach produces slightly more accurate partition-
ing results and much more accurate terminal cluster prototypes than the basic
OCSFCM method.

In all our experiments we used incomplete data with missing values MCAR
because we did not adapted our approach to incomplete data with a conditional
absence of values. In the future we plan to apply the idea of using the class specific
probabilities for imputation of missing values as in the approach presented in
[15] in order to improve the performance of our approach on data sets with
missing values MAR and NMAR. Furthermore, in our experiments we assumed
the optimal number of clusters to be known. Determining the optimal number of
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clusters on incomplete data is still a challenging problem. Therefore, we want to
analyze whether the partitioning results produced by our approach on incomplete
data with differently sized and scattered clusters are better than the partitioning
produced by the basic OCSFCM for determining the optimal number of clusters
using the cluster validity indexes.
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2. Timm, H., Döring, C., Kruse, R.: Fuzzy cluster analysis of partially missing
datasets. In: Proceedings of the European Symposium on Intelligent Technologies,
Hybid Systems and Their Implementation on Smart Adaptive Systems (EUNITE
2002), pp. 426–431 (2002)

3. Sarkar, M., Leong, T.-Y.: Fuzzy K-means clustering with missing values. In: Pro-
ceedings of the American Medical Informatics Association Annual Symposium, pp.
588–592 (2001)

4. van der Laan, M.Y., Pollard, K.S.: A new algorithm for hybrid hierarchical clus-
tering with visualization and the bootstrap. J. Stat. Plann. Infer. 117(2), 275–303
(2003)

5. Himmelspach, L., Conrad, S.: Clustering approaches for data with missing val-
ues: comparison and evaluation. In: Proceedings of the Fifth IEEE International
Conference on Digital Information Management (ICDIM 2010), pp. 19–28 (2010)

6. Himmelspach, L., Conrad, S.: Fuzzy clustering of incomplete data based on cluster
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Abstract. Possibilistic clustering methods have gained attention in
both applied and theoretical research. In this paper, we formulate a gen-
eral objective function for possibilistic clustering. The objective function
can be used as the basis of a mixed clustering approach incorporating
both fuzzy memberships and possibilistic typicality values to overcome
various problems of previous clustering approaches. We use numerical
experiments for a classification task to illustrate the usefulness of the
proposal. Beyond a performance comparison with the three most widely
used (mixed) possibilistic clustering methods, this also outlines the use
of possibilistic clustering for descriptive classification via memberships to
a variety of different class clusters. We find that possibilistic clustering
using the general objective function outperforms traditional approaches
in terms of various performance measures.

Keywords: Possibilistic clustering · Membership function · Typicality
values · Classification

1 Introduction

Clustering is one of the central tasks in pattern recognition and machine learn-
ing, and aims at partitioning a set of data points into groups of “similar” obser-
vations. Fuzzy clustering methods rely on set-theoretical notions introduced by
Zadeh [23], motivated by the imprecision present in many (if not all) real life phe-
nomena. The essential idea behind fuzzy sets (i.e., degree of belonging to sets) nat-
urally translates to clustering algorithms: elements can belong to several (overlap-
ping) fuzzy clusters. In fuzzy clustering, the fuzzy c-means (FCM) clustering algo-
rithm [2] is the best known and used method. Since the FCM memberships do not
always explain the degrees of belonging for the data well, Krishnapuram and Keller
[11] proposed a possibilistic approach to clustering. However, the performance of
Krishnapuram and Keller’s approach depends heavily on the parameter initializa-
tion. This has been pointed out several times in the literature [6], and resulted in
different modifications of the original possibilistic fuzzy clustering algorithm.
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 711–722, 2016.
DOI: 10.1007/978-3-319-40596-4 59
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In this paper, we focus on a subset of fuzzy clustering methods (objective
function-based algorithms) that include the most widely applied variants [8].
Objective function-based fuzzy clustering algorithms have been applied in vari-
ous domains from economics [12], systems modeling [19] and finance [1] to health-
related decision making problems [13] and image segmentation [5]. In the paper,
we formulate a general objective function that can be used as the basis of a
fuzzy clustering task, and which includes the most important previous models
as special cases. The objective function synthesizes various terms appearing in
different fuzzy-possibilistic clustering models in the literature [11,15,16,21]. The
new model is proposed with the main task of solving a two-class classification
task. Beyond a performance comparison with the three most widely used (mixed)
possibilistic clustering methods, this also outlines the use of possibilistic cluster-
ing for descriptive classification via memberships to a variety of different class
clusters. In contrast to previous contributions, we perform a clustering only on
data belonging to one of the classes. To predict the class for a new observation,
we assess whether any cluster has a distance below a given optimized threshold.
In the numerical experiments presented in the paper, we show that possibilistic
clustering using the general objective function outperforms previous approaches
in terms of various predictive performance measures.

The rest of the paper is structured as follows. In Sect. 2, we discuss differ-
ent types of partitions utilized as the basis of classification algorithms, whereas
Sect. 3 specifies the general objective function to be used in possibilistic cluster-
ing. Section 4 presents the numerical experiments that illustrate the advantages
of the proposed objective function. Finally, Sect. 5 concludes with a discussion
of the results and potential future research directions.

2 From Fuzzy Partitions to Fuzzy Clustering

In a general setting, the input data for clustering consists of n observations:
xi = [xi1, xi2 . . . xim] for i = 1, . . . , n, with every observation described by m
measurement variables. As the basis of clustering, a partition has to be deter-
mined to assign the observations to one (or more) clusters. There are two general
approaches used in various clustering algorithms: partitions based on

– crisp sets: every object belongs to exactly one cluster;
– fuzzy sets: every object can belong to several clusters with different degrees.

If we denote the number of clusters with c, a crisp partition can be described
by the matrix U = [μij ]c×n, where

μij ∈ {0, 1} , 1 ≤ i ≤ c, 1 ≤ j ≤ n (1)
c∑

i=1

μij = 1, 1 ≤ j ≤ n (2)

0 <

n∑

j=1

μij < n, 1 ≤ i ≤ c (3)
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Traditional clustering algorithms, such as the c-means, are based on crisp
partitions. By modifying the required properties in various ways (preserving (3)
to avoid trivial solutions), we can obtain more general classes of partitions.

The most widely used alternative to crisp clustering, usually termed as (prob-
abilistic) fuzzy c-means clustering [2], defines a fuzzy partition (as discussed first
in [3]) that can be described by extending the possible values for the cluster
memberships, μij , to the [0, 1] interval. Formally, we modify (1) into

μij ∈ [0, 1] , 1 ≤ i ≤ c, 1 ≤ j ≤ n (4)

while keeping the other two conditions unchanged. With this formulation, obser-
vations can belong to several clusters with different degrees specified by the
membership value μij . A typical problem in clustering which can be tackled
more appropriately by employing fuzzy partitions is the case of observations on
the boundaries between clusters.

While fuzzy clustering improves on traditional clustering from various per-
spectives, the assumption requiring the sum of membership values to be equal
to 1 for every observation forces outlier points to belong to at least one cluster
to a large degree. To handle this issue, possibilistic partitions as the basis of
clustering can be defined as in [11], by keeping (4) and modifying (2) into

∃μij > 0, 1 ≤ j ≤ n (5)

This condition ensures that every observation belongs to at least one cluster to
some degree, but does not need to belong to a high degree to clusters overall.

2.1 Objective Function-Based Possibilistic Clustering

Based on one (or the combination of several) of the described types of partitions,
various clustering methodologies can be developed. There is a large number of
different variations of fuzzy clustering methods that can be classified based on
different properties. The most commonly used distinction divides the algorithms
into two main groups: (i) methods that aim at finding a fuzzy partition using
global criteria for optimality in the form of an objective function, and (ii) meth-
ods generalizing the previous approaches by allowing the user to choose among
multiple update equations for the prototypes and membership degrees without
considering a particular criterion function. Although there are several approaches
belonging to the second group [17], objective function-based approaches dom-
inate the literature. According to these approaches, one group of parameters
(e.g., the membership degrees) are optimized holding the other group (e.g., the
cluster prototypes or cluster centers) fixed and vice versa following an itera-
tive updating scheme. This requires the utilization of a distance function (usu-
ally Euclidean distance) to determine the membership values. Depending on the
structure of the objective function, various parameters restricting the size and
shape of clusters can be included in the algorithm.
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Since the proposal of Krishnapuram and Keller [11], the first approach that
uses possibilistic partition as the basis of clustering, there have been many con-
tributions in the literature to extend and improve this original version of pos-
sibilistic fuzzy clustering (PFC). In contrast to the membership values used in
c-means clustering, the values reflecting the level of assignment of an observation
to a cluster are termed as typicality values; in the following we will also employ
this term when referring to possibilistic memberships. The proposed algorithm
offers important advantages compared to traditional fuzzy c-means algorithm
especially when dealing with outliers and noisy data, however, it can result in
identical clusters unless a proper initialization of the typicality values (see [21]
for a detailed discussion on this issue). For this reason, when this original possi-
bilistic clustering algorithm is used, a typical approach is to initialize the values
using fuzzy c-means algorithm. The first main improvement on PFC was pro-
posed in [15], where a mixed possibilistic c-means clustering (MPFC) approach
is introduced based on the idea of incorporating membership and typicality in
the same objective function. As it was pointed out in [21], this model still has
issues with regard to membership initialization and in many cases can result in
identical clusters. For this reason, they extend the model by controlling the shape
of resulting clusters with a repulsion term in the objective function. A different
extension is proposed in [16] in the form of a possibilistic c-means fuzzy cluster-
ing model (PCFC) by applying a limiting term on the typicality values in the
objective function. Additionally, there have been different approaches extending
possibilistic clustering with interval-valued membership and typicality values.
Min et al. [14] proposed the interval-valued possibilistic clustering algorithm by
incorporating interval-valued fuzzy sets into the PFC model of Krishnapuram
and Keller [11]. Recently, Jie et al. [9] proposed an interval-valued extension of
the algorithm by Pal et al. [15].

3 A General Objective Function for Mixed
Fuzzy-Possibilistic Clustering

In this section, we start by formulating a general objective function that synthe-
sizes different terms appearing in various proposals to combining the improve-
ments of the models. According to these points, a general objective function,
which to the knowledge of the authors has not been formulated before, can be
specified as:

J(X,U,B) =
c∑

i=1

n∑

j=1

(
aμm

ij + btλij
)
d2(xi, cj)+ (6)

c∑

i=1

ηi

n∑

j=1

(1 − tij)
λ +

c∑

i=1

γi

c∑

j=1,j �=i

1
ζd2(ci, cj)

where the following notations are used:
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– μij is the membership degree that is normalized for every observation, tij is the
typicality value that corresponds to non-normalized (possibilistic) membership
degrees, while ci is the center of cluster i.

– a and b specify the weights of membership and typicality in the clustering
algorithm.

– m and λ specify the fuzziness value for membership and typicality: the closer
this value is to 1, the more crisp the clustering is. Without any parameter
optimization, the generally recommended value to use is 2.

– ηi specifies the boundary of the fuzzy cluster in terms of the typicality value
(i.e. when typicality becomes less than 0.5 indicating being distinct from the
cluster).

– γi is a weighting factor to compensate for clusters being too close to each
other.

– ζ specifies the minimal acceptable distance among clusters.

This general form of the objective function allows for the use of normalized
(fuzzy) and possibilistic partitions in the form of membership and typicality val-
ues. The most widely used fuzzy clustering approaches are all based on different
special cases of this general objective function:

– the fuzzy c-means [2] (a = 1, b = 0, ηi = 0, γi = 0);
– the possibilistic fuzzy clustering in [11] (a = 0, b = 1, γi = 0);
– the mixed c-means clustering model [15] (a = 1, b = 1, ηi = 0, γi = 0);
– the possibilistic c-means clustering model [16] (γi = 0);
– the extended possibilistic clustering model [21] (a = 0).

An important feature of most of the objective function-based clustering algo-
rithms is that the terms in the function can be optimized individually resulting
in the updating formula for membership and typicality values. As the specified
general objective function still maintins the property of separability in terms of
the variables, as in other possibilistic clustering algorithms, the optimal clus-
tering can be found by sequentially updating memberships and typicalities and
recalculating cluster centers. The update formulas can be specified based on the
modification applied to [16,21] as:

μi,j =
1

∑c
k=1

(
d(xi,cj)
d(xi,ck)

) 2
m−1

(7)

tij =
1

1 +
(

b
ηi

d(xi, cj)2
) 2

λ1−1
(8)

ci =

∑n
j=1

(
aμm

ij + btλij
)
xj − γi

∑c
j=1,j �=i

1
ζd4(ci, cj)

cj

∑n
j=1

(
aμm

ij + btλij
) − γi

∑c
j=1,j �=i

1
ζd4(ci, cj)

(9)
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In general, the centroid representing a cluster is calculated by aggregating
the observations assigned to the cluster. In the crisp case, most frequently this
aggregation is the simple arithmetic mean while in case of fuzzy clustering, the
membership-weighted average is utilized to obtain the cluster center. In our
case, the cluster centers are updated based on the distance from the weighted
average of the observations, with the weights being the weighted averages of the
membership and typicality values.

3.1 Clustering as the Basis of Binary Classification Tasks

As the last step of any fuzzy clustering algorithm, one can obtain a crisp clus-
tering by reducing the fuzzy partition into a crisp partition. Based on the mem-
bership or typicality values, the typical approach to obtain a hard clustering is
to assign the observation to the cluster with the highest corresponding member-
ship. Our main purpose for utilizing the proposed approach is to apply it as a
basis for tackling binary classification problems. That is, additionally to the vari-
ables used in the clustering algorithm, we suppose that the data set contains an
additional class variable indicating to which of 2 possible classes an observation
belongs.

The traditional approach to build a classification model based on the result of
fuzzy clustering utilizes the obtained crisp clustering assignment and combines it
with the class information. The class of every cluster is defined as the class with
the highest number of observations assigned to the cluster. This class assignment
then can be used to specify the class of new observations based on the cluster with
minimal distance between the observation and corresponding cluster centers.

In contrast to this, we apply a different approach in case of binary classi-
fication problems, i.e. two output classes, from now on termed as positive and
negative cases. The main idea is that the clustering is performed only on the
observations belonging to one of the output classes, e.g. only on observations
classified as positive. After the clusters describing different types of positive
cases are obtained, both negative and positive cases can be mapped onto the
clustering in terms of fuzzy membership and typicality values. As every cluster
is classified as positive, it is a reasonable assumption that observations belonging
to negative cases will result in higher distance values from each of the cluster cen-
ters compared to positive cases, as clusters represent the aggregated behaviour of
observations in the positive class. According to this reasoning, for every observa-
tion, we use the minimum of the average of membership and typicality values for
each cluster, as the basis of the classification process. If an observation has a low
(with respect to the chosen threshold) minimum average membership/typicality,
it implies that it is far from all the cluster centers, and will be classified as a neg-
ative case, while observations with high (with respect to the chosen threshold)
minimum average value will be classified as positive.

Note 1. As an important reason for using this procedure we note, that in prac-
tice, there are many typical classification problems in which one output class,
usually the less frequent one, is of crucial interest. Important examples include
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identifying patients with a disease, detecting potentially risky borrowers apply-
ing for bank loans or detecting machines with high probability of failure in the
near future. By performing the clustering first only on this more interesting
class, additionally to the classification model, we can use the clustering the tra-
ditional way by characterizing and understanding different groups within the
positive cases. While we do not focus on this perspective, this would provide an
additional benefit compared to traditional classification methods.

3.2 Summary of the Proposed Approach

The following steps summarize the most important components of performing
possibilistic fuzzy clustering using a general objective function:

– Initialize the clustering process with the membership values generated by a run
of fuzzy c-means clustering. Additionally, the following clustering parameters
are defined: maximum number of iterations, range for the possible number of
clusters to be tested, fuzziness and typicality parameters.

– Update the membership and typicality values based on the Formulas (7), (8)
and sequentially recalculate the cluster centers by calculating the distance
from the weighted average of the observations.

– When a specified stopping criterion is reached in terms of the number of iter-
ations or change in the membership and typicality values, stop the updating
and record the cluster centroids as the final cluster centers.

– Predict the class for new observations by comparing the minimum of the
weighted average of membership and typicality values among all the clusters.

4 Numerical Experiments

In this section, we will perform a numerical comparison of the performance
of the various possibilistic clustering methods discussed in the paper. In the
experiments, the clustering methods are used as the basis for a classification task
with two classes. The main idea behind the experiments is that the clustering is
performed only on the observations belonging to one of the output classes (the
positive cases). As a result of this clustering step, we obtain the cluster centers
for the specified number of clusters.

In the next step, the membership and typicality degrees for all the data
points with respect to each cluster can be calculated according to the formula
specified in the previous section. According to the reasoning that in average
observations belonging to the second output class (negative cases) will result in
higher distance values from each of the cluster centers, we use the minimum of
the average of membership and typicality values, as the basis of the classification
process. If an observation has a low minimum average uncertainty (membership
and typicality), it implies that it is far from all the cluster centers, and will be
classified as a negative case, while observations with high minimum value will
be classified as positive.
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In the last step, an optimal threshold on this possibilistic likelihood repre-
sented by the minimum value is identified with the Usefulness measure (i.e., a
preference weighted average of type I and II errors, see [18] for further infor-
mation). For a given threshold, the calculation of this measure makes use of
the confusion matrix that is specified through the following four values: (i) true
positive (TP ), i.e. positive cases classified correctly as positive; (ii) true nega-
tive (TN), i.e. negative cases classified correctly as negative; (iii) false positive
(FP ), i.e. negative cases classified incorrectly as positive; (iv) false negatives
(FN), i.e. positive cases classified incorrectly negative. Based on these nota-
tions, one can define type I error as T1 = FN/(FN + TP ) (the share of mis-
classified positive cases to the total number of positive cases), and type II errors
T2 = FP/(TN + FP ) (the share of misclassified negative cases to the total
number of negative cases). By specifying the preference between making type I
and type II errors as μ and using the notations P1 and P2 for the probabilities
of positive and negative cases, respectively, the loss function can be defined as
L(μ) = μT1P1+(1−μ)T2P2. The absolute usefulness of a classification model can
be defined by comparing the loss function to using the model of assigning every
observation to the most frequent class: Ua(μ) = min(μP1, (1 − μ)P2) − L(μ).
Relative usefulness compares absolute usefulness with a perfect model (model
with loss function value 0). The optimal threshold for the classification problem
is chosen as the value which results in maximal relative usefulness.

4.1 Data

In the experiments, we utilize four datasets that are frequently used in the litera-
ture to assess classification performance of algorithms. We include small datasets
with few attributes (Haberman and Transfusion), a dataset with large number
of attributes and few observations (Ionosphere), and a moderately large dataset
(Adult).

– Haberman dataset [7]: This dataset stores information on patients who have
undergone surgery for treating breast cancer. This dataset has 306 entries with
3 features: age of the patient, the year of surgery, number of positive axillary
nodes detected. There are two resulting classes: the patient survived 5 years or
longer (225 observations) and the patient died within 5 year (81 observations).

– Blood Transfusion Service Center dataset [22]: The data descends from
the Blood Transfusion Service Center of Hsin-Chu City in Taiwan. The dataset
contains 749 entries described by 4 features (months since last donation; total
number of donations; total blood donated; months since first donation. The
data is classified into two different classes recording whether the donor has
donated blood or not.

– Ionosphere dataset [20]: The data was collected by a radar system in
Goose Bay, Labrador. The target of the measurement was free electrons in
the ionosphere. There are 34 features in the dataset with 351 observations.
The observations are classified as either good (showing evidence of structure
in the ionosphere), or bad (no sign of structure).
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– Adult dataset [10]: The dataset contains information extracted from the
1994 census data in the United States. The dataset contains 14 attributes
describing social and demographic information about citizens registered in
the census. The classification task is to predict whether a person’s income
exceeds 50,000 dollars a year or not. The dataset includes 32561 observations.

4.2 Classification Performance Measures

A basic, yet somewhat limited, measure of prediction performance is accuracy
(TP +TN/(TP +TN +FP +FN)): the proportion of correctly classified cases.
For problems with imbalanced classes, a popular performance measure is the
area under the curve (AUC), which is based on the Receiver Operating Charac-
teristic (ROC). The ROC curve [4] depicts the true positive and false positive
rates based on the threshold chosen in case of a probabilistic classifier output to
determine the output class, and AUC measures the area under the ROC curve.
The maximum value of AUC is 1, and the closer the value is to 1, the higher
the probability that the classifier assigns the right class to the data point. It
is important to note that the value of AUC can be misleading in the case of
a dataset with imbalanced classes, but still this is one of the most widely used
evaluation measures.

4.3 Results

As a comparison to the results of the various possibilistic clustering algorithms,
we utilized three of the most widely used classification algorithms (support vector
machines (SV M), k-nearest neighbour (kNN), and classification and regression
trees (CART )) to obtain a reasonable baseline for assessing classification per-
formance. The results can be seen in Table 1. Although we focus only on the
classification performance, we note here that additionally to this, and in con-
trast to many traditional classification methods, by identifying natural clusters
in a dataset, we can obtain a descriptive representation of the various types of
a given class present in the dataset. Consequently, if the classification perfor-
mance of a clustering algorithm is as good as another classification algorithm,
this additional benefit can justify its use in various contexts.

In the numerical experiments, we included four different clustering
approaches: (i) PFC from [11], (ii) MPFC from [15], (iii) PCFC from [16],

Table 1. Results of the preliminary test of three classification algorithm

Dataset Haberman Transfusion Ionosphere Adult

Method AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

SVM 0.62 71.2 % 0.69 77.7 % 0.68 74.7 % 0.74 76.7 %

kNN 0.55 65.9 % 0.60 72.5 % 0.61 72.5 % 0.67 71.7 %

CART 0.59 62.9 % 0.66 67.5 % 0.65 70.7 % 0.71 74.2 %
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Table 2. Results for the Haberman dataset

c TN TP FP FN AUC Acc Urel

PFC 15 130 50 95 31 0.61 0.59 0.12

MPFC 15 186 25 39 56 0.60 0.69 0.11

PCFC 14 164 36 61 45 0.60 0.65 0.12

GPFC 15 176 34 49 47 0.65 0.68 0.16

Table 3. Results for the transfusion dataset

c TN TP FP FN AUC Acc Urel

PFC 20 498 49 72 129 0.63 0.73 0.11

MPFC 19 564 9 6 169 0.58 0.69 0.06

PCFC 16 523 28 47 150 0.58 0.74 0.08

GPFC 20 499 50 71 128 0.64 0.73 0.17

Table 4. Results for the ionosphere dataset

c TN TP FP FN AUC Acc Urel

PFC 6 74 156 52 69 0.67 0.66 0.22

MPFC 15 45 200 81 25 0.65 0.70 0.23

PCFC 13 68 162 58 63 0.64 0.70 0.21

GPFC 17 79 166 47 59 0.65 0.70 0.24

and (iv) the approach based on the generalized objective function formulated in
the paper, denoted as GPFC. In the experiments, we did not optimize parame-
ter values, we utilized the most commonly used values: a = b = 0.5,m = λ =
2, ηi = γi = 1

As we can observe from the results of the analysis for the four datasets
in Tables 2, 3, 4, and 5, clustering based on the formulated objective function
outperforms the other approaches in terms of AUC and relative usefulness in
all the cases and is never worse in terms of accuracy. With respect to individual
elements of the confusion matrix, we cannot conclude any definite result as it
shows better performance compared to other approaches (i) for negative cases
in the analysis of the Haberman and Adult datasets, and (ii) for positive cases
in the analysis of the transfusion and ionosphere datasets. When we compare
the results to the performance of the traditional classification algorithms, we can
state (at least for the considered datasets) that we can obtain close to similar
performance in terms of AUC and accuracy. By accounting for other potential
benefits that can result from analyzing clusters more thoroughly (visually or
even with simple descriptive measures), it indicates that the proposed approach
can be a potential alternative in similar tasks.
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Table 5. Results for the adult dataset

c TN TP FP FN AUC Acc Urel

PFC 20 18798 5678 5922 2163 0.72 0.75 0.24

MPFC 19 17678 6457 7042 1384 0.71 0.74 0.21

PCFC 19 18423 5987 6297 1854 0.73 0.75 0.22

GPFC 20 18947 6345 5773 1496 0.75 0.78 0.25

5 Conclusions

In this article, we formulated a generalized possibilistic clustering approach.
The general objective function for mixed fuzzy-possibilistic clustering combines
previous approaches as an extended and improved version of the original model
by Krishnapuram and Keller [11]. The generalized approache is evaluated in
terms of a binary classification problem, which implies a descriptive classifier
via memberships to a variety of different class clusters. We have shown on four
datasets that the use of the general objective function improves classification
performance vis-à-vis previous possibilistic clustering algorithms.

There are several possible ways in which present work can be extended in
the future. Firstly, in the numerical experiments we did not attempt to optimize
various parameters of the objective function in order to identify the optimal
initial values. For example, we used equal weights for the memberships and
typicality values in the objective function. These could be optimized in various
ways, such as based upon a cross-validation exercise. The approach needs also to
be tested on large-volume datasets. Additionally, one could incorporate interval-
valued fuzzy sets into the proposed clustering scheme by allowing for membership
and typicality values to take the form of intervals in [0, 1].
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Abstract. This paper proposes a methodology to define the seasonal
load profiles of residential gas consumers using smart metering data.
A detailed clustering analysis is performed using fuzzy c-means, k-means
and hierarchical clustering algorithms with multiple clustering validity
indices. The analysis is based on a sample of more than one thousand
households over one year. The results provide evidence that crisp algo-
rithms present the best clustering results overall. However, the fuzzy
algorithm proves to be suited when the others generate clusters which
are not representative of population groups. Compact and well defined
seasonal clusters of gas consumers are obtained, where the representa-
tive profiles reflect the consumption patterns that vary according to the
season of the year. The knowledge obtained with this methodology can
assist decision makers in the energy utilities in developing demand side
management programs, consumer engagement strategies, marketing, as
well as in designing innovative tariff systems.

Keywords: Residential gas consumption · Clustering · Load profile ·
Smart metering

1 Introduction

The natural gas sector has lived through a significant change of framework,
resulting from the ability of this energy source to respond to several challenges
such as, the continuity of supply, flexibility, environmental preservation, eco-
nomic efficiency and continued market liberalization.

In the case of gas consumption data analysis, there is still a lack of literature
regarding clustering and consumer profiling. This data has the potential to give
insights of great importance for utilities and policy makers. Significant insights
can be derived by the knowledge of typical consumption curves of different con-
sumers groups.

Computational intelligence methods have been applied in several smart grid
applications. However, most of the efforts have been oriented to the electrical
energy field, for which a considerable amount of literature has been published.
Several papers use classical k-means [1–4], weighted fuzzy average k-means [4],
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fuzzy c-means [5–7], modified follow the leader and self organizing maps [4]
and hierarchical clustering [3,4] when identifying and classifying electrical load
profiles.

Another aspect of literature in this area investigates the impact of weather
on energy consumption. Among the different sectors affected by weather risk,
the gas sector is one of the most sensitive [8,9]. Gas supply costs usually increase
with cold weather and decrease with warm weather. Furthermore, the gas usage
typically varies with changes in heating season weather.

Clustering tools enable the discovery of representative patterns from a myriad
of collected data. Therefore, this paper proposes to define the seasonal profiles
of residential natural gas consumers, using three clustering algorithms namely
K-means, Fuzzy C-means and Ward’s hierarchical clustering. These algorithms
were selected due to their characteristics, both K-means and Fuzzy C-means are
classical partitioning algorithms, that have already been successfully used for
the case of smart metering electricity data [2–7,10,11]. Euclidean distance was
selected for both algorithms and the reason behind this is the interpretability
of the results, since the Euclidean distance captures the (imposed) geometry
between the clusters in a Euclidean space [12]. Ward’s method was selected due
to the fact that the clusters are formed in order to minimize the increase of the
within-cluster sums of squares and because it has been applied to natural gas
data [13].

Results obtained from the above algorithms are assessed and compared by
means of suitable clustering validity indices. The consumption patterns are ana-
lyzed for the seasonal clusters obtained and conclusions concerning the specific
characteristics of each cluster are drawn. High frequency gas consumption data
from a smart metering trial conducted in Ireland [14] is analyzed for that pur-
pose. The database is robust given that it has information of almost one thousand
and a half households over one year and a half.

This is the paper outline. In Sect. 2, the data preprocessing methods are pre-
sented. In Sect. 3 the clustering techniques and the performance measures used
are discussed. In Sect. 4 results are presented and discussed. Section 5 concludes
the paper.

2 Pre-processing of Gas Consumption Data

Gas smart metering consumption data is composed of a large set of time stamped
intervals with consumption values. In order to obtain consumers’ profiles which
can be easily interpreted, visualized and manipulated, there are a few pre-
processing steps to be performed. The following paragraphs explain those steps.

Missing consumption data, resulting due to equipment malfunction or com-
munication problems is ignored in the proposed methodology as the high vol-
ume of consumption data and aggregation reduce its impact on the overall data
quality.

The context filtering process consists on selecting data which represents a
specific context, defined, for example, by a temporal window (e.g. winter, sum-
mer, year), type of day (e.g. working day) and location.
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Given the outliers potential to bias the results obtained from data, they are
usually deleted or replaced by appropriate values. In this paper, a significant
percentage of null consumption measurements was identified and the respective
households were excluded from the study.

After the context filtering and outlier analysis, a dimensionality reduction is
performed through data aggregation, in order to obtain a representative curve of
the whole temporal window. The aggregation is characterized by the period used,
e.g., hourly, daily, yearly and operator, e.g., sum, mean, median. Considering N
samples and H input features, with x = [xi1 , ..., xiH ] where i=1:N , a matrix
X ∈ IRN×H is constructed for the selected period, which includes the available
information in compact matrix format:

X =

⎡

⎢
⎣

x11 · · · x1H
...

. . .
...

xN1 · · · xNH

⎤

⎥
⎦ (1)

The final preprocessing consists of the normalization of the data for easier
clustering and representation of the information. Normalization for numeric val-
ues may be performed, e.g., based on the mean, standard deviation, maximum
value of the whole dataset. In this paper, the profiles are normalized with regards
to all consumers’ maximum hourly consumption, using the minimum-maximum
normalization method.

3 Clustering

Clustering is an unsupervised learning task that aims at decomposing a given
set of objects into subgroups or clusters based on similarity [15]. The goal is
to divide the dataset in such a way that objects belonging to the same cluster
are as similar as possible, whereas objects belonging to different clusters are as
dissimilar as possible.

In the scope of this paper, clustering methods are used to find the groups
of consumers which have similar consumption curves in some context, such as
a season. After data pre-processing, various clustering configurations are tested
using multiple clustering validity indices (CVIs).

3.1 K-Means

The objective of the k-means clustering algorithm is to partition the dataset X
into a determined number of clusters (nc). The set of clusters C = {c1, ..., cnc

},
is required to be a partition of the dataset into non-empty pairwise disjoint
subsets. The objective function, of the hard C-means can be written as follows:

Jh(X,Uh,V) =
nc∑

i=1

N∑

j=1

µijd
2
ij(xj , ci) (2)
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where V = {c1, ..., cnc
} is the set of cluster centers and Uh is a nc × N binary

matrix called partition matrix. The distance measure dij in this paper is the
Euclidean. The individual elements µij ∈ {0, 1} indicate the assignment of data
to clusters, and it is required that:

nc∑

i=1

µij = 1,∀j ∈ {1, ..., N} and
N∑

j=1

µij > 0,∀i ∈ {1, ..., nc}. (3)

Cluster centers ci are computed as the mean of all data vectors assigned to
them, using Eq. 4 for each cluster:

ci =

∑N
j=1 µijxj

∑N
j=1 µij

(4)

3.2 Fuzzy C-Means

Formally, a fuzzy cluster model of a given dataset X into nc clusters is defined
to be best when it minimizes the objective function:

Jf (X,Uf ,V) =
nc∑

i=1

N∑

j=1

µm
ijd

2
ij(xj , ci) (5)

under the constraints presented in Eq. 3 that have to be satisfied for mem-
bership degrees µij ∈ [0, 1] in Uf . The parameter m, where m > 1, is called the
fuzzifier or weighting exponent. Cluster centers ci are computed as the mean of
all data vectors assigned to them, using Eq. 6 for each cluster:

ci =

∑N
j=1 µ

m
ijxj

∑N
j=1 µ

m
ij

(6)

3.3 Hierarchical Clustering

Hierarchical agglomerative clustering algorithms produce a sequence of data par-
titions of decreasing numbers of clusters at each step, where each clustering scheme
results from the previous one by merging the two closest clusters into one.

The Ward’s [16] minimum variance method is used in this paper. Ward’s
method represents a cluster by its center and in each iteration it finds the pair
of clusters that leads to minimum increase in total within-cluster variance after
merging. This increase is a weighted squared distance between cluster centers.
The objective function is then the error sum of squares defined to be the squared
Euclidean distance between clusters. The cluster centers are obtained using Eq. 4
for each cluster.
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3.4 Clustering Validity Indices

Usually the number of (true) clusters in the given data is unknown in advance.
However, it is required to specify nc as an input parameter. The goal of all CVIs
is to maximize intra-cluster similarity and minimize inter-cluster similarity. The
following CVIs are used in the proposed methodology, to assess the best nc:

– Silhouette (Sil): it reflects the compactness and separation of the clusters.
A larger averaged Sil width indicates better quality of the clustering result.

– Davies and Bouldin’s index (DB): estimates the cohesion based on the
distance from the data points in a cluster to its centroid, and the separation
based on the distance between centroids. The best nc should minimize the
value of the index.

– Dunn’s index(DI): identifies clusters that are compact and well separated.
For a given assignment of clusters, a higher DI indicates better clustering.

– Weighted intra-inter cluster distance index (WI): it compares the
homogeneity of the data to its separation. A WI equal to 1 describes a cluster-
ing where every pair of objects from different clusters has null similarity and
at least one pair of objects from the same cluster has a non-zero similarity.

– Xie and Beni’s index (XB): it aims to quantify the ratio of the total
variation within clusters and the separation of clusters. The best nc should
minimize the value of the index.

4 Results and Discussion

4.1 Natural Gas Data Preprocessing

The natural gas consumption data used in this paper was provided by the Irish
Social Science Data Archive (ISSDA) [17]. The data pre-processing was per-
formed by considering the initial gas consumption data of 1493 households.

– Missing data analysis: In the database, 6 days were missing, which were
ignored given that the high volume of consumption data and aggregation
reduce its effect on the overall data quality.

– Context filtering: Only smart metering data from working days was used.
The profiles were extracted seasonally, which means days were aggregated for
each season of the year. Data from December of 2009 to 2010 was used, where
the corresponding number of days to be aggregated was 243.

– Outliers analysis: From data analysis, a significant percentage of null con-
sumption measurements was identified in the study period. All consumers with
more than 90 % of null consumption measurements in a year were excluded.
This percentage was considered suitable when analysing the data and with
this criterion, a total of 63 consumers was excluded and 1430 were left.

– Data aggregation: The consumption data was sampled every half hour for
each meter. It was aggregated hourly resulting in 24 features for each consumer
in each season, where the operator used was the summation.
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– Data normalization: The profiles were normalized with regards to all con-
sumers’ maximum hourly consumption for each season.

After data pre-processing, the authors were left with household gas consump-
tion (kWh) for 1430 households over 243 working days and consumers’ hourly
aggregated data.

4.2 Seasonal Profiles

Two partitional algorithms, k-means (KM) and fuzzy c-means (FCM) and
Ward’s hierarchical clustering (HC), were used to obtain the seasonal profiles.
For FCM, the fuzziness parameter m was varied between 1.25 and 2. The best
result was obtained for m = 1.25 and only the results using this best value of m
are presented in this section.

The number of clusters (nc) was varied between 2 and 10 in order to obtain
the best, or the most suitable, nc for each algorithm and season. The authors
consider a partition suitable for the application if it presents a uniform distrib-
ution, minimizes distances between curves of the same clusters and maximizes
distances between different clusters. The selected clusters are considered well
defined, compact and balanced, representing a significant number of consumers
in the population.

Table 1 presents the results of the selected nc based on the CVIs scores as
well as expert decision, through visual analysis, for each algorithm and season.
The best nc was considered to be 3 for spring and summer, 4 for autumn and 5
for winter.

In Table 1, unlike the other CVIs, DI indicates 2 clusters as the best nc con-
sistently. Except for two events, Sil also indicates that nc. For all seasons, the

Table 1. Selected nc (with respective CVI score), for each algorithm and season.

Seasons Algorithms Sil DB DI WI XB

Spring KM 2(0.31) 5(1.73) 2(0.84) 4(0.59) 2(0.82)

HC 2(0.23) 6(1.99) 2(0.72) 3(0.74) 3(1.25)

FCM 2(0.30) 4(1.82) 2(0.82) 5(0.58) 2(1.60)

Summer KM 2(0.46) 5(1.40) 2(0.75) 5(0.76) 2(0.77)

HC 4(0.30) 4(1.45) 2(0.62) 3(0.61) 4(1.69)

FCM 2(0.45) 5(1.70) 2(0.73) 3(0.75) 2(0.91)

Autumn KM 2(0.24) 2(1.80) 2(0.94) 3(0.62) 2(0.83)

HC 2(0.17) 4(1.84) 2(0.78) 4(0.71) 4(1.24)

FCM 2(0.24) 5(1.60) 2(0.93) 5(0.60) 2(0.88)

Winter KM 2(0.23) 5(1.80) 2(0.88) 3(0.65) 5(1.10)

HC 5(0.08) 5(2.05) 2(0.77) 5(0.63) 5(1.60)

FCM 2(0.23) 5(1.63) 2(0.88) 5(0.67) 2(1.01)
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two representative profiles obtained consisted of a separation between high and
low consumption consumers. For a more interesting analysis of the consumers’
consumption patterns, higher nc has to be obtained, since with 2 clusters the
majority of the consumers’ profiles are significantly different from the represen-
tative ones, the clusters centers.

In the following figures, the consumers’ profiles are represented by 24 features
for each season, and the x-axis is the 24 h in a day.

Spring Profiles. The best nc obtained for spring was 3 with the HC algorithm
and clusters are presented in Fig. 1. Except for DB index, for all CVIs this nc

indicated better performance than a higher number.

Fig. 1. Spring profiles for 3 clusters: (a) Cluster 1; (b) Cluster 2; (c) Cluster 3.

Summer Profiles. The best nc obtained for summer was 3 with FCM algo-
rithm and clusters are presented in Fig. 2. For a nc of 3, better CVIs results
were achieved with the other algorithms. However, for both the HC and KM
algorithms one of the clusters had very few consumers, 17 and 74, respectively.
Given that the aim is to obtain not only compact and well defined clusters, but
also representative of the population, this number of consumers was not consid-
ered significantly representative and therefore these clusters were not selected.

Autumn Profiles. The best nc obtained for autumn was 4 with the HC algo-
rithm as presented in Fig. 3. In Table 1, the CVIs indicate a different nc for
other algorithms. Regarding the nc indicated for the other algorithms, the HC
presented better results than KM for a nc of 3. In the case of FCM algorithm,
CVIs indicated a nc of 5, however the results obtained with 4 clusters produced
by the HC presented compact and well defined clusters and consistent CVIs
performance.
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Fig. 2. Summer profiles for 3 clusters: (a) Cluster 1; (b) Cluster 2; (c) Cluster 3.

Fig. 3. Autumn profiles for 4 clusters: (a) Cluster 1; (b) Cluster 2; (c) Cluster 3; (d)
Cluster 4.

Winter Profiles. The best nc obtained for winter was 5 with KM algorithm
as presented in Fig. 4. The higher number of profiles obtained may be related
with a higher use of the energy source at this time of year. In Table 1, the CVIs
indicated a nc of 2, 3 and 5 as the best. For the case of a nc equal to 3 clusters,
only WI indicated this nc as best for the KM algorithm and the clusters obtained
were not so well defined as with 5 clusters. In Table 1, DB consistently indicated
this nc for all algorithms, moreover each of the remaining CVIs indicated it for
at least one algorithm.
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Fig. 4. Winter profiles for 5 clusters: (a) Cluster 1; (b) Cluster 2; (c) Cluster 3; (d)
Cluster 4; (e) Cluster 5.

4.3 Representative Profiles

The consumers’ representative profiles consist of their mean normalized con-
sumptions, which are represented as load profiles (LP) in Fig. 5. All consumers’
representative profiles are mainly characterized by:

– a morning and an evening peak consumption;
– the time at which the consumption starts to rise and to decline;
– the off-peak consumption.

All seasons have at least one LP with a marked difference between peaks.
For the case of spring, LP 2 and LP 3, for summer LP 1, for autumn LP 2 and
for winter LP 5. In spring and summer, the off-peak consumptions are lower
than in the other two seasons, which are colder and characterized by a higher
amount of gas use. All seasons have at least one LP with a peak consumption in
a short period of time (approximately 3 h): LP 1 and LP 2 for spring, LP 1 for
summer, LP 3 for autumn and LP 1 and LP 3 for winter. The larger peaks may
take several hours of the day to rise and decline, which may be related with the
heating systems programming.

In Table 2, clusters size is presented in terms of percentage of consumers for
the clusters 1 to 5 (C1–C5), where each cluster is represented by the LP 1 to 5,
respectively. The algorithms which generated those clusters are presented as well.

From Table 2, the consumption dynamics can be described for each season:

– Spring: the majority of consumers (66 %) is represented by LP 3, which corre-
sponds to those who have the lowest morning peak consumption and a high one
in the evening, as well as a low off-peak consumption during daytime and night;
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Fig. 5. Seasonal representative profiles for: (a) spring; (b) summer; (c) autumn; (d)
winter.

Table 2. Percentage of consumers for the clusters (C1-C5) of each season and respective
algorithms.

Season C1 C2 C3 C4 C5 Algorithm

Spring 13 % 21 % 66% - - HC

Summer 9 % 22 % 69% - - FCM

Autumn 15 % 13 % 15% 57 % - HC

Winter 8 % 20 % 19% 36 % 17% KM

– Summer: the majority of consumers (69 %) is represented by LP 3, which cor-
responds to those who have approximately equal morning and evening peak con-
sumption, as well as low off-peak consumption at night and daytime;

– Autumn: the majority of consumers (57 %) is represented by LP 4, which
corresponds to those who have a low morning peak consumption and a slightly
higher one in the evening. All LPs have a higher evening peak consumption
than the morning one, as well as a low off-peak consumption during night,
except for LP 1 which has the highest during daytime and night;

– Winter: the majority of consumers (36 %) is represented by LP 4, which
corresponds to those who have a low morning peak consumption and the
lowest in the evening, as well as the lowest daytime off-peak consumption.
All LPs have a low off-peak consumption during the night until morning,
compared to the consumption that they present throughout the day. This is
the season which presents the more balanced clusters, in terms of size.
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5 Conclusions

In this paper, residential natural gas consumers’ representative profiles were
defined, using high frequency gas consumption data from a smart metering trial
conducted in Ireland. Consumption data was hourly aggregated by summation,
for each season. Hence, each consumer had a 24 h seasonal profile. The final
consumer representative seasonal profile, also referred as load profile (LP), con-
sisted on the mean normalized consumption of the cluster to which the consumer
belonged, and it was represented by the cluster center.

Different clustering algorithms were used, as well as CVIs to assess clustering
performance. As result, 3 LPs were obtained using HC and FCM algorithms, for
spring and summer, respectively, 4 LPs using HC for autumn, and 5 LPs using
KM for winter, in a total of 15 LPs. While crisp algorithms were selected for three
seasons, the FCM was selected only for summer. In this case, the other algorithms
presented clusters with reduced size, which were not considered representative
of a population group. Thus, a fuzzy algorithm, that allows the assignment of
fuzzy membership degrees of the consumers to the clusters, may be suited for
this type of situation.

The CVIs which best indicated a nc corresponding to compact and well
defined clusters, were DB, WI and XB. Other algorithms, CVIs and similarity
distances can be applied to this data in order to achieve better results, with
higher CVIs scores. Respectively, for all the cases and for most of them, DI and Sil
consistently indicated 2 clusters. For all seasons, the two representative profiles
obtained consisted of a separation between high and low consumption consumers,
where the majority of the consumers’ profiles were significantly different from the
representative ones. Therefore, for a more interesting analysis of the consumers’
consumption patterns, higher number of clusters had to be obtained.

The knowledge obtained with this methodology can assist decision makers
in the energy utility industry in order to develop demand side management
programs, consumer engagement strategies, marketing, demand forecasting tools
as well as in designing more innovative and sophisticated tariff systems.
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