
123

Vitaliy Yakovyna · Heinrich C. Mayr
Mykola Nikitchenko · Grygoriy Zholtkevych
Aleksander Spivakovsky · Sotiris Batsakis (Eds.)

11th International Conference, ICTERI 2015
Lviv, Ukraine, May 14–16, 2015
Revised Selected Papers

Information and Communication
Technologies in Education,
Research, and Industrial Applications

Communications in Computer and Information Science 594

Communications
in Computer and Information Science 594

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Vitaliy Yakovyna • Heinrich C. Mayr
Mykola Nikitchenko • Grygoriy Zholtkevych
Aleksander Spivakovsky • Sotiris Batsakis (Eds.)

Information and Communication
Technologies in Education,
Research, and Industrial Applications
11th International Conference, ICTERI 2015
Lviv, Ukraine, May 14–16, 2015
Revised Selected Papers

123

Editors
Vitaliy Yakovyna
Lviv Polytechnic National University
Lviv
Ukraine

Heinrich C. Mayr
Institute of Applied Informatics
Alpen-Adria-Universität Klagenfurt
Klagenfurt
Austria

Mykola Nikitchenko
Taras Shevchenko National University
of Kyiv

Kyiv
Ukraine

Grygoriy Zholtkevych
V.N. Karazin Kharkiv National University
Kharkiv
Ukraine

Aleksander Spivakovsky
Kherson State University
Kherson
Ukraine

Sotiris Batsakis
University of Huddersfield
Huddersfield
UK

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-30245-4 ISBN 978-3-319-30246-1 (eBook)
DOI 10.1007/978-3-319-30246-1

Library of Congress Control Number: 2016931283

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains a number of selected and extended contributions to ICTERI
2015, the 11th International Conference on Information and Communication Tech-
nologies (ICT) in Education, Research, and Industrial Applications: Integration, Har-
monization, and Knowledge Transfer.

The conference was held in Lviv, Ukraine, during May 14–16, 2015. It was a real
pleasure for all ICTERI players, that in contrast to 2014, the 11th edition could bring
scholars and experts physically together again for exchanging and discussing new ideas
and findings, and for networking across political borders. This was all the more
pleasing as, despite all the current challenges, the Ukrainian ICT community proved its
vigor and global integration.

ICTERI as a conference series is concerned with interrelated topics of ICT devel-
opment, deployment, and use; topics that are vibrant for both the academic and
industrial communities, namely: education, research, industrial applications, and
cooperation in ICT-related aspects. ICTERI 2015 continued the tradition of hosting co-
located events, this year by offering four workshops.

As in previous years, the ICTERI 2015 proceedings have been published as a
CEUR-WS volume (http://ceur-ws.org/Vol-1356/), containing 45 papers selected from
a total of 119 submissions from 12 countries. Thus the acceptance rate for ICTERI
2015 was 38 %. Of these papers, the best 19 were identified and selected by the
program and workshop chairs to be submitted in substantially extended and revised
versions for a proceedings volume. All authors resubmitted. Again, these papers were
reviewed by at least two experts regarding scientific and technical quality, anticipated
reader interest, and coverage of the conference scope. Finally, the proceedings com-
mittee selected the nine most mature and interesting papers for publication after further
revision. The acceptance rate thus is 7.5 % regarding the overall number of ICTERI
2015 submissions and 47 % of the proceedings submissions.

The selected papers are grouped into two parts in this volume: (I) ICT in Education
and Industrial Applications, and (II) Formal Frameworks.

In the first paper of Part I, Aleksandr Spivakovsky, Maksim Vinnik, and Yulia
Tarasich present an approach of developing dissertation committees and ICT infras-
tructure for graduate schools. As a continuation of their research, the authors are
actively working on the creation of an open course on the use of ICT for undergrad-
uates and postgraduate students.

Mykola Tkachuk, Konstiantyn Nagornyi, and Rustam Gamzayev discuss a frame-
work for effectiveness estimation of post-object-oriented technologies in software
maintenance. They define complex estimation measures based on fuzzy logic, and
embed these into a CASE tool, which has been successfully tested on real-life software
applications.

Oleksandr Gordieiev, Vyacheslav Kharchenko, and Mario Fusani give a survey of
software quality models and related metrics, and analyze their evolution with respect to

http://ceur-ws.org/Vol-1356/

covering aspects of “greenness” and reliability. Using the elsewhere published
“cumulative matching characteristics metric” they also calculate a forecast on quality
model evolution for the year 2020.

Bohdan Volochiy, Bohdan Mandziy, and Leonid Ozirkovskyy in their paper deal
with safety models of complex technical systems for critical applications. They propose
to extend and improve the state space method such that a model also reflects inde-
pendencies between accidental situations in contrast to the traditional methods FTA
and FMEA/FMECA.

Part II presents formal and algorithmic frameworks for advancing ICT foundations.
Andrei Alexandru and Gabriel Ciobanu describe an extension of the theory of invariant

sets to a theory of invariant algebraic structures that allows one to work with (infinite)
structures in terms of finitely supported objects. The advantage of such “finitely supported
mathematics” is shown by means of some applications in experimental sciences.

Bogdan Aman and Gabriel Ciobanu first introduce a polynomial solution of the SAT
problem (satisfiability problem) by using polarizationless P systems with active mem-
branes, without division, but with a pre-computed alphabet. Secondly, they present how
to efficiently simulate polynomial space Turing machines by using a logarithmic space P
system with active membranes and encoding the positions on the Turing machine tape
by use of a binary representation.

Nadezhda Baklanova, Wilmer Ricciotti, Jan-Georg Smaus, and Martin Strecker
discuss a new kind of small-step semantics for imperative programming languages,
based on the zipper data structure. They show that this semantics has decisive
advantages for abstracting programming language semantics to automata.

Grygoriy Zholtkevych formalizes the implementation of black boxes by Moore
machines for synchronous black boxes and by pre-machines for asynchronous black
boxes, i.e., black boxes with an asynchronous interdependence between input and
output. Using this approach, event processing in distributed systems can be modelled
and analyzed.

Finally, Elena Zaitseva, Vitaly Levashenko, Jozef Kostolny, and Miroslav Kvassay
address the problem of reliability analysis of multi-state systems, and propose an
approach to the analysis of the boundary states of such systems based on direct partial
logic derivatives.

This volume would not have materialized without the support of many people. First,
we are very grateful to all the authors for their continuous commitment and intensive
work. Second, we would like to thank the Program Committee members and additional
reviewers for providing timely and thorough assessments, and also for being very
cooperative in doing additional review work at short notice. Furthermore, we would
like to thank all the people who contributed to the organization of ICTERI 2015.
Without their efforts there would have been no substance for this volume.

November 2015 Vitaliy Yakovyna
Heinrich C. Mayr

Mykola Nikitchenko
Grygoriy Zholtkevych

Aleksander Spivakovsky
Sotiris Batsakis

VI Preface

Organization

General Chairs

Yuriy Bobalo Lviv Polytechnic National University, Ukraine
Aleksander Spivakovsky Kherson State University, Ukraine

Steering Committee

Vadim Ermolayev Zaporizhzhya National University, Ukraine
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
Mykola Nikitchenko Taras Shevchenko National University of Kyiv, Ukraine
Aleksander Spivakovsky Kherson State University, Ukraine
Mikhail Zavileysky DataArt, Russian Federation
Grygoriy Zholtkevych V.N. Karazin Kharkiv National University, Ukraine

Program Chairs

Sotiris Batsakis University of Huddersfield, UK
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
Vitaliy Yakovyna Lviv Polytechnic National University, Ukraine

Workshop Chairs

Mykola Nikitchenko Taras Shevchenko National University of Kyiv, Ukraine
Grygoriy Zholtkevych V.N. Karazin Kharkiv National University, Ukraine

Tutorial Chair

Vadim Ermolayev Zaporizhzhya National University, Ukraine

IT Talks Chairs

Aleksander Spivakovsky Kherson State University, Ukraine
Mikhail Zavileysky DataArt, Russian Federation

Local Organization Chair

Dmytro Fedasyuk Lviv Polytechnic National University, Ukraine

Publicity Chair

Nataliya Kushnir Kherson State University, Ukraine

Web Chair

Eugene Alferov Kherson State University, Ukraine

Program Committee

Eugene Alferov Kherson State University, Ukraine
Sotiris Batsakis University of Huddersfield, UK
Anatoliy Doroshenko National University of Technology Kyiv Polytechnic

Institute, Ukraine
Vadim Ermolayev Zaporizhzhya National University, Ukraine
David Esteban TECHFORCE, Spain
Hans-Georg Fill University of Vienna, Austria
Brian Hainey Glasgow Caledonian University, UK
Jason Jung Yeungnam University, South Korea
Samia Kamal Oxford Brookes University, UK
Vitaliy Kobets Kherson State University, Ukraine
Hennadiy Kravtsov Kherson State University, Ukraine
Sergey Kryukov Southern Federal University, Russian Federation
Vladimir Kukharenko National Technical University Kharkiv Polytechnic

Institute, Ukraine
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
Mykola Nikitchenko Taras Shevchenko National University of Kyiv, Ukraine
Tope Omitola University of Southampton, UK
Dimitris Plexousakis Institute of Computer Science, FORTH, Greece
Klaus-Dieter Schewe Software Competence Center Hagenberg, Austria
Wolfgang Schreiner Research Institute for Symbolic Computation of Johannes

Kepler University Linz, Austria
Vladimir

A. Shekhovtsov
Institute of Applied Informatics, Alpen-Adria-Universität

Klagenfurt, Austria
Maria Shishkina Institute of Tools of Education, Ukraine
Maxim Vinnik Kherson State University, Ukraine
Paul Warren Knowledge Media Institute, Open University, UK
Vitaliy Yakovyna Lviv Polytechnic National University, Ukraine
Grygoriy Zholtkevych V.N. Karazin Kharkiv National University, Ukraine

Additional Reviewers

Michael Walch University of Vienna, Austria
Volodymyr Skobelev Kyiv National Economic University, Ukraine

VIII Organization

ICTERI 2015 Sponsors

Oleksandr Spivakovsky’s Educational Foundation (OSEF) http://spivakovsky.fund/
DataArt www.dataart.com
Lviv Polytechnic National University http://lp.edu.ua/
Logicify http://logicify.com/

Organization IX

http://spivakovsky.fund/
http://www.dataart.com
http://lp.edu.ua/
http://logicify.com/

Contents

ICT in Education and Industrial Applications

Web Indicators of ICT Use in the Work of Ukrainian Dissertation
Committees and Graduate Schools as Element of Open Science 3

Aleksandr Spivakovsky, Maksym Vinnyk, and Yulia Tarasich

Models, Methods and Tools for Effectiveness Estimation of Post
Object-Oriented Technologies in Software Maintenance 20

Mykola Tkachuk, Konstiantyn Nagornyi, and Rustam Gamzayev

Software Quality Standards and Models Evolution: Greenness and
Reliability Issues. 38

Oleksandr Gordieiev, Vyacheslav Kharchenko, and Mario Fusani

The New Method of Building a Safety Model for Quantitative Risk
Assessment of Complex Technical Systems for Critical Application 56

Bohdan Volochiy, Bohdan Mandziy, and Leonid Ozirkovskyy

Formal Frameworks

Main Steps in Defining Finitely Supported Mathematics 73
Andrei Alexandru and Gabriel Ciobanu

Solving NP-complete Problems in Polynomial Time by Using a Natural
Computing Model . 91

Bogdan Aman and Gabriel Ciobanu

Abstracting an Operational Semantics to Finite Automata. 109
Nadezhda Baklanova, Wilmer Ricciotti, Jan-Georg Smaus,
and Martin Strecker

Realisation of Synchronous and Asynchronous Black Boxes Using
Machines . 124

Grygoriy Zholtkevych

Analysis of Boundary States of Multi-state System by Direct Partial Logic
Derivatives . 140

Elena Zaitseva, Vitaly Levashenko, Jozef Kostolny,
and Miroslav Kvassay

Author Index . 157

http://dx.doi.org/10.1007/978-3-319-30246-1_1
http://dx.doi.org/10.1007/978-3-319-30246-1_1
http://dx.doi.org/10.1007/978-3-319-30246-1_2
http://dx.doi.org/10.1007/978-3-319-30246-1_2
http://dx.doi.org/10.1007/978-3-319-30246-1_3
http://dx.doi.org/10.1007/978-3-319-30246-1_3
http://dx.doi.org/10.1007/978-3-319-30246-1_4
http://dx.doi.org/10.1007/978-3-319-30246-1_4
http://dx.doi.org/10.1007/978-3-319-30246-1_5
http://dx.doi.org/10.1007/978-3-319-30246-1_6
http://dx.doi.org/10.1007/978-3-319-30246-1_6
http://dx.doi.org/10.1007/978-3-319-30246-1_7
http://dx.doi.org/10.1007/978-3-319-30246-1_8
http://dx.doi.org/10.1007/978-3-319-30246-1_8
http://dx.doi.org/10.1007/978-3-319-30246-1_9
http://dx.doi.org/10.1007/978-3-319-30246-1_9

ICT in Education and Industrial
Applications

Web Indicators of ICT Use in the Work of Ukrainian
Dissertation Committees and Graduate Schools as Element

of Open Science

Aleksandr Spivakovsky, Maksym Vinnyk(✉), and Yulia Tarasich

Kherson State University, 27, 40 rokiv Zhovtnya St., Kherson 73000, Ukraine
{Spivakovsky,Vinnik,YuTarasich}@kspu.edu

Abstract. Today an enormous amount of problems in building a system of
efficient education and science is on the discussion agenda in Ukraine. A decrease
in the number of scientists in the country has been observed in the last 15 years.
At the same time, the amount of postgraduate students and people aiming at
obtaining their doctorate is increasing. Notably, similar indicators are also
observed in the majority of post-soviet countries. One complicating factor is that
the system of scientific personnel training in Ukraine is very restrictive and closed.
The proportion of research results published using a free access scheme to the
overall bulk of publications is still very small, in particular if compared to the
level of ICT development. Therefore, a major part of the publications still remains
inaccessible from the outside. In this study we investigate the openness and
accessibility of the preparation of the academic staff in Ukraine. To partly over‐
come some of the problems, we propose an our vision on ICT development of
DC & GS infrastructure. In this article we analyzed the performance of DC and
GS through their web indicators.

Keywords: Web · Information and communication technology · Education and
learning process · ICT infrastructure · Open science

“If it’s not on the Web, it doesn’t exist at all”
Sarah Stevens-Rayburn & Ellen N. Bouton, 1997.

1 Introduction

The main catalyst for socio-economic development of a state potential is the ability to
create, collect, and effectively manage knowledge that is comes out from the best schol‐
arly research practices. The countries which have made it to their development strategy
and implemented the effective interaction with the business enjoy TOP ratings in the
World rankings. In the age of information technologies, it takes one not years, but rather
days to bear the bell of scientific research and excel the competitors. The companies
which are the first in the market are more likely to benefit from a positive effect caused
by the introduction of new knowledge. Globalization is adjusting the cooperation

© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-30246-1_1

between science and industry. More and more funds are invested in scientific research
and development to capture the leadership in the market. A modern country’s develop‐
ment is stimulated by the transition from aresource-based economy to hi-tech. There is
an opportunity to create “intellectual dollars” without any resource, but people. The
results of intellectual work become a hard currency. For example, Japan, though it had
no natural resources, managed to become the leader in world’s economy. The monetary
value of the biggest hi-tech (IT) companies is at a scale of the budgets of some developed
countries (Apple– $ 711 billion, Microsoft – $ 349 billion, Google – $ 365 billion).

The Open Science (OS) movement gains popularity in the world of clerisy, aiming
to make research results and source data accessible to public at all levels. However, there
is a conflict between the desire of scientists to have access to shared resources and make
profit by using these resources [1]. In recent years, many governments try to impose the
policy of openness regarding scientific knowledge, especially, if it is funded with public
money. One way is the enforcement of providing open access to the results of all research
projects performed at public expense. An indicative example is the US, which grant
annually about $ 60 billion for research. In 2008, the US Congress imposed the obliga‐
tion to grant free access in a year after the first publication to all the research papers
based on the studies conducted by the National Institute for Health (which receives circa
the half of the total public funding for science). Similar measures are now considered
by many other countries.

Today, a lot of research in Ukraine is devoted to the problems of higher education and,
in particular, the use of ICT for training students, creating information and communica‐
tion environments in the universities, etc. However, in the scholarly literature insuffi‐
cient attention is paid to the development of information and communication models of
interaction with ICT in academic staff training. Moreover, today we are talking about the
need for openness and accessibility of scientific activity, whereas a substantial part of the
scholarly output never reaches its reader within and even more outside the professional
academic community. This problem is particularly acute in the post-soviet countries.
Regionalism of entire areas in science, convention, low connection with contemporary
scientific trends, low level of foreign language knowledge by scientists, lack of self-
developing scientific community, low competition with other countries, lack of motiva‐
tion, poor funding, brain drain, and a number of other factors result in the continuing
archaism of scientific brainpower training in Ukraine.

Scientometrics is rapidly developing nowadays. Using information technology
allows creating new services for the development of scientific and research activity.
Many global companies invest billions of dollars in services to support research activity,
thereby creating a serious market not for the research results but for the research process
support. Herewith the trend shifts toward commercial projects. The examples of such
companies are Apple, Microsoft, Google, Elsevier, Thomson Reuters, not to mention
many others. The most outstanding services with rapidly growing impact are Google
Scholar, Scopus, Orcid, Academia.edu, Research Gate, Mendeley, arXiv.org, cs2n,
Epernicus, Myexperiment, Network.nature, Science-community. These services
contribute to satisfying the needs of the scientific community. In fact, these positively
influence scientific and technical progress and create a new paradigm of scientific
research. A big number of the recently created scientometric services allow assessing

4 A. Spivakovsky et al.

the relevance of the research results by a scientist, the number of his publications, cita‐
tions, storage, etc. Having these measurements at hand opens up new opportunities and
prospects. Our time ischaracterized by the high rates of the accumulation of new knowl‐
edge, in particular in the form of research results. Provided that the integration of
research activities is currently (and naturally) low, a huge amount of scientific and
research information falls out of search visibility and accessibility. Information tech‐
nology is the only way to arrange and create effective search tools for acquiring the
necessary knowledge. The objective of our research is to investigate the transparency
of specialized scientific bodies and offer the vision of their supporting ICT infrastructure.
Accordingly, the rest of the paper is structured as follows.

Present article includes such sections, as description of the methodological and
experimental parts (2–4), discussion of basic components of Dissertation Committees
(DC) and Graduate Schools (GS) ICT infrastructure and main ways and methods of their
realization (5).

2 Related Work

David [2] mentions that the goal of Open Science is to do scientific research in a way
that facts and their distribution is made available at all the levels of the concerned public.
The same article states that the movement arose in the XVII century. Due to the fact that
the public demand for access to scientific knowledge has become so large that there was
a need for a group of scientists to share their resources with each other, so that they could
conduct research collectively [2].

The term E-Science (or eScience) was proposed by John Taylor, the Director-
General of the United Kingdom Office of Science and Technology in 1999 and was used
to describe a large funding initiative, starting from November 2000. E-Science has been
interpreted more broadly since as “the application of computer technology to the imple‐
mentation of modern scientific research, including training, experimentation, accumu‐
lation, dissemination of results and long-term storage and access to all materials obtained
through the scientific process. These may include modeling and analysis of facts, elec‐
tronic/digitized laboratory notebooks, raw materials and built-in data sets, handwritten
production and design options, preprints and print and/or electronic publications” [3].

Koichiro Matsuura, the President of UNESCO, wrote in his preface to [4]: “Societies
that are based on the knowledge will need to share them to keep their human nature”.

In 2014, the IEEE eScience community proposed a condensed definition [5]:
“eScience encourages innovation in collaborative, computationally or facts intensive
research in all the disciplines throughout the research life cycle”.

Michael Nielsen, a physicist and propagandist of Open Science, colorfully describes
in [6] the way the new instruments need to look like to facilitate the dissemination of
the culture of cooperation and openness among scientists. One of such tools exists now.
This is arXiv – a site that allows physicists to publish preprints of their works before the
official publication of the article. This promotes to get in faster feedback and to dissem‐
inate the new discoveries. Nielsen also acts for publishing not only conclusions, but all
the original data – this is the thing physicistshave been dreaming of for a long time.
Journals could help them do that if they wanted to [6].

Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees 5

The most basic obligation of a scientific journal is to perform peer review, arXiv
founder Ginsparg says. He laments that a large proportion of open-access scientific
publishers “clearly are not doing that.” Ensuring that journals honor their obligation is a
challenge that the scientific community must rise to. “Journals without quality control are
destructive, especially for developing world countries where governments and universities
are filling up with people with bogus scientific credentials,” Ginsparg says [7].

The peer review system for scientific papers on one hand offers an opportunity to
obtain a (preliminary) critical assessment of a manuscript, but on the other hand it slows
down the publication of research results. In this system, a review process is rarely
accomplished in less than a month. The reviewers often request authors to revise some
parts of the material or conduct additional studies. As a result, the time before the publi‐
cation stretches for about six months or more. However, Michael Eisen, the co-founder
of the Public Library of Science (PLoS), mentioned that according to his experience the
“most serious incompletes are detected only after the article is published.” The same
applies to other scientific works, including dissertations for a degree [8].

It is a big problem in modern conditions of development of information technology
is a plagiarism. Although information technology can be used in recognition of plagia‐
rism, it is one of the major problems of scientific research. So, the American researcher
Bela Gripp in her dissertation says that “… even today’s best performing systems cannot
reliably identify more heavily disguised forms of plagiarism, including paraphrases,
translated plagiarism, or idea plagiarism. This weakness of current systems results in a
large percentage of disguised scientific plagiarism going undetected. While the easily
recognizable copy & paste-type plagiarism typically occurs among students and has no
serious consequences for society, disguised plagiarism in the sciences, such as plagiar‐
ized medical studies in which results are copied without the corresponding experiments
having been performed, can jeopardize patient safety” [9].

The cases are known in history when after many years after the defense a person was
divested a degree and even was fired after the examination of his work regarding qual‐
itative or even plagiarism.

Tugo Pagano and Maria Alessandra Rossi suggest [10] that politics aimed at over‐
coming the disadvantages of excessive privatization of knowledge can play an important
role in stimulating the economy. Efforts should be focused to maintain and enhance the
role of open science. The institutions of open science have allowed the flourishing of
industrial development from the beginning, and should have a much more important
role in the architecture of the future post-crisis global economy. This can be achieved
through the institute of World Research Organization (WRO) which can master some
of the benefits of open science to overcome the well-known free rider problem associated
with contributions to the last.

In 2004, the research group Laboratorio de Internet from Spain, which studies
educational and scientific activities on the Internet, started the Webometrics
(www.webometrics.info) project with the aim to rate University web sites. The subject
of their analysis is the university domain. Webometrics researchers emphasizethat the
presence of a university website allows to simplify the publication of scientific works
by faculty and research staff, compared to the publication in print, and also provides the
information the fields of their professional activities. Online publications are much

6 A. Spivakovsky et al.

http://www.webometrics.info

cheaper than paper publications and have broader potential audience. Publishing online
facilitates to broadening the access to academic resources for scientific, commercial,
political, and cultural organizations both from within a country and abroad. The rating
scale is based on the four criteria that take into account the entire Web data within the
university domain: Visibility, Presence, Openness, and Excellence. Each criterion has
a weight corresponding to its importance [11].

The report by UNESCO on information technology in education [4] shows that in
Ukraine there is a “rapid advancement of ICT into the sphere of education, which needs
continuous improvement in the efficiency of use of the new ICT in the educational
process, timely updates of educational content, and an increase in the quality of ICT
training”. However, there are some problems which are primarily associated with the
low psychological, methodological, and pedagogical readiness of teachers to the rapid
changes in information technology.

The issue of the openness of an education system and science often comes up in
relation to international research funding instruments, such as Tempus, Erasmus, and
others, and related projects. Every year, they attract the attention of many Ukrainian and
foreign universities, research organizations and structures.

In 2006–2008 our Kherson State University (KSU) participated in the following
European projects: Tempus TACIS CP No 20069-1998 “Information Infrastructure of
Higher Education Institutions”; Tempus TACIS MP JEP 23010-2002 “UniT-Net: Infor‐
mation Technologies in the University Management Network”; US Department of State
Freedom Grant S-ECAAS-03-GR-214(DD) “Nothern New York and Southern Ukraine:
New Partnership of University for Business and Economics Development”, which
resulted in the development and implementation of scientific and management processes
of analytical information systems and services. More detailed information can be found
in the articles by G. Gardner [12], V. Ermolayev [13], A. Spivakovsky [14].

The results on the interrelation of ICT and educational process and the influence of
ICT on professional and information competencies of the future university graduates
have been presented in our previous publications [15, 16]. The authors have also
conducted the investigation of the technical component of the feedback services imple‐
mentation in KSU [17] and their impact on the preparedness of the students to use ICT
for educational and non-educational purposes, and forming the ICT infrastructure in a
higher educational institution [18, 19].

3 Experimental Settings

Today, Ukraine possesses a historically established system of scientific training. The
foundations of this system were laid in the Soviet Union. This system is very similar to
the system of post-soviet countries.

According to the State Statistics Service, 2011 [19], Ukraine had 14 895 “doctors of
science” and 84 979 “candidates of science” (the analog of a PhD) covering arts, legal
studies, and sciences. Among them 4 417 doctors and 16 176 candidates of science work
in sciences. In addition, as reported by the “Voice of Ukraine” newspaper, the National
Academy of Sciences of Ukraine employs today 2 564 doctors and 7 956 candidates of
science [20].

Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees 7

In the last 19 years the number of researchers in Ukraine, decreased by more than
100 thousand people, while the number of graduate students increased by almost 2 times.
The trend similar to the decrease in the research staff members can be observed in the
numbers of domestic research and development organizations.

In Ukraine there are 988 Dissertation Committees [21]. DC are the expert councils
in different scientific domains which form the National organizational infrastructure,
accepting candidate and doctoral dissertations for examination, doing the expertise,
hosting the defenses of dissertations, and further awarding advanced academic degrees.
The aim of this infrastructure is to foster the development of the innovative elite of
Ukraine which is considered as a driving force for scientific and technological progress.
Preparatory work before the work of Dissertation Committee is carried out in the Grad‐
uate Schools. In Ukraine, there are about 300 universities, in which Graduate Schools
operate, where about 34 thousand graduate students conduct the researches.

Given the importance of the DC infrastructure, the foci of this study are to:

• Assess the openness and accessibility of the preparation of academic staff in Ukraine
within the system using the DC.

• Specify the requirements for the construction of the ICT infrastructure in this area.

We will analyze web indicators the performance of DC and GS based on the
following principles:

1. The availability of information;
2. Openness;
3. Weight;
4. Scientific;
5. Social significance.

The research into the current state of the system of interaction with ICT of the DC,
the Higher Attestation Commission of Ukraine, and graduate students is impossible
without the analysis, comparison and synthesis, abstract approach to the definition of
the basic patterns of the use of information technologies, and logical approach to the
description of possible implementations of innovative teaching methods. Hence, the
study of this issue requires the use a carefully designed combination of exploratory,
empirical, and statistical methods. Therefore, several methods are used:

• Exploratory – the analysis, synthesis, comparison, generalization and systematization
of relevant information acquired from psychological and educational literature legal
documents, standards and information resources. These sources are consulted and
further generalized to define the essence of the information competency of university
students and assess the theoretical and methodological bases of information compe‐
tency formation. Pedagogical modeling is employed to build the model of informatics
competency;

• Empirical – questionnaires, surveys, testing, and self-esteem; pedagogical experi‐
ments are used to test the hypotheses of the study;

• Statistical – the methods of mathematical statistics are employed to determine the relia‐
bility of the results on the basis of quantitative and qualitative analysis of the empirical data.

8 A. Spivakovsky et al.

The analysis of the public (available on the Internet) information on the availability of
data on DC and GS, and collecting the opinions of graduate students using a questionnaire
on the use of information technology in their dissertation projects are the main research
methods.

Considering that the DCs function as university bodies, such sites as Top 100 univer‐
sities in the World, Top 10 European universities, Top 50 universities in Russia, Top 25
universities in Poland, Top 10 universities in the USA, Top 15 universities in UK, Top
20 universities in Asia [22], DC of Ukraine were the object of information analysis.
Overall, 300 university sites were analyzed in the reported research.

The study of the current status the use of ICT to support the activities of DC/GS the
following assessment aspects:

1. The availability of a web site for a DC/GS and its analysis;
2. The degree of openness of the information provided for a DC/GS: information about

the members, dissertation abstracts, theses, etc.;
3. Information security;
4. The existence of DC/GS pages in social networks;
5. The availability of a feedback service.

Let us consider in more detail each of the assessment aspects.

1. While exploring the web sites of universities regarding the availability of informa‐
tion about the activities of the respective DC and GS, we have selected to use the
following four criteria:
• A university web site provides the information on the DC and GS and a link to

its own website;
• A DC and GS does not have a separate web site, but it has a page on the university

web site;
• A University website provides a brief information about the DC and GS;
• There is no information about the DC and GS neither on the university website

nor in social networks.
2. The openness to the information about a DC and GS for public:

• Any Internet user can see the information;
• A user can view the data only after registration on the web site;
• Only the staff and students of the university can see the information.

3. Feedback facilities:
• Providing a contact phone number;
• Providing a contact e-mail address(es);
• Providing the list of contact persons;
• Providing the Skype ID for contacts;
• Providing the schedule of DC and GS works.

4. The availability of information (pages) in social networks:
• Due to a substantial impact of social networks on the communication among

people today, it has been decided to account for the relevant indicators in our
study an analysis of the availability of information about DC and GS: the avail‐
ability of accounts or groups in social networks such as Vkontakte, Facebook,
Google +, Twitter;

Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees 9

• To analyze the availability of video records of defense meetings the analysis of
the YouTube content relevant to a DC and GS has been also undertaken.

5. The technical characteristics of DC and GS web sites.

With this common name we have combined the following criteria of examination of
the sites:

• Number of pages on the website - research on the number of pages of the DC and
GS or part of the website of the University with information about DC and GS, as
one of the indicators influencing the position of the site in the search results;

• Dynamic - in this case we are not talking about the dynamic of the site per se, but
about the frequency of updating information on the activities of the DC and GS. Thus
we examine the frequency of updating information in the categories - weekly,
monthly and annually;

• Authentication System - a study of the main elements and authentication mechanism;
• Usability - the assessment of convenience of use and ease of operation of the system,

namely how well, clearly and correctly interface and website structure are imple‐
mented. Whether the site user can quickly find the information he needs. In order to
evaluate the site based on this criterion, we conducted a brief analysis of the layout
of the site; availability is checked on the website of dynamic elements, the availability
of search and so on;

• Platform - by means of specialized web services was implemented the management
system review site. Thus we have divided the sites into two categories - implemented
using CMS and handwritten;

• CEO - the study of site positions in the results of search engines for specific user
requests;

• Validity - the number of errors found by the validator;
• Multimedia content - a study on the website of the libraries of audio and video

recordings protections scientific papers, photographs, etc.

The questionnaire which has been used to survey the use of ICT by graduate students
in their preparation to defense consisted of 3 components:

• Quantitative indicators of the use of ICT by graduate students in the process of
working with their DC;

• The availability of training courses for the use of ICT in the preparation to defense;
• The readiness of the subjects to authorize the open storage of their research results

(articles, theses, dissertations) and review materials such as audio, video, etc.

4 Experimental Results

The result of the analysis of the websites of the universities of Ukraine regarding the
information on DC and GS, personal web pages and sites of DC members is pictured in
Table 1.

10 A. Spivakovsky et al.

Table 1. The availability of information on the websites of the Universities on the DC and GS

DC GS

Have own web sites 9 % 2 %

Part of the University’s website with detailed
information DC and GS

47 % 3 %

Part of the University’s website with short infor‐
mation DC and GS

37 % 84 %

No information about DC and GS 7 % 14 %

Information about the courses on IT in science 1 %

Information scientific leaders at the GS website 2 %

Only 9 % of the reviewed DC have their own web sites. 84 % of DC related infor‐
mation can be found on University web sites, taking into account that full information
concerning the DC activities has been found only for 47 % of the reviewed DC. 7 % of
the reviewed DC have no presence on the Internet. As for GS sites, we see, only 2 % of
its have their own sites. Full information concerning the activities of the GS is placed
only on the 3 % of the studied by GS, and 14 % of GSfrom the total number is not placed
on the Internet for almost any information about themselves. These results pinpoint the
major problems in the transformation of the contemporary Ukrainian scientific
community into the Open Science community.

Only 4 DC web sites exploit a user authentication functionality distinguishing user
roles. So, it can be stated that only 1 % of the reviewed DC have created some ICT based
prototypes for the interaction between the applicants and the Ministry of Education.

About 30 % of the reviewed DC (and 2 % of GS) update the information on their
web sites every week, whereas 51 % (94 %) of the information on these sites is updated
several times per year (Fig. 1 shows an example). Consequently, the question arises on
the reliability and relevance of this information.

As per the information on the reviewed web sites, the DC have no means to track
scientometric indicators of the members of the DC, the candidates for a degree, and persons
that had defended their theses in a particular DC, not to mention the presence of analysts
defended dissertations and access to them, which makes the qualitative assessment of their
activities impossible. 32 websites have usability problems in terms of the ease of use of
their interfaces and poorly implemented site (keyword-based) search functionality. The
latter is implemented on only 27 of the reviewed resources. Only 17 of the examined web
sites provide the information on or references to resources like a “library”.

Regarding the minimally present contact information of a DC (a phone number,
address, contact person name, document templates), it is provided only on 4 of the
reviewed web sites. Moreover, the contact phone number is mentioned only on 2 of
them. Thus, in order to find the information a DC of relevance to a PhD project, one
should get their list and addresses in the Ministry of Education and Science of Ukraine
(where one also needs to go) and search for a relevant DC at the specified address.

Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees 11

This is only the first problem in the application process. The required documents have
also to be submitted to a DC by coming in person, since there is not a single web site
that allows you to exchange the information and documents with a DC in the process of
registration, filing and review of the thesis and so on.

The results of the review of the availability of information about Ukrainian DC and
GS in social networks are shown in Fig. 2.

As can be seen in Fig. 2, 14 DC have a personal group or page in Vkontakte, 11 –
in Facebook, 7 – in Twitter and 4 – in Google + . As for GS we see that only 5 of it have
a personal group or page in Vkontakte, 3 in Facebook, 1 - in Twitter and 1 in Google +.

It is also important that YouTube is used, though to a small degree. So, a certain
degree of openness of our science may be noted, in particular the openness of the prep‐
aration of the scientific staff.

Fig. 1. Frequency of updates.

Fig. 2. The use of social networks in the work of DC and GS

12 A. Spivakovsky et al.

The analysis of quantitative indicators of the use of ICT by graduate students for
working with a DC is shown in Table 2.

Table 2. Quantitative indicators of the use of ICT by graduate students for working with a DC.

Do not use Rarely use Always use

Usage of the Internet
to search for infor‐
mation about DC

Working with DC
website

80 % 15 % 5 %

Search of information
about the members
of DC in SDB

93 % 5 % 2 %

own profiles in SDB 95 % 4 % 1 %

Work with El. reposi‐
tories (dissertation
and author’s
abstract)

40 % 50 % 10 %

Usage of El. Mail 30 % 40 % 30 %

Usage of Skype 84 % 10 % 6 %

The study reveals that only 2–3 % of the respondents know what is a scientific data‐
base (SDB) or a citation index, 7 % use these systems from time to time to find the
necessary information, and only 4 % have their own profiles in such scientometric
systems and databases like Scopus, Google Scholar, Mendeley, RSCI or others. It is
important that the majority of the respondents are not interested in creating their own
profiles in such scientometric systems. The main reason for that is the lack of recognition
of their utility. Moreover, some of the profiles were created directly by the organizations
where scientists work, or automatically by the systems that store their scientific articles.
Thus the majority of respondents did not know whether they have a profile in any of the
systems, whether these exist or not.

80 % of respondents do not think much about how their scientific publications are
stored –in a paper or electronic form, and they believe that it is not of great importance.
Thus, the majority of publications are going out of press in a paper form and are not
further digitized – so remain unavailable to the scientific world.

93 % of respondents answered negatively about attending any course (or lectures)
to get prepared for the use of ICT in their dissertation project (SDB, repositories, etc.).

Analyzing the readiness to the open storage of research results (articles, theses, disser‐
tations) and materials of dissertation defense such as audio or video, we observes the
following:

1. The majority of the respondents (80 %) support the publication of electronic copies
of their scientific papers on the Internet, but at the same time consider it unnecessary
and inconvenient. Further, all the respondents point out that the Ministry of Educa‐
tion and Science of Ukraine (MESU) has the publication requirements (regarding

Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees 13

the number of papers and form of publication, paper or electronic) to qualify for a
degree which do not motivate providing open access. MESU requires that a qualified
candidate has 5 publications at the MESU approved venues, one of which can only
be published in an electronic edition and another one in an international or indexed
international SDB. Thus, none of the applicants target to publish the electronic copies
of their papers on the Internet. In some cases, this problem is solved by posting
electronic copies on a digest web site or putting these into an electronic repository
of a scientific institution of the applicant. Otherwise the articles remain inaccessible
to the outside world;

2. The Problem with open access to the protected dissertations and abstracts is identical
to the previous. In addition, the human factor needs to be taken in consideration.
Providing free access to abstracts or theses means making these open for further
examination after publication, hence the increase of the author’s responsibility for
its contents and quality. Therefore, open storage of scientific work of this type stim‐
ulates quality improvement. We see it in the results of the evaluation of the respond‐
ents ’ answers to this question. Notably, 80 % of the respondents agree that the
understanding that their work could be read by any other scientist clearly affects the
quality of publications.

As an example, let us compare the quantities of the full versions of theses and
abstracts stored in the repositories in Ukraine to numbers in the repositories in Germany,
Great Britain, and Spain (top 30 repositories of each country rated by Webometrics,
http://www.webometrics.info, were examined) – see Table 3. Ukraine has 46 reposito‐
ries (Table 3) in total while having more than 300 universities.

Table 3. Numbers of dissertations and abstracts in open access repositories.

Ukraine Germany UK Spain

Numbers of repositories 46 117 146 64

Dissertation 1858 71656 16724 3586

Abstract 3532 22882 23617 18582

Only 15 % of the respondents agree that online video protection is useful, 30 % – to
deposit their audio and video files providing open access, while the remaining 45 %
believe that audio and video recording is unnecessary or even harmful as it bothers and
disturbs focusing on the defense talk. To the question “if they would like and are ready
to use specialized systems to work with a DC and MESU” 90 % of the respondents gave
a positive answer. The most significant motive to this answer is potential reduction of
time and financial expenses for data processing (sending and receiving documents,
access to the proper information and so on).

14 A. Spivakovsky et al.

http://www.webometrics.info

5 Our Vision on ICT Development of DC & GS Infrastructure

As experimentally proven above, the effective implementation of the elements of OS
must assume the existence of an appropriate ICT infrastructure as a scientific and educa‐
tional system as a whole and its component parts (schools, universities, DC, and others)
in particular.

The main elements of the ICT infrastructure of OS are researchers (academic staff),
data and processes.

Speaking of ICT infrastructure DC we can determine its components as follows:

• Researcher – the applicants, the members of a DC/GS, the employees of MESU, and
other users of the system have access to relevant information and participate in infor‐
mation processing, communication, and computing processes;

• Data – information about the work of DC, their employees, applicants, archives of
theses, scientific publications, etc. as a tool to open exchange, recombination, and
reuse are the important components of the infrastructure;

• Process – the procedures, services, tools, and methodologies that are used to collect,
perform the transformation, analysis, visualization and storage of data, build models
and simulations. The management of these processes is done both on the side of users
(researchers) and of the specialized services and systems.

All the user roles have both generic and specific abilities in using the system. All
roles can retrieve publicly available information while working with documentation is
allowed only to certain roles.

One of element of the activity openness of DC and postgraduate study, we see in the
creation of their accounts in scientometrics and bibliometrics systems, databases, scien‐
tific social networks. Today 345 scientific institutions of Ukraine have the profile in
Googlescholar. We created the profile of DC K 67.051.02 and on the May 2015 it is the
only one in Ukraine (data of the project “Ukrainian Bibliometrika Science”).

Using these resources, we can combine the results and indicators of scientific activ‐
ities of applicants, post-doctoral students and members of the DC, and thus show their
scientific orientation, number and topics of publications of DC members, their citation,
the geography and dynamics. Thus, it will clear for each graduate student in what kind
of field the GS/DC operates, and how valued the scientific activities of its members in
the scientific world are, it will be the opportunity to compare and analyze GS and DC
in real time.

The next important element is to develop a service that enables to conduct analytical
processing of scientometric indicators and promote the adoption of administrative deci‐
sions in the scientific and educational activities by IT resources.

An example of such a resource is a service developed by us called Publication (http://
publication.kspu.edu). Functional features of the service are:

• Collect information of scientometric indicators of scientists, organizations, research
groups.

• Ordering and ranking the results. For example, the construction of ratings of depart‐
ments, faculties, universities, research groups and scientists.

Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees 15

http://publication.kspu.edu
http://publication.kspu.edu

• Facilitation of user access to information about scientific publications.

The service creates the conditions for effective work of postgraduate students and
collaboration of scientists. In addition, today, thanks to the work of the service, we will
create some motivational environment conducive to increase quantitative and qualitative
indicators of scientific activity.

As mentioned above, one of the major factors, influencing on scholar’s rank, as well
as its openness and visibility is posting the results of his scientific work in electronic
repositories. Most often, there are books, some articles, theses. Much less often, there
are dissertation and abstracts. And this is one of the main factors, which shows open,
academically activity of DC and graduate schools. Currently, we have a working repo‐
sitory, which stores the results of the scientific work of the university and other research
organizations operating on its base (http://ekhsuir.kspu.edu/).

The next element of the considered infrastructure should be the sites of a DC and
postgraduate schools, as well as their pages on the sites of the university on the basis of
which they operate.

Appropriate Web-resources we divide into 2 categories:

• Information site;
• Web-service.

Web-service we call the type of Web-resource, which supports not only the availa‐
bility of information on the activities of DC/GS, and communications options for users
to automate the “paper” processes of their work, namely:

• Possibility of supplying and receiving applications for entry into postgraduate school,
registration in the special council;

• Ability to supply and reviewing of abstracts and dissertations (for DC);
• The ability to supply reports on the work of graduate students;
• Ability to create new accounts of all users of the service;
• Possibility of electronic document;
• Feedbacks.

Today there is a first version of the site DC K 67.051.02 (http://www.kspu.edu/
About/ScientificCouncil/Specvchenarada.aspx) corresponding to most of the described
requirements. Currently, we are working to transfer from “Information sites” to Web-
Service corresponding to the fundamental principles of OS.

The site DC states:

• Basic information about the activities of a DC and its members (with links to their
personal Web-page).

• information about past and future presentation;
• information about applicants and their scientific advisers;
• list of defended dissertations;
• links of DC profile in scientometric system GoogleScholar, and a page with the

scientometric indices according to Scopus;
• created examples and documentation requirements which are necessary for filing and

defence in DC;

16 A. Spivakovsky et al.

http://ekhsuir.kspu.edu/
http://www.kspu.edu/About/ScientificCouncil/Specvchenarada.aspx
http://www.kspu.edu/About/ScientificCouncil/Specvchenarada.aspx

• links of collection of scientific papers published by the University, and other “useful”
links.

The feedback in this case is carried out by means of electronic mail. The new version
of the site DC feedback will be implemented through the implementation of special
modules and forms, such as Online-chat, presence of user’s personal accounts with the
ability to send and view messages, etc.

An important element of the OS, we see the use of video and audio services such as
YouTube, Dailymotion.com, Yandex.Video, RuTube.ru and others. Their use provides
the following features:

• Online broadcast the defense of theses;
• Storing audio and video dissertations defense;
• Storing video and audio lectures for teaching in postgraduate school, etc.

You should also pay attention to where and how the research results are published.
From 1400 relevant scientific editions in Ukraine there is less than the third part has a
website, while the main principle of the OS is the availability of research results to the
outside world. Guided by these principles, we are working on the development and
publication of a collection of scientific papers “Information Technologies in Education”
(http://ite.kspu.edu/en), our scholars and scientists around the world are published.
Today the collection has its own website there are the electronic versions of all the
articles and the associated metadata, and pages with the ranking list of authors and
publications.

Another element that we would like to note is the creation of online-resources for
training postgraduate students. Studies show that in our country, very little attention is paid
to this problem; there are no online-courses or disciplines in postgraduate school, which
considered the potential of ICT as basic mean and the environment for scientific research.

Today, we are actively working on the creation of an open course on the use of ICT
for undergraduates and postgraduate students.

6 Concluding Remarks and Future Work

Building a system of efficient education and science in Ukraine today is complicated by
many serious problems. A system of training of scientific personnel in Ukraine is among
the most restrictive and closed ones in the world. A similar trend is observed in the
majority of post-soviet countries. The proportion of scientific research results published
under a open access is still very small compared to the level of ICT development. The
main part of research results still remains inaccessible for external users.

Today we are all talking about scientometrics, but at the same time have not the
ability to track scientometric indicators DC, GS, candidates, not to mention the presence
of analytics the defended dissertations and access for them, which makes it impossible
for a qualitative assessment of their activities.

As the results of the research have shown, extremely weak is applying of ICT in training
of scientific personnel. Processing of all documents required for graduate studies or for the
protection of dissertations is going manually, requiring a lot of time and resources.

Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees 17

http://ite.kspu.edu/en

The creation as many services which allow an understanding of the existing scien‐
cemetric systems and databases, presenting them their own researching results, as well
as services that contribute to the analysis and ranking of the results that received,
reflecting the work of a DC and graduate schools, will allow us to create an environment
that will match the essential requirements of the OS.

Working in it, scientists can not only efficiently receive, but also to pass scientific
knowledge to each other and the world community. Using of the electronic repositories,
publication of research results in collections that have electronic copies and indexed by
international databases will increase the coverage of scientific publications that will help
to improve their visibility, citation, the development of interdisciplinary research.

As we see from Sect. 5, today we have not only offer to build a system of this level,
but also some ready-made solutions to efficiently manage many operations of post-
graduate and DC. The next step is the developing of the Web-services for the automation
of a DC and GS, the establishment of guidelines and training courses for candidates to
use ICT in science, in the course of post-graduate studies and dissertations defense.

References

1. Savchenko, O.Y.: The Learning Abilities as a Key Competence of Secondary Education
Competence Approach in a Modern Education: World Experience and Ukrainian Prospects:
Library of Educational Policy, pp. 35–46. К.: « К.I.S. » (2004) (In Ukrainian)

2. David, P.A.: Understanding the emergence of ‘open science’ institutions: functionalist
economics in historical context. Ind. Corp. Change 13, 571–589 (2004)

3. Bohle, S.: What is E-science and How Should it Be Managed? Nature.com, Spektrum der
Wissenschaft. http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-
and-how-should-it-be-managed

4. Towards knowledge societies: UNESCO world report. http://unesdoc.unesco.org/images/
0014/001418/141843e.pdf

5. IEEE International Conference on eScience. https://escience-conference.org
6. Science under lock. The second part. http://habrahabr.ru/post/190046
7. Bohannon J.: Who’s Afraid of Peer Review? http://www.sciencemag.org/content/

342/6154/60.full?sid=39ce10dc-f70e-4ee2-a349-b59053b88bd7
8. PLOS is anti-elitist! PLOS is elitist! The weird world of open access journalism. http://

www.michaeleisen.org
9. Gipp, B.: Citation-based Plagiarism Detection. Detecting Disguised and Cross-language

Plagiarism using Citation Pattern Analysis, Magdeburg (2013)
10. Pagano, U., Rossi, M.A.: The crash of the knowledge economy Camb. J. Econ. 33(4), 665–

683 (2009)
11. Ranking Web or Webometrics. http://www.webometrics.info
12. Gardner, G.G.: On-line education: developing competitive. Inf. Technol. Educ. 1, 22–25

(2008)
13. Ermolayev, V.A., Spivakovsky, A.V., Zholtkevych, G.N.: UNIT-NET IEDI: an infrastructure

for electronic data interchange. Inf. Technol. Educ. 1, 26–42 (2008)
14. Spivakovsky, A., Alferova, L., Alferov, E.: University as a corporation which serves

educational interests. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A.,
Zholtkevych, G. (eds.) ICTERI 2012. CCIS, vol. 347, pp. 60–71. Springer, Heidelberg (2013)

18 A. Spivakovsky et al.

http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-and-how-should-it-be-managed
http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-and-how-should-it-be-managed
http://unesdoc.unesco.org/images/0014/001418/141843e.pdf
http://unesdoc.unesco.org/images/0014/001418/141843e.pdf
https://escience-conference.org
http://habrahabr.ru/post/190046
http://www.sciencemag.org/content/342/6154/60.full?sid=39ce10dc-f70e-4ee2-a349-b59053b88bd7
http://www.sciencemag.org/content/342/6154/60.full?sid=39ce10dc-f70e-4ee2-a349-b59053b88bd7
http://www.michaeleisen.org
http://www.michaeleisen.org
http://www.webometrics.info

15. Vinnik, M., Lazarenko, Y., Korzh, Y., Tarasich, Y.: Use of computer communication means
for future software engineers’ preparing. J. Pedagogical Almanac 21, 100–108 (2014).
(In Ukrainian)

16. Kravtsov, H.M., Vinnik, M.O., Tarasich, Y.H.: Research of influence of quality of electronic
educational resources on quality of training with use of distance technologies. Inf. Technol.
Educ. 16, 83–94 (2013). (In Ukrainian)

17. Spivakovsky, A., Klymenko, N., Litvinenko, A.: The problem of architecture design in a
context of partially known requirements of complex web based application “KSU Feedback”.
Inf. Technol. Educ. 15, 83–95 (2013)

18. Spivakovsky, A., Vinnik, M., Tarasich, Y.: To the Problem of ICT Management in Higher
Educational Institutions. Inf. Technol. Learn. Tools 39, 99–116 (2014). (In Ukrainian)

19. Spivakovska, E., Osipova, N., Vinnik, M., Tarasich, Y.: Information competence of university
students in ukraine: development status and prospects. In: Ermolayev, V., Mayr, H.C.,
Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2014. CCIS, vol. 469, pp.
194–216. Springer, Heidelberg (2014)

20. State Statistics Service of Ukraine. http://www.ukrstat.gov.ua
21. Ministry of Education and Science of Ukraine. http://mon.gov.ua
22. World University Rankings. http://www.timeshighereducation.co.uk/world-university-

rankings

Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees 19

http://www.ukrstat.gov.ua
http://mon.gov.ua
http://www.timeshighereducation.co.uk/world-university-rankings
http://www.timeshighereducation.co.uk/world-university-rankings

Models, Methods and Tools for Effectiveness
Estimation of Post Object-Oriented Technologies

in Software Maintenance

Mykola Tkachuk(✉), Konstiantyn Nagornyi, and Rustam Gamzayev

National Technical University “Kharkiv Polytechnic Institute”, Frunze Str., 21,
Kharkiv 61002, Ukraine

tka@kpi.kharkov.ua, k.nagornyi@gmail.com,
rustam.gamzayev@gmail.com

Abstract. An intelligent framework for effectiveness estimation of post object-
oriented technologies (POOT) is proposed, which is based on structuring and
analyzing of domain-specific knowledge about such interconnected and complex
data resources within a software maintenance process as: (1) structural
complexity of legacy software systems; (2) dynamic behavior of user require‐
ments; (3) architecture-centered implementation issues by usage of different
POOT. These 3 components are formalized and combined in form of the algo‐
rithmic model, and the final estimation values of POOT effectiveness are defined
using fuzzy logic method and CASE-tools elaborated, which were tested success‐
fully at the maintenance case-study of real-life software application.

Keywords: Post object-oriented technology · Effectiveness · Crosscutting
functionality · Knowledge-based approach · Algorithmic model · Metrics · Fuzzy
logic · CASE-tool

1 Introduction: Problem Domain Actuality and Research Aims

Nowadays the most part of real-life software systems are designed and implemented
using the object-oriented programming (OOP) paradigm [1]. A well-known and impor‐
tant problem of support and maintenance for such applications is often modifications of
many of their subsystems and a need to develop new components for additional business
logic, taking into account new user requirements. In order to emphasize this issue we
propose to use in this paper tshe notion of “legacy software system” (LSS), similarly to
terms in software reengineering domain (see, e.g. in [2]). Permanent changes in LSS
lead to design instability which causes a so-called crosscutting concern problem [3, 4].
The OOP actually does not solve this issue, and usage of OOP-tools increases the
complexity of an output source code.

During last ten years some post object-oriented technologies (POOT) were elabo‐
rated and became intensively used in development process, especially the most known
POOT are: aspect-oriented software design (AOSD) [5], feature-oriented software
design (FOSD) [6] and context-oriented software development (COSD) [7]. All these

© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 20–37, 2016.
DOI: 10.1007/978-3-319-30246-1_2

POOTs utilize the basic principals of OOP, but at the same time they have additional
features, which allow solving the crosscutting problem electively. From the other hand
usage of any of POOT for LSS maintenance and reengineering is concerned with an
additional time and other efforts in software development. That is why many researchers
emphasize an actual need to elaborate appropriate approaches for complex estimation
of POOT effectiveness usage in real-life software projects. It is additionally to mention
that within the context of this paper we are talking about the POOTs which are focused
on programming techniques exactly, but not about such software management trends as
Extreme Programming (XP), Rapid Application Development (RAD), Scrum and some
others [8], which are also can be characterized as “post object- oriented” approaches.

Taking into account issues mentioned above, the main objective of the research
presented in this paper is to propose an intelligent complex approach to effectiveness
estimation of POOTs usage in software maintenance. The rest of this paper is organized
in the following way: Sect. 2 analyses some critical issues in OOP and reflects the
phenomena of crosscutting functionality in software maintenance. In Sect. 3 existent
POOTs are analyzed and results of their comparing are shown with respect to software
maintenance problems. In Sect. 4 we present the knowledge-based approach for effec‐
tiveness estimation of POOT, which is based on structuring and analyzing of domain-
specific knowledge about interconnected and complex data resources within a software
maintenance framework. Section 5 presents first implementation issues and results of
test-case for the proposed approach. In Sect. 6 the paper concludes with a short summary
and with an outlook on next steps to be done in the proposed R&D approach.

2 Crosscutting Functionality Phenomena in Software
Maintenance: Related Work

To meet new requirements existing LSS have to be refined with new classes, which
must implement their new functionality. Standard OOP toolkit “proposes” to support
additional associations between already existent and new program objects, to modify
inheritance tree for classes, to implement new or additional design patterns, e.g. the
Gang-of-Four (GoF) patterns [9]. Because of permanent modifications of a source
code and doing software system re-design, developers face with “bottlenecks” of
OOP: increase coupling among classes [10]; increase of depth inheritance tree (DIT)
for classes hierarchies [11]; modification of design patterns instances [12, 13];
emerging lack of modularity in functionality realization [14].

A number of studies investigate problems of OOP mentioned above, and their nega‐
tive influence on LSS maintenance. High dynamic of requirement changes and these
critical issues of OOP induce and propagate an additional development problem: this is
a crosscutting concern phenomenon. Crosscutting concern (hereby referred as “cross‐
cutting functionality” - CF) is a concern emerged on user requirements level and often
crosscuts on software design level, this is a part of a business logic, which can not be
localized in the separate module on source code view, but it stays separate on require‐
ment view [15]. In literature exist a lot of researches related to CF’s properties, multiple
patterns of CF and it’s interaction with the source code of non-crosscutting functionality,

Models, Methods and Tools for Effectiveness Estimation 21

and it’s further propagation in a system source code (see e.g. in [13–16]). There are some
widespread examples of software system features which could be considered as CF:
exception management, logging, transaction management, data validation [17]. Never‐
theless our own experience in software development and LSS maintenance exposes that
almost any system feature, emerged by requirements, on source code perspective could
be transformed into CF.

CF has two main properties [18]: scattering and tangling. CF’s source code scatters
among classes (components) of non-crosscutting functions, this happens because of
mismatch on end user requirement level of abstraction, and final realization of this
requirement as a feature on the source code level. CF’s source code tangles (mixes up)
with source code of the other functionality, no matter crosscutting or non-crosscutting.
Moreover CF could be divided into several types [19]: homogeneous and heterogeneous.
Homogeneous CF represents the same piece of source code which crosscuts multiple
locations in multiple OOP-classes of a software system. Heterogeneous CF represents
each time unique piece of source code which crosscuts multiple locations in multiple
OOP-classes of a software system (see Fig. 1).

Fig. 1. Crosscutting functionality types

As a result, presence of the CF in software system increases it’s complexity for the
maintenance process [20]:

• CF complicates traceability of various software design artifacts, e.g. requirement
traceability [21];

• CF decreases understandability of a source code and functionality it realizes;

22 M. Tkachuk et al.

• Source code of LSS becomes redundant;
• Almost impossible to reuse CF solutions, because of lack of modularity.

These common negative CF-features cause specific problems in maintenance of a
given LSS, which also are considered in some already existent publications. E.g.,
according to the research presented in [22] there is a strong positive correlation (with
Spearman’s rank-order coefficient approx. from 0.650 to 0.744) between the degree of
scattering and the number of defects in LSS source code. Authors [23] also report about
the correlation between the number of defects in design-pattern classes of LSS and
scattering of induced crosscutting concerns. Another study on CF-consequences with
respect to the quality of maintenance process deals with modularity problem in source
code [24]. From the other hand, exactly because of these problems arose, attempts to
improve CF-issues in maintenance exist, e.g. a model-based approach to reuse cross‐
cutting concerns [25], and some others.

A conceptual approach, which allows dealing with CF, is the separation of concerns
(SoC) [26]. It envisages a decomposition and further non-invasive composition of CF
source code with the rest code of LSS. Decomposition mechanism allows to split source
code into fragments and to organize them into easy-to-handle CF-modules. Composition
mechanism supports reassembling of isolated code fragments in easy and useful way.
Usage of SoC principles make possible to decrease coupling in LSS, to decrease code
redundancy, to reuse isolated CF-modules, to configure system by add/remove func‐
tionality if it is needed.

Finally, the existing POOTs provide SoC principles and offer a lot of toolkits to
manage CF-problem in an effective way.

3 A Short Survey of Post Object-Oriented Technologies: Main
Features and Comparative Analysis Results

As already mentioned above (see in Sect. 1) nowadays there are 3 main well-defined
approaches in POOT-domain, namely: aspect-oriented software development (AOSD)
[5], feature-oriented software development (FOSD) [6] and context-oriented software
development technology (COSD) [7]. In order to reflect their essential features with
respect to the problem of CF it is useful to represent an interaction between basic
components of OOA and POOT [20].

AOSD was proposed in Research Center Xerox/PARC and now it is implemented
in many programming languages such as Java /AspectJ, C ++, .NET, Python, JavaScript
and some others [4]. AOSD allows concentrating CF in separate modules called
aspects, which should be localized in source code infected with CF using such means
as points of intersection (point-cut) and injection (injection). Schematically this inter‐
action is shown in Fig. 2, (a), where the white vertical rectangles C1, C2, C3 represent
OOP-classes and gray horizontal rectangles A1, A2, A3 represent aspect-modules.

Models, Methods and Tools for Effectiveness Estimation 23

Fig. 2. AOSD: (a) the conceptual scheme; (b) the implementation facets (to compare with [19])

More detailed the structure of aspect is shown in Fig. 2, (b). Any aspect consists of
interconnected point-cut, of a notification (advice), and of an introduction (inner decla‐
ration). The task of point-cut is to define a connection point between aspects and basic
methods in OOA-classes, in other words, point-cut determines those lines of code in the
OOA-methods, were notification code has be introduced. A notification is a peace of
code in OOA-language (e.g. in Java), which implements an appropriate CF, therefore
notifications can belong to three types: before – a notification is performed before an
OOA-method is called; after – a notification acts after this call; and around – a notifi‐
cation is executed instead of an OOA-method calling. Also AOSD allows the introduc‐
tion into OOA-classes new fields and methods that can be defined in aspects.

In the same way the FOSD and COSD schematically can be represented and analyzed
carefully (see in [20] for more details). The result of this comparative analysis is
presented in the Table 1.

Table 1. Results of comparative analysis for several POOT

POOT features / Estimation marks Type of POOT

AOSD FOSD COSD

Modeling CF features at a higher level of abstraction + + +

Implementation of homogeneous CF + ± ±

Implementation of heterogeneous CF ± + +

Provide CF layers separately from a OOA-class + + +

Context-dependent activation/deactivation of layers – – +

Possibility to use several approaches simultaneously ± ± –

Availability of CASE-tools to support this POOT + + ±

24 M. Tkachuk et al.

Even a cursory analysis of this comparison shows that for a decision making
concerning the appropriateness and effectiveness of using an appropriate POOT to solve
CF-problem in given LSS, it is necessary to take into account a number of other addi‐
tional factors, which will be considered in the proposed approach.

4 Knowledge-Based Approach to Effectiveness’s Estimation of Post
Object-Oriented Technologies

Taking into account results of performed analysis (see Sect. 2), and basing on some
modern trends in the domain of POOT-development (see Sect. 3) we propose to elabo‐
rate a knowledge-based approach for comprehensive estimation of POOT-effectiveness
to use them in software maintenance. Thus we proceed from one of possible definition
of the term “knowledge” within the knowledge management domain [27], namely: a
knowledge is a collection of structured information objects and relationships combined
with appropriate semantic rules for their processing in order to get new proven facts
about a given problem domain.

Then our next task is to define and to structure all information sources, and to
elaborate appropriate algorithms and tools to process them with respect to the final
goal: how to estimate usage effectiveness of different POOTs in software mainte‐
nance.

4.1 Metaphor of Multi-dimensional Information Space and Algorithmic Model
for POOT Effectiveness Estimation

To elaborate the proposed knowledge-based approach a metaphor of the multi-dimensional
modeling space is proposed in [20], and its simplified graphical interpretation is shown in
Fig. 3.

Fig. 3. Metaphor of the multi-dimension space for POOT effectiveness estimation

According to this model the integrated POOT effectiveness level depends of two
main interplaying factors, namely: (1) what type of LSS has to be modified with usage

Models, Methods and Tools for Effectiveness Estimation 25

of an appropriate POOT; (2) what kind of POOT is actually used to eliminate the CF in
this LSS. In order to answer these questions the following list of prioritized tasks can
be composed:

(i) to define a type of given LSS with respect to its structure complexity and to
behavior of requirements, which this LSS in maintenance process is facing with;

(ii) to calculate average effort values for different POOTs, if they were used to elim‐
inate CF in an appropriate LSS;

(iii) to elaborate metrics for CF assessment before and after LSS modification using a
given POOT;

(iv) to propose an approach for final effectiveness estimation of POOT usage taking
into account results, provided by activities (i) – (iii).

In order to generalize the proposed knowledge-based framework described as steps
(i)–(iv) it is useful to utilize the algorithmic modeling approach (e.g. see in [28]). This
one can be given as the following tuple:

(1)

where the is the multi-dimensional informational space (the part of this one
is shown in Fig. 3), the are algorithms which implement appropriate
methods to define all values requested for the final POOT effectiveness estimation, and

 is the collection of specific metrics for the CF-assessment. Basing on the
formula (1) it is possible to evaluate several aspects of CF-issues in LSS by usage of
complex and heterogeneous data structures, to process them with various algorithms,
and to estimate achieved results with appropriate quantitative or qualitative metrics.

Tasks (i) – (iv) are solved sequentially below, using knowledge-based and expert-
centered methods and relevant software tools.

4.2 Definition of Legacy Software System Types

To solve task (i) from the list given in Sect. 4.1 the approach for analyzing and assess‐
ment of LSS’s type which is proposed in [29] can be used, which is based on following
terms and definitions.

Def#1. System Type (ST) is an integrated characteristic of any LSS given as a tuple:

(2)

The first parameter estimates a complexity level of a given LSS, and the second one
represents status of its requirements: their static features and dynamic behavior.

To calculate structural complexity (SC) the following collection of metrics was
chosen: Cyclomatic Complexity (V), Weighted Method Complexity (WMC), Lack of
Cohesion Methods (LCOM), Coupling Between Objects (CBO), Response For Class
(RFC), Instability (I), Abstractness (A), Distance from main sequence (D). The final
value of SC can be calculated using formula (2), where appropriate weighted coefficients
for each metric were calculated in [29] with a help of the Analytic Hierarchy Process
method [30].

26 M. Tkachuk et al.

(3)

To evaluate the final value of SC of given LSS in terms of an appropriate linguistic
variable (LV): “Low”, “Medium”, “High”, the following scale was elaborated [29]:

(4)

To define the second parameter given in formula (1), two relevant features of any
requirement were considered [29], namely: a grade of its Priority and a level of its
Complexity.

Def#2. Requirement Rank is a qualitative characteristic of LSS defined as a tuple:

(5)

It is to note that in modern requirement management systems (RMS) like IBM
Rational Requisite Pro, CalibreRM and some others, the Priority and the Complexity of
requirements are usually characterized by experts in informal way, e.g. using such terms
as: “Low”, “Medium”, “High”. The real example of such interface in RMS is presented
in Fig. 4, with requirement’s attributes “Priority” and “Complexity” (or “Difficulty” in
terms of RMS-technology).

Fig. 4. The list of requirements completed in RMS Rational Requisite Pro

Taking into account the definition for linguistic variable (LV) given in [26], the
appropriate term-sets for LVs Priority and Complexity respectively were defined in [29]
as follows:

(6)

(7)
Basing on definitions (2) – (7), the mapping procedure between 2 attribute spaces

was elaborated in [29]. These attribute spaces are defined with appropriate LVs, namely:

Models, Methods and Tools for Effectiveness Estimation 27

the space “Requirements Rank” with axes “Priority” and “Complexity”; the space
“System Type” with axes “Requirements Rank” and “Structural Complexity”. This
mapping procedure in details is presented in [29], and the final result of this approach
is shown on Fig. 5. It illustrates the main advantages of the proposed approach, namely:
(1) we are able to estimate current state of system requirements w.r.t. their static and
dynamic features; (2) basing on this estimation, we can define an appropriate type of
investigated software system (e.g., some LSS in maintenance process), taking into
account its structural complexity and dynamic requirements behavior as well.

Fig. 5. (a) initial allocation of system requirements in the space “Requirement Rank”; (b) mapped
system position in the space “System Type”

Further, according to formula (1), we have to elaborate next methods and metrics,
listed in the following sections.

4.3 An Architecture-Centered Method for POOT Effort Calculation

In order to solve task (ii) from their list given in Sect. 4.1 it is proposed to analyze basic
architectural frames, which can be constructed for different POOTs with usage of their
OOP-specification. In [20] the following definition is proposed for this purpose.

Def#3. Enhanced architectural primitive (EAP) is a minimal-superfluous compo‐
nent-based scheme, which is needed to implement an interaction between basic OOP-
elements (class, field, method) and specific functional POOT-elements.

Obviously, to perform the comparative analysis of different EAP in the correct way,
preliminary they have to be represented in some uniform notation. As such notation the
architecture description language (ADL) family should be used, because: (1) this nota‐
tion does not depend on any specific programming tools; (2) in this way static and
dynamic features of AP both can be described and analyzed.

It is proposed to use Acme-ADL, because it operates with an irredundant set of
basic abstracts, for static modeling (see e.g. in [31]), such as: components, ports and

28 M. Tkachuk et al.

connectors, and there are several additional Acme-ADL features for dynamic
modeling, like role and interaction. They have following definitions within the
context of this paper.

Def#4. Component is a complex of functional items, which implements a certain part
of a business-logic in LSS, and which is supposed to have special interfaces (ports) for
communication with other entities in an operating environment.

Def#5. Port is an interface to provide an interaction between several components.
Def#6. Connector is a special architectural item to join ports of different components.
Def#7. Role is a special feature of a given connector to identify its communicating

ports.
Def#8. Interaction is a special feature of a given connector defined which uses its

roles.
More detailed the notion of the port can be characterized in the following way: (1)

there is so-called single port – this is an interface of any component to communicate with
some another one via exactly one connector; (2) furthermore there is a case-port – this is
an interface of any component to communicate with another components via more then one
connector (e.g., using an appropriate Boolean variable as a flag to switch communication,
etc.). Similarly, the notion the connector can be classified as follows: (1) a binary
connector – this is a connector with 2 fixed roles only; (2) a multiply connector – this is a
connector, which has exactly 1 input role and more than 1 output roles; (3) a case
connector – this kind of the connector can have a lot of input and output role as well.

Using definitions Def#3 – Def#8 appropriate EAPs for all mentioned above POOTs
were elaborated [20]. As one example the EAP for the AOP is shown on Fig. 6, which
reflects how specific AOP-features such as advice and inner declaration (they are shown
as rectangular icons in grey color) are interacting with basic OOP – elements, namely:
class, field and method (they are represented as crosswise icons in white color).

Fig. 6. ADL-specification for the aspect-oriented EAP

Models, Methods and Tools for Effectiveness Estimation 29

To calculate the complexity coefficients (CC) of the elaborated EAP the following
formulas are proposed in [20], namely:

(8)

where the Component is the CC of an appropriate EAP, #OOP is a number of architec‐
tural OOP – components, and #POOT is a number of POOT-components included in this
EAP. These values are multiplied with weight coefficients: 0,6 and 0,4 respectively, and
these coefficients can be defined using some expert methods (see in [20] for more details).

(9)

where the Connector is the CC of connectors included in an appropriate EAP, which is
calculated using a number of binary connectors: #BinCon, a number of multi-connectors
#MultyCon and a number of case-connectors: #CaseCon, with respect to the appropriate
weight coefficients 0.2, 0.3 and 0.5, which also are defined by some experts [20];

(10)

where the Port is the CC of ports included in an appropriate EAP, which takes into
account a number of single ports: #SinglePort, and a number of case ports: #CasePort
with appropriate weigh coefficients.

Using formulas (8) – (10) a summarized value the Complexity of an appropriate EAP,
measured in so-called architectural units (a.u.) [20] can be calculated as follows:

(11)

The final value of CC for all POOTs, were calculated using the formula (11), and
they are represented in Table 2 (see in [20] for more details).

Table 2. Values of an architectural complexity for different POOT

POOT type CC for compo‐
nents (a.u.)

CC for connec‐
tors (a.u.)

CC for ports
(a.u.)

Summarized
values of CC
(a.u.)

AOSD 4,8 1 4,3 10,1

FOSD 3,6 1 3,9 8,5

COSD 2,8 0,7 4,1 7,6

Based on estimation values aggregated in Table 2 it is possible to make conclusions
about average implementation efforts for usage of an appropriate POOT, to solve CF-
problems in legacy software systems within their maintenance.

4.4 Quantitative Metrics for Crosscutting Functionality Ratio in Legacy Software

There are various ways to characterize a nature of the CF and its impact to software source
code. A number of studies are dedicated to a classification, qualitative and quantitative

30 M. Tkachuk et al.

description of CF problems [3, 14–16]. The aim of our research is to assess an impact,
which CF makes to a structure of OOP-based software system during its evolution in
maintenance; therefore we are focusing on quantitative facet of a crosscutting nature. To
reach this goal it is proposed to perform next three steps.

Step 1: Localize source code belonged to a particular CF in a given LSS. Although there
are exist several source code analysis tools for CF localization, e.g., tool CIDE [32], this
problem remains really complicated for autoimmunization and demands an expert in
code structure and business-logic of an appropriate LSS.

Step 2: Calculate a specific crosscutting weight ratio of a particular CF in the system
indicated as [20]. This coefficient shows a ratio between OOP-classes, “damaged”
by a particular CF and all OOP-classes in the system, or its projection, e.g. business-
logic realization without subordinate classes of a framework. This coefficient possible
to represent as

(12)

where – a number of classes in LSS, “damaged” with CF, – a number of classes
free of CF. Obviously , and if , it means that a particular func‐
tionality is not crosscutting; and if , it means that all classes are “damaged”
with a particular CF.

Step 3: Calculate a residual crosscutting ratio indicated as . This metric, based
on DOS (Degree of Scattering) value, proposed in [14], namely “…DOS value is
normalized to be between 0 (completely localized) and 1 (completely delocalized,
uniformly distributed)”. Nevertheless this metrics does not allow to asses “damage”
degree, done by a particular CF, therefore we propose to refine DOS-metric in a
following way

(13)

where – Degree of Scattering; – the specific crosscutting weight ratio of a
particular CF. Similarly to , , if , it means that CF is
localized in a separate module and it is no more crosscutting; if , it means
that CF affects the whole system and it is uniformly distributed.

Thus proposed quantitative metrics (12) – (13) provide to experts a possibility to
assess a distribution nature of a CF, and to estimate a “CF-damage” in a given LSS.

4.5 Fuzzy Logic Approach to Complex Effectiveness Estimation of POOT

Based on assessment of a POOT average implementation efforts (see Sect. 4.3), and
assessment for the residual CF ratio (see Sect. 4.4) it is possible to estimate an integrated
effectiveness of a POOT usage. Although because of different scale and units of meas‐
urement for proposed assessments, it is hard to evaluate them within a single analytical
method. Therefore, for further evaluations it is proposed to use one of algorithms of the
fuzzy logic [33], namely the Mamdani’s algorithm, which consists of 6 steps. According

Models, Methods and Tools for Effectiveness Estimation 31

to this algorithm it is necessary to compose fuzzy production rules (FPR). In this paper
a verbal description for these rules is omitted, instead of this the widespread symbolic
identifiers for short description of FPR are listed in Table 3.

Table 3. The symbolic representation form for the FPR description

Symbolic form Description

Z Zero

PS Positive Small

PM Positive Middle

PB Positive Big

PH Positive Huge

The whole system of elaborated FPR consists of 20 definitions (see in [34] for more
details), and the fragment of this FPR-system is listed below:

1. RULE_1: If “ is PS” and “ is Z”, then “ is Z”;
2. RULE_2: If “ is PM” and “ is Z”, then “ is Z”;
3. RULE_9: If “ is PS” and “ is PM”, then “ is PM”;
4. …..

Corresponding to the Mamdani’s algorithm, the next step is fuzzifying of variables
in FPR, therefore average implementation efforts, residual crosscutting ratio, and effec‐
tiveness of POOT usage have to be represented as a LV. The output LV is the
effectiveness of POOT-usage, the LV is bounded on universe , and it belongs
to the interval [0;1]. The term set for this LV looks like:

and it could be represented in a short form as . The corre‐
sponding identifier for is (see FPR above), and it is shown in Fig. 7.

Fig. 7. The graphic form for LV “Effectiveness”

32 M. Tkachuk et al.

The input LV represents average implementation efforts, is bounded
to universe and belongs to an interval [(EAP)min; (EAP)max], where EAPmin,
EAPmax are minimum and maximum values of architectural complexity (measured in
a.u.) for an appropriate LSS type respectively. The term set for the linguistic
variable (LV) looks like: and could be represented
in a short form . The corresponding identifier for is

 (see FPR above). The graphical interpretation for this LV is similar to the graphic,
depicted on Fig. 7.

The input LV is the residual crosscutting ratio, see formula (13). The LV
 is bounded to universe and belongs to interval [0;1]. The term set for this

variable looks like: , and it could be repre‐
sented in a short form as . The corresponding identifier
for is (see FPR-system above). The visual interpretation is similar to the graphic
depicted in Fig. 7.

5 First Implementation Issues, Test-Case and Results Discussion
for the Proposed Approach

To prove the proposed approach an appropriate software tool was implemented, its
functionality allows to automate the most routine data processing operations of the
CF / LSS – estimation methods introduced in the previous Sect. 4. This tool is designated
below as a CASE, and its interaction with such additional facilities as RMS and Java
source code parser can be considered as the completed information technology (IT) to
estimate POOT effectiveness.

5.1 An Informational Technology to Support the Proposed Approach

The proposed IT can be represented as the diagram in IDEF0 [34] notation, and it is
depicted in Fig. 8. It consists of 6 functional blocks: 1. “Requirements Rank assess‐
ment”, 2. “Structural Complexity calculation”, 3. “System Type definition and LSS
modification with POOT”, 4. “POOT-modification Costs calculation”, 5. “Residual CF
ratio calculation”, 6. “Estimation of POOT usage effectiveness”. Each block, corre‐
sponding to the IDEF0 notation, has 4 kinds of interfaces: Inputs –arrows enter into a
block from the left, they represent the data to be processed in this block; Controls –
arrows enter from the top, they define all business logic algorithms and models; Mech‐
anisms – arrows enter from below, and they reflect all implementation issues related to
this block (including human actors, if needed); Outputs – arrows leave the block from
the right, and they are the results of data processing in this block.

Block 1 operates with functional requirements, obtained from an RMS-system and
the result of block 1 is a value of the Requirement Rank, represented as a linguistic
variable. Block 2 analyzes Java source code of a given LSS and defines its value of
Structural Complexity, which is also represented as a linguistic variable. Block 3
operates with both parameters: Requirement Rank and Structural Complexity, and
allows to define a value of System Type. After this operation it is possible to perform

Models, Methods and Tools for Effectiveness Estimation 33

POOT-modification on LSS source code level, in order to localize and to isolate CF-
concerns in separate POOT-modules. Functional blocks 4 and 5 deal with received
POOT-modified source code to calculate values of POOT modification costs (block
4) and Residual CF ratio (block 5). Finally, block 6 realizes a fuzzy logic approach
to assess the final value of POOT usage effectiveness. As the human actors the Expert
(a person, who is interesting in POOT estimation results) and the Developer (a
person, who is responsible for LSS maintenance) are supposed to participate in the
data processing within the proposed IT-scheme (see Fig. 8).

5.2 Test-Case Data Description and Results Discussion

To illustrate the proposed approach the real LSS for personal data management was
analyzed [35]. It consists of 115 java-classes, and it contains a homogenous realization
of “logging” crosscutting functionality. Accordingly to the LSS – type definition method
(see Sect. 4.2) this application belongs to the III-rd system type with rank: {“Low struc‐
tural complexity”; “High requirement rank”}. The source code of this LSS was sequen‐
tially modified using 3 several POOTs: AOSD, FOSD, and COSD respectively. Final
results of the POOT effectiveness estimation are shown in Table 4. The first column lists
all LSS – modifications to be compared: an initial OOP-version, which has to be re-
structured with respect to the CF-problem, and its 3 modifications done with usage of a
different POOT. In the second column there are summarized efforts needed for these
modifications with respect to architectural-centered complexity are calculated (see
Sect. 4.3). The data given in the third column of Table 4 show the level of the residual
CF ratio which is presented (for initial OOP-version) or which is remained after its

1.Requirements
Rank

assessment

2.Structural
Complexity
calculation

4.POOT modification
Costs

calculation

6.Effectiveness
of POOT Usage

estimation

LSS
[functional

requirements]

RMS CASE

K-means
clustering

Linguistic variable
[Requirement Rank]

z

Ranking
algorithm

Expert

LSS
[JAVA

source code]

CASE

JAVA
source code parser

Combined
SC-metric

Value of
Structural Complexity

Value of
Requirement Rank

LSS, modified
with POOT

[source code]

EAPC metrics

Expert
CASECF impact ratio

Fuzzy
approach

Effectiveness
level of

POOT usage

Fuzzy
production rules

POOT-
modification

Costs

CASE
Expert

POOT-elements
detection rules

Specific EAP- costs

5.Residual CF
ratio

calculation

RCR metric

Expert CASE

Residual CF ratio
after LSS modified

with POOT

Linguistic variable
[System Complecxity]

3.System Type
definition

and
LSS modification

with POOT

Expert

CASE
Developer

POOT

LSS [JAVA source code]

Fig. 8. The information technology scheme of a proposed approach

34 M. Tkachuk et al.

re-design with an appropriate POOT. The forth column indicates the final effectiveness
estimation values for all LSS-versions.

Results achieved show, that OOP actually is not enough effective to solve crosscut‐
ting problem (it is done with 6.7 % only). The most preferable approach to eliminate the
CF-issue in the given type of LSS (as mentioned above, this is the III-rd system type
according to LSS-classification proposed in Sect. 4.2), is the AOSD which provides
effectiveness level over than 70 %.

It is also to mention, although the effectiveness level of COSD and FOSD is lower
than AOSD, over 30 % for a homogenous CF, it is still much better result than OOP.
Taking into account a qualitative advantage of these two another technologies, namely:
a possibility to implement a heterogeneous CF also (see Table 1), it can be reasonable
to use one of them for the LSS-maintenance to deal with such kind of CF in more
effective way than AOSD.

6 Conclusions and Future Work

In this paper we have presented the intelligent approach to effectiveness estimation of
modern post object-oriented technologies (POOT) in the software maintenance, which
aims to utilize domain-specific knowledge for this purpose. This knowledge is complex
and interconnected data resources organized in a form of the multi-dimensional infor‐
mation space, where the following characteristics can be defined: (1) the structural
complexity of a legacy software; (2) the dynamic behavior of user’s requirements; (3)
architectural-centered implementation efforts of different POOTs.

To process these data quantitative metrics and expert-oriented estimation algorithms
were elaborated, which are formalized and combined logically in a form of the proposed
algorithmic model. Final complex estimation values of POOT effectiveness assessment
are defined using the fuzzy logic method and the appropriate CASE-tool, which were
successfully tested on real-life legacy software applications.

In future we are going to extend the collection of metrics for POOT-features assess‐
ment, and to apply some of alternative (to fuzzy logic method) approaches to final deci‐
sion making support. Besides that it is supposed to continue our research with respect
to the correlation issues between different kinds of CF and programming defects arose
in an LSS source code.

Table 4. Effectiveness values of POOT usage in the target system

OOP / POOT Architectural
complexity (a.u.)

Residual crosscut‐
ting ratio (%)

Effectiveness
level (%)

OOP 122.51 69.52 6,7

AOSD 79.43 0,15 73,3

FOSD 116.16 29.06 34,4

COSD 115.88 8.78 32,8

Models, Methods and Tools for Effectiveness Estimation 35

References

1. Sommerville, I.: Software Engineering. Addison Wesley, Boston (2011)
2. Eilam, E.: Reversing: Secrets of Reverse Engineering. Wiley Publishing, Indianapolis (2005)
3. Apel, S. et al.: On the structure of crosscutting concerns: using aspects of collaboration? In:

Workshop on Aspect-Oriented Product Line Engineering (2006)
4. Przyby3ek, A.: Post object-oriented paradigms in software development: a comparative

analysis. In: Proceedings of the International Multi-conference on Computer Science and
Information Technology, pp. 1009–1020 (2007)

5. Official Web-site of Aspect-oriented Software Development community. http://aosd.net
6. Official Web-site of Feature-oriented Software Development community. http://fosd.de
7. Official Web-site of Context-oriented Software Development group. http://www.hpi.uni-

potsdam.de/hirschfeld/cop/events
8. Highsmith, J.: Agile Project Management. Addison-Wesley, Reading (2004)
9. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, Reading (2001)
10. Sheldon, T., Jerath, K., Chung, H.: Metrics for maintainability of class inheritance hierarchies.

J. Softw. Maintenance Evol. 14, 1–14 (2002)
11. Harrison, R., Counsell, S.J.: The role of inheritance in the maintainability of object-oriented

systems. In: Proceedings of ESCOM 1998, pp. 449–457 (1998)
12. Aversano, L., Cerulo, L., Di Penta, M.: Relating the evolution of design patterns and

crosscutting concerns. In: Proceedings of the Seventh IEEE International Working
Conference on Source Code Analysis and Manipulation, pp. 180–192 (2007)

13. Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspectJ. In:
Proceedings of OOPSLA 2002, pp. 161–173 (2002)

14. Eaddy, M., et al.: Identifying, assigning, and quantifying crosscutting concerns. In: Workshop
on Assessment of Contemporary Modularization Techniques (ACoMT 2007), Minneapolis,
USA, pp. 212–217 (2007)

15. Filman, R., Elrad, S., Aksit, M.: Aspect-Oriented Software Development. Addison Wesley
Professional, Reading (2004)

16. Figueiredo, E.: Concern-Oriented Heuristic Assessment of Design Stability. Ph.D. thesis,
Lancaster University (2009)

17. Official Web-site of MSDN. https://msdn.microsoft.com/en-us/library/ee658105.aspx
18. Clarket, S., et al.: Separating concerns throughout the development lifecycle. In: International

Workshop on Aspect-Oriented Programming ECOOP (1999)
19. Apel, S.: The role of features and aspects in software development. Ph.D. thesis, Otto-von-

Guericke University Magdeburg (2007)
20. Tkachuk, M., Nagornyi, K.: Towards effectiveness estimation of post object-oriented

technologies in software maintenance. J. Prob. Program. 2-3(special issue), 252–260 (2010)
21. Taromirad M., Paige, M.: Agile requirements traceability using domain-specific modeling

languages. In: Extreme Modeling Workshop, pp. 45–50 (2012)
22. Eaddy, M., et al.: Do crosscutting concerns cause defects? IEEE Trans. Softw. Eng. 34(4),

497–515 (2008)
23. Aversano, L., et al.: Relationship between design patterns defects and crosscutting concern

scattering degree. IET Softw. 3(5), 395–409 (2009)
24. Walker, R., Rawal, S., Sillito, J.: Do crosscutting concerns cause modularity problems? In:

Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT/FSE 2012), pp. 1–11 (2012)

36 M. Tkachuk et al.

http://aosd.net
http://fosd.de
http://www.hpi.uni-potsdam.de/hirschfeld/cop/events
http://www.hpi.uni-potsdam.de/hirschfeld/cop/events
https://msdn.microsoft.com/en-us/library/ee658105.aspx

25. Gottardi, T., et al.: Model-based reuse for crosscutting frameworks: assessing reuse and
maintenance effort. J. Softw. Eng. Res. Dev. 1, 1–34 (2013)

26. Tarr, P.L., et al.: N degrees of separation: multi-dimensional separation of concerns. In:
Proceedings of the International Conference on Software Engineering (ICSE), pp. 107–119.
ACM, Los Angeles (1999)

27. Official Web-site of System Thinking World community. http://www.systems-thinking.org/
kmgmt/kmgmt.htm

28. Ramesh, K., Karunanidhi, P.: Literature survey on algorithmic and non-algorithmic models
for software development effort estimation. Int. J. Eng. Comput. Sci. 2(3), 623–632 (2013)

29. Tkachuk, M., Martinkus, I.: Model and tools for multi-dimensional approach to requirements
behavior analysis. In: Kop, C. (ed.) UNISON 2012. LNBIP, vol. 137, pp. 191–198. Springer,
Heidelberg (2013)

30. Saaty, T.L.: Fundamentals of the Analytic Hierarchy Process. RWS Publications, Pittsburgh
(2000)

31. Garlan, D., Monroe, R., Wile, D.: ACME: an architecture description interchange language.
In: Proceedings of CASCON 1997, Toronto, Canada, pp. 169–183 (1997)

32. Official Web-site of CIDE-project. http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/
33. Zadeh, L.A.: Fuzzy Sets. WorldSciBook (1976)
34. Official Web-site of IDEF Family of Methods. http://www.idef.com
35. Nagornyi, K.: Elaboration and usage of method for post object-oriented technologies

effectiveness’s assessment. J. East-Eur. Adv. Technol. 63, 21–25 (2013)

Models, Methods and Tools for Effectiveness Estimation 37

http://www.systems-thinking.org/kmgmt/kmgmt.htm
http://www.systems-thinking.org/kmgmt/kmgmt.htm
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/
http://www.idef.com

Software Quality Standards and Models
Evolution: Greenness and Reliability Issues

Oleksandr Gordieiev1(&), Vyacheslav Kharchenko2,
and Mario Fusani3

1 University of Banking of the National Bank of Ukraine,
1 Andriivska Street, Kyiv, Ukraine
alex.gordeyev@gmail.com

2 National Aerospace University «KhAI»,
17 Chkalova Street, Kharkiv, Ukraine

v_s_kharchenko@ukr.net
3 System and Software Evaluation Center, ISTI-CNR,

Via Moruzzi, 1, 56124 Pisa, Italy
mario.fusani@isti.cnr.it

Abstract. New attributes (characteristics, requirements) are proposed as an
essential part of a software quality model related to green software. It consists of
two main attributes, namely resource (energy) saving and sustainability. Evo-
lution of software quality models is analyzed in context of greenness and reli-
ability. In particular, well known software quality models beginning from on the
first McCall’s model (1977) to models described in standards ISO/IEC9126
(2001) and ISO/IEC25010 (2010) are analyzed according to green and reliability
issues. Comparison of the software quality models is carried out using a special
metrics of complexity and technique considering the number of levels and
attributes and their semantics. Prediction of complexity for the next software
quality model (2020) is fulfilled and variants of green software attributes
inclusion in model are proposed. Metrics for assessment of reliability, green
related and other quality attributes are analyzed considering the standards
ISO/IEC25023 and ISO/IEC9126. Results of comparing metric sets of for these
standards are described.

Keywords: Software quality model � Green software � Software reliability �
Evolution analysis � Metrics � ISO/IEC9126 � ISO/IEC25010 � ISO/IEC25023 �
Structure-semantic analysis � Software metrics

1 Introduction

1.1 Motivation and Work Related Analysis

A set of Software Quality Models (SWQM) has been introduced since the evolution of
software engineering [1]. Software quality is the degree to which a software product
satisfies stated and implied needs when used under specified conditions [2]. Software
Quality Model (SWQM) is usually defined as a set of characteristics and relationships
between them which actually provide the basis for specifying the requirements of

© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 38–55, 2016.
DOI: 10.1007/978-3-319-30246-1_3

quality, evaluating quality and SWQMs comparison [3–9]. There are a lot of models
suggested during «software engineering era» [10]. Some of SWQM, described in IEEE,
ISO, IEC standards, became well-known and can be called basic. New significant
SWQM appear just about once in 10 years. The characteristics and subcharacteristics
set and structure (graph-based hierarchy and semantic content) of such SWQMs are
changed [11–14]. Generally, these sets are extended and the next SWQM becomes
more and more complicated. Changes of SWQMs are caused by evolution of tech-
nologies, new challenges in software engineering and so on.

One of the challenges is development of energy-saving (green) information tech-
nologies. It has been caused by appearance of a concept «green software» [15]. «Green
software» (GSW) is described by the following words: «decrease» (energy or other
resources consumption), «don’t do much harm and preserve» (energy, resources, envi-
ronment) and «improve» (make environment more comfortable and safe). More wide
aspects and directions of green and safe/reliable computing are discussed in [16, 17].

«Green» or «greenness» characteristics for software are resources saving and
sustainability, which were not explicitly defined in well known SWQMs described by
standards ISO/IEC9126-1 [18], ISO/IEC25010 [2]. Analysis of [3, 4, 6–8] indicates
that SWQMs do not include such characteristics in explicit form.

Taking into consideration the prerequisites for emergence of green characteristics in
future SWQMs in direct form we analyze the evolution of the characteristics associated
with GSW for existing quality models and try to predict their changing. The analysis
will allow the definition tendencies of green characteristics and suggest variants of
including some in future SWQMs.

Besides, it is important to analyse the changing of metric set during last ten years
considering standards ISO/IEC9126-2 [19] and ISO/IEC25023 [20].

1.2 Goal and Approach

In previous works we:

– described the technique of structure-semantic analysis, which was applied for
comparative research of SWQMs [11];

– represented conception for SWQMs analysis [21];
– analysed more competitive characteristics of SQMs, such as greenness, usability

and security, and their combinations «usability-security» , «security-green-
ness» and «usability-greenness» in point of view standard’s evolution [22].

A goal of the paper is carrying out of additional analysis of known software
quality models and their development in context of GSW and software reliability. We
aim to investigating SWQMs using metric-based approach to assess “weights” of
different software quality attributes, first of all, green and reliability characteristics.
Expected results of this analysis are also to assess the changing of the attribute weights
during evolution of the models and to predict their changing in future.

Software Quality Standards and Models Evolution 39

Stages of the research are the following:

1. Determination of occurrence rates for different SWQM attributes (characteristics at
the first level of hierarchy and subcharacteristics at the second one) in different
quality models;

2. Selection and analysis of SWQM characteristics which are implicitly associated
with green software;

3. Analysis of SWQMs in context green software and reliability by use of complexity
metrics and calculation of corresponding weights for attributes;

4. Research of relationship/dependency between metric values for green software,
reliability and the years of emergence for known basic SWQMs;

5. Calculation of complexity metric for using results of SWQMs
relationship/dependency comparison, described in [11];

6. Calculation of complexity metric for green and reliability attributes of new SWQMs
using function describing of dependency between metric values and years of
SWQMs emergence;

7. Analysis of SWQM in use in context of green software and definition of possible
variants of inclusion of green attributes in new models;

8. Analysis of metrics for assessment of reliability, green related and other quality
attributes considering the standards ISO/IEC25023 and ISO/IEC9126.

2 SWQM Analysis in Context of Green Software
and Reliability

2.1 Analyzed Models

Let’s select and analyse SWQM characteristics which can be implicitly associated with
green software and reliability. The results of analysis are shown in Tables 1 and 2 for
green characteristics and reliability characteristics correspondingly. Numeration of the
characteristics corresponds with their “places” in hierarchy of SWQMs.

To assess “weights” of green characteristics the technique of SWQM structure-
semantic analysis (SSA-technique) can be applied [11]. The technique describes quality
models as a facet-hierarchy structure (graph). Nodes correspond to quality attributes
and links take into account hierarchy dependencies. To briefly characterize the pro-
posed analysis technique, let us introduce some initial terms:

– conceptual model is a model which a model under study is compared with;
– characteristic under study is a conceptual model characteristic which is compared

with model under study characteristics.

2.2 Metrics

SSA-technique is based on comparing a model under study with the conceptual model,
i.e. every SW Quality Model is compared with the conceptual model. So, the analysis is
equivalent to semantic comparing characteristics and subcharacteristics of a model

40 O. Gordieiev et al.

under study and the conceptual model with regard to their structures. Selecting a
reference model is usually performed by an expert who has relevant experience and
qualifications.

At the following stage comparison of models among themselves should be per-
formed. The simplest and most obvious metrics are offered. Hierarchy of these metrics
is presented in Fig. 1. The metrics are used to compare models with reference model
bottom up, i.e. first at the level of subcharacteristics (subcharacteristics matching metric
SMM, cumulative subcharacteristics comparison metric CSCM, characteristics
matching metric CMM), then at the level of characteristics (cumulative matching

Table 1. SWQM characteristics associated with
GSW.

№ SWQMs (years) GSW characteristics

1. McCall (1977) 4. Efficiency
4.1 Execution efficiency
4.2 Storage efficiency

2. Boehm (1978) 2.2 Efficiency
2.2.1 Accountability
2.2.2 Accessibility

3. Carlo Ghezzi
(1991)

–

4. FURPS (1992) 4 Performance
4.1 Velocity
4.2 Efficiency
4.3 Availability
4.4 Time of answer
4.5 Time of recovery
4.6 Utilization of
resources

1.2 Capacity
5. IEEE (1993) 1 Efficiency

1.1 Temporal efficiency
1.2 Resource efficiency

6. Dromey (1995) 2.2 Efficiency
7. ISO 9126-1

(2001)
4 Efficiency
4.1 Time behavior
4.2 Resource utilization

8. QMOOD (2002) 6 Effectiveness
9. ISO 25010 (2010) 2 Performance

efficiency
2.1 Time behavior
2.2 Resource utilization
2.3 Capacity

Table 2. Reliability characteristics of
SWQM.

№ SWQMs
(years)

Reliability
characteristics

1. McCall
(1977)

2. Reliability
2.1 Accuracy
2.2 Error tolerance
2.3 Consistency

2. Boehm
(1978)

2.1 Reliability
2.2.1 Self
contentedness

2.2.2 Integrity
2.2.3 Accuracy

3. Carlo
Ghezzi
(1991)

3. Reliability

4. FURPS
(1992)

3. Reliability
3.1 Frequency and
servity of failures

3.2 Recoverability
3.3 Time among
failures

5 IEEE
(1993)

2. Reliability
2.1 Non deficiency
2.1 Error tolerance
1.3 Availability

6. Dromey
(1995)

1.2 Reliability

7. ISO 9126-1
(2001)

2. Reliability
2.1 Maturity
2.2 Fault tolerance
2.3 Recoverability

8. QMOOD
(2002)

–

9. ISO 25010
(2010)

5. Reliability
5.1 Maturity
5.2 Availability
5.3 Fault tolerance
5.4 Recoverability

Software Quality Standards and Models Evolution 41

characteristics metric CMCM) and finally at the level of models as a whole (cumulative
software quality models comparison metric CSQMCM).

Features of the metrics are the following [11]:

– subcharacteristic matching metric (SMMj). Every subcharacteristic match value is
identified as SMMj = 0,5/number of reference (conceptual) model elements sub-
characteristics of the characteristic under study. Weights of characteristics are not
considered when calculating metrics;

– cumulative subcharacteristics comparison metric (CSCM) is evaluated as a sum of
SMM:

CSCMi ¼
Xk

j¼1
SMMj; ð1Þ

– characteristics matching metric (CMM) takes the value of 0.5 in case of matching or
0 if the characteristics are different;

– cumulative matching characteristics metric (CMCM) is calculated as a sum of
CMM metric and

Pk
j¼1 CSCMj :

CMCMi ¼ CMMi þ
Xk

j¼1
CSCMj; ð2Þ

– cumulative software quality models comparison metric (CSQMCM) is calculated
according to the formula:

CSQMCM ¼
Xn

j¼1
CMCMj ð3Þ

2.3 Results of SWQM in Context of Green Software and Reliability
Characteristics

Let us conduct SW QM analysis and first of all, define the reference (conceptual)
model. SW Quality Model ISO/IEC 25010 will be considered as uppermost and ref-
erence [11] regarding to all other models. It is the newest introduced model and takes
into account main modern software peculiarities in point of view quality evaluation.
This model is described by international standard of top level.

CSQMCM

CMCMi CMCMi+1 ...

CMMi CSCMi ...

SMMj SMMj+1 SMMm...

Fig. 1. Metrics hierarchy.

42 O. Gordieiev et al.

According with results of analysis CMCM is calculated for set of characteristics
presented in Table 1. The results of calculation are shown in Table 3 (Chs – charac-
teristics, SChs – subcharacteristics) for GSW characteristics and Table 4 for reliability
characteristics.

The histogram of CMCM values for software quality models is presented on Fig. 2.
An abscissa axis corresponds to years of SWQM emergence. Initial point (year) is 1970
(as a first year after 1968 which is multiple of a ten years).

CMCM values will be further represented and analysed only for so-called basic
SWQMs [18]. Basic models were selected considering their support by standards, the
international reputation and application. The models of McCall and Boehm are similar,
hence first one was selected. Hence, the models of Boehm, Ghezzi, FURPS, Dromey,
QMOOD were excluded (Fig. 3).

The analytical dependency between SWQM appearance year (X axis) and CMCM
value (Y axis) for characteristics associated with GSW may be represented by
regressive linear function:

y ¼ axþ b ð4Þ

Table 3. Results of GSW characteristics comparison and calculation of CMCM.

Conceptual
model

(ISO 25010)
McCall model Boehm model Ghezzi model

Chs SChs Chs SChs CMM SMM Chs SChs CMM SMM Chs SChs CMM SMM

2 4 0,5 0 - 2.2 0 0,5 - - 0 0
2.1 - - 0 0 - - 0 0 - - 0 0
2.2 - - 0 0 - - 0 0 - - 0 0
2.3 - - 0 0 - - 0 0 - - 0 0

CMCM=0,5 CMCM=0,5 CMCM=0
Conceptual

model
(ISO 25010)

FURPS Model IEEE Model Dromey model

Chs SChs Chs SChs CMM SMM Chs SChs CMM SMM Chs SChs CMM SMM
2 - 4.2 0 0,5 1 - 0,5 0 - 2.2 0 0.5

2.1 - - 0 0 - - 0 0 - - 0 0
2.2 - 4.6 0 0,17 - 1.2 0 0,17 - - 0 0
2.3 - 1.2 0 0,17 - - 0 0 - - 0 0

CMCM =0,84 CMCM =0,67 CMCM =0,5
Conceptual

model
(ISO 25010)

ISO 9126 model QMOOD model

Chs SChs Chs SChs CMM SMM Chs SChs CMM SMM

2 4 - 0,5 0 2 - 0,5 0
2.1 - 4.1 0 0,17 - - 0 0
2.2 - 4.2 0 0,17 - - 0
2.3 - - 0 0 - - 0 0

CMCM=0,84 CMCM=0,5

Software Quality Standards and Models Evolution 43

Fig. 2. CMCM values for GSW and reliability characteristics of SWQMs.

Table 4. Results of reliability characteristics comparison and calculation of CMCM.

Conceptual
model

(ISO 25010)
McCall model Boehm model Ghezzi model

Chs SChs Chs SChs CMM SMM Chs SChs CMM SMM Chs SChs CMM SMM

5 2. - 0,5 0 - 2.1 0 0,5 3 - 0,5 0
5.1 - - 0 0 - - 0 0 - - 0 0
5.2 - - 0 0 - - 0 0 - - 0 0
5.3 - 2.2 0 0,125 - - 0 0 - - 0 0
5.4 - - 0 0 - - 0 0 - - 0 0

CMCM=0,625 CMCM=0,5 CMCM=0,5
Conceptual

model
(ISO 25010)

FURPS Model IEEE Model Dromey model

Chs SChs Chs SChs CMM SMM Chs SChs CMM SMM Chs SChs CMM SMM
5 3. - 0,5 2 0,5 0 1.2,2.3,

3.4,4.4
0 0,5

5.1 5.1 - - 0 - - 0 0 - - 0 0
5.2 5.2 - 4.3 0 - 2.3 0 0,125 - - 0 0
5.3 5.3 - - 0 - 2.2 0 0,125 - - 0 0
5.4 5.4 - 3.2 0 - - 0 0 - - 0 0

CMCM =0,75 CMCM =0,75 CMCM =0,5
Conceptual

model
(ISO 25010)

ISO 9126 model QMOOD model

Chs SChs Chs SChs CMM SMM Chs SChs CMM SMM

5 2 - 0,5 0 - - 0 0
5.1 - 2.1 0 0,125 - - 0 0
5.2 - - 0 0 - - 0 0
5.3 - 2.2 0 0,125 - - 0 0
5.4 - 2.3 0 0,125 - - 0 0

CMCM=0,87 CMCM=0

44 O. Gordieiev et al.

where x – variable, a and b- regression coefficients. For 1970 year variable (x) has
value 0, for 1980 year x = 10, for 1990 year x = 20, for 2000 year x = 30 and for 2010
year x = 40.

Linear subjection was chosen by graphic data analysis (Fig. 3). Satisfiability of
applying linear subjection is confirmed by coefficient of determination (R2) which
equals 0,94.

The values of parameters a and b can be calculated using Least Square Method:

a ¼
n
Pn

i¼0
xiyi

Pn

i¼1
xi
Pn

i¼1
yi

n
Pn

i¼1
x2 ðP

n

i¼1
xiÞ2

; ð5Þ

b ¼
Pn

i¼1
yi a

Pn

i¼1
xi

n
ð6Þ

As a result a = 0.0146, b = 0.4108 and function:

y ¼ 0:0146xþ 0:4108: ð7Þ

The obtained function may be called a law of increasing of characteristics associated
with GSW for SWQM.

The similar dependency can be obtained for reliability characteristics. In this case
a = 0.011, b = 0.5 and function:

y ¼ 0:011xþ 0:5: ð8Þ

Fig. 3. CMCM values for GSW and reliability characteristics of basic SWQMs.

Software Quality Standards and Models Evolution 45

Formulas 7 and 8 illustrate a tendency of SWQMs characteristics/ subcharacteristics
changes. Analysis of dependencies (Fig. 3) allows concluding that weights of green and
reliability characteristics became equal in 2010 (the standard ISO/IEC 25010). Hence,
since first SWQMs the characteristics/subcharacteristics related to green attributes have
faster dynamics of increasing.

2.4 Development of SWQM in Context of Green Software

We can assume that the next general SWQM will include GSW characteristics in an
explicit form. Let’s analyse SWQM evolution tendency in context GSW as a whole.
CSQMCM for SWQM may be calculated as shown in formula (3). It may be appeared
for future model (2020 year). In compliance with [11] and based on the analytical
relationship between SWQM appearance year (X axis) and CSQMCM value (Y axis)
the following formula may be obtained:

y ¼ 0; 153xþ 1; 363: ð9Þ

Besides, considering that each new SWQM approved as a standard is received
about once per 10 years, and that the last model was introduced by the standard
ISO/IEC 25010 appeared in 2010 the prediction of the CSQMCM value can be done.
With this in mind:

CSQMCM ¼ 0; 153�50 þ 1; 363 ¼ 9; 013: ð10Þ

CSQMCM values change is illustrated in Fig. 4 as a histogram for the well known
base SWQM as columns of gray and subsequent SWQM 2020 as a column of light
gray column.

Fig. 4. CSQMCM values for known and predictable SWQMs.

46 O. Gordieiev et al.

According to the obtained dependence (4) CMCM for green software character-
istics is calculated for predictable SWQM 2020 (Fig. 5).

y ¼ 0; 0146�50þ 0; 4108 ¼ 1; 1408: ð11Þ

And CMCM for reliability characteristics is calculated for predictable SWQM 2020
(Fig. 5).

CMCM values of SWQM 2020 for characteristics associated with «green» software
exceed the value of the same metric for SWQM ISO/IEC 25010 by 0.1408.

y ¼ 0; 011�50þ 0; 5 ¼ 1; 05: ð12Þ

CMCM values of SWQM 2020 for reliability characteristics exceed the value of the
same metric for SWQM ISO/IEC 25010 by 0.05.

Analysis of dependencies (Fig. 5) allows predicting that green characteristics
number will increase faster comparing with other more conservative characteristics.

3 GSW Oriented oN Extending of SWQMs

Taking into account predictable changing of SWQMs let’s analyse how content of such
models may be added including software quality models in use.

Fig. 5. CMCM values for reliability characteristics and green characteristics for basic SWQMs.

Software Quality Standards and Models Evolution 47

3.1 Variants of GSW Characteristics Inclusion in SWQM

In the following, possible variants are shown of inclusion of GSW characteristics and
its components in a SWQM.

1. GSW characteristic can be introduced in SWQM as a separated characteristic with
subcharacteristics resources saving and sustainability. It should be noted that
usually resources saving excludes resource utilization from performance efficiency
characteristic (Fig. 6).

2. Green software characteristics are not included in SWQM explicitly, but subchar-
acteristics can go in to SWQM (Fig. 7). Resources saving goes in to SWQM as the
subcharacteristic in place of resource utilization. Subcharacteristic sustainability
goes in to SWQM as separated characteristic.

3. GSW characteristic cannot be explicitly included in SWQM, but subcharacteristics
can be explicitly included (Fig. 8). Resources saving is included in SWQM as

Software quality

Green software

Resources saving Sustainability

Performance
efficiency

Resource
utilisation

...

Fig. 6. Green software characteristics in SWQM at the level of characteristics (1).

Software quality

Performance
efficiency

Resources saving

Sustainability

Resource
utilisation

...

Fig. 7. «Green» software characteristics in SWQM at the level of characteristics and
subcharacteristics (2).

48 O. Gordieiev et al.

subcharacteristic in place of resource utilization. Sustainability is included in
SWQM as subcharacteristic to characteristic security.

3.2 SWQM in Use. Analysis in Context of GSW

The standards ISO/IEC9126 and 25010 describe a separate type of model - software
quality models in use (SWQM-U). SWQM-U is a capability of the software product to
enable specified users to achieve specified goals with effectiveness, productivity, safety
and satisfaction in specified contexts of use [18]. The SWQM-Us include character-
istics, which can be associated with GSW subcharacteristics, in particular resources
saving and sustainability:

– for SWQM-U, ISO/IEC 9126: resources saving – productivity; sustainability –

safety. Productivity is a capability of the software product to enable users to expend
appropriate amounts of resources in relation to the effectiveness achieved in a
specified context of use. Safety is a capability of the software product to achieve
acceptable levels of risk of harm to people, business, software, property or the
environment in a specified context of use. Risks are usually a result of deficiencies
in the functionality (including security), reliability, usability or maintainability;

– for SWQM-U, ISO/IEC 25010: resources saving – efficiency; sustainability –

freedom from risk, which include 3 subcharacteristics – economic risk mitigation,
health and safety risk mitigation and environmental risk mitigation. Efficiency is a
ratio of expended resources to the accuracy and completeness with which users
achieve goals. Freedom from risk is a degree to which a product or system mitigates
the potential risk to economic status, human life, health, or the environment.

Correlation of SWQM-U characteristics for standards ISO/IEC 9126 and 25010,
which are implicitly associated with «green software» and among themselves is shown
in Fig. 9.

Thus, GSW related characteristics should be taken into account on development of
the next SWQM (SWQM-U) as well.

Software quality

Performance
efficiency

Resources saving Sustainability
Resource
utilisation

... Security

Fig. 8. Green software characteristics in SWQM at the level of subcharacteristics (3).

Software Quality Standards and Models Evolution 49

4 Software Quality Assessment Metrics Analysis

4.1 Standards ISO/IEC 9126-2 and ISO/IEC 25023: Comparing
of Metrics

To assess software quality different metrics are applied. As a rule, nomenclature of
metrics corresponds to SQMs. Hence, analysis of the changing of metrics set can be
done considering evolution of standards by using an approach similar to that mentioned
above. Two most known international standards of the last years ISO/IEC 9126:2003
and ISO/IEC 25023:2015 will be analyzed. The standards describe each a set of
software quality metrics.

Our procedure of metrics analysis is based on comparison of metrics sets of these
standards (Table 5). As far as each set of metrics in standards corresponds to hierarchy
of measures software quality assessment, such hierarchy for ISO/IEC 9126-2 [19] has
been chosen as an etalon. To implement a quantitative analysis of SWQ metrics
evolution (changing of metric sets from standard to standard) the following indicators
are suggested:

– general number of metrics for ISO/IEC 25023 (it equals 59);
– number of full compliances of metrics for standards (26);
– number of partial compliances of metrics for standards (5);
– general number of metrics for ISO/IEC9126-2 (83).

The values of these indicators are shown in Table 6.
As a result of the analysis, it was established the following:

– number of the metrics in the standard [20] is less on 24 metrics than in the standard
[19];

– more than half of the metrics (considering partial compliance of the metrics) in the
standard [20] concur with metrics of the standard [19] (31 metrics out of 59);

2. Productivity

3. Safety

2. Efficiency

4. Freedom from risk

4.1 Economic risk mitigation

4.2 Health and safety risk mitigation

4.3 Environmental risk mitigation

ISO/IEC 9126 ISO/IEC 25010

Resources saving

Sustainability

«Green software»
characteristics

Fig. 9. Correlation of characteristics of SWQM-Us (ISO/IEC 9126 and ISO/IEC 25010) with
GSW characteristics.

50 O. Gordieiev et al.

– some groups of the metrics of the standard [19] was merged in one metric of the
standard [20] (such metrics are marked by sign «*» in Table 5).

4.2 Metrics of Reliability and Greenness

Lets analyse metrics evolution for «Greenness measures» and «Reliability measures» .
We noticed that the semantically closest concept to «greenness measures» is «perfor-
mance efficiency» in frameworks of analysis.

Main conclusions are the following for metrics regarding «Greenness measures» :

– general number of the metrics in the standards [20] and [19] equal 9 and 17
respectively;

Table 5. Results of software quality assessment metrics analysis.

Characteristics
measures

Sub-
characteristics

measures

Metrics Metrics Sub-
characteristics

measures

Characteristics
measures

ISO/IEC 25023 ISO/IEC 9126-2
1 Functional
suitability

1.2 Functional
correctness

Computational Accuracy Computational Accuracy 1.2 Accuracy 1Functionality

2 Performance
efficiency

2.1 Time
behaviour

Response time (*) Response time 4.1 Time
behaviour

4 Efficiency
Response time (Mean time to response)
Response time (Worst case response time ratio)

Throughput (*) Throughput
Throughput (Mean amount of throughput)
Throughput (Worst case throughput ratio)

Turnaround time (*) Turnaround time
Turnaround time (Mean time for turnaround)
Turnaround time (Worst case turnaround time
ratio)

2.2 Resource
utilization

I/O devices utilization I/O devices utilisation 4.2 Resource
utilisation

Memory utilization Maximum memory utilisation
3Compatibility 3.1 Co-existence Available co-existence Available co-existence 6.3 Co-existence -

3.2
Interoperability

Data exchangeability(*) ytilibaegnahcxe ataD
(User’s success attempt based)

1.3
Interoperability

ytilibaegnahcxe ataD
(Data format based)

4 Usability 4.2 Learnability Completeness of user
Documentation and/or help
facility

Effectiveness of the user documentation and/or
help system

3.2 Learnability 3 Usability

4.3 Operability Message clarity Message understandability in use 3.3 Operability
Customizing possibility Customisability
Operational consistency Operational consistency in use

4.5 User interface
aesthetics

Appearance customizability of
user interface

Interface appearance customisability 3.4 Attractiveness

5 Reliability 5.1 Maturity Fault removal Fault removal 2.1 Maturity 2 Reliability
Test coverage Test coverage
Mean time between failures Mean time between failures

5.3 Fault
tolerance

Failure avoidance Failure avoidance 2.2 Fault
tolerance

5.4 Recoverability Mean recovery time Mean recovery time 2.3
Recoverability

6 Security 6.1
Confidentiality

Access controllability Access controllability 1.4 Security

6.2 Integrity Data corruption prevention Data corruption prevention - -
6.4 Accountability Access auditability Access auditability - -

7 Portability 7.1 Adaptability Hardware environmental
adaptability

Hardware environmental adaptability 6.1 Adaptability 6 Portability

System software environmental
adaptability

System software environmental adaptability

Organisational environment
adaptability

Organisational environment adaptability

7.2 Installability Ease of installation Ease of installation 6.2 Installability
7.3 Replaceability Functional inclusiveness Function inclusiveness 6.4

Replaceability
8 Maintainability 8.3 Analysability Audit trail capability Audit trail capability 5.1 Analysability 5

MaintainabilityDiagnosis function sufficiency Diagnostic function support
8.4 Modifiability Modification complexity Modification complexity 5.2 Changeability

8.5 Testability Test restartability Test restartability 5.4 Testability

Notes: grey colour – partial compliance of the metrics (metrics of the standards [20] and [19]);
(*) – the metrics of the standard [20] which correspond to metrics group of the standard [19].

Software Quality Standards and Models Evolution 51

Table 6. Quantitative results of software quality metrics analysis.

ISO/IEC 25023 ISO/IEC
9126-2

Characteristics
measures

Sub-
characteristics
measures

General
number
of
metrics

Number of
full
compliances

Number of
partial
compliances

General
number of
metrics

1. Functional
suitability

1.1 Functional
completeness

1 – – –

1.2 Functional
correctness

2 1 0 2

1.3 Functional
appropriateness

2 – – –

2. Performance
efficiency

2.1 Time behavior 3 3(*) 0 4
2.2 Resource
utilization

3 1 1 13

2.3 Capacity 3 – – –

3. Compatibility 3.1 Co-existence 1 1 0 1
3.2 Interoperability 2 1(*) 1 1

4. Usability 4.1
Appropriateness
recognizability

2 – – –

4.2 Learnability 1 0 1 6
4.3 Operability 3 2 1 12
4.4 User error
protection

2 – – –

4.5 User interface
aesthetics

1 1 0 2

4.6 Accessibility 1 – – –

5. Reliability 5.1 Maturity 3 3 0 8
5.2 Availability 2 – – –

5.3 Fault tolerance 2 1 0 3
5.4 Recoverability 1 1 0 6

6. Security 6.1 Confidentiality 2 1 0 1
6.2 Integrity 1 1 0 1
6.3
Non-repudiation

1 – – –

6.4 Accountability 1 1 0 1
6.5 Authenticity 1 – – –

7. Portability 7.1 Adaptability 3 3 0 5
7.2 Installability 2 1 0 2
7.3 Replaceability 3 1 0 3

(Continued)

52 O. Gordieiev et al.

– number of full compliances of the metrics in the standards equal 3 and number of
partial compliances equal 1.

Main conclusions are the following for metrics regarding «Reliability measures» :

– general number of the metrics in the standards [20] and [19] equal 8 and 17
respectively;

– number of full compliances of the metrics in the standards equal 5.

Hence, tendencies and reasons for changing software metrics sets are the following:

– reason for decreasing general number of the metrics in the standard [20] is their
jointing in comparing with the standard [19]. Some groups of the metrics from [20]
was merged in one metric in the standard [19]; on the other side, set of charac-
teristics and subcharacteristics of the last standard ISO/IEC 25010 [2] became wider
than in the standard [19];

– changing of metrics compliance for the standards [19] and [20] caused by modi-
fication of characteristics (subcharacteristics) nomenclature in the standard [2].

5 Conclusion

In compliance with technique of SWQM structural and semantic analysis we have
researched software quality models by an evolutionary perspective and also the stan-
dards ISO/IEC 9126 and 25010 in context of reliability and greenness attributes. Using
this technique, a relationship between the year of the SWQM appearance and the value
of cumulative matching characteristics metric was obtained and analyzed. Besides, we
have calculated the CMCM values for the green software characteristics of the next
SWQM, the output of which may be expected in 2020.

Table 6. (Continued)

ISO/IEC 25023 ISO/IEC
9126-2

Characteristics
measures

Sub-
characteristics
measures

General
number
of
metrics

Number of
full
compliances

Number of
partial
compliances

General
number of
metrics

8. Maintainability 8.1 Modularity 1 – – –

8.2 Reusability 1 – – –

8.3 Analysability 2 1 1 4
8.4 Modifiability 3 1 0 5
8.5 Testability 3 1 0 3

Sum: 59 26 5 83

«-» - the metrics of the standard ISO/IEC 25023 do not correspond to the metrics of the standard
ISO/IEC 9126-2;
(*) – the metrics of the standard ISO/IEC 25023 correspond to metrics group of the standard
ISO/IEC 9126-2.

Software Quality Standards and Models Evolution 53

We also obtained the value of metric - cumulative software quality models com-
parison metric for SWQM of 2020, which exceeds the value of this indicator for
SWQM ISO/IEC 25010 (Fig. 4). It may be explained by possible inclusion of green
software characteristics in SWQM explicitly.

According with the results of this analysis we can conclude that:

• since the first SWQMs the characteristics/ subcharacteristics related to green attri-
butes show increasing dynamics;

• weights of green and reliability characteristics became equal in the SWQM pro-
vided by the standard ISO/IEC 25010;

• it is predicted faster increasing of number of green characteristics comparing with
other more conservative characteristics.

However, implementation of green characteristics in future quality models should
be harmonized with basic attributes such as reliability.

Changing of software quality metrics set for the 12 years (2003-2015) in the
standards ISO/IEC 9126-2 and ISO/IEC 25023 is directly connected with evolution of
software characteristics (subcharacteristics). Decreasing number of the metrics in the
last standard [20] is caused by merging of the metrics in comparing with the standard
[19].

In the future we plan to investigate all SWQM characteristic separately. The data
obtained in this case will provide development of a prototype of new software quality
model standard.

References

1. NATO Science Committee Report: Software engineering. In: Report on a Conference
Sponsored by the NATO Science Committee, p. 136, Germany, Garmisch (1968)

2. International Standard ISO/IEC 25010: Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) – System and software quality
models, ISO/IEC JTC1/SC7/WG6 (2011)

3. Dubey, S.K., Ghosh, S., Rana, A.: Comparison of software quality models: an analytical
approach. Int. J. Emerg. Technol. Adv. Eng. 2(2), 111–119 (2012)

4. Schiavone, G.: A life cycle software quality model using bayesian belief networks.
University of Central Florida, Orlando (2006)

5. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison Wesley Longman Inc., Boston (1999)

6. Lincke, R., Gutzmann, T., Löwe, W.: Software quality prediction models compared. In:
International Conference on Quality Software, pp. 82–91 (2010)

7. Stavrinoudis, X.: Comparing internal and external software quality measurements. In:
Proccedings of the 8th Joint Conference on Knowledge-Based Software Engineering,
pp. 115–124. IOS Press (2008)

8. Sharma, A., Dubey, S.K.: Comparison of software quality metrics for object-oriented
system. Spec. Issue Int. J. Comput. Sci. Manage. Stud. 12, 12–24 (2012)

9. Wagner, S.: Software Product Quality Control. Springer, Berlin (2013)

54 O. Gordieiev et al.

10. Lami, G., Fabbrini, F., Fusani, M.: Software sustainability from a process-centric
perspective. In: Winkler, D., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2012. CCIS,
vol. 301, pp. 97–108. Springer, Heidelberg (2012)

11. Gordieiev, O., Kharchenko, V., Fominykh, N., Sklyar, V.: Evolution of software quality
models in context of the standard ISO 25010. In: Zamojski, W., Mazurkiewicz, J., Sugier, J.,
Walkowiak, T., Kacprzyk, J. (eds.) Proceedings of the Ninth International Conference on
DepCoS-RELCOMEX. AISC, vol. 286, pp. 223–232. Springer, Heidelberg (2014)

12. Radulovic, F.: A software quality model for the evaluation of semantic technologies. Master
thesis, Universidad Politecnica de Madrid Facultad de Informatica (2011)

13. Al-Qutaish, R.E.: Quality models in software engineering literature: an analytical and
comparative study. J. Am. Sci. 6(3), 166–175 (2010)

14. Malhotra, N., Pruthi, S.: An efficient software quality models for safety and resilience. Int.
J. Recent Technol. Eng. (IJRTE) 1(3), 66–70 (2012)

15. Murugesan, S., Gangadharan, G.R.: Harnessing Green IT. Principles and Practices. Wiley,
Chichester (2012)

16. Kharchenko V., Sklyar V., Gorbenko A., Phillips C.: Green computing and communications
in critical application domains: challenges and solutions. In: Proceedings of the 9th

International Conference on Digital Technologies, 29–31 May 2013, Žilina, Slovakia,
pp. 24–29 (2013)

17. Kharchenko, V. (ed.): Green IT-Engineering. 2 volumes: Principles, Components and
Models, vol.1, p. 593. Systems, Industry, Society, vol. 2, p. 628. National Aerospace
University KhAI, Ukraine (2014) (In Russian)

18. International Standard ISO/IEC9126–1: Software engineering – Product quality – Part 1:
Quality, p. 32 (2001)

19. International Standard ISO/IEC9126–2: Software engineering – Product quality – Part 2:
External metrics, p. 96 (2003)

20. International Standard ISO/IEC 25023: Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) - Measurement of system and
software product quality, ISO/IEC JTC1/SC7, p. 47 (2015)

21. Gordieiev, O., Kharchenko, V.: Software quality models evolution: technique and results of
analysis in context standard ISO/IEC 25010. Inf. Process. Syst. J. 6(113), 13–31 (2013).
Ukraine. – 2013 (In Russian)

22. Gordieiev, O., Kharchenko, V., Fusani, M.: Evolution of software quality models: usability,
security and greenness issues. In: Proceedings of the 19-th International Conference on
Computers (part of CSCC 15), 16–20 July 2015, Zakynthos Island, Greece, pp. 519–523
(2015)

Software Quality Standards and Models Evolution 55

The New Method of Building a Safety Model
for Quantitative Risk Assessment of Complex Technical

Systems for Critical Application

Bohdan Volochiy, Bohdan Mandziy, and Leonid Ozirkovskyy(✉)

Department of Theoretical Radio Engineering and Radio Measurement,
Lviv Polytechnic National University, 12 Bandera Street, Lviv 79013, Ukraine

bvolochiy@ukr.net, bmandziy@lp.edu.ua, l.ozirkovsky@gmail.com

Abstract. In the presented work the idea of improvement the state space method
for building safety models of complex technical systems for critical application
is proposed. Result of the this improvement one single model is developed on
which due to the split state of critical failure state quantitative reliability and safety
quantitative indicators of the system can be obtained. Unlike traditional models
as in a fault trees, dynamic tree failures and FMEA/ FMECA-models the proposed
model to allow to take into account independencies between accidental situations.
This model allows to investigate the trend of risk indicators accidental situations
variance from increasing system reliability through the use of fault-tolerant
configurations and maintenance usage.

Keywords: Safety · Reliability · Reliability engineering · Modeling · Complex
system for critical application

1 Introduction

In designing complex technical systems for critical application (CTSCA) developer must
ensure a high level of reliability and safety of those systems. Safety increasing could be
done by introducing additional subsystem protection, blocking, emergency stop and etc.
which reduces the reliability. Thus developer must resolve the contradiction between reli‐
ability and safety. Moreover system complexity reduce system reliability. Increasing of
CTSCA reliability by using fault-tolerant configurations not always improves its safety.
At the same time using maintenance always increases the reliability and safety. This task
could be resolved on design stage by multivariate mathematical modeling of CTSCA with
comparing analysis of alternative variants and selecting of better.

In the general approach for forming reliability models these models are formalized
and describe the interaction of elements of the system element’s from the reliability
position. These models reflect the degree of each element influence on the reliability in
the whole.

The study of safety includes, in addition, the analysis of the transition of system
failures due to accident and determines the qualitative (risk priority number) and quan‐
titative (minimal cut sets) characteristics of accidents.

© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 56–70, 2016.
DOI: 10.1007/978-3-319-30246-1_4

Due to complexity of modern technical systems the multivariate analysis without
automation of model building and estimation of reliability and safety indexes on its basis
are not available in many cases. So often, especially for safety estimation, it is replaced
by building one variant of the model followed by the combination of obtained results
with expert evaluation of safety and recommendations to bring them up to acceptable
values (FMEA).

Nowadays reliability behavior modeling of CTSCA and its safety modeling are
carried out independently of each other, using different types of models, which in the
case of reliability take into account some properties of the system, but in the case of
safety – completely different, although in reality these properties are interrelated and
can’t be separated.

This approach is explained by the reliability models complexity as well as safety
models and respectively by huge time costs for their building and by significant compu‐
tational costs for their analysis when taking into account the important nuances of
CTSCA behavior. The dimension of reliability models of modern systems can reach
hundreds and thousands of equations. The safety model is, unlike the reliability model,
complex logical function that contains hundreds and thousands of arguments. Experi‐
ence shows that the “manual” building of reliability models of fault-tolerant systems
even with small number of elements (10) without software usage requires time-
consuming procedure of dozen hours. If you change the parameters of the state graph
you need to rebuild the new one and the probability of making errors in the model is
very high when the chances of detecting them is very low, also the time of restructuring
the state graph is comparable with the time of construction its first version. Manual
building of safety models as fault tree and the risk indexes estimation on its basis
(minimal cut set) is comparable to the complexity of the building the reliability models
as graph of states and transitions.

The actual task is the improvement and development of modeling methods of CTSCA
reliability behavior which are focused on reliability and safety indexes estimation.

2 Approaches Analysis of Complex Technical Systems Critical
Application Safety and Reliability Modeling

For reliability estimation of CTSCA nowadays there are enough formal and in some
cases software implemented approaches, but for safety estimation there are only partially
formalized methodologies which involve manual building of logical and probabilistic
models in GUI. These models provide the automated determination of selected safety
indexes - quantity indexes such as Minimal Cut Sets or quality indexes such as Risk
Priority Number.

Well-known software suites such as RAM Commander (ALD, Israel) [3], PTC
Windchill QualitySolutions (PTC, USA) [4], ReliaSoft Synthesis Master Suite (Relia‐
Soft USA) [5], Item Toolkit (Item Software, USA, UK) [6], Reliability Workbench
(Isograph, US, UK) [7] allow building reliability models as reliability block diagrams
(RBD) with the automated estimation of reliability. Models as graph of states and tran‐
sitions are built manually with further automation of reliability analysis.

The New Method of Building a Safety Model 57

For safety estimation these software suites have graphical tools for forming fault
trees in manual mode with the automated determination of minimum cut sets and special
tools to carry out FMEA/FMECA analysis. The main advantage of these software suites
is that they contain integrated frameworks of elements models (electronic, electrome‐
chanical, mechanical, etc.) in accordance with international standards: MIL-HDBK-217,
Telcordia SR-332, IEC TR 62380, 217Plus, FIDES, which are required for reliability
and safety analysis.

In work [7] are given the general principles of automation of building reliability
models as matrix of states and transitions and matrix with subsequent transition to the
graph of states and transitions as guidelines and recommendations. Also, this approach
does not have tools to analyze safety. In monograph [5] the fundamental principles of
logical and probabilistic models as fault trees for the reliability and safety estimation
are provided. Actually, this approach is widely used to analyze safety indexes, namely,
risk by the minimal cut sets determination. However, this approach isn’t formalized and
in the case of CTSCA it requires significant time costs for building the fault tree and
computational costs for the analysis of safety indexes. In addition, any changes in the
structure of the system require the construction of its new model. Therefore, for multi‐
variate analysis at the design stage this approach is rarely used, it is usually provided
for certification, when the structure of CTSCA is established.

For qualitative CTSCA safety assessment most used technology is FMEA-analysis. It
provides a detailed safety performance assessment presented as risk priority number. But
it should be noted that safety and risk indicators are qualitative and obtained by review of
specialists which introduces subjectivity in the analysis results. Especially this subjectivity
is significant when it is necessary to reduce the value of risk level as full rebuilding of
model is not provided and safety indicator reduce is obtained only by expert estimates.

At the present time the most powerful method for reliability models of CTSCA
building is the state space method. It allows us to adequately reflect the functional and
reliability behavior of CTSCA. Generated by this method model is represented by the
system of linear differential equations of Chapman-Kolmogorov which adequately
describes all the features of system behavior that allows us to obtain standardized and
non-standardized reliability indexes, which are required by developer at design stage.
However, for the analysis of safety and risk, in particular, this mathematical tool is not
used in practice, although there are attempts to use it for building dynamic fault trees [2].
Practical use of state space method [3] is limited at the design stage, due to cumbersome
models, the phase space of which is equal to 103 .. 104 equations, and for multivariate
analysis, in most cases, it is replaced by simplified evaluation using standard models.

In work [14] the method of automated generation of state space for behavior analysis
of CTSCA basing on formalized description of the designed object in the form of struc‐
tural-automatic model is described. Structural-automatic model allows to automate the
process of reliability models building and to significantly reduce the time costs of multi‐
variate analysis.

Time-costs for build the SAM by experienced developer are 1–30 h, depending on
the complexity of the system. These costs justifies itself in multivariate analysis of fault-
tolerant systems, because the next correction of the model, even with significant changes
in the structure of the system takes time from tens of minutes to several hours.

58 B. Volochiy et al.

This approach is implemented in ASNA software [3, 14]. Input data about the
researched object for software module ASNA should be submitted in the form of SAM,
which is formalized description of the structure and reliability behavior of system (the rules
of transition from one state to another during the failure and recovery of elements). Basing
on SAM software module ASNA generates the list of all possible states of the system, the
table of transitions from one state to another, which is transformed into the matrix of inten‐
sities of transitions when entering numerical values of intensities of failures and recovery
of the system. Therefore, basing on the matrix of intensities ASNA module automatically
forms the system of differential Chapman-Kolmogorov equations and solves it by Runge-
Kutta-Merson method. As a result the user gets the time dependences of probabilities of
system being in each of the possible states. Basing on this information, the user can define
standardized reliability indexes of system (availability function, probability of failure,
failure flow parameter, MTTF, etc.), and arbitrary parameters that may be needed for the
“thin” study of the system (probability of downtime, probability of having at least N
employable elements when using a certain number of renewals, etc.). This approach
focuses on estimation reliability indexes for reliability design and efficiency indexes for
functional design. To use this approach to the safety indexes estimation the improvement

Table 1. Comparison of reliability and safety estimating methods.

Reliability and safety
estimating methods

Method features

FTA FMEA/

FMECA

SSM SAM

Independencies between
accidental situations

-/+ - + +

Multivariate analysis - - - +

Fault tree building + - - -/+

Taking into account reliability
and functional behavior

- - + +

Taking into account
maintenance

-/+ - + +

Taking into account embedded
control and diagnostics

+ + + +

Taking into account system
downtime

+ + + +

Safety indexes estimation + + - -

The New Method of Building a Safety Model 59

both the graph states and transitions (to display emergency situations) and description of the
state vector and principles of SAM building is needed.

Comparing results of existing methods for reliability and safety estimating which
are suitable for use in the design phase CTSCA is presented in Table 1.

The next conventional signs are used in Table 1:
+ Method is provides the feature.
– Method isn’t provides the feature.
+/− Method can provide the feature, if it will improve.
Disadvantages all without exception approaches to safety assessment are the

following - among the known approaches there were not found ones which allow deter‐
mining the reliability and safety indexes for the same behavior model of CTSCA with
taking into account all behavior features of the system while disability, accidents, down‐
time, etc. Hence the task of updating SAM and state space method for their adaptation
to the problems of multivariate analysis and safety indexes estimation.

3 Improvement of the State Space Method and Its Formalization
for Safety Models Building

An analysis of existing safety estimation technologies showed that there is a need to
develop a complex of techniques and tools which would allow to build a single model.
And this model which will take into account the interdependence of fault events in the
system, their consequences, maintenance and repair of individual elements or subsys‐
tems, diagnostics, downtime, system reliability and functional behavior.

As already noted the state space method combining with formalized description of
the systems in the form of SAM is the powerful tool for the study of both functional and
reliability indexes of CTSCA STSVP that allows us to perform multivariate analysis
with minimal time-cost. Significant advantages of the state space method is that it
provides the set of all states of CTSCA and determine the probability rates getting in or
staying in any of them. This property is particularly relevant when the operation of the
system allows the states of reduced functionality or partial disability. In addition, you
can see the quantity of reliability increase when entering certain types of redundancy
and their cost. These properties make it possible not only to investigate the reliability
of CTSCA when carrying in redundancy or changing its behavior algorithm, but also to
analyze the impact of these actions on safety, which we understand as the risk of emer‐
gency in case of failure of each element of system.

This index according to [4, 15] is called minimal cut set. Minimal cut set (MCS) –
is a minimal combination of events which lead to catastrophic system failure. If when
any of event is removed from the MCS the remaining events collectively cannot cause
to catastrophic system failure [4].

Thus, when designing CTSCA we must have a single model that is based on the state
space method and provides:

• adequate reflection of system behavior while disability;
• consideration of strategies for maintenance and repair;
• consideration of controls and diagnostics;

60 B. Volochiy et al.

• possibility of obtaining reliability indexes (probability of faultless work, availability,
MTTF, MTBF);

• possibility of obtaining safety indexes (MCS);
• consideration of system downtime;
• the opportunity to obtain indexes of economic efficiency;
• to carry out the multivariate analysis.

To achieve this goal it is necessary to make a number of modifications of the state
space method, as described below.

The behavior of CTSCA is described by graph of states and transitions. Vertices
of graph are the states in which the system can be. These states are characterized by
probabilities. Edges of the graph are the possible transitions from state to state and
are characterized by the transition intensities.

In all known methods the catastrophic failure condition is a combination of all inoper‐
able states, which are united in one state. This is used, on the one hand, to obtain the
required reliability indexes when only operable states are used, on the other hand, inoper‐
able states significantly increase the phase space, dimensionality of which is great.

Idea for space state method modification for safety indexes estimation (MCS), is
based on splitting the state of catastrophic failure (CF) in separate states.

Split state of CF AS1 AS2
AS3

Fig. 1. Graph of state and transitions with split state of catastrophic failure

Thus, the set of inoperable states contains a subset of accidents (AS1, …, ASi, …),
accordingly to CTSCA (Fig. 1). Each of these accidents can be represented by the
corresponding fault tree.

In this case accidents are not isolated as the fault tree building as part of the states
that form the emergency AS2 is included in other accidents such as AS1 and AS3. This
is a characteristic of this method which will take into account not only the risk of an
accidents but also cross-correlation between accidents. Such cross-correlation between

The New Method of Building a Safety Model 61

accident situations is characteristic of CTSCA. But other methods such as fault tree
analysis, dynamic fault tree analysis and FMEA-analysis does not allow this taking into
account. The modified method of state space other than risk indicators gives a possibility
to evaluate the severity of accidents which puts it on par with FMECA-analysis.

For safety indicators estimation - namely quantitative risk value the filtering from
the resulting probability distribution of operable and inoperable states using the modified
method of state space must be done. Filter is in this case the condition of critical failure.
As a result of filtration, we obtain a set of probability of CTSCA being in operable states
{Pi (t)} and the set of probability of CTSCA being in inoperable states {Qj (t)}, where
i is the serial number for operable states and j is the serial number for inoperable states.

From the resulting set of operable states the necessary reliability indexes are formed
and from the set of inoperable states the MCS – combination of inoperable states, when
the critical failure definitely will occur – are obtained.

For minimal cut sets automated receiving were developed the search algorithm of
all inoperable states combinations in which a critical system failure is occurred [13].
This means that this element is one of the most critical parts of the system. In the case
of fault-tolerant systems, CTSCA is just that, the combination of several elements is
possible.It is considered that as more inoperable states are included in MCS so the less
vulnerable system is and so the effects of its failure will not be catastrophic for human
life and health and the environment.

If vulnerable elements, which form inoperable states, which are included in MCS,
are replaced by more reliable or reserved, the risk of accident is reduced in times. Thus,
the MCS are necessary for designer to make reasonable redundancy in a new version of
designed CTSCA. So due to the effect of redundancy input we can quantify the rate of
risk reduction:

(1)

where
Cm – MCS before redundancy input;
Cn – MCS after redundancy input;
Generalized diagram of technique of estimation of safety and reliability indexes

basing on the graph of states and transitions with the split failure state and using SAM
is shown in Fig. 2. According to it, the automated algorithm for obtaining MCS was
developed. The input data for the algorithm is the set of inoperable states (MCS), derived
from the binary SAM.

The binary SAM is the SAM of the CTSCA, in which all elements of structure are
displayed by individual SV components and can take only of two values: zero and one.
The binary SAM, which, unlike to original SAM [14], makes a possibility to describe the
structure and behavior of CTS without unification of states of its structure elements. In
addition, the binary SAM allows obtaining split failure state, in which states of CTSCA
subsystems failures can be discerned with the given level of detail representation.

Procedure of filtering inoperable states from whole phase space is carried out by the
analysis of the state vector component, comparing them with the critical failure condi‐
tion. If the element is operable, the value of its corresponding SV component is greater
than zero. If the element failed and led to accident, the component will be equal to zero.

62 B. Volochiy et al.

Minimal cut sets are formed on the third stage from the filtered inoperable states.
For this the automated algorithm of minimal cut sets (MCS) receiving were developed
[13]. The input data for the algorithm is the set of inoperable states which were obtained
from the binary SAM.

While the algorithm development it is taken into account that:

• at least one MCS is presented in the sysytem;
• cut set of the system is inoperable state, when system falls into catastrophic failure

condition;
• MCS of the system is the state, when the system is in catastrophic failure but taking

off at least one of the elements that are failed in this MCS, the catastrophic failure of
the system can not occur at all.

Definition of MCS is provided in two stages: stage of MCS obtaining and stage of
estimation their probability values.

Stage I. For MCS finding the following procedures are used: MCS sorting; MCS deter‐
mination.

At this step it is necessary to sort obtained array of inoperable states of the system
on the feature of the smallest number of events that led to the accident of the system.
Further, basing on sorted array of inoperable states the MCS are defined. As a result of
the proposed procedures the array of MCS is presents as a matrix.

Stage II. Determination of MCS probability is performed by the following procedures:
determination of MCS from all cut sets; sum of MCS probabilities; forming of array of
MCS and their probability values.

According to this stage we must create a matrix that consists of four columns – the
first column is a serial number of MCS – N; the second column is SV component and
its value; in the third column the numbers of states, which are attended by the corre‐
sponding MCS, are recorded. So in the fourth column there are recorded obtained prob‐
abilities of MCS as a result of this procedure. Also at this stage procedure of comparison
of the system states is used.

The procedure for obtaining probability values of MS is the sum of probability values
of being in respective states, whose numbers were found in the previous procedure, i.e.,
in the states that are recorded in the third column corresponding to the MCS matrix. As
a result, the fourth column is filled with appropriate MCS probabilities value.

Obtained MCS are ranked in descending order of occurrence probability. Also is
possible to calculate the percentage contribution of each MCS in an accident situation.
From the MCS is evident weakness of the system.

To reduce the risk of accident must be reserved the weakest points of CTSCA and
thus reduce the value of probability MCS.

Thus the MCS could be obtained from the graph of states and transitions without
fault tree building.

The New Method of Building a Safety Model 63

4 An Example of the Usage of Developed Method of MCS Definition

Fault-tolerant system consists of six modules A, B, C, D, E and F. The modules A and
B are the main operable configuration that provides performance of system functions.
The modules C, D and E, F are whole-system redundancy modules. All modules have
the same failure intensity λ = 0,005 and the observation period is T = 50 h. The reliability
block diagram (RBD) of the fault-tolerant system is shown in Fig. 2.

In result of automatic method of generating [14] and solving a mathematical model
of the system as a system of Chapmen - Kolmogorov differential equations the proba‐
bility of being in every possible state was obtained. Probability of system being in oper‐
able state is 0,9391, and the probability of failure is equal to:

C D

B

E F

A

Fig. 2. The RBD of the fault-tolerant system

For reliability block diagram (Fig. 2) were build the binary structural-automaton
model. Structural-automaton model (SAM) consists of three sets of data. The first set is
a form of the state vector (VS), which enables a formalized description all the conditions
for using variables - VS components. The components VS are variables that describe
the state of the system. State vector can contain additional components that are used to
detect the status of additional features such as counter current number of repairs each

Fig. 3. The set state vector

64 B. Volochiy et al.

item counting all repairs, meter total number of items that are out of order and so on. In
this case system consists of 6 modules and therefore state vector will have six compo‐
nents. Module A component corresponds BC - V1, the module complies component -
V2 etc. The set state vector introduced in the software module ASNA, shown in Fig. 3.

The second SAM set is a constant - set of formal parameters that characterize the
structure of the system and its properties. Namely the number of parts on the system
configuration, the number of reserve elements, their failure rate and intensity of
renewals, limiting the number of renewals and so on. In this case it contains a set of
formal parameters and module failure rate is shown in Fig. 4.

Fig. 4. The set of formal parameters

The third set of rules is tree of modification rules (TMR) of state vector which is
given in tabular form and reflects the consequences that come after the failure or repair
of individual elements under certain conditions. The components of TMR are events
that can occur with elements (refusal or item recovery, connect reserve etc.), the set logic

Fig. 5. The tree of modification rules of state vector

The New Method of Building a Safety Model 65

conditions that determine the combination of the values of the state vector components,
which can take place at this event and the rules for modification VS. Each condition
corresponds to the formula for calculating the intensity transition.

The consequence is the change VS events components and systems transition from
one state to another according to the rules of transition. If certain elements inherent in
more than one type of failures (such as breakage and short circuit), in such cases use a
set of formulas for calculating probabilities of alternative transitions. Each of which uses
a separate set of transition rules TRM of state vector. The set of formal parameters is
shown in Fig. 5.

All three sets were introduced in software module ASNA as a result of his work graph
of states and transitions was received as a list of states (Fig. 6) and matrix of transition
intensities that because of the large size 64 × 64 in this article are not reduced. First column
of matrix of transition intensities (jump intensities in Fig. 6) is a number of state whereto
been done the transition. Second column is a number of state wherefrom been done the
transition. Third column is a value of transition intensity. The diagonal elements of matrix
(11, 22, 33, 44) have negative value according to Chapman-Kolmogorov rules.

Fig. 6. List of states fault-tolerant system

From the obtained set of states from 1 to 37 are operable fault-tolerant system, and
states 38–64 is a split state of failure.

66 B. Volochiy et al.

As a result of software module ASNA probability distribution system stays in each
state were received. As a result of the summation of probabilities stay in working condi‐
tion was obtained dependence of probability of failure of the fault-tolerant system from
the time (Fig. 7). On the basis of inoperable system it was determined that the system
as a whole fails at six different MCS.

Fig. 7. Dependence of the probability of failure of the refusal stable system of time

Obtained MCS are shown in Table 2.

Table 2. Minimal cut sets based on Markov model

№ Modules failed Quality Quantity MCS Contribution of MCS %

1 A, C, E 3 0,0108 12,5

2 A, D, E 3 0,0108 12,5

3 B, C, E 3 0,0108 12,5

4 B, D, E 3 0,0108 12,5

5 A, C, F 3 0,0108 12,5

6 A, D, F 3 0,0108 12,5

7 B, C, F 3 0,0108 12,5

8 B, D, F 3 0,0108 12,5

The New Method of Building a Safety Model 67

4.1 Validation of the Developed Method

To validate the developed method a fault tree was implemented for the system (Fig. 3)
according to the approach [5] and the values of the probability of failures for each MCS
were calculated. It was considered that the results obtained by fault tree are accurate and
they were compared with results which are shown in Table 1.

The validation was performed using specialized software suite RAM Commander
by ALD Service. For RBD the fault tree was set up (Fig. 8) and MCS were obtained by
tools of RAM Commander and are shown in Fig. 9.

Tree1
Andriy 1

AND
0.0834

Tree1-1

OR

Tree1-2

OR

Tree1-3

OR

Tree1-1-1

0.221

Tree1-1-2

0.221

Tree1-2-1

0.221

Tree1-2-2

0.221

Tree1-3-1

0.221

Tree1-3-2

0.221

0.393 0.393 0.393

page nr.1

Fig. 8. Fault tree

Fig. 9. Minimal cut sets based on FTA model

68 B. Volochiy et al.

The comparison shows that the calculated values of MCS, which were obtained from
fault tree using software suite RAM Commander coincide with the values obtained from
the graph of states and transitions with the split failure state using binary SAM. The
developed approach (Fig. 2) allows us to get the MCS in automatic mode without fault
tree construction.

5 Conclusions

1. Split of critical failure state in graph of states and transitions, in contrast to the known
approaches, allows estimation of reliability and safety indexes, that allows the impact
of maintenance strategies on safety and reliability and the impact of the fault toler‐
ance on safety to be considered. This will increase the accuracy (certainty) of effi‐
ciency indexes estimation of complex technical systems for critical application.

2. Minimal cut sets obtaining on the basis of the graph of states and transitions allows
taking into account the interrelations of accidents directly from the analysis of system
states for identification weaknesses. It gives to use only efficient means for providing
fault tolerance that reasonably reduces the cost of improving the system.

3. Using binary structural-automatic model allows automated obtaining of split critical
failure state and reducing time costs for building the graph of states and transitions.

4. Risk reduction factor was introduced for quantitatively assessment of the efficiency
of improving safety by improving reliability by introducing redundancy in critical
elements of complex technical systems for critical application.

5. Fault tree building from the graph of states and transitions basing on minimal cut
sets takes into account the behavior of complex system that is not available when
using static and dynamic fault trees.

References

1. Verma, A.K., Ajit, S., Karanki, D.R.: Reliability and Safety Engineering. Springer Science
& Business Media, London (2010)

2. Birolini, A.: Reliability Engineering: Theory and Practice, 6th edn. Springer, Heidelberg
(2010)

3. Volochiy, B., Mandziy, B., Ozirkovskyi, L.: Extending the features of software for reliability
analysis of fault-tolerant systems. Computational Problems of Electrical Engineering 2(2),
113–121 (2012)

4. Yang, G.: Life Cycle Reliability Engineering. Wiley, Hoboken (2007)
5. Henley, E.J., Kumamoto, H.: Probabilistic Risk Assessment: Reliability Engineering, Design

and Analysis, 2nd edn. Wiley-IEEE Press, New York (2000)
6. Mandziy, B.A., Ozirkovskyi, L.D.: Automation of building reliability models of redundant

restorable complex technical systems. Eastern-Eur. J. Enterp. Technol. 2(4(62)), pp. 44–49
(2013) (in Ukrainian)

7. Polovko, A.M., Gurov, S.V.: Basics of Reliability Theory. BHV Peterburg Publ., Saint
Petersburg (2006) (in Russian)

8. PTC Windchill. http://ru.ptc.com/product/windchill/quality

The New Method of Building a Safety Model 69

http://ru.ptc.com/product/windchill/quality

9. RAMS (Reliability, Availability, Maintainability and Safety) Software. http://
aldservice.com/en/reliability-products/rams-software.html

10. ReliaSoft Synthesis Master Suite. http://www.reliasoft.com/products.htm
11. Reliability Engineering Software. Products. http://www.itemsoft.com/products.html
12. Reliability Workbench. http://www.isograph.com/software/reliability-workbench/
13. Volochiy, B.Y., Ozirkovskyi, L.D., Mashchak, A.V., Shkiliuk, O.P.: Fault tree build

automation for safety estimation of complex technical system. In: PREDT-2014 Proceedings
of IV International Conference on Physical and Technological Problems of Wireless Devices,
Telecommunications, Nano-and Microelectronics, pp. 102–103 (2014) (in Ukrainian)

14. Bobalo, Y., Volochiy, B., Lozynskyy, O., Mandziy, B., Ozirkovskyy, L., Fedasyuk, D.,
Shcherbovskykh, S., Yakovyna, V.: Mathematical Models and Methods of Analysis of
Radioelectronic, Electromechanic and Software Systems. Lviv Polytechnic National
University Publ., Lviv (2013) (in Ukrainian)

15. Zentis, T., Schmitt, R.: Technical risk management for an ensured and efficient product
development on the example of medical equipment. In: Proceedings of the 23rd CIRP Design
Conference on Smart Product Engineering, Bochum, pp. 387–398. 11–13 March 2013

70 B. Volochiy et al.

http://aldservice.com/en/reliability-products/rams-software.html
http://aldservice.com/en/reliability-products/rams-software.html
http://www.reliasoft.com/products.htm
http://www.itemsoft.com/products.html
http://www.isograph.com/software/reliability-workbench/

Formal Frameworks

Main Steps in Defining
Finitely Supported Mathematics

Andrei Alexandru and Gabriel Ciobanu(B)

Romanian Academy, Institute of Computer Science, Iaşi, Romania
andrei.alexandru@iit.academiaromana-is.ro, gabriel@info.uaic.ro

Abstract. This paper presents the main steps in defining a Finitely
Supported Mathematics by using sets with atoms. Such a mathematics
generalizes the classical Zermelo-Fraenkel mathematics, and represents
an appropriate framework to work with (infinite) structures in terms of
finitely supported objects. We focus on the techniques of translating the
Zermelo-Fraenkel results into this Finitely Supported Mathematics over
infinite (possibly non-countable) sets with atoms. Two general methods
of proving the finite support property for certain algebraic structures are
presented. Finally, we provide a survey on the applications of the Finitely
Supported Mathematics in experimental sciences.

Keywords: Fraenkel-Mostowski set theory · Invariant sets · Finite sup-
port principle · Finitely Supported Mathematics

1 Introduction

Since the experimental sciences are mainly interested in quantitative aspects, and
since there exists no evidence for the presence of infinite structures, it becomes
useful to develop a mathematics which deals with a more relaxed notion of
(in)finiteness. We present our attempt of building the necessary concepts and
structures for a finitely supported mathematics. What we call Finitely Sup-
ported Mathematics is a mathematics which is consistent with the axioms of the
Fraenkel-Mostowski (FM) set theory. The FM axioms represents an “axiomati-
zation” of the FM permutation model of the Zermelo-Fraenkel set theory with
atoms; in this way, these axioms transform this model into an independent set
theory. The axioms of the FM set theory are precisely the Zermelo-Fraenkel with
atoms (ZFA) axioms over an infinite set of atoms [24], together with the special
property of finite support which claims that for each element x in an arbitrary set
we can find a finite set supporting x. Therefore, in the FM universe only finitely
supported objects are allowed. The original purpose of the FM set theory was to
provide a mathematical model for variables in a certain syntax. Since they have
no internal structure, atoms can be used to represent names. The finite support
axiom is motivated by the fact that syntax can only involve finitely many names.
The FM framework provides a balance between rigorous formalism and informal
reasoning. This is discussed in [34], where principles of structural recursion and
c© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 73–90, 2016.
DOI: 10.1007/978-3-319-30246-1 5

74 A. Alexandru and G. Ciobanu

induction are explained in such a framework. We can use this theory in order to
manage infinite structures in a finitary manner; namely, in the FM framework
we try to model the infinite using a more relaxed notion of finite, i.e. the notion
of finite support.

Although a set of axioms for describing sets with atoms (or FM-sets) was
introduced in [24], an earlier idea of using atoms in computer science belongs to
Gandy [25]. Gandy proved that any machine satisfying four physical ‘principles’
is equivalent to some Turing machine. Gandy’s four principles define a class of
computing machines, namely the ‘Gandy machines’. Gandy machines are rep-
resented by classes of ‘states’ and ‘transition operations between states’. States
are represented by hereditary finite sets built up from an infinite set U of atoms,
and transformations are given by restricted operations from states to states. The
class HF of all hereditary finite sets over U introduced in Definition 2.1 from [25]
is described quite similar to the von-Neumann cumulative hierarchy of FM-sets,
FMA presented in [24]. The single difference between these approaches is that
each HFn+1 is defined inductively involving ‘finite subsets of U ∪ HFn’, whilst
each FMα+1(A) is defined inductively by using ‘the disjoint union between A
and the finitely supported subsets of FMα(A)’; HF is the union of all HFn (with
the mention that the empty set is not used in this construction), and the family of
all FM-sets is the union of all FMα from which we exclude the set A of atoms.
The support of an element x in HF , obtained according to Definition 2.2(1)
of [25], coincides with supp(x) (with notations from Definition 2(4)) if we see x
as an FM-set. Also, the effect of a permutation π on a structure x described in
Definition 2.3 from [25] is defined analogue as the application of the SA-action
on FMA to the element (π, x) ∈ SA × FMA. Obviously, the Gandy’s principles
can also be presented in the FM framework because any finite set is well defined
in FM; however, an open problem regards the consistency of Gandy’s principles
when ‘finite’ is replaced by ‘finitely supported’.

The construction of the universe of all FM-sets [24] is inspired by the con-
struction of the universe of all admissible sets over an arbitrary collection of
atoms [13]. The hereditary finite sets used in [25] are particular examples of
admissible sets. The FM-sets represent a generalization of hereditary finite sets
because any FM-set is an hereditary finitely supported set.

2 Subdivisions of the Fraenkel-Mostowski Framework

In the literature there exist various approaches regarding the FM framework.
We try to clarify the differences between these approaches.

– The FM permutation model of the ZFA set theory. The original moti-
vation for developing such a permutation model is related to establishing the
independence of the axiom of choice (AC) from the other axioms of the ZFA
set theory. Informally, AC claims that given any family of non-empty sets F ,
it is possible to select a single element from each member of F . This statement
is equivalent to the assertion that for any family of non-empty sets F there
exists at least one choice function on F , where a choice function on F is a

Main Steps in Defining Finitely Supported Mathematics 75

function f with domain F such that, for each non-empty set X in F , f(X)
is an element of X. Since its first formulation AC leads to some controver-
sies. The first controversy is about the meaning of the word “exists”. Some
mathematicians believe that a set exists only if each of its elements can be
designated specifically or at least if there is a law by which each of its elements
can be constructed. Another controversy is represented by a geometrical con-
sequence of AC known as Banach and Tarski’s paradoxical decomposition of
the sphere. In [12] they showed that any solid sphere can be split into finitely
many subsets which can themselves be reassembled to form two solid spheres,
each of the same size as the original. Questions about the AC’s independence
of the systems of set-theoretic axioms appeared naturally. In 1922 Fraenkel
introduces the permutation method to establish the independence of AC from
a system of set theory with atoms [22]. Fraenkel constructed a model in which
the axioms of set theory excluding the axiom of choice are satisfied but this
model contains a set which does not satisfy the axiom of choice. Fraenkel’s
model was refined and extended by Lindenbaum and Mostowski [31] to what
we call the FM permutation model of the ZFA set theory. There also exist
some other permutation models of ZFA presented in [29] which are defined by
using countable infinite sets of atoms.

It is worth noting that the FM permutation method was not sufficient to
prove the independence of the axiom of choice from the axioms of the Zermelo-
Fraenkel (ZF) set theory. In [26] Gödel proved that the axiom of choice is
consistent with the other axioms of set theory (von Neumann-Bernays-Gödel
set theory). He proved that given a model for set theory in which there are no
atoms and the axiom of foundation is true, there exists a model in which, in
addition, the axiom of choice is true. Moreover, if Gödel’s model is modified
so that either atoms exist or the axiom of foundation is false, the validity
of the axiom of choice is not disturbed. Fraenkel showed that the collections
of sets of atoms need not necessarily have choice functions [22]. However,
at that time he was unable to establish the same fact for the usual sets of
mathematics, for example the set of real numbers. This problem remained
unsolved until 1963 when Cohen proved the independence of AC (and of the
axiom of countable choice) from the standard axioms of ZF set theory [21].
Cohen’s independence proof (known as the method of forcing) also made
use of permutations in essentially the form in which Fraenkel had originally
employed them.

– The FM axiomatic set theory. This set theory was presented by Gabbay
and Pitts [24] in order to provide a new formalism for managing fresh names
and bindings. An advantage of modeling syntax in a model of FM set theory
is that datatypes of syntax modulo α-equivalence can be modeled inductively.
This is because the FM set theory provides a model of variable symbols and
α-abstraction. The FM axiomatic set theory is inspired by both the FM per-
mutation model of the ZFA set theory and the theory of admissible sets [13].
However, the FM set theory, the ZFA set theory and the ZF set theory are
independent axiomatic set theories. All of these theories are described by
axioms, and all of them have models. For example, the Cumulative Hierarchy

76 A. Alexandru and G. Ciobanu

Fraenkel-Mostowski universe FMA presented in [24] is a model of the FM
set theory, while some models of the ZF set theory can be found in [28], and
the permutation models of the ZFA set theory can be found in [29]. The sets
defined using the FM axioms are called FM-sets. A ZFA set is an FM-set
if and only if all its elements have hereditary finite supports. Note that the
infinite set of atoms in the FM set theory does not necessary be countable.
The Fraenkel-Mostowski set theory is consistent whether the infinite set of
atoms is countable or not. In [24] it is used a countable set of atoms in order
to define a model of the Fraenkel-Mostowski set theory for new names in com-
puter science, while in [14] there are described FM-sets over a set of atoms
which do not represent a homogeneous structure. Also, in [19] the authors use
non-countable sets of atoms (like the set of real numbers) in order to study
the minimization of deterministic timed automata.

– Nominal sets. The theory of nominal sets represents an alternative to the
FM set theory. These sets can be defined both in the ZF framework [35] and
in the FM framework [24]. In ZF, a fixed infinite set A is considered as a set of
names. A nominal set is defined as a usual ZF set endowed with a particular
group action of the group of permutations over A that satisfies a certain
finiteness property. Such a finiteness property allows us to say that nominal
sets are well defined according to the axioms of the FM set theory whenever
the set of names is the set of atoms in the FM set theory. There exists also
an alternative definition for nominal sets in the FM framework. They can be
defined as sets constructed according to the FM axioms with the additional
property of being empty supported (invariant under all permutations). These
two ways of defining nominal sets finally lead to similar properties. According
to the previous remark we use the terminology “invariant” for “nominal” in
order to establish a connection between approaches in the FM framework and
in the ZF framework. Moreover, we can say that any set defined according to
the FM axioms (any FM-set) can be seen as a subset of the nominal (invariant)
set FMA. However, an FM-set is itself a nominal set only if it has an empty
support. The theory of nominal sets makes sense even if the set of atoms
is infinite but not countable. Informally, since the ZFA set theory collapses
into the ZF set theory when the set of atoms is empty, we can say that
the nominal sets represent a natural extension of the usual sets. In computer
science, nominal sets offer an elegant formalism for describing λ-terms modulo
α-conversion [24]. They can also be used in algebra [3,6], in proof theory [40],
in domain theory [39], in topology [33], semantics of process algebras [5,23] and
programming [37]. A survey on the applications of nominal sets in computer
science emphasizing our contributions can be found in [4].

– Generalized nominal sets. The theory of nominal sets over a fixed set A
of atoms is generalized in [17] to a new theory of nominal sets over arbitrary
(unfixed) sets of data values. This provides the generalized nominal sets. The
notion of ‘SA-set’ (Definition 2) is replaced by the notion of ‘set endowed with
an action of a subgroup of the symmetric group of D’ for an arbitrary set
of data values D, and the notion of ‘finite set’ is replaced by the notion of
‘set with a finite number of orbits according to the previous group action

Main Steps in Defining Finitely Supported Mathematics 77

(orbit-finite set)’. This approach is useful for studying automata on data
words [17], languages over infinite alphabets [15], or Turing machines that
operate over infinite alphabets [18]. Computations in these generalized nomi-
nal sets are presented in [16,20].

As their names say, the nominal sets are used to manage notions like renaming,
binding or fresh name. However, this theory could be studied deeper from an
algebraically viewpoint, and it could be used in order to characterize some infinite
structures in terms of finitely supported objects.

Finitely Supported Mathematics (FSM) is introduced to prove that
many finiteness ZF properties still remain valid if we replace the term ‘finite’
with ‘infinite, but with finite support’. Such results have already been presented
in [6] where we proved that a class of multisets1 over infinite alphabets (inter-
preted in the nominal framework) has similar properties to the classical multisets
over finite alphabets. FSM is the mathematics developed in the world of finitely
supported objects where the set of atoms has to be infinite (countable or not
countable). Informally, FSM extends the framework of the ZF set theory without
choice principles; ZF set theory is actually the Empty Supported Mathematics.
In FSM, we use either ‘invariant sets’ or ‘finitely supported sets’ instead of ‘sets’.
FSM is not at all the theory of nominal sets from [35] presented in a different
manner. The theory of nominal sets [35] could be considered as a tool for defining
FSM which is, informally, a theory of ‘invariant algebraic structures’.

We do not employ axioms in order to describe FSM because FSM is already
consistent to the ZF axioms. However, we describe FSM by using principles. The
principles of constructing FSM have historical roots in the definition of ‘logical
notions’ in Tarski’s view [38]. The general principle of constructing FSM is that
all the structures have to be invariant or finitely supported. As a general rule, we
are not allowed to use in the proofs of the results of FSM any construction that
does not preserve the property of finite support. This means we cannot obtain
a property in FSM only by employing a ZF result without an appropriate proof
presented according the finite support requirement.

Since the invariant sets can also be defined in the ZFA framework similarly
as in the ZF framework (see the first paragraph in Sect. 3), the construction of
FSM also makes sense over the ZFA axioms.

3 Sets with Atoms

Let A be a fixed infinite (countable or non-countable) ZF-set. The following
results make also sense if A is considered to be the set of atoms in the ZFA
framework (characterized by the axiom “y ∈ x ⇒ x /∈ A”) and if ‘ZF’ is replaced
by ‘ZFA’ in their statements. Thus, we mention that the theory of invariant sets
makes sense both in ZF and in ZFA. Several results of this section are similar to
those in [35], but without assuming the set of atoms to be countable.
1 A multiset on an alphabet Σ is a function from Σ to N where each element in Σ has
associated its multiplicity.

78 A. Alexandru and G. Ciobanu

Definition 1. A transposition is a function (a b) : A → A defined by (a b)(a) =
b, (a b)(b) = a, and (a b)(n) = n for n �= a, b. A permutation of A is generated
by composing finitely many transpositions.

Definition 2. Let SA be the set of all permutations of A.

1. Let X be a ZF set. An SA-action on X is a function · : SA × X → X having
the properties that Id ·x = x and π ·(π′ ·x) = (π ◦π

′
) ·x for all π, π′ ∈ SA and

x ∈ X. An SA-set is a pair (X, ·) where X is a ZF set, and · : SA × X → X
is an SA-action on X.

2. Let (X, ·) be an SA-set. We say that S ⊂ A supports x whenever for each
π ∈ Fix(S) we have π · x = x, where Fix(S) = {π |π(a) = a,∀a ∈ S}.

3. Let (X, ·) be an SA-set. We say that X is an invariant set if for each x ∈ X
there exists a finite set Sx ⊂ A which supports x. Invariant sets are also
called nominal sets if we work in the ZF framework [35], or equivariant sets
if they are defined as elements in the cumulative hierarchy FMA [24].

4. Let X be an SA-set and let x ∈ X. If there exists a finite set supporting x, then
there exists a least finite set supporting x [24] which is called the support of
x and is denoted by supp(x). An element supported by the empty set is called
equivariant.

Proposition 1. Let (X, ·) be an SA-set and π ∈ SA. If x ∈ X is finitely sup-
ported, then π · x is finitely supported, and supp(π · x) = π(supp(x)).

Example 1

1. The set A of atoms is an SA-set with the SA-action · : SA × A → A defined
by π · a := π(a), ∀π ∈ SA, a ∈ A. Moreover, supp(B) = B, ∀B ⊂ A, B finite.

2. Any ordinary ZF set X (like N or Z) is an SA-set with the trivial SA-action
· : SA × X → X defined by π · x := x for all π ∈ SA and x ∈ X.

3. If (X, ·) is an SA-set, then ℘(X) = {Y |Y ⊆ X} is also an SA-set with the SA-
action � : SA×℘(X) → ℘(X) defined by π�Y := {π ·y | y ∈ Y } for all π ∈ SA,
and all subsets Y of X. For each invariant set (X, ·) we denote by ℘fs(X) the
set formed from those subsets of X which are finitely supported according to
the action � . (℘fs(X), �|℘fs(X)) is an invariant set, where �|℘fs(X) represents
the action � restricted to ℘fs(X).

4. Let (X, ·) and (Y, �) be SA-sets. The Cartesian product X ×Y is also an SA-
set with the SA-action � : SA × (X × Y) → (X × Y) defined by π � (x, y) =
(π · x, π � y) for all π ∈ SA and all x ∈ X, y ∈ Y . If (X, ·) and (Y, �) are
invariant sets, then (X × Y, �) is also an invariant set.

5. The FM cumulative hierarchy FMA described in [24] is an invariant set with
SA-action · : SA × FMA → FMA defined inductively by π · a := π(a) for all
atoms a ∈ A and π · x := {π · y | y ∈ x} for all x ∈ FMA \ A. An FM-set is a
finitely supported element in FMA; additionally an FM-set has the recursive
property that all its elements are also FM-sets. An FM-set which is empty
supported as an element in FMA is an invariant set.

Main Steps in Defining Finitely Supported Mathematics 79

Definition 3. Let (X, ·) be an invariant set. A subset Z of X is called finitely
supported if and only if Z ∈ ℘fs(X) with the notations of Example 1 (3).

A function f : X → Y is a particular relation on X × Y , namely a function
f : X → Y is a subset f of X × Y characterized by the property that for each
x ∈ X there is exactly one y ∈ Y such that (x, y) ∈ f . Using Definition 3, the
finitely supported functions are defined in FSM in the following way.

Definition 4. Let X and Y be invariant sets, and Z be a finitely supported
subset of X. A function f : Z → Y is finitely supported if f ∈ ℘fs(X × Y).

Proposition 2. [6] Let (X, ·) and (Y, �) be invariant sets, and let Z be a finitely
supported subset of X. The function f : Z → Y is finitely supported in the sense
of Definition 4 if and only if there exists a finite set S of atoms such that for all
x ∈ Z and all π ∈ Fix(S) we have π · x ∈ Z and f(π · x) = π � f(x).

4 Reformulating the Classical ZF Results in FSM

The main idea of translating a classical ZF result (depending on sets and
relations) into FSM is to analyze if there exists a valid result obtained by replac-
ing “set” with “invariant/finitely supported set” and “relation” with “invari-
ant/finitely supported relation” in the ZF result. If this is possible, then things
go smoothly; however, this is not always so simple.

Every ZF set is a particular invariant set equipped with a trivial permutation
action (Example 1(2)). Therefore, the general properties of invariant sets lead to
valid properties of ZF sets. The converse is not always valid, namely not every
ZF result can be directly rephrased in the world of invariant sets, terms of finitely
supported objects according to arbitrary permutation actions. This is because,
given an invariant set X, there could exist some subsets of X (and also some
relations or functions involving subsets of X) which fail to be finitely supported.
A classical example (presented also in Subsect. 2.2.3.6 of [39]) is represented by
the powerset of the invariant set A. A subset of A which is in the same time
infinite and coinfinite could be defined in some models of ZF (or of ZFA is we
consider A to be the set of atoms in ZFA), but it can not be defined in FSM
because it is not finitely supported. Therefore, the remark that everything that
can be done in ZF can also be done in FSM is not valid. This means there
may exist some valid results depending on several ZF structures which fail to be
valid in FSM if we simply replace “ZF structure” with “FSM structure” in their
statement.

We present few examples regarding these aspects. There exist some valid ZF
results that cannot be translated into FSM. According to Remark 1, the following
examples are particularly interesting because they do not overlap neither on
some known properties of permutative models of ZFA, nor on some properties
of nominal sets [35].

80 A. Alexandru and G. Ciobanu

Example 2

– There exist models of ZF without choice that satisfy the ordering principle
OP: “Every set can be totally ordered”. More details about such models
are in [28], where there are mentioned Howard-Rubin’s first model N38 and
Cohen’s first model M1. Therefore, the ordering principle is independent from
the axioms of the ZF set theory.

– In FSM the following result fails “For every invariant set X there exists a
finitely supported total order relation on X”. Therefore, the ordering principle
is inconsistent with the principles of defining FSM. Indeed, suppose that there
exists a finitely supported total order < on the invariant set A. Let a, b, c /∈
supp(<) with a < b. Since (a c) ∈ Fix(supp(<)), we have (a c)(a) < (a c)(b),
that is c < b. However, we also have (a b), (b c) ∈ Fix(supp(<)), and so ((a b)◦
(b c))(a) < ((a b) ◦ (b c))(b), that is b < c. We get a contradiction, and so the
translation of the ordering principle in FSM realized by replacing “structure”
with “finitely supported structure” leads to a false statement.

Example 3

– There exist models of ZF without choice that satisfy the partial countable
choice principle PCC: “Given any countable family (sequence) of non-empty
sets F = (Xn)n∈N, there exists an infinite subset M of the set of all positive
integers N such that it is possible to select a single element from each mem-
ber of the family (Xm)m∈M , i.e. there exists a choice function on (Xm)m∈M”.
More details about such models are in [28], where there are mentioned Pincus-
Solovay’s First Model M27, Shelah’s Second Model M38 and Howard-Rubin’s
first model N38. Therefore, the partial countable choice principle is indepen-
dent from the axioms of the ZF set theory.

– In FSM the following result fails: “Given any invariant set X, and any count-
able family F = (Xn)n∈N of subsets of X such that the mapping n �→ Xn is
finitely supported, there exists an infinite subset M of N with the property
that there is a finitely supported choice function on (Xm)m∈M”. Therefore, the
partial countable choice principle is inconsistent with the principles of defin-
ing FSM. Indeed, for the invariant set A we consider the countable family
(Xn)n where Xn is the set of all injective n-tuples from A. Since A is infi-
nite, it follows that each Xn is non-empty. In the FSM framework, each Xn

is equivariant because A is an invariant set and each permutation is a bijec-
tive function. Therefore, the family (Xn)n is equivariant, and the mapping
n �→ Xn is also equivariant. Suppose that there exists an infinite subset M of
N and a finitely supported choice function f on (Xm)m∈M . Let f(Xm) = ym

with each ym ∈ Xm. Let π ∈ Fix(supp(f)). According to Proposition 2, and
because each element Xm is equivariant according to its definition, we obtain
that π · ym = π · f(Xm) = f(π · Xm) = f(Xm) = ym. Therefore, each element
ym is supported by supp(f), and so supp(ym) ⊆ supp(f) for all m ∈ M . Since
ym is a finite tuple of atoms which has exactly m elements for each m ∈ M , we
have that supp(ym) = ym, ∀m ∈ N (see Example 1(1)). Thus, ym ⊆ supp(f)
for all m ∈ M . However, because M is infinite, we contradict the finiteness of

Main Steps in Defining Finitely Supported Mathematics 81

supp(f). Therefore, the translation of the partial countable choice principle
in FSM realized by replacing “structure” with “finitely supported structure”
leads to a false statement.

Remark 1. Examples 2 and 3 show us that there exist some choice principles
(namely OP and PCC) which are independent from the axioms of the ZF
set theory, but inconsistent in FSM. Since FSM is consistent even if the set of
atoms is not countable, such results do not overlap on some related properties
in the basic or in the second Fraenkel modes of the ZFA set theory (which
are defined using countable sets of atoms) [29]. Also, the previous results do not
follow immediately from [35] because the nominal sets are defined over countable
sets of atoms, while we define invariant sets over possible non-countable sets of
atoms; in [35] where the set of atoms is countable, Example 3 would be trivial.
Moreover, we claim that all the choice principles from [27] (generally denoted in
the related reference by DC, ZL, CC, PCC, AC(fin), Fin, PIT, UFT, OP,
KW, and OEP), rephrased in terms of invariant sets, are all inconsistent in
FSM for any set of atoms. We also conjecture that, in the particular case when
the set of atoms is countable, the choice principle generally denoted by CC(fin)
is also inconsistent in FSM. Note that it is not easy to prove such a result in
FSM, even if various relationship results between several forms of choice hold in
the ZF framework. This is because nobody guarantees that ZF results remain
valid in FSM. Therefore, all the possible relationship results between various
choice principles in FSM have to be independently proved in terms of finitely
supported object. Details regarding the consistency of various choice principles
in the world of invariant sets defined over possibly non-countable sets of atoms
will be presented in another paper.

Other results which fail in FSM are given by the Stone duality [33], by the
determinization of finite automata and by the equivalence of two-way and one-
way finite automata [17]. There also exist some valid ZF results that can be
translated into FSM only in a weaker form (in the sense of Remark 2).

Example 4. We define an invariant complete lattice as an invariant set (L, ·)
together with an equivariant order relation on L satisfying the property that
every finitely supported subset X ⊆ L has a least upper bound with respect to
the order relation .

– Let L be a ZF complete lattice and f : L → L a ZF monotone function. Then
there exists a greatest e ∈ L such that f(e) = e and a least e ∈ L such that
f(e) = e (weak form of Tarski theorem).

– Let (L,, ·) be an invariant complete lattice and f : L → L a finitely sup-
ported monotone function. Then there exists a greatest e ∈ L such that
f(e) = e, and a least e ∈ L such that f(e) = e (the proof is similar to
Theorem 3.2 in [1]).

These results show that the weak form of the Tarski theorem can be naturally
translated into FSM. However, as it is presented below, the strong form of the
Tarski theorem cannot be naturally translated into FSM; it holds in FSM only for

82 A. Alexandru and G. Ciobanu

a particular class of finitely supported monotone functions, i.e. the equivariant
monotone functions.

– Let L be a ZF complete lattice and f : L → L a ZF monotone function over L.
Let P be the set of fixed points of f . Then P is a complete lattice (strong form
of Tarski theorem).

– Let (L,, ·) be an invariant complete lattice, f : L → L an equivariant
monotone function over L and P be the set of fixed points of f . Then (P,, ·) is
an invariant complete lattice. This result does not hold if f is finitely supported
(and not equivariant); the proof is similar to Theorem 3.3 in [1].

Remark 2. Note that the previous example does not present a case of a ZF result
that completely fails in FSM. It suggests that it is a bit tricky to formalize
a certain ZF result in FSM. What we call “weaker form” means that when
translating a ZF result into FSM we have to be careful when choosing either
“finitely supported” or “equivariant” in the statement of the desired FSM result.
Actually the result mentioned in the second part of Example 4 works as expected.
This is because the set of the fixed points of f is S-supported whenever f is
S-supported. However, when translating a ZF result into FSM, one cannot just
insert “equivariant” or “finitely supported” without a preliminary analysis about
which of the previous terms is adequate for the desired FSM result.

5 Proving that Some Structures Are Finitely Supported

In order to translate a general ZF result into FSM, one must prove that several
structures are finitely supported. There exist two general methods of proving
that a certain structure is finitely supported. The first method is a constructive
one: by using some intuitive arguments, we anticipate a possible candidate for the
support and prove that this candidate is indeed a support. The second method is
based on a general finite support principle which is defined using the higher-order
logic. According to Theorem 3.5 in [34], we have the following equivariance/finite
support principle which works over invariant sets.

Theorem 1

– Any function or relation that is defined from equivariant functions and rela-
tions using classical higher-order logic is itself equivariant.

– Any function or relation that is defined from finitely supported functions and
relations using classical higher-order logic is itself finitely supported.

In applying this equivariance/finite support principle, one must take into account
all the parameters upon which a particular construction depends. We think that
the formal involvement of the equivariance/finite support principle, i.e. the pre-
cise verification if the conditions for applying the equivariance/finite support
principle are properly satisfied is sometimes at least as difficult as a constructive
proof. Moreover, in many cases we need to construct effectively the support, and
it is not enough to prove only that a certain structure is finitely supported.

Main Steps in Defining Finitely Supported Mathematics 83

Example 5. An invariant monoid (M, ·, �) is an invariant set (M, �) endowed with
an equivariant internal monoid law · : M ×M → M . If (Σ, �) is an invariant set,
then the free monoid Σ∗ on Σ is an invariant monoid [6].

1. For each monoid M and each function f : Σ → M , there exists a unique
homomorphism of monoids g : Σ∗ → M with g ◦ i = f , where i : Σ → Σ∗

is the standard inclusion of Σ into Σ∗ which maps each element a ∈ Σ into
the word a (ZF universality theorem for monoids).

2. (i) Let (Σ, �Σ) be an invariant set. Let i : Σ → Σ∗ be the standard inclusion
of Σ into Σ∗ which maps each element a ∈ Σ into word a. If (M, ·, �M)
is an arbitrary invariant monoid and ϕ : Σ → M is an arbitrary finitely
supported function, then there exists a unique finitely supported homo-
morphism of monoids ψ : Σ∗ → M with ψ ◦ i = ϕ.

This result can be proved directly by involving the equivariance/finite
support principle.

(ii) Let (Σ, �Σ) be an invariant set. Let i : Σ → Σ∗ be the standard inclusion
of Σ into Σ∗ which maps each element a ∈ Σ into the word a. If (M, ·, �M)
is an arbitrary invariant monoid and ϕ : Σ → M is an arbitrary finitely
supported function, then there exists a unique finitely supported homo-
morphism of monoids ψ : Σ∗ → M with ψ ◦ i = ϕ. Moreover, if a finite
set S supports ϕ, then the same set S supports ψ.

The last sentence of this theorem cannot be proved by involving the
equivariance/finite support principle in the form from [34] (it could be
proved by using a stronger form of the finite support principle which will
be mentioned in the paragraphs below).

Proof. If (M, ·, �M) is an invariant monoid, then (M, ·) is a monoid. From the
general ZF theory of monoids, we can define a unique homomorphism of monoids
ψ : Σ∗ → M with ψ ◦ i = ϕ.

In [6] we proved that the free monoid Σ∗ on Σ is an invariant monoid when-
ever (Σ, �) is an invariant set. The SA-action �̃ : SA × Σ∗ → Σ∗ is defined by
π�̃x1x2 . . . xl = (π � x1) . . . (π � xl) for all π ∈ SA and x1x2 . . . xl ∈ Σ∗ \ {1}, and
π�̃1 = 1 for all π ∈ SA.

In order to prove that ψ is finitely supported it is sufficient to apply
Theorem 1 because ψ is defined from the finitely supported functions ϕ and
i using the higher-order logic. However, Theorem 1 (without a specific refine-
ment) is not sufficient to prove that if a finite set S supports ϕ, then the same
set S supports ψ. In order to prove the previous statement we proceed as follows.

Let us consider S = supp(ϕ). Thus, by Proposition 2 we have ϕ(π �Σ x) =
π �M ϕ(x) for all x ∈ Σ and π ∈ Fix(S). We have to prove that S sup-
ports ψ. Let π ∈ Fix(S). According to Proposition 2 it is sufficient to prove
that ψ(π�̃x1x2 . . . xn) = π �M ψ(x1x2 . . . xn) for each x1x2 . . . xn ∈ Σ∗. How-
ever, ψ is a monoid homomorphism between Σ∗ and M , and ψ ◦ i = ϕ. This
means ψ(x1x2 . . . xn) = ϕ(x1) ·ϕ(x2) · . . . ·ϕ(xn). Since (M, ·, �M) is an invariant
monoid we have π �M ψ(x1x2 . . . xn) = π �M (ϕ(x1) · ϕ(x2) · . . . · ϕ(xn)) =(π �M

ϕ(x1)) · (π �M ϕ(x2)) · . . . · (π �M ϕ(xn)) = ϕ(π �Σ x1) ·ϕ(π �Σ x2) · . . . ·ϕ(π �Σ xn).

84 A. Alexandru and G. Ciobanu

However, π�̃x1x2 . . . xn = (π �Σ x1) . . . (π �Σ xn) and ψ(π�̃x1x2 . . . xn) =
ψ((π �Σ x1) . . . (π �Σ xl)) = ϕ(π �Σ x1) · ϕ(π �Σ x2) · . . . · ϕ(π �Σ xn). Hence
ψ(π�̃x1x2 . . . xn) = π �M ψ(x1x2 . . . xn) for each π ∈ Fix(S), which means S
supports ψ.

Example 5(2) shows us that by using the equivariance/finite support princi-
ple we can obtain a universality property for invariant monoids which is sim-
ilar to the one described in Example 5(1). However, in order to prove that
supp(ψ) ⊆ supp(ϕ) in the second item of Example 5(2), we need to present
a more constructive method of defining a set supporting ψ (see also Theorem 6
from [6]). Other related examples regarding the equivariance/finite support prin-
ciple are Theorems 4, 9 and 11 from [6], or Theorem 3.7 from [3]. In these the-
orems we are able to prove a precise characterization for the support of some
structures which could not be obtained by a direct application of the equivari-
ance/finite support principle in the form from Theorem1. In these results we do
not prove only that some structures are finitely supported, but we also found a
relationship between the supports of the related structures.

A more constructive method of defining the support is also necessary in order
to assure that some structures are uniformly finitely supported (i.e. supported
by the same finite set of atoms). Note that a chain is finitely supported if and
only if all its elements are finitely supported and have the same support, i.e. all
its elements are uniformly finitely supported. Therefore, in order to prove that
a chain is finitely supported, we have to present, almost always, a constructive
method of defining the support of its elements. More exactly, we cannot use the
equivariance/finite support principle which would not assure the uniformity of
the support of its elements. Suggestive examples regarding finitely supported
chains are presented in Chapter 4 of [37].

We conclude that the equivariance/finite support principle is not so useful
(in the form presented as Theorem 3.5 from [34]) when we want to obtain a
relationship between the supports of several constructions (and we do not want
only to prove that these constructions are finitely supported). This is because,
in its actual form, the second part of Theorem1 allows to prove that a certain
structure is finitely supported, but it does not provide any information about
the structure of the support. A concrete calculation for the supports of some
structures is able to provide more informations about the related supports; we
justify this viewpoint in Example 5. However, looking to direct method of con-
structing the related support in the proof Example 5(2), we could provide a
refinement (stronger form) of the equivariance/finite support principle stating,
informally, that for any finite set S of atoms, anything that is definable from
S-supported structures using S-supported constructions is S-supported. This
statement can be proved by refining the proof of the equivariance/finite support
principle from [34]. However, it is worth noting that the related refinement of
the equivariance/finite support principle is not carried out in [34] in this form.
This stronger form of the finite support principle could be successfully applied
in order to prove that some structures are uniformly supported and in order to
establish some relationship results between several supports. However, we agree

Main Steps in Defining Finitely Supported Mathematics 85

to employ a direct method for constructing the supports of some structures. This
is because the general principles of equivariance and finite support are hard to
apply formally, and in practice it is often easier and less error-prone to check
equivariance by hand rather than try to formalize proofs in higher-order logic.

6 Applications of FSM in Experimental Sciences

The FM set theory is a more suitable framework for experimental sciences.
Therefore, translating ZF properties of several algebraic structures into such
a framework deserve a special attention. Rather than working with an alterna-
tive set theory we work in FSM, and express our results in terms of invariant
sets.

6.1 Algebraic Structures in Finitely Supported Mathematics

Various algebraic structures involved in experimental sciences are presented in
FSM emphasizing a strong connection between the FSM properties of these alge-
braic structures and their related ZF properties [1,3,6,8]. The general idea in
these papers is to rephrase the classical ZF properties of some algebraic struc-
tures by replacing ‘object’ with ‘finitely supported object’, and to prove that the
validity of the ZF properties of these algebraic structures is preserved in the new
framework. Informally, this approach allow us to replace ‘finite’ with ‘infinite
but with finite support’.

In [6] we extend the notion of multiset over a finite alphabet by considering
the notion of extended invariant multiset. An extended invariant multiset is actu-
ally an algebraically finitely supported multiset over a possibly infinite alphabet.
We study the correspondence between some properties of multisets obtained in
FSM where only finitely supported objects are allowed, and those obtained in
the classical ZF framework. Analogously, the generalized multisets, i.e. the mul-
tisets with possibly negative multiplicities are translated in [8] into FSM, and
presented in terms of finitely supported objects. Using the finite support prop-
erty, many ZF properties of a generalized multisets on a finite alphabet still hold
when the finite alphabet is replaced by an infinite alphabet with the mention that
the generalized multisets have to be algebraically finitely supported. Several uni-
versality, order and embedding properties for extended multisets and extended
generalized multisets, respectively, are presented in the related references.

An FSM theory for partially ordered sets has its roots in the developments
from [35,37]. Its original purpose was to describe a denotational semantics for a
functional programming language incorporating facilities for manipulating syn-
tax involving names and binding operations. The solution of the Scott recursive
domain equation D ∼= (D → D) in the FM approach is presented in [37]; such
a result also holds in FSM. However the Tarski-like theorem for invariant com-
plete lattices is an original result (see Example 4). Using this fixpoint theorem
and some equivariant Galois connections we are able to develop an FSM theory
of abstract interpretation of programming languages [9], and we are also able

86 A. Alexandru and G. Ciobanu

to approximate finitely supported subsets of an possibly infinite invariant set in
terms of invariant complete Boolean lattices [10]. Some calculability properties
of the fixed points of a class of finitely supported functions are also proved in [9].

Invariant (nominal) groups are defined as groups which are also invariant
sets and whose internal laws are equivariant. Several algebraic properties of
invariant groups are presented in Sect. 3 from [3]. The classical correspondence
and isomorphism theorems from the ZF groups theory are translated in FSM in
terms of equivariant (empty supported) homomorphisms (see Sect. 4 from [3]).
Also, uniform invariant groups (i.e. those groups with the property that all the
elements are supported by the same finite set) are defined in Sect. 5 from [3],
and several FSM embedding theorems valid for this class of groups are presented.
The finitely supported subgroups of an invariant group are studied in terms of
invariant lattices and invariant domains in [11]. Invariant groups are, actually,
the natural extension of nominal monoids defined in [15]. However, the presence
of the inverse elements in a group allows us to think to the study of reversibility
in FSM terms. In [3] we present an algebraic framework from such a future
development. The wreath product and one of its generalizations are used in the
algebraic theory of automata in order to prove the Krohn-Rhodes theorem which
states that any deterministic automaton is a homomorphic image of a cascade of
some simple automata which realize either resets or permutations [30]. According
to Theorem 3.20 in [3], the regular wreath product of two invariant groups is
also invariant. The cascade product of two (invariant) automata can be studied
in a similar way. We conjecture that a similar decomposition theorem for a class
of invariant automata can be presented in FSM in terms of invariant wreath
products.

6.2 Process Algebras in Finitely Supported Mathematics

Process algebras are used as a formal framework for the study of concurrent
computation. In [2,5] we provide new FSM transition rules for several process
algebras. We use the freshness quantifier N2 introduced in [24] to “encode” the
freshness conditions in the hypothesis of the transition rules of these process
algebras, and we obtain some sets of compact transition rules (i.e. transition
rules without side conditions) which defines the FSM semantics of the related
process algebras. The central idea is to use atoms to represent variable symbols,
and the nominal abstraction defined in [24] to represent the binding operators
in various process algebras. A mixing of ∀ and Nquantifiers is used to replace
the side conditions in the transition rules of these process algebras. Finally,
we are able to make a comparison between the expressive prower of the usual
semantics and of the FSM semantics of the related process algebras. According
to Theorem 4.20 in [5], the new FSM semantics of the monadic fusion calculus
and the original semantics of the monadic fusion calculus presented in [32] have
the same expressive power. The FSM transition rules of the πI-calculus defined

2 Let P be a predicate on A. We say that Na.P (a) if P (a) is true for all but finitely
many elements of A.

Main Steps in Defining Finitely Supported Mathematics 87

in [2] and the original transition rules of the πI-calculus presented in [36] provide
the same transitions (see Theorem 4.11 in [2]).

7 Conclusion

This papers is an extended version of [7]. Our goal is to develop a mathemat-
ics for experimental science which deals with a more relaxed notion of finite-
ness. We call it the ‘Finitely Supported Mathematics’. Informally, in Finitely
Supported Mathematics we can model infinite structures after a finite number
of observations. More precisely, we intend to restate some parts of algebra by
replacing ‘(infinite) sets’ with ‘invariant sets’. This allows to model some infinite
structures by using their finite supports. In order to sustain our viewpoint, we
involve the axiomatic theory of FM-sets presented in [24]. Rather than using a
non-standard set theory, we could alternatively work with invariant sets, which
are defined within ZF as usual sets endowed with some group actions satisfying
a finite support requirement. The properties of invariant sets are similar to those
presented in [35], with the mention that we assume invariant sets to be defined
over possible non-countable sets of atoms. Our paper presents the basic steps
requested in order to provide an extension of the theory of invariant sets to a
theory of invariant algebraic structures. Although the initial purpose of defining
invariant sets was to formulate a semantics for syntax with variable binding, we
consider that such sets can also be used from an algebraic perspective in order
to characterize infinite structures modulo finite supports, and thus, in order to
provide more informations about infinite objects.

The category of invariant sets has a very rich structure, and so the definitions
of many structures given in the usual category of sets can be reformulated within
the invariant sets framework. A natural question is which classical theorems
about these structures hold internally in the world of invariant sets. Until now
(or, more precisely, until we would be able to solve the open problem presented
below), there does not exist a standard algorithm to translate any classical ZF
result into FSM. This is because there may exist some subsets of an invariant set
which fail to be finitely supported, and thus, there may exist some ZF results that
fail in the universe of invariant sets. Related examples regarding the previous
statement are presented in Sect. 4. Therefore, reformulating the ZF theorems
into FSM should be done for each case separately. For example, the theory
of monoids is studied in FSM in [6], the theory of groups is rephrased in FSM
in [3], and the theory of posets and domains is reformulated within invariant sets
framework in [35,37]. In order to prove that a structure is finitely supported,
one could use either the finite support principle of [35] (e.g. Theorem 1), or a
more “constructive” method. To employ such a “constructive method” means
that we anticipate a possible candidate for a support, and then prove that this
candidate is indeed a support. The benefit of this method is that we are able
to obtain more informations about the related support than by using the finite
support principle in the form from [34]. Related examples can be found in Sect. 5.

88 A. Alexandru and G. Ciobanu

8 An Open Problem

The main task in order to define a finitely supported mathematics is to prove
that certain subsets of an invariant set are finitely supported. We already know
that given an invariant set X, there could exist some subsets of X which fail to
be finitely supported. Some related examples are presented in [35,39]. However,
all these examples are described by using choice principles or consequences of
choice principles (like the assertion that the set A can be non-amorphous in ZF
or in ZFA) in order to construct some structures which later fail to be finitely
supported. We conjecture that all the choice principles presented in [27] are
inconsistent in FSM. We did not find yet any example of a non-finitely supported
subset of an invariant set defined without using a choice principle from [27] or a
consequence of a form of choice (like the construction of an infinite and coinfinite
subset of an infinite set). Therefore, the question regarding the validity of the
following assertions naturally appears.

– If we consider the ZF set theory (or the ZFA set theory) without any choice
principle, then every subset of an invariant set is finitely supported?

– For what kind of atoms the previous question has an affirmative answer?

If we get an affirmative answer (even for a particular set of atoms), then the
mathematics developed in the ZF (or ZFA) set theory without any choice prin-
ciple would be somehow equivalent to FSM, namely we could model any infinite
structure by using its finite support.

References

1. Alexandru, A., Ciobanu, G.: Nominal event structures. Rom. J. Inf. Sci. Technol.
15, 79–90 (2012)

2. Alexandru, A., Ciobanu, G.: Nominal techniques for πI-calculus. Rom. J. Inf. Sci.
Technol. 16, 261–286 (2013)

3. Alexandru, A., Ciobanu, G.: Nominal groups and their homomorphism theorems.
Fundamenta Informaticae 131(3–4), 279–298 (2014)

4. Alexandru, A., Ciobanu, G.: On the development of the Fraenkel-Mostowski set
theory. Bull. Polytech. Inst. Jassy LX, 77–91 (2014)

5. Alexandru, A., Ciobanu, G.: A nominal approach for fusion calculus. Rom. J. Inf.
Sci. Technol. 17(3), 265–288 (2014)

6. Alexandru, A., Ciobanu, G.: Mathematics of multisets in the Fraenkel-Mostowski
framework. Bulletin Mathematique de la Societe des Sciences Mathematiques de
Roumanie 58/106(1), 3–18 (2015)

7. Alexandru, A., Ciobanu, G.: Defining finitely supported mathematics over sets
with atoms. In: Batsakis, S., Bobalo, Y., Ermolayev, V., Kharchenko, V., Kobets,
V., Kravtsov, H., Mayr, H.C., Nikitchenko, M., Peschanenko, V., Spivakovsky, A.,
Yakovyna, V., Zholtkevych, G. (eds.) 4th International Workshop on Algebraic,
Logical, and Algorithmic Methods of System Modeling, Specification and Verifica-
tion, vol. 1356, pp. 382–395 (2015). http://CEUR-WS.org

8. Alexandru, A., Ciobanu, G.: Generalized multisets: from ZF to FSM. Comput.
Inform. 34(5), 1133–1150 (2015)

http://CEUR-WS.org

Main Steps in Defining Finitely Supported Mathematics 89

9. Alexandru, A., Ciobanu, G.: Static analysis in finitely supported mathematics. In:
17th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing. IEEE Computer Society Press (2015, in press)

10. Alexandru, A., Ciobanu, G.: Pawlak approximations in the framework of nominal
sets. J. Multiple-Valued Logic Soft Comput. 26(3) (2016, in press)

11. Alexandru, A., Ciobanu, G.: Finitely supported subgroups of a nominal group.
Mathematical Reports 18(2) (2016)

12. Banach, S., Tarski, A.: Sur la décomposition des ensembles de points en parties
respectivement congruentes. Fundamenta Mathematicae 6, 244–277 (1924)

13. Barwise, J.: Admissible Sets and Structures: An Approach to Definability Theory.
Perspectives in Mathematical Logic, vol. 7. Springer, Berlin (1975)

14. Bojańczyk, M., Lasota, S.: Fraenkel-Mostowski sets with non-homogeneous atoms.
In: Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 1–5.
Springer, Heidelberg (2012)

15. Bojanczyk, M.: Nominal monoids. Theor. Comput. Syst. 53, 194–222 (2013)
16. Bojanczyk, M., Braud, L., Klin, B., Lasota, S.: Towards nominal computation.

In: 39th ACM Symposium on Principles of Programming Languages, pp. 401–412
(2012)

17. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: 26th Sym-
posium on Logic in Computer Science, pp. 355–364. IEEE Computer Society Press
(2011)

18. Bojanczyk, M., Klin, B., Lasota, S., Torunczyk, S.: Turing machines with atoms.
In: 28th Symposium on Logic in Computer Science, pp. 183–192. IEEE Computer
Society Press (2013)

19. Bojanczyk, M., Lasota, S.: A machine-independent characterization of timed lan-
guages. In: 39th International Colloquium on Automata, Languages and Program-
ming, pp. 92–103 (2012)

20. Bojanczyk, M., Torunczyk, S.: Imperative programming in sets with atoms. In:
D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, vol. 18,
pp. 4–15. LIPIcs (2012)

21. Cohen, P.J.: The Independence of the Axiom of Choice. Stanford University,
Mimeographed (1963)

22. Fraenkel, A.: Zu den grundlagen der Cantor-Zermeloschen mengenlehre. Mathe-
matische Annalen 86, 230–237 (1922)

23. Gabbay, M.J.: The pi-calculus in FM. In: Kamareddine, F.D. (ed.) Thirty Five
Years of Automating Mathematics. Applied Logic Series, vol. 28, pp. 247–269.
Springer, The Netherlands (2003)

24. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects Comput. 13, 341–363 (2001)

25. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler,
H.J., Kunen, K. (eds.) The Kleene Symposium, pp. 123–148. North-Holland, Ams-
terdam (1980)

26. Gödel, K.: The Consistency of the Axiom of Choice and of the Generalized
Continuum-Hypothesis with the Axioms of Set Theory. Annals of Mathematics
Studies. Princeton University Press, Princeton (1940)

27. Herrlich, H.: Axiom of Choice. Lecture Notes in Mathematics. Springer, Heidelberg
(2006)

28. Howard, P., Rubin, J.E.: Consequences of the Axiom of Choice. Mathematical
Surveys and Monographs, vol. 59. American Mathematical Society, Providence
(1998)

90 A. Alexandru and G. Ciobanu

29. Jech, T.J.: The Axiom of Choice. Studies in Logic and the Foundations of Mathe-
matics. North-Holland, Amsterdam (1973)

30. Krohn, K., Rhodes, J.: Algebraic theory of machines: prime decomposition theorem
for finite semigroups and machines. Trans. Am. Math. Soc. 116, 450–464 (1965)

31. Lindenbaum, A., Mostowski, A.: Uber die unabhangigkeit des auswahlsaxioms und
einiger seiner folgerungen. Comptes Rendus des Seances de la Societe des Sciences
et des Lettres de Varsovie. 31, 27–32 (1938)

32. Parrow, J., Victor, B.: The update calculus. In: Johnson, M. (ed.) Algebraic
Methodology and Software Technology. LNCS, vol. 1349, pp. 409–423. Springer,
Heidelberg (1997)

33. Petrisan, D.: Investigations into algebra and topology over nominal sets. Ph.D.
thesis, University of Leicester (2011)

34. Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53, 459–506 (2006)
35. Pitts, A.M.: Nominal Sets Names and Symmetry in Computer Science. Cambridge

University Press, Cambridge (2013)
36. Sangiorgi, D.: π-calculus, internal mobility, and agent-passing calculi. Rapport

INRIA no.2539 (1995)
37. Shinwell, M.R.: The fresh approach: functional programming with names and

binders. Ph.D. thesis, University of Cambridge (2005)
38. Tarski, A.: What are logical notions? Hist. Philos. Logic 7, 143–154 (1986)
39. Turner, D.: Nominal Domain Theory for Concurrency. Technical report no.751,

University of Cambridge (2009)
40. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reasoning 40, 327–356

(2008)

Solving NP-complete Problems in Polynomial
Time by Using a Natural Computing Model

Bogdan Aman(B) and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Blvd. Carol I no. 8,
700505 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. The first part of the paper is devoted to a polynomial
solution of a well-known NP-complete problem (SAT problem) by using
an unconventional computation model provided by P systems with
active membranes (with neither polarization nor division rules). An
important step of this semi-uniform solution is given by polynomial com-
puting devices to build P systems that contain some exponential-size fea-
ture for which solving the SAT problem is easy. NP-complete problems
are decision problems that can be solved in polynomial time on a non-
deterministic Turing machine. Related to this step, in the second part we
show how we can simulate polynomial space Turing machines by using
a logarithmic space P system with active membranes, and employing
a binary representation in order to encode the positions on the Turing
machine tape.

Keywords: Natural computing · Membrane computing · Turing
machines

1 Introduction

Membrane computing [15] is a branch of the natural computing inspired by the
architecture and behaviour of living cells. Membrane systems (also called P sys-
tems) have been introduced by the computer scientist Gheorghe Păun, whose
last name is the origin of the letter P in “P Systems”. Membrane systems are
characterized by three features: (i) a membrane structure consisting of a hier-
archy of membranes (which are either disjoint or nested), with an unique top
membrane called the skin; (ii) multisets of objects associated with membranes;
(iii) rules for processing the objects and membranes. When membrane systems
are seen as computing devices, two main research directions are usually con-
sidered: computational power in comparison with the classical notion of Turing
computability (e.g., [2]), and efficiency in algorithmically solving NP-complete
problems in polynomial time (e.g., [3]). Such efficient algorithms are obtained
by trading space for time, with the space grown exponentially in a linear time
by means of bio-inspired operations (e.g., membrane division). Thus, membrane
systems define classes of computing devices which are both powerful and efficient.
c© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 91–108, 2016.
DOI: 10.1007/978-3-319-30246-1 6

92 B. Aman and G. Ciobanu

Related to the investigations of these research directions, there have been
studied several applications of these systems; among them, modelling of various
biological phenomena and the complexity and emergent properties of such sys-
tems presented in [7]. In [4] it is presented the detailed functioning of the sodium-
potassium pump, while in [1] it is described and analyzed the immune system
in the formal framework of P systems. Under the assumption that P �= NP,
efficient solutions to NP-complete problems cannot be obtained without intro-
ducing features which enhance the efficiency of the system ways to exponentially
grow the workspace during the computation, non-determinism, and so on). For
instance, some pre-computed resources are used in [9].

We show that P systems with active membranes [13] can provide simple semi-
uniform solutions to the SAT problem without using neither polarization nor
division, but using exponential size pre-computed initial configurations (either
alphabet or structure). An important observation is that we specify how our
pre-computed initial configurations are constructed in a polynomial number of
steps by additional well-defined P systems (P systems with replicated rewriting
and P systems with active membranes and membrane creation, respectively).

The semi-uniform solutions rely on constructing the system and the solution
in polynomial time in order to avoid solving the problem during the evolution of
the system. In this context, the initial (exponential) configuration is constructed
by another (polynomial) system, and the problem is solved by combining these
two systems. In this way, we propose a polynomial solution that uses a poly-
nomial P system for constructing the initial configuration (that is exponential).
Related to this step, we show that P systems with active membranes provide
an interesting simulation of polynomial space Turing machines by using only
logarithmic space and a polynomial number of read-only input objects.

The rest of this paper is organized as follows: Sect. 2 contains some prelimi-
nary notions used in this paper. Section 3 provides simple semi-uniform solutions
to the SAT problem, while Sect. 4 provides a simulation of polynomial space Tur-
ing machines by using only logarithmic space P systems with active membranes.
Conclusion and references end the paper.

2 Preliminaries

We consider P systems with active membranes extended with an input alphabet,
and such that the input objects cannot be created during the evolution [17]. The
original definition also includes division rules, rules that are not needed here.
The version used in this paper is similar to evolution-communication P systems
used in [6] with additional read-only input objects and polarities.

Definition 1. A P system with active membranes and input objects is a tuple

Π = (Γ,Δ,Λ, μ;w1, . . . , wd, R)

Where:

• d ≥ 1 is the initial degree;
• Γ is a finite non-empty alphabet of objects;

Solving NP-complete Problems in Polynomial Time 93

• Δ is an input alphabet of objects such that Δ ∩ Γ = ∅;
• Λ is a finite set of labels for membranes;
• μ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) in which each membrane is labelled by an element of Λ in
a one-to-one way, and possesses an attribute called electrical charge, which
can be either neutral (0), positive (+) or negative (-);

• w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in a number of d membranes of μ; notice that wi is assigned to membrane i;

• R is a finite set of rules over Γ ∪ Δ:
1. [a → w]αh object evolution rules

An object a ∈ Γ is rewritten into the multiset w, if a is placed inside
a membrane labelled by h with charge α. An object a can be deleted by
considering w the empty multiset ∅. Notice that these rules allow only to
rewrite objects from Γ , but not from Δ.

2. a[]αh → [b]βh send-in communication rules
An object a is sent into a membrane labelled by h and with charge α,
becoming b; also, the charge of h is changed to β. If b ∈ Δ, then a = b
must hold.

3. [a]αh → b[]βh send-out communication rules
An object a, placed into a membrane labelled by h and having charge α, is
sent out of membrane h and becomes b; simultaneously, the charge of h is
changed to β. If b ∈ Δ, then a = b must hold.

4. [a]αh → b dissolution rules
An object a, placed into a membrane labelled by h and having charge α
dissolves membrane hand becomes b. All object contained in membrane h
are released in the parent membrane of h.

Each configuration Ci of a P system with active membranes and input objects is
described by the current membrane structure, including the electrical charges,
together with the multisets of objects located in the corresponding membranes.
The initial configuration of such a system is denoted by C0. An evolution step
from the current configuration Ci to a new configuration Ci+1, denoted by Ci ⇒
Ci+1, is done according to the principles:

• Each object and membrane is involved in at most one communication rule per
step.

• Each membrane could be involved in several object evolution rules that can
be applied in parallel inside it.

• The application of rules is maximally parallel: the only objects and membranes
that do not evolve are those associated with no rule, or only to rules that are
not applicable due to the electrical charges.

• When several conflicting rules could be applied at the same time, a non-
deterministic choice is performed; this implies that multiple configurations
can be reached as the result of an evolution step.

• In each computation step, all the chosen rules are applied simultaneously.
• Any object sent out from the skin membrane cannot re-enter it.

94 B. Aman and G. Ciobanu

A halting evolution of such a system Π is a finite sequence of configurations−→C = (C0, . . . , Ck), such that C0 ⇒ C1 ⇒ . . . ⇒ Ck, and no rules can be applied
any more in Ck. A non-halting evolution

−→C = (Ci | i ∈ N) consists of an infinite
evolution C0 ⇒ C1 ⇒ . . ., where the applicable rules are never exhausted.

Example 1. Addition is trivial; we consider n objects a and m objects b placed
in a membrane 0 with charge +. The rule [b → a]+h says that an object b is
transformed in one object a. Such a rule is applied in parallel as many times
as possible. Consequently, all objects b are erased. The remaining number of
objects a represents the addition n + m. More examples can be found in [5].

In order to solve decision problems (i.e., decide languages over an alphabet
Σ), we use families of recognizer P systems Π = {Πx | x ∈ Σ∗} that respect
the following conditions: (1) all evolutions halt; (2) two additional objects yes
(successful evolution) and no (unsuccessful evolution) are used; (3) one of the
objects yes and no appears in the halting configuration [16]. Each input x is
associated with a P system Πx that decides the membership of x in the language
L ⊆ Σ∗ by accepting or rejecting it. The mapping x � Πx must be efficiently
computable for each input length [12].

In this paper we use a logarithmic space uniformity condition [17].

Definition 2. A family of P systems Π = {Πx | x ∈ Σ∗} is said to be (L,L)-
uniform if the mapping x � Πx can be computed by two deterministic logarithmic
space Turing machines F (for “family”) and E (for “encoding”) as follows:

• F computes the mapping 1n � Πn, where Πn represents the membrane struc-
ture with some initial multisets and a specific input membrane, while n is the
length of the input x.

• E computes the mapping x � wx, where wx is a multiset encoding the specific
input x.

• Finally, Πx is Πn with wx added to the multiset placed inside its input mem-
brane.

In the following definition of space complexity adapted from [17], the input
objects do not contribute to the size of the configuration of a P system. In this
way, only the actual working space of the P system is measured, and P systems
working in sublinear space may be analyzed.

Definition 3. Given a configuration C, the space size |C| is defined as the sum
of the number of membranes in μ and the number of objects in Γ it contains.
If

−→C is a halting evolution of Π, then |−→C | = max{|C0|, . . . , |Ck|} or, in the case
of a non-halting evolution

−→C , |−→C | = sup{|Ci| | i ∈ N}. The space required by Π

itself is then |Π| = sup{|−→C | | −→C is an evolution of Π}.
Notice that |Π| = ∞ if Π has an evolution requiring infinite space or an

infinite number of halting evolutions that can occur such that for each k ∈ N

there exists at least one evolution requiring most than k steps.

Solving NP-complete Problems in Polynomial Time 95

3 Solving the SAT Problem with Active Membranes

At the beginning of 2005, Gh. Păun wrote:

“My favourite question (related to complexity aspects in P systems with
active membranes and with electrical charges) is that about the number of
polarizations. Can the polarizations be completely avoided? The feeling
is that this is not possible - and such a result would be rather sound:
passing from no polarization to two polarizations amounts to passing
from non-efficiency to efficiency.”

This conjecture (problem F in [14]) can be formally described in terms of
membrane computing complexity classes as follows:

P = PMCAM0(+d,−n,+e,+c)

where

• PMCR indicates that the result holds for P systems with input membrane;
• +d indicates that dissolution rules are permitted;
• −n indicates that only division rules for elementary membranes are allowed;
• +e indicates that evolution rules are permitted;
• +c indicates that communication rules are permitted.

The SAT problem checks the satisfiability of a propositional logic formula in
conjunctive normal form (CNF). Let {x1, x2, . . . , xn} be a set of propositional
variables. A formula in CNF is of the form ϕ = C1∧C2∧· · ·∧Cm where each Ci,
1 ≤ i ≤ m is a disjunction of the form Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n), where
each yj is either a variable xk or its negation ¬xk.

We present some attempts to solve this conjecture by providing algorithms
solving the SAT problem using P systems with active membranes with neither
polarizations nor division, but using exponential pre-computed initial configura-
tions constructed by additional P systems in polynomial time. As usually done
in the membrane computing community, we construct effectively a system of
membranes that solves the problem.

3.1 Solving SAT Problem by Using a Pre-computed Alphabet

In this section, we propose a polynomial time solution to the SAT problem using
the polarizationless P systems with active membranes, without division, but
with a pre-computed alphabet. For any instance of SAT we construct effectively
a system of membranes that solves it. Formally, we prove the following result:

Theorem 1. The SAT problem can be solved by a polarizationless P system
with active membranes and without division, but with an exponential alpha-
bet pre-computed in linear time with respect to the number of variables and the
number of clauses, i.e.,

P = PMCAM0(+d,+e,+c,pre(α)).

where pre(α) indicates that a pre-computed alphabet is permitted.

96 B. Aman and G. Ciobanu

Proof. Let us consider a propositional formula

ϕ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form

Ci = y1 ∨ y2 ∨ · · · ∨ yr(r ≤ n),

where each yj is either a variable xk or its negation ¬xk.
We construct a P system with active membranes able to check the satisfia-

bility of ϕ. The P system is given by Π = (Γ,Λ, μ,w1, . . . , wd, R), where:

– Γ = {zi | 0 ≤ i ≤ max{m,n}} ∪
∪ {si | i = t1 . . . tn, tj ∈ {0, 1} and 1 ≤ j ≤ n} ∪ {yes, no}.
The alphabet {si | i = t1 . . . tn, tj ∈ {0, 1} and 1 ≤ j ≤ n} to be placed inside
the input membrane 0 can be generated, starting from an object s, using the
rules:
• s → s0s1;
• si → si0si1, for i = t1 . . . tk where tj ∈ {0, 1} and 1 ≤ j ≤ k < n.
Thus all the possible assignments for the n variable {x1, x2, . . . , xn} are cre-
ated. The rules are applied until the length k of i in the second rule equals n.
For example, s100 over {x1, x2, x3} represents the assignment x1 = 1, x2 = 0
and x3 = 0 (1 stands for true, while 0 stands for false). The input alphabet
can be computed in linear (polynomial) time by using an additional device,
for instance P systems with replicated rewriting [8].

– Λ = {0, c1, . . . , cm, h}, with ci = z1 . . . zn, 1 ≤ i ≤ m where
• zj = 1 if xj appears in Ci;
• zj = 0 if ¬xj appears in Ci;
• zj =
 if neither xj nor ¬xj appear in Ci.
For example c1 = 1
 0 over the set of variables {x1, x2, x3} represents the
disjunction c1 = x1 ∨ ¬x3.

– μ = [[[. . . [[[]0]c1]c2 . . .]cm−1]cm]h.
– w0 = z0.
– wi = λ, for all i ∈ Λ\{0}.
– The set R contains the following rules:

1. [z0]0 → z0
After the input is placed inside membrane 0, membrane 0 is dissolved, and
its content is released in the upper membrane labelled with c1.

2. [si]cj → si[]cj
if i and j have at least one position with the same value (either 0 or 1);

3. [si]cm → yes
if i and m have at least one position with the same value (either 0 or 1).
An assignment si is sent out of a membrane cm if there is at least one
position in i and j that is equal, namely an assignment to a variable
xk such that it makes Cj true. Once an object yes is generated, another
object yes cannot be created because membrane cm was dissolved and the
rule [si]cm → yes cannot be applied. For example, if c1 = 1
 0 and s101

Solving NP-complete Problems in Polynomial Time 97

(as described above), then this means that s101 satisfies the clause coded
by c1 = 1
 0 since both have 1 on their first position, and this is enough
to make true a disjunction.

4. [z0 → z1]c1
5. [zi]ci → []cizi+1, for 1 ≤ i ≤ m − 1
6. [zm]cm → no

The object z0 waits a step after membrane 0 is dissolved in order to allow
the other objects si to go through the cj membranes. The object zi then is
communicated through the cj membranes. Once zm reached the membrane
cm, if membrane cm still exists (i.e., the rule [si]cm → yes was not applied),
then the answer no is generated. Once an object yes or no is generated,
other objects yes or no cannot be created because membrane cm was dis-
solved, and neither rule [si]cm → yes nor [zm]cm → no can be applied.

7. [yes]h → yes[]h
8. [no]h → no[]h

The answer yes or no regarding the satisfiability is sent out of the skin.

3.2 Solving SAT Problem Using a Pre-computed Initial Structure

In this section, we propose a polynomial time solution to the SAT problem using
the polarizationless P systems with active membranes and without division, but
with a pre-computed structure. For any instance of SAT we construct effectively
a system of membranes that solves it. The fact that each membrane can be
subject to at most one communication rule per step is needed when generating
all possible assignments to be verified. Formally, we prove the following result:

Theorem 2. The SAT problem can be solved by a polarizationless P system
with active membranes and without division, but with an initial exponential
structure pre-computed in linear time with respect to the number of variables and
the number of clauses, i.e.,

P = PMCAM0(+d,+e,+c,pre(μ)).

where pre(μ) indicates that a pre-computed structure is permitted.

Proof. Let us consider a propositional formula

ϕ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form

Ci = y1 ∨ y2 ∨ · · · ∨ yr(r ≤ n),

where each yj is either a variable xk or its negation ¬xk.
We construct a P system with active membranes able to check the satisfia-

bility of ϕ. The P system is given by Π = (Γ,Λ, μ,w1, . . . , wd, R), where:

– Γ = {ai, ti, t
′
i, fi, f

′
i | 1 ≤ i ≤ n} ∪ {zi | 0 ≤ i ≤ 4 × n + 2 × m} ∪ {yes, no}.

98 B. Aman and G. Ciobanu

– Λ = {0, . . . , n, c1, . . . , cm, h}, 1 ≤ i ≤ m.
– μ = [[[[. . .]2[. . .]2]1[[. . .]2[. . .]2]1]0]h, where

• each membrane i contains two membranes i + 1 for 0 ≤ i ≤ n − 1;
• each membrane n contains a membrane structure [[. . . []cm . . .]c1]c0 ;
• membrane 0 is the input membrane.
Graphically, the membrane structure μ can be represented as a tree:

This membrane structure can be generate in linear (polynomial) time with
respect to the number of variables and the number of clauses. This is done by
using an additional device that starts from a membrane structure [[]0]h, with
object 0 placed inside membrane 0 and rules of the form:
• [i → (i + 1)′ (i + 1)′]i, for 0 ≤ i ≤ n − 1
• i′ → [i]i, for 1 ≤ i ≤ n
• n → [c2]c1
• ck → [ck+1]ck , for 2 ≤ k ≤ m − 1
• cm → []cm .

– w0 = a1z0.
– wi = λ, for all i ∈ Λ\{0}.
– The set R contains the following rules:

1. [zi → zi+1]0, for all 0 ≤ i < 4 × n + 2 × m
These rules count the time needed for producing the truth assignments
for the n variables inside the membranes labelled by n (3 × n steps), then
to dissolve the membranes labelled by cj , 1 ≤ j ≤ m (2 × m steps), and
for an y object to reach the membrane labelled by 0 (n steps).

2. [ai → tifi]i−1, for 1 ≤ i ≤ n
3. ti[]i → [ti]i, for 1 ≤ i ≤ n
4. fi[]i → [fi]i, for 1 ≤ i ≤ n
5. [ti → t′it

′
iai+1]i, for 1 ≤ i ≤ n − 1

6. t′i[]k → [ti]k, for i + 1 ≤ k ≤ n
7. [ti → t′it

′
i]k, for i + 1 ≤ k ≤ n − 1

8. [fi → f ′
if

′
iai+1]i, for 1 ≤ i ≤ n − 1

9. f ′
i []k → [fi]k, for i + 1 ≤ k ≤ n

10. [fi → f ′
if

′
i]k, for i + 1 ≤ k ≤ n − 1

In membranes n we create all possible assignments for the n variable
{x1, x2, . . . , xn}. It starts from an object a1 placed initially in membrane

Solving NP-complete Problems in Polynomial Time 99

labelled by 0. Each ai is used to create ti and fi that are then send in
one of the two membranes labelled by i placed in membrane i − 1. In fact
each membrane i receives either ti or fi, and this is possible because a
membrane can be involved in only one communication rule of an evolution
step. After an object ti or fi reaches a membrane i, it generates two new
copies of it to be sent inside membranes i+1 together with an object ai+1

that is used then to construct the assignments over variable xi+1.
11. ti[]cj → [ti]cj , if xi appears in Cj

12. [ti]cj → ti, for 1 ≤ i ≤ n, 1 ≤ j < m
13. [ti]cm → y, for 1 ≤ i ≤ n
14. fi[]cj → [ti]cj , if ¬xi appears in Cj

15. [fi]cj → fi, for 1 ≤ i ≤ n, 1 ≤ j ≤ m
16. [fi]cm → y, for 1 ≤ i ≤ n.

An assignment ti (fi) is sent into a membrane cj if there is an assignment
to a variable xk (¬xk) such that it makes Cj true. Once all membranes
labelled by ci are dissolved inside a membrane labelled by n, an object y
is generated.

17. [y]k → []ky, for k ∈ Λ\{0, h}
18. [y]0 → yes
19. [z4×n+2×m]0 → no.

The object z0 waits for 4×n+2×m steps in order to allow dissolving the
membrane labelled by 0 if this still exists (i.e., the rule [y]0 → yes was not
applied), then the answer no is generated. Once an object yes or no is gen-
erated, other objects yes or no cannot be created because membrane cm

was dissolved, and neither rule [y]0 → yes nor [z4×n+2×m]0 → no can be
applied.

20. [yes]h → yes[]h
21. [no]h → no[]h.

The answer yes or no regarding the satisfiability is sent out of the skin.

Example 2. We illustrate this algorithm and the evolution of a system Π con-
structed for the propositional formula ψ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

Thus, m = n = 2. The initial configuration of the systems, constructed by an
additional device that starts from a membrane structure [[]0]h, with object 0
placed inside membrane 0 and rules of the form:

• [0 → 1′ 1′]0 and [1 → 2′ 2′]1
• 1′ → [1]1 and 2′ → [2]2
• 2 → [c2]c1 and c2 → []c2 .

The obtained structure is

[[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1a1z0]0]h

Graphically, the membrane structure μ can be represented as a tree:

100 B. Aman and G. Ciobanu

Using the set R of rules 1 ÷ 21, the computation proceeds as follows:

[[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1a1z0]0]h
⇒ [[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1t1f1z1]0]h
⇒ [[[[[[]c2]c1]2[[[]c2]c1]2t1]1[[[[]c2]c1]2[[[]c2]c1]2f1]1z2]0]h
⇒ [[[[[[]c2]c1]2[[[]c2]c1]2t

′
1t

′
1a2]1[[[[]c2]c1]2[[[]c2]c1]2f

′
1f

′
1a2]1z3]0]h

⇒ [[[[[[]c2]c1t1]2[[[]c2]c1t1]2t2f2]1[[[[]c2]c1f1]2[[[]c2]c1f1]2t2f2]1z4]0]h
⇒ [[[[[[]c2]c1t1t2]2[[[]c2]c1t1f2]2]1[[[[]c2]c1f1t2]2[[[]c2]c1f1f2]2]1z5]0]h
⇒ [[[[[[]c2t1]c1t2]2[[[]c2t1]c1f2]2]1[[[[]c2t2]c1f1]2[[[]c2]c1f1f2]2]1z6]0]h
⇒ [[[[[]c2t1t2]2[[]c2t1f2]2]1[[[]c2t2f1]2[[[]c2]c1f1f2]2]1z7]0]h
⇒ [[[[[]c2t1t2]2[[f2]c2t1]2]1[[[f1]c2t2]2[[[]c2]c1f1f2]2]1z8]0]h
⇒ [[[[[]c2t1t2]2[yt1]2]1[[yt2]2[[[]c2]c1f1f2]2]1z9]0]h
⇒ [[[[[]c2t1t2]2[t1]2y]1[[t2]2[[[]c2]c1f1f2]2y]1z10]0]h
⇒ [[[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yyz11]0]h
⇒ [[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yz12yes]h
⇒ [[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yz12]hyes

It can be noticed that even the object z has now the subscript 4×n+2×m =
4× 2+2× 2 = 12, it cannot generate a no object because membrane labelled by
0 was already dissolved by an y object in the previous step. Also, even another y
object reached the membrane labelled by 0, it cannot generate an yes object
because membrane labelled by 0 was already dissolved by another y object in a
previous step.

4 Natural Computing Modelling of the Polynomial Space
Turing Machines

The semi-uniform solutions rely on constructing the system and the solution in
polynomial time in order to avoid solving the problem during the evolution of the
system. In this context, the initial (exponential) configuration is constructed by
another (polynomial) system, and the problem is solved by combining these two
systems. In this way, we propose a polynomial solution that uses a polynomial P
system for constructing the initial configuration (that is exponential). Related to
this step, we show that P systems with active membranes provide an interesting

Solving NP-complete Problems in Polynomial Time 101

simulation of polynomial space Turing machines by using only logarithmic space
and a polynomial number of read-only input objects.

4.1 A Membrane Structure for Simulation

Let M be a single-tape deterministic Turing machine working in polynomial
space s(n). Let Q be the set of states of M , including the initial state s; we denote
by Σ′ = Σ ∪ {�} the tape alphabet which includes the blank symbol � �∈ Σ.
A computation step is performed by using δ : Q × Σ′ → Q × Σ′ × {−1, 0, 1},
a (partial) transition function of M which we assume to be undefined on (q, σ)
if and only if q is a final state. We describe a uniform family of P systems
Π = {Πx | x ∈ Σ∗} simulating M in logarithmic space.

Let x ∈ Σn be an input string, and let m = �log s(n)� be the minimum num-
ber of bits needed in order to write the tape cell indices 0, . . . , s(n)-1 in binary
notation. The P system Πn associated with the input length n and computed
as F (1n) has a membrane structure consisting of |Σ′| · (m + 1) + 2 membranes.
The membrane structure contains:

– a skin membrane h;
– an inner membrane c (the input membrane) used to identify the symbol needed

to compute the δ function;
– for each symbol σ ∈ Σ′ of M , the following set of membranes, linearly nested

inside c and listed inward:
• a membrane σ for each symbol σ of the tape alphabet Σ′ of M ;
• for each j ∈ {0, . . . , (m − 1)}, a membrane labelled by j.

This labelling is used in order to simplify the notations. To respect the one-to-
one labelling from Definition 1, the membrane j can be labelled jσ. Thus in all
rules using membranes j, the σ symbol is implicitly considered. Furthermore,
the object z0 is located inside the skin membrane h.

The encoding of x, computed as E(x), consists of a set of objects describ-
ing the tape of M in its initial configuration on input x. These objects are the
symbols of x subscripted by their position bin(0), . . . , bin(n− 1) (where bin(i) is
the binary representation of i on m positions) in x, together with the s(n) − n
blank objects subscripted by their position bin(n), . . . , bin(s(n)−1). The binary
representation, together with the polarities of the membranes, is essential when
the membrane system has to identify the symbol needed to simulate the δ func-
tion (e.g., rule (13)). The multiset E(x) is placed inside the input membrane c.
Figure 1 depicts an example.

During the first evolution steps of Πx, each input object σi is moved from
the input membrane c to the innermost membrane (m− 1) of the corresponding
membrane σ by means of the following communication rules:

σi[]0σ → [σi]0σ for σ ∈ Σ′, bin(0) ≤ i < bin(s(n)) (1)

σi[]0j → [σi]0j for σ ∈ Σ′, bin(0) ≤ i < bin(s(n)), 0 ≤ j < m (2)

102 B. Aman and G. Ciobanu

h

0

c

0

a00 b01 b10 11 z0
a

0

0

0

1

0

b

0

0

0

1

0

0

0

0

1

0

Fig. 1. Initial configuration of the P system Π3 with tape alphabet Σ′ = {a, b, �},
working in space s(n) = n + 1 = 4 on the input abb.

Since only one communication rule per membrane can be applied during
each evolution step of Πx, all s(n) input objects pass through m membranes,
in order to reach the innermost membranes (m − 1), in at most l = s(n) + m
evolution steps. In the meantime, the subscript of object z0 is incremented up to
max{0, l − 3} before object zl−3 exits and enters membrane c changing the
membrane charge from 0 to +:

[zt → zt+1]0c for 0 ≤ t < l − 3 (3)

[zl−3]0c → zl−3[]0c (4)

zl−3[]0c → [zl−3]+c (5)

The object zl−3 is rewritten to a multiset of objects containing an object z′ (used
in rule (10)) and |Σ′| objects z+ (used in rules (7))

[zl−3 → z′ z+ · · · z+
︸ ︷︷ ︸

]+c

|Σ′|copies
(6)

The objects z+ are used to change the charges from 0 to + for all membranes
σ ∈ Σ′ using parallel communication rules, and then are deleted:

z+[]0σ → [#]+σ for σ ∈ Σ′ (7)

[# → ∅]+σ for σ ∈ Σ′ (8)

In the meantime, the object z′ is rewritten into z′′ (in parallel with rule (7)),
and then, in parallel with rule (8), into s00 (where s is the initial state of M):

[z′ → z′′]+c (9)

[z′′ → s00]+c (10)

The configuration reached by Πx encodes the initial configuration of M (Fig. 2):

Solving NP-complete Problems in Polynomial Time 103

h

0

c

+

s00
a

+

0

0

1

0

a00

b

+

0

0

1

0

b01
b10

+

0

0

1

0

11

Fig. 2. Configuration of Πx (from Fig. 1) encoding the initial configuration of M on
input x = abb and using s(|x|) = 4 tape cells.

An arbitrary configuration of M on input x is encoded by a configuration
of Πx as it is described in Fig. 3:

• membrane c contains the state-object qi, where q is the current state of M
and i ∈ {bin(0), . . . , bin(s(n) − 1)} is the current position of the tape head;

• membranes (m − 1) contain all input objects;
• all other membranes are empty;
• all membranes are neutrally charged, except those labelled by σ ∈ Σ′ and by

c which all are positively charged.

We employ this encoding because the input objects must be all located in the
input membrane in the initial configuration of Πx (hence they must encode both
symbol and position on the tape), and they can never be rewritten.

4.2 Simulating Polynomial Space Turing Machines

Starting from a configuration of the single-tape deterministic Turing machine
M , the simulation of a computation step of M by the membrane system Πx is
directed by the state-object qi. As stated above, qi encodes the current state

a a b

0 1 2 3

q1

h

0

c

+

q01
a

+

0

0

1

0

a00

b01

b

+

0

0

1

0

b10

+

0

0

1

0

11

Fig. 3. A configuration of M (from Fig. 1) and the corresponding configuration of Πx

simulating it. The presence of b01 inside membrane 1 of a indicates that tape cell 1 of
M contains the symbol a.

104 B. Aman and G. Ciobanu

of M and the position of the head on the tape (in binary format). To simulate
the transition function δ of the Turing machine M in state q, it is necessary to
identify the actual symbol occurring at tape position i. In order to identify this
σi object from one of the (m−1) membranes, the object qi is rewritten into |Σ′|
copies of q′

i, one for each membrane σ ∈ Σ′:

[qi → q′
i · · · q′

i
︸ ︷︷ ︸

]+c
|Σ′|copies

for q ∈ Q, bin(0) ≤ i < bin(s(n)) (11)

The objects q′
i first enter the symbol-membranes in parallel, without changing

the charges:

q′
i[]+σ → [q′

i]
+
σ for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (12)

The object q′
i traverses the membranes 0, . . . , (m − 1) while changing their

charges such that they represent the bits of i from the least to the most significant
one, where a positive charge is interpreted as 1 and a negative charge as 0.
For instance, the charges of [[[]−2]−1]+0 encode the binary number 001 (that is,
decimal 1). By the j-th bit of a binary number is understood the bit from the
j-th position when the number is read from right to left (e.g., the 0-th bit of the
binary number 001 is 1). The changes of charges are accomplished by the rules:

q′
i[]0j → [q′

i]
α
j for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), 0 ≤ j < m, (13)

where α is − if the j-th bit of i is 0, and α is + if the j-th bit of i is 1.
The membranes j, where 0 ≤ j < m, behave now as “filters” for the input

objects σk occurring in membrane (m − 1): these objects are sent out from each
membrane j if and only if the j-th bit of k corresponds to the charge of j.

[σk]αj → []αj σk for σ ∈ Σ′, bin(0) ≤ k < bin(s(n)), 0 < j < m, (14)

where α is − if the j-th bit of k is 0, and α is + if j-th bit of k is 1.
If an object σk reaches membrane 0, it is sent outside if the 0-th bit of k

corresponds to the charge of membrane 0. In order to signal that it is the symbol
occurring at location i of the tape, the charge of the corresponding membrane 0
is changed (either from + to − or from − to +). By applying the rules (15) to
(17), exactly one object σk, with k = i, will exit through membrane c:

[σk]+0 → []−0 σk for σ ∈ Σ′, bin(0) ≤ k < bin(s(n))
[σk]−0 → []+0 σk for σ ∈ Σ′, bin(0) ≤ k < bin(s(n)),

(15)

where α is − if the j-th bit of k is 0, and α is + if the j-th bit of k is 1;

[σk]+τ → σk[]−τ for σ, τ ∈ Σ′, bin(0) ≤ k < bin(s(n)). (16)

After an σi exits from membrane c it gets blocked inside membrane h, by the
new charge of membrane c, until it is allowed to move to its new location accord-
ing to function δ of the Turing machine M . Thus, if another object τj reached

Solving NP-complete Problems in Polynomial Time 105

membrane σ due to the new charge of membrane 0 established by rule (15), τj is
contained in membrane σ until reintroduced in a membrane (m-1) using rule (2).

[σk]+c → σk[]−c for σ ∈ Σ′, bin(0) ≤ k < bin(s(n)) (17)

Since there are s(n) input objects, and each of them must traverse at most
(m + 1) membranes, the object σi reaches the skin membrane h after at most
l + 1 steps, where l is as defined in Sect. 4.1 before rule (3). While the input
objects are “filtered out”, the state-object q′

i “waits” for l steps using the rules:

[q′
i → q′′

i,1]
α
m−1 for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), α ∈ {−,+} (18)

[q′′
i,t → q′′

i,t+1]
α
m−1

σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n))
α ∈ {−,+}, 1 ≤ t ≤ l

(19)

[q′′
i,l+1 → q′′

i]αm−1 for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), α ∈ {−,+} (20)

In order to reach membrane c, the objects q′′
i are sent out through membranes

j (0 < j ≤ m − 1) using rule (21), through membrane 0 by rules (22) and (24),
and through membranes σ ∈ Σ′ by rule (23). While passing through all these
membranes, the charges are changed to neutral. This allows the input objects to
move back to the innermost membrane (m − 1) by using rules of type (2).

[q′′
i]αj → []0jq

′′
i

for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n))
0 < j ≤ m − 1, α ∈ {−,+} (21)

When q′′
i reaches the membranes 0, only one has the charge different from the

0-th bit of i, thus allowing q′′
i to identify the symbol in tape location i of M :

[q′′
i]α0 → []00q

′′′
i for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), (22)

where α is − if the 0-th bit of i is 1, and α is + if the 0-th bit of i is 0.

[q′′′
i]−σ → []0σqi,σ,1 for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (23)

The other copies of q′′
i are sent out as objects # through membrane 0, and then

deleted by rules of type (8):

[q′′
i]α0 → []00# for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), (24)

where α is − if the 0-th bit of i is 0, and α is + if the 0-th bit of i is 1.
The state-object qi,σ,1 waits in membrane c for l steps, l representing an

upper bound of the number of steps needed for all the input objects to reach the
innermost membranes:

[qi,σ,t → qi,σ,t+1]−c for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)), 1 ≤ t < l (25)

qi,σ,l[]0σ → [qi,σ,l]+σ for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (26)

[qi,σ,l]+σ → q′
i,σ[]+σ for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (27)

106 B. Aman and G. Ciobanu

The state-object q′
i,σ now contains all the information needed to compute the

transition function δ of the Turing machine M . Suppose δ(q, σ) = (r, v, d) for
some d ∈ {−1, 0,+1}. Then q′

i,σ sets the charge of membrane v to − and waits
for m + 1 steps, thus allowing σi to move to membrane (m − 1) of v by using
the rules (31), (32) and (2):

q′
i,σ[]+v → [q′

i,σ]+v for σ, v ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (28)

[q′
i,σ]+v → q′

i,σ,1[]−v for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (29)

[q′
i,σ,1]

−
c → q′

i,σ,1[]0c for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (30)

σi[]0c → [σi]0c for σ ∈ Σ′, bin(0) ≤ i < bin(s(n)) (31)

σi[]−v → [σi]−v for σ, v ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (32)

[q′
i,σ,t → q′

i,σ,t+1]
0
h for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n))1 ≤ t ≤ m (33)

The object q′
i,σ,m+1 is used to change the charges of membranes c and v to +,

thus preparing the system for the next step of the simulation:

q′
i,σ,m+1[]

0
c → [q′

i,σ,m+1]
+
c for σ ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (34)

q′
i,σ,m+1[]

−
v → [q′

i,σ,m+1]
−
v for σ, v ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (35)

[q′
i,σ,m+1]

−
v → q′′

i,σ[]
+
v for σ, v ∈ Σ′, q ∈ Q, bin(0) ≤ i < bin(s(n)) (36)

Finally, the state-object q′′
i,σ is rewritten to reflect the change of state and

head position, thus producing a configuration of Πx corresponding to the new
configuration of M , as described in Sect. 4.1:

[q′′
i,σ → ri+d]+c for bin(0) ≤ i < bin(s(n)) (37)

The P system Πx is now ready to simulate the next step of M . If q ∈ Q is a final
state of M , we assume that δ(q, σ) is undefined for all σ ∈ Σ′; thus we introduce
the following rules which halt the P system with the same result (acceptance or
rejection) as M :

[qi]+c → []+c yes for bin(0) ≤ i < bin(s(n)), if q is an accepting state (38)

[yes]0h → []0hyes for bin(0) ≤ i < bin(s(n)), if q is an accepting state (39)

[qi]+c → []+c no for bin(0) ≤ i < bin(s(n)), if q is a rejecting state (40)

[no]0h → []0hno for bin(0) ≤ i < bin(s(n)), if q is a rejecting state (41)

The simulation directly leads to the following result.

Theorem 3. Let M be a single-tape deterministic Turing machine working in
polynomial space s(n) and time t(n). Then there exists an (L,L)-uniform family
Π of P systems Πx with active membranes using object evolution and commu-
nication rules that simulates M in space O(log n) and time O(t(n)s(n)).

Proof. For each x ∈ Σn, the P system Πx can be built from 1n and x in logarith-
mic space as it is described in Definition 2; thus, the family Π is (L,L)-uniform.

Solving NP-complete Problems in Polynomial Time 107

Each P system Πx uses only a logarithmic number of membranes and a constant
number of objects per configuration; thus, Πx works in space O(log n). Simu-
lating one of the t(n) steps of M requires O(s(n)) time, an upper bound to the
subscripts of objects used to introduce delays during the simulation; thus, the
total time is O(t(n)s(n)).

5 Conclusion

We proved P = PMCAM0(+d,+e,+c,pre(α)) and P = PMCAM0(+d,+e,+c,pre(μ))

by providing two algorithms for solving the SAT problem using polarizationless
P system with active membranes and without division. For the former equality,
the provided algorithm is using an exponential alphabet pre-computed in linear
time by a P system with replicated rewriting, while the later one is using an
initial exponential structure pre-computed in linear time with respect to the
number of variables and clauses by P systems with membrane creation.

In this paper we also provided a simulation of the polynomial space Tur-
ing machines by using logarithmic space P systems with active membranes and
binary representations for the positions on the tape. A similar approach is pre-
sented in [11]. There are important differences in terms of technical details and
efficient representation; in comparison to [11], we improve the simulation by
reducing the number of membranes (by |Σ′| − 1) and the number of rules (by
|Σ′|·|Q|·s(n)·(5−|Σ′|)+|Σ′|·|Σ′|s(n)·(2·m+1)+|Q|·s(n)−|Σ′|·s(n)·(m+3)). In
particular, for the running example, the number of rules is reduced by 14·|Q|+84.
A different approach is presented in [10] where it is claimed that a constant space
is sufficient. However, in order to obtain the constant space space, input objects
(from Δ) are allowed to create other objects (from Γ) leading to a different and
more powerful formalism than the one used by us in this paper.

References

1. Aman, B., Ciobanu, G.: Describing the immune system using enhanced mobile
membranes. Electron. Notes Theoret. Comput. Sci. 194, 5–18 (2008)

2. Aman, B., Ciobanu, G.: Turing completeness using three mobile membranes. In:
Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC
2009. LNCS, vol. 5715, pp. 42–55. Springer, Heidelberg (2009)

3. Aman, B., Ciobanu, G.: Mobility in Process Calculi and Natural Computing. Nat-
ural Computing Series. Springer, New York (2011)

4. Besozzi, D., Ciobanu, G.: A P system description of the Sodium-Potassium pump.
In: Mauri, G., Păun, G., Pérez-J́ımenez, M., Rozenberg, G., Salomaa, A. (eds.)
WMC 2004. LNCS, vol. 3365, pp. 210–223. Springer, Heidelberg (2005)

5. Bonchiş, C., Ciobanu, G., Izbaşa, C.: Encodings and arithmetic operations in mem-
brane computing. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS,
vol. 3959, pp. 621–630. Springer, Heidelberg (2006)

6. Cavaliere, M.: Evolution-communication P systems. In: Păun, G., Rozenberg,
G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145.
Springer, Heidelberg (2003)

108 B. Aman and G. Ciobanu

7. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing. Springer, New York (2006)

8. Krishna, S.N., Rama, R.: P systems with replicated rewriting. J. Automata Lang.
Comb. 6(3), 345–350 (2001)

9. Leporati, A., Gutiérrez-Naranjo, M.A.: Solving subset sum by spiking neural P Sys-
tems with pre-computed resources. Fundamenta Informaticae 87(1), 61–77 (2008)

10. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Constant-space
P systems with active membranes. Fundamenta Informaticae 134(1–2), 111–128
(2014)

11. Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A gap in the space hierarchy
of P systems with active membranes. J. Automata Lang. Comb. 19(1–4), 173–184
(2014)

12. Murphy, N., Woods, D.: The computational power of membrane systems under
tight uniformity conditions. Nat. Comput. 10, 613–632 (2011)

13. Păun, G.: P systems with active membranes: attacking NP-complete problems. J.
Automata Lang. Comb. 6, 75–90 (2001)

14. Păun, G.: Further Twenty Six Open Problems in Membrane Computing. In:
Gutiérrez, M.A., et al. (eds.) Third Brainstorming Week on Membrane Computing,
pp. 249–262, Fénix Editora, Sevilla (2005)

15. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

16. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.:
Complexity-membrane division, membrane creation. In: [15], pp. 302–336

17. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems
with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G.,
Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 342–357. Springer,
Heidelberg (2013)

Abstracting an Operational Semantics
to Finite Automata

Nadezhda Baklanova, Wilmer Ricciotti(B), Jan-Georg Smaus,
and Martin Strecker

IRIT (Institut de Recherche en Informatique de Toulouse),
Université de Toulouse, Toulouse, France

{wilmer.ricciotti,jan-georg.smaus,martin.strecker}@irit.fr
nbaklanova@gmail.com

Abstract. There is an apparent similarity between the descriptions of
small-step operational semantics of imperative programs and the seman-
tics of finite automata, so defining an abstraction mapping from seman-
tics to automata and proving a simulation property seems to be easy.
This paper aims at identifying the reasons why simple proofs break,
among them artifacts in the semantics that lead to stuttering steps in
the simulation. We then present a semantics based on the zipper data
structure, with a direct interpretation of evaluation as navigation in the
syntax tree. The abstraction function is then defined by an equivalence
class construction.

Keywords: Programming language semantics · Abstraction · Finite
automata · Formal methods · Verification

1 Introduction

Among the formalisms employed to describe the semantics of transition systems,
two particularly popular choices are abstract machines and structural operational
semantics (SOS). Abstract machines (e.g. finite automata, Büchi automata or
timed automata [1,4,11]) are widely used for modeling and verifying dynamic
systems. An abstract machine can be represented as a directed graph with tran-
sition semantics between nodes. The transition semantics is defined by moving
a pointer to a current node. Automata are a popular tool for modeling dynamic
systems due to the simplicity of the verification of automata systems, which can
be carried out in a fully automated way, something that is not generally possible
for Turing-complete systems.

This kind of semantics is often extended by adding a background state com-
posed of a set of variables with their values: this is the case of timed automata,

N. Baklanova and M. Strecker were partially supported by the project Verisync
(ANR-10-BLAN-0310).
W. Ricciotti and J.-G. Smaus are supported by the project Ajitprop (121-AO12-
1209) of the Fondation Airbus.

c© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 109–123, 2016.
DOI: 10.1007/978-3-319-30246-1 7

110 N. Baklanova et al.

which use background clock variables [2]. The Uppaal model checker for timed
automata extends the notion of background state even further by adding inte-
ger and Boolean variables to the state [9] which, however, do not increase the
computational power of such timed automata but make them more convenient
to use.

Another formalism for modeling transition systems is structural semantics
(“small-step”, contrary to “big-step” semantics which is much easier to handle
but which is inappropriate for a concurrent setting), which uses a set of reduction
rules for simplifying a program expression. It has been described in detail in [16]
and used, for example, for the Jinja project developing a formal model of the
Java language [12]. An appropriate semantic rule for reduction is selected based
on the expression pattern and on values of some variables in a state. As a result of
reduction the expression and the state are updated. For example, a rule might be:

s′ = s(v �−→ eval expr s)
(Assign v expr, s) → (Unit, s′)

[Assignment]

This kind of rules is intuitive; however, the proofs involving them require
induction over the expression structure. A different approach to writing a struc-
tural semantics was described in [3,14] for the CMinor language. It uses a notion
of continuation which represents an expression as a control stack and deals with
separate parts of the control stack consecutively.

(Seq e1 e2 · κ, s) → (e1 · e2 · κ, s) (Empty · κ, s) → (κ, s)

Here the “·” operator designates concatenation of control stacks. The seman-
tics of continuations does not need induction over the expression, something
which makes proof easier; however it requires more auxiliary steps for maintain-
ing the control stack which do not have direct correspondance in the modeled
language.

For modeling non-local transfer of control, Krebbers and Wiedijk [13] present
a semantics using (non-recursive) “statement contexts”. These are combined
with the above-mentioned continuation stacks. The resulting semantics is situ-
ated mid-way between [3] and the semantics proposed below.

The present paper describes an approach to translation from structural oper-
ational semantics to finite automata extended with background state. All the
considered automata are an extension of Büchi automata with background state,
i.e. they have a finite number of nodes and edges but can produce an infinite
trace. The reason of our interest in abstracting from structural semantics to
Büchi automata is our work in progress [5,8]. We are working on a static analysis
algorithm for finding possible resource sharing conflicts in multithreaded Java
programs. For this purpose we annotate Java programs with timing informa-
tion and then translate them to a network of timed automata which is later
model-checked. The whole translation is formally verified. One of the steps of
the translation procedure includes switching from structural operational seman-
tics of a Java-like language to automata semantics. During this step we discov-
ered some problems which we will describe in the next section. The solutions we

Abstracting an Operational Semantics to Finite Automata 111

propose extend well beyond the problem of abstracting a structured language
to an automaton. It can also be used for compiler verification, which usually
is cluttered up with arithmetic address calculation that can be avoided in our
approach.

This article is a revised version of the work we presented at ICTERI [7]. In
this new version, we decided to focus on the relationship between zipper-based
semantics and big-step operational semantics: this relationship is discussed in
Sect. 7.

The contents of the paper has been entirely formalized in the Isabelle proof
assistant [15]. We have not insisted on any Isabelle-specific features, therefore
this formalization can be rewritten using other proof assistants. The full Isabelle
formal development can be found on the web [6].

2 Problem Statement

We have identified the following as the main problems when trying to prove the
correctness of the translation between a programming language semantics and
its abstraction to automata:

1. Preservation of execution context: an abstract machine always sees all the
available nodes while a reduced expression loses the information about pre-
vious reductions.

2. Semantic artifacts: some reduction rules are necessary for the functionality of
the semantics, but may be missing in the modeled language. Additionally, the
rules can produce expressions which do not occur in the original language.

These problems occur independently of variations in the presentation of
semantic rules [16] adopted in the literature, such as [12] (recursive evaluation
of sub-statements) or [3,14] (continuation-style).

We will describe these two problems in detail, and later our approach to
their solution, in the context of a minimalistic programming language which only
manipulates Boolean values (a Null value is also added to account for errors):

datatype val = Bool bool | Null

The language can be extended in a rather straightforward way to more com-
plex expressions. In this language, expressions are either values or variables:

datatype expr = Val val | Var vname

The statements are those of a small imperative language:

datatype stmt =
Empty — no-op

| Assign vname val — assignment: var := val
| Seq stmt stmt — sequence: c1; c2
| Cond expr stmt stmt — conditional: if e then c1 else c2
| While expr stmt — loop: while e do c

112 N. Baklanova et al.

2.1 Preservation of Execution Context

Problem 1 concerns the loss of an execution context through expression reduc-
tions which is a design feature of structural semantics. Let us consider a simple
example.

Assume we have a structural semantics for our minimalistic imperative lan-
guage (some rules of a traditional presentation are shown in Fig. 1): we want to
translate a program written in this language into an abstract machine. Assume
that the states of variable values have the same representation in the two sys-
tems: this means we only need to translate the program expression into a directed
graph with different nodes corresponding to different expressions obtained by
reductions of the initial program expression.

s′ = s(v →−� eval expr s)

(Assign v expr, s) → (Empty, s′)
[Assign]

eval bexp s = True

(Cond bexp e1 e2, s) → (e1, s)
[CondT]

eval bexp s = False

(Cond bexp e1 e2, s) → (e2, s)
[CondF]

Fig. 1. Semantic rules for the minimal imperative language

On the abstract machine level an Assign statement would be represented
as a two-state automaton, and the Cond as a node with two outgoing edges
directed to the automata for the bodies of its branches.

Consider a small program in this language Cond bexp (Assign a 5) Empty
and its execution flow.

Cond bexp (Assign a 5) Empty (Assign a 5) Empty

Empty

a:=5

The execution can select any of the two branches depending on the bexp
value. There are two different Empty expressions appearing as results of two
different reductions. The corresponding abstract machine would be a natural
graph representation for a condition statement with two branches (Fig. 2).

During the simple generation of an abstract machine from a program expres-
sion the two Empty statements cannot be distinguished although they should be
mapped into two different nodes in the graph. We need to add more information
about the context into the translation, and it can be done by different ways.

A straightforward solution would be to add some information in order to
distinguish between the two Empty expressions. If we add unique identifiers to
each subexpression of the program, they will allow us to know exactly which
subexpression we are translating (Fig. 3). The advantage of this approach is
its simplicity, however, it requires additional functions and proofs for identifier
management.

Abstracting an Operational Semantics to Finite Automata 113

Cond bexp (Assign a 5) Empty Assign a 5 Empty

Empty

© © ...

©

© ...

a:=5

Fig. 2. The execution flow and the corresponding abstract machine for the program
Cond bexp (Assign a 5) Empty

Cond n1 bexp (Assign n2 a 5) (Empty n3) Assign n2 a 5 Empty n2

Cond n1 bexp (Assign n2 a 5) Empty n3

© © ...

©

© ...

a:=5

n2

n3

Fig. 3. The execution flow and the corresponding abstract machine for the program
with subexpression identifiers Cond n1 bexp (Assign n2 a 5) (Empty n3)

Another solution for the problem proposed in this paper involves usage
of a special data structure to keep the context of the translation. There are
known examples of translations from subexpression-based semantics [12] and
continuation-based semantics [14] to abstract machines. However, all these trans-
lations do not address the problem of context preservation during the translation.

2.2 Semantic Artifacts

The second problem appears because of the double functionality of the Empty
expression: it is used to define an empty operator which does nothing as well as
the final expression for reductions which cannot be further reduced. The typical
semantic rules for a sequence of expressions look as shown on Fig. 4.

Here the Empty expression means that the first expression in the sequence
has been reduced up to the end, and we can start reducing the second expression.
However, any imperative language translated to an assembly language would not
have an additional operator between the two pieces of code corresponding to the
first and the second expressions. The rule Seq2 must be marked as a silent
transition when translated to an automaton, or the semantic rules have to be
changed.

114 N. Baklanova et al.

(e1, s) → (e1′, s′)

(Seq e1 e2, s) → (Seq e1′ e2, s′)
[Seq1]

(Seq Empty e2, s) → (e2, s)
[Seq2]

Fig. 4. Semantic rules for the sequence of two expressions

3 Zipper-Based Semantics of Imperative Programs

3.1 The Zipper Data Structure

Our plan is to propose an alternative technique to formalize operational seman-
tics that will make it easier to preserve the execution context during the trans-
lation to an automata-based formalism. Our technique is built around a zipper
data structure, whose purpose is to identify a location in a tree (in our case: a
stmt) by the subtree below the location and the rest of the tree (in our case: of
type stmt-path). In order to allow for an easy navigation, the rest of the tree is
turned inside-out so that it is possible to reach the root of the tree by following
the backwards pointers. The following definition is a straightforward adaptation
of the zipper for binary trees discussed in [10] to the stmt data type:

datatype stmt-path =
PTop

| PSeqLeft stmt-path stmt | PSeqRight stmt stmt-path
| PCondLeft expr stmt-path stmt | PCondRight expr stmt stmt-path
| PWhile expr stmt-path

Here, PTop represents the root of the original tree, and for each constructor
of stmt and each of its sub-stmts, there is a “hole” of type stmt-path where a
subtree can be fitted in. A location in a tree is then a combination of a stmt and
a stmt-path:

datatype stmt-location = Loc stmt stmt-path

Given a location in a tree, the function reconstruct reconstructs the orig-
inal tree reconstruct :: stmt ⇒ stmt-path ⇒ stmt, and reconstruct-loc
(Loc c sp) = reconstruct c sp does the same for a location.

fun reconstruct :: stmt ⇒ stmt-path ⇒ stmt where
reconstruct c PTop = c

| reconstruct c (PSeqLeft sp c2) = reconstruct (Seq c c2) sp
| reconstruct c (PSeqRight c1 sp) = reconstruct (Seq c1 c) sp
| reconstruct c (PCondLeft e sp c2) = reconstruct (Cond e c c2) sp
| reconstruct c (PCondRight e c1 sp) = reconstruct (Cond e c1 c) sp
| reconstruct c (PWhile e sp) = reconstruct (While e c) sp

fun reconstruct-loc :: stmt-location ⇒ stmt where
reconstruct-loc (Loc c sp) = reconstruct c sp

Abstracting an Operational Semantics to Finite Automata 115

3.2 Semantics

Our semantics is a small-step operational semantics describing the effect of the
execution of a program on a certain program state. For each variable, the state
yields Some value associated with the variable, or None if the variable is unas-
signed. More formally, the state is a mapping vname ⇒ val option. Defining the
evaluation of an expression in a state is then standard.

Before commenting the rules of our semantics, let us discuss which kind
of structure we are manipulating. The semantics essentially consists in moving
around a pointer within the syntax tree. As explained in Sect. 3.1, a position
in the syntax tree is given by a stmt-location. However, during the traversal of
the syntax tree, we visit each position at least twice (and possibly several times,
for example in a loop): before executing the corresponding statement, and after
finishing the execution. We therefore add a Boolean flag, where True is a marker
for “before” and False for “after” execution.

↓While

Seq

x := T y := F

=⇒
While

↓Seq

x := T y := F

=⇒
While

Seq

↓x := T y := F

=⇒
While

Seq

x := T↑ y := F

=⇒
While

Seq

x := T ↓y := F

Fig. 5. Example of execution of small-step semantics

As an example, consider the execution sequence depicted in Fig. 5 (with
assignments written in a more readable concrete syntax), consisting of the ini-
tial steps of the execution of the program While (e, Seq(x := T, y := F)). The
before (resp. after) marker is indicated by a downward arrow before (resp. an
upward arrow behind) the current statement. The condition of the loop is omit-
ted because it is irrelevant here. The middle configuration would be coded as
((Loc (x := T) (PSeqLeft (PWhile e PTop) (y := F))), T rue).

Altogether, we obtain a syntactic configuration (synt-config) which com-
bines the location and the Boolean flag. The semantic configuration (sem-config)
manipulated by the semantics adjoins the state, as defined previously.

type-synonym synt-config = stmt-location × bool
type-synonym sem-config = synt-config × state

The rules of the small-step semantics of Fig. 7 fall into two categories: before
execution of a statement s (of the form ((l, T rue), s)) and after execution (of
the form ((l, False), s)); there is only one rule of this latter kind: SFalse.

Let us comment on the rules in detail:

– SEmpty executes the Empty statement just by swapping the Boolean flag.
– SAssign is similar, but it also updates the state for the assigned variable.
– SSeq moves the pointer to the substatement c1, pushing the substatement

c2 as continuation to the statement path.
– SCondT and SCondF move to the then- respectively else- branch of the

conditional, depending on the value of the condition.

116 N. Baklanova et al.

fun next-loc :: stmt ⇒ stmt-path ⇒ (stmt-location × bool) where
next-loc c PTop = (Loc c PTop, False)

| next-loc c (PSeqLeft sp c2) = (Loc c2 (PSeqRight c sp), True)
| next-loc c (PSeqRight c1 sp) = (Loc (Seq c1 c) sp, False)
| next-loc c (PCondLeft e sp c2) = (Loc (Cond e c c2) sp, False)
| next-loc c (PCondRight e c1 sp) = (Loc (Cond e c1 c) sp, False)
| next-loc c (PWhile e sp) = (Loc (While e c) sp, True)

Fig. 6. Finding the next location

((Loc Empty sp, True), s) → ((Loc Empty sp, False), s)
[SEmpty]

((Loc (Assign vr vl) sp, True), s) → ((Loc (Assign vr vl) sp, False), s(vr �→ vl))
[SAssign]

((Loc (Seq c1 c2) sp, True), s) → ((Loc c1 (PSeqLeft sp c2), True), s)
[SSeq]

eval e s = Bool True

((Loc (Cond e c1 c2) sp, True), s) → ((Loc c1 (PCondLeft e sp c2), True), s)
[SCondT]

eval e s = Bool False

((Loc (Cond e c1 c2) sp, True), s) → ((Loc c2 (PCondRight e c1 sp), True), s)
[SCondF]

eval e s = Bool True

((Loc (While e c) sp, True), s) → ((Loc c (PWhile e sp), True), s)
[SWhileT]

eval e s = Bool False

((Loc (While e c) sp, True), s) → ((Loc (While e c) sp, False), s)
[SWhileF]

sp �= PTop

((Loc c sp, False), s) → (next-loc c sp, s)
[SFalse]

Fig. 7. Small-step operational semantics

– SWhileT moves to the body of the loop.
– SWhileF declares the execution of the loop as terminated, by setting the

Boolean flag to False.
– SFalse comes into play when execution of the current statement is finished.

We then move to the next location, provided we have not already reached
the root of the syntax tree and the whole program terminates.

The move to the next relevant location is accomplished by function next-loc
(Fig. 6) which intuitively works as follows: upon conclusion of the first substate-
ment in a sequence, we move to the second substatement. When finishing the

Abstracting an Operational Semantics to Finite Automata 117

body of a loop, we move back to the beginning of the loop. In all other cases,
we move up the syntax tree, waiting for rule SFalse to relaunch the function.

4 Target Language: Automata

4.1 Syntax

As usual, our automata are a collection of nodes and edges, with a distinguished
initial state. In this general definition, we will keep the node type ′n abstract.
It will later be instantiated to synt-config. An edge connects two nodes; moving
along an edge may trigger an assignment to a variable (AssAct), or have no effect
at all (NoAct).

An automaton ′n ta is a record consisting of a set of nodes, a set of edges and
an initial node init-s. An edge has a source node, an action and a destination
node dest. Components of a record are written between (| ... |).

4.2 Semantics

An automaton state is a node, together with a state as in Sect. 3.2.

type-synonym ′n ta-state = ′n ∗ state

Executing a step of an automaton in an automaton state (l, s) consists of
selecting an edge starting in node l, moving to the target of the edge and exe-
cuting its action. Automata are non-deterministic; in this simplified model, we
have no guards for selecting edges.

e ∈ set (edges aut)
l = source e l ′ = dest e s ′ = action-effect (action e) s

aut � (l , s) → (l ′, s ′)
[Action]

5 Automata Construction

The principle of abstracting a statement to an automaton is simple; the novelty
resides in the way the automaton is generated via the zipper structure: as nodes,
we choose the locations of the statements (with their Boolean flags), and as edges
all possible transitions of the semantics.

To make this precise, we need some auxiliary functions. We first define a func-
tion all-locations of type stmt ⇒ stmt-path ⇒ stmt-location list which gathers
all locations in a statement, and a function nodes-of-stmt-locations which adds
the Boolean flags.

As for the edges, the function synt-step-image yields all possible successor
configurations for a given syntactic configuration. This is of course an over-
approximation of the behavior of the semantics, since some of the source tree
locations may be unreachable during execution.

118 N. Baklanova et al.

fun synt-step-image :: synt-config ⇒ synt-config list where
synt-step-image (Loc Empty sp, True) = [(Loc Empty sp, False)]

| synt-step-image (Loc (Assign vr vl) sp, True) = [(Loc (Assign vr vl) sp, False)]
| synt-step-image (Loc (Seq c1 c2) sp, True) = [(Loc c1 (PSeqLeft sp c2), True)]
| synt-step-image (Loc (Cond e c1 c2) sp, True) =

[(Loc c1 (PCondLeft e sp c2), True), (Loc c2 (PCondRight e c1 sp), True)]
| synt-step-image (Loc (While e c) sp, True) =

[(Loc c (PWhile e sp), True), (Loc (While e c) sp, False)]
| synt-step-image (Loc c sp, False) = (if sp = PTop then [] else [next-loc c sp])

Together with the following definitions:

fun action-of-synt-config :: synt-config ⇒ action where
action-of-synt-config (Loc (Assign vn vl) sp, True) = AssAct vn vl

| action-of-synt-config (Loc c sp, b) = NoAct

definition edge-of-synt-config :: synt-config ⇒ synt-config edge list where
edge-of-synt-config s =
map(λ t . (|source = s, action = action-of-synt-config s, dest = t |))(synt-step-image s)
definition edges-of-nodes :: synt-config list ⇒ synt-config edge list where
edges-of-nodes nds = concat (map edge-of-synt-config nds)

we can define the translation function from statements to automata:

fun stmt-to-ta :: stmt ⇒ synt-config ta where
stmt-to-ta c =
(let nds = nodes-of-stmt-locations (all-locations c PTop) in
(| nodes = nds, edges = edges-of-nodes nds, init-s = ((Loc c PTop), True) |))

6 Simulation Property

We recall that the nodes of the automaton generated by stmt-to-ta are labeled by
configurations (location, Boolean flag) of the syntax tree. The simulation lemma
(Lemma 1) holds for automata with appropriate closure properties: a successor
configuration wrt. a transition of the semantics is also a label of the automaton
(nodes-closed), and analogously for edges (edges-closed) or both nodes and edges
(synt-step-image-closed).

The simulation statement is a typical commuting-diagram property: a step of
the program semantics can be simulated by a step of the automaton semantics,
for corresponding program and automata states. For this correspondence, we use
the notation ≈, even though it is just plain syntactic equality in our case.

Lemma 1 (Simulation property)
Assume that synt-step-image-closed aut and (((lc, b), s) ≈ ((lca, ba), sa)).
If ((lc, b), s) → ((lc ′, b ′), s ′), then there exist lca ′, ba ′, sa ′ such that
(lca ′, ba ′) ∈ set (nodes aut) and the automaton performs the same transition:
aut � ((lca, ba), sa) → ((lca ′, ba ′), sa ′) and ((lc ′, b ′), s ′) ≈ ((lca ′, ba ′), sa ′).

The proof is a simple induction over the transition relation of the program seman-
tics and is almost fully automatic in the Isabelle proof assistant.

Abstracting an Operational Semantics to Finite Automata 119

We now want to get rid of the precondition synt-step-image-closed aut in
Lemma 1. The first subcase (edge closure), is easy to prove. Node closure is
more difficult and requires the following key lemma:

Lemma 2
If lc ∈ set (all-locations c PTop) then set (map fst (synt-step-image (lc, b)))
⊆ set (all-locations c PTop).

With this, we obtain the desired.

Lemma 3 (Closure of automaton). synt-step-image-closed (stmt-to-ta c).

For the proofs, see [6].
Let us combine the previous results and write them more succinctly, by using

the notation →∗ for the reflexive-transitive closure for the transition relations
of the small-step semantics and the automaton. Whenever a state is reachable
by executing a program c in its initial configuration, then a corresponding (≈)
state is reachable by running the automaton generated with function stmt-to-ta:

Theorem 1
If ((Loc c PTop, True), s) →∗ (cf ′, s ′) then ∃ cfa ′ sa ′. stmt-to-ta c � (init-s
(stmt-to-ta c), s) →∗ (cfa ′, sa ′) ∧ (cf ′, s ′) ≈ (cfa ′, sa ′).

Obviously, the initial configuration of the semantics and the automaton are
in the simulation relation ≈, and for the inductive step, we use Lemma 1.

7 Relationship with Big-Step Semantics

The rules of the zipper-based semantics (Fig. 7) share an unusual feature: none
of them is recursive. In other words, while in standard small-step semantics
a transition is usually defined by a derivation tree built by combining several
rules, in our semantics the derivation is a very simple “tree” composed of a
single rule. This is a distinguishing characteristic of zipper semantics, which can
be understood better when we consider, at least informally, how it relates to
other styles, and to natural (big-step) semantics in particular.

For this reason, let us take a look at the evaluation of a simple statement
(the sequential composition of three assignments) of our minimalistic language
according to both styles. For natural semantics, we use the notation s, c ⇓ s′

to mean that a complete evaluation of the statement c in the state s yields an
updated state s′. Moreover, syntactic sugar is used for conciseness to represent
assignment, sequential composition, and Boolean values.

s, a := T ⇓ s(a �→ T)

s(a �→ T), b := F ⇓ s(a �→ T, b �→ F)

s, (a := T ; b := F) ⇓ s(a �→ T, b �→ F) s(a �→ T, b �→ F), c := a ⇓ s(a �→ T, b �→ F, c �→ T)

s, (a := T ; b := F ; c := a) ⇓ s(a �→ T, b �→ F, c �→ T)

120 N. Baklanova et al.

The corresponding evaluation in zipper-based semantics is a chain of transi-
tions (. . . is used to omit the parts of the zipper that are not relevant here):

((Loc (a := T ; b := F ; c := a) PTop,True), s)
→ ((Loc (a := T ; b := F) . . . ,True), s)
→ ((Loc (a := T) . . . ,True), s)
→ ((Loc (a := T) . . . ,False), s(a �→ T))
→ ((Loc (b := F) . . . ,True), s(a �→ T))
→ ((Loc (b := F) . . . ,False), s(a �→ T, b �→ F))
→ ((Loc (a := T ; b := F) . . . ,False), s(a �→ T, b �→ F))
→ ((Loc (c := a) . . . ,True), s(a �→ T, b �→ F))
→ ((Loc (c := a) . . . ,False), s(a �→ T, b �→ F, c �→ T))
→ ((Loc (a := T ; b := F ; c := a) PTop,False), s(a �→ T, b �→ F, c �→ T))

The reader can directly verify that each transition in the zipper semantics
corresponds to a step in the depth first visit of the derivation tree in big-step
semantics. In particular, when the zipper is flagged with the Boolean True, the
visit is proceeding from the root towards the leaves; when the flag is False, we
are going back from the leaves to the root.

This is true in general: the steps of a complete evaluation of a statement in
zipper semantics (i.e. a chain of transitions ending on PTop and flagged with
False) are in one-one correspondence with the steps of the depth-first visit of
an equivalent derivation tree in big-step semantics, and vice-versa. The zipper
can then be explained as a structure which keeps track of the current position
in the visit of the derivation tree: since the derivation tree is coherent with the
AST of the statement being evaluated, a zipper on the AST can often be used as
a more convenient alternative to a zipper on the derivation tree. We will make
this remark more precise, although without pretense of being entirely formal.

The rules of big-step semantics, in the most general form, derive a conclusion
c, s ⇓ s′ from a fixed number of recursive premises of the same form, possibly
guarded by a side condition. We present a technique to obtain a zipper-based
semantics equivalent to a given big-step semantics, under the following simpli-
fying assumptions:
– each evaluation judgment of the big-step semantics distinguishes an input

(the statement c and the initial state s) and an output (the final state s′);
– in the case of the evaluation of a compound statement, the recursive premises

correspond to the evaluation of some of its sub-statements, or to another
evaluation of the compound statement (generally, in an updated state);

– the recursive premises of all rules are listed naturally according to the order
of evaluation, in such a way that the output of a premise can be employed
as part of the input of the following premises;

– a single side condition is evaluated before all other premises (it can, therefore,
refer to the input of the conclusion judgment, but to no other input or output).

In symbols, the evaluation of a compound statement (T −→z c1 · · · cn) (where
the ci are its sub-statements and −→z its other sub-expressions) will be enacted
by rules in the following form:

Abstracting an Operational Semantics to Finite Automata 121

d1, s0 ⇓ s1
d1, s1 ⇓ s2

. . .
dk, sk−1 ⇓ sk (if P ((T −→z c1 · · · cn), s0))

(T −→z c1 · · · cn), s0 ⇓ f(sk, (T −→z c1 · · · cn))

where:

– each di is either a sub-statement cj (for some j) or the full compound state-
ment (T −→z c1 · · · cn)

– the function f is used to allow some final manipulation of the state sk accord-
ing to the shape of the statement (T −→z c1 · · · cn).

The big-step rule is translated to k + 1 zipper-based rules (where k is the
number of recursive premises). In the zipper rules, configurations are composed
of a statement location, a Boolean representing whether we are at the beginning
or at the end of the execution of the statement, and the state, as in the case
of our small imperative language. To state the translation, we assume that the
evaluated statement (T −→z c1 · · · cn) is located in a generic path sp. If we use
PT1, . . . , PTn as names for the statement path constructors corresponding to
the statement constructor T , we can express the locations li associated to each
of the statements di of the rule premises as follows:

– if di = cj , then li = Loc cj (PTj sp −→z c1 · · · cj−1 cj+1 · · · cn)
– if di = (T −→z c1 · · · cn), then li = Loc (T −→z c1 · · · cn) sp.

Then, we produce the following zipper-based rules:

– one initial rule:

P ((T −→z c1 · · · cn), s0)
((Loc (T −→z c1 · · · cn) sp,True), s) → ((l1,True), s)

– k − 1 intermediate rules, one for each i = 1, . . . , k − 1:

((li,False), s) → ((li+1,True), s)

– one final rule:

((lk,False), s) → ((Loc (T −→z c1 · · · cn) sp,False), f(s, (T −→z c1 · · · cn)))

In the special case where k = 0, i.e. there are no recursive premises, every-
thing collapses to a single translated rule:

P ((T −→z c1 · · · cn), s0)
((Loc (T −→z c1 · · · cn) sp,True), s) →

((Loc (T −→z c1 · · · cn) sp,False), f(s, (T −→z c1 · · · cn)))

In the case of our minimalistic language, the zipper on the statement is a
precise approximation of a zipper on the derivation tree of big-step semantics:
this allows us to state the two semantics are equivalent:

122 N. Baklanova et al.

Fact 2. For all statement paths sp, we have

c, s ⇓ s′ ⇐⇒ ((Loc c sp,True), s) →∗ ((Loc c sp,False), s′)

In the case of more complex languages, the ⇐= direction might not hold if
the zipper on statements does not univocally identify positions in the big-step
evaluation tree. In this case, the zipper semantics can be obtained by annotating
each node of the statement-path with the name of the last big-step rule traversed,
or by replacing the zipper on statements with a zipper on the derivation tree of
big-step evaluations.

As a final remark, let us note that the zipper-based semantics for the mini-
malistic language presented in the previous sections is an easy refinement of the
one we have just described, where all the zipper rules whose source has a False
flag (i.e. those that we have called intermediate and final) have been replaced by
a single SFalse rule, employing a next-loc function to determine the following
location.

8 Conclusions

This paper has presented a new kind of small-step semantics for imperative
programming languages, based on the zipper data structure. Our primary aim is
to show that this semantics has decisive advantages for abstracting programming
language semantics to automata. Even if the generated automata have a great
number of silent transitions, these can be removed.

We are currently in the process of adopting this semantics in a larger for-
malization from Java to Timed Automata [5,8]. As most constructs (zipper data
structure, mapping to automata) are generic, we think that this kind of seman-
tics could prove useful for similar formalizations with other source languages.
The proofs (here carried out with the Isabelle proof assistant) have a pleasingly
high degree of automation that are in sharp contrast with the index calculations
that are usually required when naming automata states with numbers.

Renaming nodes from source tree locations to numbers is nevertheless easy
to carry out, see the code snippet provided on the web page [6] of this paper.
For these reasons, we think that the underlying ideas could also be useful in the
context of compiler verification, when converting a structured source program to
a flow graph with basic blocs, but before committing to numeric values of jump
targets.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In:
LICS, pp. 414–425. IEEE Computer Society (1990)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

Abstracting an Operational Semantics to Finite Automata 123

3. Appel, A.W., Blazy, S.: Separation logic for small-step cminor. In: Schneider, K.,
Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg
(2007)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Baklanova, N.: Semantics and Proof Methods for a Real-Time Modeling Language.
PhD thesis, Université de Toulouse (2014)

6. Baklanova, N., Ricciotti, W., Smaus, J.-G., Strecker, M.: Abstracting an opera-
tional semantics to finite automata (formalization) (2014). https://bitbucket.org/
Martin Strecker/abstracting op sem to automata

7. Baklanova, N., Ricciotti, W., Smaus, J.-G., Strecker, M.: Abstracting an oper-
ational semantics to finite automata. In: Proceedings of the 11th International
Conference on ICT in Education, Research and Industrial Applications: Integra-
tion, Harmonization and Knowledge Transfer, Lviv, Ukraine, 14–16 May 2015, pp.
354–365 (2015)

8. Baklanova, N., Strecker, M.: Abstraction and verification of properties of a
real-time java. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky,
A., Zholtkevych, G. (eds.) ICTERI 2012. CCIS, vol. 347, pp. 1–18. Springer,
Heidelberg (2013)

9. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

10. Huet, G.: Functional pearl: the zipper. J. Funct. Program. 7(5), 549–554 (1997)
11. Khoussainov, B., Nerode, A.: Automata Theory and Its Applications. Birkhauser,

Boston (2001)
12. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual

machine, and compiler. ACM Trans. Program. Lang. Syst. 28, 619–695 (2006)
13. Krebbers, R., Wiedijk, F.: Separation logic for non-local control flow and block

scope variables. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol.
7794, pp. 257–272. Springer, Heidelberg (2013)

14. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–
446 (2009)

15. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, Heidelberg
(2002)

16. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

https://bitbucket.org/Martin_Strecker/abstracting_op_sem_to_automata
https://bitbucket.org/Martin_Strecker/abstracting_op_sem_to_automata

Realisation of Synchronous and Asynchronous
Black Boxes Using Machines

Grygoriy Zholtkevych(B)

School of Mathematics and Computer Science, V.N. Karazin Kharkiv
National University, 4 Svobody Sqr., Kharkiv 61022, Ukraine

g.zholtkevych@karazin.ua

Abstract. The intensive development of global solutions that are based
on the integration of heterogeneous applications and that do not impede
re-engineering leads to the dominance of information systems imple-
mented in accordance with an event-driven architecture. This trend
attracts attention of researchers to systems based on event stream
processing. In the paper it is proposed to distinguish two classes of event
stream processing systems, namely, systems specified by black boxes with
synchronous and asynchronous dependences between input and output
streams; it is given the definitions for nonanticipation property for black
boxes from these two classes; it is shown that such black boxes can
be implemented with using machines: Moore machines for synchronous
black boxes and pre-machines for asynchronous black boxes.

Keywords: Open system · Black box · Event stream processing ·
Nonanticipation · State machine · Implementation problem

1 Introduction

A black box is a basic concepts of cybernetics [2]. Actually, specifying the black
box that is associated with a system we determine the boundary of the system.
In this context the design process of any system can be comprehended as a
transformation of the black box that specifies the system being designed into
the glass box that implements this black box. Thus, the problem of searching an
answer on the question “Does there exist an implementation of the given black
box?” is an important problem not only for the general theory of systems and
cybernetics in whole, but also for the practice of the system engineering.

In the context of mathematical research a black box is completely specified
by its transfer relation (or transfer function if the relation is functional) [7]. This
relation determines the dependence on the input impacts of the system responses.
As a rule, it is suggested that this dependence is synchronous, i.e. each prime
impact causes some response. The implementation problem of a black box has
been studied and solved under this suggestion [6,9, and other].

Although the suggestion about synchronisation of input and output is quite
natural, but the practice of system engineering shows that it does not hold for
c© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 124–139, 2016.
DOI: 10.1007/978-3-319-30246-1 8

Realisation of Synchronous and Asynchronous Black Boxes Using Machines 125

all kinds of systems. The use of event-driven architecture [8] leads to software
systems that do not satisfy this suggestion. Event-based architecture enables
to decouple components of a system that is making this architectural approach
adequate for constructing global scalable distributed systems such as Internet-
of-Things [1].

Summing up of this reasoning we can claim that studying the implementation
problem of a black box, whose output depends on its input asynchronously, is a
topical problem.

The main results of this article were first presented at the XI Conference
ICTERI 2015 [10] but as one can see the mentioned text has been essentially
improved. Particularly, we have added the section devoted to the formal defin-
ition of the concept “nonanticipation” for asynchronous black boxes. Therefore
this new text can be considered as independent on the mentioned.

This paper has the following structure:

– Section 2 contains a discussion of prerequisites for the implementation prob-
lem, the definition of synchronous and asynchronous black boxes, definitions
of basic concepts, and the necessary notation;

– Section 3 explains how the non anticipation property can be generalised for
the case of asynchronous black boxes;

– Section 4 contains solution of the implementation problem.

2 Motivation and Preliminaries

In this section, the necessity to introduce the concept of an asynchronous black
box is motivated. Then we give the notation and necessary formal definitions to
specify the mathematical models of the corresponding objects.

2.1 Synchronous and Asynchronous Black Boxes

The traditional approach to the description of a system as a black box sug-
gests that each input impact is accompanied by synchronised with it system
response that, in general, depends on the sequence of all previous impacts (see
Fig. 1). Most researchers take this approach when the specification problem for
the external behaviour of a system is discussed. This approach was adopted also

the corresponding
response an impact

. . . y[m] . . . synchronous
black box

. . . x[m] . . .

Fig. 1. A synchronous black box

126 G. Zholtkevych

by M.D. Mesarovic and Y. Takahara to build a mathematical model of dynam-
ical systems [7]. In the context of this paper, this approach is studied in detail
in [6,9].

However, a synchronous interaction is not typical for distributed systems
that are now being built in accordance with the event-driven architecture and
its modifications. The paper [5] presents the main examples of applications that
require asynchronous approach to modelling the corresponding black boxes. We
cite some of these examples.

Example 1. See [5, p. 7, Example 1]. A patient is hooked up to multiple monitors
that perform various measurements. The measurements take the form of events,
which are then analysed by an event processing system. The system can be
configured individually for each patient. Some combinations of events can be
identified as threats. This example demonstrates the use of event processing to
allow timely response to emergency situations for patients.

Example 2. See [5, p. 7, Example 2]. In an airline luggage handling system a
radio-frequency identification (RFID) tag is attached to every piece of luggage.
RFID readers are located along the luggage route (the sorting device, the cart
going to the aircraft, the aircrafts unloading dock, and more). Events from the
RFID readers are analysed to provide exception alerts, such as luggage is on the
wrong cart; luggage did not arrive at the aircraft; luggage did not even arrive
at the sorting device; as well as a routine alert when luggage is approaching the
carousel. This example demonstrates the use of event processing for detecting
and eliminating errors within an automated processing system.

Example 3. See [5, p. 8, Example 5]. A financial institution wishes to detect
frauds or a financial regulator wishes to catch illegal trading patterns. They col-
lect events from banking or trading systems and analyze them. Certain patterns
of activity might suggest that a person is possibly (but not necessarily) in the
process of committing a fraud or other illegal activity. This example demon-
strates the use of event processing to detect evolving phenomena.

Example 4. See [5, p. 8, Example 6]. An emergency control system informs and
directs first responders and people at risk in case of an incident (for example, a
fire or the leakage of hazardous materials). In this case the event is a report on an
incident, and the main focus of the system is the dissemination of information:
who should be informed about what and at what time, given the nature of the
incident.

Example 5. See [5, p. 8, Example 8]. A manufacturing plant management system
diagnoses mechanical failures based on observable symptoms. In this case the
events are symptoms, describing things that do not work properly, and the main
purpose of the event processing is to find the root cause of these symptoms. This
example demonstrates the use of event processing for problem determination and
resolution.

Realisation of Synchronous and Asynchronous Black Boxes Using Machines 127

Example 6. See [5, p. 9, Example 10]. A social networking site starts a multi-
party chat when five people from a group are online. In this case an event occurs
when a person goes online or offline. Event processing is used to analyse these
events to decide when to start a chat session. This example demonstrates the
use of event processing for real-time collaboration.

These examples demonstrate that synchronous handling of event streams
cannot be used to solve the corresponding problems and we need to utilize a
solution similar to the one that is shown in Fig. 2.

the corresponding
response impacts

. . . y[m] . . . asynchronous
black box

. . .
︷ ︸︸ ︷

x[nm] . . . x[nm+1 − 1] . . .

Fig. 2. An asynchronous black box

These examples show also that an asynchronous behaviour is typical for
various classes of systems and studying an asynchronous black box has not only
theoretical interest.

2.2 Basic Definitions and Notation

Here we give brief survey of some matters and explain the basic notation used
below.

At the paper we use the denotation N for the natural series with 0.
For a set X (it is usually finite) we use the notation:

X∗ denotes the set of all finite sequences (words) whose elements belong
to X;

ε denotes the empty word;
X+ denotes the set X∗

� {ε};
Xω denotes the set of all (infinite) sequences whose elements belong to X;
X∞ denotes the union of the sets X∗ and Xω.

Further, we use the denotation ‖u‖ for the length of the word u ∈ X∗ and
assume that ‖x‖ = +∞ for any infinite sequence x ∈ Xω.

To refer to the k-th member of a word u ∈ X∗ (or a sequence x ∈ Xω) the
denotation u[k] (or x[k] respectively) is used.

For a word u ∈ X∗ whose length is equal or greater than n (or a sequence
x ∈ Xω) by u[0 : n] (or x[0 : n] respectively) we denote the word u[0] . . . u[n−1]
(or x[0] . . . x[n − 1]).

Similarly, for a word u ∈ X∗ whose length is greater than or equal to n (or
a sequence x ∈ Xω) by u[n :] (or x[n :] respectively) we denote the word
u[n] . . . u[‖u‖ − 1] (or the sequence x[n]x[n + 1] . . .).

128 G. Zholtkevych

We use also the denotation u · Xω (or u · X∗) where u ∈ X+ to refer to the
set of all sequences (or words respectively) whose beginnings coincide with u.

Taking into account that below we deal with partially defined mappings the
following notation is introduced:

f : X ��� Y denotes the partial mapping f from the set X into the set Y ;
f(x)↑ denotes that the partial function f is not defined on the element

x;
f(x)↓ denotes that the partial function f is defined on the element x;
f(x) ↓= y denotes that the partial function f is defined on the element x

and the corresponding value equals y.

Finally, some class of subsets in X∗ (or X∞) plays an important role further,
namely: a subset A ⊂ X∗ (or A ⊂ X∞) is called prefix-closed if for any n ∈ N

and x ∈ A such that ‖x‖ > n the word x[0 : n] belongs A.

3 Nonanticipation Property for Black Boxes

A real open system must meet the requirement: its response can depend only
on information received in the past and the present, and the response has no
chance to depend on any information from the future. Therefore, correct models
describing open systems cannot have ability to predict unerringly future. Such an
inability to predict unerringly the future is referred the nonanticipation property.

In this section we remind the definition of the nonanticipation property for
a black box, whose output depends on input synchronously. Then we generalise
this definition for the case of an asynchronous interdependence between input
and output. Finally, we discuss logical correspondences between these definitions.

3.1 Nonanticipation Property: Case of Synchronous Black Box

Thus we begin by recalling the case definition of nonanticipation property for a
black box with a functional transfer relation.

Definition 1. We say that a mapping T : Xω → Y ∞ satisfies the synchronous
nonanticipation property (briefly SN -property) if

for any x ∈ Xω, n ∈ N such that n ≤ ‖Tx‖, and (SN)
x′ ∈ x[0 : n] · Xω the following equation is fulfilled:

(Tx′)[0 : n] = (Tx)[0 : n].

Example 7 (Main Example for the SN -property). Let a partial mapping
A : X+ ��� Y with the prefix-closed domain be given then we can define the
mapping TA : Xω → Y ∞ using Algorithm 1. It is easy to see that the mapping
TA defined by Algorithm1 satisfies the SN -property.

We sum up the discussion of Example 7 in the following proposition.

Realisation of Synchronous and Asynchronous Black Boxes Using Machines 129

Require: x ∈ Xω and A : X+ ��� Y with the prefix-closed domain
Ensure: printing the output sequence corresponding to TAx

buff = []
while True :

evnt, x = x[0], x[1 :]
buff.append(evnt)
if A(buff)↑ : continue
else : print(A(buff))

Algorithm 1: The Operational Definition for TA

Proposition 1. Let A : X+ ��� Y be a partial mapping with the prefix-closed
domain then Algorithm1 defines uniquely the mapping TA : Xω → Y ∞, which
satisfies the SN -property.

Note that the converse statement is evidently true too.

Proposition 2. If a mapping T : Xω → Y ∞ satisfies the SN -property then
there exists the unique partial mapping A : X+ ��� Y with the prefix-closed
domain such that T
 TA.

Proof. Indeed, one can define the required partial mapping A as follows:

if for u ∈ X+ the exists x ∈ u · Xω such that ‖u ≤ ‖Tx‖‖ then
Au ↓= (Tx)[‖u‖ − 1]

otherwise Au↑.

The SN -property ensures the correctness of this definition, prefix-closedness of
the domain for A, and the validity of the equality T
 TA. ��
Thus, we may combine the Propositions 1 and 2 in the following theorem.

Theorem 1. Let T : Xω → Y ∞ be a mapping then T satisfies the SN -property
if and only if there exists the partial mapping A : X+ ��� Y with prefix-closed
domain such that T
 TA.

Note 1. Of course, the results of this subsection are known (see, for example,
[9]) and we mentioned about them only for completeness of the presentation.

3.2 Nonanticipation Property: Case of Asynchronous Black Box

In this subsection we define the non anticipation property for the case whenever
input and output of the black box are in an asynchronous interdependence.

Definition 2. We say that a mapping T : Xω → Y ∞ satisfies the asynchro-
nous nonanticipation property (briefly AN -property) if

for any x ∈ Xω and n ∈ N the inequality n ≤ ‖Tx‖ implies
the existence of k ≥ n such that for every x′ ∈ x[0 : k] · Xω

the following is true: (Tx′)[0 : n] = (Tx)[0 : n].
(AN)

130 G. Zholtkevych

Example 8 (Main Example for the AN -property). Let a partial mapping
A : X+ ��� Y be given then we can define the mapping TA : Xω → Y ∞ using
Algorithm 1.

It is easy to see that the mapping TA defined by Algorithm 1 satisfies the
AN -property. Indeed, for x ∈ Xω and n such that n ≤ ‖TAx‖ we choose as k
the number of iteration that prints n-th output symbol. This choice ensures the
fulfilment of the conditions of Definition 2.

We sum up the consideration of Example 8 in the following proposition.

Proposition 3. Let A : X+ ��� Y be a partial mapping then Algorithm 1 defines
uniquely the mapping TA : Xω → Y ∞, which satisfies the AN -property.

We show that this example is the most general, i.e. the following theorem is
true.

Theorem 2. Let T : Xω → Y ∞ be a mapping satisfying the AN -property then
there exists the unique partial mapping A : X+ ��� Y such that T
 TA.

To prove the theorem we need the following auxiliary statement.

Lemma 1. Let T : Xω → Y ∞ be a mapping satisfying the AN -property, x be
an element of Xω, and n be a natural number less than or equal to ‖Tx‖ then
for the set

KT
n (x) = {k ∈ N | k ≥ n∧(∀x′ ∈ x[0 : k])(Tx′)[0 : n] = (Tx)[0 : n]}

there exists the unique natural number kT
n (x) such that

KT
n (x) = {k ∈ N | k ≥ kT

n (x)}.

Proof. If k ∈ KT
n (x) and k′ > k then it is evident that k′ ∈ KT

n (x). Now the
statement of lemma follows from the well-foundedness of the natural series. ��
Proof (of Theorem 2). Let us consider the function kT

n (x) = min KT
n (x) then

define Au = (Tx)[kT
‖u‖(x)−1] where x is any member of u ·Xω. The correctness

of the definition is ensured by the previous lemma. ��
Corollary 1. A mapping T : Xω → Y ∞ satisfies the AN -property if and only
if there exists a partial mapping A : X+ ��� Y such that T
 TA. In this case
the partial mapping A is defined uniquely.

At the end of the section we discuss the case whenever kT
n (x) = n for all

x ∈ Xω and 0 ≤ n ≤ ‖Tx‖.
It is evident that if T : Xω → Y ∞ satisfies the SN -property then T satisfies

the AN -property and kT
n (x) = n for all x ∈ Xω and n ≤ ‖Tx‖. The converse is

true too.

Proposition 4. Let T : Xω → Y ∞ be a mapping satisfying the AN -property
and kT

n (x) = n for any x ∈ Xω and n ≤ ‖Tx‖ then this mapping satisfies the
SN -property.

Proof. In this case in Definition 2 k and n are coincident and, hence, AN -
property is coincident with SN -property. ��

Realisation of Synchronous and Asynchronous Black Boxes Using Machines 131

4 Implementation Problem for Black Boxes

In this section we give a solution of the implementation problem for synchro-
nous and asynchronous black boxes. Of course, the solution for synchronous
black boxes is well-known and we mention it only for the completeness of our
presentation and providing the unification of concepts and notation for both
synchronous and asynchronous black boxes.

4.1 Implementation of Synchronous Black Box

Automata. We start our consideration reminding the definition of an automaton.

Definition 3. A triple A(X,ZA, δA) is called an automaton if X is a finite
alphabet of impacts, ZA is a set of states of the automaton, δA : ZA ×X ��� ZA
is a partial mapping, which is called the transition function of the automaton.

Note 2. The transition function can always be transformed into the total map-
ping by including an additional element “∗” into ZA and determining δA(z, x) =
∗ if δA(z, x) ↑ and δA(∗, x) = ∗ for any x ∈ X. Taking this into account we
suppose that δA : ZA × X → ZA is a total mapping.

An automaton behaviour is determined by a right action of the monoid X∗ on
the state set ZA [3].

Proposition 5. Let A(X,ZA, δA) be an automaton and its extended transition
function be the mapping δ∗

A : ZA ×X∗ → ZA defined recursively by formulas (1)

δ∗
A(z, ε) = z for any z ∈ ZA;

δ∗
A(z,ux) = δA(δ∗

A(z,u), x) for z ∈ ZA, u ∈ X∗, x ∈ X
(1)

then δ∗
A is a right action of the monoid X∗ on the set ZA.

Proof. To prove the proposition it is sufficient to check the equality

δ∗
A(z,u′u′′) = δ∗

A(δ∗
A(z,u′),u′′)

for any z ∈ ZA, u′,u′′ ∈ X∗. The corresponding checking is a simple exercise in
the application of mathematical induction on the length of u′′. ��

Moore Machine. Usually, automata associate with black boxes in the following
manner.

Firstly, the class of Moore machines is defined.

Definition 4. Let A(X,ZA, δA) be an automaton then the corresponding
(reachable) Moore machine is a quintuple M(X,ZA, δA, z0M, λM), where z0M is
some fixed state of A called the initial state of the machine and λM : ZA → Y is
a mapping called the output function of the machine, if the condition of reacha-
bility

for any z ∈ ZA there exists u ∈ X∗ such that z = δ∗
A(z0M,u) (2)

holds.

132 G. Zholtkevych

Then for a Moore machine is determined its reaction function.

Definition 5. Let M(X,ZA, δA, z0M, λM) be a Moore machine then its reaction
function AM : X+ → Y is determined by the formula

AM(u) = λM(δA(z0M,u)). (3)

Finally, we define the transfer function TM : Xω → Y ω for the machine
M(X,ZA, δA, z0M, λM) using its reaction function AM and Algorithm 1.

Note 3. If the transition function of a Moore machine is partial then a transition
of the machine into the state “∗” is considered as the prohibition of a response
on any impact.

Posing of the Implementation Problem. The preceding arguments show
that machines can be considered as glass boxes. Therefore we pose the following
problem.

Problem 1 (Implementation Problem for Synchronous Black Boxes). Let we have
a mapping T : Xω → Y ω that holds the SN -property.

Then it is required to describe the properties of the mapping that ensures the
existence of a More machine M(X,ZA, δA, z0M, λM) such that TAM
 T .

Existence of a Solution for the Implementation Problem. It is known
that Moore machines are glass boxes for all synchronous black boxes [6,9]. I.e.
SN -property is necessary and sufficient to implement the corresponding black
box with using some Moore machine. Below we present the corresponding rea-
soning for the completeness of the presentation.

Thus we assume that two alphabets (the input alphabet X and the output
alphabet Y) and the transfer function T : Xω → Y ω are given. If T satisfies the
SN -property then we can select the corresponding mapping A : X+ → Y as it
has been established in Theorem 1.

Now let us choose

1. ZF = X∗;
2. δF (u, x) = ux for x ∈ X and u ∈ X∗

and consider the triple F(X,ZF , δF).

Lemma 2. The triple F(X,ZF , δF) is an automaton such that the right action
δ∗
F : ZF × X∗ → ZF associated with it satisfies the equation

δ∗
F (u,v) = uv (4)

for all u,v ∈ X∗.

Proof. Checking is reduced to a simple application of the mathematical induc-
tion. ��
Now the following theorem is evident.

Theorem 3. Let us consider the Moore machine FA(X,ZF , δF , z0FA , λFA) whe-
re z0FA = ε and λFA(u) = Au then A
 AFA .

Realisation of Synchronous and Asynchronous Black Boxes Using Machines 133

Minimal Solution for the Implementation Problem. The solution that is
given in the previous subsection for the Implementation Problem is too redun-
dant because the state set of the corresponding Moore machine contains too
many indistinguishable states. Below we demonstrate the method to eliminate
the lack of the construction.

Let us choose

1. ZSA = {f : X+ → Y | f() = A(uf ·) for some uf ∈ X∗};
2. δSA(f, x)() = f(x ·) for x ∈ X and f ∈ ZSA

and consider the triple SA(X,ZSA , δSA).

Lemma 3. The triple SA(X,ZSA , δSA) is an automaton such that the right
action δ∗

SA : ZSA × X∗ → ZSA associated with it satisfies the equation

δ∗
SA(f,u)() = f(u ·) (5)

for all u ∈ X∗ and f ∈ ZSA .

Proof. Primarily, we should show that δSA(f, x) ∈ ZSA if f ∈ ZSA and x ∈ X.
Indeed, f ∈ ZSA implies that there exists uf ∈ X∗ such that f(v) = A(ufv) for
any v ∈ X+. Therefore, δSA(f, x)(v) = f(xv) = A(uf (xv)) = A((ufx)v) and
uδSA (f,x) = ufx.
Now one can prove (5) using mathematical induction by length of u. ��
Theorem 4. Let us consider the Moore machine MA(X,ZSA , δSA , z0MA , λMA)
where zMA = A and λMA(f) = A(uf) then A
 AMA .

Proof. It is evident that A ∈ ZSA and uA = ε.
Further, taking into account the previous lemma one can obtain

AMA(u) =λMA(δ∗
SA(zMA ,u)) =

A
(

uδ∗
SA (zMA ,u)

)

= A(uzMA
u) = A(εu) = A(u).

Hence, A
 AMA . ��
Thus, we prove that the Moore machine MA(X,ZSA , δSA , z0MA , λMA) imple-
ments the synchronous black box with transfer function T . Our goal is to prove
that this is the minimal implementation.

Theorem 5. Let M(X,ZA, δA, z0M, λM) be a Moore machine that implements
a synchronous black box with transfer function T and A : X+ → Y such that
T
 TA then there exists the surjective mapping μ : ZA → ZSA such that

1. μ(z0M) = z0MA ;
2. μ(δA(z, x)) = δSA(μ(z), x) for any z ∈ ZA and x ∈ X;
3. λM(z) = λMA(μ(z)) for any z ∈ ZA.

134 G. Zholtkevych

Proof. First of all, we define the mapping μ.

Let z be an arbitrary element of ZA then taking into account (2) we can find
uz ∈ X∗ such that z = δ∗

A(z0M,uz). Suppose that there exists another vz ∈ X∗

such that z = δ∗
A(z0M,vz).

Under this supposition we obtain

A(uzx) =λM(δ∗
A(z0M,uzx)) = λM(δ∗

A(δ∗
A(z0M,uz), x)) =

λM(δA(z, x)) = λM(δ∗
A(δ∗

A(z0M,vz), x)) =

λM(δ∗
A(z0M,vzx)) = A(vzx)

for any x ∈ X.

Therefore, the correspondence z �→ A(uz ·) determines correctly some mapping
μ : ZA → ZSA .

Now let us check that the mapping μ is surjective. Indeed, let us take an arbitrary
f belonging to ZMA . Then there exists uf ∈ X∗ such that f() = A(uf ·).

Let z = δ∗
A(z0M,uf) then μ(z)() = A(uf ·) = f().

Now it remains to verify properties 1–3.

Note that property 1 is evident and the property 2 is easily proved using math-
ematical induction by length of u.

To prove property 3 note the following

λM(z) = λM(δ∗
A(z0M,uz)) = A(uz) = λMA(δ∗

SA(z0MA ,uz)) = λMA(μ(z)).

This complete the proof. ��

4.2 Implementation of Asynchronous Black Box

Pre-automata. The notion of a pre-automaton had been introduced in [4] by
replacing the action with the partial action in the definition.

Definition 6. A triple P(X,ZP , δ∗
P) is called a pre-automaton if X is a finite

alphabet of impacts, ZP is a set of states of the pre-automaton, δ∗
P is a right

partial action of the monoid X∗ on the set ZP , i.e. it is a partial mapping
δ∗
P : ZP × X∗ ��� ZP such that

1. δ∗
P(z, ε) ↓= z for all z ∈ ZP ;

2. if δ∗
P(z,u′) ↓ and δ∗

P(δ∗
P(z,u′),u′′) ↓ then δ∗

P(z,u′u′′) ↓= δ∗
P(δ∗

P(z,u′),u′′)
for all z ∈ ZP and u′,u′′ ∈ X∗;

3. if δ∗
P(z,u′) ↓ and δ∗

P(z,u′u′′) ↓ then δ∗
P(δ∗

P(z,u′),u′′) ↓= δ∗
P(s,u′u′′) for all

z ∈ ZP and u′,u′′ ∈ X∗.

Now we describe some method that allows us to construct a pre-automaton using
an automaton.

Suppose that we have taken some automaton A(X,ZA, δA). Let us define the
pre-automaton P(X,ZP , δ∗

P) in the following manner:

Realisation of Synchronous and Asynchronous Black Boxes Using Machines 135

1. choose as ZP an arbitrary subset of ZA;
2. define the partial mapping δ∗

P : ZP × X∗ ��� ZP as follows for z ∈ ZP and
u ∈ X∗ let assign that

δ∗
P(z,u)↑ if δ∗

A(z,u) /∈ ZP and
δ∗
P(z,u) ↓= δ∗

A(z,u) if δ∗
A(z,u) ∈ ZP .

Proposition 6. The triple defined by the previous construction is a pre-
automaton.

Proof. Indeed, item (1) of the construction ensures that item (1) of Definition 6
is satisfied. Further, item (2) of the construction and Proposition 5 implies that
items (2) and (3) of Definition 6 are satisfied. ��
Taking into account this proposition we call the constructed pre-automaton a
restriction of the automaton A(X,ZA, δA) to the subset ZP .

The assertion just proved demonstrates that the method to obtain pre-
automata consists in hiding part of the states.

The converse assertion proved in [4] as Globalisation Theorem ensures that
the method considered above is the most general method to obtain pre-automata.

Moore Pre-machine. Pre-automata are associated with black boxes similarly
to automata.

Firstly, the class of Moore pre-machines is defined.

Definition 7. Let P(X,ZP , δ∗
P) be a pre-automaton then the corresponding Mo-

ore pre-machine is a quintuple M(X,ZP , δ∗
P , z0M, λM), where z0M is some fixed

element of ZP called the initial state of the pre-machine and λM : ZP → Y
is a mapping called the output function of the pre-machine, if the condition of
reachability

for any z ∈ ZP there exists u ∈ X∗ such that δ∗
P(z0M,u) ↓= z (6)

holds.

Then for a Moore pre-machine is determined its reaction function.

Definition 8. Let M(X,ZP , δ∗
P , z0M, λM) be a Moore pre-machine then its

reaction function AM : X+ ��� Y is determined in the following manner

AM(u)↑ if δ∗
M(z0M,u)↑ and

AM(u) ↓= λM(δ∗
P(z0M,u)) if δ∗

M(z0M,u)↓ .

Finally, we define the transfer function TM : Xω → Y ∞ for the pre-machine
MP using its reaction function AM and Algorithm 1.

Posing of the Implementation Problem. Now we pose the following
problem.

136 G. Zholtkevych

Problem 2 (Implementation Problem for Asynchronous Black Boxes). Let we
have a mapping T : Xω → Y ∞ that holds the AN -property.

Then it is required to describe the properties of the mapping that ensures the
existence of a More pre-machine M(X,ZP , δP , z0M, λM) such that TAM
 T .

Existence of Solution of the Implementation Problem. Thus we assume
that two alphabets (the input alphabet X and the output alphabet Y) and
the transfer function T : Xω → Y ∞ are given that satisfies the AN -property.
In this case Corollary 1 ensures the possibility to select the partial mapping
A : X+ ��� Y such that T
 TA.

Let us choose

1. ZF = X∗;
2. δF (u, x) = ux for x ∈ X and u ∈ X∗

and consider the triple F(X,ZF , δF). In Proposition 5 has been established that
this triple is an automaton.

Now let us choose ZFA ⊂ ZF in the following manner:

ZFA = {u ∈ X∗ | Au↓}⋃ {ε}.

Selecting restriction of the automaton F on the set ZFA we obtain the pre-
automaton FA(X,ZFA , δ∗

FA).

Theorem 6 (Existence of Solutions for the Synthesis Problem). Let us
consider the Moore pre-machine M(X,ZFA , δ∗

FA , z0M, λM), where

z0M = ε;
λM(u) = Au if Au↓;
λM(ε) is defined arbitrary,

then AM
 A.

Proof. Really, M is a Moore pre-machine (see Proposition 6).
Hence we need to prove that AMu↓ if and only if Au↓ and the equality AMu =
Au holds on the common domain. But this follows immediately from Lemma 2
and the specification of the pre-machine M. ��

Minimal Solution for the Implementation Problem. Now we need to
eliminate the redundancy of the proposed problem solution. We do similarly it
as we have done it for the SN -case studied above.

Let us choose

1.
ZSA = {f : X+ ��� Y |

f()
 A(uf ·) for some uf ∈ X∗ such that Auf ↓} ;

2.
δ∗
SA(f,u)↑ if f(u ·) /∈ ZSA

δ∗
SA(f,u)()
 f(u ·) if f(u ·) ∈ ZSA

and consider the triple SA(X,ZSA , δ∗
SA).

Realisation of Synchronous and Asynchronous Black Boxes Using Machines 137

Lemma 4. The triple SA(X,ZSA , δ∗
SA) is a pre-automaton.

Proof. Note that δ∗
SA(f, ε)()
 f(ε)
 f() therefore property (1) of

Definition 6 is true.
Suppose that δ∗

SA(f,u′)↓ and δ∗
SA(δ∗

SA(f,u′),u′′)↓ then

firstly, δ∗
SA(f,u′)()
 f(u′ ·)
 A((ufu

′) ·) and A(ufu
′)↓ and

secondly, δ∗
SA(δ∗

SA(f,u′),u′′)()
 f((u′u′′) ·)
 A((ufu
′u′′) ·) and

A(ufu
′u′′)↓ .

Further,
δ∗
SA(f,u′u′′)()
 f((u′u′′) ·)
 A((ufu

′u′′) ·)

and taking into account the previously statements we obtain that δ∗
SA(f,u′)

δ∗
SA(δ∗

SA(f,u′),u′′) and property (2) of Definition 6 is true.
The validity of property (3) of Definition 6 is established by the similar way. ��
Theorem 7. Let MA(X,ZSA , δ∗

SA , z0MA , λMA) be the Moore pre-machine where
zMA
 A and λMA(f) = A(uf) then A
 AMA .

Proof. Taking into account the previous lemma we need to check that A()

λMA(δ∗

SA(z0MA ,)). Indeed, Au↓ if and only if δ∗
SA(z0MA ,u)↓ by definition and

in this case
λMA(δ∗

SA(z0MA ,u)) = λMA(A(u ·)) = A(u).

This complete the proof. ��
Thus, we prove that the Moore pre-machine MA(X,ZSA , δ∗

SA , z0MA , λMA)
implements the asynchronous black box with transfer function T . Our goal is to
prove that this is the minimal implementation.

Theorem 8. Let M(X,ZP , δ∗
P , z0M, λM) be a Moore pre-machine that imple-

ments an asynchronous black box with transfer function T and A : X+ ��� Y
such that T
 TA then there exists the surjective mapping μ : ZP → ZSA such
that

1. μ(z0M) = z0MA ;
2. δ∗

A(z,u)↓ implies δ∗
SA(μ(z),u) ↓= μ(δ∗

A(z,u)) for any z ∈ ZA and u ∈ X∗;
3. λM(z) = λMA(μ(z)) for any z ∈ ZA.

We obtain the proof of the corresponding theorem modifying the proof of
Theorem 5.

Proof (of Theorem 8). First of all, we define the mapping μ.
Let z be an arbitrary element of ZP then taking into account (6) we can find
uz ∈ X∗ such that δ∗

P(z0M,uz) ↓= z. Suppose that there exists another vz ∈ X∗

such that δ∗
P(z0M,vz) ↓= z.

Under this supposition we obtain

A(uzu) ↓=λM(δ∗
P(z0M,uzu) ↓= λM(δ∗

P(δ∗
P(z0M,uz),u)) ↓=

λM(δ∗
P(z,u))

138 G. Zholtkevych

and

A(vzu) ↓=λM(δ∗
P(z0M,vzu)) ↓= λM(δ∗

P(δ∗
P(z0M,vz),u)) ↓=

λM(δ∗
P(z,u))

for any u ∈ X∗ such that A(uzu) (and respectively A(vzu)) is defined.
Therefore, the correspondence z �→ A(uz ·) determines correctly some map-

ping μ : ZA → ZSA .
Now let us check that the mapping μ is surjective. Indeed, let us take an

arbitrary f belonging to ZMA . Then there exists uf ∈ X∗ such that f() =
A(uf ·) and A(uf)↓.

Let z = δ∗
A(z0M,uf) then μ(z)() = A(uf ·) = f().

Now it remains to verify properties 1–3.
Note that property 1 is evident and the property 2 is easily proved using

mathematical induction by length of u.
To prove property 3 note the following

λM(z) = λM(δ∗
P(z0M,uz)) ↓= A(uz)

and

λMA(μ(z)) = λMA(δ∗
SA(z0MA ,uz)) ↓= A(uz).

Therefore, λM(z) = λMA(μ(z)). This complete the proof. ��

5 Conclusion

Thus, we can summarize that the paper gives the algebraic analysis for the
problem of implementation black boxes by machines. The main results of the
analysis are the following

– the concepts of synchronous and asynchronous black boxes have been intro-
duced. This allows us to study not only systems with the immediate response
to each prime impact, but also systems, whose response depends on a sequence
of prime impacts;

– the nonanticipation property has been formulated for asynchronous black
boxes. It has been shown that this formulation generalises the correspond-
ing property for synchronous black boxes;

– the complete solution of the implementation problem has been given for both
synchronous and asynchronous black boxes. The machines that realise the
corresponding transfer functions are based on pre-automata, which had been
introduced by author jointly with Prof. M. Dokuchaev and Prof. B. Novikov
in earlier papers (see, for example, [4]).

It should be emphasised that issues dealing with computational properties of
pre-machines has not been considered in the paper. The coverage of these issues
requires a separate study.

Realisation of Synchronous and Asynchronous Black Boxes Using Machines 139

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

2. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956)
3. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 1. AMS,

Providence (1961)
4. Dokuchaev, M., Novikov, B., Zholtkevych, G.: Partial actions and automata. Alge-

bra Discrete Math. 11(2), 51–63 (2011)
5. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.,

Greenwich (2011)
6. Glushkov, V.M.: Some problems in the synthesis of digital automata. USSR Com-

put. Math. Math. Phys. 1(3), 399–446 (1962)
7. Mesarovic, M.D., Takahara, Y.: General Systems Theory: Mathematical Founda-

tion. Academic Press, New York (1975)
8. Michelson, B.M.: Event-driven architecture overview. Patricia Seybold Group

(2006)
9. Trakhtenbrot, B.A., Barzdin, J.M.: Finite Automata: Behaviour and Synthesis.

North-Holland Publishing Company, Amsterdam (1973)
10. Zholtkevych, G.: Realisation of “Black Boxes” using machines. In: Ermolayev, V.,

et al. (eds.) ICT in Education, Research, and Industrial Applications. CEUR–WS,
pp. 326–337 (2015). http://ceur-ws.org/Vol-1356/paper 32.pdf

http://ceur-ws.org/Vol-1356/paper_32.pdf

Analysis of Boundary States of Multi-state
System by Direct Partial Logic Derivatives

Elena Zaitseva(&), Vitaly Levashenko, Jozef Kostolny,
and Miroslav Kvassay

Department of Infromatics,
University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia

{elena.zaitseva,vitaly.levashenko,jozef.kostolny,

miroslav.kvassay}@fri.uniza.sk

Abstract. Multi-State System (MSS) is mathematical model that is used in
reliability engineering for the representation of initial investigated object (sys-
tem). In a MSS, both the system and its components may experience more than
two states (performance levels). One of possible description of MSS is a
structure function that is defined correlation between a system components states
and system performance level. The investigation of a structure function allows
obtaining different properties, measures and indices for MSS reliability. For
example, boundary system’s states, probabilities of a system performance levels
and other measures are calculated based a structure function. In this paper
mathematical approach of Direct Partial Logical Derivatives is proposed for
calculation of boundary states of MSS.

Keywords: Multi-state system � Multiple-valued logic � Direct partial logic
derivatives � Boundary state

1 Introduction

Reliability is considered as an important characteristic of any modern system.
How-ever, modern systems are very complex and, therefore, their reliability analysis is
a challenging task. The complexity of these systems results from the fact that they
consist of a huge amount of elements with various behaviour. Examples of such
systems include electrical transmission systems, gas grids [1, 2] or healthcare systems
[3]. Distribution grids are typical examples of network systems. They represent large
systems consisting of many (not necessarily) hardware elements with different prop-
erties, e.g. generating units, different types of transmission lines, and demand centres in
the case of electrical grids. Similarly, a healthcare system is a typical instance of
socio-technical systems composing of a lot of highly variable elements (components)
that can be classified as hardware, software, organizational, and human [1]. This variety
of components of complex systems causes that such systems can operate at many
different levels of performance and, therefore, their analysis is more difficult than the
analysis of other systems.

One of the principal tasks of reliability engineering is investigation of influence of
individual system components on system activity. Results of such analysis are useful in

© Springer International Publishing Switzerland 2016
V. Yakovyna et al. (Eds.): ICTERI 2015, CCIS 594, pp. 140–155, 2016.
DOI: 10.1007/978-3-319-30246-1_9

optimization of system availability or in planning system maintenance. This investiga-
tion requires creation of a model of the considered system. Several types of mathematical
models are used in reliability analysis. The first ones are known as Binary-State
Systems (BSSs) because they permit defining only two states in system/components
performance – functioning and failure. BSSs have been widely used in classical
approaches of reliability engineering [4]. However, they are not very suitable for the
analysis of complex systems because their use requires drawing the line between situ-
ations in which the system is functioning and when it is considered to be failure. Very
often, this is impossible and, therefore, other types of mathematical models are used.
According to [1], Multi-State Systems (MSSs) are one of the most prospective
approaches.

MSSs have been introduced in reliability engineering since 1975 [5–7]. Their main
advantage lies in the fact that they allow introducing more than two states in
system/components performance [1, 8], i.e. from perfectly functioning, through func-
tioning with restrictions, etc. to completely failed. This indicates that they are very
suitable for modelling of complex systems. On the other hand, growing number of
states of system components results in dramatic increase of model size, what causes
increase of time complexity of the analysis. Therefore, use of MSSs requires devel-
opment of new and effective methods that could be used to analyse them.

There are several approaches that are used in proposing methods and algorithms for
the investigation of MSSs. As a rule, these approaches are based on one of the fol-
lowing four mathematical backgrounds [8]: extensions of Boolean methods, stochastic
processes, universal generating function, and Monte Carlo simulation. Each of these
approaches is used for some specific tasks relating to evaluation of MSSs. For example,
stochastic processes (such as Markov processes) are used to analyse system state
transition process [9], universal generating function is useful in optimization problems
[10], while Monte Carlo simulation represents a universal tool for reliability assessment
of systems consisting of a huge amount of components [11]. If we want to investigate
influence of individual system components on the system activity, then the approach
based on extensions of Boolean methods can be viewed as one of the most suitable.

The idea of extensions of Boolean methods for the analysis of MSSs lies in the fact
that the tools of Boolean algebra have been widely used in reliability analysis of BSSs.
This has resulted from the fact that the system structure function, which defines
dependency between system state and states of system components, can be viewed as a
Boolean function in the case of BSSs [4, 8]. However, this is not true for MSSs.
Therefore, some works, e.g. [12, 13], have tried to transform the structure function of a
MSS into a Boolean function using Boolean algebra with restrictions [12]. Such
transformation allows us to use methods of Boolean algebra in reliability analysis of
MSSs. However, this transformation can result in increase of model complexity. To
avoid these complications, other authors have proposed using Multiple-Valued Logic
(MVL) in reliability analysis of MSSs since there are some correlations between the
structure function of a MSS and a MVL function [14, 15]. One of the tools of MVL that
can be used in the analysis of MSSs is logical differential calculus [16, 17].

Logical differential calculus has been developed for the analysis of dynamic
behaviour of Boolean and MVL functions. The central concept of this tool is a logic
derivative. There are several types of logic derivatives from which the most interesting

Analysis of Boundary States of Multi-state System 141

are Direct Partial Logic Derivatives (DPLDs). Use of DPLDs in reliability analysis of
MSSs has been considered in several works, e.g. [15–18]. In those works, it has been
shown that DPLDs are useful in calculation of special reliability indices that are named
as importance measures. In this paper we propose the application of DPLD for the
calculation of exact boundary states that indicate the system state for which the change
of one or some of fixed components cause the system performance level decrease or
increase. Therefore, they can be used to identify situations in which a degradation of a
given component results in a decrease of system performance. Identification of such
situations is very important for estimation of component influence on system activity.
New indices as probabilities of exact boundary states are introduced in the paper. These
indices allow estimating the stability of system in point of view of its availability.

The paper has next structure. Section 2 recalls some basics about structure function
and introduce a concept of boundary states of a MSS. Section 3 provides short
description of DPLDs computed with respect to one variable and with respect to a
vector of several variables (variable vector). Finally, new indices for estimation of MSS
boundary states are proposed in Sect. 4, the calculation of these indices are provided
based on DPLD.

2 MSS Structure Function

2.1 Structure Function of MSS

A MSS is mathematical model that is used for the description of the system of
n components. The i-th system component state is denoted as xi (i = 1, …, n). Consider
simple variant of a MSS where the system components and system have equal number
of states and performance levels. Each component in such mathematical representation
has m states that are indicated as 0 for the complete failure and as m-1 for perfect
functioning. Suppose, that the system has m performance level too: from the complete
failure (it is 0) to the perfect functioning (it is m-1). The system performance levels
depend on components states and this dependency is defined by the structure function ϕ
(x) identically:

/ x1; x2; . . .; xnð Þ ¼ / xð Þ : 0; 1; . . .; m� 1f gn ! 0; 1; . . .; m� 1f g: ð1Þ

In the mathematical point of view the structure function (1) corresponds with the
definition of a MVL function [19]. Therefore the mathematical approaches of MVL can
be used in qualification and quantification analysis of MSS. But the structure function
(1) allows representing the very small class of real system for which the number of
system performance levels and number of every component states are equal. As a rule,
the real-world system has different numbers of states for different components and
these numbers are not equal to number of performance levels and the structure function
of such system is defined as:

142 E. Zaitseva et al.

/ xð Þ : 0; 1; . . .; m1 � 1f g � . . . � 0; 1; . . .; mn � 1f g ! 0; 1; . . .; M � 1f g; ð2Þ

where mi is number of states for i-th system component (i = 1, …, n) and M is number
of a system performance levels.

The Eq. (2) is not a MVL function. The interpretation of the Eq. (2) as a MVL
function needs additional transformation. Some formal changes in the interpretation of
the structure function (2) allow to consider this function as an incompletely specified
MVL function. The first of them it is definition of value of incompletely specified MVL
function. In this case the maximal value of numbers of components states and number
of system performance level is interpreted as an value of incompletely specified MVL
function mmax = MAX{m1, …, mn, M}. The second changes in formal interpretation of
the structure function is addition of real values of mi (i = 1,.., n) and M to value of
incompletely specified MVL function mmax. And the structure function (2) as an
incompletely specified MVL function can be defined as:

/‘ xð Þ : 0; 1; . . .; mmax � 1f gn ! 0; 1; . . .; mmax � 1f g: ð3Þ

The interpretation of the structure function (2) as an incompletely specified MVL
function (3) permits to use mathematical approaches of MVL without principal
restriction for analysis of properties of the structure function (2). Therefore components
states (xi, i = 1, …, n) are interpreted as values of variables of MVL function and
system performance levels are considered as values of the MVL function (Fig. 1). And
changes of the i-th system component state agrees with changes of the i-th variable
value at that the changes of a MSS performance level can be considered as changes of a
MVL function. The introduction of these correlations is important for consideration of
a MSS boundary states that will be investigated below.

For example, consider the simple service system (Fig. 2) in a region from paper
[18]. This system consists of three components (n = 3) – service point 1 (x1), service
point 2 (x2) and infrastructure (x3). This system has four performance levels: 0 –

non-operational (no customer is satisfied), 1 – partially non-operational (some cus-
tomers are not satisfied), 2 – partially operational (some customers are satisfied),

Incompletely specified
MVL function

Structure function

Variables values Function values

(x) {0, …, mmax-1}

(x)

(x) {0, …, M-1}

(x)

xi {0, …, mmax-1}

xi

xi {0, …, mmax-1}

xi

Fig. 1. The correlation of MVL function and structure function.

Analysis of Boundary States of Multi-state System 143

3 – fully operational (all customers are satisfied). Next, we assume that the service
points are only functional (state 1) or dysfunctional (state 0). The infrastructure can be
modelled by 4 quality levels, i.e. from 0 (the quality of the infrastructure is poor) to 3
(the quality is perfect). The structure function of this system according to (2) is defined
in Table in Fig. 2 (where m1 = m2 = 2, m3 = 4 and M = 4). Interpret this structure
function as incompletely specified MVL function. The value of this function is defined
as maximal value of m1, m2, m3, and M and it is mmax = 4. Therefore two variables x1
and x2 must be added by two values: 2 and 3. But values of the structure function are
not known and are indicated by “–”. The structure function of this system as incom-
pletely specified MVL function is in Table 1.

Application of the mathematical approach of MVL in reliability engineering has
one assumption. This mathematical approach can be used for the analysis of MSS
reliability in stationary state or availability only because MVL function is
time-independent function [14, 19]. But this assumption is not restriction for the def-
inition of boundary states of a MSS and other reliability indices. Consider the calcu-
lation of most important indices in reliability analysis as availability and unavailability.
The availability and unavailability of MSS depend on components states. MSS com-
ponents states are defined in mathematical model by the probabilities of states:

pi;s ¼ Pr xi ¼ sf g; s ¼ 0; . . .; mi � 1: ð4Þ

A MSS availability and unavailability based on the conception of the structure
function (2) and taking into account the components states probabilities (4) are defined
as follows [8]:

A jð Þ ¼ Prf/ xð Þ � jg; j ¼ 1; . . .; M � 1; ð5Þ

U ¼ Prf/ xð Þ ¼ 0g: ð6Þ

The system The system structure function

Components states
x1 x2 x3

0 1 2 3
0 0 0 0 0 0
0 1 0 1 1 2
1 0 0 1 1 2
1 1 0 2 3 3

Fig. 2. A simple service system and its structure function

144 E. Zaitseva et al.

But there is the special case of the definition of the system availability for MSS as
[8, 15]:

Aj ¼ Prf/ xð Þ ¼ jg; j ¼ 1; . . .; M � 1 ð7Þ

In this paper Definitions (7) and (6) for a MSS availability and unavailability will
be used. Consider a coherent MSS. There are next assumptions for structure function of
a coherent MSS [8]: (a) the structure function (2) is monotone and ϕ(s) = s (s2{0, …,
m-1}), and (b) all components are s-independent and are relevant to the system.

In papers [6, 7] authors shown that any system state j (j = 1,…, M -1) of a coherent
MSS according to the assumption (b) can be calculated as the product of probabilities
of components states (4) and the system availability for performance level j is sum of
probabilities of all possible states for the performance level j. In terms of structure
function it means that the system availability (7) can be calculate as the sum of
probabilities of all values j of the structure function ϕ(x) that are computed as product
of probabilities of components states.

Illustrate the calculation of the availability (7) by example. Consider the simple
service system (Fig. 2) and calculate the availability of this system for the performance
level 3. The structure function of this system has two values 3 for the state vectors (x1
x2 x3) = (1, 1, 2) and (x1 x2 x3) = (1, 1, 3). Therefore the availability of the simple
service system for the performance level 3 is:

Table 1. The structure function of the simple service system represented as an incompletely
specified MVL function

Components
states

x1 x2 x3
0 1 2 3

0 0 0 0 0 0
0 1 0 1 1 2
0 2 – – – –

0 3 – – – –

1 0 0 1 1 2
1 1 0 2 3 3
1 2 – – – –

1 3 – – – –

2 0 – – – –

2 1 – – – –

2 2 – – – –

2 3 – – – –

3 0 – – – –

3 1 – – – –

3 2 – – – –

3 3 – – – –

Analysis of Boundary States of Multi-state System 145

A3 ¼ Prf/ xð Þ ¼ 3g ¼ Prf/ 1; 1; 2ð Þ þ Prf/ 1; 1; 3ð Þ ¼ p1;1 � p2;1 � p3;2 þ p3;3
� �

Taking into account the components states probabilities for this system shown in
Table 2 the availability of this system for the performance level 3 is A3 = 0.112.

The system availability for the performance levels 2 and 1, and unavailability are
calculated similar:

A2 ¼ Prf/ xð Þ ¼ 2g ¼ p1;1 � p2;1 � p3;1 þ ðp1;0 � p2;1 þ p1;1 � p2;0Þ � p3;3 ¼ 0:374;

A1 ¼ Prf/ xð Þ ¼ 1g ¼ ðp1;0 � p2;1 þ p1;1 � p2;0Þ � p3;1 þ p3;2
� � ¼ 0:266

U ¼ Prf/ xð Þ ¼ 0g ¼ p3;0 þ p1;0 � p2;0 � p3;1 þ p3;2 þ p3;3
� � ¼ 0:248

Note, the structure function in Table 1 has one more performance level that is
indicated as incompletely specified and marked by “–”. These states are depended on
the 1-th and 2-nd components states 2 and 3 for which the component state proba-
bilities are equal zero, because these states are not possible: p1,2 = p1,3 = p2,2 = p2,3 = 0.
Therefore the probability of this performance level is zero too.

The system availability for the performance level 2 has maximal value of proba-
bility, therefore the service system functioning is more possible as partially operational
(some customers are satisfied). The system fault or non-operational (where no customer
is satisfied) is characterized by unavailability U = 0.248. In comparison with other
available performance level this probability is not large.

The system availability and unavailability indicate the probability of the system
performance level been, but don’t represent the critical states/situation for which a
modification of one of components states causes the change of the system performance
level, first of all the system degradations. The definition such states are possible by the
boundary states of MSS.

2.2 Boundary States of MSS

The conception of boundary states has been proposed for Binary-State System firstly.
The boundary state of BSS is defined as system state for which the failure of one system
components causes of a system failure [23]. There are different types of boundary states
as minimal cut/path sets [14, 23]; exact boundary states [21]. In paper [8] boundary
states have been generalized for MSS. The boundary state of MSS must be defined for
every system performance level. In papers [24] the boundary states of MSS are

Table 2. The components states probabilities of the simple service system

Components states

x1 x2 x3
0 1 0 1 0 1 2 3

pi,s 0.3 0.7 0.2 0.8 0.2 0.6 0.1 0.1

146 E. Zaitseva et al.

interpreted as minimal cut/path sets. Authors of [22] introduced conception of Lower
(Upper) Boundary Points of MSS for system performance level j (j = 0, …, M-1). The
boundary states for system performance level j and component i (i = 1,…, n) (named as
exact boundary states) has been proposed and considered in papers [20, 21]. In paper
[18] and [25] the correlations of these boundary states with minimal cut/path sets and
Lower (Upper) Boundary Points are shown accordingly.

The exact boundary states have been considered in paper [15]. These states are
system states for which the change of the i-th component state from s to ~s causes the
system performance level change from j to ~j (s, ~s2 {0,…, mi -1}, s ≠ ~s and j, ~j2 {0,
…, M -1}, j ≠ ~j). The exact boundary state is defined by the exact boundary vector
unambiguously. Therefore the exact boundary vectors must be calculated for the def-
inition of exact boundary states. Illustrate the correlation of a system exact boundary
state and an exact boundary vector by the example for the service system in Fig. 2.

Determine the exact boundary states of this service system for which the failure of
the first component causes the system failure as the change of the system performance
level from state 1 to 0. According to Table 1, there are two situations that correspond to
this condition. They are possible for the failure of the second component and the third
component state 1 or 2. These exact boundary states can be presented as vector states:
x = (x1, x2, x3) = (1 → 0,0,1) and x = (x1, x2, x3) = (1 → 0,0,2). Note that the boundary
state x = (x1, x2, x3) = (1 → 0,0,3) does not satisfy the condition because the system
performance level in this case changes from 1 to 2 depending on the failure of the first
component.

One of possible mathematical approaches for the definition of the exact boundary
states in MVL is Logical Differential Calculus, in particular the DPLDs [19]. Consider
the application of this mathematical approach for analysis of structure function of MSS.

3 Direct Partial Logical Derivatives

3.1 Direct Partial Logical Derivative with Respect to One Variable

The mathematical tool of DPLDs has been proposed in [15] for calculation of an exact
boundary states of a MSS. In this paper the definition of DPLDs for MVL function has
been adapted for a structure function (1). This definition has been generalized for the
structure function (2) in paper [16]. According to [16] DPLD with respect to variable xi
for the structure function (2) permits analyse the system performance level change from
j to ~j when the i-th component state changes from s to ~s:

@/ðj ! ~jÞ�@xiðs ! ~sÞ ¼ 1; if /ðsi; xÞ ¼ j and /ð~si; xÞ ¼ ~j
0; other

�
ð8Þ

where ϕ(si, x) = ϕ(x1,…, xi-1, s, xi+1,…, xn); ϕ(~s, x) = ϕ(x1,…, xi-1, ~s, xi+1,…, xn); s, ~s2
{0,…, mi -1}, s ≠ ~s and j, ~j2 {0,…, M -1}, j ≠ ~j.

There is correlation between exact boundary states and DPLD. Therefore these
derivatives can be used for the calculation of exact boundary states and the

Analysis of Boundary States of Multi-state System 147

investigation of influence of the i-th system component changes from s to ~s to per-
formance level j.

For example, investigate the influence of the first component failure to the fault of the
simple service system in Fig. 2. DPLD ∂ϕ(1 → 0)/∂x1(1 → 0) allows to calculate the
system state for which this failure causes the system break down. The calculation of this
derivative is shown in Fig. 3 in form offlow graph. The derivative ∂ϕ(1→ 0)/∂x1(1→ 0)
has two non-zero values that agrees with state vectors: x = (x1, x2, x3) = (1→ 0,0,1) and
x = (x1, x2, x3) = (1→ 0,0,2). According to the definition of DPLD (8) for these system
states the failure of thefirst system component causes the system failure too. Therefore the
service system fails after the failure of the first service point if the second service point
isn’t functioning and the functioning of the infrastructure conforms state 1 or state 2. The
system states x = (x1, x2, x3) = (1 → 0,0,1) and x = (x1, x2, x3) = (1 → 0,0,2) are exact
boundary states for thefirst system component failure and the systemperformance level 1.

DPLD (8) allows investigating boundary states of a MSS for which component
state xi change from s to ~s causes the system performance level change from j to ~j.
Therefore, this derivative allows calculating exact boundary states of the i-th system
component for MSS performance level j that agree to state vectors x = (x1, x2,…, xn).
All possible changes of the i-th system component and their influence to MSS per-
formance level can be investigated based on DPLD (8). But this derivative permits to
investigate the influence of one component only. DPLD with respect of variable vector
investigates the system state changes depending on changes of states of some system
components.

Fig. 3. Calculation of the direct partial logic derivative ∂ϕ(1 → 0)/∂x1(1 → 0).

148 E. Zaitseva et al.

3.2 Direct Partial Logical Derivative with Respect to Variable Vector

DPLD of a structure function ϕ(x) of n variables with respect to variables vector
xðpÞ ¼ xi1 ; xi2 ; . . .; xip

� �
reflects the fact of changing of function from j to ~j when the

value of every variable of vector x(p) is changing from s to ~s [16]:

@/ðj ! ~jÞ
.
@xiðsðpÞ ! ~sðpÞÞ ¼ 1; if /ðsi1 ; . . .; sip ; xÞ ¼ j and /ð~si1 ; . . .; ~sip ; xÞ ¼ ~j

0; other

�
ð9Þ

In (9) a change of value of iq-th variable xiq form siq to ~siq agrees with a change of
iq-th MSS component state form siq to ~siq (q = 1, …, p and p < n). Changes of some

components states correspond with change of a variables vector xðpÞ ¼ xi1 ; . . .; xip
� �

.
Every variable values of this vector changes form siq to ~siq . So, vector x(p) can be
interpreted as components states vector or components efficiencies vector.

For example, consider the simple service system (Fig. 2) failure depending on fault
of the first service point and reduction of functioning of infrastructure from state 2 to
state 1. This system behavior can be presented by the Direct Partial Logic Derivative ∂ϕ
(1 → 0)/∂x1(1 → 0) ∂x3(2 → 1). The calculation of this derivative is shown in Fig. 4.

The derivative ∂ϕ(1 → 0)/∂x1(1 → 0) ∂x3(2 → 1) has two values and one of them
is non-zero value that agrees with state vector: x = (x1, x2, x3) = (1→ 0, 0, 2→ 1). This
state vector define of the service system failure depending on the failure of the first
service point and deterioration of the infrastructure functioning from state 2 to state 1.
Therefore the system state x = (x1, x2, x3) = (1 → 0, 0, 2 → 1) can be interpreted as
exact boundary state for the first and the third system components of the system
performance level 1.

Fig. 4. Calculation of the direct partial logic derivative ∂ϕ(1 → 0)/∂x1(1 → 0) ∂x3(2 → 1).

Analysis of Boundary States of Multi-state System 149

The Direct Partial Logic Derivative with respect to variable vector (15) allows
investigating boundary states of a MSS for which simultaneous changes of p compo-
nents states from siq to ~siq (q = 1, …, p and p < n) causes the system performance level

change from j to ~j. Therefore, the Direct Partial Logic Derivative with respect to
variable vector allows calculating exact boundary states for MSS performance level j of
the i-th system component.

4 The Calculation and Estimation of Exact Boundary States
of MSS Based on Direct Partial Logic Derivatives

The exact boundary state of MSS are defined based on the condition that fixed system
performance level change depending on the appointed change of one system compo-
nent state or specified changes of some components states. DPLD with respect to one
variable (8) and DPLD with respect to variable vector (9) can be used to investigate
change of the system performance level from j to~j that are caused by specified changes
of one or some system components states. These derivatives have non-zero values of
the structure function for system states that satisfy for specified condition: the system
performance level change from j to ~j depending on specified changes of one or some
system components states. Therefor the exact boundary states can be defined as system
states that conform to non-zero values of derivatives (8) and (9). In paper [26] new
probabilistic indices for exact boundary state that allow estimating the probability of
the system boundary/critical states. In this paper this investigation is continued and
some new indices are introduced.

Use the symbol xi
j!~j

s!~s

� �
for the exact boundary state of MSS performance level

j depending on the i-th system component has been introduced in paper [26]. This state
is indicated by vector state x = (x1,…, xi,…, xn) = (a1,…, si,…, an) for which ϕ(a1,
…, si,…, an) = j and ϕ(a1,…, ~si,…, an) = ~j. Therefore this state can be calculated as
non-zero value of DPLD (8). The exact boundary state for MSS performance level

j depends on p components xi1, xi2, …, xip xi1 . . .xip
j!~j

si1!~si1 sip!~sip

 !
is indicated by vector state

x = (x1,…, xi1,…, xip,…, xn) = (a1,…, si1,…, sip,…, an). This state is calculated as
non-zero value of DPLD (9).

In paper [26] some probabilistic indices of the exact boundary states for the
coherent MSS have been introduced (Table 3).

The probability of every boundary state (a1, …, si, …, an) for MSS performance
level j depending on the i-th system component change from s to ~s is calculated based
on the probabilities of components states [26]:

pða1...anÞ xi
j!~j

s!~s

� �
¼ p1;a1 � . . . � pi�1;ai�1 � pi;si � piþ 1;aiþ 1 � . . .pn;an ð10Þ

150 E. Zaitseva et al.

The practical application of estimation of a MSS boundary states supposes the
calculation of other probabilities, for example, as probability of MSS performance level
change depending on all possible changes of the i-th system component. These
probabilities are calculated based on the probability of the system boundary state
(10) and are presented in Table 3.

In the Table 3 new indices for the analysis of MSS availability are proposed. These
indices are probabilities of exact boundary states that allow estimate the critical
state/situation of investigated system/object. In particular, these indices allow investi-
gating the influence of different changes the i-th component state s to the fixed per-
formance level.

The similar indices for probabilistic estimation of exact boundary states (Table 3
and 4) can be defined for estimation of exact boundary state for MSS performance level

j of p components xi1 ; xi2 ; . . .; xiP xi1 . . .xip
j!~j

si1!~si1 sip!~sip

 !
.

Table 3. Probabilities for the estimation of exact boundary states of MSS defined in paper [26]

The index description Equation for calculation

The probability of exact boundary state of the i-th
component change from s to ~s and for
performance level change from j to ~j

p xi
j!~j

s!~s

� �
¼ P

/ða1;...;si;...;anÞ¼j
pða1...anÞ xi

j!~j

s!~s

� �

The probability of exact boundary states of the i-th
component for all changes and for performance
level change from j to ~j

p xi
j!~j
� �

¼P
s;~s

p xi
j!~j

s!~s

� �

The probability of exact boundary states of the i-th
component change from s to ~s and for all
performance level j changes

p xi
s!~s

� �
¼P

j;~j

p xi
j!~j

s!~s

� �

The probability of exact boundary states of the i-th
component all changes p xi

� �
¼P

s;~s
p xi

s!~s

� �

Table 4. New probabilities for the estimation of exact boundary states of MSS

The index description Equation for calculation

Probability of exact boundary state of i-th component for all
decreases from state s and for performance level change
from j to ~j

p xi
j!~j

s#

� �
¼ P0

r¼s�1
p xi

j!~j

s!r

� �

Probability of exact boundary state of i-th component for all
increases from state s and for performance level change
from j to ~j

p xi
j!~j

s"

� �
¼ Pm�1

r¼sþ 1
p xi

j!~j

s!r

� �

Probability of exact board state of i-th component for all
changes of state s and for performance level change from
j to ~j

p xi
j!~j

s

� �
¼ p xi

j!~j

s#

� �
þ p xi

j!~j

s"

� �

Probability of exact board state of i-th component for all
decreases from state s and for performance level change
from j to ~j

p xi
j!~j
� �

¼ Pm�1

r¼0
p xi

j!~j

r

� �

Analysis of Boundary States of Multi-state System 151

Consider the examples of the estimation of exact boundary states for the simple
service system (Fig. 2). The components states probabilities for this system are defined in
Table 2. Investigate this system failure depending on the first components. DPLD ∂ϕ
(1 → 0)/∂x1(1 → 0) represents this system behavior (Fig. 3). This derivative has two

non-zero values that conform to two boundary states x1
1!0

1!0

� �
: x = (1, 0, 1) and x = (1, 0, 2).

The probabilities of boundary states for the system failure depending on the first

component break down x1
1!0

1!0

� �
are calculate according to (16) and are:

p x1
1!0

1!0

� �
¼ pð101Þ x1

1!0

1!0

� �
þ pð102Þ x1

1!0

1!0

� �
¼ p1;1 � p2;0 � p3;1 þ p1;1 � p2;0 � p3;2 ¼ 0:098 ð11Þ

By the similar way the probability of this system failure depending on the break-

down of the second service point is calculated and this probability is p x2
1!0

1!0

� �
¼ 0:168

too. The influence of the infrastructure failure to the fault of the system by the critical

state is estimated as p x3
1!0

1!0

� �
¼ 0:228. Therefore the infrastructure failure has maximal

influence to the stop of the service system.
Investigate other critical states of this system failure. The critical states can be

indicated as exact boundary states of the system. These states correlate to non-zero
values of DPLDs @/ðj ! 0Þ=@xiðs ! s� 1Þ for j, s 2 {1, 2, 3} (Table 5).

Table 5. The exact boundary states of simple service system calculated based on DPLD

DPLDs Boundary states for the components
x1 x2 x2

@/ð1 ! 0Þ=@xið3 ! 2Þ –

@/ð1 ! 0Þ=@xið3 ! 1Þ –

@/ð1 ! 0Þ=@xið3 ! 0Þ –

@/ð1 ! 0Þ=@xið2 ! 1Þ –

@/ð1 ! 0Þ=@xið2 ! 0Þ (0, 1, 2), (1, 0, 2)
@/ð1 ! 0Þ=@xið1 ! 0Þ (1, 0, 1), (1, 0, 2) (0, 1, 1), (0, 1, 2) (0, 1, 1), (1, 0, 1)
@/ð2 ! 0Þ=@xið3 ! 2Þ –

@/ð2 ! 0Þ=@xið3 ! 1Þ –

@/ð2 ! 0Þ=@xið3 ! 0Þ (0, 1, 3), (1, 0, 3)
@/ð2 ! 0Þ=@xið2 ! 1Þ –

@/ð2 ! 0Þ=@xið2 ! 0Þ –

@/ð2 ! 0Þ=@xið1 ! 0Þ (1, 0, 3) (0, 1, 3) (1, 1, 1)
@/ð3 ! 0Þ=@xið3 ! 2Þ –

@/ð3 ! 0Þ=@xið3 ! 1Þ –

@/ð3 ! 0Þ=@xið3 ! 0Þ (1, 1, 3)
@uð3 ! 0Þ=@xið2 ! 1Þ –

@uð3 ! 0Þ=@xið2 ! 0Þ (1, 1, 2)
@uð3 ! 0Þ=@xið1 ! 0Þ – – –

152 E. Zaitseva et al.

All critical state for every of components of the service system failure are shown in
Table 5. The symbol “–” is in cell, if the critical states are absent for fixed component
change. The grey cells agree with the situations where the indicated changes are not
possible. The analysis of the exact boundary states in Table 5 shows conditions of the
system failure. The system failure can be caused by break down of any system com-
ponent (one of the service points or the infrastructure), but the degradation the system
infrastructure has not influence for the system fault (changes the third component state
x3 from 3 to 2 and from 2 to 1). The probabilistic estimations of the critical states are
shown in Table 6. According to these indices the system failure (performance level
change from 3 to 0) depending on the third component fault is most possible. The
probabilities of other failures of the system (performance level change from 2 to 0 and
from 1 to 0) have large values in comparison with probabilities of other critical states.
Therefore the third component (the system infrastructure) is most important for the
functioning of the system in whole and the support of this component working state
must be principal goal of this system maintenance. The index of the system failure
depending of all possible changes of one of system components p xið Þ has maximal
value for the third component that indicates principal influence of this component to the
system failure too.

Therefore the proposed indices for the estimation of the exact boundary states are
useful for the analysis of the system availability and its functioning. These indices
permit to indicate the system component with maximal influence to the fixed changes of
the performance levels. These components will have priority in the maintenance plan.

5 Conclusion

The mathematical methods of MVL are used in reliability estimation of MSS. The
mathematical background for application of mathematical methods of MVL for relia-
bility analysis of MSS is considered in this paper. The correlation of the structure
function (2) and MVL function are shown and proved by means of the conception of
incompletely specified MVL function. This background allows using DPLD for
analysis of MSS structure function.

In this paper the investigation of boundary values of the structure function of MSS
and definition of MSS exact boundary states based on these valued are considered.
Conception of exact boundary states is important for the examination of critical
states/situation of the system functioning and availability. The analysis of probabilistic

Table 6. Probabilities for the estimation of critical states of the simple service system

⎟⎠
⎞⎜⎝

⎛ →

→

01

01
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

01

02
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

02

03
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

02

01
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

03

02
i

xp ⎟⎠
⎞⎜⎝

⎛ →

→

03

03
i

xp ⎟⎠
⎞⎜⎝

⎛ →01

i
xp ⎟⎠

⎞⎜⎝
⎛ →02

i
xp ⎟⎠

⎞⎜⎝
⎛ →03

i
xp ⎟⎠

⎞⎜⎝
⎛

→01
i

xp ⎟⎠
⎞⎜⎝

⎛
→02

i
xp ⎟⎠

⎞⎜⎝
⎛

→03
i

xp ⎟⎠
⎞⎜⎝

⎛
i

xp

x1 0.098 0.014 0.098 0.014 0 0.112 0.112
x2 0.168 0.024 0.168 0.024 0 0.192 0.192
x3 0.228 0.038 – 0.336 – 0.056 0.266 0.336 0.056 0.564 0.038 0.056 0.658

Analysis of Boundary States of Multi-state System 153

indices of exact boundary states allows indicating the system components with most
influence and taking into account such components in the maintenance plan.

The analysis of MSS based on the exact boundary states has not limits for the
numbers of components (n) and states for every component (mi), and system perfor-
mance levels (M) according to the theoretical background. But in real-world applica-
tions these numbers have important influence to the structure function dimension
(number of structure function elements) that is calculated as:

Nstructure function dimension = m1 × m1 × … × mn

As a rule the number of system performance levels (M) and number of component
states (mi) are defined between two and seven. According to the investigation in papers
[16–18] the Direct Partial Logical Derivatives is applicable for systems which have
dimension less than ten millions elements. Therefore the proposed method can be
useful for the MSS analysis with number of components under ten.

Acknowledgments. This work was partially supported by grant of Scientific Grant Agency of
the Ministry of Education of Slovak Republic (Vega 1/0498/14).

References

1. Zio, E.: Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Saf.
94, 125–141 (2009)

2. Praks, P., Kopustinskas, V.: Monte-carlo based reliability modelling of a gas network using
graph theory approach. In: 2014 Ninth International Conference on Availability, Reliability
and Security, pp. 380–386. IEEE (2014)

3. Zaitseva, E., Levashenko, V., Rusin, M.: Reliability analysis of healthcare system. In:
FedCSIS 2011 Federated Conference on Computer Science and Information Systems,
pp. 169–175. IEEE (2011)

4. Rausand, M., Høyland, A.: System Reliability Theory. John Wiley and Sons Inc., Haboken
(2004)

5. Murchland, J.D.: Fundamental concepts and relations for reliability analysis of multistate
system. In: Reliability and Fault Tree Analysis, Theoretical and Applied Aspects of System
Reliability, SIAM, pp. 581–618 (1975)

6. Barlow, R.E., Wu, A.S.: Coherent systems with multi-state components. Math. Oper. Res. 3,
275–281 (1978)

7. Hudson, J.C., Kapur, K.C.: Modules in coherent multistate systems. IEEE Trans. Reliab. 32,
183–185 (1983)

8. Lisnianski, A., Levitin, G.: Multi-state System Reliability: Assessment, Optimization and
Applications. World Scientific, Singapore (2003)

9. Xie, M., Dai, Y.-S., Poh, K.-L.: Multi-state system reliability. In: Computing System
Reliability Models and Analysis, pp. 207–237. Kluwer Academic Publishers, New York
(2004)

10. Levitin, G., Lisniansi, A.: Optimization of imperfect preventive maintenance for multi-state
system. Reliab. Eng. Syst. Saf. 67, 193–203 (2000)

154 E. Zaitseva et al.

11. Zio, E., Marella, M., Podofillini, L.: A monte carlo simulation approach to the availability
assessment of multi-state systems with operational dependencies. Reliab. Eng. Syst. Saf. 92,
871–882 (2007)

12. Caldarola, L.: Coherent system with multi-state components. Nucl. Eng. Des. 58, 127–139
(1980)

13. Veeraraghavan, M., Trivedi, K.S.: A combinatorial algorithm for performance and reliability
analysis using multistate models. IEEE Trans. Comput. 43, 229–234 (1994)

14. Reinske, K., Ushakov, I.: Application of graph theory for reliability analysis. Radio i Sviaz,
Moscow, USSR (1988) (in Russian)

15. Zaitseva, E.: Reliability analysis of Multi-State System. Dyn. Syst. Geom. Theor. 1, 213–
222 (2003)

16. Zaitseva, E.: Importance analysis of a multi-state system based on multiple-valued logic
methods. In: Lisnianski, A., Frenkel, I. (eds.) Recent Advances in System Reliability:
Signatures, Multi-state Systems and Statistical Inference, pp. 113–134. Springer, London
(2012)

17. Zaitseva, E., Levashenko, V.: Multiple-valued logic mathematical approaches for multi-state
system reliability analysis. J. Appl. Logic 11, 350–362 (2013)

18. Kvassay, M., Zaitseva, E., Levashenko, V.: Minimal cut sets and direct partial logic
derivatives in reliability analysis. In: Proceedings of the European Safety and Reliability
Conference on Safety and Reliability: Methodology and Applications, pp. 241–248. CRC
Press (2014)

19. Miller, M.D., Thornton, M.A.: Multiple Valued Logic: Concepts and Representations.
Synthesis Lectures on Digital Circuits and systems. Morgan and Claypool Publishers,
San Rafael (2008)

20. Zaitseva, E., Kovalik, S., Levashenko, V., Matiaško, K.: Algorithm for dynamic analysis of
multi-state system by structure function. In: IEEE International Conference on Computer as
a Tool, pp.1224–1227. IEEE Press (2005)

21. Zaitseva, E.: Dynamic reliability indices for multi-state system. In: The 33th IEEE
International Symposium on Multiple-Valued Logic, pp. 287–292. IEEE Press (2003)

22. Boedigheimer, R.A., Kapur, K.C.: Customer-driven reliability models for multistate
coherent systems. IEEE Trans. Reliab. 43, 46–50 (1994)

23. Vachtsevanos, G., Lewis, F.L., Roemer, M., Hess, A., Wu, B.: Intelligent Fault Diagnosis
and Prognosis for Engineering Systems. John Wiley and Sons, Hoboken (2006)

24. Yeh, W.C.: A fast algorithm for searching all multi-state minimal cuts. IEEE Trans. Reliab.
57, 581–588 (2008)

25. Kapur, K.C., Zaitseva, E., Kovalik, S., Matiasko, K.: Customer-driven reliability models and
logical differential calculus for reliability analysis of multi state system. J. KONBIN 1, 39–
47 (2006)

26. Zaitseva, E., Levashenko, V., Kostolny, J., Kvassay, M.: Direct partial logic derivatives in
analysis of boundary states of multi-state system. In: 11th International Conference on ICT
in Education, Research and Industrial Applications: Integration, Harmonization and
Knowledge Transfer, pp. 535–549. CEUR-WS (2015)

Analysis of Boundary States of Multi-state System 155

Author Index

Alexandru, Andrei 73
Aman, Bogdan 91

Baklanova, Nadezhda 109

Ciobanu, Gabriel 73, 91

Fusani, Mario 38

Gamzayev, Rustam 20
Gordieiev, Oleksandr 38

Kharchenko, Vyacheslav 38
Kostolny, Jozef 140
Kvassay, Miroslav 140

Levashenko, Vitaly 140

Mandziy, Bohdan 56

Nagornyi, Konstiantyn 20

Ozirkovskyy, Leonid 56

Ricciotti, Wilmer 109

Smaus, Jan-Georg 109
Spivakovsky, Aleksandr 3
Strecker, Martin 109

Tarasich, Yulia 3
Tkachuk, Mykola 20

Vinnyk, Maksym 3
Volochiy, Bohdan 56

Zaitseva, Elena 140
Zholtkevych, Grygoriy 124

	Preface
	Organization
	Contents
	ICT in Education and Industrial Applications
	Web Indicators of ICT Use in the Work of Ukrainian Dissertation Committees and Graduate Schools as E ...
	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Settings
	4 Experimental Results
	5 Our Vision on ICT Development of DC & GS Infrastructure
	6 Concluding Remarks and Future Work
	References

	Models, Methods and Tools for Effectiveness Estimation of Post Object-Oriented Technologies in Softw ...
	Abstract
	1 Introduction: Problem Domain Actuality and Research Aims
	2 Crosscutting Functionality Phenomena in Software Maintenance: Related Work
	3 A Short Survey of Post Object-Oriented Technologies: Main Features and Comparative Analysis Results
	4 Knowledge-Based Approach to Effectiveness’s Estimation of Post Object-Oriented Technologies
	4.1 Metaphor of Multi-dimensional Information Space and Algorithmic Model for POOT Effectiveness Est ...
	4.2 Definition of Legacy Software System Types
	4.3 An Architecture-Centered Method for POOT Effort Calculation
	4.4 Quantitative Metrics for Crosscutting Functionality Ratio in Legacy Software
	4.5 Fuzzy Logic Approach to Complex Effectiveness Estimation of POOT

	5 First Implementation Issues, Test-Case and Results Discussion for the Proposed Approach
	5.1 An Informational Technology to Support the Proposed Approach
	5.2 Test-Case Data Description and Results Discussion

	6 Conclusions and Future Work
	References

	Software Quality Standards and Models Evolution: Greenness and Reliability Issues
	Abstract
	1 Introduction
	1.1 Motivation and Work Related Analysis
	1.2 Goal and Approach

	2 SWQM Analysis in Context of Green Software and Reliability
	2.1 Analyzed Models
	2.2 Metrics
	2.3 Results of SWQM in Context of Green Software and Reliability Characteristics
	2.4 Development of SWQM in Context of Green Software

	3 GSW Oriented oN Extending of SWQMs
	3.1 Variants of GSW Characteristics Inclusion in SWQM
	3.2 SWQM in Use. Analysis in Context of GSW

	4 Software Quality Assessment Metrics Analysis
	4.1 Standards ISO/IEC 9126-2 and ISO/IEC 25023: Comparing of Metrics
	4.2 Metrics of Reliability and Greenness

	5 Conclusion
	References

	The New Method of Building a Safety Model for Quantitative Risk Assessment of Complex Technical Syst ...
	Abstract
	1 Introduction
	2 Approaches Analysis of Complex Technical Systems Critical Application Safety and Reliability Modeling
	3 Improvement of the State Space Method and Its Formalization for Safety Models Building
	4 An Example of the Usage of Developed Method of MCS Definition
	4.1 Validation of the Developed Method

	5 Conclusions
	References

	Formal Frameworks
	Main Steps in Defining Finitely Supported Mathematics
	1 Introduction
	2 Subdivisions of the Fraenkel-Mostowski Framework
	3 Sets with Atoms
	4 Reformulating the Classical ZF Results in FSM
	5 Proving that Some Structures Are Finitely Supported
	6 Applications of FSM in Experimental Sciences
	6.1 Algebraic Structures in Finitely Supported Mathematics
	6.2 Process Algebras in Finitely Supported Mathematics

	7 Conclusion
	8 An Open Problem
	References

	Solving NP-complete Problems in Polynomial Time by Using a Natural Computing Model
	1 Introduction
	2 Preliminaries
	3 Solving the SAT Problem with Active Membranes
	3.1 Solving SAT Problem by Using a Pre-computed Alphabet
	3.2 Solving SAT Problem Using a Pre-computed Initial Structure

	4 Natural Computing Modelling of the Polynomial Space Turing Machines
	4.1 A Membrane Structure for Simulation
	4.2 Simulating Polynomial Space Turing Machines

	5 Conclusion
	References

	Abstracting an Operational Semantics to Finite Automata
	1 Introduction
	2 Problem Statement
	2.1 Preservation of Execution Context
	2.2 Semantic Artifacts

	3 Zipper-Based Semantics of Imperative Programs
	3.1 The Zipper Data Structure
	3.2 Semantics

	4 Target Language: Automata
	4.1 Syntax
	4.2 Semantics

	5 Automata Construction
	6 Simulation Property
	7 Relationship with Big-Step Semantics
	8 Conclusions
	References

	Realisation of Synchronous and Asynchronous Black Boxes Using Machines
	1 Introduction
	2 Motivation and Preliminaries
	2.1 Synchronous and Asynchronous Black Boxes
	2.2 Basic Definitions and Notation

	3 Nonanticipation Property for Black Boxes
	3.1 Nonanticipation Property: Case of Synchronous Black Box
	3.2 Nonanticipation Property: Case of Asynchronous Black Box

	4 Implementation Problem for Black Boxes
	4.1 Implementation of Synchronous Black Box
	4.2 Implementation of Asynchronous Black Box

	5 Conclusion
	References

	Analysis of Boundary States of Multi-state System by Direct Partial Logic Derivatives
	Abstract
	1 Introduction
	2 MSS Structure Function
	2.1 Structure Function of MSS
	2.2 Boundary States of MSS

	3 Direct Partial Logical Derivatives
	3.1 Direct Partial Logical Derivative with Respect to One Variable
	3.2 Direct Partial Logical Derivative with Respect to Variable Vector

	4 The Calculation and Estimation of Exact Boundary States of MSS Based on Direct Partial Logic Derivatives
	5 Conclusion
	Acknowledgments
	References

	Author Index

