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Preface

This volume contains the revised versions of selected papers presented at ILP 2015:
The 25th International Conference on Inductive Logic Programming. ILP 2015 was
held in Kyoto University, Kyoto, Japan, during August 20–22, 2015. The ILP con-
ference series has been the premier international forum on ILP. Topics in ILP con-
ferences address theories, algorithms, representations and languages, systems and
applications of ILP, and cover all areas of learning in logic, relational learning, rela-
tional data mining, statistical relational learning, multi-relational data mining, relational
reinforcement learning, graph mining, connections with other learning paradigms,
among others.

We solicited three kinds of papers: (1) long papers describing original mature work
containing appropriate experimental evaluation and/or representing a self-contained
theoretical contribution, (2) short papers describing original work in progress, brief
accounts of original ideas without conclusive experimental evaluation, and other rel-
evant work of potentially high scientific interest but not yet qualifying for the long
paper category, and (3) papers relevant to the conference topics and recently published
or accepted for publication by a first-class conference or journal.

There were 44 submissions in total, 24 long papers, 18 short papers, and two
published papers. Long papers were reviewed by at least three members of the Program
Committee (PC), and 13 papers were accepted for oral presentation at ILP 2015.
Among them, five long papers were invited to submit a final version to the LNAI
conference proceedings (without a further review) during the first round of reviews, and
the other eight papers were invited to submit a full version to the proceedings after
another review round. Short papers were firstly reviewed on the grounds of relevance
by PC co-chairs, and 17 papers were accepted for short oral presentation. Each short
paper was reviewed by at least three members of the PC, and 11 papers were invited to
submit a full version to the proceedings after another review round. Among the 19
invited papers that needed second reviews, 16 papers were finally submitted. Each
submission was reviewed again by at least three PC members, and nine papers were
accepted finally. Hence, together with the five long papers without the second reviews,
the PC co-chairs finally decided to include 14 papers in this volume. This is a rather
complicated review process with the three review rounds (long, short, and proceed-
ings), but we believe that we can select high-quality papers this way. We thank the
members of the PC for providing high-quality and timely reviews.

There were 10 technical sessions at ILP 2015: Nonmonotonic Semantics, Logic and
Learning, Complexity, Action Learning, Distribution Semantics, Implementation,
Kernel Programming, Data and Knowledge Modeling, and Cognitive Modeling. Two
proceedings are published for ILP 2015: a volume of Springer’s LNAI series for
selected papers (this volume) and an electronic volume of CEUR-WS.org for
late-breaking papers. Moreover, there will be a special issue on ILP in the journal
Machine Learning.



The program of ILP 2015 also included three excellent invited talks given by
Stephen Muggleton from Imperial College London, Taisuke Sato from Tokyo Institute
of Technology, and Luc De Raedt from Katholieke Universiteit Leuven. Stephen
Muggleton gave the talk “Meta-Interpretive Learning: Achievements and Challenges,”
and detailed their work on meta-interpretive learning, which is a recent ILP technique
aimed at supporting learning of recursive definitions and predicate invention. Taisuke
Sato first published the distribution semantics for probabilistic logic programming
(PLP) in 1995, and ILP 2015 celebrated the 20th anniversary of the distribution
semantics in the form of Sato’s talk “Distribution Semantics and Cyclic Relational
Modeling,” which was followed by a session of probabilistic ILP. Luc De Raedt
reported in his invited talk “Applications of Probabilistic Logic Programming” their
recent progress in applying PLP to challenging applications.

At ILP 2015, the Machine Learning journal generously continued its sponsorship
of the best student paper award. The two best student paper awards of ILP 2015 were
given to Golnoosh Farnadi for her paper “Statistical Relational Learning with Soft
Quantifiers” (co-authored with Stephen H. Bach, Marjon Blondeel, Marie-Francine
Moens, Martine De Cock, and Lise Getoor), and Francesco Orsini for his paper
“kProlog: An Algebraic Prolog for Kernel Programming” (co-authored with Paolo
Frasconi and Luc De Raedt).

To celebrate the 25th anniversary of the ILP conference series, ILP 2015 organized a
panel discussion on the past and future progress of ILP. The panelists were Stephen
Muggleton, Fabrizio Riguzzi, Filip Zelezny, Gerson Zaverucha, Jesse Davis, and
Katsumi Inoue, who are all chairs of the last five years of ILP conferences (2011–
2015), and Taisuke Sato.

A survey of ILP 2015 including the abstracts of these three invited talks and “ILP 25
Years Panel” as well as recent trends in ILP was presented at AAAI-16 as a “What’s
Hot” talk—Katsumi Inoue, Hayato Ohwada, and Akihiro Yamamoto, “Inductive Logic
Programming: Challenges,” in: Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI-16; Phoenix, Arizona, USA, February 14, 2016), pp. 4330–4332,
2016.

ILP 2015 was kindly sponsored by The Japanese Society for Artificial Intelligence
(JSAI), Artificial Intelligence (Elsevier), Machine Learning (Springer), Support Center
for Advanced Telecommunications Technology Research Foundation (SCAT), Inoue
Foundation for Science, SONAR Ltd., Video Research Ltd., The Graduate University
for Advanced Studies (SOKENDAI), National Institute of Informatics (NII), Tokyo
University of Science, and Kyoto University. Last but not least, we would like to thank
the members of the Local Committee of ILP 2015: Kotaro Okazaki (local chair), Taku
Harada, Kimiko Kato, Hiroyuki Nishiyama, Tony Ribeiro, Suguru Ueda, Ryo
Yoshinaka, and their teams. They did an outstanding job with the local arrangements,
and the conference would not have been possible without their hard work.

April 2016 Katsumi Inoue
Hayato Ohwada

Akihiro Yamamoto
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Relational Kernel-Based Grasping
with Numerical Features

Laura Antanas(B), Plinio Moreno, and Luc De Raedt

Department of Computer Science, KU Leuven, Leuven, Belgium
{laura.antanas,plinio.moreno,luc.deraedt}@cs.kuleuven.be

Abstract. Object grasping is a key task in robot manipulation. Per-
forming a grasp largely depends on the object properties and grasp
constraints. This paper proposes a new statistical relational learning
approach to recognize graspable points in object point clouds. We char-
acterize each point with numerical shape features and represent each
cloud as a (hyper-) graph by considering qualitative spatial relations
between neighboring points. Further, we use kernels on graphs to exploit
extended contextual shape information and compute discriminative fea-
tures which show improvement upon local shape features. Our work for
robot grasping highlights the importance of moving towards integrating
relational representations with low-level descriptors for robot vision. We
evaluate our relational kernel-based approach on a realistic dataset with
8 objects.

Keywords: Robot grasping · Graph-based representations · Numerical
shape features · Relational kernels · Numerical feature pooling

1 Introduction

To operate in the real world, a robot requires good manipulation skills. A good
robot grasp depends on the specific manipulation scenario, and essentially on the
object properties, as well as grasp constraints (e.g., gripper configuration, envi-
ronmental restrictions). As in robot manipulation objects are widely described
using point clouds, robot grasping often relies on finding good mappings between
gripper orientations and object regions (or points). To this end, much of the cur-
rent work on robot grasping focuses on adapting low-level descriptors popular
in the computer vision community (i.e., shape context) to characterize the gras-
pability of an object point. Essentially, this translates into calculating, for each
point in the cloud, a shape feature descriptor that summarizes a limited neigh-
bouring surface around the point. However, such local shape features do not
work properly on very complex or (self-) occluded objects.

A first contribution of this paper is to investigate whether the structure of
the object can improve robot grasping by means of statistical relational learning
(SRL). In order to do so, we propose to employ a graph-based representation
of the object that exploits both local numerical shape features and higher-level
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 1–14, 2016.
DOI: 10.1007/978-3-319-40566-7 1



2 L. Antanas et al.

information about the structure of the object. Given a 3D point cloud of the
object, we characterize each point with shape features and represent the cloud
as a (hyper-) graph by adding symbolic spatial relations that hold among neigh-
boring object points. As a result, graph nodes corresponding to object points are
characterized by distributions of numerical shape features instead of semantic
labels. The derived relational graph captures extended contextual shape infor-
mation of the object which may be useful to better recognize graspable points.
As an example, consider a graspable point on the rim of a cup. Although it may
be characterized by a misleading local shape descriptor due to its position or
perceptual noise, this can be corrected by nearby graspable points with more
accurate shape features.

As a second contribution, we propose a new relational kernel-based approach
to numerical feature pooling for robot grasping. To recognize graspable points we
employ relational kernels defined on the attributed graph. For each point, our
relational kernel exploits extended contextual information and aggregates (or
pools) numerical shape features according to the graph structure, yielding more
discriminative features. Its benefit is shown experimentally on a realistic dataset.
Our work highlights the importance of moving towards integrating relational
representations with low-level descriptors for robot vision.

We proceed as follows. We first explain in Sect. 2 the grasping primitives
that define our setup. Afterwards, we present our relational formulation for the
learning problem considered (Sect. 3) and show how we solve it with variants of
relational kernels (Sect. 4). Next, in Sect. 5 we present our experimental results.
Before concluding, we review related work on robot grasping, feature pooling
and graph kernels (Sect. 6).

2 The Robot Grasping Scenario and Grasping Primitives

We consider the robot scenario in Fig. 1. The robotic platform is next to a table
and on the table there are one or more objects for grasping exploration. The
robot has the following components: a mobile component, an arm, a gripper and
a range camera. An object (e.g., cup, glass) may be placed on the table at various
poses. Each pose provides a point cloud, obtained via the range sensor. The
points above the table are converted, using segmentation techniques (e.g., [24]),
into a point cloud describing the object. Figure 1 illustrates the point cloud of
the visible side of a cup placed on the table sideways. The goal is to determine
the pre-grasp pose, that is, where to place the gripper with respect to the object
in order to execute a stable grasp. Motion planning from the current gripper
pose to the pre-grasp pose reduces the number of grasping hypotheses due to
kinematic and environmental constraints. The reduced set of reachable local
regions provides the data samples for learning to recognize graspable object
points.

We consider three types of domain primitives which we use to build our
relational representation (or hyper-graphs) of the grasping problem: reaching
points, their 3D locations and their numerical shape features. Reaching points
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are labeled using the simulator. The robot executes grasps on the object points
and if they are successful, the reaching points become positive instances. Next,
each reaching point is characterized by several local 3D shape features computed
in its neighborhood. The neighborhood of each point consists of a 3D grid centred
at the reaching point and oriented with respect to the projection of the point’s
normal on the table plane and the gravity vector, as illustrated in Fig. 1. We
consider as neighborhood grid, in turn, a gripper cell and a sphere around the
point and calculate three shape features: 3D shape context (SC) [18], point
feature histogram (PFH) [27] and viewpoint feature histogram (VFH) [28].

Fig. 1. Robot grasping scenario. The gripper and objects on the table (left). A partial
point cloud of a can placed on the table (right). The (i, j, k) is the reference frame of
the camera centred at the sample point. Its normal is the black line. The (i1, j, k1) is
the reference frame of the 3D grid, which is obtained by rotating the (i, j, k) frame
along the y axis.

While the PFH feature encodes the statistics of the shape of a point cloud
by accumulating the geometric relations between all point pairs, the VFH aug-
ments PFH with the relation between the camera’s point of view and the point
cloud of an object. The 3D SC describes the shape of the object as quantitative
descriptions centered at different points on the surface of the object. The shape
context of a point is a coarse histogram of the relative coordinates of the remain-
ing surface points. The bins of the histogram are constructed by the overlay of
concentric shells around the center point and sectors emerging from this point.

3 Relational Grasping: Problem Formulation

Next, we represent the grasping primitives as a relational database and use it as
input to our relational learning system. We use the kLog framework [11] to build
our relational kernel-based approach to grasping point recognition. Embedded
in Prolog, kLog is a domain specific language for kernel-based learning, that
allows to specify in a declarative way relational learning problems. It learns
from interpretations [8], transforms the relational databases into graph-based
representations and uses graph kernels to extract the feature space.
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Fig. 2. From point clouds to feature vectors in kLog.

Figure 2 illustrates the information flow in kLog for robot grasping. We model
our graspable point recognition problem starting from the grasping primitives
which we represent as relational databases. Next, we define declaratively spatial
relations between reaching points. The extended relational database is used by
kLog to build kernel features which are finally used for learning. We explain in
more detail each step for our grasping problem.

3.1 Data Modeling

Grasping primitives are represented at a higher level using a relational language
derived from its associated entity/relationship (E/R) data model, as in data-
base theory [12], with some further assumptions required by kLog. It is based on
entities, relationships linking entities and attributes that describe entities and
relationships. Figure 3(a) shows the E/R diagram for our grasping point prob-
lem. A reaching entity is any reaching point. It is represented by the relation
point(id, f1, . . . , fn), which indicates that it has a unique identifier id (under-
lined oval) and shape properties. The vector [f1, . . . , fn] represents a shape
feature characterizing the reaching point. Each fi is a shape feature vector
component and is represented as an entity attribute. For example, the tuple
point(p1, 10.8, . . . , 557.9) specifies a specific reaching point entity (depicted as
rectangle in Fig. 3(b)), where p1 is its identifier and the other arguments are
shape feature components.

Relationships are qualitative spatial relations among entities (diamonds) and
are derived from their 3D spatial locations. They impose a structure on reaching
entities. In practice, we employ the relationship closeBy2(p1, p3) which indicates
that reaching entities p1 and p3 are spatially close to each other, and the rela-
tionship closeBy3(p1, p2, p3) which indicates that reaching entities p1, p2 and
p3 are spatially close to each other. A special relationship is introduced by the
predicate category(id, class) (dashed diamond). It is linked to reaching entities
and associates a binary class label grasp/nonGrasp to each entity, indicating if
the reaching point is graspable or not.



Relational Kernel-Based Grasping with Numerical Features 5

(a) Proposed E/R scheme: rectangles denote entity vertices, diamonds denote relation-
ships, and circles (except point id) denote local properties.

(b) Part of a glass grounded E/R scheme mapped on its point cloud.

x = {point(p1, 10.8, . . . , 557.9), point(p2, 8.6, . . . , 545.7), point(p3, 19.4, . . . , 569.4),
point(p4, 11.6, . . . , 620.8), point(p5, 18.2, . . . , 572.3), . . . , closeBy2(p1, p3),
closeBy2(p3, p2), closeBy2(p4, p5), . . . , closeBy3(p1, p2, p3), . . . }.
y = {category(p1, nonGrasp), category(p2, nonGrasp), category(p3, nonGrasp),
category(p4, grasp), category(p5, grasp), . . . }.

(c) Point cloud interpretation i = (x, y) of a glass point cloud.

Fig. 3. Relational robot grasping in kLog. (Color figure online)

Fig. 4. From point cloud graph to feature vectors in kLog.
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3.2 Declarative and Relational Feature Construction

We define the spatial relations using logical rules. For example, the relation
closeBy2/2 holds between two points that belong to the same point cloud and
are spatially close to each other. It can be defined as follows:

closeBy2(P1, P2) ← point(P1, F11, . . . , F1n), point(P2, F21, . . . , F2n),

cloud(P1, V ), cloud(P2, V ), P1 ≤ P2,

objectLength(L), objectHeight(H), objectWidth(W ),

Tx = c ∗ L, Ty = c ∗ H,Tz = c ∗ W,

edist(P1, P2, Dx, Dy, Dz), Dx < Tx, Dy < Ty, Dz < Tz .

The condition cloud(P1, V ), cloud(P2, V ) specifies that P1 and P2 belong to
the same point cloud V . The inequality P1 ≤ P2 removes the symmetry of the
close by relation. The relation edist/5, defined in a similar way, represents the
normalized Euclidian distance between 2 points in the 3D space. As the definition
shows, it is projected on all 3 axes and thresholded on each axis i. The thresholds
Ti are distance thresholds calculated for every object from the object dimensions
using a constant ratio c.

The close by relation defined above allows cycles of size 3 or greater in the
graph. We enforce more sparsity by allowing the closeBy2/2 relation between 2
points to hold if there does not exist another path between the two points that
involves another node, thus, allowing only cycles of minimum size 4. We use
the sparser close by relation in practice as it gives better results. If we denote
the previous closeBy2/2 relation as closeBy2 initial/2, the sparser relation
is defined as:

closeBy2(P1, P2) ← closeBy2 initial(P1, P2), L = 3, not path(P1, P2, L).

The relation path/3 checks if there is a path smaller than or equal to 2 edges
between nodes P1 and P2. We define in a similar way the relation closeBy3/3
which holds between three points that belong to the same point cloud and are
spatially close to each other.

In our setting each point cloud is represented as an instance of a relational
database (i.e., as a set of relations), and thus, as a point cloud interpretation.
Object point clouds are assumed to be independent. An example of a point cloud
interpretation is given in Fig. 3(c).

3.3 The Relational Problem Definition

We formulate the learning problem at the relational representation level in the
following way: given a training set D = {(x1, y1), . . . , (x2, y2), . . . , (xm, ym)} of
m independent interpretations, the goal is to learn a mapping h : X → Y,
where X denotes the set of all points xk

i in any point cloud interpretation i, with
i ∈ {1, . . . , m} and Y is the set of target atoms yk

i . The pair ek = (xk
i , yk

i ) is a
training example, where k ∈ {1, . . . , n} and n is the number of training instances
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in the point cloud interpretation i. One training example ek is, thus, a smaller
interpretation, part of the larger point cloud interpretation, and corresponds
to one point in the object point cloud. Given a new point in a point cloud
interpretation we can use h to predict its target category category/2.

3.4 Graphicalization

Next, each interpretation x is converted into a bipartite graph G which intro-
duces a vertex for each ground atom. Vertices correspond to either entities or
relationships, but identifiers are removed. Edges connect entities with relation-
ships. Figure 3(b) shows part of the graph mapped on a point cloud. The graph
is the result of grounding the E/R diagram for a particular point cloud.

4 Relational Kernel Features

We solve the grasping recognition problem in a supervised learning setting.
We employ two variants of the fast neighborhood subgraph pairwise distance
kernel [7]. The kernel is a decomposition kernel [13] that counts the number of
common “parts” between two graphs. In our case the graph represents the con-
textual shape information of one point in the point cloud. The decomposition
kernel between two graphs is defined with the help of relations Rr,d (r = 0, . . . , R
and d = 0, . . . , D) as follows:

K(G,G′) =
R∑

r=0

D∑

d=0

∑

A, B ∈ R−1
r,d(A, B, G)

A′, B′ ∈ R−1
r,d(A

′, B′, G′)

κ((A,B), (A′, B′)) (1)

where R−1
r,d(A,B,G) returns the set of all pairs of neighborhoods (or balls) (A,B)

of radius r with roots at distance d that exist in G. Thus, a “part” is a pair of
neighborhoods (or a pair of balls). Figure 4 shows a neighborhood-pair feature
with R = 2 and D = 2 for our grasping problem. The kernel hyper-parameters
maximum radius R and maximum distance D are set experimentally. We ensure
that only neighborhoods centered on the same type of vertex will be compared,
constraint imposed by the equation:

κ((A,B), (A′, B′)) = κroot((A,B), (A′, B′)) · κsubgraph((A,B), (A′, B′)), (2)

where the component κroot((A,B), (A′, B′)) is 1 if the neighborhoods to be com-
pared have the same type of roots, while the component κsubgraph((A,B), (A′, B′))
compares the pairs of neighborhood graphs extracted from two graphs G and G′.
We solve the grasping problem using two specializations of κsubgraph. Because we
deal both with symbolic and numerical attributed graphs, we employ a hard-soft
variant which combines an exact matching kernel for the symbolic relations and a
soft match kernel for numerical properties of the relations, and a soft variant which
uses only a soft match kernel.
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Soft Matching. The soft matching kernel uses the idea of multinomial distri-
bution (i.e., histogram) of labels. It discards the structural information inside
the graph. Contextual information is still incorporated by the (sum) pooling
operation applied on the numerical properties of the points.

κsubgraph((A,B), (A′, B′)) =
∑

v ∈ V (A) ∪ V (B)
v′ ∈ V (A′) ∪ V (B′)

1�(v)=�(v′)κtuple(v, v′) (3)

where V (A) is the set of vertices of A and �(v) is the label of vertex v. If the atom
point(p1, f1, . . . , fc, . . . , fm) is mapped into vertex v, �(v) returns the signature
name point. In this case κ is decomposed in a part that counts the vertices
that share the same labels �(v) in the neighborhood pair and ensures matches
between tuples with the same signature name (1�(v)=�(v′)), and a second part
that takes into account the tuple of property values. These are real values and
thus, the kernel on the tuple considers each element of the tuple independently
with the standard product:

κtuple(v, v′) =
∑

c

propc(v) · propc(v′) (4)

where for the atom point(p1, f1, . . . , fc, . . . , fm), mapped into vertex v, propc(v)
returns the property value fc. In words, the kernel will count the number of
symbolic labels and will sum property values that belong to vertices with same
labels l(v) that are contained in the neighborhood pair.

Hard-Soft Matching. The hard-soft variant replaces the label l(v) in Eq. 3
with a relabeling procedure for the discrete signature names. We proceed with a
canonical encoding that guarantees that each vertex receives a label that identi-
fies it in the neighborhood graph based on the exact extracted structure of the
ball with respect to the relabeled vertex. Then, the exact match kernel for the dis-
crete part is defined as κsubgraph((A,B), (A′, B′)) = 1 iff (A,B) and (A′, B′) are
pairs of isomorphic graphs. The isomorphism is ensured by the vertices canonical
relabeling. This match ensures that the contextual structure of the subgraphs
matched is the same. Concerning the real valued properties, we use the standard
product as in Eq. 4 for the tuples of vertices with the same relabelings. The
spatial relations injected in the graph and its structure ensure that the pooled
features are the ones belonging to vertices with a similar relabeling. In this way,
we only sum the features with same contextual structure.

There are several advantages of using kLog and its kernel-based language.
First, it can take relational contextual features into account in a principled way.
Second, it allows fast computations with respect to the interpretation size, which
allows us to explore different measures of contextual information via the kernel
hyper-parameters. Third, it provides a flexible architecture in which only the
specification language for relational learning problems is fixed. Actual features
are determined by the choice of the graph kernel. In this setting, experimenting
with alternative feature spaces is rapid and intuitive. For more details, see [11].
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5 Experiments

We evaluate whether our relational kernel-based approach can exploit contextual
shape information by pooling numerical features. Specifically, we investigate the
following questions:

(Q1) Does numerical shape feature pooling improve upon local shape features
for the robot grasping task considered?

(Q2) Does hard-soft matching improve over soft matching when incorporating
contextual shape information?

To answer these questions, we perform experiments with all shape features
considered in turn.

5.1 Dataset and Evaluation

We consider a realistic dataset similar to that in [23]. It is gathered using 8
objects: ellipsoidal object, rectangular object, round object, 2 glasses and 3 cups.
The dataset contains 2631 instances (1972 positives and 659 negatives) and it
was obtained in the ORCA simulation environment [3]. To gather the dataset,
the robot performed grasping trials on a large number of reaching points. The
setup is shown in Fig. 1 (left).

The goal is to evaluate the performance of our approach across the different
objects considered. We estimate it under partial views, that is, each object is
characterized by several partial point clouds, one for each view. The number
of views can differ from object to object. Figure 5 shows four views for one of
the cups. In practice, all views belonging to the same object are mapped to one
interpretation, and thus, one interpretation corresponds to one object. Because
the views are not spatially aligned, we consider spatial relations only between
points that belong to the same view.

Fig. 5. Point clouds representing partial views of a cup.

For performance evaluation, we apply the leave-one-out CV method where one
object is used for testing and the rest for training. In all our experiments we used
a SVM with a linear kernel on top of the relational kernel features. The SVM cost
parameter was set to 1. Because the dataset is unbalanced (with more positives
than negatives), we evaluate performance in terms of the area under the ROC
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curve (AUC) and the area under the precision-recall curve (AP) which are not
sensitive to the distribution of instances to classes. We also report the true posi-
tive rate (TPR) and accuracy (Acc) for both datasets. In order to better cope with
the unbalanced data, the SVM implementation used (LIBSVM [6]) assigns differ-
ent weights to positive and negative instances. In our case, we assign more weight
to the negatives. The weight is selected using the leave-one-out CV for each fea-
ture type (when no relations are used), and is kept the same for that feature as we
gradually add relations.

5.2 Results and Discussion

In the following we present quantitative experimental results for both questions1.
Results in bold font indicate the best performance. For each feature type we start
with local feature vectors and we gradually add the different relations considered,
closeBy2/2 and closeBy3/3, respectively. As a baseline for comparison we use
the local feature vectors alone, without any spatial relations. We also present
results with all available features (VFH + PFH + SC = all) in one experiment
with and without relations. We report performance results using the hard-soft
matching kernel in Table 1 for sphere features and cell features setups. They are
obtained for hyper-parameters R=2, D=6 (for shape feature+closeBy2 settings)
or R=2, D=8 (for the rest of the settings). The results in italics mark the
best results for each local feature type (i.e.,VFH/PFH/SC/all) in each grasping
settings (gripper cell/sphere). The results in bold mark the best results for each
grasping setting across all feature types considered. They show that the use of
qualitative relations to pool features improves robot grasping performance for
all shape feature types considered. This answers positively (Q1).

We answer question (Q2) by plotting the ROC curves for both soft and hard-
soft kernels for sphere and cell features. The results in Fig. 6(a) and (b) show
that hard-soft matching improves considerably upon soft matching. The curves
correspond to hyper-parameters R = 2, D = 8 and closeBy2/2 + closeBy/3
relation, which give the best performance. Thus, contextual structure in the
point cloud is highly relevant and ensures pooling the right numerical shape
features.

6 Related Work

In visual recognition a number of feature extraction techniques based on image
descriptors (e.g., SIFT) have been proposed. They usually encode the descriptors
over a learned codebook and then summarize the distribution of the codes by
a pooling step [5,14]. While the coding step produces representations that can
be aggregated without losing too much information, pooling these codes gives
robustness only to small transformations of the image. One fact that makes the
coding step necessary in standard computer vision tasks is that image descrip-
tors such as SIFT cannot be pooled directly with their neighbours without losing
1 These results contain an errata to the results reported in [20].
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Table 1. Hard-soft matching results for sphere and gripper cell setups.

Shape features AUC AP Acc (%) TPR (%)

sphere cell sphere cell sphere cell sphere cell

VFH 0.66 0.70 0.83 0.86 60.43 75.33 58.52 89.50

VFH+closeBy2 0.80 0.83 0.92 0.93 72.33 80.16 73.33 89.45

VFH+closeBy3 0.83 0.84 0.93 0.94 78.91 81.45 82.05 88.74

VFH+closeBy2+closeBy3 0.84 0.85 0.93 0.94 79.32 81.91 82.51 89.35

PFH 0.70 0.71 0.88 0.86 60.62 76.24 56.80 91.13

PFH+closeBy2 0.80 0.83 0.92 0.93 73.20 79.82 74.29 90.11

PFH+closeBy3 0.82 0.85 0.93 0.94 77.77 82.25 80.68 91.08

PFH+closeBy2+closeBy3 0.83 0.86 0.93 0.94 77.99 83.01 81.03 91.63

SC 0.75 0.72 0.88 0.85 73.58 69.14 78.85 71.35

SC+closeBy2 0.80 0.80 0.92 0.90 76.09 77.27 81.29 82.86

SC+closeBy3 0.83 0.81 0.93 0.91 79.29 78.94 84.08 83.92

SC+closeBy2+closeBy3 0.83 0.81 0.93 0.91 79.55 79.82 84.13 85.14

all 0.75 0.71 0.89 0.86 74.15 76.66 80.02 92.55

all+closeBy2 0.81 0.84 0.93 0.94 74.15 81.53 78.35 92.60

all+closeBy3 0.83 0.86 0.93 0.95 78.72 82.25 83.06 91.99

all+closeBy2+closeBy3 0.83 0.86 0.93 0.95 79.29 82.82 83.92 92.29

information. Differently, our contribution for robot grasping considers shape fea-
ture pooling without the coding step, by means of SRL techniques.

Previous works on visual-dependent robot grasping have shown promising
results on learning grasping points from image-based 2D descriptors [21,29].
Other works exploit combinations of image-based and point cloud-based fea-
tures [4,15]. Saxena et. al. [29] propose to infer grasping probabilities from image
filter responses at the object points. Their approach allows to discriminate gras-
pable from non-graspable points and transfer knowledge to new objects. How-
ever, it does not consider the parameters of the gripper to estimate the quality
of the grasping. Jiang et. al. [15] extend this approach by computing grasping
stability features from the point clouds. In their method, the point cloud fea-
tures are linked to the gripper configuration, while the image-based features are
linked to the visual graspability of a point. Differently, we consider dense 3D
data for both gripper configuration and visual graspability. Kraft et. al. [16,17]
propose to learn by exploration graspable points of an object. Nevertheless, their
learning procedure is specific to each object, and it is difficult to transfer the
skills learned to other objects. A major difference is that we learn with features
that generalize across objects.

Furthermore, a significant number of vision-based grasping methods learn
mappings from 2D/3D features to grasping parameters [4,19,22,30]. However, it
turns out that it is difficult to link a 3D gripper orientation to local shape features
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(a) sphere features (b) gripper cell features

Fig. 6. ROC curves for soft and hard-soft matching kernels; R=2,D=8; VFH/PFH/
SC + closeBy2 + closeBy3.

without considering contextual or global object information. Only recently,
methods that take global and symbolic information into account have been pro-
posed [1]. They benefit from increased geometric robustness, which gives advan-
tages with respect to the pre-shape of the robotic hand and general shape of
the object, generating more accurate grasps. Nevertheless, this work relies on
complete object point clouds, and object reconstruction based on single views is
a difficult problem due to lack of observability of the self-occluded parts. Differ-
ently, our contribution to robot grasping exploits contextual shape information
of objects from partial views and, additionally, we employ a new relational app-
roach to vision-based grasping that considers symbolic and numerical attributed
graphs.

From the SRL perspective, purely relational learning techniques have been
previously used to learn from point clouds. The work in [9,10] uses first-order
clause inducing systems to learn from discrete primitives (e.g., planes, cylin-
ders) classifiers for concepts such as boxes, walls, cups or stairs. Differently, we
propose a SRL approach to recognize graspable points that is based on rela-
tional kernels. A related graph kernel designed for classification and retrieval of
labeled graphs was employed in [25,26]. There, in the context of robot grasping,
the authors consider the tasks of object categorization and similar object view
retrieval. Object graphs are obtained as k-nearest neighbor graphs from object
point clouds and graph nodes are characterized by semantic labels. The kernel
is an evolving propagation kernel based on continuous distributions as graph
features, which are built from semantic node labels, and on a locality sensitive
hashing function to ensure meaningful features. In contrast, our work focuses
on recognizing graspable points in the cloud by employing a flexible decom-
position kernel. It takes as input numerical shape vectors organized in graph
structures, and computes graph features by pooling meaningful shape features
that are ensured by the structure of the graph. In this case, we construct object
graphs declaratively using relational background knowledge and we characterize
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graph nodes by numerical shape features instead of semantic labels. A similar
graph kernel was employed in [2] for visual recognition of houses. However, there,
the visual input features were discrete and did not have a continuous numerical
form.

7 Conclusions

This paper proposes a relational kernel-based approach to recognize graspable
object points. We represent each object as an attributed graph, where nodes cor-
responding to object points are characterized by distributions of numerical shape
features. Extended contextual object shape information is encoded via qualita-
tive spatial relations among object points. Next, we use kernels on graphs to com-
pute highly discriminative features based on contextual information. We show
experimentally that pooling spatially related numerical shape feature improves
robot grasping results upon purely local shape-based approaches.

We point out three directions for future work. A first direction is to investigate
how similar SRL techniques working directly with numerical features can help
other robot vision tasks. A second direction is to validate our results on datasets
that contain a wider range of object categories. Finally, a third direction is to
investigate other spatial relations or domain knowledge that could give even
better results for the robot grasping problem considered.
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Abstract. This paper presents an approach integrating complex aggre-
gate features into a relational random forest learner to address relational
data mining tasks. CARAF, for Complex Aggregates within RAndom
Forests, has two goals. Firstly, it aims at avoiding exhaustive exploration
of the large feature space induced by the use of complex aggregates. Its
second purpose is to reduce the overfitting introduced by the expressivity
of complex aggregates in the context of a single decision tree. CARAF
compares well on real-world datasets to both random forests based on the
propositionalization method RELAGGS, and the relational random for-
est learner FORF. CARAF allows to perform complex aggregate feature
selection.

1 Introduction and Context

Relational data mining, as opposed to attribute-value learning, refers to learn-
ing from data represented across several tables. These tables represent different
objects, linked by relationships. Many datasets from many domains fall into the
relational paradigm, leading to a much richer representation. The applications
go from the molecular domain, to geographical data, and any kind of spatio-
temporal data such as speech recognition.

The difference to attribute-value learning is the one-to-many relationship.
In particular, we focus on a two-table setting: one table, the main table, repre-
sents the objects we want to perform prediction on. This prediction, supervised
learning, task is either a classification task if the attribute to predict is categori-
cal, i.e. if it takes a finite number of values, or a regression task, is the attribute to
predict is numeric. The second table, referred to as the secondary table, contains
objects related to the main ones in a one-to-many relationship, which means sev-
eral secondary objects are linked to one main object. In practice, many datasets
are represented in this two-table setting: sequential data is represented as a main
table containing information on the sequence, while the secondary table contains
the elements of the sequence. The multi-dimensional setting is another use case,
where one is often interested in learning on one dimension based on the contents
of the table of facts, which are linked through a one-to-many relationship.

As an example, the relational schema for the Auslan dataset, an Australian sign
language recognition task, is given in Fig. 1. It is a classification task, where the aim
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 15–29, 2016.
DOI: 10.1007/978-3-319-40566-7 2
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is to predict the sign associated to a record of hand motion. The main table, asso-
ciated to records, contains only the attribute to learn, i.e. the language sign asso-
ciated to the record, while the secondary table contains the samples of the records,
with a timestampattribute and 22 attributes representing values from the channels
that monitor the hand motion through a glove.

record id sign

1 alive
2 all
3 answer

. . . . . .

element id record id time chan1 . . . chan22

1 1 1 1 -0.1 . . . 0.09
1 2 1 2 -0.08 . . . 0
1 3 1 3 -0.06 . . . 1
. . . . . . . . . . . . . . . . . .
2 1 2 1 0.02 . . . 1
2 2 2 2 0.02 . . . 0.9
. . . . . . . . . . . . . . . . . .

0..N
1

Main table - records

Secondary table - elements

Fig. 1. Schema of the real-world Auslan dataset.

Most relational data mining algorithms are based on inductive logic program-
ming concepts, and handle the relationships through the use of the existential
quantifier: it introduces a secondary object B linked to the main object A, B
usually meets a certain condition and its existence is relevant to classify A. For
instance, on the Auslan dataset, to discriminate between signs, a feature like the
fact that an element of the record has a value higher than 0.9 for channel 13 could
be useful. TILDE [2] is a relational extension of Quinlan’s C4.5 [11] decision tree
learner based on this idea. Other approaches use aggregates: they take all B
objects linked to A, and aggregate the set to one value, for instance by comput-
ing the average of a numeric property of the B objects. For instance, the average
value of channel 9 over the whole record may help discriminate between signs.
The propositionalization approach RELAGGS [9] introduces such aggregates.

One approach combines both, by filtering the B objects on a condition before
aggregating them. This approach is known as complex aggregation. As opposed
to simple aggregation, it consists in aggregating a subset of the B objects linked
to A, the subset being defined by a conjunction of conditions over the attributes
of the secondary table. For instance, a feature that may be useful to classify signs
could be the average value of channel 9 over record elements between timestamps
15 and 22.

However, the complex aggregates introduce two specific challenges: firstly,
the introduction of a condition prior to the aggregation increases exponentially
the size of the search space, which makes an exhaustive exploration intractable.
Secondly, the complex aggregates, being a very rich representation, are also
very specific and strict, which implies they are prone to overfitting. Especially,
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complex aggregate-based algorithms consider also the simple aggregates that
RELAGGS builds. Therefore, when a model introduces complex aggregates, it
means they have been found to increase the performance on the training set over
simple aggregates. If on test data, the complex aggregate-based model performs
worse than a simple aggregate-based one, there is overfitting.

In this paper, we propose the extension of the decision tree learner based
on RRHCCA to a random forest learner, introducing two faster hill-climbing
algorithms. The method to perform complex aggregate feature selection in order
to identify relevant families of aggregates is also presented.

The rest of the paper is organized as follows: in Sect. 2 we briefly define the
concept of complex aggregates. In Sect. 3, we review the use of random forests
in the relational setting. In Sect. 4, we introduce CARAF (Complex Aggregates
with RAndom Forests), a new relational random forest learner implementing our
contributions. In Sect. 5, we present experimental results obtained with CARAF.
In Sect. 6, we present how to perform complex aggregate feature selection with
CARAF. Finally, in Sect. 7, we conclude and give some future work perspectives.

2 Complex Aggregates

In this section, we briefly define the concept of complex aggregates, which has
been thoroughly explained in [5].

In a setting with two tables linked through a one-to-many relationship, let us
denote the main table by M and the secondary table by S. We define a complex
aggregate feature of table M as a triple (Selection, Feature, Function) where:

– Selection selects the objects to aggregate. It is a conjunction of s conditions,
i.e. Selection =

∧
1≤i≤s

ci, where ci is a condition on a descriptive attribute of

the secondary table. Formally, let S.A be the set of descriptive attributes of
table S, and Attr ∈ S.A, then ci is:

• either Attr ∈ vals with vals a subset of the possible values of Attr if Attr
is a categorical feature,

• or Attr ∈ [val1; val2[ if Attr is a numeric feature.
In other words, for a given object of the main table, the objects of the sec-
ondary table that meet the conditions in Selection are selected for aggregation.

– Feature can be:
• nothing,
• a descriptive attribute of the secondary table, i.e. Feature ∈ S.A.

Thus, Feature is the attribute of the selected objects that will be aggregated.
It can be nothing since the selected objects can simply be counted, in which
case a feature to aggregate is not needed.

– Function is the aggregation function to apply to the bag of feature values
for the selected objects. Aggregation functions we consider are count which
does not need an attribute to aggregate, min, max, sum, average, standard
deviation, median, first quartile, third quartile, interquartile range, first decile
and ninth decile for numeric attributes, proportion of secondary objects with



18 C. Charnay et al.

attribute value for categorical attributes, the latter is defined as the ratio of
secondary objects linked to a given main object with a given value for the
attribute, over the count of all secondary objects linked this main object.

In the rest of the paper, we will denote a complex aggregate by Func-
tion(Feature, Selection). We will refer to the set of possible (Function, Feature)
pairs as the aggregation processes, i.e. the different possibilities to aggregate a
set of secondary objects.

The introduction of a condition on the objects to aggregate makes the fea-
ture space impossible to explore exhaustively. Heuristics have been proposed to
explore this space in a smart way. The refinement cube [14] is based on the idea
of the monotonicity of the dimensions of the cube. Indeed, the aggregation condi-
tion, aggregation function and threshold can be explored in a general-to-specific
way, using monotone paths: when a complex aggregate (a point in the refinement
cube) is too specific (i.e. it fails for every training example), the search does not
restart from this point. The approach introduced in [3] builds complex aggregate
features for use in a Bayesian classifier, guided by minimum description length
and a heuristic sampling. The RRHCCA algorithm [5] has been proposed to
explore a larger search space with a random-restart hill-climbing approach to
find the appropriate condition with respect to the aggregation process, still in
the context of a decision tree learner. However, the decision tree model with com-
plex aggregates often fails to outperform RELAGGS, which shows overfitting.
As a solution, we propose its extension to a Random Forest model.

3 Random Forests

Random Forest [4] is an ensemble classification technique which builds a set
of diverse decision trees and combines their predictions into a single output.
Considered individually, each decision tree is less accurate than a decision tree
built in a classic way. However, the introduction of diversity through the forest
improves the performance over a single decision tree, by solving the overfitting
problem induced by the latter approach. Algorithm 1 shows the building process
of a Random Forest. Diversity between the trees is achieved by two means:

– Bootstrapping: each tree is built on a different training set using sampling
with replacement from the original training set. In other words, each decision
tree is built using a training set with same size as the original one, but where
repetitions may occur. This corresponds to lines 5 to 8 of Algorithm 1.

– Feature sampling: to build each node of each tree, a subset of features is
used. If there are numFeatures available,

√
numFeatures are considered for

introduction in node split. This corresponds to lines 9 to 15 of Algorithm 1.

The use of Random Forests for relational data mining purposes is not new:
TILDE decision trees have been used as a basis for FORF (First-Order Relational
Random Forests) [13], which can, as TILDE, be used with complex aggregates.
However, the implementation suffers memory limitations, e.g. allocation failures
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Algorithm 1. BuildRandomForest
1: Input: train: set of training examples, feats: set of possible split features, target :

the target attribute, n: number of trees in the forest.
2: Output: forest : a random forest.

3: forest ← InitEmptyForest()
4: for k = 1 to n do
5: trainForTree ← InitEmptyInstances()
6: for i = 1 to train.Size() do
7: trainForTree.Add(train.OneRandomElement())
8: end for
9: featsCopy ← feats.Copy()

10: featsForTree ← InitEmptyFeatures()
11: for j = 1 to

√
feats.Size() do

12: f ← featsCopy.OneRandomElement()
13: featsCopy.Remove(f)
14: featsForTree.Add(f)
15: end for
16: tree ← BuildDecisionTree(trainForTree, featsForTree, target)
17: forest.Add(tree)
18: end for
19: return forest

when the feature space induced by the language bias is too wide. Also, the logic
programming formalism makes the case of empty sets ambiguous. Indeed, the
failure of a comparison test on an aggregate can have two reasons: the comparison
can actually fail or the aggregate predicate can fail because it cannot compute
a result, generally because the set to aggregate is empty. In the implementation
of CARAF, we overcome this limitation by considering aggregation failure as a
third outcome of a test.

Another relational Random Forest algorithm is described in [1]. It uses ran-
dom rules based on the existential quantifier. However, it does not consider
aggregates.

4 CARAF: Complex Aggregates with RAndom Forests

In this section, we describe the main contributions brought by CARAF (Complex
Aggregates with RAndom Forests).

First is the use of random forests. The instance bootstrapping part is per-
formed the same way as Breiman does, by sampling with replacement from the
training set. The feature sampling is different, based on the complex aggre-
gates space structure. Let us denote by AggProc = |(Function, Feature)| the
number of aggregation processes, Ns the number of secondary objects, and A
the number of attributes in the secondary table. The number of conjunctions
of conditions, i.e. the number of possible Selection grows like NA

s for numeric
attributes. A good estimation for the number of complex aggregates is then
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ComplAgg = AggProc·NA
s . As a subsampling method, we want to keep a search

space of size
√
ComplAgg. We then keep

√
AggProc aggregation processes and,

in each process, A/2 attributes to put conditions on. This gives us the desired
feature subsampling.

For instance, let us consider again the Auslan dataset. For sake of simplicity, we
consider count, minimum,maximum and average as the possible aggregation func-
tion, and attributes time and channels 1 to 4. Table 1 shows an example of complex
aggregates subsampling on this dataset. Out of the 16 aggregation processes avail-
able, the square root will be considered at each node, i.e. 4, as shown in Table 1a.
For each aggregation process, half of the 5 secondary attributes will be kept for use
in the selection conjunction of conditions, i.e. 3 per aggregation process, as shown
in Table 1b.

Table 1. Subsampling of complex aggregates.

(a) Subsampling of aggregation processes.

Function Attribute Chosen

Count x

Minimum Time
Minimum Chan1
Minimum Chan2
Minimum Chan3
Minimum Chan4

Maximum Time
Maximum Chan1
Maximum Chan2 x
Maximum Chan3
Maximum Chan4

Average Time x
Average Chan1
Average Chan2
Average Chan3
Average Chan4 x

(b) Subsampling of secondary attributes.

Attribute Chosen

Time x
Chan1 x
Chan2
Chan3 x
Chan4

The RRHCCA algorithm aims at exploring the complex aggregates search
space in a stochastic way. It uses random restart hill-climbing to find the best
conjunction of conditions Selection for a given aggregation process (Function,
Feature). The hill-climbing process used to search this space can be RRHCCA,
but we chose to simplify it to make it less time-consuming. We propose two
approaches to achieve that.

We first introduce the “Random” hill-climbing algorithm, for which pseudo-
code is given in Algorithm 2. Like RRHCCA, the aim is to look for an appropriate
conjunction of basic conditions for a fixed aggregation process. But instead of con-
sidering all neighbors of an aggregate at each step of hill-climbing, the Random
algorithm will consider only one, randomly chosen, neighbor, for split evaluation.
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Algorithm 2. Random Hill-Climbing Algorithm
1: Input: functions: list of aggregation functions, features: list of attributes of the

secondary table, train: labelled training set.
2: Output: split : best complex aggregate found through hill-climbing.

3: aggregationProcesses ← InitializeProcesses(functions, features)
4: bestSplits ← []
5: bestScore ← WORST SCORE FOR METRIC
6: for all aggProc ∈ aggregationProcesses do
7: iterWithoutImprovement ← 0
8: for i = 1 to MAX ITERATIONS and iterWithoutImprovement <

0.2*MAX ITERATIONS do
9: hasImproved ← aggProc.GrowRandom(train)

10: if not hasImproved then
11: iterWithoutImprovement++
12: if aggProc.split.score ≥ bestScore then
13: if aggProc.split.score > bestScore then
14: bestScore ← aggProc.split.score
15: bestSplits ← []
16: end if
17: bestSplits.Add(aggProc.split)
18: end if
19: else
20: iterWithoutImprovement ← 0
21: end if
22: end for
23: end for
24: split ← bestSplits.OneRandomElement()
25: return split

Algorithm 3. AggregationProcess.GrowRandom: Perform One Step of Hill-
Climbing for the Aggregation Process
1: Input: train: labelled training set.
2: Output: hasImproved : boolean indicating if the step of the hill-climbing has

improved the best split found in the current hill-climbing of the aggregation process.

3: allNeighbors ← EnumerateNeighbors(this.aggregate.condition)
4: neighbor ← allNeighbors.OneRandomElement()
5: aggregateToTry ← CreateAggregate(this.aggregate.function,

this.aggregate.feature, neighbor)
6: spl ← EvaluateAggregate(aggregateToTry, train)
7: hasImproved ← UpdateBestSplit(spl)
8: return hasImproved
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Algorithm 4. Global Hill-Climbing Algorithm
1: Input: functions: list of aggregation functions, features: list of attributes of the

secondary table, train: labelled training set.
2: Output: split : best complex aggregate found through hill-climbing.

3: aggregationProcesses ← InitializeProcesses(functions, features)
4: bestSplits ← []
5: bestScore ← WORST SCORE FOR METRIC
6: conjunction ← InitEmptyConjunction()
7: iterWithoutImprovement ← 0
8: for i = 1 to MAX ITERATIONS and iterWithoutImprovement <

0.2*MAX ITERATIONS do
9: allNeighbors ← EnumerateNeighbors(conjunction)

10: neighbor ← allNeighbors.oneRandomElement()
11: hasImproved ← false
12: for all aggProc ∈ aggregationProcesses do
13: aggregateToTry ← CreateAggregate(aggProc.function, aggProc.feature,

neighbor)
14: spl ← EvaluateAggregate(aggregateToTry, train)
15: if spl.score ≥ bestScore then
16: if spl.score > bestScore then
17: bestScore ← spl.score
18: bestSplits ← []
19: hasImproved ← true
20: end if
21: bestSplits.Add(spl)
22: end if
23: end for
24: if hasImproved then
25: iterWithoutImprovement ← 0
26: else
27: iterWithoutImprovement++
28: end if
29: end for
30: split ← bestSplits.OneRandomElement()
31: return split

This corresponds to the function GrowRandom shown in Algorithm 3. If the cho-
sen neighbor improves over the original aggregate, the search resumes from this
neighbor. The neighbors are defined as in Algorithm 5: from a current aggregate,
they are obtained by adding a random basic condition to the conjunction, remov-
ing a condition from the conjunction, and modifying one.

The hill-climbing has two possible stopping criteria: when a maximum num-
ber of hill-climbing steps have been performed, or when a certain number of
neighbors of a given aggregate have been considered without improvement, this
number has been arbitrarily fixed to 20 % of the maximum number of hill-
climbing steps. In other words, if 20 % of the maximum number of iterations
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Algorithm 5. EnumerateNeighbors
1: Input: conjunction: aggregation conjunction of conditions.
2: Output: allNeighbors: array of aggregation conjunctions, neighbors of conjunction.

3: allNeighbors ← []
4: for all attr ∈ secondary attributes not present in conjunction do
5: nextConjunction ← conjunction obtained by adding one randomly initialized

condition on attr to conjunction
6: allNeighbors.Add(nextConjunction)
7: end for
8: for all attr ∈ secondary attributes already present in conjunction do
9: nextConjunction ← condition obtained by removing the condition on attr present

in conjunction
10: allNeighbors.Add(nextConjunction)
11: end for
12: for all attr ∈ secondary attributes already present in conjunction do
13: for all move ∈ possible moves on the condition on attr present in conjunction

do
14: nextConjunction ← aggregate obtained by applying move to conjunction
15: allNeighbors.Add(nextConjunction)
16: end for
17: end for
18: return allNeighbors

have passed with no improvement, the search stops. This aggregation process-
wise hill-climbing loop corresponds to lines 8 through 22.

This hill-climbing search is then performed once for each aggregation process
available, starting from an empty conjunction of conditions, without a restart.
This corresponds to the loop from line 6 to line 23.

Following the idea of the Random hill-climbing algorithm, we propose to
invert the loops of hill-climbing and aggregation process, materialized in the
“Global” hill-climbing algorithm. In practice, only one hill-climbing search is
performed, which aims at finding the best conjunction of conditions for all aggre-
gation processes available. For a given conjunction of conditions, all aggregation
processes are used to form aggregates and splitting conditions, and the con-
junction is evaluated according to the best score achieved over all aggregation
processes. The pseudo-code is given in Algorithm 4. This time, the aggregation
process loop (from line 12 to line 23) is enclosed in the hill-climbing loop (from
line 8 to line 29).

An additional feature is the use of ternary decision trees instead of binary
decision trees. Each internal node of the tree has three sub-branches: one for
success of the test, one for actual failure, and one for the unapplicability of the
test, e.g. if the value of the feature involved in the test cannot be computed for
the instance at hand. This is a way of dealing with empty sets in the context
of complex aggregates. Indeed, imposing conditions on the secondary objects to
aggregate can result in the absence of objects to be aggregated, i.e. aggregating
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an empty set. This is a problem for most aggregation functions, e.g. the average.
We choose to tackle this issue by considering this as a third possible outcome of
the test.

5 Experimental Results

In this section, we compare CARAF using the 3 different hill-climbing approaches
to RELAGGS used in combination with Random Forest in Weka [8], and to
FORF. All random forests were run to build 33 trees. We consider seven real-
world real datasets.

– Auslan is a task of recognition of the Australian language sign.
– Diterpenes [7] is a molecule classification task.
– Japanese vowels is related to recognition of Japanese vowels utterances from

cepstrum analysis.
– Musk1 and Musk2 [6] are molecule classification tasks.
– Mutagenesis [12] is about predicting mutagenicity of a molecule with respect

to the properties of its atoms. In out two-table setting, we use the so-called
“regression-friendly” subset of the dataset, and consider a molecule as a bag
of atoms, i.e. we do not consider the bond information between atoms.

– Opt-digits deals with optical recognition of handwritten digits.
– Urban blocks [10] is a geographical classification task. This dataset is a clean

version of the one used in [5] in the sense that duplicate urban blocks were
removed.

A description of the datasets is given in Table 2.
The accuracy results are reported in Table 3. It is test set accuracy when a

test set is available for the dataset or out-of-bag accuracy on the training set
when there is no test set. Out-of-bag error is defined as follows: as mentioned
previously, each tree in a Random Forest is trained using a subsample of the
original training set, i.e. for each tree, there is a fraction of the training set that
has not been actually used to build the tree. The out-of-bag accuracy for the tree
is the error made by the tree on this set of unseen examples, called the out-of-bag
examples. Any error metric can be used. For classification tasks, error rate will
be most likely used, while for regression tasks root mean squared error could
be used. By extension, out-of-bag accuracy is defined as the complementary to
1 of the out-of-bag classification error rate. The figures in bold indicate that
the difference with RELAGGS is statistically significant with 95 % confidence,
while the underlined figures indicate a significant difference with FORF. The
run of FORF on the Auslan dataset resulted in an unknown error and cannot
be reported.

We observe that CARAF with the original RRHCCA hill-climbing algo-
rithm is always performing better than both RELAGGS and FORF, the dif-
ference being significant in 3 cases out of 8 over RELAGGS, and 4 out of 7 over
FORF. The Random and Global hill-climbing approaches also perform better
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Table 2. Characteristics of the datasets used in the experimental comparison.

Dataset Instances Classes Secondary objects Secondary attributes

Auslan 2 565 96 146 949 23

Diterpenes 1 503 23 30 060 2

Japanese vowels 270 + 370 9 9 961 12

Musk1 92 2 476 166

Musk2 102 2 6 598 166

Mutagenesis 188 2 4 893 3

Opt-digits 3 823 + 1 797 10 5 754 880 3

Urban blocks 591 6 7 692 3

Table 3. Results of CARAF with different hill-climbing heuristics on different datasets
(out-of-bag accuracy or test set accuracy).

Dataset RELAGGS FORF RRHCCA Random Global

Auslan 94.19 % ERR 96.53% 95.91% 94.66 %

Diterpenes 89.09 % 90.49 % 92.95% 85.06 % 93.35%

Japanese vowels 93.78 % 94.86 % 95.41% 97.30% 97.03%

Musk1 80.43 % 78.26 % 89.13% 84.78 % 80.43 %

Musk2 76.47 % 75.49 % 81.37% 85.29 % 82.35 %

Mutagenesis 88.30 % 87.77 % 90.43% 91.49 % 92.02 %

Opt-digits 22.37 % 76.57 % 95.94% 94.60% 92.77%

Urban blocks 83.42 % 75.81 % 84.94% 83.76 % 84.60 %

8 (3) - 7 (4) 7 (3) - 6 (2) 7.5 (3) - 7 (3)

than RELAGGS and FORF in a majority of cases, some cases also being statisti-
cally significant. These two approaches, considering less complex aggregates, also
have the advantage of speed over RRHCCA. As shown in Table 4, the runtimes
of both Random and Global are lower by a factor at least 4 than the runtimes of
RRHCCA, Global being faster than Random. The loss in accuracy performance
is tiny: RRHCCA outperforms Random 5 times, the difference being statistically
significant only once. RRHCCA outperforms Global 4 times, significantly twice.
The Random and Global approaches are then good performers too. Therefore,
our recommendation is, if runtime is not a problem for the dataset at hand, to
use RRHCCA. If time is critical, then Random is the best option, followed by
Global.



26 C. Charnay et al.

Table 4. Runtime of the algorithms (in minutes).

Dataset RRHCCA Random Global

Auslan 921 250 146

Diterpenes 4 1 1

Japanese vowels 13 1 1

Musk1 98 8 5

Musk2 733 71 55

Mutagenesis 6 2 2

Opt-digits 35 9 5

Urban blocks 4 1 1

6 Aggregation Processes Selection with Random Forests

Random Forests can be used to perform feature selection, as introduced by
Breiman in [4]. The aim is to first check which families of complex aggregates
are the most promising, to learn a model afterwards using only these useful
families.

Our goal is to perform feature selection, i.e. to assess the importance of
an input feature for prediction of the output attribute. This achieved using
permutation tests. For a given tree, we first measure the out-of-bag error. The
second step is to permute among the out-of-bag examples the value for the
input feature we want to measure the importance. This gives a new out-of-bag
examples set, for which we compute an after-permutation out-of-bag error. The
importance of the feature at the tree-level is the increase in error between the
after-permutation out-of-bag set and the original out-of-bag set. The final feature
importance is then obtained by averaging tree-level feature importances over the
whole forest.

In a relational context where complex aggregates are being used, this method
needs adaptation. Indeed, the size of the complex aggregates search space implies
that a given complex aggregate is rarely used twice in the same model. However,
the structure of the complex aggregates allows us to define families of complex
aggregates, and to measure importance of the families rather than specific com-
plex aggregates.

Families of complex aggregates can be defined according to two elements:

– Aggregation processes: Complex aggregates sharing a common aggregation
process will belong to the same family.

– Attributes in selection conjunctions: Complex aggregates whose selection con-
junctions of conditions have a condition on a common attribute will belong to
the same family.

These two elements can be combined to define more specific attributes, e.g.
complex aggregates with the same aggregation process whose conjunctions of
conditions have a condition on the same given attribute.
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As an example, we use the urban blocks dataset from Sect. 5. We consider
count, minimum, maximum and average as the possible aggregation functions.
Block-wise features are area, elongation, convexity and density, while building-
wise features are area, elongation and convexity.

If we define families of complex aggregates at the aggregation process level,
we obtain as many families as aggregation processes, 10 in this example. Thus,
following aggregates will fall into the same family, since they are all based on
the same aggregation process, the average area of buildings:

– average(area, buildings, true)
– average(area, buildings, elongation � 0.7)
– average(area, buildings, convexity < 0.5)

If we define families based on one common attribute in the conjunction of
conditions, we have as many families as attributes in the secondary table, 3 in
this example. Thus, following aggregates will fall into the same family, since their
conjunctions of conditions all have a condition on elongation of buildings:

– average(area, buildings, elongation � 0.7)
– maximum(convexity, buildings, elongation < 0.6)
– count(buildings, elongation < 0.8 ∧ area � 100)

Both can be combined to create families based on the aggregation process
and a common attribute in conjunction of conditions, 30 in this example. For
instance, following aggregates will belong to the same family, sharing both the
aggregation process of average area of buildings and a condition on elongation
of buildings:

– average(area, buildings, elongation � 0.7)
– average(area, buildings, elongation < 0.9 ∧ convexity � 0.7)
– average(area, buildings, elongation � 0.5 ∧ area < 100)

The permutation of values of complex aggregates has then to be performed.
Since we are not permuting the values of a single feature, but of a whole family,
we have to keep some coherence: each training example has one value for each
aggregate in the family, and they should not be separated by the permutation. An
example that obtains the value of a second example for a first aggregate, should
not obtain the value of a third example for a second aggregate, but rather the
value of the second example. In other words, for a given family of aggregates, only
one permutation of examples has to be found, since a set of aggregate values for
a given example should be conserved through permutation. We achieve this by
permuting groups of secondary objects, i.e. the set of secondary objects related
to one example will be assigned to another example. By doing this, all aggregate
values are transferred from one example to another.

The family importance is then computed as described above: for each tree
we obtain the error gain between before and after the permutation, and the gain
average over all trees gives the final importance.
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Table 5. Importance of main features and aggregation processes in urban blocks.

Feature Score

Area 0.039

Elongation 0.003

Convexity 0.005

Density 0.157

Count 0.027

Minimum Area 0.062

Minimum Elongation 0.034

Minimum Convexity 0.028

Maximum Area 0.111

Maximum Elongation 0.054

Maximum Convexity 0.038

Average Area 0.177

Average Elongation 0.061

Average Convexity 0.039

As an example, the importances of blocks main features and buildings aggre-
gation processes are reported in Table 5. Importances were obtained using a for-
est of 100 trees built using the “Random” hill-climbing heuristic to find complex
aggregates.

We observe that the 3 most important features for urban blocks classification
are the average area of buildings, the density of blocks, and the maximum area
of buildings.

7 Conclusion and Future Work

In this paper, we presented CARAF, a relational random forest learner based on
complex aggregates. The hill-climbing algorithms to explore the search space per-
form better than RELAGGS with Random Forests and FORF on most datasets.
The basic random hill-climbing algorithms to explore the complex aggregates
search space yield a considerable speed up while not suffering performance loss.

Future work will consist in exploring database technologies that are suitable
for learning from relational data. Indeed, most relational algorithms have not
been designed to handle big data, and there is an increasing trend towards rele-
vant representation of relational data and the technologies, potentially NoSQL-
based, fitted for relational data mining.



CARAF: Complex Aggregates Within Random Forests 29

References

1. Anderson, G., Pfahringer, B.: Relational random forests based on random relational
rules. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11–17, 2009,
pp. 986–991 (2009). http://ijcai.org/papers09/Papers/IJCAI09-167.pdf

2. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1–2), 285–297 (1998)
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Abstract. Representing uncertainty in Description Logics has recently
received an increasing attention because of its potential to model real
world domains. EDGE, for “Em over bDds for description loGics para-
mEter learning”, is an algorithm for learning the parameters of prob-
abilistic ontologies from data. However, the computational cost of this
algorithm is significant since it may take hours to complete an execution.
In this paper we present EDGEMR, a distributed version of EDGE that
exploits the MapReduce strategy by means of the Message Passing Inter-
face. Experiments on various domains show that EDGEMR significantly
reduces EDGE running time.

Keywords: Probabilistic description logics · Parameter learning ·
MapReduce · Message Passing Interface

1 Introduction

Representing uncertain information is becoming crucial to model real world
domains. The ability to describe and reason with probabilistic knowledge bases
is a well-known topic in the field of Description Logics (DLs). In order to
model domains with complex and uncertain relationships, several approaches
have been proposed that combine logic and probability. The distribution
semantics [22] from Logic Programming is one of them. In [3,14,21,27] the
authors proposed an approach for the integration of probabilistic information in
DLs called DISPONTE (for “DIstribution Semantics for Probabilistic ONTolo-
giEs”), which adapts the distribution semantics for probabilistic logic programs
to DLs.

EDGE [16], for “Em over bDds for description loGics paramEter learn-
ing”, is an algorithm for learning the parameters of probabilistic DLs following
DISPONTE. EDGE was tested on various datasets and was able to find good
solutions. However, the algorithm may take hours on datasets whose size is of
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 30–45, 2016.
DOI: 10.1007/978-3-319-40566-7 3
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the order of MBs. In order to efficiently manage larger datasets in the era of Big
Data, it is of foremost importance to develop approaches for reducing the learn-
ing time. One solution is to distribute the algorithm using modern computing
infrastructures such as clusters and clouds.

Here we present EDGEMR, a MapReduce version of EDGE. MapReduce [8]
is a model for processing data in parallel on a cluster. In this model the work
is distributed among mapper and reducer workers. The mappers take the input
data and return a set of (key, value) pairs. These sets are then grouped according
to the key into couples (key, set of values) and the reducers aggregate the values
obtaining a set of (key, aggregated value) couples that represents the output of
the task.

Various MapReduce frameworks are available, such as Hadoop1. However we
chose not to use any framework and to implement a much simpler MapReduce
approach for EDGEMR based on the Message Passing Interface (MPI). The
reason is that we adopted a modified MapReduce approach where the map and
reduce workers are not purely functional in order to better adapt to the task at
hand.

A performance evaluation of EDGEMR is provided through a set of exper-
iments on various datasets using 1, 3, 5, 9 and 17 computing nodes. The
results show that EDGEMR effectively reduces EDGE running time, with good
speedups.

The paper is structured as follows. Section 2 introduces Description Logics
while Sect. 3 summarizes DISPONTE and an inference system for probabilistic
DLs. Section 4 briefly describes EDGE and Sect. 5 presents EDGEMR. Section 6
shows the results of the experiments for evaluating EDGEMR, while Sect. 7 dis-
cusses related works. Section 8 draws conclusions.

2 Description Logics

DLs are a family of logic based knowledge representation formalisms which are
of particular interest for representing ontologies in the Semantic Web. For a good
introduction to DLs we refer to [2].

While DLs are a fragment of first order logic, they are usually represented
using a syntax based on concepts and roles. A concept corresponds to a set
of individuals of the domain while a role corresponds to a set of couples of
individuals of the domain. The proposed algorithm can deal with SROIQ(D)
DLs which we describe in the following.

We use A, R and I to indicate atomic concepts, atomic roles and individuals,
respectively. A role could be an atomic role R ∈ R, the inverse R− of an atomic
role R ∈ R or a complex role R ◦ S. We use R− to denote the set of all inverses
of roles in R. Each A ∈ A, ⊥ and � are concepts and if a ∈ I, then {a} is a
concept called nominal. If C, C1 and C2 are concepts and R ∈ R ∪ R−, then
(C1 � C2), (C1 � C2) and ¬C are concepts, as well as ∃R.C, ∀R.C, ≥ nR.C and
≤ nR.C for an integer n ≥ 0.
1 http://hadoop.apache.org/.

http://hadoop.apache.org/
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A knowledge base (KB) K = (T ,R,A) consists of a TBox T , an RBox R
and an ABox A. An RBox R is a finite set of transitivity axioms Trans(R),
role inclusion axioms R  S and role chain axioms R ◦ P  S, where R,P, S ∈
R ∪ R−. A TBox T is a finite set of concept inclusion axioms C  D, where C
and D are concepts. An ABox A is a finite set of concept membership axioms
a : C and role membership axioms (a, b) : R, where C is a concept, R ∈ R and
a, b ∈ I.

A KB is usually assigned a semantics using interpretations of the form I =
(ΔI , ·I), where ΔI is a non-empty domain and ·I is the interpretation function
that assigns an element in ΔI to each individual a, a subset of ΔI to each
concept C and a subset of ΔI × ΔI to each role R. The mapping ·I is extended
to complex concepts as follows (where RI(x,C) = {y|〈x, y〉 ∈ RI , y ∈ CI} and
#X denotes the cardinality of the set X):

�I = ΔI

⊥I = ∅
{a}I = {aI}

(¬C)I = ΔI \ CI

(C1 � C2)
I = CI

1 ∪ CI
2

(C1 � C2)
I = CI

1 ∩ CI
2

(∃R.C)I = {x ∈ ΔI |RI(x) ∩ CI �= ∅}
(∀R.C)I = {x ∈ ΔI |RI(x) ⊆ CI}

(≥ nR.C)I = {x ∈ ΔI |#RI(x, C) ≥ n}
(≤ nR.C)I = {x ∈ ΔI |#RI(x, C) ≤ n}

(R−)I = {(y, x)|(x, y) ∈ RI}
(R1 ◦ ... ◦ Rn)

I = RI
1 ◦ ... ◦ RI

n

A query over a KB is an axiom for which we want to test the entailment from
the KB.

3 Semantics and Reasoning in Probabilistic DLs

DISPONTE [3] applies the distribution semantics to probabilistic ontologies [22].
In DISPONTE a probabilistic knowledge base K is a set of certain and proba-
bilistic axioms. Certain axioms are regular DL axioms. Probabilistic axioms take
the form p :: E, where p is a real number in [0, 1] and E is a DL axiom.

The idea of DISPONTE is to associate independent Boolean random vari-
ables with the probabilistic axioms. By assigning values to every random variable
we obtain a world, i.e. the union of the probabilistic axioms whose random vari-
able takes on value 1 and the set of certain axioms.

The probability p can be interpreted as an epistemic probability, i.e., as the
degree of our belief in axiom E. For example, a probabilistic concept membership
axiom p :: a : C means that we have degree of belief p in C(a). The statement
that Tweety flies with probability 0.9 can be expressed as 0.9 :: tweety : Flies.

Let us now give the formal definition of DISPONTE. An atomic choice is
a pair (Ei, k) where Ei is the ith probabilistic axiom and k ∈ {0, 1}. k indi-
cates whether Ei is chosen to be included in a world (k = 1) or not (k = 0).
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A composite choice κ is a consistent set of atomic choices, i.e. (Ei, k) ∈
κ, (Ei,m) ∈ κ ⇒ k = m (only one decision for each axiom). The probability of a
composite choice κ is P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1−pi), where pi is the proba-

bility associated with axiom Ei. A selection σ is a composite choice that contains
an atomic choice (Ei, k) for every probabilistic axiom of the theory. A selection
σ identifies a theory wσ called a world in this way: wσ = {Ei|(Ei, 1) ∈ σ}. Let
us indicate with SK the set of all selections and with WK the set of all worlds.
The probability of a world wσ is P (wσ) = P (σ) =

∏
(Ei,1)∈σ pi

∏
(Ei,0)∈σ(1−pi).

P (wσ) is a probability distribution over worlds, i.e.
∑

w∈WK P (w) = 1. We can
now assign probabilities to queries. Given a world w, the probability of a query
Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability of a
query can be defined by marginalizing the joint probability of the query and the
worlds:

P (Q) =
∑

w∈WK

P (Q,w) =
∑

w∈WK

P (Q|w)P (w) =
∑

w∈WK:w|=Q

P (w) (1)

The system BUNDLE [15,17,21] computes the probability of a query w.r.t. KBs
that follow DISPONTE by first computing all the explanations for the query
and then building a Binary Decision Diagram (BDD) that represents them.
An explanations κ for a query Q is a composite choice that identifies a set
of worlds which all entail Q. Given the set K of all explanations for a query
Q, we can define the Disjunctive Normal Form (DNF) Boolean formula fK as
fK(X) =

∨
κ∈K

∧
(Ei,1)

Xi

∧
(Ei,0)

Xi. The variables X = {Xi|(Ei, k) ∈ κ, κ ∈
K} are independent Boolean random variables with P (Xi = 1) = pi and the
probability that fK(X) takes value 1 gives the probability of Q. A BDD for
a function of Boolean variables is a rooted graph that has one level for each
Boolean variable. A node n has two children: one corresponding to the 1 value
of the variable associated with the level of n and one corresponding to the 0
value of the variable. When drawing BDDs, the 0-branch is distinguished from
the 1-branch by drawing it with a dashed line. The leaves store either 0 or 1.

BUNDLE finds the set K of all explanations for a query Q by means of
the Pellet reasoner [23]. Then it builds a BDD representing fK , from which
the probability P (fK = 1), and thus the probability of Q, can be computed
with a dynamic programming algorithm in polynomial time in the size of the
diagram [7].

Example 1. Let us consider the following knowledge base, inspired by the ontol-
ogy people+pets proposed in [13]:

∃hasAnimal.Pet  NatureLover

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

(E1) 0.4 :: fluffy : Cat

(E2) 0.3 :: tom : Cat

(E3) 0.6 :: Cat  Pet
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Individuals that own an animal which is a pet are nature lovers and kevin owns the
animals fluffy and tom. fluffy and tom are cats and cats are pets with the specified
probabilities. This KB has eight worlds and the query axiom Q = kevin : Nature
Lover is true in three of them, corresponding to the following selections: {(E1, 1),
(E2, 0), (E3, 1)}, {(E1, 0), (E2, 1), (E3, 1)}, {(E1, 1), (E2, 1), (E3, 1)}. The proba-
bility is P (Q) = 0.4 · 0.7 · 0.6 + 0.6 · 0.3 · 0.6 + 0.4 · 0.3 · 0.6 = 0.348. If we
associate the random variables X1 with axiom E1, X2 with E2 and X3 with E3 the
BDD representing the set of explanations is shown in Fig. 1.

Fig. 1. BDD representing the set of explanations for the query of Example 1.

4 Parameter Learning for Probabilistic DLs

EDGE [16] adapts the algorithm EMBLEM2 [4], developed for learning the para-
meters of probabilistic logic programs, to the case of probabilistic DLs under
DISPONTE. Inspired by [10], it performs an Expectation-Maximization cycle
over BDDs.

EDGE performs supervised parameter learning. It takes as input a DL KB
and a number of positive and negative examples that represent the queries in the
form of concept assertions, i.e. in the form a : C for an individual a and a class C.
Positive examples represent information that we regard as true and for which we
would like to get high probability while negative examples represent information
that we regard as false and for which we would like to get low probability.

First, EDGE generates, for each example (query), the BDD encoding its
explanations using BUNDLE. Then, EDGE starts the EM cycle in which the
steps of Expectation and Maximization are iterated until a local maximum of
the log-likelihood (LL) of the examples is reached. The LL of the examples
is guaranteed to increase at each iteration. EDGE stops when the difference
between the LL of the current iteration and that of the previous one drops below
a threshold ε or when this difference is below a fraction δ of the previous LL.
Finally, EDGE returns the reached LL and the parameters pi of the probabilistic
axioms. EDGE’s main procedure is illustrated in Algorithm 1.

2 EMBLEM is included in the web application http://cplint.lamping.unife.it/ [20].

http://cplint.lamping.unife.it/
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Algorithm 1. Function EDGE
function EDGE(K, PE , NE , ε, δ) � PE , NE : positive and negative examples

Build BDDs � performed by BUNDLE
LL = −∞
repeat

LL0 = LL
LL = Expectation(BDDs)
Maximization

until LL − LL0 < ε ∨ LL − LL0 < −LL0 · δ
return LL, pi for all probabilistic axioms

end function

Function Expectation (shown in Algorithm 2) takes as input a list of BDDs,
one for each example Q, and computes the expectations E[ci0|Q] and E[ci1|Q]
for all axioms Ei directly over the BDDs. cix represents the number of times a
Boolean random variable Xi takes value x for x ∈ {0, 1} and E[cix|Q] = P (Xi =
x|Q). Then it sums up the contributions of all examples: E[cix] =

∑
Q E[cix|Q].

Algorithm 2. Function Expectation
function Expectation(BDDs)

LL = 0
for all i ∈ Axioms do

E[ci0] = E[ci1] = 0
end for
for all BDD ∈ BDDs do

for all i ∈ Axioms do
η0(i) = η1(i) = 0

end for
for all variables X do

ς(X) = 0
end for
GetForward(root(BDD))
Prob=GetBackward(root(BDD))
T = 0
for l = 1 to levels(BDD) do

Let Xi be the variable associated with level l
T = T + ς(Xi)
η0(i) = η0(i) + T · (1 − pi)
η1(i) = η1(i) + T · pi

end for
for all i ∈ Axioms do

E[ci0] = E[ci0] + η0(i)/Prob
E[ci1] = E[ci1] + η1(i)/Prob

end for
LL = LL + log(Prob)

end for
return LL

end function

In turn, P (Xi = x|Q) is given by P (Xi=x,Q)
P (Q) . In Algorithm 2 we use ηx(i)

to indicate E[cix]. Expectation first calls procedures GetForward and Get-
Backward that compute the forward and the backward probability of nodes
and ηx(i) for non-deleted paths only. These are the paths that have not been
deleted when building the BDDs. Forward and backward probabilities in each
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node represent the probability mass of paths from the root to the node and that
of the paths from the node to the leaves respectively. The expression

P (Xi = x,Q) =
∑

n∈N(Q),v(n)=Xi

F (n)B(childx(n))πix

represents the total probability mass of each path passing through the nodes
associated with Xi and going down its x-branch, with N(Q) the set of BDD nodes
for query Q, v(n) the variable associated with node n, πi1 = pi, πi0 = 1 − pi,
F (n) the forward probability of n, B(n) the backward probability of n.

Computing the two probabilities in the nodes requires two traversals of the
graph, so its cost is linear in the number of nodes. Procedure GetForward
computes the forward probabilities for every node. It traverses the diagram one
level at a time starting from the root level, where F (root) = 1, and for each
node n computes its contribution to the forward probabilities of its children.
Then the forward probabilities of both children are updated. Function Get-
Backward computes backward probabilities of nodes by traversing recursively
the tree from the leaves to the root. It returns the backward probability of the
root corresponding to the probability of the query P (Q), indicated with Prob in
Algorithm 2.

When the calls of GetBackward for both children of a node n return, we
have the ex(n) and ηx(i) values for non-deleted paths only. An array ς is used
to store the contributions of the deleted paths that is then added to ηx(i). See
[16] for more details.

Expectations are updated for all axioms and finally the log-likelihood of the
current example is added to the overall LL.

Function Maximization computes the parameters’ values for the next EM
iteration by relative frequency. Note that the ηx(i) values can be stored in a
bi-dimensional array eta[a, 2] where a is the number of axioms.

EDGE is written in Java for portability and interfacing with Pellet. For
further information about EDGE please refer to [16].

5 Distributed Parameter Learning for Probabilistic DLs

The aim of the present work is to develop a parallel version of EDGE that
exploits the MapReduce strategy. We called it EDGEMR (see Algorithm 3).

5.1 Architecture

Like most MapReduce frameworks, EDGEMR architecture follows a master-slave
model. The communication between the master and the slaves adopts the Mes-
sage Passing Interface (MPI), in particular we used the OpenMPI3 library which
provides a Java interface to the native library. The processes of EDGEMR are
not purely functional, as required by standard MapReduce frameworks such as
3 http://www.open-mpi.org/.

http://www.open-mpi.org/
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Hadoop, because they have to retain in main memory the BDDs during the whole
execution. This forced us to develop a parallelization strategy exploiting MPI.

EDGEMR can be split into three phases: Initialization, Query resolution and
Expectation-Maximization. All these operations are executed in parallel and syn-
chronized by the master.

Initialization. During this phase data is replicated and a process is created on
each machine. Then each process parses its copy of the probabilistic knowl-
edge base and stores it in main memory. The master, in addition, parses the
files containing the positive and negative examples (the queries).

Query resolution. The master divides the set of queries into subsets and dis-
tributes them among the workers. Each worker generates its private subset
of BDDs and keeps them in memory for the whole execution. Two different
scheduling techniques can be applied for this operation. See Subsect. 5.3 for
details.

Expectation-Maximization. After all the nodes have built the BDDs for
their queries, EDGEMR starts the Expectation-Maximization cycle. Dur-
ing the Expectation step all the workers traverse their BDDs and calculate
their local eta array. Then the master gathers all the eta’s from the workers
and aggregates them by summing the arrays component-wise. Then it calls
the Maximization procedure in which it updates the parameters and sends
them to the slaves. The cycle is repeated until one of the stopping criteria is
satisfied.

5.2 MapReduce View

Since EDGEMR is based on MapReduce, it can be split into three phases: Ini-
tialization, Map and Reduce.

Initialization. Described in Subsect. 5.1.
Map. This phase can be seen as a function that returns a set of (key, value)

pairs, where key is an example identifier and value is the array eta.
– Query resolution: each worker resolves its chunks of queries and builds its

private set of BDDs. Two different scheduling techniques can be applied
for this operation. See Subsect. 5.3 for details.

– Expectation Step: each worker calculates its local eta.
Reduce. This phase is performed by the master (also referred to as the

“reducer”) and it can be seen as a function that returns pairs (i, pi), where
i is an axiom identifier and pi is its probability.
– Maximization Step: the master gathers all the eta arrays from the workers,

aggregates them by summing component wise, performs the Maximization
step and sends the newly updated parameters to the slaves.

The Map and Reduce phases implement the Expectation and Maximization func-
tions respectively, hence they are repeated until a local maximum is reached. It
is important to notice that the Query Resolution step in the Map phase is exe-
cuted only once because the workers keep in memory the generated BDDs for
the whole execution of the EM cycle; what changes among iterations are the
random variables’ parameters.
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5.3 Scheduling Techniques

In a distributed context the scheduling strategy influences significantly the per-
formances. We evaluated two scheduling strategies, single-step scheduling and
dynamic scheduling, during the generation of the BDDs for the queries, while
the initialization and the EM phases are independent of the chosen scheduling
method.

Single-step Scheduling if N is the number of the slaves, the master divides the
total number of queries envenly into N + 1 chunks, i.e. the number of slaves
plus the master. Then the master starts N +1 threads, one building the BDD
for its queries while the others sending the other chunks to the corresponding
slaves. After the master has terminated dealing with its queries, it waits for
the results from the slaves. When the slowest slave returns its results to the
master, EDGEMR proceeds to the EM cycle. Figure 2(a) shows an example
of single-step scheduling with two slaves.

Fig. 2. Scheduling techniques of EDGEMR.
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Algorithm 3. Function EDGEMR

1: function EDGEMR (K, PE , NE , S, ε, δ) � PE , NE : pos. and neg. examples, S: scheduling
method

2: Read knowledge base K
3: if MASTER then
4: Identify examples E
5: if S == dynamic then � dynamic scheduling
6: Send a chunk of examples Ej to each slave
7: Start thread listener � Thread for answering query requests from slaves
8: c = m − 1 � c counts the computed examples
9: while c < |E| do
10: c = c + 1
11: Build BDDc for example ec

12: end while
13: else � single-step scheduling
14: Split examples E evenly into n subsets E1, . . . , En

15: Send Em to each worker m, 2 ≤ m ≤ n
16: Build BDDs1 for examples E1
17: end if
18: LL = −∞
19: repeat
20: LL0 = LL
21: Send the parameters pi to each worker m, 2 ≤ m ≤ n
22: LL = Expectation(BDDs1)
23: Collect LLm and the expectations from each worker m, 2 ≤ m ≤ n
24: Update LL and the expectations
25: Maximization
26: until LL − LL0 < ε ∨ LL − LL0 < −LL · δ
27: Send STOP signal to all slaves
28: return LL, pi for all i
29: else � the j-th slave
30: if S == dynamic then � dynamic scheduling
31: while c < |E| do
32: Receive Ej from master
33: Build BDDsj for the chunk of examples Ej

34: Request another chunk of examples to the master
35: end while
36: else � single-step scheduling
37: Receive Ej from master
38: Build BDDsj for examples Ej

39: end if
40: repeat
41: Receive the parameters pi from master
42: LLj = Expectation(BDDsj)
43: Send LLj and the expectations to master
44: until Receive STOP signal from master
45: end if
46: end function

Dynamic Scheduling is more flexible and adaptive than single-step schedul-
ing. Handling each query chunk may require a different amount of time.
Therefore, with single-step scheduling, it could happen that a slave takes
much more time than another one to deal with its chunk of queries. This
may cause the master and some slaves to wait. Dynamic scheduling miti-
gates this issue. The user can establish a chunk dimension, i.e. the number
of examples in each chunk. At first, each machine is assigned a chunk of
queries in order. When it finishes handling the chunk, it takes the following
chunk. So if the master ends handling its chunk, it just picks the next one,
while if a slave ends handling its chunk, it asks the master for another one.
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During this phase the master runs a listener thread that waits for slaves’
requests of new chunks. For each request, the listener starts a new thread
that sends a chunk to the requesting slave (to improve the performances this
is done through a thread pool). When all the BDDs for the queries are built,
EDGEMR starts the EM cycle. An example of dynamic scheduling with two
slaves and a chunk dimension of one example is displayed in Fig. 2(b).

5.4 Overall EDGEMR

In light of the above, we analyze now EDGEMR’s main procedure, shown in
Algorithm 3.

After the initialization phase, EDGEMR enters in the query resolution phase,
where the master sends the examples to the slaves and builds its BDDs [lines
4–17]. Here, in particular, if dynamic scheduling is chosen, the master initializes
a thread listener (line 7) which sends a chunk of examples to the slaves at every
request it receives, while if single-step scheduling is chosen it simply divides
the examples evenly and sends them once for all to the slaves. Meanwhile, the
slaves, following the chosen scheduling type, receive the examples and build the
corresponding BDDs (lines 30–39). In the dynamic scheduling setting the slaves
make a request to the master for another chunk of queries every time they finish
to compute the current chunk (line 34). After that, EDGEMR enters in the
Expectation-Maximization phase, first of all the master sends the probability
values pi to the slaves (line 21) which receive and store them (line 41). Now,
the Expectation procedure (Algorithm 2) can be executed by all the workers
(lines 22 and 42). Finally, during the maximization phase the master collects all
the values, executes the Maximization procedure and checks whether a new
round of EM must be performed (lines 23–27), while the slaves only wait for a
signal from master which indicates whether to execute either Expectation or
stop.

6 Experiments

In order to evaluate the performances of EDGEMR, four datasets were selected:

– Mutagenesis4 [25], contains information about a number of aromatic and
heteroaromatic nitro drugs, including their chemical structures in terms of
atoms, bonds and a number of molecular substructures.

– Carcinogenesis5 [24], which describes the carcinogenicity of more than 300
chemical compounds.

– an extract of DBPedia6 [11], a knowledge base obtained by extracting the
structured data from Wikipedia.

4 http://www.doc.ic.ac.uk/∼shm/mutagenesis.html.
5 http://dl-learner.org/wiki/Carcinogenesis.
6 http://dbpedia.org/.

http://www.doc.ic.ac.uk/~shm/mutagenesis.html
http://dl-learner.org/wiki/Carcinogenesis
http://dbpedia.org/
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– education.data.gov.uk7, which contains information about school institu-
tions in the United Kingdom.

The last three datasets are the same as in [19]. All experiments have been
performed on a cluster of 64-bit Linux machines with 2 GB (max) memory
allotted to Java per node. Each node of this cluster has 8-cores Intel Haswell
2.40 GHz CPUs.

For the generation of positive and negative examples, we randomly chose a
set of individuals from the dataset. Then, for each extracted individual a, we
sampled three named classes: A and B were selected among the named classes
to which a explicitly belongs, while C was taken from the named classes to
which a does not explicitly belong but that exhibits at least one explanation
for the query a : C. The axiom a : A was added to the KB, while a : B was
considered as a positive example and a : C as a negative example. Then both
the positive and the negative examples were split in five equally sized subsets
and we performed five-fold cross-validation for each dataset and for each num-
ber of workers. Information about the datasets and training examples is shown
in Table 1. We performed the experiments with 1, 3, 5, 9 and 17 nodes, where
the execution with 1 node corresponds to the execution of EDGE. Furthermore,
we used both single-step and dynamic scheduling in order to evaluate the two
scheduling approaches. It is important to point out that the quality of the learn-
ing is independent of the type of scheduling and of the number of nodes, i.e.
the parameters found with 1 node are the same as those found with n nodes.
Table 2 shows the running time in seconds for parameter learning on the four
datasets with the different configurations. Figure 3 shows the speedup obtained
as a function of the number of machines (nodes). The speedup is the ratio of the
running time of 1 worker to the running time of n workers. We can note that
the speedup is significant even if it is sublinear, showing that a certain amount
of overhead (the resources, and therefore the time, spent for the MPI commu-
nications) is present. The dynamic scheduling technique has generally better
performance than single-step scheduling.

Table 1. Characteristics of the datasets used for evaluation.

Dataset # of all # of probabilistic # of pos. # of neg. Fold size

axioms axioms examples examples (MiB)

Carcinogenesis 74409 186 103 154 18.64

DBpedia 5380 1379 181 174 0.98

education.data.gov.uk 5467 217 961 966 1.03

Mutagenesis 48354 92 500 500 6.01

7 http://education.data.gov.uk.

http://education.data.gov.uk
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Table 2. Comparison between EDGE and EDGEMR in terms of running time (in
seconds) for parameter learning.

Dataset EDGE EDGEMR

Dynamic Single-step

3 5 9 17 3 5 9 17

Carcinogenesis 847 441.8 241 147.2 94.2 384 268.4 179.2 117.8

DBpedia 1552 1259.8 634 364.6 215.2 1155.6 723.8 452.6 372.6

education.data.gov.uk 6924.2 3878.2 2157.2 1086 623.2 3611.6 2289.6 1331.6 749.4

Mutagenesis 1439.4 635.8 399.8 223.2 130.4 578.2 359.2 230 124.6

Fig. 3. Speedup of EDGEMR relative to EDGE with single-step and dynamic
schedulings.

7 Related Work

The pervasiveness of Internet, the availability of sensor data, the dramatically
increased storage and computational capabilities provide the opportunity to
gather huge sets of data. This large amount of information is known by the
name of Big Data. The ability to process and perform learning and inference
over massive data is one of the major challenges of the current decade. Big data
is strictly intertwined with the availability of scalable and distributed algorithms.

In [1] the authors developed a method to parallelize inference and training
on a probabilistic relational model. They show that (loopy) belief propagation
can be lifted and that lifting is MapReduce-able. In addition they show that
the MapReduce approach improves performances significantly. For parameter
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learning, they propose an approximate method which is MapReduce-able as
well. In order to train large models, they shatter the factor graph into smaller
pieces which can be elaborated locally in a distributed fashion by exploiting the
MapReduce approach.

Other specific distributed implementations have been developed for vari-
ous machine learning methods, such as support vector machines [26], robust
regression [12] and extreme learning machines [9].

8 Conclusions

EDGE is an algorithm for learning the parameters of DISPONTE probabilistic
knowledge bases. In this paper we presented EDGEMR, a distributed version of
EDGE based on the MapReduce approach.

We performed experiments over four datasets with an increasing number of
nodes. The results show that parallelization significantly reduces the execution
time, even if with a sublinear trend due to overhead.

We are currently working on a way to distribute structure learning of
DISPONTE probabilistic knowledge bases. In particular, we aim at develop-
ing a MapReduce version of LEAP [19], as outlined in [5,6]. Moreover, we plan
to investigate the possibility of parallelizing and distributing also the inference.
We also plan to develop a Web interface for EDGEMR and integrate it in TRILL
on SWISH, available at http://trill.lamping.unife.it/, possibly reimplementing
it in Prolog, using the technology of [18,28].
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Abstract. Data transformation involves the manual construction of
large numbers of special-purpose programs. Although typically small,
such programs can be complex, involving problem decomposition, recur-
sion, and recognition of context. Building such programs is common in
commercial and academic data analytic projects and can be labour inten-
sive and expensive, making it a suitable candidate for machine learning.
In this paper, we use the meta-interpretive learning framework (MIL)
to learn recursive data transformation programs from small numbers of
examples. MIL is well suited to this task because it supports problem
decomposition through predicate invention, learning recursive programs,
learning from few examples, and learning from only positive examples.
We apply Metagol, a MIL implementation, to both semi-structured and
unstructured data. We conduct experiments on three real-world datasets:
medical patient records, XML mondial records, and natural language
taken from ecological papers. The experimental results suggest that high
levels of predictive accuracy can be achieved in these tasks from small
numbers of training examples, especially when learning with recursion.

1 Introduction

Suppose you are given a large number of patient records in a semi-structured
format and are required to transform them to a given structured format. Figure 1
shows such a scenario relating to medical patient records, where (a) is the input
and (b) is the desired output. To avoid manually transforming the records, you
might decide to write a small program to perform this task. Figure 1c shows a
Prolog program for this task which transforms the input to the output. However,
manually writing this relatively simple program is somewhat laborious. In this
paper, we show how such data transformation programs can be machine learned
from a small number of input/output examples. Indeed, the program shown
in Fig. 1c was learned from the given input/output examples by our system,
described in Sect. 4. In this program, predicate invention is used to introduce the
predicates f1 and f2 and the primitive background predicates find patient id/2,
find int/2, and open interval/4 are used to identify the various fields to be trans-
posed from the input to the output.

In this paper, we investigate the problem of learning data transformation
programs as an ILP application. In general, this is a challenging problem for
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 46–59, 2016.
DOI: 10.1007/978-3-319-40566-7 4
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P 001

67 year

lung disease: n/a, Diagnosis: Unknown

80.78

P 003

56

Diagnosis: carcinoma , lung disease: unknown

20.78

P 013

70

Diagnosis: pneumonia

55.9

(a) Input

P 001 67 Unknown
P 003 56 carcinoma
P 013 70 pneumonia

(b) Output

f(A,B):-f2(A,C),f1(C,B).
f2(A,B):- find patient id(A,C), find int(C,B).

f1(A,B):- open interval(A,B,[‘:’,‘ ’],

f1(A,B):- open interval(A,B,[‘:’,‘ ’],[‘,’,‘ ’]).

(c) Learned Prolog program

 [‘\’,‘n’]). 

Fig. 1. Transformation of medical records from semi-structured format

ILP which for example requires learning recursive rules from a small number of
training examples. In order to address this problem, we use the recently devel-
oped meta-interpretive learning (MIL) framework [5,12,13] to learn data trans-
formation programs. MIL differs from most state-of-the-art ILP approaches by
supporting predicate invention for problem decomposition and the learning of
recursive programs.

Using MIL to learn recursive programs has been demonstrated [4] to be par-
ticularly powerful in learning robot strategies, which are applicable to a poten-
tially infinite set of initial/final state pairs, in contrast to learning non-recursive
robot plans, applicable to only a specific initial/final state pair. We investigate
learning recursive data transformation programs, applicable to a potentially infi-
nite set of input/output examples.

The paper is arranged as follows. Section 2 describes related work. Section 3
describes the theoretical framework. Section 4 describes the transformation lan-
guage used in the experiments. Section 5 describes experiments in learning recur-
sive data transformation programs in three domains: medical patient records,
XML mondial documents, and ecological scholarly papers. Finally, Sect. 6 con-
cludes the paper and details future work.

2 Related Work

In [3] the authors compared statistical and relational methods to extract facts
from a MEDLINE corpus. The primary limitation of the statistical approach,
they state, is its inability to express the linguistic structure of the text; by con-
trast, the relational approach allows these features to be encoded as background
knowledge, as parse trees, specifically. The relational approach used an ILP sys-
tem similar to FOIL [14] to learn extraction rules. Similar works include [6],
who used the ILP system Aleph [16] to learn rules to extract relations from
a MEDLINE corpus; and [1], who used the ILP system FOIL to learn rules to
extract relations from Nature and New Scientist articles. These works focused on
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constructing the appropriate problem representation, including determining the
necessary linguistic features to be included in the background knowledge. In con-
trast to these approaches, we use the state-of-the-art ILP system Metagol, which
supports predicate invention, the learning of recursive theories, and positive-only
learning, none of which is supported by FOIL nor Aleph.

FlashExtract [8] is a framework to extract fields from documents, such as
text files and web pages. In this framework, the user highlights one or two exam-
ples of each field in a document and FlashExtract attempts to extract all other
instances of such fields, arranging them in a structured format, such as a table.
FlashExtract uses an inductive synthesis algorithm to synthesise the extraction
program using a domain-specific language built upon a pre-specified algebra of
a few core operators (map, filter, merge, and pair). In contrast to FlashExtact,
our approach allows for the inclusion of background knowledge.

Wu et al. [19] presented preliminary results on learning data transformation
rules from examples. They demonstrated that specific string transformation rules
can be learned from examples, given a grammar describing common user editing
behaviors (i.e. insert, move, and delete). Their approach then uses a search algo-
rithm to reduce the larger grammar space to a disjunction of subgrammar spaces
(i.e. transformation rules) which are consistent with the examples. Depending
on the grammar, the search could still generate many consistent transformations
and they use a ranking algorithm to order transformation rules, e.g. based on the
homogeneity of the transformed data. In their approach the set of transformation
rules that the system can generate are pre-defined and not universal. By con-
trast, in our work, the transformation programs are not pre-defined and can be
learned using predicate invention. Wu and Knoblock [18] recently extended their
approach into a Programming-by-Example technique which iteratively learns
data transformation programs by example. Their technique works by identifying
previous incorrect subprograms and replacing them with correct subprograms.
They demonstrated their technique on a set of string transformation problems
and compared the results with the Flashfill approach [7] and MetagolDF [9].
While the overall aims of their approach are similar to ours, their approach does
not support automatic problem decomposition using predicate invention, nor
learning recursive programs. In this paper we also demonstrated our approach
on a wider range of applications.

In [9], MIL was used to learn string transformation programs. In this app-
roach, the authors perform transformations at the character level. However, this
approach significantly increases the search space, and is unsuitable for learning
from large input/output examples. By contrast, in this work, we look at the more
general problem of learning data transformation programs, which are applicable
to larger inputs/outputs and also a wider range of inputs/outputs. For instance,
in Sect. 5, we apply our technique to relatively larger (55 kb) XML files.

ILP has been used in the past for the task of learning recursive rules from
biological text. For example in [2], recursive patterns are discovered from bio-
medical text by inducing mutually dependent definitions of concepts using the
ILP system ATRE. However, this is restricted in that they have a fixed number
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of slots in the output which need to be filled. By comparison, both the ecological
and XML experiments in this paper show that we are not limited to this in our
approach.

Similarly, ATRE has been used in [10] to learn a recursive logical theory of
the ontology from a biological text corpus. However these ILP approaches cannot
be easily extended for the general task of learning data transformation programs
from examples. Both [2,10] have only been demonstrated on extraction of specific
types of information from biological text, and did not attempt more general text
transformation tasks of the kinds demonstrated in our paper. Moreover, these
approaches were not shown to learn recursive rules from a small number of
training examples and also do not support predicate invention.

3 Framework

MIL [12,13] is a form of ILP based on an adapted Prolog meta-interpreter.
Whereas a standard Prolog meta-interpreter attempts to prove a goal by repeat-
edly fetching first-order clauses whose heads unify with a given goal, a MIL
learner attempts to prove a set of goals by repeatedly fetching higher-order
metarules (Fig. 3) whose heads unify with a given goal. The resulting meta-
substitutions are saved in an abduction store, and can be re-used in later proofs.
Following the proof of a set of goals, a hypothesis is formed by applying the
meta-substitutions onto their corresponding metarules, allowing for a form of
ILP which supports predicate invention and the learning of recursive theories.

General formal framework. In the general framework for data transformation we
assume that the user provides examples E of how data should be transformed.
Each example e ∈ E consists of a pair 〈d1, d2〉 where d1 ∈ D1 and d2 ∈ D2 are
input and output data records respectively. Given background knowledge B, in
the form of existing transformations and the user-provided examples E the aim
of the learning is to generate a transformational function τ : D1 → D2 such that
B, τ |= E.

4 Implementation

Figure 2 shows the implementation of Metagol1 as a generalised meta-interpreter
[13], similar in form to a standard Prolog meta-interpreter.

Metagol works as follows. Metagol first tries to prove a goal deductively del-
egating the proof to Prolog (call(Atom)). Failing this, Metagol tries to unify the
goal with the head of a metarule (metarule(Name,Subs,(Atom :- Body))) and
to bind the existentially quantified variables in a metarule to symbols in the
signature. Metagol saves the resulting meta-substitutions (Subs) in an abduc-
tion store and tries to prove the body goals of the metarule. After proving all
goals, a Prolog program is formed by projecting the meta-substitutions onto
their corresponding metarules.
1 https://github.com/metagol/metagol.

https://github.com/metagol/metagol
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prove([],H,H).
prove([Atom|Atoms],H1,H2):-

prove aux(Atom,H1,H3),
prove(Atoms,H3,H2).

prove aux(Atom,H,H):-
call(Atom).

prove aux(Atom,H1,H2):-
member(sub(Name,Subs),H1),
metarule(Name,Subs,(Atom :- Body)),
prove(Body,H1,H2),

prove aux(Atom,H1,H2):-
metarule(Name,Subs,(Atom :- Body)),
new metasub(H1,sub(Name,Subs)),
abduce(H1,H3,sub(Name,Subs)),
prove(Body,H3,H2).

Fig. 2. Prolog code for Metagol, a generalised meta-interpreter

Name Metarule Order

Base P (x, y) ← Q(x, y) P � Q

Chain P (x, y) ← Q(x, z), R(z, y) P � Q,P � R

Curry P (x, y) ← Q(x, y, c1, c2) P � Q

TailRec P (x, y) ← Q(x, z), P (z, y) P � Q, x � z � y

Fig. 3. Metarules with associated ordering constraints, where � is a pre-defined order-
ing over symbols in the signature. The letters P , Q, and R denote existentially quan-
tified higher-order variables; x, y, and z denote universally quantified first-order vari-
ables; and c1 and c2 denote existentially quantified first-order variables

4.1 Transformation Language

In the transformation language, we represent the state as an Input/Output
pair, where Input and Output are both character lists. The transforma-
tion language consists of two predicates skip to/3 and open interval/4. The
skip to/3 predicate is of the form skip to(A,B,Delim), where A and B are
states, and Delim is a character list. This predicate takes a state A =
InputA/OutputA and skips to the delimiter Delim in InputA to form an out-
put B = InputB/OutputA. For example, let A = [i, n, d, u, c, t, i, o, n]/[] and
Delim = [u, c], then skip to(A,B,Delim) is true where B = [u, c, t, i, o, n]/[].
The open interval/4 predicate is of the form open interval(A,B, Start, End),
where A and B are states, and Start and End are character lists. This predi-
cate takes a state A = InputA/OutputA, finds a sublist in InputA denoted by
Start and End delimiters, appends that sublist to OutputA to form OutputB,
and skips all elements up to End delimiter in InputA to form InputB. For
example, let A = [i, n, d, u, c, t, i, o, n]/[], Start = [n, d], and End = [t, i], then
open interval(A,B,Start,End) is true where B = [t, i, o, n]/[u, c].
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5 Experiments

We now detail experiments2 in learning data transformation programs. We test
the following null hypotheses:

Null hypothesis 1. Metagol cannot learn data transformation programs with
higher than default predictive accuracies.

Null hypothesis 2. MetagolR (with recursion) cannot learn data transforma-
tion programs with higher predictive accuracies than MetagolNR (without
recursion).

To test these hypotheses, we apply our framework to three real-world datasets:
XML mondial files, patient medical records, and ecological scholarly papers. To
test null hypothesis 2, we learn using two versions of Metagol: MetagolR and
MetagolNR. Both versions use the chain and curry metarules, but MetagolR
also uses the tailrec metarule.

We do not compare our results with other state-of-the-art ILP systems
because they cannot support predicate invention, nor, crucially, the learning
of recursive programs, and so such a comparison would be unfair.

5.1 XML Data Transformations

In this experiment, the aim is to learn programs to extract values from semi-
structured data. We work with XML files, but the methods can be applied to
other semi-structured mark-up languages, such as JSON.

Materials. The dataset3 is a 1mb worldwide geographic database XML file which
contains information about 231 countries, such as population, provinces, cities,
etc. We split the file so that each country is a separate XML file. We consider
the task of extracting all the city names for each country. Figure 4 shows three
simplified positive examples, where the left column (input) is the XML file and
the right column (output) is the city names to be extracted. Appendix A shows
a full input example used in the experiments. Note the variations in the dataset,
such as the varying number of cities (from 1 to over 30) and the differing XML
structures. To generate training and testing examples, we wrote a Python script
(included as Appendix B) to extract all the city names for each country. This was
a non-trivial task for us, and it would be even more difficult for non-programmers,
which supports the claim that this should be automated). The 231 pairings of a
country XML file and the cities in that country form the positive examples. We
do not, however, use all the positive examples as training examples because the
amount of information varies greatly depending on the country. For instance,
the file on the British crown dependency of Jersey is 406 bytes, whereas the file
on the USA is 55 kb. We postulate that in a real-world setting a user is unlikely
2 Experiments available at https://github.com/andrewcropper/ilp15-datacurate.
3 http://www.cs.washington.edu/research/xmldatasets/www/repository.html#

mondial.

https://github.com/andrewcropper/ilp15-datacurate
http://www.cs.washington.edu/research/xmldatasets/www/repository.html#mondial
http://www.cs.washington.edu/research/xmldatasets/www/repository.html#mondial
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Input Output
<country id=’f0_136’ name=’Albania’

capital=’f0_1461’>

<name>Albania</name>

<city><name>Tirane</name></city>

<city><name>Shkoder</name></city>

<city><name>Durres</name></city>

</country>

Tirane, Shkoder, Durres

<country id=’f0_144’ name=’Andorra’

capital=’f0_1464’>

<name>Andorra</name>

<city><name>Andorra la Vella</name></city>

</country>

Andorra la Vella

<country id=’f0_149’ name=’Austria’

capital=’f0_1467’>

<name>Austria</name>

<province name="Burgenland">

<city><name>Eisenstadt</name></city>

</province>

<province name="Vienna">

<city><name>Vienna</name></city>

</province>

</country>

Eisenstadt, Vienna

Fig. 4. Three simplified XML transformation positive examples where all the city
names have been extracted. Most of the XML has been removed for brevity, but is
included in the experiments. The actual examples contain a lot more information and
a full example is included as Appendix A

to manually annotate (i.e. label) a 55 kb file. Therefore, we only use country
files less than 2 kb as positive training examples, of which there are 182. We do,
however, use the larger country files for testing. To generate negative examples,
for each XML file we extracted all k text entries and randomly selected j values
to form the negative output, ensuring that the random sample did correspond
to the expected output. Figure 5 displays an example negative instance.

Methods. For each m in the set {1, . . . , 10} we randomly select without replace-
ment m positive and m negative training examples. The default predictive accu-
racy is therefore 50 %. We average predictive accuracies and learning times over
10 trials. We set a maximum solution length to 5.

Results. Figure 6 shows that Metagol learns solutions with higher than default
predictive accuracies, refuting null hypothesis 1. Figure 6 also shows that learn-
ing with recursion results in higher predictive accuracies compared to learning
without recursion, refuting null hypothesis 2. The difference in performance is
because the non-recursive learner cannot handle the varying number of cities,
whereas the recursive solution (Fig. 7) can handle any number of cities.
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Input
<country capital="f0_1557" name="Liechtenstein">

<name>Liechtenstein</name>

<city>

<name>Vaduz</name>

<population>27714</population>

</city>

<ethnicgroups>Italian</ethnicgroups>

<ethnicgroups>Alemannic</ethnicgroups>

<religions>Roman Catholic</religions>

<religions>Protestant</religions>

</country>

Output

Italian, 27714, Vaduz, Liechtenstein, Alemannic, Protestant, Roman Catholic

Fig. 5. Simplified XML transformation negative example
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Fig. 6. XML learning performance when varying number of training examples

5.2 Ecological Scholarly Papers

In this experiment, the aim is to learn programs to extract relations from natural
language taken from ecological scholarly papers.

Materials. The dataset contains 25 positive real-world examples of a natural
language sentence paired with a list of values to be extracted. These examples
are taken from ecological scholarly papers adopted from [17]. Figure 8 shows two
example pairings where we want to extract the predator name, the predation
term, and a list of all prey. We provide all species and predication terms in the
background knowledge. No negative examples are provided, so we learn using
positive examples only.
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f(A,B):- f1(A,C), f(C,B).
f1(A,B):- open interval(A,B,[‘a’,‘m’,‘e’,’>’],[‘<o’,‘/’,‘n’,‘a’]).
f(A,B):- skip to(A,B,[‘<’,‘/’,‘n’,‘a’]).

Fig. 7. Example recursive solution learned by Metagol on the XML dataset

input 1: This species also has a wide food range, but whereas Feronia melanaria took
Coleoptera adults as the main item of the diet, Nebria brevicollis took spiders,
Collembola, Coleoptera adults and larvae in equal number in the present study.

output 1: [‘Nebria brevicollis’, ‘took’, ‘spiders’, ‘Collembola’, ‘Coleoptera adults and
larvae’]

input 2: Bembidion lampros. This species is an important predator of cabbage root
fly eggs (Hughes 1959; Coaker & Williams 1963) and it also feeds on Collembola,
mites, pseudo-scorpions, earthworms and small bettles (Mitchell 1963a).

output 2: [‘Bembidion lampros’, ‘predator’, ‘cabbage root fly eggs’, ‘Collembola’,
‘mites’, ’pseudo-scorpions’, ‘earthworms’, ‘small bettles’]

Fig. 8. Two input/output examples from the ecological experiment
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Fig. 9. Ecological learning performance when varying number of training examples

Methods. For each m in the set {1, . . . , 10}, we randomly select without replace-
ment m positive training examples and 10 positive testing examples. We average
predictive accuracies and learning times over 20 trials. We set a maximum solu-
tion length to 5.

Results. Figure 9 shows that learning with recursion significantly improves pred-
icate accuracies compared to learning without recursion, again refuting null
hypothesis 2. Figure 10 shows an example learned recursive solution.
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f(A,B):- f3(A,C), f2(C,B).
f3(A,B):- f2(A,C), find predation(C,B).
f2(A,B):- find species(A,B).
f2(A,B):- find species(A,C), f2(C,B).

Fig. 10. Example recursive solution learned by Metagol on the ecological dataset
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Fig. 11. Medical record learning performance when varying number of training exam-
ples

5.3 Patient Medical Records

In this experiment, the aim is to learn programs to extract values from patient
medical records.

Materials. The dataset contains 16 positive patient medical records, modelled on
real-world examples4, paired with a list of values to be extracted. Figures 1a and
1b show simplified input/output example pairings. The experimental dataset,
however, contains one additional input and output value, which is a float-
ing integer value. We provide the following background predicates: find int/2,
find float/2, and find patient id/2. We do not, however, provide a predicate to
identify the diagnosis field, so Metagol must use the general purpose background
predicates, described in Sect. 4, to learn a solution. To generate negative test-
ing examples, we create a frequency distribution over input lengths from the
training examples and a frequency distribution over words and punctuation in
the training examples. To create a negative testing example input, we randomly
select a length n from the length distribution and then randomly select with
replacement n words or punctuation characters.

4 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8581.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8581.
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f(A,B):- f2(A,C), f2(C,B).
f2(A,B):- find patient id(A,C), find int(C,B).
f2(A,B):- f1(A,C), find float(C,B).
f1(A,B):- open interval(A,B,[‘:’,‘ ’],[‘\’,‘n’]).
f1(A,B):- open interval(A,B,[‘:’,‘ ’],[‘,’,‘ ’]).

Fig. 12. Learned program

Methods. For each m in the set {1, . . . , 5}, we randomly select without replace-
ment m positive training examples. We test using 20 positive and 20 negative
testing examples. The default predictive accuracy is therefore 50 %. We aver-
age predictive accuracies and learning times over 20 trials. We set a maximum
solution length to 5.

Results. Figure 11 shows that predictive accuracies improve with an increasing
number of training examples, with over 80 % predictive accuracy from a single
example. In all cases, the predictive accuracies of learned solutions are greater
than the default accuracy, and thus null hypothesis 1 is refuted. Figure 12 shows
an example solution.

6 Conclusion and Further Work

We have investigated learning programs which transform data from one format
to another, and we have introduced a general framework for the problem. Our
experiments on medical patient records, XML mondial files, and ecological nat-
ural language texts, indicate that MIL is capable of generating accurate recursive
data transformation programs from small numbers of user-provided examples.

This paper provides an initial investigation into an important new group
of ILP applications relevant to information extraction by example problems.
Further work remains to achieve this potential.

Several issues need to be studied further in scaling-up the work reported.
To begin with, although training data required will be small, owing to the
requirements of user-provided annotation, test data will typically consist of
large numbers of instances. Running Prolog hypotheses on such data will be
time-consuming, and we would like to investigate generating hypotheses in a
scripting language, such as Python.

For data transformation problems such as the ecological dataset we would
also like to investigate the value of large-scale background knowledge, which
might provide deeper natural language analysis based on dictionaries, tokenisa-
tion, part-of-speech tagging, and specialised ontologies.

We would also like to investigate Probabilistic ILP approaches [15], such as [11],
which have the potential to not only provide probabilistic preferences over hypoth-
esised programs, but also the potential of dealingwith issues such as noisewhich are
ubiquitouswithin real-world data. In the context of free-text data these approaches
might also be integrated with finding highest probability parses.
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A Appendix 1

<?xml version="1.0" encoding="UTF-8"?>

<country capital="f0_2148" car_code="GH" datacode="GH"

gdp_agri="47" gdp_ind="16" gdp_serv="37" gdp_total="25100"

government="constitutional democracy" id="f0_1269"

indep_date="06 03 1957" infant_mortality="80.3"

inflation="69" name="Ghana" population="17698272"

population_growth="2.29" total_area="238540">

<name>Ghana</name>

<city country="f0_1269" id="f0_2148" latitude="5.55" longitude="-0.2">

<name>Accra</name>

<population year="84">867459</population>

<located_at type="sea" water="f0_38068" />

</city>

<city country="f0_1269" id="f0_16328">

<name>Kumasi</name>

<population year="84">376249</population>

</city>

<city country="f0_1269" id="f0_16333">

<name>Cape Coast</name>

<population year="84">57224</population>

</city>

<city country="f0_1269" id="f0_16338">

<name>Tamale</name>

<population year="84">135952</population>

</city>

<city country="f0_1269" id="f0_16343">

<name>Tema</name>

<population year="84">131528</population>

</city>

<city country="f0_1269" id="f0_16348">

<name>Takoradi</name>

<population year="84">61484</population>

</city>

<city country="f0_1269" id="f0_16353">

<name>Sekondi</name>

<population year="84">31916</population>

</city>

<ethnicgroups percentage="0.2">European</ethnicgroups>

<ethnicgroups percentage="99.8">African</ethnicgroups>

<religions percentage="30">Muslim</religions>

<religions percentage="24">Christian</religions>

<encompassed continent="f0_132" percentage="100" />
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<border country="f0_1189" length="548" />

<border country="f0_1231" length="668" />

<border country="f0_1422" length="877" />

</country>

B Appendix 2

from xml.dom import minidom

doc = minidom.parse(’mondial.xml’)

countries = doc.getElementsByTagName(’country’)

i=1

for country in countries:

cities = country.getElementsByTagName(’city’)

names = [city.getElementsByTagName(’name’)[0].childNodes[0].data.strip()

for city in cities]

with open(’parsed/output-{0}.txt’.format(i),’w’) as f:

f.write(’,’.join(names))

i+=1

References

1. Aitken, J.S.: Learning information extraction rules: An inductive logic program-
ming approach. In: ECAI, pp. 355–359 (2002)

2. Berardi, M., Malerba, D.: Learning recursive patterns for biomedical information
extraction. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006.
LNCS (LNAI), vol. 4455, pp. 79–93. Springer, Heidelberg (2007)

3. Craven, M., Kumlien, J., et al.: Constructing biological knowledge bases by extract-
ing information from text sources. ISMB 1999, 77–86 (1999)

4. Cropper, A., Muggleton, S.H.: Learning efficient logical robot strategies involving
composable objects. In: Proceedings of the 24th International Joint Conference
Artificial Intelligence (IJCAI 2015), pp. 3423–3429. IJCAI (2015)

5. Cropper, A., Muggleton, S.H.: Logical minimisation of meta-rules within meta-
interpretive learning. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS, vol. 9046,
pp. 62–75. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23708-4 5

6. Goadrich, M., Oliphant, L., Shavlik, J.: Learning ensembles of first-order clauses
for recall-precision curves: a case study in biomedical information extraction. In:
Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194,
pp. 98–115. Springer, Heidelberg (2004)

7. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 Jan-
uary 2011, pp. 317–330 (2011)

8. Le, V., Gulwani, S.: Flashextract: A framework for data extraction by examples.
In: ACM SIGPLAN Notices, vol. 49, pp. 542–553. ACM (2014)

9. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B., Muggleton, S.H.: Bias reformula-
tion for one-shot function induction. In: Proceedings of the 23rd European Confer-
ence on Artificial Intelligence (ECAI 2014), pp. 525–530. IOS Press, Amsterdam
(2014)

http://dx.doi.org/10.1007/978-3-319-23708-4_5


Meta-Interpretive Learning of Data Transformation Programs 59

10. Manine, A.-P., Alphonse, E., Bessières, P.: Extraction of genic interactions with
the recursive logical theory of an ontology. In: Gelbukh, A. (ed.) CICLing 2010.
LNCS, vol. 6008, pp. 549–563. Springer, Heidelberg (2010)

11. Tamaddoni-Nezhad, A., Muggleton, S.: Stochastic refinement. In: Frasconi, P., Lisi,
F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 222–237. Springer, Heidelberg (2011)

12. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive
learning: application to grammatical inference. Mach. Learn. 94, 25–49 (2014)

13. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1),
49–73 (2015). doi:10.1007/s10994-014-5471-y

14. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: a midterm report. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667. Springer, Heidelberg (1993)

15. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg
(2008)

16. Srinivasan, A.: The Aleph Manual. University of Oxford, Oxford (2007)
17. Sunderland, K.D.: The diet of some predatory arthropods in cereal crops. J. Appl.

Ecol. 12(2), 507–515 (1975)
18. Bo, W., Knoblock, C.A.: An iterative approach to synthesize data transformation

programs. In: Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI) (2015)

19. Bo, W., Szekely, P., Knoblock, C.A.: Learning data transformation rules through
examples: preliminary results. In: Proceedings of the Ninth International Workshop
on Information Integration on the Web, IIWeb 2012, pp. 8:1–8:6. ACM, New York,
NY, USA (2012)

http://dx.doi.org/10.1007/s10994-014-5471-y


Statistical Relational Learning
with Soft Quantifiers

Golnoosh Farnadi1,2(B), Stephen H. Bach3, Marjon Blondeel4,
Marie-Francine Moens2, Lise Getoor5, and Martine De Cock1,6

1 Department of Applied Mathematics, Computer Science and Statistics,
Ghent University, Ghent, Belgium

golnoosh.farnadi@ugent.be
2 Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium

sien.moens@cs.kuleuven.be
3 Statistical Relational Learning Group, University of Maryland, College Park, USA

bach@cs.umd.edu
4 Ghent University Global Campus, Incheon, South Korea

marjon.blondeel@ugent.be
5 Statistical Relational Learning Group, University of California, Santa Cruz, USA

getoor@soe.ucsc.edu
6 Center for Data Science, University of Washington, Tacoma, USA

mdecock@uw.edu

Abstract. Quantification in statistical relational learning (SRL) is
either existential or universal, however humans might be more inclined
to express knowledge using soft quantifiers, such as “most” and “a few”.
In this paper, we define the syntax and semantics of PSLQ, a new SRL
framework that supports reasoning with soft quantifiers, and present
its most probable explanation (MPE) inference algorithm. To the best
of our knowledge, PSLQ is the first SRL framework that combines soft
quantifiers with first-order logic rules for modeling uncertain relational
data. Our experimental results for link prediction in social trust networks
demonstrate that the use of soft quantifiers not only allows for a natural
and intuitive formulation of domain knowledge, but also improves the
accuracy of inferred results.

1 Introduction

Statistical relational learning (SRL) has become a popular paradigm for knowl-
edge representation and inference in application domains with uncertain data
that is of a complex, relational nature. A variety of different SRL frameworks
has been developed over the last decade, based on ideas from probabilistic graph-
ical models, first-order logic, and programming languages (see e.g., [11,21,26]).
Quantification in first-order logic is traditionally either existential (∃) or univer-
sal (∀). Given the strong roots of the existing SRL frameworks in (a subset of)
first-order logic as a knowledge representation language, it is no surprise that
these are the two kinds of quantifications that are known and commonly used in

c© Springer International Publishing Switzerland 2016
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SRL, even though in many application scenarios humans might be more inclined
to express knowledge using softer quantifiers, such as most and a few.

For example, in models for social networks it is common to include the knowl-
edge that the behaviour, beliefs, and preferences of friends all influence each
other. How this information can be incorporated depends on the expressivity of
the model. In a traditional probabilistic model, a dependency might be included
for each pair of friends (corresponding to a universally quantified rule), each
expressing the knowledge that it is more probable that two friends share a trait
in common. An often cited example in SRL contexts describing smoking behav-
iour among friends is ∀X∀Y Friends(X, Y ) → (Smokes(X) ↔ Smokes(Y )) [26].
This formula states that if two people are friends, then either both of them
smoke or neither of them. In this case, the probability that a person smokes
scales smoothly with the number of friends that smoke. However, many traits of
interest might not behave this way, but instead exhibit “tipping points” in which
having a trait only becomes more probable once most or some of one’s friends
have that trait (e.g., smoking behaviour). Expressing this dependency requires
a soft quantifier, which none of the existing SRL frameworks allow.

What sets soft quantifiers apart from universal and existential quantification
is that expressions that contain them are often true to a certain degree, as
opposed to either being true or false. Indeed, the degree to which a statement
such as “most of Bob’s friends smoke” is true, increases with the percentage of
smokers among Bob’s friends. This increase is not necessarily linear; in fact, a
common approach to compute the truth degree of soft quantified expressions is to
map percentages to the scale [0, 1] using non-decreasing piecewise linear functions
[31]. Previous SRL work (e.g., [15,20,23]) has considered hard quantifiers with
thresholds such as at least k. Soft quantifiers, on the other hand, do not impose
such hard thresholds but allow smooth, gradual transitions from falsehood to
truth.

Furthermore, the dependence of predicted probabilities on population size in
relational models such as Markov logic networks (MLNs) and relational logistic
regression is addressed in [16,22]. Soft quantifiers not only provide the flexibility
of modeling complex relations, but their semantics also do not depend on the
absolute population size. Hence soft quantifiers allow us to learn a model for some
population size and apply the same model to another population size without
the need for changes in the model, e.g. without introducing auxiliary variables
to control whether the population size grows.

Many SRL applications could benefit from the availability of soft quanti-
fiers. Collective document classification, for instance, relies on rules such as
∀D∀E∀C(Cites(D, E) ∧Class(D, C) → Class(E, C)) which expresses that if docu-
ments D and E are linked (e.g., by citation), and D belongs to class C, then E
belongs to C [2]. Soft quantifiers would allow to classify a document based on
most of its citing documents instead of one citing document. Similarly, in collabo-
rative filtering, one can rely on the preferred products of a user to infer the behav-
iour of a similar user, i.e., ∀U1∀U2∀J(Likes(U1, J)∧Similar(U1, U2) → Likes(U2, J))

[2]. Using soft quantifiers would allow to infer preferences of a user based on most
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of the behaviours of a similar user, or by comparing one user with most of the
users similar to him.

In this paper we present the first SRL framework that combines soft quan-
tifiers with first-order logic rules for modeling uncertain relational data. A brief
overview of our framework is presented in [10]. We start from probabilistic soft
logic (PSL) [1], an existing SRL framework that defines templates for hinge-loss
Markov random fields [2], and extend it to a new framework which we call PSLQ.
As is common in SRL frameworks, in PSL a problem is defined by a set of logical
rules using a finite set of atoms. However, unlike other SRL frameworks whose
atoms are Boolean, atoms in PSL can take continuous values in the interval
[0, 1]. Intuitively, value 0 means false and value 1 means true, while any value
v ∈ [0, 1] represents a partial degree of truth. PSL has been used in various
domains with promising results, including trust propagation [13], drug-target
interaction prediction [9], knowledge graph identification [25], semantic textual
similarity computation [4] and sentiment analysis in a social network [29], among
many others.

Our approach differs from existing research on quantifiers for logical reason-
ing in various ways. Studies on quantifiers in probabilistic logic settings deal with
Boolean atoms [3,19,27], while in this paper atoms take on continuous values.
The literature on fuzzy logic contains a fair amount of work on reasoning with
continuous values (e.g., [6,24]), including the use of soft quantifiers [5], yet, to
the best of our knowledge, there is no prior work on such soft quantifiers in SRL.

This paper makes three contributions. First, we introduce PSLQ, a new SRL
framework that supports reasoning with soft quantifiers, such as “most” and “a
few”. Second, because this expressivity pushes beyond the capabilities of PSL,
we introduce new inference and weight learning algorithms for PSLQ. Finally,
as a proof of concept, we present a PSLQ model that more accurately predicts
trust in social networks than the current state-of-the-art approach.

2 PSLQ: PSL with Soft Quantifiers

Definition 1. An atom is an expression of the form p(a1, a2, . . . , an) where p
is a predicate symbol, and each argument a1, a2, . . . , an is either a constant
or a variable. The finite set of all possible substitutions of a variable to a con-
stant for a particular variable ai is called its domain Dai

. If all variables in
p(a1, a2, . . . , an) are substituted by some constant from their respective domain,
then we call the resulting atom a ground atom. We call ¬p(a1, a2, ..., an) a
negated atom which is the negation of p(a1, a2, ..., an).

Definition 2. A quantifier expression is an expression of the form

Q(V, F1[V ], F2[V ]) (1)

where Q is a soft quantifier, and F1[V ] and F2[V ] are formulas containing the
variable V . A formula is an atom or a negation, conjunction or disjunction of
formulas. A grounded quantifier expression is obtained by instantiating all
variables with constants from their domains except for V .
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Consider as an example the two formulas Knows(X, T ) and Trusts(X, T ), then
Most(T, Knows(X, T ), T rusts(X, T )) is a quantifier expression. By substituting X
with Alice, we obtain the grounded quantifier expression:

Most(T, Knows(Alice, T ), T rusts(Alice, T )), which can be read as “Alice trusts
most of the people she knows”.

Definition 3. A PSLQ model consists of a collection of PSLQ rules. A PSLQ

rule r is an expression of the form:

λr : T1 ∧ T2 ∧ . . . ∧ Tk → H1 ∨ H2 ∨ . . . ∨ Hl (2)

where T1, T2, . . . , Tk, H1, H2, . . . , Hl are atoms, negated atoms, quantifier expres-
sions or negated quantifier expressions and λr ∈ R

+ ∪ {∞} is the weight of the
rule r. We call T1∧T2∧. . .∧Tk the body of r (rbody), and H1∨H2∨. . .∨Hl the head
of r (rhead). Grounding a PSLQ rule means instantiating all the variables with
constants from their domain except for the variables V in quantifier expressions
Q(V, F1[V ], F2[V ]).

Remark 1. A PSL model, i.e., a set of PSL rules, is a PSLQ model without
quantifier expressions. The first 9 rules in Table 1 are an example of a PSLQ

model without quantifier expressions, or a PSL model, while rules 10 − 14 in
Table 1 are examples of PSLQ rules with quantifier expressions. In the remainder
of this paper, we use the term’standard PSL’ to refer to PSL without quantifiers
as defined in [1].

An interpretation I is a mapping that associates a truth value I(s) ∈ [0, 1]
to each ground atom s. For example, I(Knows(Alice, Bob)) = 0.7 indicates that
Alice knows Bob to degree 0.7. The interpretation of PSLQ rules is based on
�Lukasiewicz logic [17]. Conjunction ∧ is interpreted by the �Lukasiewicz t-norm
(∧̃), disjunction ∨ by the �Lukasiewicz t-conorm (∨̃), and negation ¬ by the
�Lukasiewicz negator (¬̃), which are defined as follows. For m,n ∈ [0, 1] we have:
m∧̃n = max(0, m + n − 1), m∨̃n = min(m + n, 1) and ¬̃m = 1 − m. The ˜ indicates
the relaxation over Boolean values. We can extend the interpretation of atoms to
more complex formulas in �Lukasiewicz logic as follows. Given an interpretation
I, and φ1 and φ2 formulas, we have I(φ1 ∧ φ2) = I(φ1) ∧̃ I(φ2), I(φ1 ∨ φ2) =

I(φ1) ∨̃ I(φ2) and I(¬ φ1) = ¬̃ I(φ1).
The interpretation of quantifier expressions in PSLQ relies on quantifier

mappings.

Definition 4. A quantifier mapping Q̃ is a [0, 1] → [0, 1] mapping. If Q̃ is
non-decreasing and satisfies the boundary conditions Q̃(0) = 0 and Q̃(1) = 1, it
is called a coherent quantifier mapping [8].

We assume that for every soft quantifier Q an appropriate quantifier mapping
Q̃ can be defined, i.e. a function that represents the meaning of Q. Using two
thresholds α ∈ [0, 1] and β ∈ [0, 1], where α < β, the following equation defines
a parametrized family of such quantifier mappings:
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Fig. 1. Examples of quantifier mappings

Q̃[α,β](x) =

⎧
⎨

⎩

0 if x < α
x−α
β−α

if α ≤ x < β

1 if x ≥ β

(3)

Figure 1 depicts a possible coherent quantifier mapping for the soft quanti-
fier “a few” as Q̃Few = Q̃[0.1,0.4] and for the soft quantifier “most” as Q̃Most =

Q̃[0.25,0.75]. Note how Q̃Few is more relaxed than Q̃Most. For example, using these
mappings, the statement “a few friends of Bob smoke” is true to degree 1 as
soon as 40% of Bob’s friends are smokers, while 75% of Bob’s friends are
required to be smokers for the statement “most friends of Bob smoke” to be
fully true. The evaluation section contains a detailed analysis on the effect of the
choice of the thresholds α and β on the results obtained with MPE inference.
In practice friendship is not necessarily a black-and-white matter, i.e., people
can be friends to varying degrees. For instance, I(Friend(Bob, Alice)) = 1 and
I(Friend(Bob, Chris)) = 0.2 denote that under interpretation I, Alice is a very
close friend of Bob, while Chris is a more distant friend. Similarly, Chris might be
a heavy smoker, while Alice might be only a light smoker. All these degrees can
and should be taken into account when computing the truth degree of statements
such as “a few friends of Bob smoke” and “most friends of Bob smoke”.

We define the interpretation of a grounded quantifier expression based on
the Zadeh approach [31]. Zadeh suggested to calculate the truth value of “Q A’s
are Bs”, with A : U → [0, 1] and B : U → [0, 1] fuzzy sets in a universe U , as:

Q̃

( |A ∩ B|
|A|

)

where A ∩ B is a fuzzy set defined as: A ∩ B : U → [0, 1] : u → A(u)∧̃B(u).
In this expression, the cardinality of a fuzzy set S : U → [0, 1] is defined as
|S| =∑u∈U S(u).

Definition 5. For a given interpretation I, the interpretation of a
grounded quantifier expression Q(V, F1[V ], F2[V ]) is defined as

I(Q(V, F1[V ], F2[V ])) = Q̃

(∑
x∈DV

I(F1(x)) ∧̃ I(F2(x))
∑

x∈DV
I(F1(x))

)

(4)

with Q̃ a quantifier mapping modeling Q and DV the domain of V .
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Fig. 2. Sample trust network between five users

Example 1. Let’s consider an interpretation I in a sample trust network as
shown in Fig. 2. Nodes represent users and each edge represents the trust relation
between two users. Since a trust relation is asymmetric, the direction of the trust
relation is shown with an arrow. The degree of the trust links are shown with a
value under/above the links, e.g., I(Trusts(Alice, Ann)) = 0.9.
To calculate I(Most(X, Trusts(Alice, X), T rusts(X, Bob))), we calculate:∑

x(I(Trusts(Alice, x))∧̃ I(Trusts(x, Bob))) = 1.3 and
∑

x I(Trusts(Alice, x)) = 3.2,

thus we have Q̃
(
1.3
3.2

) ∼ Q̃(0.41). By using the quantifier expression mapping of
“most” in Fig. 1, we obtain Q̃[0.25,0.75](0.41) = 0.32. Thus, under interpretation I,
“most trustees of Alice trust Bob” to degree 0.32.

Remark 2. In �Lukasiewicz logic, the formula φ1 → φ2 where → is implica-
tion, is logically equivalent to the formula ¬φ1 ∨ φ2, thus the interpretation of a
grounded PSLQ rule r is as follows:

I(r) = I(rbody → rhead) = ¬̃I(rbody)∨̃I(rhead) (5)

Definition 6. The distance to satisfaction dr(I) of a rule r under an interpre-
tation I is defined as:

dr(I) = max{0, I(rbody) − I(rhead)} (6)

By using Remark 2, one can show that a rule r is fully satisfied, i.e. satisfied
to degree 1, when the truth value of its head is at least as high as the truth value
of its body. Thus, the closer the interpretation of a grounded rule is to 1, the
smaller its distance to satisfaction.

A PSLQ model, i.e., a set of PSLQ rules, induces a distribution over inter-
pretations I. Let R be the set of all grounded rules, then the probability density
function is:

f(I) =
1

Z
exp[−

∑

r∈R

λr(dr(I))
p] (7)

where λr is the weight of rule r, Z is a normalization constant

Z =

∫

I

exp[−
∑

r∈R

λr(dr(I))
p]
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and p ∈ {1, 2}. These probabilistic models are instances of hinge-loss Markov ran-
dom fields (HL-MRF). For further explanation we refer to [2]. Choosing p = 1
(i.e., linear) favors interpretations that completely satisfy one rule at the expense
of higher distance from satisfaction for conflicting rules, and p = 2 favors inter-
pretations that satisfy all rules to some degree (i.e., quadratic). Note that in
Sect. 3 we only consider p = 1, since by [2] the results can be extended for p = 2.

3 Inference and Weight Learning in PSLQ

Expressing soft quantifiers pushes beyond the capabilities of inference and weight
learning methods in PSL. In this section, we introduce new methods for inference
based on the most probable explanation inference method (MPE inference) and
weight learning with maximum-likelihood estimation (MLE) in PSLQ.

3.1 Inference

The goal of MPE “most probable explanation” inference is to find the most
probable truth assignments IMPE of unknown ground atoms given the evidence
which is defined by the interpretation I. Let X be all the evidence, i.e., X is
the set of ground atoms such that ∀x ∈ X, I(x) is known, and let Y be the set
of ground atoms such that ∀y ∈ Y, I(y) is unknown. Then we have

IMPE(Y ) = arg maxI(Y )P (I(Y )|I(X)) (8)

and by Eq. 7 it follows that the goal of optimization is to minimize the weighted
sum of the distances to satisfaction of all rules.

Remark 3. Suppose we want to optimize a f : [0, 1]n → [0, 1] function con-
sisting of applications of only piecewise linear functions, fractions of piecewise
linear functions, min : [0, 1]2 → [0, 1] and max : [0, 1]2 → [0, 1]. We can
transform such an optimization problem as follows. For every expression of
the form min(φ, ψ), we introduce a variable vmin(φ,ψ) and add the constraints
0 ≤ φ, ψ, vmin(φ,ψ) ≤ 1, vmin(φ,ψ) ≤ φ and vmin(φ,ψ) ≤ ψ. Similarly, for every
expression of the form max(φ, ψ), we introduce a variable vmax(φ,ψ) and add the
constraints 0 ≤ φ, ψ, vmax(φ,ψ) ≤ 1, vmax(φ,ψ) ≥ φ and vmax(φ,ψ) ≥ ψ. Define the
function g as the original function f but all minima and maxima are replaced
by their corresponding variables. Optimizing f is then equivalent to optimizing
g under these constraints.

By the particular piecewise linear form of dr(I) (see Eq. 6) and Remark 3,
standard PSL’s underlying HL-MRFs have log concave density functions and
hence finding an MPE assignment is a convex optimization problem, which is
solvable in polynomial time. Standard PSL only supports linear constraints
to preserve convexity. Hence, standard PSL potentially can support linear
aggregates.
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Definition 7. An aggregate is a [0, 1]n → [0, 1] mapping. If it is a linear
mapping, it is called a linear aggregate, otherwise it is called a non-linear
aggregate.

As an example, f : [0, 1]n → [0, 1] : (t1, .., tn) → t1+t2+...+tn
n

is a linear aggre-
gate. A PSLQ program allows expressions that contain quantifier expressions.
Since the interpretation of a grounded quantifier expression (see Eq. 4) is based
on a non-linear aggregate, finding a MPE assignment of a PSLQ program with
quantifier expressions is beyond the capabilities of the standard PSL MPE-solver.
To deal with this, we will first categorize different types of grounded quantifier
expressions, given the interpretation I denoting the evidence.

Definition 8. A grounded quantifier expression Q(V, F1[V ], F2[V ]), where for
every s ∈ DV , it holds that all ground atoms in the formulas F1[s] and F2[s] are
in X, is called a fully observed grounded quantifier expression (FOQE).

For instance, in a social network where the age and the friends of all users
are known, by grounding Most(X, Friend(A, X), Y oung(X)), we obtain FOQEs.
Note that for a FOQE Q(V, F1[V ], F2[V ]), we have that I(Q(V, F1[V ], F2[V ])) is a
known value in [0, 1].

Definition 9. A grounded quantifier expression Q(V, F1[V ], F2[V ]), where for
every s ∈ DV , it holds that all ground atoms in the formula F1[s] are in X

and there exists t ∈ DV such that at least one ground atom in the formula F2[t]

is in Y , is called a partially observed grounded quantifier expression of
type one (POQE(1)).

Suppose all friendship relations are known and the goal is to infer
the age of all users based on the age of some, then by grounding
Most(X, Friend(A, X), Y oung(X)), we obtain POQE(1)s. Note that for a POQE(1)

Q(V, F1[V ], F2[V ]), we have that I(Q(V, F1[V ], F2[V ])) = Q̃(f(Y )) where f is a
piecewise linear function in variables belonging to Y .

Definition 10. A grounded quantifier expression Q(V, F1[V ], F2[V ]), for which
there exists t ∈ DV such that at least one ground atom in the formula F1[t] is in
Y , is called a partially observed grounded quantifier expression of type
two (POQE(2)).

Note that for aPOQE(2) Q(V, F1[V ], F2[V ]), we have that I(Q(V, F1[V ], F2[V ])) =

Q̃(f(Y )) where f is a fraction of piecewise linear functions in variables belonging to
Y . In link prediction applications, such as trust link prediction,wemostly dealwith
POQE(2)s. By grounding the rules 10−14 inTable 1 using unknown trust relations,
we obtain complex examples of POQE(2)s.

In the following proposition we give an equivalent definition for the member-
ship function in Eq. 3. By applying Remark 3 we will then be able to show that
a PSLQ program can be transformed to a linear fractional program (LFP).
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Algorithm 1. Iterative MPE inference in PSLQ

Require: PSLQ program P , evidence variables X and random variables Y

1: R ← ∅
2: I(0)(Y ) ← 0
3: for i := 1 to k do
4: for r ∈ P do
5: Rg ← ground(r)
6: for rg ∈ Rg do
7: for every Q of type POQE(2) in rg do
8: I(Q) ← Q̃(I(X) ∪ Ii−1(Y ))
9: end for
10: drg (I) ← 1 − I(rg)
11: if not drg (I) = 0 then
12: R ← R ∪ rg

13: end if
14: end for
15: end for
16: f(I) ← generate(R)
17: G(I) ← transform(f(I))
18: I(i)(Y ) ← optimize(G(I))
19: end for

Proposition 1. The membership-function defined in Eq. 3 where α ∈ [0, 1], β ∈
[0, 1], and α < β can be rewritten as:

Q̃[α,β](x) = max(0,
x − α

β − α
) + min(

x − α

β − α
, 1) − x − α

β − α
(9)

After grounding a PSLQ program we can obtain a mixture of FOQEs,
POQE(1)s and POQE(2)s. Recall that for a FOQE Q(V, F1[V ], F2[V ]), we
have that I(Q(V, F1[V ], F2[V ])) ∈ [0, 1]. On the other hand, for a POQE(1)

Q(V, F1[V ], F2[V ]), we have that I(Q(V, F1[V ], F2[V ])) = Q̃(f(Y )) where f is
a piecewise linear function in variables belonging to Y and for a POQE(2)

Q(V, F1[V ], F2[V ]), we have that I(Q(V, F1[V ], F2[V ])) = Q̃(g(Y )) where g is a frac-
tion of piecewise linear functions in variables belonging to Y . By applying Propo-
sition 1 and Remark 3 it then follows that a PSLQ program using piecewise linear
quantifier mappings such as in Eq. 3 can be transformed to a linear fractional
program (LFP). Note that this is only a worst case scenario: if the grounded
PSLQ program has no POQE(2)’s then we obtain a linear program. We can then
use a transformation similar to the approach of Isbell and Marlow [14] to replace
a LFP by a set of linear programs by establishing a convergent iterative process.
The linear program at each iteration is determined by optimization of the linear
program at the previous iteration.

The algorithm we propose for the MPE inference (Algorithm 1) starts by ini-
tializing all random variables to zero (i.e., line 2). Then, an iterative process starts
by grounding all rules in a PSLQ program (i.e., line 3–5). For every grounded quan-
tifier expression Q of type POQE(2), the value of Q is initialized by calculating the
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value over the known values (I(X)) and the current setting of the unknown values
(I(0)(Y )). In the algorithm, we use the notation Q̃(I(X) ∪ Ii−1(Y )) to denote this
new interpretation of Q at iteration i (i.e., line 7–9). For each rule rg we then calcu-
late the distance to satisfaction (i.e., line 10). Note that I(rg) and hence also drg

(I)
can be piecewise linear functions in Y , but here drg

(I) does not contain fractions
of piecewise linear functions since we calculate values for the POQE(2)s. Next, we
exclude the satisfied grounded rules (i.e., we exclude rules rg such that drg (I) = 0)
from the optimization since their values will not change the optimization task (i.e.,
line 11–13). For the optimization task, f(I) (Eq. 7) is calculated using the distance
to satisfaction of all grounded rules (i.e., line 16). Since f(I) does not contain frac-
tions of piecewise linear functions, it can be transformed to a linear program (i.e.,
line 17). Finally, the inner optimization in PSLQ is solved with PSL’s scalable, par-
allelizable message-passing inference algorithm [2] (i.e., line 18). In each iteration,
the values of Qs get updated by the most probable assignment of random variables
in the previous iteration (I(X) ∪ I(i−1)(Y )) (i.e., line 8). This process is iteratively
repeated for a fixed number of times (i.e., k).

3.2 Weight Learning

The goal of weight learning based on maximum likelihood estimation (MLE) is
to maximize the log likelihood of the rules’ weight based on the training data in
Eq. 7. Hence, the partial derivatives of log likelihood with respect to λi of rule
ri ∈ R are

− δ log(f(I))

δλi
= Eλ[

∑

r∈Rgi

(dr(I))
p] −

∑

r∈Rgi

(dr(I))
p (10)

with Eλ the expected value under the distribution defined by λ, and Rgi is the set
of grounded rules of rule ri. The optimization is based on the voted perception
algorithm [7], in which approximation is done by taking fixed-length steps in the
direction of gradient and averaging the points after all steps; out of the scope
steps are projected back into the feasible region. To make the approximation
tractable, a MPE approximation is used that replaces the expectation in the
gradient with the corresponding values in the MPE state. We use our proposed
MPE approach for transforming POQE(1)s and POQE(2)s in our MLE algorithm.
We omit the pseudocode of the MLE algorithm for a PSLQ program to save
space.

4 Evaluation: Trust Link Prediction

Studies have shown that people tend to rely more on recommendations from
people they trust than on online recommender systems which generate recom-
mendations based on anonymous people similar to them. This observation has
generated a rising interest in trust-enhanced recommendation systems [28]. The
recommendations generated by these systems are based on an (online) trust
network, in which members of the community express whether they trust or
distrust each other. In practice these networks are sparse because most people
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are connected to relatively few others. Trust-enhanced recommendation systems
therefore rely on link prediction.

In [13], trust relations between social media users are modeled and predicted
using a PSL model based on the structural balance theory [12]. Structural bal-
ance theory implies the transitivity of a relation between users. Based on this
theory, users are more prone to trust their neighbors in the network rather than
unknown other users. In [2]1, Bach et al. evaluated the PSL model based on the
structural balance theory on data from Epinions2, an online consumer review site
in which users can indicate whether they trust or distrust each other. Through-
out this section, we will use the same sample of Epinions [18]. The sample dataset
includes 2,000 users with 8,675 relations, namely 7,974 trust relations and only
701 distrust relations.

We systematically perform 8-fold cross-validation and to evaluate the results,
we use three metrics, AUC : the area under the receiver operating characteristic
curve, PR+: the area under the precision-recall curves for trust relations, and
PR-: the area under the precision-recall curves for distrust relations. In each
fold, we first learn the weights of the rules based on 7/8 of the trust network and
then apply the learned model on the remaining 1/8 to infer the Bach et al. used
the model of [13] which is composed of twenty PSL rules in order to predict the
degree of trust between two individuals. Sixteen rules from these rules encode
possible stable triangular structures involving the two individuals and a third
one. For example, an individual is likely to trust people his or her friends trust.
The model of [13] is used to predict unobserved truth-values of Trusts(A, B)

for pairs of individuals. The results of this model are shown in the first line in
Table 2.

In this paper, we propose a model based on 4 transitive rules (rules 1–4 in
Table 1) and one rule which models the cyclic relation between 3 users (rule 5
in Table 1). Rules 6–9 in Table 1 are complementary rules for which we refer
to [13] for further explanation. The atom Average({Trusts}) in rules 8 and
9 is a constant which refers to the global average value of observed trust
scores. This atom is useful for the disconnected parts of the trust network
without any known trust relation. These four rules are also used in the PSL
model of [2]. To investigate whether we can improve the accuracy of the pre-
dictions by introducing rules with soft quantifier expressions, we construct
PSLQ rules based on a triad relation over a set of users instead of a third
party (rules 10–14). The full PSLQ model then consists of all rules displayed
in Table 1.

We examine what happens when changing the thresholds for the quantifier
mappings Q̃ (Eq. 3). We have investigated ten different quantifier mappings by
changing the values of α and β by steps of 0.25. In this way, we obtain ten
different PSLQ programs. For every program, we applied Algorithm 1 for all k ∈
{1, 2, . . . , 10}. Note that for k = 1 the output of the MPE inference is equivalent
to the output generated by a PSLQ model with only FOQEs by ignoring the

1 Source code available at http://psl.umiacs.umd.edu.
2 www.epinions.com.

http://psl.umiacs.umd.edu
www.epinions.com
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(a) (b) (c)

Fig. 3. (a) PR+, (b) PR−, and (c) AUC of changing α and β in the quantifier
mapping Q̃

unknown values. Figure 3 presents changes of the three metrics of these ten PSLQ

models with different quantifier mappings. All ten PSLQ models outperform the
PSL model (shown with a line) in all iterations and in all three metrics, except
for the PSLQ model with Q̃[0.75,1] in PR− after the first two iterations. An
explanation for this is the fact that people trust/distrust a third party as soon
as a few/some of their trusted/distrusted friends trust/distrust that person and
not most of them, i.e., more than 75 %. Interestingly, by decreasing both α and
β values, results get better. The model with the best predicting scores is PSLQ

with Q̃[0,0.25] as a quantifier mapping representing “a few” (see Table 2).
Figure 4 emphasizes the importance of the PSLQ rules with quantifier expres-

sions (rules 10–14) after the weight learning phase. Bars represent average and
error bars represent minimum and maximum weights of the rules learned in 8
folds for the PSLQ model with quantifier mapping Q̃[0,0.25]. These results show
that using soft quantifiers not only improves the accuracy of trust and distrust
predictions but also that the rules containing soft quantifiers, i.e. rules 10–14,
play a major part in this by dominating all other rules in terms of weight. In
these experiments, we used one quantifier mapping for all the quantifiers in a
PSLQ program; however it is possible to use different mapping functions for
each quantifier expression in a PSLQ model, which is an interesting direction for
future research.
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Table 2. Values with a ∗ are statistically significant with a rejection threshold of 0.05
and values in bold are statistically significant with a rejection threshold of 0.1 using
a paired t-test w.r.t. the PSL model [2]. Distrust prediction is more challenging than
trust prediction (i.e., PR- values are overall lower than PR+ values) because of the
unbalanced nature of the data (7,974 trust vs. 701 distrust relations)

Method PR+ PR- AUC

PSL 0.977 0.446 0.812

PSLQ (Q̃[0,0.25]), (k = 1) 0.979* 0.467* 0.825*

PSLQ (Q̃[0,0.25]), (k = 10) 0.979* 0.463 0.824*

5 Conclusion

In this paper, we have introduced PSLQ, the first SRL framework that supports
reasoning with soft quantifiers, such as “most” and “a few”. PSLQ is a power-
ful and expressive language to model uncertain relational data in an intuitive
way. Since this expressivity pushed beyond the capabilities of existing PSL-MPE
solvers, we have introduced and implemented new inference and weight learning
algorithms that can handle rules with soft quantifiers. We have shown how the
higher expressivity of PSLQ can lead to better results in practice by extending
an existing PSL model for link prediction in social trust networks with rules that
contain soft quantifiers. We have presented the effects of using different interpre-
tations of soft quantifiers in our trust model. As a next step, we want to include an
automatic way of learning the best interpretation for each quantifier expression in
a PSLQ model. Besides trust link prediction, many other applications could ben-
efit from the use of soft quantifiers. Exploring the effects of using soft quantifiers
in PSLQ models for other AI applications is therefore another promising research
direction. Furthermore, in addition to the approach of Zadeh that we have used in
this paper, other approaches for soft quantifiers have been proposed, most notably
Yager’s OWA-operators [30]; we plan to investigate them in our future work.
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Abstract. Data-driven elicitation of ontologies from structured data is
a well-recognized knowledge acquisition bottleneck. The development of
efficient techniques for (semi-)automating this task is therefore practi-
cally vital — yet, hindered by the lack of robust theoretical foundations.
In this paper, we study the problem of learning Description Logic TBoxes
from interpretations, which naturally translates to the task of ontology
learning from data. In the presented framework, the learner is provided
with a set of positive interpretations (i.e., logical models) of the TBox
adopted by the teacher. The goal is to correctly identify the TBox given
this input. We characterize the key constraints on the models that war-
rant finite learnability of TBoxes expressed in selected fragments of the
Description Logic EL and define corresponding learning algorithms.

1 Introduction

In the advent of the Web of Data and various “e-” initiatives, such as e-science,
e-health, e-governance, etc., the focus of the classical knowledge acquisition bot-
tleneck becomes ever more concentrated around the problem of constructing rich
and accurate ontologies enabling efficient management of the existing abundance
of data [1]. Whereas the traditional understanding of this bottleneck has been
associated with the necessity of developing ontologies ex ante, in a top-down,
data-agnostic manner, this seems to be currently evolving into a new position,
recently dubbed the knowledge reengineering bottleneck [2]. In this view, the
contemporary challenge is to, conversely, enable data-driven approaches to ontol-
ogy design — methods that can make use and make sense of the existing data,
be it readily available on the web or crowdsourced, leading to elicitation of the
ontological commitments implicitly present on the data-level. Even though the
development of such techniques and tools, which could help (semi-)automate
thus characterized ontology learning processes, becomes vital in practice, the
robust theoretical foundations for the problem are still rather limited. This work
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is an attempt at establishing exactly such foundations and focuses on some key
theoretical issues towards this goal.

We study the problem of learning Description Logic (DL) TBoxes from inter-
pretations, which naturally translates to the task of ontology learning from data.
DLs are a popular family of knowledge representation formalisms [3], which have
risen to prominence as, among others, the logics underpinning different profiles
of the Web Ontology Language OWL1. In this paper, we focus on the lightweight
DL EL [4] and some of its more specific fragments. This choice is motivated, on
the one hand, by the interesting applications of EL, especially as the logic behind
OWL 2 EL profile, while on the other, by its relative complexity, which enables
us to make interesting observations from the learning perspective. Our learning
model is a variant of learning from positive interpretations (i.e., from models of
the target theory) — a generally established framework in the field of inductive
logic programming [5,6]. In our scenario, the goal of the learner is to correctly
identify the target TBox T given a finite set of its finite models. Our overarching
interest lies in algorithms warranting effective learnability in such setting with
no or minimum supervision. Our key research questions and contributions are
therefore concerned with the identification of specific languages and conditions
on the learning input under which such algorithms can be in principle defined.

In the following two sections, we introduce DL preliminaries and discuss
the adopted learning model. In Sect. 4, we identify two interesting fragments
of EL, called ELrhs and ELlhs, which satisfy some basic necessary conditions
enabling finite learnability, and at the same time, we show that full EL does
not meet that same requirement. In Sect. 5, we devise a generic algorithm which
correctly identifies ELrhs and ELlhs TBoxes from finite data, employing a basic
equivalence oracle. Further, in case of ELrhs, we significantly strengthen this
result by defining an algorithm which makes no such calls to an oracle, and
thus supports fully unsupervised learning. In Sect. 6, we compare our work to
related contributions, in particular to the framework of learning TBoxes from
entailment queries, by Konev et al. [7,8]. We conclude in Sect. 7 with an overview
of interesting open problems.

2 Description Logic Preliminaries

The language of the Description Logic (DL) EL [4] is given by (1) a vocabulary
Σ = (NC , NR), where NC is a set of concept names (i.e., unary predicates, e.g.,
Father, Woman) and NR a set of role names (i.e., binary predicates, e.g., hasChild,
likes), and (2) the following set of constructors for defining complex concepts,
which shall be divided into two groups:

EL: C,D ::= � | A | C � D | ∃r.C
L�: C,D ::= � | A | C � D

where A ∈ NC and r ∈ NR. Concept � denotes all individuals in the domain,
C � D the class of individuals that are instances of both C and D, and ∃r.C

1 See http://www.w3.org/TR/owl2-profiles/.

http://www.w3.org/TR/owl2-profiles/
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describes all individuals that are related to some instance of C via the role r. The
set of L� concepts naturally captures the propositional part of EL. The depth of
a subconcept D in C is the number of existential restrictions within the scope of
which D remains. The depth of a concept C is the depth of its subconcept with
the greatest depth in C. Every L� concept is trivially of depth 0.

A concept inclusion (or a TBox axiom) is an expression of the form C � D,
stating that all individuals of type C are D. We sometimes write C ≡ D as an
abbreviation for two inclusions: C � D and D � C. For instance, axioms (i)
and (ii) below state, respectively, that (i) the class of mothers consists of all
and only those individuals who are women and have at least one child, (ii) while
every individual of type Father of boy is a father and has at least one male child:

Mother ≡ Woman � ∃hasChild.� (i)
Father of boy � Father � ∃hasChild.Man (ii)

A TBox (or ontology) is a finite set of such concept inclusions in a particular
language fragment. The language fragments considered in this paper are classi-
fied according to the type of restrictions imposed on the syntax of concepts C
and D in the concept inclusions C � D permitted in the TBoxes:

EL: C and D are both EL concepts;
ELrhs: C is an L� concept and D an EL concept;
ELlhs: C is an EL concept and D an L� concept;
L�: C and D are both L� concepts

For instance, a TBox consisting of axioms (i) and (ii) above, belongs to
language EL, as it in fact contains some ELrhs axioms (Mother � Woman �
∃hasChild.� and (ii)) as well as one ELlhs axiom (Woman � ∃hasChild.� �
Mother).

The semantics of DL languages is defined through interpretations of the form
I = (ΔI , ·I), where ΔI is a non-empty domain of individuals and ·I is an
interpretation function mapping each A ∈ NC to a subset AI ⊆ ΔI and each
r ∈ NR to a binary relation rI ⊆ ΔI × ΔI . The interpretation function is
inductively extended over complex expressions according to the fixed semantics
of the constructors:

�I = ΔI

(C � D)I = {x ∈ ΔI | x ∈ CI ∩ DI}
(∃r.C)I = {x ∈ ΔI | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

An interpretation I satisfies a concept inclusion C � D (I |= C � D) iff
CI ⊆ DI . Whenever I satisfies all axioms in a TBox T (I |= T ), we say that I
is a model of T . Interpretations and models defined in this way are in fact usual
Kripke structures, which can be naturally represented as labelled graphs, with
nodes representing individuals in the domain, edges — roles, and labels — the
interpretations of concept and role names, respectively. For instance, the three
graphs in Fig. 1 all represent possible models of the TBox consisting of axioms
(i) and (ii) above:
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Fig. 1. Sample DL models.

Note that, as there are no a priori restrictions imposed on the number of
domain individuals, a DL TBox might in general have infinitely many models
of possibly infinite size. For a set of interpretations S, we write S |= C � D to
denote that every interpretation in S satisfies C � D. We say that T entails
C � D (T |= C � D) iff every model of T satisfies C � D. Two TBoxes T and
H are (logically) equivalent (T ≡ H) iff they have the same sets of models.

A pointed interpretation (I, d) is a pair consisting of a DL interpretation
I = (ΔI , ·I) and an individual d ∈ ΔI , such that every e ∈ ΔI different from
d is reachable from d through some role composition in I. By a slight abuse of
notation, given an arbitrary DL interpretation I and an individual d ∈ ΔI , we
write (I, d) to denote the largest subset I ′ of I such that (I ′, d) is a pointed
interpretation. If it is clear from the context, we refer to pointed interpretations
and pointed models simply as interpretations and models. We say that (I, d) is
a model of a concept C iff d ∈ CI ; it is a model of C w.r.t. T whenever also
I |= T .

An interpretation (I, d) can be homomorphically embedded in an interpreta-
tion (J , e), denoted as (I, d) �→ (J , e), iff there exists a mapping h : ΔI �→ ΔJ ,
satisfying the following conditions:

– h(d) = e,
– if (a, b) ∈ rI then (h(a), h(b)) ∈ rJ , for every a, b ∈ ΔI and r ∈ NR,
– if a ∈ AI then h(a) ∈ AJ , for every a ∈ ΔI and A ∈ NC .

A model (I, d) of C (w.r.t. T ) is called minimal iff it can be homomorphi-
cally embedded in every other model of C (w.r.t. T ). It is well-known that EL
concepts and TBoxes always have such minimal models (unique up to homo-
morphic embeddings) [9]. As in most modal logics, arbitrary EL models can
be unravelled into equivalent tree-shaped models. Finally, we observe that due
to a tight relationship between the syntax and semantics of EL, every tree-
shaped interpretation (I, d) can be viewed as an EL concept CI , such that
(I, d) is a minimal model of CI . Formally, we set CI = C(d), where for every
e ∈ ΔI we let C(e) = � � A(e) � ∃(e), with A(e) =

�{A ∈ NC | e ∈ AI}
and ∃(e) =

�
(r,f)∈NR×ΔI s.t. (e,f)∈rI ∃r.C(f). In that case we call CI the cov-

ering concept for (I, d). For instance, the covering concept for model I in Fig. 1
is � � Father � Father of boy � ∃hasChild.(� � Man), which can be simplified as
Father � Father of boy � ∃hasChild.(Man).
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3 Learning Model

The learning model studied in this paper is a variant of learning from positive
interpretations [5,6]. In our setting, the teacher fixes a target TBox T , whose
set of all models is denoted by M(T ). Further, the teacher presents a set of
examples from M(T ) to the learner, whose goal is to correctly identify T based
on this input. The learning process is conducted relative to a mutually known
DL language L and a finite vocabulary ΣT used in T .

In principle, M(T ) contains sufficient information in order to enable correct
identification of T , as the following correspondence implies:

M(T ) |= C � D iff T |= C � D, for every C � D in L.

However, as M(T ) might consist of infinitely many models of possibly infinite
size, the teacher cannot effectively present them all to the learner. Instead, the
teacher must confine him- or herself to certain finitely presentable subset of
M(T ), called the learning set. For the sake of clarity, we focus here on the
simplest case when learning sets consist of finitely many finite models.2 Formally,
we summarize the learning model with the following definitions.

Definition 1 (TIP). A TBox Identification Problem (TIP) is a pair (T ,S),
where T is a TBox in a DL language L and S, called the learning set, is a finite
set of finite models of T .

Definition 2 (Learner, identification). For a DL language L, a learner is
a computable function G, which for every set S over ΣT returns a TBox in L
over ΣT . Learner G correctly identifies T on S whenever G(S) ≡ T .

Definition 3 (Learnability). For a DL language L, the class of TBoxes
expressible in L is learnable iff there exists a learner G such that for every
TBox T in L there exists a learning set S on which G correctly identifies T . It
is said to be finitely learnable whenever it is learnable from finite learning sets
only.

We are primarily interested here in the notion of finite learnability, as it
provides a natural formal foundation for the task of ontology learning from data.
By data, in the DL context, we understand collections of atomic concept and
role assertions over domain individuals (e.g., Father(john), hasChild(john,mary)),
which under certain assumptions regarding their structuring with respect to the
background ontology can be seen as models of that ontology and, consequently,
as potentially valuable learning sets. Figure 2 presents an example of a TIP with
a finite learning set, which consists of a single model of the assumed ontology.
The key question is then what formal criteria must this set satisfy to warrant
correct identification of the ontology constraining it. To this end we employ the
2 An alternative, more general approach can be defined in terms of specific fragments

of models. Such generalization, which lies beyond the scope of this paper, is essential
when the learning problem concerns languages without finite model property.
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Fig. 2. A sample TIP with an EL TBox and a finite learning set

basic admissibility condition, characteristic also of other learning frameworks
[10], which ensures that the learning set is sufficiently rich to enable precise
discrimination between the correct hypothesis and all the incorrect ones.

Definition 4 (Admissibility). A TIP (T ,S) is admissible iff for every C � D
in L such that T |= C � D there exists I ∈ S such that I |= C � D.

For the target TBox T , let T �|= be the set of all concept inclusions in L that
are not entailed by T , i.e., T �|= = {C � D in L | T |= C � D}. The admissi-
bility condition requires that for every C � D ∈ T �|=, the learning set S must
contain a “counterexample” for it, i.e., an individual d ∈ ΔI , for some I ∈ S,
such that d ∈ CI and d ∈ DI . Consequently, any learning set must contain such
counterexamples to all elements of T �|=, or else, the learner might never be jus-
tified to exclude some of these concept inclusions from the hypothesis. If it was
possible to represent them finitely we could expect that ultimately the learner
can observe all of them and correctly identify the TBox. In the next section, we
investigate this prospect formally in different fragments of EL.

4 Finite Learning Sets

As argued in the previous section, to enable finite learnability of T in a given lan-
guage L, the relevant counterexamples to all the concept inclusions not entailed
by T must be presentable within a finite learning set S. Firstly, we can immedi-
ately observe that this requirement is trivially satisfied for L�. Clearly, L� can
only induce finitely many different concept inclusions (up to logical equivalence)
on finite vocabularies, such as ΣT . Hence, the set T �|= can always be finitely rep-
resented (up to logical equivalence) and it is straightforward to finitely present
counterexamples to all its members. For more expressive fragments of EL, how-
ever, this cannot be assumed in general, as the ∃r.C constructor induces infi-
nitely many concepts. One negative result comes with the case of EL itself, as
demonstrated in the next theorem.
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Theorem 1 (Finite learning sets in EL). Let T be a TBox in EL. There
exists no finite set S such that (T ,S) is admissible.

The full proof of this and subsequent results is included in an online tech-
nical report [11]. The argument rests on the following lemma. Let (T ,S) be an
admissible TIP and C a concept. By S(C) we denote the set of all models (I, d)
of C w.r.t. T such that I ∈ S. By

⋂ S(C) we denote the intersection of all these
models, i.e., the model (J , d), such that:

1. (J , d) �→ (I, d) for every (I, d) ∈ S(C),
2. for every other model (J ′, d) such that (J ′, d) �→ (I, d) for every (I, d) ∈

S(C) and (J , d) �→ (J ′, d), it is the case that (J ′, d) �→ (J , d).

Lemma 1 (Minimal model lemma). Let (T ,S) be an admissible TIP for T
in EL (resp. in ELrhs), and C be an EL (resp. L�) concept. Whenever S(C) is
non-empty then

⋂ S(C) is a minimal model of C w.r.t. T .

Given the lemma, we consider a concept inclusion of type:

τn := ∃r. . . . ∃r.︸ ︷︷ ︸
n

� � ∃r. . . . ∃r.∃r.︸ ︷︷ ︸
n+1

�

Suppose τn ∈ T �|= for some n ∈ N. Since by the admissibility condition a coun-
terexample to τn must be present in S, it must be the case that S(C) = ∅, where
C is the left-hand-side concept in τn. By the lemma and the definition of a min-
imal model, it is easy to see that S must contain a finite chain of individuals of
length exactly n + 1, as depicted below:

• r−−−−−→ • . . . • r−−−−−→ •︸ ︷︷ ︸
n+1

Finally, since there can always exist some n ∈ N, such that τm ∈ T �|= for every
m ≥ n, we see that the joint size of all necessary counterexamples in such cases
must inevitably be also infinite. Consequently, for some EL TBoxes admissible
TIPs based on finite learning sets might not exist, and so finite learnability
cannot be achieved in general.

One trivial way to tame this behavior is to “finitize” T �|= by delimiting the
entire space of possible TBox axioms to a pre-defined, finite set. This can be
achieved, for instance, by restricting the permitted depth of complex concepts
or generally setting some a priori bound on the size of axioms. Such ad hoc
solutions, though likely efficient in practice, are not very elegant. As a more
interesting alternative, we are able to show that there exist at least two languages
between L� and EL, namely ELlhs and ELrhs, for which finite learning sets are
always guaranteed to exist, regardless of the fact that they permit infinitely many
concept inclusions. In fact, we demonstrate that in both cases such learning sets
might well consist of exactly one exemplary finite model.

We adopt the technique of so-called types, known from the area of modal log-
ics [12]. Types are finite abstractions of possible individuals in the interpretation
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Fig. 3. A finite learning set for an ELrhs TBox {A � ∃r.(A � B), B � ∃r.∃r.A}. The
figure includes type contents (in grey), as defined in the proof of Theorem 2.

domain, out of which arbitrary models can be constructed. Let con(T ) be the set
of all concepts (and all their subconcepts) occurring in T . A type over T is a set
t ⊆ con(T ), such that C � D ∈ t iff C ∈ t and D ∈ t, for every C � D ∈ con(T ).
A type t is saturated for T iff for every C � D ∈ T , if C ∈ t then D ∈ t. For
any S ⊆ con(T ), we write tS to denote the smallest saturated type containing
S. It is easy to see, that tS must be unique for EL.

The next theorem addresses the case of ELrhs. Figure 3 illustrates a finite
learning set for a sample ELrhs TBox, following the construction in the proof.

Theorem 2 (Finite learning sets in ELrhs). Let T be a TBox in ELrhs. There
exists a finite set S such that (T ,S) is admissible.

Proof sketch. Let Θ be the smallest set of types satisfying the following condi-
tions:

– tS ∈ Θ, for every S ⊆ NC and for S = {�},
– if t ∈ Θ then t{C} ∈ Θ, for every ∃r.C ∈ t.

We define the interpretation I = (ΔI , ·I) as follows:

– ΔI := Θ,
– t ∈ AI iff A ∈ t, for every t ∈ Θ and A ∈ NC ,
– (t, t{C}) ∈ rI , for every t ∈ Θ, whenever ∃r.C ∈ t.

Then S = {I} is a finite learning set such that (T ,S) is admissible. ❑

A similar, though somewhat more complex construction demonstrates the
existence of finite learning sets in ELlhs. Again, we illustrate the approach with
an example in Fig. 4.

Theorem 3 (Finite learning sets in ELlhs). Let T be a TBox in ELlhs. There
exists a finite set S such that (T ,S) is admissible.

Proof Sketch. Let Θ be the set of all saturated types over T , and Θ∗ be its subset
obtained by iteratively eliminating all those types t that violate the following
condition: for every r ∈ NR and every existential restriction ∃r.C ∈ t there is
u ∈ Θ∗ such that:
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– C ∈ u,
– for every ∃r.D ∈ con(T ), if D ∈ u then ∃r.D ∈ t.

Further, we define the interpretation I = (ΔI , ·I) as follows:

– ΔI := Θ∗,
– t ∈ AI iff A ∈ St, for every t ∈ Θ∗ and A ∈ NC ,
– (t, u) ∈ rI iff for every ∃r.C ∈ con(T ), if C ∈ u then ∃r.C ∈ t.

Then S = {I} is a finite learning set such that (T ,S) is admissible. ❑

Fig. 4. A finite learning set for an ELlhs TBox {∃r.∃r.A � A}. The figure includes type
contents (in grey), as defined in the proof of Theorem 3.

5 Learning Algorithms

In this section, we devise two learning algorithms for admissible TIPs with finite
learning sets that correctly identify 1) ELlhs and ELrhs TBoxes using an equiv-
alence oracle, and 2) ELrhs TBoxes without such an oracle, i.e., in a fully unsu-
pervised manner.

Since the set T �|= = {C � D in L | T |= C � D} can be in general infinite,
our starting observation is that a learner cannot effectively eliminate concept
inclusions from T �|= using a straightforward enumeration, thus arriving at the
target TBox T . The only feasible strategy is to try to identify the “good” can-
didate axioms to be included in T , and possibly apply the elimination strategy
only to finitely many incorrect guesses. One generic procedure to employ such
heuristic, which we define as Algorithm 1, attempts to construct the hypothesis
by extending it with consecutive axioms of systematically growing size that are
satisfied by the learning set. There, by �(C � D) we denote the size of the axiom
C � D measured in the total number of symbols used for expressing this axiom.
At each step the algorithm makes use of a simple equivalence oracle, which
informs whether the currently considered hypothesis is already equivalent to the
learning target (in that case the identification succeeds) or whether some axioms
are still missing. Theorem 4 demonstrates the correctness of this approach.
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Algorithm 1. Learning ELrhs/ELlhs TBoxes on finite inputs.
Input: a TIP (T ,S)
Output: a hypothesis TBox H
1: n := 2
2: Hn := ∅
3: while ‘Hn ≡ T ’? is ‘NO’ (equivalence oracle querying) do
4: n := n + 1
5: Candn := {C � D ∈ ELrhs/ELlhs | �(C � D) = n}
6: Acceptn := {C � D ∈ Candn | S |= C � D}
7: Hn := Hn−1 ∪ Acceptn
8: end while
9: return Hn

Theorem 4 (Correct identification in ELrhs/ELlhs). Let (T ,S) be an
admissible TIP for T in ELrhs/ELlhs. Then the hypothesis TBox H generated by
Algorithm 1 is equivalent to T .

Obviously the use of the oracle is essential to warrant termination of the
algorithm. It is not difficult to see that without it, the algorithm must still
converge on the correct TBox for some n ∈ N, and consequently settle on it, i.e.,
Hm ≡ Hn for every m ≥ n. However, at no point of time can it guarantee that the
convergence has been already achieved, and so it can only warrant learnability
in the limit. This result is therefore not entirely satisfactory considering we aim
at finite learnability from data in the unsupervised setting.

A major positive result, on the contrary, can be delivered for the case of
ELrhs, for which we devise an effective learning algorithm making no reference
to any oracle. It turns out that in ELrhs the “good” candidate axioms can be
directly extracted from the learning set, thus granting a proper unsupervised
learning method. The essential insight is provided by Lemma 1, presented in
the previous section. Given any L� concept C such that S(C) = ∅ we are able
to identify a tree-shaped minimal model of C w.r.t. T . Effectively, it suffices
to retrieve only the initial part of this model, discarding its infinitely recurrent
(cyclic) subtrees. Such an initial model Iinit is constructed by Algorithm 2. The
algorithm performs simultaneous unravelling of all models in S(C), while on
the way, computing intersections of visited combinations of individuals, which
are subsequently added to the model under construction. Whenever the same
combination of individuals is about to be visited for the third time on the same
branch it is skipped, as the cycle is evidently detected and further unravelling
is unnecessary. The covering concept CIinit for the resulting interpretation Iinit

is then included in the hypothesis within the axiom C � CIinit . Meanwhile, all
L� concepts C such that S(C) = ∅ are ensured to entail every EL concept, as
implied by the admissibility condition. The contents of the hypothesis TBox are
formally specified in Definition 5.
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Algorithm 2. Computing the initial part of the minimal model
⋂ S(C)

Input: the set S(C) = {(Ii, di)}0≤i≤n, for some n ∈ N

Output: a finite tree-shaped interpretation (J , d), where J = (ΔJ , ·J )
1: ΔJ := {f(d0, . . . , dn)}, for a “fresh” function symbol f
2: AJ := ∅, for every A ∈ NC

3: rJ := ∅, for every r ∈ NR

4: for every f(d0, . . . , dn) ∈ ΔJ , (e0, . . . , en) ∈ ΔI0 × . . . × ΔIn , r ∈ NR do
5: if (di, ei) ∈ rIi for every 0 ≤ i ≤ n and there exists no function symbol g

such that g(e0, . . . , en) is an ancestor of f(d0, . . . , dn) in J then
6: ΔJ := ΔJ ∪ {g(e0, . . . , en)}, for a “fresh” function symbol g
7: rJ := rJ ∪ {(f(d0, . . . , dn), g(e0, . . . , en))}
8: end if
9: end for

10: for every f(d0, . . . , dn) ∈ ΔJ , A ∈ NC do
11: if di ∈ AIi for every 0 ≤ i ≤ n then
12: AJ := AJ ∪ {f(d0, . . . , dn)}
13: end if
14: end for
15: return (J , f(d0, . . . , dn)), where f(d0, . . . , dn) is the root of J , created at

step 1.

Definition 5 (ELrhs hypothesis TBox). Let (T ,S) be an admissible TIP for
T in ELrhs over the vocabulary ΣT . The hypothesis TBox H is the set consisting
of all the following axioms:

– C � CIinit
for every L� concept C such that S(C) = ∅, where CIinit

is the
covering concept for the interpretation (Iinit, d) generated by Algorithm 2 on
S(C);

– C � �
r∈NR

∃r.
�

NC for every L� concept C such that S(C) = ∅.
To better illustrate the learning procedure, we consider a simple TIP con-

sisting of an ELrhs TBox T = {A � ∃r.(A � B)} and a finite learning set
S = {I}, with I as depicted in Fig. 5. The assumed vocabulary containing
two concept names — A and B — induces four distinct L� concepts, namely:
�, A, B and A � B. For every such concept C we identify the corresponding
set of its all pointed models S(C) contained in the learning set. For instance,
S(A) = {(I, e2), (I, e3)}. Further, we use Algorithm 2 to compute the initial
part of the minimal model

⋂ S(C), as illustrated in Fig. 6. Finally, based on
these models we formulate the hypothesis TBox, as specified in Definition 5:
H = {� � �, A � ∃r.(A � B � ∃r.(A � B)), B � B,A � B � ∃r.(A � B)}. It is
not difficult to verify that H ≡ T .

The correctness of the learning procedure is demonstrated in the following
theorem.

Theorem 5 (Correct identification in ELrhs). Let (T ,S) be an admissible
TIP for T in ELrhs. Then the hypothesis TBox H for S is equivalent to T .
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Fig. 5. A finite learning set for an ELrhs TBox {A � ∃r.(A � B)}.

Fig. 6. The initial parts of the minimal models
⋂S(C) computed with Algorithm 2

over the learning set in Fig. 5, where (I) C = �, (II) C = A, (III) C = B, (IV)
C = A � B.

Proof sketch. Let C be a concept in L� such that S(C) = ∅. By Lemma 1, the
intersection (J , d) =

⋂ S(C) is a minimal model of C w.r.t. T . Without loss
of generality, we assume that (J , d) is a tree-shaped model. We also note, that
every EL concept C induces a syntactic tree, which corresponds directly to a
minimal model of C. It is not difficult to see that Algorithm 2 indeed produces
an initial part (Jinit, d) of (J , d). By reconstructing the concept Cinit from we in
fact identify all minimal (i.e., necessary) consequences of C w.r.t. T . However,
certain infinite subtrees of (J , d) are omitted in (Jinit, d). This happens due to
the condition at step 5 of Algorithm 2, which terminates the construction of
certain branches whenever a cycle is detected. In the rest of the proof, we show
that the covering concept CJinit has the same minimal model w.r.t. H as C has
w.r.t. T . Since this is demonstrated to hold for every L� concept C, we can
conclude that H ≡ T . ❑

The learning algorithm runs in double exponential time in the worst case and
generates TBoxes of double exponential size in the size of S. This follows from
the fact that the tree-shaped interpretations generated by Algorithm 2 might
be of depth exponential in the number of individuals occurring in S and have
exponential branching factor. Importantly, however, there might exist solutions
far closer to being optimal which we have not as far investigated.

It is our strong conjecture, which we leave as an open problem, that a similar
learning strategy should also be applicable in the context of ELlhs.
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6 Related Work

Ontology learning is an interdisciplinary research field drawing on techniques
from Formal Concept Analysis [13,14], Natural Language Processing [15,16]
and machine learning [6,16,17], to name a few. One classification of ontology
learning techniques distinguishes between investigations of exact learnability,
and approaches incorporating probabilistic, vague or fuzzy reasoning [18,19].
Another classification is at the level at which learning takes place [15] — does
the problem address learning of concepts, concept hierarchies, logical theories
or rules? Lehmann and Völker [17] distinguishes between four types of ontology
learning: learning from text, data mining, concept learning and crowdsourcing.

In this landscape, the present paper is on exact learnability and, within this
framework, addresses the problem of learning logical theories. That is, we address
the problem at the level of relationships between concepts, positing a logical the-
ory, rather than at the concept level, learning concept descriptions [20–24]. Fur-
thermore, the target theory is identified from interpretations, and is hence related
to various contributions on learnability of different types of formal structures from
data, e.g.: first-order theories from facts [10], finite automata descriptions from
observations [25], and logic programs from interpretations [5,6].

The model for exact learning of DL TBoxes which offers the most direct
comparison to ours was introduced recently by Konev, et al. [8], and follows on
prior research by the same authors based on Angluin’s model of learning from
entailment [7,26]. In their learning framework for learning from data retrieval
queries, the learner identifies the TBox by posing two types of queries to an ora-
cle: membership queries of the form “(T ,A) |= q?”, where A is a given ABox and
q is a query, and equivalence queries of the form “Does the hypothesis ontology
H entail the target ontology T ?”. The authors study polynomial learnability in
fragments of EL and DL-Lite, and for queries ranging from atomic to conjunctive
queries.

Essentially, given a finite learning set in an admissible TIP, a learner from
interpretations can autonomously answer arbitrary membership queries, thus
effectively simulating the membership oracle. However, it does not have by
default access to an equivalence oracle. Once such an oracle is included, as
in Algorithm 1, the learning power of both learners becomes comparable for
the languages investigated in the present paper. In this sense, our Theorem 4
should be also indirectly derivable from the results by Konev et al. However,
our stronger result for ELrhs in Theorem 5 demonstrates that, at least in some
cases, the learner from interpretations is able to succeed without employing any
oracle. While learning from ABoxes and query answers makes sense in a semi-
automated learning environment, learning from interpretations is in our view a
more appropriate model in the context of fully autonomous learning.

7 Conclusions and Outlook

In this paper, we have delivered initial results on finite learnability of DL TBoxes
from interpretations. We believe that this direction shows promise in establishing
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formal foundations for the task of ontology learning from data. Some immediate
problems that are left open with this work concern finite learnability of ELlhs

TBoxes in an unsupervised setting, and possibly of other lightweight fragments
of DLs. Another set of very interesting research questions should deal, in our
view, with the possibility of formulating alternative conditions on the learning
sets and the corresponding learnability guarantees they would imply in different
DL languages. In particular, some limited use of closed-world operator over the
learning sets might allow to relax the practically restrictive admissibility condi-
tion. Finally, the development of practical learning algorithms, possibly building
on existing inductive logic programming methods, is an obvious area to welcome
further research efforts.
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Abstract. Expert knowledge can often be represented using default
rules of the form “if A then typically B”. In a probabilistic framework,
such default rules can be seen as constraints on what should be deriv-
able by MAP-inference. We exploit this idea for constructing a Markov
logic network M from a set of first-order default rules D, such that
MAP inference from M exactly corresponds to default reasoning from
D, where we view first-order default rules as templates for the construc-
tion of propositional default rules. In particular, to construct appropriate
Markov logic networks, we lift three standard methods for default rea-
soning. The resulting Markov logic networks could then be refined based
on available training data. Our method thus offers a convenient way of
using expert knowledge for constraining or guiding the process of learn-
ing Markov logic networks.

1 Introduction

Markov logic is a popular framework for statistical relational learning [20]. For-
mulas in Markov logic essentially correspond to weighted first-order formulas,
which act as soft constraints on possible worlds. In current applications, the
weights are typically learned from data, while the first-order formulas are either
hand crafted or obtained using standard rule learning methods.

The fact that a domain expert could manually specify (some of) the formu-
las, or could inspect learned formulas, is an important strength of Markov logic.
Unfortunately, the weights associated with these formulas do not have an easily
interpretable meaning. This limits the potential of Markov logic, as it means that
domain experts cannot offer much guidance in terms of how the weights should
be set (e.g. in applications with little or no training data) or cannot verify the
quality of learned weights (e.g. in applications where the quality of the training
data is in doubt). Often, however, Markov logic networks (MLN) are not used
for evaluating probabilities but for finding the most likely truth assignment of
unobserved variables, given the available evidence, i.e. for maximum a posteriori
(MAP) reasoning. In such cases, the precise values of the weights are only rele-
vant inasmuch as they influence the result of MAP queries. In this setting, we can
instead ask for constraints on how MAP reasoning should behave as opposed to
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 91–105, 2016.
DOI: 10.1007/978-3-319-40566-7 7
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asking a domain expert to specify weights. For example, the expert could specify
constraints such as “if all we know is that x is a bird, then using MAP reasoning
we should be able to conclude that x can fly”, which is in agreement with the
semantics of the default rule “birds can typically fly” in System P [2,13].

Thus, a domain expert could be involved in the process of learning an MLN
by providing a set of defaults, which are interpreted as constraints on the ranking
of possible worlds induced by the MLN. Taking this idea one step further, in this
paper, we show how a specific MLN can be constructed from the default rules
provided by the expert. Constructing this MLN requires us to select a specific
probability distribution that is compatible with the defaults. This selection prob-
lem is closely related to the problem of defining the closure of a set of defaults,
which has been widely studied in the field of non-monotonic reasoning [9,10,14].
In particular, several proposals to define this closure are based on constructing
a specific probability distribution [4,10]. As we will show, it is possible to lift
these approaches and thus obtain an efficient and principled way to construct
MLNs that are compatible with a given set of defaults.

To date, the use of expert knowledge for guiding or even replacing weight
learning has only received limited attention. One exception is [17], which con-
structs an MLN based on (potentially inconsistent) conditional probabilities pro-
vided by domain experts. While this can be useful in some applications, it relies
on the ability of experts to provide meaningful probability estimates. However,
humans are notoriously poor at judging likelihood. For example, properties that
are common among the typical elements of a class of objects are often assumed
to be likely in general [22]. Moreover, experts may be able to specify which prop-
erties are most likely to hold, in a given context, without being able to quantify
their likelihood. In such situations, our default-rule-based approach would be
more natural than approaches that force experts to estimate probabilities. On
the other hand, our approach will only provide meaningful results for MAP
queries: numerical input will be difficult to avoid if we want the constructed
MLN to produce satisfactory conditional probability estimates.

This paper is structured as follows. The next section recalls some prelimi-
naries from Markov logic and the non-monotonic reasoning literature. Then in
Sect. 3 we show how three well-known approaches to non-monotonic reasoning
can be implemented as MAP inference in a particular MLN. By lifting the con-
structions from Sect. 3, in Sect. 4 we show how MLNs can be constructed whose
MAP-consequences are compatible with a given set of first-order default rules.
Finally, Sect. 5 evaluates the performance of the resulting MLNs in a standard
classification task.

2 Background

2.1 Markov Logic Networks

A Markov logic network (MLN) [20] is a set of weighted formulas (F,wF ), where
F is a classical first-order formula and wF is a real number, intuitively reflecting
a penalty that is applied to possible worlds that violate F . We will sometimes
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also use the notation wF : F to denote the formula (F,wF ). Given a set of
constants C, an MLN M induces the following probability distribution on the
set of possible worlds ω:

pM(ω) =
1
Z

exp

⎛

⎝
∑

(F,wF )∈M
wF nF (ω)

⎞

⎠ , (1)

where nF (x) is the number of true groundings of F in the possible world ω, and
Z =

∑
ω p(ω) is a normalization constant to ensure that p can be interpreted

as a probability distribution. Sometimes, formulas (F,wF ) with wF = +∞ are
considered to represent hard constraints. In such cases, we define pM(ω) = 0
for all possible worlds that do not satisfy all of the hard constraints, and only
formulas with a real-valued weight are considered in (1) for the possible worlds
that do.

The main inference task for MLNs which we will consider is full MAP infer-
ence. Given a set of ground literals (the evidence), MAP inferences aims to com-
pute the most probable configuration of all unobserved variables (the queries).
Standard approaches for performing MAP inference include a strategy based on
MaxWalkSAT [20] and a cutting plane based strategy [16,21]. Given a set of
ground formulas E, we write max(M, E) for the set of most probable worlds of
the MLN that satisfy E. We will also consider the following inference relation,
initially proposed for penalty logic in [7]:

(M, E) �MAP α iff ∀ω ∈ max(M, E) : ω |= α (2)

with M an MLN, α a ground formula and E a set of ground formulas. Note that
(M, E) �MAP α means that the formula α is satisfied in all the most probable
worlds which are compatible with the available evidence.

2.2 Reasoning About Default Rules in System P

A variety of approaches have been proposed to reason about default rules of
the form “if α then typically β holds”, which we will denote as α |∼β. Most
approaches are based on the idea of defining a preference order over possible
worlds and insisting that β is true in the most preferred (i.e. the most normal)
of the worlds in which α is true [3,9,13,18,19]. The axioms of System P [13]
capture a set of desirable properties for an inference relation for default rules:

Reflexivity. α |∼ α
Left logical equivalence. If α ≡ α′ and α |∼ β then α′ |∼β
Right weakening. If β |= β′ and α |∼β then α |∼ β′

OR. If α |∼ γ and β |∼ γ then α ∨ β |∼ γ
Cautious monotonicity. If α |∼β and α |∼ γ then α ∧ β |∼ γ
CUT. If α ∧ β |∼ γ and α |∼β then α |∼ γ
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where α ≡ α′ and β |= β′ refer to equivalence and entailment from clas-
sical logic. Note that applying the axioms of System P to a set of defaults
Δ = {α1 |∼ β1, ..., αn |∼βn} corresponds to a form of monotonic reasoning about
defaults. However, as the set of consequences that can be obtained in this way is
limited, it is common to consider a non-monotonic inference relation whose set
of consequences is closed under the axioms of System P as well as the following
property:

Rational monotonicity If α |∼β and we cannot derive α |∼¬γ then α ∧ γ |∼β.

In this paper, we will consider three such inference relations: the rational closure
[19], the lexicographic closure and the maximum entropy closure. A default α |∼ β
is tolerated by a set of defaults γ1 |∼ δ1, ..., γm |∼ δm if the classical formula α ∧
β ∧ ∧

i(¬γi ∨ δi) is consistent. The rational closure is based on a stratification
Δ1, ...,Δk of Δ, where each Δj contains all defaults α |∼ β from Δ \ (Δ1 ∪
...Δj−1) which are tolerated by Δ\(Δ1∪ ...∪Δj−1). It can be shown that such a
stratification always exists when Δ satisfies some natural consistency properties
(see [19] for details). Intuitively, Δ1 contains the most general default rules, Δ2

contains exceptions to the rules in Δ1, Δ3 contains exceptions to the rules in Δ2,
etc. This stratification is known as the Z-ordering. Let j be the smallest index
for which Δrat

α = {¬α∨β|α |∼β ∈ Δj ∪ ...∪Δk}∪{α} is consistent. Then α |∼ β
is in the rational closure of Δ if Δrat

α |= β. When a set of hard rules Γ needs to
be enforced, the Z-ordering can be generalized as follows [3]. Each set Δj then
contains those defaults α |∼ β for which Γ ∪ {α ∧ β} ∪ {¬αi ∨ βi : (αi |∼βi) ∈
Δ \ (Δ1 ∪ ... ∪ Δj−1)}. Finally, we define Δk = Γ , where Δ1, ...,Δk−1 is the
stratification of Δ that was obtained.

The rational closure encodes the intuition that in case of conflict, specific rules
should have priority over more generic ones. However, it requires us to ignore all
the defaults in Δ1∪ ...∪Δj−1, even defaults which are intuitively unrelated to this
conflict. The lexicographic closure [1] addresses this issue as follows. For a propo-
sitional interpretation ω, we write sat(ω,Δj) for the number of defaults satisfied
by ω, i.e. sat(ω,Δj) = |{α |∼β : (α |∼β) ∈ Δj , ω |= ¬α∨β}|. We say that an inter-
pretation ω1 is lex-preferred over an interpretation ω2, written ω1 ≺ ω2, if there
exists a j such that sat(ω1,Δj) > sat(ω2,Δj) while sat(ω1,Δi) = sat(ω2,Δi) for
all i > j. The default α |∼β is in the lexicographic closure of Δ if β is satisfied in all
the most lex-preferred models of α, i.e. ∀ω ∈ �α� : (ω �|= β) ⇒ ∃ω′ ∈ �α� : ω′ ≺ ω,
where �α� is a shorthand for {ω : ω |= α}.

Another approach to default reasoning is based on the principle of maximum
entropy [10]. To describe how the maximum-entropy ranking of possible worlds
can be computed, we need some additional terminology. A possible world ω is
said to falsify a rule α |∼ β if ω |= α ∧ ¬β and said to verify it if ω |= α ∧ β.
A set of default rules Δ is said to be a minimal core if for any rule α |∼β,
the set {α |∼ ¬β} ∪ (Δ \ {α |∼β}) is a consistent set of default rules, meaning
that a Z-ordering of this set exists. Given a minimal core set of defaults Δ, the
maximum-entropy ranking is obtained as follows [10]. Let Γ be the set of rules
tolerated by Δ. For each rule r ∈ Γ , we set κME(r) = 1. While Γ �= Δ we repeat
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the following steps. Let Ω be the set of models ω which do not falsify any of the
rules in Δ \ Γ and verify at least one of these rules. For each model ω ∈ Ω, we
compute κME(ω) =

∑{κME(α |∼β) : (α |∼β) ∈ Γ, ω |= α ∧ ¬β}. Let ω∗ be the
model in Ω with minimum rank. Each rule α |∼β that is verified by ω∗ is added
to Γ , and its rank is computed as κME(α |∼β) = 1 + κME(ω∗).

3 Encoding Ground Default Theories in Markov Logic

It is well-known [14] that any set of defaults Δ which is closed under the axioms
of System P and rational monotonicity corresponds to a linear ranking κ of
possible worlds, such that α |∼β iff κ(α ∧ β) > κ(α ∧ ¬β), where we write κ(γ)
for a formula γ as an abbreviation for max{κ(ω) : ω |= γ}. Since the ranking κ
can be encoded as a probability distribution, and every probability distribution
on possible worlds can be represented as an MLN, it is clear that there must
exist an MLN M such that (α |∼β) ∈ Δ iff (M, α) �MAP β. More generally, for
any (i.e. not necessarily closed) set of defaults Δ, there exists an MLN M such
that (M, α) �MAP β iff α |∼ β is in the rational closure of Δ, and similar for
the lexicographic and maximum-entropy closures. We now show how the MLNs
corresponding to these three closures can be constructed.

Transformation 1 (Rational closure). Let Δ be a set of ground default rules
and let Θ be a set of hard constraints (clauses). Let Δ1, ...,Δk be the Z-ordering
of Δ∪Θ. Let the MLN M be defined as follows:

⋃k
i=1({(¬ai∨¬α∨β,∞) : α |∼ β ∈

Δi}∪{(ai, 1)}∪{(φ,∞) : φ ∈ Θ})∪⋃k
i=2{(ai ∨¬ai−1,∞)} where ai are auxiliary

literals. Then (M, α) �MAP β iff α |∼β is in the rational closure of (Δ,Θ).

Transformation 2 (Lexicographic closure). Let Δ be a set of ground default
rules and let Θ be a set of hard constraints (clauses). Let Δ1, ...,Δk be the
Z-ordering of Δ ∪ Θ. Let the MLN M be defined as follows:

⋃k
i=1{(¬α ∨

β, λi) : α |∼ β ∈ Δi}∪{(φ,∞) : φ ∈ Θ} where λi = 1+
∑i−1

j=1 |Δj | ·λj for i > 1 and
λ1 = 1. Then (M, α) �MAP β iff α |∼β is in the lexicographic closure of (Δ,Θ).

Transformation 3 (Maximum-entropy closure). Let Δ be a set of ground
default rules and let Θ be a set of hard constraints (clauses). Let κ be weights of
rules corresponding to the maximum-entropy closure of Δ ∪ Θ. Let the MLN M
be defined as follows: {(¬α ∨ β, κ(α |∼β)) : α |∼β ∈ Δ} ∪ {(φ,∞) : φ ∈ Θ}.
Then (M, α) �MAP β iff α |∼ β is in the maximum-entropy closure of (Δ,Θ).

Example 1. Consider the default rules Δ = {bird |∼flies, antarctic ∧ bird |∼
¬flies}. Then M1 = {(¬a1 ∨ ¬bird ∨ flies,∞), (¬a2 ∨ ¬antarctic ∨ ¬bird ∨
¬flies, ∞), (a1, 1), (a2, 1), (a2 ∨ ¬a1,∞)} is the result of Transformation 1, and
M2 = {(¬bird∨flies, 1), (¬antarctic∨¬bird∨¬flies, 2)} is the result of Transfor-
mation 2, which in this example coincides with the result of Transformation 3.



96 O. Kuželka et al.

4 Encoding Non-ground Default Theories in Markov
Logic

While reasoning with default rules has mostly been studied at the propositional
level, a few authors have considered first-order default rules [8,12]. Similar as for
probabilistic first-order rules [11], two rather different semantics for first-order
defaults can be considered. On the one hand, a default such as P (x) |∼ Q(x)
could mean that the most typical objects that have the property P also have
the property Q. On the other hand, this default could also mean that whenever
P (x) holds for a given x, in the most normal worlds Q(x) will also hold. In other
words, first-order defaults can either model typicality of objects or normality
of worlds [8]. In this paper, we will consider the latter interpretation. Given
that we only consider finite universes (as is usual in the context of MLNs), we
can then see a first order default as a template for propositional defaults. For
example P (x) |∼ Q(x) can be seen as a compact notation for a set of defaults
{P (c1) |∼ Q(c1), ..., P (cn) |∼ Q(cn)}. Note that this approach would not be pos-
sible for first-order defaults that model the typicality of objects.

In particular, the first-order default theories we will consider consist of first-
order logic formulas (hard rules) and default rules of the form α |∼ β, where α
is a conjunction of literals and β is a disjunction of literals. Our approach can
be straightforwardly extended to quantified default rules, where the scopes of
quantifiers may be the whole default rules, and not just either the antecedent or
the consequent of a rule. While this could be of interest, we do not consider this
for the ease of presentation.

Definition 1 (Markov logic model of a first-order default theory). Let
(Δ,Θ) be a first-order default theory with Δ the set of default rules and Θ the
set of hard rules. A Markov logic network M is a model of the default logic
theory Δ ∪ Θ if it holds that: (i) P [X = ω] = 0 whenever ω �|= Θ, and (ii) for
any default rule α |∼ β ∈ Δ and any grounding substitution θ of the unquantified
variables of α |∼β, either {αθ} ∪ Θ � ⊥ or (M, αθ) �MAP βθ. We say that
(Δ,Θ) is satisfiable if it has at least one model.

Below we will describe three methods for constructing Markov logic models of
first-order default theories, generalizing Transformations 1–3. For convenience,
we will use typed formulas (nevertheless, we will assume that default rules given
on input are not typed for simplicity). For instance, when we have the formula
α = owns(person : X, thing : Y ) and the set of constants of the type person is
{alice, bob} and the set of constants of the type thing is {car} then α corresponds
to the ground formulas owns(alice, car) and owns(bob, car). In cases where there
is only one type, we will not write it explicitly. For a constant or variable x, we
write τ(x) to denote its type. Two formulas F1 and F2 (either both conjunctions
or both disjunctions of literals) are said to be isomorphic when there is an
injective substitution θ of the variables of F1 such that F1θ ≡ F2 (where ≡
denotes logical equivalence). Two default rules D1 = α1 |∼ β1 and D2 = α2 |∼β2

are said to be isomorphic, denoted D1 ≈ D2, if there exists a substitution θ
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of the variables of D1 such that α1θ ≡ α2 and β1θ ≡ β2. Two default theories
Δ1 ∪Θ1 and Δ2 ∪Θ2 are said to be isomorphic, denoted by Δ1 ∪Θ1 ≈ Δ2 ∪Θ2,
if there is a bijection i from elements of Δ1 ∪ Θ1 to elements of Δ2 ∪ Θ2 such
that for any F ∈ Δ1 ∪ Θ1, i(F ) ≈ F . When j is a permutation of a subset of
constants from Δ ∪ Θ then j(Δ ∪ Θ) denotes the default theory obtained by
replacing any constant c from the subset by its image j(c).

Definition 2 (Interchangeable constants). Let Δ ∪ Θ be a non-ground
default theory. A set of constants C is said to be interchangeable in Δ ∪ Θ if
j(Δ ∪ Θ) ≈ Δ ∪ Θ for any permutation j of the constants in C.

The set of maximal interchangeable subsets of a set of constants is the uniquely
defined partition of this set and will be called the interchangeable partition. To
check whether a set of constants C is interchangeable, it is sufficient to check
that j(Δ ∪ Θ) ≈ Δ ∪ Θ for those permutations which swap just two constants
from C. Note that the constants do not actually need to appear in Δ ∪ Θ. It
trivially holds that constants which do not appear in Δ∪Θ are interchangeable.
When I = {C1, . . . , Cn} is the interchangeable partition of a set of constants then
we may introduce a new type typelexmin(Ci) for every Ci ∈ I (where lexmin(C)
denotes the lexically1 smallest element from C). When D = α |∼ β is a ground
default rule, we write variabilize(D) to denote the following default rule:

∧{Vc �=
Vd : c, d ∈ const(D), τ(c) = τ(d)}∧α′ |∼β′ where const(D) is the set of constants
appearing in D and α′ and β′ are obtained from α and β by respectively replacing
all constants c by a new variable Vc of type τ(c). Here �= is treated as a binary
predicate which is defined in the set of hard rules Θ.

Let C be a set of constants and let I = {C1, . . . , Cn} be the interchange-
able partition of the constants from C. Two ground default rules α1 |∼ β1 and
α2 |∼β2 are said to be weakly isomorphic w.r.t. I if variabilize(α1 |∼ β1) and
variabilize(α2 |∼ β2) are isomorphic2.

Definition 3 (Ground representatives). Let D = α |∼β be a default rule
and let I = {C1, . . . , Cn} be the interchangeable partition of constants. A set
of ground representatives of D w.r.t. I is a maximal set of groundings of D
by constants from

⋃
Ci∈I Ci such that no two of these groundings are weakly

isomorphic w.r.t. I. (If α |∼ β is typed then we only consider groundings which
respect the typing of variables.)

A set of ground representatives of a default rule D = α |∼β can be constructed
in time O(|I||D|). While this is exponential in the size of the default rule (which
is usually small), it is only polynomial in the number of classes in the inter-
changeable partition I and does not depend on the total number of constants.

1 Here, we are just ordering the constants by the lexical ordering of their names.
2 We will omit “w.r.t. I” when it is clear from the context.
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Let Δ ∪ Θ be a first-order default theory and C a set of constants. Let R =⋃
α |∼ β∈Δ Rα |∼ β where Rα |∼ β denotes a set of ground representatives of α |∼β.

The rational closure for the first-order default theory is based on the partition3

Δ∗
1 ∪ ... ∪ Δ∗

k of the set

Δ∗ = {variabilize(α |∼β) : α |∼ β ∈ R and {α} ∪ Θ �� ⊥}
where Δ∗

j is the set of default rules variabilize(α |∼β) ∈ Δ∗ \ (Δ∗
1 ∪ · · · ∪ Δ∗

j−1)
such that

{α ∧ β} ∪ {¬αi ∨ βi : (αi |∼βi) ∈ Δ∗ \ (Δ∗
1 ∪ ... ∪ Δ∗

j−1)} ∪ Θ (3)

has a model with Herbrand universe C. When all rules α′ |∼β′ from the set

Δ∗
α |∼ β = {variabilize(α′ |∼β′) : α′ |∼ β′ is a ground representative of α |∼β},

are contained in the same partition class Δ∗
j then we can simplify Δ∗

j by setting
Δ∗

j := Δ∗
j ∪ {α |∼β} \ Δ∗

α |∼ β . Furthermore, note that checking the existence of
Herbrand models can be carried out using cutting-plane inference which means
that it is seldom needed to ground the set of default rules completely. We can
now present the lifted counterparts to Transformations 1–3.

Transformation 4 (Lifted rational closure). Let Δ be a set of default rules
and let Θ be a set of hard constraints. Let Δ∗

1 ∪ · · · ∪ Δ∗
k be the partition of

Δ ∪ Θ, defined by (3). Let the MLN M be defined as follows:
⋃k

i=1{(¬ai ∨ ¬α ∨
β,∞) : α |∼β ∈ Δ∗

i } ∪ {(ai, 1)} ∪ {(φ,∞) : φ ∈ Θ} ∪ {(ai ∨ ¬ai−1,∞)} where ai

are auxiliary (ground) literals. If (Δ,Θ) is satisfiable then M is a Markov logic
model of (Δ,Θ).

Transformation 5 (Lifted lexicographic entailment). Let Δ be a set of
default rules, let Θ be a set of hard constraints, and let U be the considered set
of constants. Let Δ∗

1 ∪ · · · ∪ Δ∗
k be the partition of Δ ∪ Θ, defined by (3). Let the

MLN M be defined as follows:
⋃k

i=1{(¬α∨β, λi) : α |∼β ∈ Δi}∪{(φ,∞) : φ ∈ Θ}
where λi = 1+

∑i−1
j=1

∑
α |∼ β∈Δ∗

j
|U||vars(α |∼ β)| ·λj for i > 1 and λ1 = 1. If (Δ,Θ)

is satisfiable then M is a Markov logic model of (Δ,Θ).

Note that lexicographic entailment may lead to MLNs with very large weights.4

Next, we describe a lifted variant of maximum-entropy entailment. Let Δ∪Θ
be a first-order default theory and I the interchangeable partition of constants
from a given set C. Let Δ∗

1 ∪ · · · ∪ Δ∗
k be the partition of Δ ∪ Θ, defined as in

(3) (without the simplification of merging default rules), and let Γ := Δ∗
1. First,

we construct an MLN M containing the rules from Γ and set their weights
3 With a slight abuse of terminology, we will call Δ∗

1 ∪ · · · ∪ Δ∗
k the partition of Δ ∪ Θ

even though it is strictly speaking only a partition of Δ∗.
4 Although existing MLN systems are not able to work with weights as large as are

sometimes produced, due to numerical issues, we have implemented an MLN system
based on cutting-plane MAP inference which can work with arbitrarily large weights.
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equal to 1. For every Δ∗
j with j > 1, while Δ∗

j �⊆ Γ , we repeat the following
steps. We construct a new MLN M′ by adding to the MLN M all rules from
the set {¬α∨β : α |∼β ∈ (Δ∗

j ∪ . . . Δ∗
k)\Γ} as hard constraints (i.e. with infinite

weights). For every α |∼β ∈ Δ∗
j \ Γ , we construct its ground representative

α′ |∼β′ (note that there is only one ground representative up to isomorphism
for any rule in Δ∗

j , which follows from the construction of Δ∗
j ) and we find a

most probable world ωα |∼ β of (M′, α′); let us write pα |∼ β for its penalty, i.e.
the sum of the weights of the violated rules. Note that ωα |∼ β verifies the default
rule α |∼ β and only falsifies rules in Γ , exactly as in the propositional version
of the maximum-entropy transformation. We then select the rules α |∼β with
minimum penalty pα |∼ β , add them to Γ and to the MLN M with the weight set
to 1 + pα |∼ β . If M′ does not have any models, the initial set of defaults cannot
be satisfiable, and we end the procedure.

Transformation 6 (Lifted maximum-entropy entailment). Let Δ be a set
of default rules, let Θ be a set of hard constraints, and let U be the considered set
of constants. Let M be the MLN obtained in the last iteration of the procedure
described above. If (Δ,Θ) is satisfiable then M is a Markov logic model of (Δ,Θ).

Example 2. Let us consider the following defaults:

bird(X) |∼flies(X) bird(X) ∧ antarctic(X) |∼ ¬flies(X)
bird(X) ∧ antarctic(X) ∧ (X �= Y ) ∧ sameSpecies(X,Y ) |∼ antarctic(Y )

Let the set of constants be given by C = {tweety, donald, beeper}. Then the
lexicographic transformation yields the MLN {(φ1, 1), (φ2, 4), (φ3, 4)} while the
maximum entropy transformation yields {(φ1, 1), (φ2, 2), (φ3, 3)}, where φ1 =
¬bird(X)∨flies(Y ), φ2 = ¬bird(X)∨¬sameSpecies(X,Y )∨¬(X �= Y )∨¬bird(Y )∨
¬antarctic(X) ∨ antarctic(Y ) and φ3 = ¬bird(X) ∨ ¬antarctic(X) ∨ ¬flies(X).

As the next example illustrates, it is sometimes necessary to split the initial
default rules into several typed specializations.

Example 3. Consider the following defaults: bird(X) ∧ (X �= tweety) |∼flies(X),
bird(X) ∧ antarctic(X) |∼ ¬flies(X) and bird(X) ∧ antarctic(X) ∧ (X �= Y ) ∧
sameSpecies(X,Y ) |∼ antarctic(Y ). Then the lexicographic transformation yields
the MLN {(φ1, 1), (φ2, 1), (φ3, 7), (φ4, 7)}, where:

φ1 =¬bird(τtweety : X) ∨ ¬antarctic(τtweety : X) ∨ ¬flies(τtweety : X),
φ2 =¬bird(τbeeper : X) ∨ ¬(τbeeper : X �= τtweety : tweety) ∨ flies(τbeeper : X),
φ3 =¬bird(τbeeper : X) ∨ ¬antarctic(τbeeper : X) ∨ ¬flies(τbeeper : X),
φ4 =¬bird(X) ∨ ¬sameSpecies(X,Y ) ∨ ¬(X �= Y ),¬bird(Y ) ∨ ¬antarctic(X)

Note that the transformation had to introduce new types corresponding to the
interchangeable sets of constants {{tweety}, {beeper, donald}}. The rule φ4 was
created by merging rules with different typing, which was made possible by
the fact that all the respective differently typed rules ended up with the same
weights. The maximum entropy transformation leads to six such rules.
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5 Evaluation

In this section we describe experimental evaluation of the methods presented
in this paper. The implementation of the described methods is available for
download5.

We have evaluated the proposed methods using the well-known UW-CSE
dataset, which describes the Department of Computer Science and Engineer-
ing at the University of Washington [20]. The usual task is to predict the
advisedBy(person, person) predicate from the other predicates. A set of rules
for this domain has previously been collected for the experiments in [20]. These
rules, however, cannot be used as default rules because they are not satisfiable
in the sense of Definition 1. Therefore, in order to evaluate our method, we have
used the following consistent set of default rules.

D1 : |∼¬advisedBy(S,P)
D2 : advisedBy(S,P1) |∼ ¬tempAdvisedBy(S,P2)
D3 : advisedBy(S,P) ∧ publication(Pub,S) |∼ publication(Pub,P)
D4 : (P1 �= P2) ∧ advisedBy(S,P1) |∼ ¬advisedBy(S,P2)
D5 : advisedBy(S,P) ∧ ta(C,S,T) |∼ taughtBy(C,P,T)
D6 : professor(P) ∧ student(S) ∧ publication(Pub,P) ∧ publication(Pub,S)

|∼ advisedBy(S,P)
D7 : professor(P) ∧ student(S) ∧ publication(Pub,P) ∧ publication(Pub,S)∧

tempAdvisedBy(S,P2) |∼ ¬advisedBy(S,P)
D8 : (S1 �= S2) ∧ advisedBy(S2,P) ∧ ta(C,S2,T) ∧ ta(C,S1,T)∧

taughtBy(C,P,T) ∧ student(S1) ∧ professor(P) |∼ advisedBy(S1,P)
D9 : (S1 �= S2) ∧ advisedBy(S2,P) ∧ ta(C,S2,T) ∧ ta(C,S1,T)∧

taughtBy(C,P,T) ∧ student(S1) ∧ professor(P) ∧ tempAdvisedBy(S1,P2)
|∼¬advisedBy(S1,P)

Recall that default rules α |∼ β in our setting correspond to statements of the
form: for any grounding substitution θ, βθ is true in all most probable worlds of
(M, αθ). Thus the default rules α |∼ β we consider should be such that an expert
believes that αθ being the only evidence, it would make sense to conclude βθ.
Seen with this perspective in mind, rule D1 states that in absence of any knowl-
edge, we assume that persons S and P are not in the advisedBy relationship.
Rule D2 states that if we only know that S has an advisor then we conclude that
S does not have a temporary advisor. Rule D3 states that advisors are typically
co-authors of their students’ papers. Rule D4 states that students typically only
have one advisor. The rest of the rules can be interpreted similarly. Note that
rules D7 and D9 encode exceptions to rules D6 and D8.

5 https://github.com/supertweety/mln2poss.

https://github.com/supertweety/mln2poss
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We computed the lexicographic and maximum-entropy transformations of
these rules using our implementation of the described methods.6 We evaluated
the obtained MLNs on the five different subject areas of the UW-CSE dataset,
which is the standard methodology. Specifically, we computed the average num-
ber of true positives and false positives7 for the advisedBy predicate over 10 runs
of MAP inference, noting that the results can depend on the specific MAP state
that is returned. For comparison, we have used an MLN with the same set8 of
rules but with weights learned discriminatively using Tuffy [15] (LEARNED),
and an MLN with the same set of rules but with all weights set to 1 (ONES). The
results are shown in Table 1. The maximum entropy and lexicographic entailment
have highest recall but at the cost of also having a higher number of false posi-
tives. Note that the number of pairs which can potentially be in the advisedBy
relationship is in the order of hundreds or even thousands but the true number
of pairs of people in this relationship is in the order of just tens. The baseline
method ONES has largest variance.

Table 1. Experimental results for MLNs obtained by the described methods (the
numbers represent absolute counts).

MaxEnt LEX ONES LEARNED

TP FP TP FP TP FP TP FP

AI 10 ± 0 7 ± 0 10 ± 0 7 ± 0 8.6 ± 0.7 4.9 ± 0.9 10 ± 0 2 ± 0

GRA 4 ± 0 5 ± 0 4 ± 0 5 ± 0 3.5 ± 0.7 3.9 ± 0.7 2 ± 0 2 ± 0

LAN 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 2 ± 0 1 ± 0

SYS 10.5 ± 0.5 3.5 ± 0.5 11 ± 0 3 ± 0 7.2 ± 1.1 2.4 ± 0.5 4 ± 0 0 ± 0

THE 3 ± 0 3 ± 0 3 ± 0 3 ± 0 3 ± 0 1.7 ± 0.7 2 ± 0 1 ± 0

6 Conclusion

We have discussed the problem of constructing a Markov logic network (MLN)
from a set of first-order default rules, where default rules are seen as constraints

6 Our implementation is based on a cutting-plane inference method for MAP inference
implemented using the SAT4J library [5] and the MLN system Tuffy [15].

7 Note that using AUC as an evaluation metric would not make sense in this case
because of the way the MLNs are constructed by our approach. The construction
can produce MLNs which make sensible predictions when used together with MAP
inference but which do not have to be meaningful for the given datasets as probability
distributions. After all, our MLN construction methods do not assume any informa-
tion from which the probabilities could be inferred, except qualitative information
on rankings of possible worlds expressed by default rules.

8 We had to remove D3 for efficiency reasons, though.
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on what should be derivable using MAP inference. The proposed construc-
tion methods have been obtained by lifting three well-known methods for non-
monotonic reasoning about propositional default rules: the rational closure, the
lexicographic closure and the maximum-entropy closure. As our evaluation with
the UW-CSE dataset illustrates, our method can be used to construct useful
MLNs in scenarios where no training data is available. In the future, we would
like to explore the connections between our proposed lifted transformations and
the lifted inference literature. For example, identifying interchangeable constants
is known as shattering in lifted inference [6].
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A Proofs

Here we provide formal justifications for the transformations presented in this
paper9. We start by proving correctness of the ground transformations.

Proposition 1. Let Δ be a set of default rules. Let Δrat, Δlex and Δent be
the rational, lexicographic and maximum entropy closure of Δ, respectively.
Let Mrat, Mlex and Ment be Markov logic networks obtained from Δ by
Transformations 1, 2 and 3, respectively. Then the following holds for any default
rule α |∼β:

1. α |∼β ∈ Δrat if and only if (Mrat, {α}) �MAP β,
2. α |∼β ∈ Δlex if and only if (Mlex, {α}) �MAP β,
3. α |∼β ∈ Δent if and only if (Ment, {α}) �MAP β.

Proof. Throughout the proof, let Δ = Δ1∪Δ2∪· · ·∪Δk be the Z-ordering of Δ.

1. Let α |∼ β ∈ Δrat be a default rule. Let j be the smallest index such that
Δrat

α = {¬γ∨δ|γ |∼ δ ∈ Δj ∪...∪Δk}∪{α} is consistent. Recall that α |∼β ∈ Δrat

if and only if Δrat
α |= β. By the construction of the MLN Mrat it must hold that

(Mrat, {α}) �MAP ¬ai for every i < j and also (Mrat, {α}) �MAP ai for all i ≥ j.
Therefore all ¬α∨β, such that α |∼ β ∈ Δi where i ≥ j, must be true in all most
probable worlds of (Mrat, {α}). But then necessarily we have: if Δrat

α |= β then
(Mrat, {α}) �MAP β. Similarly, to show the other direction of the implication,
let us assume that (Mrat, {α}) �MAP β. Then we can show using basically the
identical reasoning as for the other direction that the set of formulas ¬α ∨ β
which must be satisfied in all most probable worlds of (Mrat, {α}) is equivalent
to the set of formulas in Δrat

α .
2. It holds that α |∼β ∈ Δlex if and only if β is true in all lex-preferred models

of α, i.e. ∀ω ∈ �α� : (ω �|= β) ⇒ ∃ω′ ∈ �α� : ω′ ≺ ω where ≺ is the lex-preference
relation based on Z-ordering defined in Sect. 2.2. What we need to show is that for
9 For brevity we omit hard rules here because generalizations of the proofs to involve

hard rules are rather straightforward, but a bit too verbose.
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any possible worlds ω, ω′ it holds ω ≺ ω′ if and only PMlex(ω) > PMlex(ω′) where
PMlex is the probability given by the MLN Mlex, from which correctness of the
lexicographic transformation will follow. But this actually follows immediately
from the way we set the weights in Transformation 2, as the penalty for not
satisfying one formula corresponding to a default rule in Δi is greater than the
sum of penalties for not satisfying all formulas corresponding to the default rules
in

⋃
j<i Δj .

3. This follows directly from the results in the paper [10] in which maximum
entropy closure was introduced. An explicit ranking function on possible worlds
was derived in that paper, which we explicitly use in the transformation.

Next we show correctness of the non-ground transformations. We start by
proving properties of the non-ground counterpart of Z-ordering.

Proposition 2. Let Δ∗ be a default theory and C be a set of constants (uni-
verse). Let Δ be the set of groundings10 of default rules from Δ∗. Let Δ =
Δ1∪· · ·∪Δk be Z-ordering of the set of ground default rules Δ. Let Δ∗

1∪· · ·∪Δ∗
k

be as defined by Eq. 3. Then a ground default rule α |∼ β is in Δi if and only if
a rule isomorphic to variabilize(α |∼β) is in Δ∗

i .

Proof. (Sketch) This proposition follows from the simple observation that Eq. 3
is equivalent to checking whether the ground default rule α |∼ β is tolerated
by the set of groundings of the default rules γ |∼ δ ∈ Δ∗ \ (Δ∗

1 ∪ · · · ∪ Δ∗
j−1)

(because we explicitly ask there about existence of a Herbrand model11 with
universe C). Since the answer, whether it is tolerated or not, must be the same
for every default rule weakly isomorphic to α |∼β, it follows that this is equivalent
to checking this condition for all groundings of variabilize(α |∼ β), which must
then necessarily give us an equivalent result to what we would obtain by Z-
ordering performed on the explicitly enumerated groundings. The statement of
the proposition then follows from this.

In other words, what the above proposition states, is that if we replace non-
ground rules in the particular Δ∗

i ’s by all their groundings then this partitioning
of ground default rules must be equivalent to what we would obtain by directly
Z-ordering the ground default rules in the set R.

Proposition 3. Let Δ∗ be a set of non-ground default rules and C be a set of
constants (universe). Let Δrat, Δlex and Δent be the rational, lexicographic and
maximum entropy closure, respectively, of the set of default rules obtained by
grounding Δ∗. Let Mrat, Mlex and Ment be Markov logic networks obtained
from Δ∗ by Transformations 4, 5 and 6, respectively. Then the following holds
for any ground default rule α |∼ β:
10 Recall that the formulas in Δ∗ are typed according to interchangeability of constants.

The groundings must respect the typing information. This will be the case whenever
we speak of groundings in this section.

11 However, this does not mean that we need to ground this theory completely in order
to solve it, e.g. by using cutting plane inference we can avoid the need to ground it
completely.
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1. α |∼β ∈ Δrat if and only if (Mrat, {α}) �MAP β,
2. α |∼β ∈ Δlex if and only if (Mlex, {α}) �MAP β,
3. α |∼β ∈ Δent if and only if (Ment, {α}) �MAP β.

Proof. 1. This case follows from Propositions 1 and 2 by noticing that the con-
structedMLNs,when grounded, are the same aswhat the groundTransformation 1
would produce if applied on all groundings of default rules from Δ∗.

2. From Proposition 2 we have that, if we ground the MLN produced by
Transformation 5, then the structure of the MLN will be identical to what we
would obtain if we applied Transformation 2 on all groundings of default rules
from Δ∗. While the weights of the formulas are not the same, it is still guaranteed
that ω ≺ ω′ if and only PMlex(ω) > PMlex(ω′), where ≺ is the lex-preference
relation. This is because the term |C||vars(α |∼ β)|, which is used to define the
weights in Transformation 5, is an upper bound on the number of groundings
of a default rule α |∼ β (this implies that the sum of all weights of groundings
of formulas in the MLN which correspond to default rules from

⋃
i<j Δi will be

smaller than the weight of a single formula corresponding to a default rule from
Δj which is what we need).

3. (Sketch) To show the last part of this proposition, we would basically need
to replicate a more detailed reasoning from the proof of Proposition 2 because
maximum entropy closure needs to create a partitioning of the set of default rules
which refines Z-ordering. Since no new ideas are needed for this proof and because
of space limitations, we omit details. The basic idea is the same as for the non-
ground Z-ordering – we only process representatives of the non-ground default
rules and we can show that we would obtain an equivalent result if we processed
all groundings of the default rules by the procedure from Transformation 3.
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Abstract. We study the complexity of the problem of enumerating all
graphs with frequency at least 1 and computing their support. We show
that there are hereditary classes of graphs for which the complexity of
this problem depends on the order in which the graphs should be enu-
merated (e.g. from frequent to infrequent or from small to large). For
instance, the problem can be solved with polynomial delay for databases
of planar graphs when the enumerated graphs should be output from
large to small but it cannot be solved even in incremental-polynomial
time when the enumerated graphs should be output from most frequent
to least frequent (unless P=NP).

1 Introduction

In this paper we study graph mining problems from a nontraditional perspec-
tive. We are inspired by the question which properties of the problem make
some graph mining problems solvable in incremental polynomial time or with
polynomial delay. Here, we do not require the discovered graph patterns to be
frequent and we want to output all patterns occurring in at least one database
graph. However, we still want to also output their occurrences. In addition, we
constrain the order in which the patterns should be printed, e.g. from most fre-
quent patterns to least frequent patterns, which allows us to connect our results
to results on (in)frequent graph mining. Surprisingly, for several graph classes,
we show that different orders lead to very different computational complexities.
For instance mining planar graphs cannot be done in incremental-polynomial
time when the output graphs should be ordered by frequency but it can be done
with polynomial delay when they should be ordered from largest to smallest.

2 Preliminaries

In this section we first briefly review some basic concepts and fix the notations
used in this paper. We start with some standard definitions from graph theory.
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DOI: 10.1007/978-3-319-40566-7 8



A Note on Mining All Graphs 107

Graphs. An undirected graph is a pair (V,E), where V is a finite set of vertices
and E ⊆ {e ⊆ V : |e| = 2} is a set of edges. Two vertices are said to be adjacent
(in G) if they are connected by an edge (of the graph G). A labeled undirected
graph is a triple (V,E, λ), where (V,E) is an undirected graph and λ : V ∪E → Σ
is a function assigning a label from an alphabet Σ to every element of V ∪ E.
We will denote the set of vertices, the set of edges, and the labeling function of a
graph G by V (G), E(G), and λG, respectively. We define |G| = |V (G)|+ |E(G)|
and call this the order of G. Note that in graph theory, often other notions of
‘order’ are used, measuring only the number of edges or the number of vertices.
A graph G′ is a subgraph of a graph G, if V (G′) ⊆ V (G), E(G′) ⊆ E(G), and
λG′(x) = λG(x) for every x ∈ V (G′) ∪ E(G′); G′ is an induced subgraph of G if
it is a subgraph of G satisfying {u, v} ∈ E(G′) if and only if {u, v} ∈ E(G) for
every u, v ∈ V (G′). For a subset S ⊆ V (G), G[S] denotes the (unique) induced
subgraph of G with vertex set S. A contraction of an edge e = {u, v} in a graph
G is an operation which produces a new graph by replacing u and v in V (G) as
well as in all {x, y} ∈ E(G) by a new vertex w (pictorially, this can be imagined
as shrinking the edge). A subdivision of an edge e = {u, v} is an operation which
produces a new graph by removing e and adding a path connecting u and v.

Tree Decomposition, Tree-width. The notion of tree-width was reintroduced
in [3,11]. It proved to be a useful parameter of graphs in algorithmic graph
theory. A tree-decomposition of a graph G, denoted TD(G), is a pair (T,X ),
where T is a rooted unordered tree and X = (Xz)z∈V (T ) is a family of subsets
of V (G) satisfying

(i) ∪z∈V (T )Xz = V (G),
(ii) for every {u, v} ∈ E(G), there is a z ∈ V (T ) such that u, v ∈ Xz, and
(iii) Xz1 ∩ Xz3 ⊆ Xz2 for every z1, z2, z3 ∈ V (T ) such that z2 is on the simple

path connecting z1 with z3 in T .

The set Xz associated with a node z of T is called the bag of z. The nodes of
T will often be referred to as the nodes of TD(G). The tree-width of TD(G)
is maxz∈V (T ) |Xz| − 1, and the tree-width of G, denoted tw(G), is the minimum
tree-width over all tree-decompositions of G. By graphs of bounded tree-width
we mean graphs of tree-width at most k, where k is some constant.

A class of graphs G is called hereditary if for any graph G ∈ G all its subgraphs
also belong to G. The class of graphs of treewidth at most k is hereditary. The
same also holds for planar graphs (as clearly any subgraph of a planar graph is
still planar).

Graph Isomorphism, Graph Canonization. Graphs G and G′ are isomorphic if
there exists a bijection π : V (G) → V (G′) such that {u, v} ∈ E(G) if and
only if {π(u), π(v)} ∈ E(G′). Graph canonization is a function from graphs to
strings such that two graphs have the same canonization if and only if they are
isomorphic.
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Subgraph Isomorphism and Induced Subgraph Isomorphism. We say that a graph
G1 is subgraph isomorphic to a graph G2 if G1 is isomorphic to a subgraph of
G2. We say that a graph G1 is induced subgraph isomorphic to a graph G2 if
G1 is isomorphic to an induced subgraph of G2. Deciding whether a graph is
(induced) subgraph isomorphic to another graph is NP-complete and it remains
NP-complete even for bounded-treewidth graphs [10]. Note that there are graph
classes, e.g. bounded-treewidth graphs or planar graphs, for which isomorphism
can be decided in polynomial time but for which subgraph isomorphism is NP-
complete. We are mostly interested in such classes because for them it is not
obvious whether fast graph mining algorithms exist.

Homeomorphism and Induced Homeomorphism. We say that a graph G1 is
homeomorphic to a graph G2 if there is a graph G′

1 which can be obtained
from G1 by subdividing its edges and G′

1 is subgraph isomorphic to G2. We say
that a graph G1 is induced homeomorphic to a graph G2 if there is a graph G′

1

which can be obtained from G1 by subdividing its edges and G′
1 is induced sub-

graph isomorphic to G2. Deciding if a graph is homeomorphic to another graph
is NP-complete even for graphs of bounded treewidth and unbounded maximum
degree [10].

Minor Embedding and Induced Minor Embedding. We say that a graph G1 is
minor-embeddable to a graph G2 if there is a graph G′

1 isomorphic to G1 which
can be obtained from a subgraph of G2 by contracting edges and deleting loops
and multiple-edges thus produced. We say that a graph G1 is induced minor-
embeddable to a graph G2 if there is a graph G′

1 isomorphic to G1 which can
be obtained from an induced subgraph of G2 by contracting edges and deleting
loops and multiple-edges thus produced. Deciding if a graph is minor-embeddable
to another graph is NP-complete even for graphs of bounded treewidth and
unbounded maximum degree [10].

Fixed-Parameter Tractability. Formally, a parameterized decision problem is a
language L ⊆ Σ∗ × N where Σ is a finite alphabet and N is the set of nat-
ural numbers [1]. An instance of a parametrized problem is a pair (x, k) where
k ∈ N is called parameter of the problem. A problem is fixed-parameter tractable
(abbreviated FPT) if there exists an algorithm for solving instances of it which
runs in time |x|O(1) ·f(k) where f is a computable function. Notice that whether
a problem is fixed-parameter tractable depends on the selected parameteriza-
tion. For instance, when the parameter of the problem is |x|, i.e. the actual size
of the problem, then any problem e.g. from classes such as e.g. NP, EXP, NEXP
is fixed-parameter tractable with such a parameterization. On the other hand, it
is widely believed that e.g. the clique problem is not fixed-parameter tractable
with the parameter being size of the clique. To capture a conjectured intractabil-
ity hierarchy, the W-hierarchy is used which consists of an infinite number of
increasingly more intractable classes W[1] , W[2], etc. The W-hierarchy is based
on fixed-parameter reductions. A problem LA is fixed-parameter reducible to a
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problem LB if there exists an algorithm for transforming instances (x, k)A of the
problem LA to instances (x′, k′)B of the problem B such that:

(i) the transformation algorithm runs in time |x|O(1) · f(k) where f is a com-
putable function,

(ii) k′ ≤ g(k) where g is a computable function,
(iii) (x, k)A ∈ LA if and only if (x′, k′)B ∈ LB (informally, (x, k)A has a ‘yes’

solution if and only if (x′, k′)B has a ‘yes’ solution).

3 Graph Mining Problems

In this section, we define the mining problems studied in this paper and describe
their basic properties. We start with the definition of the classical frequent con-
nected graph mining problem.

A transaction database is a a multiset of graphs from a given class G. Given a
pattern matching operator � (subgraph isomorphism or induced subgraph iso-
morphism), the frequency of a graph G in a transaction database DB, denoted
by freq(G,DB), is given as freq(G,DB) = |{G′ ∈ DB|G � G′}|. Given a thresh-
old t, G is said to be frequent if freq(G,DB) ≥ t. The elements of the multiset
{G′ ∈ DB|G � G′} are called occurrences of the graph G in the database DB.
We will often represent the set of occurrences also just by names or IDs of the
graphs contained in it (e.g. G1 will be represented just by “1”).

Definition 1 (The Frequent Connected Graph Mining (FCGM) Prob-

lem). Given a class G of graphs, a transaction database DB of connected graphs
from G, a pattern matching operator �, and frequency threshold, list the set of
frequent connected graphs G ∈ G and their occurrences.

In this paper, we are interested in another closely related type of problem which
is to mine all graphs with frequency at least one in certain order.

Definition 2 (The Ordered Mining Problems). Given a class G of graphs,
a transaction database DB of connected graphs from G and a pattern matching
operator �, list the set of connected graphs G ∈ G with freq(G,DB) ≥ 1 and
their occurrences in the transactions in the given order1:

– from most frequent to least frequent (ALLF→I problem),
– from least frequent to most frequent (ALLI→F problem),
– from smallest size to largest size (ALLS→L problem),
– from largest size to smallest size (ALLL→S problem).

Here size of a graph G refers to |E(G)| when � is subgraph isomorphism and to
|V (G)| when � is induced subgraph isomorphism.

1 ALLF→I stands for ’frequent to infrequent’, ALLI→F stands for ’infrequent to fre-
quent’, ALLS→L stands for ’small to large’ and ALLL→S stands for ’large to small’.
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The parameter of the above problems is the size of DB. One can easily
construct examples for which the number of frequent connected subgraphs is
exponential in this parameter. Thus, in general, the set of all frequent connected
subgraphs cannot be computed in time polynomial only in the size of DB. Since
this is a common feature of many listing problems, the following problem classes
are usually considered in the literature (see, e.g., [6]). For some input I, let O
be the output set of some finite cardinality N . Then the elements of O, say
o1, . . . , oN , are listed with:

– polynomial delay if the time before printing o1, the time between printing oi
and oi+1 for every i = 1, . . . , N − 1, and the time between printing oN and
the termination is bounded by a polynomial of the size of I,

– incremental polynomial time if o1 is printed with polynomial delay, the time
between printing oi and oi+1 for every i = 1, . . . , N −1 (resp. the time between
printing oN and the termination) is bounded by a polynomial of the combined
size of I and the set {o1, . . . , oi} (resp. O),

– output polynomial time (or polynomial total time) if O is printed in time poly-
nomial in the combined size of I and the entire output O.

Clearly, polynomial delay implies incremental polynomial time, which, in
turn, implies output polynomial time. Furthermore, in contrast to incremental
polynomial time, the delay of an output polynomial time algorithm may be
exponential in the size of the input even before printing the first element of the
output.

Example 1. Let us have graphs G1 = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}}) and G2 =
({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}}), DB = {G1, G2} and let t = 2. A solution of
the FCGM problem is

H1 = ({1}, {}), OCC1 = {1, 2}
H2 = ({1, 2}, {{1, 2}}), OCC2 = {1, 2}
H3 = ({1, 2, 3}, {{1, 2}, {2, 3}}), OCC3 = {1, 2}

where OCCi denotes the occurrences of the graph Hi. A solution of the problem
ALLF→I is

H1 = ({1}, {}), OCC1 = {1, 2}
H2 = ({1, 2}, {{1, 2}}), OCC2 = {1, 2}
H3 = ({1, 2, 3}, {{1, 2}, {2, 3}}), OCC3 = {1, 2}
H4 = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}}), OCC4 = {1}
H5 = ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}}), OCC4 = {2}

Remark 1. There is an incremental-polynomial-time algorithm for the FCGM
(FCIGM) problem if and only if there is an incremental-polynomial time algo-
rithm for ALLF→I with (induced) subgraph isomorphism as a pattern matching
operator.
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In general, we will see in the next sections that the different ordered mining
problems possess different computational complexities under standard complex-
ity theoretic assumptions.

4 Mining All (Induced) Subgraphs

4.1 Negative Results

In this section, we provide several negative results regarding complexity of some
of the enumeration problems considered in this paper. The first theorem connects
the hardness of the frequent subgraph enumeration problem to fixed-parameter
tractability of the pattern matching operator (subgraph isomorphism or induced
subgraph isomorphism).

Theorem 1. Let G be a class of graphs. Let � be either subgraph isomorphism
or induced subgraph isomorphism. If deciding H � G for connected G,H ∈ G
is not fixed-parameter tractable with the parameter |H| then there is no output-
polynomial-time algorithm for enumerating frequent connected graphs from data-
bases consisting of graphs from G.
Proof. Let us suppose that there is an algorithm for mining frequent connected
graphs from databases of graphs from G which runs in output-polynomial time.
Let G,H ∈ G. We show that then it is always possible to decide whether H � G
holds in time f(|H|) · |G|O(1). If |H| > |G| then H 	� G and we can finish.
If |H| ≤ |G|, we set DB = {H,G} and we let the pattern mining algorithm
run on DB with minimum frequency t = 2. Since there are at most 2|E(H)|

connected subgraphs of H, the mining algorithm will produce an output of length
at most |H| ·2|E(H)| in time poly

(|H| + |G|, |H| · 2|E(H)|). If the output contains
a frequent graph F such that |V (F )| = |V (H)| and |E(F )| = |E(H)| (such a
graph F must be isomorphic to H), we return true. Otherwise, we return false.
Now, if we return true then H � G must hold because if a graph F isomorphic
to H is frequent, it must hold F � G and therefore also H � G. Similarly, if we
return false then there is no frequent graph F isomorphic to H and therefore
H 	� G. This all put together runs in time f(|H|)·|G|O(1) where f is a computable
function. However, then the just described procedure would give us an algorithm
for the pattern matching operator which would be fixed-parameter tractable with
the parameter |H| which is a contradiction. 
�
From the proof of the above theorem, we can obtain the following corollary2.

2 The hardness for the ALLF→I problem follows from Theorem 1 together with
Remark 1, whereas hardness of the ALLS→L problem follows from a simple modifica-
tion of the proof of Theorem 1 where we use a hypothetic incr.-poly.-time algorithm
for solving the ALLS→L problem and stop it after printing the first graph with more
edges than H (or more vertices than H in the case of induced subgraph mining).



112 O. Kuželka and J. Ramon

Corollary 1. Let G be a class of graphs. Let � be either subgraph isomorphism
or induced subgraph isomorphism. If deciding H � G for connected G,H ∈ G is
not fixed-parameter tractable with the parameter |H| then ALLF→I and ALLS→L

cannot be solved in incremental polynomial time.

However, there are also graph classes with FPT subgraph isomorphism, e.g.
planar graphs [9], for which ALLF→I cannot be solved in incr.-poly. time3.

Theorem 2. The problem ALLF→I cannot be solved in incremental polynomial
time for the class G of planar graphs and subgraph isomorphism as pattern match-
ing operator.

Proof. We can use NP-hardness of Hamiltonian cycle problem [2], similarly as [5].
We construct a database consisting of a given graph G and a cycle C on |V (G)|
vertices. A graph isomorphic to C with frequency 2 (recall that frequency is given
implicitly by the printed occurrences) is output by the mining algorithmamong the
first |V (G)|+1 graphs if and only if G contains a Hamiltonian cycle. It is easy to see
that we could then use an incremental-polynomial time algorithm for the ALLF→I

problem to solve the Hamitonian cycle problem. Therefore there is no incremental-
polynomial time algorithm for the ALLF→I problem (unless P=NP). 
�
This theorem is interesting because in Sect. 4.2, we will see that the problem
ALLL→S can be solved with polynomial delay for planar graphs.

Even stronger negative result can be obtained for the problem ALLI→F .

Theorem 3. Let G be a class of graphs. Let � be either subgraph isomorphism
or induced subgraph isomorphism. If deciding H � G for connected G,H ∈ G is
NP-hard then ALLI→F cannot be solved in incremental polynomial time (unless
P = NP).

Proof. Let H and G be graphs from G. We will show how to use an incremental-
polynomial-time algorithm for the problem ALLI→F to decide whether H � G
in polynomial time. We construct a database of graphs DB = {H,G,G} and let
the algorithm for the problem ALLI→F run until it outputs a graph and its occur-
rences (implicitly giving us also the frequency) and then we stop it (it follows from
definition of incremental-polynomial time that this will run only for time poly-
nomial in the sizes of H and G). It is easy to see that the output graph has fre-
quency 1 if and only if H 	� G. Thus, if the frequency of the output graph is 1
we return ’not (induced) subgraph isomorphic’ and if the frequency of the output
graph is greater than 1 then we return ‘(induced) subgraph isomorphic’. Therefore
if deciding H � G is NP-hard for graphs from G there cannot be an incremental-
polynomial-time algorithm for the problem ALLI→F (unless P = NP). 
�
Using the fact that (induced) subgraph isomorphism is NP-complete even for
bounded-treewidth graphs [10] and planar graphs [9], we can obtain the following.

3 The complexity of the ALLS→L problem in these cases remains an interesting open
problem.
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Corollary 2. The problem ALLI→F cannot be solved in incremental polynomial
time for the class of planar graphs and for the class of bounded-treewidth graphs.

Note that Theorem 1 cannot be made as strong as Theorem 3 (i.e. showing
that ALLF→I cannot be solved in incremental-polynomial time if the pattern
matching operator is NP-hard) because the results of Horváth and Ramon from
[5] demonstrate that even if the pattern matching operator is NP-hard there can
be an incremental-polynomial-time algorithm for mining frequent subgraphs.
Theorem 3 shows that we cannot expect such a result for mining infrequent
subgraphs (i.e. subgraphs with frequency below a threshold).

4.2 Positive Results for ALLF→I and ALLS→L

Before presenting our new results for ALLL→S in the next section, we note that
there exists the following positive result for frequent graph mining from bounded-
treewidth graphs, which was presented in [4,5].

Theorem 4 (Horváth and Ramon [5], Horváth, Otaki and Ramon [4]).
The FCGM and FCIGM problems can be solved in incremental-polynomial time
for the class of bounded-treewidth graphs.

This result directly translates to a positive result for the problem ALLF→I

summarized in the following corollary (recall that we have shown in the previ-
ous section that ALLI→F cannot be solved in incremental-polynomial time for
bounded-tree-width graphs) and to a result for the problem ALLS→L (this other
result follows from the fact that the respective algorithms are level-wise).

Corollary 3. The problems ALLF→Iand ALLS→L can be solved in incremental-
polynomial time for the class of bounded-treewidth graphs.

4.3 Positive Results for ALLL→S

In this section,wedescribeanalgorithmcalledLargerToSmaller (Algorithm 1)
which, when given a class of graphs G in which isomorphism can be decided in
polynomial time, solves the problem ALLL→S in incremental-polynomial time, or
with polynomial delay if G also admits a polynomial-time canonization. The main
employed trick is the observation that for the problem ALLL→S it is not necessary
to use subgraph isomorphism explicitly for computing occurrences.

The algorithm maintains a data structure ALL storing key-value pairs where
keys are graphs and values are sets of IDs4 of graphs in which the given key
graph is contained either as a subgraph or as an induced subgraph (depending
on whether we are mining subgraphs or induced subgraphs). The data struc-
ture provides four functions/procedures: ADD(K,OCC,ALL), GET(K,ALL),
KEYS(n,ALL), and DELETE(n,ALL).

4 Here, IDs are just some identifiers given to the database graphs.
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The procedure ADD(K,OCC,ALL) adds the IDs contained in OCC to the
set associated with a key contained in ALL which is isomorphic to K or, if no
such key is contained in ALL, the procedure stores K in ALL and associates
OCC with it. If we restrict attention to graphs from a class G for which a
polynomial-time canonization function running in O(p(|H|)) exists (where p is
a polynomial) then the procedure ADD(K,OCC,ALL) can be implemented to
run in time O(p(|K|)) (we can just store the key graphs as canonical strings,
therefore a hashtable with constant-time methods for finding and adding values
by their keys can be used). If a polynomial-time canonization function does not
exist but graph isomorphism can be decided in time O(piso(|K|)) where piso is a
polynomial then the procedure ADD(K,OCC,ALL) can be implemented to run
in time O(|{K ′ ∈ KEY S(ALL) : |V (K ′)| = |V (K)| and |E(K ′)| = |E(K)|}| ·
piso(|K|)).

The function GET(K,ALL) returns all IDs associated with a key isomorphic
to K. The exactly same considerations as for the procedure ADD apply also for
this function.

The function KEYS(n,ALL) returns a pointer to a linked list containing all
key graphs stored in ALL which have size n. Since the data structure ALL does
not allow deletion of individual keys, it is easy to maintain such a linked list5.

Finally, the procedure DELETE(n,ALL) removes the pointer6 to the linked
list containing all key graphs of order n stored in ALL.

The algorithm LargerToSmaller fills in the data structure ALL, starting
with the largest graphs and proceeding to the smaller ones. When it processes
a graph H, it first prints it and the IDs of the graphs associated to it in the
data structure ALL, and then it calls the function REFINE which returns all
connected subgraphs H ′ of H which can be obtained from H by removing an
edge or an edge and its incedent vertex of degree one, in the case of subgraph
mining, or just by removing a vertex and all its incident edges, in the case of
induced subgraph mining. It then associates all occurrences of the graph H with
the graphs H ′ in the datastructure ALL using the procedure ADD. Since the
same graph H ′ may be produced from different graphs H, the occurrences of H ′

accumulate and we can prove that when a graph H is printed, the data structure
ALL already contains all IDs of graphs in which H is contained.

Theorem 5. Let G be a hereditary class of graphs with isomorphism decidable
in polynomial time. Given a database DB of connected graphs from G, the algo-
rithm LargerToSmaller solves the problem ALLL→S in incremental polyno-
mial time. If the graphs from G also admit a poly-time canonization then the algo-
rithm LargerToSmaller solves the problem ALLL→S with polynomial delay.

5 The reason why the function KEYS does not just return all the key graphs but rather
a pointer to the linked list is that if it did otherwise, Algorithm 1 could never run
with polynomial delay.

6 Note that we just remove the pointer and do not actually “free” the memory occupied
by the graphs. For the practical implementation, we used a programming language
with a garbage collector.
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Algorithm 1. LargerToSmaller

Require: database DB of connected transaction graphs
Ensure: all connected (induced) subgraphs and their occurrences

1: let ALL be a data structure for storing graphs and their occurrences (as described
in the main text).

2: for G ∈ DB do
3: ADD(G, {ID(G)}, ALL)
4: endfor
5: let m := maxG∈DB |E(G)| (m := maxG∈DB |V (G)| for induced subgraph mining).
6: for (l := m; l > 0; l := l − 1) do
7: for H ∈ KEYS(l, ALL) do
8: OCC ← GET(H,ALL)
9: PRINT(H,OCC)

10: for H ′ ∈ REFINE(H) do
11: if H ′ is connected then
12: ADD(H ′, OCC,ALL)
13: endif
14: endfor
15: endfor
16: DELETE(l, ALL)
17: endfor

Proof. First, we show that the algorithm prints every (induced) subgraph of the
graphs in DB. Let us assume, for contradiction, that this is not the case and let
G∗ be a maximal connected graph which is a (induced) subgraph of a graph in the
database and such that no graph isomorphic to it is printed by the algorithm. It
is easy to verify that such a graph G∗ cannot be isomorphic to any graph in DB.
Since G∗ is not isomorphic to a graph from DB and since it is a maximal graph
not printed, there must be a supergraph G′ of G∗ such that |E(G∗)|+1 = |E(G′)|
in the case of subgraph isomorphism (|V (G∗)|+1 = |V (G′)| in the case of induced
subgraph isomorphism, respectively) and such that a graph isomorphic to it is
printed by the algorithm. However, if such a graph was printed then a graph
isomorphic to G∗ would have to be in REFINE(G′) and would have to be printed
eventually, which is a contradiction.

Second, we show that the occurrences printed with each graph are correct.
First, if a printed graph G does not have any strict supergraph in the database
then it must be equivalent to one or more database graphs. However, it is easy
to check by simple inspection of the algorithm that the occurrences must be
correct in this case. For the rest of the printed graphs (i.e. graphs which have
strict supergraphs in the databse), let us assume, for contradiction, that G∗ is a
maximal graph printed by the algorithm for which the printed occurrences are
not correct, i.e. either there is an ID of a database graph printed for G∗ of which
G∗ is not an (induced) subgraph or there is an ID of a database graph not printed
for G∗ of which G∗ is actually an (induced) subgraph. (False occurrence:) If there
is an ID of a database graph of which G∗ is not a (induced) subgraph then at
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least one of the graphs from which G∗ can be obtained by refinement must have
an ID associated which it should not have. But then G∗ could not be maximal
graph with this property, which is a contradiction. (Missing occurrence:) If there
is a missing ID of a database graph of which G∗ is a (induced) subgraph then
one of the following must be true: (i) G∗ is isomorphic to the database graph
but then it is easily seen by inspection of the algorithm that the ID of this graph
cannot be missing from the occurrences of G∗, (ii) there is a strict supergraph
G′ of G∗ which is (induced) subgraph isomorphic to the database graph and
which is not printed (and therefore its occurrences are not added to the data
structure ALL), but this is not possible as the first part of the proof shows, (iii)
there is a strict supergraph G′ of G∗ which is (induced) subgraph isomorphic to
the database graph and the respective ID was not associated to it, but then G∗

could not be a maximal graph with this property. Thus, we have a contradiction.
Third, we show that if there is a polynomial-time isomorphism algorithm

then the algorithm LargerToSmaller runs in incremental-polynomial time.
First, notice that the first for-loop takes only polynomial time in the size of the
database. We can see easily that the time before printing the first graph is also
bounded by a polynomial in the size of the database. Next, the for-loop on line
10 is repeated at most |H|-times for any graph H. Adding a graph H ′ to the
data structure ALL or getting occurrences of a graph H ′ from the data structure
ALL takes time polynomial in the number of graphs already stored in it and
the size of the graph being stored (which is discussed in the main text). The
number of graphs already stored in the data structure ALL is bounded by P ·M
where P is the number of already printed graphs and M is the maximum size
of a graph in the database. Thus, we have that the time between printing two
consecutive graphs is bounded by a polynomial in the size of the database and
in the number of already printed graphs, i.e. the algorithm runs in incremental
polynomial time.

Fourth, we can show using essentially the same reasoning that if there is
a polynomial-time graph canonization algorithm then the algorithm runs with
polynomial delay. 
�

Using the results on complexity of graph canonization for planar [12] and
bounded-treewidth graphs [7], we can get the following corollary.

Corollary 4. The problem ALLL→S can be solved with polynomial delay for the
classes of planar and bounded-treewidth graphs.

In fact, there are many other classes of graphs for which graph isomorphism
is known to be decidable in polynomial time, e.g. graphs of bounded degree [8].
One can easily use the theorems presented in this section for such classes too as
long as they are hereditary, as is the case for bounded-degree graphs.

4.4 Other Negative Results

The following theorem asserts that the results for the problem ALLL→S are
essentially optimal in the sense that existence of a polynomial-time algorithm
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for graph isomorphism is both sufficient and necessary for existence of an
incremental-polynomial-time algorithm for the problem ALLL→S .

Theorem 6. The problem ALLL→S can be solved in incremental-polynomial
time for graphs from a hereditary class G if and only if graph isomorphism can
be decided in polynomial-time for graphs from G.
Proof. (⇒) The proof idea is similar to the idea of the proof of Theorem3.
Let H and G be graphs from G. We will show how to use an incremental-
polynomial-time algorithm for the problem ALLL→S to decide whether H and
G are isomorphic in polynomial time. If |V (H)| 	= |V (G)| or |E(H) 	= |E(G)|,
we return ‘not isomorphic’. Otherwise, we construct a database of graphs DB =
{H,G} and let the algorithm for the problem ALLL→S run until it outputs a
graph and its occurrences (implicitly giving us also the frequency) and then we
stop it (it follows from definition of incremental-polynomial time that this will
run only for time polynomial in the sizes of H and G). Then the output graph
has frequency 1 if and only if H and G are not isomorphic. So, if the frequency
of the output graph is 1 we return ‘not isomorphic’ and if the frequency of the
output graph is greater than 1 then we return ‘isomorphic’. This gives us an
algorithm for deciding isomorphism of graphs which runs in polynomial time.

(⇐) This direction is explicitly shown in Theorem 5. 
�
The next theorem indicates that ALLL→S is the simplest (complexity-wise)

from the enumeration problems considered in this paper because e.g. the prob-
lems ALLF→I and ALLI→F may be unsolvable in incremental-polynomial time
even if a polynomial-time graph isomorphism algorithm existed.

Theorem 7. If GI ∈ P and P 	= NP was true then there would be an incremental-
polynomial-time algorithm for the problem ALLL→S for the class G of all graphs
but no incremental-polynomial-time algorithm for the problems ALLI→F and
ALLF→I for the class of all graphs.

Proof. The positive result for the problem ALLL→S follows from Theorem 5. The
hardness of FCGM and FCIGM has been shown in [5] and in [4] using reduc-
tions from Hamiltonian cycle problem (for mining under subgraph isomorphism)
and from maximum clique problem (for mining under induced subgraph isomor-
phism), from which the hardness result for the ALLF→I problem follows. The
hardness of the ALLI→F problem follows from Theorem 3. 
�
For now, we leave open the question of complexity of the ALLS→L problem condi-
tioned only on the pattern matching operator not being in P. Theorem1 asserts
that solving this problem in incremental polynomial time is not possible if the
pattern matching operator is not fixed-parameter tractable with the parameter
being the size of the pattern graph, which is a widely believed conjecture.

5 Mining Under Homeomorphism and Minor Embedding

Many of the results presented in this paper may be generalized to mining with
other important pattern matching operators: (induced) homeomorphism and
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(induced) minor embedding. In this section, we briefly discuss these general-
izations. Here, we only consider mining from unlabeled graphs because there is
no generally agreed-upon definition of homeomorphism or minor embedding of
labeled graphs for pattern mining7.

The ideas from Theorem 1 are not relevant for mining under minor embedding
or homeomorphism because minor embedding and homeomorphism are fixed-
parameter tractable with the parameter being the size of the pattern graph as
shown in [3,11]. However, it can be used together with the following theorem
to show hardness of the ALLS→L problem under induced homeomorphism and
induced minor embedding.

Theorem 8. Deciding induced homeomorphism or induced minor embedding
G1 � G2 is not fixed-parameter tractable with the size of G1 as the parame-
ter (unless FPT = W[1]).

Proof. This can be shown by reduction from the k-independent set problem
parameterized by k which follows from the following simple observation. Let G
be a graph. G contains an independent set of size k if and only if H � G where
H is a graph consisting of k isolated vertices. Notice that this theorem holds
also when we restrict G1 and G2 to be connected graphs. The basic idea of the
proof is then the same. The reduction from k-independent set problem is then
as follows. We create a new graph G′ by taking the graph G from the proof,
adding a new vertex and connecting it to all vertices of G. Instead of taking H
as a set of k isolated vertices we let H be a star on k + 1 vertices (i.e. a tree in
which all vertices are connected to one vertex v). We then again have H � G′ if
and only if G contains an independent set of size k. 
�

Ideas analogical to those from Theorems 1, 2, 3 and 8 can be used to obtain
the following negative results for mining under (induced) homeomorphism and
(induced) minor embedding.

Theorem 9. The problem ALLS→L under induced homeomorphism or induced
minor embedding cannot be solved in incremental-polynomial time for the class
of all graphs (unless FPT = W[1]). The problems ALLF→I under (induced)
homeomorphism or (induced) minor embedding cannot be solved in incremental-
polynomial time for the class of all graphs (unless P = NP). The problem
ALLI→F under (induced) homeomorphism or (induced) minor embedding can-
not be solved in incremental-polynomial time for the class of bounded-treewidth
graphs (unless P = NP).

The positive results from Sect. 4.2 may be adapted for mining under (induced)
homeomorphism and (induced) minor embedding as follows. We can essentially

7 For homeomorphism, for instance, we could allow the subdivided edges to have
different labels or, to the contrary, we could require them all to have the same label
etc. Then another question could be how we should treat labels of vertices etc. While
these considerations are interesting even for practice, they are out of the scope of
this paper.
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use the algorithm LargerToSmaller as is, but we need to modify the pro-
cedure REFINE(H) (the modified algorithm will be denoted as LargerTo-

Smaller
∗ to avoid confusion). For mining under minor embedding, when given

a graph H, the procedure REFINE should return all graphs H ′ which can be
obtained from H by removing an edge or by contracting an edge and removing
loops and multiple edges thus produced. For mining under homeomorphism, it
should return all graphs H ′ which can be obtained from H by removing an edge
or by contracting an edge incident to a vertex of degree 2. For mining under
induced minor embedding, it should return all graphs H ′ which can be obtained
from H by removing a vertex and all its incident edges or by contracting an edge
and removing loops and multiple edges thus produced. Finally, for mining under
induced homeomorphism, it should return all graphs H ′ which can be obtained
from H by removing a vertex and all its incident edges or by contracting an edge
incident to a vertex of degree 2.

Theorem 10. Let G be a class of graphs closed under formation of minors
admitting a polynomial-time isomorphism algorithm and let the pattern matching
operator � be either (induced) homeomorphism of (induced) minor embedding.
Given a database DB of connected graphs from G, the algorithm LargerTo-

Smaller
∗ solves the problem ALLL→S in incremental polynomial time. If the

graphs from G also admit a poly-time canonization then the algorithm Larger-

ToSmaller
∗ solves the problem ALLL→S with polynomial delay.

Proof. (Sketch). We can essentially use the reasoning from the proof of Theorem 5.
We only need to notice that � is transitive and that if H � G then a graph iso-
morphic to H can be obtained from G by a repeated application of the procedure
REFINE. For instance, to show that all graphs homeomorphic to at least one data-
base graph will be printed eventually, we can reason as follows. We can show using
Theorem 5 that every graph which is subgraph isomorphic to at least one database
graph must also be printed by the algorithm LargerToSmaller

∗. If a graph H
is homeomorphic to a database graph G then G has a subgraph G′, which must be
printed at some point, which is isomorphic to a graph which can be obtained from
H by subdividing its edges. But this also means that H can be obtained from G′

by repeatedly contracting some of its edges incident to a vertex of degree 2 and
removing the loops produced by this process. Thus, any graph homeomorphic to
at least one of the database graphs will be printed eventually. It is also not dif-
ficult to see that all graphs produced by the refinement function REFINE must
be homeomorphic to the graph being refined. Since homeomorphism is transitive
any of the produced graphs will be homeomorphic to at least one of the database
graphs. Finally, to show that the occurrences printed for every output graph are
correct, we can repeat the reasoning from Theorem 5 (which we omit here due to
space constraints). 
�

Using the fact that bounded-treewidth and planar graphs are closed under
formation of graph minors and that they also admit a polynomial-time isomor-
phism algorithm, we can obtain the following corollary.
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Corollary 5. The problem ALLL→S under (induced) homeomorphism or
(induced) minor embedding can be solved with polynomial delay for the classes
of planar and bounded-treewidth graphs.

6 Conclusions and Future Work

In this paper, we have shown how different orders in which graphs are enumer-
ated affect computational complexity of the mining problem. We have presented
several negative results. We have also described a positive result which shows
that it is possible to mine all graphs from a database of bounded-treewidth or
planar graphs with polynomial delay under any of the following six different
pattern matching operators: (induced) isomorphism, (induced) homeomorphism
and (induced) minor embedding. Here, by mining all graphs, we mean enumerat-
ing all graphs which have frequency at least one and printing their occurrences
in the database. This result holds despite the fact that deciding any of the
six pattern matching operators is NP-hard. However, since the positive result
depends heavily on mining all graphs and not just the frequent ones, the ques-
tion whether frequent graph mining is achievable with polynomial delay for an
NP-hard pattern matching operator, remains open. In fact, as we have shown,
e.g. for planar graphs the latter problem of mining frequent graphs cannot be
done even in incremental polynomial time, whereas mining all graphs can be
done with polynomial delay.

Lastly, it is worth noting that when we performed preliminary experiments
with a simple implementation of the algorithm for the ALLL→S problem, we were
able to mine completely about 70 % molecules from NCI GI dataset consisting of
approximately three and half thousand organic molecules. This suggests that the
techniques presented in this paper might also lead to development of practical
graph mining algorithms. For instance, it would not be difficult to obtain a graph
mining algorithm, having similar positive complexity guarantees as the Larg-

erToSmaller algorithm, for mining graphs of bounded radius (from database
graphs of arbitrary radius) or with constraints on minimum vertex degree8 etc.
Exploring these and similar ideas is left for future work.

Acknowledgement. This work has been supported by ERC Starting Grant 240186
“MiGraNT: Mining Graphs and Networks, a Theory-based approach”. The first author
is supported by a grant from the Leverhulme Trust (RPG-2014-164).

8 The latter constraint on degrees would not probably be very relevant for bounded-
treewidth graphs or planar graphs. This is because any graph of treewidth k must
always have at least one vertex of degree at most k and because any planar graph
must always have at least one vertex of degree at most 5. However, isomorphism
algorithms are extremely fast in practice, despite not being polynomial in the worst
case, so the algorithm that we would obtain for general graphs could still be practical.
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Abstract. Markov Logic is an expressive and widely used knowledge
representation formalism that combines logic and probabilities, provid-
ing a powerful framework for inference and learning tasks. Most Markov
Logic implementations perform inference by transforming the logic rep-
resentation into a set of weighted propositional formulae that encode a
Markov network, the ground Markov network. Probabilistic inference is
then performed over the grounded network.

Constructing, simplifying, and evaluating the network are the main
steps of the inference phase. As the size of a Markov network can grow
rather quickly, Markov Logic Network (MLN) inference can become very
expensive, motivating a rich vein of research on the optimization of MLN
performance. We claim that parallelism can have a large role on this
task. Namely, we demonstrate that widely available Graphics Processing
Units (GPUs) can be used to improve the performance of a state-of-the-
art MLN system, Tuffy, with minimal changes. Indeed, comparing the
performance of our GPU-based system, TuGPU, to that of the Alchemy,
Tuffy and RockIt systems on three widely used applications shows that
TuGPU is up to 15x times faster than the other systems.

Keywords: Statistical relational learning · Markov logic · Markov logic
networks · Datalog · Parallel computing · GPUs

1 Introduction

Statistical relational learning (SRL) integrates statistical reasoning, machine
learning and relational representations. SRL systems rely on a first-order logic
language to represent the structure and relationships in the data, and on graphi-
cal models to address noisy and incomplete information. Various SRL frameworks
have been proposed, Stochastic Logic Programs (SLP), Probabilistic Relational
Models (PRM), PRISM, Bayesian Logic Programs, ProbLog, CLP(BN ), PFL,
and Markov Logic [13,30].
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The last few years have seen significant progress in models that can repre-
sent and learn from complex data. One important such model is Markov logic,
“a language that combines first-order logic and Markov networks. A knowledge
base in Markov logic is a set of first-order [logic] formulas with weights” [11].
Markov Logic thus builds upon logic and probabilities. The logical foundation
of Markov Logic provides the ability to use first-order logic formulas to establish
soft constraints over worlds, or interpretations. Worlds that violate a formula
are less likely to be true, but still possible. In contrast, formulas in standard
first-order logic are hard constraints: a world that falsifies a formula is not pos-
sible. Worlds that violate a formula can be possible in Markov Logic because
worlds are an assignment to a set of random variables, and follow a probability
distribution. The distribution is obtained by identifying each ground atom as a
random variable, and each grounded formula as a clique in a factor graph. This
ground network thus forms a Markov Random Field (MRF) [17].

Markov logic systems address two major tasks [31]: inference and learning. In
inference, we receive an MLN model M and a set of observations, or evidence E,
and we want to ask questions about the unobserved variables. Typical queries are:

– probability estimation queries: one wants to find out the probability of an atom
given the evidence E. A typical example would be “What is the probability
of rain in Kobe and Kyoto, given that it is raining in Tokyo and Nagoya,
but sunny in Fukuoka and Okinawa”. Notice that MLNs naturally allow for
collective inference, that is, we can ask for all the different cities in a single
query.

– Maximum a posteriori (MAP) or most likely world queries: one wants to find
out what is the most likely set of values for the variables of interest. From our
example above, instead of outputting probabilities, the model would output
the places where it is more likely to rain.

A large number of inference techniques have been developed for MLNs. Most
of them operate on the ground network, that is, given the query and the observed
data, they enumerate all relevant atoms and then use statistical inference on
the resulting network. They then search for the set of grounded clauses that
maximize the sum of the satisfied clauses weights.

The second task, learning, is about constructing the actual MLNs. Often
the formulas of interest can be obtained from the experts, but it is still nec-
essary to learn the weights. Parameter learning addresses this task. Structure
learning goes further and tries to construct the actual model, by searching for
relationships or important properties of the data.

Markov logic networks have been widely adopted. Applications include the
Semantic Network Extractor (SNE) [19], a large scale system that can learn
semantic networks from the Web; the work by We et al. to refine Wikipedia’s
Infobox Ontology [43]; and Riedel and Meza-Ruiz’s work to carry out collective
semantic role labelling [33], among others [11, p. 97].

Alchemy was the first widely available Markov Logic system [11]. It is still
a reference in the field, as it includes a very large number of algorithms that
address most MLN tasks. However, as it did not scale well to large real-world
applications, several new implementations have been proposed [4,26,27,32].
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Grounding is, arguably, the step that mostly affects performance of MLNs,
preventing them from scaling to large applications. For large domains, we may
need to ground a very large number of atoms, which can be quite time and
space-consuming. Often (but not always) the solver algorithm converges in few
iterations and grounding will dominate running time [26]. We claim that GPU
processing can significantly expedite grounding, and that this can be done effec-
tively with few changes to the state-of-the-art systems. To verify our hypoth-
esis, we designed TuGPU, a Markov Logic system based on: Tuffy [26], YAP
Prolog [35], and GPU-Datalog, a GPU-based engine that evaluates Datalog pro-
grams [22]. We compare the performance of TuGPU to that of Alchemy [11],
Tuffy and RockIt [27], with three applications of different types: information
extraction, entity resolution and relational classification. The performance of
TuGPU is on par or better than the other systems for most applications.

This paper is organized as follows. Section 2 presents background on Markov
logic and its implementation, Tuffy, Datalog, and GPUs. Section 3 presents the
design and implementation of our TuGPU platform for Markov logic networks.
Section 4 presents an experimental evaluation of our platform. In Sect. 5, we
discuss about our system and other related systems. We conclude in Sect. 6.

2 Markov Logic, Tuffy, Datalog and GPUs

First-order (predicate) logic is widely used for knowledge representation and
inference tasks. Datalog is a language based on first-order logic that was ini-
tially investigated as a data model for relational databases in the 80s [41,42];
recent applications include declarative networking, program analysis, and secu-
rity [15]. Interest in Datalog has always stemmed from its ability to compute the
transitive closure of relations through recursive queries which, in effect, turns
relational databases into deductive databases. Relational Learning is the task of
learning from databases, modelling relationships among data items from multiple
tables (relations); Inductive Logic Programming (ILP) [9] is a popular relational
learning approach that employs logic-based formalisms, often based on subsets
of first-order logic such as Horn clauses.

Statistical Relational Learning (SRL), in the form of probabilistic induc-
tive logic programming, extends logic-based approaches by combining relational
learning and probabilistic models (e.g., graphical models such as Bayesian net-
works and Markov networks), in order to manage the uncertainty arising from
noise and incomplete information which is typical of real-world applications.
Markov logic networks (MLNs) are a very popular approach that combines first-
order logic and Markov networks in a simple manner: a weight is attached to each
first-order logic formula that represents how strong the formula is as a constraint
in all possible worlds. MLNs use inference to answer queries of the form: “What
is the probability that formula F1 holds given that formula F2 does?” [31].

2.1 Inference in Markov Logic

A Markov Logic network is a set of formulas with attached weights. Inter-
nally, the program is stored as a conjunction of clauses, where each clause is a
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disjunction of positive and negative atoms, as shown in the well-known smokers
example, which determines the probability of people having cancer (Ca) based
on who their friends (Fr) are and whether or not their friends smoke (Sm):

1.5 : ¬Sm(x) ∨ Ca(x)
1.1 : ¬Fr(x, y) ∨ ¬Sm(y) ∨ Sm(x)
0.7 : ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z)

Each ground instance of a literal, say Ca(Anna) can be seen as a boolean
random variable (RV). RVs in a clause form a clique, and the set of all cliques
a hypergraph. Assuming the network includes N ground atoms and R rules or
cliques, such that clique i has size ki, the Markov property says that the joint
probability over the hypergraph is a normalized sum of products:

P (a1, . . . , aN ) =
1
Z

∏

R

ewiφ(ai1,...,aiki
)

Each RV can take two values (0 or 1), hence we have 2N disjoint configura-
tions. The partition function Z =

∑(a1=1...aN=1)
(a1=0...aN=0)

∏
R ewiφ(ai1...aiki

) sums up all
the different values and ensures that the total probabilities add up to one (1).
Usually there is no closed form for Z.

The boolean function φ is 1 if the clause i is true under this grounding, 0
otherwise. Thus, a false grounding contributes e0 = 1 to the product, and a true
grounding ew: in other words, if w = 1.5, a world with that grounding is e1.5,
which is approximately 5 times more likely than a world whose grounding is false.
As wF ≡ −w¬F (where F is a a clique i), we can always ensure that weights
are positive or zero, hence the probability of a world where all constraints are
soft is 0 < 1

Z <
∏

ewi

Z < 1 : strictly larger than zero and always less than one.
Inference is most often divided in two phases: grounding and search. Ground-

ing is the process of assigning values to all free variables in each clause. While
we can ground a clause by assigning all possible values to its variables, it is
impractical even for small domains. There are several, more efficient alternatives
that discard unnecessary groundings, such as lazy closure grounding and infer-
ence [28]. In a number of cases, one can obtain even better results by using lifted
inference, that avoids grounding the program [38].

Next we focus on the most common inference task, Maximum a Posteriori
(MAP), where we search for the most probable state of the world given the
observed data or evidence E; that is, we search for an assignment of a1 . . . aN

that maximizes P (E|a1 . . . aN ) ∝ P (a1 . . . aN |E) = P (a1...aN ,E)
P (E) . Thus, we have:

argmaxa1...aN
P (a1 . . . aN |E) = argmaxa1...aN

1
P (E)Z

∏
R ewiφ(ai1...aiki

)

= argmaxa1...aN

∏
R ewiφ(ai1...aiki

)

= argmaxa1...aN
log

∏
R ewiφ(ai1...aiki

)

= argmaxa1...aN

∑
R wiφ(ai1 . . . aiki

)

Z and P (E) are the same for every world, so they do not affect the optimization
problem. Moreover, applying a monotonic function such as the logarithm will
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preserve the maximum, but enable us to work on a sum. Observing closely, the
problem reduces to finding the maximal value of discrete function of boolean vari-
ables. Notice that if the coefficients wi are positive, and the underlying boolean
formula is satisfiable, an assignment that satisfies the model will be optimal.
Thus, finding a solution to this problem requires solving the satisfiability prob-
lem with weights.

Several Markov logic systems use MaxWalkSAT [16] for its ability to solve
hard problems with thousands of variables in a short time. MaxWalkSAT works
by selecting an unsatisfied clause and switching the truth value of one of its
atoms. The atom is chosen either randomly or to maximize the sum of the
satisfied clause weights.

2.2 Optimizations

A ground MLN may quickly have thousands of boolean variables, making it hard
to find even an approximate solution. Thus, it is important to start by simplifi-
cations of the system. Typically, one applies a combination of two techniques:

– Elimination: Consider a clause ¬Sm(j) ∨ ¬Sm(k), with evidence ¬Sm(j) and
query variable Sm(k). The clause is always true, hence it does not affect the
total score, and can be dropped.

– Partitioning : Consider c1 ≡ a ∨ ¬b and c2 ≡ c ∨ d. If (a, b) is a solution to
c1, and (c, d) is a solution to c2, then we have that (a, b, c, d) is a solution to
the joint network. In practice this means the two sub-problems can be solved
independently.

Most MLN systems apply these principles to reduce the search space. To
speed up inference in large relational problems, lazy grounding takes the idea
further and grounds as late as possible. The idea is to take advantage of the
fact that most of their groundings are known to be trivial or false beforehand.
The other approach, lifted inference, groups indistinguishable atoms together
and treats them as a single unit, thus reducing the size of the network.

2.3 Learning

Learning is used to automatically create or refine weights and to create clauses
in an MLN. Weights can be learned generatively or discriminatively; clauses
are learned using Inductive Logic Programming (ILP) [9]. The learning process
makes repeated use of the inference phase, using one of the methods described
below. However, it is common of many applications to use only the inference
phase with an already configured knowledge base (KB) and a number of facts in
relational tables, as is the case of the applications we use in our experiments in
Sect. 4. Learning is not considered any further in the paper after this subsection.

In generative weight learning, the idea is to maximize the likelihood (a func-
tion of the parameters of our statistical model) of our training evidence following
the closed-world assumption [12]. i.e.: all ground atoms not in the database are
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false. However, computing the likelihood requires all true groundings of each
clause, a difficult task even for a single clause [34]. MLNs use pseudo-log likeli-
hood instead [6], which consists of a logarithmic approximation of the likelihood.
Combined with a good optimizer like L-BFGS [7], pseudo-log likelihood can cre-
ate weights for domains with millions of groundings.

Discriminative weight learning is used to predict query atoms given that
we know the value of other atoms. This is achieved by maximizing the condi-
tional log-likelihood (CLL: a constrained version of the log-likelihood), instead of
the pseudo-log likelihood [37]. Maximizing CLL can be performed by optimizer
algorithms like Voted Perceptron, Diagonal Newton, Scaled Conjugate Gradient,
among others [11].

Clauses can be learned using ILP algorithms. The most important differ-
ence is the use of an evaluation function based on pseudo-likelihood, rather than
accuracy or coverage. These modified methods include top-down structure learn-
ing [18] (TDSL) and bottom-up structure learning [24] (BUSL). On real-world
application against famous ILP systems like CLAUDIEN [10], FOIL [29] and
Aleph [39], both TDLS and BUSL find better MLN clauses.

2.4 Tuffy

Tuffy [26] is an MLN system that employs a bottom-up approach to grounding
that allows for a more efficient procedure, in contrast to the top-down approach
used by other systems. It also performs an efficient local search using an RDBMS.
Inference is performed using the MaxWalkSat algorithm mentioned in Sect. 2.1.
Tuffy can also perform parameter learning, but it does not implement structure
learning (creating new clauses). In order to speedup execution, it partitions the
MRF formed by the grounded clauses so as to perform random walks in parallel
for each partition.

2.5 Evaluation of Datalog Programs

Datalog programs can be evaluated through a top-down approach or a bottom-
up approach. The top-down approach (used by Prolog) starts with the goal that
is reduced to subgoals, or simpler problems, until a trivial problem is reached. It
is tuple-oriented: each tuple is processed through the goal and subgoals using all
relevant facts. Because evaluating each goal can give rise to very different com-
putations, the top-down approach is not easily adapted to GPUs bulk parallelism
— more on this below and in Sect. 2.6.

The bottom-up approach first applies the rules to the given facts, thereby
deriving new facts, and repeats this process with the new facts until no more facts
are derived. The query is considered only at the end, to select the facts matching
the query. Based on relational operations (as described shortly), this approach
is suitable for GPUs because such operations are set-oriented and relatively
simple overall. Also, rules can be evaluated in any order. This approach can be
improved using the magic sets transformation [5] or the subsumptive tabling
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Fig. 1. Evaluation of a Datalog rule based on relational algebra operations.

transformation [40], through which the set of facts that can be inferred tends to
contain only facts that would be inferred during a top-down evaluation.

Bottom-up evaluation of Datalog rules can be implemented with the rela-
tional algebra operators selection, join and projection, as outlined in Fig. 1. Selec-
tions are made when constants appear in the body of a rule. Next, a join is made
between two or more subgoals in the body of a rule using the variables as refer-
ence. The result of a join can be seen as a temporary subgoal (or table) that has
to be joined in turn to the rest of the subgoals in the body. Finally, a projection
is made over the variables in the head of the rule.

We use fixed-point evaluation to compute recursive rules [41]. The basic idea
is to iterate through the rules in order to derive new facts, and using these new
facts to derive even more new facts until no new facts are derived.

2.6 GPU Architecture and Programming

GPUs are high-performance many-core processors capable of very high computa-
tion and data throughput [2]. They are used in a wide variety of applications [3]:
games, data mining, bioinformatics, chemistry, finance, imaging, weather fore-
cast, etc. Applications are usually accelerated by at least one order of magnitude,
but accelerations of 10 times or more are common.

GPUs are akin to single-instruction-multiple-data (SIMD) machines: they
consist of many processing elements that run the same program but on distinct
data items. This program, referred to as the kernel, can be quite complex includ-
ing control statements such as if and while statements. A kernel is executed by
groups of threads called warps [1]. These warps execute one common instruction
at a time, so all threads of a warp must have the same execution path in order to
obtain maximum efficiency. If some threads diverge, the warp serially executes
each branch path, disabling threads not on that path, until all paths complete
and the threads converge to the same execution path. Hence, if a kernel has to
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compare strings, processing elements that compare longer strings will take longer
and other processing elements that compare shorter strings will have to wait.

GPU memory is organized hierarchically. Each (GPU) thread has its own
per-thread local memory. Threads are grouped into blocks, each block having a
memory shared by all threads in the block. Finally, thread blocks are grouped
into a single grid to execute a kernel — different grids can be used to run different
kernels. All grids share the global memory.

3 Our GPU-Based Markov Logic Platform

Our platform TuGPU was designed to accelerate the grounding step, as this
is often the most time consuming. Its main components are: the Tuffy Markov
logic system [26], the YAP Prolog system [35] and GPU-Datalog [22]. The latter
evaluates Datalog programs with a bottom-up approach using GPU kernels that
implement the relational algebra operations selection, join and projection. For
GPU-Datalog to be able to run Markov logic networks, its original version was
extended with: management of stratified negation; improved processing of built-
in comparison predicates; processing of disjunctions, in addition to conjunctions
(to simplify specifying SQL queries as Datalog queries and to improve their
processing); and an interface to communicate directly with PostgreSQL.

Figure 2 shows the interaction between the main modules of our platform in
running a Markov logic network. Tuffy is called first, receiving three input files:
(i) the evidence (facts) file; (ii) the MLN file; and the queries. Tuffy starts by
creating a temporary database in PostgreSQL to store the evidence data and
partial results (left side of Fig. 2). It then parses the program and query files in
order to determine predicates and to create a (relational) table for each predicate
found. Tables are then loaded with the evidence data.

The original Tuffy would then start the grounding phase. In TuGPU, this phase
is performed by GPU-Datalog (center of Fig. 2), but, as Tuffy uses conjunctions to

Fig. 2. TuGPU-Datalog modules running a Markov logic network. The left part corre-
sponds to the active atoms grounding, while the right corresponds to the active clauses
grounding.
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specify a program, we first translate it to Datalog disjunctions. Then the Datalog
program is sent to YAP, using a Java-Prolog interface, to compile it into a numer-
ical representation (NR) where each unique string is assigned a unique integer id.
YAP then sends the program’s NR to GPU-Datalog to process the grounding. By
using an NR, our GPU kernels show relatively short and constant processing time
because all tuples in a table, being managed as sets of integers, can be processed
in the same amount of time. Tuffy also uses an NR for evidence loaded in the data-
base; this simplified extending it with GPU processing. Weights are not used in
this phase, since the search for the most probable world will be performed by the
host after the grounding is done.

To speed-up the grounding, Tuffy and TuGPU use the Knowledge-Based
Model Construction [26] (KBMC) algorithm to determine those atoms and
clauses that are relevant to the query. Then, GPU-Datalog reads the evidence
from the database and performs the first step (of two) of the grounding process:
computing the closure of the active atoms (i.e., those atoms whose truth value
might change from true to false or vice versa, during search). The second step
determines the active clauses, clauses that can be violated (i.e., their truth value
becomes false) by flipping zero or more active atoms. For this step, TuGPU
translates the program rules from the SQL that Tuffy generates into Datalog,
and then YAP translates it into the NR used by GPU-Datalog.

When GPU-Datalog finishes each grounding step, it writes the found active
atoms or clauses to the database. At the end of both grounding steps, Tuffy
searches for the most likely world of the MLN. The search begins by using the
ground active atoms and clauses to construct the MRF and then partition it into
components. Each component has a subset of the active atoms and clauses, so
that if an atom is flipped, it affects only those clauses found in the component.

The partitioned MRF is processed in parallel by the CPU with one thread
per core and one component per thread, using the MaxWalkSAT algorithm men-
tioned in Sect. 2.1. The algorithm stops after a certain number of iterations or
after an error threshold is reached. Finally, the results are displayed by TuGPU.

4 Experimental Evaluation

This section describes our experimental evaluation of the performance of TuGPU
compared to that of the systems Alchemy [11], Tuffy [26] and RockIt [27].

4.1 Applications and Hardware-Software Platform

We used the following applications available with the Tuffy package. Table 1
shows some of their characteristics. For two of them (ER and RC), more tuples
were randomly generated to test the systems with bigger data (right column).

– Entity Resolution (ER): a simple, recursive MLN to determine if a person has
cancer based on who his/her friends are and their smoking habits (this is an
example from [31]).
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Table 1. Applications characteristics.

Application Inference rules Evidence relations Tuples in relations

Original Random

ER 3 3 8 (310,000)

RC 15 4 82,684 (441,074)

IE 1024 18 255,532 (na)

– Relational Classification (RC): classifies papers into 10 categories based
on authorship and on the categories of other papers it references (Cora
dataset [23]).

– Information Extraction (IE): given a set of Citeseer citations, divided in
tokens, rules with constants are used to extract structured records.

The original number of tuples of ER is only 8. We created another data set
with a larger number of tuples, 310, 000, with randomly generated data: creating
a fixed number of people, assigning a small random number of friends to each
person, and labelling a fixed number of people as smokers.

For RC we also created a larger, randomly generated data set with 441, 074
tuples. We used a fixed number of papers and authors, and the same categories
found in the original data: each author has a small random number of written
papers, each paper is referred to by a small random number of other papers, and
a small fixed number of papers are already labeled as belonging to a particular
category.

We ran our experiments in the following hardware-software platform. Host:
an AMD Opteron 6344, 12 cores CPU, with 64 GB DRAM. GPU: a Tesla K40c,
2880 CUDA Cores, with 12 GB GDDR5 memory and CUDA Capability 3.5.
Software: CentOS 7, PostgreSQL 9.5 and CUDA Toolkit 7.0.

4.2 Results

Figure 3 shows the performance of the systems using the original datasets avail-
able in the Tuffy package and on our extended versions of these datasets. The
left side shows our system to be the fastest in 2 out of the 3 original datasets,
but only by a few seconds relative to standard Tuffy. Alchemy was the fastest
in ER because the dataset is small and does not incur overhead setting up a
database. We were unable to execute IE in RockIt, hence the empty space in the
graph. Figure 3 (right) shows the performance of the systems with the extended
datasets. For ER, our system was 15 times faster than RockIt and 77 times faster
than Alchemy. Tuffy did not finish the grounding after more than 3 h. RockIt
was 2.5 times faster than our system for RC. Both Tuffy and Alchemy did not
finish after more than 5 h.

We performed a detailed analysis to determine why our system performed
so well in ER and so poorly in RC. For ER, our random data, combined with
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Fig. 3. Performance of the systems with original (left) and random (right) datasets.
Note that the graphs are in log. scale.

its recursive clauses, generates many more recursive steps, 24 vs 2 in the original
data. Each recursive step creates new tuples that need to be evaluated again. In
our system, approximately 1,000,000 new tuples were generated in each iteration,
most of them to be later discarded by our duplicate elimination kernel. Since
our system was designed around these recursive applications, grounding was
finished rather quickly while other systems struggled with costly joins that do
not capitalize on parallel processing.

In RC, the number of recursive steps was 2 for both normal and random
datasets. We hence analyzed the execution times of each part of our system.
Using our random data, both atom and clause grounding take about 2 min to
complete, loading data and other tasks take 30 s, but the search phase takes an
astounding 43 min. In contrast, the times for ER are about 8 s for both ground-
ings, 21 s for data loading and other tasks, and 16 s for the search.

Also in the search phase, ER, despite generating many more intermedi-
ate tuples during grounding, uses only 252,249 active clauses, while RC uses
5,586,900. Furthermore, when partitioning the resulting MRF, we get a single
component with approximately 4,000,000 active clauses. Since each component
is assigned to a thread (and one thread to each CPU-core), smaller components
finish quickly and we are left with a very large component being processed by
a single core, thus dominating the execution time. In contrast, RockIt creates a
large optimization problem but its parallel resolution has a much better balanced
workload.

Overall these results are promising since they mean that the benefit of per-
forming the grounding phase on the GPU outweighs the overhead associated
with the database and GPU I/O, even for rather small datasets.

5 Related Work

The wide adoption of Markov logic for various types of applications has fostered
the development of various systems and research on improvements. Alchemy was
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the first Markov logic system implementation [11]. It is one of the most com-
plete systems, including various algorithms for inference following a top-down
approach, various techniques for learning weights and structure and more. The
original Alchemy always performs inference by first grounding the program and
then using approximated methods either based in MCMC (Markov Chain Monte
Carlo), such as MC-SAT and Gibbs sampling, or variants of belief propagation.
Alchemy supports both total probability and most likely explanation queries, and
also provides a large number of learning algorithms. However, Alchemy does not
cope well with large real-world applications.

Tuffy was developed by Feng Niu et al. [26]. It relies on PostgreSQL relational
database management system (RDBMS) to perform inference. Tuffy follows a
bottom-up approach to solve the grounding step. This allows the grounding to
be expressed as SQL queries which, combined with query optimization by the
RDBMS, allows Tuffy to complete the grounding faster than Alchemy.

Several other systems are available. theBeast, developed by Riedel [32], uses
Cutting Planes Inference (CPI) optimization, which instantiates and solves small
parts of a complex MLN network. This takes advantage of the observation that
inference can be seen as either a MAX-SAT problem or as an integer linear pro-
gramming problem (i.e. a mathematical optimization problem where the vari-
ables are restricted to integers). While theBeast is faster than Alchemy for some
problems, it lacks many of Alchemy’s features such as structure learning and
MPE (Most Probable Explanation) inference [21].

RockIt is a recent system by Noessner et al. [27]. It treats the inference prob-
lem as an integer linear programming problem and includes a new technique
called cutting plane aggregation (CPA) which, coupled with shared-memory
multi-core parallelism during most of the inference, allows RockIt to outper-
form all other systems.

Beedkar et al. implemented fully parallel inference for MLNs [4]. Their system
parallelizes grounding by considering each clause as a set of joins and partition-
ing them according to a single join graph. The search step of inference is also
parallelized using importance sampling together with MCMC [20]. Since the
MLN is partitioned during grounding, no further partitioning is required before
searching. This approach is more efficient than Tuffy’s since the partition is per-
formed over a smaller, data independent graph. Experimental evaluation shows
that this is faster and produces similar results when compared with Tuffy.

Other works speedup inference and learning with MLNs. Shavlik and
Natarajan [36] propose ways of speeding up inference by using a preprocessing
algorithm that can substantially reduce the effective size of MLNs by rapidly
counting how often the evidence satisfies each formula, regardless of the truth val-
ues of the query atoms. Mihalkova and Mooney [24] and Davis and Domingos [8]
have proposed bottom-up methods that can improve structure learning time and
accuracy over existing top-down approaches. Mihalkova and Richardson [25] pro-
poses to cluster query atoms and then perform full inference for only one repre-
sentative from each cluster.

Our system is the first one to run Markov logic networks using GPUs.
Since Datalog and MLNs share an equivalent syntax, a modified version of our
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GPU-Datalog engine was used. Like Tuffy, our system uses a bottom-up app-
roach based on relational operators to process one of the most time consuming
parts of the inference step, but in a GPU.

Similar to our work on GPU-Datalog (described in Sect. 3), Wu et al. created
Red Fox [44], a system that parallelizes relational algebra and other operations
in the GPU, in order to solve programs based on a variant of Datalog called
LogiQL. Comparison with GPU-Datalog using the famous TCP-H queries can
be found in [22]. Other similar systems that execute SQL queries in parallel using
the GPU include [14,45].

6 Conclusions

We have presented a system that accelerates the grounding step in MLNs by
combining Tuffy with our GPU-Datalog engine. Its performance is on par or
better than other well-known MLN systems. Our results show that the benefit
of performing the grounding phase on the GPU outweighs the overhead of using
a database and of GPU I/O, even for rather small datasets. Our system can
be greatly improved by also performing the search step of the inference phase
in the GPU. This would require the parallelization of a SAT solver. There are
several available in the literature and we expect to benefit from extensive work
in parallelization of SAT and ILP solvers.

Our GPU-Datalog system could benefit from data partitioning algorithms.
This would allow tables bigger than the amount of GPU memory available to be
processed.

Since GPU-Datalog has been successfully used to improve ILP [22], we believe
that clause learning in MLNs could also be improved by our system. We also plan
to research the parallelization of generative and discriminative weight learning.
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Abstract. We show a logical aggregation method that, combined with
propositionalization methods, can construct novel structured biological
features from gene expression data. We do this to gain understanding of
pathway mechanisms, for instance, those associated with a particular dis-
ease. We illustrate this method on the task of distinguishing between two
types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarci-
noma (AC). We identify pathway activation patterns in pathways previ-
ously implicated in the development of cancers. Our method identified a
model with comparable predictive performance to the winning algorithm
of a recent challenge, while providing biologically relevant explanations
that may be useful to a biologist.

Keywords: Biological pathways · Warmr · TreeLiker · Reactome ·
Barcode · Logical aggregation

1 Introduction and Background

In the field of Systems Biology researchers are often interested in identifying
perturbations within a biological system that are different across experimental
conditions. Biological systems consist of complex relationships between a number
of different types of entities, of which much is already known [1]. An Inductive
Logic Programming (ILP) approach may therefore be effective for this task, as it
can represent the relationships of such a system as background knowledge, and
use this knowledge to learn potential reasons for differences in a particular con-
dition. We demonstrate a propositionalization-based ILP approach, and apply
this to the example of identifying differences in perturbations between two types
of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC).

A recent large competition run by the SBV Improver organisation, called the
Diagnostic Signature Challenge, tasked competitors with finding a highly predic-
tive model distinguishing between these two lung cancer types [2]. The challenge
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was motivated by the many studies that have also worked on similar tasks, with
the aim to find a model with the best predictive performance. The winning
method from this competition is a pipeline that exemplifies the classification
approaches used for this task [3].

The typical pipeline has three distinct stages. The first stage uses technology
such as microarrays or RNAseq, to measure gene expressions across the genome
in a number of samples from each of the experimental conditions. The second
stage identifies a subset of genes whose expression values differ across conditions.
This stage is commonly achieved by performing differential expression analysis
and ranking genes by a statistic such as fold change values [4]. A statistical test is
then used to identify the set of genes to take forward to stage 3. Alternatively for
stage 2, researchers may train a model using machine learning to classify samples
into experimental conditions, often using an attribute-value representation where
the features are a vector of gene expression values (as performed by the winning
SBV Improver model). This approach has the advantage that the constructed
model may have found dependencies between genes that would not have been
identified otherwise. Researchers use the ‘top’ features from the model to identify
the set of genes to take forward to stage 3.

In stage 3 researchers look for connections between these genes by, for exam-
ple, performing a Gene Set Enrichment Analysis (GSEA) [5]. Here, the set of
genes are compared with predefined sets of genes, that each indicate a known
relation. For example, a gene set may have a related function, exist in the same
location in the cell, or take part in the same pathway.

To bring background knowledge of relations into the model building process,
past ILP research integrated stage 2 (finding differentially expressed genes) and
stage 3 (GSEA), into a single step [6]. This was achieved using Relational Sub-
group Discovery, which has the advantage of being able to construct novel sets
by sharing variables across predicates that define the sets. For example, a set
could be defined as the genes annotated with two Gene Ontology terms.

Other ways researchers have tried to integrate the use of known relations
includes adapting the classification approach of stage 2. New features are built
by aggregating across a predefined set of genes. For example, an aggregation
may calculate the average expression value for a pathway [7].

A major limitation of current classification approaches is that the models
are constructed from either genes or crude aggregates of sets of genes, and so
ignore the detailed relations between entities in a pathway. In order to incorpo-
rate more complex relations an appropriate network representation is needed,
such that biological relations are adequately represented. For example, a simple
directed network of genes and proteins does not represent all the complexities
of biochemical pathways, such as the dependencies of biochemical reactions. To
do this bipartite graphs or hypergraphs can be used [8].

One way to incorporate more complex relations is by creating topologically
defined sets, where a property of the network is used to group nodes into related
sets. One method to generate these sets is Community Detection [9]. How-
ever, this approach can create crude clusters of genes, that do not account for
important biological concepts. Biologists may be interested in complex biological
interactions rather than just sets of genes.
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Network motif and frequent subgraph mining are methods that can look for
structured patterns in biological networks [10]. However, in these approaches
the patterns are often described in a language which is not as expressive as first
order logic. This means they are unable to find patterns with uninstantiated
variables, or with relational concepts such as paths or loops.

To our knowledge only one previous work has used ILP for this task [11].
Here the authors propose identifying features consisting of the longest possible
chain of nodes in which non-zero node activation implies a certain (non-zero)
activation in its successors, which they call a Fully Coupled Flux. Their work is
preliminary, with limited evaluation of the performance of this method.

The aim of this paper is to illustrate how we can identify pathway acti-
vation patterns, that differ between biological samples of different classes. A
pathway activation pattern is a pattern of active reactions on a pathway. Our
novel approach uses known relations between entities in a pathway, and impor-
tant biological concepts as background knowledge. These patterns may give a
biologist different information than models built from simple gene features. We
seek to build models that are of comparative predictive performance to those of
previous work, while also providing potentially useful explanations.

In this work we take a propositionalization-based ILP approach, where we
represent the biological systems as a Prolog knowledge base (composed of first-
order rules and facts), and then reduce this to an attribute-value representation
(a set of propositions), before using standard machine learning algorithms on
this data. We begin with an overview of propositionalization, and a discussion
of why it is appropriate for this task.

2 Overview of Propositionalization

Propositionalization is a method that transforms data represented in first-order
logic to a set of propositions, i.e. a single table representation where each example
is represented by a fixed length vector. This is called a reduction. It is possible to
make a proper reduction of the representation using Goedel numbering or well-
ordering arguments [12]. However, these will have limited practical value as useful
structure can be lost or encoded inefficiently, leading to poor inductive ability.
Heuristic-based propositionalization methods allow specification of a language
bias and a heuristic, in order to search for a subset of potential features which
are useful for the learning task.

We have four reasons for adopting a propositionalization-based approach,
rather than directly applying an ILP learner. First, separating the feature con-
struction from the model construction means that we have an interesting output
in the middle of the process, which we would lose if they were coupled together.
For example, the features constructed can represent useful domain knowledge in
their own right, as they can describe subgroups of the data which have a different
class distribution, or frequent item sets or queries on the data.

Second, propositionalization can be seen as a limited form of predicate inven-
tion, where the predicate refers to a property of an individual, or relationships
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amongst properties of the individual. This means that, when building a model,
the features may correspond to complex relationships between the original prop-
erties of an individual. In our case they correspond to potentially interesting
pathway activation patterns. Hence, we can understand predictions in terms of
these higher order concepts, which may give important insights to a biologist.

Third, propositionalization can impose an individual-centred learning app-
roach [12,13]. This limits predicates to only refer to relationships between prop-
erties of an individual – we cannot have a predicate which relates individuals.
This strong inductive bias is appropriate for our case, as we do not wish to
consider relationships between the individuals. The fourth reason is that we can
perform many other learning tasks on the transformed data, with the vast array
of algorithms available for attribute-values datasets.

In this work we use query-based propositionalization methods, and now
describe some key algorithms. A review of some publicly available propositional-
ization methods was recently performed by Lavrač et al. [14]. These include
Linus, RSD, TreeLiker (HiFi and RelF algorithms), RELAGGS, Stochastic
Propositionalization, and Wordification, alongside the more general ILP toolkit,
Aleph. Other methods that were not mentioned in that review include Warmr
[15], Cardinalisation [16], ACORA [17] and CILP++ [18]. There has also been
work on creating propositionalization methods especially for linked open data,
both in an automatic way [19], and in a way where manual SPARQL queries are
made [20]. The methods in these papers are not appropriate for our work because
our data is not entirely made up of linked open data, and we wish to include
background rules encoding additional biological knowledge. It is also worth not-
ing that certain kernel methods can be thought of as propositionalization [12].

Wordification treats relational data as documents and constructs word-like
features. These are not be appropriate for our task, as they do not correspond to
the kind of patterns we are looking for, i.e. features with uninstantiated variables.
Stochastic propositionalization performs a randomised evolutionary search for
features. This approach may be interesting to consider for future work. CILP++
is a method for fast bottom-clause construction, defined as the most specific
clause that covers each example. This method is primarily designed to facilitate
the learning of neural networks, and has been reported to perform no better
than RSD when used with a rule-based model [18].

ACORA, Cardinalisation and RELAGGS are database inspired methods of
propositionalization. They are primarily designed to perform aggregation across
a secondary table, with respect to a primary table. ACORA is designed to create
aggregate operators for categorical data, whereas RELAGGS performs standard
aggregation functions (summation, maximum, average etc.) suitable for numeric
data. Cardinalisation is designed to use complex aggregates, where conditions
are added to an aggregation. In our work we manually design an aggregation
method, described in Sect. 3.2. These aggregation systems are not appropriate
for graph-based datasets, because representing the graph as two tables (denoting
edges and nodes) and aggregating on paths through the graph would require
many self joins on the edge table. Relational databases are not optimised for
this task, such that the resulting queries would be inelegant and inefficient.
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The propositionalization methods we use in this work are TreeLiker and
Warmr. TreeLiker is a tool that provides a number of algorithms for proposition-
alization including RelF [21]. RelF searches for relevant features in a block-wise
manner, and this means that irrelevant and irreducible features can be discarded
during the search. The algorithms in TreeLiker are limited to finding tree-like
features where there are no cycles. RelF has been shown to scale much better
than previous systems such as RSD, and can learn features with tens of literals.
This is important for specifying non-trival pathway activation patterns.

Warmr is a first-order equivalent of frequent item-set mining, where a level-
wise search of frequent queries in the knowledge base is performed. Warmr is
used as a propositionalization tool by searching for frequent queries in each class.
In Warmr it is possible to specify the language bias using conjunctions of literals,
rather than just individual literals, and to put constraints on which literals are
added. This allows strong control of the set of possible hypotheses that can be
considered. Finally, unlike TreeLiker, Warmr can use background knowledge,
defined as facts and rules.

3 Methods

An overview of the process we take is shown in Fig. 1. First, we extract the reac-
tion graph for each pathway, from Reactome. Second, we infer the instantiated
reaction graphs for each instance in the dataset. Third, we identify pathway acti-
vation patterns using propositionalization, and then build classification models
to predict the lung cancer types. Lastly, we evaluate our models using a hold-out
dataset. We begin with a description of the datasets we use in this work.

Fig. 1. Method overview

3.1 Raw Data

Our approach uses two sources of data: (1) a dataset from Gene Expression
Omnibus (GEO) [22] as the set of examples (gene expression values of a set of
individuals), and (2) information about biological systems from Reactome.

GEO Data. We use a two class lung cancer dataset obtained from GEO, which
was previously used in the SBV Improver challenge [2]. This dataset is made
up from the following datasets: GSE2109, GSE10245, GSE18842 and GSE29013
(n=174), used as training data, and GSE43580 (n=150), used as hold-out data.
We used the examples where the participants were labelled as having either
SCC or AC lung cancer. This is the same data organisation as that used in SBV
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Improver challenge, to allow us to compare our results with the top performing
method from this challenge.

This data contains gene expression measurements from across the genome
measured by Affymetrix chips. Each example is a vector of 54,614 real numbers.
Each value denotes the amount of expression of mRNA of a gene. There is a
uniform class distribution of examples, in both the training and holdout dataset.

Reactome-Background Knowledge. We use the Reactome database to pro-
vide the background knowledge, describing biological pathways in humans. Reac-
tome [1] is a collection of manually curated peer reviewed pathways. Reac-
tome is made available as an RDF file, which allows for simple parsing using
SWI-Prolog’s semantic web libraries, and contains 1,351,811 triples. Reactome
uses the bipartite network representation of entities and reactions. Entity types
include nucleic acids, proteins, protein complexes, protein sets and small mole-
cules. Protein complexes and protein sets can themselves comprise of other com-
plexes or sets. In addition, a reaction may be controlled (activated or inhibited)
by particular entities. A reaction is a chemical event, where input entities (known
as substrates), facilitated by enzymes, form other entities (known as products).

Figure 2a shows a simple illustration of a Reactome pathway. P nodes denote
proteins or protein complexes, R nodes denote reactions, and C nodes denote cat-
alysts. A black arrow illustrates that a protein is an input or output of a reaction.
A green arrow illustrates that an entity is an activating control for a reaction. A
red arrow illustrates that an entity is an inhibitory control for a reaction. Reaction
R1 has 3 protein substrates and 3 protein products, and is controlled by catalyst
C. Reactions R3 and R4 both have one protein substrate and one protein product.
R3 is inhibited by P2, such that if P2 is present then reaction R3 will not occur.
R4 is activated by P3, such that P3 is required for reaction R4 to occur.

3.2 Data Processing

Extracting Reaction Graphs. We reduce the Reactome bipartite graph
to a boolean network of reactions. This simplifies the graphs while still ade-
quately encoding the relationships between entities. Previous work has shown
that boolean networks are a useful representation of biological systems [23], and
unlike gene and protein boolean networks ours encodes the dependencies between
reactions.

The boolean networks we create are reaction-centric graphs, where nodes
are reactions and directed edges are labelled either as ‘activation’, ‘inhibition’
or ‘follows’ corresponding to how reactions are connected. For example, Fig. 2b
shows the reaction-centric graph, corresponding the Reactome graph shown in
Fig. 2a. Reaction R2 follows R1, because in the Reactome graph P1 is an output
of R1 and an input to R2. Reaction R1 inhibits R3, because P2 is an output
of R1, and it is also an inhibitory control of R3. Reaction R1 activates reaction
R4, because P3 is an output of R1, and an activating control of R4.
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Fig. 2. Reaction Graph illustrations. There are three types of relationships between
reactions: follows (black solid lines), activation (green dashed), and inhibition (red
dash-dotted). (Color figure online)

Inferring Instantiated Reaction Graphs. Boolean networks [23] are a com-
mon abstraction in biological research, but these are normally applied at the
gene or protein level not at the reaction level. In order to use a boolean network
abstraction on a reaction network, we apply a logical aggregation method that
aggregates measured probe values (from the GEO dataset) into reactions. This
creates a binary value for each reaction, to create instantiated versions of the
reaction-centric graph created in the previous step.

Before we can use this logical aggregation we first transform the original
probe values into binary values, an estimated value denoting whether a gene is
expressed or not. We do this using Barcode [24], a tool for converting the contin-
uous probe values to binary variables, by applying previously learnt thresholds
to microarray data. It is important to note that Barcode makes it possible to
compare gene expressions, both within a sample, and between samples that are
potentially measured by different arrays.

The logical aggregation process is illustrated in Fig. 3. This process takes the
binary probe values as input, and uses the structure provided by the Reactome
graph, and key biological concepts, to build reaction level features. As we have
already described, each reaction has a set of inputs that are required for a par-
ticular reaction. We interpret each reaction input as a logical circuit with the
following logical rules. The relationship between probes and proteins is treated
as an OR gate (matched by Uniprot IDs), because multiple probes can encode
for same protein. We are assuming that the measurement from a single probe
indicates with high probability whether the protein product is present or not.
The formation of a protein complex requires all of its constituent proteins and
therefore is treated as an AND gate. A protein set is a set of molecules that are
functionally equivalent such that only one is needed for a given reaction, and
so this is treated as an OR gate. Inputs to a reaction are treated as an AND
gate. A reaction is on if the inputs are on, any activating agents are on, and any
inhibitory agents are off. We note that both protein sets and protein complexes
can themselves comprise of arbitrarily nested complexes or sets.
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Fig. 3. Illustration of logical aggregation. Known biological mechanisms can be rep-
resented as OR or AND gates. The triangular nodes are binary probe values, created
using barcode.

Figure 3 illustrates the logical aggregation rules of a single reaction. This
reaction has two inputs and one activating control. The two inputs are a protein
complex and a protein set, and the values of these are calculated using their own
aggregation processes, labelled A and B. The aggregation in process A, starts
with the binary probe values, and first infers the values of three proteins. The
protein complex is then assigned a value of on because all proteins required for
this complex are present (are all on themselves). The aggregation in process B
starts by inferring the values of two proteins from the probe values. One protein
is on and the other is off. The protein set is assigned the value on because only
one protein in this set is required for this protein set to be on. There also exists
an activating control for the reaction, a protein whose value is determined by a
process labelled C in this figure. This protein is assigned the value on, because
both probe values are on, when at least one is required. As all inputs are on and
the activating control is also on, the reaction is assigned the value on.

3.3 Searching for Pathway Activation Patterns

In order to identify pathway activation patterns we first find pathways that are
most likely to contain these patterns, using the training data. We then use three
approaches to identify pathway activation patterns within the ‘top’ pathways,
and evaluate the identified activation patterns using the hold-out data.

Identifying Predictive Pathways. To identify pathways we first run Tree-
Liker on each pathway. This generates a set of attribute-value features for each
instantiated pathway. We use TreeLiker with the RelF algorithm and the follow-
ing language bias:
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set(template,[reaction(-R1,#onoroff),link(+R1,-R2,!T1),
reaction(+R2,#onoroff),link(+R2,-R3,!T2),reaction(+R3,#onoroff),
link(!RA,-R4,!T3),link(+R4,!RB,!T4),link(+R1,-R2,#T1),
link(+R2,-R3,#T2),link(!RA,-R4,#T3),link(+R4,!RB,#T4)])

This language bias contains two types of literals; reaction/2 and link/3. The
second argument of the reaction literal is always constrained to be a constant
depicting if a reaction is on or off. The link literal depicts the relationship
between two reactions, where the third argument of the link literal can be a
variable or a constant describing the type of relationship - either follows, acti-
vates or inhibits. For example, an identified pattern may contain the literal
link(r1,r2,follows), specifying that an output entity of reaction r1 is an input to
reaction r2.

We then test the performance of the features of each pathway, using 10 fold
cross validation. We use the J48 decision tree algorithm (from Weka) because
this builds a model that give explanations for the predictions. We calculate the
average accuracy across folds, for each pathway, and rank the pathways from
highest to lowest accuracy. We then use the top ranked pathways as input to
three different methods, to identify predictive pathway activation patterns.

Method 1. This approach simply takes a pathway of interest, generates a
single model using the J48 algorithm using the training data, and then evaluates
this performance on the hold-out data. The decision tree can then be viewed
to determine which activation patterns are predictive of lung cancer type. We
demonstrate this approach with the top-ranked pathway.

Method 2: Warmr Approach. We illustrate using Warmr to generate path-
way activation patterns, using one of our identified ‘top’ pathways.

We use Warmr with two particular concepts in the background knowledge.
First, we use a predicate longestlen/3, that calculates the longest length of on
reactions in an example, for the pathway on which Warmr is being run. The
arguments are: (1) the beginning reaction of a path, (2) the end reaction of the
path with longest length, and (3) the length of this path. This longest length
concept corresponds to the fully coupled flux of a previous work [11].

Second, we use the predicates inhibloop/1 and actloop/1, that depict inhibi-
tion and activation loops, where a path of on reactions form a loop and one of the
edges is an inhibition or activation edge, respectively. Inhibition and activation
loops are common biological regulatory mechanisms [25].

We then use the OneR (Weka) algorithm to identify the single best pathway
activation pattern found by Warmr, and then evaluate this pattern on the hold-
out data.

Method 3: Combined Approach. Our combined method takes advantage of
the beneficial properties of the two algorithms, by using Warmr to extend the
patterns identified by TreeLiker. This effectively switches the search strategy
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from the block-wise approach of TreeLiker, to the level-wise approach of Warmr.
The reason for doing this is to identify any relations between reactions that
exist between entities within the TreeLiker feature, that could not be identified
in TreeLiker due to its restriction to tree structures. This results in long, cyclical
features that neither TreeLiker nor Warmr would be able to find on their own.

While we could use the features generated by method 1, and extend these,
in this section we also demonstrate the possibility of using our approach for
generating descriptions of subgroups. We identify a subgroup with the CN2SD
algorithm [26], using the training data. The activation patterns defining this
subgroup are then extended using Warmr. The following code is an example
language bias we use in Warmr:

rmode(1: (r(+S,-A,1),link(A,-\B,follows),link(B,-\C,_),r(S,C,0),
r(S,B,0), link(B,-\D,_),r(S,D,1),link(A,-\E,_),r(S,E,1))).

rmode(1: link(+A,+B,#)).

The first rmode contains the feature that was previously identified using Tree-
Liker. The second rmode uses the literal link, to allow Warmr to add new links
to the TreeLiker feature. After extending the activation pattern using Warmr,
we then evaluate this on the hold-out data.

4 Results

To reiterate, the aim of this work is to build explanatory models that help
biologists understand the system perturbations associated with conditions, in
this case lung cancer. Therefore, although we give the classification performance
of our models in order to make the quantitative performance comparison, we
additionally emphasis the form that the classification models take and how these
are of interest to biologists. Table 1 shows the top 5 pathways found using our
TreeLiker/J48 method, and the size of each reaction graph.

Table 1. Top 5 pathways identified. Mean accuracy across 10 folds of cross-validation
on the training dataset.

Ranking Pathway Accuracy Number of Number of
nodes (reactions) edges

1 Hexose uptake 78.74 % 18 25

2 Hyaluronan biosynthesis 77.59 % 18 25

4 Mitotic G1-G1/phases 76.74 % 51 59

4 Creatine metabolism 78.64 % 6 6

5 Cell Cycle 77.59 % 322 492



Using ILP to Identify Pathway Activation Patterns in Systems Biology 147

Fig. 4. Results (Color figure online)

4.1 Quantitative Evaluation and Comparison with SBV Improver
Model

To provide a quantitative comparison of our models, we compare to the winning
classifier of the SBV Improver challenge. We use the area under the ROC curve
(AUC) metric, to evaluate the ranking performance of the models. We generate
confidence intervals for the AUC using a stratified bootstrapped approach (with
2000 bootstraps) [27]. We also use permutation testing to compare the perfor-
mance of our models with a random model. We generate 2000 random rankings,
with the same class distribution as our data, and calculate the AUC for each of
these rankings. We then find the proportion of random rankings with an AUC
greater than that of our model. We refer to this as the permutation P value.

We select the top pathway identified in the training data – hexose uptake.
After retraining J48 on the whole training data, evaluation on the hold-out data
gives an AUC of 0.820 (95 % confidence interval (CI): 0.764–0.890). This model is
better than a random model (permutation P value < 0.001). The SBV method,
evaluated on the hold-out data has an AUC of 0.913 (95 % CI: 0.842–0.947). The
confidence intervals overlap such that we cannot find a difference in performance
between our model and the SBV model. Figure 4 shows the ROC curves of the
SBV and hexose uptake models. Our hexose uptake model is a decision tree with
a single feature:

reaction(A,1), link(A,B,_), link(B,C,_), reaction(C,1), reaction(B,1).
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This corresponds to a chain of three on reactions, where the model predicts
SSC if this feature exists and AC otherwise. This pathway activation pattern is
present in 67 of the 76 individuals with SSC, and 17 of the 74 individuals with
AC. In Fig. 4a we show an example instantiation of the hexose uptake pathway,
for a particular individual. For this individual, the three variables A,B,C in the
feature given above, are instantiated to the following reactions:

A. GLUT1 + ATP <=> GLUT1 :ATP.

B. GLUT1 + ATP <=> GLUT1 +ATP.

C. alpha-D-Glucose + ATP => alpha-D-glucose 6-Phosphate + ADP.

4.2 Results for Warmr Method

We illustrate the value of our Warmr only method using the cell cycle pathway
(ranked fifth in Table 1). The more complex background predicates that we have
defined for Warmr are only relevant when the pathway itself contains particular
relationships. For example, the activation loop predicate will only be potentially
beneficial when a pathway contains an activation edge, that may potentially be
identified as the activation within an activation loop. The cell cycle is the top
ranked pathway that contains all three kinds of edges; follows, activation and
inhibition. The OneR classifier generated with the Warmr features has an AUC
of 0.699 (95 % CI: 0.625–0.773), on the hold-out data.

While this model performs worse than the SBV Improver model and the
hexose uptake pathway TreeLiker/combined model (in terms of AUC), it still has
predictive value (Permutation P value < 0.001). The identified rule is complex
and potentially interesting to a biologist:

actloop(C),largestlen(E,F,G),greaterthan(G,5),link(E,H,follows),r(H,0)

The rule states that a sample is classified as SCC cancer if there is a self
activating loop for a reaction C, and that the longest chain of on reactions
is from reaction E to reaction F , which is a chain at least 6 reactions long.
Additionally, following reaction E there is also a reaction H that itself is not on.

This suggests that one of the differences between the SCC and AC cancer
is that in the cell cycle SCC tumours have a self activating loop, that causes a
longer chain of reactions to occur than in the AC tumour types. An instantiation

Fig. 5. The pattern found by Warmr instantiated for individual GSM1065725. There
is a self-activating loop, highlighted by the grey box.
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of this feature is shown in Fig. 5, for a particular individual. In this example there
is a chain of 7 on reactions, and this also contains the self-activating loop.

4.3 Results for Warmr/TreeLiker Combined Method

As explained above, the feature used in the top pathway was very simple, and
hence we demonstrate the value of our Warmr/TreeLiker combined approach on
more complex features, identified from the hyaluronan biosynthesis and export
pathway, ranked second in Table 1. Figure 6 shows the three features describ-
ing the subgroup identified by this approach. We can see that the additional
edges that Warmr finds give a more complete view of the relations between the
reactions in these features. This information may be important when a biologist
analyses these results. The subgroup described by these three features has 58
true positives and 9 false positives in the hold-out data.

Fig. 6. The three features in the subgroup description. Solid lines represent the feature
found by TreeLiker, dotted lines show the Warmr extensions. on reactions: green,
rounded squares; off : red octagons; on or off : blue squares. (Color figure online)

5 Conclusions

In this work we have shown the potential of ILP methods for mining the abun-
dance of highly structured biological data. Using this method we have identified
differences in pathway activation patterns that go beyond the standard analysis
of differentially expressed genes, enrichment analysis, gene feature ranking and
pattern mining for common network motifs. We have also demonstrated the use
of logical aggregation with a reaction graph, and how this simplifies the search
for hypotheses to an extent that searching all pathways is tractable. We have
introduced a novel approach that uses Warmr to extend features initially iden-
tified with TreeLiker. This makes it possible to search for long cyclical features.

We have identified pathway activation patterns predictive of the lung cancer
type, in several pathways. The model we built on the hexose uptake pathway
has predictive performance comparable with the top method from a recent chal-
lenge, but also provides biologically relevant explanations for its predictions.
Each identified activation pattern is evaluated on the hold-out data, such that
this should be the expected performance on new, unseen examples. The pathway
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activation patterns we have found are in clinically relevant pathways [28]. Pat-
terns identified using this method may give diagnostic and clinical insights that
biologists can develop into new hypotheses for further investigation.
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Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 92–103. Springer,
Heidelberg (1999)

14. Lavrač, N., Vavpetič, A.: Relational and semantic data mining. In: Calimeri, F.,
Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 20–31.
Springer, Heidelberg (2015)



Using ILP to Identify Pathway Activation Patterns in Systems Biology 151

15. Dehaspe, L., De Raedt, L.: Mining association rules in multiple relations. In:
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Abstract. kProbLog is a simple algebraic extension of Prolog with facts
and rules annotated with semiring labels. We propose kProbLog as a
language for learning with kernels. kProbLog allows to elegantly specify
systems of algebraic expressions on databases. We propose some code
examples of gradually increasing complexity, we give a declarative spec-
ification of some matrix operations and an algorithm to solve linear
systems. Finally we show the encodings of state-of-the-art graph ker-
nels such as Weisfeiler-Lehman graph kernels, propagation kernels and
an instance of Graph Invariant Kernels (GIKs), a recent framework for
graph kernels with continuous attributes. The number of feature extrac-
tion schemas, that we can compactly specify in kProbLog, shows its
potential for machine learning applications.

Keywords: Graph kernels · Prolog · Machine learning

1 Introduction

Statistical relational learning and probabilistic programming have contributed
many declarative languages for supporting learning in relational representa-
tions. Prominent examples include Markov Logic [15], PRISM [16], Dyna [2]
and ProbLog [1]. While these languages typically extend logical languages with
probabilistic reasoning, there also exist extensions of a different nature: Dyna
and aProbLog [9] are algebraic variations of probabilistic logical languages, while
kLog [6] is a logical language for kernel-based learning.

Probabilistic languages such as PRISM and ProbLog label facts with proba-
bilities, whereas Dyna and aProbLog use algebraic labels belonging to a semiring.
Dyna has been used to encode many AI problems, including a simple distrib-
ution semantics, but does not support the disjoint-sum problem as ProbLog
and aProbLog. While there has been a lot of research on integrating probabilis-
tic and logic reasoning, kernel-based methods with logic have been much less
investigated except for kLog and kFOIL [10]. kLog is a relational language for
specifying kernel-based learning problems. It produces a graph representation of
the learning problem in the spirit of knowledge-based model construction and
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 152–165, 2016.
DOI: 10.1007/978-3-319-40566-7 11
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then employs a graph kernel on the resulting representation. kLog was designed
to allow different graph kernels to be plugged in, but support to declaratively
specify the exact form of the kernel is missing. kFOIL is a variation on the rule
learner FOIL [14], that can learn kernels defined as the number of clauses that
fire in both interpretations.

In the present paper, we investigate whether it is possible to use algebraic
Prolog such as Dyna and aProbLog for kernel based learning. The underlying
idea is that the labels will capture the kernel part, and the logic the structural
part of the problem. Furthermore, unlike kLog and kFOIL, such a kernel based
Prolog would allow to declaratively specify the kernel. More specifically, we pro-
pose kProbLog, a simple algebraic extension of Prolog, where kProbLog facts
are labeled with semiring elements. kProbLog introduces meta-functions that
allow to use different semirings in the same program and overcomes the limited
expressiveness of semiring sum and product operations.

kProbLog can in principle handle the disjoint-sum problem as ProbLog and
aProbLog, however in kernel design logical disjunctions and conjunctions are less
common than algebraic sums and products, that are needed to specify matrix and
tensor operations. We draw a parallel between kProbLog and tensors showing
how to encode matrix operations in a way that is reminiscent of tensor rela-
tional algebra [8]. Nevertheless kProbLog supports recursion and so it is more
expressive than tensor relational algebra.

We also show that kProbLog can be used for specifying or programming
kernels on structured data in a declarative way. We use polynomials as kProbLog
algebraic labels and show how they can be employed to specify label propagation
and feature extraction schemas such as those used in recent graph kernels such as
Weisfeiler-Lehman graph kernels [17], propagation kernels [12] and graph kernels
with continuous attributes such as GIKs [13]. Polynomials were previously used
in combination with logic programming for sensitivity analysis by Kimmig et al.
[9] and for data provenance by Green et al. [7].

2 KProbLogS

We propose kProbLogS , an algebraic extension of Prolog in which facts and rules
can be labeled with semiring elements.

Definition 1. A kProbLogS program P is a 4-tuple (F,R, S, �) where:

– F is a finite set of facts,
– R is a finite set of definite clauses (also called rules),
– S is a semiring with sum ⊕ and product ⊗ operations, whose neutral elements

are 0S and 1S respectively,1

– � : F → S is a function that maps facts to semiring values.
1 A semiring is an algebraic structure (S, ⊕, ⊗, 0S , 1S) where S is a set equipped with

sum ⊕ and product ⊗ operations. Sum ⊕ and product ⊗ are associative and have as
neutral element 0S and 1S respectively. The sum ⊕ is commutative, multiplication
distributes w.r.t addition and 0S is the annihilating element of multiplication.
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We use the syntactic convention α::f for algebraic facts where f ∈ F is a fact
and α = �(f) is the algebraic label.

Definition 2. An algebraic interpretation Iw = (I, w) of a ground kProbLogS

program P with facts F and atoms A is a set of tuples (a,w(a)) where a is an
atom in the Herbrand base A and w(a) is an algebraic formula over the fact labels
{�(f)|f ∈ F}. We use the symbol ∅ to denote the empty algebraic interpretation,
i.e. {(true, 1S)} ∪ {(a, 0S)|a ∈ A}.
We use an adaptation of the notation used by Vlasselaer et al. [18] in this defi-
nition and below.

Definition 3. Let P be a ground algebraic logic program with algebraic facts F
and atoms A. Let Iw = (I, w) be an algebraic interpretation with pairs (a,w(a)).
Then the T(P,S)-operator is T(P,S)(Iw) = {(a,w′(a))|a ∈ A} where:

w′(a) =

⎧
⎪⎪⎨

⎪⎪⎩

�(a) if a ∈ F
⊕

{b1,...,bn}⊆I
a:−b1,...,bn

n⊗

i=1

w(bi) if a ∈ A \ F . (1)

The least fixed point can be computed using a semi-naive evaluation. When the
semiring is non-commutative the product ⊗ of the weights w(bi) must be com-
puted in the same order that they appear in the rule. kProbLogS can represent
matrices that in principle can have infinite size and can be indexed by using ele-
ments of the Herbrand universe of the program. We now show some elementary
kProbLogS programs that specify matrix operations:

algebra kProbLogS numerical example
matrix

A
A

1::a(0, 0).
2::a(0, 1).
3::a(1, 1).

[ 1 2
0 3 ]

matrix
B

B
2::b(0, 0).
1::b(0, 1).
5::b(1, 0).
1::b(1, 1).

[ 2 1
5 1 ]

matrix
transpose At

c(I, J) :- a(J, I). [ 1 2
0 3 ]t = [ 1 0

2 3 ]

matrix
sum A + B c(I, J) :- a(I, J).

c(I, J) :- b(I, J).
[ 1 2
0 3 ] + [ 2 1

5 1 ] = [ 3 3
5 4 ]

matrix
product AB c(I, J) :-

a(I, K), b(K, J).
[ 1 2
0 3 ] [ 2 1

5 1 ] = [ 12 3
15 3 ]

Hadamard
product A � B c(I, J) :-

a(I, J), b(I, J).
[ 1 2
0 3 ] � [ 2 1

5 1 ] = [ 2 2
0 3 ]

Kronecker
product kron(A,B) c(i(Ia, Ib), j(Ja, Jb)):-

a(Ia, Ja), b(Ib, Jb).
[ 1 2
0 3 ] ⊗ [ 2 1

5 1 ] =
[
2 1 4 2
5 1 10 2
0 0 6 3
0 0 15 3

]

The function symbols i/2 and j/2 were used to create the new indices that are
needed by the Kronecker product. These definitions of matrix operations are
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reminiscent of tensor relational algebra [8]. Each of the above programs can be
evaluated by applying the T(P,S)(Iw) operator only once. For each program we
have a different definition of the C matrix that is represented by the predicate
c/2. As a consequence of Eq. 1 all the algebraic labels of the c/2 facts are poly-
nomials in the algebraic labels of the a/2 and b/2 facts. We draw an analogy
between the representation of a sparse tensor in coordinate format and the rep-
resentation of an algebraic interpretation. A ground fact can be regarded as a
tuple of indices/domain elements that uniquely identifies the cell of a tensor, the
algebraic label of the fact represents the value stored in the cell. In kProbLogS

for every atom a in the Herbrand base A the negation of a in an interpretation
Iw can either be expressed with a sparse representation, by excluding it from
the interpretation (i.e. a 	∈ Iw) or with a dense representation, including it in
the interpretation with algebraic label 0S (i.e. a ∈ Iw and w(a) = 0S).

Definition 4. An algebraic interpretation Iw = (I, w) is the fixed point of the
T(P,S)(Iw)-operator if and only if for all a ∈ A, w(a) ≡ w′(a), where w(a) and
w′(a) are algebraic formulae for a in Iw and T(P,S)(Iw) respectively.

We denote with T i
(P,S) the function composition of T(P,S) with itself i times.

Corollary 1 (application of Kleene’s theorem). If S is an ω-continuous
semiring2 the algebraic system of fixed-point equations Iw = T(P,S)(Iw) admits a
unique least solution T∞

(P,S)(∅) with respect to the partial order � and T∞
(P,S)(∅) is

the supremum of the sequence T 1
(P,S)(∅), T 2

(P,S)(∅), . . . , T i
(P,S)(∅). So T∞

(P,S)(∅) can
be approximated by computing successive elements of the sequence. If the semi-
ring satisfies the ascending chain property (see [5]) then T∞

(P,S)(∅) = T i
(P,S)(∅)

for some i ≥ 0 and T∞
(P,S)(∅) can be computed exactly [5].

We used ∅ to denote an empty algebraic interpretation. Examples of ω-continuous
semirings are the boolean semiring ({T,F}, ∨, ∧,F, T), the tropical semiring
(N∪{∞}, min, +, ∞, 0) and the fuzzy semiring ([0, 1], max, min, 0, 1) [7]. Let us
consider the following kProbLogS program:

1::edge(a, b).
3::edge(b, c).
7::edge(a, c).

path(X, Y):-
edge(X, Y).

path(X, Y):-
edge(X, Z), path(Z, Y).

If S is the tropical semiring, we obtain a specification of the Floyd-Warshall algo-
rithm for all-pair shortest paths on graphs. Assuming that S is the boolean semi-
ring and all the algebraic labels that are different from 0S correspond to true∈ S,
we obtain the Warshall algorithm for the transitive closure of a binary relation.
Lehmann [11] explains how the Floyd-Warshall algorithm can be employed to

2 A ω-continuous semiring is a naturally ordered semiring extended with an infinite
summation-operator

∑
. The natural order relation � on a semiring S is defined by

a � b ⇔ ∃d ∈ S : a + d = b. The semiring S is naturally ordered if � is a partial
order on S; see [3,4] for details.
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invert square matrices. The inverse A−1 of a square matrix A can be computed
as the result of the transitive closure of I − A where I is the identity matrix.
The last example requires the capability to compute additive inverses which are
not guaranteed to exist for semirings.

3 kProbLog

kProbLog generalizes kProbLogS allowing multiple semirings and meta-
functions. The coexistence of multiple semirings in the same program requires
the declaration of the semiring of each algebraic predicate with the directive:

:- declare(<predicate >/<arity >, <semiring >).

We introduce meta-functions and meta-clauses to overcome the limits imposed
by the semiring sum and product operations.

Definition 5 (meta-function). A meta-function m: S1 × . . . × Sm → S′ is
a function that maps m semiring values xi ∈ Si, i = 1, . . . , k to a value of
type S′, where S1, . . . , Sk and S′ can be distinct semirings. Let a 1,...,a k be
algebraic atoms, the syntax @m[a 1,...,a k] expresses that the meta-function
@m is applied to the semiring values w(a 1),...,w(a k) of the atoms a 1,...,a k.

Definition 6 (meta-clause). In the kProbLog language a meta-clause h :-
b 1,...,b n is a universally quantified expression where h is an atom and
b 1,...,b n can be either body atoms or meta-functions applied to other alge-
braic atoms. For a given meta-clause, if the head is labeled with the semiring S,
also the labels of the body atoms and the return types of the meta-functions must
be on the semiring S.

Definition 7 (kProbLog program). A kProbLog program P is a union of
kProbLogSi programs and meta-clauses.

The introduction of meta-functions in kProbLog allows us to deal with other
algebraic structures such as rings that require the additive inverse @minus/1 and
fields that require the additive inverse and the multiplicative inverse @inv/1.

3.1 Recursive kProbLog Program with Meta-Functions

kProbLog allows both additive and destructive updates, the update type is spec-
ified by the directive:

:- declare(<predicate >/<arity >, <semiring >, <update -type >).

where update-type can be either additive or destructive.3

3 The directive declare/3 must be used instead of declare/2 whenever the groundings
of the declared predicate appear in the cycles of the ground program. In case the
directive declare/3 is not specified this can be detected by the system at evaluation
time.
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We propose a simple example of an algebraic program that uses meta-
functions to compute the limit lim

n→+∞ gn(x0) of an iterated function g(x) =

x(1−x), where gn(x0) of the function-composition of g with itself n times start-
ing from some initial number x0.

Assuming that x0 = 0.5, in kProbLog we would write:

:- declare(x, real , destructive ).

:- declare(x0 , real).

0.5::x0.

x :- x0.

x :- @g[x].

The above program has the following behaviour: the weight w(x) of x is
initialised to w(x0) = 0.5 and then updated at each step according to the rule
w′(x) = g(w(x)). The directive :- declare(x, real, destructive). causes
the result of the immediate-consequence operator to be used as a destructive
assignment of the weights instead of an additive update.

We could have also considered an additive update rule such as w′(x) =
w(x)+g(w(x)), but this would not lead us to the expected result for an iterated
function system.

While iterated function systems require an update with destructive assign-
ment, other programs such as the transitive closure of a binary relation (see
above) or the compilation of ProbLog programs with SDDs require additive
updates.4

3.2 The Jacobi Method

We already showed that kProbLog can express linear algebra operations, we now
combine recursion and meta-functions in an algebraic program that specifies the
Jacobi method. The Jacobi method is an iterative algorithm used for solving
diagonally dominant systems of linear equations Ax = b.

We consider the field of real numbers R (i.e. kProbLogR) as semiring together
with the meta-functions @minus and @inv that provide the inverse element of
sum and product respectively.

The A matrix must be split according to the Jacobi method:

D = diag(A) d(I, I) :- a(I, I).

R = A − D r(I, J) :- a(I, J), I \= J.

The solution x∗ of Ax = b is computed iteratively by finding the fixed point of
x = D−1(b − Rx). We call E the inverse of D. Since D is diagonal also E is a
diagonal matrix:

eii =invert(dii) = 1
dii

e(I, I) :- @invert[d(I, I)].

and the iterative step can be rewritten as x = E(b − Rx).
4 The compilation of ProbLog programs [18] can be expressed in kProbLog, provided

that the SDD semiring is used. The update of the algebraic weights must be additive,
each update adds new proves for the ground atoms until convergence.
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Making the summations explicit we can write:

xi =
∑

k

eik

(
bk −

∑

l

rklxl

)
(2)

then we can extrapolate the term
∑

l

rklxl turning it into the auxk definition:

xi =
∑

k

eik (bk − auxk)

auxk =
∑

l

rklxl

:- declare(x/1, real , destructive ).
:- declare(aux/1, real , destructive ).
x(I) :-

e(I, K), @subtraction[b(K), aux(K)].

aux(I) :-
r(K, L), x(L).

where @subtraction/2 represents the subtraction between real numbers, x/1
and aux/1 are mutually recursive predicates. Because x/1 needs to be initialized
(perhaps at random) we also need the clause:

xi = initi x(I) :- init(I).

where init/1 is a unary predicate. This example also shows that kProbLog is
more expressive than tensor relational algebra because it supports recursion.

3.3 kProbLog TP -Operator with Meta-Functions

The algebraic TP -operator of kProbLog is defined on the meta-transformed pro-
gram.

Definition 8 (meta-transformed program). A meta-transformed kProbLog
program is a kProbLog program in which all the meta-functions are expanded to
algebraic atoms. For each rule h :- b 1,...,@m[a 1,...,a k],...,b n in the
program P each meta-function @m[a 1,...,a k] is replaced by a body atom b’
and a meta-clause b’:-@m[a 1,...,a k] is added to the program P .

Definition 9 (algebraic TP -operator withmeta-functions). Let P be meta-
transformed kProbLog program with facts F and atoms A. Let Iw = (I, w) be an
algebraic interpretation with pairs (a,w(a)). Then the TP -operator is TP (Iw) =
{(a,w′(a))|a ∈ A} where:

w′(a) =

⎧
⎪⎪⎨

⎪⎪⎩

�(a) if a ∈ F
⊕

{b1,...,bn}⊆I
a:−b1,...,bn

n⊗

i=1

w(bi) ⊕
⊕

{b1,...,bk}⊆I
a:−@m[b1,...,bk]

m(w(b1), . . . , w(bk)) if a ∈ A \ F.

(3)

The introduction of meta-functions makes the result of the evaluation of a
kProbLog program dependent on the order in which rules and meta-clauses are
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evaluated. For this reason we explain the order adopted by the kProbLog lan-
guage. A kProbLog program P is grounded to a program ground(P ) and then
partitioned into a sequence of strata P1, . . . , Pn.

An atom in a non-recursive stratum Pi can only depend on the atoms from the
previous strata

⋃
j<i Pj , while an atom in a recursive stratum can depend on the

atoms in
⋃

j≤i Pj .5 Each partition Pi must be maximal and strongly connected
(i.e. each atom in Pi depends on every other atom in Pi). The program evaluation
starts by initializing the weight w(a) of each ground atom a in ground(P ) with
0S where S is the semiring of the atom. Then the strata are visited in order and
the weights are updated as follows: if the stratum Pi is non-recursive we apply
the algebraic TP -operator only once per atom, while if Pi is recursive we apply
the algebraic TP -operator only once for the non-recursive rules and meta-clauses
and repeatedly until convergence for the recursive rules and meta-clauses.

When updating the weight w(a) of a recursive atom a at each iteration we
initialize a weight Δw(a) = 0s. We accumulate on Δw(a) the result of the
application of the TP -operator on all the recursive rules with head a. Then the
new weight for a is computed as w(a) = w(a) + Δw(a) or w(a) = Δw(a) for
additive and destructive update respectively.

If Pi is a cyclic stratum then the convergence of the algebraic TP -operator
must be guaranteed by the user that specifies the program. Nevertheless if the
Pi is a cyclic stratum in which only rules are cyclic all the atoms in Pi are on the
same semiring6 S and so Pi has the same convergence properties of a kProbLogS

program (see Corollary 1 on page 4). Whenever we apply the algebraic TP -
operator we use the Jacobi evaluation, so that the program is not affected by
the order in which rules and meta-clauses are evaluated. This program evaluation
procedure is an adaptation the work of Whaley et al. [19] on Datalog and binary
decision diagrams.

4 kProbLogS[x]

kProbLogS[x] labels facts and rule heads with polynomials over the semiring
S. kProbLogS[x] is a particular case of kProbLogS because polynomials over
semirings are semirings in which addition and multiplication are defined as usual.

Definition 10 (Multivariate polynomials over commutative semi-
rings). A multivariate polynomial P ∈ S[x] can be expressed as:

P(x) =
n⊕

i=1

cixei =
n⊕

i=1

ci ⊗
⊗

t∈Ti

xeit
t (4)

5 We say that an atom a directly depends on an atom b if a is the head of a rule or a
meta-clause and b is a body literal or an argument of a meta-function in the meta
clause. We say that an atom a depends on an atom b either if a directly depends
on b or there is an atom c such that a directly depends on c and c depends on b.

6 Atoms of distinct semirings cannot be mutually dependent without using meta-
clauses.
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where ci ∈ S are the coefficients of the ith monomial and x, e are vectors of vari-
ables and exponents respectively. The vector x is indexed by ground terms t ∈ T .

4.1 Polynomials for Feature Extraction

We shall use polynomials to represent kernel features such as the ones computed
by the Weisfeiler-Lehman and propagation kernels. We define an inner-product
between multivariate polynomials of R[x], with a finite number of monomials as:

〈P(x),Q(x)〉 =
∑

(p,e)∈P

∑

(q,e)∈Q
pq. (5)

For each monomial (uniquely identified by the vector of exponents e) that
appears in both the polynomials P and Q, Eq. 5 computes the product between
their coefficients p and q respectively. These products are then summed together
to obtain the value of the inner-product.

For example we can consider the multivariate polynomials on integer
coefficients:

P(x1, x2, x3) = 2x1 + 3x1x2 + x2x
2
3

Q(x1, x2, x3) = 4x1 + 3x1x3 + 3x2x
2
3

(6)

which can be expressed as two sets of coefficient-exponent pairs P = {(2, [1, 0, 0]),
(3, [1, 1, 0]), (1, [0, 1, 2])} and Q = {(4, [1, 0, 0]), (3, [1, 0, 1]), (3, [0, 1, 2])} respec-
tively. The two polynomials have in common the vectors of exponents [1, 0, 0] and
[0, 1, 2], each contributes to the inner product by 2×4 = 8 and 1×3 = 3 respec-
tively. The value of the inner product between P(x1, x2, x3) and Q(x1, x2, x3) is
the sum of such contributes 8 + 3 = 11.

In kProbLog the inner-product between two algebraic atoms P(x)::a and
Q(x)::b can be computed using the meta-function @dot/2. Another meta-
function, that is useful for kernel design, is @rbf/3. The meta-function @rbf/3
takes as input an atom labeled with a non-negative real value γ and two
atoms labeled with the polynomials P and Q and computes the rbf kernel
exp{−γ‖P − Q‖2}.7

4.2 The @id Meta-Function

The @id/1 meta-function @id: S → S is injective and transforms a polynomial
P(x) to a new term t and returns the polynomial @id[P(x)] = 1.0 · x(t). This
function can be used to compress a multivariate polynomial to a new polynomial
in a single variable. We use the @id meta-function for polynomial compression
as Shervashidze et al. [17] use the function f to compress multisets of labels.

Indeed we can represent a multiset μ of labels (we use Prolog ground terms
to represent labels) as a polynomial:

Pµ(x) =
∑

t∈µ

�t · x(t) (7)

7 The squared distance in the rbf kernel can be expressed by using the dot product,
i.e. ‖P − Q‖2 = 〈P, P〉 + 〈Q, Q〉 − 2〈P, Q〉.
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where � counts the number of occurrences of the label (identified by the ground
term t) in the multiset μ.

Weisfeiler-Lehman algorithm: A colored graph G is a triple (V,E, �) where
V is a set of vertices, E ⊆ V × V is the set of the edges and � : V → Σ is a
function that maps vertices to a color alphabet Σ. For example we can specify
vertex labels and edge connectivity of a graph graph a in kProbLog as follows:

where the boolean predicate edge asymm/3 is implicitly casted to integer and
then to polynomial over integers when it appears in the definition of edge/3. The
Weisfeiler-Lehman color of a vertex after h steps of the algorithm is defined as:

Lh(v) =
{

�(v) if h = 0
f({Lh−1(w)|w ∈ N (v)}) if h > 0 (8)

where N (v) is the set of the vertex neighbors of v an {Lh−1(w)|w ∈ N (v)} is
the multiset of their colors at step h − 1. The Weisfeiler-Lehman algorithm can
be specified in kProbLog using the recursive definition of Eq. 8:

:- declare(wl_color/3,
polynomial(int)).

:- declare(wl_color_multiset/3,
polynomial(int)).

wl_color_multiset(H, Graph , V):-
edge(Graph , V, W),
wl_color(H, Graph , W).

wl_color(0, Graph , V):-
vertex(Graph , V).

wl_color(H, Graph , V):-
H > 0,
H1 is H - 1,
@id[wl_color_multiset(H1, Graph , V)].

5 Graph Kernels

In this section we give the declarative specification of some recent graph ker-
nels such as the Weisfeiler-Lehman graph kernel [17], propagation kernels [12]
and graph invariant kernels [13]. These methods have been applied to differ-
ent domains such as: natural language processing [13], computer vision [12] and
bioinformatics [12,13,17].
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5.1 Weisfeiler-Lehman Graph Kernel and Propagation Kernels

The Weisfeiler-Lehman graph kernel is defined using a base kernel [17] that
computes the inner-product between the histograms of Weisfeiler-Lehman colors
of two graphs Graph and GraphPrime.

:- declare(phi/2, real).
phi(H, Graph):-

wl_color(H, Graph , V).

:- declare(base_kernel /3, real).
base_kernel(H, Graph , GraphPrime):-

@dot[phi(H, Graph),
phi(H, GraphPrime )].

The Weisfeiler-Lehman graph kernel [17] with H iterations is the sum of base
kernels computed for consecutive Weisfeiler-Lehman labeling steps 1, . . . ,H on
the graphs Graph and GraphPrime:
:- declare(kernel_wl/3, real).
kernel_wl(0, Graph , GraphPrime):-

base_kernel (0, Graph , GraphPrime ).

kernel_wl(H, Graph , GraphPrime):-
H > 0, H1 is H - 1,
kernel_wl(H1, Graph , GraphPrime ).

kernel_wl(H, Graph , GraphPrime):-
H > 0,
base_kernel(H, Graph , GraphPrime ).

.

Propagation kernels [12] are a generalization of the Weisfeiler-Lehman graph
kernel, that can adopt different label propagation schemas. Neumann et al. [12]
implements propagation kernels using locality sensitive hashing. The kProbLog
specification is identical to the one the Weisfeiler-Lehman except that the @id
meta-function is to be replaced with a meta-function that does locality sensitive
hashing.

5.2 Graph Invariant Kernels

Graph Invariant Kernels (giks, pronounce “geeks”) are a recent framework for
graph kernels with continuous attributes [13]. giks compute a similarity measure
between graphs G and G′ matching them at vertex level according to the formula:

k(G,G′) =
∑

v∈V (G)

∑

v′∈V (G′)

w(v, v′)kattr(v, v′) (9)

where w(v, v′) is the structural weight matrix and kattr(v, v′) is a kernel on the
continuous attributes of the graphs. We use R-neighborhood subgraphs, so the
kProbLog specification is parametrized by the variable R.
:- declare(gik_radius/3, real).
gik_radius(R, Graph , GraphPrime):-

w_matrix(R, Graph , V, GraphPrime , VPrime),
k_attr(Graph , V, GraphPrime , VPrime).

where gik radius/3, w matrix/5 and k attr/4 are algebraic predicates on the
real numbers semiring, which is represented with floats for implementation pur-
poses. Assuming that we want to use the rbf with γ = 0.5 kernel on the vertex
attributes we can write:
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:- declare(rbf_gamma_const /0, real).
:- declare(k_attr/4, real).
0.5::rbf_gamma_const.
k_attr(Graph , V, GraphPrime , VPrime):-

@rbf[rbf_gamma_const , attr(Graph , V), attr(GraphPrime , VPrime )].

where attr/2 is an algebraic predicate that associates to the vertex V of a Graph
a polynomial label. To associate to vertex v 1 of graph a the 4-dimensional
feature [1, 0, 0.5, 1.3] we would write:
:- declare(attr/2, polynomial(real )).
1.0 * x(1) + 0.5 * x(3) + 1.3 * x(4)::attr(graph_a , v_1).

while the meta-function @rbf/3 takes as input an atom rbf gamma const labeled
with the γ constant and the atoms relative to the vertex attributes.

The structural weight matrix w(v, v′) is defined as:

w(v, v′) =
∑

g∈R−1(G)

∑

g′∈R−1(G′)

kinv(v, v′)
δm(g, g′)
|Vg||Vg′ | 1{v ∈ Vg ∧ v′ ∈ Vg′}. (10)

The weight w(v, v′) measures the structural similarity between vertices and is
defined combining an R-decomposition relation, a function δm(g, g′) and a kernel
on vertex invariants kinv [13]. In our case the R-decomposition generates R-
neighborhood subgraphs (the same used in the experiments of Orsini et al. [13]).

There are multiple ways to instantiate giks, we choose the version called
lwlv, because as shown with the experiments by Orsini et al. [13], can achieve
very good accuracies most of the times. lwlv uses R-neighborhood subgraphs
R-decomposition relation, computes the kernel on vertex invariants kinv(v, v′)
at the pattern level (local gik) and uses δm(g, g′) to match subgraphs that have
the same number of nodes.

In kProbLog we would write:
:- declare(w_matrix /5, real).
w_matrix(R, Graph , V, GraphPrime , VPrime):-

vertex_in_ball(Graph , R, BallRoot , V),
vertex_in_ball(GraphPrime , R, BallRootPrime , VPrime),
delta_match(R, Graph , BallRoot , GraphPrime , BallRootPrime),
@inv[ball_size(R, Graph , BallRoot)],
@inv[ball_size(R, GraphPrime , BallRootPrime )],
k_inv(Graph , BallRoot , V, GraphPrime , BallRootPrime , VPrime).

where:
(a) vertex in ball(R, Graph, BallRoot, V) is a boolean predicate which
is true if V is a vertex of Graph inside a R-neighborhood subgraph rooted in
BallRoot. vertex in ball/4 encodes both the term 1{v ∈ Vg ∧ v′ ∈ Vg′} and
the pattern generation of the decomposition relation g ∈ R−1(G).

:- declare(vertex_in_ball/4, bool).
vertex_in_ball(0, Graph , Root , Root):-

vertex(Graph , Root).

vertex_in_ball(R, Graph , Root , V):-
R > 0, R1 is R - 1,
vertex_in_ball(R1, Graph , Root , V).

vertex_in_ball(R, Graph , Root , V):-
R > 0, R1 is R - 1,
edge(Graph , Root , W),
vertex_in_ball(R1, Graph , W, V).
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(b) delta match(R, Graph, BallRoot, GraphPrime, BallRootPrime)
matches subgraphs with the same number of vertices
:- declare(delta_match /5, real).
:- declare(v_id/3, polynomial(real )).
:- declare(ball_size/3, int).
delta_match(R, Graph , BallRoot , GraphPrime , BallRootPrime ):-

@eq[v_id(R, Graph , BallRoot), v_id(R, GraphPrime , BallRootPrime )].

v_id(R, Graph , BallRoot):- @id[ball_size(R, Graph , BallRoot )].

ball_size(R, Graph , BallRoot):- vertex_in_ball(R, Graph , BallRoot , V).

(c) @inv[ball size(Radius, Graph, BallRoot)] corresponds to the normal-
ization term 1/|Vg|. @inv is the meta-function that computes the multiplicative
inverse and ball size(Radius, Graph, BallRoot) is a the float predicate that
counts the number of vertices in a Radius-neighborhood rooted in BallRoot.
(d) k inv(R, Graph, BallRoot, V, GraphPrime, BallRootPrime, VPrime)
computes kinv using H WL iterations of the Weisfeiler-Lehman algorithm to
obtain vertex features phi wl(R, H WL, Graph, BallRoot, V) from the R-
neighborhood subgraphs.
:- declare(k_inv/7, real).
:- declare(phi_wl/5, polynomial(real )).
wl_iterations (3). % constant

k_inv(R, Graph , BallRoot , V, GraphPrime , BallRootPrime , VPrime):-
wl_iterations(H_WL),
@dot[phi_wl(R, H_WL , Graph , BallRoot , V),

phi_wl(R, H_WL , GraphPrime , BallRootPrime , VPrime )].

phi_wl(R, 0, Graph , BallRoot , V):-
wl_color(R, Graph , BallRoot , 0, V).

phi_wl(R, H, Graph , BallRoot , V):-
H > 0, wl_color(R, Graph , BallRoot , H, V).

phi_wl(R, H, Graph , BallRoot , V):-
H > 0, H1 is H-1,
phi_wl(R, H1, Graph , BallRoot , V).

where wl color/5 is defined as wl color/3, but has two additional arguments
R and BallRoot that are needed to restrict the graph connectivity to the R-
neighborhood subgraph rooted in vertex BallRoot.

6 Conclusions

We proposed kProbLog, a simple algebraic extension of Prolog that can be used
for kernel programming. Polynomials and meta-functions allow to elegantly spec-
ify in kProbLog many recent kernels (e.g. the Weisfeiler-Lehman Graph kernel,
propagation kernels and giks). kProbLog rules are used for kernel programming,
but also to incorporate background knowledge and enrich the input data rep-
resentation with user specified relations. kProbLog is a language that provides
a uniform representation for relational data, background knowledge and kernel
design. In our future work we will exploit these three characteristics of kProbLog
to learn feature spaces with inductive logic programming.
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Abstract. Motivated by the declarative modeling paradigm for data
mining, we report on our experience in modeling and solving relational
query and graph mining problems with the IDP system, a variation
on the answer set programming paradigm. Using IDP or other ASP-
languages for modeling appears to be natural given that they provide
rich logical languages for modeling and solving many search problems
and that relational query mining (and ILP) is also based on logic. Nev-
ertheless, our results indicate that second order extensions to these lan-
guages are necessary for expressing the model as well as for efficient
solving, especially for what concerns subsumption testing. We propose
such second order extensions and evaluate their potential effectiveness
with a number of experiments in subsumption as well as in query mining.

Keywords: Knowledge representation · Answer set programming ·
Data mining · Query mining · Pattern mining

1 Introduction

In the past few years, many pattern mining problems have been modeled using
constraint programming techniques [5]. While the resulting systems are not
always as efficient as state-of-the-art pattern mining systems, the advantages
of this type of declarative modeling are now generally accepted: they support
more constraints, they are easier to modify and extend, and they are built using
general purpose systems. However, so far, the declarative modeling approach
has not yet been applied to inductive logic programming. This paper investi-
gates whether such an extension would be possible. To realize this, we consider
frequent query mining, the ILP version of frequent pattern mining, as well as the
answer set programming paradigm, the logic programming version of constraint
programming. More specifically, we address the following three questions:

Q1 Is it possible to design and implement a declarative query miner that uses a
logical and relational representation for both the data and the query mining
problem?

c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 166–182, 2016.
DOI: 10.1007/978-3-319-40566-7 12
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Q2 Is it possible to take advantage of recent progress in the field of computational
logic by adopting an Answer Set Programming (ASP) [23] framework for
modeling and solving?

Q3 Would such a system be computationally feasible? That is, can it tackle
problems of at least moderate size?

Our study is not only relevant to ILP, but also to the field of knowledge represen-
tation and ASP as query mining (and ILP) is a potentially interesting application
that may introduce new challenges and suggest solver extensions.

More concretely, the main contributions of this work can be summarized as
follows:

1. We present two declarative models and corresponding solving strategies for
the query mining problem that support a wide variety of constraints. While
one model can be expressed in the ASP paradigm, the other model requires a
second order extension that we believe to be essential for modeling ILP tasks.

2. We implement and evaluate the presented models in the IDP system [2], a
knowledge base system that belongs to the ASP paradigm.

3. We empirically evaluate the proposed models and compare them on the clas-
sical datasets with the state-of-the-art ILP methods.

This paper is organized as follows: Sect. 2 formally introduces the problem.
In Sect. 3, we introduce a second order model for frequent query mining that
addresses Question Q1. In Sect. 4 we present a first order model for query min-
ing, demonstrate main issues with this approach and address Question Q2. In
Sect. 5 we provide experimental evidence to support our answers to Questions Q2

and Q3. In Sect. 6 we discuss advantages (such as extendability) and disadvan-
tages of the models and the approach overall. In Sect. 7 we present an overview
of the related work in the ILP context of frequent query mining. Finally, we
conclude in Sect. 8 with a summary of the work.

2 Problem Statement

The problem that we address in this paper is to mine queries in a logical and
relational learning setting. Starting with the work the Warmr system [10], there
has been a line of work that focusses on the following frequent query mining
problem [8,16,19]:

Given:

– a relational database D,
– the entity of interest determining the key/1 predicate,
– a frequency threshold t,
– a language L of logical queries of the form key(X) ← b1, ..., bn defining key/1

(bi’s are atoms).
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Find: all queries c ∈ L s.t. freq(c,D) ≥ t, where freq(c,D) = |{θ | D ∪ c
|= key(X)θ}|.

Notice that the substitutions θ only substitute variables X that occur in key.
In this paper, we focus our attention on graph data, as this forms the simplest

truly relational learning setting and allows us to focus on what is essential for
extending the declarative modeling paradigm to a relational setting. In principle,
this setting can easily be generalized to the full inductive logic programming
problem.

As an example, consider a graph database D, represented by the facts

{edge(g1, 1, 2), edge(g1, 2, 3), edge(g1, 1, 3), edge(g2, 1, 2), edge(g2, 2, 3), edge(g2, 1, 3), . . . },

where the ternary relation edge(g, e1, e2) states that in graph g there is an
edge between e1 and e2 (we assume graphs to be undirected, so there is also
always an edge between e2 and e1). The frequency of key(K) ← edge(K,B,C),
edge(K,C,D), edge(K,B,D) in this database is 2 as the query returns g1 and
g2. If key(g) holds, then the graph g is subsumed by the query specified defined
in the body of the clause for key.

The goal of this paper is to explore how such typical ILP problems can be
encoded in ASP languages. So, we will need to translate the typical ILP or Prolog
construction into an ASP format. In the present paper, we employ IDP, which
belongs to the ASP family of formalisms. Most statements and constraints writ-
ten in IDP can be translated into standard ASP mechanically. A brief example-
based introduction to IDP is in Appendix A and for a detailed system and
paradigm description we refer to the IDP system and language description [2]
and to the ASP primer [23].

To realize frequent query mining in IDP, we need to tackle four problems: (1)
encode the queries in IDP; (2) implement the subsumption test to check whether
a query subsumes a particular entity in the database; (3) choose and encode a
language bias; and (4) determine, in addition to frequency, further constraints
that could be used and encode them. We will now address each of these problems
in turn.

3 Encoding

We assume that the dataset D is encoded as two predicates edge(g, e1, e2),
described before, and the ternary relation label(g, n, l) that states that there is a
node n with label l in graph g (for a discussion on how to extend the approach,
see Sect. 6).

Encoding a Query. The coverage test in ILP is often θ- or OI-subsumption.

Definition 1 (OI and θ-subsumption [18]). A clause c1 θ-subsumes a clause
c2 iff there exists a substitution θ such that c1θ ⊆ c2. Furthermore, c1 OI-
subsumes c2 iff there exists substitution θ such that com(c1)θ ⊆ com(c2), where
com(c) = c ∪ {ti �= tj | ti and tj are two distinct terms in c }.
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As ASP and, in particular, IDP are model-generation approaches, they always
generate a set of ground facts. This implies that ultimately the queries will
have to be encoded by a set of ground facts for edge and label as well (e.g.,
{edge(q, 77, 78), edge(q, 77, 79), label(q, 77, a), label(q, 78, b), label(q, 79, c), . . . })
and that we need to explicitly encode subsumption testing, rather than, as in
Prolog, simply evaluate the query on the knowledge base. We use the convention
that if a quantifier for a variable is omitted, then it is universally quantified.
Furthermore, we use the convention that variables start with an upper-case and
constants with an lower-case character. To illustrate the idea, consider the pro-
gram in Eq. 1 that has a model if and only if the query q OI-subsumes the graph
g. If we remove the last constraint in Eq. 1, we obtain θ-subsumption. Notice
that the function θ will be explicit in the model. This program can be executed
in IDP directly.

edge(q,X, Y ) =⇒ edge(g, θ(X), θ(Y )).
label(q,X,L) =⇒ label(g, θ(X), L).

X �= Y =⇒ θ(X) �= θ(Y ).
(1)

Notice that, in theory, it would be possible to simply encode subsumption
testing in IDP or ASP as rule evaluation, that is, in the above example, to assert
the knowledge base and to define the rule key and then to ask whether key(g)
succeeds. Computationally, this would however be infeasible as the size of the
grounded rules grows exponentially with the number of distinct variables in the
rule.

Throughout the paper we use OI-subsumption for all tasks, except of the
experimental comparison with Subsumer in Sect. 5 (since, it is not designed to
perform OI-subsumption).

Encoding the Language Bias. In practice, one often bounds query languages, for
instance by using a bottom clause and only considering queries or clauses that
subsume the bottom clause.

Definition 2 (Language bias of a bottom clause ⊥). Let ⊥ be a clause
that we call bottom, then the language bias L is a set of clauses: L = {c |
c OI-subsumes ⊥}.

This approach also works for ASP. We select one graph from the data and
the set of all atoms in that instance will serve as bottom clause ⊥. When fixing

Fig. 1. Examples of single graph subsumption (left) and of a canonicity check (right)
(Colour figure online)
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such an instance, we can encode queries by listing the nodes in that entity that
will be present in the pattern using the unary predicate inq(x) (for in query), as
visualized in Fig. 1a.

We now present a modification of the previous encoding in Eq. 1 that takes
into account the selection of the subgraph of the picked graph q as a query
(marked in red in Fig. 1a). We refer to the edges in the bottom clause as bedge
and labels in the bottom clause as blabel . When we refer to a node in the bottom
clause, we call it a bnode.

inq(X) ∧ inq(Y ) ∧ bedge(X,Y ) =⇒ edge(g, θ(X), θ(Y )).
inq(X) ∧ blabel(X,L) =⇒ label(g, θ(X), L).

inq(X) ∧ inq(Y ) ∧ X �= Y =⇒ θ(X) �= θ(Y ).
(2)

The intuition behind these rules is that we select a subgraph by picking nodes
in the bottom clause (i.e., a graph), and then we enforce the constraints on the
nodes that have been selected. Equation 2 implements this by adding an inq
predicate at the beginning of each clause as a guard, the rule is activated iff the
corresponding node is selected.

Encoding the Multiple Subsumption Test. In frequent query mining one is inter-
ested in mining frequent queries, which implies that there is a bag of graphs to
match.

Figure 2a illustrates this setup. We can see that we need to test whether the
query θ-subsumes each of the graphs in the dataset. To do so, we quantify over a
function representing θ, the homomorphism. This makes this formulation second
order. Why do we quantify over a function here and not in the previous example?
Before, the function was quantified existentially since the whole program was
asking for a model, which is the same as asking whether the function exists. Here,
however, we need a separate function for each graph, since the reasoning process
is going to take into account the existence and non-existence of homomorphisms
for particular graphs and to reason on top of that.

homo(G) ⇐⇒ ∃θ :
(
bedge(X,Y ) ∧ inq(X) ∧ inq(Y ) =⇒ edge(G, θ(X), θ(Y )).
blabel(X,L) =⇒ label(G, θ(X), L).

X �= Y =⇒ θ(X) �= θ(Y )
)
.

(3)
This constraint mimics the single graph subsumption test but introduces a new
predicate homo, indicating a matched graph.

We refer to the group of constraints in Eq. 3 as Matching-Constraint. The
syntax used above is not yet supported by ASP-solvers such as clasp [4] or IDP
[2], but we will argue that adding such second order logic syntax is crucial to
enable effective modeling and solving of any structural mining problem. This
argument will be backed up by experiments in Sect. 5.

Encoding the Frequency Constraint. We consider two typical query mining set-
tings: frequent and discriminative query mining. In the frequent setting a query
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is accepted if it subsumes at least t graphs. In the discriminative setting, each
graph in the dataset is labeled as either positive or negative, as indicated by the
corresponding predicates positive(G) (negative(G)) that marks a positive (nega-
tive) graph G, and we are interested in queries that match more than tp graphs
with a positive label and do not match more than tn negatively labeled graphs.

To model the frequent setting we use an aggregation constraint (Eq. 4) and
the discriminative setting can be modeled similarly (Eq. 5):

|{G : homo(G)}| ≥ t. (4)
|{G : positive(G) ∧ homo(G)}| ≥ tp ∧ |{G : negative(G) ∧ homo(G)}| ≤ tn. (5)

Encoding the Canonical form Constraint. It is well-known since the seminal
work of Plotkin [17] that the subsumption lattice contains many clauses that
are equivalent, and there has been a lot of work in ILP devoted to avoid the
generation of multiple clauses from the same equivalence class (e.g., the work on
optimality of refinement operators [15] and many others [12,13]).

This can be realized in ASP by checking that the current query is not iso-
morphic to a lexicographically smaller subgraph (using a lexicographic order on
the identifiers of the entities or nodes). For example, in Fig. 1b, consider the
subgraph induced by the nodes 1-3-4 (the numbers are identifiers and the colors
are labels). Notice that there is an isomorphic subgraph 1-2-4, i.e., there exists
a function θ preserving edges and labels such that a string representation of the
latter subgraph is smaller than the former. We call the graph with the small-
est lexicographic representation canonical. Canonicity can be enforced by the
following group of constraints, called Canonical-Form-Constraint.

¬∃θ
(
X �= Y =⇒ θ(X) �= θ(Y ).

inq(X) ⇐⇒ ∃Y : θ(X) = Y.

inq(X) ∧ inq(Y ) ∧ bedge(X,Y ) ⇐⇒ bedge(θ(X), θ(Y )).
inq(X) ∧ blabel(X) = Y ⇐⇒ blabel(θ(X)) = Y.

inθ(Y ) ⇐⇒ θ(X) = Y.

d1(X) ⇐⇒ inq(X) ∧ ¬inθ(X).
d2(X) ⇐⇒ inθ(X) ∧ ¬inq(X).

min(d1(X)) > min(d2(X))
)
.

(6)

We refer to this group of constraints as Canonical-Form-Constraint. It enforces
a query to have the smallest lexicographic representation, like the canonical code
of mining algorithms [16,19]. We define a canonical representation in terms of
the lexicographic order over the bottom clause node identifiers. If there is a
query satisfying the constraints, then there is no other lexicographically smaller
isomorphic graph.

Note: The intuition of Eq. 6 that the first four rules ensure the existence of
a homomorphism under OI-assumption (which can be relaxed by removing a
constraint) between the current query on the node in inq and another subgraph



172 S. Paramonov et al.

of the bottom clause. The other rules ensure that the other subgraph has a
smaller lexicographic order: inθ is an auxiliary predicate that stores nodes of the
other subgraph, in d1 (d2) there are nodes that only belong to the first, current
query, (or second) subgraph. If the minimal node in d1 (current query) is larger
than in d2 (the other graph), the query is not in canonical form.

We now present additional types of constraints that allow solving variations
of the query mining problem.

Connectedness-Constraint. As in graph mining [16], we are often only interested
in connected queries. The constraint to achieve this consists of two parts: 1) a
definition of path and 2) a constraint over path. The first is defined inductively
over the bnodes selected by inq(X), the second enforces that any two nodes in
the pattern are connected. Note, that the usage of {. . . } indicates an inductive
definition: the predicate on the left side is completely defined by the rules spec-
ified between curly brackets as a transitive closure. If both variables are in the
pattern, there must be a path between them.

{path(X,Y ) ← inq(X) ∧ inq(Y ) ∧ bedge(X,Y ).
path(X,Y ) ← ∃Z : inq(Z) ∧ path(X,Z) ∧ bedge(Z, Y ) ∧ inq(Y ).
path(Y,X) ← path(X,Y ).}
inq(X) ∧ inq(Y ) ∧ X �= Y =⇒ path(X,Y ).

(7)

The Objective-Function. An objective function is one way to impose a ranking
on the queries. A constraint in the form of an objective function is defined over a
model to maximize certain parameters. We consider only objective functions over
the queries and matched graphs in the dataset: (1) no objective function, i.e.,
the frequent query mining problem; (2) maximal size of a query Eq. 8 (in terms
of bnodes) (3) maximal coverage Eq. 9 (i.e., the number of matched graphs);
(4) discriminative coverage Eq. 10, i.e., the difference between the number of
positively and negatively labeled graphs that are covered by a query.

|{X : inq(X)}| �→ max (8)
|{G : homo(G)}| �→ max (9)
|{G : positive(G) ∧ homo(G)}| − |{G : negative(G) ∧ homo(G)}| �→ max (10)

Mining the top-k queries with respect to a given objective function is often a more
meaningful task than enumerating all frequent queries, since it provides a more
manageable number of solutions that are best according to some function [24].

Topological-Constraint. Enforces parts of the bottom clause to be in the query.
Let X be the desired subset of the nodes, then the constraint is

∧
X∈X inq(X).

Cardinality-Constraint. This constraint ensures that the size of a graph pattern
is at least n (at most, equal) ∃ ◦ n X : inq(X), where ◦ ∈ {=,≤, <,≥, >}.

If-Then-Constraint. This constraint ensures that if a node is present in the query,
then another node must be present in the query, e.g., a node Y must be present
in the query, if a node X is in. We encode this constraint as a logical implication:
inq(X) =⇒ inq(Y ).
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4 First Order Model

In the previous section we have given a positive answer to Question Q1 using
second order logic. However, after formalizing a problem the next step is to
actually solve it. In this section we address Question Q2: can we use existing ASP
engines to solve these frequent query mining problems directly? Is it necessary
to add constructs to existing modeling languages, or is it possible to write down
an efficient and elegant first order logic model for which existing solvers can be
used?

To answer Question Q2, we will encode the problem of frequent query mining
as an ASP problem using enumeration techniques. We shall also show how to
approach top-k querying mining with this encoding.

The Matching and Occurrence Constraints. Since we are restricted to FOL here,
we have to encode θ as a binary predicate now, adding graph G as a parameter.
In the encoding there are five clauses: the first enforces edge preservation; the
second enforces that a mapping exists only for the bnodes in the pattern and
only for the matched graphs, i.e., θ(G,X) is a partial function; the third enforces
θ(G,X) to be an injective function on the bnodes for each of the graphs; the
fourth enforces label matching; the fifth ensures occurrence frequency (the same
as before).

homo(G) ∧ inq(X) ∧ inq(Y ) ∧ bedge(X,Y ) =⇒ edge(G, θ(G,X), θ(G,Y )).
homo(G) ∧ inq(X) ⇐⇒ ∃Y : Y = θ(G,X).
homo(G) ∧ inq(X) ∧ inq(Y ) ∧ X �= Y =⇒ θ(G,X) �= θ(G,Y ).
homo(G) ∧ inq(X) ∧ blabel(X,L) =⇒ label(G, θ(G,X), L).
|{G : homo(G)}| ≥ t.

(11)

Encoding the Model Enumeration Constraints. A common technique in existing
clause learning solvers with restarts for generating all solutions, is by asserting

Fig. 2. Conceptual comparison between first and second order models
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for each found solution a model invalidating clause which excludes this model.
We use it to denote that certain combinations of nodes in the bottom clause are
no longer valid solutions. E.g., if we find a graph on nodes 1-2-3 to be a solution
and we store these nodes, then we prohibit this combination of nodes to ensure
that the solver will find a new different solution.

We present a version of model invalidation clauses (MIC) [1] for frequent
query enumeration. Our MICs are designed for Algorithm 1, since we enumerate
queries of a fixed length: once we increase the length we remove all previous
MICs. This allows us to use MICs of a very simple form: given a set of nodes
X , we define a constraint CX as CX =

∧
X∈X inq(X). For example, if a query

q on the nodes 1-2-3 is found to be frequent, we would generate the following
constraint, as so not to generate 1-2-3 again: inq(1) ∧ inq(2) ∧ inq(3). Note, that
this simple form of model invalidation clauses can only be used if an algorithm
iterates over the length of a query and removes MICs once the length is increased.

Algorithm 1. First Order Model: Iterative Query Enumeration
Input: D, k, t � Dataset, #Queries, Threshold
Output: queries – set of frequent queries
queries ← ∅
⊥ ← pick-language-bias(D) � Language bias obtained from data
maxsize ← #nodes(⊥)
i ← 0
for size ∈ 1 . . .maxsize do

MICs ← ∅
while True do

query ← mine-query(D, ⊥, t, size,MICs) � IDP call, Eq. 11
if query is None then

break � the line below: IDP call, adopted Eq. 6

canonical, isomorphic ← get-canonical-and-isomorphic(query, ⊥)
queries ← queries ∪ {canonical}
MICs ← MICs ∪ isomorphic
i ← i + 1
if i ≥ k then return queries

return queries

Anti-monotonicity Property. It is easy to integrate avoidance of the infrequent
supergraph generation in Algorithm 1: once a query is established to be infre-
quent, the corresponding MIC is kept, when the query length is increased. How-
ever, our experiments in Sect. 5 indicate that the current computational problems
come from a different source and cannot be solved using this property.

Frequent Query Enumeration in Algorithm 1. We enumerate all frequent queries
starting from the smallest ones (with only 1 node) to the largest ones (the bottom
clause). Algorithm 1 has two loops. The first sets the current query size and sets
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MIC to be empty (since we do not want to prohibit generation of supersets of
already found queries). In the inner loop, we obtain a candidate for a frequent
query by calling IDP once, then we check if the query is in canonical form and
also obtain all isomorphic queries to this canonical form. After that we generate
a MIC for each of them and prohibit the whole isomorphic class of queries to
be generated. Note that generating all isomorphic queries is prohibitive, that is
why we obtain a canonical query and remove all other isomorphic queries. The
algorithm terminates if either it cannot find a new frequent query of any size or
the required number of queries has been enumerated.

Top-k Problem. Current ASP solvers, including IDP, can perform optimization
described in Constraints 8, 9 and 10. However, Algorithm 1 enumerates patterns
with respect to their size and therefore needs to be modified. The key change is
to remove the outer for loop with the size variable together with Cardinality-
Constraint . In the experiment section we demonstrate that even top-1 is already
excessively complex for modern ASP solvers and requires further investigation
and development of the systems.

5 Experiments

In this section we evaluate the encoding on three problems: (1) classical θ-
subsumption performed by IDP as encoded in Eq. 1, (2) the first order model
in Algorithm 1 on the frequent query mining task, and (3) the first order model
on the top-1 query mining task. In all experiments the frequency threshold t
is set to 5%. Since the task involves making a stochastic decision, i.e., pick-
language-bias in Algorithm 1 picks a graph from the dataset at random, this
choice may significantly influence the running time. To resolve this issue, for the
graph enumeration problem we average over multiple runs for each dataset: each
run involves the enumeration of many queries, i.e., each run generates many data
points (runtimes to enumerate N queries). For the top-one mining problem, we
present multiple runs for each dataset, since each run computes only one data
point (runtime for the top-1 query). All experiments have been executed in a sin-
gle thread on a 64-bit Ubuntu machine with Intel Core i5-3570 CPU @ 3.40GHz
x 4 and 8GB memory.

Subsumption. We evaluate how the IDP model 1 encoding of θ-subsumption
compares with subsumption engine The Subsumer [22]. We used the data from
the original Subsumer experiments (transition phase on the subsumption hard-
ness [18, p.327]) and evaluated IDP subsumption programs and Subsumer on
a single hypothesis-example test, i.e., for each hypothesis and example we have
made a separate call to IDP and Subsumer to establish subsumption.

The goal of this experiment is to compare how both systems perform if com-
putations are done on a single example. We would like to estimate the poten-
tial gain in IDP, if we could specify a homomorphism existence check for each
graph independently, like in a higher-order model Eq. 3, i.e., for each graph we
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Fig. 3. Dataset description and the summary of subsumption and top-1 experiments

would check existence of some θ(X) instead of checking existence of one function
θ(G,X) like in the first order model.

Figure 3b indicates that IDP and Subsumer perform within a constant bound
when we make a separate call for each example and hypothesis. That is, for all
but one dataset, the runtimes are within the same order of magnitude for the two
methods. If the internal structures of the system are reused and the call is made
only for one hypothesis per set of examples, we observe a speedup of at least one
order of magnitude in Subsumer. This indicates that the system is able to effi-
ciently use homomorphism independence. Once the solver community will have
built extensions of systems like IDP to take advantage of homomorphism inde-
pendence, the resulting systems will perform substantially better than the current
ones and their performance will be close to that of special purpose systems such
as Subsumer. More precisely, systems should exploit that it is computationally
easier to find n functions θ(X), than one θ(G,X) for n values of G.

Datasets and Implementation. We now evaluate the query mining models on a
number of well-known and publicly available datasets: Blood Barrier, NCTRER
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and Yoshida datasets are taken from [21], Mutagenesis and Enzymes datasets are
from [11], Toxinology dataset is from [7]. A summary of the dataset properties
is presented in Fig. 3a.

Top-1 Performance Evaluation. We present the results of evaluating the FOL
model for top-1 mining in Fig. 3c. Results were only obtained for the maximal
size, and no solutions were computed for Enzymes in a reasonable time (<10 h).
The discriminative setting cannot be modeled and solved, since we need higher
order primitives and for maximal coverage we already experienced an explosion
of the search space. This experiment demonstrates that current satisfiability
solvers cannot effectively perform search on both categories of query variables
and homomorphism coverage; solver extensions are necessary. The first extension
is to specify independence of the homomorphisms in the model, i.e., higher order
primitives as indicated in the model Eq. 3, the second is to give more control
over the solver’s decisions, e.g., by allowing to specify a decision order.

Frequent Query Mining. The goal of the next experiment is to estimate the
potential gain of the introduction of a higher order modeling construction. To
do this, we mimicked the higher order behavior in Algorithm 1 by making several
calls to IDP (one per graph) in the method mine-query. We call this mimick-
ing model decomposed. The results of the evaluation are presented in Fig. 4a,
a comparison of the decomposed and the original FOL model are in Fig. 4b.
Homomorphism dependence in the first order model causes serious computa-
tional difficulties, which makes higher order primitives one of the main priorities
for solving query mining. The runtime also grows with the size of a pattern since
it affects the search space and runtime as a result.

Summary of the Experimental Results. The results show that the model per-
forms reasonably and we therefore conclude that it can be considered a first step
towards the development of declarative languages for relational query mining.
From Figs. 3b and 4a it is clear that the core computational difficulty lies in the
inability to state homomorphism independence. This follows from the candidate

Fig. 4. Frequent query enumeration FOL (blue) vs decomposed model (red) (Color
figure online)
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generation and canonicity check runtime and from the speedup that Subsumer
has when it is applied to the whole set of examples with one call. After compar-
ing the performance of IDP and Subsumer on a single example and observing
the speed up of the decomposed model in Fig. 4a, one would expect a significant
speedup if it were implemented within the solver.

We have observed in Fig. 3c that query mining introduces interesting compu-
tational challenges and might be of interest to the solver development commu-
nity as well as to the ILP community. We also pointed out the reasons for these
computational difficulties and suggested possible ways to enhance the solvers.

6 Model Discussion and Generalization

Advantages and Disadvantages of the Model. There is a number of advantages of
the declarative approach to pattern mining as compared to the classical imper-
ative methods: compact and clear representation; extendability and generality;
provability and formal semantics of the models; reliable and portable implemen-
tation (the solvers developed by the community, well tested and already applied
to a variety of tasks; the solvers are available for all popular operation systems:
Linux, MacOS and Windows).

In particular, our model represents compactly not only the model of graph
mining problem but also the code that can be executed to solve the problem.
Adding the source code of gSpan [25] to a paper (∼2000 lines of C++) would be
impossible. Also the model can be easily extended by adding constraints to the
theory, e.g. adding a constraint to handle labels on edges is just an extra line
with a straightforward logical formula. The last but not least our formulation
allows formal rigorous reasoning on the constraints that constitute the model.

These advantages come, of course, not without a cost. Typically, specialized
algorithms perform an order of magnitude (at least) faster. The main reason for
such a speed up is the heuristic approach incorporated in most of the mining
algorithms that takes advantage of the structure of the problem. Our experiments
in Fig. 4b demonstrate that the declarative approach can reduce the runtime gap
by extending the language to better incorporate the structure of a problem. Also,
modeling this kind of mining tasks influences the way declarative solvers are built
and potentially can lead to better solving systems that would perform reasonable
on mining takes.

Generalization of the Approach. Let us demonstrate how the model can be
extended to handle labels on the edges as an example how declarative systems
can be adapted to solve new tasks.

Assume that the edge labels are represented using the predicate
edgelabel(g, e1, e2, l) and the edge labels of the bottom clause are stored in the
predicate tedgelabel(e1, e2, l). Then, the first order formulation Eq. 11 can be
extended by adding the constraint:

inq(X) ∧ inq(Y ) ∧ tedgelabel(X,Y, L) =⇒ edgelabel(G, θ(G,X), θ(G,Y ), L).
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Intuitively, this constraint ensures that if there is an edge (X,Y ) with a label L
in the bottom clause, then there is an edge with a l label L in the graph G. If each
edge has a label, the constraint above can replace the first constraint in Eq. 11.

The smallest change, according to the principle, is the addition of a rule or
a fact.n general this example demonstrates how declarative approach and our
model in particular implements the elaboration tolerance principle [14], i.e. a
small change in the problem formulation, should introduce a small change in the
model. The smallest changes, according to the principle, is the addition of a rule
or a fact. With this respect our model satisfies elaboration tolerance principle
and can be called an additive elaboration.

7 Related Work

WARMR [10] and FARMER [16] are extensions of the Apriori algorithm for
discovering frequent structures in multiple relations. Even though they use ILP
techniques (e.g., a declarative language bias) to determine frequent queries, they
imperatively specify computations and the algorithms do not support the addi-
tion of arbitrary constraints due to the restricted nature of the algorithm, and
hence focus on a more specific task. C-Farmr [19] is an ILP system for frequent
Datalog clauses that uses so-called condensed representations to avoid the gen-
eration of semantically equivalent clauses.

The XHAIL system [20] uses ASP as a computational engine to perform
abductive inductive reasoning. It is similar in the way we use an ASP engine as
computational core, but XHAIL focuses on the abduction task, whereas we focus
on query mining which always involves aggregation and model enumeration.

In the work on sequence testing [3] ASP is used as a subroutine in a cycle
and model projection on a predicate is also present similarly to our Algorithm
1, but this similarity is technical, since the tasks are of a different nature. ASP
has also been applied to itemset mining [9] and sequence mining [6], but these
methods only deal with one particular task in its basic formulation.

gSpan [25] and B-AGM, Biased-Apriori-based Graph Mining [8], are special-
ized algorithm designed to solve the frequent graph pattern mining problem. The
algorithm is tailored to solve only one task exclusively and requires significant
changes in its core to be extended to solve other mining tasks (and, to the best
of our knowledge, there is no extension to the full relation setting). It is simi-
lar, however, in the computational challenges: canonicity checks, homomorphism
checks, language bias etc.

8 Conclusions

We have shown that modern ASP solvers, in principle, can be applied to ILP
query mining tasks. We have provided experimental evidence that these mod-
els can be used as prototypes for developing declarative mining languages. We
have also indicated the reasons why the solvers could be extended to make com-
putation efficient and proposed concrete extensions as well as estimated their
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potential effectiveness. The query mining models and the experimental setup
we developed provide an interesting challenge for the ASP community and a
potentially useful tool for the ILP community.

A Appendix: Introduction to IDP

Listing 1.1. IDP source code example – map coloring

vocabulary V{
type area
type color
border(area,area)
coloring(area):color

}
theory T:V{
// Adjacent countries can not have the same color

∀A1A2 : border(A1, A2) =⇒ coloring(A1) �= coloring(A2).
}
structure S:V{
area={belgium; holland; germany; luxembourg; austria; swiss;france }
color={blue;red;yellow;green}
border={
(belgium,holland);(belgium, germany);(belgium,luxembourg);(belgium,france);
(holland,germany);(germany,luxembourg);(germany,austria);(germany,swiss);
(germany,france);(luxembourg,france);(austria,swiss);(swiss,france)
}

}

The IDP language [1,2] is an extension of first order logic with inductive defini-
tions and aggregration. The IDP system implements finite satisfiability and can
be considered as an ASP system.

The particular type of inference we use in our work is model expansion. The
task of model expansion is to expand a finite interpretation S for the subvocab-
ulary V of a given logic theory T to a model of T . In the example above, V is
the vocabulary of the map colouring problem i.e. area, color , border(area, area),
coloring :: area �→ color; S consists of 7 countries, 4 colours and a border relation
between the countries; T is the constraint that two bordering countries cannot
have the same color.

In this example, the model expansion task is to find an extension of S, i.e.
coloring function, such that the constraint in T is satisfied, i.e. all bordering
countries have different colours.

The example can be tried online (select file “Map Colouring”):

adams.cs.kuleuven.be/idp/server.html.
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Abstract. This paper studies learning inference by induction. We first
consider the problem of learning logical inference rules. Given a set S of
propositional formulas and their logical consequences T , the goal is to
find deductive inference rules that produce T from S. We show that an
induction algorithm LF1T, which learns logic programs from interpre-
tation transitions, successfully produces deductive inference rules from
input transitions. Next we consider the problem of learning non-logical
inference rules. We address three case studies for learning abductive infer-
ence, frame axioms and conversational implicature by induction. The
current study provides a preliminary approach to the problem of learn-
ing inference to which little attention has been paid in machine learning
and ILP.

1 Introduction

Induction has been used for learning regularities or general rules hidden in data
sets. Hypotheses generated by induction are used not only for explaining given
evidences but for predicting new phenomena. Induction in these tasks realizes
learning knowledge—knowing that something is true. Concept learning and data
mining are of this type. On the other hand, little attention has been paid for
learning inference—knowing the ways of thinking by humans. Learning inference
is the problem of finding inference rules or thinking patterns by humans. We
make a variety of inferences in our daily life. Those inferences are classified into
two categories: logical inference and non-logical inference. Logical inference is
used in classical or non-classical logics. Non-logical inference includes empirical
laws or pragmatic inference. The primary interest of this paper is to argue the
possibility of developing machine learning algorithms that can automatically
acquire rules of inferences.

To learn logical inference rules, Sakama and Inoue [16] introduce a concep-
tual framework of learning logics. In this framework, they introduce a method
of learning propositional logic inference rules inductively from input data that
consist of formulas and their logical consequences. In the current paper, we imple-
ment learning logical inference rules using the LF1T induction algorithm [5,14]
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 183–199, 2016.
DOI: 10.1007/978-3-319-40566-7 13
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and examine whether it successfully produces inference rules of propositional
natural deduction. Next we apply the method to learning non-logical inference
rules. We address three case studies, learning rules for abduction, frame axioms,
and conversational implicature. We discuss related issues and finally remark
open questions. The rest of this paper is organized as follows. Section 2 pro-
vides a framework for learning logics and its implementation by LF1T. Section 3
addresses three cases of learning non-logical inference rules. Section 4 discusses
related issues and Sect. 5 addresses final remarks.

2 Learning Logical Inference

2.1 Learning Logics

We review a conceptual framework for learning logics that is introduced in [16].
There are an agent A and a machine M. The agent A, which could be a human
or a computer, is capable of deductive reasoning: it has a set L of axioms and
inference rules in classical logic. Given a (finite) set S of formulas as an input,
the agent A produces a (finite) set of formulas T such that T ⊆ Th(S) where
Th(S) is the set of logical consequences of S. On the other hand, the machine
M has no axiomatic system for deduction, while it is equipped with a machine
learning algorithm C. Given input-output pairs (S1, T1), . . . , (Si, Ti), . . . (where
Ti ⊆ Th(Si)) of A as an input to M, the problem is whether one can develop an
algorithm C which successfully produces an axiomatic system K for deduction.
An algorithm C is sound wrt L if it produces an axiomatic system K such that
L � K. An algorithm C is complete wrt L if it produces an axiomatic system K
such that K � L where � means the logical consequence under L. Designing a
sound and complete algorithm C is called a problem of learning logics (Fig. 1).
In this framework, an agent A plays the role of a teacher who provides training
examples representing premises along with entailed consequences. The output K
is refined by incrementally providing examples. Figure 1 describes a deduction
system L while it could be a system of arbitrary logic, e.g. nonmonotonic logic,
modal logic, fuzzy logic, as far as it has a formal system of inference.

Fig. 1. Learning logics [16]
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Sakama and Inoue [16] provide a simple case study for learning deduction
rules of propositional logic. They represent a formal system L of propositional
logic using metalogic programming and show that deductive inference rules can
be reproduced as meta-rules of logic programs. In this paper, we implement
learning deductive inference rules using the LF1T algorithm [5,14] and exam-
ine whether it successfully produces inference rules of propositional natural
deduction.

2.2 Learning from 1-Step Transitions

Learning from 1-step transitions (LF1T) [5] is a framework for learning normal
logic programs from transitions of interpretations. Here we apply LF1T for
learning definite logic programs, a subclass of normal logic programs that do not
contain negation as failure. Let B be the set of all ground atoms (Herbrand base)
and P a (ground) definite logic program (or simply, a program) that consists of
rules of the form:

a ← b1, . . . , bn (n ≥ 0) (1)

where a, b1, . . . , bn are ground atoms from B. For each rule R of the form (1), the
atom a is the head (written h(R)) and the conjunction b1, . . . , bn is the body of
the rule (written b(R)). The body is identified with the set of atoms {b1, . . . , bn}.
A rule with the empty body is a fact. A rule with variables represents the set
of ground instances. A rule R1 subsumes another rule R2 (written R1 ≤ R2) if
h(R1) = h(R2) and b(R1) ⊆ b(R2). For two programs Pi and Pj , define Pi � Pj

iff for any R ∈ Pi there is R′ ∈ Pj s.t. R ≤ R′.
LF1T produces a program from a pair of interpretations as follows.

Input: E ⊆ 2B × 2B

Output: a program P such that J = TP (I) holds for any (I, J) ∈ E

where TP (I) = {h(R) | R ∈ P and b(R) ⊆ I } [17]. A rule R is consistent with
(I, J) if b(R) ⊆ I implies h(R) ∈ J , otherwise, R is inconsistent with (I, J). A
rule R is called an anti-rule with respect to a transition (I, J) if R is inconsistent
with (I, J). A program P is consistent with (I, J) if every rule in P is consistent
with (I, J). In LF1T, a positive example is input as a one-step state transition
from I to J , which is given as a pair of Herbrand interpretations. LF1T outputs
a single program that is consistent with all state transitions given in the input.

In this subsection, we use a top-down version of LF1T [14], which generates
hypotheses by specialization from the most general rules until a program is
consistent with all input state transitions. More precisely, LF1T starts with
the initial program P = { a ←| a ∈ B}. Then LF1T iteratively analyzes each
transition (I, J). For each atom a that does not appear in J , LF1T produces
an anti-rule:

a ←
∧

bi∈I

bi . (2)

The rule (2) is an anti-rule wrt (I, J) because
∧

bi∈I bi ⊆ I but a 	∈ J . Any
rule of P that subsumes such an anti-rule is inconsistent with the transition and
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Fig. 2. Top-down LF1T[14]

must be revised. To this end, every rule R of P that subsumes (2) is minimally
specialized by replacing R with the rules in {h(R) ← b(R) ∧ cj | cj ∈ B \ I}
to make P consistent with the new transition by avoiding the subsumption of
all anti-rules produced by (I, J). After such minimal specialization, P becomes
consistent with the new transition while remaining consistent with all previously
analyzed transitions. The algorithm is sketched in Fig. 2. It is shown that LF1T
produces a program P such that J = TP (I) for any (I, J) ∈ E and minimal wrt
the ordering � [14].1

In the next section, we use the LF1T induction algorithm for learning deduc-
tion rules and show experimental results.

2.3 Learning Deduction Rules by LF1T

In this section, we use LF1T as a learning system C in Fig. 1. We assume a
(propositional) natural deduction system L [13] represented by a metalogic pro-
gram P . In P every propositional formula F is represented by a fact using a
meta-predicate hold as

hold(F ). (3)

Using the expression, Modus Ponens is represented as a meta-rule in P as follows:

hold(G) ← hold(F → G), hold(F ) (4)

where F and G are variables representing any propositional formula.
Suppose that P contains the single rule of (4). Let p and q be propo-

sitional variables. Given the set I = {hold(p), hold(p → q)}, it becomes
TP (I) = {hold(q) }. TP (I) represents a set of formulas that are deduced from
I using Modus Ponens. In this way, a program P provides transitions (I, J)

1 The result is shown for normal logic programs and is applied to their subclass of
programs.
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such that J ⊆ TP (I). Then, given (I, J) as input, our goal is to examine
whether LF1T can reproduce correct inference rules of deduction represented
by meta-rules in P . We use formulas represented by propositional variables (e.g.
p → q), rather than formulas represented by particular propositional constants
(e.g. human → animal). With this setting, produced rules represent relations
among formulas written by propositional variables, which are instantiated by
any propositional constants. To learn inference rules, the Herbrand base B is
firstly fixed as a set of facts of the form (3). Inputs are then constructed as pairs
(I, J) ∈ E where E ⊆ 2B × 2B.
In what follows, we provide some results of experiments.

Let B = {hold(p), hold(q), hold(r), hold(p → r) }. We address the process
of constructing a rule with the atom hold(r) in the head.

Step 0: LF1T starts with the most general rule:

hold(r) ← . (5)

Step 1: Suppose that the transition (∅, ∅) is given. The rule (5) is inconsistent
with this transition (because b((5)) = ∅ ⊆ ∅ but h((5)) = hold(r) 	∈ ∅), so
that (5) is an anti-rule wrt (∅, ∅) and is (minimally) specialized into four rules
by introducing an atom from B:

hold(r) ← hold(p) (6)
hold(r) ← hold(q) (7)
hold(r) ← hold(r) (8)
hold(r) ← hold(p → r). (9)

Those rules are consistent with the transition (∅, ∅).
Step 2: Suppose that the transition ({hold(p)}, {hold(p)}) is given. The rule (6)

is inconsistent with this transition, so that (6) is specialized into three rules:

hold(r) ← hold(p), hold(q)
hold(r) ← hold(p), hold(r)
hold(r) ← hold(p), hold(p → r).

These three rules are respectively subsumed by the rules (7), (8) and (9) in
Step 1, hence removed. As a result, the rules (7), (8) and (9) remain.

Step 3: Suppose that the transition ({hold(q)}, {hold(q)}) is given. The rule (7)
is inconsistent with this transition, and is removed after specialization. As a
result of subsumption, three rules (8), (9) and the newly constructed rule (10)
remain.

hold(r) ← hold(p), hold(q). (10)
Step 4: Suppose that the transition ({hold(p → r)}, {hold(p → r)}) is given.

The rule (9) is inconsistent with this transition, and is removed after special-
ization. As a result of subsumption, two rules are newly constructed:

hold(r) ← hold(p → r), hold(p) (11)
hold(r) ← hold(p → r), hold(q). (12)

Now four rules (8), (10), (11) and (12) remain.
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Step 5: Suppose that the transition ({hold(p), hold(q)}, {hold(p), hold(q)}) is
given. The rule (10) is inconsistent with this transition, and is removed after
specialization. As a result of subsumption, three rules (8), (11) and (12)
remain.

Step 6: Suppose that the transition ({hold(p → r), hold(q)}, {hold(p → r),
hold(q)}) is given. The rule (12) is inconsistent with this transition, and
is removed after specialization. As a result of subsumption, two rules (8)
and (11) remain.

Step 7: Suppose that the transition ({hold(p → r), hold(p)}, {hold(p → r),
hold(p), hold(r)}) is given. Two rules (8) and (11) are consistent with this
transition and remain as they are.

The remaining two rules (8) and (11) are consistent with any other transitions
(I, J) such that J represents logical consequences of I under a metalogic pro-
gram P . Then LF1T produces those rules as output. The rule (8) represents
Repetition (Rep) and (11) represents Modus Ponens (MP). The input-
output of LF1T is summarized in Table 1.2

Table 1. LF1T input-output

input output
(∅, ∅) hold(r) ← hold(p).

hold(r) ← hold(q).
hold(r) ← hold(r).
hold(r) ← hold(p → r).

({hold(p)}, {hold(p)}) hold(r) ← hold(p).
hold(r) ← hold(q).
hold(r) ← hold(r).
hold(r) ← hold(p → r).

({hold(q)}, {hold(q)}) hold(r) ← hold(q).
hold(r) ← hold(r).
hold(r) ← hold(p → r).
hold(r) ← hold(p), hold(q).

({hold(p → r)}, {hold(p → r)}) hold(r) ← hold(r).
hold(r) ← hold(p → r).
hold(r) ← hold(p), hold(q).
hold(r) ← hold(p → r), hold(p).
hold(r) ← hold(p → r), hold(q).

({hold(p), hold(q)}, {hold(p), hold(q)}) hold(r) ← hold(r).
hold(r) ← hold(p), hold(q).
hold(r) ← hold(p → r), hold(p).
hold(r) ← hold(p → r), hold(q).

({hold(p → r), hold(q)}, {hold(p → r), hold(q)}) hold(r) ← hold(r).
hold(r) ← hold(p → r), hold(p).
hold(r) ← hold(p → r), hold(q).

({hold(p → r), hold(p)}, {hold(p → r), hold(p), hold(r)}) hold(r) ← hold(r).
hold(r) ← hold(p → r), hold(p).

2 The experimental archive is found at http://www.wakayama-u.ac.jp/∼sakama/
ILP2015-short/.

http://www.wakayama-u.ac.jp/~{}sakama/ILP2015-short/
http://www.wakayama-u.ac.jp/~{}sakama/ILP2015-short/


Learning Inference by Induction 189

In the table, those inputs except the last one are of the form (I, I) that does
not represent any change. Those examples are used for excluding rules describing
incorrect transitions. By contrast, the last input is used for verifying whether
the remaining rule represents correct transitions. Other results of experiments
are addressed below.

– Given B = {hold(p), hold(¬p), hold(q), hold(¬q), hold(p → q), hold(q →
r), hold(p → r) }, LF1T produces

hold(¬p) ← hold(p → q), hold(¬q) (Modus Tollens (MT))
hold(p → r) ← hold(p → q), hold(q → r)(Hypothetical Syllogism (HS))

– Given B = {hold(p), hold(¬p), hold(q), hold(¬q), hold(p ∨ q), hold(¬p ∨
¬q), hold(r ∨ s), hold(¬r ∨ ¬s), hold(p → r), hold(q → s) }, LF1T produces

hold(p) ← hold(p ∨ q), hold(¬q) (Disjunctive Syllogism (DS))
hold(r ∨ s) ← hold(p ∨ q), hold(p → r), hold(q → s)

(Constructive Dilemma (CD))
hold(¬p ∨ ¬q) ← hold(¬r ∨ ¬s), hold(p → r), hold(q → s)

(Destructive Dilemma (DD))

– Given B = {hold(p), hold(q), hold(r), hold(p ∧ q), hold(q ∧ r), hold(p ∨ q),
hold(q ∨ r) }, LF1T produces

hold(p) ← hold(p ∧ q) (Conjunction Elimination (CE))
hold(p ∧ q) ← hold(p), hold(q) (Conjunction Introduction (CI))
hold(p ∨ q) ← hold(p) (Disjunction Introduction (DI))

The number of examples used for learning above rules depends on B. To obtain
correct inference rules, a sufficient number of input examples are needed. To see
whether a produced rule R is a correct inference rule, input test data I to R
and check whether R produces a correct output J satisfying TP (I) = J for a
metalogic program P .

In this way, LF1T successfully produces inference rules of natural deduction.
Note that produced rules are applied to any propositions. For instance, in Modus
Ponens

hold(q) ← hold(p → q), hold(p) (13)

p and q are propositional variables that can be instantiated by any proposi-
tional constants. Moreover, since any propositional formula is named by a new
propositional variable, we can replace propositional variables p, q, r, . . . with
new propositional variables F , G, H, . . . representing arbitrary propositional
formulas. The rule (13) is then interpreted as a rule between formulas:

hold(G) ← hold(F → G), hold(F ).

As such, LF1T produces inference schemata of natural deduction. Let L be a
natural deduction system that has ten inference rules—Rep, MP, MT, HS,
DS, CD, DD, CE, CI, and DI. Then we have the next result.
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Proposition 2.1 Let P be a metalogic program representing a propositional nat-
ural deduction system L. Then there is a finite number of inputs (I, J) satisfying
TP (I) = J such that LF1T can reproduce the set of inference rules of L from
them.

Proof. As we have seen in this section, the ten rules of L can be obtained by
LF1T. The natural deduction system L consists of inference rules represented
by a finite number k (≥ 4) of propositional symbols. Since the number of pairs
(I, J) of sets of formulas constructed by those symbols are finite, providing every
pair (I, J) satisfying TP (I) = J will produce those inference rules written as
meta-rules. ��

There are natural deduction systems that have more inference rules, while
they are realized using those ten rules presented above. For instance, inference
rules of contradiction: p∧¬p � ⊥ is realized by MP by identifying ¬p ≡ (p → ⊥);
and ⊥ � q is realized by MP as ⊥ ∧ (⊥ → q) � q. Thus, once learning the
MP rule (13) by LF1T, we can get ⊥ � q or p ∧ ¬p � ⊥ by instantiating a
propositional variable p or q with ⊥.

Replacement rules for logically equivalent formulas, such as De Morgan’s
law , communication, association, distribution, transposition and double nega-
tion, are represented as hold(F ) ← hold(G) and hold(G) ← hold(F ) for F ≡ G
in background knowledge. Background knowledge is combined with inference
rules induced by LF1T to produce new rules of inference. For instance, the
replacement rule p → q ≡ ¬p ∨ q is represented as hold(p → q) ← hold(¬p ∨ q)
and hold(¬p ∨ q) ← hold(p → q) in background knowledge. Then together with
the MP rule (13), we can get the new rule hold(q) ← hold(¬p∨q), hold(p) (which
is also an instance of DS).

3 Learning Non-logical Inference Rules

In Sect. 2 we consider a logical system L that has axiomatic systems for infer-
ence. L provides correct training data (S, T ) to a machine learning algorithm
C in Fig. 1, and LF1T successfully reproduces inference rules of L as a natural
deduction system. On the other hand, axiomatic systems for inference do not
always exist, especially for non-logical inference. In this case, a set of input-
output pairs (or premise-consequence pairs) are not given from a teacher agent
A in general, but can be implicitly hidden in log files of dynamic systems or in
dialogues with unknown agents. A machine learning system C identifies those
input-output relations automatically to produce a set of meta-theoretical infer-
ence rules for the domain or inference patterns of those agents. This section
addresses three case studies for learning non-logical inference rules.

3.1 Abduction

A fallacy is an incorrect inference while often used in our daily life. For instance,
the followings are well-known logical fallacies [19]:
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Affirming a Disjunct: From p ∨ q and p, infer ¬q.
Affirming the Consequent: From p → q and q, infer p.
Denying the Antecedent: From p → q and ¬p, infer ¬q.
Affirming the consequent is also used for abductive inference [10]. In what follows,
we address a case of learning inference rules for abduction.

Given background knowledge K and an observation hold(G), abduction com-
putes an explanation hold(F ) such that hold(F → G) ∈ K. Unlike the case of
learning deduction rules in Sect. 2.3, K, G and F are represented by proposi-
tional constants rather than propositional variables. This is because we assume
no axiomatic system L in learning abduction rules. Training data are then pro-
vided as a particular background knowledge, an observation and its candidate
explanations. The goal is to construct a general inference scheme of abduction
from those data.

For example, let K be the background knowledge:

wet-grass → wet-shoes
rained → wet-grass

sprinkler-on → wet-grass.

Using metalogic expression, the above rules are expressed as

K = { hold(wg → ws), hold(r → wg), hold(s → wg) }

where ws, wg, r and s abbreviate wet-shoes, wet-grass, rained and
sprinkler-on, respectively.

In computing rules for abduction, a state transition is given as a pair (I, J)
such that I contains an observation O and rules R from background knowledge K,
and J is an explanation such that R∪J � O. For instance, (I, J) = ({hold(wg →
ws), hold(ws)}, {hold(wg)}) means that the observation hold(ws) is explained by
hold(wg) using hold(wg → ws) in K. To reduce the hypotheses space, we set
abducibles as H = {hold(wg), hold(r), hold(s)} and assume any explanation as an
element of H. Let B = K ∪ {hold(wg), hold(ws), hold(r), hold(s)}. We apply the
top-down LF1T for atoms in H. Given pairs of transitions, LF1T finally produces
the following rules:

hold(wg) ← hold(wg) (14)
hold(wg) ← hold(wg → ws), hold(ws) (15)
hold(r) ← hold(r) (16)
hold(r) ← hold(r → wg), hold(wg) (17)
hold(r) ← hold(r → wg), hold(wg → ws), hold(ws) (18)
hold(s) ← hold(s) (19)
hold(s) ← hold(s → wg), hold(wg) (20)
hold(s) ← hold(s → wg), hold(wg → ws), hold(ws) (21)
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Explanations are represented by atoms in the heads. The rule (14) means that
the explanation wg self-explains the observation wg. The rule (15) means that
the explanation wg is produced from the background knowledge wg → ws and
the observation ws. Each rule represents abduction for different explanations.
To obtain general inference rules for abduction, we use least generalization of
Horn clauses [9,12]. In applying least generalization, we first classify rules into
equivalent classes based on the number of atoms in the body of a rule. Given a
rule R, | b(R) | represents the number of atoms in the body of R. Then define
the equivalence class as

Ci = {R : |b(R) |= i }.
The rules (14)–(21) are classified into C1 = {(14), (16), (19)}, C2 = {(15), (17),
(20)}, C3 = {(18), (21)}. The rules in C1 represent explanations as observa-
tions. The rules in C2 represent explanations produced by one step of Affirm-
ing the Consequent. The rules in C3 represent explanations produced by two
steps of Affirming the Consequent. Abduction computes different explanations
by C1 −C3, so state transitions (I, J) that are consistent with Ci are not always
consistent with Cj (j 	= i). For instance, the transition (I, J) = ({hold(r →
wg), hold(wg → ws), hold(ws)}, {hold(r)}) is consistent with the rule (18), but
is inconsistent with (15). So we compute rules C1−C3 separately. The least gen-
eralization of C2 is computed as follows. First, implication p → q is represented
as a term imp(p, q). Then the least generalization of (17) and (20) becomes

hold(F ) ← hold(imp(F,wg)), hold(wg), hold(G)

where F and G are variables. After eliminating redundant atoms, it becomes3

hold(F ) ← hold(imp(F,wg)), hold(wg) (22)

which represents that any abducible F that implies wg is an explanation of
the observation wg. Computing the least generalization of (22) and (15) and
removing redundant atoms, we get

hold(F ) ← hold(imp(F,G)), hold(G)

which represents that any abducible F that implies G is an explanation of the
observation G. As such, computing least generalization of each set and removing
redundant atoms, we obtain

hold(F ) ← hold(F ) (23)
hold(F ) ← hold(F → G), hold(G) (24)
hold(F ) ← hold(F → G), hold(G → H), hold(H). (25)

Each rule represents an inference rule of abduction. Among them, the rule (25)
is obtained by a repeated application of (24), and the rule (23) is obtained by
3 An atom A occurring in b(R) is redundant if b(R)\{A} ≡θ b(R) where ≡θ is equiva-

lence under θ-subsumption ≤θ, i.e., R1 ≤θ R2 iff h(R1θ) = h(R2) and b(R1θ) ⊆ b(R2)
for some substitution θ.
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putting F ≡ G in (24). As a result, we can pick the rule (24) as the inference
rule of abduction.

The above example provides a simple case of learning abduction rules. On the
other hand, there would be a case such that abduction is taken place together
with deduction. For instance, suppose that a duplex system fails (sf ) when two
computers (c1 and c2) are down simultaneously. It is known that one of the com-
puters does not work (¬c1) due to some trouble (tr). The situation is represented
in the background knowledge as K = { tr, tr → ¬c1, ¬c1 ∧ ¬c2 → sf }. Given
the observation sf , a candidate explanation is ¬c2, that is, c2 does not work too.
In this case, the next rule is produced

hold(¬c2) ← hold(tr), hold(tr → ¬c1), hold(¬c1 ∧ ¬c2 → sf ), hold(sf )

representing that ¬c2 is an explanation of the observation sf . By constructing a
similar rule for ¬c1, the next rule is produced by least generalization

hold(¬F ) ← hold(G), hold(G → ¬H), hold(¬F ∧ ¬H → sf ), hold(sf )

which means that if one of the two computers does not work by some reason,
the system’s failure is explained by the problem of another computer. The rule
would be further generalized to

hold(F ) ← hold(G), hold(G → H), hold(F ∧ H → K), hold(K) (26)

The rule (26) represents an inference where abduction is taken place with deduc-
tion. To verify the correctness of produced rules, they are applied to other test
cases and check whether those rules provide appropriate explanations and accu-
rate predictions.

3.2 Frame Axiom

Applying LF1T to state transitions describing the world change could enable
us to learning frame axioms [7]. Let us consider a block world such that there
are three blocks a, b and c where a is on b, b and c are on a table t. The state is
represented as

S = {hold(on(a, b)), hold(on(b, t)), hold(on(c, t)), hold(clear(a)), hold(clear(c))}

where clear(x) means that there is nothing on x. After moving a on top of c the
state changes into

T = {hold(on(a, c)), hold(on(b, t)), hold(on(c, t)), hold(clear(a)), hold(clear(b))}.

Now we have only one state transition (S, T ) then a state change from S to T is
deterministically described using a bottom-up version of LF1T [5] that produces
a transition rule from S to T . A bottom-up LF1T for definite logic programs is
sketched below.
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Bottom-up LF1T(E: pairs of Herbrand interpretations, P : a definite logic pro-
gram)

1. If E = ∅ then output P and stop;
2. Pick (I, J) ∈ E, and put E := E \ {(I, J)};
3. For each a ∈ J , let

RI
a := a ←

∧

bi∈I

bi;

4. If RI
a is not subsumed by any rule in P , then P := P ∪ {RI

a} and simplify P

by removing all rules subsumed by RI
a;

5. Return to 1.

Given the state transition (I, J) = (S ∪ {move(a, c)}, T ), the bottom-up LF1T

produces

hold(on(a, c)) ← conj(S), move(a, c) (27)
hold(on(b, t)) ← conj(S), move(a, c) (28)
hold(on(c, t)) ← conj(S), move(a, c) (29)
hold(clear(a)) ← conj(S), move(a, c) (30)
hold(clear(b)) ← conj(S), move(a, c) (31)

where conj(S) is the conjunction of atoms in S. Among them, rules (28), (29),
and (30) describe transitions that do not change by the action of move(a, c), since
conj(S) contains the same atoms appearing in the head of each rule.

Suppose moving c on top of a at the state S. Using the state transition
(I, J) = (S ∪ {move(c, a)}, T ), the bottom-up LF1T produces

hold(on(c, a)) ← conj(S), move(c, a) (32)
hold(on(a, b)) ← conj(S), move(c, a) (33)
hold(on(b, t)) ← conj(S), move(c, a) (34)
hold(clear(c)) ← conj(S), move(c, a) (35)

Among them, rules (33), (34), and (35) describe transitions that do not change
by the action of move(c, a). Computing the least generalization of (30) and (35)
and removing redundant atoms, we get

hold(clear(x)) ← conj(S), move(x, y) (36)

The rule (36) represents a frame axiom saying that moving a block x to y at the
state S does not change the clearness of x. Computing the least generalization
of (28) and (34) and removing redundant atoms, we get

hold(on(b, t)) ← conj(S), move(x, y) (37)
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The rule (37) represents a frame axiom saying that moving a block x to y at the
state S does not change the location of b on the table. Furthermore, generaliz-
ing (29) and (37), we get

hold(on(z, t)) ← conj(S), move(x, y) (38)

However, the rule (38) has the instance

hold(on(c, t)) ← conj(S), move(c, a)

which conflicts with the consequence of (32).4

Hence one can conclude that the rules (36) and (37) are valid frame axioms,
while (38) is not a proper rule and is discarded. As such, frame axioms are
successfully produced by induction.

3.3 Conversational Implicature

Non-logical inferences are also used in pragmatics [6]. In conversation or dialogue,
the notion of conversational implicature [3] is known as a pragmatic inference to
an implicit meaning of a sentence that is not actually uttered by a speaker.
For instance, if a speaker utters the sentence “I have two children”, it normally
implicates “I do not have more than two children”. This is called a scalar implica-

ture which says that a speaker implicates the negation of a semantically stronger
proposition than the one asserted. Given a collection of dialogues, a question is
whether a machine learning system can automatically acquire pragmatic rules
of inference that interpret implicit meaning behind utterance. To realize this, we
assume a simple dialogue system that is able to converse with a human. Given
a sentence S by a human, the system asks whether a sentence T that is seman-
tically stronger than S is true or not. The human answers “yes” if it is true, and
“no” otherwise. For instance, the following dialogue is taken place.

human: I have two children.
computer: Do you have three children?
human: No.
. . .

human: I have a car.
computer: Do you have two cars?
human: No.

The human’s utterance is translated into factual knowledge as follows:

hold(have(child, s(s(0)))) (39)
hold(¬have(child, s(s(s(0))))) (40)
hold(have(car, s(0))) (41)
hold(¬have(car, s(s(0)))) (42)

4 Here we assume the existence of a state constraint : ∀x∀y [hold(on(x, t)) ∧
hold(on(x, y)) → y = t ] asserting that if an object x is on a table t and x is on
y then y is t.
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Let (I, J) be a pair in which I represents the initial utterance of a human and J

represents a reply by the human in response to a question by a computer. Then
the above dialogue is represented by pairs:

(I, J) = ({hold(have(child, s(s(0))))}, {hold(¬have(child, s(s(s(0)))))}),

({hold(have(car, s(0)))}, {hold(¬have(car, s(s(0))))}).

In this case, both I and J contain a single atom, so that the bottom-up LF1T

simply constructs the transition rules as A ← B where A ∈ J and B ∈ I:

hold(¬have(child, s(s(s(0))))) ← hold(have(child, s(s(0)))) (43)
hold(¬have(car, s(s(0)))) ← hold(have(car, s(0))) (44)

The least generalization of (43) and (44) becomes

hold(¬have(x, s(y))) ← hold(have(x, y)). (45)

The rule (45) means if one says that the number of x he/she has is y, it implies
that the number is not y + 1. Suppose that the background knowledge contains
the rule:

hold(¬have(x, z)) ← hold(¬have(x, w)), z ≥ w (46)

which says that if one does not have x that is w in number, then he/she does not
have x more than w. Then, after learning (45), the next rule is deduced by (45)
and (46):

hold(¬have(x, z)) ← hold(have(x, y)), z ≥ s(y) (47)

which means that if one says that the number of x he/she has is y, it implies that
he/she does not have it more than y. The rule (47) represents a rule of scalar
implicature. On the other hand, if there is another dialogue such that

human: I have two dollars.
computer: Do you have three dollars?
human: Yes.

Then the next rule is constructed

hold(have(dollar, s(s(s(0))))) ← hold(have(dollar, s(s(0)))) (48)

This is an exceptional case of scalar implicature. In the presence of (48), the
rule (47) could be refined as

hold(¬have(x, z)) ← hold(have(x, y)), z ≥ s(y), x = dollar

or one could construct scalar implicature rules for individuals such that:

hold(¬have(child, z)) ← hold(have(child, y)), z ≥ s(y) (from (43) and (46))

hold(¬have(car, z)) ← hold(have(car, y)), z ≥ s(y) (from (44) and (46))

As such, scalar implicature rules are inductively constructed.
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4 Discussion

New paradigms are emerging in machine learning such as ontology learning [18]
and representation learning [1]. Also recent advances in robotics argue possibilities
of robots’ recognizing objects in the world, categorizing concepts, and associating
names to them (physical symbol grounding) [2]. Once robots successfully learn con-
cepts and associate symbols to them, the next step is to learn relations between
concepts and logical or physical rules governing the world. According to Piaget’s
theory of cognitive development, children start learning concepts and symbols
at age earlier than two (pre-operational stage), and begin to understand logical or
rational thought at age around seven (concrete operational stage) [11]. Represen-
tation learning and physical symbol grounding aim at realizing machine learning
at the level of the pre-operational stage. On the other hand, learning inference
considered in this paper targets the problem of realizing machine learning at the
level of the concrete operational stage.

In learning logical inferences, we show that the LF1T induction algorithm
can reconstruct a system L of natural deduction. An interesting question is
whether a machine learning algorithm can discover a new axiomatic system that
is semantically equivalent to L. It addresses the possibility of AI’s discovering
new logics that are unknown to human mathematicians. A logical formulation of
conversational implicature is studied in [15] while, to the best of our knowledge,
learning conversational implicature from dialogue has never been explored. We
showed a simple case study of learning scalar implicature in conversation. If one
develops an AI that learns and understands conversational implicature, it will
realize an intelligent chat bot that can understand implicit meaning of humans’
utterance. Learning non-logical inference also involves the problem of learning
thinking patterns of individuals. It would be interesting to investigate whether a
system can learn thinking patterns of people in particular regions or in particular
professionals.

This paper realizes learning inference as induction of meta-rules. Induction in
meta-theories are proposed in [4,8]. Inoue et al. [4] introduce meta-level abduction

to invent predicates and apply it to finding physical skills. Muggleton et al. [8]
introduce meta-interpretive learning to invent relations by abduction and apply it
to learning grammatical rules. These studies represent background knowledge as
a meta-theory and abduce rules as meta-facts, while their goals are not learning
inference rules. Induction or ILP has mostly been used for learning knowledge,
while little study has been devoted to the topic of learning inference. The current
study argues the possibility of using ILP for learning inference and serves as a
step for opening the topic.

5 Conclusion

This paper studied learning inference by induction. We first addressed a method
of learning deductive inference rules using the LF1T induction algorithm. We
showed that LF1T successfully produces inference rules of propositional natural
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deduction as transition rules from premises to consequences. Secondly, we applied
the method to learning non-logical inference rules. We showed that abductive
inference rules are obtained from observations and explanations, frame axioms
are computed by state changes, and scalar implicature rules in conversation could
be learned from simple dialogues.

This is a preliminary research for learning inference rules by induction, and
the proposed method will need further elaboration and extension in practice.
Providing all possible transitions, LF1T will output production rules that are
minimal with respect to subsumption. A limitation is that the number of possible
transactions increases exponentially in proportion to the size of the Herbrand
base. Further optimization is needed for learning inference rules from huge data.
In this paper, LF1T is used for learning propositional inference rules in Sect. 2.
For learning first-order inference rules, provide pairs of premises-consequences at
the fact level and produce ground rules at first, then generalize those rules using
ILP technique such as least generalization. Such a technique is directly applied to
quantifier-free rules and further technique will be needed for learning quantified
formulas. Applying the proposed framework to learning inference rules in other
logics (e.g. probability/fuzzy logic), learning social rules in multiagent systems
(e.g. negotiation), and learning strategic rules in games (e.g. chess) would be of
interest.
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Abstract. The identification of transition models of biological systems
(Petri net models, for example) in noisy environments has not been exam-
ined to any significant extent, although they have been used to model the
ideal behaviour of metabolic, signalling and genetic networks. Progress
has been made in identifying such models from sequences of qualitative
states of the system; and, more recently, with additional logical con-
straints as background knowledge. Both forms of model identification
assume the data are correct, which is often unrealistic since biological
systems are inherently stochastic. In this paper, we model the transition
noise that can affect model identification as a Markov process where the
corresponding transition functions are assumed to be known. We inves-
tigate, in the presence of this transition noise, the identification of tran-
sitions in a target model. The experiments are re-constructions of known
networks from simulated data with varying amounts of transition-noise
added. In each case, the target model traces a specific trajectory through
the state-space. Model structures that explain the noisy state-sequences
are obtained based on recent work which formulates the identification
of transition models as logical consequence-finding. With noisy data, we
need to extend this formulation by allowing the abduction of new tran-
sitions. The resulting structures may be both incorrect and incomplete
with respect to the target model. We quantify the ability to identify the
transitions in the target model, using probability estimates computed
from transition-sequences using PRISM. Empirical results suggest that
we are able to identify correctly the transitions in the target model with
transition noise levels ranging from low to high values.

1 Introduction

Chemical equations are symbolic statements not of what will happen, but of
what may happen. Thus, the equation 2H2(g) + O2(g) → 2H2O(g) does not
mean that hydrogen and oxygen will necessarily react to produce water (the “g”
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 200–214, 2016.
DOI: 10.1007/978-3-319-40566-7 14
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Fig. 1. Two transition system representations of the reaction 2H2 + O2 → 2H2O.

denotes the reactants and products are in a gaseous state). Filling a balloon with
the reactants, for example, does not immediately result in balloon full of water
vapour. Additional conditions may be needed (in this case, a high temperature)
for the reaction to occur. Even if external conditions are favourable, it is possible
that the reaction may not proceed. There is thus a non-determinism associated
with any chemical processes, including those that occur in cells [6].

Our interest in this paper is in computational models of biological networks,
like Petri nets, in which processes are transitions representing local changes to
the qualitative state of the system. An example of a Petri net representation of
the “water” reaction is in Fig. 1a.
We extend our previous work to study identification of transition models of bio-
logical systems in the presence of added transition noise. We develop a two-stage
method (Fig. 2). First, deductive and abductive inference is used in a logic pro-
gramming framework [17] to identify all transitions consistent with observational
data. Second, probabilistic logic programming [15] is used to estimate parameters
for the identified transition system. Evaluation is by reconstruction experiments
on benchmark biological systems with varying levels of added transition noise. In
Sect. 2 we describe our approach. Empirical results and discussion are in Sect. 3.
We discuss some related work in Sect. 4, and conclude in Sect. 5.

Fig. 2. System identification with noisy data.
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2 Transition Identification Under Transition Noise

Biochemical Background. A theory of reactions based on collisions requires
not only that the reactant molecules collide with each other, but that they should
collide in correct orientations. The reaction:

A − B + C → C − A + B

will only occur if C collides with the complex A−B on the “A-side”. The proba-
bility of such collisions can be mathematically modelled [8]. With small numbers
of A − B and C, this reaction may simply not occur. Such non-determinism can
be due to extrinsic and intrinsic effects, which has been studied in the chemical
and biological literature [6]. In particular, sources of biological noise are both
intrinsic, due to the inherent stochasticity of processes of the system such as gene
expression, and extrinsic, due to conditions in the environment. In this paper we
focus on intrinsic noise.

Petri Nets. A Petri net [3] is a bipartite directed graph with two finite sets of
nodes, called places and transitions. Arcs are either from a place to a transition,
so the place is an input for the transition, or from a transition to a place, in which
case the place is an output of the transition. Transitions have a finite number
of input places and a finite number of output places. Places can be occupied
by zero or more tokens, and arcs can be labelled with an integer weight greater
than or equal to one. In a Petri net, a transition is enabled and can hence be
executed, or “fired”, when the number of tokens at each input place is equal to
or greater than the weight on the corresponding arc.

LGTS. Transition systems [10] are a formalism used to model the behaviour
of dynamic systems. In this paper we adopt the framework of Logical Guarded
Transition Systems (LGTS) [16,17], a generalisation of Petri nets [3] based on
logic programming. For example, Fig. 1b shows the “water” Petri net as an
LGTS, with the constraint that temperature should be high for the reaction
to proceed, which would be encoded as a logic program. Essentially, an LGTS
extends the Petri net formalism by allowing logical guarded transitions, speci-
fying the pre, post and invariant conditions that must hold for the transition
to occur. An LGTS for some system comprises a relation lgts from sequences of
observed system states to sequences of guarded transitions, plus definitions of
guarded transitions, and background knowledge encoding domain-specific and
generic constraints. In this paper we will assume that states are as in Petri nets,
i.e., vectors of place-values [3]. For transitions to be enabled and executed we
additionally require the guard of transitions to evaluate to TRUE. A guard of
a transition is defined in terms of the pre- and post-condition of the transition
and it’s invariant . The guard evaluates to TRUE if the pre- and post-condition
and the invariant are all TRUE. Petri nets (and their extended form, that allows
“read” and “inhibit” arcs, and variations like coloured and stochastic Petri nets)
can be seen as special cases of LGTS’s. LGTS’s can be used to simulate sys-
tem behaviour: given some initial state, output a sequence of transitions and
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their corresponding states. LGTS’s can also be identified from samples of sys-
tem behaviour: given a sequence of states, determine a corresponding sequence
of transitions.

Transition Identification. The identification of LGTS’s can be formulated
as logical consequence finding [17]. The basic system identification task is as
follows:

Given: (a) A sequence S of states, representing observations of the system
behaviour; and
(b) Background knowledge B containing generic and domain-specific
constraints and definitions of guarded transitions; and
(c) The definition of a relation G = lgts(S, T ) that is TRUE for all
pairs S and T s.t. T is an LGTS model of S.

Find: An acceptable LGTS. Any LGTS T satisfying B ∧ G ⇒ ∃T lgts(S, T ) is
acceptable.

If B and G can be encoded as logic programs, then the T ’s can be computed using
the usual theorem prover used by logic programming systems. With a bound on
the number of tokens allowed in each place, the LGTS models for an observation
sequence S can be computed by a non-deterministic finite automaton (NFA) [17].
The NFA is a transducer that reads zero or one input symbols (observations)
and writes out the corresponding transition.

Transition Noise. We can distinguish three kinds of “noise” that can affect
the identification of transition-based models from data: (a) signal noise (for
example, there is an error in the concentration of a metabolite); (b) state noise
(for example, a gene is incorrectly recorded as being “on” when it is actually
“off”); and (c) transition noise (for example, a reactant is not produced when
it normally should be). In principle, both (b) and (c) can be modelled by a
Markov process, if the corresponding transition functions were known, which is
the assumption made in this paper.

Specifically, we model transition noise as a probabilistic transition system. A
transition system [10] is a pair (S,→) where S is set of states and → is a binary
relation on S modelling the set of transitions. In a deterministic transition sys-
tem, → is a function, i.e., for a given state s there is at most one successor state s′

such that s → s′. In a non-deterministic transition system states may have more
than one successor state, i.e., →: S × P(S). To model probabilistic transitions a
probability distribution is defined on each non-deterministic transition.

Identification in the Presence of Transition Noise. Viewing an LGTS as
an NFA is useful when considering identification from noisy data. The presence
of noise means that there is some mismatch between transitions in background
knowledge and the observations. This incompleteness has two aspects: first, there
may be some missing intermediate states; second, states may have incorrect val-
ues with respect to the corresponding transitions. The first problem is solved
based on [4] by generating values for missing place vectors during LGTS iden-
tification; in terms of NFA execution this is equivalent to allowing the “empty”
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input ε to correspond to an output transition. The second is solved by allowing
the abduction of transitions for “noisy” state pairs; this is akin to employing a
theorem-prover that uses SOLD-resolution [18].

These identification steps for noisy observational data will typically lead to
an expanded set of transitions. To determine which transitions are more likely
to model the underlying system, and which are simply due to noise, the final
step in our approach is to sample repeatedly from the distribution over noisy
transitions and construct a probabilistic automaton. The resulting probabilities
can be used to rank output LGTS models for user inspection, and to evaluate
the method.

3 Empirical Evaluation

Our goal is to investigate the identification of the transitions comprising a sys-
tem, given noisy data sequences representing system behaviour. Specifically: we
intend to investigate if the transitions involved in generating the ideal sequence
of states can be identified given sufficient numbers of noisy data sequences.

3.1 Problems

The investigation considered system identification for the following problems,
listing in order of increasing model-size:

Water. The well-known school-level problem of the formation of water from
hydrogen and oxygen forms the simplest system we will examine. The prob-
lem clearly consists of a single reaction involving 3 kinds of molecules (places).

MAPK. The MAPK pathway is a protein-based sequence of events that trans-
late a signal at the cell-surface to the nucleus. The pathway commences when
a protein or a hormone binds to a receptor protein that is usually bound to
the cell-membrane. This triggers a sequence of events that stops with the
DNA expressing one or more genes that alter cell function. At any one step
of the cascade, phosphor groups are attached to proteins. This phosphory-
lated form of the protein then forms a “switch” for commencing the next
step. MAPK is a central signalling pathway that is used in all cell-tissues
to communicate extra-cellular events to the cell nucleus. It is used to reg-
ulate a variety of responses, like hormone action, cell-cycle progression and

Fig. 3. Network model for the formation of water.
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Fig. 4. Network model of the MAPK cascade.

Fig. 5. Network model of the glycolysis pathway. The conversion of DHAP to G3P
is taken to be in one-direction only (the reverse is shown by a dashed line, and not
identified).

cell-differentiation. It is also of immense clinical value, since a defect in the
pathway often leads to uncontrolled growth. Proteins in the pathway are thus
natural targets for anti-cancer drugs.

Glycolysis. The glycolysis pathway was the first metabolic pathway to be dis-
covered. It is a classic case of a series of metabolic reactions in which prod-
ucts of one reaction form the substrates (reactants) for the next reaction.
The glycolysis pathway is comprised of 10 such reactions. The reactions
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breakdown (metabolize) each molecule of glucose into two molecules of pyru-
vate. The sequence proceeds in three stages: primary (3 reactions), splitting
(2 reactions) and phosphorylation (5 reactions). Altogether, 15 metabolites
are involved. The pathway is one of the central metabolic pathways in liv-
ing organisms: it provides an essential part of the energy required for the
functioning of a cell, and is used in several metabolic processes.

We note that although Glycolysis contains more metabolites and reactions than
MAPK, the latter requires an extended Petri net [3] for its representation (it
requires “read” arcs), while Glycolysis (and Water) can be represented by normal
Petri nets.

3.2 Data

In this paper, data will be taken to be the result of one or more experiments,
each resulting in a table of the following form:

Places States

s0 s1 s2 . . . . . . sk

p1 s1,0 s1,1 s1,2 . . . . . . s1,k

p2 s2,0 s2,1 s2,2 . . . . . . s2,k

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

pl sl,0 sl,1 sl,2 . . . . . . sl,k

Places are, as noted above, as in the literature on Petri nets. In experiments
in this paper they are restricted to Boolean values (with 0 denoting that the
quantity represented by a place is absent, and 1 denoting that it is present in a
sufficient quantity). Each table (experimental result) of this form gives rise to a
sequence (s0, s1, . . . , sn). A noisy data sequence will contain a sequence of states
that will differ from an ideal (noise-free) sequence of states.

System behaviours are thus sequences of system states of the form Si =
(si,0, si,1, . . . , si,ni

). Each such sequence can be taken as a set of state-
pairs {(si,0, si,1), (si,1, si,2), . . . , (si,ni−1, si,ni

)}; and a set of sequences S =
{S1, S2, . . . , Sj} can be represented by the union of the corresponding sets of
state-pairs. We will call this set StatePairs(S).

3.3 Models

An LGTS trace for a state-pair (si, sf ) is a set Trace(si, sf ) = {T1, T2, . . . , Tk},
where T1 = (t1, r1,m0,m1), T2 = (t2, r2,m1,m2), . . . , Tk = (tk, rk,mk−1,mk),
where: (a) each tj is a guarded transition; (b) rj = mj − mj−1; and (c)
si = m0; and (d) sf = mk. That is, m1,m2, . . . mk−1 are intermediate states.
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An LGTS model for a state-pair (si, sf ) is T (si, sf ) = {(t, r) : (t, r,ma,mb) ∈
Trace(si, sf )}. It is straightforward to extend this to a set of sequences and
state-pairs. Given a set of sequences S = {S1, S2, . . . , Sj}, let TracePairs(S) =⋃

(si,sj)∈StatePairs(S) Trace(si, sj). Then LGTS (S) = {(t, r) : (t, r,ma,mb) ∈
TracePairs(S)}.

It is possible to construct a non-deterministic finite-state automaton (NFA)
from TracePairs(S) that can output all the sequences in S. Further, a probabilis-
tic finite-state automaton (PFA) can be constructed from the NFA by extending
the transition function to include a probability distribution. We omit proofs of
these claims here, and show some example automata instead (see Figs. 8 and 9).

3.4 Algorithms and Machines

Simulated data and probability estimates of the sequences of transitions are
obtained using the probabilistic environment provided within the PRISM sys-
tem [15]. LGTS models are obtained using a Prolog program that implements
the basic system identification task in Sect. 2. All programs were run on a Lenovo
dual processor Core i7 laptop, running a Linux emulation with 4 GB of memory.

3.5 Method

Our method is straightforward:

1. Repeat R times:

For low, medium and high noise levels:
i. Generate N noisy data sequences, using probabilistic versions of transi-

tions in the ideal model
ii. Obtain LGTS proofs for each (noisy) data sequence
iii. Using the transition sequences in the LGTS proofs, determine the extent

to which the correct transitions can be identified. This may involve an
abduction step, somewhat related to SOLD-resolution [18].

The following details are relevant:

1. Low, medium and high levels of noise are defined in terms of the probabil-
ity with which a probabilistic transition generates the output-state of the
corresponding deterministic transition. Here, low noise means that this prob-
ability is 90 %; medium noise means that the probability is 75 %; and high
noise means that the probability is 50 %.

2. In this paper, R = 10. We generate N = 100 noisy data sequences for each
model. The data are generated using a Hidden Markov (HMM) model, in
which states are observed and transitions are hidden.1 Mainly, two kinds of

1 This may be slightly confusing in the first instance, since in HMMs, states are hidden.
Here we are referring to biological system states and biological system transitions.
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probabilities have to be specified for the HMM: the conditional probability
of emitting a (biological system) state, given a (biological system) transition;
and the conditional probability of a transition, given a transition. One addi-
tional probability distribution is needed that allows an initial transition to
be selected randomly. With each deterministic transition in the model t with
input state si and output state sj we associate a probabilistic variant with
input si and a set Sj as output, with sj ∈ Sj . The probability with which the
HMM emits elements of Sj is determined by the noise level (thus, with low
noise, the probability that sj is emitted is 0.9 and so on). Here, the set Sj

consists of sj and all states within a 1-bit Hamming distance of sj . The tran-
sitions that can follow t with output state sj are all transitions that have sj
as an input state. The HMM selects amongst these uniformly. This simulation
is done using the PRISM program.

3. The efficacy of transition identification is computed as follows. Let the target
model of the system consist of a set of transitions Tact. Let the system model
consist of the set of transitions Tpred. We only seek Viterbi probabilities of
such sequences of length |Tact| (this is provided as a length-bound on the
sequences considered by PRISM). The NFA has no loops, and thus |Tpred|
= |Tact|. For each experimental run, we compute E = |Tact − Tpred|/|Tact|,
which is, in effect a false-negative rate. Since the sets Tact and Tpred are of
the same size, the false-positive rate is equal to the false-negative rate. E = 0
denotes perfect identification and E = 1 denotes perfect mis-identification.

3.6 Results

Table 1 shows some supplementary details related to the transition-identification
problem.

Some of the success see in the results of Table 3 may be attributed to
the amount of data provided: the results in Table 3 are from 100 (simulated)
sequences of observed values. In practice, each such sequence can be thought
of as an experiment; and 100 experiments is unusual in Biology, unless dealing
with some form of high-throughput automation like microarray data generation.

Table 1. Number of transitions (T ) in the logical LGTS model and the number of
transitions (T ∗) identified using the probabilistic model (the latter includes an initial
dummy transition). The quantities in parentheses are the standard deviations obtained
from multiple repeats of the identification task. All numbers are rounded up to the
nearest integer, since fractional transitions are meaningless.

Noise Water MAPK Glycolysis

|T | |T ∗| |T | |T ∗| |T | |T ∗|
Low 16 (1) 2 (0) 101 (12) 6 (0) 255 (48) 11 (0)

Med 19 (2) 2 (0) 160 (8) 6 (0) 425 (23) 11 (0)

High 22 (1) 2 (0) 245 (10) 6 (0) 625 (75) 11 (0)
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Table 2. Identification of transitions with small datasets. Here 10 observation
sequences are used to identify the transitions.

Noise Error E

Water MAPK Glyc.

Low 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Med 0.00 (0.00) 0.03 (0.10) 0.20 (0.10)

High 0.55 (0.35) 0.88 (0.20) 0.88 (0.10)

Table 3. Identification of transitions in the target model. E denotes the average false-
negative rate (that is, the fraction of true transitions not identified). Both the predicted
and actual transition sequences are of the same length (see text for details), so the false-
negative and false-positive rates are the same. Thus a value of 0.0 for E denotes all–and
only–the transitions in the model are identified; and a value of 1.0 denotes none of the
transitions in the model are identified. The column P denotes the average Viterbi
probability of the highest ranking transition sequence (transitions in this sequence are
predicted as being in the target model). Noise levels of low, medium, and high refers
to transitions having a probability of 10%, 25 % and 50% of resulting in an incorrect
state. The quantities in parentheses are the standard deviations obtained from multiple
repeats of the identification task.

Noise Error E Probability P

Water MAPK Glyc. Water MAPK Glyc.

Low 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.81 (0.05) 0.55 (0.03) 0.31 (0.04)

Med 0.00 (0.00) 0.00 (0.0) 0.00 (0.00) 0.55 (0.05) 0.17 (0.04) 0.04 (0.01)

High 0.00 (0.00) 0.20 (0.00) 0.90 (0.10) 0.23 (0.04) 0.01 (0.00) 0.01 (0.00)

Table 2 shows the results obtained with significantly fewer observation sequences
(10, instead of 100). Now, identification becomes more difficult at moderate
noise-levels.

These results suggest that when small amounts of data are the norm, we
can expect probabilistic transition-identification to work best at low levels of
transition-noise. While this is perhaps obvious enough, a caveat is nevertheless
worth noting. A good case can be made that noise-levels that we have labelled
here as “medium” and “high” are unlikely to be encountered in practice (for
example, a chemical reaction is very unlikely to result in unexpected products
50 % of the time). We would therefore expect the transition-identification app-
roach proposed here to work well in practice, even if the data instances are few
in number.

Results related to identifying transitions in the target models are in Table 3.
The results show clearly that identification of the set of target transitions is
perfect at low and medium noise-levels, and only degrades when transition noise
is high. It is also apparent that performance is degraded by higher levels of
noise, evident from the decrease in Viterbi probability. It is surprising that
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identification performance is so good, because although the target models stud-
ied are relatively simple, with Water, MAPK and Glycolysis having 1, 5 and 10
transitions with 3, 9 and 15 places, respectively, the hypothesis space of possible
transitions is quite large in each case.

3.7 Transition Identification Worked Example: Water

Shown in Figs. 6, 7, 8 and 9 are examples of the main stages in our approach for
the “Water” transition system. In Fig. 6 we see three sample observational state
sequences. These are value vectors for the named places over the sequence. In
Fig. 7 we show inferred transitions in LGTS trace pairs for these sequences, com-
prising the transition name, difference (reaction) vector, and the corresponding
predecessor and successor states for these transitions. Figures 8 and 9 show the
constructed NFA and PFA, respectively, for this system.

Fig. 6. Transition identification worked example: Noisy data sequences simulating for-
mation of water from hydrogen and oxygen; states shown as place-value tuples.

Fig. 7. Transition identification worked example: LGTS trace for data of Fig. 6.

The transitions in the highest ranked transition sequence from the PFA
(ranked by Viterbi probability obtained using PRISM built-in predicates) are
used to identify the system transitions. In Fig. 9, the highest ranked sequence is
(t1, t2), and the system model is taken to be {(t1, r1), (t2, r2) : (t1, r1), (t2, r2) ∈
LGTS (S)}. Note that this will usually be a subset of LGTS(S) and in some
sense, can be considered a generalisation of that set.
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Fig. 8. Transition identification worked example: Non-deterministic finite-state
automaton obtained from LGTS trace that correctly derives all data. Transition-
identifiers in italics are result of abduction steps made by the theorem-prover to obtain
the LGTS trace. Sx/Sy denotes input/output symbols of transition. All states are
connected to “halt” state” — most omitted for clarity.

Fig. 9. Transition identification worked example: Probabilistic finite-state automaton
obtained from the NFA in (c). Probabilities are estimated using transition sequences
followed by the NFA when emitting data sequences as output.

4 Related Work

There have been several approaches to the identification of Petri nets from data.
For example, in the area of business process mining (BPM) [1] a number of meth-
ods construct Petri nets. An important problem in BPM is process discovery, i.e.,
given a log of activity sequences from some software system, generate a model of
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the business processes involved. This model is often a Petri net, generated, for
example, by first extracting a transition system from the activity log and then
synthesising a Petri net from it [11]. Although this method is well-founded with
theoretical guarantees [5] it has exponential worst-case time complexity and in
practice it can lead to both under- and overfitting, so most implementations use
additional heuristics [1]. Nonetheless, it has a natural declarative formulation [11]
so could provide a basis for further work in ILP.

Another problem in BPM is that of conformance checking, which has been
investigated in ILP [12] by supervised learning of integrity constraints to detect
non-compliance in activity logs. This was extended to a probabilistic framework
using Markov logic and shown to increase accuracy and efficiency [2]. However,
these approaches require the use of negative example traces, which are typically
not available in biological settings. In [7] an unsupervised ILP approach to BPM
was used, but did not use a formalised probabilistic model. In one sense the above
BPM tasks are easier than the standard biological setting, since log files typically
contain many repeated instances of activity sequences, thus providing enough
data to disambiguate Petri net models. In biological settings this is usually not
the case due to the difficulty of running many repeated biological experiments.

One heuristic approach often adopted in BPM has been genetic algorithms,
and a number of authors working on Petri net identification in biology have also
investigated such methods. In [14] grammatical evolution was used, where the
hypothesis space of Petri net models for genetic interactions related to disease
was specified using a context-free grammar, and in [13] the incidence matrix
was evolved directly. However, these approaches were only reported to work on
networks of up to four genes. Furthermore, the above methods cannot identify
extended Petri nets, which contain read and inhibitory arcs [17].

The work of [4] appears to be the first method to reconstruct extended Petri
nets from time series data. In contrast to our work this approach does not enable
constraints on individual transitions. Although there is a form of abduction in
this approach, it does not allow for inductive steps in identification, as in [16,17],
or probabilistic identification, as in this paper. Learning from interpretation
transitions was presented in [9] where an ILP-based approach is used to identify
Boolean network models. However, this does not identify probabilistic transi-
tions.

5 Conclusion

We have studied the identification of transition models of biological systems
under conditions of added transition noise, extending our previous work. Using
the probabilistic logic programming system PRISM [15] we have modelled vary-
ing levels of transition noise in three benchmark biological systems. We apply a
two-step method, first using a logic-programming approach incorporating both
deduction and abduction to identify a complete set of logical guarded transitions
that explain the noisy state-sequences. This logical model is then used to con-
struct a probabilistic finite-state automaton. The parameter-estimates obtained
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(using PRISM) for this automaton are used to identify a subset of the logi-
cal model that is then taken to be the system model. Our experimental results
show that the method can reconstruct known networks from simulated data with
varying amounts of transition-noise.

There are some immediate ways in which the empirical evaluation could be
extended. First, we have presented some evidence that as data size decreases,
system identification is affected at high noise levels. However, “smaller” data
sizes here is still much higher than what is normally available in experimental
life-sciences. For example, how will system identification be affected when data
are available from 2 to 3 experiments? Secondly, we have seen that larger sized
networks are affected more by high noise-levels than networks of smaller size.
Although the high noise-levels used here are unlikely to be encountered in real
data, there is nevertheless a need for further work to investigate the effect of
network size. It is possible that, even at low noise levels, system identification
may degrade for very large networks. Third, although we have examined the
effect of incorrect data, we have not examined the effect of incomplete data.
The probabilistic setting we have used naturally accounts for this by the use
of the EM algorithm to estimate probabilities. We should therefore be able to
investigate the effect of missing data on system identification.
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