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Preface

The HM workshops are intended to be an international forum for researchers in the area
of design, analysis, and experimental evaluation of metaheuristics and their integration
with techniques typical of other fields. Metaheuristics, such as simulated annealing,
evolutionary algorithms, tabu search, ant colony optimization, scatter search, and
iterated local search, are considered state-of-the-art methods for many problems. In
recent years, however, it has become evident that the concentration on a sole meta-
heuristic is rather restrictive. A skilled combination of concepts from different opti-
mization techniques can provide a more efficient behavior and a higher flexibility when
dealing with real-world and large-scale problems. Hybrid metaheuristics are such
techniques for optimization that combine different metaheuristics or integrate AI/OR
techniques into metaheuristics.

The first edition of HM was held in 2004 and, since then, the event has been held
regularly. HM 2016 was already the tenth edition of the Workshop on Hybrid Meta-
heuristics. The preceding workshops were held in Hamburg (2014), Ischia Island (HM
2013), Vienna (HM 2010), Udine (HM 2009), Malaga (HM 2008), Dortmund (HM
2007), Gran Canaria (HM 2006), Barcelona (HM 2005), and Valencia (HM 2004).
Except for its first edition, the accepted papers of previous HM workshops were
published by Springer in the series Lecture Notes in Computer Science (LNCS 3636,
LNCS 4030, LNCS 4771, LNCS 5296, LNCS 5818, LNCS 6373, LNCS 7919, LNCS
8457).

HM 2016 continued to be the only three-day event entirely dedicated to the inte-
gration of metaheuristics and classic techniques typical of other fields, with the primary
aim of providing researchers and scholars with a wide forum for discussing new ideas
and new research directions. In addition to learning more about their own research area,
the workshop has served to make researchers aware of how their research might
contribute and become really fruitful also in other research areas.

As always, this edition confirmed that hybrid metaheuristics are indeed robust and
effective, and that several research areas can be put together. Slowly but surely, this
process has been promoting productive dialogue among researchers with different
expertise and eroding barriers between research areas.

HM 2016 received an overall of 43 submissions from different countries, between
regular manuscripts and abstracts, with a total of 16 works accepted (15 full papers and
one extended abstract) on the basis of reviews by the Program Committee members and
evaluations by the program chairs. There was one additional abstract for oral presen-
tation only. In keeping with the tradition, we had a double-blind peer review process,
with four to five expert referees per manuscript, so that not only the originality and
overall quality of the papers could be properly evaluated, but also constructive sug-
gestions for improvement could be provided. In light of this, a special thanks is
addressed to each member of the Program Committee and external reviewers for
devoting their valuable time.



The present selection of manuscripts is of interest to all the researchers working on
integrating metaheuristics with other areas for solving both optimization and constraint
satisfaction problems. It also represents a sample of current research demonstrating
how metaheuristics can be integrated with integer linear programming and other
operational research techniques for tackling difficult and relevant problems.

HM 2016 was held in Plymouth, UK, during June 8–10, 2016, and was enriched by
three excellent plenary speakers: Carlos A. Coello, Jin- Kao Hao, and Helena
Ramalhinho Lourenço. We would like to express our gratitude to them all for having
accepted our invitation, and for their participation, which greatly enhanced the quality
of the workshop.

Finally, we would like to express our gratitude to everyone that helped us in any
way for the success of HM 2016, beginning of course with all the authors who sup-
ported the workshop by sending their excellent contributions; and all those who par-
ticipated in these three days entirely dedicated to science. A special thanks is also
addressed to the publicity chair, Antonio Masegosa, for his great job and his valuable
support for the success of HM 2016. Without these components, we would not have
been able to organize a successful scientific congress.

June 2016 Maria J. Blesa
Christian Blum

Angelo Cangelosi
Vincenzo Cutello

Alessandro Di Nuovo
Mario Pavone

El-Ghazali Talbi

VI Preface
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Finding Uniquely Hamiltonian Graphs
of Minimum Degree Three

with Small Crossing Numbers

Benedikt Klocker(B), Herbert Fleischner, and Günther R. Raidl

Institute of Computer Graphics and Algorithms, TU Wien,
Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{klocker,fleischner,raidl}@ac.tuwien.ac.at

Abstract. In graph theory, a prominent conjecture of Bondy and
Jackson states that every uniquely hamiltonian planar graph must have
a vertex of degree two. In this work we try to find uniquely hamiltonian
graphs with minimum degree three and a small crossing number by min-
imizing the number of crossings in an embedding and the number of
degree-two vertices. We formalize an optimization problem for this pur-
pose and propose a general variable neighborhood search (GVNS) for
solving it heuristically. The several different types of used neighbor-
hoods also include an exponentially large neighborhood that is effec-
tively searched by means of branch and bound. To check feasibility of
neighbors we need to solve hamiltonian cycle problems, which is done
in a delayed manner to minimize the computation effort. We compare
three different configurations of the GVNS. Although our implementa-
tion could not find a uniquely hamiltonian planar graph with minimum
degree three disproving Bondy and Jackson’s conjecture, we were able to
find uniquely hamiltonian graphs of minimum degree three with crossing
number four for all number of vertices from 10 to 100.

Keywords: Variable neighborhood search · Uniquely Hamiltonian
graphs · Combinatorial optimization

1 Introduction

A lot of research in graph theory focuses on hamiltonian cycles. The problem
of finding hamiltonian cycles is well studied in theoretical aspects [12] and in
practical aspects as a special case of the traveling salesman problem [2]. An
interesting topic in graph theory is the question of how many hamiltonian cycles
a given graph has. A simpler version of this question only asks if there is exactly
one hamiltonian cycle in a given graph.

In this paper we will only be concerned with undirected simple graphs and
just write graph for this type of graphs. A graph G = (V,E) is uniquely hamil-
tonian if and only if it contains exactly one hamiltonian cycle, i.e., a cycle visiting

This work is supported by the Austrian Science Fund (FWF) under grant P27615.

c© Springer International Publishing Switzerland 2016
M.J. Blesa et al. (Eds.): HM 2016, LNCS 9668, pp. 1–16, 2016.
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2 B. Klocker et al.

each node exactly once. A graph G is planar if and only if it has a planar embed-
ding, i.e., it can be drawn in the Euclidean plane without any crossing edges. The
crossing number cr(G) of a graph G is the smallest possible number of crossings
in an embedding of G into the plane. Last but not least, a graph G has minimum
degree δ(G) = k if each node has at least k incident edges.

One type of problem in the area of uniquely hamiltonian graphs is to deter-
mine for a given class of graphs if it contains a uniquely hamiltonian graph.
Bondy and Jackson [4] showed that every uniquely hamiltonian graph with n
vertices has a vertex with degree at most c log(8n) + 3 for a small constant c.
This limits the minimum degree of a uniquely hamiltonian graph (note that
a better lower bound for δ(G) has been established in [1]). Bondy and Jackson
proved in the same paper also a simpler statement: Every planar uniquely hamil-
tonian graph contains at least two vertices of degree two or three. Furthermore,
they stated an interesting still unsolved conjecture that every planar uniquely
hamiltonian graph contains a vertex of degree two.

In the case of non-planar graphs a question by Sheehan [21] asks whether
or not a uniquely hamiltonian 4-regular graph exists. Note that a graph which
only contains vertices with odd degree cannot be uniquely hamiltonian [22].
Fleischner [9] showed that in the case of multigraphs there exist 4-regular uniquely
hamiltonian graphs. In more recent work Fleischner [10] constructed an infinite
family of uniquely hamiltonian (simple) graphs with minimum degree four. This
surprising result leads to the guess that there may also be a uniquely hamiltonian
planar graph with minimum degree three which would disprove the conjecture of
Bondy and Jackson. Entringer and Swart [8] constructed already in 1980 uniquely
hamiltonian graphs with minimal degree three, but they are not planar.

In this paper we transform the problem of finding a uniquely hamiltonian
planar graph with minimum degree three into a bi-objective optimization prob-
lem which minimizes the crossing number and the number of vertices with degree
two. To solve this problem nearly optimal we propose a general variable neigh-
borhood search (GVNS) heuristic [14]. The GVNS framework was already suc-
cessfully applied to other graph theoretical problems, see, e.g., [5].

As the search space increases exponentially with increasing number of vertices
a heuristic could be beneficial compared to an exact approach. In fact, before we
implemented the general variable neighborhood search, we tried to apply an exact
approach, which enumerates graphs of a given vertex degree in a clever way and
tests if they are uniquely hamiltonian [19]. With that approach we were able to
check that no uniquely hamiltonian planar graph with minimum degree three and
with 22 or less vertices exists. Unfortunately, for graphs with more than 22 vertices
the running time explodes because of the vast number of graphs to check.

One of our proposed neighborhood structures is exponentially large and we
use a branch-and-bound procedure to find the best neighbor in its neighbor-
hoods. This embeds the idea of a large neighborhood search [20] in our GVNS.
We will see that the bottleneck in our algorithm, which consumes most of the
running time, are the expensive unique hamiltonicity checks. To reduce the
number of such checks we keep infeasible, not uniquely hamiltonian, solutions
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formally in our neighborhood. Only after finding the best neighbor we apply a
Lin-Kerninghan heuristic [16] and in a later step we use Concorde [7] to check
for feasibility.

In the next section we describe some transformations of the problem and
formally state the resulting optimization problem. In Sect. 3 we describe our
GVNS framework and the neighborhood structures in detail. The comparison
of three different configurations and the experimental results are presented in
Sect. 4. Finally, we conclude with Sect. 5 and propose some further work ideas.

2 Problem Description

In graph theory an important and challenging open question is whether or
not a uniquely hamiltonian planar graph with minimum degree three (UHPG3)
exists [4]. Bondy and Jackson [4] conjectured that every planar uniquely hamil-
tonian graph contains a vertex of degree two, i.e., that no UHPG3 exists. So
far, however, neither could a UHPG3 be found nor could it be proven that none
exists.

To disprove Bondy and Jackson’s conjecture, it would be enough to find a
planar graph with minimum degree three that contains an arbitrarily selected
fixed edge e ∈ E and exactly one hamiltonian cycle containing this edge e. This
means the graph may contain also other hamiltonian cycles which do not contain
the edge e. From such a graph we can remove the edge e = (v, w), duplicate the
remaining graph and connect the two copies by adding edges (v, v′) and (w,w′),
where v′ and w′ are the duplicates of nodes v and w, respectively. The resulting
graph is then uniquely hamiltonian and still planar with minimum degree three.
We call a uniquely hamiltonian graph whose Hamiltonian cycle contains the
known edge e fixed edge uniquely hamiltonian graph (FEUHG).

In this work we concentrate on the optimization problem variant of finding a
graph G with a given number of nodes n = |V | that as far as possible corresponds
to a UHPG3. To this end, we relax the conditions that the graph must be planar
and must have minimum degree three and instead minimize the deviations from
these properties.

To our knowledge, the problem of finding graphs that as far as possible
correspond to a UHPG3 has so far not been considered in a more systematical,
and in particular computational way.

More specifically, we consider the bi-objective optimization problem to find
a FEUHG G together with an embedding into the plane and minimize

– the number of edge crossings and
– the number of vertices with degree two.

To obtain a single-objective optimization problem we linearly combine these two
objectives with corresponding weights α and β.

Since the problem of computing the crossing number of a graph is NP-hard
(see [11]), it makes sense to approximate this value. We do this by allowing only
crossings between edges which are not part of the uniquely hamiltonian cycle
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1 2 3 4 5 6 7 8 9 10

Fig. 1. Example solution with two crossings and no nodes of degree two. Edges of the
hamiltonian cycles are bold and chords are colored red and blue. (Color figure online)

of the graph. This relaxation allows us to fix a hamiltonian cycle in advance
and then only concentrate on the problem of adding additional edges (chords)
between vertices that are no neighbors on the cycle. Since the added chords are
not allowed to cross with an edge of the hamiltonian cycle, there are only two
possibilities how to draw a chord: either outside the cycle or inside the cycle. We
encode this two states, inside or outside, of a chord by two colors.

Let us assume without loss of generality that V = {1, . . . , n} and our pre-
defined cycle C visits the nodes in the natural order from 1 to n before getting
back to 1. If we fix the chords and their colors it is easy to derive the minimal
number of crossings. To see this, we draw the nodes from 1 to n on one line,
such that the hamiltonian cycle consists of this line together with a half cycle
connecting the vertices n and 1. We draw now every chord as a half cycle, either
above the line or below the line depending on the color of the chord. Figure 1
illustrates this construction with an example. For this construction we get that
two chords (i, j) and (k, �) with 1 ≤ i < j ≤ n and 1 ≤ k < � ≤ n cross if and
only if their corresponding half cycles cross. This is the case if and only if the
two chords have the same color and

i < k < j < � or k < i < � < j (1)

holds. Notice that in any drawing of a graph, two chords, which are on the same
side of the graph and satisfy (1), cross at least once. This implies the optimality
of our construction.

All together we get the following optimization problem. Given the cycle C
over nodes V = {1, . . . , n}, let

H = {(i, j) | i = 1, . . . , n − 2, j = i + 2, . . . , n} \ {(1, n)}

be the set of all possible chords. A candidate solution is represented by (H, c),
where H ⊆ H is the subset of selected chords and c : H → {0, 1} specifies their
coloring by assigning either 0 or 1.
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minimize
H⊆H

c:H→{0,1}
α ·

∑

(i,j)∈H

|{(k, �) ∈ H : c(i, j) = c(k, �), i < k < j < �}|

+ β ·
⎛

⎝n −
∣∣∣∣∣∣

⋃

(i,j)∈H

{i, j}
∣∣∣∣∣∣

⎞

⎠
(2)

subject to: there is no hamiltonian cycle in C ∪ H containing
edge (1, 2) and at least one chord.

(3)

In this formulation, there is always the same edge, namely the edge (1, 2), fixed.
This eliminates some symmetries. Be aware that a vertex has degree three or
more if and only if it is incident to at least one used chord. Therefore, the union
in the second part of the objective expression (2) contains exactly all vertices of
degree three or more. In the following we refer to constraint (3) also simply as
unique hamiltonicity.

The problem of checking if a given (planar) graph contains a hamiltonian
cycle is NP-complete. Therefore, the problem of checking if a given (planar)
graph contains no hamiltonian cycle is in coNP. If coNP �= NP this would also
imply that the latter problem is not in NP. Thus, checking only feasibility in our
model is already a hard problem.

3 General Variable Neighborhood Search with Delayed
Feasibility Checking

In this section we will present our algorithmic approach to tackle the optimiza-
tion problem described in Sect. 2. As mentioned checking only feasibility of an
instance in our model is already a hard problem. Therefore, the use of heuris-
tics, instead of an exact algorithm, appears appropriate. We propose a general
variable neighborhood search (GVNS) as framework to solve the problem heuris-
tically [13,14] and combine it with Concorde [7] for checking feasibility w.r.t.
unique hamiltonicity. Remember that a solution is represented by the set of
chords H and the associated coloring c for each chord in H. We start with the
empty initial solution H = ∅, i.e., just the cycle C without any chords, as this
is always a feasible solution.

The GVNS contains a variable neighborhood descent (VND) for locally
improving candidate solutions in systematic ways according to five different types
of neighborhood structures, and a parameterized shaking neighborhood struc-
ture for diversifying the search. In the following we describe these neighborhood
structures and the corresponding search algorithms.

3.1 VND Neighborhoods

The following types of neighborhoods and respective algorithms to search them
are considered within the VND. Different specific configurations will be consid-
ered, which will be described in Sect. 3.2. In general, if an improved solution
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is achieved within one neighborhood, the VND restarts with its first neighbor-
hood structure; otherwise it continues with the next as long as one is available.
When the VND terminates, a solution is obtained that is locally optimal w.r.t.
all used neighborhood structures. All these neighborhoods are searched in a
best-improvement fashion, and ties are broken randomly.

Changing Color of k Chords [cchol(k)]. This neighborhood consists of all
solutions where the colors of k chords are flipped for some parameter k ≥ 1. The
size of the neighborhood is therefore mk where m is the number of chords in
the current solution. We apply this neighborhood structure for k = 1 and k = 2
since the neighborhood is relatively small and easy to search. Since only the
colors of chords are changed, the structure of the solution graph stays the same,
and therefore the unique hamiltonicity is still valid for each neighbor of a feasible
incumbent solution. To calculate the objective gain of a neighbor incrementally
we simply count the number of crossings with the old color and with the new
color and take the difference.

Removing k Chords and Adding � New Chords [remadd(k, �)]. This
neighborhood consists of all solutions where exactly k chords are removed from
the current solution and � new chords are added. The size of the neighborhood is
therefore mk(M − m)� where m is the number of chords in the current solution
and M is the number of possible chords (M = (n−2)(n−1)/2−1). For � > 0 the
neighborhood may contain solutions which are infeasible as they are not uniquely
hamiltonian. Instead of checking feasibility immediately for each neighbor, which
can be very time-expensive, we first evaluate all neighboring solutions according
to our objective function, filter out any solutions that are not better than our
incumbent, and sort all better solutions according to their objective function
gain. Only then we consider the these solutions according to decreasing gain,
check the feasibility of each w.r.t. unique hamiltonicity, and immediately return
with the first, and thus best, feasible solution. To calculate the objective gain of
a neighbor incrementally we count the crossings of the removed edges and the
crossings of the added edges and take the difference. Additionally we have to
check all vertices incident to removed and added edges if their degree decreased
to two or increased to three or higher. In case there are multiple, i.e., equally
good, best neighbors, all of these are checked for feasibility and one is chosen at
random. This random tie breaking turned out to be crucial for the performance.
The procedure of checking unique hamiltonicity will be described in Sect. 3.4. In
case of � = 0 we do not need this check as a solution obtained from a feasible
solution by just removing chords cannot become infeasible. The values used for
k and � will be described later.

Computing Optimal Crossings [compcross]. This is an exponentially large
neighborhood consisting of all solutions that have the same underlying graph as
the current solution but different colors on the chords. The size of this neighbor-
hood is thus 2m − 1, where m is the number of chords in the current solution.
Instead of a naive enumeration we search this neighborhood in an efficient way by
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a branch-and-bound procedure to obtain a best possible coloring of the chords.
The crossings of the current solution can be used as a good initial upper bound,
which is in many cases already tight. In every level of the search tree we assign
one color to one chord. The sequence of chords is predefined randomly and used
to determine which chord is colored next. As a branching strategy we use depth-
first search. To compute a local lower bound we use the crossings of the currently
assigned chords and add for every not assigned chord the minimum of crossings
to the assigned chords for the two colors. As already mentioned finding the opti-
mal crossings is an NP-hard problem, but with the described branch-and-bound
procedure it can be computed relatively fast compared to the effort which is
needed to check for unique hamiltonicity.

Split Crossings [splitcross]. This neighborhood is a special subset of the
neighborhood remadd(2, 2) which tries to resolve a crossing by splitting. More
precisely for every crossing pair of chords (i, j) and (k, �) with i < k < j < �
we construct a new solution by removing these two edges and adding the chords
(i, �) and (k, j) instead. There are two exceptions: if j = k + 1 the edge (k, j)
would be no chord and therefore this case is skipped. Similarly, case i = 1
and � = n is excluded since these two vertices are already connected in the
original hamiltonian cycle. If the chords (i, �) or (k, j) already exist in the current
solution, this neighbor is skipped. If the newly added edges do not generate
other crossings and the new graph is still uniquely hamiltonian we get a solution
with one crossing less. The size of this neighborhood is equal to the number
of crossings in the current solution and is therefore typically a small subset of
remadd(2, 2).

Merge Crossings [mergecross]. This neighborhood is a special subset of
the neighborhood remadd(1, 2) which tries to resolve a crossing by merging the
crossing point into one of the neighboring vertices. We generate up to four new
solutions for every pair of crossing chords (i, j) and (k, �) with i < k < j < � by
applying the following operations:

1. Remove (i, j) and add (i, k) and (k, j).
2. Remove (i, j) and add (i, �) and (j, �).
3. Remove (k, �) and add (i, k) and (i, �).
4. Remove (k, �) and add (k, j) and (j, �).

Cases where the edges to be added do not correspond to valid chords or
where they already exist in the solution are skipped again.

3.2 VND Neighborhood Selection

In our experiments in Sect. 4, we will consider three different configurations of
VND neighborhood, which are shown in Table 1. The VND considers the stated
specific neighborhoods in the listed order.
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Table 1. Three different neighborhood structure sets used to compare with each other

Slim set Medium set Thick set

1. cchol(1) 1. cchol(1) 1. cchol(1)

2. cchol(2) 2. cchol(2) 2. cchol(2)

3. remadd(1, 0) 3. remadd(1, 0) 3. remadd(1, 0)

4. remadd(0, 1) 4. remadd(0, 1) 4. remadd(0, 1)

5. splitcross 5. splitcross

6. mergecross 6. mergecross

7. compcross 7. compcross

8. remadd(1, 1) 8. remadd(1, 1)

9. remadd(2, 1) 9. remadd(2, 1)

10. remadd(2, 2)

It is important to notice that all neighborhoods choose the candidates ran-
domly if their improvements are the same. This implies that the slim neigh-
borhood set is still capable of reaching all feasible solutions. The neighborhoods
which do not require rechecking unique hamiltonicity are listed before the expen-
sive neighborhoods which require rechecking. The only exception of this rule is
the compcross neighborhood which may also need significant time for larger
graphs as it solves an NP-problem by branch-and-bound.

3.3 Shaking

To diversify the search, the GVNS applies the following shaking operation para-
meterized by k ∈ {

3, . . . , 
n
2 �}. Considering the chords in an order of non-

increasing number of crossings, k chords are deleted from the current solution.
If there are less than k chords in the current solution we delete them all. Be
aware that there are in general multiple chords with the same number of cross-
ings (most of them will have no crossings in a good solution), and they are then
considered in a random order. Thus, there also is a significant randomization
involved. Since we do not know in advance how many chords a solution will
have, it is so far not guaranteed that in principle our GVNS can reach every
possible solution from an incumbent solution. Therefore, we add as last shaking
operation the removal of all chords. In other words this last shaking operation
corresponds to a complete restart of the GVNS, and we trust on the VND to
add chords again.

Thus, our shaking neighborhoods do not contain the complete solution space
but rather a cone of all solutions we can get by removing chords from the current
solution. Just removing chords in the shaking has the advantage that we will
never violate unique hamiltonicity, and thus we always get a feasible solution
efficiently. It would be difficult to generate a random solution in the complete
feasible solution space since we would have to check for unique hamiltonicity
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until we find a solution satisfying it. This would cost a lot of time which is not
our intention behind shaking. However, our overall approach guarantees that
every feasible solution can in principle be found by descending from one of the
solutions generated by shaking. This can easily be seen by the fact that every
solution can be constructed by adding chords from the empty solution.

3.4 Checking Unique Hamiltonicity

In this section we describe the procedure we apply to check if a given solution
is uniquely hamiltonian, i.e., satisfies (3). The running time of this procedure is
crucial for the success of the algorithm since it is the bottleneck of the GVNS
as we will see in the experimental results in Sect. 4.

As we only check unique hamiltonicity for neighbors which would improve
the current solution we can descend to the neighbor whenever the condition is
satisfied. This means that the number of procedure calls where the condition
is satisfied corresponds to the number of local improvements. However, it is
possible that any number of neighbors get checked before one is found which
satisfies condition (3). Therefore, we do not have a better bound on the number
of negative procedure calls than the current neighborhood size.

Since the hamiltonian cycle problem is a special case of the well studied
travelling salesman problem, there already exist a lot of practically efficient algo-
rithms to approach the hamiltonian cycle problem. To model the hamiltonian
cycle problem as a traveling salesman problem one simply assigns all pairs of
nodes corresponding to edges in the graph, i.e., E, unit costs and all other pairs
of nodes larger costs. The question whether or not a hamiltonian cycle exists is
then equivalent to the question whether or not a tour with costs |V | exists. If
we want to fix a subset of edges E′ ⊆ E, then we can give them zero costs. The
question if a hamiltonian cycle containing all edges in E′ exists is then equivalent
to the question if a tour with costs |V | − |E′| exists. Thus, we can also model a
fixed edge hamiltonian cycle problem.

To check condition (3), more specifically we need to check if a hamiltonian
cycle containing edge (1, 2) and edge e for any chord e ∈ H exists. This means,
we have to solve |H| traveling salesman problems before we know for sure that
condition (3) is satisfied. If at some point we find a hamiltonian cycle we can
stop and know that the condition is not satisfied.

Clearly, solving |H| traveling salesman problems would be very time-
expensive. Fortunately, we can apply an improvement in our case that takes into
account that the considered candidate solution graph is a neighbor of our cur-
rent solution for which we already know that it satisfies condition (3). Remember
that the only situation where we have to recheck the condition is for neighbors
where we removed k chords and added � > 0 new chords. In this situation it is
sufficient to check if there exists a hamiltonian cycle containing the edge (1, 2)
and at least one of the newly added chords. Therefore, we only have to solve �
traveling salesman problems to perform this check.

As we already mentioned there may be many more negative procedure
calls than positive ones and therefore we need a solver which is able to
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find hamiltonian cycles fast. Thus, we decided to use a heuristic to find
hamiltonian cycles. We use Helsgaun’s version of the Lin-Kerninghan heuris-
tic, which is faster than exact approaches but can still solve many problems to
optimality [16]. If one run of the LKH heuristic does not find a hamiltonian
cycle we apply ten further runs of the heuristic. If it still does not find a hamil-
tonian cycle we assume that the graph does not contain anyone. To avoid that
the algorithm returns an infeasible solution as an optimal solution at the end
we use Concorde [7] to check for hamiltonian cycles. As Concorde needs much
more time than the Lin-Kerninghan heuristic, we only call Concorde whenever
a neighbor would lead to a new best solution and the Lin-Kerninghan heuristic
did not find a cycle in any run.

This means it may happen that an infeasible neighbor gets visited if it is no
new best solution. In this case Lin-Kerninghan calls, where we assume that the
current solution is feasible, are not correct anymore. This is no problem since
as soon as the search visits a neighbor which would be a new best solution,
Concorde gets applied and shows that the neighbor is infeasible. As we will see
in Sect. 4 this situation will almost never happen for small vertex degrees.

Further Improvements. To further improve the running time of checking
unique hamiltonicity we exploit the fact that only small parts of the graph
change when doing local improvements. Obviously the same hamiltonian cycles
may frequently appear in the investigated graphs having only small differences.
The idea is now to store found hamiltonian cycles in an appropriate data struc-
ture which allows us to check for a new graph if it contains a cycle from the
data structure efficiently. If searching through this data structure can be done
reasonably fast, this will improve the overall runtime. We can represent a cycle
or a whole graph by the set of its edges. Thus, we need a data structure which
stores sets and can compute subset queries quickly. This problem is known as the
containment query problem [6]. It is the complementary problem of the better
known subset query problem, which furthermore corresponds to the well known
partial match problem [18].

For our purposes we used a trie data structure presented in [3]. Note that
we only store the set of chords used in the hamiltonian cycle. Checking if a
subset exists in such a data structure needs exponential time in the worst case.
Nevertheless, it is still much faster to search in this data structure than searching
a hamiltonian cycle in practice, as we will see in Sect. 4. There would also be
more sophisticated data structures for storing sets (see for example [15]). In
our case we do not need such complex data structures since our practical tests
indicated that the simple data structure’s time consumption is almost neglectable
in comparison to the effort for finding hamiltonian cycles in the remaining cases.

4 Computational Results

Our VNS-approach is implemented in C++ and compiled with g++ 4.8.4. We
used the LKH-heuristic implementation provided in [17]. The Concorde imple-
mentation from [7] uses CPLEX 12.6.2 for solving. All tests were performed on
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a single core of an Intel Xeon E5540 processor with 2.53 GHz and 10 GB RAM.
The input of our algorithm is simply the number of vertices n ∈ N. For all tests
we used the weights α = 0.25 and β = 1 (see (2)). This implies that all solution
graphs with an objective value smaller than 1 have minimum degree three.

As the instances we used different n values between 10 and 100. We ran all
three configurations (see Table 1) for every instance 20 times with different seed
values and a maximal execution time of 3600 seconds per run. In Table 2 we see
the results for the three different configurations for different instances n. The
columns best contain the best value found in all 20 runs for one configuration.
The columns avg. contain the averages of the results over the 20 runs and the
columns t[s] med. contain the medians of the times until the best solution was
found in each run in seconds. For every instance and every of the three column
types we marked the best value of the three configurations by displaying it bold.

Table 2. Results for the three different configurations

Slim set Medium set Thick set

n best avg. t[s] med. best avg. t[s] med. best avg. t[s] med.

10 0.5 0.5 56.83 0.5 0.5 37.77 0.5 0.5 21.33

15 0.5 0.5 5.45 0.5 0.5 4.92 0.5 0.5 15.77

20 0.5 0.5 13.23 0.5 0.5 12.29 0.5 0.5 21.71

25 0.5 0.5 50.25 0.5 0.5 48.92 0.5 0.5 82.42

30 0.5 0.5 234.6 0.5 0.5 75.03 0.5 0.5 301.92

35 0.5 0.5 139.81 0.5 0.5 209.68 0.5 0.5 442.44

40 0.5 0.5 369.86 0.5 0.5 277.22 0.5 0.6 426.32

45 0.5 0.55 1,020.1 0.5 0.53 714.29 0.5 0.7 1,510.86

50 0.5 0.74 144.2 0.5 0.56 1,007.63 0.5 0.81 321.41

60 0.5 0.93 19.52 0.5 0.83 43.22 0.5 0.94 99.78

70 0.5 0.98 35.76 0.5 0.76 238.53 0.5 1 306.56

80 0.5 0.96 71.46 0.5 0.9 68.08 1 1.2 564.71

90 0.75 1.04 128.52 0.5 0.95 130.56 1 1.46 1,260.15

100 1 1 183.33 0.5 0.96 173.95 0.5 1.66 570.27

As we can see, on average, the medium set found better solutions than the
other two configurations. Note that the running times until the best solution
was found are only comparable if the corresponding solutions are equally good.
Therefore, it makes no sense to compare the time medians for the instances with
n ≥ 45. To verify that the medium solution performs better than the other two
solutions we applied a Wilcoxon signed-rank test. We use a p-value of 5% for
the significance value. As a result we get that the medium set computed for
the instances n = 50, 60, 70 significantly better results than the slim set and for
all instances with n ≥ 40 significantly better results than the thick set. For all
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other instances the difference was not significant. We also compared the slim
set with the thick set and interestingly the slim set computed for the instances
n = 40, 45, 80, 90, 100 significantly better solutions than the thick set.

To compare the running times until the best solution was found we also
applied the test for the running times, but only for the instances with n ≤ 40.
If we compare the medium set and the slim set there is only for the instance
n = 30 a significant difference, where the medium set is significantly faster than
the slim set. If we compare the slim or the medium set with the thick set, we
get that both are for the instances with 15 ≤ n ≤ 35 significantly faster than
the thick set. For n = 10 the thick set is the fastest on average and compared to
the slim set it is also significantly faster.

From these tests we get the intuition that the neighborhood remadd(2,2)
is too large and not beneficial for graphs of medium size or larger sizes. Only
for graphs with size around n = 10 the neighborhood is small enough to be
beneficial. We need, however, more neighborhoods than only adding and remov-
ing chords, as in the slim set, to find good solutions for larger instances. It is
also interesting that the slim set has no significant speed gain compared to the
medium set. From the best column of the medium set we see that we found a
solution with an objective of 0.5 for all given instances. This means that these
solution graphs have minimum degree three and exactly two crossings in the pla-
nar embedding. We also applied some test runs for all other n values between 10
and 100 and found a solution with an objective of 0.5 for every n ∈ {10, . . . , 100}.

Note that the solutions of our problem, as we stated it, are not uniquely
hamiltonian, they are FEUHG. That means to get a uniquely hamiltonian graph
we need to duplicate it as described in Sect. 2, but then the crossings get also
duplicated. Therefore, all our solutions with an objective of 0.5 induce uniquely
hamiltonian graphs with minimum degree three which have embeddings with
four crossings. Therefore, our results impose the following question:

Does there exist a uniquely hamiltonian graph with minimal degree three
and a crossing number smaller than four?

Table 3 contains the number of performed local search improvements for each
neighborhood and each instance with the medium set configuration. The num-
bers are averaged over all 20 runs with 20 different seeds. The column name
ra(x, y) stands for remadd(x, y), splitcr for splitcrossing, mergecr for merge-
crossing and compcr for compcrossing.

Since the shake operations only remove chords, the neighborhood
remadd(0, 1) which only adds one chord is applied after shaking several times.
This explains why this neighborhood is used much more often than the other
neighborhoods.

To find out which part of the algorithm consumes the most time we can
identify three subroutines which have an exponential worst case running time.
The first one is Concorde, which gets applied whenever the search finds a new
best solution for which the LKH-heuristic did not find a second hamiltonian
cycle. The second one is the solver of the containment query problem, which uses
a trie data structure to check if a cycle which was already found is contained
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Table 3. Number of improvements found in the different neighborhood structures for
the medium set configuration

n cchol(1) cchol(2) ra(1, 0) ra(0, 1) splitcr mergecr compcr ra(1, 1) ra(2, 1)

10 2,667 60 0 314,452 677 197 0 3,898 4

15 6,551 3,872 19 279,279 522 856 3,126 3,202 204

20 3,904 1,887 19 202,046 1,599 1,371 1,732 2,211 128

25 2,676 1,179 26 133,997 1,293 1,287 1,311 1,675 86

30 1,828 646 34 92,814 1,201 1,152 895 1,334 63

35 1,257 501 23 63,717 1,013 958 550 1,054 44

40 999 375 24 48,623 844 828 482 869 39

45 756 248 32 36,387 769 771 284 794 30

50 595 193 20 28,707 661 640 232 656 26

60 365 107 25 18,612 553 564 99 559 17

70 264 75 15 12,953 398 410 77 390 13

80 201 53 17 9,573 330 336 50 328 9

90 147 37 17 7,184 258 283 39 263 8

100 123 29 10 5,891 221 229 27 212 5

in the current candidate. The third one is the branch and bound procedure to
calculate the optimal colors of the chords such that they have a minimal number
of crossings.

Table 4 lists running time information and additional information for these
three subroutines and the LKH subroutines with the medium set configuration.
The column HC-Checks contains the number of graphs for which we had to test
the unique hamiltonicity constraint and the UHGs column contains the number
of graphs which satisfied the unique hamiltonicity constraint. The column calls
contains the number of Concorde calls and the column rate contains the number
of graphs which got discarded by a containment query relative to the overall
number of discarded graphs. The columns t[s] contain the overall time used for
all corresponding calls in seconds. The time columns represent median values
and the other columns represent average values over all different seeds. As we
can see the three mentioned subroutines are in total extremely fast compared to
the LKH subroutines which have to get applied very often. Therefore, the LKH
subroutines are clearly the bottleneck of the whole VNS. Another interesting
fact is that Concorde never found a hamiltonian cycle in any of the runs. This
means that whenever LKH did not find a second hamiltonian cycle the graph
was in fact uniquely hamiltonian.

The fact that the rates of the containment queries increase with increasing n
can be explained as follows. First of all, for two solutions which are very similar
it is more likely that they both contain the same hamiltonian cycle than for
solutions which are completely different. This implies that as long as the search
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Table 4. Hard subproblem statistics for the medium set configuration

LKH Concorde Containment B&B
Queries

n HC-Checks UHGs t[s] calls t[s] rate t[s] t[s]

10 1,467,893 255,790 1,356 7 0 4.8 % 3 0

15 1,607,901 258,962 2,480 10 0 5.5 % 4 0

20 1,456,778 200,372 3,230 14 0 7.5 % 7 0

25 1,151,036 137,859 3,421 17 0 10.1 % 8 0

30 929,409 99,379 3,491 21 1 12.3 % 9 0

35 761,117 70,547 3,512 24 1 14.5 % 10 0

40 653,680 55,017 3,518 26 1 17.2 % 11 0

45 570,683 42,607 3,521 30 1 19.3 % 12 0

50 493,993 34,275 3,523 33 2 21.3 % 13 0

60 425,704 23,800 3,523 40 3 28.5 % 14 0

70 323,338 16,864 3,528 46 5 30.6 % 14 1

80 277,038 12,984 3,525 52 9 34.2 % 13 1

90 246,591 10,072 3,515 60 11 39.1 % 17 2

100 204,408 8,324 3,510 65 14 41.3 % 21 4

is concentrated in a local area the containment queries will be very effective.
Only the shaking methods guide the search out of such a local area. The simple
fact that for larger n the search in the local neighborhoods needs longer implies
that it can do less shaking than for smaller n. Therefore, the containment queries
are more effective for larger n.

We want to mention that we tested the algorithm also for n > 100. For these
instances the running times of the subproblems exploded and the VNS could do
only few iterations in reasonable time which lead to poor quality solutions.

5 Conclusions and Future Work

In this paper we presented a new optimization problem for finding uniquely
hamiltonian graphs of minimum degree three with small crossing numbers. We
proposed a general variable neighborhood search framework to solve the problem
heuristically. We proposed different neighborhood structures including one large
neighborhood and different configurations which we compared in experimental
tests. The bottleneck of the proposed algorithm is checking unique hamiltonicity
for every neighbor, to stay in the feasible area. With an implementation of this
framework we were able to find uniquely hamiltonian graphs of minimum degree
three with only four crossings for many different instances, which naturally gives
rise to the question if we can do better.

Future work may be to develop an exact algorithm for the proposed prob-
lem and compare the two algorithms for small instances. One problem of the
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proposed heuristic is that the constraint of unique hamiltonicity is completely
independent from the objective function. If we could measure how promising a
graph is according to the unique hamiltonicity constraint we could better guide
the search. Furthermore, it would be interesting to test if other heuristics than
LKH or other variants of LKH for checking unique hamiltonicity perform better.
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Abstract. In this paper we present the application of a recently pro-
posed, general, algorithm for combinatorial optimization to the unbal-
anced minimum common string partition problem. The algorithm, which
is labelled Construct, Merge, Solve & Adapt, works on sub-
instances of the tackled problem instances. At each iteration, the incum-
bent sub-instance is modified by adding solution components found in
probabilistically constructed solutions to the tackled problem instance.
Moreover, the incumbent sub-instance is solved to optimality (if possi-
ble) by means of an integer linear programming solver. Finally, seem-
ingly unuseful solution components are removed from the incumbent
sub-instance based on an ageing mechanism. The results obtained for the
unbalanced minimum common string partition problem indicate that the
proposed algorithm outperforms a greedy approach. Moreover, they show
that the algorithm is competitive with CPLEX for problem instances
of small and medium size, whereas it outperforms CPLEX for larger
problem instances.

1 Introduction

The drawback of exact solvers in the context of combinatorial optimization prob-
lems is often that they are not applicable to problem instances of realistic sizes.
When small problem instances are considered, however, exact solvers are often
extremely efficient. This is because a considerable amount of time, effort and
expertise has gone into the development of exact solvers. As examples consider
general-purpose integer linear programming solvers such as CPLEX and Gurobi.
Having this in mind, recent research efforts focused on ways of making use of
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exact solvers within heuristic frameworks even in the context of large problem
instances. A recently proposed algorithm labelled Construct, Merge, Solve
& Adapt (CMSA) [1,3] falls into this line of research. The algorithm works as
follows. At each iteration, solutions to the tackled problem instance are gener-
ated in a probabilistic way. The solution components found in these solutions
are then added to an incumbent sub-instance of the original problem instance.
Subsequently, an exact solver such as, for example, CPLEX is used to solve the
incumbent sub-instance to optimality. Moreover, the algorithm makes use of a
mechanism for deleting seemingly useless solution components from the incum-
bent sub-instance. This is done in order to avoid that these solution components
slow down the exact solver when applied to the sub-instance.

In this work we apply the CMSA algorithm to the unbalanced minimum
common string partition problem (UMCSP) [4]. This problem, which is NP-
hard, is a generalization of the well-known minimum common string partition
problem (MCSP) [5]. The UMCSP seems to be well-suited for being tackled with
CMSA, because the integer linear programming (ILP) model that we present in
this work (see Sect. 2) contains an exponential number of binary variables and
can, therefore, only be solved to optimality in the context of problem instances of
small and medium size. The obtained results show that, indeed, the application of
CMSA obtains state-of-the-art results, especially in the context of large problem
instances.

The remaining part of the paper is organized as follows. In Sect. 2 we pro-
vide a technical description of the unbalanced minimum common string partition
problem. Moreover, we describe the first ILP model for this problem. Next, in
Sect. 4, the application of CMSA to the tackled problem is outlined. Finally,
Sect. 5 provides an extensive experimental evaluation and Sect. 6 offers a discus-
sion and an outlook to future work.

2 Unbalanced Minimum Common String Partition

The UMCSP problem can technically be described as follows. Given is an input
string s1 of length n1 and an input string s2 of length n2, both over the same finite
alphabet Σ. A valid solution to the UMCSP problem is obtained by partitioning
s1 into a set P1 of non-overlapping substrings, and s2 into a set P2 of non-
overlapping substrings, such that exists a set S with S ⊆ P1 and S ⊆ P2 and
no letter a ∈ Σ is simultaneously present in a string x ∈ P1\S and a string
y ∈ P2\S. Henceforth, given P1 and P2 let us denote the largest subset S such
that the above-mentioned condition holds by S∗. The objective function value
of a solution (P1, P2) is then |S∗|. The goal consists in finding a solution (P1, P2)
such that |S∗| is minimal.

Consider the following example. Given are DNA sequences s1 = AAGACTG
and s2 = TACTAG. A trivial valid solution can be obtained by partitioning
both strings into substrings of length 1, that is, P1 = {A,A,A,C,T,G,G}
and P2 = {A,A,C,T,T,G}. In this case, S∗ = {A,A,C,T,G}, and the
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objective function value is |S∗| = 5. However, the optimal solution, with objec-
tive function value 2, is P1 = {ACT,AG,A,G}, P2 = {ACT,AG,T} and
S∗ = {ACT,AG}.

Note that the UMCSP problem [4] is a generalization of the well-known
minimum common string partition (MCSP) problem, which was introduced in [5]
due to its relation to genome rearrangement. In fact, the MCSP problem is
obtained in case the input strings s1 and s2 are related, that is, in case all letters
appear the same number of times in s1 and in s2. The MCSP problem was shown
to be NP -hard even in very restrictive cases [8]. Therefore, the more general
UMCSP problem is also NP -hard. In contrast to the MCSP, the UMCSP has
not been tackled yet by means of heuristics or metaheuristics. The only existing
algorithm is a fixed-parameter approximation algorithm described in [4]. The
more specific MCSP problem has been tackled by a greedy heuristic [9], an ant
colony optimization approach [6,7], and probabilistic tree search [2]. Finally, the
application of the CMSA algorithm to the MCSP problem (see [3]) is currently
the state-of-the-art algorithm for this problem.

3 An ILP Model for the UMCSP Problem

In order to derive an ILP model for the UMCSP problem, we introduce in the
following the common block concept, which allows to re-phrase the problem in a
different way. A common block bi concerning input strings s1 and s2 is denoted
as a triple (ti, k1

i , k
2
i ) where ti is a string which can be found starting at position

1 ≤ k1
i ≤ n1 in string s1 and starting at position 1 ≤ k2

i ≤ n2 in string s2.
Let B = {b1, . . . , bm} be the arbitrarily ordered set of all possible common
blocks of s1 and s2. Moreover, given a string t over alphabet Σ, n(t, a) denotes
the number of occurrences of letter a ∈ Σ in string t. Specifically, n(s1, a),
respectively n(s2, a), are the number of occurrences of letter a ∈ Σ in input
string s1, respectively s2. Given the definition of B, a subset S of B corresponds
to a valid solution to the UMCSP problem iff the following conditions hold:

1.
∑

bi∈S n(ti, a) = min{n(s1, a), n(s2, a)} for all a ∈ Σ. In other words, the sum
of the occurrences of a letter a ∈ Σ in the common blocks present in S must
be equal to the minimum number of occurrences of letter a in s1 and s2.

2. For any two common blocks bi, bj ∈ S it holds that their corresponding strings
neither overlap in s1 nor in s2.

With these definitions we can state the following ILP model for the UMCSP
problem, which uses for each common block bi ∈ B a binary variable xi indicating
its selection in the solution. In other words, if xi = 1, the corresponding common
block bi is selected for the solution, and if xi = 0, common block bi is not selected.

min
m∑

i=1

xi (1)

s.t.
∑

i∈{1,...,m|k1
i ≤j<k1

i+|ti|}
xi = 1 for j = 1, . . . , n1 (2)
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∑

i∈{1,...,m|k2
i ≤j<k2

i+|ti|}
xi = 1 for j = 1, . . . , n2 (3)

m∑

i=1

n(ti, a)xi = min{n(s1, a), n(s2, a)} for a ∈ Σ (4)

xi ∈ {0, 1} for i = 1, . . . ,m

The objective function (1) minimizes the number of selected common blocks.
Equation (2) ensure that the strings corresponding to the selected common blocks
do not overlap with respect to s1, and Eq. (3) ensure the same with respect to
s2. Finally, Eq. (4) ensure that the number of occurrences of each letter in the
selected strings is equal to the minimum number of occurrences of this letter in
s1 and s2.

4 Application of CMSA to the UMCSP Problem

The (CMSA) algorithm, whose pseudo-code is given in Algorithm 1, works as
follows. It maintains an incumbent sub-instance B′, which is a subset of the
complete set B of common blocks. Moreover, each common block bi ∈ B has
a non-negative age value denoted by age[bi]. In an initialization step, the best-
so-far solution Sbsf is set to null, indicating that no such solution exists yet,
and the sub-instance B′ is initilized to the empty set. Then, at each iteration a
number of na solutions is probabilistically generated, see function ProbabilisticSo-
lutionGeneration(B) in line 6 of Algorithm 1. The common blocks found in these
solutions are added to B′ and their age is re-initilalized to 0. Afterwards, an ILP
solver—we used CPLEX—is applied to solve sub-instance B′, if possible within
the given CPU time limit, to optimality; see function ApplyExactSolver(B′) in
line 12 of Algorithm 1. If S′

opt is better than the current best-so-far solution Sbsf ,
solution S′

opt replaces the best-so-far solution (line 13). Next, sub-instance B′ is
adapted, based on solution S′

opt and on the age values of the common blocks.
This is done in function Adapt(B′, S′

opt, agemax) in line 14. In the following we
outline the functions of the algorithm in more detail.

Function ProbabilisticSolutionGeneration(B): Henceforth we call S ⊂ B a valid
partial solution if the substrings corresponding to the common blocks in S do not
overlap neither concerning s1 nor concerning s2. Furthermore, let set Ext(S) ⊂
B\S denote the set of common blocks that may be used in order to extend S such
that the result is again a valid (partial) solution. Note that when Ext(S) = ∅,
S corresponds to a complete solution. Given these definitions, a simple greedy
heuristic—which is an extension of the greedy heuristic from [9] for the MCSP
problem—starts with the empty partial solution S := ∅ and chooses at each step
from Ext(S) the common block with the longest substring. This greedy heuristic
will henceforth be called Greedy.

In function ProbabilisticSolutionGeneration(B) of line 6 of Algorithm 1 we
make use of the following probabilistic version of Greedy for generating solu-
tions to the tackled problem instance. More specifically, the construction of a
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Algorithm 1. CMSA for the UMCSP problem
1: given: set B corresponding to the tackled problem instance, values for parameters

na and agemax

2: Sbsf := null; B′ := ∅
3: age[bi] := 0 for all bi ∈ B
4: while CPU time limit not reached do
5: for i = 1, . . . , na do
6: S := ProbabilisticSolutionGeneration(B)
7: for all bi ∈ S and bi /∈ B′ do
8: age[bi] := 0
9: B′ := B′ ∪ {bi}
10: end for
11: end for
12: S′

opt := ApplyExactSolver(B′)
13: if |S′

opt| < |Sbsf | then Sbsf := S′
opt

14: Adapt(B′, S′
opt, agemax)

15: end while
16: return sbsf

solution (see Algorithm 2) starts with the empty partial solution S := ∅. At each
construction step, a solution component bi from Ext(S) is chosen and added to S.
This is done until S is a complete solution, that is, until |Ext(S)| = 0. The choice
of bi is done as follows. First, a value δ ∈ [0, 1) is chosen uniformly at random.
In case δ ≤ drate, bi is chosen such that |ti| ≥ |tj | for all bj ∈ Ext(S), that is, one
of the common blocks whose substring is of maximal size is chosen. Otherwise,
a candidate list L containing the (at most) lsize longest common blocks from
Ext(S) is built, and bi is chosen from L uniformly at random. In other words,
the greediness of this procedure depends on the pre-determined values of drate
(determinism rate) and lsize (candidate list size). Both are input parameters of
the algorithm.

Function ApplyExactSolver(B′): In this function, CPLEX is applied to the ILP
model outlined in Sect. 3 for solving sub-instance B′. This is achieved by replac-
ing all occurrences of B in this ILP model with B′, and by replacing m with |B′|.
Function Adapt(B′, S′

opt, agemax): First, the age of each common block in
B′\S′

opt is incremented while the age of each common block in S′
opt ⊆ B′ is re-

initialized to zero. Then, those common blocks from B′ whose age has reached
the maximum component age (agemax) are deleted from B′. The motivation
behind the aging mechanism is that common blocks which never appear in the
solutions of B′ returned by the exact solver should be removed from B′ after
some time, because they would otherwise slow down the exact solver on the long
term. In contrast, common blocks which appear in the solutions returned by the
exact solver seem to be useful and should therefore remain in B′.
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Algorithm 2. Function ProbabilisticSolutionGeneration(B)
1: given: B, drate, lsize
2: S := ∅
3: while |Ext(S)| > 0 do
4: choose a random number δ ∈ [0, 1]
5: if δ ≤ drate then
6: choose bi such that |ti| ≥ |tj | for all bj ∈ Ext(S)
7: S := S ∪ {bi}
8: else
9: let L ⊆ Ext(S) contain the (at most) lsize longest common blocks from Ext(S)

10: choose bi from L uniformly at random
11: S := S ∪ {bi}
12: end if
13: end while
14: return complete solution S

5 Experimental Evaluation

Three different solution methods are compared in the following. The first on
is Greedy, the simple, deterministic, greedy algorithm mentioned in Sect. 4 in
the context of probabilistically generating solutions to the UMCSP problem.
The second one is the CMSA algorithm, henceforth denoted by Cmsa. And the
third one is the application of IBM ILOG CPLEX v12.1 to the original problem
instances, labelled Cplex. The solution methods were implemented in ANSI
C++ using GCC 4.7.3. Both in the context of Cmsa and Cplex, CPLEX was
used in one-threaded mode. The experimental evaluation was performed on a
cluster of PCs with Intel(R) Xeon(R) CPU 5670 CPUs of 12 nuclei of 2933 MHz
and at least 40 Gb of RAM. Note that the fixed-parameter approximation algo-
rithm described in [4] was not included in the comparison because, according to
the authors of this work, the algorithm is only applicable to very small problem
instances.

In the following we first describe the set of benchmark instances that we
generated to test the considered solution methods. Then, we describe the tun-
ing experiments that were performed in order to determine a proper setting
for the parameters of Cmsa. Finally, an exhaustive experimental evaluation is
presented.

5.1 Problem Instances

For the comparison of the three considered solution methods we generated a
set of 600 benchmark instances. In more detail, this benchmark set consists
of 10 randomly generated instances for each combination of the base-length n ∈
{200, 400, . . . , 1800, 2000}, the alphabet size |Σ| ∈ {4, 12}, and a so-called length-
difference ld ∈ {0, 10, 20}. In the context of all instances, each letter of Σ has
the same probability to appear at any of the positions of input strings s1 and s2.
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Given a value for the base-length n and the length-difference ld , the length of
s1 is determined as n + �(ld · n)/100	 and the length of s2 as n − �(ld · n)/100	.
In other words, ld refers to the length difference between s1 and s2 (in percent)
given a certain base-lenth n.

5.2 Tuning of CMSA

There are several parameters involved in Cmsa for which well-working values
must be found: (na) the number of solution constructions per iteration, (agemax)
the maximum allowed age of common blocks, (drate) the determinism rate, (lsize)
the candidate list size, and (tmax) the maximum time in seconds allowed for
CPLEX per application to a sub-instance. The last parameter is necessary,
because even when applied to reduced problem instances, CPLEX might still
need too much computation time for solving such sub-instances to optimality.
In any case, CPLEX always returns the best feasible solution found within the
given computation time.

We made use of the automatic configuration tool irace [10] for the tuning
of the five parameters. In fact, irace was applied to tune Cmsa separately for
instances of each base-length, which—after initial experiments—seemed to be the
parameter with most influence on the algorithm performance. For each of the
10 considered base-length values, 12 tuning instances were randomly generated:
two for each of the six combinations of Σ and ld . The tuning process for each
alphabet size was given a budget of 1000 runs of Cmsa, where each run was given
a computation time limit of 3600 CPU seconds. Finally, the following parameter
value ranges were chosen concerning the five parameters of Cmsa:

– na ∈ {10, 30, 50}.
– agemax ∈ {1, 5, 10, inf}, where inf means that no common block is ever

removed from sub-instance B′.

Table 1. Results of tuning CMSA with irace.

n na agemax drate lsize tmax

200 50 10 0.0 10 480

400 50 10 0.0 10 120

600 50 10 0.0 10 240

800 50 5 0.5 10 120

1000 50 10 0.7 10 60

1200 50 5 0.5 10 120

1400 50 10 0.9 10 480

1600 50 5 0.9 10 480

1800 50 5 0.9 10 480

2000 50 10 0.9 10 480
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– drate ∈ {0.0, 0.3, 0.5, 0.7, 0.9}, where a value of 0.0 means that the selection of
the next common block to be added to the partial solution under construction
is always done randomly from the candidate list, while a value of 0.9 means
that solution constructions are nearly deterministic.

– lsize ∈ {3, 5, 10}.
– tmax ∈ {60, 120, 240, 480} (in seconds).

The tuning runs with irace produced the configurations of Cmsa as shown in
Table 1. The most important tendencies that can be observed are the following
ones. First, with growing base-length, the greediness of the solution construction
grows, as indicated by the increasing value of drate. Second, the number of solu-
tion constructions per iteration is always high. Third, the time limit for CPLEX
does not play any role for smaller instances. However, for larger instances the
time limit of 480 seconds is consistently chosen.

5.3 Experimental Results

The numerical results are presented in Table 2 concerning all instances with |Σ| =
4, and in Table 3 concerning all instances with |Σ| = 12. Each table row presents
the results averaged over 10 problem instances of the same type. For each of the
three solution methods in the comparison we provide (at least) the following two
columns. The first one (with heading mean) provides the average values of the
best solutions obtained over 10 problem instances, while the second column (with
heading time) provides the average computation time (in seconds) necessary for
finding the corresponding solutions. In the case of Cplex, this column provides
two values in the form X/Y, where X corresponds to the (average) time at which
CPLEX was able to find the first valid solution, and Y to the (average) time at
which CPLEX found the best solution within 3600 CPU seconds. An additional
column with heading gap provides—in the case of Cplex—the average optimality
gaps (in percent), that is, the average gaps between the upper bounds and the
values of the best solutions when stopping a run. A third additional column in
the case of Cmsa (with heading size (%)) provides the average size of the sub-
instances considered in Cmsa in percent of the original problem instance sizes,
that is, the sizes of the complete sets B of common blocks. Finally, note that the
best result for each table row is marked by a gray background and the last row of
each table provides averages over the whole table. Moreover, the numerical results
are presented graphically in Figs. 1 and 2 in terms of the improvement of Cmsa
over Cplex and Greedy (in percent).

The results allow to make the following observations:

– Concerning the application of Cplex to the original problem instances, the
alphabet size has a strong influence on the problem difficulty. For instances
with |Σ| = 4, Cplex is only able to provide feasible solutions within 3600
CPU seconds for input strings of lengths up to 800. When |Σ| = 12, Cplex
provides feasible solutions for input strings of lengths up to 1600 (for values of
ld ∈ {0, 10}). When ld = 20 Cplex is even able to provide feasible solutions
for all problem instances.
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Table 2. Results for the instances with |Σ| = 4.

(a) Results for instances with ld = 0.

n Greedy Cplex Cmsa
mean time mean time gap mean time size (%)

200 67.0 < 1.0 55.3 4/21 0.0 55.3 90.1 30.7
400 119.4 < 1.0 98.7 118/1445 2.1 99.4 1878.3 14.7
600 172.8 < 1.0 146.0 556/1865 6.7 145.7 2317.5 9.3
800 222.5 < 1.0 189.1 2136/3525 8.1 190.8 1837.3 5.0

1000 271.7 1.6 n.a n.a. n.a. 235.1 1320.3 6.1
1200 314.3 2.0 n.a n.a. n.a. 274.1 1837.9 3.5
1400 368.5 3.7 n.a n.a. n.a. 320.4 2455.8 2.6
1600 413.2 4.9 n.a n.a. n.a. 358.3 2875.8 2.0
1800 450.5 6.7 n.a n.a. n.a. 401.6 2802.1 1.7
2000 504.8 9.3 n.a n.a. n.a. 453.4 2166.7 1.5

avg.

(b) Results for instances with ld = 10.

n Greedy Cplex Cmsa
mean time mean time gap mean time size (%)

200 61.0 < 1.0 52.1 3/5 0.0 52.1 88.0 29.0
400 108.4 < 1.0 90.3 102/675 0.0 91.2 801.0 13.0
600 151.4 < 1.0 126.3 548/3018 2.5 127.3 1500.4 7.8
800 192.6 < 1.0 164.2 2038/3583 4.6 164.6 1513.2 3.6

1000 232.8 1.5 n.a. n.a. n.a. 198.3 2504.4 3.5
1200 269.8 1.9 n.a. n.a. n.a. 231.7 2334.2 2.2
1400 313.1 3.5 n.a. n.a. n.a. 267.6 2170.0 1.8
1600 346.6 4.6 n.a. n.a. n.a. 301.3 3114.6 1.3
1800 383.3 6.4 n.a. n.a. n.a. 330.9 2652.8 1.1
2000 423.1 8.8 n.a. n.a. n.a. 364.7 2512.3 1.0

avg.

(c) Results for instances with ld = 20.

n Greedy Cplex Cmsa
mean time mean time gap mean time size (%)

200 51.8 < 1.0 44.8 3/3 0.0 44.8 241.9 23.8
400 89.4 < 1.0 77.4 86/90 0.0 77.6 251.6 9.9
600 127.9 < 1.0 108.5 467/634 0.0 109.3 716.8 5.7
800 159.5 < 1.0 135.8 1941/2583 0.2 138.0 1009.4 2.8

1000 197.9 1.4 n.a. n.a. n.a. 169.6 1220.1 2.7
1200 229.9 1.7 n.a. n.a. n.a. 198.9 1659.6 1.7
1400 262.1 3.1 n.a. n.a. n.a. 229.2 2052.5 1.7
1600 294.4 4.1 n.a. n.a. n.a. 255.4 1830.2 1.2
1800 327.6 5.9 n.a. n.a. n.a. 284.5 2620.1 1.0
2000 359.0 8.1 n.a. n.a. n.a. 313.0 2160.0 1.0

avg.
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Table 3. Results for the instances with |Σ| = 12.

(a) Results for instances with ld = 0.

n Greedy Cplex Cmsa
mean time mean time gap mean time size (%)

200 107.5 < 1.0 98.1 0/0 0.0 98.1 0.3 52.0
400 204.7 < 1.0 181.2 4/7 0.0 181.8 791.5 34.0
600 290.2 < 1.0 251.8 28/599 0.0 254.9 1710.8 23.2
800 379.5 < 1.0 328.1 134/1338 1.1 331.6 1020.8 18.3

1000 467.3 < 1.0 399.5 305/2413 1.6 403.7 1682.6 18.3
1200 537.5 1.0 468.7 672/2800 2.9 469.3 2057.3 12.7
1400 624.7 2.1 543.2 1089/2641 3.6 539.7 2108.7 10.3
1600 706.0 2.6 672.2 2193/2661 12.0 610.9 1875.5 8.7
1800 794.2 3.6 n.a. n.a. n.a. 694.2 2300.9 8.0
2000 876.3 5.1 n.a. n.a. n.a. 758.1 2356.0 7.4

avg.

(b) Results for instances with ld = 10.

n Greedy Cplex Cmsa
mean time mean time gap mean time size (%)

200 104.2 < 1.0 95.9 0/0 0.0 95.9 0.9 54.2
400 196.5 < 1.0 173.5 5/7 0.0 173.8 733.1 32.7
600 274.2 < 1.0 240.1 34/119 0.0 242.0 1275.3 22.7
800 354.1 < 1.0 304.9 109/903 0.2 308.3 605.0 16.0

1000 427.3 < 1.0 369.0 303/2035 0.3 373.9 1332.0 15.2
1200 502.6 1.0 433.3 550/2457 0.7 439.0 1615.6 10.8
1400 570.1 1.7 494.4 1011/2249 1.3 498.6 1146.7 9.4
1600 646.8 2.4 561.4 1738/3071 2.1 561.8 1493.3 7.1
1800 712.7 3.6 n.a. n.a. n.a. 621.0 1571.2 6.2
2000 776.5 4.3 n.a. n.a. n.a. 678.2 2079.4 5.6

avg.

(c) Results for instances with ld = 20.

n Greedy Cplex Cmsa
mean time mean time gap mean time size (%)

200 93.9 < 1.0 86.0 0/0 0.0 86.0 0.8 51.0
400 170.2 < 1.0 151.4 4/5 0.0 151.6 101.7 29.1
600 237.4 < 1.0 210.8 28/29 0.0 212.1 688.4 18.1
800 301.3 < 1.0 267.2 99/102 0.0 269.1 741.8 12.1

1000 365.6 < 1.0 323.1 250/277 0.0 326.2 425.6 11.6
1200 426.3 < 1.0 374.0 568/591 0.0 377.7 772.9 8.2
1400 484.4 1.4 426.6 997/1142 0.0 433.6 609.1 7.3
1600 542.0 2.0 477.1 1331/1640 0.2 484.7 792.4 5.5
1800 598.3 3.1 528.1 2043/2387 0.5 535.2 698.2 5.0
2000 663.2 4.1 680.5 2971/3132 7.1 587.7 518.5 5.2

avg.
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Fig. 1. Improvement of Cmsa over Cplex (in percent). Note that when boxes are miss-
ing, Cplex was not able to provide feasible solutions within the allowed computation
time.

– In contrast to Cplex, Cmsa is able to provide feasible solutions for all problem
instances. Moreover, Cmsa outperforms Greedy in all cases. In those cases
in which Cplex is able to provide feasible (or even optimal) solutions, Cmsa
is either competitive, or not much worse than Cplex. In particular, Cmsa is
never more than 3% worse than Cplex.

In summary, we can state that Cmsa is competitive with the application of
CPLEX to the original ILP model when the size of the input instances is rather
small. The larger the size of the input instances, and the smaller the alpha-
bet size, the greater is—in general—the advantage of Cmsa over the other
algorithms.
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Fig. 2. Improvement of Cmsa over Greedy (in percent).

Finally, we also present the size of the sub-instances that are generated (and
maintained) within Cmsa in comparison to the size of the original problem
instances. These sub-instance sizes are provided in a graphical way in Fig. 3.
Note that these graphics show the sub-instance sizes averaged over all instances
of the same alphabet size and the same value for ld . In all cases, the x-axis
ranges from instances with a small base-length (n) at the left, to instance with
a large base-length at the right. Interestingly, when the base-length is rather
small, the tackled sub-instances in Cmsa are rather large (up to ≈ 55% of
the size of the original problem instances). With growing base-length, the size
of the tackled sub-instances decreases. The reason for this trend is as follows.
As CPLEX is very efficient for problem instances created with rather small
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Fig. 3. Graphical presentation of the sizes of the sub-instances in percent with respect
to the size of the original problem instances.

base-lengths, the parameter values of Cmsa are chosen during the tuning process
of irace such that the sub-instance sizes become quite large. On the contrary,
with growing base-length, the parameter values chosen during tuning lead to
smaller sub-instances, simply because CPLEX is not so efficient anymore when
applied to sub-instances that are not much smaller than the original problem
instances.

6 Discussion and Future Work

CMSA is a recently proposed, general, algorithm for combinatorial optimiza-
tion. The algorithm is based on a simple, but seemingly successful, idea: (1)
the creation of sub-instances based on merging the solution components found
in randomly constructed solutions, and (2) the subsequent solution of these
sub-instances by means of an exact solver. In this process, the considered sub-
instances undergo dynamic changes caused by adding new solution components
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at each iteration, and removing existing solution components on the basis of
indicators about their usefulness.

In this work, the CMSA algorithm was applied to the unbalanced minimum
common string partition problem. The nature of the obtained results, in compar-
ison to CPLEX, is similar to the one observed in earlier applications of CMSA to
the minimum common string partition problem and a minimum weight arbores-
cence problem in [3]. CMSA is generally competitive with—or not much worse
than—CPLEX for small to medium size problem instances, whereas it outper-
forms CPLEX with growing problem instances size. In the opinion of the authors,
this algorithm is quite appealing, especially for the following reasons:

– Given a constructive heuristic and an exact solver, CMSA can be applied to
any combinatorial optimization problem.

– Compared to other metaheuristics, the implementation of CMSA is rather
simple and involves only a few lines of code in addition to the heuristic and
the exact solver.

Finally, it is important to observe that the idea behind CMSA is related, in some
sense, to the basic idea of large neighborhood search (LNS) [11]. However, while
LNS uses exact solvers for searching the best solution in a large neighborhood of
the current solution, generally obtained by a partial destruction of the current
solution, exact solvers in the context of CMSA are applied to sub-instances of
the original problem instances. Concerning future work, we plan to indentify the
respective strengths and weaknesses of LNS and CMSA.
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Abstract. Supermarket supply chains represent an area in which
optimisation of vehicle routes and scheduling can lead to huge cost and
environmental savings. As just-in-time ordering practices become more
common, traditionally fixed resupply routes and schedules are increas-
ingly unable to meet the demands of the supermarkets. Instead, we model
this as a dynamic pickup and delivery problem with soft time windows
(PDPSTW). We present the variable neighbourhood descent with mem-
ory (VNDM) hybrid metaheuristic (HM) and compare its performance
against Q-learning (QL), binary exponential back off (BEBO) and ran-
dom descent (RD) hyperheuristics on published benchmark and real-world
instances of the PDPSTW. We find that VNDM consistently generates
the highest quality solutions, with the fewest routes or shortest distances,
amongst the methods tested. It is capable of finding the best known solu-
tions to 55 of 176 published benchmarks as well as producing the best
results on our real-world data set, supplied by Transfaction Ltd.

1 Introduction

There are over ten thousand grocery stores or supermarkets in the UK [29] and
each of these requires regular resupplies of produce. With increasingly heavy
competition in the market, just-in-time stock management is increasingly impor-
tant to meet customer demand whilst managing food waste. Traditional, fixed
resupply routes and schedules are unable to cope with these demands. We pro-
pose a pickup and delivery problem with soft time windows (PDPSTW) as a
more suitable way of scheduling supermarket resupplies.

In this paper, we introduce the variable neighbourhood descent with memory
(VNDM) to solve this problem and compare its performance against QL, BEBO
and RD hyperheuristics on both benchmark instances and real-world data. We
show that VNDM is an effective approach particularly for clustered benchmark
instances and real-world data sets. We also investigate the landscape of potential
solutions for both benchmark and real-world data and show that minimising the
number of routes in a solution does not always produce an improvement in cost,
often the most important factor for supermarkets and delivery companies.
c© Springer International Publishing Switzerland 2016
M.J. Blesa et al. (Eds.): HM 2016, LNCS 9668, pp. 32–46, 2016.
DOI: 10.1007/978-3-319-39636-1 3
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2 Related Work

The pickup and delivery problem with time windows (PDPTW) is an NP-hard
combinatorial optimisation problem that involves routing vehicles to service
requests from pickup to delivery locations [19]. It differs from vehicle routing
problems (VRP) in that cargo is loaded at numerous pickup locations instead
of a vehicle’s depot. Research on real-world PDPTWs usually concentrates on
static models of small scale dial-a-ride problems, such as taxi routing and ride
sharing schemes [31]. Dynamic problems [11] typically do not compare their
techniques on benchmark instances. Variants to the PDPTW include imposing
constraints on: the number of vehicles used, time windows on requests, capac-
ities and number of depots. Our problem of supermarket resupply is based on
widely accepted mathematical models of the PDPTW by Li and Lim [19] and
Desaulniers et al. [10]; with additional constraints specific to our problem.

Exact algorithms e.g. [12,14,33] have been used to solve PDPTWs with
tens of requests but do not scale to real world problems with thousands of
requests. Recently, heuristic and hyperheuristic [9] approaches have become pop-
ular. These approaches cannot guarantee an optimal solution, but often produce
very near optimal solutions far quicker than exact methods. A good overview of
exact and heuristic methods for VRP can be found in [18]. Meta-heuristics deliver
a mechanism that helps a search escape local optima. Successful application of
meta-heuristics including variable neighbourhood search (VNS) and Tabu search
(TS) for both VRP and PDPTW can be found in [8,22]. Hyperheuristics define
a high level set of rules that govern when to use local search operators (LSOs)
either deterministically or based on previous performance. In comparison, HMs
typically make greater use of domain knowledge [4] and utilize the advantages of
a set of different search methods. HMs e.g. [6,20,21,23,26], have proved success-
ful when applied to the VRP but have seen limited applicability to the PDPTW.
Hybridisation of VNS and TS has proved beneficial for VRPs; Paraskevopoulos
et al. [21] presents a reactive variable neighbourhood tabu search (reVNTS) for
the heterogeneous VRP and Belhaiza et al. [1] presents a hybrid variable neigh-
bourhood tabu search (HVNTS) for the VRP with time windows, the method
presented in this paper has similarities with these methods and is discussed in
Sect. 4.

Benchmark instances of the PDPTW (from Li and Lim [19]) will be used to
compare VNDM against other methods and the state of the art. These bench-
marks are more tightly constrained than our supermarket resupply problem and
use a different objective function but are otherwise similar enough for compar-
isons to be made. The benchmarks have been investigated by many academic
[2,3,15–17,19,27] and corporate [24,30] researchers. The best published results
are kept up to date at sintef.no/pdptw.

3 Problem Definition

In the supermarket resupply problem a set of vehicles based at a single depot must
service a set of consignments, each comprised of a pickup and a corresponding
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delivery location. An un-/loading time is associated with each pickup and deliv-
ery location along with a time windows specifying the earliest and latest times
that service may begin. Arrival before a time window results in waiting for the
earliest service time before un-/loading may commence. Load is added to a vehi-
cle at pickup locations and removed at corresponding delivery locations in the
same quantity. A vehicle may carry any number of consignments simultaneously,
as long as capacity constraints are not violated. All vehicle routes begin and end
at the depot and are empty, having zero load, at both these points. Additionally,
a maximum time limit is placed on every vehicle route, calculated from the com-
bined time required to traverse all locations in the route, un-/load at each location
and any waiting time incurred.

The mathematical model for the PDPTW can be found in Li and Lim [19].
The main differences are that the supermarket resupply problem is a dynamic
system where not all orders are known a priori, and that time windows are “soft”,
if some locations are arrived at late a delay penalty is incurred (increasing over
time) instead of a route being infeasible. The objective, instead of minimising
the number of vehicles used and then total distance travelled, is to minimise cost
as a function of: fuel and maintenance costs dependent on distance travelled and
load; time costs of drivers pay and delay penalties. We do not consider idle driver
time outside of a route, for example if a route is short then the driver is only
paid for the time on route (not for number of days worked).

4 Solution Method

A solution has been developed to handle both static instances such as the bench-
mark problems and our real-world data which we treat as a dynamic problem.
In both cases consignments are first inserted greedily into a schedule in first
come, first served fashion (placed on an existing vehicle’s route which minimises
cost if possible, else creating a new route), optimisation is then performed both
inside and between the resultant routes using one of a number of methods: Vari-
able Neighbourhood Descent with Memory (VNDM, Sect. 4.3); Q-learning (QL,
Sect. 4.4); Binary exponential back off (BEBO, Sect. 4.5); Random Descent (RD,
Sect. 4.6). In the dynamic case this optimisation is performed multiple times
(between the arrival of subsequent orders) and an internal representation of
time is held so that consignments which would have taken place if the system
was being used live are not re-scheduled during later optimisation. Each of the
methods above makes use of a set of local search operators (LSOs, Sect. 4.1)
that allow small changes to the existing schedule to be analysed and adopted
if improvements are found. A re-initialisation step, used to escape local optima
(Sect. 4.2), is also common in these methods, and is performed after an internally
defined number of iterations without improvement. The best solution found at
any point during execution is stored and reported upon termination.
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4.1 Low Level Heuristics

LSOs for the PDPSTW have been drawn from similar problems [5,7,10,13,28]
and chosen to cover a wide range of potential variations from an existing sched-
ule. Since a pickup request must occur before its delivery requests, reversing a
section of a route is likely to result in an infeasible solution. Time windows are
also usually tight enough that reversal would mean that one or more requests
would be significantly delayed. LSOs relying on partial route inversions such
as GENI [13] and iCROSS [5] cannot work well without substantial alteration,
so standard relocate and chain exchange operators have been preferred. Specif-
ically we use: Exchange; Exchange Chain (Cross exchange [5]); Relocate and
Relocate Chain operators that may act either within a route or between two
routes. Exchange operators swap the positions of two (chains of) consignments
while relocate operators move only a single (chain of) consignments. If an indi-
vidual consignment is moved, any requests nested within it are not moved with
it unless they fall in the same chain of consignments. This provides a means to
undo nested consignments - if it can provide an improvement elsewhere. Chains
have a fixed maximum length of 5 consignments.

Algorithm 1. VNDM
1: function VNDM(Schedule s)
2: s∗ ← s
3: repeat
4: for all l in LSOs � Section 4.1
5: repeat
6: First Improvement (s, l) � Algorithm 2
7: if found improvement
8: Update s with improvement
9: if s better than s∗

10: s∗ ← s
11: until no improvement for l

12: Shake s � Section 4.2
13: until current time ≥ time limit
14: return s∗

4.2 Random Re-initialisation (Shaking)

All the methods compared in this paper benefit from random re-initialisation,
a large, arbitrary permutation made to the current solution once no LSOs can
produce any further improvement. It can be thought of as a random re-start
of the search from a different initial solution, or a more extreme example of a
shake operation that may be used in VNS. For the PDPSTW, this step consists
of removing a random number of routes (drawn uniformly between 1 and the
number of routes in the solution) and a random number of additional customers
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(drawn between 1 and the number of customers left in the solution). The com-
bined list of all removed customers is then re-inserted into the remaining routes,
creating new additional routes if required. The scale of the destruction of the
original solution normally results in a substantially different solution from which
to restart the search, though we do not guarantee it is unique.

4.3 Variable Neighbourhood Descent with Memory

VNDM is a variant of VNS with a strong bias towards exploitation, using a
first improvement descent strategy (described in Algorithm 1). Shaking (the use
of a random perturbation on the solution to encourage diversification) is only
performed once no LSOs are capable of producing improving moves, in con-
trast to traditional VNS where it is used at every neighbourhood. Additionally,
VNDM stores a tabu memory of information on which routes have been analysed
by which LSOs, described in Algorithm2. This hybridisation is inspired by the
related reVNTS [21] and HVNTS [1]. In contrast, HVNTS stores recently seen
solutions and distinguishes between large and small moves in its neighbourhood
structure. ReVNTS uses tabu search to find a local optimum within each neigh-
bourhood of a VNS; additional features are learnt to control the use of LSOs.

Algorithm 2. First Improvement
Precondition: Tabu db storing route and LSO IDs
Precondition: RouteList rl sorted by fitness descending
1: function First Improvement(Schedule s, LSO l)
2: repeat
3: selectedRoutes sr ← rl.GetNextRoutes(l,s)
4: if (sr &l) not in db
5: moves ← l.GetMoves(sr)
6: for all move m in moves
7: fitnessDelta d ← l.Test(m)
8: if d < 0 � improvement
9: db.Remove(sr) � other improvements now possible

10: return sr, m &d

11: db.Add(sr, l) � no improvement found, add to memory
12: else
13: do nothing � tried before and found no improvement

14: rl.Remove(sr)
15: until no more routes
16: return null � No improvement possible using l

In Algorithm 2, routeList rl contains all k-element subsets of route ids in the
schedule where k is the number of routes required by LSO l. rl is ordered by
the summed fitness of the routes in each k-element subset, descending (lower
fitness is better). rl.GetNextRoutes(l,s) returns the selected routes sr (the first
k-element subset in rl). This is then removed from rl so it is only chosen once
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per LSO l. l.GetMoves(sr) generates all potential moves M for a given LSO l
on sr. l.Test(m) generates the difference in fitness for a given move m ∈ M
with LSO l. If the fitness delta d is less than 0 (an improvement), the selected
routes, move and fitness delta are returned. The move is then applied to the
schedule, updating fitnesses for individual routes as appropriate. The memory
is updated to remove the altered routes from all LSOs as this move may have
enabled changes that were not previously possible.

4.4 Q-Learning Selection Based Hyperheuristic (QL)

QL [32] is a learning hyperheuristic that shares a number of similarities with
the choice function of Cowling et al. [9]. QL attempts to learn good sequences of
LSOs, these are stored in a Q-state dictionary which maps sequences of n LSOs
to Q-value. At each iteration, QL identifies sequences from the dictionary that
start with the most recently used n − 1 LSOs. The next LSO to try is chosen
based on a roulette selection over these entries Q-values. The Q-values in the
dictionary are updated using the function [32]:

Q(s, a) = Q(s, a) + α
[
r +

(
γ max

a′
Q(s′, a′)

)
− Q(s, a)

]
(1)

where s is the current 1, . . . , n − 1 sequence of LSOs, a is the next LSO to
use and s′ is the resultant sequence, after this operator is used. The reward r
is set to the improvement produced by the operator, divided by the time taken
to find it or to half the smallest observed reward if no improvement is found.
α, the learning rate, γ, the discount factor, and n, the length of LSO sequences
to store, are parameters. Traditional QL allows non-improving moves. However,
since our problem has a very limited set of improving moves, we have adapted
it to only accept moves which result in better solutions.

4.5 Binary Exponential Back-off Tabu Search

BEBO [25] is a tabu based hyperheuristic derived from methods used to avoid
packet collision in communications systems. A tabu list is stored along with a
backoff value for each LSO. At each iteration, all non-tabued LSOs are tested.
These are then categorised as good or bad. A “Bad” LSO may be any non-
improving move, or may be defined as being one of the worst x % of LSOs.
“Good” LSOs have their backoff set to backoff-min. “Bad” LSOs have their
backoff set to backoff2 +1. A tabu tenure is then chosen for each LSO, randomly
between backoff-min and its backoff.

4.6 Random Descent

The final approach is a simple RD heuristic. At each iteration, a random LSO is
chosen and tested. If the LSO produces a better solution, it is accepted; otherwise
it is discarded. A parameter is used to control the number of non-improving
iterations that are allowed before the solution is re-initialised.
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5 Computational Experiments

We first perform parameter tuning (Sect. 5.1) and secondly compare the perfor-
mance of the four methods presented in Sect. 4 on all 100, 200 and 400 customer
instances of the Li and Lim [19] benchmarks (Sect. 5.2), In these we consider
hard time windows and no LIFO constraint such that direct comparisons may
be made to best known solutions. Finally we compare performance on a set of
real-world instances (Sect. 5.3) with our additional constraints.

The solution methods are coded in single threaded C� and distributed over a
heterogeneous cluster of Intel Xeon based servers totalling 72 cores and 120 GB
of RAM. All methods are given 5, 10 or 20 min of CPU time based on problem
size (100, 200 or 400 customers respectively) and each is repeated 10 times. The
results presented in this paper thus represent over 1200 h of CPU time.
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Fig. 1. Average rank of heuristics on different sized problems (lower is better).

5.1 Parameter Tuning

Each method is tested using three sets of parameters. For RD there is only one
parameter, the number of iterations before re-initialisation. In RD 1, 2 and 3 it
is set at 250, 500 and 1000 respectively. The parameter we modify for BEBO
controls the number of LSOs that are backed off at any stage of the search. The
three values chosen for BEBO 1, 2 and 3 represent backing off all but the best
solution, or all solutions more than 5 % or 10 % worse than the best solution
(see Sect. 4.5). VNDM has two parameters, controlling the number of iterations
(a) without improvement before re-initialisation and (b) before reverting to the
previous best solution. These are set as (50, 125), (100, 250) and (200, 500)
respectively for VND 1, 2 and 3. For QL, we investigate changes to the learning
function (Eq. 1) by setting α and γ to (0.25, 0.75), (0.5, 0.5) and (0.75, 0.25)
respectively for QL 1, 2 and 3.
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The heuristics are ranked for each instance, using their best result over 10
runs, and are given a score from one (best) to twelve (worst) where ties score
equally low ranks. Figure 1 shows the average rank for each of the twelve methods
for the 100, 200 and 400 customer instances. The 100 customer instances have
a generally lower average rank because, in many of these cases the best known
solution is found by several methods which are then given equal rank one. An
interesting point is that BEBO is weaker on smaller data sets but better on larger
data sets compared to both QL and RD, suggesting that the overhead involved
in trialling sets of LSOs is not worth the effort on small instances but is able
to find better solutions on larger problems. VNDM consistently outperforms its
competitors whilst demonstrating robustness to changes in parameter settings.

5.2 Comparison on Benchmark Instances

The Li and Lim benchmarks [19] are split into three groups characterised by
the spatial characteristics of the problem: Random instances (LRx-y-z) have
customer locations that are spread uniformly randomly across space; clustered
instances (LCx-y-z) have customer locations that are tightly grouped into a
number of distinct clusters; and mixed instances (LRCx-y-z) have a mix of both
random and clustered locations. For each instance, x can be either 1 (tight time
windows) or 2 (lax time windows); y represents the number of customers in the
instance (divided by 100) and z is the instance id.

Presented in Tables 1 and 2 are the best results of 10 repeats for each heuris-
tic, obtained using the best performing parameters identified in Sect. 5.1, for
the 100 and 400 customer clustered instances respectively. For each method, the
r and d columns are the number of routes and distance for the best observed
run. The gap column records the difference between our best solution and the
best known solutions of [2,3,15–17,19,24,27,30] as reported at sintef.no/pdptw.
Where our best solution has the same number of routes but is longer, the gap
records this difference as a percentage. Where our solution has n extra routes,
the gap is nr. We highlight in bold the best solutions found out of our results.

The four hyperheuristics perform very similarly on the 100 customer
instances, finding the best known solutions in many cases: these instances are
shown with their name in bold. In cases where the best known solution is not
found, VNDM is the best or joint best of the methods tested and produces results
within 0.3 % or 1 route of the best known solution1.

Table 2 shows the results of the 400 customer clustered instances. It is clear
that VNDM is the strongest method we compare, matching best known solutions
in many cases. All our methods have difficulties with the LC2 data set due to
looser time constraints resulting in a much larger quantity of feasible solutions.
VNDM still produces results that either have fewer routes or, for instances with
the same number of routes, solutions that are on average around 10 % shorter
than the other three approaches. However, VNDM often produces more routes
in comparison to best known solutions.

1 Full results are available at www.cs.york.ac.uk/∼philm.

www.cs.york.ac.uk/~philm
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Table 1. 100 customers clustered. For explanation see text.

Name RD BEBO VNDM QL Gap

r d r d r d r d

LC1-1-1 10 828.94 10 828.94 10 828.94 10 828.94 0%

LC1-1-2 10 828.94 10 828.94 10 828.94 10 828.94 0%

LC1-1-3 9 1072.83 9 1082.18 9 1038.35 9 1048.40 0.29 %

LC1-1-4 9 904.10 9 993.98 9 861.95 9 876.88 0.23 %

LC1-1-5 10 828.94 10 828.94 10 828.94 10 828.94 0%

LC1-1-6 10 828.94 10 828.94 10 828.94 10 828.94 0%

LC1-1-7 10 828.94 10 828.94 10 828.94 10 828.94 0%

LC1-1-8 10 826.44 10 826.44 10 826.44 10 826.44 0%

LC1-1-9 10 827.82 10 882.86 10 827.82 10 827.82 1r

LC2-1-1 3 591.56 3 591.56 3 591.56 3 591.56 0%

LC2-1-2 3 591.56 3 591.56 3 591.56 3 591.56 0%

LC2-1-3 3 591.17 3 772.52 3 591.17 3 591.17 0%

LC2-1-4 3 676.03 3 614.65 3 590.60 3 652.95 0%

LC2-1-5 3 588.88 3 588.88 3 588.88 3 588.88 0%

LC2-1-6 3 588.49 3 588.49 3 588.49 3 588.49 0%

LC2-1-7 3 588.29 3 606.10 3 588.29 3 588.29 0%

LC2-1-8 3 591.39 3 594.69 3 588.32 3 588.32 0%

Closer investigation of the results for various instances shows that a wide
array of solutions is created, each of which is subtly different. Since all our
heuristics are based on first improvement and have ample time to converge,
this can be attributed not to time constraints but to the nature of the problem
itself. The solution landscape for PDPTWs is not smooth and contains many
local optima, making it difficult for heuristics to converge on the same result. To
visualise this, we plot all of our results in two dimensions, showing the number of
routes against schedule distance. Figure 2 presents solution space maps generated
in this way for four representative instances.

Figure 2 highlights an interesting finding in the benchmark data sets. In the
clustered (LC) data sets there is a clear trend between the number of routes
and the total distance of a solution. In the random data set, however, these
aspects are not closely correlated, so using the total number of routes as the
main objective does not seem to be appropriate. We note also that, as expected,
the distance is greater in the random scenarios, however, the number of routes
is lower, probably due to the looser time window constraints and smaller service
times in these problems. Koning [17] notes that relaxing the hard time window
constraints, applied in the Li and Lim [19] benchmarks, produces notably shorter
routes with only minor delays, which may be preferable in the real world.
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Table 2. 400 customers clustered. For explanation see text.

Name RD BEBO VNDM QL Gap

r d r d r d r d

LC1-4-1 40 7152.06 40 7208.31 40 7152.06 40 7152.06 0 %

LC1-4-2 40 7184.42 40 7491.64 40 7170.60 40 7235.69 2r

LC1-4-3 37 8089.33 37 8684.88 37 7871.19 37 8383.98 4r

LC1-4-4 32 8328.28 32 8544.82 32 7403.17 32 7748.67 2r

LC1-4-5 40 7150.00 40 7150.00 40 7150.00 40 7150.00 0 %

LC1-4-6 40 7154.02 40 7237.16 40 7154.02 40 7170.01 0 %

LC1-4-7 41 7542.55 42 8734.36 40 7149.44 41 7435.92 0 %

LC1-4-8 39 7111.16 40 7706.57 39 7179.98 39 7111.16 0 %

LC1-4-9 38 8197.97 38 8390.38 37 7819.79 39 8479.35 1r

LC1-4-10 38 7940.02 37 8016.53 37 7670.50 37 7990.68 2r

LC2-4-1 14 6824.82 12 4116.33 12 4116.33 13 5444.85 0 %

LC2-4-2 14 9135.06 13 5108.89 13 4844.74 14 7999.00 1r

LC2-4-3 13 7145.52 13 5967.34 12 5364.88 13 6375.44 1r

LC2-4-4 13 7727.34 12 6193.68 12 5766.83 13 7311.49 35 %

LC2-4-5 15 8612.69 13 5243.16 13 4717.13 14 6886.47 1r

LC2-4-6 14 7560.98 13 4936.46 13 4721.75 14 7125.17 1r

LC2-4-7 14 8312.98 14 5882.84 13 4616.22 14 7542.35 2r

LC2-4-8 14 7883.71 13 5456.19 13 4523.78 14 7582.07 1r

LC2-4-9 14 7770.37 13 6334.76 13 5419.32 14 7450.32 1r

LC2-4-10 14 7867.45 13 4655.07 13 4737.62 13 6330.36 1r

5.3 Performance on Real World Data

Our real-world data set comprises 387 consignments pairs spread over the south
east of the UK. The data is provided by a large supermarket chain and com-
prises resupply deliveries for a one-week period. Due to the distribution of store
locations, a larger number of routes is required for full service, in comparison
to similarly sized benchmark problems. In addition, for the real-world problem
we simulate consignments arriving during scheduling in a dynamic fashion, allow
late arrival at locations using “soft” end of time windows and we use a cost based
model as the objective rather than the number of routes and distance (described
in Sect. 3). The real-world data set is run with the best parameter settings of
each method from Sect. 5.1 for 40 min and repeated 100 times.

Figure 3 shows the average performance over CPU time. From discussions
with our industrial partner, current manual scheduling procedures are most
closely approximated by our initial greedy insertion procedure, the cost of which
is represented by the starting figure of around £33,500 in this example data
set. Clearly, utilising any of the methods in this paper results in large savings to
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Fig. 2. Number of routes versus cost for clustered (LC 1-2-9 and LC 1-4-7) and random
(LR 1-2-9 and LR 1-4-9) benchmark instances.
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Fig. 3. Average performance over CPU time for a real data set, note that BEBO
converges after about 5 min and then no longer produces any improvements.

delivery cost. On average, and over any amount of running time, VNDM can find
better solutions for the real-world problem than the alternatives tested here and
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is relatively simple to implement. We can also see that BEBO produces results
that are competitive if run-times are kept below 10 min but that it gets stuck at
a worse level than other approaches after this.

Figure 4 shows the distribution of final cost achieved by each hyperheuristic
across the runs. There is considerable overlap in the plots, though VNDM can be
seen to outperform the alternatives, having lower minimum, maximum and quar-
tile costs. It is also clear that BEBO is unsuitable for the PDPSTW, as it pro-
duces the highest average final cost and is generally outperformed by RD. QL looks
slightly better in these results than in Fig. 3 as its best and many of its results are
competitive, but it also produces the most expensive schedules, hurting its average.
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Figure 5 plots the results as number of routes against distance. We can see
that, for our real-world data set, there is a strong correlation between the number
of routes and cost, but that the cheapest solutions do not necessarily have the
fewest routes. Approaches that aggressively minimise for number of routes may
not be able to perform as well as the approaches here from an operational cost
perspective. The real-world results most closely resemble the LC 1-4-z bench-
mark instances.

Though we have only provided results for a single real-world data set, since
the VNDM metaheuristic proved competitive with state of the art approaches on
many small benchmark instances, we can say with some confidence that VNDM
is a suitable choice for our real-world problem, even though it has undergone no
parameter tuning to specifically fit the real-world data.

6 Conclusions

We have presented the supermarket resupply problem and modelled it as a
dynamic PDPSTW. We introduced the VNDM hybrid metaheuristic to solve
this problem and shown it to be competitive with best known solutions for small
benchmark instances of the PDPTW (by Li and Lim [19]). We have shown that,
in limited CPU time, VNDM outperforms BEBO, QL and RD on many of the
100, 200 and 400 customer benchmark instances and on real-world data. This
result is demonstrated with a variety of different parameter settings and is not
overfit to either benchmark instances or the real-world data set.

For many of the random and some of the clustered instances in the Li and
Lim benchmarks, shorter solutions are possible if more routes are used. We have
shown that the traditional PDPTW objective of minimising the number of routes
in priority to total distance does not always produce the cheapest solutions in a
real-world problem. The balance between vehicle maintenance costs and distance
based running costs should be considered simultaneously.

The methods presented are shown to struggle on random instances of the
PDPTW, performing best on clustered instances and data such as our real-
world problem. In future work we intend to investigate if this conclusion is valid
for other real-world PDPSTW instances, and investigate methods of scaling this
approach to larger problem sizes.

Though domain specific knowledge is used to guide the VNDM, the majority
of the method is transportable across domains. We intend to investigate the
performance of these and hyperheuristic methods on related problem areas with
the aim of developing a simple all purpose method for combinatorial problems.

Acknowledgements. This work has been funded by the Large Scale Complex IT
Systems (LSCITS) project of the EPSRC with help from Transfaction Ltd.
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Abstract. The Quadratic Assignment Problem is at the core of sev-
eral real-life applications. Finding an optimal assignment is computa-
tionally very difficult, for many useful instances. The best results are
obtained with hybrid heuristics, which result in complex solvers. We
propose an alternate solution where hybridization is obtain by means of
parallelism and cooperation between simple single-heuristic solvers. We
present experimental evidence that this approach is very efficient and
can effectively solve a wide variety of hard problems, often surpassing
state-of-the-art systems.

Keywords: QAP · Heuristics · Parallelism · Cooperation · Hybridiza-
tion · Portfolio

1 Introduction

The Quadratic Assignment Problem (QAP) was introduced in 1957 by
Koopmans and Beckmann [1] as a model of a facilities location problem. This
problem consists in assigning a set of n facilities to a set of n specific loca-
tions minimizing the cost associated with the flows of items among facilities
and the distance between them. This combinatorial optimization problem has m
any other real-life applications: scheduling, electronic chipset layout and wiring,
process communications, turbine runner balancing, data center network topol-
ogy, to cite but a few [2,3]. This problem is known to be NP-hard and finding
effective algorithms to solve it has attracted a lot of research in recent years.
To tackle problems of medium or large size (n > 30) one must resort to incom-
plete methods which are designed to quickly provide good, albeit potentially
sub-optimal, solutions. This is the case of metaheuristics. Since the mid-1980s
several metaheuristics have been successfully applied to the QAP: tabu search,
simulated annealing, genetic algorithms, GRASP, ant-colonies [3]. For solving
the hardest instances, the current trend is to specialize existing heuristics [4,5]
often by combining different metaheuristics (hybrid procedures) [6,7] and/or to
resort on parallelism [8,9].

We recently proposed a sequential Extremal Optimization (EO) procedure
for QAP which performs well on the QAPLIB instances [10]. We developed a
c© Springer International Publishing Switzerland 2016
M.J. Blesa et al. (Eds.): HM 2016, LNCS 9668, pp. 47–61, 2016.
DOI: 10.1007/978-3-319-39636-1 4
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cooperative parallel version of this method, a process which was eased thanks to
our Cooperative Parallel Local Search (CPLS) framework [11,12] for which we
developed an implementation in the X10 programming language [13,14]. This
solver (called ParEO) behaves very well on the set of 33 hardest and largest
instances of QAPLIB. Using 128 cores and within a short time limit of 5 min,
ParEO is able to find the best known solution (BKS) in each replication for 15
problems. Only for 8 instances is the BKS never reached. Recent research shows
that the most promising way to improve QAP resolution is to resort to hybrid
procedures, in order to benefit from the strengths of different classes of heuristics.
Such is the case of hybrid genetic algorithms (a.k.a memetic algorithms) [7]. The
price to pay for this improvement is a significant increase in the complexity of
the resulting solver code. In any case, many of the best known existing methods
can be easily parallelized thanks to our CPLS framework.

In this paper we propose an alternative approach for hybridization: we resort
to cooperation and parallelism to get “the best of both worlds”. To this end, the
parallel instances of different heuristics communicate their best solutions during
execution, and are able to forgo the current computation and adopt a better
solution (hoping it will converge faster). The expected behavior is that a solution
which appears to be stagnating inside one solver can be improved by another
heuristic. When the second solver can no longer improve on this (imported)
solution, maybe the original one can, once again, improve the solution yet a bit
more, and so on. It is worth noticing that when the first solver sends its current
solution, it continues to work on it until it adopts an external solution, itself.
This cooperative portfolio approach behaves like a hybrid solver while retaining
the original simplicity of each solver. This is particularly true inside the CPLS
framework since solvers need not be aware about the (nature of) other solvers.

We implemented such a hybrid solver on top of the X10 version of CPLS, com-
bining two different solvers: Taillard’s robust tabu search (RoTS) [15] and our
EO-QAP [10] method. We have chosen these two solvers because they are sim-
ple and also because it turned out that they present complementary strengths:
roughly speaking RoTS is stronger in intensifying the search in a given region
while EO-QAP is better at widely diversifying the search. The resulting hybrid
cooperative solver (called ParEOTS) displays very good performance, as we shall
see further. We show that it scales very well, exhibiting a linear speedup when
increasing the number of cores. This solver behaves much better than the coop-
erative versions of both EO-QAP and RoTS alone. On the 33 hardest instances
of QAPLIB, using 128 cores and a time limit of 5 min, ParEOTS is able to find
the BKS for 26 problems at each replication. Even for the 7 other problems,
the quality of returned solutions (measured as a percentage of average solution
over the BKS), is significantly improved. We also test ParEOTS on Palubeckis’
InstXX instances and on Drezners dreXX instances. Moreover we provide opti-
mal solutions for several InstXX instances and for dre90, dre100 and dre132.

The rest of the paper is organized as follows: Sect. 2 discusses QAP, RoTS
and EO-QAP. Section 3 presents our parallel hybrid solver. Several experimental
results are laid out and discussed in Sect. 4 and we conclude in Sect. 5.
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2 Background

In this section we recall some background topics: the Quadratic Assignment
Problem (QAP) and the two heuristics we plan to combine: RoTS and EO-QAP.

2.1 QAP

Since its introduction in 1957, QAP has been widely studied and several surveys
are available [2,3,16,17]. A QAP problem of size n consists of two n×n matrices
(aij) and (bij). Solving such a problem consists in finding a permutation π of
{1, 2, . . . n}, minimizing the objective function: F (π) =

∑n
i=1

∑n
j=1 aij · bπiπj

.
In facility location problems, the a matrix represents inter-facility flows and b
encodes the inter-location distances. Moreover, QAP can be also used to model
scheduling, chip placement and wiring on a circuit board, to design typewriter
keyboards, for process communications, for turbine runner balancing among
many other applications [2,18].

QAP is computationally very difficult: it is a discrete problem, the objective
function contains products of variables and the theoretical search space of an
instance of size n has a size n!. QAP has been proved to be NP-hard [19] (the
traveling salesman problem can be formulated as a QAP) and there is no ε-
approximation algorithm for QAP (unless P = NP). In practice, this means that
QAP is one of the toughest combinatorial optimization problems, and one with
several real-life applications.

QAP can be (optimally) solved with exact methods like dynamic program-
ming, cutting plane techniques and branch & bound algorithms for medium sizes,
e.g. n ≤ 30. For larger problems, (meta)heuristics are the most efficient tool.
Over the last decades several metaheuristics were successfully applied to QAP:
tabu search, simulated annealing, genetic algorithms, GRASP, ant-colonies [20].

2.2 RoTS: A Tabu Search Procedure for QAP

Tabu search as proposed by Glover [21] has been widely used since the 1990
to tackle QAP. Unquestionably, one of the most important algorithms for QAP
is Taillard’s robust tabu search [15] (RoTS). This algorithm uses an adaptive
short-term memory for the tabu list by recording the value assigned to a vari-
able for a while (in order to prevent “reverse assignments”). It also uses a clever
aspiration criterion (needed to authorize a tabu move to be performed in special
circumstances, e.g. if it improves on the best solution found so far). RoTS also
incorporates a long-term memory to ensure a form of diversification, by encour-
aging moves towards to not yet visited regions. RoTS only requires two user
parameters to be tuned: the tabu tenure factor (controlling the time an element
remains tabu) and the aspiration factor both of which influence the adaptive
memory ([22] provides good references values for these parameters). In practice
RoTS is tremendously effective on a wide variety of QAP instances, being able
to quickly find high quality solutions. Several BKS for QAPLIB instances have
been discovered and/or improved by RoTS. A key feature explaining its speed is
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that the cost of a solution resulting from a swap can be computed incrementally
and further optimized using a tabling mechanism. This results in an evaluation
in O(n2), while the näıve algorithm is in O(n3). In addition, Taillard put the
source code in the public domain. All these reasons explain the fact that RoTS
is directly or indirectly at the root of many other methods to solve QAP [4,23].

2.3 EO-QAP: An Extremal Optimization Procedure for QAP

Extremal Optimization (EO) is a metaheuristics inspired by self-organizing
processes often found in nature [24–26]. EO is based on the concept of Self-
Organized Criticality (SOC) initially proposed by Bak and on the Bak-Sneppen’s
model [27]. In this model of biological evolution, species have a fitness ∈ [0, 1]
(0 representing the worst degree of adaptation). At each iteration, the species
with the worst fitness is eliminated (or forced to mutate). This change affects its
fitness but also the fitness of all other species connected to this “culprit” element.
This results in an extremal process which progressively eliminates the least fit
species (or forces them to mutate). Repeating this process eventually leads to
a state where all species have a good fitness value, i.e. a SOC. EO follows this
line: it inspects the current configuration (assignment of variables), selects one
of the worst variables (according to their fitness) to mutate. For this, it ranks
the variables in increasing order of fitness (the worst variable has thus a rank
k = 1) and then resorts to a Probability Distribution Function (PDF) over the
ranks k to chose the culprit element. This PDF introduces uncertainty in the
search process. The original EO proposes a power-law: P (k) = k−τ (1 ≤ k ≤ n).
This PDF takes a single parameter τ which is problem-dependent. Depending
on the value of τ , EO provides different search strategies from pure random walk
(τ = 0) to deterministic (greedy) search (τ → ∞). With an adequate value for
τ , EO cannot be trapped in local minima since any variable is susceptible to
mutate (even if the worst are privileged). This parameter can be tuned by the
user (a default value is τ = 1 + 1

ln(n) ).
EO displays several a priori advantages: it is a simple metaheuristic, it is con-

trolled by only one free parameter (a fine tuning of several parameters becomes
quickly tedious) and it does not need to be aware about local minima. Neverthe-
less, EO has been successfully applied to large-scale optimization problems like
graph bi-partitioning, graph coloring or the traveling salesman problem [25].

Recently, we proposed EO-QAP: an EO procedure for QAP [10]. One notable
extension we brought to the original EO is to propose different PDFs and to allow
the user to chose the most adequate one for a given problem. The sequential
procedure performs well on the whole set of QAPLIB instances: 68 instances
are solved (i.e. the BKS could be reached) at each execution, 41 are solved at
least once and 25 never. The independent parallel version improves the situation
significantly: 33 additional instances are systematically solved, 14 are partially
solved and 19 remain unsolved. To tackle this remaining set of 33 instances
(14+19) we experimented with cooperative parallelism (this version is called
ParEO). In the same time limit, ParEO is able to systematically solve 15 new
instances and 18 are solved at least once (8 remain unsolved).



Hybridization as Cooperative Parallelism 51

3 A Cooperative Parallel Hybrid Method

We propose an alternative approach for constructing hybrid search methods,
resorting on our Cooperative Parallel Local Search Framework (CPLS) [11,12],
to provide the hybridization. In a nutshell, the procedure amounts to having
several workers, each following its own strategy, some of which are significantly
different from others. The cooperative framework oversees every worker, and
makes it possible for it to contribute and benefit from the global effort, by
managing a pool of best solution candidates (the elite pool). The fact that the
framework is parallel entitles it to obtain performance benefits by just increasing
the count of compute units (cores.) Moreover, the workers themselves need to
have little or no knowledge of the environment they are running under.

To test these ideas, we experimented with a solver for QAP – an admittedly
difficult problem – for which the individual metaheuristic we chose are our EO-
QAP algorithm and the RoTS method.

3.1 Cooperative Parallel Local Search

Parallel local search methods have been proposed in the past [28–30]. Here we
focus on multi-walk methods (also called multi-start) which consist in a concur-
rent exploration of the search space, either independently or cooperatively, the
latter being achieved with communication between processes. The Independent
Multi-Walks method (IW) [31] is easiest to implement since the solver instances
need not communicate with each other. However, the resulting gain tends to
flatten when scaling beyond about a hundred processors [32], largely because
the inherent diversity which brings about the speedups is not sufficient. In the
Cooperative Multi-Walks (CW) method [33], the solver instances exchange infor-
mation (through communication), hoping to hasten the search process. However,
the design and implementation of an efficient such method is a very challenging
task: choices abound concerning the communication which impact each other,
many of which are problem-dependent [33].

We designed the Cooperative Parallel Local Search (CPLS) framework [11,
12]. This framework, available as an open source library in the X10 programming
language, allows the programmer to tune the search process through an extensive
set of parameters which, at present, statically condition the execution. CPLS
augments the IW strategy with a tunable communication mechanism, which
allows for the cooperation between the multiple solver instances to seek either
an intensification or diversification strategy in the search. At present, the tuning
process is done manually: we have not yet experimented with parameter self-
adaptation in the CPLS framework (still an experimental feature).

The basic component of CPLS is the explorer node which consists in a local
search-based solver instance. The point is to use all the available processing units
by mapping each explorer node to a physical core. Explorer nodes are grouped
into teams, of size NPT (see Fig. 1). This parameter is directly related to the
trade-off between intensification and diversification. NPT can take values from
1 to the maximum number of cores. When NPT is equal to 1, the framework



52 D. Munera et al.

coincides with the IW strategy, it is expected that each 1-node team be working
on a different region of the search space, without any effort to seek parallel
intensification. When NPT is equal to the maximum number of nodes (creating
only 1 team in the execution), the framework is mainly geared towards parallel
intensification (however a certain amount of diversification is inherently provided
by parallelism, between 2 cooperation actions).

Fig. 1. CPLS framework structure

Each team seeks to intensify the search in the most promising neighborhood
found by any of its members. The parameters which guide the intensification
are the Report Interval (R) and Update Interval (U): every R iterations, each
explorer node sends its current configuration and the associated cost to its head
node (report event). The head node is the team member which collects and
processes this information, retaining the best configurations in an Elite Pool
(EP ) whose size |EP | is parametric. Every U iterations, explorer nodes ran-
domly retrieve a configuration from the EP , in the head node (update event).
An explorer node may adopt the configuration from the EP , if it is “better”
than its own current configuration, with a probability pAdopt. Simultaneously,
the teams implement a mechanism to cooperatively diversify the search, i.e. they
try to extend the search to different regions of the search space.

Typically, each problem benefits from intensification and diversification to
some extent. Therefore, the tuning process of the CPLS parameters seeks to
provide an appropriate balance between the use of the intensification and diver-
sification mechanisms, in hope of reaching better performance than the non-
cooperative parallel solvers (i.e. independent multi-walks). A detailed description
of this framework may be found in [11].

3.2 Using the CPLS Framework for Hybridization

The current X10 implementation of the CPLS framework already supports the
use of multiple metaheuristics. Adding a new one is simple because CPLS pro-
vides useful abstraction layers and handles communication. Adding a new meta-
heuristic comes down to slightly adapt the sequential algorithm: every R iter-
ations it has to send its current configuration to the Elite Pool and, every U
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iterations, it needs to retrieve a configuration from the pool, which it may sub-
sequently adopt (with probability pAdopt), should it be better than the current
one. The overall resulting solver is thus composed of several instances of the
same metaheuristic running in parallel, which cooperate by communicating in
order to faster converge to a solution. To date, CPLS includes cooperative paral-
lel versions of three different methods: Adaptive Search, Extremal Optimization
and Tabu Search. In the present work, we go one step beyond and propose a
new usage of the CPLS framework in order to obtain an hybrid parallel solver.
For this, individual workers run instances of different metaheuristics, while still
collaborating by communicating with the head node. The basic idea of run-
ning different metaheuristics in parallel exchanging elite solutions has been pro-
posed [28,34] but only from a general and theoretical point of view. This can
also be viewed as a portfolio approach [35] augmented with cooperation.

We chose to experiment with this form of hybridization on QAP combining
two metaheuristics: our EO-QAP procedure and the RoTS method, resulting
in a solver we call ParEOTS. The communication strategies of CPLS remain
unchanged, ensuring cooperation between the explorers which now happen to be
running different methods. Figure 2 presents possible interactions due to coop-
eration and the implementation of the hybrid strategy. The team’s EP will now
contain configurations stemming from explorers running different heuristics.

Fig. 2. Hybridization in CPLS : combining EO-QAP and RoTS

Here is a possible scenario: inside the same team, an instance E1 of EO-
QAP reports a good configuration C1 to the EP. Later, an instance R1 of RoTS
retrieves C1, improves on it (RoTS being strong at intensification) and obtains
a better configuration C2, on which it reports back to the EP. Later, C2 gets
adopted by an instance E2 which, being in a diversification phase, moves to a
faraway search region, which may provide yet better solutions. Obviously, other
scenarios are possible, e.g. when another EO-QAP explorer E3 also retrieves C1

(provided by EO) it gives a “second chance” to this configuration (due to its
internal stochastic state it can further improve this configuration). The whole
system behaves as a hybrid solver, benefiting from cross-fertilization due to the
inherent diversity of the search strategies.
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4 Experimental Evaluation

In this section we present an experimental evaluation of our hybrid parallel
method (source code, instances and new solutions will be soon available from
http://cri-hpc1.univ-paris1.fr/qap/). All experiments have been carried out on a
cluster of 16 machines, each with 4 × 16-core AMD Opteron 6376 CPUs running
at 2.3 GHz and 128 GB of RAM. The nodes are interconnected with InfiniBand
FDR 4× (i.e. 56 GBPS). We had access to 4 nodes and used up to 32 cores per
node, i.e. 128 cores. Each problem is executed 10 times stopping as soon as the
BKS (which is sometimes the optimum) is found. This execution is done with a
short time limit of 5 min (in case the BKS is not reached). Such experiments give
an interesting information about the quality of solutions quickly obtainable. All
times are given either in seconds for small values (as a decimal number) or in
a human readable form as mm:ss or hh:mm:ss). The relevant CPLS parameters
controlling the cooperation are (as per [11]):

– Team Size (NPT ): we fixed it to NPT = 16. There are thus 8 teams com-
posed of 16 explorer nodes ; 8 running a EO-QAP solver and 8 running RoTS
solver. This is constant over all problems. We did not yet experiment with
other splits.

– Report and Update Interval (R and U): we manually tuned U and usually fix
R = U/2.

– Elite Pool (EP ): its size is fixed to 4 for all problems.
– pAdopt : is set to 1. Any solver instance receiving a better configuration than

its current one always switches to the new one.

4.1 Scalability Analysis

We start this experimental evaluation by analyzing the scalability of ParEOTS.
Such an analysis is not easy, because if the BKS cannot be reached, the run-
time is only bounded by the timeout used. It is thus necessary to only consider
problems that can be systematically solved by the EO sequential solver (to have
a reference time using 1 core). We selected two instances of QAPLIB which
require the longest sequential time: tai35a solved on average in 42.399 s and
lipa70a solved in 57.737 s. We then ran these problems with ParEOTS, varying
the number of cores from 2 to 128. Figure 3 presents the speedup data and curves
obtained with our algorithm (using a log-log scale). The Ideal curve corresponds
to linear speedup: time is halved when the number of cores is doubled. For both
problems the speedup is linear. Using 128 cores, the best speedup is 126, obtained
for tai35a whose execution time now only requires 0.336 s.

4.2 Evaluation on QAPLIB

We here evaluate the performance of our hybrid solver ParEOTS on a set of 33
hard instances of QAPLIB. We selected this set because it is the most difficult set
for the independent parallel version of our EO procedure [10]. In addition to raw

http://cri-hpc1.univ-paris1.fr/qap/
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Cores
tai35a lipa70a

time speedup time speedup

1 0:42 1.0 0:57 1.0

2 0:33 1.3 0:18 3.2

4 0:20 2.1 0:17 3.4

8 8.9 4.8 8.4 6.9

16 6.3 6.8 3.8 15.2

32 2.6 16.6 2.1 27.5

64 1.4 31.4 1.1 54.3

128 0.3 126.0 0.5 106.3
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Fig. 3. Speedup profile using the Hybrid CPLS on two QAPLIB instances

performance, and for validation purpose, we also want to assess the gain obtained
with the hybrid version compared the cooperative parallel versions of its two
components: ParEO and ParRoTS (also written in X10 within CPLS). For this,
all 3 systems are run under the same conditions (see Sect. 4). Obviously, ParEO
runs 128 instances of our EO procedure, ParRoTS runs 128 instances of RoTS
while ParEOTS executes 64 instances of EO-QAP and 64 of RoTS. To measure
the hybrid performance we focus on the number of BKS found by each parallel
solver. When running 50 % of EO and 50 % of RoTS we define a low threshold
(low) as the average of #BKS found by both parallel solvers. This corresponds to
what can be normally expected. Below this value, the hybrid solver is ineffective.
Above, it already performs well. Moreover, we define a high threshold (high) as
the maximum of the #BKS of both solvers. Above this value, the hybrid solver
performs at least as well as the best single solver (a hybrid solver without gain
would need twice the number of cores to obtain such a performance). Obviously
low and high can be generalized to an hybridization involving more than 2
solvers. For a given problem, executed n times, the performance (hperf) of the
hybrid solver reaching #bks times the BKS is defined as follows:

hperf =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

#bks−low
low , if #bks < low

#bks−low
high−low , if low < #bks < high and low �= high

1 + #bks−high
n−high , if high ≤ #bks and n �= high

1, if high = #bks = n

(1)

The performance ranges in [−1, 2]. if hperf < 0 the hybrid solver is ineffective
on that problem. For hperf ∈ [0, 1) the performance is acceptable and when
hperf ∈ [1, 2] the performance is very good.

low high very high
-1 0 1 2
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Table 1. ParEOTS on QAPLIB and comparison with ParEO and ParRoTS

ParEOTS
hperf

ParEO ParRoTS

#bks APD time #ad. #bks APD time #ad. #bks APD time #ad.

els19 10 0.000 0.0 2.6 1.00 10 0.000 0.0 0.2 10 0.000 0.0 0.3

kra30a 10 0.000 0.0 3.9 1.00 10 0.000 0.0 2.6 10 0.000 0.0 3.6

sko56 10 0.000 1.5 0.3 1.00 10 0.000 4.8 2.5 10 0.000 0.6 0.0

sko64 10 0.000 1.7 0.3 1.00 10 0.000 4.8 1.5 10 0.000 1.3 0.0

sko72 10 0.000 8.7 1.0 1.00 10 0.000 0:13 1.4 10 0.000 0:16 1.7

sko81 10 0.000 0:24 1.8 1.00 7 0.008 1:58 9.4 10 0.000 1:06 4.6

sko90 10 0.000 1:32 4.8 1.00 10 0.000 1:32 5.0 7 0.002 1:54 5.3

sko100a 10 0.000 1:09 1.3 2.00 5 0.012 3:44 4.2 7 0.002 2:46 3.3

sko100b 10 0.000 0:45 0.8 1.00 8 0.001 2:26 2.6 10 0.000 1:02 0.6

sko100c 10 0.000 0:56 1.0 1.00 10 0.000 2:25 2.4 6 0.001 3:12 3.6

sko100d 10 0.000 1:03 1.1 1.00 6 0.014 3:20 3.6 10 0.000 0:37 0.2

sko100e 10 0.000 0:47 0.9 1.00 10 0.000 1:43 1.6 5 0.002 2:47 3.0

sko100f 10 0.000 0:57 0.9 2.00 4 0.011 4:05 4.8 5 0.003 3:42 4.3

tai40a 10 0.000 1:26 1.6 1.00 7 0.022 2:51 3.4 10 0.000 1:04 1.0

tai50a 3 0.077 4:24 3.5  0.33 5 0.026 3:28 2.4 4 0.044 4:11 2.5

tai60a 3 0.146 4:15 0.9 1.13 2 0.132 4:45 1.9 0 0.297 5:00 2.0

tai80a 0 0.364 5:00 4.9 1.00 0 0.385 5:00 1.0 0 0.605 5:00 1.0

tai100a 0 0.298 5:00 2.0 1.00 0 0.297 5:00 3.0 0 0.567 5:00 5.0

tai20b 10 0.000 0.0 1.0 1.00 10 0.000 0.0 0.8 10 0.000 0.0 0.3

tai25b 10 0.000 0.0 0.5 1.00 10 0.000 0.6 17.0 10 0.000 0.0 0.0

tai30b 10 0.000 0.1 1.9 1.00 10 0.000 0.1 3.0 10 0.000 0.1 1.2

tai35b 10 0.000 0.3 4.3 1.00 10 0.000 0.7 14.2 10 0.000 0.2 1.9

tai40b 10 0.000 0.1 0.6 1.00 10 0.000 0.1 0.4 10 0.000 0.2 2.0

tai50b 10 0.000 2.6 1.2 1.00 2 0.214 4:26 4.5 10 0.000 2.1 0.0

tai60b 10 0.000 4.6 1.2 1.00 3 0.205 4:16 2.6 10 0.000 5.3 0.0

tai80b 10 0.000 0:53 1.6 2.00 0 1.192 5:00 8.8 5 0.002 3:06 6.0

tai100b 10 0.000 1:11 0.7 2.00 0 0.465 5:00 5.5 2 0.035 4:10 4.8

tai150b 0 0.061 5:00 0.7 1.00 0 1.088 5:00 1.5 0 0.103 5:00 0.3

tai64c 10 0.000 0.0 0.0 1.00 10 0.000 0.0 0.3 10 0.000 0.0 0.0

tai256c 0 0.178 5:00 2.2 1.00 0 0.263 5:00 1.3 0 0.266 5:00 1.5

tho40 10 0.000 0.5 0.0 1.00 10 0.000 1.2 0.2 10 0.000 0.4 0.0

tho150 1 0.007 4:51 2.0 1.10 0 0.144 5:00 1.7 0 0.019 5:00 1.9

wil100 10 0.000 1:37 1.9 2.00 0 0.061 5:00 5.4 6 0.001 2:16 2.4

Summary 267 0.034 1:24 1.6 1.12 199 0.138 2:28 3.7 227 0.059 1:53 1.9

Table 1 presents the results. The parameters used for EO are the same as
in [10]. For RoTS we generally use a tabu tenure = 8n and an aspiration = 4n2.
The table reports, for each solver, the number of times out of 10 runs the BKS
was reached (#bks), the Average Percentage Deviation (APD) which is relative
deviation percentage computed as follows: 100 × Avg−BKS

BKS (where Avg is the
average of the 10 found costs), the average execution time (average of the 10
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wall times for one instance) and the numbers of adoptions done by the winning
explorer (#ad.). The performance value is also reported. The last row presents
the averages of each column (or sums for #bks columns).

It is worth noticing that the overall performance of the cooperative parallel
version of the 2 base solvers using a short time limit is rather good. Even so, the
hybrid solver clearly outperforms them. Focusing on #BKS, it provides high per-
formance (hperf ≥ 1) for 32 instances (only for tai50a does it behave worse than
its two components). Moreover, in 4 cases it obtains a hperf = 2 corresponding
to cases where it performs much better than both individual solvers (to such an
extent that it obtains the perfect score #BKS = 10). It found the BKS at each
replication for 26 problems; this is much better than ParEO (15) and ParRoTS
(18). In only 4 cases, could ParEOTS not reach the BKS: this number is 8 for
ParEO and 6 for ParRoTS. It is worth noticing that even in these 4 cases, the
hybridization is still effective since the APD is lower than for its components. For
instance, on the very difficult problem tai256c, the hybridization cannot solve
the problem but the APD is 0.178 while it is around 0.263 for both components.
Another remarkable case is tho150, for which the hybridization is very effective.
The average APD is now 0.007 (0.144 for ParEO and 0.019 for ParRoTS). In
fact, it turns out that this problem could even be solved once.

The “summary” row reports interesting numbers. All in one, the average
APD of ParEOTS is 0.034 which is much better than 0.138 for ParEO and 0.059
for ParRoTS. Regarding execution times, it is a good surprise to see that the
increase of quality does not hamper the speed. In fact, with an average execution
time of 85 s the hybrid solver is faster than ParEO (148 s) and ParRoTS (113 s).

4.3 Testing on Palubeckis’ Instances

In 2000, Palubeckis proposed a new hard problem generator with known opti-
mum [36] and provided a set of 10 hard instances called InstXX . Few results
have been published about experiments with them. Palubeckis reports the best
solutions found by a repeated local search procedure (called multi-start descent
or MSD). In [37] the authors propose an Ant Colony Optimization algorithm
(QAP-ACO) and test it on these instances (in this work these instances are
called paluXX ).

We experimented in the same setting as previously: with 128 cores and a time
limit of 5 min. Table 2 displays the results for 3 solvers. In addition to the APD
we also provide the best cost value found among the 10 runs. Data is taken from
the aforementioned articles. We also provide execution times for QAP-ACO for
indicative purposes.

Even with a limit of 5 min, the performances of ParEOTS are very good. The
optimum is reached for problems whose size n ≤ 100. In addition, for all n ≤ 80
ParEOTS reaches the optimum at each replication. For sizes n > 100, clearly
a limit of 5 min is too short to reach the optimum. Nevertheless, the obtained
solutions are of good quality with an APD around 1.12%: 2–3 times better than
challengers. It is worth noticing that for n > 20 all published best obtained
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Table 2. ParEOTS on Palubeckis’ instances (128 cores, timeout 5 m)

opt. ParEOTS QAP-ACO MSD

#bks APD best value time #bks APD best value time #bks APD best value

Inst20 81536 10 0.000 81536 0.0 0 0.340 81817 1.2 10 0.000 81536

Inst30 271092 10 0.000 271092 0.1 0 0.580 272654 0:10 0 0.364 272080

Inst40 837900 10 0.000 837900 4.0 0 0.360 840930 1:02 0 0.287 840308

Inst50 1840356 10 0.000 1840356 0:17 0 0.380 1847422 3:46 0 0.354 1846876

Inst60 2967464 10 0.000 2967464 1:07 0 0.390 2978898 10:05 0 0.362 2978216

Inst70 5815290 10 0.000 5815290 2:07 0 0.300 5832460 24:24 0 0.287 5831954

Inst80 6597966 10 0.000 6597966 1:56 0 0.310 6618736 50:42 0 0.308 6618290

Inst100 15008994 1 0.120 15008994 5:00 0 0.270 15048806 1:41:02 0 0.256 15047406

Inst150 58352664 0 0.126 58414888 5:00 0 0.198 58468204

Inst200 75405684 0 0.125 75498892 5:00 0 0.183 75543960

solutions are improved (in bold font in the table). Regarding execution times,
ParEOTS also outperforms its competitors.

4.4 Testing on Drezner’s Instances

In 2005, Drezner and al. designed new QAP instances with known optimum
but specifically ill conditioned to be difficult for metaheuristic methods [38].
The authors reports the best solutions found by a powerful compounded hybrid
genetic algorithm (called CHG in what follows). The instances are really difficult
and only very recently were some results published by Acan and Ünveren with a
great deluge algorithm (called TMSGD) [39]. These hard instances are thus an
interesting challenge for our hybrid solver.

We ran it under the same conditions as before: using 128 cores and with a
time limit of 5 s. Table 3 presents the results for 3 solvers. Data is taken from

Table 3. ParEOTS on Drezner’s instances (128 cores, timeout 5 m)

opt. ParEOTS TMSGD CHG

#bks APD best time #bks APD best time #bks APD best

dre15 306 10 0.000 306 0.0 10 0.000 306 2.1

dre18 332 10 0.000 332 0.0 10 0.000 332 7.4

dre21 356 10 0.000 356 0.0 10 0.000 356 0:18

dre24 396 10 0.000 396 0.0 10 0.000 396 0:56

dre28 476 10 0.000 476 0.1 10 0.000 476 1:18

dre30 508 10 0.000 508 0.1 10 0.000 508 2:36 10 0.00 508

dre42 764 10 0.000 764 0.692 6 0.25 764 8:51 9 1.34 764

dre56 1086 10 0.000 1086 5.6 3 3.556 1086 18:39 3 17.46 1086

dre72 1452 10 0.000 1452 0:26 0 8.388 1512 47:06 1 27.28 1452

dre90 1838 9 0.968 1838 2:47 0 10.979 1959 1:36:33 0 33.88 2218

dre110 2264 6 6.334 2264 3:43 0 15.123 2479 2:41:25

dre132 2744 1 22.784 2744 4:54 0 17.553 3023 3:31:07
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the above mentioned articles (in the case of CHG each problem was executed
20 times, presented #BKS are divided by 2 for normalization). We also provide
execution times for TMSGD for indicative purposes (TMSGD was run on a 2.1
GHz PC).

The performance of ParEOTS is very good: all problems could be optimally
solved, and, to the best of our knowledge, this is the first time that an optimal
solution is found for dre90, dre110 and dre132. TMSGD performs better than
CHG (but the CHG experiment is old). Regarding execution times, ParEOTS
needs 2:47 to solve dre90 while TMSGD cannot solve it even using 1:36:33 (CHG
reports one hour for dre90 and also fails to find the optimum).

5 Conclusion and Further Work

We set out to construct a hybridized solver by resorting to a parallel and coop-
erative multi-walk scheme, which relies on the CPLS framework to provide both
the cooperation and the parallel or distributed execution.

As a testbed for the idea, we chose to tackle the Quadratic Assignment
Problem, because it is recognized as a very difficult problem of significant prac-
tical interest and also because benchmark instances abound in the literature.
For this we designed ParEOTS: a hybrid cooperative parallel solver combining
two methods: our Extremal Optimization algorithm and Taillard’s robust tabu
search. This hybrid solver is much more efficient than any of its two individual
base solvers. Regarding QAPLIB, our hybrid solver is able to reach the best
known solution (BKS) for all instances except 4. In most cases it is even able to
systematically find the BKS at each replication. Even then, for the 4 not fully
solved hardest instances (tai80a, tai100a, tai150b and tai256c), the solu-
tions obtained are very close to the BKS. We also tested the solver on other
hard instances. The results on Palubeckis’ instances are very good: for the first
time, ParEOTS optimally solved all instances up to a size n = 100 (prior to
this work only optimal solutions for n = 20 were known). We discovered optimal
solutions for sizes n = 30..100 and 2 new best obtained solutions for n = 150 and
n = 200. Regarding Drezner’s instances, the results are even better: we discov-
ered optimal solutions for all instances (including dre90, dre110 and dre132).
This is the first time that optimal solutions for these 3 instances are published.

From our experiments, it became clear that: (1) the coding effort for build-
ing a hybrid solver is much lower with our approach than for existing hybrid
algorithms, and (2) the performance gain over competing approaches is very sig-
nificant. The latter aspect can be construed as a sort of evolutionary algorithm,
one which blends phenotypes rather than genotypes, all under the supervision
of the cooperative framework. As to the former, the changes needed to fit the
CPLS scheme are minimal and very simple.

We plan to further explore portfolio approaches, combining more than two
types of solver as well as experimenting with techniques for parameter auto-
tuning. Another line entails the induction of solver multiplicity by presenting
several instances of the same solver, but set up with different parameters.
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Abstract. This paper presents two ideas to guide a tabu search algo-
rithm for the Capacitated Arc Routing Problem to a promising region of
the solution space. Both ideas involve edge-reordering, although they work
in different ways. One of them aims to directly tackle deadheading cycles,
and the other tries to reorder edges with the aim of extending a scope
of solutions that can be reached from a given solution. Experiments were
performed on 134 benchmark instances of various sizes, and the two ideas
were shown to have an ability to guide the search to good solutions. Possi-
ble issues that may arise when implementing these ideas are also discussed.

1 Introduction

The Capacitated Arc Routing Problem (CARP) is a combinatorial optimisation
problem that can be defined as follows: Given a graph with one of its vertices
called the depot, a cost and a demand for each edge, and a vehicle capacity, the
objective of the CARP is to find a minimum-cost set of routes (one route for each
vehicle) such that (i) each route contains the depot, (ii) all edges with non-zero
demands (called required edges) are serviced in precisely one of the routes, and
(iii) the total demand in each route does not exceed the capacity. The CARP can
be used to model and solve various real-life situations such as rubbish collection,
street sweeping, and snow ploughing. It was originally introduced and proved to
be NP-hard by Golden and Wong [8].

A wide variety of algorithms have been proposed to solve the CARP, possi-
bly as a result of its real-world applicability. Metaheuristics have been popular
choices, and include guided local search [1], scatter search [9], variable neigh-
bourhood search [13], ant colony optimisation [14], memetic algorithms [6,15],
and tabu search [2,9,10].

Despite a wide variety of proposed algorithms in the literature, there are
still some CARP benchmark instances that remain unsolved, especially those
with a relatively large number (347 to 375) of required edges. This suggests
that more efficient algorithms for the CARP are still to be found. One key idea
could be to find a way to explore a space of solutions efficiently. Traditional
neighbourhood moves for the CARP such as removing or inserting edges or
swapping edges between routes usually affect only a small number of edges and
c© Springer International Publishing Switzerland 2016
M.J. Blesa et al. (Eds.): HM 2016, LNCS 9668, pp. 62–74, 2016.
DOI: 10.1007/978-3-319-39636-1 5
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leave other edges untouched (apart from perhaps shifting their orders). It could
be beneficial to integrate such moves with a method that can extend the scope
of solutions that can be reached from a given solution, thereby increasing the
connectivity of the solution space. One possible way to achieve that is to allow
edges in a route to be reordered when receiving a new edge from another route.
This could better accommodate the new edge and lead to an improvement which
might have otherwise required several traditional moves.

Note that allowing edges to be reordered can greatly enlarge a neighbourhood
of a given solution. In this paper, we therefore present two ideas that can help
a search head towards a promising region of the solution space. The first idea is
based on an investigation into deadheading edges, i.e. edges that are not serviced
by a vehicle but are used to travel from one serviced edge to another. A route usu-
ally contains not only serviced edges but also deadheading edges. If deadheading
edges form a cycle, such cycle should be removed provided that the route does not
get disconnected as a result. This potentially reorders the edges in the route while
definitely improving a solution (assuming non-zero edge costs). This could be par-
ticularly useful for large instances with a small ratio of capacity to total demand,
where vehicles tend to fill the capacity quickly and have to return to the depot
early, resulting in a significant amount of deadheading cost.

The second idea is to reconstruct a route with a given set of required edges.
This can be achieved by means of a heuristic algorithm for the Rural Postman
Problem, a special case of the CARP in which a single vehicle has large enough
capacity to service all edges (see, for example, [4]). This idea was also utilised by
Brandão and Eglese in [2]. In their paper, the heuristic is applied to routes that
are changed by the best neighbourhood move in each iteration. In this paper, by
contrast, the heuristic is integrated with each neighbourhood move, so it is also
taken into account when finding the best neighbourhood move.

This paper is organised as follows: A formal definition of the CARP is given
in Sect. 2. Section 3 explains how deadheading cycles can occur in a route and
introduces a procedure for removing such cycles. Section 4 describes a tabu search
algorithm with edge-reordering procedures. Performances of the algorithm are
presented and discussed in Sect. 5. Finally, Sect. 6 gives a conclusion and sugges-
tions for future work.

2 Problem Definition and Notation

Given an undirected graph G = (V,E) with a vertex set V and an edge set E,
a cost c(e) ∈ Z

+ and a demand d(e) ∈ Z
+ ∪ {0} for each edge e ∈ E, a vehicle

capacity Q ∈ Z
+, and one of the vertices v0 ∈ V regarded as the depot, the

objective of the CARP is to find a minimum-cost set of routes such that

– each route contains the depot,
– each edge with non-zero demand (called a required edge) is serviced in pre-

cisely one of the routes, and
– the total demand of serviced edges in each route does not exceed the vehicle

capacity.
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Here, the number of routes is treated as a variable. Note that the orientation
of each edge in a route needs to be specified even if the underlying graph is
undirected because this can affect the cost of travelling from one required edge
to another. An edge e = {i, j} can be traversed in two possible ways: from i to j
or from j to i, denoted by directed edges, or arcs, (i, j) and (j, i), respectively. A
route R can then be represented as a sequence of arcs (a1, a2, . . . , an), where n
is the number of arcs that are serviced by R and a1, a2, . . . , an are the serviced
arcs. This is possible as it is clear that a vehicle should travel between serviced
arcs via a shortest path in order to minimise the overall cost. This representation
of a route is similar to that in [1].

Let t(a) and h(a) denote the tail and the head of an arc a. For example, if a =
(i, j), then t(a) = i and h(a) = j. The total cost of the route R = (a1, a2, . . . , an)
is given by

C(R) = d(v0, t(a1)) +
n−1∑

i=1

d(h(ai), t(ai+1)) + d(h(an), v0) +
n∑

i=1

c(ai), (1)

where d(u, v) is the cost of a shortest path between vertices u and v. The total
demand of R is given by

D(R) =
n∑

i=1

d(ai). (2)

Using the above notations, the CARP can be presented more formally. Let
x(e,R) be a binary variable such that x(e,R) = 1 if an edge e is serviced in a
route R, and x(e,R) = 0 otherwise. Let ER be the set of required edges. The
objective of the CARP is to find a set of routes S that minimises

f(S) =
∑

R∈S

C(R) (3)

while satisfying the following constraints:

∑

R∈S

x(e,R) = 1 ∀e ∈ ER , (4)

D(R) ≤ Q ∀R ∈ S . (5)

The equality (4) means that each required edge must be serviced in precisely
one of the routes, and the inequality (5) is the capacity constraint. Note that
the CARP can also be formulated as an integer linear programming problem.
Interested readers are referred to [4] or [8].

3 Deadheading Cycles

Even though a route can be represented by a sequence of serviced edges (with
specified orientation), in reality a vehicle must travel in a continuous route, and
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so it may need to traverse some edges without servicing them when travelling
between two required edges that are not physically adjacent. Such edges are
called deadheading edges. In some cases, several deadheading edges may form
a cycle, called a deadheading cycle. Indeed, provided it does not disconnect a
route, a deadheading cycle can be removed without affecting feasibility of the
route for two reasons: (i) the capacity constraint is still satisfied because serviced
edges are unaffected (apart from potential reordering or reorientation), and (ii)
with a route regarded as an Eulerian (multi)graph, removing a cycle preserves
the parity of the degree of each vertex, so the Eulerian graph remains Eulerian
after the removal.

It can be difficult to find a deadheading cycle while viewing a route as a
sequence of serviced arcs because a deadheading cycle may be composed of dead-
heading edges which are traversed between different pairs of serviced arcs. So,
for the purpose of detecting deadheading cycles, we view a route as an Eulerian
graph (or multigraph if some edges are traversed more than once). Given a
route R = (a1, a2, . . . , an), first we need to find shortest paths between v0 and
a1, between ai and ai+1 (for i = 1, . . . , n − 1), and between an and v0. This
can be achieved by Dijkstra’s algorithm [3]. Then, let Gmult be a multigraph
such that the multiplicity of each edge in Gmult is equal to the number of times
the edge is traversed (in any direction, with or without servicing) in R. When
an edge is traversed three times or more, at least two such traversals are dead-
heading because, by definition, an edge can be serviced at most once. Every two
deadheading traversals on the same edge correspond to a cycle in Gmult, which
can be removed without disconnecting it as long as the number of traversals does
not drop below 2. For an edge that is traversed just twice, careful consideration
is needed before removing the corresponding cycle. In Fig. 1 for example, we can
see that removing a deadheading cycle may or may not disconnect a route. Thus,
to ensure continuity of a route, here we remove a deadheading cycle until the
multiplicity of the corresponding edge reduces to either 1 or 2, depending on its
parity.

After removing deadheading cycles, an updated sequence of edges traversed
in the route R can be determined by finding an Eulerian cycle in the consequent
Gmult. In order to obtain a representation of R as described in Sect. 2, if an
edge to be serviced is traversed more than once, it is assumed that the edge is
serviced at its first occurrence in the Eulerian cycle. Notice that the ordering and
orientation of some serviced edges may change after the removal—see Fig. 1(a).

4 Description of the Tabu Search Algorithm

In this section, components of our tabu search algorithm are described. Our algo-
rithm starts with an initial solution generated by the Path-Scanning algorithm
[7]. This algorithm has been shown to produce better solutions on average than
several other constructive algorithms [2].
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Fig. 1. Examples of deadheading cycles that are (a) removable and (b) not removable.

4.1 Neighbourhood Moves

Recall that a route is viewed as a sequence of required edges with specified
directions that are serviced by the route. Four common neighbourhood moves
are used:

1. Single Insertion: A required edge is removed from one route and then inserted
at any position into another route. Both directions are examined when insert-
ing it into a route.

2. Double Insertion: Two required edges are removed from one route and then
inserted at any positions into another route. The edges may be inserted at the
same position (i.e. between the same required edges, or between the depot and
the first or last required edge). In the case where the edges are inserted at the
same position, both possible permutations of the edges are considered (“edge
1 before edge 2” and “edge 2 before edge 1”). Both directions of each edge
are examined when inserting it into a route. Thus, there are 8 possibilities of
inserting two edges at a given position.
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3. Swap: A required edge from each of two given routes is removed and inserted
at any position into the other route, including the position of the removed
edge. Both directions of each edge are examined when inserting it into a route.

4. Two-Opt : Each of two given routes is divided into two parts. Note that each
part must have at least one required edge. Then, a part from one route is
joined to a part from the other to create a new route. The remaining parts
are also joined to create another route. Two possible ways of joining are
examined. For clarity, this is illustrated in Fig. 2.

Fig. 2. An example of a Two-Opt move. In (i), after one route is cut between ai and
ai+1 and the other route between bj and bj+1, they can become either (ii) or (iii).

The first three neighbourhood moves were used in, for example, [2,9,12,15],
and the Two-Opt move was utilised in, for example, [1,12,15].

4.2 Rural Postman Heuristic

When a Single Insertion, Double Insertion, or Swap move is implemented, an
edge is inserted into a route without affecting the order of required edges already
in the route. However, it is possible that reordering some of those edges might
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better accommodate the new edge and potentially lead to a better solution.
Consider Single Insertion for example. Assume the move is feasible. Instead of
specifying where to insert an edge into a route R, we may simply add it to the set
of edges serviced by R and then attempt to construct a “promising” route that
services this set of edges without having to keep the original order of any of the
edges. In fact, we are attempting to solve a special (though still NP-hard) case
of the CARP, namely the Rural Postman Problem (RPP), where the capacity
is no less than the sum of required edges under consideration.

In our case, this reordering is achieved by means of a heuristic for the RPP
proposed by Frederickson [5]. Given a set of required edges ER in an underlying
graph G, let GR be a subgraph of G generated by ER. The heuristic consists of
two main steps:

1. Connecting components: If GR has more than one connected component, they
will be joined to make one connected component. This is achieved by solving
the minimum spanning tree problem: Let GS be a complete graph having as
many vertices as the components of GR. Let the cost of an edge {i, j} in GS

be equal to the shortest distance between components Ci and Cj , that is,

the cost of an edge {i, j} in GS = min
u∈Ci,v∈Cj

d(u, v) ,

where d(u, v) is the cost of the shortest path in G between vertices u and
v. Let T be a minimum spanning tree in GS . Add to GR the shortest path
corresponding to each edge in T . Now GR is connected.

2. Matching odd-degree vertices: If GR has odd-degree vertices, paths will be
added to GR to render the graph Eulerian. To achieve this, let GM be a
complete graph whose vertices are precisely the odd-degree vertices of GR.
Let the cost of an edge {i, j} in GM be equal to d(i, j). Let M be a perfect
matching in GM . Add to GR the shortest path corresponding to each edge
in M .

Note that finding a minimum-cost perfect matching in Step 2 does not guar-
antee an optimal solution for the RPP. In fact, Brandão and Eglese [2] have
noted that using a minimum-cost perfect matching could give a worse solution
in some cases. Instead of using an exact approach (such as the blossom algo-
rithm [11]), we therefore opt to use a cheaper greedy method which operates
by selecting the cheapest edge which is not adjacent to any previously selected
edges.

Now GR is an Eulerian (multi)graph. A new route corresponding to GR can
be obtained in the same way as we did for Gmult at the end of Sect. 3.

4.3 Tabu Record and Tabu Tenure

In our case, information on tabu moves is stored in arrays (as opposed to lists).
The Single Insertion, Double Insertion and Swap moves share the same tabu
array T1. An entry T1(e,R) denotes the iteration number until which the inser-
tion of the edge e into the route R is declared tabu (i.e. forbidden). Whenever
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a required edge e is removed from a route R, the entry T1(e,R) is updated so
that T1(e,R) is set to the current iteration number plus the tabu tenure. Note
that Double Insertion and Swap involve two insertions, so two entries in T1 are
updated. A Single Insertion/Double Insertion/Swap move is tabu if and only if
all the insertions involved in the move are tabu. Note that the above procedure
for updating T1 still applies no matter whether the RPP heuristic is used because
T1 does not concern the position of an edge in a route.

Two-Opt uses a separate tabu array T2. An entry T2(a, b) denotes the iter-
ation number until which a cut (or, equivalently, a deadheading path) between
required arcs a and b is declared tabu. (Recall that an arc is a directed edge.)
Suppose a Two-Opt move involves a cut between required arcs a and b. Then,
the entry T2(a, b) is updated so that T2(a, b) is set to the current iteration num-
ber plus the tabu tenure. It should be noted that a pair of arcs here must be
treated as an ordered pair because different orders may correspond to different
deadheading paths (see Fig. 3). In contrast, a pair (a, b) should be treated as
identical to a pair (−b,−a), where a minus sign denotes the opposite direction,
because of symmetry of a route (as an undirected cycle in a graph). This can
help save memory required for this tabu record.

Fig. 3. Routes that contain the same required edges may be the same or different,
depending on the direction and the order in which they are traversed.

For a tabu tenure, we follow a policy used in a previous tabu search algorithm
in the literature [2]: the tenure is set to n/2, where n is the number of required
edges. This remains fixed throughout the algorithm.

4.4 Admissibility of Moves

A common aspiration criterion is used here: In a given iteration, a neighbourhood
move is considered if and only if it is feasible (the capacity constraint is satisfied)
and either (1) it is non-tabu or (2) it is tabu but leads to a better solution than
the current best solution.
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Table 1. The mean and the coefficient of variation (CV) of solution costs for 20
independent runs on the EGL dataset

Best known No reordering RDC RPP

Instance |V | |E| |ER| solution Mean CV Mean CV Mean CV

E1-A 77 51 98 3548 3548.0 0.0% 3548.0 0.0% 3548.0 0.0%

E1-B 77 51 98 4498 4531.9 0.3% 4525.4 0.2% 4529.3 0.2%

E1-C 77 51 98 5595 5748.3 1.2% 5736.3 0.9% 5634.1 0.9%

E2-A 77 72 98 5018 5149.4 0.6% 5059.8 0.4% 5028.1 0.2%

E2-B 77 72 98 6317 6347.5 0.1% 6345.8 0.1% 6339.3 0.1%

E2-C 77 72 98 8335 8620.4 1.7% 8683.6 1.8% 8559.9 1.3%

E3-A 77 87 98 5898 5916.1 0.3% 5918.1 0.5% 5937.4 0.7%

E3-B 77 87 98 7775 8015.3 1.3% 7912.9 1.2% 7915.8 1.0%

E3-C 77 87 98 10292 10392.1 0.6% 10398.2 0.4% 10371.4 0.3%

E4-A 77 98 98 6444 6521.9 0.6% 6492.8 0.4% 6480.6 0.3%

E4-B 77 98 98 8961 9135.3 1.1% 9086.0 0.7% 9029.7 0.3%

E4-C 77 98 98 11550 11800.7 0.6% 11795.6 0.6% 11775.6 0.3%

S1-A 140 75 190 5018 5132.7 0.9% 5069.4 1.0% 5077.5 1.1%

S1-B 140 75 190 6388 6503.1 0.6% 6480.1 1.0% 6511.7 0.7%

S1-C 140 75 190 8518 8662.8 0.9% 8646.9 0.7% 8623.6 0.8%

S2-A 140 147 190 9884 10041.5 1.0% 10089.1 1.0% 10152.7 0.9%

S2-B 140 147 190 13100 13531.4 1.1% 13479.0 1.4% 13366.8 0.9%

S2-C 140 147 190 16425 16865.3 0.6% 16888.1 0.7% 16773.9 0.7%

S3-A 140 159 190 10220 10414.8 0.8% 10335.8 0.3% 10460.9 0.9%

S3-B 140 159 190 13682 14126.6 1.5% 13935.6 0.4% 13959.0 0.8%

S3-C 140 159 190 17188 17634.8 0.7% 17490.8 0.5% 17456.6 0.4%

S4-A 140 190 190 12268 12527.3 0.7% 12555.5 0.7% 12775.3 0.5%

S4-B 140 190 190 16283 16613.7 0.7% 16534.9 0.5% 16641.5 0.5%

S4-C 140 190 190 20481 21012.5 0.5% 20980.8 0.7% 21059.6 0.4%

Average 9736.9 9949.7 9916.2** 9917.0

5 Computational Results

The tabu search algorithm described above was coded using C++ and all exper-
iments were performed on Intel Core i3-2120 3.30 GHz with 8 GB RAM using
benchmark datasets EGL, BMCV, and EGL-Large.1 To simulate a real-life sce-
nario where speed is preferable to optimality, a time limit of 300 s was introduced
for the EGL and BMCV sets. Due to a larger number of required edges, a longer
time limit of 1,200 s was introduced for the EGL-Large set.

To investigate how the edge-reordering procedures might help to improve
the search, three versions of the algorithms were tested: the first one does not

1 These datasets, as well as best known solutions, are available at http://logistik.bwl.
uni-mainz.de/benchmarks.php.

http://logistik.bwl.uni-mainz.de/benchmarks.php
http://logistik.bwl.uni-mainz.de/benchmarks.php
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Table 2. The mean and the coefficient of variation (CV) of solution costs for 20
independent runs on the BMCV dataset

Subset of Average over 25 instances in the subset

instances Best known No Reordering RDC RPP

solution Mean CV Mean CV Mean CV

C (C1 - C25) 3683.4 3781.1 1.5 % 3760.9 1.2 % 3747.1 1.1 %

D (D1 - D25) 2872.4 2936.4 1.0 % 2896.8 0.9 % 2892.7 0.8 %

E (E1 - E25) 3698.0 3795.9 1.5 % 3782.0 1.6 % 3774.8 1.2 %

F (F1 - F25) 3003.0 3058.4 0.9 % 3035.8 1.0 % 3026.7 0.7 %

Average 3314.2 3392.9 3368.9** 3360.3**

Table 3. The mean and the coefficient of variation (CV) of solution costs for 20
independent runs on the EGL-Large dataset

Best known No reordering RDC RPP

Instance —V— —E— |ER| solution Mean CV Mean CV Mean CV

G1-A 255 347 375 1004864 1025967.0 0.6% 1024128.5 0.6% 1046700.8 0.8%

G1-B 255 347 375 1129937 1135307.6 0.4% 1134844.3 0.4% 1154564.5 0.7%

G1-C 255 347 375 1262888 1282483.9 0.6% 1279901.8 0.7% 1303527.5 0.5%

G1-D 255 347 375 1398958 1410589.4 0.7% 1408335.1 0.6% 1423174.4 0.5%

G1-E 255 347 375 1543804 1551973.2 0.9% 1550111.0 0.8% 1581999.2 0.7%

G2-A 255 375 375 1115339 1120506.3 0.5% 1120201.9 0.6% 1142626.4 0.6%

G2-B 255 375 375 1226645 1237201.4 0.7% 1235783.5 0.7% 1281057.4 0.5%

G2-C 255 375 375 1371004 1381432.9 0.6% 1378903.3 0.7% 1426369.6 0.8%

G2-D 255 375 375 1509990 1515175.8 0.4% 1511281.5 0.4% 1557018.8 0.8%

G2-E 255 375 375 1659217 1667802.9 0.6% 1663952.9 0.6% 1696421.8 0.5%

Average 1322264.6 1332844.0 1330744.3** 1361346.0**

consider deadheading cycles nor the RPP heuristic (“No Reordering”), and each
of the other two implements one of the procedures:

1. attempting to remove deadheading cycles from an initial solution and from
routes that are affected by a neighbourhood move in each iteration (“RDC”),

2. integrating the RPP heuristic within the neighbourhood moves (“RPP”).

For each version, 20 independent runs were conducted on each instance.
Tables 1, 2 and 3 present the features of the instances together with the mean

and the coefficient of variation of the best solution costs from 20 independent
runs of each version of our algorithm as described above. Due to a large number
(100) of instances in the BMCV dataset, each row of Table 2 shows the average
results on a subset of 25 instances

Tables 1 and 2 suggest that both procedures improve the quality of solu-
tions produced compared to the “No Reordering” version (here, the ** symbol
indicates statistical significance according to a Wilcoxon Signed Rank test with
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p < 0.01). However, for the EGL-Large dataset in particular, their performances
are noticeably different. Table 3 shows that attempting to remove deadheading
cycles can improve a solution on all EGL-Large instances, while the RPP heuris-
tic does not seem to give any improvement. This is very likely because the RPP
heuristic requires a long computational time for large instances, as can be seen
in Table 4.

Table 4. The mean and the coefficient of variation (CV) of the time taken (seconds)
by the edge-reordering procedures for 20 independent runs on the EGL-Large dataset

RDC RPP

Instance Mean CV Mean CV

G1-A 12.8 2.6 % 1171.9 0.2 %

G1-B 17.2 2.5 % 1165.7 0.1 %

G1-C 19.4 2.4 % 1161.0 0.1 %

G1-D 20.7 3.2 % 1152.6 0.2 %

G1-E 22.0 1.5 % 1139.2 0.2 %

G2-A 14.4 1.9 % 1164.9 0.1 %

G2-B 15.3 4.2 % 1165.9 0.1 %

G2-C 17.6 4.3 % 1158.2 0.2 %

G2-D 18.7 3.6 % 1149.4 0.5 %

G2-E 19.0 1.9 % 1143.1 0.5 %

Average 17.7 1157.2

Table 4 shows the mean and coefficient of variation of the time taken by
each edge-reordering procedure in the respective version of the algorithm. As
no optimal solutions are known for this dataset, the algorithm halts once the
time limit of 1,200 s has elapsed. Table 4 shows that the RPP heuristic uses
the vast majority of computation time (about 96 %). This could be because
the RPP heuristic is integrated with all Single Insertion, Double Insertion and
Swap moves, comprising a huge set of neighbour solutions to consider with the
heuristic. Using a large amount of time to explore a neighbourhood means this
version of the algorithm performed considerably fewer iterations. As a result, the
search may have not moved “far” from the initial solution in the solution space.

It is clear from Tables 1, 2 and 3 that solutions from all versions of the algo-
rithm in this work are still far from the best known solutions. Nevertheless, we
have seen that re-ordering edges has potential to guide the search to a promising
region of the solution space and obtain better solutions within the same amount
of time.
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6 Conclusion and Future Work

This paper brought to attention two ideas to help guide a tabu search or, in
fact, any local search method to a promising region of the solution space for the
Capacitated Arc Routing Problem. The first idea is to investigate deadheading
cycles and attempt to remove them after generating an initial solution and when
they appear as a result of neighbourhood moves. Removing deadheading cycles
guarantees an improvement, provided all edge costs are non-zero. Nevertheless,
it is important to note that some deadheading cycles might not be removable as
doing so may disconnect a route.

One way to ensure the continuity of a route is to remove a deadheading
cycle only if the multiplicity of the corresponding edge does not drop below 2.
However, we might try removing each possible deadheading cycle and directly
checking if the route still remains connected. This allows us to detect more
removable deadheading cycles, but it is important to find an efficient algorithm
to do so.

Moreover, this work considered only deadheading cycles that result from a
single edge traversed repeatedly. There can also be a cycle composed of several
deadheading edges that are traversed precisely once. Still, an efficient algorithm
is required for detecting the removability of such cycle.

This paper also investigated a combination of a heuristic for the Rural Post-
man problem with neighbourhood moves. This allows edges in a route to be
re-ordered and potentially gives a better solution that might normally require
several traditional neighbourhood moves. This can increase connectivity of the
solution space and, given excess time, increase the probability of reaching good
solutions.

Experimental results showed that both ideas have potential to improve a
search. However, it can be time-consuming to try the Rural Postman heuristic
with all Single Insertion, Double Insertion, and Swap moves. It would therefore
be interesting to find a balance between increasing connectivity of the solution
space and taking time to evaluate all neighbours. Moreover, these two ideas may
not be effective alone as can be seen from a comparison between solutions from
the algorithm in this work and best known solutions. One may try to combine
these two ideas together rather than use them separately, or even combine them
with traditional tabu search techniques such as intensification and diversification.
Such a good combination is still to be researched.
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Abstract. This paper deals with novel approach for hybridization of two scientific
techniques: the evolutionary computational techniques and deterministic chaos.
The Particle Swarm Optimization algorithm is enhanced with two pseudo-random
number generators based on chaotic systems. The chaotic pseudo-random number
generators (CPRNGs) are used to guide the particles movement through multi-
plying the accelerating constants. Different CPRNGs are used simultaneously in
order to improve the performance of the algorithm. The IEEE CEC’13 benchmark
suite is used to test the performance of the proposed method.

Keywords: Particle swarm optimization � PSO � Chaos � Acceleration constant

1 Introduction

The Particle Swarm Optimization algorithm (PSO) [1–4] is a highly popular meta-
heuristic for complex optimization tasks. It has been shown in [5, 6] that various
evolutionary computational techniques (ECTs) can benefit from implementation of
chaotic sequences. The chaotic PSO was proposed in [7] and it has been shown that the
performance of the PSO can be significantly improved when the chaotic sequences are
implemented as pseudo-random number generators (PRNGs) for the PSO. Successful
applications of chaos PSO were presented among others in [8, 9].

More recently the utilization of more than one chaotic PRNG (CPRNG) during
single run of PSO was proposed in [10] showing promising results. This work builds
on the idea presented in [10] and presents a different approach for the hybridization of
PSO and multiple chaotic systems.

The novelty of the proposed approach is that the pair of random numbers needed
for the main PSO formula is generated using a pair of different chaotic pseudo-random
number generators.

The following research questions were defined:

(1) Will the performance of PSO algorithm change when the pair of CPRNGs is
implemented into the main PSO formula?
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(2) Is it possible to improve the performance of PSO algorithm by this approach?
(3) Is the performance of PSO with pair of CPRNGs better than the performance of

PSO with single CPRNG?

The paper is structured as follows: brief description of the PSO algorithm is pre-
sented in Sect. 2, the description of utilized chaotic systems (maps) is given in Sect. 3.
The experiment setup is detailed in Sect. 4 and results presented in Sect. 5. The paper
concludes with a discussion of the results and future research.

2 Particle Swarm Optimization Algorithm with Two
CPRNGs

Originally the PSO was inspired by behavior of fish schools and bird flocks. The
knowledge of global best found solution (typically noted gBest) is shared among the
particles in the swarm. Furthermore each particle has the knowledge of its own (personal)
best found solution (noted pBest). Last important part of the algorithm is the velocity of
each particle that is taken into account during the calculation of the particle movement.
The new position of each particle is then given by (1), where xtþ 1

i is the new particle
position; xti refers to current particle position and v

tþ 1
i is the new velocity of the particle.

xtþ 1
i ¼ xti þ vtþ 1

i ð1Þ

To calculate the new velocity the distance from pBest and gBest is taken into
account alongside with current velocity (2).

vtþ 1
ij ¼ w � vtij þ c1 � Rand1 � ðpBestij � xtijÞþ c2 � Rand2 � ðgBestj � xtijÞ ð2Þ

Where:

vtþ 1
ij - Newvelocity of the ith particle in iteration t + 1. (component j of the dimensionD).
w – Inertia weight value.
vtij - Current velocity of the ith particle in iteration t. (component j of the dimension D).
c1, c2 - Acceleration constants.
pBestij – Local (personal) best solution found by the ith particle. (component j of the
dimension D).
gBestj - Best solution found in a population. (component j of the dimension D).
xtij - Current position of the ith particle (component j of the dimension D) in iteration t.
Rand1 – Pseudo random number, interval (0, 1). Generated by first chaotic PRNG.
Rand2 – Pseudo random number, interval (0, 1). Generated by second chaotic PRNG.

In this work two different chaotic PRNGs are used to generate the pseudo-random
numbers in the velocity calculation equation. In this way each generator has direct
effect on the trajectory of the particle regarding its tendencies to move towards the
pBest or gBest.
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Finally the linear decreasing inertia weight [2, 3] is used. The dynamic inertia
weight is meant to slow the particles over time in order to improve the local search
capability in the later phase of the optimization. The inertia weight has two control
parameters wstart and wend. A new w for each iteration is given by (3), where t stands for
current iteration number and n stands for the total number of iterations. The typical
values used in this study were wstart = 0.9 and wend = 0.4.

w ¼ wstart � wstart � wendð Þ � tð Þ
n

ð3Þ

3 Chaotic Maps

In this section six discrete dissipative chaotic systems (maps) are described. These six
chaotic maps were used as CPRNG’s for the process of new velocity calculation in
PSO (See (2)). The selection of this particular set of maps was based on previous
experiments.

3.1 Lozi Chaotic Map

The Lozi map is a simple discrete two-dimensional chaotic map. The map equations are
given in (4). The typical parameter values are: a = 1.7 and b = 0.5 with respect to [20].
For these values, the system exhibits typical chaotic behavior and with this parameter
setting it is used in the most research papers and other literature sources. The x, y plot
of Lozi map with the typical setting is depicted in Fig. 1.

Xnþ 1 ¼ 1� a Xnj j þ bYn
Ynþ 1 ¼ Xn

ð4Þ

Fig. 1. x,y plot of Lozi map
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3.2 Dissipative Standard Map

The Dissipative standard map is a two-dimensional chaotic map [11]. The parameters
used in this work are b = 0.6 and k = 8.8 based on previous experiments [15, 16] and
suggestions in literature [20]. The x, y plot of Dissipative standard map is given in
Fig. 2. The map equations are given in (5).

Xnþ 1 ¼ Xn þ Ynþ 1ðmod2pÞ
Ynþ 1 ¼ bYn þ k sinXnðmod2pÞ ð5Þ

3.3 Arnold’s Cat Map

The Arnold’s Cat map is a simple two dimensional discrete system that stretches and
folds points (x, y) to (x + y, x + 2y) mod 1 in phase space. The map equations are given
in (6). This map was used with parameter k = 0.1. The visualization of the map is given
in Fig. 3.

Xnþ 1 ¼ Xn þ Ynðmod1Þ
Ynþ 1 ¼ Xn þ kYnðmod1Þ ð6Þ

Fig. 2. x,y plot of Dissipative standard map
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3.4 Sinai Map

The Sinai map (Fig. 4) is a simple two dimensional discrete system similar to the
Arnold’s Cat map. The map equations are given in (7). The parameter used in this work
is d = 0.1 as suggested in [18].

Xnþ 1 ¼ Xn þ Yn þ d cos 2pYnðmod1Þ
Ynþ 1 ¼ Xn þ 2Ynðmod1Þ ð7Þ

Fig. 3. Arnold' Cat chaotic map – x,y plot

Fig. 4. Sinai chaotic map – x, y plot
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3.5 Burgers Chaotic Map

The Burgers map (See Fig. 5) is a discretization of a pair of coupled differential
equations The map equations are given in (8) with control parameters a = 0.75 and
b = 1.75 as suggested in [11].

Xnþ 1 ¼ aXn � Y2
n

Ynþ 1 ¼ bYn þXnYn
ð8Þ

3.6 Tinkerbell Map

The Tinkerbell map is a two-dimensional complex discrete-time dynamical system
given by (9) with following control parameters: a = 0.9, b = −0.6, c = 2 and d = 0.5
[11]. The x,y plot of the Tinkerbell map is given in Fig. 6.

Xnþ 1 ¼ X2
n � Y2

n þ aXn þ bYn
Ynþ 1 ¼ 2XnYn þ cXn þ dYn

ð9Þ

4 Experiment Setup and Results

In this work the performance of the newly proposed hybrid method was tested on the
IEEE CEC 2013 benchmark set [12] for dimension setting (dim) = 10. The benchmark
suite contains a total of 28 functions (noted hereinafter f1 – f28).

Fig. 5. x,y plot of Burgers map
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According to the benchmark rules 51 separate runs were performed for each
algorithm and the maximum number of cost function evaluations (CFE) was set to
100000. The population size was set to 40. Other controlling parameters of the PSO
were set to typical [1–4] values as follows:

c1, c2 = 2; wstart = 0.9; wend = 0.4; vmax = 0.2; For these values the PSO exhibits
typical behavior and the proposed method is not oversensitive to the setting of these
parameters.

In the first experiment all possible combinations of CPRNGs based on six above
described chaotic systems were tested on selected functions from the benchmark suite.

The notation corresponds to above presented subsections structure. The Lozi map
based PRNG is noted hereinafter as “1”. Dissipative standard map as “2”, Arnold´s Cat
map as “3”, Sinai Map as “4”, Burgrs chaotic map as “5” and Tinkerbell map as “6”.

Mean results comparison from 51 repeated runs of the algorithm for each setting are
given in heat maps presented in Figs. 7, 8, 9, 10 and 11. The best mean result achieved
is highlighted by black cell background, the worst mean results is given by white cell
background. “The column number corresponds to the CPRNG generating Rand1, while
the row number shows the CPRNG that generates Rand2. For example: the best result
for f4 was achieved by combination of Sinai map based CPRNG and Tinkerbell map
based CPRNG noted hereinafter as “6-3”.

The data suggest that it may be beneficial to use a pair of different chaotic systems
rather than a single chaotic system (as the main diagonal in the tables contains worse
results than the best results).

Based on the results presented above four promising combinations of CPRNGs
were chosen and the performance of the algorithms were tested using whole CEC13
Benchmark suite. The results of this second experiment are presented in Table 1. Best

Fig. 6. x,y plot of Tinkerbell map
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results are given in bold numbers (if significant difference can be identified using
standard statistics). The results of multi-chaotic versions of PSO algorithm are com-
pared with the canonical (non-chaotic) PSO algorithm (noted as PSO).

In the Table 1 the benchmark functions are divided into unimodal (noted with u),
basic multimodal (noted with m) and composite functions (noted with c). According to
the data presented in Table 1 it seems that it is possible to significantly improve the

Fig. 7. Mean results (rounded) comparison f4

Fig. 8. Mean results (rounded) comparison f14
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performance of PSO algorithm on certain problems by implementation of a pair of
CPRNGs. In the case of unimodal functions (f1 – f5) it is possible to obtain significantly
better results or optima when proper combination of CPRNG is used. Further the
performance if significantly better in the case of f14, f15 and f22.

Fig. 9. Mean results (rounded) comparison f15

Fig. 10. Mean results (rounded) comparison f21
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Fig. 11. Mean results (rounded) comparison f28

Table 1. Mean results comparison, dim = 10, max. CFE = 100000

Function fmin PSO 4−6 3−5 1−2 6−3

f u1 −1400 −1.40E + 03 −1.40E + 03 −1.40E + 03 −1.40E + 03 −1.40E + 03
f u2 −1300 2.45E + 05 1.18E + 05 1.28E + 05 4.18E + 05 2.76E + 05
f u3 −1200 1.86E + 06 7.49E + 05 2.71E + 05 8.81E + 05 1.37E + 06
f u4 −1100 −5.20E + 02 −5.92E + 01 6.15E + 01 −6.65E + 02 −9.39E + 02
f u5 −1000 −1.00E + 03 −1.00E + 03 −1.00E + 03 −1.00E + 03 −1.00E + 03
f m6 −900 −8.94E + 02 −8.93E + 02 −8.94E + 02 −8.91E + 02 −8.91E + 02
f m7 −800 −7.96E + 02 −7.97E + 02 −7.98E + 02 −7.95E + 02 −7.92E + 02
f m8 −700 −6.80E + 02 −6.80E + 02 −6.80E + 02 −6.80E + 02 −6.80E + 02
f m9 −600 −5.97E + 02 −5.97E + 02 −5.97E + 02 −5.96E + 02 −5.96E + 02
f m10 −500 −5.00E + 02 −4.99E + 02 −4.99E + 02 −4.99E + 02 −5.00E + 02
f m11 −400 −3.98E + 02 −3.99E + 02 −3.98E + 02 −3.98E + 02 −3.97E + 02
f m12 −300 −2.87E + 02 −2.88E + 02 −2.88E + 02 −2.87E + 02 −2.85E + 02
f m13 −200 −1.80E + 02 −1.85E + 02 −1.83E + 02 −1.82E + 02 −1.74E + 02
f m14 −100 5.72E + 01 −1.90E + 01 9.42E − 01 3.03E + 01 7.50E + 01
f m15 100 8.45E + 02 9.59E + 02 9.44E + 02 7.58E + 02 7.96E + 02
f m16 200 2.01E + 02 2.01E + 02 2.01E + 02 2.01E + 02 2.01E + 02
f m17 300 3.14E + 02 3.13E + 02 3.14E + 02 3.13E + 02 3.14E + 02
f m18 400 4.32E + 02 4.30E + 02 4.33E + 02 4.23E + 02 4.24E + 02
f m19 500 5.01E + 02 5.01E + 02 5.01E + 02 5.01E + 02 5.01E + 02
f m20 600 6.03E + 02 6.02E + 02 6.03E + 02 6.02E + 02 6.03E + 02
f c21 700 1.08E + 03 1.09E + 03 1.09E + 03 1.09E + 03 1.08E + 03
f c22 800 9.72E + 02 8.98E + 02 9.43E + 02 9.87E + 02 1.04E + 03

(Continued)
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5 Conclusion

In this work a pair of different chaotic pseudo-random number generators was utilized
for generating the pair of random numbers for the main formula of PSO algorithm. In
the experimental part six different chaotic systems were utilized as CPRNGs. The
performance of all possible pairs of CPRNG was tested on 5 selected functions from
the IEEE CEC’13 Benchmark set. The results suggest that it may be beneficial to use a
pair of different chaotic systems rather than a single chaotic system.

Several promising pairs of CPRNGs were implemented into PSO and the perfor-
mance of proposed algorithms was tested on IEEE CEC’13 benchmark suite and
compared with the performance of canonical version of the algorithm.

Regarding the research questions following statements apply:

(1) Yes, the performance of the algorithm changes when different pairs of chaotic
pseudo-random generators are applied.

(2) Yes, it is very likely that the performance of PSO algorithm on a particular
problem can be improved when a proper pair of chaotic PRNGs is implemented in
the way described in this paper.

(3) Yes, as has been pointed out above it seems very likely that the performance of
PSO algorithm with a pair of CPRNGs may be better than the performance of
PSO with a single CPRNG (on the premise that a tuning experiment is performed
in order to select the best combination of CPRNGs)

In this research a novel approach for multi-chaotic PSO was proposed and tested.
The results suggest that the chaotic sequences can improve the performance of evo-
lutionary computational techniques. The research of the mutual interaction of chaos and
ECTs remains the main focus for our future research. Based on the study presented in
this work an adaptive approach for selection of the best pair of CPRNs will be designed
in the future.
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Table 1. (Continued)

Function fmin PSO 4−6 3−5 1−2 6−3

f c23 900 1.81E + 03 1.78E + 03 1.73E + 03 1.77E + 03 1.86E + 03
f c24 1000 1.21E + 03 1.20E + 03 1.20E + 03 1.21E + 03 1.21E + 03
f c25 1100 1.30E + 03 1.30E + 03 1.30E + 03 1.31E + 03 1.31E + 03
f c26 1200 1.36E + 03 1.34E + 03 1.33E + 03 1.37E + 03 1.35E + 03
f c27 1300 1.67E + 03 1.66E + 03 1.67E + 03 1.67E + 03 1.68E + 03
f c28 1400 1.69E + 03 1.71E + 03 1.67E + 03 1.71E + 03 1.70E + 03
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Abstract. Regular security controls on a day by day basis are an essen-
tial and important mechanism to prevent theft and vandalism in busi-
ness buildings. Typically, security workers patrol through a set of objects
where each object requires a particular number of visits on all or some
days within a given planning horizon, and each of these visits has to be
performed in a specific time window. An important goal of the security
company is to partition all objects into a minimum number of disjoint
clusters such that for each cluster and each day of the planning horizon
a feasible route for performing all the requested visits exists. Each route
is limited by a maximum working time, must satisfy the visits’ time
window constraints, and any two visits of one object must be separated
by a minimum time difference. We call this problem the Districting and
Routing Problem for Security Control. In our heuristic approach we split
the problem into a districting part where objects have to be assigned to
districts and a routing part where feasible routes for each combination
of district and period have to be found. These parts cannot be solved
independently though. We propose an exact mixed integer linear pro-
gramming model and a routing construction heuristic in a greedy like
fashion with variable neighborhood descent for the routing part as well
as a districting construction heuristic and an iterative destroy & recre-
ate algorithm for the districting part. Computational results show that
the exact algorithm is only able to solve small routing instances and the
iterative destroy & recreate algorithm is able to reduce the number of
districts significantly from the starting solutions.

1 Introduction

As in the area of private security control constant surveillance of an object might
not be economically viable or even necessary, security firms face the problem of
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(FWF) grant P24660-N23 and by the Austrian Research Promotion Agency (FFG)
under contract 849028.
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sending security guards to visit a large number of sites multiple times over the
course of a day in order to fulfill their custodial duty.

Security companies have to schedule tours for their employees in order to
cover all needed visits of all objects under their guardianship. The complex-
ity of this task leaves a high potential for solving this problem by algorithmic
techniques to minimize the number of needed tours. Thus, we propose the Dis-
tricting and Routing Problem for Security Control (DRPSC) which consists of
a districting part and a routing part. In the districting part all objects should
be partitioned into a minimum number of disjoint districts, such that a single
district can be serviced by a single security guard within each working day of a
planning horizon. Given such a partitioning a routing problem has to be solved
for each combination of district and day. We seek for a tour starting and end-
ing at a central location which satisfies a maximum tour duration and the time
window constraints for each requested visit. In case multiple visits are required
at an object in the same period, there typically has to be a separation time
between consecutive visits to ensure a better distribution over time. To min-
imize the number of districts, it is important to minimize the duration of the
planned tours in order to incorporate as many objects into the resulting districts
as possible, which shows the inseparability of the districting and routing parts.

We address the routing part by an exact mixed integer linear programming
formulation (MIP) and a routing construction heuristic (RCH) with a subsequent
variable neighborhood descent (VND). For the districting part we propose an
iterative destroy & recreate (IDR) approach based on an initial solution identified
by a districting construction heuristic (DCH).

This article is structured as follows. In Sect. 2 a formal problem definition
of the DRPSC is given followed by a survey of related work in the literature
in Sect. 3. The proposed algorithms for solving the routing subproblem and the
districting problem are described in Sects. 4 and 5, respectively. Computational
results are shown and discussed in Sect. 6, before final conclusions are drawn and
an outlook for possible future work is given in Sect. 7.

2 Problem Definition

This section formalizes the DRPSC. We are given a set of objects I = {1, . . . , n}
and a starting location, which we call in relation to the usual terminology in
vehicle routing depot 0. There are p planning periods (days) P = {1, . . . , p},
and for each object i ∈ I a set of visits Si = {i1, . . . , i|Si|} is defined. Not all
visits, however, have to take place in each period. The visits requested in period
j ∈ P for object i ∈ I are given by subset Wi,j ⊆ Si.

For each visit ik ∈ Si, i ∈ I, k = 1, . . . , |Si|, we are given its duration tvisitik
≥ 0

and a time window Tik
= [T e

ik
, T l

ik
], during which the whole visit has to take

place. The time windows of successive visits of an object may also overlap but
visit ik always has to take place before a visit ik′ with k, k′ ∈ Wi,j , k < k′ and
they must be separated by a minimum duration of tsep. The maximum duration
of each planned tour must not exceed a global maximum duration tmax.
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Next, we define underlying graphs on which our proposed algorithms operate.
For each period j ∈ P we define a directed graph Gj = (V j , Aj) where V j refers
to the set of visits requested at corresponding objects, i.e., V j =

⋃
i∈I Wi,j ,

and the arc set is: Aj = {(ik, i′k′) | ik ∈ Wi,j , i
′
k′ ∈ Wi′,j} \ {(ik, ik′) | ik, ik′ ∈

Wi,j , k
′ ≤ k}. We have arc weights associated with every arc in Aj which are

given by ttraveli,i′ , the duration of the fastest connection from object i to object
i′. We assume that the triangle inequality holds among these travel times. Let
us further define the special nodes 00 and 01 representing the start and end of
a tour and the augmented node set V̂ j = V j ∪ {00, 01}, ∀j ∈ P . Accordingly,
we add outgoing arcs from node 00 to all visits ik ∈ V j and arcs from all visits
ik ∈ V j to node 01, formally, Âj = Aj ∪{(00, ik) | ik ∈ V j}∪{(ik, 01) | ik ∈ V j}.
Consequently, we define the augmented graph Ĝj = (V̂ j , Âj).

The goal of the DRPSC is to assign all objects in I to a smallest possible set
of districts R = {1, . . . , δ}, i.e., to partition I into δ disjoint subsets Ir, r ∈ R,
with Ir ∩ Ir′ = ∅ for r, r′ ∈ R, r 
= r′ and

⋃
r∈R Ir = I, so that a feasible

tour τr,j exists for each district Ir, r ∈ R and each planning period j ∈ P . A
tour τr,j = (τr,j,0, τr,j,1, . . . , τr,j,lr,j

, τr,j,lr,j+1) with τr,j,0 = 00, τr,j,lr,j+1 = 01,
lr,j =

∑
i∈Ir

|Wi,j |, and τr,j,1, . . . , τr,j,lr,j
∈ ⋃

i∈Ir
Wi,j has to start at the depot

node 00, has to perform each visit ik ∈ Wi,j in the respective sequence for each
object i ∈ Ir exactly once, and finally has to return back to the depot, i.e., reach
node (01). A tour τr,j is feasible if each visit τr,j,u, u = 0, . . . , lr,j + 1 takes place
in its time window Tik

, where waiting before a visit is allowed, the minimum
duration tsep between visits of the same object is fulfilled, and the total tour
duration does not exceed tmax.

Note that the routing part can be solved for a given district Ir and each
period j ∈ P independently and consists of finding a feasible tour τr,j .

3 Related Work

To the best of our knowledge there is no work covering all the aspects of the
DRPSC as considered here. The similarity of the DRPSC to the vehicle rout-
ing problem with time windows (VRPTW), however, leads to a huge amount
of related work. A majority of the approaches in the literature aim at minimiz-
ing the total route length without taking the makespan into account [4,6,9,11–
13,15,16]. As the practical difficulty usually increases when makespan minimiza-
tion is considered, specialized algorithms have been developed for the traveling
salesman problem with time windows (TSPTW) [3,5], which is the specializa-
tion of the VRPTW to just one tour. The routing part of the DRPSC is similar
to the TSPTW as the aim is to find a feasible tour of duration less than a pre-
specified value which is related to the minimization problem of the TSPTW. In
the TSPTW, however, multiple visits of the same objects and a separation time
between them are not considered. Interestingly, López-Ibáñez et al. [7] showed
that by adapting two state-of-the-art metaheuristics for travel time minimization
of the TSPTW [6,12] to makespan minimization it is possible to outperform the
specialized algorithms. Many of the proposed approaches focus on first minimiz-
ing the number of needed routes and only in a second step minimizing the travel
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time or makespan, e.g., by using a hierarchical objective function [11,13]. Nagata
and Bräysy [10] propose a route minimization heuristic which in particular tries
to minimize the number of routes needed to solve the VRPTW. They also rely on
a destroy-and-recreate heuristic which iteratively tries to delete one route while
maintaining an ejection pool (EP). The EP stores all objects which are yet to be
inserted. The algorithm tries to identify objects which are difficult to insert in
one of the current routes and utilizes this information for choosing objects to be
removed and re-inserted. As this approach produced excellent results we adopt
this basic idea of the destroy-and-recreate heuristic here.

Exact solution approaches for the VRPTW were proposed by Ascheuer et al.
[1] who developed a branch-and-cut algorithm using several valid inequalities and
were able to solve most instances with up to 50–70 nodes. Baldacci et al. [2] intro-
duce the ngL-tour relaxation. By using column generation as well as dynamic
programming they are able to solve instances with up to 233 nodes to optimality
and report new optimal solutions that have not been found previously. A current
state-of-the-art method for heuristically solving several variants of the VRPTW
is a hybrid genetic algorithm (GA) by Vidal et al. [16]. As many other approaches
described in the literature [11,13] they use a penalty function for handling infeasi-
ble routes, which is described in [11]. In the GA the initial solutions are created ran-
domly but there are also more elaborate construction heuristics available: Solomon
[15] proposes several algorithms for constructing only feasible solutions by extend-
ing the well-known savings heuristic, a nearest neighbor heuristic, and insertion
heuristics using different criteria. Numerous simple construction heuristics for the
asymmetric TSPTW are also proposed by Ascheuer et al. [1].

4 Routing Problem

An important factor when approaching the DRPSC is a practically efficient app-
roach to the underlying routing problems. This part is embedded in the whole
approach for optimizing the districting as a subcomponent which is called when
the feasibility of a district needs to be checked. As already mentioned, this sub-
problem is similar to the well-known TSPTW which has been exhaustively stud-
ied in the literature. There is, however, one substantial and significant difference:
objects have to be visited several times per period and between every two visits
of the same object there has to be a specific separation time. Nevertheless, many
fruitful ideas of the literature can be adopted to our problem.

As a single routing problem is solved for each period j ∈ P and each district
r ∈ R independently, we are given one graph Gj

r = (V j
r , Aj

r). The node set is
defined as V j

r = V j ∩ ⋃
i∈Ir

Wi,j and the arc set as Aj
r = Aj \ {(ik, i′k′) | ik /∈

V j
r ∨ i′k′ /∈ V j

r }. Similarly, we define the augmented graph containing the tours’
start and end nodes 00 and 01 as Ĝj

r = (V̂ j
r , Âj

r) where V̂ j
r = V̂ j ∩ ⋃

i∈Ir
Wi,j

and Âj
r = Âj \ {(ik, i′k′) | ik /∈ V̂ j

r ∨ i′k′ /∈ V̂ j
r }.

For computing the duration of a tour τ we first define the arrival and waiting
times for each visit of the tour. Moreover, let us define the auxiliary function
κ : V j

r �→ I which maps the visit ik ∈ V j
r , to its corresponding object i ∈
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Ir, and the auxiliary function γ : V j
r �→ N which maps visit ik ∈ V j

r , to its
corresponding index in the set of visits for this particular object. For every visit
ik ∈ V j

r , aik
denotes the arrival time at the object, whereas a00 and a01 denote

the departure and arrival time for the depot nodes 00 and 01, respectively. Let
twait
τu

= max(0, T e
τu

−max(aτu−1+tvisitτu−1
+ttravelκ(τu−1),κ(τu)

, aκ(τu)γ(τu)−1
+tvisitκ(τu)γ(τu)−1

+
tsep)) denote the waiting time before a visit τu can be fulfilled. We aim at finding
a feasible tour τ = (00, τ1, . . . , τl, 01), τ1, . . . , τl ∈ V j

r , l = |V j
r | through all visits

starting and ending at the depot such that the total tour duration T (τ) =
a01 − a00 does not exceed tmax.

4.1 Exact Mixed Integer Linear Programming Model

The following compact mixed integer programming (MIP) model operates on the
previously defined and reduced graph Gj

r and is based on Miller-Tucker-Zemlin
(MTZ) [8] constraints. We use binary decision variables yik,i′

k′ ∀(ik, i′k′) ∈ Aj
r

which are set to 1 if the arc between the k-th visit of object i and the k′-th
visit of object i′ is used in the solution, and 0 otherwise. We model arrival times
by additional continuous variables aik

∀ik ∈ V j
r and ensure by these variables

compliance with the time windows and the elimination of subtours. For each
district r ∈ R and each period j ∈ P we solve the following model:

min
∑

ik∈V j
r

(twait
ik

+ tvisitik
) +

∑

(ik,i′
k′ )∈Âj

r

(yik,i′
k′ · ttravelκ(ik),κ(i′

k′ )
) (1)

s.t.
∑

(ik,i′
k′ )∈Âj

r

yik,i′
k′ =

∑

(i′
k′ ,ik)∈Âj

r

yi′
k′ ,ik

∀ik ∈ V j
r (2)

∑

(00,ik)∈Âj
r

y00,ik
= 1 (3)

∑

(ik,01)∈Âj
r

yik,01 = 1 (4)

aik
− ai′

k′ + tmax · (1 − yi′
k′ ,ik

) ≥ ttravelκ(i′
k′ ),κ(ik)

+ tvisiti′
k′

∀ik ∈ V̂ j
r , (ik, i′k′) ∈ Âj

r (5)

aik
+ ttravel0,κ(ik)

· (1 − y00,ik
) ≥ ttravel0,κ(ik)

∀(00, ik) ∈ Âj
r (6)

twait
ik

+ tmax · (1 − yik,i′
k′ ) ≥ ai′

k′ − aik
− ttravelκ(ik),κ(i′

k′ )
− tvisitik

∀ik ∈ V̂ j
r , (ik, i′k′) ∈ Âj

r (7)

aik−1 ≤ aik
− tsep ∀ik, ik−1 ∈ V j

r (8)
∑

(ik,i′
k′ )∈Âj

r

yik,i′
k′ = 1 ∀ik ∈ V j

r (9)

T e
ik

≤ aik
≤ T l

ik
− tvisitik

∀ik ∈ V j
r (10)

yik,i′
k′ ∈ {0, 1} ∀(ik, i′k′) ∈ Âj

r (11)
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The objective function (1) minimizes the total makespan within which all
object visits take place by summing up all visit times, travel times, and waiting
times. Equalities (2) ensure that the number of ingoing arcs is equal to the
number of outgoing arcs for each node ik ∈ V j

r . Equalities (3) and (4) ensure that
there must be exactly one ingoing and outgoing arc for the depot in each period
j ∈ P . Inequalities (5) are used to recursively compute the arrival times for every
visit. If an edge (ik, i′k′) is not used, then the constraint is deactivated. These
inequalities can be individually lifted by using (T l

i′
k′

− tvisiti′
k′

)+(ttravelκ(i′
k′ ),κ(ik)

+ tvisiti′
k′

)

instead of ttmax, which is also done in our implementation. Inequalities (6) set
the start time at the depot for each period. Inequalities (7) compute the waiting
time at the k-th visit of object i before traveling to the k′-th visit of object i′. We
need these waiting times twait

ik
∀ik ∈ V j

r for the objective function to minimize
the makespan of the route. These inequalities can also be lifted by replacing
tmax with the term (T l

i′
k′

− tvisiti′
k′

)−T l
ik

− ttravelκ(ik),κ(i′
k′ )

− tvisitik
. Inequalities (8) model

the minimum time required between two different visits of the same object, i.e.,
ensure the separation time tsep. Inequalities (9) state that there must exist an
ingoing and an outgoing arc for the k-th visit of object i, if this particular visit is
requested in the considered period j ∈ P . It is ensured that every time window
of every visit ik ∈ V j

r is fulfilled in (10). In (11) the domain definitions for the
binary edge-decision variables yik,i′

k′ are given.
In the context of the districting problem we use this model only for checking

feasibility which can usually be done faster than solving the optimization prob-
lem to optimality. To this end we replace the objective function by min{0} and
add the following constraints for limiting the makespan to tmax:

∑

ik∈V j
r

(twait
ik

+ tvisitik
) +

∑

(ik,i′
k′ )∈Âj

r

(yik,i′
k′ · ttravelκ(ik),κ(i′

k′ )
) ≤ tmax (12)

4.2 Heuristics

For larger districts the exact feasibility check using the MIP model might be too
slow, hence we also propose a faster greedy construction heuristic followed by a
variable neighborhood descent.

Given a sequence of visits τ , we first determine if a tour can be scheduled such
that the time window constraints of all visits are satisfied. For this purpose, we
compute the earliest possible arrival time aik

for each visit and minimize waiting
times.

Feasibility of a Tour: Since the (intermediate) tour τ starts at the depot
at the earliest possible time, the departure at the depot a00 is set to 0. For
each subsequent visit τu, the arrival time aτu

is the maximum of T e
τu

and the
arrival time at the preceding visit aτu−1 including visit time tvisitτu−1

and travel
time ttravelκ(τu−1),κ(τu)

from the preceding visit’s object κ(τu−1) to the current visit’s
object κ(τu). The depot has no requested visit times, therefore we define tvisit00 =
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tvisit01 = 0. Furthermore, for each object i the separation time tsep between visit
ik and ik−1 for all k > 1 has to be respected. Formally:

a00 = 0

aτu
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max{T e
τu

, aτu−1 + tvisitτu−1
+ ttravelκ(τu−1),κ(τu)

}
for u > 1, γ(τu) = 1

max{T e
τu

, aτu−1 + tvisitτu−1
+ ttravelκ(τu−1),κ(τu)

,

aκ(τu)γ(τu)−1
+ tvisitκ(τu)γ(τu)−1

+ tsep}
for u > 1, γ(τu) > 1

a01 = aτl
+ tvisitτl

+ ttravelκ(τl),0

If for any arrival time aik
with ik ∈ V j

r the following condition is violated,
the sequence of visits is infeasible:

aik
+ tvisitik

≤ T l
ik

(13)

The resulting tour duration T (τ) = a01 − a00 can be minimized while keeping τ
feasible by delaying the departure at the depot by the so called forward time slack
proposed by Savelsbergh [14] for the TSPTW. The forward time slack F (τu, τu′)
for the partial tour τ ′ = τu, . . . , τu′ adapted to our problem is

F ′(τu, τu′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T l
τu

− tvisitτu
− aτu

for u = u′

F ′(τu, τu′−1) − T l
τu′−1

+ T l
τu′ − tvisitτu′ − ttravelκ(τu′−1),κ(τu′ )

for u′ > 1, γ(τu′) = 1
min{F ′(τu, τu′−1) − T l

τu′−1
+ T l

τu′ − tvisitτu′ − ttravelκ(τu′−1),κ(τu′ ),

F ′(τu, τκ(τu′ )γ(τ
u′ )−1

) − T l
τκ(τ

u′ )γ(τ
u′ )−1

+ T l
u′ − tvisitτu′ − tsep}

for u′ > 1, γ(τu′) > 1

F (τu, τu′) = min
v=u,...,u′

{F ′(τu, τv)} (14)

The tour duration of tour τ must not exceed tmax. Formally, if

T (τ) − min(F (00, 01),
l∑

u=1

twait
τu

) < tmax (15)

holds, the sequence τ is feasible, otherwise infeasible.

Routing Construction Heuristic: We developed a Routing Construction
Heuristic (RCH) based on an insertion heuristic by starting from a partial tour
τ ′ = (00, 01) containing only the start and end nodes and iteratively adding all
visits ik ∈ V j

r to τ ′. A 2-step approach is used, where we first order the visits
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according to some criteria and then insert them at the first feasible or best possi-
ble insert position, respectively. For the insertion order we compute the flexibility
value of each visit ik ∈ V j

r where visits with less flexibility are inserted first:

flex (ik) = T l
ik

− T e
ik

− tvisitik
(16)

flex (i(1)k ) ≤ flex (i(2)k ) ≤ · · · ≤ flex (i(|V
j
r |)

k ) (17)

Visits with less flexibility may be more difficult to insert as they need to be
scheduled at a very specific time. Ties are broken randomly.

In a second phase we start by trying to insert the first visit, i.e., i
(1)
k , into the

partial tour τ ′. We start at the front, i.e., try to insert it after the start node 00, and
move backwards to the end. Then, we either stop when we found the first feasible
insert position in the first feasible variant or we compute insertion costs for each
possible insert position and insert the visit at the position with the minimum costs
for the best possible insertion variant. We define these costs as:

dik,u′ =

{
aτu′ + tvisitτu′ + ttravelκ(τu′ ),κ(τu)

− aτu
if (19) and (20) hold

∞ otherwise
(18)

These insertion costs dik,u′ determine the amount of time by which the visit
τu has to be moved backwards in order to insert the new visit τu′ . Note that
dik,u′ may also be negative, if the space for insertion of visit τu′ is bigger than
necessary. However, this is desirable as we use those insert positions more likely
which have bigger gaps and smaller gaps are kept for later inserts. In Sect. 6 we
compare both, the first feasible and the best possible variant, to each other in
terms of solution quality and runtime.

We further maintain global variables for the forward time slack F (τ ′) and
all arrival times aτu

of each partial tour τ ′ computed during the execution of
the insertion heuristic. For an insertion to be feasible, the latest allowed arrival
time at visit τu′ must be greater or equal to the earliest possible arrival at that
visit considering the previous visit’s earliest arrival, its visit time and the travel
time between τu−1 and τu′ . Furthermore, the earliest departure at τu′ including
the travel time between τu′ and τu must be smaller or equal to the earliest
arrival at τu delayed by the forward time slack of the partial tour from τu to
the depot. Using the definition of the forward time slack in equality (14) and
if inequality (13) holds, then the insertion is feasible if, in addition, also the
following two inequalities hold:

T l
τu′ −tvisitτu′ ≥ max{aτu−1 +tvisitτu−1

+ttravelκ(τu−1),κ(τu′ ), aκ(τu)γ(τu)−1
+tvisitκ(τu)γ(τu)−1

+tsep}
(19)

aτu′ + tvisitτu′ + ttravelκ(τu′ ),κ(τu)
≤ aτu

+ F (τu, 01) (20)
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Local Improvement: If the solution found by the RCH is infeasible we addi-
tionally employ a VND to reduce the number of infeasibilities and possibly come
to a feasible solution. First, we insert each infeasible visit ik into the tour on the
position u′ where the costs dik,u′ are minimum. We use a lexicographical penalty
function to penalize infeasible tours where the first criterion is the number of
time window violations and the second criterion is the duration of the route
as proposed by López-Ibáñez et al. [6]. We use three common neighborhood
structures from the literature and search them in a best improvement fashion in
random order while respecting the visit order:

Swap: This neighborhood considers all exchanges between two distinct visits.
2-opt: This is the classical 2-opt neighborhood for the traveling salesman prob-

lem where all edge exchanges are checked for improvement.
Or-opt: This neighborhood considers all solutions in which sequences of up to

three consecutive visits are moved to another place in the same route.

If at some point during the algorithm the value of the penalty function is zero
we terminate with a feasible solution.

5 Districting Problem

In the previous section we have already introduced a fast heuristic for efficiently
testing feasibility of a given set of objects by building a single tour for each
period through all requested visits of these objects. In the districting part of the
DRPSC we face the problem of intelligently assigning objects to districts such
that the number of districts is minimized. For checking the feasibility of this
assignment we use the previously introduced RCH. Alternatively, we could also
use our MIP model for solving these subproblems but, as we will see in Sect. 6, it
is too slow to be used in practical scenarios. We propose a DCH and an iterative
destroy & recreate algorithm where the former generates an initial solution and
the latter tries to iteratively remove districts.

5.1 Districting Construction Heuristic

Starting with one district, objects are iteratively added to the existing districts
r ∈ R. Whenever adding an object i ∈ U to any of the available districts r ∈ R
would make the assignment infeasible, i ∈ U is added to a newly created district
r′. The overall DCH is shown in Algorithm 1 and explained below.

First, the set of districts R is initialized with the first empty district 1 and the
set of objects I is sorted by extending the flexibility values as defined in Eq. (16)
from visits to objects. All objects are sorted by the sum of their flexibility values∑

j∈P

∑
ik∈Wi,j

flex (ik) in ascending order. As in the RCH, the resulting set
U is denoted as the set of unscheduled visits. The DCH terminates when all
i ∈ U have been scheduled (2) and, as a consequence, all requested visits have
been inserted successfully and we obtain a feasible solution to the DRPSC. The
insertion of object i into district r (lines 5 and 13) is accomplished by checking
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Algorithm 1. Districting Construction Heuristic
1: init: R ← {1}, U ← sort(I)
2: for all i ∈ U do
3: inserted ← false
4: for all r ∈ R do
5: if insert(i, r) then
6: inserted ← true
7: break
8: end if
9: end for

10: if not inserted then
11: r′ ← create |R| + 1-th new empty district
12: R ← R ∪ {r′}
13: insert(i, r′)
14: end if
15: end for

for each scheduled visit ik ∈ Wi,j if ik can be feasibly inserted into the particular
district r (for the definition of feasibility of a tour see also Sect. 4.2). In line 5
the DCH inserts i either into the first feasible or into the best possible insert
position, as described in Sect. 4.2. The insert function returns false, if no feasible
insertion position is found for at least one ik ∈ Wi,j , ∀j ∈ P . It returns true,
if a feasible insertion position is found for each visit ik ∈ Wi,j , ∀j ∈ P . If the
loop over all districts (line 4) terminates without finding any feasible insertion
position the variable inserted stays false and a new empty district is created
in line 11. The proposed constructive algorithm will terminate with a feasible
solution after |U | iterations.

5.2 Iterative Destroy and Recreate

Nagata and Bräysy [10] proposed a route elimination algorithm for reducing
the number of vehicles needed in the VRPTW. We apply the basic idea to
the districting problem. The algorithm starts with the initial assignment where
every object is reached by a separate route. Then, one district r ∈ R is chosen for
elimination at a time, maintaining all now unassigned objects in an ejection pool
(EP). Then, it is tried to assign all objects of the EP to the remaining districts
R\{r}. If this is successful, the number of districts could be reduced by one and
another district is chosen for elimination. We adapt this idea to the DRPSC and
use the result of the DCH described in Sect. 5.1 as initial solution.

Let the assignment of an object i ∈ I to a district r ∈ R be feasible if and
only if a feasible tour can be scheduled for all assigned visits of all objects for
each period. Let ci be a penalty value of object i ∈ I denoting failed attempts
of inserting object i into a district. Each time a visit cannot be inserted, this
penalty value is increased by one, revealing objects which are difficult to assign
to one of the available districts.
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Algorithm 2. District elimination algorithm
1: init: EP ← ∅, ci ← 0 ∀i ∈ I
2: choose a district rdel ∈ R for deletion
3: R ← R \ {rdel}
4: EP ← EP ∪ {i | i ∈ Irdel}
5: while EP �= ∅ ∧ termination criterion not met do
6: iins ← arg maxi∈EP {ci}
7: Rf ← feasible districts for assignment of iins

8: ciins ← ciins + |R| − |Rf |
9: if Rf �= ∅ then

10: assign object iins to a randomly chosen feasible district r ∈ Rf

11: else
12: select random district rins ∈ R
13: assign object iins to district rins

14: call VND for district rins (see Sect. 4.2)
15: while ∃ an infeasible tour for any period of district rins do
16: idel ← arg mini∈I

rins
{ci}

17: Irins ← Irins \ {idel}
18: EP ← EP ∪ {idel}
19: call VND for district rins (see Sect. 4.2)
20: end while
21: end if
22: end while

If the EP becomes empty, a feasible assignment of objects to districts is found.
Subsequently, another iteration is started, destroying a district and reassigning
its objects to the remaining ones. The overall district elimination algorithm is
shown in Algorithm 2.

First, the EP is initialized to the empty set and the penalty values of all
objects are set to 0. Starting with the solution provided by DCH a district
is chosen for elimination in line 2. One of the following strategies is applied
uniformly at random for selecting a district for elimination:

Minimum number of scheduled visits: This implies that only a minimum
number of visits has to be reinserted to regain a feasible solution.

Shortest tour duration: Selecting a district where the maximum tour duration
over all periods is minimal can be promising because this district might lead to
a district with visits of shorter durations resulting in easier insert operations.

Maximum waiting times: Selecting a district with a loose schedule may indi-
cate less or shorter visits, making them easier to reinsert.

After deleting a district all objects of this district are moved to the
EP (line 4). As long as the EP contains objects, we try to assign each object
to one of the remaining districts. An object with maximum penalty value is
chosen for the next assignment (5). For the chosen object iins the feasible dis-
tricts for assignment are computed. If there is at least one feasible district for
an assignment of object iins (9) we assign the object to such a district uniformly
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at random (10). If it is not possible to feasibly assign the object iins to any of
the remaining districts we randomly choose a district for assignment (11). Then,
we apply the VND described in Sect. 4.2 trying to make the district feasible.
If this is not possible and the assignment is still infeasible we iteratively try to
remove objects with lowest penalty values from this district rins in the follow-
ing loop (15), remove them from district rins (17), and finally add them to the
EP (18). Then again, we call the VND from Sect. 4.2 trying to make the resulting
tour from the actual assignment feasible. After an iteration of the outer loop the
object with highest penalty value of the EP has been inserted and other objects
previously assigned to this district may have been added to the EP . The idea
behind this approach is to insert difficult objects first and temporarily remove
easy to insert objects from the solution to reinsert them later. When the EP
is empty, a new best assignment with one district less is found. This algorithm
iterates until a termination criterion, e.g., a time limit is met.

6 Computational Results

To evaluate our proposed algorithm computational tests are performed on a
benchmark set of instances. As the DRPSC is a new problem we created new
instances1 based on the characteristics of real-world data provided by an indus-
try partner. The main characteristics of real-world data are: Most of the time
windows are of medium size, the depot is centralized among the objects, travel
times are rather small with respect to visit times and the number of visits of the
objects is usually ranged from 1 to 4. The distance matrix is taken from TSPlib
instances and we added the depot, the visits and the time windows in the follow-
ing way: The depot is selected by taking the node for which the total distance
to all other nodes is a minimum. Each node of the original instance has between
1 and v visits, where v is a parameter of the instance. Small time windows have
a length between 5 and 30 min, medium time windows have a length of 2, 3,
4, or 5 h, and visits with large time windows are unrestricted. For the instance
generation the length of a time window is assigned randomly to a visit based
on parameter values α and β: a small time window is chosen with probability
α, a medium time window with probability β, and a large time window with
probability 1 − α − β. Furthermore, we enforce that small and medium time
windows of visits of the same object do not overlap and we choose the visit time
uniformly at random from 3 to 20 min. For all our instances we set tsep to 60 min
and tmax to 10 h.

The algorithm is implemented in C++ using Gurobi 6.5 for solving the MIP.
For each combination of configuration and instance we performed 20 independent
runs for the IDR while for the routing part we performed only one run because all
tested algorithms for the routing part are deterministic. All runs were executed
on a single core of an Intel Xeon processor with 2.54 GHz. The iterative destroy
& recreate algorithm is terminated after a maximum of 900 CPU seconds. The
MIP model for the routing part was aborted after 3600 CPU seconds.
1 https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/hm16.tar.gz.

https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/hm16.tar.gz
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In the first set of experiments the routing part of the DRPSC is examined
more closely to evaluate RCH in comparison to the MIP model. Then, several
configurations of our proposed algorithm for the whole problem are investigated.

6.1 Routing Part

First, the methods for the routing part are evaluated on a separate set of
benchmark instances. In Table 1 the MIP model is compared to RCH, and
RCH with the subsequent VND, denoted by RCH-VND. As the goal for the
routing part is to minimize the makespan of a specific route, the maximum
tour duration constraint is relaxed and the resulting makespan is given in
minutes in the column obj . In the first four columns the instance parame-
ters are specified. Sequentially, the instance name, the number of objects |I|,
the maximum number of nodes of all objects |V |, the percentage of small
(α), and medium time windows (β) and the maximum number of visits per
objects v is given. For the RCH and RCH-VND we give the objective value
(makespan in minutes) and the time needed for solving the instance. Then,
the upper bound (UB), the lower bound (LB), the final optimality gap, and
the time spent by Gurobi for solving the MIP model is shown. In the two
remaining columns we present the relative gap between the MIP and RCH-VND
ΔMIP = (objRCH-VND − LB)/objRCH-VND as well as the relative gap between
RCH and RCH-VND ΔRCH = (objRCH − objRCH-VND)/objRCH-VND.

In Table 1 we see that the MIP model is able to solve easier instances to
optimality, but soon has very high running times. RCH-VND yields very reason-
able solutions with objective values close to the LB of the MIP for most cases.
When looking at the relative gap between the RCH and RCH-VND (ΔRCH),
we can conclude that the VND improves greatly on the objective value with
only a minor increase in running time. Moreover, ΔMIP reveals that RCH-VND
produces results close to the results of the MIP, and for those instances where
the relative gap between the MIP and RCH-VND is greater than 10%, the MIP
also has a relatively larger gap between UB and LB.

As we require a fast method for deciding if a route is feasible within the
districting problem, we conclude that RCH-VND is a reasonable choice.

6.2 Districting Part

For testing the proposed algorithms for the DRPSC we used three different
configurations. In the IDR-DCHf algorithm we used the DCH for generating an
initial feasible solution candidate with the first feasible strategy in contrast to
the IDR-DCHb where we used a best possible strategy. Both configurations are
compared with the IDR-SCH, where a simple construction heuristic (SCH) as
proposed by Nagata and Bräysy [11] is used. In the SCH each object is put in a
separate district which results in a trivial initial solution candidate.

In Table 2 the results of the experiments are shown. Columns obj show the
average objective value, i.e., the minimum number of districts at the end of
optimization, after the full run of IDR while columns obj f and obj b show the
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average objective value, i.e., the average number of districts, after the respective
construction heuristic. Columns t∗ show the median time in seconds after which
the best solution has been found during the run of IDR while tf and obj b show
the median time after which the respective construction heuristic has found an
initial solution. Columns sd show the standard deviation of the objective value
for 20 runs of a single instance.

We observe that for most instances the final objective value of the IDR is
the same for all three configurations. There are, however, differences for the
construction heuristics alone and DCHb for most but not all instances better
results but needed more time. The IDR-SCH works surprisingly well and was
able to find good results in about the same amount of time as the other two
(more sophisticated) configurations.

7 Conclusions and Future Work

In this work we introduced a new vehicle routing problem which originates from
the security control sector. The goal of the Districting and Routing Problem
for Security Control is to partition a set of objects under surveillance into dis-
joint clusters such that for each period a route through all requested visits can
be scheduled satisfying complex time window constraints. As the objects may
require multiple visits, there needs to be a minimum separation time between
each two visits which imposes an interesting additional challenge. The proposed
heuristic solution approach starts with a greedy construction heuristic followed
by an iterate destroy and recreate algorithm. The latter works by iteratively
destroying districts and trying to insert the resulting unassigned objects into
the other districts. The computational results reveal that the MIP model is able
to solve smaller instances of the routing problem to optimality and that the qual-
ity of the initial solutions of the districting problem has only a minor influence on
the final solution quality. There are several possibilities for extending this algo-
rithm in future work. As the feasibility check for a district is time-consuming
a caching mechanism to prevent checking the same assignment of objects all
over again seems promising. This could even be extended to checking subsets of
such assignments, which also must be feasible if any superset of these objects
results in feasible routes. Another idea is to use neighborhood structures which
exchange objects of two or more distinct clusters.
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6. López-Ibáñez, M., Blum, C.: Beam-ACO for the travelling salesman problem with
time windows. Comput. Oper. Res. 37(9), 1570–1583 (2010)
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Abstract. A generalization of the Ring Star Problem, called Two-Node-
connected Star Problem (2NCSP), is here addressed. We are given an
undirected graph, pendant-costs and core-costs. The goal is to find the
minimum-cost spanning graph, where the core is a two-node-connected
component, and the remaining nodes are pendant to this component.

First, we show that the 2NCSP belongs to the NP-Hard class. There-
fore, a GRASP heuristic is developed, enriched with a Variable Neighbor-
hood Descent (VND). The neighborhood structures include exact integer
linear programming models to find best paths as well as a shaking oper-
ation in order not to get stuck in a local minima.

We contrast our GRASP/VND methodology with prior works from
RSP using TSPLIB, in order to highlight the effectiveness of our heuris-
tic. Our solution outperforms several instances considered in a previous
reference related to the RSP. A discussion of the results and trends for
future work is provided.

Keywords: GRASP · VND · Telecommunications · Ring star problem

1 Introduction

Historically, network design considers two-node-connected topologies, in order to
preserve connectivity under single point of failures. A cornerstone in topological
network design is credited to Clyde Monma et al. [6]. The authors provide a
structural characterization of an optimum solution. Surprisingly, the best ring
is not always the optimal 2-connected topology.

Inspired in fiber optics design, M. Labbé et al. introduce the Ring Star Prob-
lem, or RSP for short [5]. It can be understood as a generalization of the Hamil-
tonian Tour, where some terminals may be pendant from the ring (i.e., they
are directly connected by some node that belongs to the ring). The hardness
of the RSP follows from the fact that Hamiltonian Tour is a hard combinator-
ial problem. Therefore, in practice the RSP has been addressed heuristically, in
several oportunities, and literature is vast. For instance, [2] proposes a GRASP
heuristic for the RSP that certainly needs to be referenced and discussed; while
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[1] contains a more recent evolutionary algorithm to address the RSP. We rec-
ommend the reader to consult [11] for further analysis and heuristics. Here, we
propose a further generalization, summing-up all the previous ideas together.
We study the Two-Node-Connected Star Problem (2NCSP), where the ring of
the RSP is replaced by an arbitrary 2-node-connected component. This paper
is organized as follows. Section 2 formally presents the 2NCSP and its computa-
tional complexity. Section 3 develops a GRASP heuristic enriched with a Variable
Neighborhood descent and a Shaking operation. It is worth to mention that dur-
ing some local searches we solve an integer linear programming model to find
the best replacements in a feasible solution. Experimental results are provided
in Sect. 4, while concluding remarks are presented in Sect. 5.

2 Two-Node-Connected Star Problem

We are given an undirected graph G = (V,E) core-costs {ce}e∈E and {de}e∈E for
pendant links. The decision variable is a spanning subgraph G′ = (V,E′), where
V = T ∪S, being S the set of pendant nodes and T the terminal nodes from the
2-node-connected component. Each node s ∈ S is pendant, so degG′(s) = 1, and
the subgraph H = (T,E′(T )) is 2-node-connected. The goal in the 2NCSP is
to find the subgraph G′ at the minimum cost in the links meeting the previous
constraints, where the cost-function is c(G′) =

∑
e∈E′(T ) ce +

∑
e∈E−E′(T ) de.

Consider for example the feasible solution for the 2NCSP shown in Fig. 3. If
ce = 1 for all links in the core, and de = 1 for pendant links, then the cost is
c(G′)13 × 1 + 18 × 2 = 49.

2.1 Computational Complexity

The 2NCSP is related to previous NP-Hard combinatorial problems. The recog-
nition of a Hamiltonian Tour belongs to one of the first 21 problems in NP-
Complete class [4]. The Traveling Salesman Problem belongs to this class, since
it subsumes the recognition of a Hamiltonian tour in a graph. Recall the fol-
lowing result for the Minimum-Weight Two-Connected Spanning Problem, or
MW2CSP for short [6]:

Lemma 1. The MW2CSP belongs to the class of NP-Complete problems

Proof. By reduction to Hamiltonian Tour. Here we provide a sketch of the proof.
If we are given an undirected graph G = (V,E), then assign unit costs to every
link e ∈ E, and double cost to links that do not belong to E. The cost for
the optimal solution for the MW2CSP is not greater than |E| if and only if G
presents a Hamiltonian tour.

Theorem 1. The 2NCSP belongs to the NP-Complete class.

Proof. A reduction to the MW2CSP is retrieved when pendant costs are infinite.
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3 GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start or
iterative process, where feasible solutions are produced in a first phase, and
neighbor solutions are explored in a second phase [8]. The best overall solu-
tion is returned as the result. This powerful metaheuristic has been succesfully
implemented to address several problems, such as Internet Telephony, Cellu-
lar Systems, Connectivity, Cooperative Systems [10] and Wide Area Network
design [9], Graph Theory and Combinatorics [3], among many others. It trades-
off diversification and greediness, using randomization. Here, we will develop
a GRASP heuristic enriched with a Variable Neighborhood Descent (VND) in
order to address the 2NCSP. We invite the reader to consult [8] for a general
GRASP template and further details.

3.1 Construction Phase for the 2NCSP

A feasible subgraph is produced whenever possible in our construction phase. It
consists of five steps. First, we will describe each step. Then, a pseudocode for
the construction phase will be provided. The following concept will be used:

Definition 1 (H-Path). Given a subgraph H of G, an elementary path P =
{p1, . . . , pn} in G is an H-Path if its intersection with H is precisely the terminal
nodes from P : P ∩ H = {p1, pn}.

1. Three nodes i, j and k are selected in such a way that the area of the resulting
triangle is maximized.

2. Three minimum-cost node-disjoint paths Pi,j , Pi,k and Pj,k are iteratively
found. Figure 1 sketches an example, where nodes 6, 16 and 21 were randomly
picked in Step 1, and the three paths {6, 0, 21}, {6, 16} and {16, 24, 21} are
built in Step 2.

3. Nodes are iteratively added to the component H by means of H-Paths, when-
ever the resulting component does not have a prespecified number of nodes.
The node v is picked uniformly at random from those nodes that do not

0

1

234

5

6 7

8

9 1011

12

13

14

15

16

17
18

19

20

21

22 23

24

25

26

27

28

Fig. 1. First 2-node-connected component to build a feasible solution.
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Fig. 2. Building an H-Path to connect node 19.

belong to H. Then, the shortest path between v and all the nodes from H
are found, and the cheapest one is selected. A second disjoint shortest path
is found, which, together with the first one, jointly determine an H-Path.

We illustrate this step in Fig. 2. Assume node 19 is selected. The shortest
paths with all the nodes from the set {0, 6, 16, 21, 24} are found. The cheapest
one is path {19, 24}. Then, we consider the shortest paths with the nodes
from the set {0, 6, 16, 21}. As a result, the path {19, 20, 21} is selected. The
resulting H-Path is {21, 20, 19, 24}.

4 Once we get a 2-node-connected component H with the prespecified num-
ber of nodes, the remaining nodes are connected (pendant to H) in a
greedy fashion. Specifically, every node v /∈ H is connected to w such that
w = arg minu∈H{dv,u : (v, u) ∈ E}. If there is no potential link (v, w) ∈ E,
there is no feasible solution such that H is the 2-node-connected component.
In that case, we go to Step 1 again, in order to produce another solution.
Figure 3 presents the pendant links in blue, and the links belonging to H in
red. Observe that pendant nodes are assigned greedily to the closest nodes
from H.

Fig. 3. After a greedy assignment, a feasible solution for the 2NCSP is produced.
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5 Finally, irrelevant links are deleted, and a cost reduction is produced. A link
e in a feasible solution G′ is irrelevant if G′ − e is also a feasible solution. If
we observe carefully Fig. 3, link {21, 24} is irrelevant.

Algorithm 1. G′ = GreedyRandomized(G,Min)
1: H ← FirstCycle(G)
2: RCL ← Nodes(G) − Nodes(H)
3: while |H| < Min do
4: v ← Random(RCL)
5: P1 ← Dijkstra(v, G, H)
6: P2 ← Dijkstra(v, G, H, P1)
7: H ← H ∪ P1 ∪ P2

8: RCL ← RCL − {P1, P2}
9: end while

10: G′ ← H
11: while |RCL| > 0 do
12: v ← Random(RCL)
13: w ← arg minz{dv,z}
14: G′ ← G′ ∪ {v, w}
15: RCL ← RCL − {v}
16: end while
17: return G′

Algorithm 2. H = FirstCycle(G)
1: if RandomBoolean = 1 then
2: {i, j, k} ← Random(3, G)
3: else
4: {i, j, k} ← LargestArea(3, G)
5: end if
6: Pi,j ← Dijkstra(G, i, j)
7: Pj,k ← Dijkstra(G, j, k, Pi,j)
8: Pi,k ← Dijkstra(G, i, k, Pi,j cupPj,k)
9: H ← Pi,j ∪ Pi,k ∪ Pj,k

10: return H

3.2 Local Search Phase for the 2NCSP

Once a feasible solution for the 2NCSP is built, local improvements take place
in a GRASP heuristic. This is a second phase, called Local Search. In this work,
a Variable Neighborhood Descent (VND) is developed [7]. We consider classical
neighborhoods (such as 2-opt), as well as other neighborhoods that exploit exact
linear integer programming solutions.

The flow chart presented in Fig. 4 corresponds to the VND developed as the
Local Search phase of our GRASP methodology. We define six neighborhoods,
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Fig. 4. Variable Neighborhood Descent (VND). Flow diagram.

which will be fully detailed in the following paragraphs. It is worth to remark
that a Shaking operation is produced at the end, where the solution is perturbed
in order to run out from local minima once the process does not accept a better
local solution. We remark that all local searches preserve feasibility.

Local Search 1: Insert. The goal of this local search is to reconnect a pendant
node and include it into the 2-node-connected component in the best manner.

Definition 2. Given an instance of 2NCSP and a feasible solution G′, the
neighborhood of G′ is the set of feasible solutions G′′ such that inserts a pen-
dant node from G′ inside its 2-node-connected component.

Once an insertion to the 2-node-connected component takes place, all the
pendant nodes should be greedily linked again, since the best assignment could
have been modified.
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Two different insertion methods are considered. Figure 5 presents the first
method, where the pendant node u is connected to the two closest nodes v and
w from the connected component. The paths u − v and u − w are found using
Dijkstra algorithm.

Fig. 5. Example of insertion.

In our example, we choose u = 5 as the pendant node, and the closest nodes
are v = 1 and w = 3. Direct links (u, v) and (u,w) are drawn (even though a path
is a general connection). This method may produce irrelevant links. Therefore,
a deletion of possible irrelevant links takes place. If there is no paths between u
and some of the nodes v and w, the insertion is not feasible, u is not a candidate
for insertion, and another pendant node is considered.

The second method is illustrated in Fig. 5. The pendant node u is inserted
between two incident nodes from the 2-node-connected component. As in the
first method, the remaining pendant nodes are reconnected again. No irrelevant
links are produced.

In the example we pick u = 5 as the pendant node, and (v, w) = (1, 2) is the
link from the 2-node-connected component. Links (u, v) = (5, 1) and (u,w) =
(5, 2) are included, and (v, w) = (1, 2) is deleted. Finally, the other pendant
nodes are reconnected again (node 6 is reconnected to node 5). This insertion
test is iteratively applied to each pendant node, and finally the best insertion is
introduced.

Local Search 2: Move. The idea is to extract a specific node from the 2-node-
connected component and move it in another position of this component, in a
feasible way.

Definition 3. Given an instance for the 2NCSP and a feasible solution G′, we
define as a neighbor any feasible solution that moves an arbitrary node from one
position to another, in a feasible way.

The target node u from the 2-node-connected component has degree two.
In a first step, u is removed and its incident nodes are connected (if there is
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node link between the incident nodes, another node is selected instead). In a
second step, u is re-inserted analogously. Figure 6 illustrate Step 1, where the
node u = 5 is removed and the adjacent nodes 1 and 2 are reconnected. Figure 7
show Step 2, where u is reinserted to nodes 3 and 4.
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1 2

3 4

5

(b)

Fig. 6. Example of move. Step 1.
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Fig. 7. Example of move. Step 2.

After all feasible reinsertions are studied, the cheapest one is selected. A new
node from the component is selected until all nodes are tested. Finally, the best
movement is applied to the solution.

Local Search 3: Switch. The goal is to switch a node from the main compo-
nent into a pendant one, in the best way.

Definition 4. Given an instance for the 2NCSP and a feasible solution G′, we
define as a neighbor any feasible solution that extracts a node from the 2-node-
connected component and assign it greedily as a pendant node.

The extraction method is identical to the Local Search 2 (Move). Recall that
the extracted node must have degree 2, and their adjacent nodes must share
a link. Then, the node is greedily assigned as pendant to the 2-node-connected
component. The process is iteratively performed in each feasible extraction. Only
the extraction with the highest cost reduction is produced.

Local Search 4: BestTree. The goal of this local search is to replace an
elementary path with pendant nodes by the best path composed by the same
nodes. The best path is found by means of an integer linear programming model.

Definition 5 (Path with pendant nodes). Let G = (V,E) an undirected
graph. We say C = (V ′, E′) is a path with pendant nodes and extremes u and
v if and only if the following conditions are met:
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– p(u, v) is an elementary path that connects the nodes u and v in G.
– C is an induced subgraph of G. It has all nodes from p(u, v) and the pendant

nodes of them.
– C is a tree.

Definition 6. Given an instance for the 2NCSP and a feasible solution G′, we
define as a neighbor any feasible solution that replaces a path with pendant nodes
by another.

The idea is to find a path with pendant nodes and replace it by the best path
using an integer linear programming model.

Figure 8 presents a pictorial example. Suppose that the selected path is
{6, 5, 4, 2, 24, 21} (see Fig. 9). We count the number of nodes, and add the num-
ber of pendant nodes. If it exceeds a certain threshold, the path is discarded. The
reasons to discard the path is that an exact solution for the integer linear pro-
gramming is computationally prohibitive for large instances. Figure 10 presents
the best path using those nodes. Once we get the best path with pendant nodes,
we replace the path by the best one, whenever the cost is lower. Figure 11 shows
the new feasible solution for the 2NCSP.
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Fig. 10. Best tree
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Fig. 11. Replacement

Local Search 5: BestComponent. The idea is to replace cycles by the opti-
mum 2-node-connected component using its nodes. It is worth to remark that
the resulting topology is not necessarily a cycle.
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Definition 7. Given an instance for the 2NCSP and a feasible solution G′, we
define as a neighbor any feasible solution that is a replacement of a cycle by a
2-node-connected graph with the same nodes and lower cost.
This local search applies three operations that lead to a cost reduction in the
cycles of a feasible solution. They are based on integer linear programming and
swaps.

Swap. Swap or 2-opt was proposed in 1958 by Croes in order to solve the
Traveling Salesman Problem (TSP). The idea is to modify the order in which
the Hamiltonian tour is built, in order to avoid crosses. In our particular problem,
2-opt receives a cycle and returns the best swap between two nodes. The output
is another cycle where nodes i and j are visited in different in a reverse order.

Shaking. The goal of this operation is to run out from local optima, by means of
random perturbations to the current solution. A local optima is met when there is
no feasible improvement under all neighborhood structures. In this case, Shaking
is applied to the solution, and the Local Search phase takes place again. It picks
a random number of nodes from the 2-node-connected component, deletes them
and assigns them as pendant nodes. The resulting component should have at
least 3 nodes. If it is not possible to assign the deleted nodes,the shaking process
is repeated.

Algorithm 3. G′ = Shaking(G)
1: H ← 2Component(G)
2: Discard ← Random(0, |H| − 3)
3: for i = 1 : Discard do
4: v ← Random(H)
5: H ← H − {v}
6: end for
7: G′ ← AddpendantNodes(G, H)
8: return G′

4 Experimental Results

As far as we know, there is no literature in the field related with 2NCSP. As
a consequence, there is no source in order to contrast the results of our algo-
rithm. However, there are relaxations of our problem, for instance, the Ring
Star Problem (RSP), where rings are used instead of general 2-node-connected
components as a core. We consider M. Labbé et al. as a reference study for
the RSP [5]. Our tests were developed in an Intel i7 processor with 4GB Ram.
All the algorithms, data structures and graph operations were developed with
no libraries. The exact resolution of local searches were validated using AMPL
modelling language and using CPLEX 12.5 solver. IBM Concert Technology was
considered for the integer linear programming model in C++.
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4.1 Test Cases

M. Labbé et al. define three classes of test cases in order to evaluate their algo-
rithm performance for the RSP solver. Class I consists of TSPLIB 2.1 instances,
ranging from 50 to 200 nodes. This class will be considered to evaluate our
heuristic. Now, let us describe the way the authors in [5] process the test cases.
Let lij be the Euclidean distance between the nodes vi and vj . The connec-
tion cost is cij = α × lij , while the pendant cost is dij = (10 − α) × lij , being
α ∈ {3, 5, 7, 9}. The authors provide a set of 27 graphs from TSPLIB and differ-
ent values α ∈ {3, 5, 7, 9}, defining 108 instances. Our GRASP/VND heuristic
was executed 100 times per instance using 20 iterations in the Shaking process.

4.2 Results

Curiously enough, our GRASP/VND heuristic produces Ring Star topologies in
all instances. As a consequence, the comparison is fair, since they are all feasible
solutions for the RSP. Table 1 presents the instances where our GRASP/VND
solution outperforms the reference study [5].

– Instance: the code of the TSPLIB 2.1 instance.
– α: the weighting factor of connection and assignment costs.
– optL: cost found from Labbé et al. reported in [5].
– obtG: cost found by our GRASP heuristic.
– gap = (optG − optL)/optL × 100.
– t: processing time (expressed in sexagesimal mm:ss).

Our algorithm outperforms the one from Labbé et al. in 43 out of 108
instances. The same solution is produced in 50 instances, while the best results
so far for the remaining 15 instances are produced by Labbé et al. algorithm.
The CPU time of our GRASP resolution is greater than two minutes only for
instances with hundreds of nodes. On the other hand, the report from Labbé
shows a CPU time of more than two hours in some instances. Table 2 presents
the average gaps among all the instances considered in [5].

It is worth to remark the GRASP/VND performance when α = 9, this is,
when pendant links are cheaper than connection links. The number of pendant
nodes is monotonically increasing with respect to this weighting factor α.

The integer linear programming models are not suitable for subgraphs with
more than 15 nodes, since the computational effort is prohibitive. Further studies
lead to the conclusion that the quality of the solution is highly sensitive to the
Local Search phase, and the order of the searches rather than the construction
phase. The order of the VND has been tuned in a preliminary stage. Additionally,
the local searches based on integer linear programming solutions play a key role in
the quality of the solutions, which are in fact competitive with the authoritative
work from Labbé et al. Finally, the shaking operation is meaningful in the results,
since it has been called several times before the best solution is returned. In spite
of the diversification introduced by different local searches, we could check that
the second phase retrieves a local optima for several instances.
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Table 1. Comparison between Labbé et al. algorithm and GRASP/VND.

Instance α optL optG gap t

eil51 9 1.244 1.224 -1,61 0:07

berlin52 7 37.376 37.029 -0,93 0:10

berlin52 9 20.361 19.887 -2,33 0:05

brazil58 9 83,690 81,824 -2,23 0:04

st70 9 2.610 2.513 -3,72 0:32

eil76 9 1.710 1.690 -1.17 0:37

pr76 9 424.359 378.396 -10,83 0:31

gr96 9 232,823 231,954 -0,37 1:15

rat99 7 6.436 6.301 -2,05 1:30

rat99 9 5.150 4.655 -9.61 1:25

kroc100 7 113.533 112.764 -0,68 1:30

kroc100 9 92.894 91.451 -1.55 1:25

krod100 7 116.849 116.715 -0.11 1:28

krod100 9 92.102 90.615 -1.61 1:25

rd100 7 40.915 40.912 -0,01 1:40

rd100 9 31.776 31.317 -1,44 1:19

lin105 5 69.365 69.354 -0,02 > 2:00

lin105 9 96.920 63.277 -9,50 > 2:00

pr107 5 210.465 210.153 -0,15 > 2:00

pr107 7 259.571 258.191 -0,53 > 2:00

pr107 9 264.918 258.389 -2,46 > 2:00

gr120 9 24,322 23,503 -3,36 > 2:00

pr124 9 340.153 323.764 -4.82 > 2:00

bier127 9 347.845 343.893 -1,14 > 2:00

ch130 5 28.790 28679 -0,39 > 2:00

ch130 7 32.707 32.499 -0,64 > 2:00

ch130 9 23.639 23.657 -2.37 > 2:00

pr136 7 491.981 491.296 -0,14 > 2:00

pr136 9 387.327 378.136 -2,73 > 2:00

gr137 9 335,009 333,49 -0,45 > 2:00

pr144 7 383.041 382.827 -0,06 > 2:00

pr144 9 366.833 357.958 -2.42 > 2:00

ch150 9 26.371 25.777 -2,25 > 2:00

kroa150 9 113.080 111.882 -1,06 > 2:00

krob150 9 108.885 107.925 -0,88 > 2:00

pr152 5 376.155 364.406 -3,12 > 2:00

pr152 7 475.052 463.221 -2,49 > 2:00

pr152 9 475.440 461.264 -2,98 >2:00

rat195 9 9.395 8.585 -8.62 > 2:00

d198 9 97,899 97,224 -0,69 > 2:00

kroa200 3 93.699 90.999 -2.88 > 2:00

kroa200 9 124.678 122.809 -1,50 > 2:00

krob200 9 127.800 124.086 -2,91 > 2:00



116 R. Recoba et al.

Table 2. Performance of our GRASP/VND heuristic.

α gap

3 0.57

5 0.29

7 -0.02

9 -2.65

5 Conclusions

A network optimization problem, called 2-Node-Connected Star Problem
(2NCSP), is here studied. It is a relaxation of the Ring Star Problem (RSP),
where the core can be an arbitrary 2-node-connected component. This selec-
tion is inspired in the 4/3-factor proposed in a foundational article in structural
network design, authored by Clyde Monma et al. The 2NCSP is precisely the
minimum weighted two connectivity when pendant costs are infinite. Therefore,
it belongs to the class of NP-Hard computational problems. No polynomial time
exists, unless P = NP. For that reason, a GRASP/VND metaheuristic is here
developed. Test cases were considered using TSPLIB adapted by Labbé et al.
Even though the core is optimized during the heuristic, the final result was a
ring core under all instances. As a consequence, the comparison using those RSP
instances is fair. The proposed heuristic outperforms previous solutions, mainly
when pendant nodes are cheaper than nodes connected in the core. A concluding
remark is that our relaxation could not take effect in practice, even though it
is supported theoretically. However, the best results so far in particular RSP
instances were obtained as a bonus. The replacements of the best core and best
paths make the difference, even though it produces rings. We believe the cor-
responding neighbourhood structures are the main ingredient of the proposed
heuristic.

As future work, we would like to deploy real-life solutions using the 2NCSP
as a reference model.
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Abstract. Methods based on Stochastic Local Search (SLS) have been
ranked as the best heuristics available for many hard combinatorial
optimization problems. The design of SLS methods which use many
neighborhoods poses difficult questions regarding the exploration of these
neighborhoods: how much computational effort should be invested in
each neighborhood? Should this effort remain fixed during the entire
search or should it be dynamically updated as the search progresses?
Additionally, is it possible to learn the best configurations during runtime
without sacrificing too much the computational efficiency of the search
method? In this paper we explore different tuning strategies to config-
ure a state-of-the-art algorithm employing fourteen neighborhoods for
the Multi-Mode Resource Constrained Multi-Project Scheduling Prob-
lem. An extensive set of computational experiments provide interesting
insights for neighborhood selection and improved upper bounds for many
hard instances from the literature.

Keywords: Stochastic local search · Project scheduling · Multi-
neighborhood search · Learning · Online and offline tuning

1 Introduction

Stochastic Local Search (SLS) methods obtained best results for many optimiza-
tion problems. In school timetabling, Fonseca et al. [3] won the Third Interna-
tional Timetabling competition with a hybrid Simulated Annealing incorporat-
ing eight neighborhoods. In Project Scheduling, Asta et al. [1] won the MISTA
Challenge [9] with a Monte Carlo based search method with nine neighborhoods.
In both methods, neighborhoods are explored stochastically instead of the much
popular deterministic best/first fit alternatives where local optimality is usually
reached at every iteration. Instead, in these SLS algorithms, a random neigh-
bor is generated in one of the neighborhoods and its acceptance is immediately
c© Springer International Publishing Switzerland 2016
M.J. Blesa et al. (Eds.): HM 2016, LNCS 9668, pp. 118–130, 2016.
DOI: 10.1007/978-3-319-39636-1 9
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decided. In this paper, we focus on SLS algorithms with these characteristics,
instead of considering the broader definition of SLS [6].

Reasons for the good performance of these methods are subject of study.
Some insights may come from theoretical models such as [7] or from experimen-
tal studies such as [5]. As both studies point out, more connected search spaces
provide a landscape where it is easier to escape from attractive basins in the
search landscape. This is a very favorable point of SLS, since the different neigh-
borhoods and the flexibility used in their exploration contribute to an increased
connectivity of the search space graph.

Given a set of neighborhoods {N1, . . . ,Nk} and a search method, we define
probabilities p = (p1, . . . , pk) of selecting each neighborhood at each iteration as
neighborhood composition. As k increases, it gets harder to find the best configu-
ration of p. Some important considerations are: should p remain fixed during the
entire search or should it be dynamically updated as the search progresses? Is it
possible to learn the best configurations during runtime without sacrificing too
much the computational efficiency of the search method? In this paper we try
to answer these questions considering a state-of-the-art heuristic for the Multi-
Mode Resource Constrained Multi-Project Scheduling Problem where fourteen
neighborhoods are stochastically explored.

2 The Multi-Mode Resource Constrained Multi-Project
Scheduling Problem

The Multi-Mode Resource Constrained Multi-Project Scheduling Problem
(MMRCMPSP) is a generalization of the Project Scheduling Problem (PSP).
In this problem jobs can be processed in different modes, with varying execution
speeds and consuming different amounts of resources. Both renewable and non-
renewable resources are present. Note that the non-renewable resources render
the generation of an initial feasible solution NP-Hard, since selecting a valid
set of modes corresponds to solving a multi-dimensional knapsack problem. The
objective function considers the project delays.

An instance of the MMRCMPSP [9] can be defined by:

P projects with release dates hp, p ∈ P ;
J jobs, connected by a set of precedence relations B;
K nonrenewable resources with capacities ok, k ∈ K;
R renewable resources with capacities qr, r ∈ R;

Jobs must be scheduled respecting release dates and precedence constraints.
Each job has to be assigned to a processing mode, which defines its resource
consumption and duration. A job j executed in mode m has duration djm and
consumes ukjm units of non-renewable resource k, k ∈ K, and vrjm units of
renewable resource r, r ∈ R. The objective functions minimize, hierarchically:
(i) the total project delay (TPD), which considers project completion times
and (ii) the total makespan (TMS), which considers the completion of the last
project.
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3 Neighborhoods

A solution is represented by an ordered pair (π,M), where π indicates an allo-
cation sequence and M is a feasible set of modes, i.e. an allocation of modes
which respects the availability of nonrenewable resources. A complete solution is
decoded with a Serial SGS algorithm [4] from (π,M), allocating each job in the
first timeslot where precedence constraints are respected and sufficient renewable
resources are available. All neighborhoods operate in the search space of feasible
values for (π,M), i.e. movements violating precedence constraints or nonrenew-
able resource usage constraints are discarded. Neighborhoods operate either on
π or M. Most neighborhoods were proposed by [1]. Some of these neighborhoods
were conceived aiming at the minimization of the TPD. They compact jobs in
π, reorganizing them so that all jobs of a given project are contiguous in the
allocation sequence.

Fourteen neighborhoods are considered:

SPE squeeze project on extreme: all jobs of a project p are compacted around
a reference job, while jobs of other projects are moved either before or after
project p; Fig. 1 shows a sample neighbor s′ of s in the SPE neighborhood,
with position 4 of π being used as a reference job, thus all jobs pertaining to
the same project of job 14 are squeezed immediately at its side;

SCP swap and compact two projects: relative positions of projects are
swapped and all jobs of both projects are sequentially allocated, starting
with jobs from the project which was previously starting at a latter timeslot;

OP offset project: all jobs of a given project are shifted by the same number of
positions;

CPP compact project on percentage: a percentage of jobs of a project p are
justified to the left, starting from the end of π; Fig. 2 shows a sample neighbor
s′ of s in the CPP neighborhood considering project 4 (jobs shown in shaded
cells) and compaction percentage 0.5; note that the project has 5 jobs, so
�5 × 0.5� = 2 and thus the last two jobs are contiguously allocated in π;

ISJ invert sequence of jobs: a subsequence of jobs in π is inverted;
OJ offset job: shifts the position of one job in the sequence π;
STJ swap two jobs: swaps the position of two jobs in the sequence;
CSP compact subsequent projects: compress a contiguous list of projects in

a sequence;
SSJW successive swap of a job in a window: all possible swap positions for

a job in a window are explored in a first-fit fashion;

Fig. 1. Example of a neighbor s′ generated in the SPE neighborhood of s
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SIJW successive insertions of a job in a window: similar to SSJW, but instead
of swapping jobs, a job is re-inserted in another position within the explored
window;

C1M change one mode: changes the mode of one job;
C2M change two modes: changes the mode of two jobs;
C3M change three modes: changes the mode of three jobs; to reduce the size

of this neighborhood only triples of consecutive jobs in the precedence graph
are considered;

C4M change four modes: changes the mode of four jobs that are consecutive
in the precedence graph (similarly to C3M).

Fig. 2. Example of a neighbor s′ generated in the CPP neighborhood of s

4 Offline Neighborhood Composition

In this section we evaluate a metric to define p a priori, i.e. based on a statistical
analysis of the neighborhoods efficiency. The performance of all neighborhoods
in a previously generated pool of solutions is considered. We call a neighbor-
hood efficient when its stochastic exploration produces good results, i.e. if it
improves the solution cost or generates sideways moves1 with minimal compu-
tational effort.

In a preliminary set of experiments we observed that the efficiency of dif-
ferent neighborhoods varied considerably depending on the stage of the search.
Neighborhoods which were quite efficient in the beginning of the search did not
present the same good properties as the search advanced.

We evaluate the efficiency of neighborhoods in two different stages. In the
first stage, low quality (initial) solutions are considered, generated by quick con-
structive algorithms. In the second stage, incumbent solutions obtained after
10,000 iterations without improvement of a state-of-the-art LAHC solver [8] are
selected. Table 1 describes the minimum, maximum and average solution quality2

for solutions of both phases. Each value consider all instances and 10 solutions
per instance (300 solutions in total), taking into account the best known solu-
tions in literature to compute the quality.

The efficiency of each neighborhood k was computed considering a random
sampling of neighbors (10,000) for each solution in the pool. It was observed that
1 Moves which do not change the objective function value but modify the solution.
2 The quality qi = bi

ci
of a solution for instance i with cost ci, considering the best

known solution’s cost bi.
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Table 1. Characteristics of the solution pool used for offline neighborhood analysis

Solution quality

Minimum Average Maximum

0 <0.0057 0.3566 0.6666

10000 0.6175 0.8193 1.000

only analyzing the improvement of neighbors was not enough, so we consider
the number of neighbors corresponding to improved solutions s̃(k), the number
of neighbors corresponding to sideways moves s(k) with factor ϑ ∈ [0, 1], and
the total CPU time c̃(k) spent validating and evaluating neighbors. Thus, the
efficiency ẽk of a neighborhood k is given by:

ẽk =

⎧
⎨

⎩

s̃(k) + ϑ s(k)
c̃(k)

if c̃(k) > 0

0 otherwise
(1)

To ease comparison, we normalize the efficiency values. Let max(ẽ) be the
maximum ẽk for all k ∈ N . Equation (2) shows how the normalized efficiency ek
is obtained for a neighborhood k ∈ N :

ek =
ẽk

max(ẽ)
(2)

Table 2. Normalized neighborhoods efficiency computed offline, considering the two
stages solution pool

ϑ = 0.0 ϑ = 0.1

First stage Second stage First stage Second stage

C1M 1.0000 C1M 1.0000 C1M 1.0000 OJ 1.0000

OP 0.7407 C2M 0.2990 OJ 0.6969 CSP 0.7323

C2M 0.7288 OJ 0.2609 OP 0.6661 STJ 0.6651

OJ 0.5143 STJ 0.2076 C2M 0.6427 C1M 0.5709

CPP 0.4729 ISJ 0.2037 STJ 0.4650 ISJ 0.4345

C3M 0.4716 OP 0.1812 C3M 0.4091 OP 0.3474

STJ 0.3677 C3M 0.0950 CPP 0.4053 CPP 0.1959

SCTP 0.3281 SPE 0.0540 ISJ 0.2824 SCTP 0.1921

C4M 0.3058 SCTP 0.0502 SCTP 0.2753 SPE 0.1789

SPE 0.2725 C4M 0.0167 C4M 0.2578 C2M 0.0865

ISJ 0.2304 CPP 0.0023 CSP 0.2540 C3M 0.0371

SSJW 0.0024 SSJW 0.0019 SPE 0.2327 C4M 0.0029

SIJW 0.0005 SSIW 0.0003 SSJW 0.0016 SSJW 0.0001

CSP 0.0000 CSP 0.0000 SIJW 0.0000 SIJW 0.0000
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Table 2 presents an efficiency comparison between all neighborhoods in the
two different stages. To illustrate the impact of the sideways moves on the final
solution quality, the first columns are computed with ϑ = 0 and the last ones
are computed with ϑ = 0.1. Note that neighborhoods which operate on entire
projects, like OP, CPP, SCTP, are usually well ranked in the first stage. Their
efficiency dramatically decreases in the second stage, except for the CSP, that has
a very low efficiency in the first stage, increasing in the second one due mainly to
sideways moves. Neighborhoods which change one mode, swap, inverts or shifts
jobs are the most significant for the second stage, corresponding to a stage of
small adjustments in π and M.

5 Online Neighborhood Composition

In this section we consider the online neighborhood composition. In this app-
roach, all neighborhoods start with the same probability of being chosen and
this probability is dynamically updated considering results obtained during
the search. While this approach introduces a learning overhead, it can more

Fig. 3. Evolution of the neighborhood selection probabilities over time considering
instances A-10 and online tuning (z = 1, 000 and β = 0.01)



124 J.A.S. Araujo et al.

ϑ = 0.0

0.000

0.100

0.200

0.300

0.400
pr

ob
ab

ili
ti

es

ISJ

OJ

STJ

OP

SCTP

CPP

C1M

C2M

C3M

C4M

SSJW

SIJW

SPE

CSP

ϑ = 0.1

0 50 100 150 200 250 300

0.000

0.050

0.100

0.150

0.200

0.250

time (in seconds)

pr
ob

ab
ili

ti
es

Fig. 4. Evolution of the neighborhood selection probabilities over time considering
instances B-9 and online tuning (z = 1, 000 and β = 0.01)

easily adapt itself if the neighborhoods’ efficiencies change considerably during
the search or vary in different instances.

Whenever a sample of z neighbors is explored, the normalized efficiency ek
(Eqs. (1) and (2)) of each neighborhood k ∈ N is computed and their selection
probabilities are updated according to the results obtained exploring this last
batch of neighbors. The probability pk of selecting a neighborhood k ∈ N is given
by Eq. (3). Note that a constant β is included when calculating the probability.
This constant prevents assigning probability zero to a neighborhood, and thus
all neighborhoods have a minimal chance of being selected in any stage of the
search. All experiments in this paper employs β = 0.01.

pk =
ek + β∑

k′∈N

(ek′ + β)
(3)

The definition of z is a crucial point: while larger values of z provide a more
accurate evaluation of each neighborhood, smaller values offer a more reactive
method.
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Figure 3 shows how the probabilities evolve over time considering a small
instance, A-10. The first graph assumes ϑ = 0.0 (sideways moves are not
rewarded), while the second considers ϑ = 0.1 (sideways moves are partially
rewarded). Note that, as one would expect, most improving moves for small
instances are executed in the beginning of the search. Therefore, once a local
optima is reached, the probabilities remain unchanged when sideways moves are
not considered. When sideways moves are considered, however, the probabilities
vary during the entire search. It is noteworthy that more complex and expensive
neighborhoods such as CSP, SSJW and SIJW were given lower probabilities when
ϑ = 0.1.

Figure 4 presents similar graphs to those of Fig. 3, but considering a larger
instance, B-9. For this instance, neighborhoods C1M and C2M, which change job
execution modes, were highly rewarded when ϑ = 0.0. This stresses the impor-
tance of the modes selection for this particular instance. Additionally, the simple
neighborhoods OJ and OP, which shifts the position of one job and one project,
respectively, were also assigned high probabilities. Note that if ϑ = 0.0 and
the current solution is not improved by any neighborhood within z iterations,

Fig. 5. Evolution of the neighborhood selection probabilities over time considering
instances X-10 and online tuning (z = 1, 000 and β = 0.01)
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all neighborhoods are assigned the same probability. Figure 4 shows that this
situation is recurring.

When sideways moves are rewarded (ϑ = 0.1), the neighborhoods ISJ, OJ
and STJ, which change the sequence of jobs, were given high selection probabil-
ities during the entire search.

Figure 5 presents how probabilities evolve for a medium size instance, X-10.
We can see that neighborhoods C1M, OJ, OP remain the most significant ones.
Other neighborhoods appear with high probabilities at the beginning, like C2M.
When ϑ = 0.1 the neighborhoods with higher potential to generate sideways
moves are assigned higher probabilities.

6 Comparing Composition Approaches

We evaluated the performance of offline and online tuning strategies in a meta-
heuristic framework consisting of the Late Acceptance Hill Climbing (LAHC)
algorithm. At each iteration a random neighborhood is chosen considering the
probabilities p in a roulette scheme [2]. The LAHC metaheuristic suits well our
purposes since it has only one parameter, the LAHC list size. Most of our tun-
ing effort could then focus in the neighborhood composition. Offline and online
tuning strategies were considered over a single value for this parameter3, so that
both strategies receives the same tuning effort. The overall quality was evaluated
over the complete set of instances of the MISTA 2013 challenge [9].

Each neighborhood composition strategy was evaluated on the whole instance
set using five independent executions on each instance. The quality qi of a solu-
tion obtained for an instance i is calculated as qi = bi

ai
, where bi is the best

known solution for i and ai is the average solution costs. Therefore, the quality
ω ∈ [0, 1] of solutions for an instance set I is computed as the average value of
qi for all i ∈ I. The standard deviation σ is also included.

Table 3 presents the results obtained with offline tuning. Best average results
are shown in bold. The first column presents results with uniform probabilities
(1/k) for selecting all neighborhood during the entire search. The second column
shows the results when probabilities are defined using a single stage, and the
third column presents results obtained with the two stages tuning approach. As
it can be seen, the efficiency metric (Eq. (1)) used to tune the probabilities of
selecting each neighborhood produced good results: better average results were
produced, in addition to an smaller standard deviation. The best results were
obtained in the two stages approach. This indicates that it would be probably
beneficial to update the computational effort invested in each neighborhood in
different phases of the search process. A natural extension of our proposal would
be a more granular approach, i.e. the definition of more than two search phases
to more properly adjust the probabilities of selecting each neighborhood as the
search progresses.

After evaluating the offline approach, we evaluated the online approach.
Table 4 shows the average quality and standard deviation obtained with the
3 LAHC list size value was fixed to 1,000.
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Table 3. Quality of results for the offline tuning strategy

Offline tuning

Uniform Single stage Two stages

ωϑ=0 0.935 0.949 0.955

σϑ=0 0.041 0.039 0.039

ωϑ=0.1 0.935 0.952 0.953

σϑ=0.1 0.041 0.038 0.037

Table 4. Quality of results for online tuning β = 0.01

Online tuning

z=1000 z=10000 z=50000 z=100000

ωϑ=0 0.9468 0.9428 0.9431 0.9462

σϑ=0 0.0438 0.0415 0.0444 0.0437

ωϑ=0.1 0.9339 0.9358 0.9309 0.9330

σϑ=0.1 0.0420 0.0422 0.0411 0.0428

online approach using the metric ẽ and different values of z (interval in which
probabilities are updated). The best results were obtained with z = 1000 and
ϑ = 0.

7 Composition Strategies Results

This section presents the results (Table 5) obtained by the LAHC metaheuristic
considering both neighborhood composition strategies, and compared them with
the best results from literature. An Intel ®Core i7-4790 processor with 3.6 GHz
and 16 GB of RAM running SUSE Leap Linux was used during the experiments.
All algorithms were coded in ANSI C 99 and compiled with GCC 4.8.3 using
flags -Ofast and -flto. The runtime limit was set to 300 s (the same used in the
MISTA Challenge [9]).

Table 5 shows the results obtained with the LAHC implementation and the
best results obtained at the MISTA Challenge (column MISTA), in addition to
the improved post competition results obtained by Asta et al.4 [1]. Average values
were computed from five independent executions of the best online approach and
five of the best offline approach.

Many new best known solution were obtained, in addition to improved aver-
age solution costs for many instances. considering Asta’s results. Note that in [1],

4 To the best of our knowledge the post competition results of Asta et al. [1] were not
submitted to the MISTA Challenge official website.
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Table 5. Comparative results of the LAHC metaheuristic

LAHC MISTA [9] Asta et al. [1]

Best Average Best Best Average

TPD TMS TPD TMS TPD TMS TPD TMS TPD TMS

A-1 1 23 1 23 1 23 1 23 1 23

A-2 2 41 2 41 2 41 2 41 2 41

A-3 0 50 0 50 0 50 0 50 0 50

A-4 65 42 66.2 43.0 65 42 65 42 65 42

A-5 153 104 163.0 108.6 153 105 150 103 155 105

A-6 133 91 147.4 96.0 147 96 133 99 141 808

A-7 597 203 625.0 202.6 596 196 590 190 605 201

A-8 270 153 285.4 152.8 302 155 272 148 292 153

A-9 194 126 204.2 126.0 223 119 197 122 208 128

A-10 845 308 877.2 310.2 969 314 836 303 880 313

B-1 352 128 365.4 130.6 349 127 294 118 352 128

B-2 431 162 448.2 167.4 434 160 431 158 452 167

B-3 530 208 550.6 208.6 545 210 526 200 554 210

B-4 1267 281 1313.6 284.4 1274 289 1252 275 1299 283

B-5 816 253 835.4 254.4 820 254 807 245 832 255

B-6 877 222 917.6 226.0 911 226 905 225 950 232

B-7 793 229 854.2 238.0 792 228 782 225 802 232

B-8 2865 520 3065.2 530.0 2974 541 2974 541 3323 545

B-9 4059 743 4133.4 745.0 4192 746 4062 738 4247 754

B-10 3030 445 3094.0 442.4 3050 448 3050 448 3290 455

X-1 390 143 427.6 145.6 392 142 386 137 405 143

X-2 351 163 366.6 164.6 349 163 345 158 356 164

X-3 307 183 325.6 190.6 324 192 310 187 329 193

X-4 909 206 958.6 207.2 915 208 907 201 960 209

X-5 1749 371 1786.4 374.0 1768 374 1727 362 1785 373

X-6 686 226 708.4 230.2 700 234 690 226 730 238

X-7 845 226 887.4 232.8 861 236 831 220 866 233

X-8 1183 281 1235.2 282.4 1218 286 1201 279 1256 288

X-9 3084 626 3189.0 638.2 3268 643 3155 632 3272 648

X-10 1580 381 1617.0 382.4 1600 381 1573 383 1613 383

the best known results were obtained by running 2,500 independent executions
in a computer cluster.

All new best solutions were sent to the official website5 of MISTA Challenge.

5 https://gent.cs.kuleuven.be/mista2013challenge/.
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8 Conclusions and Future Works

In this paper we evaluated different strategies to define the best neighborhood
composition in stochastic local search methods. These strategies were evaluated
in a metaheuristic with fourteen neighborhoods. The first important observation
is how important the definition of appropriate neighborhood selection probabil-
ities is: the trivial implementation with uniform neighborhood selection proba-
bilities performed worse than versions with more elaborated strategies to define
these values.

Our results provided some valuable insights on the role of each neighborhood.
While some neighborhoods are quite useful in the beginning of the search, they
may prove themselves ineffective when improved solutions are being processed.
Other neighborhoods remain effective during the entire search. One future work
would be to understand what makes these neighborhoods special and try to
create new neighborhoods inspired in a way that they preserve these good char-
acteristics or discard some neighborhoods that are not significant. Concerning
the update of neighborhood selection probabilities during the search, for cases
where strong dual bounds can be obtained during the search a gap based app-
roach could be used to change neighborhood selection probabilities based on the
current maximum relative distance to the optimal solution.

Online tuning approaches can be very useful to simplify the tuning process
and to define the best neighborhood composition strategies during runtime.
While this approach significantly improves the uniform probabilities strategies,
it performs slight worse (1 % in our tests) than the best configuration obtained
with offline tuning.

Future work include applying additional intensification and diversifica-
tion strategies. Furthermore, the presented neighborhood composition may be
employed in others metaheuristics.

Acknowledgments. The authors thank CNPq and FAPEMIG for supporting this
research.

References

1. Asta, S., Karapetyan, D., Kheiri, H., Ozcan, E., Parkes, A.J.: Combining monte-
carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-
project scheduling problem. In: Kendall, G., Berghe, G.V., McCollum, B. (eds.)
Proceedings of the 6th Multidisciplinary International Scheduling Conference, (in
review), pp. 836–839 (2013)

2. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proceed-
ings of the 2nd International Conference on GA, pp. 14–21. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, USA (1987)

3. da Fonseca, G.H.G., Santos, H.G., Toffolo, T.A.M., Brito, S.S., Souza, M.J.F.:
GOAL solver: a hybrid local search based solver for high school timetabling. Ann.
Oper. Res. 239(1), 77–97 (2014)



130 J.A.S. Araujo et al.

4. Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research Handbook.
Kluwer Academic Publishers, Norwell (2002)
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6. Hoos, H.H., Stützle, T.: Stochastic local search: Foundations and applications,
pp. 149–201. Morgan Kaufmann (2005)

7. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new
model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.)
Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6,
pp. 245–276. Springer, Heidelberg (2014)

8. Soares, J.A., Santos, H.G., Baltar, D., Toffolo, T.A.M.: LAHC applied to the multi-
mode resource-constrained multi-project scheduling problem. In: Proceedings of 7th
Multidisciplinary International Conference on Scheduling, pp. 905–908 (2015)

9. Wauters, T., Kinable, J., Smet, P., Vancroonenburg, W., Berghe, G.V., Verstichel,
J.: The multi-mode resource-constrained multi-project scheduling problem:The
MISTA 2013 challenge. J. Sched. (2014)



A Hybrid Multi-objective Evolutionary
Approach for Optimal Path Planning

of a Hexapod Robot

A Preliminary Study

Giuseppe Carbone1,3(&) and Alessandro Di Nuovo2,4

1 Department of Engineering and Mathematics,
Sheffield Hallam University, Sheffield, UK

g.carbone@shu.ac.uk
2 Department of Computing, Sheffield Hallam University, Sheffield, UK

3 Department of Civil and Mechanical Engineering,
University of Cassino and South Latium, Cassino, Italy

4 Faculty of Engineering and Architecture, University of Enna “Kore”, Enna, Italy

Abstract. Hexapod robots are six-legged robotic systems, which have been
widely investigated in the literature for various applications including explo-
ration, rescue, and surveillance. Designing hexapod robots requires to carefully
considering a number of different aspects. One of the aspects that require careful
design attention is the planning of leg trajectories. In particular, given the high
demand for fast motion and high-energy autonomy it is important to identify
proper leg operation paths that can minimize energy consumption while maxi-
mizing the velocity of the movements. In this frame, this paper presents a
preliminary study on the application of a hybrid multi-objective optimization
approach for the computer-aided optimal design of a legged robot. To assess the
methodology, a kinematic and dynamic model of a leg of a hexapod robot is
proposed as referring to the main design parameters of a leg. Optimal criteria
have been identified for minimizing the energy consumption and efficiency as
well as maximizing the walking speed and the size of obstacles that a leg can
overtake. We evaluate the performance of the hybrid multi-objective evolu-
tionary approach to explore the design space and provide a designer with an
optimal setting of the parameters. Our simulations demonstrate the effectiveness
of the hybrid approach by obtaining improved Pareto sets of trade-off solutions
as compared with a standard evolutionary algorithm. Computational costs show
an acceptable increase for an off-line path planner.

Keywords: Multi-objective optimization � Robot design � Legged robots �
Hexapod robots

1 Introduction

Hexapod walking robots (HWR) are six-legged robots having a degree of autonomy
that can range from partial autonomy, including teleoperation, to full autonomy without
active human intervention [1, 2]. HWR usually have as high stability, low footprint,
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fault tolerant locomotion features [3]. They can also overcome obstacles that are
comparable to the size of the robot leg [4]. These main characteristics make hexapod
walking robots a suitable choice in several application scenarios such mine fields [5],
planets exploration [6], search and rescue operations [7], forests harvesting [8]. Despite
the above-referenced advantages and applications, many challenges remain in the field
of hexapod locomotion. In fact, HWRs are still complex and slow machines, consisting
of many actuators, sensors, transmissions and power supply hardware.

During the last years, the field of legged robots has been strongly influenced by the
development of efficient optimization techniques, which coupled with low-cost and fast
computational resources, have allowed for the resolution of such optimization problems.
Nevertheless, challenges remain in the field of many-legged robot locomotion such as
Hexapods. Hexapods are walking that are, in fact, complex and slowly machines,
consisting of many actuators, sensors, transmissions and supporting hardware.

One of the approaches that need more investigation in the field of is multi-objective
optimization (MOO), which involves minimizing or maximizing multiple objective
functions subject to a set of constraints. Indeed, optimizing the design of a hexapod
robot includes analysing and selecting design trade-offs between two or more
conflicting objectives.

In the area of MOO, Multi-Objective Evolutionary Algorithms (MOEAs) demon-
strated to be well-suited for solving several complex multi-objective problems [9, 10].
These algorithms adopt the same basic principles of the single-object evolutionary
algorithm by emulating the evolutionary process on a set of individuals (solutions), i.e. an
evolutionary population, by means of the so-called evolutionary operators (fitness
assignment, selection, crossover, mutation, and elitism). In general, MOEAs differ on the
fitness assignment method, but most of them are part of a family, called Pareto-based,
which use the Pareto dominance concept as the foundation to discriminate solutions to
guide their search [10]. For examples, the interested reader can refer to several surveys of
multi-objective optimization methods, such as for engineering [11, 12], for data mining
[13–15], for bio-informatics [16], for portfolio and other financial problems [17].

A previous attempt of using an MOEA to optimize the design of a leg mechanism
has been presented in [18], where the authors compared the performance with that of an
earlier study and in all cases the superiority and flexibility of the EMO approach was
demonstrated. The MOEA used in this previous study was NSGA-II [19].

In this paper, we use a hybrid approach to extend and improve the previous result,
which, at the best of our knowledge, is the only attempt of using an MOO approach to
solve the problem of the design optimization of a robotic leg.

2 Materials and Methods

In this section, we briefly present the Materials and methods used in this work. For the
brevity required by a conference paper, we are only presenting the main characteristics
of the algorithms and of the robotic platform used. The interested reader should refer to
the cited publications in the provided reference list for more details.
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2.1 A Hybrid Multi-objective Evolutionary Approach

The MOEA we considered for our experiments is a controlled elitist genetic algorithm,
which is a variant of the well know and widely used NSGA-II [19]. An elitist GA
always favours individuals with better fitness value (rank) whereas, a controlled elitist
GA also favours individuals that can help increase the diversity of the population even
if they have a lower fitness value. In our application domain, it is very important to
maintain the diversity of population for convergence to an optimal Pareto front. This is
done by controlling the elite members of the population as the algorithm progresses.
A non-dominated rank is assigned to each individual using the relative fitness. Indi-
vidual a dominates b (a has a lower rank than b) if a is strictly better than b in at least
one objective and a is no worse than b in all objectives. This is same as saying b is
dominated by a or a is non-inferior to b. Two individuals a and b are considered to
have equal ranks if neither dominates the other. The distance measure of an individual
is used to compare individuals with equal rank. It is a measure of how far an individual
is from the other individuals with the same rank. For the rest, the standard process of
evolutionary algorithms still applies. It works on a population using a set of operators
that are applied to the population. A population is a set of points in the design space.
The initial population is generated randomly by default. The next generation of the
population is computed using the non-dominated rank and a distance measure of the
individuals in the current generation.

To increase the performance of the MOEA we used a hybrid scheme to find an
optimal Pareto front for our MO problem. In fact, an MOEA can reach the region near
an optimal Pareto front relatively quickly, but it can take many further function
evaluations to achieve convergence. For this reason, a commonly used technique is to
run the MOEA for a relatively small number of generations to get near an optimum
front. Then the Pareto set solution obtained by the MOEA is used as an initial point for
another optimization solver that is faster and more efficient for a local search. We used
the Goal Attainment Method [20] as the hybrid solver, which reduces the values of a
linear or nonlinear vector function to attain the goal values given in a goal vector. The
method used is a sequential quadratic programming (SQP), which represent the state of
the art in nonlinear programming methods [21]. The slack variable c is used as a
dummy argument to minimize the vector of objectives simultaneously; the goal is a set
of values that the objectives attain. In our case, the goals were set as 0, while the
starting point was the Pareto set obtained by the MOEA.

In our experiments, we used the MATLAB 2015a implementation for both algo-
rithms, further details can be found in the software documentation.

2.2 Measures for Comparing the Quality of the Results

The main performance measure we considered is the hypervolume [22], that is the only
one widely accepted and, thus, used in many recent similar works. This index measures
the hypervolume of that portion of the objective space that is weakly dominated by the
Pareto set to be evaluated. The estimation is done through 106 uniformly distributed
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random points within the bounded rectangle. We took as bounding point vector [1000,
100], because these are the maximum realistic values we allowed for the design of the
hexapod robot [23].

Pareto dominance is equal to the ratio between the total number of points in
Pareto-set P that are also present in a reference Pareto-set R (i.e., it is the number of
non-dominated points by the other Pareto-set). In this case, a higher value obviously
corresponds to a better Pareto-set. Using the same reference Pareto-set, it is possible to
compare quantitatively results from different algorithms.

The reference Pareto was obtained in the following way: first, we combined all
approximations sets generated by the algorithms under consideration, and then the
dominated objective vectors are removed from this union. At last, the remaining points,
which are not dominated by any of the approximations sets, form the reference set. The
advantage of this approach is that the reference set weakly dominates all approximation
sets under consideration [12, 24].

We also calculated the computational efficiency calculated as the total time spent by
the MATLAB routines for each run of one approach divided by the number of gen-
erations for that run. This has been preferred to the simple computation time because
for each run of the MOEA a different number of generations were employed by the
algorithm for obtaining the Pareto set. The computational efficiency allows a direct
comparison of all the runs. The tests have been done on an Intel® Core™ i7-3770
3�40 GHz using 4 parallel threads.

2.3 The Cassino Hexapod Robot

In a recent past, research activities have been undergoing at LARM, Laboratory of
Robotics and Mechatronics of Cassino and Southern Lazio University, for developing
six-legged robots within the so-called “Cassino Hexapod” series (for more details see
[25–28]. Fig. 1 shows a prototype of Cassino Hexapod II. The main features of the
proposed design solutions have been the use of low-cost mechanism architectures and
user-friendly operation features. Cassino Hexapod is legged walking robot, whose
intended main application task is the inspection and analysis of historical sites. In
particular, the robot should be able to move inside archeological and/or architectural

Fig. 1. The Cassino Hexapod II

134 G. Carbone and A. Di Nuovo



sites by carrying surveying devices and by avoiding damage to the delicate surfaces or
historical items of the site. Additionally, the robot should be able to operate also in
environments that cannot be reached or that are unsafe for human operators.

3 Kinematic Model of One Leg

The kinematic model of one leg can be established by considering two links in a 3R
configuration as shown in Fig 2. The 3 R revolute joints have parallel rotation axes.
The first and second revolute joints are connected to the first and second link,
respectively. The third revolute joint is allowing the rotation of a wheel relative to the
second link. The kinematic path planning task consists of identifying proper values of
the revolute joint angles h1 and h2 as a function of time. Typically, a robot controller
will update the values of the joint angles h1 and h2 at a fixed clock speed rate that can
be assumed as equal to 10 ms. Values of joint angles are often obtained in path
planning techniques by search algorithms or by means of interpolation equations such
as 5th order polynomials, as proposed for example by Frankovský et al. [29].
Accordingly, for the joint angles h1 and h2 one can write

h1 tð Þ ¼ a1t
5 þ a2t

4 þ a3t
3 þ a4t

2 þ a5tþ a6 ð1Þ

h2 tð Þ ¼ b1t
5 þ b2t

4 þ b3t
3 þ b4t

2 þ b5tþ b6 ð2Þ

Specific boundary conditions can help in simplifying the required models by
reducing the number of parameters to be searched or set-up in Eqs. (1) and (2). For
example, one can assume that a leg motion starts from the fully straight leg configu-
ration having h1 and h2 equal to zero. Additionally, the initial and final angular speed
and acceleration can be assumed as equal to zero at the beginning and at the end of a
leg motion. Based on the above boundary conditions one can set up the following
parameters in Eqs. (1) and (2)

h1 t ¼ 0ð Þ ¼ 0 ! a6 ¼ 0

h2 t ¼ 0ð Þ ¼ 0 ! b6 ¼ 0
_h1 t ¼ 0ð Þ ¼ 0 ! a5 ¼ 0
_h2 t ¼ 0ð Þ ¼ 0 ! b5 ¼ 0
€h1 t ¼ 0ð Þ ¼ 0 ! a4 ¼ 0
€h2 t ¼ 0ð Þ ¼ 0 ! b4 ¼ 0

Accordingly, the kinematic path planning of a leg requires identifying the
parameters in Eqs. (1) and (2). These parameters can be obtained by using search
scripts in optimization algorithms.
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4 Dynamic Model of One Leg

Dynamic effects play a significant role in the operation of a leg especially as referring
to energy consumption and operation speeds. Accordingly, a basic dynamic model has
been established by referring to the basic double pendulum architecture of a leg as
shown in (Fig. 3). Accordingly, dynamic equations can be established by referring to
the Euler-Lagrange formulation in the form

d
dt

@L
@ _qi

� �
� @L
@qi

¼ si ð3Þ

in which
i = 1, 2 … n
L = Lagrangian = T − U
T = total kinetic energy of the system
U = Potential energy of the system
qi = generalized coordinates of the manipulator
_qi = time derivatives of the generalized coordinates
si = generalized force (torque) that is needed at the i-th joint for moving the link li
The inverse dynamic problem can be written by referring to Eq. (3) in terms of the

torques si that are needed to obtain the prescribed movement of the leg. Inputs are the
prescribed h1 and h2 versus time as obtained from Eqs. (1) and (2).

Using the above-mentioned values of h1 and h2 and referring to the model in Fig. 3
one can calculate the coordinates of the leg joints in the form

Fig. 2. Kinematic scheme of a robotic leg
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x1 ¼ l1senh1; y1 ¼ �l1cosh1;

x2 ¼ l1senh1 þ l2senh2; y2 ¼ �l1cosh1 � l2cosh2
ð4Þ

The time derivatives of Eq. (4) can be written as

_x1 ¼ l1cosh1 � _h1 _y1 ¼ l1senh1 � _h1
_x2 ¼ l1cosh1 � _h1 þ l2cosh2 � _h2 _y2 ¼ l1senh1 � _h1 þ l2senh2 � _h2

ð5Þ

Equation (5) can be also used to write

_x21 þ _y21 ¼ l21cos
2h1 � _h21 þ l21sen

2h1 � _h21 ¼ l21 � _h21 ð6Þ

Equation (5) can be also rewritten as follows

_x22 ¼ l21cos
2h1 � _h21 þ l22cos

2h2 � _h22 þ 2l1l2cosh1cosh2 _h1 _h2

_y22 ¼ l21sen
2h1 � _h21 þ l22sen

2h2 � _h22 þ 2l1l2senh1senh2 _h1 _h2

_x22 þ _y22 ¼ l21 � _h21 þ l22 � _h22 þ 2l1l2 _h1 _h2 cos h1 � h2ð Þ
ð7Þ

Considering the effects of gravity, in terms of mass and inertia in Eqs. (4)–(6) one
can write the potential energy U as

U ¼ m1gy1 þm2gy2 ¼ �m1gl1cosh1 þm2gðl1cosh1 þ l2cosh2Þ ð8Þ

Fig. 3. Scheme of control architecture
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The kinetic energy T can be written as

T ¼ 1
2
mv2 ¼ 1

2
m _x2 þ _y2
� � ¼ 1

2
m1 _x21 þ _y21

� �þ 1
2
m2 _x22 þ _y22

� � ð9Þ

Substituting Eqs. (6) and (7) into Eq. (9) one can write

T ¼ T1 þT2 ¼ 1
2
m1l21 _h

2
1 þ

1
2
m2l21 _h

2
1 þ

1
2
m2l22 _h

2
2 þ

1
2
m2 2 _h1l1 _h2l2 cos h1 � h2ð Þ

� �

ð10Þ

The Lagrangian can be finally written by using Eqs. (8) and (10) in the form

L ¼ T� U ¼ 1
2
ðm1 þm2Þl21 _h21 þ

1
2
m2l22 _h

2
2 þm2l1l2 _h1 _h2 cos h1 � h2ð Þ

þ ðm1 þm2Þgl1cosh1 þm2l2cosh2
ð11Þ

Substituting Eq. (11) in Eq. (3) leads to the calculation of the required input tor-
ques si that are needed to obtain the prescribed movement of the leg in the form

s1 ¼ ðm1 þm2Þl21€h1 þm2l1l2€h2 cos h1 � h2ð Þþm2l1l2 _h
2
2sen h1 � h2ð Þþ gl1ðm1 þm2Þsenh1

s2 ¼ m2l22€h2 þm2l1l2€h1 cos h1 � h2ð Þ �m2l1l2 _h
2
1sen h1 � h2ð Þþ l2m2g senh2

ð12Þ

A formulation for optimal path planning problem
The path planning task for a hexapod leg with n DoFs can be described using m

knots in the trajectory of each k-th joint of a manipulator. The prescribed task can be
given by the initial and final points P0 and Pm of the trajectory. The movement of the
leg can be obtained by the simultaneous motion of the n joints in order to perform the
prescribed task. Among the many available criteria, one can assume the energy aspect
as one of the most significant performance in order to optimize the manipulator
operation, since the energy formulation can consider simultaneously dynamic and
kinematic characteristics of the performing motion. It should also be considered that a
maximization of the operation speed of a leg corresponds to a maximization of the
amplitude of the movement, when time is fixed.

An optimality criterion concerning with energy aspects of the path motion can be
conveniently expressed in terms of the work that is needed by the actuators. In par-
ticular, the work by the actuators is needed for increasing the kinetic energy of the
system in a first phase from a rest condition to actuators states at which each actuator is
running at maximum velocity. In a second phase bringing the system back to a rest
condition, the kinetic energy will be decreased to zero through the actions of actuators
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and brakes. The potential energy of the system will contribute to size the necessary
work by the actuators and friction effects in the joints can be assumed as negligible as
compared to the actions of actuators and brakes. Thus, we have considered convenient
to use the work Wact done by the actuators in the first phase of the path motion as an
optimality criterion for optimal path generation as given by the expression

Wact ¼
X3
k¼1

Z tk

0
sk _ak dt

� 	
ð13Þ

in which sk is the k-th actuator torque; _ak is the k-th shaft angular velocity of the
actuator, and tk is the time coordinate value delimiting the first phase of path motion
with increasing speed of the k-th actuator.

Therefore, minimizing Wact has the aim to size at the minimum level the design
dimensions and operation actions of the actuators while generating a path between two
given extreme positions. Indeed, in general, once the actuator work is minimized,
energy consumption of the system operation will be optimized consequently.

The other factor to optimize is the average speed, which is as follows:

vavg ¼ x2 � x1
tf � t0

ð14Þ

in which x1 and x2 are the coordinates at the beginning (t0) and at the end (tf) of the
movement. Note that, in this work, we assumed y2 � y1ð Þ ¼ x2 � x1ð Þ due to the
symmetry of the model that has been proposed in Fig. 3.

The two optimal criteria that have been considered are conflicting, because an
increase in the speed will result in higher energy consumption. Therefore, it can be
established a multi-criteria optimization problem as follows:

mindðWact dð Þ; 1
vavg dð ÞÞ ð15Þ

where d is the vector of design variables: [a1 a2 a3 b1 b2 b3].

5 Experimental Results

Using the experimental setup described in Sect. 2, we ran both standard MOEA and the
hybrid MOEA twenty-one times with different random seed. Identical parameter setting
is used for the MOEAs: population size = 300; Tournament selection, size = 4; number
of individuals in the Pareto set = 100; Elite count = 15; individual recombination
(crossover) probability = 0�8; Gaussian mutation function. The MOEA stopped when
the average change in the spread of the Pareto front over last 100 generations is less
than 10−4.
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Median values for performance indicators are presented to represent the expected
(mid-range) performance. For the analysis of multiple runs, we compute the quality
measures of each individual run, and report the median and the standard deviation of
these. Since the distribution of the algorithms we compare are not necessarily normal,
we use the Mann-Whitney U test (a.k.a. Wilcoxon rank sum test) test [30] to indicate if
there is a statistically significant difference between distributions. We recall that the
significance level of a test is the maximum probability p, assuming the null hypothesis,
which the statistic will be observed, i.e. the null hypothesis will be rejected in error
when it is true. The lower the significance level the stronger the evidence. In this work,
we assume that the null hypothesis is rejected if p < 0�01.

Considering all the runs, the median number of generations was 229 (standard
deviation = 102, minimum = 10; maximum = 544).

Figure 4 shows the hypervolume values over generations. We can see that the stop
condition (Pareto spread is lower than 10–4) still allows a quite high number of gen-
erations without significant improvements in terms of minimization of the hypervolume.
This test confirms that we should not expect a significant increase in the performance
with more generations.

Table 1 presents the experimental results on the three performance measures
considered. For all measures, the Hybrid MOEA significantly outperforms the Stan-
dard MOEA. This is evidenced in Fig. 5, which reports the box plots for hypervolumes
and efficiency comparison. It is evident from the figure the significant increase given by
the hybrid approach used at the average cost of 0�1422 s for a generation. This is
confirmed by the statistical test, which rejects the hypotheses that the distributions are
the same in both cases.

Fig. 4. Average hypervolume values over generations.
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Figure 6 presents the cumulative Pareto Sets obtained merging the Paretos of each
run of the two approaches. These graphically confirm the numerical results that the
hybrid approach significantly increases the performance of the MOEA. In particular,
comparing the two cumulative Pareto sets, we can see that the improvement is well
spread along the objective space and the most significant results is achieved in the
central area which is the most common selection for the designer.

Indeed, from the designer point of view, the reader can clearly see the improvement
given by the hybrid approach over the standard MOEA can be seen in Fig. 7, which
plots the length and height of the movement over energy. Indeed, the possible designs
obtained by the Hybrid MOEA can produce a movement of 0�3520 m amplitude (length
and height) consuming only 89�60 W, while the matching solution of the standard
MOEA requires 286�21 W (3 times more) for the a similar amplitude (0�3502).

In terms of real applicability of the solutions, this result can allow to include smaller
batteries and, thus, increase the available payload. Furthermore, one can note that the
leg can reach about 3�5 times the link length (not considering the wheel radius) with
energy values that can be even lower than 100 W. These values can be seen as feasible
also as compared to standards [1].

Table 1. Multi-metric comparison of the Pareto sets obtained by the standard and hybrid
MOEAs. Values are the medians of each distribution and the standard deviation is in parentheses.
Statistical significance (p) has been evaluated with the Mann-Whitney U test (hypervolume and
efficiency: the lower the better; reference and dominance: the higher the better).

Measure Standard MOEA Hybrid MOEA p

Hypervolume 0�0367(0�0013) 0�0343 (0�0014) <0�001
Dominance (%) 0�00 (0021) 4�39 (1�18) <0�001
Efficiency (sec/gen) 0�2301 (0�0860) 0�3723 (0�0851) <0�001

Fig. 5. Box plot comparisons: (a) hypervolumes of 21 runs of the standard and hybrid MOEA;
(b) computational efficiency calculated as the total time divided by the number of generations
(variable for each run).
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Fig. 6. Best cumulative Pareto sets comparison: standard MOEA Pareto set (red) and the hybrid
MOEA (blue). The central area of the figure is zoomed to highlight the difference (Color figure
online).

Fig. 7. Plot of length and height of the movement over energy.
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6 Conclusions

In this paper, we present a preliminary study on the use of a hybrid multi-objective
evolutionary approach for the optimal path planning of a hexapod robot leg. To this
end, we evaluated the performance of a hybrid multi-objective optimization approach
to explore the design space and provide the designer with the optimal setting of the
parameters. To preliminary assess the optimization approach, a kinematic and dynamic
model of a leg of a hexapod robot has been proposed as referring to the main design
parameters. Optimal criteria have been identified for minimizing the energy con-
sumption and efficiency as well as maximizing the size of obstacles that the robot can
overtake. In our simulations, the hybrid approach demonstrated to achieve statistically
significantly better Pareto sets of trade-off solutions than the standard evolutionary
algorithm with acceptable time increase. These solutions are also better in comparison
with other non-evolutionary algorithms applied to similar design problems. Our future
work will focus on the application of the hybrid MOEA approach to the optimized
design of all the six legs of the robot, which is a constrained optimization problem with
a larger design space to explore.
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Abstract. This research paper focuses on hybridization of two soft computing
fields – chaos theory and evolutionary algorithms, specifically on the imple-
mentation of Chaotic map based Pseudo-Random Number Generator (CPRNG)
into the process of parent selection in Success-History Based Adaptive Differ-
ential Evolution (SHADE) algorithm. The impact on performance of the algo-
rithm is tested on CEC2015 benchmark set where five different chaotic maps are
used for random integer generation. Performance comparison shows that there is
a potential in replacing classic Pseudo-Random Number Generators (PRNGs)
with chaotic ones. The results provided in this paper show that the choice of
CPRNG for given problem is crucial in terms of affecting the performance of the
algorithm, therefore the next research step will be focused on the development
of the framework which will adapt to the solved problem and select the most
suitable CPRNG or their combination.

Keywords: Success-history based adaptive differential evolution �
Deterministic chaos � Optimization � Parent selection � Pseudo-random
number generator

1 Introduction

Since its introduction in 1995 [1], Differential Evolution (DE) was proved to be a
simple yet effective heuristic method for solving optimization problems over contin-
uous spaces [2–5].

The canonical version of DE has four control parameters; population size NP,
number of generations G, scaling factor F and crossover rate CR. The performance of
the DE algorithm depends on the values of these four control parameters and since the
optimal setting of the control parameters varies for different optimization problems, a
lot of research has been done in order to produce a strategy which would adapt control
parameter values to given objective function. Some of the existing algorithms which
adapt control parameters during evolution are jDE [6], SDE [7], SaDE [8] and JADE
[9]. The latter also implements mutation strategy “current-to-pbest/1” and an optional
archive of inferior solutions A. JADE algorithm formed a base for a Success-History
based Adaptive Differential Evolution (SHADE) [10], which extends JADE with two
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historical memories MCR, MF. These store sets of historically successful CR and
F values respectively.

Recent research implies that the utilization of Chaotic map based Pseudo-Random
Number Generators (CPRNGs) is promising for various implementations in Evolu-
tionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms [11–15].

This paper presents the results of five different CPRNGs used for parent selection in
the SHADE algorithm and compares them to the canonical version of SHADE algo-
rithm on the CEC2015 benchmark set [16]. Since the results suggest, that the perfor-
mance might be improved when using CPRNGs for parent selection, the future
research will focus on the development of a framework that would adaptively select the
most suitable CPRNG for a given problem.

The paper is structured as follows: Next section focuses on CPRNGs. Section three
briefly describes the SHADE algorithm and implementation of a CPRNG into the
process of parent selection. Experiment setting and results are covered in sections four
and five respectively. Sections that follow are result discussion and conclusion.

2 Chaotic Map Based PRNGs

Chaotic maps are systems generated from a single initial position by simple equations.
The current position is used for the generation of a new position, thus creating a
sequence that is extremely sensitive to the initial position, which is known as the
“butterfly effect.” In this research, Pseudo-Random Number Generator (PRNG) with
uniform distribution was used for the generation of initial positions of five different
discrete chaotic maps. Each of these chaotic systems has their own equations which are
given in Table 1 together with their parameter settings. These were set according to [17].

Table 1. Chaotic systems and their parameter values.

Chaotic map Equations Parameters Initial position

Burgers Xnþ 1 ¼ aXn � Y2
n a = 0.75 X0 ¼ U �0:1;�0:01½ �

Ynþ 1 ¼ bYn þXnYn b = 1.75 Y0 ¼ U 0:01; 0:1½ �
Delayed logistic Xnþ 1 ¼ AXn 1� Ynð Þ A = 2.27 X0 ¼ Y0 ¼ U 0:8; 0:9½ �

Ynþ 1 ¼ Xn

Dissipative Xnþ 1 ¼ Xn þ Ynþ 1 mod 2pð Þ b = 0.1 X0 ¼ Y0 ¼ U 0; 0:1½ �
Ynþ 1 ¼ bYn þ k sin Xn mod 2pð Þ k = 8.8

Lozi Xnþ 1 ¼ 1� a Xnj j � bYn a = 1.7 X0 ¼ Y0 ¼ U 0; 0:1½ �
Ynþ 1 ¼ Xn b = 0.5

Tinkerbell Xnþ 1 ¼ Xn þ Yn þ aXn þ bYn a = 0.9 X0 ¼ U �0:1;�0:01½ �
b = − 0.6

Ynþ 1 ¼ 2XnYn þ cXn þ dYn c = 2 Y0 ¼ U 0; 0:1½ �
d = 0.5
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The equation depicted in (1) was used to transform chaotic map generated sequence
into a pseudo-random sequence of integer values from range [1, maxRndInt].

rndInti ¼ round
abs Xið Þ

max abs Xi2Nð Þð Þ � maxRndInt � 1ð Þ
� �

þ 1 ð1Þ

Where max(abs(Xi2N)) is a maximum of absolute values of X from chaotic
sequence of size N, which was generated by chaotic map.

3 Success-History Based Adaptive Differential Evolution
and Chaos Induced Parent Selection

Since the introduction of DE in 1995 [1] the algorithm itself was improved in many
ways. The canonical version of DE [1] can be divided into simple steps which are
repeated in each iteration of the evolutionary process. Before the evolutionary process
begins, there is the initialization phase in which the control parameters are set (pop-
ulation size NP, number of generations G, scaling factor F and crossover rate CR) and
the first generation of candidate solutions (individuals) is generated randomly from the
objective space. Iteration steps of canonical DE are mutation (“rand/1/bin” mutation
strategy with random selection of parent vectors and static F), crossover (with static CR
value) and elitism (only better solutions may be placed into the new generation).

The convergence speed and ability to reach the global optimum were the main
targets for improvements of the original algorithm. Novel approaches to DE were tested
on benchmark sets in order to compare them. One of the best to date state-of-art DE
algorithm variants is SHADE.

The SHADE algorithm is based on JADE which adapts the values of F and CR
continuously after each generation, it uses novel mutation strategy “current-to-pbest/1”
and implements external archive A. This archive preserves parent vectors which were
worse than trial vectors in the elitism phase. SHADEs improvement to JADE is an
implementation of two historical memories for successful F and CR values, MF and
MCR. These memories maintain a diverse set of parameters to guide control parameter
adaptation as search progresses. Even after all modifications, the SHADE algorithm
still maintains simplicity of the canonical DE [1]. Concepts of basic operations in
SHADE are displayed in next sections. For a detailed description of feature constrain
correction, historical memories updates and external archive handling see [10].

3.1 Initialization

The initial population is generated randomly from objective space and has NP indi-
viduals. The content of historical memories MF and MCR of size H is initialized to be
MF,i = MCR,i = 0.5 for (i = 1, …, H). External archive A is empty and the number of
generations G is defined by user.
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3.2 Mutation Strategy and Parent Selection

As aforementioned, the SHADE algorithm uses “current-to-pbest/1” mutation strategy
depicted in (2) which adjusts greediness by parameter p (p = U[pmin, 0.2], pmin = 2/NP).

vi;G ¼ xi;G þFi xpbest;G � xi;G
� �þFi xr1;G � xr2;G

� � ð2Þ

The individual xi,G is a i-th individual from members of the current generation
G = population P, xpbest,G is selected from NP � p best individuals in P by rndInt from
CPRNG sequence (1). Individual xr1,G is randomly selected from P by rndInt from
CPRNG sequence and individual xr2, G is randomly selected from the union of popu-
lation P and external archive A by rndInt from CPRNG sequence, where i 6¼ r1 6¼ r2.
Scaling factor Fi is from a Cauchy distribution with the location parameter value ofMF,r

which is a randomly selected value from historical memory MF and scale parameter
value of 0.1 (3).

Fi ¼ C MF;r; 0:1
� � ð3Þ

3.3 Crossover and Elitism

The crossover rate for i-th individual CRi is generated similarly to scaling factor Fi with
a help of normal distribution and historical memory MCR (4). Crossover operation is
binomial as in canonical DE, where at least one feature has to be selected from vector
vi. This feature is determined by the random integer jrand (5). The individual which
survives to the next generation is selected from a pair of original xi and trial ui vectors
based on their fitness values (6).

CRi ¼ N MCR;r; 0:1
� � ð4Þ

uj;i;G ¼ vj;i;G if rnd 0; 1½ � �CRi or j ¼ jrand
xj;i;G otherwise

�
ð5Þ

xi;Gþ 1 ¼ ui;G if f ui;G
� �

\f xi;G
� �

xi;G otherwise

�
ð6Þ

If the trial vector ui has better fitness value than the original vector xi, scaling factor
Fi and crossover rate CRi are stored into corresponding temporary sets SF and SCR
which serve as a base for evaluation of new values in historical memories after each
generation. Also the original vector xi is stored in an external archive A.
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4 Experiment Setting

The canonical SHADE as well as SHADE with chaos induced parent selection were
evaluated on CEC2015 benchmark set functions in 10 dimensions [16]. Each algorithm
had the same setting of control parameters in compliance with [10]. CPRNGs were set
up with initial parameters generated in accordance to Table 1. The maximum number
of test function evaluations was used as a stopping criterion. Control and other
parameter settings were as follows:

• Population size NP: 100
• External archive A of size H: NP = 100
• Dimension D: 10
• Runs R: 51
• Maximum number of test function evaluations MAXTFE: 10 000 � D = 100 000
• Number of generations G: MAXTFE/NP = 1 000

5 Results

Statistical characteristics of the results are depicted in Tables 2, 3, 4, 5, 6 and 7, where
the obtained values are differences from the global optimum of given function. The
global optimum for each CEC2015 benchmark set function is equal to 100 � function

Table 2. Results of canonical SHADE algorithm with parent selection by PRNG with unform
distribution on CEC2015 benchmark set functions. Best, Worst, Median, Mean and Std columns
indicate lowest obtained value, highest obtained value, median, mean and standard deviation
values of 51 independent runs.

f(x) Best Worst Median Mean Std

f(1) 0.000 0.000 0.000 0.000 0.000
f(2) 0.000 0.000 0.000 0.000 0.000
f(3) 4.392 20.104 20.062 18.481 4.404
f(4) 0.119 4.389 3.065 2.784 0.809
f(5) 6.389 224.082 31.917 45.131 40.458
f(6) 0.000 120.165 0.680 6.039 23.311
f(7) 0.067 1.020 0.178 0.209 0.143
f(8) 0.020 1.542 0.478 0.473 0.339
f(9) 100.123 100.230 100.172 100.175 0.025
f(10) 216.537 219.001 216.537 216.640 0.430
f(11) 1.606 300.084 3.343 119.418 146.559
f(12) 100.908 101.830 101.460 101.445 0.209
f(13) 23.780 30.443 27.853 27.364 1.663
f(14) 2935.540 6996.830 2935.540 4267.120 1815.530
f(15) 100.000 100.000 100.000 100.000 0.000
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Table 3. Results of SHADE algorithm with parent selection induced by Burgers CPRNG on
CEC2015 benchmark set functions. Best, Worst, Median, Mean and Std columns indicate lowest
obtained value, highest obtained value, median, mean and standard deviation values of 51
independent runs.

f(x) Best Worst Median Mean Std

f(1) 0.000 0.000 0.000 0.000 0.000
f(2) 0.000 0.000 0.000 0.000 0.000
f(3) 4.294 20.108 20.065 18.856 3.779
f(4) 0.216 4.142 2.266 2.443 0.682
f(5) 9.270 273.329 28.102 48.405 52.241
f(6) 0.000 123.502 1.619 23.204 45.657
f(7) 0.057 1.130 0.180 0.333 0.349
f(8) 0.000 33.663 0.316 0.946 4.680
f(9) 100.119 100.251 100.167 100.170 0.033
f(10) 216.537 244.594 216.537 218.920 7.502
f(11) 1.663 300.099 3.507 131.079 148.657
f(12) 100.719 101.805 101.414 101.423 0.210
f(13) 24.072 32.040 28.093 27.810 1.593
f(14) 100.000 7181.850 2935.540 4004.460 2131.130
f(15) 100.000 100.000 100.000 100.000 0.000

Table 4. Results of SHADE algorithm with parent selection induced by Delayed Logis-
tic CPRNG on CEC2015 benchmark set functions. Best, Worst, Median, Mean and Std columns
indicate lowest obtained value, highest obtained value, median, mean and standard deviation
values of 51 independent runs.

f(x) Best Worst Median Mean Std

f(1) 0.000 0.000 0.000 0.000 0.000
f(2) 0.000 0.000 0.000 0.000 0.000
f(3) 4.643 20.100 20.052 18.015 4.529
f(4) 1.103 4.262 2.249 2.584 0.823
f(5) 7.054 158.830 32.663 47.632 38.754
f(6) 0.000 130.606 0.416 12.917 36.467
f(7) 0.072 1.020 0.180 0.228 0.208
f(8) 0.007 1.124 0.217 0.271 0.267
f(9) 100.114 100.204 100.167 100.165 0.024
f(10) 216.537 244.561 216.537 217.623 5.425
f(11) 2.050 300.084 3.971 136.997 149.281
f(12) 100.934 101.841 101.445 101.452 0.231
f(13) 24.472 32.518 28.168 28.362 1.760
f(14) 100.000 6997.340 2980.400 4602.500 2079.960
f(15) 100.000 100.000 100.000 100.000 0.000
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Table 5. Results of SHADE algorithm with parent selection induced by Dissipative CPRNG on
CEC2015 benchmark set functions. Best, Worst, Median, Mean and Std columns indicate lowest
obtained value, highest obtained value, median, mean and standard deviation values of 51
independent runs.

f(x) Best Worst Median Mean Std

f(1) 0.000 0.000 0.000 0.000 0.000
f(2) 0.000 0.000 0.000 0.000 0.000
f(3) 5.884 20.095 20.062 18.552 3.904
f(4) 1.055 4.399 2.432 2.623 0.846
f(5) 8.387 173.734 28.996 50.016 47.684
f(6) 0.012 120.160 1.153 8.400 28.118
f(7) 0.081 0.435 0.195 0.205 0.063
f(8) 0.027 1.178 0.399 0.399 0.266
f(9) 100.115 100.265 100.170 100.173 0.029
f(10) 216.537 216.537 216.537 216.537 0.000
f(11) 1.815 300.084 300.000 154.472 149.970
f(12) 100.806 101.931 101.405 101.398 0.234
f(13) 23.041 31.873 27.728 27.664 1.552
f(14) 2935.540 7036.980 2935.540 4267.530 1817.020
f(15) 100.000 100.000 100.000 100.000 0.000

Table 6. Results of SHADE algorithm with parent selection induced by Lozi CPRNG on
CEC2015 benchmark set functions. Best, Worst, Median, Mean and Std columns indicate lowest
obtained value, highest obtained value, median, mean and standard deviation values of 51
independent runs.

f(x) Best Worst Median Mean Std

f(1) 0.000 0.000 0.000 0.000 0.000
f(2) 0.000 0.000 0.000 0.000 0.000
f(3) 3.409 20.101 20.061 18.709 4.210
f(4) 1.061 4.157 2.334 2.593 0.813
f(5) 10.607 171.623 36.862 55.358 45.664
f(6) 0.000 119.738 0.715 3.668 16.639
f(7) 0.085 0.444 0.199 0.212 0.075
f(8) 0.008 1.170 0.256 0.325 0.240
f(9) 100.110 100.230 100.173 100.176 0.028
f(10) 216.537 218.992 216.537 216.612 0.390
f(11) 1.391 300.084 3.576 125.277 147.710
f(12) 100.975 101.866 101.397 101.425 0.223
f(13) 23.238 35.003 27.874 27.681 1.828
f(14) 100.000 9945.420 2935.540 4587.500 2110.550
f(15) 100.000 100.000 100.000 100.000 0.000
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number (e.g. function 14 has the global optimum f(x0) = 1400). Tables show lowest -
best and highest - worst obtained values from 51 runs, median, mean and standard
deviation values. Furthermore, each table represents the results of different CPRNG
used for parent selection in the SHADE algorithm and also the results of canonical
SHADE algorithm. The tables are ordered as follows – canonical SHADE, SHADE
induced by Burgers, Delayed Logistic, Dissipative, Lozi and Tinkerbell CPRNG.

Additionally, the comparison of mean values of the canonical SHADE and SHADE
induced by CPRNGs can be seen in Table 8, where best values are represented by bold
numbers and if the canonical SHADE did not acquire the best mean result, Wilcoxon
signed-rank test p-values between the canonical SHADE and CPRNG induced SHADE
with the best mean result are displayed in the last column. The alternative hypothesis is
that mean rank value of the canonical SHADE is greater than that of CPRNG induced
SHADE.

Furthermore, the comparison between the canonical SHADE and SHADE induced
by CPRNGs is illustrated in Figs. 1, 2, 3 and 4, where best value development over
Test Function Evaluation (TFE) was averaged over all 51 runs. Figure 3 depicts the
detail of the last 20 000 iterations of f(9).

Table 7. Results of SHADE algorithm with parent selection induced by Tinkerbell CPRNG on
CEC2015 benchmark set functions. Best, Worst, Median, Mean and Std columns indicate lowest
obtained value, highest obtained value, median, mean and standard deviation values of 51
independent runs.

f(x) Best Worst Median Mean Std

f(1) 0.000 0.000 0.000 0.000 0.000
f(2) 0.000 0.000 0.000 0.000 0.000
f(3) 4.035 20.091 20.055 18.314 4.433
f(4) 0.422 4.247 3.058 2.764 0.809
f(5) 8.510 180.272 33.692 57.008 51.932
f(6) 0.000 120.941 0.416 5.309 23.500
f(7) 0.062 1.024 0.161 0.234 0.217
f(8) 0.000 17.245 0.316 0.635 2.386
f(9) 100.114 100.242 100.165 100.169 0.027
f(10) 216.537 245.331 216.537 217.939 5.523
f(11) 1.534 300.084 3.795 136.891 149.375
f(12) 100.918 101.736 101.416 101.385 0.219
f(13) 24.622 32.136 27.771 27.720 1.420
f(14) 100.000 7036.980 2935.540 4100.850 2326.540
f(15) 100.000 100.000 100.000 100.000 0.000
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Fig. 1. Average best value development from 51 runs on f(3), D = 10. (Color figure online)
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6 Result Discussion

As can be seen in Table 8, various CPRNGs used for parent selection in the SHADE
algorithm can improve its performance on certain problems. This is true for functions f
(3), f(4), f(8), f(9), f(10) and f(12) from CEC2015 benchmark set, where the obtained p-
value from Wilcoxon signed-rank test indicates, that with the significance level set to
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Fig. 4. Average best value development from 51 runs on f(14), D = 10. (Color figure online)

Table 8. Mean values of canonical SHADE and SHADE induced by five different CPRNGs on
CEC2015 benchmark set functions, p-values of Wilcoxon signed-rank test between canonical
SHADE and CPRNG induced SHADE with the best result on given function is given in the last
column.

f(x) SHADE Burgers
SHADE

DeLo
SHADE

Dissipative
SHADE

Lozi
SHADE

Tinkerbell
SHADE

p-
value

f(1) 0.000 0.000 0.000 0.000 0.000 0.000 -
f(2) 0.000 0.000 0.000 0.000 0.000 0.000 -
f(3) 18.481 18.856 18.015 18.552 18.709 18.314 0.088
f(4) 2.784 2.443 2.584 2.623 2.593 2.764 0.010
f(5) 45.131 48.405 47.632 50.016 55.358 57.008 -
f(6) 6.039 23.204 12.917 8.400 3.668 5.309 0.298
f(7) 0.209 0.333 0.228 0.205 0.212 0.234 0.766
f(8) 0.473 0.946 0.271 0.399 0.325 0.635 0.000
f(9) 100.175 100.170 100.165 100.173 100.176 100.169 0.037
f(10) 216.640 218.920 217.623 216.537 216.612 217.939 0.037
f(11) 119.418 131.079 136.997 154.472 125.277 136.891 -
f(12) 101.445 101.423 101.452 101.398 101.425 101.385 0.065
f(13) 27.364 27.810 28.362 27.664 27.681 27.720 -
f(14) 4267.120 4004.460 4602.500 4267.530 4587.500 4100.850 0.350
f(15) 100.000 100.000 100.000 100.000 100.000 100.000 -
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10 %, mean values reached by the SHADE algorithm with CPRNG are lower than that
of the canonical SHADE algorithm. The performance on another set of functions {f(6),
f(7), f(14)} was improved as well, but the significance level was not reached. The
canonical SHADE provided better mean value only on three of the fifteen test functions
in benchmark set, f(5), f(11) and f(13) and the same value was obtained on three test
functions f(1), f(2) and f(15).

Furthermore, the improvement in the speed of convergence can be seen in Figs. 2
and 4 which depict the average performance on functions f(9) and f(14) respectively.
The same test function value can be reached in fewer evaluations which is crucial in
real time optimization.

Additionally, Figs. 3 and 4 show that in the best value development on test
functions f(9) (detail of the last 20 000 iterations) and f(14), significantly lower values
were obtained by the SHADE algorithm with CPRNG parent selection. The results in
Fig. 3 show, that three out of five chaotic systems used for parent selection are ben-
eficial in terms of the reached test function value. This suggests, that not only one
CPRNG, but their combination might be beneficial in the future multi-chaotic
framework.

7 Conclusion

In this research paper, five different chaotic maps were used as a CPRNGs for parent
selection process of the SHADE algorithm. The performance of the SHADE induced
by CPRNG was tested on CEC2015 benchmark set and compared with the canonical
SHADE.

In the previous research, CPRNGs were successfully used with a number of evo-
lutionary algorithms - Self-Organizing Migrating Algorithm (SOMA) [15], canonical
DE [13] and swarm intelligence algorithm - Particle Swarm Optimization (PSO) [12].
The aim of this research paper was to establish if inducing the SHADE algorithm
parent selection phase by CPRNG will have any effect on the performance or if the
effect will be neutralized by the adaptive behaviour of the SHADE algorithm. The
overall performance was improved on the majority of the test functions but there is no
universal winner between CPRNGs. Therefore, there is a space for the future research
which would predict the most suitable CPRNG for given problem or possibly their
combination and the product of this would be a multi-chaotic framework.

Thus the future research will be focused on the development, analysis and testing of
such framework.
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Abstract. This study proposes a tabu search hybridized with multiple
neighborhood structures to solve a variant of the frequency assignment
problem known as the minimum order frequency assignment problem.
This problem involves assigning frequencies to a set of requests while
minimizing the number of frequencies used. Several novel and existing
techniques are used to improve the efficiency of this algorithm. This
includes a novel technique that aims to determine a lower bound on the
number of frequencies required from each domain for a feasible solution
to exist, based on the underlying graph coloring model. These lower
bounds ensure that the search focuses on parts of the solution space that
are likely to contain feasible solutions. Our tabu search algorithm was
tested on real and randomly generated benchmark datasets of the static
problem and achieved competitive results.

1 Introduction

The frequency assignment problem (FAP) is related to wireless communication
networks, which are used in many applications such as mobile phones, TV broad-
casting and Wi-Fi. The aim of the FAP is to assign frequencies to wireless
communication connections (also known as requests) while satisfying a set of
constraints, which are usually related to prevention of a loss of signal quality.
Note that the FAP is not a single problem. Rather, there are variants of the FAP
that are encountered in practice. The minimum order FAP (MO-FAP) is the first
variant of the FAP that was discussed in the literature, and was brought to the
attention of researchers by [1]. In the MO-FAP, the aim is to assign frequencies
to requests in such a way that no interference occurs, and the number of used
frequencies is minimized. As the MO-FAP is NP-complete [2], it is usually solved
by meta-heuristics.

Many meta-heuristics have been proposed to solve the MO-FAP including
genetic algorithm (GA) [3], evolutionary search (ES) [4], ant colony optimization
(ACO) [5], simulated annealing (SA) [6] and tabu search (TS) [6–9]. It can be
seen from the literature that TS is a popular meta-heuristic for solving difficult
combinatorial optimization problems. This generally applicable algorithm has
proved to be an efficient way of finding a high quality solution for a variety of
c© Springer International Publishing Switzerland 2016
M.J. Blesa et al. (Eds.): HM 2016, LNCS 9668, pp. 157–170, 2016.
DOI: 10.1007/978-3-319-39636-1 12
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optimization problems e.g. [10]. However, existing algorithms in the literature
are unable to find optimal solutions in some datasets for the MO-FAP.

In this paper, we present an improved TS algorithm hybridized with multiple
neighborhood structures, one of which is used as a diversification technique. The
concept of using multiple neighborhood structures is inherited from the variable
neighborhood search algorithm, introduced by [11]. In contrast, other TS algo-
rithms for the MO-FAP in the literature implement only a single neighborhood
structure, e.g. [6–9]. Another new technique used in our TS algorithm is applying
a lower bound on the number of frequencies that are required from each domain
for a feasible solution to exist, based on the underlying graph coloring model.
This ensures that the search focuses on parts of the solution space that are
likely to contain feasible solutions. In this study, experiments were carried out
on CELAR and GRAPH datasets1, and the results show that our TS algorithm
outperforms other algorithms in the literature.

This paper is organized as follows: the next section gives an overview of the
MO-FAP. Section 3 explains how the underlying graph coloring model for the
MO-FAP can be used to provide a lower bound on the number of frequencies
and how this information can then be used to assist the search. In Sects. 4 and
5, the description of the TS algorithm for the MO-FAP is given. In Sect. 6, the
results of this algorithm are given and compared with those of other algorithms
in the literature, before this study finishes with conclusions and future work.

2 Overview of the MO-FAP

The main concept of the MO-FAP is assigning a frequency to each request while
satisfying a set of constraints and minimizing the number of used frequencies.
The MO-FAP can be defined formally as follows: Given a set of requests R =
{r1, r2, . . . , rNR} and a set of frequencies F = {f1, f2, . . . , fNF } ⊂ Z

+, where
NR is the number of requests and NF is the number of frequencies, and a set
of constraints related to the requests and frequencies, the goal is to assign one
frequency to each request so that the given set of constraints are satisfied and
the number of frequencies used is minimized. The frequency that is assigned to
request ri is denoted by fri throughout of this study. The MO-FAP has four
types of constraints:

1. Bidirectional Constraints: this type of constraint forms a link between each
pair of requests {r2i−1, r2i}, where i = 1, . . . , NR/2. In these constraints, the
frequencies fr2i−1 and fr2i should be distance dr2i−1r2i ∈ Z

+ apart. In the
datasets considered here, dr2i−1r2i is always equal to a constant value (238).
These constraints can be written as follows:

|fr2i−1 − fr2i | = dr2i−1r2i for i = 1, . . . , NR/2 . (1)

1 These are available at http://fap.zib.de/problems/CALMA/ (last accessed 25
December 2015).

http://fap.zib.de/problems/CALMA/
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2. Interference Constraints: this type of constraint forms a link between a pair
of requests {ri, rj}. The frequencies fri and frj should be more than distance
drirj ∈ Z

+ apart. These constraints can be written as follows:

|fri − frj | > drirj for 1 ≤ i < j ≤ NR . (2)

3. Domain Constraints: the set of available frequencies for each request ri is
denoted by the domain Dri ⊂ F , where ∪ri∈RDri = F . Hence, the frequency
which is assigned to ri must belong to Dri . For the datasets considered in
this study, there are 7 available domains.

4. Pre-assignment Constraints: for certain requests, the frequencies have already
been pre-assigned to given values.

3 Graph Coloring Model for the MO-FA

The graph coloring problem (GCP) is an underlying model to the MO-FAP [12].
The GCP involves allocating a color to each vertex such that no adjacent vertices
are in the same color class and the number of colors is minimized. The MO-FAP
can be represented as a GCP by representing each request as a vertex and a
bidirectional or an interference constraint as an edge joining the corresponding
vertices.

One useful concept of graph theory is the idea of cliques. A clique can be
defined as a set of vertices in which each vertex is linked to all other vertices. A
maximum clique is the largest among all cliques in a graph. Vertices in a clique
have to be allocated to different colors in a feasible coloring. Therefore, the size
of the maximum clique acts as a lower bound on the minimum number of colors
and therefore, by extension, as a lower bound on the number of frequencies for
the MO-FAP. For example, the requests r1, r200, r871, r872 and r899 form a clique
in the CELAR 01 instance (see Fig. 1). All of these requests are linked to each
other by either a bidirectional or an interference constraint.

Figure 1 shows 5 different requests forming a clique, so at least 5 different
frequencies are required. As the requests belong to different domains, the graph
coloring model for each domain can be considered separately and then a lower
bound on the number of frequencies that is required from each domain can also
be calculated.

A Branch and Bound algorithm is used to obtain the size of a maximum
clique. Table 1 gives a lower bound of the number of frequencies required from
each domain and whole instance, and the time taken to calculate the lower
bounds.

4 Overview of the Tabu Search Algorithm

A key decision when designing TS is the definition of the solution space and the
corresponding cost function.
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Fig. 1. An example of a clique in the CELAR 01 instance in the graph coloring model.

Table 1. Lower bounds of the numbers of frequencies required from each domain and
whole instance and time taken to calculate the lower bounds.

Domain Whole Run

Instance 1 2 3 4 5 6 7 instance time

CELAR 01 10 9 10 4 4 7 2 12 1.50 sec

CELAR 02 10 0 10 0 0 0 2 14 0.02 sec

CELAR 03 10 0 10 0 2 0 2 12 0.06 sec

CELAR 04 10 0 10 4 2 0 2 44 0.34 sec

CELAR 11 20 0 14 4 2 0 2 20 0.34 sec

GRAPH 01 8 3 6 2 4 4 2 18 0.03 sec

GRAPH 02 6 2 4 0 2 4 0 14 0.12 sec

GRAPH 08 10 2 6 2 3 8 3 16 0.28 sec

GRAPH 09 6 2 10 2 2 8 2 18 0.48 sec

GRAPH 14 6 2 4 2 0 2 2 8 0.48 sec

4.1 Solution Space and Cost Function

In most cases, it is relatively straightforward to find solutions that satisfy the
bidirectional, the domain and the pre-assignment constraints, and to define a
neighborhood operator that moves between such solutions [13]. Hence, the solu-
tion space here is defined as the set of all possible assignments satisfying all
of those constraints. Note that the interference constraints are relaxed because
these are the most difficult to be satisfied. The cost function is defined as the
number of broken interference constraints, also known as the number of viola-
tions. One of the advantages of this configuration is that the number of requests
is halved because each request is linked with another request based on the bidi-
rectional constraints. This configuration was used in [6,8].
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A further approach is considered where the solution space consists of solutions
that satisfy only the domain and the pre-assignment constraints, while the cost
function counts the number of broken bidirectional and interference constraints.
This configuration was used in [7,14].

The solution space could have been defined as the set of all possible feasible
assignments, that is, satisfying all of the constraints, and the corresponding
cost function as the number of used frequencies. However, there are a number
of difficulties with this configuration: TS has been found to be poor with this
configuration [7]. Moreover, it may be difficult to move from one feasible solution
to another. Furthermore, a large number of neighbor solutions with the same cost
may differ greatly in their quality [15]. Hence, this is not considered in this study.

4.2 Sub-problem in the MO-FAP

Using the solution space which relaxes some constraints creates the following
sub-problem: minimizing the number of violations with a fixed number of used
frequencies. If a solution with zero violations, i.e. a feasible solution, is found,
then the number of used frequencies is reduced in the creating violations phase
(see Sect. 5.5) and the sub-problem is reconsidered. The process is repeated until
a feasible solution can no longer be found. This process is similar to [16] in their
TS algorithm for the GCP and [6,8] in their TS algorithm for the MO-FAP.

4.3 Structure of the Tabu Search Algorithm

Our TS algorithm consists of three phases, namely the initial solution phase, the
creating violations phase and the improvement phase. The initial solution phase
(see Sect. 5.4) generates an initial solution. Assume the initial solution is feasible.
Then, the creating violations phase (see Sect. 5.5) reduces the number of used
frequencies by removing a pair of used frequencies. Then, all pairs of requests
that are assigned to the removed pair of frequencies are re-assigned to another
pair of used frequencies, which may result in some violations. The improvement
phase (see Sect. 5.6) aims to reduce the number of violations to zero, using three
neighborhood structures. If this results in a feasible solution within a specified
number of iterations, then the creating violation phase is revisited to remove
another pair of used frequencies. After that, the process continues until either
no feasible solution can be found, at which time the process is terminated and
the feasible solution in the previous iteration is returned, or the optimal solution
is found. In case the initial solution is not feasible, the creating violations phase
can be omitted and the search moves immediately to the improvement phase.

The overall structure of our TS algorithm for the MO-FAP can be described
as follows.

1. Implement the initial solution phase.
2. If the number of violations equals 0, go to step 3. Else, go to step 5.
3. If the number of used frequencies equals the lower bound, return the current

feasible solution. Else, go to step 4.
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4. Implement the creating violations phase.
5. Implement the improvement phase.
6. If the number of violations equals 0, go to step 3. Else, go to step 7.
7. If the previous solution is feasible, return it. Else, return the current infeasible

solution.

5 Components of the Tabu Search Algorithm

Throughout this section, all the constraints except the interference constraints
are regarded as hard constraints. That is, we use the first configuration described
in Sect. 4.1.

5.1 Neighborhood Structures

Three different neighborhood structures are considered:

– Move Neighborhood Structure (MNS): this structure is defined as the set of
solutions obtained by selecting a pair of requests and re-assigning them to a
different pair of used frequencies while satisfying all the hard constraints. This
neighborhood investigates all the possible moves for all pairs of requests and
used frequencies (the maximum possible number of such moves is NR × nf ,
where nf is the number of used frequencies). This ensures that the number
of used frequencies does not increase. This structure is simple and commonly
used for TS algorithms in the literature e.g. [6–8].

– Swap Neighborhood Structure (SNS): this structure is defined as the set of
solutions obtained by swapping the frequencies of a pair of requests. SNS
proves to be quick as it contains a small number of neighbors (at most NR/2),
yet it can improve the solution quality.

– Diversification Neighborhood Structure (DNS): this structure, unlike the pre-
vious structures, is intended to diversify the search, i.e. move to a different
part of the solution space. It consists of the set of solutions obtained by replac-
ing a pair of used (old) frequencies with a pair of unused (new) frequencies.
Given a pair of old frequencies, another pair of frequencies is accepted if it can
be assigned to all pairs of requests which were assigned to the old pair with-
out breaking any hard constants. However, any re-assignment that causes the
number of used frequencies to drop below the lower bound for some domains
(see Sect. 3) is not considered.

5.2 Tabu Lists

In our TS algorithm, three independent tabu lists, one for each neighborhood
structure, are defined. Notice that all of the tabu lists are cleared after the
sub-problem is solved. These tabu lists are described as follows:
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– Move Tabu List : when a pair of requests is assigned to another pair of fre-
quencies, then the pair of requests and the removed pair of frequencies are
added to the tabu list and this assignment is classified as forbidden for a given
number of iterations (i.e. tabu tenure).

– Swap Tabu List : when a pair of requests are swapped, then this pair is added
to the swap tabu list. This list prevents a pair of requests from being swapped
more than once.

– Diversification Tabu List : when a pair of old frequencies is replaced by a pair
of new frequencies, then both of them are added to the diversification tabu
list.

5.3 Aspiration Criteria

The tabu lists can be too restrictive by forbidding some attractive moves even
when there is no harm of cycling. Therefore, it can be beneficial to ignore the
tabu lists. This is called an aspiration criterion. Here, the most commonly used
aspiration criterion is applied, that is, to accept a tabu move if it leads to a
better solution than the current best found one.

5.4 The Initial Solution Phase

An initial solution is generated by the following greedy algorithm: a pair of
requests which has the smallest number of feasible pairs of frequencies is selected.
Then, among those pairs of frequencies, the one which is feasible for most pairs
of requests is assigned to the selected pair of requests. If there are no feasible
pairs of frequencies, a pair of frequencies is randomly selected. In case the initial
solution is infeasible, a descent method with MNS (see Sect. 5.1) is used to reduce
the number of violations.

5.5 The Creating Violations Phase

This phase aims to reduce the number of used frequencies in a feasible solu-
tion by removing a pair of frequencies. The removed pair of frequencies must
satisfy two conditions: First, neither of the frequencies are required to satisfy
any pre-assignment constraints. Second, the lower bound for each domain (see
Sect. 3) must be satisfied after deleting these frequencies. If there is more than
one candidate pair of frequencies, then the one which is assigned to the least
number of pairs of requests is selected. If there is still more than one such pair,
then one of them is selected randomly. After that, the pairs of requests assigned
to the candidate pair of frequencies are re-allocated to a feasible pair of used
frequencies. If there is no feasible pair of used frequencies, then these requests
are re-allocated to an infeasible pair of used frequencies at random. In case this
process leads to a feasible solution, then a further pair is removed. Otherwise,
the improvement phase (see Sect. 5.6) is executed to find a feasible solution. The
creating violations phase was previously used in [8].
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5.6 The Improvement Phase

The aim of this phase is to solve the sub-problem using the three neighborhood
structures.

Ordering of Neighborhood Structures. The iterative procedure of our TS
algorithm starts in the improvement phase. The improvement phase consists of
three neighborhood structures (MNS, SNS and DNS). In MNS and SNS, only
used frequencies are considered, while DNS considers only unused frequencies.
MNS is explored first because it contains a large number of neighbors. SNS,
which covers a limited number of neighbors, is then considered to support the
MNS. DNS aims to jump from the current position in the solution space to a
new position by removing a pair of used frequencies and adding a new one from
the set of pair of unused frequencies. Therefore, DNS is intended to diversify the
search rather than reduce the number of violations, which reflects the reason for
leaving it as the last structure.

Implementation of the Improvement Phase. Each iteration involves one of
the three neighborhood structures. This phase begins with MNS. If this structure
results in a better solution, then it is accepted. Otherwise, it is repeated until
the structure is executed for a given number of times consecutively without
improvement. Then, the search enters SNS. If this structure leads to a better or
equally good solution, then the search goes back to MNS. Otherwise, it appears
there is little prospect of finding a better solution in the current region of the
solution space, so the search enters DNS. A solution from DNS is accepted and
the search returns to MNS.

It was found that on occasions, no moves in DNS are allowed due to the
tabu lists, the pre-assignment constraints and the lower bound for each domain.
If this happens, the criteria of selecting a pair of new frequencies in DNS will
be modified. A pair of frequencies is accepted as a pair of new frequencies if it
can be allocated to at least one pair (instead of all pairs) of requests assigned
to the pair of old frequencies. Although the pair of new frequencies will not be
allowed to be removed because of the diversification tabu list, the pair of old
frequencies will be allowed to return to the solution because of a limited number
of neighbors in this structure.

The output of the improvement phase can be a feasible or an infeasible solu-
tion. If it is a feasible, but not optimal solution, then the algorithm returns to
the creating violations phase. On the other hand, if the output is an infeasible
solution, then the algorithm returns to MNS. This continues until one of the
stopping criteria is satisfied.

5.7 Stopping Criteria

Our TS algorithm has three different stopping criteria as follows: (i) the feasible
solution whose number of frequencies is equal to the lower bound is found (as
this is the optimal solution), (ii) the number of iterations is equal to a given
number, (iii) the DNS is executed for a certain number of times.
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6 Experiments and Results

This section firstly provides the results of our TS algorithm for the MO-FAP
using CELAR and GRAPH datasets (available on the FAP website2). Secondly,
the process of our TS algorithm is discussed and analyzed. Finally, the perfor-
mance of our TS algorithm is compared with other algorithms in the literature.

Table 2 presents details of the MO-FAP datasets considered in this study
including the numbers of requests and constraints for each instance.

Table 2. Details of CELAR and GRAPH datasets.

No. of No. of No. of No. of No. of Total

Instance requests bidirectional interference domain pre-assignment no. of

constraints constraints constraints constraints constraints

CELAR 01 916 458 5,090 916 0 6,464

CELAR 02 200 100 1,135 200 0 1,435

CELAR 03 400 200 2,560 400 0 3,160

CELAR 04 680 340 3,627 400 280 4,647

CELAR 11 680 340 3,763 680 0 4,783

GRAPH 01 200 100 1,034 200 0 1,334

GRAPH 02 400 200 2,045 400 0 2,645

GRAPH 08 680 340 3,417 680 0 4,437

GRAPH 09 916 458 4,788 916 0 6,162

GRAPH 14 916 458 4,180 916 0 5,554

Based on experimentations, the parameters of our TS algorithm are set as
follows:

– The maximum number of iterations is 10,000.
– The maximum number of times of accepting worse solutions consecutively in

MNS is 100.
– The maximum number of times of executing DNS is 20.
– The tabu tenure of the move tabu list is 100.
– The tabu tenure of the swap tabu list is NR/2.
– The tabu tenure of the diversification tabu list is 20.

In this study, the algorithm was coded using FORTRAN 95 and all experi-
ments were conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Genera-
tion) with 8GB RAM and a 1TB Hard Drive.

2 http://fap.zib.de/problems/CALMA/ (last accessed 25 December 2015).

http://fap.zib.de/problems/CALMA/
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6.1 Results Comparison of the Tabu Search Algorithm

This section provides the results of our TS algorithm for the MO-FAP. Five runs
are performed for each instance, and each run uses a different random number
stream. The results include the number of used frequencies in the best, the worst
and the average solutions (with the optimal ones shown in bold), the average
run time for each instance and the optimal solutions (known and available on
the FAP website3). Note that the run time of finding the lower bound of the
number of frequencies for each domain (given in Table 1) is included.

Table 3 shows that TS achieved optimal solution for all the instances except
CELAR 11 and the solutions were obtained in a reasonable time, mostly less
than 5 min.

Table 3. Results of the TS algorithm for the MO-FAP.

Instance Best Worst Average Average Worst Optimal

found found solution time time solution

CELAR 01 16 16 16 3.63 min 4.01 min 16

CELAR 02 14 14 14 0.52 sec 0.61 sec 14

CELAR 03 14 16 14.8 1.00 min 1.20 min 14

CELAR 04 46 46 46 54.34 sec 1.18 min 46

CELAR 11 38 40 38.4 8.81 min 9.11 min 22

GRAPH 01 18 18 18 5.43 sec 7.09 sec 18

GRAPH 02 14 14 14 2.16 sec 4.98 sec 14

GRAPH 08 18 18 18 24.28 sec 33.12 sec 18

GRAPH 09 18 18 18 3.01 min 4.91 min 18

GRAPH 14 8 8 8 4.81 min 5.02 min 8

A further approach is considered where the bidirectional constraints are not
enforced and the solution space consists of solutions that satisfy only the domain
and the pre-assignment constraints, and the cost function counts the number
of broken bidirectional and interference constraints. Experiments show that this
approach did not lead to good results compared with the former one. This shows
that enforcing bidirectional constraints is an important factor in improving the
search efficiency.

6.2 Analysis of Implementation Process

In this section, the process of our TS algorithm is discussed and analyzed.
Figure 2 shows the number of used frequencies and the number of violations
throughout one run using the CELAR 01 instance.
3 http://fap.zib.de/problems/CALMA/ (last accessed 25 December 2015).

http://fap.zib.de/problems/CALMA/
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Fig. 2. Numbers of used frequencies and violations throughout one run on CELAR 01.

Figure 2 shows that TS start with an initial feasible solution using 22 frequen-
cies and this number was reduced to 16 frequencies. Although all neighborhood
structures have been involved during the process of this algorithm, the most
executed structure is MNS, which is represented by the red color. This justifies
the fact that this structure is the most successful and commonly used for TS in
the literature. SNS came as the second most executed structure. This reflects
the limitation of this structure and its objective, which is to support MNS. DNS
is executed in a limited number of times and most of the times it results in an
increase in the number of violations. This agrees with the aim of this structure,
which is to diversify the search rather than optimize it.

In order to investigate the importance of each neighborhood structure, four
different approaches of our TS algorithm are compared: Approach 1 applies the
initial solution phase only; Approach 2 applies MNS only; Approach 3 applies
MNS and SNS only and Approach 4 applies all the neighborhood structures.

Figure 3 presents the results of four different approaches to a selection
instances (specifically, CELAR 01, CELAR 03, GRAPH 09 and GRAPH 14).
The selected instances are chosen to represent different numbers of requests and
constraints.

It can be seen from Fig. 3 that all the neighborhood structures play a role
to achieve the goal. All the instances achieve a better solution after adding each
neighborhood structure, i.e. all the neighborhood structures are essential to solve
the problem.
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Fig. 3. Comparison of different approaches of our TS algorithm.

6.3 Results Comparison with Other Algorithms

In this section, the results of our TS algorithm and other algorithms in the
literature are compared. Table 4 shows the best found results, where the result
shown in bold means these reach the optimal solution and a dash “-” means that
the result is not available.

Table 4. Results of our TS algorithm and other algorithms in the literature.

Instance GA [3] ES [4] SA [6] TS [6] TS [9] Our TS Optimal solution

CELAR 01 20 - 16 16 18 16 16

CELAR 02 14 14 14 14 14 14 14

CELAR 03 16 14 14 14 14 14 14

CELAR 04 46 - 46 46 46 46 46

CELAR 11 32 - 24 22 24 38 22

GRAPH 01 20 18 - 18 18 18 18

GRAPH 02 16 14 - 14 16 14 14

GRAPH 08 - - - 20 24 18 18

GRAPH 09 28 - - 22 22 18 18

GRAPH 14 14 - - 10 12 8 8

It can be seen from Table 4 that our TS algorithm achieved the best results
compared with those of other algorithms in the literature. In fact, it achieved
the optimal solution for all the instances except for CELAR 11. Moreover, it
is the only algorithm in Table 4 that achieved the optimal solution for GRAPH
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08, GRAPH 09 and GRAPH 14. However, a better result for CELAR 11 (the
optimal solution) was found using the TS algorithm in [6]. Overall, our TS
algorithm showed competitive results compared with those of other algorithms
in the literature.

7 Conclusions and Future Work

In this paper, we have presented an improved TS algorithm for solving the
MO-FAP. Several techniques have been used to improve the performance of
this algorithm. These include hybridizing TS with three different neighborhood
structures, one of which is used as a diversification technique, and using a lower
bound for each domain based on the underlying graph coloring model. Moreover,
based on the definition of the solution space which relaxes some constraints, a
sub-problem of minimizing the number of violations is considered to find a feasi-
ble solution with a fixed number of used frequencies after the creating violations
phase. Based on the results comparison, our TS algorithm outperformed other
algorithms in the literature.

Clearly, there are many other variants of TS that could have been assessed.
For example, a more advanced neighborhood structure could be used such as
swapping pairs of requests with each other or forming chains similar to Kempe
Chains in the GCP. Further investigations of these are left as future work.
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11. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

12. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12),
1497–1514 (1980)

13. Dorne, R., Hao, J.-K.: Constraint handling in evolutionary search: a case study of
the frequency assignment. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 801–810. Springer, Heidelberg (1996)

14. Hao, J.-K., Perrier, L.: Tabu search for the frequency assignment problem in
cellular radio networks. Technical report LGI2P, EMA-EERIE, Parc Scientifique
Georges Besse, Nimes, France (1999)

15. Dowsland, K.A., Thompson, J.M.: An improved ant colony optimisation heuristic
for graph colouring. Discrete Appl. Math. 156(3), 313–324 (2008)

16. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4), 345–351 (1987)



The Capacitated m Two-Node Survivable Star
Problem: A Hybrid Metaheuristic Approach
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Abstract. In telecommunications, a traditional method to connect mul-
titerminal systems is to use rings. The goal of the Capacitated m Ring
Star Problem (CmRSP) is to connect terminals by m rings which meet
at a distinguished node, and possibly by some pendant links, at min-
imum cost. In this paper, we introduce a relaxation for the CmRSP,
called Capacitated m Two-Node Survivable Star Problem (CmTNSSP
for short). The CmTNSSP belongs to the NP-Hard class of computa-
tional problems. Therefore, we address a GRASP hybrid metaheuristic
which alternates local searches that obtain incrementally better solu-
tions, and exact resolution local searches based on Integer Linear Pro-
gramming models. In consonance with predictions provided by Clyde
Monma, the network can be equally robust but cheaper than in the orig-
inal CmRSP.

Keywords: Network optimization · CmRSP · CmTSSP · Hybrid meta-
heuristics · GRASP · VND · ILP

1 Motivation

A natural approach to reach two-node connectivity is to connect all terminals
in a ring or cycle in an economic way. In this scenario nodes are connected to
one another by two independent paths. This problem is called Traveling Sales-
man Problem, and it is widely studied in the scientific literature. Clyde Monma
et al. [9] described what is considered to be a cornerstone in the area of topolog-
ical network design. They proved that a minimum-cost 2-node-connected metric
network is either a Hamiltonian Tour or presents a special graph topology as
an induced subgraph. This topology is sketched in Fig. 1; it was refered to as
Monma graphs for the first time in [4]. We will stick to this terminology. In the
physical design of a telephony deployment, it is useful to consider several 2-node-
connected components joined to a perfect telephone exchange, and to connect
some distant terminal nodes to some ring. A cost-effective “shape” of a solution
is provided by Roberto Baldacci et al. [1]. We are given a distinguished node
(or depot), several terminal nodes and optional nodes. In order to connect all
terminals, the authors propose to find the cheapest structure of m rings which
share the depot, while some terminals can be pendant on some node of a ring.
c© Springer International Publishing Switzerland 2016
M.J. Blesa et al. (Eds.): HM 2016, LNCS 9668, pp. 171–186, 2016.
DOI: 10.1007/978-3-319-39636-1 13
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v u

l1 2 1

l2 2 1

l3 2 1

Fig. 1. Monma’s graph structure.

The number of nodes within a ring must not exceed the depot capacity,
and the cost of pendant edges is different than the cost of the edges within
the rings. The minimum-cost design of the structure composed by the m rings
and pendant nodes is called Capacitated m Ring Star Problem, termed herein
CmRSP for short.

Inspired by the potential savings predicted by Clyde Monma et al., and
supported by their theorem where the cost of the best ring could be even 4/3
times larger than the cost of the best 2-node-connected topology, we relaxed
the condition of rings and considered arbitrary 2-node-connected components
instead. The goal of this paper is to design a resilient cost-effective network from
a topological stand point, suitable for delay sensitive applications on an Internet
infrastructure. The main contributions are the following:

– The Capacitated m Two-Node Survivable Star Problem (CmTNSSP) is intro-
duced.

– Given its intractability, a heuristic resolution is developed. We adopted
a GRASP approach enriched with a Variable Neighborhood Descent, or
GRASP-VND using some local searches based on Integer Linear Program-
ming.

– A fair comparison with prior works in the area promotes the design of arbitrary
2-node-connected components, instead of rings (which were previously used
by Baldacci et al.).

This article is organized in the following manner. The formal definitions for both
problems, namely CmRSP and CmTNSSP, are presented in Sect. 2. A greedy
randomized adaptive search procedure (GRASP) is developed for its resolution
in Sect. 3. A comparison between the design with rings (CmRSP) and the one
with arbitrary 2-node-connected components (CmTNSSP) is presented in Sect. 4.
Concluding remarks and trends for future work are discussed in Sect. 5.

2 Capacitated m Two-Node Survivable Star Problem

Inspired by fiber optics design, Martine Labbé et al. introduce the Ring Star
Problem, or RSP for short [7]. The core is a ring, and the remaining termi-
nals are pendant from the ring. The goal is to find the minimum-cost topology
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meeting the previous constraints, given different costs in the ring-connections
and pendant-connections. A further generalization, the CmRSP, is introduced
by Roberto Baldacci et al. [1]. The authors considered a depot and m rings, with
the depot as the only common node. The main difference with the RSP is the
presence of m rings instead of one. Both problems belong to the NP-Hard class,
since they represent a generalization of the Hamiltonian Tour [6]. Therefore, the
CmRSP has been heuristically addressed in several opportunities [5,13].

We are given a simple graph G = (V,E), a positive integer m and a tri-
partition V = {s} ∪ VS ∪ VT , being s the depot, VS the optional Steiner nodes
and VT the terminal nodes. The source s has a capacity qs, and there are two
classes of connections with different costs: ring-connections are given by a cost-
matrix R = (ri,j), vi, vj ∈ V and pendant-connections are given by another
cost-matrix C = (ci,j), vi ∈ V − {s}, vj ∈ VT . In the CmRSP, the goal is to
choose a minimum cost spanning subgraph H = ∪m

i=1Cli ∪ Si, wherein the Clis
are cycles that only meet on the depot s ∈ Cli and have a length li, and the Sis
are pendant links from nodes belonging to Cli . The capacity constraint implies
that |Si| + li ≤ qs for all i ∈ {1, . . . ,m}.

If we consider arbitrary 2-node-connected components instead of the
rings Cli , we obtain the Capacitated m Two-Node Survivable Star Problem
(CmTNSSP). The CmTNSSP also belongs to the NP-Hard class of problems,
since the design of one component (m = 1, qs = +∞, VS = ∅) is the minimum-
cost 2-node-connected spanning network problem (MW2NCSN), which is NP-
Hard. Monma et al. in their work [9] proved this for metric distances. They
assigned a value 1 to the cost of the edges, then there exists a Hamiltonian cycle
if and only if the minimum cost of MW2NCSN is equals to the number of nodes.
Finally since “Hamiltonian Tour” belongs to Karp list [6] then MW2NCSN is
NP-Complete.

3 GRASP Resolution

Greedy Randomized Adaptive Search Procedure (GRASP) is a powerful multi-
start or iterative process, with great success in telecommunications [12]. In
GRASP, feasible solutions are produced in a first phase, while neighbor solu-
tions are explored in a second phase. The best overall solution is returned as
the result. There is a trade off between greediness (intensification) and random-
ization (diversification), by means of a restricted candidate list. For a compre-
hensive study of this metaheuristic see [10,11]. The main components of our
particular GRASP design, namely Construction Phase and Local Search Phase,
are depicted below.

3.1 Construction Phase

In this phase we build a feasible solution (see Algorithm 1). Each one of the
m components are iteratively added to the solution, starting with one ring per
component and then adding paths between two nodes of the same component
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until all terminal nodes are assigned. During the Construction Phase, no pendant
links will be considered. The goal is to produce a feasible solution, despite the
potential high cost of it (which will be reduced during Local Search Phase).

Let us consider an arbitrary instance for the CmTNSSP, a positive integer k
and a maximum number of iterations iter. In order to define our construction
phase, the following four functions will be used:

1 Picking(m,G,R, iter): returns m terminal nodes v1, . . . , vm, one for each
component to build.

2 Connecting(G,R, Ĉ, s, node, k, non connected): connects each node vi with
the source-node s by k node-disjoint paths.

3 ChooseTwo(Ĉ): randomly chooses 2 paths out of k using uniform distribu-
tion. At this stage one cycle per component is obtained.

4 ConnectAllOthers(non connected,G, Ĉ): connects nodes that are not yet
included in the construction with a component, adding a path between two
nodes of such component.

Algorithm 1. Construction Phase
1: input G, R, VT , s, k, m, iter
2: GSol ← ∅
3: Ĉ ← ∅
4: component nodes[m] ← ∅ {Array with m empty positions}
5: non connected ← VT

6: {v1, . . . , vm} ← Picking(m,G,R, iter)
7: for i=1 to m do
8: node = Random(v1, . . . , vm)
9: Ĉ ← Connecting(G,R, Ĉ, s, node, k, non connected)

10: Ci ← ChooseTwo(Ĉ)
11: GSol ← GSol ∪ Ci

12: component nodes[i] ← component nodes[i] ∪ Ci

13: non connected ← non connected − Ci

14: end for
15: GSol ← GSol ∪ ConnectAllOthers(non connected,G, Ĉ)
16: return GSol

The previous functions will be run sequentially. Picking function returns a
set of m terminal nodes by considering iter sets of randomly chosen m nodes
and returning the set with the greatest sum of costs of the edges determined by
each pair of nodes (line 6).

Once the set {v1, . . . , vm} is obtained, Connecting function (line 9) connects
node with the source-node s. Thus function is called for each node vi which
is selected randomly using the function Random (line 8). It applies Ramesh
Bhandari’s algorithm [3] in order to find the cheapest set of k node-disjoint
paths between the depot and terminal node vi.
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Function ChooseTwo (line 10) just chooses uniformly at random two disjoint
paths out of k from each component. Up to this point m rings that share the
depot have been built.

Finally, in ConnnectAllOthers function (line 15), non-connected nodes are
randomly chosen and iteratively added to the component with the lowest number
of nodes. In this way, the capacity constraint is met during the construction
phase, even though the cost could be high. Consider a non-connected node v
and the (2-node-connected) component Ĉ (Fig. 2). All links that belong to other
components will be deleted (i.e. only one component is treated at a time), and
the costs of all links from Ĉ (grey edges) will temporarily be zero. We add an
artificial node v′ connected with all nodes from Ĉ using edges at zero cost (dotted
edges). Bhandari’s algorithm is applied in order to find the better k (or possibly
less) node-disjoint paths between v and v′ in the resulting network. Only two
disjoint paths between v and v′ will be uniformly chosen. Finally, we delete node
v′ and the resulting two paths that connect v with C are added to the solution.

v

v′
s

Fig. 2. Including node v into component Ĉ.

3.2 Local Search Phase

The following operations fully determine neighborhood structures. A Variable
Neighborhood Descent (VND [8]) scheme will be use to combine them.

– Swapping(G,R,C, VT , Gsol): picks a random terminal node in Gsol and swaps
it with its closest possible terminal node (the possibility means that the cost
is decreased and the solution remains feasible),

– ExtractInsert(G,R,C, VT , Gsol): extracts the links of a node, reconnects its
neighbors and greedily inserts the node in Gsol(i.e., minimum cost insertion),

– Crossing(G,R,C, VT , Gsol): picks two close terminal nodes from different
components in Gsol, deletes one incident link from each node and reconnects
components in the best manner,

– BestPath(G,R,C, VT , Gsol) replaces any simple path with pendant nodes l in
Gsol by the best of them (with the same endpoints), using an exact algorithm
based on an Integer Linear Programming (ILP) model.
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– Best2NC(G,R,C, VT , Gsol): each cycle in Gsol is replaced by its best 2-node-
connected component, using an exact algorithm based on ILP.

The full algorithm of GRASP-VND used in this paper, with the Construction
phase and the sequence of local searches, is depicted in Algorithm 2.

Algorithm 2. Model of GRASP-VND used.
1: input G, R, C, VT , s, k, m, iter, grasp iter, shk iter,
2: repeat
3: Gsol ← Construction phase(G,R, VT , s, k,m, iter)
4: Giter ← Gsol

5: repeat
6: improve=true
7: while improve do
8: improve=Swapping(G,R,C, VT , Gsol)
9: if not improve then

10: improve=ExtractInsert(G,R,C, VT , Gsol)
11: if not improve then
12: improve=Crossing(G,R,C, VT , Gsol)
13: if not improve then
14: improve=BestPath(G,R,C, VT , Gsol)
15: if not improve then
16: improve=Best2NC(G,R,C, VT , Gsol)
17: end if
18: end if
19: end if
20: end if
21: end while
22: if cost(Gsol) < cost(Giter) then Giter ← Gsol end if
23: Gsol ← Shaking(C,R, VT , Gsol)
24: until shk iter are reached
25: if cost(Giter) < cost(Gbest) then Gbest ← Giter end if
26: until grasp iter are reached
27: return Gbest

The first three local searches involve moves that have been usually applied
to several network-based combinatorial optimization problems and they are
explained in more detail in the thesis of Gabriel Bayá [2]. The remaining two
local searches are detailed below.

Best Path with Pendants. This local search named BestPath, is based on
an integer linear programming model. A preliminary concept is first introduced.

Definition 1 Path with pendant nodes. Given an undirected graph G =
(V,E) we say that G is a path with pendant nodes which has endpoints a and
z ∈ V when there exists a path l(a, z) ⊆ G that connects nodes a and z (which
we call main path), and the following conditions are met:
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– G is a tree.
– All nodes that do not belong to l are directly connected to some node of l.

Given a feasible solution to the CmTNSSP we should identify all simple
cycles that exist in each component and we should divide them in paths, adding
their pendants nodes. Each path with pendants which has endpoints a and z is
replaced by the best path with pendants with the same endpoints. This algorithm
is based on an integer linear programming model.

We consider the following definitions:
Let G = (V,E) be an undirected graph.
Let T̂ be the set of terminal nodes of G.
Let Adj(i) be the set of adjacent nodes to node i ∈ V such:

Adj(i) = {j ∈ V : (i, j) ∈ E}

Let a and z be two distinguished terminal nodes such that a ∈ T̂ and z ∈ T̂ .
Let T = T̂ \ ({a} ∪ {z}) be the set of terminal nodes without a and z.
We define R = {rij}i,j∈V as the routing cost matrix of the graph, for each

edge (i, j) which belongs to the main path l(a, z).
Let us now define C = {cij}i,j∈V as the connection cost matrix of the graph,

that is the cost of the edge (i, j) when one endpoint belongs to the main path
and the other one does not belong to such path.

Let W = V \T̂ be the set of Steiner nodes. Let us now define the decision
variables.

Xi =
{

1 if node i ∈ T̂ belongs to the main path
0 otherwise

Yi =
{

1 if node i ∈ T is a pendant node
0 otherwise

zi,j =

⎧
⎨

⎩

1 if i ∈ T̂ and j ∈ V are connected, being i a pendant node and
j j a node that belongs to the main path

0 otherwise

xi,j =
{

1 if edge (i, j) is used in the solution
0 otherwise

wi,j =
{

1 if edge (i, j) is a pendant edge and is used in the solution
0 otherwise

yu,vi,j =
{

1 if edge (i, j) is used in the path that goes from node u to node v
0 otherwise

The integer linear programming model is defined as follows:

min(
∑

i,j∈V

rij(xij − wij) +
∑

i,j∈V

cijwij) (1)
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subject to:

Xi + Yi = 1 ∀i ∈ T (2)

Xi = 1 ∀i ∈ ({a} ∪ {z}) (3)

Equation 2 guarantees thay any terminal node which is not and endpoint
either belongs to the main path or is pendant from the main path by a pendant
edge, whereas constraint 3 ensures that the endpoints a and z belong exclusively
to the main path.

zij ≤ Xj ∀i ∈ T ∀j ∈ Adj(i) (4)

Yi =
∑

j∈Adj(i)

zij ∀i ∈ T (5)

∑

j∈V

wi,j ≤ Yi ∀i ∈ T (6)

Constraint 4 implies that if i and j are connected and node i is a pendant node
then node j belongs to the main path. Constraint 5 implies that if node i is
pendant from the main path then it does so only by one edge. Constraint 6
ensures there is only one edge incident to a pendant node.

zi,j = wi,j ∀i ∈ T j ∈ Adj(i) (7)

∑

j∈Adj(i)

xi,j ≤ M(1 − Yi) + 1 ∀i ∈ T, M ∈ Z
+,

M ≥ max(|Adj(i)|) i = 1 · · · |V | (8)

wi,j ≤ xi,j ∀i ∈ T j ∈ Adj(i) (9)

Constraint 7 implies that if node i is pendant from node j then the edge (i, j)
belongs to the solution. Inequality 8 constraints the degree of pendant nodes to
1 and it allows any other node of the main path to have any degree. Constraint
9 implies that if an edge is pendant then it belongs to the solution.

∑

j∈Adj[u]

yu,vu,j = 1 ∀u, v ∈ T̂ , u 
= v, (10)
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∑

i∈Adj[v]

yu,vi,v = 1 ∀u, v ∈ T̂ , v 
= u, (11)

∑

i∈Adj[p]

yu,v(i,p) −
∑

i∈Adj[p]

yu,vp,i ≥ 0 ∀u, v ∈ T̂ , ∀p ∈ V \ u, v (12)

yu,vi,j + yu,vj,i ≤ xi,j ∀u, v ∈ T̂ , u 
= v, ∀(i, j) ∈ E (13)

Constraints 10 and 11 are simple connectivity constraints between nodes of any
path (u, v). Constraint 12 is the balance equation of the internal nodes of the
path. Constraint 13 guarantees that the path is edge-disjoint (i.e. a path which
does not repeat any edge).

Yi = 0 ∀i ∈ W (14)

(
∑

i∈Adj[j]

zi,j + 2Xj −
∑

i∈Adj[j]

xj,i = 0) ∀j ∈ W (15)

∑

i∈Adj[j]

(zi,j + zj,i) + 2Xj −
∑

i∈Adj[j]

xj,i = 0 ∀j ∈ T (16)

∑

i∈Adj[j]

(zi,j) + Xj −
∑

i∈Adj[j]

xj,i = 0 ∀j ∈ ({a} ∪ {z}) (17)

In Eq. 14 it is ensured that Steiner nodes exclusively belong to the main path and
constraints 15 to 17 are adjustment equations for Steiner, terminal and endpoint
nodes. Algorithm 3 describes a local search which involves the replacement of
a path with pendants by the best path with pendants. It begins by taking as
input the graph GSol, which is a feasible solution of CmTNSSP. For each m
components of GSol all of its cycles are counted, which are then identified and
stored in the indexed list all cycles (lines 3 and 4). Next, each of the cycles
identified in the previous steps is treated, running the operations during for
loop (lines 5 to 13) until all cycles are considered. Each cycle is divided into a
certain number of paths of variable length. Next, we entered into a repetitive
loop during the second for loop (lines 7 to 12), wherein each path obtained
in the previous step is added with pendant nodes present in GSol, using the
function add pendants (line 8) obtaining a path with pendants P . In the next
step, we generated the graph H induced by nodes of the path with pendants
P with respect to the original graph G (line 9). Graph H thus generated is
input of stage best pwp which returns the best path with pendants (line 10).
To accomplished this goal, best pwp resolves the integer linear programming
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model depicted in (1)–(17). In line 11 P is replaced by Pbest obtaining a better
solution cost Gbest. After processing all paths within each cycle, the best solution
Gbest is returned (line 15).

Algorithm 3. Best path with pendant nodes.
1: input G, R, C, VT , Gsol

2: Gbest ← Gsol

3: q cycles = cycles count(Gsol) {Numbers of cycles of Gsol}
4: all cycles ← cycles(Gsol) {Array with all cycles of Gsol}
5: for (i = 1 to q cycles) do
6: paths=divide into paths(all cycles[i], q paths)
7: for (j= 1 to q paths) do
8: P ← add pendants(Gsol, paths[j])
9: H ← induced graph path(P, G)

10: Pbest ← best pwp(Gsol, P, R, C, H)
11: Gbest ← Gbest - P + Pbest

12: end for
13: end for
14: improve=(Cost(Gbest) < Cost(Gsol))
15: return improve, Gbest

Best 2-Connected Component. This local search named Best2NC is also
based on integer linear programming. As in the previous local search, given a
feasible solution to the problem, Algorithm 4 identifies all cycles that exist in
each component. For each cycle we applied an exact algorithm getting the best
replacement solution that changes a cycle by 2-node-connected topology.

As stated in Sect. 1, the best 2-node-connected solution covering a certain
set of nodes is not necessarily a cycle, so this local search may include such
topologies in our solution (see Fig. 1). This algorithm takes as input the induced
sub-graph of the original graph with nodes of the cycle and some Steiner nodes,
and returns the best 2-node-connected sub-graph, i.e. it can potentially change
a cycle by a 2-node-connected topology if such change improves solution costs.
In order to model this local search we used a particular case of GSP (General
Steiner Problem) wherein connectivity of all its terminal nodes is two. We con-
sidered the following definitions:

Let G = (V,E) be an undirected graph where V is the set of vertices and E
is the set of edges of graph G.

Let T̂ be the set of terminal nodes of graph G.
Define R = {rij}i,j∈V as the routing cost matrix, i.e. the costs when edge

(i, j) belongs to the 2-node-connected structure of the component. In this local
search, we only used such routing cost matrix since pendant nodes hitherto gen-
erated were not considered.
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Model variables are defined below.

xi,j =
{

1 if edge (i, j) is used in the solution
0 otherwise

yu,vi,j =
{

1 if edge (i, j) is used in a path from node u to v
0 otherwise

Once the variables were specified, the integer linear programming model was
defined as follows:

min(
∑

i,j∈V

rijxij) (18)

subject to:

∑

j∈Adj[u]

yu,vu,j = 2 ∀u, v ∈ T̂ , u 
= v, (19)

∑

i∈Adj[v]

yu,vi,v = 2 ∀u, v ∈ T̂ , v 
= u, (20)

∑

i∈Adj[p]

yu,vi,p −
∑

i∈Adj[p]

yu,vp,i ≥ 0 ∀u, v ∈ T̂ , ∀p ∈ V \ u, v (21)

yu,vi,j + yu,vj,i ≤ xi,j ∀u, v ∈ T̂ , u 
= v, ∀(i, j) ∈ E (22)

Algorithm 4. Best 2-node-connected component.
1: input G, Gsol

2: Gbest ← Gsol

3: q cycles = cycles count(Gsol) {Number of cycles of Gsol}
4: all cycles ← cycles(Gsol) {Array with cycles of Gsol}
5: for (i = 1 to q cycles) do
6: best = best component(Gbest, G,R, all cycles(i))
7: Gbest ← Gbest - all cycles(i) + best
8: end for
9: improve=(Cost(Gbest) < Cost(Gsol))

10: return improve, Gbest
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Analogously to Algorithm3, Algorithm 4 counts and identifies the cycles
present inGsol (lines 3 and 4). For each of these cycles the stage best component
(line 6) returns the best 2-node-connected structure and the cycle is replaced by the
latter (performed in line 7). The function best component resolves the integer
linear programming model depicted in (18)–(22). It should be noted that neighbor
solutions are feasible, so feasibility is preserved during the local search phase.

In order not to get stuck in a local optimum, a perturbation process takes
place. Function Shaking randomly disconnects a proportion h of terminal
nodes in the local optimal solution and reconnects them otherwise. Shaking
is called whenever the previous five functions are stuck in a solution and do not
have activity (i.e., they do not produce better solutions) as it can be seen in
Algorithm 2.

4 Empirical Results

It must be observed that CmTNSSP is a relaxation of CmRSP. Therefore, the
cost of feasible solutions for the CmTNSSP could be better than optimal values
for the CmRSP. In order to highlight the main challenges of the new problem and
the improvement offered by our GRASP methodology, we made a comparison
with optimal solutions for the CmRSP, choosing instances developed by Roberto
Baldacci, Mauro Dell’ Amico and José Luis Salazar González in [1]. The authors
considered instances from TSPLIB. Such instances are divided into two classes
(A and B) using graphs with 26, 51, 76 and 101 nodes. Both classes have the same
topology, but edge costs are different. In class A, the cost of each link equals
the Euclidean distance di,j = ri,j = ci,j , while in class B, ri,j = �7di,j� and
ci,j = �3di,j�. We used m ∈ {3, 4, 5}. The GRASP algorithm has been executed
using k = 4 for the restricted candidate list and h = 0, 3 × |VT |� for shaking,
which were tuned with other smaller TSPLIB instances from Classes A and B.
The heuristic was fully coded in C language using the CPLEX Callable Library
to resolve integer linear programming models. Hardware where algorithms were
run, consists of a computer with Intel I7 processor with 8 Gb. RAM and OS
Fedora Core 20.

Tables 1 and 2 present a comparison between the optimal solution for the
CmRSP (Z1) found by Baldacci et al. [1] and the cost in CmTNSSP (Zbest)
found by our proposed algorithm, for instances of Classes A and B, from a total
of 90 instances tested; Ẑ is the mean of 20 independent experiments for each
instance and Z2 is the best known value for CmRSP, recently published in [13].
The acronyms PN , CN , SN stand for the number of Pending Nodes, Connected
Nodes and Steiner Nodes in the solutions, respectively.

The parameter gap is a measurement of our GRASP-VND effectiveness, and
it is defined as follows:

gap =
Zbest − Z1

Z1
. (23)

In particular, Tables 1 and 2 show the gaps with respect to Z1, where negative
values are highlighted in boldface. We can observe that for Class A, the objective
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Table 1. Values found for Class A instances.

INSTANCE |T | Q CN PN SN Ẑ Zbest Z1 Z2 gap % t(s)

A01-n026-m03 12 5 12 0 1 242 242 242 242 0,000 1.61

A02-n026-m04 12 4 12 0 1 261 261 261 261 0,000 0.97

A03-n026-m05 12 3 12 0 1 292 292 292 292 0,000 13.77

A04-n026-m03 18 7 18 0 0 301 301 301 301 0,000 34.29

A05-n026-m04 18 5 18 0 0 339 339 339 339 0,000 62.58

A06-n026-m05 18 4 18 0 0 375 375 375 375 0,000 2.67

A07-n026-m03 25 10 24 1 0 325 325 325 325 0,000 14.06

A08-n026-m04 25 7 25 0 0 362 362 362 362 0,000 3.99

A09-n026-m05 25 6 25 0 0 383 382 382 382 0,000 3.99

A10-n051-m03 12 5 12 0 0 242 242 242 242 0,000 20.09

A11-n051-m04 12 4 12 0 3 261 261 261 261 0,000 6.42

A12-n051-m05 12 3 11 1 2 286 286 286 286 0,000 37.69

A13-n051-m03 25 10 22 3 3 322 322 322 322 0,000 130.85

A14-n051-m04 25 7 24 1 1 360 360 360 360 0,000 49.75

A15-n051-m05 25 6 23 2 2 379 379 379 379 0,000 117.67

A16-n051-m03 37 14 33 4 1 373 373 373 373 0,000 296.60

A17-n051-m04 37 11 33 4 1 405 405 405 405 0,000 80.49

A18-n051-m05 37 9 33 4 1 434 432 432 432 0,000 2720.60

A19-n051-m03 50 19 45 5 0 461 458 458 458 0,000 1674.86

A20-n051-m04 50 14 48 2 0 492 490 490 490 0,000 3429.11

A21-n051-m05 50 12 43 7 0 521 520 520 520 0,000 6338.64

A22-n076-m03 18 7 17 1 5 332 330 330 330 0,000 36.13

A23-n076-m04 18 5 15 3 7 385 385 385 385 0,000 112.97

A24-n076-m05 18 4 17 1 4 448 448 448 448 0,000 109.91

A25-n076-m03 37 14 35 2 2 403 403 402 402 0,249 3624.35

A26-n076-m04 37 11 40336 1 3 458 456 460 457 -0,870 7200.00

A27-n076-m05 37 9 36 1 4 483 483 479 479 0,835 7200.00

A28-n076-m03 56 21 48 8 1 474 474 471 471 0,637 7200.00

A29-n076-m04 56 16 49 7 1 522 519 523 519 -0,765 7200,00

A30-n076-m05 56 13 50 6 2 555 547 545 545 0,367 7200.00

A31-n076-m03 75 28 71 4 0 572 571 564 564 1,241 7200.00

A32-n076-m04 75 21 73 2 0 614 611 606 602 1,808 7200.00

A33-n076-m05 75 17 68 7 0 657 651 654 640 -0,459 7200.00

A34-n101-m03 25 10 21 4 7 370 363 363 363 0,000 199.27

A35-n101-m04 25 7 21 4 9 417 415 415 415 0,000 1023.84

A36-n101-m05 25 6 22 3 9 453 448 448 448 0,000 1264.62

A37-n101-m03 50 19 46 4 8 503 500 500 500 0,000 4020.65

A38-n101-m04 50 14 47 3 6 545 538 532 528 1,128 7200.00

A39-n101-m05 50 12 46 4 5 578 573 568 567 0,880 7200.00

A40-n101-m03 75 28 69 6 5 616 613 595 595 3,025 7200.00

A41-n101-m04 75 21 73 2 1 656 651 625 623 4,160 7200.00

A42-n101-m04 75 17 70 5 2 680 677 662 657 2,266 7200.00

A43-n101-m03 100 38 84 16 0 665 662 646 646 2,477 7200.00

A44-n101-m04 100 28 87 13 0 684 680 680 679 0,000 7200.00

A45-n101-m05 100 23 84 16 0 722 713 700 700 1,857 7200.00
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Table 2. Values found for Class B instances.

INSTANCE |T | Q CN PN SN Ẑ Zbest Z1 Z2 gap % t(s)

B01-n026-m03 12 5 11 1 1 1684 1684 1684 1684 0,000 3.09

B02-n026-m04 12 4 12 0 1 1827 1827 1827 1827 0,000 1.09

B03-n026-m05 12 3 11 1 2 2041 2041 2041 2041 0,000 10.68

B04-n026-m03 18 7 17 1 1 2104 2104 2104 2104 0,000 24.90

B05-n026-m04 18 5 17 1 1 2370 2370 2370 2370 0,000 78.21

B06-n026-m05 18 4 17 1 2 2615 2615 2615 2615 0,000 47.01

B07-n026-m03 25 10 24 1 0 2251 2251 2251 2251 0,000 35.13

B08-n026-m04 25 7 24 1 0 2512 2510 2510 2510 0,000 51.65

B09-n026-m05 25 6 25 0 0 2677 2674 2674 2674 0,000 150.31

B10-n051-m03 12 5 10 2 2 1681 1681 1681 1681 0,000 2035.19

B11-n051-m04 12 4 10 2 3 1821 1821 1821 1821 0,000 49.26

B12-n051-m05 12 3 10 2 2 1976 1975 1972 1972 0,152 930.42

B13-n051-m03 25 10 21 4 3 2176 2176 2176 2176 0,000 1724.28

B14-n051-m04 25 7 22 3 3 2471 2470 2470 2470 0,000 626.97

B15-n051-m05 25 6 21 4 4 2596 2579 2579 2579 0,000 92.66

B16-n051-m03 37 14 29 8 2 2498 2490 2490 2490 0,000 3699.45

B17-n051-m04 37 11 29 8 2 2747 2735 2721 2721 0,515 3605.47

B18-n051-m05 37 9 32 5 2 2931 2908 2908 2908 0,000 197.51

B19-n051-m03 50 19 39 11 0 3028 3015 3015 3015 0,000 871.33

B20-n051-m04 50 14 39 11 0 3284 3267 3260 3260 0,215 7200,00

B21-n051-m05 50 12 38 12 0 3426 3404 3404 3404 0,000 3773.22

B22-n076-m03 18 7 15 3 4 2258 2253 2253 2253 0,000 186.10

B23-n076-m04 18 5 13 5 8 2661 2620 2620 2620 0,000 90.78

B24-n076-m05 18 4 15 3 9 3142 3155 3059 3059 3,138 7200,00

B25-n076-m03 37 14 32 5 6 2747 2731 2720 2720 0,404 7200,00

B26-n076-m04 37 11 34 3 4 3142 3134 3138 3100 -0,127 7200.00

B27-n076-m05 37 9 36 1 3 3327 3329 3311 3284 0,544 7217.19

B28-n076-m03 56 21 40 16 4 3060 3044 3088 3044 -1,425 7200.00

B29-n076-m04 56 16 44 12 2 3448 3439 3447 3415 -0,232 7200.00

B30-n076-m05 56 13 44 12 2 3676 3635 3648 3632 -0,356 3797.03

B31-n076-m03 75 28 55 20 0 3742 3724 3740 3652 -0,428 2112.23

B32-n076-m04 75 21 57 18 0 4102 4096 4026 3964 1,739 7200,00

B33-n076-m05 75 17 58 17 0 4512 4489 4288 4217 4,688 7200,00

B34-n101-m04 25 7 19 6 9 2452 2445 2434 2434 0,369 7200,00

B35-n101-m04 25 7 19 6 6 2804 2795 2782 2782 0,467 7200,00

B36-n101-m05 25 6 18 7 4 3015 3009 3009 3009 0,000 597.71

B37-n101-m03 50 19 40 10 8 3338 3331 3332 3322 -0,030 7200,00

B38-n101-m04 50 14 38 12 8 3616 3560 3533 3533 0,764 7200,00

B39-n101-m05 50 12 41 9 8 3895 3873 3872 3834 0,026 7200,00

B40-n101-m03 75 28 68 7 5 3958 3931 3923 3887 0,204 7200,00

B41-n101-m04 75 21 68 7 6 4345 4332 4125 4082 5,018 7200,00

B42-n101-m05 75 17 69 6 6 4556 4494 4458 4358 0,808 7200,00

B43-n101-m03 100 38 96 4 0 4413 4403 4110 4110 7,129 7200,00

B44-n101-m04 100 28 95 5 0 4560 4526 4506 4355 0,444 7200,00

B45-n101-m05 100 23 96 4 0 4645 4639 4632 4565 0,151 7200,00
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value obtained for the CmTNSSP is lower than its counterpart for CmRSP in
3 instances and equal in 29 instances out of 45 with an average gap of 0.741 %.
For Class B, the same fact can be observed in 6 and 21 respectively out of 45
instances with an average gap of 0.890 %, suggesting that the cost structure of
this class promotes the application of CmTNSSP solutions.

5 Concluding Remarks and Future Work

The Capacitated m Two-Node Survivable Star Problem (CmTNSSP) has been
introduced. As far as we are know, it has not been studied in prior literature.
The need for redundancy and cheaper costs in network deployment is remark-
able. Inspired by predictions from Clyde Monma and the previous CmRSP, we
proposed an alternative problem, where rings are replaced by arbitrary 2-node-
connected components. Both problems are computationally intractable. There-
fore, heuristics are suitable for large case scenarios. As a corollary, the CmTNSSP
has been heuristically addressed, following a hybrid GRASP metaheuristic that
combines the resolutions of ILP models. The resulting topology could be cheaper
than the one offered by the CmRSP but 2-node-connected as well. As a future
work, we wish to apply these techniques to the design of real-life networks.
Indeed, optimal solutions for the CmTNSSP could by equally robust and more
cost-effective than that of CmRSP.
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Abstract. Seaside operations at container ports often suffer from uncer-
tainty due to events such as the variation in arrival and/or processing
time of vessels, weather conditions and others. Finding a robust plan
which can accommodate this uncertainty is therefore desirable to port
operators. This paper suggests ways to generate robust berth alloca-
tion plans in container terminals. The problem is first formulated as a
mixed-integer programming model whose main objective is to minimize
the total tardiness of vessel departure time. It is then solved exactly and
approximately. Experimental results show that only small instances of
the proposed model can be solved exactly. To handle large instances in
reasonable times, the Genetic Algorithm (GA) is used. However, it does
not guarantee optimality and often the approximate solutions returned
are of low quality. A hybrid meta-heuristic which combines Branch-and-
Cut (B&C) as implemented in CPLEX, with the GA as we implement
it here, is therefore suggested. This hybrid method retains the accuracy
of Branch-and-Cut and the efficiency of GA. Numerical results obtained
with the three approaches on a representative set of instances of the
problem are reported.

Keywords: Container terminals · Berth allocation problem · Robust-
ness · Genetic algorithm · Hybrid metaheuristic

1 Introduction

Container transportation is at the heart of the import and export of goods. The
efficiency with which containers are loaded/unloded from vessels and ships are
handled/processed, is affected by the time and place at which a vessel is moored
along a berth. Finding this time and place forms the well known Berth Alloca-
tion Problem or BAP. The deterministic form of BAP is the one often solved
in practice. However, a number of uncertain factors and unexpected events such
as the deviation in arrival time and in the operations time of the initial base-
line schedule affect BAP. If these uncertainties are ignored when drawing berth
allocation plans, last minute scrambling and changes of plans, may ensue. Port
managers, therefore, try protect the initial baseline schedule from the adverse
c© Springer International Publishing Switzerland 2016
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effects of possible disruptions. Hence, there is a need for robust schedules or
schedules which are not perturbed by variance in key parameters. This is the
aim of this study.

We consider BAP under continuous wharf set-up with the main aim being to
find the optimal berthing time and berthing position for each vessel arriving at
the container terminal. We develop a mathematical model of the optimisation
type the objective function of which consists of the operations cost related to
where the vessel is to be moored and a penalty cost to pay for the potential
delay in the departure time. Unloaded containers are placed temporarily at a
pre-allocated yard storage space. How far the berthing position is from the yard
storage space impacts on the time required to move a container and therefore
the efficiency of processing a vessel. As a result, a “best berthing position” is
nominated for every single incoming vessel, which is the closest berth position
to the allocated yard storage space. If the best berthing position cannot be
guaranteed, a “movement cost” for the additional time and effort for moving the
container will have to be paid.

In this paper we develop a robust model by inserting a time buffers between
the exact processing time of vessels, to add more flexibility to the final berth
allocation plan. Unlike in previous studies where people mainly make the time
buffers depend on the shipping line’s reputation of punctuality, here we consider
the expected processing time of a vessel when inserting time buffers between
vessels. For example, if there are two vessels that are owned by the same shipping
line with one carrying 50 containers to unload and the other 500, then obviously
the one with fewer container (smaller workload; shorter expected processing
time) has much less opportunity to run late compared with the one with higher
workload. For this reason, a new weight for each vessel is added which represents
the proportion of the processing time of a vessel over the sum of the processing
time of all vessels under consideration. In practice, this weight can be seen as
a measure of the possibility of having adverse events (faulty machinery such as
quay cranes, trucks, yard cranes etc.) occurring during the processing time of
the vessel.

The model suggested here is suitable for robust berth allocation in realistic
situations. The contribution of this paper is three fold:

1. formulation of a mathematical model with more advanced weight parameters
for robustness;

2. solution of realistic instances of the problem using an adapted variant of the
genetic algorithm;

3. design and application of a hybrid meta-heuristic to improve performance on
realistic instances of the problem.

The rest of the paper is organised as follows. Section 2 is a literature review of
BAP. Section 3 presents the proposed mathematical model. In Sect. 4, a variant
of the genetic algorithm is applied to the Robust BAP or RBAP; this variant is
then combined with Branch-and-Cut to provide more effective solution approach.
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Section 5 records the comparison results between B&C as implemented in CPLEX,
GA and the hybrid meta-heuristic. Finally, Sect. 6 gives the conclusion and further
work.

2 Literature Review

BAP is the problem of allocating berthing time and berthing position to vessels
arriving at the port. There are several versions of BAP which are different in
terms of wharf type (discrete or continuous), main objective (minimizing delay
or operations cost).

The BAP with continuous wharf is the normal setting in most modern con-
tainer ports as it offers more flexibility. Our study assumes also a continuous
wharf setting. Under similar problem settings, Li et al. [11] formulated the prob-
lem in a “multiple-job-on-one-processor” pattern, where multiple jobs refer to
several vessels and one processor refers to a single berth. A small vessel moored
at berth may share the berth with other vessels if the total length does not
exceed the length of the wharf. Lim [12] formulated a BAP and considered that
the berthing time is equal to arrival time for each vessel and by solving his
model, a berthing position is found which minimizes the maximum quay length
required to serve vessels in accordance with the schedule. Moon [13] proposed a
mixed integer linear programming model, whose objective is to minimize the tar-
diness of vessels. In order to overcome the difficulty of computation of the mixed
integer program, the author designed a Lagrangean relaxation model which is
solved by a sub-gradient optimization algorithm. Goh et al. [5] discussed the
methods of modelling BAP and proposed several approaches to solve it such as
the Randomized Local Search (RLS), the Genetic Algorithm (GA) and Tabu
Search (TS). Kim et al. [17] formulated BAP as a mixed integer program and
applied a simulated annealing algorithm to find near optimal solutions. Guan
et al. [6] developed two inter-related BAP mathematical models the objective
functions of which are to minimize the total weighted finishing time of vessels.
A tree search procedure was used to solve the first model. This provide a good
lower bound which then sped up the tree search procedure in the second one.

Imai et al. [8] addressed BAP in a multi-user container terminal and intro-
duced a nonlinear programming model to represent it. The authors presented a
heuristic for BAP in continuous wharf. In this paper, they addressed the prefer-
ence of the flexible berth layout which has become very important especially in
busy hub ports where ships of various sizes dock. Wang et al. [22] transformed
BAP into a multiple stage decision making problem and a new multiple stage
search method, namely the stochastic beam search algorithm was used to solve
it. Lee [10] proposed a neighborhood-search based heuristic to determine the
berthing time and space for each incoming vessel to the continuous berth stretch.
In their method, the First-Come-First-Served rule, clearance distance between
vessels and the possibility of vessel shifting were considered. Lee et al. [9] studied
the continuous and dynamic BAP in order to minimize the total weighted flow
time. The authors follow the mathematical model of Guan et al. [6]. Two ver-
sions of the Greedy Randomized Adaptive Search Procedures (GRASP) heuristic
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were developed to find near optimal solutions. Ganji et al. [4] proposed a genetic
algorithm for large scale BAPs which we adapted ourselves in this paper to find
optimal or near optimal solutions. Cheong et al. [2] solved BAP by using multi-
objective optimization in order to minimize concurrently the three objectives of
makespan, waiting time, and degree of deviation from a predetermined priority
schedule. These three objectives represent the interests of both port and ship
operators. Unlike most existing approaches in single-objective optimization, in
multi-objective evolutionary algorithm (MOEA) that incorporates the concept
of Pareto optimality is proposed for solving the multi-objective BAP.

In addition to what has been mentioned above, other more recent studies
dealt with BAP under uncertainty. Moorthy et al. [14] studied how to design a
robust berth template for the special requirements of transshipment hubs. Zhen
et al. [25] studied the berth allocation problem under uncertain arrival time
or operation time of vessels and proposed a two-stage stochastic programming
model. A meta-heuristic approach is proposed for solving the above problem
in large-scale realistic environments. Xu et al. [23] studied a robust berth allo-
cation problem, which explicitly considers the uncertainty of vessel arrival and
handling time. Time buffers are inserted between the vessels occupying the same
berthing location to give room for uncertain delays. Using total departure delay
of vessels as the service measure and the length of time buffer as the robust-
ness measure, the authors formulated RBAP to balance the service level and
plan robustness. Based on the properties of the optimal solution, the researchers
developed a robust berth scheduling algorithm that integrates simulated anneal-
ing and Branch-and-Bound algorithms. This work considers tardiness only in its
objective rather than the preferred berthing location which weakens the connec-
tions with the yard management problem. It also uses a constant time buffer
which is independent of the reputation of the shipping line and the expected
processing time. Zhen et al. [24] proposed a proactive strategy for making robust
baseline schedules of BAP. A bi-objective nonlinear optimization model for min-
imizing cost and maximizing robustness is introduced. However, the model is
not complete as some constraints used in the model depended on its solution.
As a result the author did not even attempt to solve the optimization model. To
evaluate their solution for large scale instances, they used extensive simulations
and justified their solution against some practical criteria.

3 Mathematical Model

In this section we describe a mixed integer programming model for berth allo-
cation in container terminals with continuous berths. The novelty of this model
is that, unlike previous berth allocation/planning models, as mentioned earlier,
its solutions provide robust berth plans. By this, we mean that the solutions
mitigate the uncertainty that is often experienced at the level of such maritime
facilities. Note that the solution to the model is in terms of optimum berthing
time, berthing position and, the optimum time buffer between the berthing times
of vessels. In the following a number of aspects of this model are given.
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3.1 Assumptions

A number of assumptions have to be satisfied in order to apply the model.
However, they are realistic. Given a set V of vessels referred to as v, vi or vj for
any vessel, the ith or the jth vessels respectively, we assume that:

1. every segment of the continuous wharf can handle only one vessel at a time;
2. there is a safety distance between each pair of adjacent vessels;
3. once the processing of vessel starts the vessel will only leave after its processing

has finished;
4. a vessel can be handled at any place of the wharf depending on its arrival

time and the availability of wharf space.

3.2 Parameters

– W Length of the wharf.
– Av Estimated arrival time for vessel v.
– dv Requested departure time for vessel v.
– hv Estimated operation/processing time to handle vessel v.
– Lv Length of vessel v.
– bv Desired berthing position of vessel v; it is determined by the pos-

ition of yard storage areas allocated to vessel v.
– C1v Tardiness cost of vessel v.
– C2v Distance cost of vessel v for mooring away from bv.
– INv Instability in arrival time of vessel v.
– PPv Proportion of the processing time of vessel v over the pro-

cessing time of all vessels.
– Rv INv + PPv of the vessel v.
– λv Length of time buffer.
– M Arbitrary large positive number.

3.3 Binary Decision Variables

δvivj
=

⎧
⎪⎨

⎪⎩

1 if the processing of vessel vj starts later
than the finishing time of vessel vi.

0 otherwise

σvivj
=

{
1 if the vessel vj is located below the vessel vi in the berth.
0 otherwise.

ξvivj
=

{
1 if the vessel vj occupies part of the berthing position of vessel vi.
0 otherwise.

ζvivj
=

⎧
⎪⎨

⎪⎩

1 if the vessel vj occupies part of the berthing position
of vessel vi and starts later than vi.

0 otherwise.
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3.4 Other Decision Variables

– Tv Berthing time of vessel v.
– Pv Berthing position of vessel v.
– τvivj

Time buffer between vessels vi and vj .
– θv Minimum time buffer between vessel vi and the other vessels.

3.5 The Mathematical Model

The explicit model we built for berth allocation is as follows.

min
V∑

v=1

C1v(Tv + hv − dv)+ +
V∑

v=1

C2v|Pv − bv| (1)

s.t
Tvi

+ hvi
+ Rvi

λvi
− θvi

≤ Tvj
+ M(1 − δvivj

) ∀vi, vj ; vi �= vj (2)
Pvi

+ Lvi
≤ Pvj

+ M(1 − σvivj
) ∀vi, vj ; vi �= vj (3)

σvivj
+ σvjvi

+ δvivj
+ δvjvi

≥ 1 ∀vi, vj ; vi �= vj (4)
Tv ≥ Av ∀v (5)
0 ≤ Pv + Lv ≤ W ∀v (6)
ξvivj

= 1 − (σvivj
+ σvjvi

) ∀vi, vj ; vi �= vj (7)
ζvivj

≥ δvivj
+ ξvjvi

− 1 ∀vi, vj ; vi �= vj (8)
τvivj

≤ M(1 − ζvjvi
) + Tvj

− Tvi
− hvi

∀vi, vj ; vi �= vj (9)
θvi

≤ τij + M(1 − ζvjvi
) ∀vi, vj ; vi �= vj (10)

δvivj
, σvivj

, ζvivj
, ξvivj

∈ {0, 1} (11)
Pvi

, Tvi
, τvivj

, θvivj
≥ 0 (12)

Note that the objective function to minimise is made up of the cost of tar-
diness which is represented by the term

∑V
v=1 C1v(Tv + hv − dv) and the cost

of the vessel being moored at an undesired berthing position represented by the
term

∑V
v=1 C2v|pv − bv|.

Constraints (2) define δvivj
such that δvivj

= 0 or 1 if the finishing time of
vessel i is less than or equal to the berthing time of vessel j; 0 if the finishing
time of vessel i is greater than the berthing time of vessel j. λ is the time buffer
between the finishing time of vessel i and the berthing time of vessel j. The
decision maker at the port will select the value of λ according to his preferred
aspect of the final plan, cost-effective or robust. A small λ means a cost-effective
berth plan, while a large λ means a robust plan. The length of the time buffer
between the vessel and its immediately posterior vessels can be computed by
multiplying the associated value of the robustness parameter, Rvi

, with λ. The
constraints set (2) works in such a way that, if the value of the product Rvi

λvi

is less than the existing gap between these two vessels, θvi
, then we do not need

to add any time buffer. Otherwise we need to increase the gap between these
two vessels; the value of time buffer is the difference between Rvi

λvi
and θvi

.
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Constraints (3) guarantee that σvivj
= 0 or 1 depending on whether the berthing

position of vessel i plus the length of vessel i is less than or equal to the berthing
position of vessel j or 0 otherwise. Constraints (4) ensure that overlaps amongst
vessels do not occur in the 2-dimensional space (time and location) depending on
the values of δvivj

and σvivj
. Constraints (5) guarantee that the vessels cannot

moor before their arrivals. Constraints (6) imply that the berthing position plus
the length of the vessel cannot exceed the range of the wharf. Constraints (7)
make variable ξvivj

take value 1 if the vessel vj occupies part of the berthing
position of vessel vi. Constraints (8) make variable ζvivj

take value 1 if vessel vj
occupies part of the berthing position of vessel vi and starts later than vessel vi.
Constraints (9 and 10) compute θvi

for vessel v, which is the gap between vessel
vi and its immediately preceding vessel.

3.6 Numerical Example

Here, we apply B&C in CPLEX to a small instance of the above model involving
six vessels. The rest of the data is given in Table 1.

Table 1. Example input data to CPLEX

Arrival time 0 35 40 85 100 110

Estimated processing time 30 30 40 20 20 30

Departure time 20 55 70 95 110 130

Length of vessel 70 50 40 70 35 45

Preferred position 20 50 0 30 0 70

Tardiness cost 1 1 1 1 1 1

Distance cost 1 1 1 1 1 1

Instability in arrival 0.8 0.2 0.8 0.9 0.7 0.5

proportion of the processing time 0.17 0.17 0.23 0.11 0.11 0.17

The solution returned by CPLEX consists of the berthing time and position
of each vessel with appropriate time buffer between them to give robustness to
the plan represented in Figs. 1, 2, 3 and 4. Clearly, the decision maker can use
different values of λ to affect the property of the final solution sought.

4 Solution by the Genetic Algorithm

In order to solve large scale problems in reasonable time and to overcome the
difficulty of the Branch-and-Cut (B&C) method, a Genetic Algorithm (GA) is
used to find optimal or near optimal solutions. The choice of GA here as the
approximate solution approach is dictated by it being well established and reli-
able. Potential users may adopt it readily. It was proposed by Holland [7]. It
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Fig. 1. Berthing plan when λ = 5;
Obj.Fun = 83 (0 35 40 85 108 110 20
50 0 30 0 50)
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Fig. 2. Berthing plan when λ = 10;
Obj.Fun = 90 (0 35 40 86 112 112 20
50 0 30 0 50)
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Fig. 3. Berthing plan when λ = 15;
Obj.Fun = 103 (0 38 40 88 116 116 20
50 0 30 0 50)
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Fig. 4. Berthing plan when λ = 20;
Obj.Fun = 120 (0 40 40 91 122 122 20
50 0 30 0 50)

is an adaptive heuristic method based on natural evolution ideas. It repeatedly
modifies a population of solutions, selecting individuals from the current pop-
ulation to be parents which then produce the children of the next generation.
Over successive generations the population evolves towards an optimal solution.
The processes involved in the GA are outlined below [15].

1. Generate an initial population: individual solutions (chromosomes) are cre-
ated randomly to form an initial population.

2. Evaluate the fitness of each individual: choice of parents of new individuals
for the new generations is biased toward individuals with good fitness values.
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3. Create children: breed new individuals using genetic operators such as
crossover, mutation and reproduction.

4. Generate new population: replace the worst individuals in the population
with better new ones.

5. Stopping: The process is repeated until stopping criteria are met; these may
include the specified maximum number of generations or time limit, high
enough fitness etc.

The implementation of GA requires a good representation of individuals and
a good fitness function. A good initial population helps the search. The GA
which has been proposed by Ganji et al. [4], will be used with some tuning to
find optimal or near optimal solutions.

4.1 Representation

A solution or chromosome is a strand of genes made of two parts of equal lengths.
The first part represents berthing times (Tv) of vessels while the second repre-
sents berthing positions (Pv). The chromosomes are character rather than binary
strings. See Fig. 5 for the chromosome representation of a 3-ship problem. The
example shows a solution with ships 1, 2, and 3 being serviced in that order
at times 42, 37, and 65 along the time axis, and at positions 213, 185, and 370
along the quay axis.

Chromosome 42 37 65 213 185 370

Ti&Pi T1 T2 T3 P1 P2 P3

Fig. 5. Representation

4.2 Initial Population

The population sizes used are a 100 or 500 individuals depending on the size of
the problem instance. The populations are generated randomly but within the
feasible solution set defined by the constraints (5), (6) and (12). For each solution
((Tv), (Pv)), one can compute the handling times (Cv), and the completion times
of handling (Fv) given the input parameters hv, Rvi

, λvi
and the decision variable

θvi
as follows.

Handling or processing time: Cv = hv + Rvi
λvi

− θvi
.

Completion or finishing time: Fv = Tv + Cv.
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4.3 Fitness Function with a Penalty Term

Each generated random solution is checked against constraints (2), (3) and (4) to
see that there is no overlapping of ships in time and place dimensions. A solution
that satisfies these constraints is accepted. Otherwise it is accepted after addition
of a penalty term to its objective function value Z. The objective function value
and the penalty term when used form the fitness of that solution. The penalty
term in the fitness function gradually removes infeasible solutions from the next
generations. This term is computed as γij = (Aij × Bij)0.5 based on the area of
overlap in time and space between vessels i and j where

Aij := Max(
Li + Lj

2
− |Pi + Pi + Li

2
− Pj + Pj + Lj

2
|, 0), and

Bij := Max(
Ci + Cj

2
− | t

B
i + tFi

2
− tBj + tFj

2
|, 0).

Aij and Bij are the length and overlapped interval of ships i and j, respec-
tively, and γij is the amount of those two ships’ overlapping penalty that is
obtained from the multiplication of two recent overlapped quantities in Carte-
sian time and place space. Using the power of 0.5 in the above equation is
according to the experience, obtained from different performances. Maximum
feasible error of a solution is accrued when two ships overlap, or

γmax
ij = (A

′
ij × B

′
ij)

0.5,

where

A
′
ij :=

Li + Lj

2
, and B

′
ij :=

Ci + Cj

2
,

are respectively the maximum length and overlapped interval of ships i and
j, and γmax

ij is the maximum overlapping penalty of these ships. The value of
penalty γij can be normalize by dividing the sum of γij to the sum of γmax

ij in
the interval [0,1].

Moreover, the objective of the RBAP is to minimise the cost of handling all
vessels and at the same time, to maximise the time buffer between the vessels.
The cost of handling each vessel can be computed by summing up the berthing
time of each vessel and its processing time and subtract the departure time or
we can find the tardiness of each vessel can be computed by subtracting the
finishing time from the expected departure time. The objective function used by
the GA in MATLAB is the same objective function as that of the mathematical
model. Thus, the value of Z can be computed:

Z =
V∑

v=1

C1v(Tv + hv − dv)+ +
V∑

v=1

C2v|Pv − bv|.

It is clear that the variation in Z is in the same direction of Z, but more
mild and if occurred in the interval [0,+∞). By using this fraction function
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characteristic that 0 < 1/Z ≤ 1 for each Z ≥ 0, the objective function Z can
also be normalized in the interval (0,1] as 1/Z. So, the proposed fitness function
for this problem can be defined as follows:

Fitness = Z−1 −
∑

γij/
∑

γmax
ij .

The above fitness function for each produced solution consists of two parts;
at the first part corresponds to the objective function value and the second
part corresponds to the impossibility of that response to be penalised. The first
part of the fitness function causes that the fitness be increased by reducing the
objective function value, and the second part causes that the fitness be decreased
by increasing the deviations from the restrictions of non-overlapping in time and
place. As these two parts are normalized respectively in the intervals [0,1] and
(0,1], the changes of fitness function will be in the interval of (−1, 1].

4.4 Generating the Next Population

From the current population and after the fitness function values of its individ-
uals are computed, a new population is generated using the genetic operators of
crossover, mutation, and reproduction. These operators are described below.

Crossover Operator. Also called the recombination operator, it is one of the
operators of GA used to generate the next population from the present one.
It is applied to the chromosomes of a randomly selected couple of individuals
(parents). The recombining of their genes results in a couple of new chromo-
somes (children). The way the recombination is implemented is as follows. Two
random integers are chosen from interval [0, 2|V |], where 2|V | is the length of a
chromosome. These two integers point to two shear points in a chromosome, one
low and one high. The genes to the left of the low shear point and those to the
right of the high shear point of the first parent are copied into the chromosome
of the first child. In the same way, using the same shear points, the chromosome
of the second parent contributes to the chromosome of the second child. The
genes between the shear points are generated using a decimal random number
λ ∈ [0,1] as follows,

Ch1 = [λ × Par1 + (1 − λ) × Par2], and

Ch2 = [λ × Par2 + (1 − λ) × Par1]

where Par1 and Par2 are the middle sections of the first parent and the second
parent, respectively, and Ch1 and Ch2 are the corresponding middle sections of
the first and second child, respectively. It is clear that if Par1 and Par2 belong
to a convex possibility set related to constraints (5), (6), and (15), Ch1 and Ch2
will be in this set too. This is because if x is the linear combination of two integer
numbers y and z, z ≥ y, and y ≤ |x| ≤ z −1, then y ≤ |x|+1 ≤ z. Equations (5),
(6), and (15) are then checked for feasibility to confirm the new chromosomes.
For illustration purposes, please see Figs. 6 and 7.
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Parent1 7 12 25 50 33 70 20 95

Offspring1 7 12 25 49 38 72 28 95

Parent2 9 15 22 48 62 80 60 84

Fig. 6. Offspring1

Parent1 7 12 25 50 33 70 20 95

Offspring2 9 15 22 48 56 78 52 84

Parent2 9 15 22 48 62 80 60 84

Fig. 7. Offspring2

Mutation Operator. Mutation is another operator of GA which contributes
to the generation of the next population. One of its characteristics is that it
helps prevent the search process from getting trapped in a local optimum. To
implement it, a chromosome is randomly selected from the current population.
One of its genes is also randomly selected, then changed (mutated). A new
chromosome is thus generated as a result. The mutation presented in this paper
is as follows. If the selected gene is related to the berthing position, Pv (defined
in Sect. 3.4), a random integer is selected in the interval [0.5Lv,W − 0.5Lv] to
replace the gene. If it is related to the berthing time, Tv (also defined above), a
random integer is selected in the interval [Av, LN ], where LN is a large number,
to replace it. The new generated chromosome will satisfy conditions (5), (6), (7)
and (10). The figure below illustrates the mutation operator (Fig. 8).

7 12 25 50 33 70 20 95

7 12 25 50 33 70 50 95

Fig. 8. Mutation operator

4.5 Stopping Criterion

GA stops when the maximum number of generations is reached.

5 Computational Experiments

Twenty instances of the mathematical model of RBAP with different numbers
of vessels have been solved using B&C and GA. All instances have randomly
generated arrival times, expected processing times, departure times, lengths of
vessels and preferred berth places.

As mentioned earlier, B&C can only solve exactly small scale instances of
RBAP. GA, on the other hand, provides is optimal or near optimal solutions
for all instances. However, the quality of the approximate solutions may not be
good enough. Therefore a hybrid meta-heuristic which combines both B&C and
GA has also been implemented. The hybridisation scheme is a coarse hybrid
heuristic which calls first B&C as implemented in CPLEX for short periods of
time. This repeated call provides a number of good solutions which are then used
to initialise the population of GA. Around 10 seconds of CPU time is allocated
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to B&C. The execution time of the hybrid is the aggregated execution times of
B&C and GA.

GA, coded in Matlab, managed to solve all 20 instances. For the small size
instances 1–5 and 11–15, the GA parameters of population size, probability of
crossover, probability of mutation, and the maximum number of generations
are 100, 0.8, 0.1, and 1000, respectively. In the case of the large size instances,
6–10 and 16–20, population size, probability of crossover, probability of muta-
tion, and the maximum number of generations are set to 200,0.8,0.2, and 1500,
respectively.

All 3 approaches B&C, GA and B&C+GA have been run on a PC with Intel
Core 2 and 2.40 GHz CPU with 4 GByte RAM running Windows 7 Operating
System. Note that CPLEX runs on instances 8–10 and 18–20 have been aborted
after one hour of execution time. All computational results are recorded in tables
Tables 2 and 3. These are self explanatory.

5.1 Test Results

In the instances considered, the number of constraints, the number of deci-
sion variables, and the B&C computational time grow exponentially with the

Table 2. Computational results for instances with λ=5

No No.V CPLEX GA B&C+GA

Obj CPU time Best Obj. Av.Obj Std CPU time Best Obj. Av.Obj Std CPU time

1 5 51 1:00 61 88 3 2:16 – – – –

2 6 22 1:00 37 49 2 2:45 – – – –

3 7 87 1:00 115 149 8 2:41 – – – –

4 8 91 1:00 132 169 5 2:56 – – – –

5 9 144 5:01 183 300 15 2:40 145 156 6 2:54

6 10 119 15:29 176 221 29 4:37 119 119 0 4:45

7 15 306 36:52 432 544 31 4:51 337 351 16 5:16

8 20 152 1:00:00 263 423 41 6:19 228 253 15 6:27

9 25 257 1:00:00 425 522 38 6:53 370 445 19 7:08

10 30 438 1:00:00 614 851 45 7:28 539 722 16 7:43

Table 3. Computational results for instances with λ=10

No No.V CPLEX GA B&C+GA

Obj. CPU time Best Obj. Av.Obj Std CPU time Best Obj. Av.Obj Std CPU time

11 5 58 1:00 64 76 9 2:14 – – – –

12 6 37 1:00 42 52 3 2:32 – – – –

13 7 102 1:00 116 141 2 2:21 – – – –

14 8 110 1:00 157 249 10 2:46 – – – –

15 9 163 6:24 209 243 18 2:32 169 183 7 2:51

16 10 136 13:18 191 236 26 4:49 136 136 0 4:58

17 15 366 38:04 473 564 33 5:19 388 430 14 5:37

18 20 239 1:00:00 424 471 39 5:25 372 404 19 5:43

19 25 399 1:00:00 508 637 42 5:57 433 473 18 6:12

20 30 659 1:00:00 860 1024 37 6:32 748 861 23 6:51
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increasing in the number of vessels. However, the CPU time required by GA
and B&C+GA does not grow fast with the increase in the problem size. The
average objective function and the standard deviation of GA and B&C+GA are
recorded in the Tables 2 and 3. B&C managed to solve only few of the large size
instances. GA, however, found the optimal or near solutions for all instances in
reasonable CPU times (see columns 8 and 12 of Tables 2 and 3). Its effectiveness
appears when in conjunction with B&C (hybrid meta-heuristic). The solutions
became closer to the optimum ones.

The gap between B&C and GA solutions increases with the increase in the
size of the problem (number of vessels) which translates into a large search
space. In other words, as the problem size increases, GA will find less and less
accurate solutions unless the time increases substantially. CPLEX, on the other
hand, may not even be able to solve the problem in acceptable times. There
is therefore a tradeoff between the performances of both approaches which is
captured by the gaps between the solutions returned by the two algorithms.
Hybridisation reduces this gap.

6 Conclusion

Berth allocation is one of the most important operations in container terminals.
Determining the optimal berthing time and the best berthing position for vessels
arriving at container terminals is essential for the efficient running of the these
terminals. Here, a new mathematical model of the mixed integer programming
type that addresses robust berth allocation is proposed. Its solutions help miti-
gate the uncertainty in arrival times and handling times of vessels. Instances of
this model have been solved with an exact method namely B&C as implemented
in CPLEX, an approximate approach namely the genetic algorithm and a hybrid
of both which benefits from the exact nature of the former and the efficiency of
the latter. The numerical results show that the hybrid meta-heuristic B&C+GA
is superior to both B&C and GA in that it finds solutions to all problems in
acceptable time and accuracy. B&C+GA is characterised by its coarse hybridi-
sation nature. Future work will consider a finer and seamless hybridisation to
reduce time overheads and improve solution quality. It will also consider compar-
isons with other meta-heuristics as have been introduced recently [1,3,16,18–21].
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Abstract. The automated transit networks (ATN) is a new and sophis-
ticated concept which has the possibility to solve problems related to
transit in urban areas. In ATN, driverless vehicles run on exclusive guide-
ways in order to provide on-demand transportation service. In this paper,
we focus on the strategic level of decision related to ATN. We deal with
the problem of determining the best size of fleet of ATN vehicles while
satisfying a set of transportation demands. A hybrid heuristic approach
is developed while taking into account the objective of finding good qual-
ity solutions in a short computational time. Computational results per-
formed in this study demonstrate the efficiency of our approach.

Keywords: Automated transit networks · Driverless vehicles ·
Routing · Heuristic

1 Introduction

In this paper, we tackle the problem of defining the best fleet size option for
automated transit networks (ATN). ATN is an on demand transportation system
adapted for the person movements in urban areas. It offers a taxi-like service
where vehicle move one person or a group of person of their choice.

In order to manage ATN, three levels of transportation decisions should be
taken:

1. The strategic level of decisions which treats the decisions that have a long-
lasting effect on the system under consideration. This includes decisions
related to the number of stations, depots, the size of the stations, the network
design, etc.

2. The tactical level of decisions: treat the decisions that are updated every week,
month, or quarter. These decisions include purchasing decisions, scheduling
decisions and transportation strategies.
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3. The operational level of decisions: refers to day-to-day decisions such as rout-
ing, decisions, optimization of the energy use, transit time, etc.

While ATN is known to be a sustainable and alternative solution for the
use of private vehicles, it has not yet achieved a great success. In fact, studies
show that driverless ATN vehicles are expensive [3]. Therefore, the tactical and
strategic decision of purchasing ATN vehicles contribute on the total investment
made to build an ATN system. Studies shows that purchasing driverless ATN
vehicles contribute on 10 % on the total investment made for such a system [15].
Hence, the reduction of the cost of purchasing ATN vehicles is critical to reduce
the ATN investment costs.

The limitations associated with the huge investment cost on purchasing ATN
vehicles could be reduced through appropriate fleet sizing optimization proce-
dure. In fact a well-designed ATN solution with an effective fleet sizing procedure
would improve the efficiency of the system from the economic and financial per-
spective. Consequently, this paper focus on the fleet sizing of an ATN system.

In fact, we deal with a specific routing problem related to the strategic level
of decisions. Our aim is to find the best size of ATN fleet in order to satisfy
a set of transportation requests in a static deterministic setting. Earlier works
on fleet sizing for ATN was proposed by Li Jie et al. [15] without considering
battery issues of ATN vehicles. Battery constraints involve that a small set of
the ATN fleet of vehicles would not be available for service as they are charging
their battery. That is why, optimizing of the fleet size of an ATN system is of a
high importance for such an intelligent system.

Genetic algorithm uses techniques inspired by natural evolution. By doing
so, genetic algorithm allows a population of individuals to solve any combinato-
rial optimization problem. Genetic algorithms (GA) [22] have been implemented
successfully to solve many routing problems [4]. However for more complicated
and real world problems, GA needs to be coupled with problem-specific tech-
niques in order to enhance its performance. Traditional heuristic methods are
incorporated to enhance the performance of genetic search.

To solve the proposed ATN fleet size problem, we propose a hybrid two-
stages GA. The first stage (initialization phase) consists of a linear programming
heuristic inspired from the works in the literature [17] that generates a feasible
solution to our problem. In the second stage (evolutionary phase), a GA proce-
dure is applied while incorporating the obtained solution from the first phase.
The proposed GA uses specific evolutionary techniques in order to search for the
optimal solution or at least a near-optimal solution for the proposed problem.
The whole scheme can be considered as a hybrid heuristic algorithm since it
combines the linear programming heuristic as an initial solution generator and
the GA meta-heuristic paradigms.

The contributions of this paper are several. In this paper we:

1. Present a routing problem related to ATN which consists on serving a set of
predefined passenger’s request. The objective of our problem is to determine
the best feet size by reducing the number of used vehicle.

2. Present a hybrid heuristic algorithm based on GA to obtain good quality
solution in a reasonable computational time.
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The remainder of this paper is organized as follows: Sect. 2 presents the back-
ground of the paper. In Sect. 3, problem definition of minimizing fleet size of
ATN and notation of model are presented. In Sect. 4, the proposed heuristic to
deal with our problem is presented. Section 5 presents our computational results.
Finally, the conclusions are drawn in Sect. 6.

2 Background of the Paper

Automated Transit Networks (ATN) is an on-demand transit system in which
vehicles are designed to transport a small set of passengers on demand without
any stops or transfer [1]. ATN uses exclusive guideways in order to combine
the advantages of using rail transit with the benefit of private vehicles. ATN
has the ability to provide a taxi like service. In fact in ATN, passengers are
served only on-demand. In a specific ATN station, a passenger or a group of
passengers come and ask to be carried to a specific ATN destination. An ATN
vehicle is then automatically dispatched to them in order to take them to their
final destination [29]. Stations in an ATN system are placed off the main line.
Therefore, vehicles could accelerate/decelerate without interfering with other
vehicles passing through the main line. That is why, an ATN system could offer a
non-stop transportation service as vehicles could bypass all intermediate stations.

Currently, ATN vehicles are supported by specific modern technologies [23]
that are usually designed to make the system run on electricity. The ATN system
is fully automated which means that it is operated by computer control. Hence,
ATN vehicle are driverless [6] and required no human intervention. ATN vehicles
are also small which can accommodate up to six passengers.

ATN vehicles run on exclusive guideways. The guideways are designed in
order to eliminate any interference with other transportation modes. Thus, ATN
would reduce congestion on urban roads and contribute on increasing the sus-
tainability of urban areas. ATN have been implemented in many real case appli-
cations such as in Heathrow Airport [13], Korea [24], Sweden [25] and United
Arab Emirates [19].

2.1 Literature Review

Several works related to ATN have been proposed in the literature. We could note
for example operational planning [7], empty vehicle movements [14], simulation
[9,10], optimal design [27–29], energy minimization [8,11,18] and so on.

As for fleet size we could note the work of Li et al. [15], and Chebbi and
Chaouachi [3,5] where it was proposed to develop a simulated annealing approach
and mathematical formulation for the fleet sizing problem of ATN.

3 Problem Definition

In this section, we present the problem definition related to our problem as an
extension to the ATN works of Mrad and Hidri [18]. In [18], Mrad and Hidri
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studied the problem of energy minimization of ATN in a static deterministic
context. We extend in this paper their works by adapting the proposed problem
to the context of fleet sizing of ATN systems. The ATN problem studied in this
paper is a public transportation problem that aims to serve a set of ATN users
transportation request under battery and time windows constraints.

Let us suppose to have an ATN system with a specified ATN network of a
fully connected guideways. The objective of our problem is to find the number
of ATN vehicles which will be deployed in the ATN network.

Let us suppose to have M station and one depot DP . In what follows, we
suppose that we have a list of ATN transportation requests T . Let define Sp as a
matrix cost of shortest time path between each two physical stations in the ATN
network. Each transportation request i is characterized by departure station
Dsi, departure time Dti, arrival time Ati and arrival station Asi. An ATN
vehicle could serve only one transportation request at a time. This is due to the
fact that ATN system offers a taxi-like transportation service where passengers
requests are not mixed within the same vehicle [13]. Our ATN routing problem
focuses on minimizing the fleet size to satisfy all the available trips without any
delay with respect to the battery and time windows constraints. In addition,
we suppose that ATN pods(vehicles) need to visit the depot whenever it is
necessary to load their batteries. The ATN routing problem can be described
as a graph based problem where nodes represent passenger requests and edges
represent movements of ATN vehicles between trips. In fact, it is more convenient
to think about vehicles moving between transportation requests, rather than
moving between physical ATN stations. Therefore, we can model trips as the
nodes in a graph. We should note that modeling trips as a node in a graph
based modeling of ATN is already proven to be a valid a viable approach and
was used extensively in the literature (see for instances Lees Miller (2011) [13],
Lees-Miller and Wilson (2012) [14]).

Consequently, our problem definition could be described briefly as follows.
Let G = (V,E) be a directed graph where V = {v0, v1, ..., vn} is a nodes set,
node v0 denotes a depot at which an unlimited number of identical ATN pods
are based. The number of used ATN vehicles will be minimized and used as
our objective function. The remaining vertices of V represent ATN user travel
requests. E = {(vi, vj) : i �= j} is an arc set. Each arc (vi, vj) has an associated
nonnegative electric consumed energy cij and a nonnegative travel time tij. The
ATN fleet sizing problem consists of designing a set of least cost vehicle routes
such that: (i) Every route starts and ends at the depot. (ii)Every trip is visited
exactly once by exactly one vehicle. (iii) The total consumed electric energy of
any route can not exceed the battery capacity B. (iv) Each trip has a specific
departure time, arrival time and departure station. If the ATN vehicles arrive
at a station to satisfy a trip x before the departure time of x, the ATN vehicle
should wait at its current location until the trip x is trigged. (v) No waiting time
is allowed for transportation requests. Consequently, a transportation request i
should be served at exactly its departure time Dti.
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We define also V ∗ = V \ v0
The set of edges E will be defined by the following rules:

– For each nodes vi and vj in V ∗, we add an arc (i; j) only if: j > i and
Ati + Sp(Asi;Dsj) < Dtj . This condition satisfies the time window con-
straints for the reason that is not possible to serve a trip after its depar-
ture time Dti. The cost of this arc is noted by cij and tij . cij represents
the energy consumed from arrival station of trip i (Asi) to arrival station
of trip j (Asj) by passing the departure station of trip j. In the same way,
tij = Sp(Asi;Dsj) + Sp(Dsj ;Asj).

– For each node vi we add an arc (0; i) ( the cost of this arc is c0i and t0i. c0i

represents the energy used from the depot to the arrival station of trip i while
passing the departure station of trip i. In the same way, tij = Sp(DP ;Dsi) +
Sp(Dsi;Asi).

– For each node vi, we add an arc (i; 0). The cost of this arc is ci0 and ti0.
ci0 represents the energy used from the arrival station of trip i to the depot.
tij = Sp(Asi;DP ).

We denote also E∗ = {(ci, cj) : i �= j and i, j ∈ V ∗}.
From this problem definition, we can see that our problem is related to the

asymmetric distance-constrained vehicle routing problem (ADCVRP) [26]. The
distance constraint is imposed by the battery capacity in this case. Our problem
is NP-hard, and is asymmetric because the distance from node i to node j is
different to the distance from node j to node i.

3.1 An Assignment-Based Formulation

In this section an integer programm which is based on an assignment formulation
[18], is presented. To that aim the following decision variables and definitions
are introduced.

– xij = 1, if node j is visited immediately after node i, and 0, otherwise.
– zi is the amount of charge used to reach the node i ∈ V ∗ from depot.
– ai = c0i for i ∈ V ∗.
– bi = B − ci0 for i ∈ V ∗.

Hence, the minimum charge assuring the trips is equal to the optimal value
of the following programming model.

ATN(1) : Minimize
∑

(i)∈V ∗
x0i (1)

∑

j∈δ+(i)

xij = 1∀i ∈ V ∗ (2)

∑

j∈δ−(i)

xji = 1∀i ∈ V ∗ (3)

zi + cij ≤ zj + (bi − aj + cij)(1 − xij) ∀(i, j) ∈ E∗ (4)
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ai ≤ zi ≤ bi ∀i ∈ V ∗ (5)

xij ∈ {0, 1}∀ (i, j) ∈ E (6)

zi ≥ 0 ∀i ∈ V ∗ (7)

The objective (1) is to minimize the number of used vehicles to satisfy the
set of transportation requests T. Constraints (2 and 3) require that each node
i ∈ V ∗ must be visited and left only one time, respectively. Constraints (4)
ensure the following conditions.

– if xij = 1, then zi + cij ≤ zj , with ai ≤ zi ≤ bi ∀i, j ∈ V ∗

Constraints (5) present a trivial bound limitation on the charge needed to
perform the trip i. Finally, Constraints (6) and (7)indicates that the decision
variables xij are binary-valued and zi positive real variable.

4 Hybrid Genetic Algorithm for ATN Fleet Sizing

This section describes our hybrid heuristic based on the combination of linear
programming heuristic and a GA. The first phase in our algorithm is the ini-
tialization phase in which a feasible solution is obtained using a relaxed linear
program. The second phase consists of an adapted GA to obtain good quality
solution of our problem.

In this section, the GA is first described. Then, the first phase of our hybrid
genetic algorithm is explained and detailed.

4.1 First Phase Procedure

In this section, we present a linear programming method which will be used as an
first phase procedure for our algorithm. In fact, we consider solving the mathe-
matical formulation presented in Sect. 3 while relaxing constraints 4, 5 and 7.

However by solving this linear program, we can get infeasible roads starting
and ending at the depot which consume more energy than what the Battery
allows. To fix this dilemma, we propose a specific algorithm in order to get
feasible solution of the relaxed linear program. In fact starting from the set of
obtained roads, we correct the infeasible ones by considering the trips forming
these roads as an input for a new smaller problem which could be solved to
optimality using the mathematical model proposed in Sect. 2. An illustration of
our first phase method is proposed in Fig. 1. Based on the assumption that we
have 10 ATN transportation requests, the obtained roads of the relaxed linear
program are illustrated in Fig. 1. We could note that we obtained 2 infeasible
roads. To get a feasible solution from the output of the relaxed linear program,
we submit each infeasible road to the proposed mathematical model in Sect. 3.
Consequently, we get a feasible solution which would be considered as the input
for our second phase of the hybrid GA.
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The Relaxed Linear Program

D 1 2 D D 3 4 5 D D 6 7 D D 8 9 10 D

Cost= 30 Cost= 70 Cost= 65 Cost= 40

Battery Capacity = 40 Infeasible Roads

D 1 2 D D 3 4 D D 7 D D 8 9 10 D

Cost= 30 Cost= 35 Cost= 23 Cost= 37 Cost= 40

*D represents the Depot Node

Apply the optimal 
Mathematical Formulation

On the unfeasible roads

D 5 D D 6 D

Cost= 12

Fig. 1. Illustration of initial phase procedure

4.2 Genetic Algorithm as a Second Phase for Our Hybrid Heuristic

In this section, we detail the main components of the GA which is used as a
second phase in our hybrid heuristic.

Representation and Evaluation Function. The solution in our algorithm
are represented as a permutation of travels (see Fig. 2). As an evaluation function,
we used the split function of Prins proposed initially for the capacitated vehicle
routing problem [21]. This function offers the advantage of generating feasible
roads starting and ending at a specific node called the depot with respect to
several constraints (the battery constraint in our case). This function builds
an auxiliary graph where each node represents a trip in the solution plus a
dummy node. Each edge represents a road that starts and ends in the depot
while passing by one or several nodes. The shortest path in this auxiliary graph
represents the best splitting option of a permutation. Figures 2, 3 and 4 present
an illustrative example of the evaluation function [8]. Starting from an initial
solution a, b, c, d, e, the auxiliary graph H is constructed as presented in Fig. 3.
Based on H, a shortest time path is computed from the node 0 to the node 5.
The roads related to the shortest time path (shown in bold edges) represent the
final solution of the split function as shown in Fig. 4
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Fig. 2. Initial solution

Fig. 3. Intermediate graph for the split function
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Cost of Splitting the solution= 2 roads which corresponds to 2 vehicles

Fig. 4. Final split

Initial Population. The first population is generated at random. The use of
the We add also to the first set of individuals the solution obtained from the first
phase of our hyper GA. Generating random solution would guarantee to have a
diverse population which would guarantee to have a fast convergence rate of our
algorithm.

Chromosome Representation. A chromosome denotes the sequence of trips
to be visited by each ATN vehicle. We used in this paper a trip routing permu-
tation based representation. This procedure is widely used in the literature for
routing problems [16].

Crossover. A one-point crossover method is used and applied in this paper.
This procedure is used as it ensure that the order of visit of trips in a permutation
is at least swapped between the beginning of the permutation and a randomly
chosen point. A brief example is illustrated in Fig. 5.

Mutation. We use the exchange mutation procedure in the proposed algorithm.
This procedure ensures more variations than other mutation operators [12]. In
the exchange mutation, two trips are selected at random and their positions are
exchanged. An illustrative example is depicted in Fig. 5.
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Fig. 5. One-point crossover and exchange operator.

5 Computational Results

In this section, we describe the experiments made to apply our algorithms to a
set of problems generated randomly. For each instance, tests are made using a
program coded in C++ and simulations are performed on a computer with a 3.2
GHZ CPU and 8 GB of RAM. All the mathematical models were solved using
Cplex 12.2 commercial solver.

5.1 Test Problems

In this paper, we used the instances from the literature [3,5] based on the instance
generator of [18]. We test our algorithm on 19 different size classes n where
n ∈ {10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100}. For each
size class, 40 instances were generated. So, in general we did tested the proposed
heuristics on 760 different instances. For the evaluation of results we used the
GAP metric which is defined as follow:

GAP = (
SHeuristic − LB

LB
) ∗ 100

– SHeuristic is the solution of the heuristic.
– LB is the minimum between our GA and the results of the mathematical

formulation presented in this paper [3].

The different mathematical models presented in this paper were developed
using Cplex 12.2. To calibrate the algorithm and find reasonable values for its dif-
ferent parameters, we conducted preliminary computational experiments using
a set of instances with size equals to 50 transportation requests. The parameter
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tuning method was inspired from the work of Nguyen et al. [20] and based on
the works presented in [2].

Consequently, the hybrid GA parameters were sets as follows:

– Population size = 50
– Max generations = 2000
– Crossover rate = 0.9
– Mutation rate = 0.3

5.2 Result of the Heuristic

Table 1 presents the results of our heuristic. Table 1 presents for each class size
the average Gap in % and computational time in seconds. We should note from
our results the goods quality of the obtained solutions. We compared in this
paper the results of the proposed algorithm against Cplex. More specifically, the
Cplex uses an exact method to solve the proposed problem. Consequently, it
would be interesting to compare the performance of our hybrid heuristic against

Table 1. Result of the hybrid GA

Size of the problem Average Gap% Average time sec

10 19.583 1.829

15 13.071 1.948

20 21.750 2.313

25 24.113 2.652

30 13.709 3.005

35 17.890 3.393

40 12.885 3.812

45 11.340 4.190

50 10.495 4.665

55 5.987 5.293

60 7.946 5.724

65 8.573 6.280

70 3.063 6.924

75 6.374 7.525

80 4.440 8.253

85 2.705 8.785

90 2.548 9.482

95 1.805 9.933

100 0.228 10.528

Average 9.921 5.607
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an exact method. In fact, the results of Cplex [3] deteriorate as the size of problem
increases. This results on the fact that the average GAP for the hybrid GA is
decreasing which proves that it founds better results than Cplex in many large
size instances. Also, our method is fast as it founds its solution in an average time
equal to 5.607 s. Especially for large instances our method found feasible solution
in less than 11 s. Therefore, we should note that our approach is successful as our
primary objective was to find feasible solution in a small computational time.

5.3 Analysis of the Results

In this section, we wanted to compare our results against those of Cplex for
solving the mathematical model presented in Sect. 2. For that purpose, we run
the mathematical model on the same instances used to test our heuristic. We set
the maximum time resolution of Cplex to 100 s. A first comparison between the
two proposed approach is given in Table 2 where we present a set of descriptive
statistics of the obtained fleet size.

Table 2. Descriptive Statistics of the obtained results expressed in term of Fleet size

hybrid GA Cplex

Minimum 2 2

25% Percentile 7 8

Median 13 14

75% Percentile 18.75 19

Maximum 31 32

Mean 13.14 13.73

Std. Deviation 6.388 6.779

Std. Error of Mean 0.2317 0.2459

Next, we wanted to use an enhanced statistical analysis method to know
whatever the results are significantly different or not. For that purpose, we per-
formed first a normality test to know whatever the obtained results are derived
from a normal distribution. These results confirm that our two series of data are
not derived from normality distribution1. Therefore and in order to compare the
obtained results, we used the Wilcoxon matched-pairs signed rank test.

Results of this test are presented in Table 3. These results confirm that the
results are statistically different and that the proposed heuristic is better than
the results of Cplex. This is enhanced for the case of large instances (> 80).

Finally, we wanted to analyze the running time of our hybrid heuristic. First, we
propose to run a correlation test in order to study the relation between the size of
the problem and the running time of the hybrid GA. We used the Pearson correla-
tion test and its results confirm the statistical relation between the two variables2.
1 For the three normality tests, we found a P-value <0.0001.
2 For the Pearson correlation test, we found a P-value <0.0001 in addition to an r sta-

tistic equals to 0.9929.
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Table 3. Results Of the Wilcoxon matched-pairs signed rank test

Statistic Value

P value <0.0001

Significantly different? (P <0.05) Yes

One- or two-tailed P value? Two-tailed

Sum of positive, negative ranks 37707 . −112171

Sum of signed ranks (W) −74464

Fig. 6. Average time as a function of the Size Of the problem

Table 4. Results of the post non linear regression analysis Runs test

Statistic Value

Points above curve 8

Points below curve 11

Number of runs 8

P value (runs test) 0.1994

Deviation from Model Not Significant

Next, we wanted to derive a non linear regression equation in order to esti-
mate properly the running time as a function of the size of the problem. For that
purpose. We used a second order polynomial (quadratic) equation to estimate
the running time as a function of the problem size. Results are presented in
Fig. 6. We used also a Runs test as a post analysis step of our equation.

Results of the Runs test are presented in Table 4 and confirm that our equa-
tion estimates properly the running time of our heuristic as a function of the
size of the problem.



A Hybrid Heuristic Approach for the Fleet Size of ATN 215

6 Conclusion

In this paper, we considered the offline routing problem of the ATN that uses
electrical vehicle with batteries that can be recharged only in the depot in order
to find the best size of the fleet of vehicles. This problem was solved by a hybrid
heuristic which was coupled with a optimal mathematical model adapted to the
characteristics of our problem.

The proposed algorithm was tested on a large set of 760 generated instances
of the ATN with 1 depot, 12 stations and a battery that make the vehicle run for
40 min. Taking into account the difficulty of our problem, our method is compet-
itive since it uses the solution given by the Cplex solver. We found and average
Gap of 9.921 % in 5.607 s. Our Next step is to design tight and sophisticated
hybrid heuristic to tackle the stochastic fleet size optimization problem related
to ATN.
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Abstract. DEEPSAM (Diffusion Equation Evolutionary Programming
Simulated Annealing Method), a hybrid evolutionary algorithm, is presented here.
This algorithm has been designed for finding the global minimum, and other low-
lying minima, of the potential energy surface (PES) of biological molecules. It
hybridizes Evolutionary Programming (EP) with two well-known global optimi‐
zation methods (the Diffusion Equation Method - DEM, and a kind of Simulated
Annealing - SA), and with the L-BFGS quasi-Newton local minimization proce‐
dure. This combination has produced a powerful tool (a) for finding a good
approximation of the native structure of a protein or peptide, given a Force Field
(FF) parameters set and a starting (unfolded) structure, and (b) for finding an
ensemble of structures close enough structurally and energetically to the native
structure. The results obtained until now show that DEEPSAM is a powerful
structure predictor, when a reliable FF parameters set is available. DEEPSAM’s
implementation is time-efficient, and requires modest computational resources.

Keywords: Hybrid evolutionary algorithm · Evolutionary programming ·
Diffusion equation method · PES smoothing · Simulated annealing · Protein
structure prediction

1 Motivation

It is well known that the folded state of a peptide (or a protein) is the conformation with
the most thermodynamic stability. The global minimum of its force field (FF) – of its
Potential Energy Surface (PES) – is one among an exponential set of conformations that
are PES local minima. Unlike techniques which mostly rely on structural information
of known peptides and proteins, the algorithm presented here relies strictly on the PES.
In spite of their doubtful accuracy, the standard empirical FFs are, at present, the avail‐
able tools for molecular PES modeling. Assuming the correctness of such a FF (at
T → 0 K), we were interested in an algorithm to look for the global minimum of the
PES. The global minimization algorithm presented here, called DEEPSAM [1] (Diffu‐
sion Equation Evolutionary Programming Simulated Annealing Method), has been
developed to reach that goal.
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2 Design Overview

The approach taken in DEEPSAM assumes that important progress can be made by
constructing a hybrid algorithm that combines several well-established optimization
techniques of complementary advantages, allowing good global exploration and good
local exploitation of the topography of the PES. Following this approach, DEEPSAM
was designed as a PES global minimization hybrid evolutionary algorithm (EA), built
upon the TINKER molecular modeling package.

The population-oriented approach of Evolutionary Programming (EP) was adopted
in DEEPSAM, allowing a parallel search of the PES. In DEEPSAM, like in most EAs,
the size N of the population is constant during all the run. At its initial population
generation step [2], DEEPSAM starts by randomly choosing an ensemble of N struc‐
turally dissimilar and physically feasible local minima conformations. This determines
N widely distributed sub-regions of the PES, which are simultaneously explored, in
parallel.

In order to overcome energy barriers found in every one of those PES sub-regions,
specially designed mutation operators called DEMSA (Diffusion Equation Method with
Simulated Annealing), were designed. DEMSA operators are PES function transforma‐
tion operators. They are adaptable combinations of PES smoothing (provided by the
Diffusion Equation Method (DEM)), Simulated Annealing (SA) and the L-BFGS quasi-
Newton local minimization procedure. By smoothing the PES, fewer minima have to
be sampled, reducing problem size and search effort, and allowing energy barriers at the
unsmoothed PES to be overcome. Instead of randomly changing coordinates,
DEEPSAM uses a Levy-distribution-based method to probabilistically choose PES
smoothing levels upon which specific DEMSA operators are generated on-the-fly. Those
DEMSA operators are a kind of meta-mutation operators which are created as dynam‐
ically-chosen combinations of SA with itself and/or with L-BFGS, one applied upon the
smoothed PES and the other one applied upon the unsmoothed PES. The actual PES
smoothing is chosen from a range of smoothing levels that adapts itself to the compu‐
tation conditions, by accordingly extending or constraining itself. Offspring conforma‐
tions of a given parent conformation are generated by applying those dynamically
generated DEMSA operators, in parallel.

A specially designed survivor selection operator is used in order to choose the
conformations that will be part of the next population. For each one of the N parent
conformations in the current population: (a) five DEMSA operators are probabilistically
generated as was explained above, (b) a “family” of five offspring conformations is
generated by applying those five DEMSA operators upon the parent conformation.
Hence, at each iteration, DEEPSAM generates N families of six conformations, each.
For each one of those N families, the offspring conformations and their parent compete
among themselves. The survivor conformations are selected by using a Metropolis-like
criterion. The set of N selected conformations becomes the new population. For each
survivor conformation, the algorithm adapts itself by deciding which type of DEMSA
operator to use in the next iteration. Each one of the DEMSA operators to be actually
applied upon the conformations of the new population is selected depending on energetic
and geometric considerations.
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Additionally, DEEPSAM keeps a population of “best-so-far” local minima, in
which the best conformations found during the run are kept. If the best-so-far population
as a whole does not improve, the algorithm is re-initialized in order to try to improve
population diversity.

In summary, DEEPSAM dynamically changes itself in accordance to the evolution
of the computation.

DEEPSAM stops according to an external parameter which determines how many
iterations it will run until it stops. Most of the results reported in our already published
work, were obtained after an average of 100 iterations over populations of size five (a
small population size indeed). At the end of the run, when the number of iterations is
reached, the energetically deepest conformation among those in the best-so-far popu‐
lation is assumed to be the global minimum. It is significant to note that DEEPSAM
ends not only with the deepest minimum found, but with an ensemble of deep lying
minima structures.

3 Implementation Overview

DEEPSAM is built in two layers: (a) the upper layer (written in Python) is the actual
DEEPSAM’s implementation, which was designed with two levels of parallelism - at
each iteration, N independent sets of five independent DEMSA operators are applied in
parallel upon the N conformations of the current population; (b) the lower layer, upon
which DEEPSAM is built, is a set of TINKER’s programs (written in Fortran77) that
are used by the Python code as operators, applied as necessary upon molecular confor‐
mations represented by TINKER-xyz (and TINKER-seq) files, in accordance with the
corresponding TINKER-prm FF parameters file.

4 Work in Progress

At this moment, several research projects are in progress, in which biomolecules struc‐
ture prediction is needed, and DEEPSAM is being used for this purpose. As soon as
results will be available, they will be published.

An embedded language for Python, called EFL (Embedded Flexible Language) [5,
6] has been developed by the author and colleagues, at the FlexComp Lab (http://flex‐
comp.jct.ac.il) of the Jerusalem College of Technology. A rewriting of DEEPSAM is
planned, using this new parallel programming methodology and embedded language.
Also, in collaboration with Prof. Miroslav Popovic (from Novi-Sad University, Serbia),
a version of DEEPSAM is planned, which will use Software Transactional Memory
(STM).

5 Concluding Remarks

DEEPSAM has been successfully applied to the prediction of the native structure of
neutral cyclic peptides. Those calculations were done in the gas phase and with implicit
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solvent models, producing results in good agreement with experimental data [1, 3].
Using DEEPSAM, a detailed full atomistic geometry of the Ubiquitin +13 ion (in mass
spectrometric conditions) has been predicted [4]. Also, structure prediction calculations
were done for several +6 charge distributions over Ubiquitin - the results will be
published in the near future.

Our already published work shows that DEEPSAM is an effective structure
predictor which has a good run-time performance, made possible by its parallel
implementation, its self-adaptability, and the small population size used (five confor‐
mations per population, in most of the cases), which means relatively small
computing resources requirements.
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